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Transient Solutions From Scaticred Fields in a Waveguide

M. F. Werby

We examine a transient signal that scatters from a submerged
object traversing a waveguide using the object in a waveguide
model developed at N . We are concerned with shallow
wiater waveguides using realistic elongated targets. We show
how 10 employ different pulse forms for resonant and
nonresonent targets to determine distinguishing characteristics in
the pulse signals that scatter from the target via bislatic
measurements. Some numerical examples are presented for both
frequency and time domain solutions.

Introduction

In this work our aim is to describe what happens when an
acoustic signal interacts with an object in a waveguide. We are
interested in elongated targets. Presently elongated targets are
now being successfully treated by variations of Waterman's
Extended Boundary Condition ( EBC ) method for
impenetrable, fluid and elastic targcls"“. particularly for axi-
symmetric objects such as very elongated impenetrable
spheroids as well as spheroidal elastic solids and shells.
Familiarity with the subject of scattering for the free state
problem and the many complications and numerical pitfalls that
are encountered can not help but lead one to the conclusion that
when these objects are placed in a bounded environment,
complications proliferate possibly 10 the point that exact
methods if possible to formulate are not numerically practical.
It therefore seems at the very least judicious to attempt to
construct a theory that describes what happens 10 a signal once
it scatters from an object in a waveguide to be based on the
free state solution; in panicular 1o determine a suitable unifying
procedure that allows one to couple the free state solution to
the solution for propagation of a signal in a waveguide. Here
we give an outline of a normal mode based method to treat the
object in a waveguide problem based on a coupling scheme
and present some numerical results calculated from the
formulation. In order 10 do this we first show how it is
possible to reproduce the near field due 1o scattering of the
guided wave, Then we introduce the coupling scheme that
cnables one 1o describe the scatiered signal in the waveguide,
Finally we indicnte an efficient method that allows ane to
cffectively treat the transient signal in a waveguide. Numerical
examples are then presented.
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We wish to detenmnine the near field due to the interaction
of a guided wave with a submerged object. This is the first
step required 10 couple the free state solution with a
waveguide. Thus, this phase of the problem takes on
considerable significance. We can then use the near field
solution in a variety of strategies to obtain an approximate
solution for the field scattered/propagated irom an object in a
waveguide. Note that we do not state the problem as eithi:r a
scatter or propagation problem because we can view the inial
event ( the interaction of the guided wave with the object) as a
scattering event while we can view the course of the scatered
signal as a propagation event once the waveguide takes
effect. By emploving the near field in this manner it is clear
that we have divided the problem into different computational
as well as conceptual segments namely propigation-scattening-
propagation. In this section we outline how to treat the
interaction of a signal propagating in a waveguide with a
submerged object. To do this we first review the treaiment of
scattering from a target via the extended boundary equation (
EBC ) method which leads to a T-matrix that transforms an
initial field into a scauered field ( for the free state problem ) in
matrix form as follows:

{=Ta.

where f [ a } are column vectors representing the expansion
cocefficients of the scattered ( incident ) fields and T is the
transformation ( a square matrix ) that maps the incident field
onto the scattered field. Let us restrict our argument ( for the
sake of simplicity ) to that of an axi-symmetric target such as a
spheroid and deal initially with a plane incident wave. We will
then generalize to the case of a guided wave based on a noral
mode solution. We will see below that even for a lairly general
range dependent waveguide this approach will be suflicient for
general environments. To be specific we look at the form of a
T-matrix for a rigid axi-symmetric target. This has been

derived earlier and presented in a computationally practical
form. The T-matrix that maps the incident field onto the
scattered field is:

T=ReQQ'!

where Qij-IRecpi(kp)avj(kp)landS.

In the spherical polar representation Pikp)ahi(kp) ¥im(8.4)
where hj and Yy, are outgoing spherical Hankel functions and

‘spé\erical harmonics of order i, with m being the azimauwthal
ndex, .
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JAn example of the power of this method is represented in
Fig. I which illustrates the angular distributions for a rigid
spheraid with aspect ration of 16 10 1 at a kL/2 of 200 for
incident angles of 0- 30- 60- and 90-degrees relative to the axis
of symmetry.
_ The T-matrix was developed in a spherical representation,
1t is a second rank tenser in irreducible form, and thus has
meaning only when operating on a vector also in a spherical
representation. Since it is in imeducible form it can easily be
rotated once the simplest form of T is devised which is one of
its salient properties. On the other hand, the fact that it
requires the vector that it operates on to be in a spherical
representation while having its value for plane waves (which
are easily expanded in a spherical representation) imposes
restrictions on the form of the guided wave. However, we
show in what follows how it is possible to represent a
waveguide solution of a fairly general form in a spherical
representation. The plane wave solution may be written in a
partial wave representation via the Raleigh series as follows:

EXP{ipkCos(8)}=Z (2n+1)(i)" j5(pk)Pn(8)

where q is the angle between k and r. For the more general
representation one can use the addition theorem for spherical
harmonics to obtain the plane wave in coordinates relative toa
fixed cartesian system which we must ultimately use. That
expression is:

Pn(8)=4m/(2n+1)EZ Y ma(8 xn.® kn)Ymn(® p'n® pm)’*

where 8 is the angle between p and k and 8 yj, and @ ng
are the respective angles relative to the cartesian coordinates of
1 for mode n.

Our interest , however, is in the guided wave impinging on
a bounded object. Here the wave that insonifies the object for
a stratified environment is of the form:

Ug=1/2(ei™4)/dEQn(YnZs)Pn(Yn2)e X/ (xqn)!/2

where @n(Y,2) the vertical solution is an eigenfunction with

cigenvalue ¥, corresponding to the vertical wave number for
mode n, while zg and z are the values of vertical
displacements at the source and at observation respectively, r
is the distance from source to receiver in the horizontal plane

and Ky, is the horizontal wave number for mode n. Here k2=

Yn2+Kq2 . In this formulation we include only propagating
modes and assume that the origin of the source is localized in
space such that it may be approximated by a point source and
that we are sufficiently far from the source that evanescent
modes can be ignorcxi This procedure is, in fact, standard
practice in the derivation of normal mode equations and proves
to be quite adequate for many environments. We will limit

discussion to layered fluid bottoms so that U symbolizes the_

velocity potential. For an elastic bottom we would have to
formulate the problem using the displacement vector in order
10 satisfy the boundary conditions at the fluid-elastic interface.
Here we indicale with an example how to convert U to a
spherical representation for the case in which we represent the
environment by n isovelocity layers, Let us pick a particular
layer for which the submerged object resides. Then U is of the

form:
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Uqg=1/2(ein/d)agy nSINCZOSINGY, 7 KT/, 0y 172

where ap, is the expansion coetficient. We want 10 t1ke

advantage of the Rayleigh ¢xpansion of a plane wave so that
we write

sin(Ynz)e®nM={ Exp(iynz+Knr)-Exp(-iynz+knn 1/2i

where the (x,y.z), (r.z, ) are illustrated in Fig. 1. The
coordinates (x'y,,z') for the T-matrix must preforce be in the
representation in Fig. 2 where 2 is along the axis of symmeltry
of the spheroid ( our choice of target ). We write

cos(an 4 )=(ypz+Knr)/kp and cos(ap. )=(7yz-Knl)kp SO
“that we have -

sin{ysz)eXn’={Explikpcos(ay,.] )-Explikp cos(a, )i} /2

Thus, after use of the Ravleigh series and the above
expression we have U in the following spherical
representation:

U= 1/2(eM4)/dE,E) an(2L+ DL (PK)I P () PL(ap))
/(an)llz

where we must use the spherical harmonic addition theorem
obtain the most general form of the expression. The above
expression has been derived tacitly assuming that the
interaction between the guided wave and the submerged object
occurs at a point. in fact, the interaction is extended in space
and we must allow for this in the final development. The final
form depends on the way we interface the object with the
guided wave. Let us assume we have derived the above
expression 1o be valid at the origin of the submerged object.
Further, we wish to find the field at some vertical line or over
some surface with distance rg from the center of the object.

This will be developed in the next section.

So far we have only dealt with the free state T-matrix. If
the object is near a surface then we have ignored muhiple
interactions between the object and the interface. Although, for
most problems multiple interactions will produce high angle
propagation that will ultimately get absorbed into a realistic (
attenuating ) bottom and should not be a suong factor in
calculation. This effect can be included in our formulation by
employing the T-matrix at an interface presented elsewhere.

We outline the basis for one of the most useful methods to
describe scattering from an object in a waveguide which we
refer to as Huygens method. This was considered earlierS but
was not fully developed. We begin by allowing a guided
wave 10 impinge on an object as It traverses a given region,
The object scatters the guided wave in some manner. We
determine the scattered ficld near the object via a {ree fickd
transition matrix or one near an interface as deseribed above.
Let us choose a surface circumscribing the subnerged odject.
The surface is arbitrary to the extent that it is smooth and s
dimensions do not exceed the boundaries of the waveguide
and should be such that the largest dimension of the surface is
such that the highest angle mode does not interact with the
boundary of the circumscribed region, We next require the
near ficld on the surface as well as it's normal derivative, To



obtain this we must make a transformation from the
coordinates of the waveguide to that of one relative to the axis
appropriate to the submerged object. Recalling that the mode
angles ap were obtained relative to the horizontal ( and not the

vertical as is usual in normal mode theory ), we choose b (o
designate the angle that the mode makes with the axis of
symmetry of the spheroid in the horizontal plane. It is to be
noted that the reference axis of the spheroid and that of the
waveguide differ. In particular, in order to exploit the axial
symmetry of the object we must choose the z axis in the object
body reference along the axis of symmetry while we can
choose x and y at our convenience. In the waveguide, z ts in
the downward direction while x and y are in the horizontal
plane. The angle scheme chosen are such that 8, and j, the
angles associated with the particular mode n are the appropriate
angles to be implemented in the spherical harmonics. They are,
in particular, the angles of the incident mode n relative to the
symmetry axis of the submerged object and the angle that the
plane generated by the incident ray-mode n and the symmetry
axis of the spheroid makes above ( below ) the horizon
respectively. They are obtained fron:

Tan(@y,)=Tan(a,)/Sin(B)

Cos(8y)=Cos(B)Cos(ap)

where the surface is chosen at a suitable region circumscribing
the object (suitably near the object) with origin at the center of
the object. The surface field can be obtained from the
expression

((0.8.0)=LLmnn Tmnn' (Xn) Y mn(@xn ®xn) Ymn(Orn.@
p'n) N(xap)(xqp)1/2

where the a's are projection coefficients of the normal-mode
functions onto the spherical (partial wave ) solutions. This is
the most general form of the scattered near field.

The surfuce integral representation of the scattered field
which also satisfies the asymptotic conditions of the
waveguide is based on a variation of Huygens principle, hence
the name Huygens method. The integral form that expresses
Huygens principle is evaluated over an outgoing surface in the
direction of the scattered signal. ltis:

U(n= Jtir) 3G(r,e)/dn - G(r.r) of(r')/dn)dS

For the unperturbed waveguide Ug in normal-mode
representation we have for the initial field:

Uy= 172teim3yd=Lon(mzs) onimz) eXnf/(xpn)1/2

which we use in the derivation of the above equation and use
to compare with results that follow.

~ We require the Green's Function for the waveguide and it
IS:

Go=(i/2d) Z@nlynas) @nl{tn2)Ho(xnr)

where Hyy is un outgoing cylindrical Hankel function and j,
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Yn and kp, are the normal-mode functions and the vertical and
horizontal eigenfunclions, respectively, By appropriate

manipulation one arrives at an expression far from the object
of the fomm

Us(z.r)=Zan(r)en (ynz)e¥n’/ (xnr)1/2
where

an= /[t (0",8.9) 3 9 (¥n2') exnr'(®)(xnr)1/2/ 3n-
(pn(Ynz')e"nf'(e)/(xnr'(ﬁ)) 1/231(p',8,0)/9n}dS

Note that the above equation is in the form of a normal-mode
solution, and therefore the scattered wave forms a guided
wave suitably far from the object, as one would expect. This
solution, in fact, is continuous throughout space and satisfies
the boundary conditions of the confined environment that
forms the guided wave. The above expression can be
evaluated by a variety of strategics. We can: (1) integraie over
a surface that circumscribes the target such as a spheroid or a
sphere or we can: (2) integrate along a line in the outgoing
direction. We will not labor here on conditions required for
each of the surface strategies. We choose the second method
here ( it is easier to implement and requires less time for
calculation but is also of less general value ). In that case we
must obtain the image solution of the near ficld so that the
surface field is zero on the surface boundary. Otherwise, we
would be required to integrate over the surface boundary
which would be more time consuming then including the
image field.

1. Free far field angular distributions for scattering from a
spheroid of aspect ratio of 15 to ! at a ki/2 of 200, Incident
angles are at 0-, 30-, 60-, and 90-degrees relative o the axis of
symmetry.
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Some Examples

We first 1est the Huygens method for a spheroid of length
50 m and width 10 m. The object is in a water column of 150
meters, 10km form a 200dB source at 100 Hz, 75 m below
the surface with the object a distance 75m from the surface.
The half space is composed of sand ( a density of 2 relative to
that of water with a bulk speed of 1600 nvsec ). The half space
has no atienuation for this example. The velocity profile in the
water column is constant at 1500 mysec. For this example the
near field is fairly constant over the water column much like
that due to a point source. Thus we expect that the scatiered
signal (in this case we scatter broad side ) will behave much
like a point source with origin at the center of the spheroid.
Fig. 3 illustrates the transmission loss ( TL ) of the object
scattered signal compared to that of the signal emanating from
the origin of the object with a signal strength the same as that
of the signal level at the object. The shape of the TL due to the
scattered signal and that due to the point source are essentially
the same consistent with the point source argument as well as
our expectations. This observation was also made in a paper
on the PE method®. The difference in magnitude between the
two calculations is due to the fact that at this frequency most of
the energy of the scattered field is diffracted into a broad
region. We expect that with increasing frequency the field will
become more focused in the forward direction and the
difference in relative strength will diminish with increasing
frequency. This is certainly borne out in calculations that we
have done .
Fig. 4 illustrates the case of a cw solution of scattering from
a waveguide for an object 100 by 10 m. The part of the
waveguide under study here 200 m in depth over a 10 km
range. The bottom has a sound speed of 1700 m/sec and has
moderate attenuation. The velocity profile is allowed to vary
consistent with a fall profile at 40 deg. latitude. The frequency
of the 200dB signal is 250 Hz and interaction takes place with
the target broadside at a distance about half way along the 10
km waveguide. We compare the initial signal with the scattered
signal. The solid curve in Fig.4 is the TL due to the signal and
the dashed curve is that due to the interaction of the guided
wave with the object. We have compared this calculation with
the sonar equation with results suggesting close agreement in
magnitude. Fig. 5 illustrates the signal in a typical wave guide
of a Gaussian pulse incident from a source 5 km away from a
rigid 5 to 1 spheroid. The signal is at end-on incidence and the
scattered signal is at 45 degrees relative to the axis of
symmetry. The solution was constructed from the Fourier
transform of the frequency domain solution. The frequency
was such the only two modes are propagating and one can see
the two modes as well as the direct signal progress in time.
The appropriate parameters are listed in the figure.

)

Z

14
2. Coordinate frame of the object relative to the waveguide.
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Conclusions
We have outlined how it is possible to obtain the near field
due 10 the interaction between a guided wave and a submerged
object. The conditions were Tairly general. Some details were
presented on how 1o couple the near field to n normal mode

solution of i waveguide via the Huygens method. Agreement
between the method described here and other methods are

found 10 be quite good and based on that consideration we
expect the method 1o be reliable prediciors for a fairly broad
class of problems. Moreover, although these examples were
all performed for rigid spheroids the methods are just as casy
o use for any class of targets including elastic shells.

MY !

‘ I am indebted 10 the Office of Navel Research and
NORDA and particularly NORDA management for continued
suppont for this research.
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