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PHASE-CONJUGATED FLUORESCENCE

Henk F. Arnoldus
Department of Physics

Mendel Hall
Villanova University

Villanova, Pennsylvania 19085

and

Thomas F. George
Departments of Chemistry and Physics & Astronomy

239 Fronczak Hall
State University of New York at Buffalo

Buffalo, New York 14260

Fluorescent emission by an atom near a phase conjugator (PC) based on

four-wave mixing is studied from first principles. The Maxwell-Heisenberg

equations are solved for the radiation field, and with an asymptotic expansion

an expression is derived for the field in the far zone. The total emitted

power which can be measured by a detector in this region is evaluated, and it

is found that this power acquires three distinct contributions. First, there

are photons which are emitted by the atom directly towards the detector, and

without any interaction with the medium. Second, there are photons that first

travel towards the surface of the PC, and they have a certain probability of

being reflected in the specular direction and towards the detector. The third

kind of radiation consists of phase-conjugated photons, which are emitted

independently of the previous ones. It is shown that the first two processes

are a result of simple atomic spontaneous decay, but that the emmission of a

phase-conjugated fluorescent photon involves a three-photon process. The

latter process has a probability proportional to the population of the atomic

ground state. It is pointed out that an atom in its ground state polarizes

the nonlinear medium of the PC, which subsequently can emit spontaneously two

photons. An absorption-emission-absorption process by the atom then produces

a fluorescent photon, together with a spontaneous excitation of the atom.

PACS: 42.65.H, 32.80, 52.50.D
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I. INTRODUCTION

Wavefront inversion of optical radiation was observed for the first time
1

by Zel'dovich et al in stimulated Brillouin scattering. Mainly due to the

fact that wavefront inversion, or phase conjugation, can be utilized to
23

correct wavefront distortions in optical amplifiers, ' this technique has

since attracted a considerable amount of attention. In 1977 it was proposed

by Hellwarth4 and Yariv and Pepper5 to construct a phase conjugator (PC) which

operates through four-wave mixing (FWM) in a nonlinear medium, and almost

simultaneously this was realized experimentally in a liquid CS2 cell
6 ,7 and in

a lithium formate crystal. 8 Alternative methods of phase conjugation include

FWM in gases and thin films, 12 ,1 3 or more exotic media like microparticles

suspended in a liquid !4 or organic dye molecules in a solid matrix.1 5 Also,

the change in reflectivity of a thin metal layer under high irradiance has

been considered as a candidate for the generation of phase-conjugated

light. 1 6 ,1 7 More recently, phase conjugation in photorefractive crystals,
like BaTiO3, has gained popularity, 18 which can be attributed to the

possibility of self-pumping of the crystal by the incident beam whose phase-

conjugated image is sought. 1 9 "2 0  On the theoretical side, much effort has

been devoted to the description of (idealized) phase-conjugated radiation, and
21-25

to the study of the applicability of a PC for wavefront correction.

The possibility of wavefront distortion correction after phase

conjugation relies on the equivalence between phase conjugation and time

reversal, as explained in various reviews.26-29 Taking the complex conjugate

of the spatial part (the phase) of a field is mathematically equivalent to

replacing t by -t. Many of the properties of phase-conjugated radiation can

be understood most easily with time-reversal arguments. For instance, when a

plane wave is incident on a phase-conjugating crystal (under a certain angle),
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then the time-reversed replica of this beam must again be a plane wave, and it

propagates in the direction opposite to the incident wave. This is in

contrast to specular reflection at a linear medium (dielectric or metal).

Also, when a point source of radiation, like a fluorescing atom, is close to

the surface of a PC, then the incident field is a diverging spherical wave.

According to the time-reversal argument, the reflected (phase-conjugated) wave

must be a converging spherical wave which is focused exactly on the point

source. This reflected field at the position of the source can affect the

dynamical evolution of the radiatior considerably, and thereby its mechanism

of emission, as was realized for the first time bv Azarwal.

Recently, Bochove has redone the calculations of Ref. 30, with an

approach where the radiation field is quantized explicitly. In both

references the Einstein coefficient for spontaneous decay of an oscillating

dipole was obtained, and it appeared indeed that there are some remarkable

differences as compared to fluorescent emission in empty space or near a metal

surface. Most notably, it was found that the decay rate is independent of the

distance between the dipole and the PC, as could be expected from the

equivalence of phase conjugation and time reversal. A reflected photon

returns to the atoms, no matter how far away this atom is. Of course, there

are some limitations on this result due to causality requirements and

retardation effects, as recognized by the authors. Recently, Cook and

Milonni32 have shown that a sample of many two-level atoms in their ground

states and near a PC is unstable. We shall show that this result also holds

for a single atom, and explain the underlying physical mechanism. Hendricks

and Nienhuis 3 3 have also studied the spontaneous decay of a two-level atom

near a PC. Their results for the decay rate are consistent with our findings

for the emission rate.

J
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We consider an atomic dipole p(t) with arbitrary time dependence and

evaluate the radiation field in the far zone, as it can be observed

experimentally by a photodetector. The time dependence of the Heisenberg

operator g(t) is brought about by its interaction with all components of the

electric field. We were able to avoid an explicit quantization in terms of

plane-wave modes of the radiation field, and the general results do not depend

in form on the specific properties of the dipole moment p(t). Wa work out the

case of a two-level atom, and it appears that some quite remarkable features

in the behavior of an atom near a PC can be predicted without knowledge of the

details of the temporal evolution of the atomic density operator.

II. VARIOUS FIELD COMPONENTS

A nonlinear medium occupies a part of the region z < 0, and its surface

is the plane z = 0. Two counterpropagating laser beams with frequency W > 0

pump the medium, and the third-order nonlinear susceptibility is responsible

for a four-wave mixing process between the two pump fields, an incident field,

and a generated phase-conjugated wave. We shall allow the medium to have a

non-unity dielectric constant, which implies that we have to take into account

the specular reflection of an incident wave. In this fashion we can keep

track of the differences between linear and nonlinear effects, since they are

both unified in a single formalism. A dipole p(t) is located at r - hez, h >

0, on the positive z-axis.

We are interested in the electric field operator E(r,t) in the region

z > 0 only, since that is the place where we can put a detector and measure

the radiation. In general, E(r,t) acquires three distinct contributions, and

we can write
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E(rt) - Ef(rt) + E (r, t) + Eh(r,t) (2.1)

for the field in the Heisenberg picture. Herc, Ef is the free field which

includes the vacuum field and possible external fields. The term E is the
-p

particular solution and is equal to the radiation field of an atomic dipole in

empty space. A part of this field is incident upon the PC, which generates a

phase-conjugated signal and a reflected specular wave, both of which are

included in E, (h - homogeneous solution).

The key to the evaluation of E(r,t) is the notion that the Heisenberg

equations for the time evolution of the electromagnetic-field operators are

identical in form to -he classical Maxwell's equations.' Just as in

classical electrodynamics, we cannot consider the field in the region z > 0

only, but we have to take into account the solution in z < 0 as well. At the

boundary the two solutions must match in the usual way. The free field Ef is

assumed to obey Maxwell's equations separately. For parametric FWM, these

equations are linear in the fields (in the undepleted-pump approximation), and

therefore E-El must also be a solution of Maxwell's equations. We call this

the source field and write it as

E (r,t) - E (r,t) + E.(rt) (2.2)-s-- -p-

for z > 0. This component of the radiation field is due to the presence of

the dipole and its interaction with the medium. We shall focus our attention

on E only, since this is the radiative part which can be measured by a

detector in the far zone. The homogeneous component has two distinct

contributions,
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Eh(r t) - Er(r 't ) + E r,) (2.3)

in terms of a specular (r) and a phase-conjugated (pc) part.

It is convenient to adopt a Fourier transform of E(r,t) according to

E(r,w) - dt e E(r,t) (2.4)

The electric-field operator is Hermitian, which translates into the Fourier

domain as

A

Z(r,t) = ;-(r,r:) - E(r,-w) (2.5)

A useful concept is the positive-frequency part of the field, which is defined

as

(+) I_ I0 -i )t 
(

E(rt) O2 d e E(rw) (2.6)

in terms of E(r,w). The negative-frequency part follows from

E(r,t) ( ' 1  ( E(r,t) (+ ) "t  (2.7)

and the total field assumes the form

E(r,t) - E(r,t) + E(r,t) . (2.8)
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Similar notations will be used for other time-dependent quantities, and most

notably for The dipole operator %), which is also Hermitian. From Eq. (2.5)

:ollows that we know the field E(r,w) as soon as its value for w > 0 only

is given. Equivalently, Eqs. (2.7) and (2.8) show that the entire field is

determined by just E or E

III. ANGULAR SPECTRUM OF PLANE WAVES

n this section we derive an explicit form of the particular solution E-p

tor a dipole in emptV space, which is most suitable for the evaluation of the

:.omogoeneous contribution (Sec. 7), For ; > 0, the Fourier transform of the

electric field of a dipole at r - h assumes the form

S(ru) - -- (k'i(u) + ( ( ).7)Vl e3.1)
-p . k- (w)+rp-h) V (3.1)

with k - c/c, and where only u(w) is a quantum operator. After carrying out
35

the differentiations, this expression reduces to the more familiar form. We

shall use Weyl's representation of the Green's function36

i a-r Pd d3 , e iX+iY+1YIzh k > 0 (3.2)

r--I -~

The parameter -y is defined by

llk2 . a2 3-

7 -(3.3)

ia2 + 02 k 2

mim m m m - - - - - . . . . . . .. . .. .. .... .. .. .
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and we take the form for which the argument of the square root is positive.

Substituting expression (3.2) into Eq. (3.1) and carrying out the

differentiations yields

E (r,M - h)

0+ ___i_82 7.d 7.d-1 ei +i~y+iylz'hI

2

* k() 7gx(W) + 4 (w) + 7sgn(z-h)g,(w)]

S[aex + 'e + 7sgn(z'h) z (3.4)

Here, A(w)i is the perpendicular component of M(w) with respect to the plane

z - 0. The 6-function at r - h appears due to the second derivative of Iz-hI

with respect to z. For two given values of the integration variables a and ,

we define the vector

K ae + (3.5)

where the subscript indicates that this vector is parallel to the z - 0

plane. In terms of 7, we then introduce the two complementary vectors

" 1 + 7ez (3.6)

K' K , (3.7)
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which are each other's mirror image. Notice that K1 is real, but that K and

K' can each have an imaginary =-component. For the square of the magnitude of

the various wave vectors, we find

2 2 _ 2 2 2 2

K (K') -k a + + - (W/c) (3.8)

Furthermore, we write symbolically

f - da (.) (3.9)

With the notations from above, (r,w) can be cast in the form-p -

^i 2 iK.(r-h)
(r,P ) 8 f -i 7-p "- 8

0

X Ik A(w) - ;(w).K)K), for z > h , (3.10)

and the expression for C < : < h follows from Eq. (3.10) after the

substitution K - K' in the integrand.

For every value of K., the integrand of Eq. (3.10) represents a plane

wave with wave vector K, and because of the identity

2

K.{k2PM)- (p(w).K)K) - 0 (3.11)

every wave is transverse. The z-component of the wave vector K equals 7 from

Eq. (3.3), which is either positive or positive-imaginary, corresponding,

respectively, to a wave which travels in the positive z.direction or to a wave

4
l :
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which decays exponentially in amplitude in the same direction (evanescent

wave). For the field in the region 0 < z < h, the wave vector is K' for a

given K11, and the wave is again either travelling or evanescent. The various

occuring waves are illustrated pictorially in Fig. i.

IV. POLARIZED WAVES

For reflection of a plane wave at a dielectric, the ratio of the

amplitudes of the reflected field and the incident field, including the phase,

is given by the appropriate Fresnel coefficient. This coefficient depends on

the angle of incidence and the polarization of the incident wave. It can be

shown 3 7 that the same holds for reflection of a phase-conjugated wave by a

nonlinear medium. Therefore, it is advantageous to decompose the various

plane waves in E (r,w) into surface(s)- and plane(p) -polarized waves. For a
-p --

given K or K' we define

PK e 1Kxe (4.1)!Ks" e !K' K, K,_  ez

-K - K e -M ,_)) (4.2)

1 - - + yK (4.3)
-K'p kKJ (1-(

These unit vectors are normalized according to e..e. - 1 for any subscript i,

and they are perpendicular to their corresponding wave vector. Notice that

the p-polarization vectors can have an imaginary z-component. The directions

of the various unit vectors are depicted in Fig. 1. The field E p(r,w) in z >

h can then be decomposed as



i- 2., o 1 iK.(r-h)(()ee (4.4)
(rw) - d1K,- e- - e., a.

-p -n fC .'
0 a

with a - s,p, and with K - K' we obtain the field for 0 < z < h.

REFLECTED FIELDS

In order to simplify the notation, we introduce the two quantum

operators

V Ka (5.1)

E K, e (5.2)
K 8ir fcy 2 -_'

0

Then the particular solution can be written as

( f d2 EKK e - for z > h (5.3)

and with K - K' we find the field in the region 0 < z < h. Expression (5.3)

with K - K' is a superposition of polarized plane waves, where EK,a serves as

the amplitude, including the proper phase. Since Maxwell's equations are

linear, we can calculate the reflected field on a per-wave basis. In the

region 0 < z < h, each plane wave has the form EK,GeK,!exp(iK'-r), and these

waves are the incident waves on the medium (Fig. 1), which have to be matched

across the boundary z - 0 to a solution in z < 0.
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'hen a plane wave with wave vector K' , frequency w > 0 and polarization

a is incident upon the medium, then the reflected radiation consists again of

a-polarized plane waves, but with different wave vectors, in general. Due to

the four-wave mixing, the frequency of the reflected wave can also be

different. Vhen the two pumps have frequency w > 0, and the incident wave has

frequency w > 0, then it can be shown37 that the FWM process couples the field

with frequency w to the field with frequency

2w (5.4)

which is negative. Therefore, reflected radiation can be generated in the

medium, both at frequency w and at frequency w', but not at other frequencies.

At the interface z - 0, the spatial part of the incident wave reduces to

exp(iK1I.r). It is only possible to match this wave to other waves for all r

simultaneously when the other waves have the same spatial dependence.

Therefore, all waves inside and outside the medium must have a wave vector

with the same parallel component K1i. For the wave vector of the reflected

wave at frequency w, we can write K' - K1 + K' e for which it must hold
-r - ~r,z -z

that (K' 2 K- The solution K' - -7 corresponds to ther,z rz
incident wave, and the only other possibility is K' - +7. But this is the

z-component of the complementary wave K, so that we find K - K. Figure 1

shows that this wave is just the ordinary specular wave, although its

generation is affected by the nonlinear interaction. For the wave at

frequency w' we wr'te

K' - K +K' e (55)-pc pc,z -z
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where

-. ( '/c)" -

K°  
(5.6)

pc,z ______

i /K - ( '/c)

In general, we shall have iw'l jwj, which gives K' = -- for the case of a

travelling wave, and thereby K' = K'. This shows that the incident wave and
-Pc -

t'.e 7c-wave are approximately counterpropagating, as is required for a time-

':ersed wave.

.text -..e have to choose a phase convention for the unit polarization

vectors of t.e r-wave and the pc-wave. Since K' = K, we can simply take

, e., a - s,p (5.7)-N a -Ko

tor the r-wave, where the right-hand side is given by Eqs. (4.1) and (4.2). A

convenient choice for the pc-wave is

K, x ez (5.8)
-pc

e - - K x e (5.9)

-Dcp -' -pc -K's

which are both normalized according to e..e. - I, and are both perpendicular

to K'
-pc
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For a given incident field of the form (5.3) with K - K', the reflected

field (homogeneous solution) has two components. The r-wave at frequency w

attains the form

-r) E a dK r (5.10)Er~r')- o ~il K',RKIaKa-

and for the pc-wave we can write

iK' *r(r'w') " 2- EK, PK'a-K' a -C-(5.11)

2 - PC

Here, R K' and PK' are the Fresnel coefficients for reflection of the r-wave

and the pc-wave, respectively. They depend in a complicated way on the

properties of the medium and the details of the FWM, like the dielectric

constant, the third-order susceptibility, the pump polarization, etc.

VI. TIME DOMAIN

Of practical interest is the electric field as a function of time. It

is sufficient to evaluate the positive- or negative-frequency part only since

these components determine the field completely. For the particular solution

Ep(r,w) we have Eq. (5.3) for z > h, which holds for w > 0 only. Therefore,

the positive-frequency part of E (r,t) follows from Eq. (2.6), and is

explicitly

(rt) I dw e dK E eK (6.1)

P 0 a
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for z > h, and with K - K' we obtain the field in 0 < z < h. In a similar

.:av, the superposition of all specular waves has the representation

+) 2 iIE '  _iK.r
""(rt) - dw e d e j d'K 1 Ee e (6.2)

a

For the phase-conjugated wave we have expression (5.11) in which the frequency

is negative. Consequently, a Fourier synthesis yields the negative-

frequency part of the field. We obtain

F0  I 2  PPe C r
S(r,) IT dw' e E -Pc d K , e (6.3)

=Pc--- . K'a K'c-K' ca
aPC

7II. ASYMPTOTIC EXP.NSION

Although expressions (6.1)-(6.3) give the total source field in z > 0 as

a function of time, the appearance of the integrals over the frequency and the

parallel components of the wave vectors is cumbersome. Fortunately, for the

studv of fluorescent emission we do not need the exact solution for the

radiation field at every point r in the half-space z > 0. Only the value of

E (r,t) for r - In - is of relevance. In this section we evaluate the
-s -

asymptotic behavior for r - , and in the next two sections we work out the

formal results in order to obtain more managable and transparent expressions.

Suppose a detector is located at position r. This point will be

represented by its spherical coordinates (r,0,0) with respect to the z-axis,

and we are interested in the value of the radiation field for r - ® with (8,0)

fixed, and for z > 0 only. The integrals in Eqs. (6.1)-(6.3) have the form

d2K exp( r)g(K, with ic K or x - K'. With the method of stationaryJP c
. . .. . . .4p
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phase,28 we can derive an asymptotic expansion for integrals of this kind.

For the p-wave and r-wave we obtain

(r,t)(+) icosd dw e-iw(t 'r/c) w (E (7.1)

:~p -rc 0 'z]"k [E (e r )

a

rt)() . icos e iw(tr/c) w [REK,eK Kk(e)~ -rc f . .. .a'K M ed I
(7.2)

" i rh

-- - I + 2' (7.3)

the as,ymptotic expansion of the pc-wave becomes

E 1r t) ( )  - icos--- e -iw'(tr/c) , [-pc - - rc J ' e t /PK ,EK,aeK,
a - - -pc I{
a

(7.4)

The parameter p accounts for the mismatch between w (or -w') and the pump

frequency W.

In the formal expansions (7.1), (7.2) and (7.4) we still have to

evaluate the factors in square brackets for the indicated values of K1. In

this section we consider the (quantum) amplitude factors EKa and EKo, as

2Ku
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by Eqs. (5.1) and (5.2), respectively. These factors contain the parameter y,

which depends on K:!- a+ 3 according to Eq. (3.3). We find
,i

k 2 sin2 for the p- and r-wave

P k sin2 for the pc-wave

which gives

kcos for the p- and r-wave

(8.2)

k,/l sin9 2 gfor the pc-wave

Substitution of E Ka and EK a into the expansions (7.1), (7.2) and (7.4) then

gives for the three fields

(r,t) - L r 0 eiw(C-r/c+r) 2
ZP -x.1 rc zF

0

X 'e (8.3)/ _a'a~)- K;I-k(er- - j Ei' (-r ji

87(r2t) " rc2 F dw e' iw(t-r/c-r) 2

0

x [y, _ _I^ (W e Ktke~l (8.4)

C

!i I li t I a~ m ai i imii., s I
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E2 (d,t) 1iw(t-r/c+r /p)
-Pc 2 e rc2  -0

Xe1 (8.5), 'P KK' a((w).e -K'a)]K ;Ipk(er)I

a

where we introduced the parameters

11 - 02 sin2 (8.6)
cosd

h cose (8.7)
rcosC

At this stage it is convenient, although not necessary, to make a slight

approximation in the expression for the phase-conjugated wave. For a given

frequency w', the integrand in Eq. (8.5) is proportional to the Fresnel

37
reflection coefficient PK',' which depends on w' . It is well known that

PK' assumes only a finite value when the frequency w of the incident wave is

sufficiently close to the pump frequency W. Since the integrand in Eq. (8.5)

;s proportional to PK,,, we can effectively set p I i in any factor that

multiplies P K'a Similarly, we can set 1 - and w' - - in the integrand,and lso K' a

and also e K, a = eK' as can be verified by inspection of the definition of
-pc

these unit vectors. Then Eq. (8.5) reduces to

E (rt) - - 2 ' e-iw'(t-r/c+) 2-c8ff2E rc2  -m

0

x PK' o K' ( ( ).e5, )1 (8.8)

a P'!la^ -' K 11 -k(e) 11ia
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which is a great simplification. NIotice that we have set p - 1 only in the

overall factors, but the full resonant frequency dependence is retained,

as it is incorporated in PK' a .

iX. POLARIZATION VECTORS, FRESNEL COEFFICIENTS AND THE MIRROR DIPOLE

Next we have to evaluate the polarization vectors eKa and eK'a' as they

are defined by Eqs. (4.1)-(4.3), and for the indicated values of K,, in Eqs.

8.3), (8.4) and (8.8). The parameter y in Eqs. (4.1)-(4.3) equals -y - kcosO

.n all cases, as follows from Eq. (8.2) with p - i. We wish to express the

,oiarizacion vectors in the standard spherical unit vectors e. and e, for a

:iven observation angle (9,).

For the particular solution (p-wave) from Eq. (8.3) we need e Ka for K "

k(er) , both for a - s and a - p. We find
-r

e -Ks]K -k(e " .l (9.1)

"2Kp;KI-k(e ) - (9.2)

as could be expected from a comparison between the phase conventions for eKs

and e p (Fig. 1), and the definitions of e. and e, respectively The field

then attains the form

E (r,t) (+ ) - 2 dw e'iw (t-r/c+r) 2

8f2 rc FO
0

A 
(x {((£(w)-.e )e + (p(w) e )e4 , (9.3)



fluorescence, which is of course unphysical. It can be shown,4 1 however, that

when we allow for a finite but very small detuning w - 0, the Fresnel

coefficients remain finite, with a magnitude on the order of unity. This

renders finite values for the parameters ct and c1 , and thereby for the

emission rate. For an extremely close resonance between w and w we can no

longer replace P a(wcosO) in Eq. (9.15) by Pa (W ,cos), and we have to take

into account the frequency dependence of P (w,cosd) over the width of the

atomic emission line.

This situation is analogous to the problem of resonance fluorescence by

a two-level atom in a monochromatic laser field. There, the spectral

distribution of the fluorescence consists of a 6-function at the laser

frequency, superposed on a smooth background, and in the limit where wo equals

the laser frequency the emission rate is infinite. In any case, the example

of this section shows that the situation of perfect resonance has to be

considered with caution.

XV. SCHRODINGER PICTURE

The time dependence of the emission rate dW/dt in Eq. (13.6) is governed

by the time evolution of the Heisenberg operator p(t). A more transparent

representation of dW/dt can be obtained by a transformation to the Schradinger

picture. When we take the Schrddinger and Heisenberg picture to coincide at

t - 0, then we have

A(O) - A - JA + $A

with
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and notice that the factor in brackets is just the transverse component of

;.w) with respect to the propagation direction e

For the r-wave from Eq. (8.4) we need again eK at K, " k(er),, for the

unit polarization vectors which correspond to a propagating wave with wave

vector K in the observation direction (0,0). In addition, we need eK'. at the

same value of K3, and these unit vectors account for the polarization of an

incident wave on the surface z - 0, which is subsequently emitted in the

specular direction (Fig. 1). We find

- -e (9.4)

- -e, -2sin~e (9.5)
.2 -,-~ -Z

where the term -2sin~e represents the change in direction between K' and K at

the moment of reflection at the interface z - 0. For s-polarized waves there

:s no such correction, since both the incident wave and the specular have the

same polarization vector (Eq. (4.1)). The specular field becomes

- f e eiw(t-r/c-r) 2
8r2 rc2

0

x (RK,p((,,).(-ea-2sindez))e 0 + RK,s(M(w).eO)eO) (9.6)

where the Fresnel coefficients RK, 0 pertain to the -fleccion coefficients of

incident waves with wave vectors K' , which are specularly reflected in the

observation direction (0,0). The coefficients RK, ° depend on the frequency w

A
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and angle of incidence . Since 6. equals the observation angle 8, we might

as well label with 0 rather than . Therefore, we can write

RK a - R (w,cosd) a - s,p (9.7)

A convenient concept for specular reflection is the mirror dipole. If we

decompose M (or p) as

+ + £:! (9.8)

where :he subscripts I and 11 refer to the surface z- 0. then the mirror

dipole is defined as

(9.9)

Combining everything then yields for the specular field

E (r,t) - I dw e- i(t-r/c'r) W2
-r- 8x2c rc2 0

0

A

x IR p(W,COSO)( u'(w)e6)

-Rs 
(  ,cose)( '(w).e)0 )e (9.10)

The minus sign in front of R is a consequence of the phase convention of theS

polarization vectors for s-waves.

For the phase-conjugated field we have to calculate K'o at K -
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-k(e,9 Both unit vectors in Eq. (8.8) appear with wave vector KO, which

:.eflec:s che fact that both the incident plane wave and the pc-wave have the

same wave vector K'. The additional minus sign in K1, as compared to K1 for

:he p-wave and the r-wave, signifies that a phase-conjugated plane wave

zravels in the direction opposite to its wave vector. The polarization

'.'*ctors are

-e']KI- ~ ri (9.11)

=e. (9.12)

and the f--ield is found to be

E(r,t) - -w 2- J-iw'(t-r/c+r) W2
=PC 87Sr 2 rc2

0

* P (W,CoS8)(p(w).e )e) , (9.13)

w:here we introduced the notation
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A complication with expression (9.13) is that the integration runs over

L', whereas the factor in brackets depends on w. With the relation w' - W -

2w we can write the field in the alternative form

(rt)(-) 2 1 2iw(t-r/c+?) w eiw(t-r/c+r) 
2

8p 2 rc2  e

0

x (P (w,cosd)(A(w).ea)e0

SPs (,cosd)(p(w) 'e,)e) (9.15)

wnere we nave used that Pa (w,cosd) is only nonzero in a small frequency band

around w.

X. NARROW-BAND EXCITATION

The Fresnel coefficients R (wcosO) and P (w,cose) depend in general ina a

a complicated way on the frequency w. For R this is mainly brought about bya

:he variation of the dielectric constant with w, but P has an additionala

geometric frequency dependence. The value of P has a sharp peak around W

w, and the relative frequency width of the response is on the order of Ip-i -

7. The absolute frequency width then becomes IW- j - 7w, and even for very

small interaction parameters 7 this can still be very large due to the

multiplication by W. We now assume that the dipole radiation is nearly

monochromatic, compared to the frequency width -1-w of the PC. With was the

central frequency of the dipole field and with A as its typical width, we

impose the restriction A << 7w on the exciting field. However, this does not

imply that w has to be in close resonance with -, but only that the spectral
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width of the dipole radiation is small compared to 7W. For an atomic

transition between (nearly) degenerate states which are separated by Wo, this

condition is very easily met.

Under the above condition we can replace R (w,cos0) and P (w,cosO) by

their values at w - w . Furthermore, the factor w 2 in the integrands can be

2
taken outside the integrals as w . The only remaining frequency dependence of

the integrands enters as A(w) or its mirror image, and the w-integrals can be

performed easily. We find for the three fields

2

(+&) o (+-)0 rt (p(t-r/c+r) +.e)e
- 47re rc -

0

(+) (0i
+ (Ap(t-r/c+r)(+ -e )e) , (10.1)

2
+ 0 c (t-r/c-r) *e(+)- '-'t (w 0 ( 'C°SO)(O(I rc r

4, rc 2
0

R S(wo. cOSO)(p'(t-r/c-r) e)e (10.2)

2

E r - o e2i(t-r/c+r)pc( ')  " " 2 e
41re rc

0

(P p(W ,cosO)(p(t-r/c+r)(+). e0)e0

* Ps(Wo. cos8)(u(t-r/c+r)(+).e ) ,)e (10.3)

in terms of the positive-frequency part p(t) (+ ) of the dipole moment operator.
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XI. RETARDATION

The three fields, evaluated at the position r of the detector and at

time t, are determined by the instantaneous value of the dipole moment at an

earlier time t - r/c ± r. Since photons travel with the speed of light c, the

delay time r/c equals the propagation time of a photon when it would travel

from the origin of the coordinate system to the detector. For both the p-wave

and the pc-wave, this retardation time is reduced by an amount r - (h/c)cose

for a given observation angle 8, and Fig. 2 illustrates that this implies that

:he photons are emitted from the site of the dipole, and directly into the

direction of the detector. The p-wave corresponds to emitted radiation by the

dipole into the region z > h without interference from the medium (Sec. IV),

.hich makes this picture consistent. The phase-conjugated wave, however, is a

reflected field by the surface, but nevertheless the photons seem to emanate

from the site of the dipole and travel directly into the direction of the

detector, in view of their retardation time. The specular r-wave has a

retardation of 2r, as compared to the p-wave and the pc-wave, and it is shown

in Fig. 3 that this time delay accounts for the difference in travel time

between a directly-emitted photon and a photon which is first reflected by the

surface z - 0. The figure also illustrates that upon reflection at point A

the path of a photon obeys Snell's law, and that a photon appears to be

emitted by a mirror dipole p' which is a distance h below the surface. We

conclude that the emission of both p- and r-photons is in strong analogy with

classical ray optics, and that the quantum nature of the radiation affects

neither the geometry nor the interpretation of the light emission. This is in

contrast to the emission of the pc-wave. If this wave would be a result of

the emission of a photon by the dipole into the direction of the surface, and

a subsequent reflection as a phase-conjugated image, then the delay time would
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be 2h/cos6, as compared to direct emission. Since there is no such

retardation, we conclude that the emission of phase-conjugated fluorescence is

more complicated. We shall show in Sec. XVII how the mechanism of pc-wave

emission can be understood.

XII. TOTAL SOURCE FIELD

In this section we construct the total source field E, as it is

measured by the detector. We shall suppress the overall time delay with r/c.

Then, for an atom which is not more than a few wavelengths away from the

surface z - 0, the time delay r is only a few optical cycles, and we can

safely replace the time evolution of "(t) by its free evolution over this

small time interval. This amounts to the approximation

(t*)) o (+)7
4(=) + e -i - (t) , (12.1)

which is perfectly justified at optical frequencies. We then obtain for the

fields

2 o
4o rc2 I(+t)).e + ( +(t)e+) , (12.2)

=P47r rc 2
0

2 i()

E r( ,t *) 4 e rc2  (R P(W 0 os a)(1'(t)(+ ) e) 6

0

- R so ,cosa)(,U'(t)(+).e)e (12.3)

I1..
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2
(r~) - 0 2 eZPC- 42r( rc2

x (P (W ,'cose)GA(t) ()ea)

* P s(W~ O'oa)At +. b) (12.4)

in which all dipole moments appear with the same time argument t.

Subsequently, we take the Hermitian conjugate of Eq. (12.4) which gives

(+) (+ f C-s E.D .r't) according to Eq. (2.7), and we use (p(t) A (t) .Then

we add the three fields, which gives us for the positive-frequency part of the

source field

2 o

E (r,t)(+' - w0 e 2 ((M 0(t~cosO).e a)e 0 + (M 0 (t,cos8).e )e) (12.5)

0

w*here we introduced the two operators

M0O(t,coso) A (t) +)+ e2iw 0 r R p ,'cosO)W'(t)(

e- 2Z;(+,r P (Woc~s) *A~t(-)(12.6)

k(t~coso) A (t) +)- e 2w0r(R s(W 0 cose~p()+

+~~~ ~ 0-1~~)PS( os)*At()(27
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Without the presence of the medium both operators reduce to M, - (+)

and conversely we can interpret M. and M, as two components of the positive-

frequency part of an effective dipole operator which takes into account the

interaction with the medium. Notice that both operators contain only positive

frequencies, due to the appearance of the factors exp(-2iwt).

XIII. INTENSITY

When a detector at a distance r and under solid angle 0 - (0,0) measures

an electric field E then the detected energy at time t per unit of time and-S

per unit solid angle is in general given by
3 9

-3 -- 2c cr2  <E (r,t)(').E (r,t)(+)>, (13.1)

provided that the efficiency is 100%. Here the angle brackets indicate a

quantum expectation value. The emitted power into the half-space z > 0 is

defined by

dt - J d ta (13.2)

half sphere
in z > 0

With expression (12.5) for the source field, we obtain for the intensity

distribution

4

ta2 2 03 <(Ma(t,cosO)t.e )(MO(t,cose).ed)
87r f c

0
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+ (M (t,cosO) -e )(M (t,cosO),ek)> (13.3)

and substitution of the explicit forms of M and M then gives the angular

radiation pattern.

Both operators M and M depend only on the angle 0, and therefore the

O-dependence in a 2W/atai is purely geometrical, which reflects the invariance

of the system for rotations about the z-axis. Integration over 4 and 6 then

yields for the emitted power

dW(* (+(. ()
dt a~bi,<4U(t).! *g(t) 1  > + br,4&(t)l *u(t)l >

+__d -< (t) ).*U(t)" > + C<' it~ i "<t>- (13.4)

where the overall parameter is given by

4
w

a- 0 (13.5)

0

and the parameter functions are

b i lu(Il + e x\CR(W 1 2 +u + 21, eiOUR (o1,u)I 2 (13.6)
4 0 du(fl e UR

"3 - 2u) + 2(u)I (13.7)

c11 - 0 du(IP (W°u)l 2 + u2IP (W° u)i 2 (13.8)



'30

c- fl du(l-u')P2(wo ,u)I 2 (13.9)

Here, u signifies the cosine of the angle of incidence of a plane wave, and

the integrals represent the superposition of plane waves. The parameter

functions b~l, bL, co and c1 are real and positive, and they are determined by

the Fresnel reflection coefficients. These four parameters incorporate

entirely all the properties of the medium, like its dielectric constant,

nonlinear interaction parameter and geometry (for instance, the layer

thickness) , and they are independent of the dipole moment g. Therefore, the

representation (13.4) for the emission rate makes a clear separation between

material properties and the dynamic evolution of the atom, which is

incorporated in the time dependence of the dipole moment p(t). This result is

reminiscent of the general form of the spontaneous-decay operator for an atom

near a linear medium, which can also be expressed in terms of the parameter

functions bi! and b1 and dipole-moment expectation values.40 The connection

is, of course, that spontaneous emission and spontaneous decay are intimately

related.

The parameter 3 in Eqs. (13.6) and (13.7) is defined as

- 2w0h/c , (13.10)

which equals 4w times the distance h, measured in optical wavelengths. This

parameter enters through the cosO-dependence of the delay time r, and the

factor exp(i~u) accounts for the proper phase relation between the interfering
p-waves and r-waves. There is no such factor in the expressions for eci and c1

(which describe the pc-wave emission), and this indicates again that the

p- 
e 

n 
- a e , T e e i 

o s c ac o n t e e p e s o s f r c, a d c
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phase-conjugated fluorescence is of a different nature than ordinary

fluorescence (p-waves and r-waves). Especially, the pc-waves do not interfere

with the other components of the emitted radiation. Also notice that the

parameters b and b1 depend on the normal distance between the atom and the

surface (through 6), but that c, and c, are independent of h. It can be shown

that this is a consequence of approximation (12.1), which limits the range of

h to a few optical wavelengths. In physical terms, the atom does not decay on

a time scale r.

XIV. PARAMETER FUNCTIONS

In order to shed some light on the significance of the parameter

functions, we consider some examples.

A. Tr:nsparent medium

When the dielectric constant c of the medium equals unity and the

nonlinear interaction parameter 7 equals zero, then there is effectively no

medium at all, which gives

R - R - P - P 0 (14.1)
s p s p

for the Fresnel coefficients. Then the parameter functions are found to be

bl{ - b 1 - 1 c, - c1 - 0 (14.2)

Consequently, a deviation of b or b1 from unity reflects the presence of

specular waves, and a nonvanishing c l or cj indicates a phase-conjugate

signal. The emitted power becomes
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dW _ a <g(t) .A(t) > (14.3)
dt-

B. Perfect conductor

For the case of a perfect-conducting medium (mirror) the parameter

functions can readily be evaluated. The Fresnel coefficients are

P - P - 0 , R -- 1 , R -i , (14.4)
S p s p

which gives of course

c~1 - c- - 0 (14.5)

For the coefficients of linear reflection we find

boi - 2 - 3[ -in + cos- sin (14.6)
6 2 3

bI - 2 - 6(c sin (14.7)
2 3

which is a well-known result.
4 1'4 2

C. Ideal PC

For a plane wave at normal incidence, the distinction between s-waves

and p-waves disappears, and we have P - P . When most of the incident
s p

radiation is normal to the surface, we can make the approximation Ps P and

take the value u - 1. For an ideal PC the reflection coefficient is
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independent of the polarization and the angle of incidence, and there is no

specular reflection. Then the Fresnel coefficients are

R -R -0 , P -P -P , (14.8)
s p s p

and in analogy with the values for a perfect conductor, Eq. (14.4), such a

device is sometimes called a phase-conjugating mirror. We find

b- b± - 1, c1 - ci - p2, (14.9)

and the emission rate becomes

dW _ a(<u(t(-) .(t)(+)> + 1pi2 </I (+) 14 (-) (14.10)
dt .. t.

D. Transparent PC on resonance

A transparent medium is defined as having a unit dielectric constant,

which gives for the parameters of the directly-emitted and specular waves

R - R - 0, b -b i - 1 (14.11)
s p

If we assume that the atomic transition frequency w0 is in close resonance

with the pump fields, e.g.,

ten - t << re n (rm.12)

then the Fresnel reflection coefficients take the form 4
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IPs(W 2u)J' - tan2(j) (14.13)

s 0 u

IPp(WU)L2 - tan 2("(3-2u2)) (14.14)

in terms of the dimensionless parameter

? - -- (14 .15)
-72c

where A is the laver thickness of the medium. For almost perpendicular

incidence these e*.:tressions duce tond his behavior
S. Ps

has been confirmed qualitatively by experiment.44, 4 5  It is also well known

that for certain values of P7 (or , and w ) the magnitude of IPs 2 or IPp 2 can

become infinite, as follows from Eqs. (14.13) and (14.14). This phenomenon is

termed self-oscillation and has been observed in experiment also. For the

present problem, however, the cosine of the angle of incidence is a variable,

rather than the parameter ", and it is seen from Eq. (14.13) that for

cosd - -7 (14.16)(n+t) n

with n integer, the value of I? I2 is also infinite. in fact, condition
S

(14.16) predicts an infinite series of values of 0 in the range (0°,90*) for

which IP sj2 diverges. In a similar way, the reflectivity IPp 2 has a series

of resonances for certain angles of incidence.

When we substitute the expressions (14.13) and (14.14) into Eqs. (13.8)

and (13.9), then it is easy to verify that the integrals over u for c;1 and c1

diverge. This yields an infinite emission rate for the phase-conjugated
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fluorescence, which is of course unphysical. It can be shown, however, that

when we allow for a finite but very small detuning - o 0, the Fresnel

coefficients remain finite, with a magnitude on the order of unity. This

renders finite values for the parameters c1i and c1 , and thereby for the

mission rate. For an extremely close resonance between w and w we can no

longer replace P (w,cosO) in Eq. (9.15) by P (w ,cos$), and we have to take
a a 0

into account the frequency dependence of P (w,cosO) over the width of the
a

atomic emission line.

This situation is analogous to the problem of resonance fluorescence by

a two-level atom in a monochromatic laser field. There, the spectral

distribution of the fluorescence consists of a S-function at the laser

frequency, superposed on a smooth background, and in the limit where W equals

the laser frequency the emission rate is infinite. In any case, the example

of this section shows that the situation of perfect resonance has to be

considered with caution.

XV. SCHRODINGER PICTURE

The time dependence of the emission rate dW/dt in Eq. (13.4) is governed

by the time evolution of the Heisenberg operator M(t). A more transparent

representation of dW/dt can be obtained by a transformation to the Schrodinger

picture. When we take the Schrddinger and Heisenberg picture to coincide at

t - 0, then we have

w () A, - mh(+) + AA (15.1)

with
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P(+) (15.2)

UPg , (15.3)

in terms of the projectors P and P onto the (possibly degenerate) excitede g

and ground levels, respectively. In free evolution (no coupling to the

radiation field), the Heisenberg representation of the lowering operator 
u(+)

i(+)(t) - exp(-iot)1(+), which equals the positive-frequency part of p(t),is ~()-ep-c~

e.g., .(t)(+) - A(+)(t). Due to the interaction with the electromagnetic

field, the spectral distribution of u(+)(t) will acquire a finite width around

:he central frequency w ,but to an excellent approximation this operator will. 0 
I

still contain positive frequencies only. Hence we can set

((±) - (±)(t) (15.4)

For any two operators A(t) and B(t) we have the identity

<A(t)B(t)> - Trp(t)A(O)B(O) , (15.5)

in terms of the density operator p(t) of the entire atom plus field system.

In Eq. (13.4), A(t) and B(t) are Cartesian components of the dipole operator,

and in the Schrddinger picture they act on wave functions in the atomic

Hilbert space only. Then we can take the trace over the field states in Eq.

(15.5) according to

Pa(t) feldp(t) (15.6)
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where p a(t) is the reduced density operator for the atom, irrespective of the

state of the field. In this way, we find for the emission rate

dW _ a TraP (t) bt + *-

+ (+) . +u ) , (15.7)

where the trace runs over the atomic states only. Equation (15.7) expresses

that we can find the emission rate at time t, once the atomic density operator

_(t) is known, since the ooerator in braces is completely determined by Eqs.

Kl5. 2) and (15.3).

XVI. TWO-STATE ATOM AND IDEAL PC

In order to exhibit the principle features of the emission of phase-

conjugated fluorescence, we work out the example of a two-state atom, in

combination with the model (ideal) PC from Sec. XIV.C. A model two-state atom

has an excited state Je> and a ground state Jg>, and the projectors on these

states are e - e>-el and P - g><gJ, respectively. Then it is easy to work
eg

out the emission rate dW/dt from Eq. (15.7), and we obtain

- - I AN(;(ne(t) + IP12ng(W (16.1)
dt 2 0 n t

where

3

A -J , ,<eJg>J2  (16.2)A r c 3 , g 3



! 28

equals the Einstein coefficient for spontaneous emission by an atom in empty

space. The time dependence of dW/dt enters through the populations of the

atomic levels, defined by

n.(t) - TraP (t)P , i - e,g (16.3)
a a

These quantities cannot be determined with the present theory, since the time

evolution of p (t) is governed by the coupling of the atomic dipole to the

vacuum field (and possible external fields). Also, pa (t) depends on the

:reparation of the system at = 0. Nevertheless, when for a 7i'.ven time t the

7opuiations are n kt) and n (t), then the emission rate follows from Eq.
e 5

,,6.1). This sitaion is analogous to the fact that for fluorescent emission

by a dipole in empty space, the emission rate always equals dW/dt - A(o n e(t),

no matter how the excited state became populated.

The emission rate has two distinct contributions. The first term is

iA n (t), which equals half the emission rate in empty space. These are the
o e

photons that are emitted directly by the atom towards t[i detector (p-wave),

and the factor accounts for the fact that we only measure the emission into

the half-space z > 0. This contribution is always present for any medium in

z < 0, simply because this part of the field does not interact with the

medium. During the emission the atom decays from its excited state to the

ground state as illustrated in Fig. 4.a. The other half of the number of

photons which are emitted in the je> - lg> transition travel in the negative

z-direction, and they serve as the incident field on the medium. For linear

reflection this would give rise to a specular wave, with intensity

proportional to n (t). Interference between the p-wave and the r-wave is
e

incorporated in the values of the parameter functions bl1 and bI.
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More interesting is the second contribution AKw oIPI 2n (t) to theg

emission rate. This term is proportional to IN 2 and represents therefore the

phase-conjugated fluorescence, as can be measured by a detector. The question

to ask is what physical mechanism is responsible for the emission of this

radiation. As pointed out in Sec. XI, an interpretation in terms of an

incident wave which is reflected as a pc-wave cannot be correct, since this is

in conflict with the different retardation times of the various photons.

First, we notice that this term corresponds to the actual observation of a

photon, and as we found from the retardation time, this photon is emitted from

-he site of the atom. This emission can only take place if accompanied by an

ie> - jg> atomic transition. On the other hand, the emission rate is

proportional to n (t) so that the atom must be originally in its ground state., g

Consequently, before the emission/decay process the atom must be excited, and

because of energy conservation this can only happen in combination with photon

absorption. The only photon source in the problem, assuming no external

fields, is the PC. Therefore, we must conclude that this photon is

spontaneously emitted by the medium, due to the presence of the dipole. Such

a process would give rise to the emission of a photon with frequency W, but we

recall that this phase-conjugated wave must have frequency 2W-Wo , since the

incident field has frequency w 0 An energy-conserving process then requires

that a second photon with frequency w is absorbed by the atom, which gives

rise to an excitation from Jg> to le>. Figure 4.b illustrates this three-

photon process.

XVII. DEGENERATE TWO-LEVEL ATOM

A two-state atom description is an idealization which is commonly

employed to study the principles of matter-radiation interactions. In this
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fashion we can discover the fundamental mechanisms of a certain process, such

as illustrated in Fig. 4 for the present problem, although the model is not

necessarily very realistic. In this section we consider a degenerate two-

level atom, where the excited and ground levels have angular momenta j e and

j , respectively. These levels are (2j e+1)- and (2j +l)-fold degenerate, and

the magnetic states are indicated by I m> and j m > in obvious notation.

Then it is immediately clear that a two-state description cannot account for

the behavior of the atom, even if one would select a certain transition

between two states bv an external field. For instance, in a j.- ,j- e

system we can select the m = m- 0 states bv driving the atom with a

linearly-polarized laser in the z-direction. Stimulated transitions occur

only between the 0 O> and 1I O> states, and in addition we have the two

spontaneous processes from Fig. 4 between these states. But then also the i

1> and 1i -1> excited states have a nonzero dipole matrix element with the

ground state 10 0>, and the three-photon loops from Fig. 4.b will generate

'fluorescence whenever the atom is in its ground state.

In this section we evaluate the general expression for the emission rate

,or a degenerate t;wo-level atom. :n terms of the dipole-selective raising

operator

d (jgmglrijeme)ljeme ><m , - -1, 0, 1 (17.1)

m m
e g

the lowering part of the dipole operator attains the form

( 12je 1 d'e 
(17.2)

=Je +1"
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in terms of the spherical unit vectors e with respect to the z-axis. The

summation over r - t 1 then gives M! whereas the r -0 term equals the

perpendicular part of A With the Einstein coefficient for spontaneous

emission in free space and for a degenerate system,

W 3 <jeIIj >I 2
A 0 3 2j + 1 (17.3)

and with the change in notation

em n in ffor - s1

b g(17.4)

bL for r - 0

b± for r - 0

III_ (17.5)

the emission rate becomes

dW -1 ~raat (brdrd' + c did ) .(76

4_w .1 (17.6)

dt ~(w ATr P(t) (b~ dr'rrcddt 2 0 ar
1"

In order to demonstrate the similarities and differences with a two-

state atom, we consider again the case of an ideal PC, for which b. - and c

- PI With the identities
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dd - P (17.7)T e

2j e + I
dd'ri P  (17.8)

r 2j + 1 9
g

in terms of the projectors onto the two levels, we find

d: 2 1 ATrP (t)P + IP 2 2j + 1 (17.)

wher th ppltosothlelsae agi gienb1E.(1.3.9oprio

emissnter i n2j p+ i cg

;i.h t e notation

I 2j e+i1
eA A1I (1.0g 2 2j 9+ 1 A, (7 0

this can be written as

dW I

_z -I 2w oAne(t) +  (oAgng (t )  '(17.11)

where the populations of the levels are again given by Eq. (16.3), Comparison

with Eq. (16.1) shows that the only difference is that the ground-level

emission term is now multiplied by the geometrical factor (2je +1)/(2j 9+l).

Notice that only the total populations of the levels determine the fluorescent

emission rate; it does not matter how the populations are distributed over the

various states. nhis holds only for an ideal PC, and not in the more general

sit-uation, as given by Eq. (17.6).
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XVIII. CONCLUSIONS

we have studied the emission of fluorescence radiation by an atom in the

vicinity of a phase-conjugating surface. With a decomposition of the

particular solution (dipole in empty space) of the Maxwell-Heisenberg

equations into an angular spectrum of plane waves, we have been able to

construct the reflected field by the medium. Under the assumption that the PC

operates via four-wave mixing, the refl" --d field could be expressed in terms

of the classical Fresnel reflection coefficients R and P . These parametersa

incorporate the material properties of the medium and the details of the

Seometry for the four-wave mixing process (like the polarization of the pump

beams, and the layer thickness). This procedure yields the exact solution for

the electromagnetic field in the entire region z > 0 in terms of angular

integrals, and with an asymptotic expansion we have derived the value of the

field in the far zone, in terms of the observation angle (0,0). After

integration over a 2n solid angle we have obtained the total fluorescent power

in the half-space z > 0, where it turns out that this power can be expressed

in terms of four geometrical parameter functions b11, b1 , cl1 and c1 , and

quantum expectation values of the equal-time autorcorrelation functions of the

Cartesian components of the lowering part of the dipole operator. By

considering various limiting cases in Sec. XIV, we have shown that the terms

proportional to b 1 and b1 account for the fluorescent emission directly from

the atom towards the detector. Also included in these terms is the specular

reflection of photons, and it appeared that both waves interfere. This

interference is again a pure geometrical and classical phenomenon, and is

accounted for by the functions b and bI . The presence of the phase-

conjugated wave appears as a separate term in the expression for the emitted
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power, which indicates that this wav,. does not interfere with the p-waves and

the r-waves.

In working out the model case of a two-state atom, we have been able to

show that the directly-emitted photons and the specular photons are both

produced in a spontaneous decay of the atom. Since both emissions are a

result of the same decay process le> - fg>, these photons must necessarily

interfere, as is expressed by their joint appearance in the single parameter

functions b, and b1 . On the other hand, the probability for the emission of a

phase-conjugated photon is proportional to the population of the ground state,

which renders this mechanism independent of the previous one. By considering

:he retardation times of the various photons, we can track down the underlying

physical mechanisms, and the two responsible processes are illustrated by the

diagrams of Fig. 4. The most remarkable result is that an atom in its ground

state, and close to a PC, can effectively emit a fluorescent photon, in

addition to which the atom excites spontaneously. We have interpreted this

phenomenon as a result of a three-photon process, as depited in Fig. 4.b.
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FIGURE CAPTIONS

Fig. 1. The z - 0 plane separates the vacuum z > 0 from the nonlinear medium

in z < 0, and the radiating atom is located in x - y - 0 and z - h. In an

angular-spectrum representation, the dipole radiation equals an integral over

the parallel components K1l of wave vectors. For z > h and 0 < z < h these

wave vectors are K and K' respectively, and their directions are indicated on

the left-hand side of the figure for the case of travelling waves. The K-

waves, which are referred to as p-waves in the text, travel directly from the

site of the atom in z - h towards the detector in z >> h, whereas the waves

with wave vector K' serve as the incident field on the medium. In the case of

evanescent waves, the field amplitudes decay in the z-direction as shown

pictorially on the right-hand side, and these waves travel in the K 1

direction. Also shown is the phase convention for the unit polarization

vectors, both for K and K' waves.

Fig. 2. The atomic dipole is located at r - h, and the emitted fluorescence

is detected within an angle 0 with the z-axis. Both the directly-emitted (p-

wave) and phase-conjugated (pc-wave) radiation appears to emanate from the

location of the dipole, as follows from the retardation time r - (h/c)cose of

the p and pc-waves, and the geometry shown in this figure.

Fig. 3. The retardation time in the observation of a specular wave equals

(2h/c)cos8, as compared to the observation of a p- or pc-wave. The geometry

in this figure shows that this retardation can be interpreted as the delay

time for a photon which travels first from the atom to point A, where it is

subsequently reflected according to Snell's law in classical optics. Also,

the distance 2hcos8 equals the separation between point B and a mirror dipole

M' at a distance h below the surface. For a detector within an angle 8, the

II'
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r-photons appear to come from this mirror dipole, as can be seen from the

geometry shown in the figure.

Fig. 4. This figure illustrates the two atomic processes which contribute to

the observable fluorescence. Diagram (a) represents an atom which decays from

its excited state le> to its ground state Ig> under emission of a photon into

the direction of the detector. This is the p-wave, and the mechanism is not

affected by the presence of the medium. The mechanism for the emission of

phase-conjugated fluorescence is shown in diagram (b). The atom is originally

in its ground state. Spontaneous emission of a photon (pc-wave) by the PC,

and subsequent absorption of this photon by the atom, brings the atom to its

excited state. Spontaneous decay is then accompanied by the emission of the

observable photon. A second absorption of a photon with frequency w then

completes the process, thereby leaving the atom in its excited state.
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