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The research conducted under Grant number AFOSR-88-0180 during the period
16 June 1988 to 30 September 1990 is partially documented in [2], [3], [12], [13 and
the remainder of this report. It is related to previous work in [1], [5], [6], [7], [8], [9],
[101, [11] and [14].

Optimization problems with functions that are not everywhere differentiable of-
ten arise when certain techniques are applied to large or complicated nonlinear pro-
gramming problems in order to convert them to a sequence of smaller or less complex
problems. These transformation techniques include decomposition, nested dissection,

relaxation, duality and/or exact L 1 penalty methods and often lead to functions to
be minimized which are implicitly defined. Being able to solve such problems gives
an analyst flexibility ir, modeliag a problem for solution and the ability to expioit
parallel processing in computation. Hence, it is important for practical applications
to be able to solve such problems and it is the goal of the project to develop efficient
solution methods.

Recent joint work with J.-J. Strodiot (Namur, Belgium) has produced practically
useful and theoretically satisfying ideas for solving single variable minimization prob-
lems using function, but not derivative, values. This effort has produced, what is
probably, the first instance of a function-value-only method for nonsmooth functions
with proven rapid convergence. The crresponding paper [131 is being revised in or-
der to append some figures to illustrate various cases mentioned in the introduction
and considered in the proofs. The revision will be submitted for publication as soon
as the retyping is completed. Our previous work on this subject which introduced a
safeguarded bracketing technique and developed some quadratic approximation re-
sults appeared in [14].

The above-mentioned work stems from a bracketing method using generalized
derivatives at the bracket end points developed and tested in [6], [8], [10] and [11].
Results from this work and [7] already appear in a textbook by K.G. Murty [15;
pp. 410-421]. A new result [12] in this area is scheduled to appear in Vol. 49, No.
2 of Mathematical Programming. The result states that either the next iterate is
superlinearly closer to the solution than both of the current bracket end points or
the length of the next bracket is superlinearly shorter than that of the current bracket.

Recent research has shown us more specifically what needs to be looked at care-
fully in order to develop an algorithm having better than linear convergence for
n-variable nonsmooth minimization problems. The problems we are interested in
are those whose objectives have an underlying piecewise C 2 structure that is not
explicitly known. The algorithm we are working on is a 2nd order bundle method



where each iterate depends on abundle of previous iterates and their corresponding
function and subgradient values. The 2nd order nature has to do with the method
also employing a bundle of associated n x n Hessian matrix approximations. The
main idea for determining an iterate is to solve a 1st order quadratic programming
(QP) subproblem and then to modify the solution by a 2nd order correction resulting

from the solution of one linear system whose data depends the constraint multiplier
values from the QP problem and on the Hessian estimates associated with positivc
multipliers. A better than linear convergence result as in [9] based upon this new
idea was presented in the Minisymposium on Nonsmooth Optimization at the April
1989 SIAM Conference on Numerical Optimization held in Boston. One difficulty
with this approach is that the 2nd order system matrix may not be positive definite.

To study this issue the principal investigator and his Ph.D. student research as-
sistant have worked out a method for smooth (one C2 piece) minimization which
employs both BFGS and symmetric rank one (SRI) updated Hessian estimates. The
BFGS matrix is initialized and updated to be positive definite, whereas the SRi
matrix is initialized to be zero and may not be positive definite at other iterations.
Powell [161 has shown that in some situations the BFGS method can be slow to ap-
proximate a Hessian accurately, because this accuracy depends upon the generation
of conjugate directions which in turn depends on exact line searches. The accuracy
of the SRi method only depends upon using lineariy independent search directions
and, hence, the SRi matrix is used in the second order model of the function in
our method. To solve the resulting linear system with a possibly indefinite matrix,
a truncated preconditioncd conjugate gradient [18] method is employed. The pre-
conditioner matrix is the positive definite BFGS matrix. We can show that if this
preconditioned conjugate gradient (PCG) submethod is initialized with the zero vec-
tor then its 1st subdirection is the ordinary BFGS direction and every subiterate and
subdirection generated is a descent direction for the objective function at its current
point. Hence, the PCG submethod can be terminated at any time with a descent
direction which is a modification of the BFGS direction designed to reduce the value
of the SRI 2nd order model. The PCG submethod must be terminated if a subdi-

rection is generated which is a direction of nonpositive curvature with respect to the
SRi matrix. Using such a search direction at a point in a region where the objective
function is nonconvex may be beneficial. Near the solution of the main problem one
can expect the BFGS and SRI matrices to be similar so the PCG algorithm need or
not perform many subiterations.

For an initial test of the above ideas we used the following three-variable version
of a two-variable function due to Byrd, Nocedal and Yuan[4]:

f(x) 1'X + a(- T  _ .) 2
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where

A= 1. 3. 1. anda=-0.1.
0 1. 5.

The starting point was xo = (cos 700, sin 70', 1.0). The BFGS matrix was initialized
as a diagonal matrix with diagonal elements (1., ]104, 10.) and the SRI was initialized
as the zero matrix in order to have a neutral start.

We modified the code UNCMIN due to Schnabel, Koontz and Weiss[17] by ap-

pending subroutines to update the SR1 matrix and perform the preconditioned con-
jugate gradient iteration. We chose the option in UNCMIN which updates factors

of the BFGS matrix. Also, we replaced the line search subroutine by one written by
Mor4 and Thuente which was changed slightly to impose _,ly the Wolfe [19] stopping

conditions.
A user-defined parameter I was included to define the maximum number of con-

jugate gradient subiterations allowed at each major iteration. When I = 0, our
algorithm becomes a pure BFGS method.

The four runs summarized in the following table had the same first point x1, as
well as initial point x0 , and were terminated with iterate Xk when

max O f(Xk) <1- 9.1<j_53 <- 0-9

1=0 1=2 =3
(BFGS)

iterations 32 19 14 14

evaluations 34 23 17 20

SRl-error 3 x 10- 7 1X 10-7 6 x 10-  6 x 10- 6

BFGS-error 6 x 10- 2 x 10-3 6 x 10-2 6 x 10-2

The first row gives the number of iterations, the second gives the number of evalua-

tions Gf f and Vf, and the third and fourth give the terminal values of

max I(S - I)i I and max (B - 1)i ,oi ij

respectively, where thp identity matrix I equals V2 -t hc soltion ., 0,O9), S is

the final SRI matrix and B is the final BFGS matrix. The difference in the BFGS
and SRi errors should be noted along with the overall ability of the algorithm with
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1 > 0 to exploit the better approicimation of the SR1 matrix. The above results were

presented at the May 1990 TIMS/ORSA Joint National Meeting held in Las Vegas

and in a slightly generalized form at the November 1990 Pacific West Optimization
Seminar in Seattle.

Finally, for solving the quadratic programming subproblem in the nonsmooth al-

gorithm it may be beneficial to develop a special purpose method bascd on the Ph.D.

dissertation of A. A1-Saket [1]. Two general papers [2] and [31 on this subject have

been prepared for - blication submission.
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