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SECTION I

PRINCIPAL INVESTIGATOR REPORTS



CMU Image Understanding Program

Takeo Kanade
Steven Shafer

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract in this area has begun to conclusively demonstrate that al-
gorithms derived from models of physical processes are farThdengeCU ties randing Progm ersy af more accurate and reliable than heuristically derived algo-

wide range of activities ranging from the study of rithms. We have continued to make progress in this area for
basic computer vision science, to the development color understanding, unified reflection model, interreflection,
of visual sensors, to the demonstration of vision texture analysis, and robust recovery of shape and motion
application systems. Highlights of the progress in from an image sequence
this reporting period includes:

" Physics-based Vision 1.1 Color and Reflection
- Color and Reflection Color Understanding

* Color Understanding For color understanding, CMU researchers have previously
* Unified Reflection Model demonstrated separation of highlights from a color image
* Interreflection [Klinker el al., 1988) and color image segmentation by in-

- Shape, Motion, and Texture trinsic object color [Klinker et al., 1990. Both of these are
* Robust Recovery of Shape and Motion based on a dichromatic color reflection model [Shafer, 1985b]

from Image Sequence that Shafer developed, and their superior results have demon-
* Stereo by Adaptive Window strated clear advantage of the physics-based approach to color
* Texture Analysis by Image Spectrogram understandingwhich relies on coherence ofthephysical model

- High Quality Imaging rather than coherence of image color that traditional methods
" Sensor Development have relied upon.

- Fast Analog VLSI-based Range Finder One of our new developments is in the area of color con-
- Photometric Sampler stancy, which is predicting and matching object colors that are

changed by variations in the color of illumination. We (No-Vision for Object Recognion n and Manipula- yak and Shafer) developed a new method we call "Supervised
tion ColorConstancy" in which a reference image of aknown color
- Vision Algorithm Compiler chart is used to make an estimate of the spectral composition
- Rock Sampling of the illumination to improve the accuracy of estimation of

" Vision for Navigation color changes [Novak and Shafer, 1990]. Previous methods
- Navlab Progress for color constancy, which do not use a reference target, ob-

* Map Building tain a three-parameter description of the illuminant, and are
* SCARF subject to reliability problems if their heuristic assumptions
* YARF are not met. With Supervised Color Constancy, we obtain

* Architecture typically 8 or more parameters to describe the illumination,

* Integrated System Demonstration and are free from heuristic assumptions.
- iingranetysm Eponration In addition to the estimation of the illuminant, we devel-

- Vision for Planetary Exploration oped a similar computation to actually predict color shifts
- Terrain Modeling for Underwater Naviga- of object colors; however, we haven't yet performed similar

tion experiments with this algorithm. Finally, we propose a new
" Parallel Vision paradigm we call "Incremental Color Constancy" suitable,

for example, for a mobile robot traveiting outdoors. In this
1 PHYSICS-BASED VISION paradigm, the colorchart is not used; instead, the object colors

estimated from previous frames are used as reference colors
Over the years, CMU vision researchers have been working to estimate the illuminant in the next frame, which in turn is
on physics-based methods for computer vision that address used toestimate the object colors of newly visibleobjects, and
modeling physical phenomena for robust and reliable low- so on. We have not yet implemented this proposed technique.
level vision [Kanade, 1990]. The recent body of research We are also continuing to study physics-based color reflec-



tion analysis, and are now developing quantitative models of shape and reflectance. Our solution is based on the observa-
interreflection and surface properties [Novak et al., 1990]. tion that the pseudo shape and reflectance, though erroneous,

carry information about the actual shape and reflectance of the
Unified Reflectance Model surface. The pseudo shape and reflectance are used to model

Brightness of a pixel in an image results from the reflec- the interreflection effects. We show that the pseudo shape
tion of lights. Thus interpretation of images requires a sound is generally "shallower" than the actual shape and hence ex-
understanding of the various mechanisms involved in the re- hibits weaker interreflections. These interreflections are used
flection process. Various reflectance models have been used to compensate the pseudo shape and reflectance estimates to
in computer vision and graphics to deal with various types of obtain better estimates of shape and reflcctance. This shape
surfaces. We (Nayar, Ikeuchi and Kanade) have been working and reflectance is again used to model interreflections to ob-
t3ward a unified reflection model to describe reflection from tain even more accurate estimates. Shape and reflectance esti-
surfaces that may vary from smooth to rough [Nayar et al., mates are iteratively refined to finally converge to the correct
1990b] (in these proceedings). shape and reflectance. A detailed analysis of convergence is

There are two approaches to the study of reflection: physi- given for the simple case of two planar surface elements. Con-
cal and geometrical optics. While geometrical models may be vergence for the more general case is discussed and demon-
construed as mere approximations to physical models, they strated by numerous simulation results. Several experimental
possess simpler mathematical forms that often render them results of real objects demonstrate the robustness, accuracy,
more usable than physical models. However, geometrical and practical feasibility of the proposed algorithm.
models are applicable only when the wavelength of incident
light is small compared to the dimensions of surface imper- 1.2 Shape, Motion, and Texture
fections. Therefore, it is incorrect to use these models to Robust Extraction of Shape and Motion from Image
interpret or predict reflections from smooth surfaces. Only Sequence
physical models are capable of describing the underlying re-
flection mechanism of such surfaces. In principle, the shape of an object can be computed from

Nayar, Ikeuchi, and Kanade first consider the Beckmann- a sequence of images by first estimating camera motion and
Spizzichino (physical optics) model and the Torrance- depth, and then inferring shape from the depth values. In
Sparrow (geometrical optics) model. They were chosen in practice, however, when objects are distant from the camera,
particular as they have been reported to fit experimental data relative to their size, this computation is ill-conditioned. First,
very well. The conditions that determine the validity of each the translation component along the optical axis is difficult to

model are carefully studied. From studying the behavior of determine, because the image changes that it produces are
both models, we propose a model comprising three reflection small. Second, shape values are very sensitive to noise if they
components: the diffuse lobe, the specular lobe, and the spec- are computed as the small differences between large depth

ular spike. The dependencies of the three components on the values.
surface roughness and the angles of incidence and reflection We (Tomasi and Kanade) have developed a theory [Tomasi
are analyzed in detail. This general model is capable of de- and Kanade, 1990] (in these proceedings) that circumvents
scribing reflection from surfaces that may vary from smooth those difficulty by inferring shape directly from variations
to rough. in the relative position of image features, without computing

depth as an intermediate step. We show that shape and camera
Shape from Interreflection rotation can be inferred precisely from many features and

Since Horn [Horn, 1977], various techniques to extract frames, without assuming any model for the motion.
shape from intensities based on photometric properties have Our theory is based on the observation that the geometrical
been developed, such as shape-from-shading and photometric constraints due to incidence relations among projection rays
stereo. These methods, however, suffer when interreflections, can be expressed as the degeneracy of a matrix that gathers all
also referred to as mutual reflections, occur. With concave the image measurements. To our knowledge, this observation
surfaces, light rays will have multiple bounces, and points in has not previously appeared in the literature. We have shown
the scene are illuminated multiple ways. In the presence of that if noise were not included in the measurement, the matrix
such interreflections existing shape-from-intensity methods has rank 3. With noise, as is always the case in practical
produce erroneous results. situations, the constriaints can be precisely expressed by the

Interreflection has been studied extensively in computer concept of approximate rank [Forsythe et al., 1977]. This
graphics as a forward problem, that is, prediction of light theory reduces computation of shape and motion from an
brightness given the shape, reflectance and illumination, image sequence to decomposition of the measurement matrix.
However, it has been almost untouched in computer vision The resulting algorithm, tested for the case of camera mo-
as an inverse problem. We (Nayar, Ikeuchi and Kanade) have tion in 2D, gives very precise motion and shape estimates,
developed a technique called shape from interreflections that without using any smoothing or relying on any motion con-
can recover the shape and reflectance of the scene in the pres- straints.
ence of interreflections [Nayar et al., 1990a]. As an illustration of our theory, we used our algorithm to

The method presents a solution to the inverse problem recover the shape of a one-dollar silver coin (about 4 cm in
for Lambertian surfaces of arbitrary (but continuous) shape, diameter) placed at 3.5 meters from a real moving camera with
with possibly varying and unknown reflectance (albedo). The a long lens. The total rotation of the camera was 30 degrees
shape and reflectance recovery algorithm works as follows, around the coin (and in the midplane of the coin). The error in
First, a local shape-from-intensity method is applied to the the computed angle of camera rotation was always less than
concave surface to obtain "pseudo" (erroneous) estimates of a tenth of one degree, and usually substantially smaller. The
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error in the shape of the coin was always less than 1.5 percent much more accurate estimation of 3D surface shape. Finally,
of its diameter, and typically considerably smaller, we examine the image properties that are related to precision

(i.e. resolution) and accuracy (i.e. false matches) in stereo and
Stereo by Adaptive Window motion analysis. We show that the image spectrogram, and

A central problem in stereo matching by computing corre- the "repeatogram" derived from it, appear to capture much
lation or sum of squared differences (SSD) lies in selecting an of the relevant information and might be used to evaluate
appropriate window size. If the window is too small and does the reliability of feature points for image-to-image matching.
not cover enough intensity variation, it gives a poor disparity The general conclusion is that the space/frequency distribu-
estimate, because the signal (intensity variation) to noise ratio tion makes it possible to unify very disparate phenomena in
is low. If, on the other hand, the window is too large and spatial vision, in particular showing how geometry-domain
covers a region in which the depth of scene points varies, then and Fourier-domain factors are interrelated and can be jointly
the disparity within the window is not constant. As a result, analyzed.
the position of maximum correlation or minimum SSD may
not represent a correct estimate of disparity. For this reason, 1.3 High Quality Imaging for Computer Vision
an appropriate window size must be selected locally. There Endemic to all quantitative vision analysis is the need for
has been, however, littlerescarch directed toward theadaptive very high quality images. We have addressed this in two
selection of matching windows, ways: by improvingour hardware facilities, and by improving

The stereo algorithm we (Kanade and Okutomi) propose w ays y ir ci vmour hardware fr
selects a window adaptively by evaluating the local variation image quality using active camera control. Our hardware forof the intensity and the disparity [Kanade and Okutomi, 1990) physics-based vision is the Calibrated Imaging Laboratory
(in these proceedings). We employ a statistical model that (CIL), a unique facility for acquiring images in a controlled
represents uncertainty of disparity of points over the window environment using an optical studio with specialized lighting,
reprsenth uncertainty s a s o f ine se wt the ino: high-precision imaging equipment and motion platforms, and
the uncertainty is assumed to increase with the distance of the calibration instruments and targets. One of the distinguishing
point from the center point. This modeling enables us to assess features of CMU vision activities is that we back up our theory
how disparityvariationwithinawindowaffcts theestimation by precise and quantitative experiments. The CIL has been
of disparity. As a result, we can compute the uncertainty of the major instrument for this approach.
the disparity estimate which takes into account both intensity
and disparity variances. So, the algorithm can search for Sinceitsfoundingin 1985[Shafer, 1985a],theCLhasbeen
a window that produces the estimate of disparity with the one of the most comprehensive facilities for controlled exper-
least uncertainty for each pixel of an image. The method iments in machine vision. In the last year, we have moved to a
controls not only the size but also the shape (rectangle) of the much larger room, built high-precision automated lenses and

window. The algorithm has been tested on both synthetic and motion platforms, and acquired a new high-precision CCD
real images, and the quality of the disparity maps obtained camera. We are currently building a "software control panel"demonstrates the effectiveness of the algorithm. to run all the equipment from a SUN workstation. As always,

the CIL is available to interested researchers to come and
Texture Analysis collect data, by making arrangements with us (Shafer).

We have started a new effort in the area of texture analysis, We (Willson and Shafer) also are investigating how to im-
and are now examining "space/frequency distributions" for prove image quality by active camera control, using active
vision. In particular, we (Krumm and Shafer) introduce the control of lens parameters and camera motion to correct for
image spectrogram for machine vision [Krumm and Shafer, undesirableoptical artifacts [Novak et al., 1990]. We have ob-
1990] (also in these proceedings). The image spectrogram served that fora wide variety of 35mm and video lenses, chro-
is a function that tells, for every point in the image, how matic aberration causes noticeable mis-registration of images
much energy is present at each spatial frequency within the from one color band to the next. Using our high-precision,
neighborhood of that point. The use of such space/frequency stepping-motor lens, we can now compensate for this by ad-
distributions is not completely new for machine vision - they justing the zoom and focus each time we change color fil-
have been used for 2D texture segmentation in the past. How- ters. In this way, we have reduced chromatic aberration in
ever, we are showing now how they can be used for 3D vision our automated lens from about a 3-pixel mis-registration to
as well, to unify the analysis of various phenomena that have about 0.2 pixels, resulting in very noticeable improvements in
in the past always been studied independently. We begin such computations as color histograms. We are now studying
with a re-formulation of shape-from-texture-gradients in the "constant-magnification focusing", in which the magnifica-
Fourier domain, which amounts to fitting a cubic function tion change induced by focusing is neutralized through active
to the formants in the image spectrogram. Interestingly, this zoom control. Thus, as we focus the lens, we also zoom it
analysis does not require any traditional feature-finding such minutely to keep the image at a constant magnification.
as edge detection before the 3D analysis. Next, we show
how aliasing is caused by pixel resolution, and tie that in 2 Sensor Development
with the shape-from-texture theory to show the limits of 3D
reconstruction. Aliasing causes artifacts in the image such A Very Fast Analog VLSI-based Range finder
as Moire patterns, which are very confusing to most vision Rangefinding, the measurement of the three dimensional
methods. However, we show that with a computer-controlled profile of an object or scene, is a critical component for many
zoomlens, the Moire patterns can actually be analyzed to yield robotic applications. We (Kanade, Gruss and Carley) have
a super-high-resolution image that shows spatial frequencies been developing a range finder (see figure 1), which can pro-
far above (i.e. finer than) the pixel resolution. This allows duce 100 to 1000 frames of range images per second by using
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VLSI technology integrating photosensing and analog signal
processing (Kanade et at., 1989].

Among many different rangefinding techniques, light-stripe
rangefinding is one of the most common and reliable methods.
A conventional light-striperangefinder operates in a step-and-
repeat manner - a stripe source is projected on an object, a oi 0 0 1 1 kk
video image is acquired, the position of the projected light
stripe is extracted from the image, the stripe is stepped, and
the process repeats. Though practical, range acquisition rates
achievable using this method are severely limited; typically, *
on the order of one second is required to acquire a complete
range image.

Geometrically, our range finder is based on the lightstripe
range sensing method, but operationally it is different and
time-based. Our rangefinder uses a specialized VLSI sensor
which gathers range data as a scene is swept continuously by 1
a moving stripe. The sensor consists of a two-dimensional
array of smart photosensitive cells. Each cell has circuitry '
that detects and remembers the time at which it observed the
peak incident light intensity during a sweep of the stripe. A
given cell predefines a unique line of sight, and the recorded
time determines a particular orientation of the plane. Thus, *
in a single pass of the light stripe over the scene, sufficient
information is gathered to extract the ranges at all the pixels. *
Thus an entire range map is acquired in parallel, and the total
timeof acquisition is independentof the range map resolution,
typically I to 10 msec.

The novelty of this approach is the use of integrated smart
sensors, sensors which provide processing at the pointof sens-
ing by the use of VLSI technology - the ability to integrate Figure 1: VLSI range sensor chip layout of a 5 x 5 array
photoreceptors, analog circuitry, and digital logic on a single
CMOS die. After testing a few basic cell designs, we have
fabricated several small arrays of smart cells (6 x 10, 4 x 4,
and 5 x 5): see figure 2. The cell size is approximately 200
lim x 200 urm. The operation of those arrays has been con-
firmed in a rangefinder testbed with a laser and optics, and
we could obtain signals from the chip that cor-.espond to the
sensing speed up to 800 frames per second. Currently we are
fabricating a larger array (28x30).

Photometric Sampler

By making surface smoothness assumptions, the unified
reflectance model described above is reduced to the hybrid
model; a linear combination of Lambertian and specular
components. Using the hybrid model, we (Nayar, Ikeuchi,
Kanade) have developed a device called photometric sampler.
The object surface is illuminated using multipleextended light -

sources, and a set of images, one for each illumination,is taken
from a single direction. An extraction algorithm uses the set
of image intensity values measured at each surface point to
compute orientation as well as the relative strengths of the
Lambertian and specular reflection components. At the last
workshop we have reported a 2D version of the device [Nayar ,
et al., 19891. The results have shown high accuracy in mea-
sured orientations and estimated reflectance parameters for
Lambertian surfaces, specular surfaces, and hybrid surfaces
whose reflectance model is composed of both Lambertian Figure 2: A range finder testbed. It consists of a laser scanner
and specular components. In this period, we (Sato, Nayar, (on the right) and a camera optics (on the left). A VLSI sensor
and Ikeuchi) have built a 3D version of the device (see figure chip is mounted at the film plane of the camera.
3),which is being tested for the use of surface inspection, such
as IC wafers.
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tialize a more accurate procedure which matches model
features to observed image features.

For aspect classification, we have previously developed a
method to generate a classification strategy by performing
recursive sub-divisions of possible aspects. However, such
method does not generate an optimal strategy; it only gener-
ates a strategy among several possible strategies.

This year, we have developed a module that generates a
minimum cost strategy for aspect classification [Hong et al.,
1990. We can define a space of all possible classification
strategies. Each entry in the space represents one strategy
having a particular order of applying features for aspect clas-
sification. Given costs obtaining features and probabilities of
occurrences of aspects, we can assign a computational cost
to each entry (a strategy) in the space. The module searches
through the space using a branch-and-bound method and se-
lects the one that minimizes the expected computational cost
of aspect classification.

For determining linear shape change, we have developed a
module that precomputes the procedures needed to determine
accurate position and orientation, given the initial estimate
from aspect classification [Ikeuchi and Hong, 1989. The
module repeats the foliowing process at each aspect. First,the

Figure 3: Photo of the 3D Photometric Sampler module examines visible faces at each aspect and determines
the most reliable face among them. Using the characteristics
of the face, it determines a strategy to set up a local coordi-

3 Vision for Recognition and Manipulation nate on the face; then, it embodies the procedures necessary
to execute the strategy as well as the transformation between

3.1 Vision Algorithm Compiler the local coordinate system and the body coordinate system
A Vision Algorithm Compiler (VAC) is a technique that we of the object. Third, it embodies a procedure to match visible
have been developing over the years as an alternative to the edges to visible model edgzs. Finally, it embodies a proce-
traditional method of "hand-coding" model based vision sys- dure to determine the position and orientation precisely, by
tems (Ikeuchi and Kanade, 1988a]. Rather than requiring solving edge-matching equation iteratively given edge corre-
extensive time from highly skilled implementors, a VAC gen- spondences by the previous procedure.
erates a strategy for a well-defined vision task automatically, In the next year, for examining the VACL's applicability,
given adequate models of objects, sensors, and processing we plan to apply VACL and its environment to several vision
techniques. Working off-line, a VAC analyzes models and de- tasks such as SAR image recognition, generation of optimal
termines a vision strategy. Later, an application system uses sensor strategies and robot assembly task recognition system.
the strategy on-line to perform the specified task. We have .,1.1 Sampling or Rocks
worked on modeling scnsors [Ikeuchi and Kanade, 1988b],
a frame-based geometric modeling system [Kanade et at., We (Hebert, Ikeuchi, Delingetter) have developed a vi-
19881, and an example system for bin-picking task [Ikeuchi sion and manipulation system to collect small rocks [Choi et
and Kanade, 1988a]. al., 19901 as art example of task-oriented vision [Ikeuchi and

We (Ikeuchi, Gremban, Wheeler, Hong) have been working Hebert, 1990] (in these proceedings) for dealing with natural
on a compiler for the task of object localization (hence, we objects with less well-defined shapes. Our goal is to eventu-
refer to our compiler as a VACL -Vision Algorithm Compiler ally integrate the system into the CMU Ambler, a six-legged
for Localization). In an object localization task, the object autonomous robot for planetary exploration.
is known, but its position and orientation are unknown. The The rock sampling system we developed includes: a robot
VACL uses CAD models of objects, sensor models, and a arm, a range finder, and a small terrain nock-up that contains
predefined set of processing algorithms to generate a strategy. sand and small rocks. The goal of the rock sampling system

We decompose the task of object localization into two dis- is to identify, locate, and pickup rocks from the terrain.
tinct subtasks: The perception subsystem uses a 240x256 range image of

the scene as input. Three types of features are extracted from
* aspect classification -An image of an object is classified the range image: shadows, edges, and surface discontinuities.

into one of a small number of topologically distinct ap- The features give an indication of where the boundaries of
pearance groups called aspects. Each aspect represents a the objects may be located in the scene. The algorithm con-
collection of viewpoints within which the object "looks trols the growing of the boundary by modeling each feature
roughly the same." as a generator of forces that attracts the boundary. Following

* linear shape change - Aspect classification yields only the force field, the boundary moves towards the surrounding
a rough estimate of the position and orientation of an features. This approach allows us to locate objects in the
object. However, this rough estimate can be used to ini- scene even when only a very small number of visual features



are extracted from the image. This departs from other vi- SCARF
sion systems that implicitly assume that strong and reliable We (Crisman) have completed the work for SCARF, Su-
features can always be extracted, and therefore would not per- pervised Classification Applied to Road Following, which
form well in the type of unstructured environment that we are tracks roads by adaptive color classification [Crisman, 1990].
considering. SCARF runs in a loop of: classify image pixels, find the road

Forrepresentation of extracted objects, we approximate the model that best matches the classified data, and update the
set of 3-D points by a superquadric surface. The superquadric color models for classification. The models of road color and
fitting algorithm is a gradient descent on the parameters of the geometry used by SCARF make very few assumptions about
surface. the road, and make SCARF run robustly even when following

We currently use a vertical manipulator that can translate in unstructured roads.
a X-Y plane, translate along the Z-axis (that is orthogonal to SCARF represents multiple color classes, as Gaussian dis-
the scene), and rotate about the Z-axis. This configuration is tributions in full RGB color, and calculates probabilities.
suitable because the target vehicle, the Ambler, will provide SCARF typically uses four color classes to describe road
the X-Y motion thus allowing for positioning of the effector appearance, and four for off-road objects. Pixels are com-
precisely above the target sample. The current design of the pared to each of the eight classes, and are given both a label
gripper is a scaled down version of an excavation tool. This and a probability. In our experiments, any simplification of
design allows for penetration of soft terrain, and it allows for the system (using monochrome or color combinations, or us-
other sampling operations such as scooping. ing binary thresholds instead of probabilities, or assuming

We have demonstrated the cycle of perception, representa- uniform variances for all classes) reduced the ability of the
tion, and manipulation on a variety of terrains. The experi- system to handle difficult situations, such as dirt roads, leaves
ments have shown that the system performs well even in the on the road, and dark shadows.
presence of difficult, unstructured terrain. SCARF uses a very simple model of road geometry. Roads

are considered to be locally straight and flat. The only free
parameters are the road's angle and horizontal offset relative

4 Vision for Navigation to the vehicle. While this representation will not accurately
represent curves or hills, it is relatively insensitive to minor

4.1 Navlab Vision Progress misclassifications and local road imperfections. Our simple
We (Thorpe, Hebert, and Kanade) have been working on the model allows rapid evaluation, and thus lets us tuild new
CMU Navlab, an integrated visual navigation system [Thorpe road models as we drive, and compensate for curves or hills.
and Kanade, 1989] [Thorpe, 19901. In this period we con- The various versions of SCARF, some of which have been
tinue to make progress in advancing component capabilities, implemented on the Warp parallel supercomputer, have driven
architecture, and system demonstration. the Navlab along bicycle paths, dirt roads, gravel roads, and

suburban streets, as well checking intersections.
Map Building by Active Sensor YARF

Use of active rangefinder (ERIM) images has been one of Currently we (Kluge, Aubert, and Thorpe) are developing
the major Navlab vision activities [Hebert and Kanade, 1988]. the YARF (Yet Another Road Follower) system. It explic-
We (Hebert) have continued the development of a robust map itly models as many aspects of road following as possible,
building system using the ERIM range finder images for the for driving on structured roads [Kluge and Thorpe, 19901
Navlab [Hebert, 1989a]. The map building procedure is made [Aubert and Thorpe, 1990]. Highways, freeways, rural roads,
robust by fusing information from multiple sources: 1) using even suburban streets have strong constraints. Modeling these
the position information from the INS; matching well-defined explicitly makes reasoning easier and more reliable. When
discrete objects between frames before attempting to match a line tracker fails, for instance, an explicit model of road
terrain descriptions; and representing explicitly uncertainty and shoulder colors adjacent to the line helps in deciding
and confidence to produce an accurate map and to remove whether the line disappeared, became occluded, turned at an
spurious items from the map. intersection, or entered a shadow. This kind of geometric

Matching objects is not very expensive in our case because and photometric reasoning is vital for building reliable and
we have only a few objects to match in each frame and because general road trackers.
we can assume that we have a reasonable estimate of the dis- YARF has individual knowledge sources that know how to
placement between frames from INS or dead-reckoning. One model and track specific features, such as road edge mark-
of the most difficult issues is to detect and remove spurious ings (white stripes); road center lines (yellow stripes); and
objects. Spurious objects appear in two cases: 1) noise in the shoulders. YARF also uses an explircit geometry model of the
range image causes the object detection program to halluci- road, consisting of location of vehicle on road; location of
nate, and 2) moving objects (e.g. people) crossing the field stripes; type of stripes (e.g. broken or solid); and maximum
of view are detected as objects. The problem of spurious ob- and current road curvature. Figure 4 shows tracking yellow
jects is solved by calculating a confidence measure for each and white lines through dappled shadows.
object, based on a sensor model and repeated observations of YARF is designed for higher speeds than SCARF, and runs
the object in its expected location, in a more predictable environment. The combination of mul-

The map building and matching is now integrated in the tiple trackers controlled by explicit models of road geometry,
Navlab system and has been demonstrated in complex navi- vehicle motion, and tracker performance, has allowed YARF
gation scenarios, to run the Navlab up to 15 kph using a single Sun 4. Future
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and map position update, along with Annotated Maps for mis-
sion planning and execution.

In EDDIE, global, permanent, maps are handled by the sep-
arate mechanism of "annotated maps". Annotated maps start
with a geometric representation of objects, such as roads, in-
tersections, and landmarks. Annotations hold a wide variety
of knowledge, both procedural and declarative, tied to a par-
ticular map location or object. Triggers are a special form of
annotations, monitored by the EDDIE map manager. When
the vehicle reaches the trigger's location, the map manager
automatically sends a specified message to a named module.

Integrated System Demonstration

The most ambitious mission we have performed to date is
a 0.4 mile run on unmodified suburban streets in Pittsburgh's
North Hills. This run involved driving on curving streets;
turning through intersections; stopping for unexpected obsta-
cles; finding landmarks and updating vehicle position.

We built a map of the route, driving the Navlab by hand
and using the laser scanner to record the location of 3-D
objects. During the run, the vehicle started moving slowly,
while it found landmarks to initialize its position. A trigger
then caused the vehicle to speed up until it approached the firstturn. At that point, triggers caused various modules to slow
the Navlab, find 3-D objects, match them against the map,

Figure 4: YARF tracking yellow and white lines in complex and update the vehicle's position estimate. Through the turn,
shadows vision was not able to see the road, so another trigger caused

dead reckoning to take control until the vehicle was lined up
with the next road, when the road was again in the field of

work will expand YARF to run on a multiprocessor, and will view and vision could resume control. The run proceeded in
begin automatically interpreting tracker failures, to recognize this fashion until the final triggers, which matched the mailbox
and negotiate intersections and other scene phenomena. at the destination with the map, and brought the vehicle to a

stop.
EDDIE - Architectural Toolkit Others

Robots are physical problem-solving systems, and thus oc- Other progress includes: a new trajectory planner for cross-
cupy a unique scientific and design niche and require unique country navigation in rough terrain [Stentz, 1990]; rule-based
processing and models. Robots are certainly physical sys- road scene analysis [Fujimore and Kanade, 1990]; and recog-
tems, and robot designers can certainly borrow technology nition of cars in outdoor scenes [Kluge et al., 1990]
from physical systems such as signal processing and control
theory. Many robots are also problem-solvers, and use ideas 4.2 Rugged Terrain Perception for Planetary
from symbolic systems, particularly Artificial Intelligence and Exploration
high-level Image Understanding. But there remains an in- Under the sponsorship of NASA we have been developing a
termediate "robotics" level which is the peculiar domain of six-legged autonomous walker (Ambler) for planetary explo-
robotics research. ration [Bares el al., 1989]. Research on its perception system

Our new EDDIE system (Efficient Decentralized Database has strong relationships to the Image Understanding Program,
and Interface Experiment) provides an architectural toolkit so it is briefly reviewed here.
that supports this view of mobile robots. Rather than forc- There are two complementary aspects of the terrain that are
ing an artificial standard for flow of control or daia, EDDIE important for locomotion: shape and material. Our resea -h
enables building specialized architectures for individual ve- has concentrated on shape, with a smaller effort to identify
hicles and applications. EDDIE begins with a new low-level material properties.
controller [Amidi, 1990], which provides fast dead-reckoned Wedescribe terrain shape as an elevation map. Wehaveim-
p3sition e,' ,ation and real-time trajectory tracking. Com- plemented a mapping system that builds and maintains a com-
munications between modules, and to the controller, are fast, positeelevation map, given (a) a sequence of laser rangefinder
simple, point-to-point links with no central module bottle- images and (b) the motion between images. In addition to the
neck. Map issues are effectively divided into local and global elevation, the system computes the elevation uncertainty, lo-
representations. cal slope, visibility, and foothold goodness (measure of terrain

EDDIE has been used to build several different architec- flatness in a foot-size neighborhood) [Caillas et al., 19891.
tures. The simplest systems use only a single perception mod- Material properties of interest for locomotion include soil
ule and the controller to do road following. The most complex density, soil grain size, soil cohesion, and internal angle of
systems we have built with EDDIE u.. several different road friction. Using thermal imagery acquired by an infrared cam-
following modules, plus landmark detection, emergency stop, era we have successfully demonstrated techniques to classify
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* Object detection: We have developed a technique to
extract objects from sonar images using the geometry of
the acoustic shadows.

* Qualitative terrain modeling: In sonar images, it is more
difficult to build a precise quantitative terrain representa-
tion due to the poor resolution and accuracy of the sensor.
We are investigating a more qualitative representation of
the terrain in which terrain regions are represented by
bounds on their elevation and slope.

* Map building: Building maps from sonar images in-
volves merging the qualitative maps generated from in-
dividual images.

The goal is to integrate map building system into an anno-
tated map system and to demonstrate it on a vehicle currently
being built by FAU.

5 Parallel Vision
We (Webb) are developing an architecture-independent
method for programming both local and global image process-
ing functions on parallel architectures. We have developed
the split and merge programming model for these operations,

Figure 5: A composite terrain map and realized this model in the Adapt programming language.
In Adapt, the programmer breaks the algorithm down into

four parts: First, a function that is executed before anything
outdoor terrain regions as "sand" or "rock," based on a model else; Next, a function that is executed once per pixel; Combine,
that relates observed temperature to thermal inertia, and ther- a function that combines the results of two adjacent regions of
mal inertia to soil density and grain size [Caillas, 1990]. Us- rows of the image; and Last, a function that is executed after
ing force/torque sensing we have developed the capability to everything else. It can be shown that this programming model
determine the stiffness and friction characteristics of terrain allows the implementation of any local or global operation that
[Krotkov, 1990]. can be computed in forward or reverse order over the image.

We have successfully demonstrated a pixel-based terrain We have implemented Adapt on a number of architectures:
matching algorithm to estimate the vehicle motion from a Warp (in two separate implementation, partitioning the image
sequence of hundreds of range images. The matching proce- either by rows or by columns) and on Nectar, as well as on
dure requires an initial estimate of the displacement, typically the Sun.
from an INS, and then uses that estimate to seed an itera- Wehavealsoimplementedanumberofdifferentglobalim-
tive minimization procedure. Using the computed vehicle age processing operations in Adapt, including histogram, con-
motion, we merge the range images into a composite map nected components, minimum bounding rectangle, run-length
using maximum likelihood estimation. Figure 5 is the result encoding, quadtree generation, and so on. These operations
of merging 125 images from the Martin Marietta ALV test allow us to compare the performance of Adapt with previous
site. We have also shown how to improve the accuracy of work; our results show remarkably good performance. For
the composite map by incorporating prior information in the example, both histogram and connected components perform
form of a coarse-resolution elevation map [Hebert et al., 1989, better in Adapt than in the original hand-coded Warp W2
Kweon and Kanade, 1990]. programs, which were carefully optimized when they were

originally written.
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0 Introduction
This report covers the research investigations of the 0.1.2 Image Warping

Vision/Robotics Laboratory at Columbia University from April, 1989, A survey and analysis of different aspects of digital image
to June, 1990. Three faculty members and 19 Ph.D. students are warping, containing considerable amounts of C code, has been
working on about a dozen projects in computer vision, with several of published. A novel data structure and algorithm does warping to and
the projects involving other researchers in the department, in the from arbitrary shapes. A new, highly efficient, general method
university, or in the corporate research centers of AT&T, IBM, (patent applied for) achieves 2-D image warps by separating into two
Philips, or Seimens. successive 1-D warps: soon to be available in X-windows. Novel,

The main body of this report details the goals, significance, sensor-based image restoration algorithms that are local and
and accomplishments of these projects, and follows this introduction, inexpensive have been designed and tested, exceeding existing
This introduction itself is an executive summary in two parts. The ones. (George Wolberg, and Terry Boult [51, 52, 53, 54, 551).
first part reviews some of the notable achievements of our graduate
students over the past 14 months. The second part is a capsule
outline of the rest of the report, summarizing our interests and 0.1.3 Polarization and Physlcs-Based Vision
results, together with the principal researchers associated with them. The POLARIS system uses polarization information to classify
It includes not only "pure" image understanding work, but also our surface material, separate highlightldifluse components of an scene,
work on the vision-related aspects of assembly and navigation and compute local surface orientation Polarization computations
robotics. detect occluding contours on diffusely reflecting dielectrics. An

approximation results in a near real-time system for material surface
classification on the PIPE. The methodology applied to graphics
yields more realistic imagery of reflecting surfaces. Additionally,0.0 Notable Graduate Student Achievements photometric flow fields determine local surface orientation from a

At the 1989 IEEE Computer Society Conference on Computer continuous variation of photometric stereo. Also, a new invariant in
Vision and Pattern Recognition, Larry Wolff published four papers two-camera stereo allows the determination of the orientation of lines
[56, 57, 58, 59], placing Columbia second in the number of papers and surfaces, insensitive to baseline measurement error. Most
accepted. recently, the photometric invariant of isophotes at parabolic points is

At the 1990 IEEE International Conference on Robotics and shown to be the projection of a principal direction of zero curvature,
Automation, Monnelt Soldo's paper on visual robot navigation, enabling qualliative surface orientation analysis. (Larry Wolff, Dave
"Reactive and Preplanned Control in a Mobile Robot" [42], was a Kurlander, and Terry Boult (56, 57, 58, 59, 60, 61, 62, 63, 64]).
finalist in the Best Student Paper competition.

In its nine years, the Vision/Robotics Laboratory has produced
nine PhD students; the past year we are pleased to have graduated 0.1.4 Color Contrast
four. In alphabetical ordpr, they are. Michalis Hatzitheodorou, Experiments in simultaneous color contrast contradict the
"Shape from Shadows. Theoretical and Computational Aspects" [23], predictions of traditional models, and specify constraints for neural
Mark Moerdler "Shape from Textures. A Paradigm for Fusing Middle- network models (Billibon Yoshimi, and Qasim Zaidi of the
Level Visual Cues"(34]; Ajit Singh "Image-Flow Computation: Psychology Department (65)).
Estimation-Theoretic Framework, Unification and Integration"[ 38];
and George Wolberg "Separable Image Warping: Implications and 0.1.5 Replication Lab
Techniques" [53]. Several algorithms not invented here have been

reimplemented for study. (Terry Boult).

0.1 Low-level Vision
0.1.6 Languages for Sensors

0.1.1 Image Flow "Sensor-C" is under development. (Terry Boult).

A new framework classifies image-flow information into
conservation and neighborhood information, and fuses them using
estimation-theoretic techniques, allowing estimation of discontinuous 0.2 Middle-Level Vision
flow-fields without blurring at motion discontinuities. It unifies and
integrates the three prior approaches. gradient based, corruialion- 0.2.1 Multiprocessor Surface Interpolation
based, spatiotemporal energy-based, it produces the least mean Analysis and novel SIMD encoding of several existing
squared error. (Ajit Singh [37, 38, 39, 40]). algorithms for depth interpolation leads to two novel, optimal

techniques that minimize inlerprocessor communcation. (DongChoi, and John Kender (17, 50]).

tThis work was supported in part by the Defense Advanced Research Projects

Agency under contract N00039-84-C.0165



0.2.2 Shape from Texture Autocorrelatlon 0.3.3 Vision Planning
Distortions in image autocorrelation provide a method for The complete locus of camera poses and optical settings that

shape-from-texture, it runs in parallel on the Connection Machine. satisfy visibility, field-of-view, resolution, and focus requirements for
(Lisa Brown, and Haim Shvaytser of SRI Sarnoff Research Center a given object have been analytically determined and implemented;
[15, 161). coverage and efficiency greatly exceed existing generate and test

methods. (Dino Tarabanis, Peter Allen, and Roger Tsai of IBM T.J.
0.2.3 Fusion of Shape from Textures Watson Research Center [45, 46, 47, 48, 49]).

Based on the "augmented texel" data structure, a new method
segments and classifies textures according to the relative 0.3.4 Topological Navigation by Landmarks
contributions of independent texture methods to a fused texture Topological visual navigation in two-dimensional spaces by
percept. (Mark Moerdler [341). following directions to landmarks has been formalized and

implemented with a hand-held camera. Navigators seek on
0.2.4 Shape from Shadows topology, and adjust on symmetry. (John Kender, Avraham Leff, II-

An optimal algorithm for shape from continuous shadows runs Pyung Park, and David Yang [27, 30, 31, 321).
in parallel, with provably minimal error. Regularization methods
allow it to approximate as well as interpolate efficiently. Applied to 0.3.5 Visual Servolng
laser light beams, the method puts a theoretic optimal foundation Objects moving with arbitrary trajectories are tracked by the
under light striping, better, it exploits shadow information. (Michalis PUMA arm in real-time, using PIPE visual input, a video is available
Hatzitheodorou (23, 24, 25, 261). Real-time grasping of moving objects by the Utah hand is under

development. (Peter Allen, Aleksandar Timcenko, and Billibon
0.2.5 Dynamic Digital Distance Maps Yoshimi [51).

The complexity of efficiently updating digital distance maps in
dynamic, high-dimension, environments is analyzed, and the method 0.3.6 Integrated Hand-Eye Systems
is implemented. (Terry Boult [10]). A hand-arm system controlled by a task description language

grasps and manipulates objects based on a robust line-based stereo

0.2.6 Generalized Cylinders system that recovers 3-D axes of surfaces of revolution. (Peter Allen,
The contour image of a straight homogeneous generalized Paul Michelman, and Ken Roberts (1,2, 3, 4, 6, 7, 8, 33]).

cylinder is shown to leave two, and only two, parameters
unconstrained. A method for ruling the contour image allows the 0.3.7 Sensor-based Volume Registration and Recovery
recovery of object tilt and axis location, given the additional In an initial implementation, the PROVER system numerically
intormation of intensity values along extremal cross-section curves, recovers the parametric representations of volumes from many types
(Ar Gross, and Terry Boult [18, 19, 20, 21, 22]). of sensor data. The causes of misregistration in medical volume

date has been surveyed. (Lisa Brown, and Terry Boult).
0.2.7 Energy-Based Surface Segmentation

A sequential energy-based segmentation system allows 0.3.8 Bayesian Analyses for Image Interpretation Systems
testing of different grouping heuristics, implementation on a A novel bayesian network strategy is under development
Connection Machine is nearly complete. The energy computation is (Michelle Baker, and Terry Boult [91).
novel, based on reproducing kernel splines, and us~ng more robust We now detail these efforts, many of which are documented
(L-1 and L-infinity) error measures, it is especially eflicient for sparse by full papers in these proceedings In each of three major
data. (Terry Boult, and Mark Lerner (11, 12, 13, 141). groupings, the research is presented in order of relative maturity'

from dissertations and full papers, through work in progress, to

0.2.8 Flexible Extruded Objects nascent investigations.
A non-iterative transform applied to range data derives the

radius of flexible extruded objects, such as wires and tubes. The
other six degrees of freedom (position, orientation, curvature) are 1 Low-level Vision
derived by the system from novel Hough-like parameter spaces: a
total of seven dimensions, but efficient and self-limiting to noise.
(John Kender, and Rick Kjeldsen of IBM T.J. Watson Research 1.1 Image Flow
Center [29]). Visual motion is a major source of three-dimensional

information. It is commonly recovered from time-varying imagery in
the form of a two-dimensional image flow field.

0.3 High-Level Vision and Systems A new framework classifies the image flow information
available in time-varying imagery into two categories-- conservation
information and neighborhood information. Each type of information

0.3.1 Robust Visual Robot Navigation is recovered in the form of an estimate accompanied by a covariance
Algorithms for the representation of space and free-space path matrix. Image flow is then computed by fusing the two estimates

planning have been surveyed. Preplanned and reactive control are using estimation-theoretic techniques This framework is shown to
integrated in an architecture that achieves robust autonomous allow estimation of certain types of discontinuous flow fields without
navigation in an AT&T mobile robot, in over 100 runs. Its edge- any a-priori knowledge about the location of discontinuities: flow
tracking filter, and is mechanism for recording ground truth are also fields estimated using this framework are not blurred at motion-
novel. (Monneft Soldo [41, 42, 43, 44]). discontinuities. Two algorithms based on this framework have been

analyzed and implemented, and the results of applying these
algorithms to a variety of image sequences have been evaluated and0.3.2 Model-Based Active Sensing discussed. In order to put the framework in context of an application,

Haptic reco ,ion via active exploration with a instrumented the image flow fields recovered by these algorithms are used in a
robot hand is achieved by combining geometric constraints, Kalmam filtering approach to incrementally estimate the scene
interpretation tree methods, and exploratory moves. Applicable to depth.
vision, constraints from paired line segments drive cost functions to
determine the next sensor move. Optimal rotational parameters are
developed using quaternions. (Ken Roberts [35, 36]).
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The new framework is shown to be applicable identically to The idea of imaging-consistent reconstruction is a bit more
each one of the three major approaches for recovering conservation complex. It stems from the need to incorporate a model of the
information, L.e., gradient-based approach, correlation-based imaging sensor into the reconstruction process; this requires
approach and spatiotemporal enerly-based approach. The functional forms for the reconstruction, rather than discrete
formulation of neighborhood informalle"n used in this framework is convolutions commonly used. To develop such low error, local,
also shown to reduce to some c; t;t existing smoothing-based functional filters, it is necessary to model the blurring function of the
formulations under various simplifying assumptions Thus, the sensor, for example, the cell blurring in a CCD. Given this model, an
framework described unifies various existing approaches for image analysis derived from the results of information-based complexity
flow computation Such unification is useful in analyzing various creates a local and efficient approximate image restoration resulting
existing frameworks as well as in generating new frameworks. in a functional form blurred according to the camera model. The

This new framework is also shown to serve as a platform to analysis first choses one of the infinitely many scenes which could
integrate the three approaches mentioned above. The have generated the original image, and then defines the
measurements obtained by the three approaches have different error reconstruction as the blurry form of that one possible scene. Thus,
characteristics This situation is analogous to the multi-sensor fusion restoration results are exact for a scene which could not be
problem, where the algorithms based on the three approaches distinguished from the original scene given the digital image.
behave as multiple sensors measuring image flow. An integrated Reminiscent of backwards error analysis, this is the idea of imaging-
framework applies the principles of statistical estimation theory to consistent reconstruction.
fuse the measurements obtained from different approaches. The It is not hard to show that the error of these reconstruction
resulting estimate of image-flow has the minimum mean-squared algorithms are within a factor of 2 of the optimal algorithm. Further,
error "'ther novel algorithms based on this framework have also assuming that the camera model is the filter for image minification,
beer scribed. then the local restoration algorithms exactly satisfy the image identity

(Ajit Singh 137, 38, 39, 401). constraint. In general, however, the reconsiructions have been
blurred, hence they do not satisfy the constraint exactly, but for many
camera models they satisfy it approximately, except near very strong

1.2 Image Warping edges.
The existing technology for image warping is extensive, but Assessing the quality of our new filters using traditional

relatively slow, constrained by numerous side conditions and subject measures of the quality of image reconstruction filters, such as
to many errors and abberations A search for better algonthms spectral analysis, these new filters prove supenor to previous local
resulted first in a comprehensive survey of digital image warping methods of similar support, and rival or surpass the global method of
techniques, containing considerable amounts of C code; it has been cubic-spline interpolation.
published as a monograph. (George Wolberg, and Terry Boult 151, 52, 53, 54, 55]).

The literature is largely silent on the problem of efficiently and
smoothly mapping between two image regions which are delimited
by arbitrary closed curves; such regions do not have the universally 1.3 Polarization and Physics-Based Vision
assumed tour corners A second result was the specification and Research on the polarization of light by surfaces has resulted
verification of an algorithm that instead treats an image region as a in the demonstration of POLARIS, an integrated system that uses
collection of interior layers around a skeleton These layers impose polarization information to classify surface material, separate
a type of local polar coordinate system which allows each shape to highlight/diffuse components of an scene, and compute local surface
be "unwrapped" into a tree-like representation Region-to-region orientation. Derived from the Torrance-Sparrow theory of reflection
warping is then defined by a natural mapping between the two and the Wolf polarization theory of "quasi.monochromatic" light, the
resulting trees Although there is no a priori way of defining quality of new methods classify material surfaces into conductors or dielectrics
mapping, the results are esthetically pleasing. by computing an empirical determination of the polarization Fresnel

A third product is a new, highly efficient, general method for ratio. Specular regions have been identified on both metals and
achieving 2-D image warps by separating the 2-D transform into two dielectrics on a per-pixel basis without the use of a segmentation
successive 1-D warps It therefore extends the power of existing procedure, the method only requires a controllable polarizing filter
hardware systems that perform more limited classes of placed between the camera and the object. Further relationships
transformations by similar decompositions However, this method implicit in the equations have been exploited in order to determine
shows that off-the-shelf hardware, in the form of digital filters with local surface orientation properties. Lighting need not be restricted
only minor modification for 1-D image resampling, can be used to to point sources, the methods have been extended to more typical
realize arbitrary mapping functions cheaply and at video rates. The extended sources, such as fluorescent tubes. Experimental testing
first release of the software embodiment of such an image warping of these initial components have given strong results, supporting the
system has been completed, and is now being ported to the X- claims for the approach's utility.
Window environment In addition, an interactive interface has been The system has been extended both in theory and in practice.
developed to allow for easier user definition of the warping functions. In theory, the Fresnel reflectance model now incorporates the
A patent on the system is pending. polarization properties of diffuse reflecting bodies, which were

Lastly, in analyzing the errors of the system, it was discovered originally assumed to be non-polanzing. The result :s the prediction
that a major problem was in image reconstruction, the warping of the ability to use percent polarization computations to detect
accesses the original image at spatial resolutions that differ occluding contours on diffusely reflecting dielectrics. Together with
significantly from the original sampling rate In seeking better prior observations that many albedo edges do not cause significant
reconstruction filters, two new constraints on image reconstruction polarization edges, this indicates that polarization information is a
were discovered' the identity imaging constraint, and the idea of powerfui filler for finding edges due to occlusion, while eliminating
imaging-consistent reconstruction. edges due to albedo.

The identity imaging constraint requires that the In practice, a near real-time approximation for material surface
magnification/minification filters used in a warping system should cl3ssification has been demonstrated on the PIPE image processing
form a transfnrm pair, such that magnification followed my engine, iuquiring 6-30 frames (depending on the desired accuracy).
minification back to the original size should not introduce errors. The algorithm is simple enough that it should run on almost any
Surprisingly, this constraint is not satisfied by most image frame rate pixel processor. A related approximate algorithm can do
reconstruclion fillers, with the exception of sinc and box filters. The near real-time delecion of occluding contours on diffusely rellectng
novel restoration/reconstruction fillers invented in this effort do dielectrics.
satisfy this crileria, however. This understanding of polarizalion has been also been applied

to graphics, resulting in more realistic imagery of mutually reflecting
surfaces, such as building windows seen reflected in a lake, or
convoluted objects like vases.
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Separate in scope, but also derived from a detailed 2 Middle-Level Vision
examination of the physics underlying the image-forming process,
are two results in stereo. Local surface orientation and curvature
can be derived from the "photometric flow field", which is the rate of
change in the image irradiance of the image with a stationary object, 2.1 Multaprocessor Surface Interpolation
a stationary camera, but a moving light source. The method is a Many constraint propagation problems in early vision,
generalization of (discrete) photometric stereo; instead of three light including depth interpolation, can be cast as solving a large system
positions, the illumination geometry is allowed to move smoothly in of linear equations where the resulting matrix is symmetric, positive
three-space. Surface orientation has also been demonstrated from definite, and sparse. Analysis and simulation of several numericalthe stereo correspondence of linear features; the method computes analytic solutions to these equations for a fine grained SIMD
the orientation of a plane from the orientations of two or more machine with local and global communication networks (e.g., the
coplanar lines. Compared to point-based stereo, errors with respect Connection Machine) shows that two methods are provably optimal
to camera baseline translation or with respect to object distance from in terms of computational complexity. For a variety of synthetic and
baseline grow much more slowly, as shown by both analysis and real range data, the adaptive Chebyshev acceleration method
Monte Carlo simulation. executes faster than the conjugate gradient method, if near-optimal

Most recently, differential geometry, in the form of the values for the minimum and maximum eigenvalues of the iteration
differential of the Gauss map (the "surface centered curvature matrix are available.
matrix"), has yielded a new shape-from-shading invariant. The When these iterative methods are implemented in a pyrmidal
isophotes, that is, the image curves of equal reflected radiance, multigrid (coarse-medium-fine) fashion, using a fixed multilevel
corresponding to the parabolic points of a surface are shown to be coordination strategy, the multigrid adaptive Chebyshev acceleration
the projection of a principal direction of zero curvature. Under method executed faster than the multigrid conjugate gradient method
general conditions, the result is invariant to both reflectance function again. This appears to be the case because an optimal Chebyshev
and viewer position, thus providing a powerful cue for qualitative acceleration method requires local computations only. These
surface orientation analysis. methods have now been validate on actual range data.

(Larry Wolff, Dave Kurlander, and Terry Boult (Dong Choi, and John Kender [17, 50).
[56, 57, 58, 59, 60, 61, 62, 63, 64]).

2,2 Shape from Texture Autocorrelatlon
1.4 Color Contrast A new method for determining local surface orientation has

In conjunction with the Department of Psychology, color been developed from rotationally invariant textures based on the
contrast phenomena have been investigated, with challenging two-dimensional two-point autocorrelation of an image. This method
results. is computationally simple and easily parallelizable, uses information

If a colored patch is surrounded by a larger patch of another from all parts of the image, assumes only texture isotropy, and
color, the appearance of the enclosed patch can change markedly. requires neither texels nor edges in the texture. Applied to locally
Two types of mechanisms are though to mediate this phenomenon: planar patches of real textures such as roads, dirt, and grass, the
mechanisms that enhance contrast across contours, and results are highly accurate, even in cases where human perception
mechanisms that integrate inside closed contours to give a uniform is so difficult that people must be assisted by the presence of an
appearance. These mechanisms were studied by independently artificially embedded circular object. The method runs on the
varying the area, perimeter length, and shape of the enclosed test Connection Machine.
patches. (Lisa Brown, and Haim Shvaytser of SRI Sarnoff Research

For light-dark modulations of the surround, tests with equal Center [15, 16]).
area showed essentially the same amount of color induction. There
was a slight increase in the amount of induction as the perimeter
length was more than doubled, and there was also a tendency for 2.3 Fusion of Shape from Textures
the shapes with fewer lobes to show more induction than shapes Existing work on the fusion of live different shape-from-texture
with more lobes. For isoluminant red-green and yellow-blue methods has suggested a novel approach for classifying textures
surround modulation, the slopes of the functions relating induction to Each of the methods is tuned to certain image phenomena; the five
perimeter length were slightly steeper and tle shapes with fewer are shape from spacing, shape from orientation, shape from size,
lobes showed a larger difference from the shapes with fewer lobes, and shape from absolute and relative eccentricity Given a single
These results contradict the predictions of traditional induction texture patch, particularly one under perspective, each method will
models like the edge-distance model, and they specify constraints for respond differentially according to the degree it believes the patch
the integration stage of network models. possesses cues that the method can exploit to derive shape

(Billibon Yosfiimi, and Qasim Zaidi of the Psychology information. These differential strengths can be gathered together in
Department [65]). a new data structure, the "augmented texel", as a signature feature

vector for the texture, where they can be manipulated in the usual
way by standard pattern recognition or image segmentation

1.5 Replication Lab techniques.
A replication lab, just begun, has reimplemented and is in the (Mark Moerdler [34])

process of evaluating algorithms for: segmentation techniques with
Markov random fields, Kalman-filter based depth from translational
motion, snd multi-sensor registration techniques. 2,4 Shape from Shadows

(Terry toult The determination of surface shape from the location of
shadow boundaries has been extensive analyzed, particularly in the
setting of continuous mathematics. This has lead to an optimal,

1.6 Languages for Sensors paral!izab!e algorithm, demonstrated on a network of workstations.
A language development effort for "Sensor-C" has started. The problem is decomposable into a series of one-dimensional slices

This language extends C++ to allow for efficient and easy use of in the plane of the moving light source; each slice admits of a fine-
sensor 'ype obiects, currently not well supported. This work is in grained parallelism, whereas the decomposition itself can be
conjunction with the PRCJHT language project in the Department of attacked via coarse-grained parallelism Each strip is computed
Computer Science. using as a basis a family of interpolating splines of an unusual

(Terry Boult and Gail Kaiser). piecewise linear form. The solution is checked against a side system
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of inequalities; if the solution fails, a non-linear approximation than other existing (and slower) methods. Recently, three major
algorithm accommodates the failing constraints, advances have been achieved in this work on regularized surface

More recently, a smoothing spline approach has been reconstruction.
developed to regularize noisy data; hence the alqorithm can First, an Initial version of the sequential energy-based
approximate data rather than interpolate it, with a corresponding segmentation system has been implemented, it serves as a testbedincrease in robustness. Empirical investigations on natural objects to analyze how different grouping heuristics reduce the
have demonstrated that the method is relatively insensitive to a computational complexity of surface reconstruction andrange of smoothing parameters. segmentation. A parallel implementation on a Connection Machine

Additionally, the question of how to optimally position the is nearing completion.
illuminants was solved in some very restricted cases: the tangent of Secondly, how to compute the energy under a wide, two-the Incoming light ray angle should be uniformly distributed from zero parameter range of class/norm assumptions has been demonstrated.to the maximum tangent permitted. As an offshoot, this investigation The energy computation is based on reproducing kernel splines, andyielded a theoretic foundation for optimal laser light striping again is efficient, especially for sparse data, and is amenable to
algohrthms. The theory suggests and demonstrates that the parallel implementation
shadows in light striping, ignored up to now, can instead be exploited Third, the efficient computation of two types of "robust"to further increase accuracy. smoothing splines has been derived. They are unlike the traditional(Michalis Hatzitheodorou [23, 24, 25, 26]). smoothing splines used in regularization. Based on the relationship

between reproducing kernel splines and covariance measures,
regularization splines (L-2 norm splines) are shown to be a type of2.5 Dynamic Digital Distance Maps least square estimate: they are optimal bayesian estimators for theSpatially varying distance cost problems, such as path data, under the assumption that the errors are normally distributed.planning under the considerations of surface height or terrain quality, However, smoothing splines based on L-1 or L-infinity norms areare relatively frequent, but vertex-based algorithms do not generalize known to be more robust with respect to other, more realistic,well to these problems Complexity bounds have been derived on assumptions on the errors. Although a general theory for these

the constrained distance transform for computing digital distance robust smoothing splines has long existed, the techniques formaps; they have also been extended to handle path planning with generating them require general non-linear minimization, which canspatially varying distance metrics, be very expensive. The newly discovered technique, however,(Terry Boult [10]). reduces the problem in these useful cases to the solving a linear
programming problem, which is far more etficient.(Terry Boult, and Mark Lerner [11, 12, 13, 141).

2.6 Generalized Cylinders
Straight homogeneous generalized cylinders (SHGCs) are a

tlexible class of parametric shapes capable of modeling many real- 2.8 Flexible Extruded Objects
world objects An image invariant has been demonstrated that A Hough-like parameter space technique for modeling flexible
quickly and cheaply tests an image for the probable presence of a extruded objects as piecewise toroidal has been analyzed, and aSHGC, under various rotational transformations and imaging novel transform has been implemented that derives their three-space
conditions. curved axes from position and surface normal information. TheBuilding on this prior work, under a slightly more general method is purely local, and succeeds where attempts to modeldefinition of SHGCs, it has been determined exactly what constraints objects as being piecewise cylindrical fail. Although the localcan be derived directly from their image contours. Given most computation involves 15 free variables (for three points each. three
conditions, all the parameters of an SHGC are shown to be of position, two of orientation), does not involve the iterative solutionrecoverable from contour, except two, and only except two. the tilt of non-linear equations It has been demonstrated on synthetic andtoward the viewer, and the translation of the axis in the viewer real range data.
direction Therefore, every general orthographic view of an SHGC Because the torus is an object with seven free parameters,can be shown to have resulted from any member of a two-parameter this work also has demonstrated the robustness of the parameterinfinite family of SHGCs which are contour equivalent. Within this space approach, even for high order objects. Better, it hasfamily, the shape can vary significantly, even to the point of reversing demonstrated that the structure of the parameter spaces themselvesthe sign of the gaussian curvature Implementing these results, a can be chosen to counteract the triangulation error. Errors that occur
method for ruling SHGC contours has been demonstrated, once the in trying to find tor in objects that are unusually large or small, orimage has been ruled, all those parameters derivable from contour unusually straight or flexed, can be made self-limiting.
alone can be recovered. This work required the extensive use of a symbolicFaced with a lack of two constraints, either the use of more mathematical analysis system (IBM s propnetary Scratchpad II). theimage information or the use of shape heuristics is necessary. resulting transform is based on a quadratic equation whose
Under the assumption cf constant, pure diffuse reflectance, it has coefficients incorporate 12 inner products of three-space vectors.been determined that a non-monolonic SHGC can be recovered Along the way, it was discovered that, under some fairly generalfrom a single intensity image The tilt of the oblect is recovered by conditions, every torus has a large family of anti-ton. Theirusing the ruled contour image and intensity values along extremal hallucinatory appearance in the image must be explicitly ignored.
cross-section curves The location of the object's 3D axis is (John Kender. and Rick Kjeldsen of IBM T.J. Watsonrecovered from intensity values along meridians of the surface. This Research Center [291).
recovery algorithm has been tested on synthetic images, and is
being reimplemenled for real imagery. The incorporation of
heuristics based on human perception of shapes, particularly the 3 High-Level Vision and Systems
apparent human preference for representational economies such as
object symmetry and object orthogonality, is under development.

(Art Gross, and Terry Boult [18, 19, 20, 21, 22)). 3.1 Robust Visual Robot Navigation
Algorithms for the representation of space and free-space path

planning have been surveyed. The survey also proposes a2.7 Energy-Based Surface Segmentation taxonomy ef this new field. There continues to be a relative paucityPrior work has demonstrated that energy-based surface of results on qualitative, topological navigation, however.
segmentation, derived from the optimal mathematics of information- Partly to address that need, an architecture that integratesbased complexity, is inexpensive, local, easily parallelized, rapidly preplanned and reactive control to achieve smooth, natural,updatable in the presence of change or noise, and more accurate autonomous navigation in a mobile robot has been demonstrated, in
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over 100 runs. The robot, now donated to Columbia by AT&T, is an The model formalizes three domains--the world itself, the map-

autonomous three-wheeled indoor vehicle equipped with odometry, maker's view of it, and the navigator's experience of it--and the

ultrasonic sensors, and a camera augmented by a proprietary real- concepts of custom maps and landmarks Visual landmarks are

time vertical edge finding chip. Control of the robot is distributed shown to be chosen depending on which of several costs (sensor,

among a set of behavior experts that tightly couple sensing and distance, communication, or others) should be minimized; paths

action. Input is neither fused nor compared against a prestored map. minimizing one measure can make others arbitrarily complex Path

Instead, collections of behavior experts define global behaviors for selection, based on Dijkstra's algorithm, automatically generates

the robot, and those behaviors are composed into plans that direct intelligent overshooting and backtracking.
navigation. An arm-held camera has demonstrated the theory by

The work has demonstrated novel techniques for robust real- navigating a simple world: it seeks a landmark based on topology,

time sensing, including an interesting variation on Kalman filtering. It and adjusts its position based on symmetry; there are essentially no

also records a significant advance in the methodology of mobile quantitative measures. Because direction-giving is NP-complete,

robot experimentation and evaluation. To record ground truth as a several heuristics were found necessary; one is that the landmaik

function of time and video input, the robot pulls a small trailer holding object itself, rather than its views, may be its most compact

a split-screen dual camcorder. The camcorder thus records on one encoding Work continues on the related issues of error detection

video tape the time stamp, the robot video input, and the video and correction, camouflage, and "self-correcting" directions

image of the floor directly below the robot, on which fiducial markings (John Kender, Avraham Leff, II-Pyung Park, and David Yang

have been previously applied. [27, 30, 31, 32]).
(Monnett Soldo [41, 42, 43, 44]).

3.5 Visual Servoing

3.2 Model-Based Active Sensing A system for tracking moving objects has been demonstrated,

In work closely related to visual sensor planning, an integrated and a video of its performance is available Calibrated (but not

system of active touch strategies identifies polyhedral 3-D objects registered) stereo cameras image a moving object with an arbitrary

through exploration. This work combines three approaches. it uses trajectory; the PIPE performs an optic-flow computation on the

geometric constraints between components to eliminate imagery in real-time. Velocity fields are thresholded to find regions

interpretations, it invokes interpretation tree methods for choosing of object motion, which are then triangulated to give a 3-D position

the best active sensing move, and it plans and moderates vector in less than 100 milliseconds This vector is input to a second

exploratory moves made by tracing the object surface. A new order digital filter that compensates for video processing delays, and

constraint involving pairs of line segments has been developed. it is predicts and smooths the tracking arm's trajectory Extensions to the

directly applicable to visual sensing. The choice of active sensing system to enable real-time grasping by the hand are in progress

move is determined by a generic cost function, also applicable to the (Peter Allen, Aleksandar Timcenko, and Billibon Yoshimi [5])

planning of mobile visual platforms.
The placement of multiple fingertips to specified 3-D world

locations is an underconstrained problem. Methods have been 3.6 Integrated Hand-Eye Systems
developed for generating good genenc candidate grasps to be The Utah-MIT dexterous hand is a four fingered, 16 degree of

optimized. A successor algorithm has been demonstrated which, freedom device of high dexterity, equipped with rich force, position,

given a desired position and normal for each fingertip, then and tactile sensors. Research continues on autonomous low-level

computes all the joint angles for the fingers and arm by optimizing an control, grasping kinematics, active sensing for object recognition,

intriguing cost function. Optimal rotational parameters are chosen by tactile sensor design, and the integration of dexterous hands into

several new techniques using a quaternion representation. These robotics environments. A working hand-arm system exists that uses

later methods could also be used for representing and analyzing the a task description language to program grasping and manipulation

visual pose of an Object. tasks. It has been used to perform picking-and-placing, handling of

(Ken Roberts [35, 36]). liquids, unscrewing fixtures, and active sensing tasks, including
vision-assisted grasping.

Robotic analogs of three human haptic sensing strategies

3.3 Vision Planning have been analyzed and implemented, to recover the 3D shape of

Techniques have been developed, and a system, MVP objects. Each strategy is inspired, in part, by an object model

(Machine Vision Planning), has been built to analytically determine prevalent in the vision community: polyhedra, superquadrics, and

the complete locus of camera poses and optical settings for viewing generalized cylinders These strategies have been complemented by

a given feature of an object. First, for each viewing constraint in visual input. A real-time linear feature extractor sends line segments

isolation, admissible domains of sensor locations and settings are to a robust line-based stereo system, which recovers the 3-D axes of

determined, by the analysis of the effect of the constraint on the surfaces of revolution. These axes are then used by the hand

CAD-CAM representations of the object. Then these component system to orient itself and to explore the object's contour, and to

results are combined in order to find globally admissible sensor recover the shape of the object.

parameter values. Current techniques analytically satisfy visibility, (Peter Allen, Paul Michelman, and Ken Roberts

field-of-view, resolution, and focus requirements; others are under [1, 2, 3, 4, 6, 7, 8, 33]).

development.
The approach is more accurate and far more efficient than

existing generate-and-test sampling techniques. Camera placement 3.7 Sensor-based Volume Registration and Recovery

experiments are available on a video tape that demonstrates the The PROVER System (Parametric Representation of

method in an actual robotic setup. Volumes: Experimental Recovery) is in prototype, as a testbed to

(Dino Tarabanis, Peter Allen, and Roger Tsai of IBM T.J. allow exploration of the numerical recovery of parametric

Watson Research Center [45, 46, 47, 48, 49]). representations from multiple types of data, and multiple sensor
types. The system explicitly encodes sensor error models.

To guide the implementation, the causes of misregistration in

3.4 Topological Navigation by Landmarks medical volume date have been surveyed. Five major components

A model for topological visual navigation in two-dimensional of registration error have been identitied how features are matched,

spaces has been formalized and implemented. It explores and which similarity metric is computed, which strategy is used to search

emphasizes the methods and the efficiencies of qualitative visual for correspondence, what image-to-image transformations are

descriptions of objects, and of direction-giving by means of visual permitted, and how the final interpolation occurs Several different

landmarks, medical sensing systems have been investigated: computerized
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MIT PROGRESS IN UNDERSTANDING IMAGES

T. Poggio and the staff
Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139

ABSTRACT

M4ATCHNING

Our program in Image Understanding is now focusing RrcocNio:,
on the critical issues of segmentation, saliency computa-
tion and integration of visual cues. These problems need
to be solved efficiently in order to ezploit in robust sys-
tems our ongoing work on object recognition. We have INDEXING

also continued our work on the computation and the use
of motion, photogrammetry, analog VLSI circuits and
learning.

FEATURES SELECTION

SEGMENTATIOv/GROUPING

INTFCRATION

1 Introduction
EARLY VisioNi

Our present approach to vision is reflected in the orga-
nization shown in the figure. It consists of several stages
which are not strictly sequential (not all forward and 2 Segmentation and saliency
backward connections are shown). We feel quite opti- computation
mistic about the bottom - early vision - and the top lev-
els - model-based recognition - since progress has been We have described last year our work on grouping and
and is being made at a significant rate, both in terms of saliency computation. Especially the latter theory has
applications and of theoretical foundations. More funda- opened a number of interesting areas of research and ap-
mental work still remains to be done at the intermediate plication. In particular, during the last year Shashua,
stages, especially at the dual stages of segmentation and Spoerri and Ullman have extended the approach of find-
grouping and on the problem of feature selection. We ing salient image contours to deal with discontinuity con-
have continued our basic research on early vision, though tours, with the goal of using these contours for segregat-
at a lower level of effort than in previous years, and on ing objects from the background. The general scheme
object recognition along several different directions. We proceeds in two stages. The first is a local estimation of
will report on some of those. We have also continued the existence of a discontinuity. For example, at a given
to explore the problem of integration and segmentation location and at a give orientation, we examine whether
using the Markov Random Field model paradigm. At the points on the two sides of the orientation element are
the same time we have begun to attack in new ways the moving in the same or in different directions. The result
fundamental problems of selection, grouping and again is a discontinuity map of potential fragments of discon-
segmentation. In the following, we will sketch some as- tinuity boundaries (motion boundaries in the above ex-
pects of this overall approach to the vision problem and ample). The next stage pieces together fragments that
mention a few of the minor projects. form long continuous (and preferrably closed) bound-
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aries. The second stage is similar in nature to the pro- tion, concentrating on the matching of aspects of object
cess that is used to find salient image contours based shapes. Recent work has focused on several areas of the
on length and curvature. There are some technical dif- domain, based in part on the results of earlier work.
ferences that must be introduced in the discontinuity
computation. For example, if the saliency computation 3.1 Formal Analysis of Constrained Tree
is applied to this problem without modifications, it often Search
produces more than a single discontinuity contour sep- Earlier reports described the work of Grimson and
arating a region from its surround. By incorporating a Lozano-Pirez on the recognition of occluded objects
certain form of local inhibition between neighboring dis- from noisy data, either in the 2D from 2D case, or the
continuity boundaries it becomes possible to ensure that 3D from 3D case. The original technique was designed to
only one boundary will survive in such cases. The corn- recognize polyhedral objects from simple measurements
putation of discontinuity boundaries is being developed of the position and orientation of features in the data,
by A. Shashua in the context of depth discontinuities, where the features could be edges, vertices, curved arcs,
and applied also to motion discontinuities by A. Spoerri. distinctive points along curves, axes of cylinders, patches

It is satisfying to note that despite some differences of surface, etc. The technique searches for consistent
in details, a uniform computation emerges that appears matches between object features and data features, us-
to play a similar role in a number of different processes. ing constraints on the relative shapes of pairs of features
The emerging unified scheme is the following. In all of to reduce the search.
the above computations the first stage produces a mea- Based on extensive empirical experience, the method
sure M(z, y, 9) that depends on image location (z, y) and was extended to include a Hough tra.,sform as a prepro-
the local orientation 0. In the contour saliency compu- cessor, which isolates portions of the search space likely
tation M(z, y, 9) is the local saliency (determined e.g. to contain a correct solution and rank orders these sub-
by contrast) of a contour element at (z, y) with orien- spaces for processing by the recognition engine, and to
tation 0. In the symmetry computation M(z, y, 9) is include the use of a heuristic termination of search, by
a measure of the local symmetry. In the discontinuity stopping once an interpretation that is sufficiently strong
computation M(z, y, 9) is a measure of the local change is found. The addition of these two methods led to a very
(in velocity, disparity, etc.). The second stage takes the efficient and robust recognition method.
map M(x, y, 9) as input, and produces optimal 1-D con- Although the method has been run on tens of thou-
tours. The contours are required to be long and smooth, sands of examples, we have also performed a formal
and to maximize the measure M(z, y, 9) along them. analysis of the approach, in order to understand where

its limitations are, and to direct further research ef-
2.1 Integration in the Vision Machine forts. Our analysis considers three different aspects of
As we described last year, the Vision Machine system the problem:
is our main tool for studying the problem of integrat- * Selection: Choosing subsets of the data that are
ing several visual cues. The Vision Machine consists of likely to come from a single object;
a movable two-camera Eye-Head system - the input de-
vice - and a 8K CM2. Its parallel early vision algorithms * Indexing: Choosing an object model from the li-
compute edge detection, stereo, motion, texture and sur- brary that is likely to correspond to the selected
face color in close to real-time. The integration stage data subset;
is based on the technique of coupled Markov Random * Correspondence: Finding a legal match, if one ex-
Field models, and leads to a cartoon-like map of the dis- ists, between the features of the object model and a
continuities in the scene, with a partial labeling of the subset of the selected data features.
brightness edges in terms of their physical origin. The Grimson has established the following results, in some
output of our integration stage feeds a parallel model- cases in collaboration with Dan Huttenlocher of Cornell:
based recognition algorithm. We have now developed a
new eye-head system wich has less degrees of freedom * If selection is perfect (no spurious data is included)
(for instance it does not have zoom lenses) but is much and indexing is correct, then the expected amount
lighter and smaller. We plan to use it as a flexible input of search for constrained tree search methods is
device that can be moved to different rooms in the lab quadratic in the number of data and model features.
or outside it. In addition to representing a focus for our * If selection is not used and indexing is correct, then
work on the integration of early vision modules and for the expected amount of search for constrained tree
the development of parallel vision algorithms, the Vision search methods is a combination of a polynomial
Machine system will also be the testbed for our overall in the number of data and model features, but is
approach to the organization of vision, in which we will exponential in the size of the correct solution.
integrate and test the different stages and strategies of * Using the Hough transform to isolate and rank order
processing. subspaces of the search space for consideration re- I

duces the values 3f the parameters in the complexity
bounds, but does not reduce the order of the bound

3 Object Recognition from exponential.
In previous reports, we have described a series of ap- , The Hough transform cannot be used to identify
proaches to the problem of model-based object recogni- solutions to the recognition problem, without also
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incurring a significant false positive rate, especially As part of this system, a semi-automated 3D model-
for problems with significant clutter or noise. A making program has been developed. Given several im-
similar result holds for another parameter hashing ages of the model object and rough estimates of the cam-
scheme, Geometric Hashing. era pose for each image, the system solves for the 3D

model points and for the exact camera poses. Image fea-* If selection is adequate (where a formal definition of tures are automatically extracted, but feature matchesadequate can be given as a function of conditions on between images must be indicated by the user. This

the ratio of spurious data to model size), indexing is enables us to quickly build 3D models of complicated

perfect, and one heuristically terminates the search obetuso ui r gion eprens.

once a sufficiently good solution is found (where for- objects for use in recognition experiments.

mal methods for defining thresholds for "sufficiently Another way of attacking the selection problem is to
good" are available), then the expected amount of use multiple sensory cues. Any single visual cue may
search is quartic in the number of data and model only weakly define groups of data fragments likely to
featuires. have come from a single object. Taken in concert, how-

ever, several cues may provide much more salient groups.
" If indexing returns an incorrect answer (i.e. one tries Work by Ed Gamble in the context of the MIT Vision

to match a model not present in the data), even Machine takes one approach to this integration problem,
using heuristic search termination, the expected by concentrating on the detection of object discontinu-
amount of search to deduce that the model is not ities through integration of multiple cues. Motivated by
present in the data is exponential in the problem computational models of human visual attention and eye
parameters. movement studies, Tanveer Syeda is developing a com-

plementary approach, based on a computational model
3.2 Selection, or Grouping, Methods of the visual attentional phenomenon. Visual attention
Although these formal results have been developed in is that mechanism in brain that allows it to respond se-
the context of constrained search methods, they may lectively to some visual stimulus either in a spontaneous
have broader implications for other types of recognition. or deliberate fashion. An observer exercising this fac-
One implication of these results is that effective selection, ulty commonly exhibits two kinds of attentional behav-
or grouping, can significantly reduce the complexity of ior, namely, the attracted attention and the pay attention
recognition. A second is that efficient indexing methods modes. In the former, some aspects of the scene attract
are necessary if one wants to extend recognition to deal the unbiased observer's attention, while in the latter, the
with large libraries of objects. As a consequence, we have observer has a priori goals in mind when looking at the
focused much of our recent effort on these problems. scene and hence pays attention to only those objects/

One approach to selection is to be model-driven. For aspects relevant to the goal. In either mode, the end
example, the Hough transform and Geometr,:- Hashing result is a selection of certain aspects of the scene on
can be considered as grouping methods, but both reqnire which to focus the later processing. The purpose behind
a specific object model, and for large libraries this will be building a computational model for such a phenomenon
inefficient. A second approach is to be data-driven. Ear- is two-fold. From computer vision point of view, such a
lier work by David Jacobs on the selection problem had model can serve as a full-scale feature selection mecha-
focused on generic data-driven grouping. Jacobs concen- nism that can act as a front end for an object recognition
trated on methods for finding groups of edge fragments system and help identify interesting regions in a scene to
likely to have come from a single object, based on sim- start the recognition process. Secondly, it can supply
ple measurements on convex sets of edges. He showed a plausible explanation for the mechanism constituting
that dramatic reductions in search (2-3 orders of magni- the attentional center in the brain, which studies so far
tude) could be obtained by using these groups as starting have not revealed (although its presence seems to be well
points. Moreover, the number of false positive and false accepted in both psychophysical and physiological liter-
negative responses of the recognition system are reduced, ature).
since one now concentrates on salient portions of the im- Briefly, the model suggests that the scene represented
age first. Jacobs has continued to explore this approach, by the image be processed by a set of interacting feature
by examining more general grouping methods for flexible detectors that generate a hierarchy of maps, representing
objects and their rok in controlling the search explosion, features such as brightness, color, texture, depth, group-

As a complement to this edge-based approach, David ing of edges, and others such as shape, size, symmetry,
Clemens is developing a region based grouping method. etc. The feature maps are then processed by filters in-
The idea is to use regions of smoothly varying inten- corporating strategies for selecting distinctive regions in
sity to fwhd gtuups of udge-bubed image features that are these maps. The choice of thesc strategics is guided by a
likely to come from the same 3D object. By interpret- central control mechanism that combines top-down task
ing regions and other cues, a relatively small number of level and a priori information with the bottom-up infor-
large feature groups can be produced without the com- mation derived from the features, to demonstrate either
binatoric explosion that results from forming all possible mode of attentional behaviour as desired. Finally, an ar-
groups. Larger groups allow for more efficient matching biter module housing another set of strategies selects the
and model-pose solution. The efficiency of region-based most significant features across the feature maps, which
and other feature grouping is currently being compared can then be used in, say an object recognition system.
in a complete recognition system. In the work done so far, color and texture maps have
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been built, and thle filters for finding distinctive regions data-model pairings whose associated possible transfor-
in these maps h.,e been developed. The color map out- mations intersect any part of the bucket, even though
lines different color regions by not only grouping spa- those associated transformation volumes may not in fact
tially contiguous regions of similar color, but also label- actually intersect. Todd Cass has devised a very efficient
ing the regions with the perceptually seen color. The algorithms for removing the second effect on the Hough
distinctiveness of a colored region is judged based on its transform.
and its neighbors' properties such as the actual color The idea is as follows. Suppose we can compute the
seen, contrast shown, size of the region, etc. The tex- range of transformations consistent with any pairing of
ture map is generated by regarding the image as being a data feature and a model feature. For example, in the
generated by a space-limited stationary stochastic pro- simple case of matching points with an associated orien-
cess. The segmentation of the textured image is then tation, the set of feasible transformations is a disk in the
obtained by a comparison of the AR-spectra of adjacent translation subspace of the space, which tracks a heli-
windowed regions of the image. Properties such as the cal arc over the range of possible orientations associated
relative distribution of dark and bright blobs are then with the pairing. Further, suppose that we can easily
made use of to judge the distinctiveness of a region. determine whether a point in transformation space lies

Finally, the model supports a parallel implementation within one of these feasible match regions. Then if we
of the various feature maps that will make it possible to sample the transformation space at some regular sam-
select distinctive features in a pre-attentive fashion. The pling, we can easily determine the set of feature pairings
success of such a model in object recognition will depend that are consistent with the pose associated with each
on how effectively it can reduce the combinatorial search sample point, by simply counting the number of match
involved in the matching stage of recognition. regions that contain that point. If we do the sampling at

In related work, David Clemens and David Jacobs a fine enough spacing, we can get a close approximation
have been investigating the ability to order groups of to the Hough transform, using infinitesimal buckets, so
model features by geometric properties that are invari- that we avoid the integration problem m,ntioned above.
ant under projection. Each model feature group would Further, if the sampling is fine enough, the probability
be represented along a surface in a multi-dimensional that the poses associated with peak values in this sam-
index space. At recognition time, parameters extracted pling are identical with the poses one would find in the
from each group of image features could be used to ad- continous pose space approaches one, i.e. the peaks we
dress a point in the index space and find only those model find this way are likely to be exactly the peaks one would
groups that could cause the image, thus reducing search find in the ideal case, and their position in transforma-
significantly. They have derived a lower bound on the di- tion space is likely to be very close to the ideal position.
mension of such an index space, and developed a detailed While sampling the transformation space should per-
algorithm. Error in feature localization is predicted to form correctly in the limit of very fine sampling, one can-
have a practical impact on the theoretical performance of not guarantee its correctness for arbitrary sample sizes.
the system, but the potential benefits are great enough To overcome this shortcoming, Cass has extended this
that indexing remains an attractive approach. idea of transformation sampling in the following man-

ner. Consider the volume of consistent transformations
3.3 Transformation Space Sampling associated with a pairing of a data feature .ad a model

feature (for simplicity, consider the case of .natching ori-
The constrained search approach finds solutions to the ented points, so that the volume is a tube with circular
recognition problem by searching through a correspon- cross-section that tracks along a helical arc). Denote the
dence space, i.e. a space in which individual points cor- volume associated with the pairing of data feature Firespond to sets of pairings of data and model features, and model feature fj by Vi,. In essence, by considering

An alternative is to search a transformation space, i.e. a all such pairings of features, we are defining a function

space in which individual points correspond to possible ave h pos spat

poses of the object. For example, the Hough transform over the pose space:

operates by letting each possible pairing of a data fea- h(p) = I{(i,j)1p E Vij}II
ture and a model feature vote in transformation space, where p is a point in pose space. This function is piece-
then searching for peaks in the result. wise constant, and changes value at the boundary of one

Grimson and Huttenlocher have argued th:at one of the of the volumes V,,. Cass argues that by identifying those
difficulties with using the Hough transform directly as a points in pose space at which the boundaries of two such
recognition method is that for realistic -;zed problems, volumes intersect, one can create a set of sample points
the likelihood of largc peaks in the Hough spacc occuring with the property that each contiguous region of con-
at random increases significantly. This is in part because stant value of h has a sample point in this set. Cass
of noise in the sensory data implying that a large volume has developed a method for computing all such sample
of transformations must be considered as feasible. This points. One can then repeat the earlier process, at this
in turn increases the likelihood that several such volumes set of sample points, agair using the peak values of h
may intersect at random, leading to a false peak in the over this set of samples to define solutions to the prob-
Hough space. These false peaks also occur, however, be- lem. Both methods lead naturally to efficient parallel al-
cause we use a discrete tesselation of the transformation gorithms. The first algorithm has been implemented and
space to define our Hough space. Thus, each bucket in tested on the Connection Machine, and typically recog-
the tesselated space must integrate together votes from nizes highly occluded objects in very cluttered scenes in

22



a few seconds. The second algorithm is currently under equation over more than just two frames (see paper in
development and testing. this proceedings).

Ali Taalebi is pursuing a direct motion vision method
3.4 Recognition for Navigation exploiting fixation. If the sensors angular velocity is ad-

Besides the work on recognizing objects described above, justed so that the image of a particular point in the

we have also considered the application of our recog- scene remains stationary in the image, simplification of
nition methods to problems of navigation for mobile the constraint equations result that can be exploited byrobots. David Branegg, in work described elsewhere in using existing methods developed for the case of pure

these proceedings, has recently completed a system for translation (see paper in these proceedings). Fixation is
automatically building models of world locations and us- achieved by servoing the camera rotation actuators to
ing them for Since the world world changes over time, zero out the average optical flow over an image patch
and the sensory input is imperfect, the system also main- centered on the point being fixated.
tains these models over time as the world changes and as
we receive new sensory data which is noisy. The MAR- 5 Photogrammetry
VEL system proceeds as follows: To recognize a loca- Photogrammetry is the science of making measurement
tion, we first take a series of stereo pair images from a by means of images, and so is a field closely allied to
single position in the current room. The stereo vision machine vision. There are four central problems in pho-
module then finds salient features of the room and ab- togrammetry: (a) absolute orientation, (b) relative ori-
stracts them into the representation which will be used entation, (c) exterior orientation, and (d) interior ori-
for recognition. Recognition is performed by comparing entation. Not so long ago, a closed form solution was
this representation to room models which were built by found to the least squares version of the problem of ab-
the system from similar stereo data obtained previously, solute orientation, which comes up, for example, in the
The results of this recognition are used to update the 'calibration' of a range finding system to be used with a
existing model to reflect the current state of the room robot arm or a mobile vehicle.
and the importance of the features to the recognition. Work now focuses on the problem of relative orienta-
The system has been tested on nearly 1000 stereo pairs, tion, of importance in both binocular stereo and long-
over a six month period in our laboratory. Its success is range motion vision-sometimes referred to as "camera
reported elsewhere in these proceedings. calibration." A new iterative algorithm has been devel-

oped by Berthold Horn using unit quaternion notation
4 Using motion for representing both rotation and an auxiliary quantity

derived from the baseline and the rotation (the auxil-
The focus recently in work on motion vision has been iary quantity is actually the rotation in a dual problem).
on improving accuracy by continuing the computation This iterative algorithm for the least squares problem
in time, and by exploiting additional prior information, efficiently finds minima of the total error, and starting
Good results in motion vision can be obtained using di- from a small number of suitably chosen initial rotations
rect motion vision methods, contradicting earlier criti- locates the global minimum.
cism of the brightness change contraint equation. Di- In the simpler case, when there are only five corre-
rect methods, based on brightness gradients, avoid the sponding ray pairs in the two camera systems, exact so-
complexity of feature extraction and the correspondence lutions can be found. Because the problem is (highly)
problem, also, being eikonic computations, they lend non-linear, there are typically a number of different solu-
themselves to parallel high speed implementation in both tions. It has been observed that these solutions almost
analog and digital hardware, always come in groups of four. With randomnly cho-

Joachin Heel has developed a number of methods ex- sen ray pairs there may be no solutions and sometimes
ploiting Kalman filtering, and resampling methods bor- there may be as many as twenty solutions. There have
rowed from computer graphics, that dramatically im- been several attempts recently to prove that there can be
prove the estimates of depth over those available from at most twenty solutions and also to come up with algo-
just two frames (see paper in these proceedings). His rithms guaranteed to find all of them. Berthold Horn has
schemes, unlike some earlier ones, do not place special devised an algorithm, using the recently developed con-
restrictions on the motion, or the arrangement of viewing cept of m-homogeneous sets of equations, which, starting
direction, or make special assumptions about the sur- with twenty roots of a simplified set of equations, tracks
faces being viewed. He has also worked with Satyajit these solutions to find the twenty roots of the equations
Rao on the intimate integration of ealry vision modules, representing the actual ray correspondences. The sim-
such as shape from shading and direct motion vision. plified set of equations can be solved in closed form and

David Michael exploits Kalman filtering in a quite the final set of twenty roots may contain complex roots,
different, more traditional way. In his methods, the usually in groups of four. The algorithm in effect consti-
Kalman filter is used to update the estimated state of tutes a constructive proof.
the vehicle carrying the sensor. A model of the vehi-
cle dynamics can be used to reduce the effects of noise 6 Analog VLSI circuits for vision
in measurements obtained from closely spaced frames.
He is also exploring the application of non-linear least- David Standley has successfully implemented an analog
squares techniques to the brightness change constraint chip that accurately and rapidly determines the centroid
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and orientation #_f a bright blob in an image. The 6 x 8 is that the mapping is smooth: small changes in the in-
millimeter chip has an array of 29 by 29 sensors that can puts cause a small change in the output. Techniques that
determine the centroid position with sub-pixel accuracy. exploit smoothness constraints in order to transform an
It is extremely fast-the settling time appears to be less ill-posed problem in a well-posed one are well known un-
than 100 micro-seconds. The chip performs a specialized der the term of regularization theory. We have recently
task that normally requires a great deal of highly repet- shown that that the solution to the approximation prob-
itive computation if done on a serial computer. Special- lem given by regularization theory can be expressed in
ized digital systems for moment calculations do exist, terms of a class of multilayer networks that we call regu-
but none perform the computation in a single chip. larization networks or Hyper Basis Functions. Our main

The chip is based on a method developed by Berthold result (Poggio and Girosi, 1989) is that the regularization
Horn for turning some area-based computations into approach is equivalent to an expansion of the solution in
contour-based computations. Furthermore, a theorem terms of a certain class of functions:
applicable to certain discrete arrangements of resistors
allows one to simplify analog computations by exploit- N
ing an equivalence between two apparently quite differ- f(x) = Z ciG(x; 4j) - p(x) (1)
ent uses of a network (The new result is thought to be
related to Tellegens' theorem). The upshot of all this is where G(x) is one such function and the coefficients ci
that most of the computation can be done by a simple satisfy a linear system of equations that depend on the N
regular resistive grid connecting the sensing elements. "examples", i.e. the data to be approximated. The term

The work on the centroid-and-orientation chip has laid p(x) is a polynomial that depends on the smoothness
the basis for more sophisticated analog chips, particu- assumptions. In many cases it is convenient to include
larly in the area of motion vision. Ignacio McQuirk has up to the constant and linear terms. Under relatively
been studying and simulating a family of methods for broad assumptions, the Green's function G is radial and
locating the focus of expansion in order to determine therefore the approximating function becomes:
which methods are both trustworthy and conveniently
implementable in analog hardware. All of the methods N
studied are based on direct motion vision methods. Un- f((x) - c G(ljx - 4ilI1) + p(x), (2)
fortunately, the special techniques used in the position- i1
and-orientation chip do not all transfer to this problem. which is a sum of radial functions, each with its center 4i
Also, the computation at each picture cell is more com- on a distinct data point and of constant and linear terms
plex, so we anticipate that we may have to depart from (from the polynomial, when restricted to be of degree
the elegant and simple arrangement where the computc- one). The number of radial functions, and corresponding
tion is completely unclocked. centers, is the same as the number of examples.

Our derivation shows that the type of basis functions
7 Learning depends on the specific a priori assumption of smooth-

As we discussed in the last Proceedings, we have made ness. Depending on it we obtain the Gaussian 0(r) =
substantial progress towards a rigoreous and powerful e -(,), the well known "thin plate spline" G(r) = I2 ln r,
theory of learning from examples. and other specific functions, radial and not. As observed

We first explain how to rephrase the problem of learn- by Broomhead and Lowe (1989) in the radial case, a su-
ing from examples as a problem of approximating a mul- perposition of functions like Eq. 1 is equivalent to a
tivariate function, network with one "hidden" layer of units. The iter-

To illustrate the connection, let us draw an analogy pretation of Eq. 2 is simple: in the 2D case, for in-
between learning an input-output mapping and a stan- stance, the surface is approximated by the superposition
dard approximation problem, 2-D surface reconstruction of, say, several two dimensional Gaussian distributions,
from sparse data points. Learning simply means collect- each centered on one of the data points.
ing the ezamples, i.e., the input coordinates xi, yi and The network associated with Eq. 2 can be made more
the corresponding output values at those locations, the general in terms of the following extension
heights of the surface di. Generalization means estimat- n
ing d at locations z, y where there are no examples, i.e. .f*(x) = coG(IlIx - t )ll ) + p(x) (3)
no data. This requires interpolating or, more generally,
approximating the surface (i.e. the function) between(interpolation is the limit of where the parameters t,,, that we call "centers", and thetion when there is no noise in the data). In this sense, coefficients c, are unknown, and are in general much

learning is a problem of hypersurface reconstruction. fewer than the data points (n < N). The norm is a

From this point of view, learning a smooth mapping weighted norm

from examples is clearly ill-posed, in the sense that the
information in the data is not sufficient to reconstruct lix - t")ll, - (x - ta)TwTw(X - t0 ) (4)

uniquely the mapping in regions where data are not where W is an unknown square matrix and the super-
available. In addition, the data are usually noisy. A pri- script T indicates the transpose. In the simple case of
ori assumptions about the mapping are needed to make diagonal W the diagonal elements w, assign a specific
the problem well-posed. One of the simplest assumptions weight to each input coordinate, determining in fact the
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units of measure and the importance of each feature (the * and'for W:
matrix W is especially important in cases in which the in-
put features are of a different type and their relative im-
portance is unknown). Equation 3 can be implemented OH[*] = t4W c AG'([[x -t.112V)Q,,

by the network of Fig. 1. Notice that a sigmoid function aw W
at the output may be sometime useful without increas- (7)
ing the complexity of the system (see Poggio and Girosi,
1989). Notice also that there could be more than one set where Qj, = (x, -ta)(x _-t")T is a dyadic product

of Green's functions, for instance a set of multiquadrics and G' is the first derivative of G (for details see

and a set of Gaussians, each with its own W. Notice Poggio and Girosi, 1990a).

that two or more sets of Gaussians, each with its own 7.2 Interpretation of the network
(diagonal) W, are equivalent to sets of Gaussians with
their own as. The interpretation of the HyperBF network is the fol-

lowing. After learning the centers of the basis functions
7.1 The learning equations are similar to prototypes, since they are points in the

Iterative methods of the gradient descent type can be multidimensional input space. Each unit computes a

used to find the optimal values of the various sets of (weighted) distance of the inputs from its center, that is
parameters, the ca, the wi and the ta, that minimize an a measure of their similarity, and applies to it the radial
parateors, function. In the case of the Gaussian, a unit will have
error functional on the set of examples. Gradient-descent maximum activity when the new input exactly matches
is probably the simplest approach for attempting to find its center. The output of the network is the linear su-
the solution to this problem, though, of course, it is not perposition of the activities of all the basis functions in
guaranteed to converge. We define the network, plus direct, weighted connections from the

N inputs (the linear terms of p(x)) and from a constant

H[f] H,t,w  = V'(A.)2 input (the constant term). Notice that in the limit case
c i, Lof the basis functions approximating delta functions, the

system becomes equivalent to a look-up table. During
with learning the weights c are found by minimizing a measure

of the error between the network's prediction and each
of the examples. At the same time, the centers of the

A=Y - f* (x) = i- E c.G(jjxj - tallV), radial functions and the weights in the norm are also up-
a=1 dated during learning. Moving the centers is equivalent

to modifying the corresponding prototypes and corre-
In the stochastic gradient descent method the values sponds to task-dependent clustering. Finding the opti-

of ca, ta and W that minimize H[fp] are regarded as mal weights W for the norm is equivalent to transform-
the coordinates of the stable fixed point of the following ing appropriately, for instance scaling, the input coordi-
stochastic dynamical system: nates and corresponds to task-dependent dimensionality

OHf] + reduction.
c -w c + ( a = 1,... 7.3 Extensions and Applications

OH[f'] 1Caprile, Girosi and Poggio (1990) have introduced tech-
ta = niques for dealing with two aspects of learning: learn-

ing in the presence of unreliable examples and learning

+ _ H~f] from positive and negative exampks. These two exten-
= w + ( sions are interesting also from the point of view of the

where t?, (t), u. (t) and R (t) are white noise of zero mean approximation of multivariate functions. The first ex-

and w is a parameter. The important quantities - that tension corresponds to dealing with outliars among the

can be used in more efficient schemes than gradient de- sparse data. The second one corresponds to exploiting
scent - are: information about points or regions in the graph of the

function that are forbidden.
" for the ca From a theoretical point of view, it is also interest-

ing to compare the HyperBF networks with multilayer
..] perceptron schemes. It has been proved that multilayer

-2_,, G(x- - ) , (5) networks of the perceptron type can approximate ar
c=i bitrarily well continuous functions. Girosi and Poggio

" for the centers t, (1989c) prove that networks derived from regularization
theory and including Radial Basis Functions have a sim-
ilar property. From the point of view of approximation

H[ Nt.112 
)w T w (x,-ta )  theory, however, the property of approximating contin-

4cZA.G'(IIxitIW W ) uous functions arbitrarily well is not sufficient for char-
Ot=, acterizing good approximation schemes. More critical

(6) is the property of best approzimation. The main result
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of Girosi and Poggio is that multilayer perceptron net- [6] D.S. Broomhead and D. Lowe. Multivariable func-
works, of the type used in backpropagation, are not best tional interpolation interpolation and adaptive net-
approximation. For regularization networks (in particu- works. Complez Systems, 2:321-355, 1988.
lar Radial Basis Function networks) they prove existence [7] Todd A. Cass. A robust implementation of 2d
and uniqueness of best approximation. model-based recognition. In Proceedings IEEE

Regularization networks- of which HyperBFs are the Conf. on Computer Vision and Pattern Recognition,
most general and powerful version - represent a gen- Ann Arbor, Michigan, 1988.
eral framework for learning smooth mappings that rigor-
ously connects approximation theory, generalized splines [8] Todd A. Cass. Robust parallel computation of
and regularization with feedforward multilayer networks. 2d model-based recognition. In Proceedings Image
They also contain as special cases the Radial Basis Func- Understanding Workshop, Cambridge, MA, April
tions technique (Micchelli, 1986; Powell, 1987; Broom- 1988. Morgan and Kaufman, San Mateo, CA.
head and Lowe, 1988) and several well-known algo- [9] S. Edelman, H. Buelthoff, and D. Weinshall. Stim-
rithms, especially in the pattern recognition literature. ulus familiarity determines recognition strategy for

Edelman and Poggio (1990) have applied the tech- novel 3D objects. A.I. Memo 1138, Artificial Intelli-
nique to the problem of 3D object recognition with gence Laboratory, Massachusetts Institute of Tech-
promising results. They have been able to synthesize nology, Cambridge, MA, 1989.
a module that can recognize an object from any view-
point, after it learns its 3D structure from a small set [10] S. Edelman and D. Weinshall. Computational vi-

of 2D perspective views, using the HyperBF network sion: a critical review. A.I. Memo 1158, Artificial

scheme. Their results were obtained so far with simu- Intelligence Laboratory, Massachusetts Institute of

lated wireframe objects and assumed that the problems Technology, Cambridge, MA, October 1989.

of feature extraction and matching were already solved. [11] S. Edelman and D. Weinshall. A self-organizing
The problems of occlusions and spurious features were multiple-view representation of 3D objects. A.I.
ignored. Nevertheless, their results are interesting as a Memo 1146, Artificial Intelligence Laboratory, Mas-
nontrivial application of a technique for learning from sachusetts Institute of Technology, Cambridge, MA,
examples in which model acquisition is very simple. August 1989.

From a broader point of view, this application to ob- [12] E.B. Gamble. A comparison of hardware implemen-
ject recognition can be regarded as just one example of [12] E.B Gamble ison ohd r iMema drstiall newappoac to omptatonalvisonintations for low-level vision algorithms. A.I. Memo
a drastically new approach to computational vision, in No. 1173, Artificial Intelligence Laboratory, Mas-
which some of the needed modules of a vision system sachusetts Institute of Technology, Cambridge, MA,
are synthesized (or fine-tuned) from a sufficient set of November 1989.
examples, using a standard machinery, without explicit
programming. [13] Davi Geiger and Federico Girosi. Parallel and deter-

ministic algorithms for MRFs: surface reconstruc-
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Maryland Progress in Image Understanding
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ABSTRACT principles for the design of complex systems [Feldman,

19851. We divide the visual system into functional

Research in the Computer Vision Laboratory at components, thus breaking the overall task into auto-
Maryland is focused on problems whose solutions nomous parts, and analyze these components individu-
would constitute significant progress in image ally. We then define the representation of information
understanding. This paper describes some of the used by the components and the language of communi-
fundamental problems that limit the performance cation among them. The components are then tested
of vision systems, and indicates how our research is individually, in pairs, and all together.
addressing these problems The paper is organized In a visual system, according to the paradigm set
around some of the answers to the question "Why forth by Marr, the components are subsystems that
is vision hard?" recover specific properties of the scene from images.

We call these subsystems modules. The majority of

1 Why Vision Is Hard: Visual computer vision research has been devoted to the
Problems Are Ill-Posed study of such modules and their integration. The

study of human and animal perception provides evi-
There exist two general goals for practical vision sys- dence as to the nature of the modules. For example,
tems: navigation in a complex environment and recog- one source of evidence for the existence of modules in
nition of classes of objects (such as people or trees) in a the human visual system is the study of patients with
complex scene. A large proportion of the research on disabilities that come from brain lesions. Another
computer vision addresses one of these two goals, expli- source is the experiments performed by psychophysi-
citly or implicitly. But achieving these goals presents cists in which a particular module of the human visual
great difficulties, system is "isolated"; examples are Julesz's (19711

These difficulties were realized during the 1960s experiment on stereoscopic fusion without monocular
and '70s after the failure of early attempts to build cues, Land's 119711 demonstration of the computation
complete vision systems, i.e. systems that used of lightness, Gibson's [1950] experiments on the percep-
knowledge at all levels including domain-specific infor- tion of shape from texture, etc. Such studies suggest
mation. "In order to complete the construction of that cues such as shading (image intensity variation),
such systems it is almost inevitable that corners be cut texture (distribution of surface markings), contours and
and overly simplified assumptions be made" [Brady, outlines (image discontinuities), color, motion and
1982]. Doing this results in a system capable of per- stereo are very helpful in recovering properties of the
forming a limited set of tasks, but does not enhance scene from images. In computational vision, names
our general understanding of vision, have been given to many of these modules: Shape from

At about that time it was proposed [Marr, 1982] shading, shape from texture, shape from contour, shape
that many visual tasks depended on solving the follow- and depth from stereo, structure from motion, direc-
ing problem: From one or more images of a scene, tion of light source from intensity, physical discon-
derive an accurate three-dimensional geometric tinuities from intensity discontinuities, motion from
description of the scene and quantitatively recover the image intensity derivatives, etc.
properties of the objects in the scene that are relevant However, during the image formation process the
to the given task. If we can recover an accurate three-dimensional world is mapped into two dimen-
description of our environment, we can navigate and sions, and one dimension is lost. This creates many
avoid obstacles, and if we can accurately recover the problems when we try to solve the inverse problem of
properties of an object (shape, reflectance, color, etc.) recovering the world from the image. A problem is
we can use them to recognize it. ill-posed [Hadamard, 1923] if its solution either does

How can this recovery be accomplished in a com- not exist, or is not unique, or does not depend continu-
plex visual environment? By following the general ously on the data. Poggio and his colleagues [Poggio

et al., 1985] realized in the early 1980's that most early
The support of the Defense Advanced Research Projects Agen- vision problems are ill-posed. This ill-posedness is one

cy (ARPA Order Nos. 6350 and 6989) and {he U.S. Army Engineer of the reasons why vision is hard; the next section
Topographic Laboratories under Contracts DACA76-88-C 0008 and describes our contribution to this general problem of
DACA76-89-C-0010 is gratefully acknowledged.
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visual recovery. Our work here has led to some derivative in the vicinity of the discontinuities. If we
interesting new mathematics of recovery, reduce the value of X, we under-smooth and increase

noise vulnerability in regions where the unknown is

2 Ill-Posedness: Boundary Preserving smooth. We might want to let X vary from position to

Regularization, Integration, position, but there is enough difficulty finding one good
and Active Vision average X for the whole image. We could choose toapply regularization only over regions where the unk-

2.1 Boundary preserving regularization nown is smooth. But we cannot know a priori where

This part of our work studies the general recovery the boundaries of such regions are. We can apply any

problem, i.e. how to recover an unknown function of iterative regularization procedure: regularize, segment,

the scene from an image (or images), when the avail- regularize, segment, etc. But the initial regularization

able constraints are not enough (the function can be loses valuable information about discontinuity location
depth, shape, albedo, optic flow, etc.). because it smooths over discontinuities.

Poggio et al. [19841 discusses the application of reg- It is clear that this is a very important problem,

ularization to low-level vision. Write L = 0 for the closely connected to the problem of segmentation.' The

constraint relating the image data to the unknown (e.g. problem is hard, from a mathematical viewpoint,

L = 1 u + ly v + It, for the computation of optic because the function to be recovered is usually not

flow (u, v) from an image J(x, y, t); L = I-I for the "nice" (for example it has discontinuous derivatives,
case of image reconstruction, where I is the observed i.e. corners) and there is noise in the input data

intensity) and S = 0 for the smoothness constraint. (image). Trying to reconstruct a function with corners

For the problem of interpolating an intensity func- (discontinuities), we can follow one of the following

tion, reasonable choices for S are the first and second two general approaches: (a) to make a rigid distinction

derivatives of intensity [Poggio et al., 1984], or some between discontinuity and non-discontinuity points, or

linear combination of the two derivatives. For the two (b) to accept that there are many kinds of discontinui-

dimensional flow problem, Horn and Schunck [1981] ties (some rounder, some sharper) and reconstruct the

suggest using several first derivative constraints: function while smoothing as little as possible over
discontinuities. Consider the following illustrative

9v - V aU au example. If we have to recover a function like the one
a- - a 4 y in Figure 1, the first approach will attempt to find the

Another option is to use second derivative constraints, corner point A and then reconstruct by regularizing

Still another two-dimensional constraint, if the unk- between discontinuities (Figure 2), while the second

nown is a scalar, is the derivative of the unknown in approach will reconstruct while smoothing as little as

the gradient direction. We do not expect these con- possible in the corner (Figure 3). In intuitive terms,

straints to be exactly zero any more than we would the first approach "believes" in segmentation, while

expect L to equal zero exactly. the second one doesn't.
There are three standard ways to balance data con- Our contribution here follows the second approach.

sistency and smoothness requirements. One is to We have developed a "convex" theory of discontinuous

minimize EL 2 subject to the constraint that regularization and a "linear" theory [Shulman and
Aloimonos, 1988a; Aloimonos and Shulman, 1987;

3 S2 < Max ; the second is to minimize 3 ,2 Shulman and Herv4, 1990; Shulman and Aloimonos,
subject to 'L 2 < Max; and the third is to minimize 1988b]. A quadratic smoothness measure implicitly

- Massumes S is Gaussian and thus over-penalizes large
,L2 +- X f ES,2. Here Max is an upper bound on values of S. Discontinuities do occur and very large

values of S are much more likely than a Gaussian dis-
the amount of permissible smoothness (or data con- tribution would allow. For small values of S, a Gaus-
sistency) constraint error; the sums are over all data sian distribution seems to be a reasonable approxima-
points, the integral is over all space, and X > 0 is a tion. It is only at points where there is a sharp jump
parameter to be determined. Max and X control the in the unknown that we need to apply a non-quadratic
relative importance of smoothness and consistency smoothness penalty. Thus we replace the condition
with the image data.

We work with the third kind of regularization that minimize F L2 + \f ZSE
uses the parameter X. The Euler-Lagrange equations
we have to solve are linear in L and S, assuming L is by: minimize , L 2 + XfgT, (S,)
linear. If L and S are linear in the unknown, solving
these equations is easy. Provided we pick a reasonable where __.(S,) = S __ if 5, T, I ere ", ib a threbhold
X the quality of the solution is fairly good except at
discontinuities. Near discontinuities the solution is
much smoother than it should be. If we use a second 'The importance of the problem was also signified by the re-

derivative smoothness term, we get oscillations in the cent AFOSR Workshop on the "Encounter of Computer Vision and
Mathematics", organized by Prors. R. Bajcsy and P. Lax of the

solution not present in the data or the real world. University of Pennsylvania, in May 10.
That is because we have made the first derivative too
smooth; there should be a big jump in the first
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Let us assume that

(1) The distribution is symmetric about 0; so, for
any z, it is equally likely that Si = x and that
Si = -X.

(2) The distribution is a mixture, so we can write
S=(1-B)G+B-H where B is a binary ran-
dom variable taking the values 0 and I (not bad
point; bad point), G is a Gaussian random vari-

Figure 1. able, and H is a random variable with unknown
probability density.

The best we can do is choose a penalty function P
that minimizes the expected solution error under the
worst possible distribution H. Thus we want a P such
that maxHESE(PH) = minp maxHESE(p,H).

Looking for the minimax penalty function is the
same as finding the worst, least informative H, and
choosing the P corresponding to that H. This least
informative H is probably too uninformative. We

Figure 2. assumed only that H is symmetric; otherwise it is
entirely arbitrary. In practice we can learn additional
constraints on H that are reasonably certain to hold.
Furthermore we are assuming we know the expected
value of B, i.e. we know the expected fraction of bad
points. This is equivalent to knowing the threshold,
T. In reality, finding a good T is nontrivial.

Huber [19811 shows that the lpist favorable distri-
bution, the one causing the greatest expected mean
square error, is the distribution corresponding to the

Figure 3. penalty functiongT (x) =X 2 forx < T,

to be determined. The problem is: what should gT be = T2 + 2TJz-TJ for x > T.
for large Si? This function is convex; thus all local minima are glo-

One possible answer to this query is gT, (Si) = T,2  bal minima. If we add a small quadratic to gT, we
if Si > Ti. This has been proposed in different nota- obtain a strictly convex function
tion by Blake and Zisserman [1987], Marroquin [1985], 9T, (z) = X2 for x < T
Mumford and Shah [1985], and Geman and Geman = T2 + 2TIz-TI + (x-T)2 for x>T.
[1984]. The intuition is that there are two kinds of
points: discontinuities and non-discontinuities. At Now we are guaranteed unique local minima to our
non-discontinuities, S is Gaussian. At discontinuities, variational condition provided we have enough data
all values of S are equally likely. Aside from any com- points. In practice, we do not seem to need the extra
putational problems with the variational condition, the term involving e. If we use this expression, c can be
idea that all large values of S are equally bad is ques- any small positive number.
tionable. We have computed many histograms of Figure 4 is an image of a complex scene. It was
differences of intensity; the tails are not particularly photographed in two views, with camera distance
flat. In a crowded room, depth distances between chosen such that the optical flow values should always
occluding objects are not uniformly distributed. Very be of the order of magnitude of one pixel and the opti-
large distances are unlikely because there is bound to cal flow equation, which assumes short-distance
be some other object between two objects that are motion, is valid. Unfortunately the scene contains
very far apart. The equal goodness assumption is say- many specular points and few curved objects and thus
ing, in the case of a second derivative smoothness con- is not ideal for our algorithm, but the preliminary
straint on depth, that the wujld consists (roughly rersultb we gut mie fairly good anyway; in fact our
speaking) of planar surfaces and sharp corners (discon- detection of depth discontinuities is quite impressive.
tinuities in orientation). Indoors, this assumption is We only have to compute the horizontal component of
often true, but an outdoor scene often has more the flow; we display it as an intensity map in Figure 5
rounded than sharp corners.

Actually, we simply do not know what the best [Shulman and flerv , 19901.

penalty function is, i.e. what gT should be used. We
do not know the probability distributions of the Si.
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flow computation. In the restoration application, stan-
dard regularization and discontinuous regularization

- were used to reconstruct an image to which correlated,
uniform noise had been added. The latter result had a
4% lower mean-square error. The optical flow applica-
tion used a planar dot pattern whose motion had a
discontinuity along the diagonal. When the flow was
reconstructed using standard anddiscontinuous regular-
ization, the latter reconstruction had a 19% lower
mean-square error. Applications of the theory to other
fields are discussed in [Shulman and Aloimonos,

1988b].2
A class of filters for image smoothing and

differentiation have been developed using a combina-
tion of regularization techniques and local methods.

Figure 4. The fundamental problem of smoothing and
differentiating of noisy images has been previously
approached in two different ways: 1) Minimization of a
smoothness functional, a theoretically well understood
procedure but one that involves the solution of a very

0! ,_ large system of equations involving all the pixels of the
!image, for each image. 2) Use of small scale, ready

made filters for local smoothing. A method has been
developed [Weiss, 1989; Meer and Weiss, 19891 that
combines the advantages of the two approaches. Gen-
eral filters are constructed for local windows of the

image, derived from maximization of smoothness or:. . -i.,: ,)-. I ) i ";.from "regularization" theory. In this way the theoreti-

c cally robust minimization process becomes suitable for

S x practical implementation, possible in real time, and is
readily adaptable to local image properties. Filters for

__________ , , more reliable derivatives have also been derived
[Weiss, 19891.

Figure 5.

Our second contribution is the linear theory of 2.2 Integration

discontinuous regularization [Shulman and Aloimonos, Within the recovery paradigm, it has become clear

1988b; Shulman, in preparation]. Standard regulariza- that individual visual computations are undercon-

tion minimizes the functional strained, but additional constraints can be introduced
by using multiple sensors or by combining multiple

+ techniques for inferring scene information from images.
fL+ S2  We have developed [Aloimonos and Shulman, 1989)

general methods for integrating visual modules and we
where L is the constraint and S is smoothness; we are currently performing experiments using these
instead minimize methods. We have studied the coupling of stereo and

motion [Aloimonos and Herve, in press], motion and
texture [Aloimonos, 1989], motion and multiple views

0 (Basu and Aloimonos, 19871, contour and motion

where aj, bi are parameters to be determined. There [Aloimonos and Shulman, 1989], and motion from

exist many justifications for why we use this expres- binocular flows without correspondence [Duncan and

sion; they have been presented in [Aloimonos and Shul- Li, 19891. Finally, we have demonstrated that when
man, 1987]. There are various ways for obtaining the cues conflict, humans experience visual illusions

[Aloimonos and Huang, 1990]. For example, when
parameters, most of which are intractable. We have humans observe a set of points lying on the surfare of
implemented an adaptive estimation of the coefficients a rotating cylinder through a circular aperture, they
using data-dependent learning from examples perceive a rotating sphere. We have developed
[Aloimonos and Shulman, 1987], and we have applied
it to the problem of 1-D interpolation. The results 2For example, Yuille and Grzywacz [10881 successfully applied
were up to 80% better than ordinary regularization (in this theory to the problem of motion coherence.

the sense of mean-square error). Shulman applied the
theory to the problems of image restoration and optic
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computational models explaining these illusions that error in the computation of structure using any non-
are consistent with results reported in the perception linear optimization technique (such as the ones existing
literature, in the literature). A simple intuitive geometric reason

for this is the following (see Figure 6).
2.3 Active vision

An important method for introducing additional con-
straints into visual computations is to control the
parameters of the sensor, for example its spectral sensi-
tivity, its focal length or its position and orientation. *
This approach is known as the "active vision" para- P
digm.

We pointed out several years ago that if the (V)
observer is active many recovery problems become well
posed and some of them become linear. Since then we
have concentrated on the study of specific activities. Figure 0.
We showed [Aloimonos, 1989] how an active observer
can understand shape by unifying shading and texture Let p be a point before the motion, and suppose we
in a simple manner. We have also started some work correspond it (wrongly) with point pl. The motion
on exploratory vision, i.e. searching through the space constraints require that the true corresponding point
of activities in order to find the optimal one (i.e. the p" lie on a line (1) which is parameterized by the 3-D
one that will result in the most robust reconstruction) motion and structure. Any algorithm that attempts to
[Herve" and Aloimonos, 1990]. Most of our recent work find a robust solution must try to minimize the input
in active vision falls in the paradigm of purposive and error p'p". However, we can only minimize one com-
qualitative vision and will be described later. ponent of this vector, the distance of p' from I. Thus

computation of structure from two frames in the pres-
3 Why Vision Is Hard: The Visual ence of noise is at the mercy of input noise.

World Is Noisy This argument doesn't apply to the computation of
motion parameters. We have developed [Spetsakis and

Even well posed (or regularized) visual computations Aloimonos, 1988b] an optimal algorithm for computing
are often numerically unstable, if noise is present in 3-D motion from two frames under the assumption of
both the scene and the image. Scenes are usually cor- Gaussian noise. The algorithm is optimal in the max-
rupted by "noise" coming from various sources (dust, imum likelihood sense and results in a weighted least-
fog, sun glitter, etc.). The .image formation process squares approach. After realizing that the optimal
introduces additional noise. As a result, many prob- approach . Afte reaizing rthat the opta
lems which theoretically have unique solutions become approach, in the presence of a 1% error in the input,3

very unstable in the presence of input noise. To make could result in about a 50% error in the output, we
the exposition simpler we concentrate on the problem employed redundancy, i.e. we used multiple dynamic
of visual motion interpretation. Our work here can be frames, and the results improved considerably [Spet-
classified into two broad categories: (a) geometric and sakis and Aloimonos, 1988c]. Using more frames
statistical analysis of the problem in order to construct increases the robustness because of the additional con-
provably optimal estimators and to understand their straints. The following diagram (Figure 7) displays the
inherent limitations; (b) the paradigm of purposive and behavior of the above algorithms in the presence of
qualitative active vision, noise, along with the behavior of one more algorithm

that was replicated from the literature. It is clear that
3.1 Optimal visual motion algorithms these techniques cannot yet be used by machines. The
We are now in the third phase of research in visual horizontal axis denotes error (noise) in the input and
motion. The first phase was concerned about what can the vertical one denotes error in translation or rota-
be inferred from dynamic imagery, i.e. how many tion.
features in how many views are needed in order to Recently, in our effort to address the stability of
guarantee uniqueness. The second phase was devoted structure from motion (SFM), we unified [Spetsakis
to extracting closed-form solutions for structure and 3- and Aloimonos, in press] the treatments of SFM with
D motion given retinal correspondence of points, lines regard to the input used. We introduced a new statist-
Spetsakis and Aloimonos, in press], or other features ical definition of feature points under which point
Spetsakis and Aloimonos, 1989]. features and line features are just the two extremes of

The third phase is devoted to the quebt foi robubt a spectrum of posbible features. Almost any pixel in
algorithms. It has become very clear in the past few
years that the problem of estimating structure and 3-D 31% in units of focal length, which for the focal lengths of
motion from dynamic imagery is unstable in the pres- commercially available cameras corresponds to about a 4-6 pixel er-
ence of noise. In [Spetsakis and Aloimonos, 1988] it ror in the image displacement.
was shown that no matter how many point correspon-
dences we use in two frames, we cannot reduce the
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,,_ _ _ _majority of the pixels in the processing window. The
Reponse to Noisy Input algorithm uses the least median of squares estimator

- '---- -- n(LMedS) in a two-stage procedure. The goal of this
work has been to understand the benefits and
difficulties of applying the LMedS estimator to com-

.. .puter vision problems.

...... . . .. 3.2 Purposive and qualitative active vision
..... i...: i!!iiii:°.......,-"...................... ...-"There is a disconcerting lack of visual systems which
............... ... ... ...."perform well in real-world environments, particularly

......... • -.... when compared to the amount of mathematical theory
published on the subject. There seem to be several

. . ...... reasons for this.
One reason is that extracting useful visual informa-

tion from images probably involves a very large
$4.* *.4S 34s *amount of computation. The visual cortexes of

animals that perform complex visually moderated
behaviors contain millions of neurons, each of which

Figure 7. performs computations which require thousands of
computer steps per second to simulate, and possibly

the image can be classified and used as a feature point many more. Much of this capacity is probably neces-
in this scheme. Based on this definition we have sary to carry out whatever cortical image processing
designed an optimal algorithm for the SFM problem occurs.
that can utilize information from the whole image. A somewhat related reason is the perception that
The input to the algorithm is the image displacement, practical results will eventually flow from a successful
and its uncertainty, at each pixel for a set of three theory rather than vice versa.4 This probably has more
frames. The only assumptions used are rigidity and to do with the lack of any practical systems to work
Gaussian noise in the image displacements. The out- with than with philosophical conviction, since histori-
puts are the parameters of the motion between the cally, empirical engineering applications or unexplained
frames and the structure of the scene. observations have preceded theoretical developments

The theory behind this approach is simple and at least as frequently as the reverse. If there were sud-
elegant; it can be extended in several ways (e.g. to denly to appear a number of machine vision systems
multiple frames); and it was developed with noise sta- working robustly in different real-world domains, it is
bility in mind. More importantly, the new statistical quite probable that theories explaining their corn-
definition of the features relaxes the requirements on monality would soon appear.
the image displacement computation In fact, if the There is a third reason that may explain the dearth
tangential component of a displacement cannot be of examples of working vision systems, which is that
computed then its uncertainty is set to infinity; the the generally accepted goals for such systems may be
algorithm can tolerate infinite uncertainty for all the misplaced, or at least over-ambitious. The two com-

tangential components. In this way the aperture prob- monly held touchstones for practical vision systems,
lem is avoided n recognition and navigation, are high-level objectives.

We have also developed analytical techniques for If both were achieved, automatic systems would have
many of the capabilities of the human visual system.

analyzing the numerical errors introduced by the pro- Another problematic aspect of the recovery (or
cess of discretization [Kamgar-Parsi et al., 1989a; reconstruction) school of thought is the fact that visual
Brosh et al., 1989]. These techniques have been computations involve finding the value of some real
applied to various structure from motion algorithms, quantity, and usually the success of the visual task
with discouraging results as far as the robustness of relies on the accuracy of the first or second decimal
these algorithms is concerned. Recently we have been digit of that quantity. As a result, most machine
working on a new approach [Jasinschi, 1989a; Jasins- visual tasks are unstable. A slight error in the input is
chi, 1989b] to representing uncertainty in low-level enough to destroy some computations. How can we
vision. If, for example, we take into account the con- perform robust visual computations that can be reli-
straints associated with motion uncertainty, we are ably used for accomplishing various tasks?
able to devise an adaptive procedure for estimating the If we could solve the general recovery problem we
various parameters involved in space-time filtering, would be able to perform many visual tasks, but luck-

Finally, we have begun to apply robust statistics to ily, it is not always necessary to perform general
various image estimation problems. As one example,
representation of an image by piecewise polynomial 'This point of view was suggested by Nelson INelson and

surfaces may be of importance for some tasks. In Aloimonos, 1988[.

[Meer et al., 1989] a new algorithm was introduced
which recovers the fit corresponding to the absolute
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recovery. Rather, we can consider more specific prob- Here, we only consider modules interacting with the
lems! We need vision in order to accomplish tasks that image or with immediate representations of it.
are essential for our survival (recognize friends, enem- What will this general vision system do? We will
ies, food, avoid danger, etc.). But to carry out a expect it to be able to carry out certain basic tasks.
specific task, we do not need to completely recover the We &.pect it to be able to move around in its environ-
world and its properties. When we want to move ment and to understand visual motion. Thus it should
across a crowded room, we just need to avoid obsta- be able to perform kinetic stabilization (passive naviga-
cles; it is not necessary to reconstruct the scene and tion), i.e. to understand its own motion from images
thus know that the person in the corner is smiling! and adjust it accordingly. It should also be able to
Clearly, if we could reconstruct the scene our task avoid obstacles. It should be able to avoid moving
would be very simple; but it is obvious that complete objects that are on a collision course with it. It should
reconstruction is not necessary. be able to detect moving objects in its surroundings

We can study visual abilities in a purposive and track them and observe them. It should be able to
manner, keeping in mind a basic question: What am I intercept a moving object (prey catching), or to extend
going to use this visual ability for? What tasks can be its arm and catch a small moving object. It should be
performed using it? If we study vision in a purposive, able to coordinate its hands and eyes to pick up things.
utilitarian [Ramachandran, 1989], or animate [Ballard, It should be able to solve visual rendezvous problems,
1989] manner, the problems that we formulate are such as putting a stick through a hole; and so on.
much simpler, since they are relevant to the task at It is clear that rost of these tasks are simple appli-
hand. Since they are simpler, they can be solved by cations of the structure from motion or passive naviga-
qualitative techniques that exhibit robustness proper- tion module. Indeed, suppose that the system has a
ties. robut, structure from motion module, i.e. a module

Although the foundations of purposive and qualita- that takes as input a sequence of images and gives as
tive vision lie in mathematical and engineering con- output the structure of the imaged scene as well as the

siderations, it seems to be consistent with evolution." relevant 3-D motion parameters.7 Then the system can
Accepting that the ultimate goal of an organism is sur- detect its own motion and can reconstruct the scene,
vival, visual abilities should have evolved in such a which allows it to avoid obstacles and to solve visual
way that they served survival purposes. Thus, visual rendezvous and hand-eye coordination problems. It
abilities for avoiding danger, recognizing food, recog- car, determine the 3-D motion of a moving object, esti-
nizing mates, friends and enemies developed. But mate its trajectory, and thus avoid something that is
although some of these abilities were based on common going to hit it, or catch something by positioning its
principles (for example the ability to intercept a mov- arm at a specific point. Having a robust structure
ing object and the ability to avoid a moving object are from motion module is thus very powerful, as it can
both based on the structure from motion module), they solve all the above-mentioned tasks. It is no wonder
were possibly developed at different times and it is then that this module has attracted so much attention
probable that they are implemented by separate in the past 15 years and has created a very rich litera-
hardware. From this point of view we may expect that ture. (See [Bandopadhay, 1986] for a review.) How-
the machinery of the brain devoted to vision consists ever, despite the numerous mathematically sophisti-
of various independent processes (which of course com- cated and elegant theories that have been presented,
municate) that are devoted to the solution of specific no one has demonstrated important practical applica-
visual tasks. That seems to be also the view of leading tions yet.
neuroscientists [Regan]. We have two alternatives. The first is to continue

Consider a general8 vision system of the future, as our research on recovery, to try to understand why

we envision it based on our current understanding of existing approaches are unstable, to develop provably

visual recovery. That system will consist of a large optimal estimators of structure from motion, and to

number of modules, each of which will be devoted to introduce noise remedies such as redundancy. The

recovering a property of the world from a series of hope here is that our work will result in the best possi-

images. There will be modules for shape from shading ble structure from motion module and that this module

[Horn, 1986], shape from texture [Aloimonos, 1988], will be good enough (i.e. robust); or we might be

structure from motion [Ullman, 1979], etc. All these surprised to discover that the best is not good enough

modules will communicate and cooperate in building for some tasks.

an accurate description of the environment (i.e. recon- The second alternative is to reconsider our

structing it). Of course, the system will also have viewpoint about the recovery paradigm, and work

high-level modules which, using the outputs of the "around" the problem. This alternative suggests that

other modules, will perform planning and reasoning._ __ 71f the system is moving in a static s ene, then the structure of

6The philosophical standpoint is presented by Searle in his the scene is recovered along with the 3-D motion of the system. If
book on intentionality Searle, 1 .the system is stationary, then the shape and 3-D motion of moving

b 1841. objects are recovered. When both the system and parts of the scene
6By general we mean capable of performing a nontrivial are moving, only their relative motion can be recovered.

number of visual tasks, but not necessarily as good as human vision.
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we should not try to solve the abstract structure from object recognition in natural 3-D scenes, nor to deal
motion problem by developing the structure from with artificial scenes that contain large numbers of pos-
motion module. Instead, it suggests that we must ask sible objects. Our work here fallb into three broad
the question: What tasks will I perform if I have a categories:
structure from motion module? After the tasks have (a) Learning the appearance of an object.
been identified, we should solve them directly and not
as an application of a general module. For example, (b) Qualitative 3-D object recognition based on
we should directly solve the problem of avoiding obsta- primitives.
cles. We can ask: Is this moving object coming closer (c) Object recognition through recovery and match-
to me? If so , where is the focus of expansion (FOE)? ing.
Is it inside the boundaries of the image or outside? If
it is inside, does this mean that the moving object will 4.1 Learning
hit me? If it is going to hit me, how long will it take
with respect to my reaction time? How do we learn classes of shapes, for example, how a

Can we solve such a collection of problems in a fish looks, given many examples of fishes? How do we
robust manner? If we can solve such problems learn to differentiate between different textures? How
directly, the general structure from motion module will can we learn to detect significant changes in an area

from aerial imagery? A system called ORACLEno longer be needed.8 Moreover, because wve are now (ORganized Adaptive Constraint LEarning) has been

asking simple questions that have small numbers of constructed [SConsra 1988b; a s been

possible answers, the potential exists that we will be cntued[ullins, 1988a; 1988b; 1989a; 1989b) that
posble averost soltinsie thae tis ae can perform these tasks by learning the input-output
able to achieve robust solutions, since the solutions are behavior of a Boolean expression in disjunctive normal
qualitative, form.

We thus see a new paradigm emerging: that of pur- Most methods of learning in distributed envirn-

posive and qualitative vision (which should of course ments are based on gradient descent algorithms that

be active). In this framework, one does not regard a involve changing the weights of the network in order

vision system as a collection of modules whose purpose to minimize the difference between the expected and

is to reconstruct the world and its properties and thus actual input-output behaviors. The successes of such
provide information for accomplishing various tasks. "motion in weight space" methods have been limited
Instead, one regards a vision system as a collection of due to their inability to capture the implicit con-
processes, each of which solves (or groups of which drn o the inaio apr e the m
solve) a particular visual task. If we look at computer straints of the behavior and properly distribute them

vision in this way, we are no longer considering vision on tho in ofrt n e . Iuresyste input-
in isolation, as the recovery school of thought does, but output behavior of a connectionist network to a
as a part of a larger process in which vision is used as Boolean expression in disjunctive normal form, where
a front end. We are currently designing Medusa, a each hidden unit of the network learns to detect one of
simple, robust qualitative machine that can perform the conjunctive parts of the expression. The potential
many navigational tasks in real time; it is described in constraints at a processor are the states of an input

another paper in these Proceedings. configuration that correctly activates the outputs.

These constraints are added and removed from the
4 Why Vision Is Hard: Visual Objects processors in such a way that the correctness of the

Are Hard to Define behavior of the network is maximized. Unlike gradient

Even if we have succeeded in reconstructing the world, descent methods, which may become trapped in local

in order to recognize objects we need to compare our minima, or simulated annealing methods, which may

reconstruction with models of candidate objects. But need an infinite amount of time to reach a good state,
how do we model a bush or a chair? Researchers have this system determines a correct solution to many

proposed object modeling techniques that can generate problems very quickly. Unlike most traditional

a large variety of objects. It is not obvious, however, machine learning" algorithms, this system can learn

how to use these techniques to capture the variability concepts in parallel, is apable of continuously adapt-

of natural objects, or the great variety of artificial ing to new information, and is highly resistant to feed-

objects that can all belong to the same class. Existingerror.
machine vision systems have not attempted to handle Applications of this learning algorithm to tasks

such as learning 2-D shapes from examples have
demonstrated its potential applicability to practical

8We do not mean that this module and its supporting theoret- dem s otent ial alorit y to pral

ical research become obsolete. On the contrary, such research, which problems Recently, the algorithm has been general-

has become highly sophisticated nowadays, will contribute an im- ized to icarning under invariance. Also, it has been

mense amount to photograrimetry, cartography and other visual successfully used for texture discrimination.
reconstruction problems. What we mean here is that if we can solve The initial problem used to test ORACLE involved
all the above-mentioned tasks, the general structure from motion determining whether or not a given 6 by 6 pixel binary
module probably won't be needed for an autonomous "seeing" image (that is, a set of 36 inputs) contained a set of
machine that is expected to perform navigational tasks, active input units in the shape of a square. There were

14 possible squares (9 of size 4, 4 of size 5, 1 of size 6),
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and an input vector was given a 50% chance of being quickly reach a good level of correctness and then
assigned one of these squares. Vectors containing slowly )ntinue to improve to higher levels. They do
squares were given "background noise" of 25%, that not quite reach 100% correctness because incorrect
is, each non-square input was active with a probability constraints are still added from time to time.
of 25%. This means that there were on the order of The next experiment involved reducing the number
2 24 (over 16 million) possible input vectors containing of processors to 5, far below the minimum needed to
squares. The inputs of vectors not assigned squares cover all of the 14 conjunctive terms. The purpose of
were active with a probability of 50%, meaning that this was to force the network to learn features of
there were 238 (over 60 billion) of these. squares. With a feedback error of 10%, the constraint

ORACLE learning curves for various levels of feed- sets in Figure 9 were created after 20,000 examples.
back error are shown in Figure 8. The X-axis As this figures shows, ORACLE discovered the ideas of
represents the number of examples. The Y-axis corners and parallel lines. Both of these features allow
represents the percentage of time that ORACLE gave a processor to accept more than one kind of square.
the correct response to the question of whether or not Generalizing to these features (lid not increase the
the input contained a square. Note that this is not the error significantly, as it is unlikely that the features
percentage of time that the output matched the (possi- would arise at random (2-7 for the corners, which is
bly incorrect) feedback; we are interested in how well less than the 10% feedback error).
the system managed to ignore incorrect feedback, not ORACLE was also given the more realistic problem
in how well it duplicated it. Each curve is labeled of detecting fishtails. A set of 26 pictures of fish tails
with its level of feedback error, the percentage of time [Cousteau, 1953; 19631 were translated to the 6 by 6
that the feedback was incorrect, binary format. These included many different species

As Figure 8 shows, ORACLE learns to detect with greatly dissimilar tails, in order to insure that
squares after seeing only a tiny fraction of the possible more than one type of detector would be needed.
input vectors. In fact, its correctness is generally close Background noise was added by activating inputs with
to 100%, or at least much greater than the correctness probability 0.25, giving 236 possible fish tails. ORA-
of the feedback. This indicates that ORACLE CLE was either presented with one of these with pro-
succeeds in choosing the correct constraint motion in bability .5 or was presented with random noise. Fish
the long run despite occasional errors. While the tails were given positive feedback and noise was given
learning time increases with the feedback error, the negative feedback, except for a feedback error of 10%.
behavior is still learned quickly even for large amounts The network contained 10 processors.
of error. The learning does not begin to deteriorate The problem was made more interesting by also
until the feedback error is greater than 30%. deactivating any input with probability 0.05. This

The individual processors behave as predicted means that there were no good conjunctive terms for
according to the theory. Each of them quickly the network to form, as there would always be fish
acquires a set of correct constraints that distinguish it tails that violated any set of constraints at the deac-
from the others and then goes through the slow process tivated inputs. Because we allowed any of the inputs
of removing the incorrect ones it picked up along the to be corrupted, ORACLE was forced to find the most
way. This is reflected in the learning curves, which basic prototypes of fish tails. These were far less well-

defined than the features or conjunctive terms of the
squares. Some of them are shown in Figure 10. The

x 1ox learning curve is shown in Figure It.
As can be seen from Figure 10, ORACLE found

widely varying features of fish tails. I)uring each run,t9 d 97 three or four processors acquired one of these features,-_7 /but none of them accounted for a majority of the posi-
tive vectors that were accepted. This shows that the

0 .system was able to properly distribute the detection of
different types of fish tails over different processors.

--- -- ---- Figure 12 shows some textures that ORACLE was
0/ trained to discriminate and Figure 13 shows the

I . . . 1Ii
It .. I I ICd- L L L ii4I ..... u.: jm j

I, , II: : :1 I:1

Figure 9.
Figure 8.
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primitives, offering an efficient indexing mechanism for
. . large object databases. The 3-D primitives, in turn,

1 .. - I - are mapped into a set of viewer-centered aspects. To
minimize the size of the aspect set, the aspects are con-

0..................._..strained to be invariant to minor changes in primitive
shape, forcing the primitives to be qualitative in

.I nature. Primitive reconstruction matches local 2-D
1 -" ""image features to the set of viewer-centered aspects,

St••whose size depends only on the size of the set of primi-

0 " "ties, not on the number of object models or on object

Figure 10.

J. I

Figure 11.

corresponding learning curves.

4.2 Qualitative object recognition

Two important issues arise in the representation of
objects for 3-D object recognition. The first issue is
the choice between object-centered and viewer-
centered representations. Object-centered representa-
tions model objects as constructions of 3-D primitives,
such as planar faces or generalized cylinders. Viewer-
centered representations model objects as a set of 2-D
characteristic views, or aspects. The advantage of
viewer-centered representation is that it reduces 3-D .

recognition to 2-D recognition; solving the inverse pro-jection problem is unnecessary. However, with each I

model object having potentially many aspects, match-
ing becomes less efficient than with object-centered
models. The second issue concerns the amount of "
detail inherent in object models. Quantitative models ,
facilitate simple, model-hsed verification proeelIros
at the expense of model complexity. Qualitative
models preclude top-down verification, but are invari-
ant to minor changes in shape.

In (Dickinson et al., 19891 a modeling paradigm for
3-D object recognition integrating object-centered and Figure 12
viewer-centered models is proposed. Object models are
object-centered constructions of 3-D volumetric
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disregard image and model triangle pair combinations
1.0 _------- r when their characteristics correspond to the flagged

__9___ _o_ cells.
3 Go In [Friedland and Rosenfeld, 1989] a method was
.raw described for recognizing compact objects in an image

by minimization of an energy function. The energy
.'5 /.bbls ".function is based on a polar coordinate object represen-

A fieldston, tation, define using any center from which the object's
contour is visible. It incorporates both low-level and
high-level information about the object: contour sharp-
ness and smoothness at the low level, and contour
shape at the high level.

5 Why Vision Is Hard: Vision Must
Operate In Real Time

Suppose we ask a human to identify an object, and we
I Ns measure the time T between the instant that the
0 2.000 ,000 000 .000 0.00 object is displayed and the instant at which it is

Figure 13. identified. Let the average time for a neuronal firing,
i.e. the time it takes a neuron to perform a computa-

model complexity. Object recognition then matches tion and pass the result to its neighbors, be t. The
the primitives to object-centered models. To accom- quotient T / t is essentially the number of computa-
modate incomplete aspects arising from occluded tional steps performed by the brain in order to identify
model primitives, a hierarchical aspect representation the object. Amazingly, we find that this number is
based on aspect faces is introduced. The levels of the only a few hundred! Existing computer vision systems
hierarchy are linked together by a set of conditional that perform non-trivial tasks require millions or bil-
probabilities resulting from an extensive analysis of the lions of steps on a serial computer. Our work is
aspects. This approach is general enough to allow for addressing this issue by studying the role of parallel
a wide choice of primitives. We are currently examin- processing in computer vision.
ing functional primitives, in accordance with the para- [Chandran and Mount, 1989] developed optimal
digm of purposive and qualitative vision, shared memory parallel algorithms for the Medial Axis

Transform (MAT). In [Bestul, 1989] a general tech-
4.3 Recovery and matching nique for defining SIMD Algorithms that operate on
We are continuing to study aspects of the matching parallel pointer-based quadtrees was developed. It is
process as well as specific recovery tasks-such as pose useful for creating parallel quadtree algorithms that
estimation, for example-related to object recognition. run in time proportional to the height of the quadtrees
In [Margalit and Rosenfeld, 1989; Margalit and Knott, involved but that are independent of the number of
1989; Kamgar-Parsi et al., 1989b] efficient algorithms objects (regions, points, segments, etc.) which the
are presented for matching polygonal arcs. The algo- quadtrees represent. The technique makes use of a
rithm is based on an algorithm for run-length string dynamic relationship between the processors and the
matching presented in [Margalit and Rosenfeld, 19881. elements of the space and object domains being pro-

In [DeMenthon and Davis, 1989] new exact and cessed.
approximate solutions of the three-point perspective In [Sher and Rosenfeld, 19891 a pyramid program-
problems are presented. Model-based pose estimation ming environment on the Connection Machine is
techniques which match image and model triangles pesented. The mapping between the Connection
require large numbers of matching operations in real Machine and pyramid structures is based on a scheme
world applications. We have shown that by using called Shuffled 2-D Gray Codes. A pyramid Hough
approximations to perspective, lookup tables can be transform, based on computing the distances between
built for each of the triangles of the models. Weak line or edge segments and enforcing merge and select
perspective approximations have been previously strategies among them, was implemented using this
applied to this problem; we have considered two other programming environment.
perspective approximations. paraperspective and ortho- [Pehkonen, 19891 describes the implementation of a
perspective. Analytical expressions are obtained which pose estimation algorithm on the Butterfly Parallel
are as simple a those obtained using weak perbpeci-e, PIoLUN ui (BPP) and Ilathi 2 parallel computers. In
and which have much lower errors for off-center images [Davis and Narayanan, 19891 two approaches are
than weak perspective. The errors are evaluated by described to the efficient processing of small images on
comparison with exact solutions. The error estimates hypercube-connected SIMD machines. The first
show the relative combinations of image and triangle approach, called fat images, is based on distributing
characteristics which are likely to generate the largest the bits representing the gray level (or other feature)
errors. The corresponding cells of the lookup tables from each pixel across the processors of a sub-
can be flagged, so that object pose calculations can hypercube, using Gray coding techniques to obtain a
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good mapping of the fat image into the hypercube. requires us to consider vision in conjunction with plan-
The second method, called replicated images, involves ning. Most of the planning literature has concentrated
generating as many copies of the small image as will fit on a complexity classification of various planning
into the machine, and then distributing the computa- tasks. As most of the interesting problems are intract-
tion of basic image processing operations across the able, our research has focused on obtaining approxi-
copies. mate efficient algorithms, i.e. algorithms that are not

A speed up analysis of parallel programs with an optimal but are proven efficient. For example, the
image analysis program as a case study was reported in problem of rearranging rectangular blocks enclosed in a
[Seppinen, 1989]. The approach is based on the con- rectangular room, or the Warehouseman's Problem, is
cept of critical paths of concurrent programs. Utilizing known to be PSPACE-hard and hence is considered
timing profiles of a program running on the desired intractable. Following the suggest-ion in the seminal
target computer, a model can then speed up behavior paper by Hopcroft, Schwartz and Sharir, we presented
of the program. The model can then be used for point- in [Sharma and Aloimonos, 1989] several constraints
ing out those factors that seem to affect the speed up under which the general problem becomes tractable by
behavior of the program. An image analysis algorithm giving polynomial algorithms which guarantee the rear-
was implemented on the Butterfly Parallel Processor rangement under different conditions. The concept of
(BPP) and used as a testbed for the method. The temporary storage space is introduced as an important
algorithm performs gray-level connected component part of the approach which can also be used in other
analysis and feature extraction for area-segmented hard motion coordination problems. The other con-
images. Then intra- and inter-area features are com- straints restrict the possible sizes and relative place-
puted for the area segments, including adjacency ments of the blocks.
graphs. Parallel computation is achieved by dividing Using the same methodology, the problem of
the input image into equal sized blocks and assigning finding a collision-free path connecting two points in
each block to a different processor of the BPP, accord- the presence of obstacles, with constraints on the cur-
ing to the principles of data parallelism. An asynchro- vature of the path, is examined in [Basu and
nous slave process is attached to each image block, Aloimonos, 1989]. This problem of curvature-
and an asynchronous master process controls the slaves constrained motion planning arises when (for example)
via synchronization of barrier variables. Mutual exclu- a vehicle with constraints on its steering mechanism
sion among the slaves is implemented with locking needs to be maneuvered through obstacles. Though no
primitives. Both of the main stages of the program lower bound on the difficulty of the problem in 2-D is
contain three steps: first, image blocks are processed known, the exact algorithms for the reachability ques-
locally as long as possible; second, a description of tion given so far are exponential. We have obtained a
block interfaces is created to be utilized in the third simple polynomial time algorithm for obtaining an
step, in which the partial results are merged. approximation scheme for this problem. The approxi-

In [Chen, 1989] a flexible parallel architecture for mation scheme can be used for obtaining the minimum
both discrete relaxation labeling (DRL) and probabilis- curvature path or minimum length path satisfying a
tic relaxation labeling (PRL) is developed. Through given curvature constraint. A probabilistic analysis of
proper space-time arrangement of the computational the scheme has also been given to analyze its useful-
steps involved, the relaxation labeling processes can be ness.
run on a systolic-array-like architecture in linear time We need to create a much closer coupling between
for each iteration. Thus a high degree of computa- vision and planning. Current experimental systems
tional parallelism is obtained. The arrays use one- display a rigid distinction between their vision and
dimensional, one-way communication lines between planning modules, i.e., vision is used to extract infor-
adjacent PEs and interface with the external environ- mation which is then used by the planner. We believe
ment through only a single I/O port. Because of the that vision and planning must be closely coupled, i.e.
hardware simplicity and programmability features of during planning, the vision module should be accessible
the PEs, the architecture is well suited for VLSI imple- at all times. Planning can also be seen as "taking
mentation and is flexible enough to execute different actions that have some effect on the perceptual input".
relaxation algorithms. An illustrative example of run- In this way, the planner can manipulate the input in a
ning a region color labeling problem on the proposed controlled manner. Using this viewpoint, [Basu, 19891
architecture has been formulated and a general running has investigated the problem of moving obstacles and
procedure has also been developed, on the basis of visual information has developed a

computational theory that suggests several strategies
6 Vision as a Part of a that a robot can follow in order to plan a path (from a

Larger System specified start to a specified end point) in the presence
of moving obstacles whose motion is not known a

The reason we need vision is to accomplish tasks. priori. The input to this perceptual process is time
That is, vision is always a part of a larger system and varying imagery acquired by the robot and the output
we need to be able to integrate it with other cognitive is a strategy that indicates how the robot should move
abilities in a coherent and efficient manner. To be in order to obtain a safe path, i.e. a strategy that max-
more concrete, let us consider the problem of visual imizes the probability of safely reaching the goal using
navigation, i.e., visually mediated movement. This visually acquired knowledge at every instant.
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Finally, based on th;s vi-wpoint about vision and [Aloimonos and Shulman, 1989] J. Aloimonos and D.
planning, [Herve et al., 19901 presents a rcust tech- Shulman, Integration of Visual Modules: An Exten-
nique for coordinating a hand/eye system without prel- sion of the Marr Paradigm, Academic Press, Bos-
iminary calibration of any of its components. Where ton, 1989.
the classical approach uses vision for calibrating the [Ballard, 1989] D.H. Ballard, "Animate vision", Proc.
system as a step in the expensive inversion of the IJCAI, 1989.
robot's kinematic map, we closely integrate the visual [Bandopadhay, 1986] A. Bandopadhay, Ph.D. Thesis,
feedback in a qualitative control strategy to accom- Dept. of Computer Science, University of Roches-
plish robot positioning tasks. The topology of the per- ter, 1986.
ceptual kinematic map between the joint coordinates of [Basu, 1989] A. Basu, "A framework for motion plan-
the robot and a set of image parameters is analyzed nand exploit.d by a control strategy that provides the ning in the presence of moving obstacles", Techni-
aniplaorwithby acnatyol strate l thato vide te cal Report CAR-TR-481, Center for Automation

manipulator with an ability to successfully maneuver Research, University of Maryland, College Park,
in its workspace. 1989.

7 Conclusions (Basu and Aloimonos, 1987] A. Basu and J. Aloimonos,
"A robust algorithm for determining the translation

We have presented a short summary of our image of a rigidly moving surface without correspondence
understanding research during the past year. Our dis- for robotics application", Proc. IJCAI, 1987.
cussion was organized around some fundamental rea- [Basu and Aloimonos, 1989] A. Basu and J. Aloimonos,
sons why vision is hard. These reasons are: "Approximate constrained motion planning",

* ll-posednes of visual modules, which we address Technical Report CAR-TR-435, Center for Auto-
through our work on discontinuous regulariza- mation Research, University of Maryland, College
tion, integration of modules and active vision. Park, 1989.

* Instability due to noise, which we address through [Bestul, 1989] T. Bestul, "A general technique for
our work on provably optimal algorithms and the creating SIMD algorithms on parallel pointer-based
oureworkn pardigmo oi ao s quandthe quadtrees", Technical Report CAR-TR-420, Center
new paradigm of purposive and qualitative for Automation Research, University of Maryland,
vision. College Park, 1989.

* The difficulty of defining visual objects, which we [Blake and Zisserman, 1987 A. Blake and A. Zisser-
address through our work on learning, man, Visual Reconstruction, M.I.T. Press, Cam-

The fact that vision must be real-time, which we bridge, MA 1987.

address through our research on parallel algo- [Brady, 19821 M. Brady, "Computational approaches

rithms and architectures. to image understanding", ACM Computing Surveys
14, 1982.

We also emphasize the fact that vision must be part of [Brosh et al., 1989] M. Brosh, B. Kamgar-Parsi and B.
a larger system. In particular, we propose coupling Kamgar-Parsi, "Reliability analysis of the closed-
vision and planning in a strong way, so that they form solution to the image flow equations for 3D
operate together at all times. Our work on navigation structure and motion (planar patch)", Technical
demonstrates that this is both feasible and very Report CAR-TR-431, Center for Automation
efficient. Research, University of Maryland, College Park,
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USC IMAGE UNDERSTANDING RESEARCH: 1989-1990

R. Nevatia, K. Price and G. Medioni*
Institute for Robotics and Intelligent Systems
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Los Angeles, California 90089-0273

Abstract 2 3-D VISION

This paper summarizes the USC Image Under- Our goal here is to develop techniques for description and
standing research projects and provides refer- recognition of complex 3-D objects in complex scenes.
ences to more detailed sources of information. We focus on the analysis of objects using shape (as op
Our work has focussed on the topics of 3-D vi- posed to texture or other cues) and have made significant
sion (including range data processing, stereo, progress in the past year. In particular, we have concen-
shape from contour and object recognition), trated on the following:
aerial image analysis, motion analysis (includ- 9 Range image analysis
ing spatio-temporal analysis, 3-D motion esti- We have made progress in the automatic acquisition
mation, detection of moving objects and an in- of models from multiple views, using either symbolic
tegrated motion system), and parallel process- or iconic representations. These models are useable
ing (including mapping algorithms onto spe- for a variety of applications, including for object
cific or flexible architectures, and processor- recognition as in a system described in our previous
time tradeoffs). work [Fan et al., 1989].

* Stereo1 INTRODUCTION - We have completed a system which combines
This paper summarizes our research projects during the area-based and feature-based processing to gen-
last year. Some of this work is described in more detail erate dense disparity maps.
in other papers in these proceedings [Stein and Medioni, - We have excellent results performing the
1990b; Menet et al., 1990; Kim and Price, 1990; Ulupinar matching using very high level primitives re-
and Nevatia, 1990b; Reinhart and Nevatia, 1990; Frazier sulting from perceptual organization
and Nevatia, 19901; this work is covered only briefly in - In the special case of urban scenes, we have
this summary. We also provide references to details for used "snakes" to accurately delineate the con-
work not described elsewhere in these proceedings. tours of building tops.

Our research activity has focussed on the following
major topics: Shape from contour

We have developed a theory for inferring 3-D shape
" 3-D Vision of objects from their contours. The technique re-

" Aerial Image Analysis lies on observations of certain types of symmetries
in the contours and the mathematically constraints

" Motion Analysis, and that derive from them. Our technique uses rela-

* Parallel Processing tively few assumptions and heuristics and is largely
based on geometrical properties of contours. We

In all of these areas, we have had broad research pro- have shown that it is applicable to the analysis of
grams that have been carried out for an extended period zero-Gaussian curvatures surface, straight homoge-
of time. Thus, it is not possible for us to give a com- neous generalized cylinders and "snakes" and are
plete summary of our work here. Rather, we describe working on extending it to yet more complex ob-
our new results and attempt to give some context of the jects. Good results are obtained, however, currently
long term work in which these results fit. we assume that contours and symmetries are given

to our system. In separate projects, we are investi-
'This research was supported by the Defense Advanced gating the computation of such symmetries.

Research Projects Agency under contracts F33615-87-C-1436
and F49620-89-C-0126, monitored by the Wright-Patterson * Symmetry Detection and Perceptual Grouping
Air Force Base and the Air Force Office of Scientific Research, Grouping of contours detected in an image is crucial
respectively. in proper segmentation and description of objects in
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a scene. In our previous work, we found thatsym-
metries play a key role in computing such percep-
tual groupings (Rao, 1988; Mohan, 1989]. Symme-
tries are also central to our technique for inferring
3-D shape from contours. In recent work, we have
been investigating efficient ways of computing these
symmetries lSaint-Marc and Medioni, 1990): once
edge contours are represented by approximating B-
splines and the corners detected [Saint-Marc et al.,
19891, the computation of symmetries is of complex-
ity 0(n 2 ), where n is the number of spline segments
as opposed to the number of points. (a) (b)

* Matching
We have defined a methodology based on efficient
coding and hash tables to recognize objects in a clut- "o '' s
tered environment, even when the number of models ', ": ,
is large. We can successfully recognize flat objects
under affine transform, and 3-D objects given 3-D
data (such as range images), with no restrictive as- %

sumptions on the shape of these objects.

2.1 RANGE IMAGE ANALYSIS

Range imagery differs from intensity imagery in that the (C) (d)

input directly relates to the geometric shape of the ob- Figure 1: Object Modeling:
jects in the scene. Our previous work has allowed us to (a) The original wood block, (b) wireframe of the reconstructed model

compute symbolic descriptions of range images, and to and (c) & (d) two rendered images of the model

perform matching with multi-view models. Recently, we
have obtained integrated representations of models from
multiple views, which is more natural since such models range images. This minimization process is done by us-

can be observed offiine from many positions. The model ing least-square method iteratively. The control points

building procedure is performed either by merging at the and the distance measure have been chosen so that this

data level prior to segmentation, or by merging the seg- process can converge very fast.
mented views, as explained below. To merge multiple views, we use a simple cylin-

drical/spherical representation for simple compact ob-
2.1.1 Data level merging jects. Successive range image of views of the object are

One of the difficulties of integrating multiple views is merged after being mapped to a object-centered coordi-
in finding an accurate transformation between data ob- nate frame by using the relative transformations found
tained from different views. Previous research has sug- by the registration process. To aoid the introduction
gested to determine the relative motion between views by of a cumulative error term in the 'ntegration process,
using marks and regular patterns in the scene by taking we also use a global registration strat-gy, i.e., we always
intensity images at tihe same time and matching those register the next view with the integrated result so far,
features [Vemuri and Aggarwal, 1986], or by matching so that each view of range data can be registered more
surface features directly [Ferrie and Levine, 1987]. These globally with the remaining views.
techniques rely solely on the accuracy of feature detec- An example is illustrated in Figure 1: the wood block
tion and provide no feedback from the data themselves a) has been viewed from 8 side positions 450 apart, from
as to how well the different views have been registered the top and the bottom. The reconstructed views of the
under the estimated transformation. object are shown as shaded images in b) and c).

Our approach is to use range data directly and try to
register successive views of the object with overlapping 2.1.2 Symbolic level merging
areas to compute transformations for the relative motion The alternative approach consists of generating a sym-
between views. To reduce the possible large search space bolic description, such as an attributed graph, for each
and ensure that the algorithm converges, we assume that view, and then merge the different descriptions at this
the approximate transformation bctween the data from high level. Each view is represented by a graph whose
two views is known, which is reasonable when the range nodes are the individual surface patches and the links
data are acquired in a controlled environment. are the relationships between adjacent patches. The

To register two overlapping views of range image of matching between views is achieved either through a tree
the object, we first choose a set of surface points, called search procedure [Fan et al., 1989], or by a 2-level con-
control points, from one of the range image, and then straint satisfaction network [Parvin and Medioni, 1989].
apply a minimization process to find the rigid transfor- One of the difficulties to be overcome by this process is
ination which minimizes a distance measure from those the inference of surface patches from bounding contours,
control points to the surface represented by the other since these are not necessarily continuous and generally
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(a) Intensity (b) Disparity %

S "Figure 3: Books- Intensity Pyramid.

k-.'15 Lii
(c) Disparity (d) Features

Figure 2: Renault Part. <..,
.~~ ~ ~ .: .' . .... ,- ....

inaccurate at junctions. We have obtained good results ,.
by modeling this process as a dynamic network subject X %r

to weak smoothness constraints. The initial state of the %

network consists of the curves produced by low level op- .,

erators, but these decay over time unless excited. Possi-
ble completions provide this excitation, competing with % % %
each other and strengthening existing curves [Parvin andMedioni. 1990]. ', .. .; ,,,..:, Z ,

2.2 STEREO Figure 4: Books - Disparity Pyramid.

We are using different approaches to solving the stereo
correspondence problem, from using a combination of
area-based and feature-based processing, to working stereo intensity images and the respective disparity re-
with complex primitives resulting from a perceptual sult; (c) shows a 3-D plot of the disparity, from which the
grouping stage. We also are using active contours to surface features (d) were extracted. The surface features
obtain accurate boundaries of roof tops in aerial views located on the disparity surface are the depth discontinu-
of urban areas. ities, th occluded regions, and the concave and convex

folds.
2.2.1 Feature and area-based processing The second improvement is the use of a multi-level

We have considerably improved the system described py.amid, first processing a reduced (coarse) version of
last year [Cochran and Medioni, 1989a], in which we in- the image pair, and then propagating the results to an-
tegrate area-based and feature-based processing, taking other level for higher-resolution (finer) processing, as
advantage of the unique attributes provided by each one shown in figures 3 and 4. This introduces a more
separately. The area-based processing generates a dense global context and allows the correction of local errors in
disparity map, and the feature-based processing accu- matching, such as those due to photometric and geomet-
rately locates discontinuities. The first improvement, ric distortions. Figure 5 shows a 3-n plot of the disparity
described in [Cochran and Medioni, 1989b], is the ex- and figure 6 shows the extracted surface features.
traction of depth and, in many cases, orientation discon- We have applied this Stereo Vision System to a wide
tinuities from the image. variety of scenes and obtained results which compare

Figure 2 shows the results obtained for the "Renault very favorably with state-of-the-art methods [Olsen,
Part" stereo pair. Figure 2 (a) and (b) show one of the 1990; Hoff and Ahuja, 1989; Drumheller ind Poggio,
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Figure 7: Jussieu - Intensity.

Figure 5: Books - 3-D Plot of Disparity.

. Figure 8: Jussieu - Disparity.

Figure 6: Books Surface Features.

1986].

2.2.2 Stereo of aerial urban scenes
Current stereo algorithms, whether area-based or

feature-based, tend to fail around depth discontinuities,
since these are the locations where smoothness assump-
tions do not hold. This plenomenon is most easily ob-
buildings can therefore be detected, but not accurately

delineated. Fua [Fua and Leclerc, 19881 and Mohan [Mo- T
han and Nevatia, 1989b] propose to solve the problem by
restricting the possible shapes in the form of a generic
model. Figure 9: Jussieu - 3-D Plot of Disparity.

Hete instead, we propose to use the initial estimate
provided by a traditional stereo system (as described
in the last section). and to refine it by enforcing a lo-
cal smoothness constraint. This is accomplished by an
active contour model, whose details are given in these
proceedings[Menet ct al., 1990]. The estimate is shown
in figures 7-10.

Wc bavc obtained exce!cnt results, even when the
boundaries contain corners, as illustrated on figure 11
below.

2.2.3 Stereo matching using high level features
We are also investigating an alternative approach Figure 10: Jussieu - Surface Features.

to stereo that uses high level features for correspon-
dence. Lower lcvel feature matching may have difficulties
with global correspondence, particularly when repetitive
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(a) (b)

Figure 11: Example of delineation of buildings roofs with I
deformable contour models

structures are present, requires presence of rather dense
texture and highly accurate knowledge of epipolar geom-
etry. High level feature matching can potentially over-
come these obstacles. Further high level features are
fewer in number and hence should be faster to match,
at least in principle. However, this approach has the
deficiency that high level features need to be computed
from monocular images; a process that is well known to
be difficult and error prone in itself. We have developed (c)
sophisticated perceptual grouping methods to overcome
this difficulty [Mohan, 1989].

Our first experience with high level stereo was in the Figure 12: Results of a scene with multiple occlu-
context of analyzing buildings in aerial scenes. In such sions (a) left image (b) right image (c) Disparity
scenes, texture (on the roofs) is very sparse and dispar- output
ity changes discontinuously at the boundaries. We found
that using high level features (rectangles) was very ef-
fective for stereo processing of such scenes [Mohan and curate results for images of multiple occlusions and wide

Nevatia, 1989b]. We next investigated generalization of angle disparities. This is illustrated on figure 12.
this approach to scenes where the object shape is not
so constrained [Mohan and Nevatia, 1989b]. In this 2.3 3-D SHAPE FROM CONTOURS
work, we found that ribbons (defined by two sy: metri- Humans are able to readily perceive 3-D shape from a
cal curves with closures at the two ends) are an effective monocular image. Many cues are used in this process
method for organizing the curves in an image into higher such as shading, shadows and texture. However, we be-
level features and that these ribbons could be used for lieve that the most significant cue is the shape of the 2-D
stereo matching. This work, however, concentiated on contours. The process of inferring 3-D shape from con-
the grouping problem and not on development of a corn- tours, however, has proven to be a very difficult one. We
petent stereo system. believe that we have made a major advance in this area

In our recent work, we have been building on our per- and developed a theory that extends the range of shapes
ceptual grouping system to develup a stereo system. Fea- that can be analyzed significantly. Our theory relies on
A uCe .uchi as edgeis, curves, bynmltles, and ribbons observations of certain symmetries in the scene and we

which represent geometric structures of objects in the conjecture that only shapes having some symmetries are
scene are extracted from each image using perceptual percieved in 3-D by humans as well.
grouping. The grouping algorithms are siniiiar to those We define two types of symmetries that we call par-
described in [Mohan and Nevatia, 1989b] but several en- allel and mirror symmetries (the precise definitions are
hancemients have been incorporated. Hierarchy of fea- given in another paper in these proceedings [Ulupinar
tures from the left and right images are then matched and Nevatia, 1990b]. Given the observations of these
insing a relaxation network. Our method has shown ac- symmetries in some specific combination, we can infer
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some qualitative properties of surfaces and objects in
the scene, such as whether they are planar, have a zero-
Gaussian curvature surface, or are some specific classes
of generalized cylinders.

Further, the contours and the symmetries allow us to
formulate some constraints on the quantitative shape fo
the surfaces being viewed. The constraints that derive
purely from the geometry of the surface are, however,
not sufficient to compute the precise shape of the surface
and leave some degrees of freedom unconstrained. These
degrees of freedom can also be fixed by using some simple
perceptual properties.

Our technique is rather mathematical and hence dif-
ficult to summarize without introducing a good deal of
notation. Hence, here we only give references to the
more detailed work and show some examples. The ba-
sics of our method, and its applications to analysis of
zero-Gaussian curvature surfaces are given in [Ulupinar
and Nevatia, 1990a]. Figure 13 shows some examples
from this work. The first column of this figure shows
the input contours to the program, the middle column
shows the computed surface orientations as a "needle
diagram" and the last column shows the surface orienta-
tions by painting the surface with intensities that would
result from a Lambertian surface illuminated by a point
source. Extensions of our method to straight homoge-
neous generalized cylinders (SHGCs) and snakes (gener-
alized cylinders of constant cross-section) and some re-
sults are given in [Ulupmnar and Nevatia, 1990b].

We hope that these examples indicate the power and
range of our approach. We are in the process of further
developing the theory to apply to yet more complex ob-
jects. It should be noted that this technique assumes
that the appropriate contours and symmetries are given;
this is far from a trivial task. However, we are making
progress on detection of the appropriate symmetries in
other projects in our group [Mohan and Nevatia, 1989a;
Saint-Marc and Medioni, 1990].

2.4 SYMMETRY DETECTION """

Once edges are extracted, the resulting contours need
to be represented for further reasoning. Iconic repre-
sentations do not make the necessary information ex-
plicit: by definition edgels only capture very local prop-
erties of an image, and the inference of higher structures,
such as object boundaries, requires grouping operations.
We believe that such operations rely on basic and sim-
ple properties and various forms of symmetry (Mohan,
19891. The representation must therefore make explicit
differential properties of contours, such as tangent and
curvature. Furthermore, because of the variability in-
herent in the imaging process, the representation should
be tolera, ', to noise, partial occlusion, and perspective,
naturally -u:gesting segmented, local descriptors JRao
et al., 1987]. Figure 13: Sample contours, the needle images computed

If the world was composed of polyhedral objects alone, and their images after shading the object with the com-
we would know to expect only straight line segments puted orientation at every point on the surface. The
in images, and polygonal approxim&tions would be ap- last object has a non planar cross section and thus it is
propriate. In many cases, such an approximation is in- segmented into two planar cross section objects before
deed sufficient, as demonstrated by several applications processing.
such as stereo [Medioni and Nevatia, 1985], aerial im-
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age understanding [Huertas and Nevatia, 1988a] or ob- * automatic acquisition of models
ject recognition [Mundy et al., 1988; Stein and Medioni, For the problem of recognition of multiple flat objects
1990a), but is unable to capture curvature information, in a cluttered environment from an arbitrary view-
since it is a first order approximation. Also, if a contour point [Stein and Medioni, 1990a], the models are ac-
is smooth, the number of points required to approximate quired automatically and initially approximated by poly-
it may be quite large, and the exact position of tire points guith ultipl fintally approbusted byops
somewhat unrelated to tire contour itself. These issues gons with multiple line tolerances for robustness. Groupshavebee tacledby he gaphcs cmmuityin tre on- of consecutive linear segments (super segments) are thenhave been tackled by the graphics community in the con- quantized with a Gray code and entered into a hash ta-
text of design, and we propose to use some of the re- quanTie d th ycenan entered inahshasuiting tools, particularly approximating B-splines. The ble. This provides the essential mechanism for indexing
sulting trepresentation is comipact and faiflto The and fast retrieval. Once the data base of all models is

resulting da ta io n is om and faithful touthe built, the recognition proceeds by segmenting the scene
original data for smooth or piecewise smooth contours, into a polygonal approximation; the Gray code for each

opn is alsery wsuper segment retrieves model hypotheses from the hash
It is also very well suited for the detection of symme- table. Hypotheses are clustered if they are mutually

tries. Whereas it is easy to define symmetry between consistent, and represent the instance of a model. Fi-
two infinite straight lines, the concept of symmetry be- nlly, the ns tnefined. Tistween curves is harder to define: Rosenfeld [Refld, nally, the estimate of the transformation is refined. This

s ae ount ofe (osened, methodology allows us to recognize models in the pres-
1986) provides a lucid account of the differences be- ence of noise, occlusion, scale, rotation, translation and
tween Blum's [Blurn, 19671, Brooks' [Brooks, 1981], and weak perspective. Unlike most of the current systems,
Brady's [Asada and Brady, 1984] definitions, and a more its complexity grows as O(kN) when N is the number
recent paper by Ponce [Ponce, 1988) gives further corn- of models, and k < 1.
parisons. Here, we are interested not in local symme- of mod e an s « 1.
tries which provide skeletal shape primitives, but rather An example of successful recognition is shown in fig-
in symmetries which help to infer shape from contour: ure 18 in the aerial image section.
Nevatia and Ulupinar [Uluplnar and Nevatia, 1988 pos- For the recognition of 3-D objects from 3-D data, we

tulate that they are skewed and parallel, use a data structure called a splash, which describes the

These can be computed efficiently using our B-spline variation of surface normals in a circular neighborhood of

representation. The main advantages are the low com- a point, encoded as a super segment. From then on, the

putational complexity (0(n), where n is the number matching methodology is identical to the 2-D case. The

of spline segments instead of the number of points) of full details can be found in [Stein and Medioni, 1990b].

the process and the stability of the results. Figure 14
shows an example of parallel symmetry detection using a 3 AERIAL IMAGE ANALYSIS
quadratic B-spline approximation starting from the two
digital curves displayed in figure 14(a). We have three projects for the analysis of images of aerial

As an application, for the very specific case of a torus, scenes including efforts to develop modules that exhibit
the detection of parallel symmetries allows us to infer the high performance by themselves, the integration of mod-
3-D orientation of the object in a much simpler fashion ules into systems, and the formulation of a theory to de-

than proposed in [Ponce and Kriegmnan, 1989), as shown fine the underlying "visual abilities" required and useful

on figure 15. for extraction of cultural features from images of aerial
scenes:

2.5 MATCHING * The focus of our work in the past has been the

Object recognition involves identifying a correspondence development of modules for detection and decsrip-
between part of an image and a particular view of tion of cultural (man-made) features present in
a known object. This requires matching the image aerial scenes such as the transportation network
against stored object models to determine if any of (fig. 16a,b) [Huertas et al., 1990; Huertas et al.,
the models could produce a portion of the image. We 1989], building structures (fig. 17a,b,c) [Huertas
have actively promoted the idea that higher level fea- and Nevatia, 1988b; Mohan and Nevatia, 1988;
tures organized in graphs are the key to recognition Mohan, 1989] and aircraft (fig. 18a,b,c) [Stein and
in the presence of occlusion and photometric variations Medioni, 1990a]. Below we give an example of a
[Nevatia and Price, 1982; Medioni and Nevatia, 1984; module for pier and ships detection from the image
Fan et al., 1989]. Recently, we have addressed the is- of a harbor complex.
sues involved in recognizing objects in a cluttered envi- These modules typically rely on perceptual grouping
ronment when the number of models is large. We have of primitive geometric features (lines, anti-parallels,
been able to show excelcnt csults for the recognition of junctions, portions of rectangles, etc) extracted
flat objects under affine transform [Stein and Medioni, from the images, to detect the objects. Modules
1990aj, and of 3-D objects given 3-D data [Stein and for mobile objects such as aircraft and ships on the
Medioni, 1990b]. The keys to our approach are other hand, use models and rely on scale and rota-

* a redundant representation tion invariant matching techniques to detect the ob-

SGray code to measure semiantic differenice jects. Current work on 2-D and 3-D matching tech-
niques is covered in detail in other papers in these

* hash tables for fast retrieval proceedings [Stein and Medioni, 1990b] or recent
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(a) Digital Curves (b) B-spline Approximation

(c) Lines of Synunetry (d) Symmetry Axis

Figure 14: Detection of Elementary Parallel Symmetries

~X

(a) Intensity Image (b) Parallel Symmetry (c) Positioning

(d) Intensity Image (e) Parallel Synumetry (f) Positioning

Figure 15: Positioning of a Torus
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(a) JFK Airport (b) JFK Runways

Figure 16: Runway detection module

conference papers [Stein and Medioni, 1990a]. Typ- 1. The available sources of knowledge, both generic
ically these methods are applied at a stage where we and domain specific. We know for instance that
have a great deal of confidence that these objects are airport runways are straight (geometry), and that
(or should be) present in the image. For instance, they must have standard markings (object specific)
after detection of runways, taxiways, and buildings, applied to the surfaces for safety and to aid pilots.
we can then look for aircraft in the appropriate ar- 2. The available image resolution and quality. For ex-
eas. These in turn, help reinforce the runway and ampe it imre desoleto look for ea-tiwyhypotheses made as well as help determine ample, it is more desirable to look for global fea-
taxiway htures, such as harbor piers, at lower resolutions and
the funtionality of some of the buildings. then apply the model-to-feature matching to small

" A second portion of our work has concentrated on portions of high resolution images to locate the ships
devising a system that manages the modules and (see below). Why? Because the pier areas are
integrates the results of the modules thus providing salient features, a collection of macro features ar-
local and global context as well as higher level rea- ranged in some simple geometric fashion along the
soning suitable for the description of an entire com- boundary of two distinct regions, land and water.
plex or scene. In the past we have concentrated in The detection of ships, and perhaps their classifi-
the domain of large commercial airports, and devel- cation by type on the other hand, requires higher
oped modules for detecting major structures. Now resolution and more symbolic processing.
we are investigating the interaction of these mod-
ules. We hope to report on this work in a future 3. Measurements and assertions as a function of scale.paper. What can or should be measured at a given scale?

Oupr. tInvariably we can get bogged down into considering
" Our third project concentrates on the development everything possible at all scales, and build complex

of general techiques. These include devising a tax- and massive data structures. However, this is often
onomy of perceptual grouping operations and, the unreasonable for mapping and photointerpret " n
development of a 'language for describing tasks in tasks where the image content and typical
terms of grouping operations. We expand on these tions quickly make some approaches unfe,
topics in the following Sections.

The characterization of such hierarchie-
3.1 DEVELOPMENT OF GENERAL of our work and involves two fi'.

TECHNIQUES development of a formal langi

We believe that a hierarchy of processing steps is the and photointerpretation (or o.u , L
appropriate approach for aerial image understanding, opment of a grouping theory to r I
where the levels of the hiera.chy are chiefly determined abilities" required to accomplis, ta! .Vc

by three factors: that many of these visual abilit. "an - l...ed in
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terms of generalized classes of perceptual grouping op- include the perception landmarks (first, detect border
erations that can be applied in parallel. Eventually the between land and water region, then detect pier areas,
task descriptions should be given in terms of (or, corn- next detect ships in the neighborhood of pier areas, last
piled into) a sequence of alternating abstractions in the identify ships.)
representation of the features and application of classes
of grouping operations. We explore some of these ideas 3.2 AN EXAMPLE: ANALYSIS OF
below using as an example the task to "detect pier areas HARBOR COMPLEXES
and ships" from an image of a portion of a harbor aerial In analyzing a harbor or port complex we want to be able
scene. to describe the buildings in the port facility, the trans-

Most of this work would fit at the "middle-level" level portation network around the facilities, and of course
of perception. The "connection" with the lower levels the pier areas and the ships in the area. In our example
of processing, is reflected by the fact that the grouping we concentrate on the piers and ships and the grouping
processes are more "non-purposive", and thus should be fields and grouping operations that lead to the detection
implemented to run in parallel. The connection to higher of the pier areas. We then briefly discuss ship detection
levels of processing (reasoning about segmented objects, and classification.
where an object is a single, functionally identifiable 3-D What do we need to know about port and harbor fa-
object, as determined by the task at hand) is reflected cilities to detect the piers and describe the ships? That
by grouping processes that are more purposive, operate the planning and design of port and harbor facilities is
on increasingly abstract features, and are sequential in strongly dependent on the characteristics of the ships to
nature. be served, and the type of cargo to be handled [Wright

Our group has for a number of years developed meth- and Ashford, 1989]. To eventually describe the scene
ods and techniques involving perceptual organization. completely we would have to know a lot of things about
Groupings of near, parallel, collinear, co-curvilinear, and the ships: Main dimensions (length, beam, draft), cargo-
symmetric features have been used to represent, segment carrying capacity, cargo-handling gear, types of cargo
and extract parts or whole objects from aerial images to units, shape, hull strength and motion characteristics,
images of office scenes. For an excellent reference on our mooring equipment, maneuverability, and so on.
most recent work see [Mohan, 1989]. To detect only the pier areas (where later we look for

In the recent past we have begun work towards the de- ships) we only need the upper bounds on ship dimen-
velopment of a taxonomy for grouping operations, and sions and the image resolution. These parameters are
here we only introduce informally the notion of group- easily available a-priori and chiefly determine the extent
ing fields, a general tool for describing mathematically and strength of the grouping fields associated with the
the visual abilities that involve perceptual groupings of features. Let us define a some grouping classes useful for
visual primitives closer to the lower and middle levels of this task:
perception. These are analogous to the ability that hu-
mans have to, presumably preattentively, acquire sensa- * Proximity-0D (PxOD): Groups nearby features
tions that capture, nearly instantaneously, fundamental without regard for the dimensions of the features.
and basic geometric arrangements of image elements in Each feature, whether a dot, a line, a ship, or an-
a reflexive manner. other suitable represented group, generates a group-

Briefly, the notion of a grouping field is analogous to ing field about its center of mass. The extent of the
force fields in nature. When a visual feature, due to field (typically, circularly symetric) is determined
its size, shape, or other property induce a perceptual by field of view or by the task at hand as a fune-
grouping with other features in the field of view, we say tion of image resolution. Intersecting fields form a
that a grouping field exists around it. Conversely, any group with the same extent and has a new center
visual feature in the field of view generates a grouping of mass. The strength of the filed is proportional
field which is a function f the feature properties and can to the "mass" (a function of the complexity of the
be influenced by the t'ask at hand. feature), and inversely proportional to the square

We believe that grouping fields will be useful in deal- of the distance from the feature's center of mass.
ing with many of the problems pointed out in the recent A scaling resolution constant is introduced so th..
past in previous work by [Lowe, 1985; Lowe and Binford, the same two features at two different resolutions
1983; Lowe and Binford, 1982; Witkin and Tenemba" m, attract each other with the same force.
1983; Stevens and Brookes, 19871 and others, attempting 9 Proximity-1D (PxlD): Groups nearby features
to derive computational approaches to perceptual orga- v.here a 1D attribute is dominant and can be used
nization abilities. to constraint membership. The strength of the field

The combinatoriai explosions that arise in AteatiAi i6 in this case would be proportion l, and a f,inrinn
to establish relationhips among low level features purely of the attribute.
on the basis of attribute processing is a major problem.
For photointerpretation tasks, at least, it seems that the Proximity-ND (PxND): Groups nearby features
way to avoid this is to explore the generality aspects top- wa tt e s
down, that is, by describing what we want, say detect layer.
piers and ships, and with our own experienced knowl- * Parallelism with overlap (PlwO): Groups features
edge of piers and ships, generate a task description that that are parallel to each other with respect to their
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(a) Simple groupings (b) Complex groupings (c) Feature/Area stereo

Figure 17: Building detection modules

(a) LAX Airport (b) Canny Edges (c) Detected Aircraft

Figure 18: 2-D Matcher applied to image edges for aircraft detection

dominant orientations. Each allowed orientation de- determines a layer for field intersection. The steps
termines a layer where the fields of each feature in a ladder have CoOD.
having that orientation is active. Intersecting fields 9 Collinearity-lD (ColD): Groups two or more fea-
give for each o:ientation all the features parallel to tures with respect to their dominant orientation.
a given feature. The fields themselves have an el- Each feature determines the extent its GF, also an
liptical shape with its minor axis equivalent to the ellipse with high eccentricity. The eccentricity de-
length of the feature in the dominant orientation, termines the allowed tolerance in collinearity, and
and its major axis equivalent to the extent of the the extent of the field is equivalent to the extent of
field of view or, constrained by the task at hand. the field of view, or constrained by the task at hand.
Note that allowing for angle tolerances is equivalent The orientation of each feature determines a layer
to the intersection of fields across field layers. for field intersection. The fragments of an airport

* Parallelism with no overlap (PlwnO): The same as runway have ColD.
above with circularly symmetric fields. Let us now apply two of these definitions to our pier

* Collinearity-0D (CoOD): Groups three or more fea- example:
tures without regard for the spatial extent of the Figure 19 shows an image of a portion of the U.S.
feature. Any two of the three features determine Navy facilities in San Diego. We know that we should
the extent of the grouping field, typically an ellipse expect to see mostly military ships that may require long
with high eccentricity, centered about the center of term docking, thus allowing for double or triple docking.
mass of the feature. The eccentricity determines the We know the image resolution and the approximate ship
allowed tolerance in collinearity, and the extent of dimensions, thus we know the minimum size of the piers.
the field is equivalent to the extent of the field of The following the levels of the desired task:
view. The orientation of the two selected features

53



~~~F, J~"\

'Pt 
%

Figure 19: U.S. Navy Facility (512x512 image) Figure 20: Line Segments and anti-parallels

0: Analyze Harbor Scene. then expect that most of the line segments correspond-

1: Detect and classify buildings, ing to sides of piers, sides of ships, shadows, and so on
1: Detect and classify access roads, in the neighborhood of the piers would result in many
1: Detect and classify ships. apars. The constraint on the range of separations be-
2: Detect ships. tween pair of segments (equivalent to the width of the
2: Locate ship repair/construction areas. resulting apar) is a function of image resolution and ship
3: Locate ships. dimensions. The apars in our example are shown as thin
4: Classify ships. lines in fig. 20 obtained also using LINEAR.

2: Locate Pier areas.
3: Locate boundary between land and water.
3: Locate ''land"' structures in water. Detect Pier Areas: The apars are easily classified
3: Detect pier areas. into land or water apar according to the detected wa-
3: Locate ships. ter region. Subsequent processing operates on the land
4: Classify ships. apars only. Next, we apply PxOD grouping to the land

3: Describe ships apars. The extent of the fields is task-dependent and
2: Describe piers. does not have to be precisely determined. At the res-

1: Describe piers and ships by class. olution in our example (about 8 meters per pixel), the
0: Describe harbor scene. fields radii is roughly equivalent to a pier width plus the

We now describe the task at level 2, Locate Pier Areas: width of three destroyers on both sides of the piers, or
Locate Boundary between Land and Water: We about 16 pixels.

detect the boundary between land and water regions au- These fields (fig. 21) occupy a single layer. Each field
tomatically using our implementation of [Ohlander et al., intersection operation shifts the center of mass of the
1978]. In this example we arbitrarily selected the largest group, however the field associated with the group has
region to represent the water region. Next we approxi- the same properties as the individual apar fields. We
mate these boundary by piecewise linear segments (thick then select the groups so that apar membership is ex-
lines in fig. 20) using LINEAR, our implementation of clusive by extracting the groups in order of decreasing
[Nevatia and Babu, 1980]. mass (number of apars). The resulting groups (fields)

represent potential pier fragments (fig. 22.)
Locate "land" Structures in Water: Contrary At any resolution, we expect that the lines be frag-

to :::any natural st(uktuLes on the shores, man-made mcitcd and incomplete, due to inefficiency in the line
structures appear highly geometric. We expect that detection process or due to real structures in the image.
most piers appear as linear structures attached to the Thus, we expect that the resulting groups represent pier
shore, and in the water. Their linearity indicates that fragments rather than complete pier areas. Since we ex-
the piers or portions of piers should be characterized pect the pier sections to be straight, the next step calls
by anti-parallel pairs of segments of opposing contrast for collinearity grouping to join possible fragmented pier
[Nevatia and Babu, 1980], or apars for short. Ships are areas. Note that the groups in fig. 22 are easily perceived
typically docked parallel and adjacent to the piers. We as being collinear.
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Figure 21: PxOD - Proximity grouping fields Figure 23: Potential pier fragments and ColD fields

Figure 22: Selected proximity groups Figure 24: Detected Pier Areas (low resolution)

We choose to represent the groups of apars by apars by apars, which in turn represent potential pier areas
as well, having a length and width equal to the diameter (see fig. 24). These are described by their approximate
of the final field. The orientation of the apar is given by length and position, and are used to extract image win-
the dominant orientation (the largest peak in the length- dows from a high resolution image of the scene where we
weighted histogram of the orientation) of the apars in the look for ships.
group (see arrows in fig 23.)

Next we apply Cold to the pier area fragments. The Locate ships: We have performed some preliminary
longest piers are about three times the length of a de- experiments to detect the ships in the high resolution
stroyer thus we allow the extent of the elliptic fields (see windows using the same matching technique we have
fig. 23) to be up to three times the apars, and have a used in the past to detect aircraft (Stein and Medioni,
width equivalent to the apar width (or group radius). 1990b]. One of these windows is shown in figure 25a,

The result of the grouping is then represented, again and the corresponding adaptively smoothed [Chen, 19891
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boundaries in figure 25b. Three coarse-to-fine models 4.1 SPATIO-TEMPORAL ANALYSIS
of a single and a double destroyer group were matched
against these edges to obtain the detected ships in figures The goal of our work in spatio-temporal analysis is to
25c,d. generate a dense optic flow map from a motion sequence.

Because of the sparseness of OD features (corners) or 1D
Classify ships: We consider our ship detection re- features (curves), we feel 2D features (regions) are more

suits preliminary. The simplicity of the ships shape be- likely to produce dense motion estimates.
comes a disadvantage to the matching technique. The
double ship configurations are easier to match for the Early work in spatio-temporal analysis includes that
same reason. For ship identification better ship bound- of [Bolles et al., 1987]. We began our work with [Peng
aries are required. We plan to apply a technique for and Medioni, 1988; Peng and Medioni, 19891, which ex-
boundary refinement using B-snakes [Menet et al., 1990]. tracts paths in slices taken from image sequences in the
The matching technique can then be applied with finer temporal direction (i.e. paths of an object point through
models for more accurate ship classification. Other al- time and space). The slopes of the paths carry important
ternatives for ship detection include stereo processing of motion information, the flow normal to the contour can
these high resolution windows with a area/feature based be resolved by combining path slopes extracted from dif-
technique [Cochran and Medioni, 1989a), also followed ferent slicing orientations. The drawback of this method
by boundary refinement and 2D matching. is that we only compute motion estimates on contour

points.
3.3 FUTURE WORK If we examine the slices more carefully, some pairs of
We plan to spend some time in the development of the paths serve as the non-parallel sides of trapezoidal re-
notion of grouping fields and grouping classes, in con- gions. Each such region corresponds to a collection of
junction with the development of a task description lan- chords of a moving object seen in each image in the se-
guage for mapping and photointerpretation tasks. To quence. If we assume that the velocity changes smoothly
be useful we believe that grouping field generation and between two paths (i.e. between t-do points on an ob-
manipulation should be amenable for parallel implemen- ject), we generate flow valuse for all pixels in the region
tation, and hopefully can be extended to other domains, by interpolation.

4 MOTION ANALYSIS Assuming the motion in the scene is approximated by
piecewise translational motion along the axis of the cam-

We have a number of projects in the analysis of se- era, and the focus of expansion (FOE) position is given,
quences of images including analysis of closely spaced the optical flow direction of each image element can be
images, feature based analysis, motion estimation tech- determined. If slices are cut at the FOE along the di-
niques, and navigation using recognition of visual fea- rection radiating from the FOE and image points are
tures. Autonomous navigation provides the context for matched in the slice, the match disparities are then the
much of the work, though the techniques have a much magnitude of the velocity. This, when combined with
broader utility. the interpolation, produces a dense optic flow map.

Motion analysis using feature point analysis tech- Since the spatio-temporal images are registered in
niques and multiple frames forms the central focus of a Cartesian coordinate system, cutting radial slices is
our work. This approach involves extracting a set of equivalent to transforming the images into a polar coor-
consistent features from a sequence of images, finding dinate system, This causes resolution problems: if we
the corresponding features in consecutive frames, and fi- linate sem Thcases e sotion prb es faw
nally computing the three-dimensional motion based on slice the sequence densely enough so that all pixels far
the correspondences, which also provides an estimate of from the FOE are in at least one slice then pixels close
the structure of the moving objects or scene. These are to the FOE are included in many slices.
often described separately or as sequential operations, We devised a parallel algorithm to approximate the
but integration into a single system and feedback to ear- complete radial slicing, which simplifies this data ac-
lier processing is a major part of the work. cess problem. We only take slices at each pixel along

Our effort includes several separate and related the four directions: horizontal, vertical, 450, and -450.
projects including: analysis of closely spaced images Using the interpolation step mentioned above, each
(spatio-temporal analysis) using features such as lines, pixel would have at most four estimates of the veloc-
Lorners, and regions to extract three-dimensional struc- ity components along different directions. Using the
ture information, matching edge based contours in a se- method presented earlier in [Peng and Medioni, 1988;
quence of images, integrating several feature detection Peng and Medioni, 1989], the normal velocity of the pixel
and matching techniques to derive three-dimensional is recovered. With both the motion direction (from the
motion and structure estimates, study of the formulation FOE position) and normal velocity (from the slice anal-
of the motion estimation problem, detection of moving ysis), we are able to compute the velocity of the pixel.
objects in a scene with a moving observer, and the visual From our experiments, the results from both approached
guidance of a mobile robot. This overview discusses the are very similar. Results of using this technique are
current status of the research in these areas. Some of shown in figure 26 and 27 showing one frame of a se-
these a are covered in more detail in other papers in this quence, the computed velocity for the optical flow and
proceedings or in other recent conference papers. the typical optical flow direction diagram.

56



(a) Ships 160x160 image window (b) Canny edges

e double

sW e ~ u bl \

(c) Single ship match (d) Double ship inatch

Figure 25: Fast 2D model-based matcher applied to edges of ships

~ Z

KV

(a) First Frame (b) Velocity (c) Needle Diagram

Figure 26: SRI Sequence: Hallway
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(a) First Frame (b) Velocity (c) Needle Diagram

Figure 27: SRI Sequence: Zoom

4.2 FEATURE-BASED MOTION ally depend on object size, but since this step comes

CORRESPONDENCE before object segmentation, we instead use a fixed frac-

This contour-based matching technique is developed tion of the image size. Each match is assigned a ap-

from our previously reported work [Gazit and Medioni, proving length score which is a combination of the to-

1988; Gazit and Medioni, 1989]. The major changes are tal length of supporting neighboring matches and their

that multiple frame matches need not extend through number; a non-approving length score computed from the

the entire sequence of images, thus allowing for occlu- non-supporting neighbor matches; and a shape similarity

sion and (re)appearance of points midway through the score. Using these three measures together allows us to

sequence; and the use of neighborhood and length to dis- detect incorrect matches in most of the cases, since they

tinguish between correct and incorrect matches. These are short, have little neighborhood support and a lot of

changes have resulted in a significant improvement in the neighborhood rejection, as they represent an inconsistent

quality of the matches. motion. A notable exception to this occurs with straight

A brief description of the contour matching method line contours, which are easy to detect and for which we

is: A super-s~qment is an object described both as a list have a partial solution, and repetitive structures.

of connected edgels and a list of connected line-segments We apply this algorithm hierarchically for different
(that approximate the edgel contour). The algorithm scales for better performance [Gazit and Medioni, 1989].

tries to match sections of super-segments. Since a sin- We also combine pairwise matches into multiple-frame
gle object may correspond to several different super- matches by a tracking the matching sections through the

segments and a single super-segment may include more sequence. If section P in frame 1 matches section P2 ;n

than one object, the problem is to identify the matching frame 2, Q2 in frame 2 matches Q3 in frame 3 and P2

super-segment sections. We base our initial matching overlap Q2, we can compute a new match (Ri, R 2 , R 3)

crterion only on shape similarity and prozimity (with a corresponding to the overlapping part. This is applied

maximum allowable disparity). An initial approxima- to all frames in the image sequence.
tion is found by first matching the line-segments and

combining matches along each super-segment. Next we The resulting section matches can be used for 3D mo-

compute the section matches themselves. In order to tion estimation or motion segmentation. We are cur-

find appropriate matching sections, we break the line- rently working on the latter case.

segment approximations used in the previous stage into As an example, a sequence consisting of 10 250 X 512

arbitrary small sections and match them (along the pos- frames of a toy jeep and train is given in figure 28. We

sibly matching section) by maximizing the similarity be- only show the last two frames and the resulting multiple

tween the matching sections as well as the length (in matches. Because the motion of the objects overlap, and

points) of the matching sections. The result is a very also to allow for better visability, we manually removed

large set of matches, the great majority of which are the background match and separated the matches cot-

spurious. The main thrust of the work is in how to deal responding to the train and those corresponding to the

with these spurious matches. 
jeep.

Our solution to distinguish between incorrect and cor-

rect matches is based on the assumption that correct In this scene the camera is stationary, but both the

matches will usually either be long or will have approv- jeep and the train are moving. This is a difficult scene

ing neighbors, which are neighbur matches representing as the motion is very large (disparity ranges from 0 to

a similar motion. The neighborhood size should ide- 150 pixels) and the scene contains occlusion.

58



Nx- i:

a.

T\

(a) First Frame (b) Last Frame

(c) Multipic Matches of the jeep

.- - ... .. . . . . .... .... . .. ...

A. ..........

....... ...... ; -

(d) Multiple Matches of the train

Figtire 28: Jeep) and train imiage - Multiple Matches

59



4.3 DETECTING MOVING OBJECTS * to allow estimation of "higher order derivatives" of
FROM A MOVING PLATFORM the motion.

Detecting moving objects from a moving platform is a In our recent work, we have developed and imple-
difficult problem, because the observer motion causes mented two algorithms to solve the SFM problem that
stationary objects to appear to move. Thus, we must make different assumptions concerning smoothness and
separate genuine motion from the apparent motion of type of motion. The first is a closed form algorithm that
the stationary environment. We have developed a sys- models the relative motion between the camera and the
tem that successfully detects moving objects within a se- object or environment as a uniform 3D acceleration. The
quence of real images taken from an observation vehicle second is an iterative algorithm that can recover arbi-
traveling along a road. Unlike other systems, ours does trary rigid transformations between frames. The closed
not require densely-sampled imagery, meaning that ob- form algorithm is currently being used to generate initial
jects can move many pixels per frame with no detrimen- guesses for the iterative algorithm when the rotation is
tal effects. Nor does the system rely on critical param- known to be small.
eter settings. It is computationally efficient, and highly The two algorithms share some characteristics: Both
suited to parallel implementation. It requires no object assume that features are matched through at least three
matching or recognition, and can thus detect moving ob- frames. The image plane position of each feature is mod-
jects that are partially occluded or that are camouflaged. eled as having a bivariate Gaussian error distribution,

When an observer moves in a straight line, toward with the ercor coefficients provided as input. Although
a distant point in space, stationary objects in the en- ,he algorithms are developed using point features, they
vironment appear to move along paths radiating from can process both point and line features. A given feature
that point. The point from which the paths radiate is is not required to be visible in every frame, so the algo-
called the focus of expansion (FOE). We assume that rithms can process features that become (un)occluded
the FOE, and camera orientation, are relatively stable during the image sequence. As output, both algorithms
between successive images (i.e., the observer must not generate the 3D location of each feature in each frame,
sharply turn or tilt between images). along with the motion parameters.

Tro simplify the problem, we first perform a Coin- The closed form algorithm models the motion as a
plex Logarithmic Mapping (CLM) a suggested by [Ca- uniform 3D acceleration. It minimizes a norm that is
vanaugh, 1978; Weiman and Chaikin, 1979; Jain, 1984). closely related to the maximum-likelihood image plane
This converts the problem from one of detecting a com- error norm subject to the constraint that the mean inter-
plex motion along both the X and Y axes, to one of frame displacement must equal one. Under this formu-
detecting motion along an angular axis, with stationary lation, the 3D point positions are linear functions of the
objects moving along the other axis. motion parameters, and the motion parameters can be

To detect the angular motion in CLM space, we have determined by solving a small eigenvalue problem. The
developed a novel "moving-edge dete.ftor," which oper- computational complexity of the algorithm is linear in
ates on successive images and prodilces a map contain- the number of features being tracked times the number
ing all pixels on the edge of regions that are moving of frames and takes about 0.43 seconds on a Sun 3/280
relative to the stationary background. This map is then for 8 points in 11 frames.
thresholded to produce detected movement. Preliminary The iterative algorithm solves the SFM problem as as
results indicate that, once the threshold is raised high unconstrained minimization problem. The function to
enough to eliminate false alarms, it can be increased by be minimized consists of 3 (classes of) terms:
a factor of five and still properly detect moving objects. 1, the image plane error or a more or less convex ap-

The resulting detected movement is then transformed proximation to it,
back into the rectangular reference frame, and overlaid 2. terms which bias the motion to be chronogeneous
upon the original image to highlight the detected objects. or some subclass of chronogeneous motion, and
The results are presented in more detail in another paper
in these proceeciings[Frazier and Nevatia, 1990]. This 3. a term which imposes a specific scale on the solu-
technique depends heavily on the correct computation tion.
of the FOE %nd very looscly on the movement threshold The exact set of terms to be used is still under inves-
value. tigation. Seemingly minor changes in the form of a term

may dramatically alter the convergence properties of the
4.4 MOTION .ESTIMATION algorithm. The algorithm is currently very slow because
At USC, we continue an exploration of the multiframe analytic derivatives have not been programmed, and a
structure from motion problem using feature matches. quasi-Newton method with a finite difference gradient is
This work assumes a central projection pinhole camera being used to do the optimization.
with no smoothness assumptions imposed concering ob-
ject surfaces. The usc of multiple (as opposed to two) 4.5 INTEGRATED SYSTEM FOR MOTION
frames is desirable for several reasons: We have continued to develop and use an integrated sys-

tem for testing each of the subsystems of the motion
Sto increase the robustness of the solution, analysis system (segmentation, feature extraction and

v to allow recovery of stiucture/motion with fewer matching, motion estimation, motion feedback to match-
features being tracked, and ing and coordination). The results of each subsystem is
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saved in a single data structure and the coordination structure if necessary and would choose which algorithm
module controls exchange of information between sub- to use, according to the characteristics of the image se-
systems. The integrated system is now being used to quence. Finally, we intend to strengthen robustness to
generate a rough description of three-dimensional struc- work well with reasonable amounts of noise for general
ture of the environment, using region-based matches re- motion analysis.
fined by corner matches over multiple frames. This work
is described in more detail in these proceedings in [Kim 4.6 MOBILE PLATFORM
and Price, 19901. We recently acquired a Denning mobile robot for both in-

Feature matching is done in a coarse-to-fine manner to door and outdoor experimentation. The initial phase of
reduce search space and enhance stability. Corner-based experimentation has dealt with basic control and naviga-
matching for a region is guided by the motion computed tion issues but the goals include visual feature navigation
for the centers of mass of the matched regions and by and a platform for testing our other motion algorithms.
the constraint that matching corners are on the same We do not intend to work on real-time (high speed) con-
region. This Pfllows large disparities between images and trol, which would be possible with additional special pur-
different motions for each of the regions. Corner-based pose computers, but to develop high-performance anal-
matching is performed both in the forward and reverse ysis algorithms. The initial effort has included:
directions to decrease errors in matching. * implementing an obstacle avoidance routine using

We have developed a translation dominant motion the range data provided by the 24 ultrasonic sensors
analysis system as an additional feature of the general of the robot, and
motion analysis system. The basic assumptions are that e building a simple planner allowing the robot to nav-
each object in the scene is undergoing a translation dom- igate indoors.
inant motion and that an object may (or may not) be
in coherent motion with some of the others. An approx- An obstacle in front of or on the sides of the robot is
imate FOE (focus of expansion) using a LMSE (least detected by checking the ultrasonic sensors in near the
mean square error) estimation and motion parameters direction of motion. If there is an obstacle, the robot
are estimated for each region and then depth is computed turns toward the direction of the first sensor where the
for the corners of the region. Each computed result is path is clear. This is intended as a low-level survival
associated with a reliability factor, which is a measure of process rather than a major navigational tool.
the closeness to the computed motion to a translational The map of the robot world is represented by a hier-
motion. Regions with a high reliability are given high archical data structure that includes buildings which are
priorities in the analysis and their results act as a guide defined by a set of floors. Each floor has hall-ways, a
in the analysis of the less reliable regions by giving some set of rooms and a set of walls. Each wall may include
constraints to the motion parameters. doors.

This motion analysis system was tested for two real In the first phase, the robot is assigned to navigate in

image sequences. A camera is moving straight along a the hall-way of a floor. The ideal trajectory is the mid-

hallway in one of them, and in the other sequence, a car line between the two walls of the hall-way. The planner

is moving from the right side of the image to the other first computes a list of the axis of symmetry of each hall-

end. With a reasonable amount of noise, we could obtain way path. Each axis is limited to the common part of

an approximate environmental depth map for most of the pair of walls, must be inside the external polygon of

the important regions in the scene. Depth maps with the hall-way, but not inside any of its internal polygons.

region-corner matchings are shown in [Kim and Price, A merging step produces the axes shown in dashed lines

1990] elsewhere in these proceedings. on figure 29.
From the extremes and the intersections points ofExperiments show some weak points for this system. these axes, a graph of trajectory control points is con-

First, the use of the FOE analysis for general motion se he ph of thecrobot o n i ck

(translation + rotation) is sensitive to noise and thus the strcedande paes o the robt, how by thick lck

computed motion parameters are numerically unstable. circles and lines on the figure, from its current location

In the case of translation dominant motion, an accurate toward a goal door is then computed from the graph

estimation of FOE is essential for reliable results. Sec- representation. Finally, the list of path control points

ond, information of depth is lost along a smooth bound- is given to the navigation routine that orients the robot
ary even when it forms a great part of a region since fine toward the next path control point, unless the robot is

structure is determined by corner matchings. bypassing an obstacle. We will be incorporating visual
object recognition into the navigation system but will

We will continue to add more features to our inte- continue to use this low-level guidance and sonar obsta-
grated system. First, we plan to add more feedback clc a;oidancc bctween visual control points.
links within the integrated system so that an erroneous
operation of early stages is detected and corrected by 5 PARALLEL PROCESSING
monitoring the results of later stages. This way, motion
analysis is done as a part of a cooperative process rather As shown in the previous sections, we are making good
than an isolated stage of a sequential process. Second, progress in solving some difficult image understanding
our system is to be expanded such that it can handle problems. However, one major obstacle remains in ap-
dynamic data and algorithms. The system would de- plying our methods in practice, namely that of process-
cide to continue to analyze intermediate frames in a tree ing speed. Our algorithms, when run on a conventional
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Figure 29: Floor map, Symmetry axis, Path and robot with real sonar data.

serial computer (such as a Symbolics 3600 or a Sun 3 or ing their mapping onto suitable parallel architectures.
4 series) can take several minutes or even hours to corn- Our goal is not only to map these specific algorithms,
plete. We believe that this long execution time and its but also to learn how to parallelize classes of symbolic
related computational complexity are inherent in the so- algorithms. One specific algorithm we have focused on is
lution to the problems and hence %e must devise ways of a "relaxation labelling" algorithm [Medioni and Nevatia,
applying additional computing power to our algorithms. 1984]. We have found this algorithm to be useful in a
This naturally leads to the study of parallel computa- variety of tasks in our work at USC; relaxation labelling
tion. has also been used by many other researchers elsewhere

There has been significant recent activity in apply- [Rosenfeld et al., 1976].
ing parallel processing to image understanding problems. We have obtained several efficient parallel implemen-
However, much of this activity focuses on numerical corn- tations of discrete relaxation techniques on a class of
putations applied to iconic data structures. While such parallel architectures [Lin and Prasanna Kumar, 1990).
computations are necessary and useful, they are not Using these approaches, stereo matching and other la-
nearly oufficient. Our approach to image understanding beling problems can be solved. First, a faster sequential
is firmly based on use of symbolic representations and algorithm compared to traditional approaches for dis-
symbolic comiputativons. ,ualilwwziii&g b cUpIL .... itatIhons crete Uelaxatilvk i. dtvt(jl l. T'l. al._.ithm " thcn

is significantly more complex than for iconic, numerical parallelized and mapped onto a bus-connected parallel
computations and therefore, is the focus of our parallel architecture. This i.,apping leads to a parallel execu-
processing research. tion time of O(nm) using nm processors for consistently

We have chosen some specific and representative labeling n objects with m labels. Two versions of this
medium and high level image understanding algorithms design are developed; one for special-purpose VLSI im-
that we have found to be of general utility and are study- plementation and the other for general-purpose parallel
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architectures. The stereo matching technique developed the reduced mesh of trees (RMOT), mesh-connected mod-
in [Medioni and Nevatia, 1984] can then be modified to ules (MCM), linear arrays, two dimensionalmcshes, hy-
lead to an efficient parallel implementation based on the percubes, and shuffle-ezchange networks. An alternate
proposed solution. cost-effective parallel architecture, designated window

The usual approach to parallel processing is to choose architecture, is proposed for image understanding appli-
a specific architecture (based on considerations of avail- cations [Lin, 1990]. This architecture consists of a small
ability as well as suitability) and then attempt to map number of processors with mesh connections and a large
the given algorithm onto it. This often leads to complex external memory with simple processor-memory access
implementations that are difficult to understand and put scheme. Parallel solutions for several image understand-
a severe burden on the programmer. In recent work, we ing problem,3, such as image labeling, computing image
are taking an alternative approach of using a flexible transforms, computing geometric properties, image and
architecture where the architecture can be modified to stereo matching using high level primitives such as line
suit the data flow requirements of the algorithm. Flex- segments, have been derived on this architecture [Lin,
ible architectures are becoming feasible design solutions 19901.
as commercial processing elements that support parallel
processing, such as the Transputer, are becoming avail- 6 ACKNOWLEDGEMENTS
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IMAGE UNDERSTANDING RESEARCH AT GE

J. L. Mundy *
GE Corporate Research and Development Center

Schenectady, NY 12345

Abstract a The recognition system is integrated with SRI's
Cartographic Modeling Environment and Core

Our research program in image understanding Knowledge System. The introduction of viewing
continues to emphasize the study of geometry constraints and demonstration of the automatic
and geometric relations for the representation generation of an airfield site database through ob-
and recognition of objects. A focus for the last ject recognition [Corby et al., 1988. - 1989
year has been the development of a constraint- jecection ory of ai 1988]. i18
based geometric modeling system to represent The collection of a series of airfield monitoring im-
generic object classes and to process constraints ages and the execution of a benchmark test of recog-
arising from camera viewpoint relationships. nition performance. Demonstration of recognition

Our work on model-based object recognition is accuracy in excess of 98% [Heller and Mundy, 1990].

also continuing with emphasis on test and eval- - 1990

uation of the recognition system in the context The main focus of attention for the object recognition
of aerial reconnaissance. In addition, some ex- system in our current work is to extend the generality
citing new results have been obtained through of image features which are used to determine model
the use of algebraic invariants which permit di- pose and to provide model hypothesis confirmation. The
rect indexing of object models from scene fea- vertex-pair has proved to be quite effective under a
tures. wide variety of viewing conditions, but some valid ob-

ject instances are incorrectly missed because not enough
boundary vertices are recovered from the image data.

Object Recognition Another general area for improvement is the introduc-
Over the past several years, we have been developing tion of multi-resolution models The current recognition
a model-based vision system using a compact image system does not fail gracefully when image resolution is
feature, called the vertex-pair [Thompson and Mundy, decreased. Our current a!gorithms for selecting model
1987a]. The vertex-pair provides sufficient geometric features does not account for the behavior of the image
information to determine the affine transformation be- segmentation process. As the image resolution decreases,
tween the image and scene coordinate frames with a projected polyhedral features merge together and short
computational cost proportional to N 2 , where N is the edges disappear. Thus, it is necessary to account for
number of image vertices. Significant highlights of the both sensor properties and image segmentation behav-
development are: ior in generating model features. No single model feature

" Initial demonstration of 3D object recognition from set will suffice, and a series of models are needed which

an unconstrained viewpoint, both indoor and out- account for the entire space of camera viewpoints.

door scenes. - 1986 Another area which is being investigated in the area
of object recognition is the introduction of general con-

" Parallel implementation cf the complete rccogni- straints on the relationship between objects and the re-
tion algorithm on the Connection Machine, about, lationship between objects and camera viewpoint. In
1OOX throughput increase [Thompson and Mundy, our recent benchmark testing we took advantage of loose
1987b]. - 1987 constraints on the camera viewpoint. For example, it

" Development of automatic model vertex-pair selek- is assumed that the camera is above the ground and
withiin a range of elevation angle with respect to the

tion of viewpoint [Mundy pe al., 1988]. - 1988 ground surface normal; i.e., the camera viewpoint orien-
tation is confined to a strip along latitudes on the view-

*Work at GE was supported in part by the DARPA sphere. It is now clear that a practical recognition sys-
Strategic Computing Vision Program in conjunctin with tern must be able to take advantage of a wide variety of
the Army Engineer Topographic Laboratories under Contract site constraints which can improxe recognition accuraty
No. DACA76-86-C-0007 and the Air rorcL Office of Swiemitific as well ao considerably reduce the computation iivulxcd
Research under Contract No. F49620-89-C-uO33. in searching the space of models and niodel pose param-
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eters. The general area of constraints for recogniti.i, bolic methods to compile constraints into polyno-
as well as the development of constraint-based object mials which are then solved by quadratic program-
models is emerging as a promising new area for object ming methods. Demonstration of the system on the
representation. construction of aircraft models from multiple or-

thographic views taken from mechanical drawings
Constraint-Based Modeling [Nguyen et al., 1990]. - 1990

Another emphasis of our recent work is the rcprcscnta- Our experience has indicated that robust convergence of
tion of objects in terms of geometric constraints. The the numerical methods can be achieved by careful at-
constraints are expressed symbolically in terms of re- tention to singularities and the use of pivoting to insure
lations between faces, edges and vertices of polyhedral well conditioned solution matrices throughout the solu-
models, as well as more general constraints between tion process. We have found that complex constraint
three dimensional position and orientation vectors. With systems can be solved with a small number of iterations
a relatively small primitive set of constraint relations it and that it is not necessary to provide initial values for
is possible to construct any geometric relation on geo- model parameters which are close to the final solution.
metric entities. For example, the constraints associated We have also observed that typical constraint systems
with perspective viewing can be generated in terms of lead to a block diagonal form for the Jacobian matrix.
the collinearity relation between eyepoint, image point This result implies that the constraints can be parti-
and world point. The collinearity relation can be de- tioned into a set of loosely coupled groups. A major
fined by the more primitive operations associated with objective of our current work is to take advantage of
cross-product and dot-product on symbolic vector enti- this characteristic of geometric relations. This grouping
ties. will provide several advantages:

Our goal is to define a complete constraint represen- o Sparse matrix solution techniques can be invoked
tation and associated language so that any object model to considerably reduce the amount of computation
can be defined, including curved surface models and required to solve the constraint system. It is esti-composite models involving generic constraint compo- mated that the solution cost will go from N 3 down
nents. The representation is general enough to account to approximately N by reducing the constraint Ja-
for the constraints associated with multiple viewpoints cobian matrix to block diagonal form, where N is
and to allow the integration of image segmentation data the number of constraint equations.
derived from these such images. The general idea is that
the constraint model represents a class of possible object * The global error associated with empirical measure-
configurations. A specific model instance is generated by ments can be reduced to a set of local error measures
minimizing a set of error metrics defined with respect to associated with each block. The error minimization
the empirical measurements taken from either manually process can then be directed at achieving error tol-
selected image points or from automatically segmented erance budgets within each group which will permit
image features. The final object instance is consistent much tighter coupling between error minimization
with all of the specified model constraints and projected and model parameter adjustment. In effect, the er-
model features agree as well as possible with the actual ror can "pushed" around the constraint network un-
image feature locations and orientations. til worst-case tolerances are met.

This general approach has evolved from our work in o The partioning of the constraints into a set of loosely
object recognition and the realization that the iext gen- coupled local networks is a prerequisite for mapping
eration recognition system must be able to accept generic the constraint solution onto a parallel architecture.
models which can account for a large number of specific In view of the thousands of constraints which will
object configurations and can also represent a broad class be required to represent realistic scenes it will even-
of geometric relations which knoN n to hold between ob- tually be necessary to resort to parallel computa-
jects and between objects and camera viewpoints. tion. Indeed, we have already explored the use of

Our work has progressed thiough a nu ber of stages the CONVEX "mini-CRAY" architecture an found
as summarized by the following items: about a lOX improvement over a VAX-780 without

o Implementation and experimentation with a proto- resorting to explicit use of parallelism.

type system which used symbolic algebraic imp- WNe have already demonstrated that general constraints
ulation and a commercial nonlinear progralilig can be readily applied to the representation of generic
package from the IMSL library to solve the geoniet- aircraft models where the required symmetries associ-
ric constraint equations [Mundy el al., 19891. - 1988 ated with the fuselage and the relation among airfoil

surfaces and the fuselage can be expressed and solved by
-Investigation of a fulfly symbolic apro- to flislu,eiono c ai rel...ations..... mplemen.atio our constraint modeling system. At present however, it
solution of constraint relations. Implementation of is somewhat tedious to specify constraints and consid-a prototype system based on the polynomial arith- erable improvenment is needed in the user interface. We
taetic routines provided by the GEOMETER sys- intend to explore the use of general constraint compo-
tem, which is being jointly developed by GE and nents to reduce the modeling effort. It is also expected
Uass (Connolly el al., 1989]. -1989 that a constraint programming language will prove to be

* Implementation of a new constraint rep(T,:.cuta- a coivenient alpproach to specifying most of the object
tion and new constraint solver which uses sym- representation.
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It is also emphasized that nothing in the approach lim- twice this number and complex shapes may have hun-
its the representation to polyhedral models. Our initial dreds of degrees of freedom. Clearly it will be necessary
emphasis on polyhedra is based on the fact that many to derive invariant indices from image features to help
practical applications can be effectively handled by poly- reduce this search space.
hedral models. For example, we are applying our ideas
in constraint-based modeling to the generation of models References
for image simulation with a focus on the application of [Connolly ct al., 1989] Connolly, 0.1., D. Kapur, J.L.
mission rehearsal. Mundy, and R. Weiss, "GeoMeter: A System
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Ultimately, it is planned to use invariants in the recog-
nition of constraint-based models. It should he noqi-
ble to derive invariants not only with respect to camera
viewpoint but also invariants over the class of shapes
which can be generated by a particular constraint model.
The use of such invariants would seem necessary to re-
duce the dimension of the search space on model paraim-
eters. Current model-based recognition systems are hard
pressed to determine the six parameters associated with
model pose. Even simple constraint-models can have
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IMAGE UNDERSTANDING RESEARCH AT HONEYWELL

Bir Bhanu
Honeywell Systems and Research Center

3660 Technology Drive
Minneapolis, MN 55418

ABSTRACT a brief discussion on image database and scientific perfor-
mance evaluation of vision algorithms and systems.

Image understanding research at Honeywell is directed

towards autonomous/semiautonomous vehicle navigation, 2. MACHINE LEARNING FOR MULTI-LEVEL VISION
automatic target recognition, and image exploitation. The
objective of our work is to develop robust and efficient image Present target recognition systems are unable to adapt to
understanding techniques for these applications operating changes in environmental conditions, target variations, and
from various platforms. The topics currently under investiga- the unexpected appearance of new targets. Each of these
tion are: machine learning for multi-level vision system; iner- situations affects the appearance of the targets in the image,

tial navigation sensor integrated motion, binocular stereo, and which in turn, degrades the overall performance of current
laser radar techniques for obstacle detection; qualitative 3-D generation recognition systems.
scene modeling for dynamic scene understanding, motion One of the key challenges to automating the target
analysis, and target tracking; map-based automatic target recognition process is that of automatically responding to
recognition and tracking; and multisensor target recognition. changes occurring in the targets seen in an image. We
This paper summarizes the progress made in some of these address this problem at every stage of the multi-level vision
key areas during the period from March 1989 to June 1990. problem by a unique multi-strategy machine learning
We also briefly discuss the important topic of image database approach not available in any current model-based recogni-
and scientific performance evaluation of vision algorithms tion system. We want to show that significant benefits can
and systems. accrue by applying machine learning technology to automati-

cally recognize targets, acquire new target models and update
their descriptions, learn new target features based on percep-

1. INTRODUCTION tual cues, and to adapt segmentation parameters based on

This paper provides an overview of the research per- changing environmental conditions.

formed by our group during the past year. Our research in Through an in-depth analysis performed by Honeywell l

image understanding is directed towards model-based target on the applicability of state-of-the-art machine learning tech-
recognition and machine learning and knowledge-based nology to model-based vision, we have developed the con-
interpretation of scene dynamics. The key accomplishments cepts for a novel machine learning system called TRIPLE
achieved during the past year are as follows. We have (Target Recognition Incorporating Positive Learning Exper-
developed an adaptive image segmentation technique that has tise. At the high level of computer vision, TRIPLE uses
shown improvements of 30-50% over state-of-the-art nona- explanation-based learning (EBL) and structured conceptual
daptive segmentation approaches. We have demonstrated the clustering (SCC) in the target recognition and learning pro-
concepts for a multistrategy machine learning system for tar- cess. During the intermediate level vision processing, TRI-
get recognition, target model acquisition, and refinement. We PLE uses explanation-based learning with a perceptual cue
have also shown that robust range estimates can be obtained database to acquire new target features. Finally, at the low
by inertial navigation sensor integrated motion analysis. In level of vision, TRIPLE uses genetic algorithms for parame-
addition, we have performed experiments for binocular and ter adaptation capability. Thus, the TRIPLE system provides
motion stereo integrated system for dense ranging. a learning capability at all three levels of vision: low, inter-

We have investigated the following major topics: mediate, and high.

(I) Machine learning for multi-level vision system for adap- Addition of the machine learning techniques listed

tive segmentation, target recognition, target model above to each level of the computer vision process yields the

acquisition, and target model refinement, target recognition system shown in Fig. 1. Each stage of the
vision process now contains a localized learning loop that

(2) Inertial navigation sensor integrated motion, binocular provides the adaptive behavior necessary at each level.
stereo, and laser radar techniques for obstacle detection. Further, each level of the process is able to interact with the

(3) Qualitative scene understanding for dynamic scene and levels immediately above and below it. This communication
motion analysis for target motion detection and tracking, allows each level to obtain extra or missing information from

dynamic model matching for landmark recognition, and the previous level and also allows feedback on data quality to
hierarchical symbolic grouping for interpretation of ter- be passed from one level down to the next. For example, at
rain. the nigh level of vision, the classification process may

request additional feature information from the intermediate

The synopsis of the technical achievements and key level in order to correctly recognize a target. The request
ideas in each of these areas is given below. We also present
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Fig. 1: Target recognition system incorporating machine
learning techniques at each level of processing to enhance
recognition performance.

TAdptional

Frame Number

Fig. 2: Comparison of adaptive image segmentation system
with default Phoenix parameters and the traditional seg-
mentation approach commonly used in the Computer Vision

field.
may, in turn, require the intermediate level to obtain further and problems associated with the evaluation of segmentation.
region and edge information from the low level. After the a anclassification results have been computed, the high level pro- e e an

cess evaluates the usefulness of the features that were used system for the segmentation of color images based on aduring the classification and sends this information to the genetic algorithm which can adapt to changes in the environ-

intermediate level. Finally, the intermediate level must also ment (time of day and weather conditions). The genetic
supply feedback data to the low level process so that the util- algorithm efficiently searches the enormous hyperspace of
ity of the segmentation parameters can be determined, segmentation parameter combinations using a collection of

search points known as a population. By combining high
Some of the other applications of machine learning that performance members of the current population to produce

we are working on include intent recognition and automated better parameter combinations, the genetic algorithm is able
knowledge acquisition for image exploitation, to locate the parameter set which maximizes the segmentation

2.1 daptve mageSegentaionquality criteria. Fig. 2 presents the comparison of three
2.1 daptve mageSegentaionapproaches on a database of 20 images. The default parame-

Image segmentation is typically the first, and most ters have been suggested after extensive amounts of testing
difficult, task of any automated image understanding process. by various researchers who developed the Phoenix algo-All subsequent interpretation tasks, including feature extrac- rithm.24 The parameters for the traditional approach are

tion, target detection, and target recognition, rely heavily on obtained by manually optimizing the segmentation algorithm
the quality of the segmentation process. Despite the large on the first image in the database and then utilizing that
number of segmentation techniques presently available, no parameter set for the remainder of the experiments. This
general methods have been found which perform adequately approach to segmentation qualdity optimization is currently
across a diverse set of imagery. Only after numerous standard practice in state-of-the-art computer vision systems.
modifications to an algorithm's control parameter set can any The average segmentation quality for the adaptive segmenta-
current method he use-d to process the wide diversity of tion technique was 95.8% (average of 100 experiments). In
images encountered in dynamic outdoor applications such as contrast, the performance of the default parameters was only
the operation of an autonomous robotic land/air vehicle, 55.6% while the traditional approach provided 63.2% accu-
automatic target recognizer, or a photointerpretation task. racy. As the figure shows, the performance of both of thesealternative approaches was highly erratic throughout the

several factors which make the parameter selection process seun.
very difficult. These factors include numerous control This is the first segmentation approach to incorporate
parameters, lack of prccise segmentation algorithm models, adaptation in a closed-loop feedback system and will have
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significant benefits for signal processing and adaptive control 3.1 INS Integrated Motion Analysis
applications requiring robust performance in unstructured Land navigation requires a vehicle to steer clear of trees,
environments. The basic adaptation methodology is applica- rocks, and man-made obstacles in the vehicle's path whileble to imagery from other sensors and can utilize any se okadga-aeobtce nth eil'spt hl
mentation algorithm. The papers by Bhanu, Lee, and Ming - vehicles in flight, such as rotorcraft, must avoid antennas,towers, poles, fences, tree branches, and wires strung across
10 provide details of the adaptive image segmentation pro- the flight path. Automatic detection and recognition of these
ces. obstacles by passive/active sensors and the necessary gui-

2.2 Target Recognition, Target Model Acquisition and dance and control actions triggered by such detection would

Refinement facilitate autonomous vehicle navigation.

A major technology gap in state-of-the-art model-based Many types of existing vehicles contain inertial naviga-
target recognition for outdoor scenes is the process of model tion systems (INS) which can be utilized to greatly improve
(natural or man-made) acquisition. Generally target models the performance of several computer vision applications such

are fixed and recognition systems do not have any learning as obstacle detection, target motion detection, target tracking,

capability; therefore, they are not adequate by themselves for binocular stereo, etc. and make them useful for practical mili-

target recognition in dynamic environments. tary and civilian applications. As an example, motion
analysis techniques can effectively use the output of an INS

Due to recent advances in machine learning technology, to improve interest point selection, matching of the interest
some of the problems encountered in the target recognition points, and the subsequent motion detection, tracking, and
domain seem to be resolvable. Learning allows an intelligent obstacle detection.
recognition system to use situation context in order to under-
stand images. This context, as defined in a machine learning We are using INS measurements to enhance the quality
scenario, consists of a collected body of background and robustness of motion analysis techniques. The key ideas
knowledge as well as environmental observations which may of our maximally passive approach for obstacle detection 12

impact the processing of the scene. are the use of constraints from INS information for improved
correspondence, texture-based scene analysis for the selection

Machine learning facilitates two main advances in the of uniformly distributed interest points, the concepts of match
target recognition domain: automatic knowledge base acquisi- and range confidences, smoothing of range values over multi-
tion and continuous knowledge base refinement. The use of ple frames, and the selective application of a laser sensor.
learning during knowledge base construction will save the Details of te INS integrated motion analysis for obstacle
user from spending the large amount of time necessary to detection are given in the paper and reports by Bhanu,
derive target models and databases. Knowledge base Roberts, and Ming. 13 15.2 9

refinement can then be incorporated to make any necessary
changes to improve the performance ot the recognition sys- 3.2 Binocular and Motion Stereo for Dense Ranging
tem. These two modifications alone will serve to Range measurements to objects in the world, relative to
significantly advance the present abilities of most target mobile platforms such as ground or air vehicles, is critical for
recognition applications, visually aided navigation and obstacle detection/avoidance.

At high level of vision, TRIPLE combines EBL and Active (laser) range sensors can be used to provide such
SCC learning methodologies with a knowledge-based match- range measurements although they have a limited field of
ing technique to provide robust target recognition. view, suffer from slow data acquisition, and are expensive.
Explanation-based learning provides the ability to build a We address the development of a robust and efficient passive
generalized description of a target class using only one exam- technique for obtaining range measurements. Our approach
pie of that class. Structured conceptual clustering allows the consists of a synergistic combination of two ypes of passive
recognition system to classify a target based on simple, con- ranging: binocalar stereo and motion stereo.iu The problem
ceptual descriptions rather than using a predetermined, that we address is the optimal combination of sparse motion
numerical measure of similarity. While neither method, used stereo range estimates, r, (xy), and sparse binocular stereo
separately, would provide substantial benefits to a target range estimates, rs(xy), so the resulting range map is as
recognition system, they can be combined to offer a consoli- accurate and dense as possible throughout the entire field of
dated technique which employs the best features of each view.
method and is very robust. Binocular stereo and motion stereo compute raige to

Using dynamic models, TRIPLE can recognize targets "distinguished" points in the image. Binocular stereo range
present in the database. If necessary, the models can be computations suffer the greatest error at the edges of the
refined if errors are found in the representation. Additionally, camera's field of view (FOV), where motion stereo range is
TRIPLE can automatically store a new target model and most accurate. The converse error relationship holds true in
recall it when that target is encountered again. Finally, since the vicinity of the focus of expansion where motion stereo
TRIPLE uses qualitative data structures to represent targets, it range error is great and binocular stereo range error is small.
can overcome problems such as image noise and occlusion.The papers by Bhanu and Ming 11,25 provide more details of We have developed detailed error models for binocular
the TRIPLE system for target model recognition, acquisition, and motion stereo and inertial reference unit, and developed a

Kalman and Blending filter. The Kalman filter's binocular
and refinement. stereo measurement consists of motion stereo range sub-
3. INS INTEGRATED TECHNIQUES FOR OBSTACLE tracted from binocular stereo range. The filter's motion

DETECTION stereo measurement is the negative of the filter's binocular
stereo measurement. The coincident points of interest, i.e.

We are working on both passive and active (laser radar) tech- those points for which range is computed by both motion and
niques for obstacle detection for ground vehicles and hel- binocular stereo techniques, are used as measurements to esti-
icopters. In the following, we describe two passive ranging mate errors in the ranging processes. The points in the range
techniques. maps which are not coincident can be corrected with these

error estimates, improving the overall quality of the
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composite range map. The initial results of our work are and other targets from partial and complete views in dynamic
reported in the paper by Symosek et al.30 scenarios. It relies on the generation of multiple landmark

descriptions from 3D models based on different estimated
4. ROBOTIC VEHICLE NAVIGATION ranges and aspect angles. These descriptions are a result of

feature, spatial, and geometric models of a single landmark.
4.1 Qualitative Motion Detection and Tracking Expectations about the landmarks (appearances) vary dynami-

We have developed a unique approach called DRIVE cally as the autonomous robot approaches the landmark.
(Dynamic Reasoning from Integrated Visual Evidence) based Dynamic Model Matching also includes the generation of
on qualitative reasoning and modeling for target motion specific landmark recognition planning strategies whereby
detection and tracking. 3,16, 19-22 The DRIVE system performs different features of different landmarks are emphasized at
dynamic scene understanding needed to support the applica- varying ranges. It is an expectation driven, knowledg'-based
tion of smart weapons and autonomous navigation of robotic approach and uses limited map information for updating the
vehicles. Instead of refining a single quantitative description robotic vehicle's location in the map.
of the observed environment over time, multiple qualitative
interpretations of the scene are maintained simultaneously. 4.3 Interpretation of Terrain
This technique offers considerable flexibility over traditional An autonomous robotic vehicle must be able to navigate
numerical techniques which are often ill-conditioned and not only on the roads, but also through terrain in order to
noise-sensitive. With DRIVE, an autonomous system can (i) execute its missions of surveillance, search and rescue, and
detect and classify moving targets in the scene, (ii) estimate munitions deployment. To do this, the vehicle must categor-
the vehicle's egomotion, and (iii) derive the 3D structure of ize the terrain regions it encounters as to the trafficability of
the stationary environment. the regions, the land cover of the regions, and region-to-map

The 3-D motion of targets is obtained from (a) displace- correspondence. Our approach for terrain interpretation
ment vectors of point features without any knowledge about employs a robust texture-based algorithm and a hierarchical
the underlying 3-D structure, (b) discovenng inconsistencies region labeling scheme for ERIM 12 channel Multi-Spectral
between the current state of the qualitative 3-D scene model Scanner data. The technique, called HSGM (Hierarchical
and the changes actually observed in the scene, and (c) by Symbolic Grouping for Multi-spectral data), is specifically
detecting moving edges and regions.4 , 18  designed for multi-spectral imagery, but is appropriate for

other categories of imagery as well. For this approach,DRIVE uses a new algorithm for computing the region features used for segmentation vary from macro-scale
of possible focus-of-expansion (FOE) locations in image features at the first level of the hierarchy to micro-scale
sequences, called the fuzzy FOE.21, 23 This computation is features at the lowest level. Examples of labels at the
accomplished in a unique manner by separating the rotational macro-level are sky, forest, field, mountain, road, etc.
and translational components of the vehicle's motion and
using a robust method for computing the displacement vector For each succeeding level of the hierarchy, the identified
between two images using adaptive windows. 18 The tech- regions from the previous stage are further subdivided, if
nique is applicable to platforms with no on-board INS. appropriate, and each region's labeling is made more precise.

The 'fuzzy' FOE algorithm allows the direction of The process continues until the last stage is reached and no
instantaneous heading of an autonomous land vehicle to be further subdivision of regions from the preceding stage
precisely determined within 10 using image information appears to be necessary. Examples of region labels for this
exclusively. The results obtained using ALV imagery taken level of the hierarchy are gravel road, snowberry shrub, gain-
at five different sites demonstrate the algorithm's perfor- bel oak tree, rocky ledge, etc. Further development of the
mance capabilities. This result has significant scientific technique will employ multiple sources of a priori informa-
importance for targeting applications. It allows the determi- tion such as land cover, terrain elevation map information,
nation of self motion of moving imaging devices. Rotation range data, seasonal information, and time of day. Details of
in the horizontal and vertical directions (pan and tilt only) of the HSGM technique with results and examples from real
± 50 or larger can be successfully handled by the algorithm.5  imagery are given in papers by Bhanu and Symosek. 16, 17

Moreover, it allows the use of passive approaches for sur-
veillance activities that must detect and track moving targets 4.4 Vision-based Targeting Experiments
and must detect and avoiu obstacles using passive sensors As discussed earlier, we have developed two key algo-
mounted on a mobile platform. rithm suites, called DRIVE (Dynamic Reasoning from

We have developed preliminary algorithms to integrate Integrated Visual Evidence) and PREACTE (Perception,
the DRIVE system with digital terrain elevation and land REAsoning, ACTion and Expectation). DRIVE accomplishes
cover data. These algorithms provide information about the target motion detection and tracking while PREACTE per-
map location of the moving targets, the road label on which forms landmark recognition. We plan to advance this
the targets are possibly traveling, and neighboring landmarks. research by performing a set of scientific experiments
Such information is desired for military applications and we directed towards a practical mobility and targeting application
have performed initial experiments to establish its usefulness of a robotic combat vehicle.
in detecting moving targets in both high clutter and low con- We plan to conduct scientific experiments in two areas;
trast situations. The paper by Bhanu et. al. 18 provides details landmark recognition for path traversal and target motion
of the interest point selection, disparity analysis, fuzzy FOE, detection and tracking. Two series of experiments are
qualitative scene model, map-based tracking, and edge/region planned, one in each of these areas. Each experimenta! series
based approache... ..gns with dama ll ,,- proceeds through progres-

sively more difficult scenarios. The final experiments in the
4.2 Dynamic Model Matching for Landmark Recognition series will be characteristic of practical mobility scenarios for

We have developed a technique called PREACTE (Per- a robotic combat vehicle. For both series of experiments, the
ception REAsoning ACTion and Expectation) based on vehicle will be in continuous motion.
dynamic model matching for landmark reo.ogniaion from a Landmark recognition experiments include laboratory
mobile platform.26"28 The technique can recognize landmarks
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landmark recognition tests using off road data; non-real time performance evaluation.
landmark recognition in off road traveisal by the robotic
vehicle; real time dynamic landmark recognition in off road (a) Creation of a standardized image database to be used for
traversal by the robotic vehicle; and dynamic landmark model performance evaluation of diverse vision algorithms and
learning with return path traversal. Motion detection and systems. Generation of a taxonomy for vision research based
tracking experiments involve verifying motion results against on applications, scientific principles, functionality, and
land navigation data; non-real time detection of multiple software/hardware variations. Design and development of an
moving targets while maintaining reasonable rotation com- extensible database system accessible over the Arpanet.
ponents of the vehicle; real time detection of multiple moving
targets; integrating ETL map data with target motion detec- Establishment of a scientific methodology for performance
tion and tracking; and advanced experiments canied out evaluation of model-based vision systems. Definition of a
under more difficult visual zcenes involving low contrast and standard terminology and establish benchmarks for perfor-
high clutter. mance evaluation of algorithms and systems. Implementation

We also plan to develop a flexible software architecture and evaluation of the baseline model-based vision system.
and the associated software for "real time" instrumentation
and evaluation of the landmark recognition and the motion 5.1 National Research Database of Computer Vision
detection and tracking algorithms. Some of the important nImagery
aspects of this work involve defining the criteria for evalua-
tion and acquiring, retrieving, and presenting the desired The objective of establishing a national research image
information in meaningful ways so as to provide insight into database is to promote the orderly development and dissemi-

nation of image information to serve the needs of DARPA IU
the associated vision algorithms. agorithms/systems developers. This encompasses the stan-

dards for data interchange and activities for data collection,
5. IMAGE DATABASE AND SCIENTIFIC data organization, and design and development of an extensi-

PERFORMANCE EVALUATION ble database system accessible to IU researchers over the
At present, very little work has been done in the area of Arpanet.

performance evaluation for image understanding algorithms The important considerations for these databases are:
and systems. In the DARPA-sponsored image understanding ground truth data requirements (site, sensor characterization,
research, a wide variety of algorithms and systems are being sensor platform, targets of interest, meteorological condi-
developed for photointerpretation, navigation, manufacturing, tions), ground truth recording procedures, and database
cartography, and targeting applications. Quantitative and quantity/quality/variety requirements. The ground truth infor-
qualitative scientific performance evaluation methods for mation is very critical and many times is not available or is
vision algorithms and systems will provide an effective way too expensive to capture. Whenever the ground truth infor-
to scientifically measure the progress being made by the com- mation is available, imagery should be partitioned into two
puter vision field. The development of an effective evalua- categories: For some imagery, the ground truth is supplied to
tion methodology will lead to more rapid technology transfer the researcher so that he/she can use them in the development
to DoD applications by providing the means to assess readi- of vision algorithms; the other category should be the
ness of the technology. In addition, the technology develop- imagery for which ground truth is sequestered and used to
ment timeline will shrink once a means exists to clearly evaluate the robustness of the algorithms after development.
evaluate the performance of vision algorithms and systems.
All this will will help in advancing computer vision field at a One potential use of an accepted imagery database
faster pace. would be for evaluating various "matured" algorithms that

perform the same function (e.g., stereo, segmentation, motion
The critical ingredients for scientific performance detection, target recognition in range images, etc).

evaluation are: A current detailed taxonomy of vision research based on(a) Image database and associated groundtruth information, diverse criieria is desired.2 The rationale for characterization
(b) Techniques for performaace evaluation, is to help in the organization and deelopment of image data-

base, definition of benchmarks, and methodologies for
(c) Common system environments (KBVision and others). evaluation. This characterization will provide a common

The primary objectives of the Image frameworkc of terminology and description to promote
Datwbase/Performance Evaluation a;e to establish a national improved communication among the members of the vision
research database of computer vision imagery and develop a community and between technology developers and appliers.
performance evaluation capability for "matured" IU algo- Since the coroputer vision field is still quite young and under-
rithms. The database will be accessible to all members of going rapid evolution, the proposed taxonomy should be
DARPA's IU community over the Arpanet thro.gh a set of viewed as a "snapshot" of the field today and will likely need
uniform access procedures. A taxoorny of computer vision to undergo significant modifications and extensions as the
reseach will be generated to characterize computer vision field progresses. After the development of the proposed tax-
algorithms and systems for the ourpos. of database indcxing onomy, the development of the other goals will be pursued. a
and evaluation. A set of .echniques and models for common image database, general vision system benchmarks,
algorithn/system perf3rmance evaluation of selected and an effective methodology for performance evaluation.
"matumed" algorithm:. will be developed to facilitate the uni- One can think of a very deep tree whose leaf nodes are very
fom. comparison of algorithms. Performance evaluation pro- specific (for example, the segmentation of tank targets at
vides performance analysis (strengths/weaknesses), sensitivity ",lose" distances in range images for terminal homing appli-
analysis, and performance models. All these lead to predic- cations) We associate J.e specific database, benchmarks,
tion of performance of algorithms ond prediction is an impor- and metho',logy with these leaf siodes for performance
tant element of science. evaluation.

Through active interaction with the DARPA IU/SC
community, the following objectives are pursued for scientific
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5.2 Scientific Methodology and Models for Performance 14. B. Bhanu, B. Roberts, and J. Ming, "Inertial Navigation Sen-
Evaluation so Integrated Motion Analysis," Proc. DARPA Image Under-

standing Workshop, pp. 747-763 Morgan Kaufmann Publish-Since one of the goals of computer vision is to build ers, (May 1989).
machines that can solve real world problems, we need to es (May 1 .define the systematic methods and models for performance 15. B. Bhanu, B. Roberts, am.d J. Ming, "Automatic Obstacle
ealaion ofe systemtin d s nd el s fsegeontan, Detection and Avoidance by Helicopters," Proc. 1990 IEEEevaluation of individual vision algorithms (segmentation, International Conference on Robotics & Automation, pp.feature computation, texture measurement, etc.) and systems 954-959 (May 1990).(target recognition, vision-based navigation, etc.) for a partic-ular application (terminal homing, surveillance, etc.), z  16. B. Bhanu and P. Symosek, "Interpretation of Terrain UsingHierarchical Symbolic Grouping for Multi-Spectral Images,"

It is important to have common terminology and bench- Proc. DARPA Image Understanding Workshop, pp. 466-474
marks for performance evaluation. Subtle differences in (Feb. 1987).
meaning can be very important for evaluation. A lexicon 17. B. Bhanu and P. Symosek, "Interpretation of Terrain Using
that establishes standard terminology and standard bench- Multispectral Images," Submitted to Pattern Recognition,
marks will provide uniformity in carrying out scientific (1989).
experiments for performance evaluation. The emphasis of
performance evaluation is on computer vision problems, 18. B. Bhanu, P. Symosek, J. Ming, W. Burger, H. Nasr, and J.
scientific experimental design and interfaces between vision Kim, "Qualitative Target Motion Detection and Tracking,"

Proc. DARPA Image Understanding Workshop, pp. 370-398components and functions. We need to define a performance Morgan Kaufmann Publishers. (May 1989).
metric for each of the image understanding algorithms as Morgan um nu , (Ma 1989).
well as a performance metric for the system as a whole. 19. W. Burger and B. Bhanu, "QuJitative Motion Understand-
This will be done for the specific matured algorithms/systems ing," Proc. Tenth International Joint Conference on Artiicial

Intelligence, IJCAI-87, Milan, Italy, Morgan Kaufmann Pub-(model-based vision for target recognition) being pursued by lishers, (August 1987).
the Image Understanding community.lihr,(ust18)

20. W. Burger and B. Bhanu, "Dynamic Scene Understanding for
Autonomous Mobile Robots," Proc. IEEE Conference on
Computer Vision and Pattern Recognition, pp. 736-741 (June
1988).
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Abstract Field and connectionist applications, and work aimed
at integrating the real-time laboratory and using it for

Animate (real time, purposeful, active) vision complex planning tasks that include sensing and acting.
requires parallel computing of several varieties Key papers are [ Simard 1990 (Recurrent backpropa-
(MIMD, SIMD, pipelined). This year's re- gation); Brown et al. 1989 (decentralized Kalman fil-
search has been devoted, on the applications ters); Aloimonos and Brown 1989 (Robust computation
side, to sophisticated real time vision algo- of intrinsic images); Chou and Brown 1990 (Sensor fu-
rithms in the areas of gaze control, optic flow sion, reconstruction and labeling); Wixsorn and Ballard
analysis, colored object recognition and loca- 1990 (Color histograms); Rimey and Brown 1990 (Hid-
tion, and- selective attention. This year the den Markov models); Yamauchi 1989 (Juggler); Nelson
parallel computing environment has been able 1990 (Movement detection); Brown 1990a (predictive
to support -users on the Psyche and Plat- control); Swain 1990 (Thesis on colored object recog-
inum NUMA operating systems, the Zebra and nition and location); Martin et al. 1990 (ARMTRAK
Zed pipeline parallel programming toois, and project).
the Instant-replay and Moviola debugging and
performance monitoring toolkits. Goals for 1.1 Real-time Colored Object Search and
next year -include integrating cognitive plan- Recognition
ning with dextrous manipulation and real time
vision, and- incorporating increasingly sophisti- Recent work on fast object detection uses -color his-
cated multi-agent interaction in animate vision togram matching techniques and relational modeling.
systems. Almost all current object recognition schemes require

that image features be matched to model features, re-
quiring a time polynomial in the number of features to

1 Vision Applications perform the matching. By adding an initial stage that
Vision applications are an important part of our research does not perform pose calculation but rather simply de-
in parallel, animate, real-time approaches to vision. The tects the likely presence of the object in the image, con-
laboratory is expanding with the addition of a Utah siderable efficiency can be gained. The idea is that this
16-dof dextrous manipulator, and we are designing a initial stage would be used to rank each gaze in a set
system to integrate the full spectrum of Al techniques, of candidate gazes according to the likelihood that the
from cognitive planning down to real-time control. This image produced by the gaze contains the desired object.
year we have concentrated on sophisticated vision algo- This ranking can then be used to choose the order in
rithms that use state of the art hardware, with the aim which a more sophisticated object recognition program
of achieving responses fast enough to interact with the (which would calculate pose) should be applied to the
world. Paul Chou's Highest Confidence First (HICF) al- candidate images.
gorithm for Markov Random Fields was extended to the Wixson [Wixson and Ballard 1990] and Swain (Swain
parallel Local HCF algorithm, which is ideally suited to and Ballard, 1989] use object detection schemes that rely
fast implementation on the Connection Machine. Relax- on the assumption that the color histogram of an object
ation algorithms for general arc consistency were imple- can be used as an object "signature" that is invariant
mented on the CM by Cooper and Swain at Syracuse's over a wide range of scenes and object poses. The color
DARPA-funded NPAC, as was an optimized version for histogram is computed by the Datacuhe parallel hard-
high level structure recognition. Pipelined parallel com- ware, and an efficient matching algorithm due to Swain
putation is used heavily in Nelson's movement detector can locate the best match in data bases containing be-
(which detects objects moving with respect to a possibly tween 10 and 70 items in a constant 15 milliseconds.
moving background) and Swain's colored object recog- Wixson's object search algorithm gazes around the
nizer (see below). room and matches what it sees v:ith the database, nak-

Several parallel vision applications were pursued this ing a spatial map of object locations, and can also adjust
year, including Butterfly programming, Markov Random its gaze position to improve the gocdness of the match
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(a good example of active vision). Wixson is also us- tive effort and image analysis, and is not explicitly repre-
ing knowledge of expected spatial relationships to direct sented. We augment the usual-paradigm with a new ex-
the search process. Indirect -search uses a finite set of plicit representation of probabilistic but task-dependent
relationships (FRONT-OF, NEAR, LEFT-OF, etc.) be- attentional sequencing. Explicit sequences are some-
tween objects. The relationships may be known apriori thing like motor skills; they efficiently capture the effect
or, more interestingly, derived from experience with the of much cognitive activity and feedback-mediated behav-
scene. Characterizing the occurrence of relationships as ior, and allow it to be generated quickly with low cogni-
Bernoulli trials leads to a confidence interval representa- tive overhead.
tion of the probability of the relations holding. In turn, The explicit representation is an augmented hidden
these probabilities can be used in a "highest impact first" Markov model (AHMM). A simple hidden Markov model
search that acquires information in the order that max- can learn an emergent behavior and re-generate it as an
imally decreases expected uncertainty. The result is to explicit data-oblivious sequence. An AHMM incorpo-
derive Garvey-like strategies on the fly from first princi- rates a feedback sequence to modify the generated se-
ples, while supporting learning. quence (to pay attention to interesting things in unex-

In his thesis Swain investigates color cues for object pected placs while following a scan path, for instance).
recognition. He has developed a robust matching algo- It can therefore relearn or constantly modify-its own ex-
rithm called histogram intersection that can recognize plicit behavior, thus adapting to varying conditions. One
nonrigid, occluded colored objects from a large database AHMM model uses a simple external feedback loop, an-
(up to 70 items so far, but that is not an upper bound). other uses internal feedback which modifies the internal
It runs in time linear in the number of database entries, parameters (probabilities) of the AHMM thus effecting
taking 38 ms for a 19-object database and 150 ins. for the generation likelihoods directly. A third -allows the
70 objects. An incremental version of histogram inter- foveation sequence to be expressed either in terms of im-
section relies on the fact that most histogram bins are age locations ("where") or image contents ("what") or
unnecessary in a match, and can perform recognition in both.
a constant 15 ms for databases at least up to 70 objects The Workbench for Active Vision Experimentation
in size. In one typical run, 30 of 32 objects were cor- (WAVE) has now evolved into a general platform for in-
rectly identified from a catalog of 66 objects, while for tegrating software. In anticipation of moving over to the
the remaining two objects the second best match was Psyche- operating system running on the Butterfly paral-
correct. The instance views have different viewing an- lel computer, WAVE was converted to the g++ program-
gles-from those-that generated the catalog. The demon- ming language used by Psyche and also was converted
stration program pans the color camera around a scene to use the Zebra system for programming our-DataCube
of colored objects, while simultaneously displaying the MaxVideo image processing hardware. WAVE was used
three top-ranked objects in order. Correct recognition is to support the implementation of the selective attention
done at approximately 5 Hz. Swain has also developed a model, and its performance is encouraging [Rimey and
saliency measure that subtracts histogram features corn- Brown, 1990].
mon to a known ensemble, thus weighting more heav-
ily the features that are unique to each object. Last, 1.3 Gaze Control and Segmentation
there is a histogram backprojection algorithm that in- In research carried out at . Chris Brown did
verts the global, de-spaced nature of the histogram into work on IEalman filters for tracking applications, co-
scene locations that could have generated the histogram. operative work on projectively invariant matching of
Backprojection also runs at about 5 Hz, which allows the

trakin ofa mvin obectthoug a cen, o th loa- geometric structures in images, [Brown et al., 1989,tracking of a moving object through a scene, or the loca- Forsyth et a., 1990] on control of Rochester's robot headtion of a sought object when the camera moves smoothly [Brown 1989a,c; 1990a,b], and on computational proper-
or discontinuously over the scene. ties of rotation representations [Brown, 1989b].

1.2 Modeling attentional behavior sequences The control work investigated predictive mechanisms
with an augmented hidden Markov mode to solve problems of cooperation and delay. "Sub-

sumption" architectures find these problems trouble-
Over the past year Selective attention, or the intelligent some since internal state representations are minimized,
application of limited visual sensing and computing re- control interaction is usually limited to preemption, and
sources, has emerged as a basic topic for a long-range actions are synchronized only through the outside world.
program of research we are now pursuing. The work in The work developed eight camera coritrols and investi-
visual attention is proceeding in parallel with a new re- gated their interaction. It showed that predictive tech-
search direction in the Systems area - models and mech- niques can overcome the catastrophic effects of delays
anisms for flexible, 3atisficing, reactive real-time corn- and interactions.
puting. A fixated object "pops out" under ego motion since

Ray Rimey has implemented visual attention algo- its surroundin.;s blur. This method of pre-processing a
rithms using a spatially-varying (foveal and peripheral) scene to enhance edges and aid segmentation has par-
sensor. One aspect of the work attacks the specific prob- allels that use binocular visual capabilities, especially
lem of modeling foveation sequences [Rimey and Brown, vergence. Coombs and Olson cooperated on vergence
1990]. In most treatments of this subject, a sequence of and segmentation algorithms for the robot head [Olson
eye movements emerges as a result of sequential cogni- and Coombs, 1990] vergence has many advantages even
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for systems without foveas. (1) Mathematical sim- and implemented. The first method, constraint.ray jii-
plification: Fixating an object of interest puts -points fering, uses knowledge-about the.observer's motion. -It
on the object near the-optic axis in both eyes, allowing is based on the fact that, in a rigid environment, the
an orthographic projection -model and simplifying many projected 3-D velocity-at any point in the image is con-
computations. (2) Useful coordinate systems: A strained to lie on a 1-D locus in velocity space whose
unique fixation point defines a coordinate system that is parameters depend only on the observer motion. Thus
related as much to the object being observed as it is-to in principle, if the motion field and observer motion-are
the observer, and hence is a step in the direction of an known, an independently moving object can be detected
object-centered coordinate system [Ballard, 1989b]. (3) because its projected velocity is unlikely to fall on this
Stereopsis: Since the fixation point has a stereoscopic locus. In practice, quantitative estimates of the motion
disparity of zero, points nearby will generally have small field and observer motion are both difficult and compu-
disparities. This makes it possible to use stereo algo- tationally expensive to obtain. Nelson adapts the basic
rithms that accept only a very limited range of dispari- principle to use partial information about the motion
ties. Such systems can be very fast, and are amenable to field and observer motion that can be rapidly and reli-
hardware implementation. (4) Disparity-based seg- ably computed from real image sequences.
mentation: On the assumption that the gaze will nor- The second method -uses knowledge about the motion
mally be directed toward objects of interest, it may be of the object to be detected. It takes advantage of the
appropriate for binocular agents to ignore features at fact that the apparent motion of a fixed point due to
large disparities. Thus disparity may be used to induce smooth observer movement changes slowly while the ap-
a segmentation on the scene. parent motion of moving objects such as animals or ma-

The cepstral filter (akin to phase correlation) was-used neuvering vehicles often changes rapidly. Such animate
for the vergence calculations. It yields subpixel accuracy motion can be detected by using the motion field at a
and, when used with a PD control law, is responsive to given time to constrain the future motion field under
smooth and discontinuous variations in disparity. Ver- smooth continuation, and then looking for violations of
gence allows "zero disparity filtering" in which only zero- these constraints.
disparity points in images from the two eyes are passed Both methods are implemented using the Datacube
on to further processing. Maxvideo system for low-level qualitative motion extrac-

tion and a SUN workstation for higher-level processing.
1.4 Parallel Cooperating Agents and Juggler The alogorithms run in real time (10 Hz, I/It second
Juggler is a balioon-bouncing program under develop- latency) and successfully detect independent movement
ment, which has kept the balloon in the air for several from a moving platform in a variety of situations, at full
seconds (some dozen hits). As of November 1989 [Ya- (512 x 512) resolution. Details can be found in the paper
mauchi 1989], a version-using five processors was running "Qualitative Detection of Motion by a Moving Observer"
under the Psyche Operating System. The implementa- in these proceedings.
tion uses binocular vision and a competing agent model
of motor control; five processes compete with each other 2 Computing Environments for Parallel
for access to the robot arm to position the balloon in Vision
the visual field, to position the racquet under the bal-
loon, and to hit the balloon. Juggler is robust because 2.1 Languages and Operating Systems
even if processes had to share processors, failure to ex- An alternate communications library for the Puma-robot
ecute any one process during a particular time interval (ROBOCOM) was written by Brian Yamauchi and-John
would have little if any affect on behavior: In the com- Soong for use in the Juggler project. ROBOCOM is
peting agent model, each application process continually much faster than the BOTLIB package since it does not
broadcasts commands to the robot in competition with use the multi-layered ISO-standard structire for com-
other processes. Our experiences with Juggler led to munication.
appropriate extensions to Psyche and communications This year Rochester released Zebra, an object oriented
capabilities, and we have now begun to design real-time programming interface to Datacubes MaxVideo family of
facilities such as user-level scheduling, image processing boards. Each board type is represented
1.5 Movement Detection by ail object class. Each physical MaxVideo board-is rep-

resented by an instance of its class. Simply by-declaring
We have developed methods for the fast detection of the board objects as variables, tae boards are opened
moving objects from a platform that may itself be mov- and initialized. Zebra takes a mtcroprogramming-like
ing [Nelson 1990]. This task has applications in surveil- approach to controlling Datacube boards. The regis-
lance, process monitoring, and target detection. The ter set for each board is considered to be a micro-
primary challenge is to distinguish robustly the ii.age instruction word. This instruction word completely spec-
motion due to independently moving objects from back- ifies a board configuration. By sending instruction words
ground flow induced by movement of the platform. Qual- to boards, the hardware can be completely programmed
itative, pattern recognition strategies avoid the difficul- in a microprogramming-like manner. Instruction words
ties associated with quantitative determination of the can be stored in and retrieved from files, allowing the
image motion field. sharing of standard configurations between developers.

Two complementary algorithms have been developed Instruction words are created an modified via an instruc-
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tion word editor. One such editor is Zed, a graphical tool include low-level machine support. interrupt handlers,
provided with Zebra that drastically reduces the learning virtual memory (without paging), full support for inter-
curve for Datacube programming [Tilley, 1990]. kernel shared memory, synchronous inter-kernel commu-

Over the past year several languages for MIMD par- nication via remote interrupts, support for atomic hard-
allel computers have been developed and ported, and ware operations, remote source-level kernel debugging,
quantitative comparisons made between programming and loading of the kernel via Ethernet. Also core sup-
models. Parallel compilation issues and programming port for the Psyche user interface: realms, virtual pro-
paradigms are being been explored in the thesis work of cessors, protection domains, keys and access lists, soft-
Gafter and Crowl [Crowl, 1989b]. The key reports are ware interrupts, and protected and optimized invocation
(Baldwin 1989a,b,c (Consul); Scott et al. 1990a (Multi- of realm operations. Also rudimentary I/O to the con-
model parallel programming); Crowl 1989b (A uniform sole serial device, and remote file service via Ethernet.
object model); Tilley 1990 (Zebra for MaxVideo)]. There are minimal user-level tools: a simple shell, pro-

Three operating systems (Elmwood, Platinum, Psy- gram loader, and name server, support for command-
che) have been developed for the Butterfly. The most line argument passing, simple handlers for software in-
ambitious project is Psyche, though Platinum and Os- terrupts, and standard I/O and kernel call libraries.
mium solve automatically a number of problems that
users face when using Uniform System-style program- 2.2 Performance Monitoring and Debugging
ming on a MIMD computer (Automatic cacheing and This year we honed several of our tools to help the user
data migration, for instance). The key papers are [Scott effectively implement parallel algorithms [e.g. LeBlanc
et al. 1989b,c (Psyche description); LeBlanc et al. 1989b 1989; LeBlanc et al. 1990; Mellor-Crummey 1989b]. The
(Elmwood description); Cox and Fowler 1989 (Platinum main thrust has b en the construction of parallel perfor-
description)] mance monitoring tools and experimentation with the

We believe that building an integrated, reasoning, re- use of these tools [e.g. Fowler and Bella 1989; Fowler et
active vision and robotic system requires multiple mod- al. 1989].
els of parallel computation. Psyche provides a low-level The information collected during program monitoring
interface with uniform naming and an emphasis on dy- can be used to replay a program during the debugging
namic fine-grained sharing. Through its use of data ab- cycle. During replay, events can be observed at any level
straction, lazy evaluation of protection, and parameter- of detail, and controlled experiments can be performed.
ized user-level scheduling, it allows programs written un- More important, however, is the use of program moni-
der many different programming models to coexist and toring to create a representation for an execution that
interact. The conventions of realm protocols, upcalls, can be analyzed by our programmable toolkit.
and block and unblock -routines provide a structure for The core of our toolkit consists of facilities for record-
communication across models that is, to the best of our ing execution histories, a common user interface for the
knowledge, unprecedented. With appropriate permis- interactive, graphical manipulation of those histories,
sions, user-level code can exercise full control over the and tools for examining and manipulating program state
physical- resources of memory, processors, and devices. during replay of a previously recorded execution. The
In effect, it should be possible under Psyche to imple- user interface for the toolkit resides on the program-
ment almost any application for which the underlying mer's workstation and consists of two major components:
hardware is appropriate. This, for us, constitutes the
definition of "general-purpose parallel computing." an interactive, graphical browser for analyzing execution

Pshefin iffes o frme xi-sng muiparler o pting histories, and a programmable Lisp environment. ThePsyche differs from existing multiprocessor operating execution history browser, called Moviola, is written in
systems inl several fundamental ways. C and runs under the X Windows System.

1. It employs a uniform name (address) space for all its Moviola implements a graphical view of an execution
user programs without relying on compiler support based on a DAG representation of processes and commu-
for protection. nication. In a Moviola diagram, time flows from top to

2. It evaluates access rights lazily, permitting the dis- bottom. Events that occur within a process are aligned
tribution of rights without kernel intervention, vertically, forming a time-line for that process. Edges

joining events in different processes reflect temporal re-
3. It places the management of threads, and in fact lationships resulting from synchronization. Event place-

their definition, in the hands of user-level code. ment is determined by global logical time computed from

4. It minimizes the need for kernel calls in general the partial order of events collected during execution.
by relying whenever possible on shared user/kernel Each event is displayed as a shaded box with height pro-
data structures that can be examined asyn- portional to the duration of the event, and boxes are
chronously. connected with lines representing interactions. Irregular-

5. It provides the user with an explicit tradeoff be- ity, inactive processors, and other indications of possible
5.It prodesttoe usderith aneli fciitaof b bugs are readily apparent in such a diagram.
tween protection and performance by facilitating We have successfully used this facility for kernel de-
the interchange of protected and optimized invoca- bugging and plan to use it as a base for user-level, multi-

model debugging. Low-level debugger functions will be

As of November 1989 we were able to run our first implemented by a combination of gdb and lid. High-
real user applications. Implemented portions of Psyche level commands from the user will be translated by a
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model-specific interface, created as part of the program- cepts: parallelism, interleaving, and tools. Parallelism
ining model. The-Moviola graphical interface has been appears as a characteristic of the file system program
improved, significantly reducing the display time and in- and in the disk hardware. The parallel file system soft-
creasing the functionality. The S graphics package has ware and hardware allows the file system to scale with
been added to-the toolkit, facilitating graphical displays the other components of a multiprocessor computer. In-
of performance data. LISP tools have been written for terleaving is the rule the file system uses to distribute
critical path analysis and for gathering and plotting per- data among the processors.
formance statistics. Floyd, R.A., "Transparency in distributed file sys-

tems," Ph.D. Thesis and TR 272, January 1989: Our
3 Related Theses, 1989-1990 distributed file system, Roe, supports a substantially

Yap, Sue-Ken., "PENGUIN: A language for reactive higher degree of transparency than earlier distributed file

graphical user interfaces": Technical Report 344 (and systems, and is able to do this in a heterogeneous envi-

Ph.D. Thesis, April 1990). ronment. Roe appears to users to be a single, globally

PENGUIN (Programming Environment for Graphical accessible file system providing highly available, consis-
eInterfaces) is a computer language that supports tent files. It provides a coherent framework for unitingUsermarfasespisa o f cntroleflhatinupport- techniques in the areas of naming, replication, consis-grammar-based specification of control flow in event- teccorlfeandicoypaem tndiead

driven graphical programs. The PENGUIN model of tency control, file and directory placement, and file and

intercomponent connection extends and subsumes the directory migration in a way that provides full network

older Seeheim model of UIMS design, allowing large pro- transparency.

grams to be constructed as co-operating components. Mellor-Crummey, J., "Debugging and analysis of
If the reactive nature of graphical programs should be large-scale parallel programs," Ph.D. Thesis and TR
taken into account from the beginning of design, a graph- 312, September 1989: This dissertation addresses the
ical program can be composed as a collection of mod- problem of debugging and analysis of large-scale parallel
ules whose input behaviour is specified, and modules programs executing on shared-memory multiprocessors.
be grouped into separately-compiled components along It is shown how synchronization traces can be used to
lines of clear division of labour and responsibility for re- create indistinguishable executions that form the basis
sources. Such partitions result in components that are for debugging. This result is used to develop a practi-
more likely to be reusable. Our experiences indicate that cal technique for tracing parallel program executions on
the use of PENGUIN can reduce the volume of user in- shared-memory parallel processors so that their execu-
terface code by a factor of two to three and result in code tions can be repeated deterministically on- demand.The
which is clearer than functionally equivalent code using design of an integrated, extensible toolkit based on these
traditional control structures. Uniform handling of I/O traces is proposed. This toolkit uses execution traces to
and signals as PENGUIN events leads to programs that support interactive, graphics-based, top-down analysis
are more portable across systems. of parallel program executions.

Gafter, N., "Parallel Incremental Compilation," Ph.D. Olson, T.J., "An architectural model of visual motion
Thesis, June 1990: We describe a set of techniques that understanding," Ph.D. Thesis and TR 305, August 1989:
enable incremental compilation to exploit fine-grained The central claim of this thesis is that many puzzling
concurrency in a shared-memory multiprocessor and aspects of motion perception can be understood by as-
achieve asymptotic improvement over sequential algo- suming a particular architecture for the human motion
rithms. Because parallel non-incremental compilation is processing system. The architecture consists of three
a special case of parallel incremental compilation, the functional units or subsystems. The first or low-level
design of a parallel compiler is a corollary of our re- subsystem computes simple mathematical properties of
suit. Instead of running the individual phases concur- the visual signal. It is entirely bottom-up, and prone
rently, our design specifies compiler phases that are mu- to error when its implicit assumptions are violated. The
tually sequential. However, each phase is designed to ex- intermediate-level subsystem combines the low-level sys-
ploit fine-grained parallelism. By allowing each phase to tem's output wtli world knowledge, segmentation infor-
present its output as a complete structure rather than as mation and other inputs to construct a representation of
a stream of data, we can apply techniques such as parallel the world in terms of primitive forms and-their trajec-
prefix and parallel divide-and-conquer, and we can con- tories. It is claimed to be the substrate for long-range
struct applicative data structures to achieve sublinear apparent motion. The highest level of the motion sys-
execution time. We describe new algorithms for parsing tem assembles intermediate-level form and motion prim-
using a balanced list representation and type checking itives into scenarios that can be used for prediction and
based upon attribute grammars modified with a combi- for matching against stored models. Simulation results
nation of aggregate values and upward remote references. show that its interpretations are in qualitative agreement
Under some mild assumptions about the language and with human perception.
target program, these phases run in polylogarithmic time Cooper, P.R., "Parallel object recognition from struc-
using a sublinear number of processors. ture (The Tinkertoy project)," Ph.D. Thesis and TR

Dibble, P.C., "A Parallel Interleaved File System," 301, July 1989. The task is the recognition of objects
Ph.D. Thesis and TR 334, March 1990. This disserta- whose identity is defined solely by the spatial relation-
tion introduces the concept of a parallel interleaved file ships between simple parts. A massively parallel frame-
system. This class of file system incorporates three con- work incorporating a principled treatment of uncertainty
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and domain dependence is developed to address the ing, 7(1):3-9, February 1989. Also appeared in Proc.,
problem. The basic architecture of the solution is formed 4th ALVEY Vision Conference, Sept. 1988.
by posing structure matching as a part-wise correspon- [Ballard, 1989b] Dana H. Ballard. Reference frames for
dence problem in a labelling framework, and then apply- animate vision. In Proc., International Joint Confer-
ing the unit/value -principle. The solution is developed ence on Artificial Intelligence, pages 1635-1641, De-
incrementally. Complexity and correctness analyses and troit, MI, August 1989. AAAI. Also appeared in Proc.,
implementation experiments are provided at each phase. 2nd Int'l. Congress on Neuroethology, Berlin, Sept.
The formulation of the application problem is also gener- 1989.
alized, so geometric discrimination can be achieved. The
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mation and statistical domain dependence. Segmenta- nical Report 329, Department of Computer Science,
tion -and recognition are computed simultaneously by a University of Rcchester, February 1990. Also to ap-
coupled Markov Random Field. The method deals well pear, AI Journal.
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Swain, Michael, "Color Indexing", Ph.D. thesis, June object-centered reference frames. In Int'l. Symp.
1990. This dissertation demonstrates that color his- on Neural Networks for Sensory and Motor Systems
tograms of multicolored objects provide a robust, effi- (NSMS), Diisseldorf, West Germany, March 1990.
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It shows that color histograms are stable object repre- and spatial cognition. Forthcoming book (Proc.,
sentations in the presence of occlusion and over change 1988 Porkshop on Pxploratory Pision: Phe Pctive
in view, and that they can differentiate among a large Pye). Department of Computer Science, University of
number of objects. For solving the identification prob- Rochester, to appear. Also appeared as TR 218, Com-
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tion, which matches model and image histograms and a and in the AAAI Spring Symp. Series on Physical
fast incremental version of Histogram Intersection that and Biological Approaches to Computational Vision,
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crowded scenes and with models with similar color sig- [Bandopadhay-and Ballard, to appear] Amit
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Progress in Computer Vision at the University of Massachusetts1

Edward M. Riseman and Allen R. Hanson
Computer Vision Research Laboratory

Dept. of Computer and Information Science
University of Massachusetts

Amherst, MA 01003

ABSTRACT 1  through two doorways and coming to rest within an inch of
its intended goal. Both rooms and the hallway were

This report summarizes progress in image accurately (but incompletely) modelled using a hierarchical
understanding research at the University of volumetric representation of space. Volumes are represented
Massachusetts over the past year. Many of the by their surrounding faces, and faces contain information
individual efforts discussed in this paper are further about the visual appearance of the face. A more complete
developed in other papers in this proceedings. The description of the world representation may be found in
summary is organized into several areas: (Fennema and Hanson 1990a; Fennema and Hanson 1990b).

Clearly, many more experiments, under widely varying
1. Mobile Robot Navigation environmental conditions (both indoors and outdoors), must
2. Motion and Stereo Processing be run before the robustness of the techniques can be
3. Knowledge-Based Interpretation of Static Scenes established.
4. Image Understanding Architecture 1.1.1 Plan Generation

The research program in computer vision at UMass Planning is carried- out over the world model using
has as one of its goals the integration of a diverse set traditional planning techniques (e.g. A* search, freespace
of research efforts into a system that is ultimately representations, etc.) to generate a sequence of plan 'sketches'
intended to achieve real-time image interpretation in a (incompletely specified plans). Plans are generated in a
variety of vision applications, depth first manner, with more detailed plans closer to the

vehicle's current location. Associated with each plan sketch
1. Mobile Robot Navigation is a milestone, which can be thought of as a precondition for

the execution of the plan sketch. These milestones are
The initial focus of the mobile robot navigation project typically specified as landmarks which must be verified
(Fennema and Hanson 1990b) has been on the development visually (and the vehicle's position relative to them
of a system -for goal oriented navigation through a partially determined) prior to the execution of the next step in the
modeled, unchanging environment which contains no plan. The milestones form the basis for 'plan-level
unmodeled obstacles. This simplified environment is servoing', discussed below.
intended to provide a foundation for research into navigation
in more complicated domains. The guiding philosophy of 1.1.2 Plan Execution and Perceptual Servoing
this project is a tight coupling between planning, The rationale for not fully developing detailed plans prior to
perception, and plan execution. Incrcmental planning and moving the vehicle is that plans fail. Obstacles in the
vehicle motion, guided by the relationship between the planned path, irregular or slippery surfaces, uneven tire
internal model and the external world provided by perception, inflation, or unexpected externally induced vehicle motions
serve to keep the vehicle accurately located within the can throw the vehicle off course, causing inaccurate
environmental reference frame. execution. To reduce the errors caused by these unexpected

events, the execution of each action is controlled by
1.1 Experiments in Planning and Plan 'servoing' on prominent visual features in the environment.

Execution These features may be objects, such as prominent buildings,

In a recent experiment (Fennema and Hanson 1990b), the or they may be local features, such as easily identifiable
vehicle successfully navigated a multi-leg course, from the corners, door frames, or baseboards. Servoing occurs on
robot laboratory to an office, moving approximately 50 feet three nested levels:

'action-level servoing' is used to maintain the
'This research has been supported in part by [fie Defense accuracy of each primitive action executed by
Advanced Research Projects Agency under RADC contract the vehicle but does not relate the vehicle's
F30602-87-C.0140 and Army EL contracts DACA76-89-C- position to its progress towards the goal;
0016 and DACA76-89-C-0017.
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refinement, using the matched points, in order to recover its
'plan-level servoing' uses the milestones defined in position. In an initial set of indoor experiments described in

the plan to relate the current location of the (Fennema and Hanson 1990a), the vehicle was able to
robot to the plan and ervironmental model; recover its position to within a quarter of an inch after being

displaced up to 6 inches from where it thought it was, using
Igoal-level servoing' attempts to relocate the robot landmarks approximately 30 feet away. Additional

when it becomes lost; this level of servoing is experiments with this technique are planned for the near
not discussed here. future.

1.1.2.1 Action-Level Servoing An earlier approach (Beveridge, Weiss et al. 1989;
The Denning Mobile Robotics vehicle used in these Beveridge, Weiss et al. 1990) matched straight lines
experiments can execute two 'primitive' actions directly: extracted from the image to model lines projected to the
TURN 0 and a straight line MOVE d. Neither of these image plane using the assumed location of the vehicle.
actions can be reliably executed in 'open loop' mode. The During this past year, the two-dimensional matching scheme
straight line MOVE action, for example, results in a curved has been extended to include determination of scale, as well
path when executed and the vehicle can be significantly off as the rotation and translation parameters yielding the best
the intended straight line trajectory at the end of the action. fit. The model-to-image line correspondences determined
In actual experiments, executing a MOVE 40' has resulted in during 2D matching are used as the input to the 3D pose
the vehicle being as much as a foot off the intended straight computation step. The emphasis over the past year has been
line after 20', with the error increasing, on improving both the reliability and efficiency of the search

processes.
In action-level servoing, the primitive action MOVE 40',

fox example, is broken up into a sequence of smaller moves, The 3D pose refinement technique developed earlier works
say MOVE 2'. The 2D appearance information contained in with either points or lines (Kumar 1989; Kumar and Hanson
the environmental model is used to generate two 1990a; Kumar and Hanson 1990b; Kumar and Hanson
dimensional correlation templates for prominent visual 1989a) and has been extended to be robust in the presence of
features. From the predicted location of these features in the outliers. The robustness is achieved at a computational
image, a search window is established and the templates are cost, since the median of the error function is minimized by
correlated with the image to establish their image location, combinatorial methods over the subset space of all matched
Using the measured discrepancy between predicted and actual image and model lines. However, the method is capable of
locations, the heading of the vehicle is modified to reduce handling up to 49.9% outliers. In a recent paper (Kumar and
the error and the next sub-action is executed. The process is Hanson 1990a), the superiority of the least-median squares
repeated until the primitive action is complete. In actual algorithm over traditional least-mean squares algorithms as
experiments, the use of action-level servoing has maintained well as those based on statistical M-estimation techniques
the vehicle within 1/4" of the intended straight line motion was established. The sensitivity of pose refinement and
over a 40' move. Details on action-level servoing and more other related 3D inference methods to inaccurate estimates of
complete experimental results may be found in (Fennema the image center and focal length has been theoretically
and Hanson 1990a). established and experimentally validated (Kumar and Hanson

1990b). The results show that for 'small' field of view
1.1.2.2 Plan-Level Servoing imaging systems, incorrect knowledge of the camera center
Plan-level servoing is designed to ensure proper execution of does not affect the recovered location of the camera
a plan step prior to initiating the next step by relating the significantly. The error in the recovered orientation of the
progress of the vehicle towards the goal to the camera is linearly related to the error in the estimate of the
environmental model. This is accomplished by matching location of the center of the imaging system.
the milestones defined in the plan sketch to the image (2D
matching) followed by a 3D pose refinement step to 1.2 Automated Model Extension
determine the relationship between the vehicle and the The construction of positionally accurate environmental
environmental frame of reference, models is a time consuming, tedious task. Ultimately, the

only feasible approach for vehicles which are required to
Two different approaches to 2D model matching have been interact with large scale changing environments is to provide

developed. The most recent approach has been to use the them with methods for automatically acquiring their internal
same feature extraction and 2D correlation methods used in models during goal-oriented activities or unrestricted
action-level servoing. Since the vehicle has been tracking exploration.
these points during action-level servoing, it is unlikely that
there will be a large discrepancy between where the vehicle Two preliminary experiments have been performed using
believes it is and where it actually is. Consequently, plan- the 3D pose refinement algorithm to extend a partial model
level servoing involves only the additional step of 3D pose from a set of known points to include unknown points;
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these experiments are described in more detail in (Kumar and
Hanson 1990b). The known model points are used to locate 1.4 Image-Based Navigation Using 360 Degree
new points in the world coordinate system from pose Views
refinement and triangulation over the induced stereo baseline Mobile robot navigation has proven to be a difficult task,
obtained from a pair of 3D poses (e.g. location and and when a system must be capable of automatically
orientation of the camera for each image). In both acquiring 3D environmental models, it is currently beyond
experiments, an image sequence was obtained for which the the state-of-the-art. We are developing a quite novel
three-dimensional location of a set of points in the approach to robot navigation (Hong, Tan et al. 1990) that
environment was known (the model). Image features are allows environmental information to be acquired in terms of
tracked over a sequence of frames using a token-based line a set of images of the world taken at a set of target
tracker (Williams and Hanson 1988a; Williams and Hanson locations. The robot navigates through the world by
1988b; Williams and Hanson 1988c), which provides the moving between neighboring target locations using an
token correspondences. The 3D pose estimation algorithm image-based local homing algorithm. Such an approach is
described earlier is applied to each frame to map each feature feasible only because the system utilizes an unusual
into a stable world coordinate frame. The 3D pseudo- imaging system that provides 360 degree views of the scene
intersection of the rays passing through the camera center in an extremely compact form.
and the image feature point in each image frame is found
using an optimization technique which minimizes the sum- The imaging system is comprised of a spherical mirror
of-squares of the perpendicular distances from the 3D pseudo- mounted above a video camera that is pointed upwards so
intersection point to the rays. In effect, this induces a stereo that a 3600 hemisphcrical view of the world is obtained as a
baseline between frames from which the 3D coordinates of circular extreme "fish-eye" image. This spherical imaging
the unknown features can be obtained by triangulation. sistumaroegtreme dishe e e Thi peion hat
Note that the computation of the location of new points in system so greatly distorts the scene during projection that
the world coordinate system is not sensitive to accurate the image changes dramatically as the robot moves, whileestiatio ofthe mag cener.maintaining visibility of the whole environment so that
estimation of the image center. both objects that are in- the -path of movement as well as
1.3 Automatic Acquisition of Environmental objects just passed will remain visible. There is, however, a

Models projective invariant on the horizon line, or in this case thehorizon circle. As the robot moves on a planar ground
The problem of acquiring models or modifying incorrect surface, distinctive world- features (i.e. landmarks) that
-models -is an important aspect of object recognition and project to points on the-horizon circle remain on the circle.
navigation. The major functional requirements of modeling In addition, each feature other than the points directly in
for these tasks are: accurate prediction of visual features, front of and behind the robot slide around the horizon circle
accurate -surface orientation and curvature, and accurate as a function of the robot movement and surface distance. A
feature-dimensions. one-dimensional circular "location signature" is extracted

We are currently building a system for acquisition of from the hemispherical image by sampling along the

models from image data under known motion generated by a horizon circle at angular intervals (in our experiments 10),
camera mounted on an arm in a robot workell. In order to allowing any resolution image to be compressed into a 360-
obtain accurate depth and curvature information, an byte location signature.
extension of the Giblin and Weiss algorithm (Giblin and
Weiss 1987) is being used. This algorithm computes depth Large scale navigation is then decomposed into a sequence
and curvature by tracking contours in three successive of small-scale navigation tasks by local homing. Around
images. The surfaces need not be smooth and the algorithm each target location, there is a "capture radius" that allows
can use creases (tangent discontinuities) as well as extremal comparison of landmarks in the current and target location
contours and surface markings. This produces 3-D contours signatures to determine a motion to reduce the difference and
and curvatures to which a surface can be fit. thereby home in on the local target in a series of small

steps. Thus, a compact 3600 representation of the
There are many types of surface that one can fit to this 3- environment and an image-based qualitative homing

D data. We have chosen a representation based on a vertices, algorithm allows a mobile robot to navigate without
edges, and faces. This type of model is supported by explicitly inferring three-dimensional structure from the
Geometer (Connolly 1989; Connolly, Kapur et al. 1989) image. Expriments in typical indoor rooms and corridors
which provides an environment that includes both planar and have been successful along paths that involve as many as 17
algebraic faces. target locations for incremental homing. This research is an

ongoing effort and the feasibility of sampling two-
dimensional space for general goal-oriented navigation is
being examined.

88



Smoothness constraints are also of interest in surface
2. Motion and Stereo Processing interpolation, where they are known as "performance

functions." All known smoothness constraints used to
compute optical flow have a subtle property, namely that

2.1 A Framework for the Integrated Processing they do not mix derivatives of different components of theof Stereo and Motionopiaflwied

Work is in progress on understanding the dynamics of a

scene as viewed by a stereo pair of cameras undergoing Snyder (Snyder 1990) presents an analysis of smoothness
arbitrary motion. This subsumes both the analysis of static constraints which do not satisfy this 'decoupled' property,
stereo imagery at one time instant to obtain the static but rather in which derivatives of different components of
disparity between the two images and thereby depth, and the the flow can interact. By using representation theory of the
analysis of a monocular motion pair to obtain the optic flow group of Euclidean motions in the image plane, he uses the
for a pair of frames and thereby relative motion and depth. single assumption that the smoothness constraint is
Thus, we are specifically interested in a reconstruction invariant under this group of transformations to generate a
paradigm which can be categorized as binocular motion, in complete list of all possible invariant smoothnass
order to obtain additional constraints on the recovery of constraints,
motion and depth without depending on one unique (and
possibly erroneous) source for the depth. The constraints are represented as type (p,q), by which it

A promising approach utilizes the ratio of the relative is meant that they are quadratic in pth derivatives of the

flow between the image pairs to the disparity as a function optical flow field, and in qth derivatives of the grey level
of the motion in depth parameters (Balasubramanyam and image intensity function. This is done explicitly for the
Snyder 1988; Waxman and Duncan 1986). The vectors values 0 :5 p,q _ 2. It appears that of these smoothness
parallel to the real instantaneous 3D velocity scaled by the constraints, excepting those linear combinations which are
depth of the point, located at the image of the 3D point, can d.coii~led, are new. In addition, he finds all invariant
be extracted using purely image measurable quantities. This 'pe ,.ormance measures" used in surface interpolation, when
field of scaled 3D vectors is called the p-field. The p-field is the performance measure is quadratic in no higher than
interesting from the point of view of binocular motion since fourth derivatives of the object function.
it implies that at the image level, where normally only 2D 2.3 Orientation Statistics for Modeling 31)
entities were available, it is now possible to examine and Lines and Planes
exploit the nature of 3D) phenomena directly. One useful technique for deriving orientation information

We are currently examining the use of the p-field as a from static images is the estimation of a unit vector
framework within which to represent both the problem of perpendicular to a number of derived unit vectors. For
occlusion and discontinuity (Balasubramanyam and Weiss instance, under perspective projection a ray pointing towards
1989) detection and flow/disparity computation as well as the intersection of a group of converging image line
computation of the 3D motion itself. For instance, segments is perpendicular to their projection plane normals.
observing that the p-vector is a scaled version of the real 3D This has applications in finding vanishing points and in
motion vector, it seems more appropriate to impose locating the focus of expansion of a pure translational flow
smoothness -on this vector since this is closer to the field. Furthermore, the normal to- a planar surface is
assumption of smooth 3D motion, rather than on flow perpendicular to the direction of all lines lying on that
smoothness. This was briefly examined in (Scott 1986) but surface.
not within the framework of binocular motion.

The problem of estimating a vector mutually
It may be possible to use the p-field for the interpretation perpendicular to several unit vectors can be characterized as

of available flow and disparity information for the estimating the polar axis of a great circle on the unit sphere.
estimation of the rwotion parameters. For instance, in the Bingham's distribution, which represents the intersection of
case of ideal pure translation, the p-field directly yields the a 3D Gaussian distribution with the surface of the unit
direction of translation. In the case of general motion, we sphere, is introduced to describe both equatorial and bipolar
are examining several possible algorithms for the distributions of unit vectors. Statistical parameter
computation of the motion parameters. estimation based on Bingham's distribution can be used to

solve for the polar axis of a great circle of points and to
2.2 Smoothness Constraints For Optical Flow represent the statistical uncertainty in the orientation

& Surface Interpolation estimate, but the procedure is somewhat expensive
Gradient-based approaches to the computation of optical computationally. Collins and Weiss (Collins and Weiss
flow often use a minimization technique incorporating a 1990) develop a more convenient alternative based on linear-
smoothness constraint on the optical flow field. least-squares plane fitting. In addition, they consider the

problem of estimating the orientation and uncertainty of the
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cross product of two uncertain unit vectors. The tentative conic trajectory in the image plane. It was also
solution is to form a Gaussian approximation to the demonstrated that when small sections of the conic arc in the
"intersection" of two equatorial Bingham distributions, image are used as the input for a trajectory description, one

obtains very unreliable estimates of the underlying
The above methods are illustrated using two examples trajectory. Hand-grouped sets of trajectories were used and it

(Collins and Weiss 1990). The first involves reconstruction was conjectured that if spatio-temporal data from proximal
of planar surfaces using stereo line correspondences . If points could be grouped and trajectories fit to the grouped
relative pose of the stereo cameras can be described as a pure data, reliable combined trajectory descriptions and accurate
translation, then the orientation of lines in the world can be 3D results could be obtained.
computed as the cross product of the projection plane
normals of its two corresponding images, one in each image An algorithm has been developed which uses
plane. Given a set of lines hypothesized to lie on a single commonality of motion to first incrementally group point
planar surface, the plane orier.tation and uncertainty can be tracks and then fits conic sections to a subset of these using
computed as the pole of a great circle formed from tne an optimization technique over a joint error measure. The
uncertain line orientation estimates. error measure uses a parameterization which makes the

common and independent parameters of each trajectory
The second example involves the analysis of vanishing explicit. The closed form solution was presented in

points (Collins and Weiss 1989). The images of parallel 3D (Sawhney and Oliensis 1989).
lines converge to a vanishing point in the projective image
plane. A ray constructed from the camera focal point The algorithm has been applir:4 -, several image
towards the vanishing point has the same 3D orientation as sequences; the results are sumroiprze4 ia (Sawhney and
the original world lines. The line orientation and its Hanson 1990; Sawhney and Olie'.sis 1 9901. IN, addiion, the
approximate confidence region on the unit sphere is results have been compard v.t, tw otl'?r motion
estimated as the polar axis of a great circle of projection algorithms: Adiv (Adiv 1985), 11,rn's relativt oec'itation
plane normals. Furthermore, surface plane orientations are algorithm (Horn 1988), as w'3l. ,, Kumur' pose 04i,ement
hypothesized as the cross product of these uncertain line algorithm (Kumar and Han,.or, '.,t 9a; K u.nar ,d Hanson
directions. 1989b). The results are p-eini:-iaiy -ad ',present a

continuing effort in understanding robusl 3I': reonstruction
2.4 Analysis of the Limits of Robustness of from monocular motion. More accuraLc ,,,ults applied to a

Correspondence-Based Structure from more varied data set awaits precise calibration of our
Motion cameras.

In spite of extensive research in correspondence-based
motion analysis, a comprehensive algorithm-independent 3. Interpretation of Static Scenes
study of the theoretical limits on the accuracy of the
computation of environmental depth is not available. In 3.1 Learning 3D Object Recognition Strategies
response to this situation, Dutta and Snyder have been
examining (Dutta and Snyder 1990) the robustness ef A general system for object and scene interpretation, called
correspondence-based approaches to structure from motion. the Schema System, has evolved as part of a long-term

research effort at UMass (Draper 1989; Draper, Brolio et al.
Their analysis shows, in an algorithm--independent way, 1989; Hanson and Riseman 1978; Hanson and Riseman

that small absolute errors in image displacements cause 1987; Riseman and Hansen 1984). The results of successful
absolute errors in rotational motion parameters significant experiments in the outdoor scene domain has led to the not
enough to lead to large relative errors in the determination of surprising conclusion that a declarative representation of
environmental depth. Even if the motion parameters are knowledge would be more useful for future work, and in
known almost exactly, such as by sophisticated navigation particular, automatic mechanisms for learning object
systems, small errors in image displaccments still lead to recognition strategies (Hanson and Riseman 1989).
large errors in depth for environmental points whose distance
from the camera is greater than a few multiples of the the The basis for recognizing objects in complex outdoor
total translation in depth of the camera. scenes varies widely in terms of the processes utilized, the

reliability of the information extracted, the efficiency of the
2.5 Comparative Results of Four Motion underlying mechanisms, and the manner in which the

Algorithms evidence is combined into an object hypothesis. All of this
In an earlier paper, Sawhney (Sawhney and Oliensis 1989) information is certainly object- and domain-dependent.
presented a new technique for recovering motion and Some objects can be distinguished on the basis of color,
structure through image trajectories of rotational motion. A while others can only be identified by scene and object
closed form solution was presented for the problem of context. Three-dimensional information about shape or
recovering the 3D circular trajectory of a point given its texture of some objects might be recovered through bottom-
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up -vanishing. point analysis, while the locations of other relies on the Gestalt principles of proximity and good
objects are more easily determined by model-based point continuation and employs an iterative token-based approach
matching. to search for and describe significant curve structures

(including straight lines, conic arcs, inflections, corners, and
T"he problem of learning how to recognize an object is cusps).

being addressed in (Draper and Riseman 1990) The system
is given a description of the object and a set of user- The system iterates a cycle of linking, grouping, and
interpreted training images. The task is to build the most replacement over a range of perceptual scales, but within
efficient object recognition strategy possible within each iteration processing occurs independently at each token.
performance constraints set by the user. Three-dimensional Each token is linked to other tokens that are likely to be its
3D object recognition is approached within a generate-and- neighbors along some contour. Sequences of linked tokens
verify paradigm. The task of learning to generate the are analyzed and classified based on the geometric structure
minimal necessary set of hypotheses is phrased as a search they exhibit. Appropriate replacement tokens are then
problem. The task of learning to verify a hypothesis is cast generated to explicitly describe and replace each sequence.
as a classification problem, followed by graph optimization. Beginning with initial edge tokens (unit tangents centered at

edge locations), curved structure is discovered in a bottom-
3.2 Perceptual Organization of Occluding up, local-to-global fashion and a multi-scale description

Contours results. The computational complexity inherent in any
Contours corresponding to surface boundaries are readily grouping process is managed here by searching locally
perceived or completed by human observers even when local within a perceptual window (which defines the local scale)
evidence in the form of measurable image brightness and by explicitly replacing a sequence of tokens by a single
gradients is completely absent. A classic example of the token at the next scale.
former is the Kanizsa triangle, in which the illusory
contours of the 'occluding' triangle are visually compelling, Since the work previously reported in (Dolan and Weiss
even though there is scant-evidence for their existence. An 1989), a parallel version of the grouping algorithm has
example of completion occurs when one surface is partially been implemented in anticipation of parallel hardware. Here,
occluded by a second (opaque) surface. the grouping process is simultaneously applied to the

perceptual window (i.e. context) around each token for
Williams (Williams 1990) has developed a system for potential grouping and replacement, and parallel replacement

perceptually organizing surface boundaries based on figural of the aggregate tokens is assumed to take place
clues alone, although results have only been demonstrated in simultaneously. A consequence of a highly distributed and
the 'Colorforms' domain and other simple scenes. The parallel grouping process is that redundant descriptions arise
system has, however, successfully extracted Kanizsa's because the contexts of nearby tokens overlap, and
occluding triangle and has- correctly analyzed relatively overlapping aggregate tokens are produced. Dolan is
complex scenes containing multiple occluding surfaces. currently developing methods to identify and eliminate such
Detailed results are presented in Williams (Williams 1990). redundancies by representing multiple types of relationships
The current system is designed to complete gaps in the in the link graph; this will allow redundancy, as well
straight sections of occluded contours but isn't yet able to textural structures to be dealt with in this parallel
cope with more complex occlusions, such as missing framework.
corners or missing sides. 3.4 View Variation of Line Segment Features

In Williams' system, the mechanisms of occlusion of one Model-directed object recognition becomes much more
surface by another are captured in a set of integer linear difficult when the viewpoint of the three-dimensional object
constraints. These constraints ensure that the outputs of a is unknown. A popular approach is based upon the use of
contour grouping process is physically valid and consistent multiple two-dimensional views of three-dimensional
with the image evidence. Among the many feasible structures, and is referred to under a variety of terms such as
solutions, the most compelling is the solution which best -aspect graphs", "generic views", and 'characteristic views"
explains the presence and form of the image structure. The (Bums 1987; Burns and Kitchen 1987a; Bums and Kitchen
problem of computing a complete and consistent surface 1987b; Burns and Kitchen 1988; Ikeuchi 1987). If such
boundary representation is thus reduced to solving an integer systems are going to be effective, a clear understanding is
linear program. required of the manner in which the features of 2D

projections vary as a function of the 3D viewing position of
3.3 Perceptual Organization of Curves the object. It is important to find metric features of an
Dolan (Dolan and Weiss 1989) is extending the perceptual object whose variation is small over a large range of views
grouping mechanisms developed by Boldt (Boldt, Weiss et in order to constrain the number that must be stored.
al. 1989) for straight lines to the case of general curves.
Like the straight line system, the curve grouping algorithm
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Burns(Burns, Weiss et al. 1990) presents an analysis of negative. Specifically, for a local image patch containing a
the variation of point-set and line-segment features with portion of the boundary, the problem of shape reconstruction
respect to view. Although there are well known special-case is shown to be ill--posed. Shape reconstruction is actually
invariants for four points, such as the cross ratio, there iz no more ambiguous in the neighborhood of an occluding
scalar invariant-for an arbitrary number of points in general boundary segment than it is in the neighborhood of an
position, whether one uses true perspective, weak interior image curve. The proof, which applies to a
perspective or orthographic projection. The paper focuses Lambertian surface illuminated from a general light source
on variation of features with respect to views of line direction, is based on recasting the basic characteristic strip
segment pairs under weak perspective, a commonly used equations of Horn in a form that is completely non--singular
projection model ii 'D recognition. The variation is a on the occluding boundary.
function of both ti articular feature and the particular
configuration of 3D line segments. The features studied are: Also, an example is presented in (Oliensis 1990c) in
the relative orientation, size and position of one line which a small image region bordering the image of the
segment with respect to another, and the affine coordinates occluding boundary yields an ambiguous shape
of one endpoint in terms of the other three. reconstruction, even though the image contains both

singular points and the whole of the occluding boundary.
The information in the view-variation analysis allows This example demonstrates that shape from shading can be

determination of semi-invariant features of an object over well--posed and ill--posed simultaneously: although the
areas of the 3D viewing sphere, i.e. features which have a shape corresponding to most of the image is actually
small variation over a large fraction of views. The uniquely determined, the shape corresponding to the specified
relationships between the range of feature variation and the small image region is ill--determined. It is argued that, in
fraction of views are presented in a series ofgraphs for the general, these 'ill--posed' regions are probably small
features described above, and for varying instances of 3D fractions of-the image, but that they can occur frequently, in
line segments pairs. The mathematical analysis embodied in images both with and without visible occluding boundaries,
this paper is generally relevant to techniques for matching and in practice may lead to instabilities and errors in shape
3D models to 2D images. reconstruction algorithms.

3.5 Recovering Shape from Shading Finally, Oliensis has developed (Oliensis 1990b; Oliensis
Shape from shading has traditionally been considered an ill-- 1990c) a new local algorithm for reconstructing shape from
posed problem. However, in recent work, Oliensis (Oliensis shading using a general quadratic surface model. The new
1990a; Oliensis 1990c) has demonstrated that the solutions constraints for shape from shading should be investigated for
to shape from shading are often well--determined, with little their potential for robust surface reconstruction.
or no ambiguity. For the case of illumination that is
symmetric around the viewing direction (i.e. the light source 4. The Image Understanding Architecture
is behird the camera), it was shown in (Oliensis 1989) that The Image Understanding Architecture (IUA) consists of
there is in general a unique solution to shape from shading. the lee sti nArcited ture pcsssThisprof i vald fr gnerl Laberianobjets witout three levels of tightly coupled array of parallel processors
This proof is valid-for general Lanibertian objects (without (Weems, Levitan et al. 1989). Work on the IUA has
holes), and is the first proof that the problem of shape from a ed in et al. i n the U has
shading can be well--posed in general. These arguments advanced in four areas in the preceding year through
were extended to the case of general illumination direction in cooperative efforts by Hughes Research Labs and the
(Oliensis 1990c), where it was demonstrated that, in this University of Massachusetts. A generalized routing
case also, the solutions to shape from shading are strongly algorithm for the low-level processor has been developed, an
constrained over much of the image. These results follow Apply compiler for the low level has been implemented, the
from a combination of local uniqueness theorems and global of simultor andtel hav been ehae ad asse
arguments concerning the properties of the flow of of the prototype system has begun. We have also started
characteristic strips, both derived from the mathematical development of a data parallel C for the low level, continued
theory of dynamical systems theory. The essential planning of the next generation of the DARPA IU
constraints restricting the solution space are shown to be Benchmark, and started the development of the second
provided by the singular points in the image. Also, generation IUA and the design of the third generation.
characteristic strips are given a simple interpretation as space 4.1 Routing On The CAAPP
curves, and demonstrated to be independent of the viewing
direction. The low-level processor of the IUA is a square mesh of

processing elements, augmented with a second
It has long been an open question whether the image of (reconfigurable) mesh, called the Coterie Network (Weems

the occluding boundary provides additional constraints on the and Rana 1990). Normally, a mesh network is considered to
solution to shape from shading. In (Oliensis 1990c), it is be ill-suited for permutation routing because of the square-
proven analytically that the answer to this question is root of N diameter of the network. Other architectures, such
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as the Connection Machine and Masspar have devoted a
significant amount of additional hardware to support fast 4.2 Apply Compiler for the CAAPP
permutation routing. These additions take the form of We have implemented a version of the Apply language
hypercube or crossbar networks with sophisticated (Hamey, Webb et al. 1987) for the low-level processor of
controllers. On the other hand, the Coterie Network merely the IUA. The compiler generates C code that can be
adds a set of switches and some pre-charge logic to each integrated with the C that is currently used to program the
processor, with no increase in the number of physical CAAPP. It permits us to rapidly write functions for the
connections between processors. CAAPP that perform local window based operations on

images. We have also compiled most of the Webb library,
Using the Coterie Network and the fast summary supplied with Apply, for the CAAPP and tested their

capabilities (Rana and Weems 1990) of the CAAPP, we performance. The details of this effort can be found in
have developed an adaptive routing algorithm that is at worst (Scudder and Weems 1990).
an order of magnitude slower than routing on the
Connection Machine, and in many cases is up to two orders 4.3 Enhancements to IUA Simulator and Tools
of magnitude faster. The algorithm is actually a collection The IUA simulator includes an elegant user interface that
of different algorithms, each suited to optimizing provides extensive interaction with the processors for
performance on different types of permutation. The first debugging software (Weems and Burrill 1990). However, the
step is to quickly identify some gross features of the data to interface has only been available on Sun woikstations
be-routed, such as the density of messages and the average because it was written with the SunViews windowing
distance that they will travel, and then select the appropriate system. The simulator has now been converted to run with
algorithm. X-Windows, which will greatly enhance its portability. In

addition, the use of X allows a user to run a simulation on a
Most of the routing algorithms are straightforward and powerful server while displaying the system status on a low-

will not be repeated here. The reader is referred to (Herbordt cost workstation or X-terminal.
and Weems 1990a; Herbordt and Weems 1990b; Herbordt,
Weems et al. 1990) for the details. However, one algorithm The low level of the IUA was originally programmed
is particularly novel, as it uses the Coterie Network to route using a FORTH interpreter because the simplicity and
data in a manner similar to the MIMD wormhole routing extensibility of FORTH allowed us to easily add data
technique (Dally and Seitz 1987) on the SIMD CAAPP. parallel constructs and run with low interpretation overhead.

While suitable for developing simple applications, FORTH
Each message has a header that knows its destination, is severely limiting as applications grow in size. We have

Assuming that there is no blocking, a message header enters thus implemented a C preprocessor that allows
the network along a row, with message packets following it programming of the CAAPP in a manner similar to the C-
like a train of railroad cars behind an engine. When the PARIS facility on the Connection Machine. That is,
header reaches the column of its destination address, it programs are developed using C control structures, but
switches direction and the packets follow it along the CAAPP operations are executed through calls to an
column. The message is then consumed by the destination extensive library of subroutines.
processor.

4.4 Prototype System Assembly
If the path of the header is blocked at any point by another All ote ust m sse t A e

message, the header must stop and wait for a clear path. In All of the custom chips used in the IUA have been

addition, the trailing packets must also wait. The problem assembled and tested at the Hughes Research Labs. A
with this approach in a normal SIMD system is that the breadboard has been built that exercises CAAPP chips and

header must notify each processor containing a trailing ICAP chips running together and communicating with each
packet. Such notification talkes as many steps as tiere are other. The backplane for the prototype has been assembled
packets in the longest blocked message. When the path and tested. In addition, the first processor board, containing
clears, the notification must be repeated so that the train can 256 CAAPP processors and four ICAP processors has been
start to move again, assembled and is being tested prior to fabrication of the

remaining 15 boards that will make up the prototype.
However, with the Coterie Network we can dynamically Completion of the prototype and delivery to Umass is

form a bus that maps onto a train of packets. Each train is expected by the end of Summer 1990.
connected to an independent bus with the header designated 4.5 Current i.

the-bus master. When the header is blocked it merely sends
a one-bit message out on the bus, and every trailing packet We are now worx i data parallel extension to C that
is notified in a single cycle. When the blockage clears, one will explicitly support an image plane data type on the
more cycle is required to tell the trailing packets to advance. CAAPP levci of the IUA. This language will permit the

user to define image planes of different sizes, automatically
mapping them onto virtual processors. We are also looking

93
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provide portability of code with the Connection Machine and Workshop, Palo Alto, CA, pp. 1032-1037.
Masspar.

Beveridge, J. R., R. Weiss and E. Riseman. (1989).
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Abstract I.i the discussion of ground-based vision we describe
progress in developing techniques for building object de-

The-image understanding program at. SRI International scriptions that evolve gradually over time as more data
is a broad effort, spanning the entire range of machine are obtained, motion analysis techniques for detecting
vision research. In this report we describe our progress and tracking moving objects in data taken by moving
in two domains: the first is concerned with modeling the sensors, and a new method for using contextual infor-
earth's surface from aerial imaging sensors; the second mation to recognize natural objects, such as--trees and
is concerned with visual interpretation for ground-level bushes, in outdoor scenes.
vision and land navigation. In particular, we describe An important theme in much of our current work
progress in sterco compilation and automated terrain is an emphasis on computational performance - espe-
modeling from aerial imagery; in interactive scene mod- cially through the-developmentof algorithms capable of
cling and scene -generation; in automatic image segmen- exploiting the new parallel machine architectures now
tation and delineation of man-made objects; in detecting available (e.g., the Connection Machine°"). 2

and- tracking moving objects; and in using knowledge
beyond shape and immediate appearance to recognize
objects in natural scenes and other complex domains. 2 Automated Terrain Modeling

1 Introduction from Aerial Imagery

Stereo reconstruction is a critical task in cartography
The overall goal of Image Understanding research at SRI that has received a great deal of attention in the ira-
International is to-obtain solutions to fundamental prob- age understanding community ([Barnard90], [Barnard S'
lems in computer vision that-are necessary to allow ma- Fischler], these proceedings). Its importance goes beyond
chines to model, manipulate, and understand their en- the obvious application to constructing geometric mod-
vironment from-sensor-acquired data and stored know]- els: understanding scene geometry is necessary for ef-
edge. fective feature extraction and other scene analysis tasks.

In this report we describe progress in two domains, While considerable success has been achieved in impor-
aerial-and ground-based vision. 1 The first is concerned tant parts of the problem, there is no complete stereo-
with modeling the earth's surface from photographs mapping system that can perform reliably in-a wide va-
taken from aircraft and satellites; the second is con- riety of scene domains.
cerned with modeling a natural environment in real time Historically, the computational modeling of stereo vi-
fromndata taken by a robotic device moving through, and sion has been driven-by a number of diverse motivations.
interacting with, this environment. The practical applications of automated stereo are so

In- the discussion of the first domain we describe our important, especially in cartography and robotics, that
progress inl developing stereo techniques for building ter- many engineering-oriented approaches have been tried.
rain- models from aerial imagery; interactive techniques These often use "correlation" techniques: patches of in-

for-building three-dimcnsional models of iai-ade aind tensities in one image are searched for in the other image
cultural objects, and a new automatic technique for seg- by maximizing a measure of correlationi or minimizisig a
meriting aerial images into coherent regions and for de- measure of error. The other motivations, such as the de-
tecting and delineating man-made objects. sire to model biological stereo, involve a variety of tech-

'Supportcd by the Defense Advanccd Rescarch Piojects niques. Some are feature-based. discrete local features
Agency, under contracts DACA76-85-C.O00,1, MDA903-86-C-0084,
and 89F737300. 2Usc of a Connection Macline was provkicd by DARPA.
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(usually-edges) are matched across images, others use are'three psychophysicilly distinct "pools" of disparity
anl approach in which a dense disparity map is the state detectors, corresponding roughly to crossed (positive),
variable of a system, stereo matching is then formulated uncrosssed (negative), and near-zero disparity relative
as an optimization problem. find the best disparity map to the vergence poin!. CYCLOPS uses the same repre-
by maximizing an objective function that measures the sentation, coupled with several octaves of resolution hi-
"quality" of the map. erarchy, to achieve efficiency without sacrificing dynamic

Our research strategy in this task is to develop n,vw range. At every level in the hierarchy, components of in-

techniques for the key steps in the stereo process, such cremental disparity can assume only three local values:

as matching and interpolation, and, in parallel, to in- 1 (crossed), -1 (uncrossed), and zero. The base-disparity,
tegrate these new ideas with existing techniques in the however, can grow by a factor of two across every level.

context of an operational system. As part of this process The search space in any one level is therefore kept to a

SRI has implemented [Hannah85] and evaluated [flan- minimum, while the final composite disparity is allowed

nah88, Ilannah89] a complete high-performance stereo to have a substantial range. In addition to increasing

system, STEREOSYS, that uses a combination of the efficiency, the three-pools mechanism leads to generally

correlation and feature-matching approaches. In a test better (i.e., more nearly optimal) results.

of existing stereo systems on 12 pairs of digital images, While the stereo problem remains a focus of one seg-

conducted by the International Society of Photogranne- ment of our research program, addtional effort is now
try, STEREOSYS was able to successfully process more being devoted to developing an understanding of how
of the images than any other system (11 out of the 12 knowledge of scene depth can be effectively used in the
pairs); while no formal ranking of the test results will scene-partitioning and object-recognition tasks. The de-
be published, it appears that thius :ystein placed first (or velopment of much faster haidware will open the door to
very near the top) in the competition. a new stereo application: robot vision. Stereo obviously

Another system we have developed for stereo match- has a significant role to play in robotics, whether as a

ing is CYCLOPS [Barnard90]. This work began as straightforward mensuration tool for industrial applica-

a stochastic-optimization approach to stereo matching, tions or as part of an integrated perceptual system of an

but has recently evolved into a more complete system autonomous, mobile robot.
for cartographic terrain modeling, including software
modules for canera modeling, epipolar resampling, the Interactive for
generation of regular-grid elevation maps, ortho-images,
contour plots, and synthetic perspective views, in addi- Scene Modeling: A
tion to the central task of image matching. One-of the
goals of this work has been to develop efficient stereo- Cartographic Modeling
processing methods for massively parallel SIMD archi- Environment
tnctures. The CYCLOPS system is implemented on the
Connection Machine. The current implementation is ca- Manual photointerpretation is a difficult and time-
pable of producing a dense terrain model (depth for every consuming step in the compilation of cartographic in-
pixel) for a typical pair of 1024x1024 aerial stereo ira- formation. However, fully automated techniques for this
age in-about eight minutes, using a Connection Machine purpose are currently incapable of matching the human's
with 4096 processors. First, camera model information ability to employ background knowledge, common sense,
is used to produce corrected images with only horizon- and reasoning in the image-interpretation task. Near-
tal parallax. The corrected images are then matched term solutions to computer-based cartography must in-
with a multigrid optimization algorithm. Essentially, the clude both interactive extraction techniques and new
matching algorithm is a stochastic regularization method ways of using computer technology to provide the end-
that tries to find the flattest dense disparity map that user with useful information in the form of both image
matchcs the photometry with least error. It does so by and map-like interactive computer displays.
iterating a microcanonical version of simulated annealing In order to support research in semiautomated and
across several levels of a resolution pyramid, using the automated computer-based cartography, we have de-
results from the coarser levels to initialize the optimiza- veloped the SRI Cartographic Modeling Environment.
tion search at the finer levels. After the corrected imag!es In the context of an interactive workstation-based sys-
are matched the disparity measuiements are converted tern, the user can manipulate multiple images; camera
into a dense but irregular mesh of depth measurements, models, digital terrain elevation data, point, line, and
which -is then resampled into a grid of elevations with area cartographic feaLures, and a wide assortment of
respect to regularly spaced ground coordinates, three-dimensional objects. Interactive capabilities in-

One significant new development in the basic matching dude free-hand feature entry, feature editing in the con-
algorithm of CYCLOPS is the three-pools mechanism. text of task-based constraints, and adjustment of the
Studies of anomolous stereo vision suggest that there scene viewpoint. Synthetic views of a scene from arbi-
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trary viewpoints may be constructed using terrain and Our earlier work in this overall task area was pre-
fcaturc models in combination with texture maps ac- scnted il txo previously published -papeis, one describ-
quired from aerial imagery. This ability to provide an ing basic design issues for this type of system [l1an-
end-user with an interactively controlled scene-viewing son,Pentlaiild,Quani87], and the other providing an
capability could eliminate the need to produce hard- overview of our original plans for the implementation
copy maps in many application contexts. Additional ap- [Ilanson&Qnam88].
plications include high-resolution cartographic compila-
tion, direct utilization of cartographic products in digital
form, and generation of mission-planning and training 4 Automated Detection and De-
scenarios. lineation of Cultural Objects

Recent work has focused on porting the CME to a
UNIX/C platform (from its current LISP-machine iu- in Aerial Imagery
plementation) in order to support technology transfer
goals. Other work involves developing more flexible The detection, delineation, and recognition of anysignif-object representations, irregular terrain grids, and ira icantly broadl class of objects (e.g., buildings, airports,
proved interfaces to other systems such as the SRI- cultivated land) in aerial imagery has proven to-be andeveloped Core Knowledge System. One especially im- extremely difficult problem. In fact, a nominal compo-deveope Cor Knwlede Sste. On esecialy ni- nent in thle solution of this problem, image partitioning,
portant technical improvement involves sensor geometry in t e on of th problemextensions, is considered to be one of- the most refractory problems

extenions.ill Machine vision.
The SRI Cartographic Modeling Environment uses in ma e vcsion.

sensor geometry models in-two principal ways: 1) pro- We aplrcet fo mae a tition asd
jecting the 3D-world coordinates into 2D sensor (pixel) approach, applicable both to image partitioning and to
coordinates, -and 2) computing the intersection of a 3D subsequent steps in the scene-analysis-process, that in-
ray (corresponding to a sensor pixel) with a terrain volves finding the "best" -description -of the image in

model. The basic CME system currently supports-only terms of some -specified descriptive language.
central(perspective) projection and orthographic projec- In the case of image partitioning (Leclerc88,onncentralrspectiv projection a ponth spaicis pro- Leclerc89a, Leclerc89b, Leclerc89c, LUclerc89d], we em-t io n . I n c e n t r a l p r o j e c t io n , e a c h p o in t i n 3 -s p a c e is p r o - p l y a a t g g e t t d s c i s t e i m e i n e r s o r -
jected onto the camera sensor plane along a ray passing ploy a language that describes the image in terms of re-
through a common point, the projection center. We are gions having a low-order polynomial intensity variation

currently implementing a generic capability for dealing plus white noise; region boundaries are described by a
with-noni-central-projection sensor geometries. 'When ac- differential chain code. The best description is defined as

complislied, essential operations now supported for -cen- the simplest one (in the sense of least encoding length)

-tral projectionimagery would also be supported for other that is also stable (i.e., minor perturbations in the-view-
types of (orbiting) sensors. These operations include: ing conditions should not -alter the description). This

best description is found using a spatially local and-par-
1. Display of three-dimensional feature models that allel optimization algorithm, that has been implemented

are cartographically registered to non-central- on the Connection Machine.
projection -imagery. The second step after image segmentation is to-sirn-

2. Terrain rendering, using data acquired with any sen- plify the resulting chain-code and polynomial descrip-
tion even further by: (1) describing the boundaries using

sor geometry, to a format simulating any other sen-sor geometry. An armple wouldba pping straight lines and other more global models [Leclerc89c],sor eomtry Al exmpl woud b mapin 1111- and (2) grouping nonadjacent regions whose intensitycentral-projection imagery onto a terrain model and ad()gopn oajcn ein hs nestvariation can be more simply described by a single poly-
generating a simulated image sh6wing the result nomial (Leclerc9Oa, LeclercOb(hese proceedings)].
viewed with a central-projection sensor. In situations where the required image description

In addition to implementing non-central-projection must proceed beyond that of a delineation of coherent
sensor geometries, we are also working on generating the regions, we lequire an extended vocabulary relevant to
expected flow field observed by a moving sensor. This the semantics of the given task. Fua and Leclerc deal
work is an important component in the development of with the problem of boundary/shape detection given a
automatic techniques for improving terrain models fioi rough estimate of where thme boundary is located and
sequences of real imagery. By comparing the measured a set of photometric (intensity-gradient) and geometric
image flow in the real data with the predicted flow wc can (shape-constraint) models -for a given class of objects
discover discrepancies between the terrain model and the [Fua&Leclerc88, Fua&Leclerc90]. They define an en-
actaal terrain. Our goal is to use the depth-from-motion ergy (objective) function that assumes a minimal-value
technologies developed at SRI to convert the discrepan- when the models are exactly satisfied. An initial es-
cies into improved depth estimates and thus a refinement timate of the shape and location of the curve is used
of the terrain model. as the starting point for finding a local minimum of
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the' i~ndrgy .ftiction by embedding this curve-in a. -vis- the inability of available techniques, especially those in-
;ous-mediumafid solving, tie-dyianic'equatibns. This volved in sensory interpretation, to use-contextual'infor-
e!wrgy-miinimizaltion technique, which evolved 'from a mation and-stored knowledge in recognizing objects and
:less-eflicidnt-gradient-descent approach [Leclerc&Fua87], environmental features. One of our goals in this effort
has been implemented on the-Connection Machine. It is to design a. core knowledge structure (CKS) that can
-has been applied to straight-line boundary models and support a new generation of knowledge-based generic vi-
to more complex models -that inchde constraints on sion systems. A second goal is to actually con.5truct a
smoothness, parallelism, and rectilinearity, and has been vision system, which employts the CKS, and has the
incorporatedinto the SI Cartographic Modeling Envi- competence to recognize objeCLts appearing giound level
ronment described earlier. In an interactive mode, the imagery of natural outdoor scenes.
-user supplies an initial estimate of the boundary of some
object-(which may be quite complex, like the outline of
al aroplane) and then, if need be, corrects the opti- 5.1 Core Knowledge System
-ilzed curve-by applying forces to the curve or by chang- The OKS is an object-oriented knowledge/databae that

ing-one of a-few optimization/model parameters, was originally designed to serve as the central informa-
Automatic recognition and delineation of important tion manager for a perceptual system [Smith&Strat87,

cartographic objects, such as-man-made structures, from Strat&Smith88], The following facilities of the CKS are
aerial imagery has been addressed [Fua&llanson89a, of particular inporl.ance in supporting the object recog-
Fua&Ilanson89bJ. The basis for the approach is a the- nition task.
oretical- formulation of object delineation as an opti Multiple Resolution in Space mid Knowledge.
mizition problem; practical objective measures are i'- The CKS employs a, multiresolution octree to locate ob-
troduced that discriminate among a multitude of object jects only as precisely as warranted by the data. Sim-
candidates using a model language and the minimal- ilarly, a collection of ge3metric modeling primitives are

-encoding principle This approach is then applied in available to represent objects at an aPl)propriate level of
'two dlistinct- ways to the extraction of buildings from detail. In parallel with the octree for spatial resolution
aerial imagery: the first is an operator-guided procedure is a semantic network that represents things at multiple
that uses a massively parallel Connection Machine im- levels of semantic resolution.
l)lementation of the objective measure [Fua89 to dis- Inheritance and Inference. The CiS uses the se-
cover a building in real time given only a crude sketch.
The second is-an automated hypothesis generator that mncet ors toerfrn om led tl of infr-
employs the objective measure during various steps in once that ease the burden of querying the dat a store.
the hypothesis-generationl procedure, as well as in the fi- Thus query responses are assembled not only from those

nal stages of candidate selection; both serial and parallel objects that syntbctically omatch the query, but also from

(Connection-Machine) approaches are iml)lemented. objects that can be inferred to match given the relations

We believe -that both the Leclerc and the lian'on. encoded in the semantic network. Spatial inference is
an(l Fua techniques represent significant advances in provided based on geometric constraints computed by

the state-of-the-art in their respective areas of image the relte of rnalyning

partitioning and delineation of cultural features. Both Colc of the realities fna isystms ave eenableto rodue ecelliitresuts i magery of the real world is that conflicts wvill result fromsystems have -been able to produce excellent results ill 9itksi nepeainal r~l ntcdcagsi

complex situations where existing (typically local) ap- mistakes in interpretation and from unnoticed changes in

proahesfai. Fuurewor on hes tehniqes ill the world. The OKS treats all incoming data as the opin-preaches fail. Future work onl these techniques will
emphasize the incorporation of more complex models, ionls ofthe datasources, so logical inconsistencies will not
tbree-dimnisional contextual information, and efficient corrupt the database. Similarly, values derived throughpaalelimplesmnaton a imultiple inheritance paths are treated as multiple opin-
parallel implementations. ions. This strategy has several advantages and disad-

vantages. Rather t.hai fusing information as it arises,
5 Othe CKS has the option of postponing combination until

its results are needed. This means that the fusion -can
Natural Outdoor World be performed on the basis of additional information that

may become available, and in a manner that depends
The natural outduor unvil omniwilt pu. eb igilifikaut ob- Ull tlL in1lidIdtt. td-k Ut liuid. SUonc iAfUllhltuii1t11 dy
stacles to the design and successful interation of the never be needed, in which case the CKS may forego its
interpretation, planning, navigational, and contiol fune- combination entirely. The disadvantages are the need
tions of a general-purpose vision system. Many of these to store a larger quantity of data and a slowed response
functions cannot yet be performed at a level of compe- at retrieval time. For an object recognition system like
tence and reliability necessary to satibfy the needs of an Condor (described below), the CKS seems to provide the
autonomous robotic device. Part of the problem lies in right tradeoff.
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5.2 Condor: A Contextual Vision Sys- by context through the use of %arious types of context.
tern Built on the CKS sets: an action is initiated only when one or more of its

controlling context sets is satisfied. Thus, the actual se-
Much of the progress that has been made to date in ma- queince of computations, and t'he labeling decisions that
chine vision has been based, almost exclusively, on shape are made, are dictated by contextual information (stored
comparison and classification employing locally measur- in the Core Knowledge Structure), by the computational
able attributes of the imaged objects (e.g., color and state of the system, and by the image data available for
texture). Natural objects viewed under realistic condi- interpretation.
tions do not have uniform shapes that can be matched The customary approach to recognition ;n machine vi-
against stored prototypes, and their local surface- prop- sion is to design an analysis technique that is competent

-erties are too-variable to be unique determiners of iden- in ,s many contexts as possible. In contrat to this-ten-
tity. The standard machine vision recognition paradigms dency toward large, monolithic procedures, the strategy
fail to provide a means for reliably recognizing any embodied in Condor is to make use of a large number
of the object classes common to the natural outdoor elatie i o d r es E a prge isncom-
worldof relatively simple procedures. ach procedure is co-
wfford (e[treesushe, eseproc , ve). edn- h petent only in some restricted context, but collectively,
effort nStrat&FischlergO, thcse proceedings, we have de- these procedures offer the potential to tecognize a fea-
vised a new paradigm which explicitly invokes context ture in a wide range of contexts. The key to making-this
and store- knowledge to control the complexity of- the strategy work-is to use contextual information to predict
decision-making processes-involved iii correctly identify- which procedures are likely to yield desirable results, and
ing natural objects and describing natural scenes. whire not,

The conceptual architecture of the system we describe, which a n
called Condor (for context-driven object-recognition), is Condor operates as follows; For each label ii -the

much like that of a production system; there are many active recognition vocabulary, all candidate generation

computational proce.ses interacting through a shared context sets are evaluated. The operators associated

data structure. Iterpretation of an image involves the with those that are satisfied are executed, producing

following four- process types. candidates for each class. Candidate comparison context
sets that are satisfied are then used to evaluate eachlcan-

-0 Candidate -generation -(hypothesis generation) didate for a given clasb, and if all ,,,ch ealuatorsprefer
one candidate over another, a preference ordering is es-
tablished between them. These preference relations are

-0 Clique formation (grouping mutually consistent hy- assemblcd to form partial ordes over t lie candidates, one
potheses) partial order for each class. Next, a scarch for mutually

coherent sets of candidates is conducted by incrementally
SClique selection (selection of a "best" dhescription) building cliques of consistent candidates, beginning with

-Each process acts like a daemon, watching over -the empty cliques. A ca.didate I6 nomin,=ted for inclusion
knowledge ba e and invcking itself when it. contextual into a cliqle by choosing oC of th candidates at the
requirements are satisfied. The input to the system is an top of one of the partial order:, Consi6tency detcrmina-
image or set. of iniages that may include intensity, range, tion context. sets that are satisficd are used to test the
color, or other data modalities. The primary output of consistency of a-nomihcr with caudidates already-in the

the system is a labeled 3D model of the scene. The clique. A consistent nominee is added to the clique; an
-labels included in the output description denote object inconsistent one is renioed from fuzther consideration
classes that the system has beetn tasked to recognize, with that clique. l'urther candidates are added to the
plus others front the recognition vocabulay that happen cliques until none remain Additional cliqes are gen-
to be found useful during the recognition process. An crated in a similar ftshion a. computational resources
object class is a categoty of scene features such as sky, permit. Ultimately, one Llique is selected as tile best see
ground, geometric-horizon, etc. mantic labeling of the image on the basis of the portion

A central component of the architecture is a special- of-the image that is explained and the reliability of the
purpose knowledge/database used for storing and pro- operators that contributed to the clique.
viding access to knowledge about the visual world, as We have taken over 100 phutugraphs (at an experi-
well as tentative couclusions derived during operation of mental site in the foothills bkhiiiid Stanfurd University)
tile sytiii. Iii Coundur, thcsc cal, bilitles are provided of which 30 have so fa been digitized and successfully
by the Core Knowledge Structure (CKS) as previously processed by Condor. I the future, additional imagery
discussed. will be acquired and processed to more fully evaluate

Visual interpretation knowledge is encoded in context our approach. Based on our initial experiments, and the
sets, which serve as the uniform knowledge representa- unique architecture of of our system, we are highly op-
tion scheme used throughout the system. The invoca- timistic about the ability of Condor to overcome many
Hon of all processing operations in Condor is governed of the limitations (with respect to object recognition)
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inherent in the traditional machine vision paradigms. call TraX,-that constructs and refines-models of outdoor
objects- detected in sequences-of range datagathered by
-all autonomous land vehicle driving cross-country [Bo-

6 Object Modeling from Multi- bick&l3ollesS9].
pie Images We are continuing to explore the idea of using stability

to evaluate the reliability of representations. In addition,

Our goal in this research effort is to develop automated we plan to develop new explanations based on support
and gravity and to explore ways to combine other types

methods for producing a labeled three-dimensional scene an ravity andter w ay
model from image sequences. We view the image-
sequence approach as an important .:ay to avoid many
of the problenls that hamper conventional stereo tech- 6.1 Building 3-D Descriptions from Im-
niques -because it provides the machine with both "re- age Sequences
Jundant" information and new information about the
scene, The redundant information can be used to in- We have developed a motion analysis technique, which
crease the precision of the data and filter out artifacts, we call Epipolar-Plane Image (EPI) Analysis [Bolles87].
the new information call be used for such things as fill- It is based on considering a dense sequence of images
ing in-model information along occlusion boundaries and as forming a solid block of data. Slices through this
disambiguating matches in dih midst of periodic struc- solid at -appropriately chosen angles intermix time and
tures. spatial data in such a way as to simplify the-partitioning

W\e-have developed two techniques for building three- problem. These slices have more explicit structure than
dimensional descriptions from multiple images. One is a the conventional images from which they were obtained.
rangeba.,ed technique that builds scene models from a In the referenced paper we demonstrated the feasibility
sequence of range images; the second is a motion anal- of this novel technique -for building structured, three-
ysis-technique that analyzes long sequences of intensity dimensional descriptions of the-world.
-images. Our approach for analyzing sequences of range In later work we extended this technique to locate stir-
images is to provide the system with a wide variety of ob- faces in the spatiotemporal solid-of data, instead of ana-
ject and terrain representations and an ability to judge lyzing slices, in order to maintain the spatial continuity
the appropriateness of these representations for partic- of edges from one slice to the next [Baker&Bolles88].
ular-sets of data. The variety of representations is re- This surface-building -process is the three-dimensional
quired -for two reasons. First, it is needed to cover the analogue of two-dimensional contour analysis. We have
range of object types typically found in outdoor envi- applied it'to a wide range of data types and tasks, in-
ronments. And second, it is needed to cover the range cluding medical images such as computed axial tomog-
of data resolutions obtained by a robot vehicle exploring raphy (CAT) and magnetic reasonance imaging (MRI)
the environment. data, visualization of higher dimensional (i.e., greater

In this approach to object modeling an object's de- than three-dimensional) functions, modeling of objects
scription typically goes through a sequence of represen- over scale, and assessment in-fracture mechanics.
tations-as new data are gathered and processed. One of We have also implemented a version of EPI analysis
these sequences might start with a crude blob description that works incrementally, applying a Kalman filter to
of an initially detected object, include a detailed struc- update the three-dimensional description of the world
tural model derived from a set of high-resolution images, each time a new -image is received [Baker&Bolles88].
and end with a semantic label based on the object's de- As a result of these changes-the program produces ex-
scription and the sensor system's task. This evplution tended three-dimensional contours instead of sets of iso-
in representations is guided by a structure we refer to as lated points. These contours evolve over time. When a
1"representation space". a lattice of representations that contour is initially- detected, its location is only coarsely
is-traversed as new information about an object becomes estimated. However, as it is tracked through several in-
available. One of these representations is associated with ages, its shape typically changes into a smooth three-
an object only after it has been judged to be valid. We dimensional curve that accurately describes the corre-
evaluate the validity of an object's description in terms sponding feature in the world.
of its temporal stability. We define stability in a statis- Recently we have extended of the EPI dnalysis tech-
tical scn.3c augmcntcd with a sct of explanations offcr- niquc in two dircctions. The -first is the modeling of
ing reasons for missing an object or having parameters biological structures from tomographic data [Baker9O].
change. These explanations can invoke many types of The descriptive formalism we are developing models tis-
knowledge, including the physics of the sensor, the per- sue as two-dimensional -manifolds in three space. We
formance of the segmentation procedure, and the relia- have used this type of model-to demonstrate simple ver-
bility of the matching technique. To illustrate the power sions of surgical simulation, kinematic modeling, and
of these ideas we have implemented a system, which we kinematic analysis. In the second extension we are using
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the temporal-trackinginechanism in EPI analysis to de- test our algorithms on both simulated and real data.
tect. andtrack moving objects from mo ing sensors. We (We have used the Cartographic Modeling Environment
have added evaluation- routines that select key features to provide extensive simulation data.) The advantage
to be tracked on the mo ing objects. We are currently of simulated data is that we know "ground truth" and
exploring-techniques for constructing three-dimensional therefore are in a better position to judge the compe-
descriptions-of the tracked objects. tence of the algorithms (along some key dimensions)

than when we analyze real- data. This strategy has al-
ready paid off. Our initial experimentation with simu-

6.2 Detecting Moving Objects from lated data pointed out a serious weakness in displaying
Moving Selpsors warped images to demonstrate the results of optic flow

Building upon our work in motion vision- and terrain computations. At-occlusion-boundaries optic flow tech-

modeling, we have recently begun development of tech- niques locate matches (and compute flow vectors) for

niqucs for detecting and tracking moving objects from a points that have similar greyscale values. This proce-

moving platform. This work is being performed jointly dure leads to stabilized intensity images when the flow

with the Machine Vision Group at. the David Sarnoff vectors are used to warp one image into another, but the
Research Center. flow vectors are incorrect. Given a terrain model, we are

Motion-(in a sequence of images) prIovides one of the now able to predict occlusion boundaries and avoid these

strongest cues available about the-presence of a possible erroneous results.

target in a scene. However, when-a sensor is moving, ev-
erything in the image is inoving. Therefore, detection of 7 Acknowledgment
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Image Understanding at the GRASP Laboratory
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Abstract a form of segmentation. Hence, 2D image segmenta-
tion and 3D description of parts should act together as

Research in the GRASP Laboratory has two a cooperative process [Bajcsy et al., 1990], a combined
main themes, parameterized multi-dimensional 2D-3D segmentation process.
segmentation and robust decision making un- Range images and 2D images complement each other.
der uncertainty. The multi-dimensional ap- Range data is a reflection of geometric properties of the
proach interweaves segmentation with repre- objects only. However, 2D images contain- indirect infor-
sentation. The data is explained as a best fit in mation about geometric properties in combination with
view of parametric primitives. These primitives surface properties (color, texture, translucence, etc.),
are based on physical and geometric properties which- is not available at all in the range data. Because
of objects and are limited in number. We use of this, a cooperative 2D/3D-segmentation process has
primitives-at the volumetric level, -the surface the potential to be a major improvement over separate
level, and the occluding contour level, and com- segmentation.
bine the results. The robust decision making By extension, the grouping of data through time is also
allows us to combine data from multiple sen- segmentation. One aspect of grouping temporal data-is
sors. Sensor measurements have bounds based the construction of range images via sliding stereo or
on the physical limitations of the sensors. We structured light range images. Another aspect of group-
use this information without making a priori ing temporal data is the understanding of-movable or re-
assumptions of distributions within the inter- movable parts in objects in a scene. Understanding that
vals or a priori aqsumptions of the-probability a part moves as a unit, separately from another part, is
of a given result. a partitioning of the data. Without a priori knowledge,

this cannot be detected by noncontact sensing. This

1 Introduction segmentation would allow understanding of the dynamic
properties, the mechanical properties and- the kinematic

Our basic approach to Image Understanding can be properties of objects. However, in this paper, we con-
summarized as follows: we seek to divide the ob- centrate on the aspects of 2D/3D segmentation process
served scenes into 3D objects. 2D images are obser- which can be accomplished through non-contact sensing.
vations/measurements of these 3D physical objects un- 1. Definition of the segmentation problem:
der certain illuminations and perspective projections. e Segmentation is partitioning the space into
Hence, the process of Image Understanding includes the meaningful parts. This can be done on inten-
transformation of the 2D data into a description of 3D sity images or range images.
objects in terms of physical and geometric primitives.
This grouping of image data, to produce such a descrip- e Segmentation is data reduction and requan-
tion, is called segmentation. tization of sensory measurements into some

Though image segmentation has been treated sepa- primitive elements.
rately from shape representation in the past, solving the * Segmentation is an inference of a symbolic
two- problems separately is very difficult. If an image description of the world from one or more im-
is correL-ly divided into 3D components, ambiguities in ages.
the 2D segmentation can be resolved more easily. Con- 2. What kind of measurements are available in non-
versely, a range image can be partitioned more easily into contact sensing?
3D shapes given a good 2D segmentation of the same * Multispectral Image: camera with filters hay-
scene. Indeed, dividing the scene into 3D primitives is ing different spectral sensitivities. We measure

*Acknowledgement: Navy Grant N0014-88-K-0630, energy flux incident on one image plane (irradi-
AFOSR Grants 88-0244, AFOSR 88-0296; Army/DAAL 03- ance) that combines the following components:
89-C-0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89- - energy and spectral distribution of the inci-
06770; and Dupont Corporation dent light,

107



- reflectance properties of the objects, and tion 7, and described more thoroughly in the paper by
- geometry - orientation of the surface with Mintz, McKendall and Kamberova in this Proceeding.

respect to the viewer and the light source.
9 Multiple Views: In the paradigm of Active Vi- 2 Color Image Understanding: Image

sion, we seek the appropriate place to look, in- Segmentation and Detection of
cluding the movement of the observer. Motion Highlights and Inter-Reflections
of the observer allows us to construct Range
Images. In principle, this could be done using Using Color.
stereo; however, in this work we use structured Color image segmentation should be based on changes
light range imaging. in object colors. In addition to the object color changes,

3. What kind of primitive elements should we use? however, an image of three-dimensional real objects con-
tains variations because of shading, shadows, highlights* Primitives must balance the trade-offs between: and inter-reflections. Detection and separation of high-

- data reduction versus faithfulness to mea- lights for successful segmentation has been the focus
sured data and of recent efforts in color image segmentation [Gershon,

- localness versus globalness. 1987] [Klinker et al., 1988]. We have approached the
* Primitives should correspond to segments in construction of a computational model for color image

terms of physical phenomena. segmentation not only with detection of highlights, but
also with detection of small color changes induced byPhysical phenomena are manifested in the image via inter-reflections.

the following discontinuities: depth, orientation, albedo, We use the dichromatic model [Shafer, 1985] for dielec-
shadow, shading, and specularity. Hence, our segmenta- tric materials. There are two reflection mechanisms-
tion and resulting descriptions will be in terms of physi- surface reflection and body reflection. The surface or
cal properties of the world (surface reflectance, shading, interface reflection occurs at the interface of air and ob-
shadow, highlights and geometry) rather than in terms ject material, and can be specular and/or diffuse reflec-
of image attributes. tions depending on the surface roughness. Surface re-

In Section 2 our work detecting highlights and inter- flectance at dielectric materials are spectrally flat for
reflections is described. Section 3 details segmentation of both specular and diffuse reflections. Body reflection,
images into objects/surfaces made of specular and diffuse on the other hand, is spectrally colored depending on
materials [Bajcsy et al., 1989]. Section 4 explains the the pigments, and always diffused. When the body re-
segmentation of the range image and/or lightness image flectance is non-flat, we can detect the flat component
into surfaces. Section 4 represents our efforts to recover of surface (or interface) reflectance regardless of surface
underlying geometric structure from an image. Since roughness. Highlights are caused by specular surface re-
geometry involves more than just surfaces [Leonardis el flection; inter-reflections between the objects are caused
al., 1990], we find volumetric descriptions in terms of by both surface (specular or diffuse) and body reflec-
superquadric parts. All of this processing is only from tions.
one viewing angle, which is not sufficient for describing To better represent and process the image color, a
a scene composed of opaque objects. This question of color metric space is developed based on the physical
where to go next, based on the first view, is described model of the camera and filters. The measured color in
briefly in Section 5 and in more detail in the paper by R,G,B space is transformed into the metric space using a
Mayer and Bajcsy in this Proceeding. set of orthogonal basis functions. We used the first three

The above work is being extended into the develop- of Fourier basis functions. Within our framework, how-
ment of a formal model for an observer of an indoor scene ever, any orthogonal basis functions can be used for bet-
being explored by a mechanical hand [Bajcsy and Sobh, ter representation of natural colors [Cohen, 1964] [Judd
1990]. The task for the observer is to have a full view et al., 1964]. The metric space is similar to the opponent
of the hand and the object being held and/or manipu- space in human vision with intensity, hue and saturation.
lated. We have adopted the formalism of discrete event With orthogonal values, we can manipulate each compo-
dynamic systems (DEDS), which allows us to predict nent of color separately or in combinations. Transforma-
under which conditions the observer-automaton can ac- tion from R,G,B into orthogonal values is a pixel parallel
complish the task. This includes both the stability and process, and is implemented on a Connection Machine
the observability conditions. The formalism of DEDS (CM2a).
has been described in [Ho, 1987], [Ramadge and Won- Since illumination is usually spectrally colored, cali-
ham, 1987b; Ramadge and Wonham, 1987a] and others. bration of measured images is performed with a white

Observing and understanding motion is an established object of reference to whiten the illumination. Whereas
part of the Image Understanding effort. In the GRASP the spectral distribution of object surfaces is not changed
Laboratory, we have used a temporally-oriented ap- by shading and shadow, it is affected by highlights
proach rather than a spatially oriented approach. This and inter-reflections between the objects even under the
approach is described in Section 6, and detailed in the white illumination. Since the highlights add the white-
paper by Wohn and Iu in this Proceeding. ness to the object color under the whitened illumination,

The underlying theory of updating procedures and de- they can be detected by observing the change of satu-
cision making under uncertainity is summarized in sec- ration in the uniformly colored objects, which is equiva-
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Figure 1: a Intensity b Body Reflections, and c Surface Reflection. In (c), inter-reflections are visible as spatially
diffused low intens" values. The bright peaks of highlights are strong specular surface reflections.

lent to examining to detect any spectrally flat reflectance mentation results can be used wtogether with seg-
added in the body color., The inter-reflections are also mentation by hue and saturation. [Leonardis el al.,
detected with the change in saturation and in hue values. 1990].

Segmentation is carried out in two steps; hue and sat- 2. Active Camera Movements. This will allow-us to ob-
uration segmentation under the assumption that objects serve different moving patterns of surface and body
are piecewise uniform in hue and saturation. Intensity reflections as the observer moves.
is not easy to use in the presence of shading, shadow
and highlights. Illumination whitening is important for 3. Changing illumination (when possible) to disam-
hue segmentation since under white illumination, the biguate-the image variations due to the- change of
highlights do not shift the hue values of object colors, shading/shadow and albedo.
Highlights are detected by observation of saturation val-
ues. The use of the reference plate is not necessary 3 Segmentation as the Search for the
when the illumination is weakly colored. Roughly de- best Description of the Image in
tected highlights can be used for the reference. Within
each region, the detection and separation of highlights terms of Primitives.
and inter-reflections is highly parallel, since it is accom- A new paradigm for image segmentation has been de-
plished via thresholding and arithmetic operations. veloped. We segment images into piecewise continuous

-Our method is improved over previous works [Ger- patches [Leonardis et al., 19901. Data- aggregation is per-
shon, 1987] [Klinker et al., 19881, in a few significant formed via model recovery in terms of variable-order bi-
ways. The previous methods can detect strong surface variate polynomials using iterative regression. All the re-
specular reflection, but are not reliable in detecting small covered models are potential candidates for the final de-
surface reflections that are diffused. Since we interpret scription of the data. Selection of the models is achieved
the reflection mechanisms in our color space with all the through a maximization- of quadratic Boolean -problem.
spectral characteristics of sensors considered, we can bet- The procedure can be adapted to prefer certain kinds of
ter observe the spectral variation of reflection. There- descriptions (one which describes more data points, or
fore, we can detect not only strong and distinctively ap- has smaller error, or has lower order model). We have
pearing specular reflection, but also small surface reflec- developed a fast optimization procedure for model selec-
tions which are spatially diffused. Inter-reflections usu- tion. The major novelty of the approach is in combin-
ally have a diffused appearance. The inter-reflections can ing model extraction and model selection in a dynamic
be detected by the change in saturation values although way. Partial recovery of the models is followed by the
hue values also change. optimization (selection) procedure where only the "best"

Figure 1 (b) shows Body Reflections and (c) shows models are allowed to develop further. The results ob-
the Surface Reflections of which the original intensity tained in this way are comparable with the results ob-
is shown in Figure 1 (a). Though inter-reflections are tained when using the selection module only after all the
barely visibl,- in the origillal color image, they are not models are fully recovered, while the computational corn-
visible in Figure 1 (a). These inter-flections are visible plexity is significantly reduced. We test the procedure
in figure Ic, as spatially diffused, low-intensity values on on real range and intensity images.
the horizontal strip. We believe this segmentation schema is a tool that will

In our previous work, we have concentrated on spec- prove useful in many tasks of early vision. The two pro-
tral information. We are expanding our investigation to cedures (model recovery- and recover-and-select) clearly
include: show that the whole can be greater than the sum of

1. Multi-dimensional segmentation. The spatial seg- its parts (synergism). The iterative approach combin-
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ing data classification and model fitting shows that seg- fine and recover part-whole relationships, without- a pri-
mentation and modeling are not two independent proce- ori knowledge about the objects or the object domain.
dures but have to be integrated. The procedure which The descriptions thus obtained are independent of posi-
dynamically combines model recovery with model selec- tion, orientation, scale, domain and domain properties,
tion proves to be much more efficient than applying-the and are based purely on geometric considerations. Since
modules one after another. both boundary-based and primitive-based primitives-are

Another important conclusion that we have drawn included in our vocabulary, the representation is expres-
from our work is that reliable segmentation can only be sive and robust.
achieved by considering many competitive solutions and In the computer vision literature, the partitioning of
choosing those which reveal some kind of structure in images and description of individual parts is called seg-
terms of underlying models. Fine-tuning of feature de- mentation and shape representation respectively. We
tectors does not lead to reliable segmentation, because of have presented arguments in Bajcsy, Solina, and Gupta
the variability of the input data. Initial local estimates, [Bajcsy et al., 1990] that the problems of segmentation
no matter how good they are, do not necessarily lead-to and representation are related and must be treated simul-
a good result, and more global information is needed. taneously. We propose that for obtaining a global shape
Optimization performed on the level of primitives rather description from single-viewpoint 3-D data requires ad-
than on a pixel level not only improves the performance dressing shape at the following levels :
enormously in terms of computational complexity but 1. Volumetric level: Superquadric shape primitives
also gives more reliable results. capable of modeling parts in three dimensions are

The results are grouped such that the top row of the needed to describe global 3-D shape of parts.
figure (from left to right) shows the original image, its
3-D perspective plot, the reconstructed image from the 2. Surface level: Surface primitives describe inter-
piecewise continuous segmented patches, and the 3-D nal surface boundaries and surface patches which
plot of the reconstructed image. The range images are are difficult to model by volumetric primitives, but
displayed with the depth value at each pixel from a ref- present s more accurate and detailed description of
erence plane appearing larger if the pixel is closer to the shape that is neither too local nor too global.
camera. The white square in the patch indicates the seed 3. Occluding Contour level: The Occluding -con-
region for that patch. The individual surface patches are tour encodes the 3-D shape of parts projected-on
displayed in the second row of the figures in the order the image plane.
in which they were selected by the model selection pro-
cedure, and are referred to below with their position in Given the three different modules for extracting vol-
the row, counting from left to right, ume, surface and boundary properties, how should they

The Coffee-mug image: The convex and concave por- be invoked, evaluated and integrated? To incorporate
tions of the body of the cup are recovered as individual the best of the coarse to fine and fine to coarse segmen-
second-order patches, as shown in the first two images tation strategy, we perform volume, surface, and bound-
of the bottom row in figure 2. The handle consists of ary fitting in parallel on the input data. This requires
very curved patches which are modeled piecewise for the evaluation and comparison of information embedded in
given scale (which directly relates to the compatibility models built by different aggregation methods. The oc-
constraint). According to the retults, the missing parts cluding contour is segmented into parts at concavities
are better described as individual pixels than as para- and convexities using the classical techniques. The-sur-
metric patches (due to the scale consideration). It should face is segmented into planar and bi-quadric patches us-
be noted that the jump (Co) discontinuities are clearly ing the segmentation algorithm outlined in the previ-
delineated by the neighboring regions. ous section. The segmentation also gives reliable inter-

nal C, (orientation) discontinuities, which are vital for
part-segmentation, but are very difficult to localize usingIntegrated approach to 3D shape standard edge-detection techniques. The superquadric

(volume, surface, contour)recovery model, being an object centered global part-model, is
via parametric descriptions not amenable to such segmentation techniques. So the

problem of fitting or recovering the superquadric mod-
els to parts of an object has to be attempted in such a

In section 3, we described segmentation of a 2-1/2 D way as to make use of the segmentation information from
image into surface patches. In other work [Solina and the surface and contour models that provide local seg-
Bajcsy, 1990] we have used parametric descriptions of mentation at their respective levels. The superquadric
superquadrics to fit volumetric aspect of a shape. We model recovery itself proceeds from coarse to fine (global
are now in the process of developing a paradigm for de- to local), generating residuals and hypotheses about vol-
composition of complex objects in range images into the umetric parts as described below. We are developing a
constituent parts based on the shape, using contour, sur- control module to accomplish this non-trivial task in a
face, and volumetric primitives [Gupta and Bajcsy, 1990] systematic manner.
Unlike previous approaches, we use geometric proper- To satisfy the practical constraints of computability
ties derived from both boundary-based (surface contours and robustness, we pose the problem of integration in
and occluding contours), and primitive-based (biquadric terms of evaluation of the intermediate descriptions and
patches and superquadric models) representations to de- segmentation of the objects in a closed loop process. To
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Figure 2: The coffee-mug Image: The highly curved handle-is modeled-as a combination of the smaller patches.

-evaluate-the superquadric models, we have developed a 5 Searching for Additional Information
-set of quantitative and qualitative measures, that gen-
erate global and local residuals of the models [Gupta et The task of constructing a volumetric description of a
aL, 1989]. The qualitative residuals are the regions of un- scene from a single image is an underdetermined prob-
derestimation, and surface and contour overestimation. lem, whether it is a range image or an intensity image.
The fundamental principle behind our approach is that Once the first image has been taken, we develop a strat-
these residuals are generated because of the presence of egy to get the additional information that will allow us
parts (or negative volume), otherwise a correct volumet- to complete the volumetric description.
ric model would be obtained during the initial global fit. Range images are 2 1/2 D images, where the value of
The regions of contour overestimation guide the local- a pixel corresponds to the distance from the observer to
ization of the concavities in the occluding contour. The the closest point in the scene. Some parts of the scene
concavities in the occluding contour are in turn used to may be partially occluded by objects. In structured light

-constrain the superquadric model to fit only a part and range images, a pixel with no data corresponds to an
not the complete object [Gupta and Bajcsy, 1990]. It es- occluded area.
sentially provides topological constraints to restrict the At the GRASP Laboratory, we have two structured
model to a part of the object. Although the surface seg- light range imaging systems. One uses a fixed laser (pro-
mentation is complete at the surface level, it does not im- viding the plane of light), while the objects move on a
pose any topological constraints needed for superquadric linear stage. Though this system provides high quality
-level of part segmentation. In addition, a mechanism range data, it is limited to a single view of the scene.
to combine individual surface patches to form the vol- However, our second system uses a laser-camera pair,
umetric parts is needed to generate strong hypotheses mounted on a Puma 560 robot arm, which moves over
about potential superquadric models. We have observed the scene [Tsikos, 1989]. A range image is acquired by
that the information from the regions of underestimation moving the laser-camera pair along a straight line in
(primarily caused due to the parts 'sticking out') makes space, aiming at the scene. It is capable of viewing a
natural clusters of surface patches forming volumetric scene within the robot workspace from many different
parts. Using this simple observation, we have obtained angles. This capability allow us to construct a complete
encouraging results on various complex objects. 3D model of a scene.

Our strategy is to use the information in a narrow
zone around the occluded regions. Occluded -regions are

Our goal is to develop a general-purpose shape seg- approximated by polygons. From the height of the bor-
mentation paradigm to generate object-centered and der of the occluded regions and from the geometry of the
view-invariant descriptions from a single general view of edges of the polygonal approximation, we calculate the
complex objects. The approach has applications in ob- direction which will most effectively show us what is in
ject localization and recognition, automatic model gen- the occluded area. Experimental results on range data
eration, and domain specific high level tasks. are described in the paper by Mayer and Bajcsy in this
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Proceeding. minimal number of points that guarantee a unique so-
lution when a small number (typically 2 or 3) of frames

6 Image Motion Analysis: A are given. Similarly, the optical flow approach seeks the

TApproach lowest order of flow derivatives from a single snapshot
Temporally-oriented Aof optical flow field. Of-course, both "instantaneous"

The fact that the relative motion between the viewer and approaches have to make use of the temporal informa-

the object can be recovered from- a sequence of images tion in one way or another, but the extent of temporal

is well-known, and articles on the subject are abundant. information being used is fixed at the stage of problem

The majority of previous work dealt with the existence formulation. We may call these approaches spatially-

and-the uniqueness of solution when the input was as- oriented.
sumed-to be given in the proper form (image flow field, Our approach first explores the temporal information

disparity vectors, position of feature points, conic con- prior to the usage of the spatial one. Here, a typical

tours, etc). A typical result states that there are K question one may ask is: "How many frames are needed
solutions for the 3-D motion and the object- structure, when N features are given?", as opposed to "How many

given- M features over N frames. For the uniqueness, features are needed when M frames are given?". We call
some suggest that K could be 1 if M' (where M1 > M) it temporally-oriented approach (TOA). The importance

features are used; others suggest that K could be 1 if of TOA's is that we can avoid many problems which one

N' (where N' > N) frames are used, etc. While these may encounter in the SOA's. Since we observe motion

results provide us with some useful theoretical frame- over an extended time interval, we can reduce the num-

work,-all known algorithms derived from their construc- ber of features that are used in the computation. -In
tive proofs have turned out to be very sensitive to the fact, we have-shown that we could even recover the 3-D
input-noise [Tsai and Huang, 1984; Waxman and UlI- motion of a single particle. Consequently, the problem

man, 1985]. of requiring multiple features can be eliminated and the

In estimating 2-D motion, there is no known algorithm task of segmentation is thereby reduced. Further, as-we

that estimates the 2-D image motion with sufficient ac- use more frames to estimate the 3-D motion, the problem

curacy-for the 3-D motion recovery algorithm. For exam- itself becomes more well-conditioned. When we observe

ple, the-image flow estimated by any of the well-known a moving object such as a space shuttle-or a baseball-
techniques [Hildreth, 1984], [Horn and Schunck, 1981] the longer we-observe, the-more accurately we can es-

does not seem to be useful at all for the purpose of 3- timate its motion and predict its position. In TOA's,

D motion recovery. Furthermore, the accuracy of ima we rely on -the temporal information from the moving

motion-estimate is lower-bounded: Even for a noismae object while keeping the amount of spatial data in a sin-

synthetically generated image sequence, there is the dis- gle image as small as possible. Of course we may use

cretization effect in spatial as well as temporal domains. multiple features to get a-more robust estimate if they

Sometimes this discretization effect alone exceeds the are available. Therefore, the TOA's and the previous

maximal noise level the 3-D motion recovery algorithm multi-frame approach are different in their motivation.

can -tolerate. 7 Robust
The error in 2-D motion amplifies the error in 3-D mo- Multi-sensor

tion parameters. The exact nature of error propagation We have developed a coherent methodology for fusing
depends not only on the specific algorithm but also on data from multiple sensors in uncertain environments.
many -factors such as the viewing angle of camera, and Since sensors exhibit noisy behavior that cannot be elim-
motion- and structure parameters themselves, and thus inated completely, all sensor measurements are uncer-
it is hard to derive the error formula analytically. Unless tan. However, sensor errors can be modeled statistically
one imposes unrealistic assumptions such as a huge view- and geometrically, using both physical theory and em-
ing angle (typical viewing angle of camera lens is 30-50 pirical data. For example, multiple range sensors may
degrees and the object of interest occupies even a smaller be located on the wings of an aircraft. As the wings
field of view), all the existing algorithms perform poorly themselves flex, the precise location of the sensors move,
under-the presence of realistic noise. The difficulty is relative to the center of the aircraft. These sensor -lo-
that the-3-D motion recovery is ill-conditioned. cation errors can be bounded, but it is not necessarily

Hence, a more realistic approach, as far as the recovery desirable to characterize these errors statistically. Also,
of 3-D motion is concerned, is to improve the motion sensors may break or become worn out, but still send
parameters over time, under the presence of noise. Just data. For example, a camera with a broken IR filter still
like any other physical system, -the entire process from sends data, which seems to be within the dynamic range
the image sequence to the 3-D motion may be viewed as of the system (though perhaps at the saturation limit).
a dynamic system, and the problem can be formulated This kind of uncertainty can be handled by a statistical
as a non-linear state estimation problem. decision theoretic approach.

Our-approach is not merely meant to attempt to im- A single distribution is usually an inadequate descrip-
prove-the motion estimates over time. Most of the pre- tion of sensor noise behavior. It is much more realistic
vious algorithms mentioned above are "biased" more to- and much safer to identify an envelope or class of dis-
ward the spatial information in image sequences than tributions, one of whose members could represent the
the temporal information, in the following sense. In the actual statistical behavior of the given sensor. For ex-
token matching approach, the main idea is to find the ample, it may be difficult to fit the error distribution of a
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malfunctioning sensor by a Gaussian distribution; how- 9 the extension of these ideas to both randomized, and
ever, c-contamination models provide a good alternative. nonmonotone procedures.
Other reasons for uncertainty in statistical sensor models These results and their applications appear in: [Kam-
include: sporadic interference, drift due to aging, tern- berova and Mintz, 1989], [McKendall, 1990], [Martin and
perature variations, miscalibration, quantization, and Mintz, 1987], [McKendall and Mintz, 1988], [Zeytinoglu
other significant nonlinearities over the dynamic range of and Mintz, 1984], [Zeytinoglu and Mintz, 1988].
the sensor. This use of an uncertainty class in distribu-
tion space protects against the inevitable unpredictable
changes that occur in sensor behavior. The purpose of 8 Conclusion
this research is to examine sensor fusion problems for As it is seen, the Image Understanding Program in the
both linear and nonlinear location data models using GRASP laboratory represents a coherent programmatic
statistical decision theory. study of material properties, geometric properties, and

The contributions of this research are the delineation motion of objects through visual measurements. Our
of: approach is data driven, where we seek the best expla-

9 Robust tests of consistency of data from differ- nation of the data via parametric models. The result
ent sensors. This confirms that the measurements of this approach is not only compact representation but
are actually measuring the same thing. For exam- also a measure of goodness of fit which then can be used
pie, if two position sensors are actually measuring for feedback correction depending on the task. We also
position of two different objects, then the two result- do not depend only on one measurement, but rather try
ing data points should not be averaged or combined to combine, in a systematic fashion, several different as-
in any way. pects of shape and material. We are in the process of

systematically testing our theories with different param-
* Robust procedures for combining data that eters of illumination, camera positions, signal/noise ratio

pass the preliminary consistency tests. and complexity of the scene.
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Progress Toward An Image Understanding
Application Development Environment

Tod S. Levitt, Scott E. Johnston, Daryl T. Lawton
Scott Barclay, John W. Dye Georgia Institute of Technology

Advanced Decision Systems Atlanta, Georgia
Mountain View, California

capabilities such as bayesian networks and

Abstract logic engines. The design includes:

0 An object oriented structure built on
An image understanding (IU) the C++ programming language.
software workstation environment
is presented. The environment is * A description of the object
aimed at transfer of IU technology representations that are used for the
into applications development. The different classes of objects in the
C++ environment is based on a environment. Object representations are
hierarchy of core IU objects designed to provide a direct and useful
representing spatial, temporal, interface to environment capabilities and
inference, interface and storage programming constructs.
capabilities. A top level design and
implementatior. to date is shown. * A discussion of user interface, IU

routines, inference, database and other
1 Introduction* capabilities, and how these facilities are

integrated with the object representations.
This paper presents the design and
implementation to date of an image The core set of C++ objects serves as a
understanding (IU) software application foundation for the representation of spatial,
development environment. The core temporal and symbolic entities central to
environment provides an integrated set of application development of IU and decision-
tools to leverage the development of IU aiding systems. One reason we have chosen
applications and to facilitate transfer of IU, C++ is to facilitate the integration of public
inference and visualization technology domain code, commercial programs and
from its origins in research laboratories hardware devices. It is intended that
into IU applications. The environment is application developers will extend the
focused primarily at technology transfer, object classes to create objects customized
rather than research and technology for their application.
development. It provides a development The typical application IU system
platform and reusable components requires signal and/or image processing,
including a library of image processing and geometric and symbolic inferencing
IU routines and data structures, and an capability, an interactive user interface for
integrated set of higher-level reasoning inspecting and manipulating the

processing results, and an associated
database for storing the original data and

Acknowledgement: This research was funded by the derived results. Figure 1 shows the
the Defense Advanced Research Projects Agency roughly hierarchical relationship between
and the U.S. Army Engineer Topographic these environment components.
Laboratories under government contract number
DACA76-89-C-0023.
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The following sections present our design of 2 Environment Goals and
these C++ objects and their associated class Assumptions
hierarchy. The environment goals and
hardware and Any IU environment aspires to all of the

following goals.

B3uildng ulding rupnI Tool Control *aailability of algorithms
IToolITool "I ro. I Tool ~ a execution efficiency

Cn M interoperability
0 verifiabilityUsril,,tace D,,ab..) portability

Bulier Analysis Tools

* extensibility
* coding efficiency

function/data composability
Run.Tlme Envlroment and * customizability

Process Control

Efforts on other IU resea-.ch and
technology transfer environments [Quam,
84, KBVision, 87, Lawton and McConnell, 88,

UslMchingl/ Intep. e9eon.n Lawton and Levitt, 89, Waltzman, 90] suggest
Library Library Lirup ing ary that the first five goals are of primary

importance for environments aimed at

development of robust IU applications using
well-understood IU technologies, i.e.

Use, interface We st technology transfer, while the second four
Llbwy are goals associated with rapid prototyping

efforts common in IU research and
innovative development of IU technology.
This effort is focused at the goals that foster
technology transfer.

Core Oblects Because of the bias towards technology
transfer, and the desire to produce this
environment within 2 years, environment
component choices have largely beenFigure 1. IU Environment driven by current availability and

Components prevalence of use of hardware and software
options. Another driving factor was that as
much as possible of the environment shouldsoftware assumptions are described in be public domain, so that source code can be

Section 2. Sections 3-6 describe the core provided at minimal cost.
spatio-temporal object classes. Section 7 The basic development and user system
discusses search and object traversal, is a Sun 3, 4 or Sparc workstation with a
including methods supporting perceptual minimum of 12 megabytes core memory,
grouping as well as spatial object inference, keyboard and mouse, a color display and at
Section 8 describes user interface objects least 300MB magnetic or read/write optical
and methods, and section 9 discusses disk. A Vitek image processing acceleration
database classes. Together, these objects board is under consideration for inclusion
comprise the major functional components in the environment.
of the design. Section 10 presents the status The software development environment
of implementation to date. An appendix is is the Berkeley Unix 4.2 operating system on
provided that lists the top level core object a Sun workstation, though compatibility to
classes. other Unix implementations and other

workstations is maintained where
reasonable. We have chosen C++ as the
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programming language. This choice is perceptual grouping, as well as the linking
based largely on its efficiency, its relatively together of lower dimensional spatial
good compatiblity with C, and its nearterm structures to form higher dimensional
widespread acceptance in the technology structures.
transfer community, i.e. the non-academic The core objects are organized into four
IU application development community. We general classes: scalars, collections,
have chosen the Free Software Foundation's containers and coordinates. The scalars are
Gnu Compiler over AT&T's 2.0 C++ compiler the standard numerics and symbols of C++.
for two reasons. The first is that the Gnu Collections are general groupings of objects
compiler generates faster, more efficient including arrays, streams, and graphs.
code because it is a true compiler and not Containers are groupings of objects that
just a preprocessor to a C compiler. The necessarily have an implied dimensionality
other reason is the availability of the and corresponding coordinate systems and
compiler source code makes it portable to imbedding spaces. Containers are
forseeable future (Unix) platforms. inherently spatial: images, curves, solids,

X Windows is used for managing displays. voxels, polygons, etc. Coordinates are objects
The InterViews toolkit from Stanford that represent coordinate systems. Local
provides a C++ interface to the X Windows coordinates are objects that are necessarily
package. IDraw, another Stanford product, included within other objects (including
provides the interactive graphic window other coordinates), while global coordinates
interaction. Chorus, a public domain image can be disembodied.
processing library from the University of Containers are designed to wrap around
New Mexico, provides both the standard set collections, and embed them in a coordinate
of image processing functions as well as 2D system. Loosely speaking, we think of the
plotting capabilities. Other public domain semantic objects in IU systems, such as
software packages being integrated ip the images, surfaces and volumes, as collections
basic environment include the CLIPS logic of values associated with coordinate systems.
engine and rule-base package, the NCSA 3d The grouping together in a systematic way
display routines, and several neural net of collections with coordinates forms
packages. containers. An array of integers is a

collection. An array of integers associated
3 Core Spatial and Temporal Class \.,i~zh coordinates indicating the context of

Hierarchy the array in pixels and centimeters is a
container that is of the class Image. Figure 2

The class hierarchy is based on the shows how containers, coordinates and
collections relate to each other, and how

structures developed in PowerVision and thetint a oea s te

View [McConnell et. al., 88, Edelson et.al., 88]. they fit into an overall system.
In artculr, he asc herachyof patal Containers necessarily have coordinate

In particular, the basic hierarchy of spatial objects and are closely tied to the user
classes and the concepts of transforms, interface. The coordinate systems of the

function concatenation, virtual function cnters c mpinto the

wrappers, and programmable database-like containers can map into the display

search for perceptual grouping were all coordinate systems. The display window

present in the original PowerVision itself is represented as a container. The

implementation. necessary projections, translations,
rotations, and scaling are implemented byThe current design has made strides in "virtual" containers that wrap around

uniformity of these structures, cleaned up
the relationship between objects and their previously instantiated containers and
display methods by associating display convert them into the appropriately
methods to the display objects (e.g. appearing object.Collcctions do not have associated
windows) rather than the source objects coordinate objects, although they can have
(e.g. a polygon), and has added classstrctre fo corinaes Tis esgn indices, such as indexes for an array.structures for coordinates. This design Collections are closely tied to the

creates fundamental links between the

geometric structure implied by coordinates underlying devices. For example, a

and the programmability of search for collection can be made to correspond to a
device such as an image scanner. The

117



scanned image becomes an array (one of the class of their output objects. For
representation of a ollection). Efficient example, a histogram is a constructor
access, traversal and transformations are method for the one-dimensional signal that
built as methods on collections. Another is the output of the histogram transform on
example is a neighborhood operation like an image.
convolution. It can be realized as a When possible, transforms are defined
collection of data and a method that on containers but implemented on the
manages buffers to create fast virtual (coordinate-free) collections to maximize
memory access to the data in the collection. reusability. For example, a one-dimensional

Tranforms are procedures that operate smoothing filter can be implemented on an
on containers, coordinates and collections array, then be usable on any linear
and produce containers, coordinates and collection of data, such as an image row, a
collections as output. Although it is possible curve in 3 space, or a specific traversal of
to represent transforms as containers, the edges of a solid. So the filter can be
providing a pleasing uniformity of data represented at the more abstract level of the
types, it can be semantically confusing to container hierarchy as a method on a
the user. Because technology transfer is a curveNd (i.e. a one-dimensional curve in N
fundamental ,oal, we have erred on the side space), enabling polymorphism.
of clarity rather than uniformity. So an The next three sections describe the
image is called an image, for example, collection, coordinate and container objects
instead of a function that represents a 2d in detail. This is followed by a description of
surface in 3space. We intend to overload how containers and collection objects are
class names to permit users both views of efficiently traversed, accessed and
appropriate objects. searched.

4 Collection Classes

Three classes of collection objects are
m,,,,, planned: Stream, Graph, and Array. They
Server can be characterized by the style of

traversing and accessing the collection.
satecon Ib Streams are traversed in a sequential

manner, where the next access is restricted
to the neighbor in a single forward

o*cl Cn direction. Graphs are traversed in a linked
Cos,,e., Transforms manner, where the next access is restrictei

to nearest neighbors in any direction.
Arrays are traversed in a random manner,
where the next access is unrestricted.

CordnatColcto
Trno C#e0., Tcnrms The collection class hierarchy can be

m extended to wrap a stream, graph, or array
around external sources. A character stream

can be wrapped around a serial port. An
array can be wrapped around a frame
buffer. A graph can be wrapped around a

UN IX Connection Machine or Transputer
Dry,,, topology.

Graphs are the general case of a linked
data structure. A tree is a subclass of graph,

a and a list is a subclass of tree. This class
Ehierarchy allows lists and trees to be

manipulated by graph traversing routines,
Figure 2. Core Object Relationships e.g.,"WalkDepthFirst". Graphs can store

heterogeneous collections of objects. Graphs
Where it is not confusing, transforms are implemented with separate node and arc

are represented as overloaded constructors
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objects. At this time we do not plan to argument and apply the function at (a
support special subclasses for specific types. neighborhood of) each location.

The basic methods for a collection are as "Searchers" are incremental, partial
follows: traversal methods. A search routine

operates at the current location and chooses
constructors: creation and conversion which location(s) to visit next., A search

routines routine accepts two function pointers,
destructors: memory, process, and device applying one to the current location

deallocation routines (neighborhood) and the other to choose the
printers: ASCII printing routines next location(s).
traversers: universal location "Accessors" are methods for accessing

generation routines the member object stored at the current
searchers: selective location generation location in the collection object. Access can

routines be by value, or by reference to allow for
accessors: value access routines, overwriting.

"Traversers" are methods for traversing 5 Container Objects
the object, visiting each member object or
element in turn. Each traversal of an object Container objects represent an S-
has an associated current location, dimensional containment of objects in R-
Traversers accept a function pointer space.

Container

Po d ayperSolid

R-1 Pointid Curvel d
R-2 Point2d Curve2d Surface2d
R-3 Point3d Curve3d Surface3d Solid3d
R-n PolntNd CurveNd SurfaceNd SolidNd HyperSolidNd

S=O S-1 S=2 S=3 S=n

Figure 3. Top Level of Container Class Hierarchy

curve is a one-dimensional container in 3-
Figure 3 shows only the top levels of the space. A polygonal region is a two-

container inheritance hierarchy. dimensional container in 2-space. A
Additional subclasses are derived so that the polygon3d is a two-dimensional container
leaf node classes of the hierarchy are in 3-space. A terrain elevation map is a two-
realizations of more familiar spatio- dimensional valued container in 2-space.
temporal data structures and procedures. A Specific classes of container are
signal is subclass of a one-dimensional represented in multiple ways. For example,
container in 1-space. An image is a subclass a three-dimensional container in 3-space is
of a two-dimensional container in 2-space. a solid, and a solid can be represented
A volumetric representation is a three- functionally (XA2 + YA2 + ZA2 <= 1),
dimensional container in 3-space. volumetrically (via voxels or octtree), or by
Constraints for a linear programming a surface model.
problem can be viewed as an N-dimensional The cross-product of the S-
container in M-space. dimensionality of the containers and the R-

The container subclasses are effectively dimensionality of the embedding space is
parameterized by the dimensionality of the represented by a class hierarchy where the
container's topology, and the dimensions of top-level branching is container
the imbedding space. A 2d curve is a one- dimensionality and the lower-level
dimensional container in 2-space. A 3d branching is embedded space
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dimensionality. Point, Curve, Surface, Solid, Aggregate containers group a disjoint
and HyperSolid are he superclasses, and set of containers into a single entity. The set
their subclasses correspond to the space the of CAD models of all cars manufactured at a
container is in. particular plant is an aggregate container.

To achieve efficiency, Od, Id, 2d, and 3d
containers are implemented as special- The basic set of methods for a container
cases, and Nd containers are handled in a are the following:
general fashion. In the same manner,
containers embedded in id, 2d, and 3d spaces constructors: creation and conversion
are implemented as special cases, and routines
embedding in Nd is handled in a general destructors: memory/process/device
fashion. Beneath each branch of the deallocation routines
container hierarchy are three subclasses printers: ASCII printing routines
that reflect increasingly general ways of traversers: universal location
representing a container: generation routines

searchers: selective location generation
1- Constant Containers routines
2- Valued Containers accessors: value access routines
3- Connected Containers draw: draw representation of self in an X
4- Aggregate Containers Window

display: add self to display list
Constant containers describe the shape inside: predicate to determine if point is

of a container without representing its inside boundary.
values , or "contents". The shape is defined
to be its geometric representation in "Traverser", "Searcher" and "Accessor"
Nspace, without values necessarily being methods typically window through to an
defined at locations of the shape. Because a underlying collection. The current position
shape is geometric, it usually has a of a container traversal is in effect a
boundary that we call its "shape boundary" current position of the underlying
to distinguish it from other uses of the term. collection traversal, and the mechanism for
For example, a solid cylinder in 3space has a accessing the data in the container is the
solid cylinder as its shape, and a hollow same as the mechanism for accessing data
cylinder as its boundary shape. in the underlying container or collection.

We can represent a force field acting on "Display", "Draw" and "Inside" are
the solid cylinder by associating the methods for realizing the user interface.
appropriate local magnitude and direction The display method queues the object for
of the force field with each point of the display in an X Window by placing the
shape. This is an instance of a valued object on the display list of the window.
container. Valued containers have a shape Then the window object takes care of
description and a content mechanism, determining the necessary parameters to
whereby values such as scalars or more call the object's draw method An object's
complex objects can be associated or stored draw method produces pixel values that are
with each shape location, a representation of itself and maps them

Connected containers group other into a window display, or any container of
containers, relating them with a series of type Surface2d. The inside method is used by
coordinate transforms or other relations the window object for each object on the
such as adjacency or attachment, and display list to determine if a particular
merging them into a single connected mouse click has fallen within its bounds.
entity. A CAD model of a single car built Only containers and coordinates can be
from surface facets is a connected displayed in the 2D and 3D object windows,
container. A smoothing pyramid is a as coordinates are required to relate to the
connected container, where image objects window display. It is possible to display
are related (connected) by the order of the collections in structured text or graph
smoothing and sub-sampling operations browsing windows
that created them.
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6 Coordinate Objects natural base-coordinate is similar, butincludes a third axis in the multi-resolution

Coordinate objects represent coordinate direction.
Coordinates all contain the following

systems. A coordinate has a corresponding methods. Note that when local and global
type that is one of cartesian, polar, are not explicitly called out, either applies.cylindrical, spherical, quaternionic , or For example, the transform method can

shape. Shape means the coordinate system is relate locals to locals, locals to globals or

defined in terms of distinguished points in a glo c als to globals

container, like attachment points, or the globals to globals.

ends of axes of sub-objects. A local type: returns a mathematical type (e.g.
coordinate is necessarily contained in cartesian) or the type "shape".
another object such as a container or
another coordinate. A disembodied origin: returns a point
coordinate is defined to be the subclass of
global coordinate. Coordinates have methods dimensions: returns list of dimensions
that act as transformations between other
coordinate systems. A coordinate records its units: returns list of named units per
transformations between other coordinates, imension
unless these transformations are explicitly
deallocated. minextents: returns list of minimum

There are two subclasses: global and
local. Global coordinates can occur extents per dimension

disembodied, i.e. without being contained in
or referencing other objects. They can be
transformed and copied by any coordinate extents per dimension

constructor to mix in when constructing a convert: inputs a type that is not "shape"
local-coordinate defined for a container or and creates versions of its local-coordinates
other global or local coordinate. This
"places" the container in the global expressed in that type (e.g. cartesian to

coordinate system. The global coordinate polar conversion)

remembers the containers that were list-transforms: returns the list of
constructed with it. transforms known between itself and other

A local-coordinate can represent the coordinates
imbedding space of the container, or other
ego-centered coordinate systems. An object transform: inputs another coordinate
can have multiple local coordinates.The with a known transform to itself, and a
base-coordinate is a distinguished local third coordinate with a known transform
coordinate. It is defined to be the first local- between it and the second coordinate;
coordinate associated to a container or othercoorinae. Te bse-oordnat is returns a transform between itself and the
coordinate. The base-coordinate is

instantiated by the container contructor. It third coordinate.

can be specified by the caller of the
contructor method. The base-coordinate is propagate- transform: inputs a

guaranteed to have transforms associated to coordinate and ret e

all other local-coordinates of that container istlf ansfor nbte all its c-

or coordinate. It is intended, although not c i t an d t e npu t o a
requred tha th bae-cordiate coordinates and the input coordinate.

required, that the base-coordinate

correspond to the natural traversal of an
associated cnllection of values. For example, 7 Object Traversal and Search
a raster image is a Surface2d container
whose values are in an Array2d (collection). From the user's point of view, containers
Its natural base-coordinate is the cartesian get traversed or searched. From the
coordinate with origin at array index (0,0), workstation environment's point of view,
one axis in the row direction and another containers are pointers to collections that
corresponding to columns. For a pyramid, a get traversed or searched. Both traversal
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and search can be thought of as routines This makes the process of writing more
consisting of the cyclic applications of complex neighborhood operations into one
three functions: move, access.and apply. In of concatenating the series of operations
the case of traversal every value in the into a single neighborhood operation. A
underlying collections is necessarily specific neighborhood function is then
visited, so the function for moving, or inserted in the middle of a looping
choosing the next location(s) in a mechanism that is capable of traversing the
container's shape, is known before container, and supplying the
traversal is invoked. neighborhoods of data to the operator.

In search all locations/values are not Object access is streamlined with a
necessarily visited. The move function must cacheing mechanism that makes a local
be passed by reference to the search neighborhood available to the C++ program
method. The apply function is invoked on in an internal C++ data structure. The
the appropriate neighborhood at each mechanism is program-controlled, in that
visited location for both traversal and the program decides when to initialize it
search methods. and when to refresh its contents. Because

Signal and image processing functions the cache is represented as a standard C++
traverse their contents to enable extraction data structure, either an array or a nested
of higher-level interpretations. These array of pointers to arrays, the efficiency
routines need to quickly iterate across their of data access within the cache is identical
N-dimensional data sources, with efficient to array-based data access.
access to a local neighborhood ranging in A neighborhood cache is useful for
size from I to M units in any dimension. representing windowing operations on

Traversal is intended to provide the imagery. The input object is an image, the
support for a programming style whereby cache is an array of pointers to linear
the application developer codes the arrays; as the window slides across the
operation to be done at each point in the image, the cache is refreshed by updating
traversal, and leaves it up to some other the pointers.
mechanism to slide this operation around For point transformations the cacheing
the container. This requires two things: an mechanism is useful in order to reduce the
underlying mechanism for efficient overhead of row access. The cache is defined
traversing (tied to an efficient accessing to be a single array equal in length to the
scheme) and a programmer interface, image row, and it is refreshed after each

When a programmer is presented with row is processed. The processing of the row
an efficient source of neighborhood data, it is done with a tight for-loop, with entirely
is convenient to string together a series of in-memory data access.
smaller functions to do the work of a more The ability to compose functions without
complex function. However, the creating intermediate data structures yields
programmer is typically forced to write the the ability to display the results of
complex function out flat, inline in one experiments with a minimum of typing on
function, to avoid the overhead of piping the part of the programmer (e.g. not
data between functions. The IU workstation creating named functions as above) and
environment provides support to with a great saving of memory and memory
concatenate existing low-level operations management overhead. In Powervision
without incurring extra overhead, functions created this way were called

This can be done by constructing a "pixel-mapping-functions". Because
library of neighborhood operations that individual objects know how to display
describe what is done on one neighborhood, themselves, the pixel-mapping-function
but contain no mechanism for iteration. capability is re-created with a wrapper that
Examples are convolution kernels, median says: compose the following functions
filtering, and basic arithmetic and logical (passed by reference) on this input data,
manipulations of Nd data. Neighborhood and add the display method for the result of
operations that maintain a state are the last function at the end. Ordinarily, the
implemented in this model by saving the final result is saved, because it is often the
permanent state in static and/or global input to a next stage of processing.
variables for later retrieval.
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For example, to apply a convolution to The window system supports
only the pixels in an image defined by a overlapping windows, as well as neatly tiled
mask, a search method is applied to the windows, useful for applications once they
image object, where the search method run reach a certain level of maturity.
length encodes the mask and accesses the While in overlapping mode, each
"on" pixels only. The search method is window can be resized, repositioned on the
composed with the convolution to feed only screen, collapsed down to an icon, and
the relevant neighborhoods to the expanded back to its original size and shape.
convolution kernel. When overlapping mode is disabled (tiling

Mapping functions are implemented by mode), the size and shape of each window is
subclasses of their respective containers, predetermined (or tightly controlled), and
There are four basic types of mapping the opening and closing of windows is
functions, and so four basic mapping directed by the application.
function class extensions: Each window is associated with a display

type that governs the type of information
1) coordinate transformation of that can be shown within the display

container locations region. The supported window types
2) look-up-table applied to container include:

values
3) arbitrary expression applied to • 2D Object Display Window

container values
4) arbitrary expression applied to • 3D Object Display Window

container locations.
• 2D Plotting Window

8 User Interface
8 3D Plotting Window

The user-interface supports the direct
manipulation and inspection of all entities • Directed Graph Browser Window

in the vision environment through a
windows-menu-and-mouse interface. The • Structured Text Browser Window

user interface is based on X Windows, a
network window system, and InterViews, a * Dialog Box Window.
C++ package that defines basic X Windows
objects. The user interface must be capable The display of objects to windows is

of displaying a list of containers to an X object-oriented, in that each entity within

window, and mapping mouse clicks to the vision environment knows how to

specific objects in the display list. The display (or present) itself to a window of a

following presents the display list object, specific type.

window types and addresses issues in Most graphics that overlay images

imagery display and mouse protocol. occupy a small area compared to the image

The display list is an object that keeps size. An example is the overlay of linear

track of what set of objects is currently features, such as roads or rivers, on an
being displayed in a window. There is a image.
single display list associated with each When the image is drawn, it is from one

window. The display list is implemented as a container object. Each window is associated
connected container of 2d surfaces. The with a display type that governs the type of

connected container groups two- information that can be shown within the

dimensional points, curves, and surfaces, display region. The linear features are

interrelating them with coordinate assumed to be a second container object

transforms and other programmcd with coordinates that overlap the image.

relations. Each container stored in the The problem is to allow the user to select

display list knows how to redisplay itself, and unselect the display of the graphic

and knows how to determine if a given overlays without redrawing the whole

point is inside or outside its 2d shape screen just to refresh the small area under

boundary or whether a given rectangle the graphic overlays.
overlaps its shape boundary.
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The approach is to create a third object for the IU environment and are not
that has the same container (i.e. "shape") discussed further here.
information as the graphics, but uses the The approach to the database design is in
values from the image collection, two levels. The basic level provides for the
Refreshing the screen is accomplished by storage of objects, groups of objects and
requiring the appropriate set of graphic indices as files for management by the
objects to refresh themselves. This operating system. These files can be stored
capability is called a "sprite" object in the and read directly from the program or
object-oriented imagery display literature, under interactive user control.

The next level provides interface to
9 Databases database management systems from

commercial products. The current plan is to
Database functions include: develop a generic SQL interface for the class

hierarchy. This allows interaction with
• simple persistent storage of images, standard relational database system (e.g.

objects, functions and other data, Sybase, Ingress, Oracle). Interface to new
object oriented databases (e.g., Ontologics'

• flexible conditional queries to retrieve Ontos) is a future possibility. Hooks are
or compute instances of objects, provided to build additional structures for

efficient access, such as quadtrees.
• structural ordering of the object The database is integrated into the core

instances to provide fast, efficient workstation software in several ways. The
access to the objects, primary access to the database is through

the C++ language. The user (developer)
" consistent convention for accessing a takes advantage of the database through the

variety of different objects with a core object structure.
minimum of coding effort, and Our approach to the database uses the

strong typing feature of C++ by allowing the
" extensibility to support group data database objects to be incorporated directly

sharing on different physical in the object hierarchy transparently. That
databases. is, the objects are compiled directly into the

program (with strong type checking) and
The database manager is organized in a are stored in the database by invoking the

client-server model and consists of two persistence attribute. All imagery, imagery
components, the database interface and the objects, functions, production rules,
database server. The database interface (or reasoning structures, etc. are expected to be
client) provides the interface to the stored in the database and accessed through
database from any other programs. This the same C++ program interface. A set of
interface is provided as methods that the user interface procedures that form a front
other objects may invoke. Such methods end to the objects stored in the database.are
include: insert, delete, save, find, etc. provided for the developer

The database server manages the storage The Sybase relational database system
and access to items assigned to the database provides the basic relational database
including the allocation and deallocation of capability. An object oriented view of the
space. This includes creation, database is provided by a set of object
documentation, modification, access, and oriented procedures used as a front end to
deletion of user objects (images, features, the relational database.
etc.) and programming objects (functions, This approach assumes that the structure
documentation, numbers, characters, etc.). of objects stored in the database is known to

Databases traditionally provide a shared the compiler: in fact, the object storage
access that prevents two users from mechanism is compiled and linked with the
interfering with each other when application program. It also assumes that
accessing the same object and provide a the persistent objects have a standard set of
transaction system to ensure the integrity methods for storing, retrieving, inserting,
of each interaction with the database. These ordering, etc. These methods constitute the
aspects of a database are not as important interface to the database and must be
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chosen carefully to allow replacement of the user can draw any kind of graphical
the database structure at a later date. object on top of the image, and then group

The index or ordering information on the object with the image, allowing drawing
objects in the database is provided by operations to be performed on both objects
special objects that have the appropriate simultaneously. For example, the user can
structures. Any group of objects may be draw a colored polygon over a region of
ordered using this object type by creating interest on an image, then group the
an appropriate indexing object. These polygon with the image into a composite
indexing objects include: binary trees, quad object, then scale and rotate the composite
trees, oct trees, hash tables, etc. The object. The polygon still covers the same
indexing objects access the ordered objects area of interest on the image. These
by providing an offset into a table storing capabilites are shown in figures 4. (To save
the data for these objects. space, some photos have been cropped so

Another function of the data base is to that the full computer screen is not
store information derived from the objects. shown.)
These are arbitrary sized objects and may be Rather than detailing each additional
retrieved by a variety of attributes. The capability, we show our current state of
attributes of these objects are defined by implementation through two interactive
methods on the objects. These processing scenarios. They demonstrate the
methods/attributes may be precomputed and benefits of an integrated object hierarchy,
stored in an indexing list or they may be the use of images as first class objects,
computed when the query is made. uniform representation of display and

interactive object manipulation, and
10 Current Status seamless access to remote processes.

The first application is diagnosis of
The current environment status represents arthritis from evidence extracted from a
5 months of design and 3 of implementation hand xray pictured in figure 5. Nodes and
on a 27 month effort. The Chorus image links are included as graphical objects.
processing package is not yet available as of Graphically accessible methods are
the writing of this paper. Hence, associated to form, in this example, a Bayes
implementation results focus on basic user net object. Evidence can be acquired from
interface and database capabilities, images by measurement, and the evidence

Recall that InterViews and IDraw are propagated through the Bayes net.
public domain object oriented user Probabilities can be graphically inspected.
interface toolkits built on top of X Windows. For example, given a Bayes net that draws
To date, ADS has extended the graphical inferences about a disease condition of
object hierarchy of InterViews and IDraw arthritic hands called periarticular
in two ways: the addition of images and of demineralization, it is possible to take
Bayes nets. measurements on an xray of a hand in order

Within IDraw, images are first class to obtain evidence for the Bayesian
objects. The user can put an image object network.
into the drawing by clicking with the As illustrated in figure 5, the user loads
mouse and pulling out a rubber rectangle to the xray as an image object, draws a line
define the outline of the image. The system down the middle of one of the finger bones
presents the user with a menu of files, and (phalanges) and asks for a plot of the
when the image file has been chosen, intensity values under the line by selecting
inserts the image into the designated "Profile" from a menu. The plot is shown in
rectangle in the drawing, clipping the a window. A measure is taken of the relative
image if necessary. density between the ends of the phalanx

Once an image object is defined and and the average density along the axis. This
displayed, the user can perform a variety of measure is added to the Bayes net as
drawing operations on it, as with any evidence by selecting the image, line and
drawing object. Images can be moved, relevant Bayes node and selecting "Add
scaled, stretched in width or height, or Evidence" from the list of Bayes net menu
rotated. Arbitrary image warping is options. The impact of the evidence at any
currently being implemented. In addition point in the net can be seen by selecting
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the desired node and the menu choice "Show The second application scenario involves
Belief". It is displayed as a probability interactively querying a digital terrain
histogram over the possible hypotheses at database stored in Sybase. Figure 6 shows
the node. In figure 5 these hypotheses are
"demineralization" and "normal".

Who really killed Lau-a Palmer?

t _ _

-II

Figure 4. Image Display, Manipulation and Graphic Overlay
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seamless interaction with an external "Retrieve" option from menus, a message is
process through a graphical interface. The sent to Sybase, generating an SQL query. In
user brings in an image of a map that is this case, the database is populated with data
registered with the digital database. A on offshore oil wells, so a popup window of
region of interest is selected by drawing an the wells in the region is displayed when
ellipse on the map. Selecting the the query results are returned.
appropriate terrain layers and the

Pka _ -,-

Figure 6. Graphical Sybase Interaction
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Appendix A: Top-Level Class ValuedSurface3d
Hierarchy ConnectedSurface3d

AggregateSurface3d
Container Surf aceNd

Simple Surface Nd
Point Co nstantSurfaceNd

Pointid V al uedS urfa ceNd
Point2d ConnectedSurfaceNd
Point3d Ag greg ate Surface Nd
PointNd Solid

Curve Solid3d
Curveld SimpleSolid3d

Signal ConstantSolid3d
Curve2d GeneralizedCylinder

Simpe~ure~dCSG's
S ilCurve2d ValuedSolid3d

EdgeCurve2d Space
PolynomialCurve2d BoundedSpace

Splie~ure~dConnectedSolid3d
SplieCurve2d AggregateSolid3d

Bezirveved SolidNd
Curve~ur SimpleSolidNd

oiplCurve3d ConstantSolidNd
PointCurve3d ValuedSolidNd
Edgenmiurve ved ConnectedSolidNd
SPlynomCurve3d Aggregate Sol idNd

CredBezierCurve3d HyperSolid
Curve~ur HyperSolidNd

SilCurveNd SimpleHyperSolidNd
PointCurveNd ConstantHyperSolidNd
Edgenmiurve ved ValuedHyperSolidNd
Polynom CurveNd HyperSpace
SplieCurveNd B oundedHyperS pace

Bezierurve~dConnectedHyperSoliciNd

Surface AggregateHyperSolidNd
Surface2d CodntSimpleSurface2d C oiate

ConstantSurface2d Lobal
Box Loae
Polygon Bs

Parallelogram Collection
RLE

ValuedSurface2d Array
Image yeraPolygon~mage BArray

WarpedImage Arryterd y
TiltedlmageByerad

RLE_Image bArray3d
ConnectedSurface2d ByteArray3d
AggregateSurface2d ArrayNd

Surface3d ByteArrayNd
SimpleSurface3d Sra

ConstantSurface3d tStream
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Streami2d-
B y' eStream2d

Stream3d
ByteStream3d

StreamNd
ByteStreamNd

Graph
Tree

List

Record
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Image Understanding Research at Brown University

D. B. Cooper, T. L. Dean, W. A. Wolovich

Brown University,
Providence, RI 02912

Abstract gorithms developed, our experimental environment will
be that of object recognition, object position estimation,
scene understanding, and navigation in laboratory envi-

DARPA Image Understanding program. Since ronments. The tasks involved are those that might be
our group effort has just recently begun, the described as the functions of a repair petion's assistant.
proceedings space available has been devoted to Ideally, the robot should be able to respond to com-
four papers describing some of the key concepts mand tasks such as: Go to the next laboratory and bring
that are being explored. These four papers are back a logic analyzer that is sitting on one of the workta-
identified in the reference section of this paper. bles. For this purpose, the robot must find its way to the
Due to spatial limitations, this paper, the prin- next laboratory, which is an unstructured man-made en-
cipal investigators' program overview, is brief vironment, recognize worktables and navigate to them,
and only touches on the primary directions in recognize a logic analyzer on one of the worktables, and
our program. estimate the position of the analyzer and the free space

around the analyzer in order to determine how to grasp
1 Introduction the analyzer and then move it. The robot should be able

to grasp and move small objects. Moving large objects
The proposed work is a multidisciplinary effort consist- would require the coordinated use of two sizable arms,
ing of basic research and a number of demonstration which is not in our projected experimental facility.
projects in image understanding, with an emphasis on
service robots. I The purpose of the demonstration What is the complexity of the scenes that we ex-
projects is to act as a focus for much of the research, pect to deal with? There are a few classes of large
and to produce subsystems, significant portions of which objects in the environment. They consist of: immov-
should be exploitable for military applications. This will able walls, room partitions, and large storage cabinets;
involve our focusing on computational and accuracy con- rarely moved desks, worktables, bookcases, and file cabi-

siderations. Since the systems must deal with consid- nets; frequently moved chairs. There will also be moving
erable complexity, planning capability is of importance people, and cartons and other clutter that are on mov-

here. In general, more than one type of sensing will be ing platforms or on the floors but which are frequently
necessary. We plan to use passive stereo and continuous- moved. Objects that the robot must recognize and esti-

contact force/torque sensing in our initial investigations, mate in order to manipulate them are largely small tools,
Some use will be made of active rangefinding-most parts, and instruments. They will usually be on work-
likely based on the use of structured light. The demon- tables, desks, or the floor. Occasionally, they will be on
strations will involve topics central to image understand- mobile stands.

ing for mobile service robots in general, and therefore Because there are a number of disciplines that are be-
will be applicable to robots for servicing military vehi- ing brought together in this project, tie most practical
cles, loading munitions, warehousing, scraping paint on procedure appears to be to pursue two developments in
shipboard, scrubbing surfaces, etc.. The image under- parallel. One is primarily vision and force/torque sens-
standing will be equally useful in indoor and outdoor ing for high and low resolution scene and object recogni-
applications, although the experiments will be primarily tion and estimation using planning. This will be model
indoor. based. The experimental facility will be a robot arm

with a force/torque sensor and a black and white ccd
2 Experimental Environment camera, and a pair of color cameras that can pan, tilt,

and zoom on a stationary base.
To focus the basic research on topics important to prac- The second development will be vision, tactile, sonar,
tical applications and for the purpose of testing the al- and proximity sensing for low resolution scene estima-

'Future investigations in the areas described will be sup- tion for navigation. This research will be carried out
ported, in part, by the NSF and DARPA under Grant No. using a mobile platform, and will emphasize planning
IRI-8905436. for real-time sensor fusion and navigation. The mobile
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platform will have some on-board computing, but we realistically complex situations. Among the approaches
anticipate the need for additional computing resources we will be taking in dealing with these situations are
and hence are looking into communication hardware to those in (Taubin and Cooper, 1990], [Cooper et al., 1990],
off-load some of the computing. In addition to permit- and [Dean et al., 1990]. For 3D surface or curve or
ting research on vision and tactile sensing, and research 2D curve recognition and position estimation from data,
on planning, to proceed simultaneously, the two devel- [Taubin and Cooper, 1990] introduces: approximations
opments will permit assessing the relative merits of us- that permit computationally modest generalized eigen
ing fewer types of sensing with higher resolution, more- methods for fitting algebraic functions to data; special
complex scene models, versus more types of sensing and polynomials for use as features in a large object data
lower resolution scene models with more-complex rea- base; geometric invariants. The special polynomials are
soning. A complete system may find that one approach of two types: one is a single polynomial that represents a
is better for some tasks, and the other approach is better group of primitive surfaces, e.g., three planes, or a plane
for other tasks. and a 3rd degree surface; the other polynomial is what

we call an "interest region". It is a region where the
3 Major Research Topics polynomial changes little for small changes in the region

used, and is such that a 3rd or 4th degree polynomial fits
The demonstration projects are important because they the data well, but a polynomial of lower degree does not.
focus a significant portion of our research effort on that In [Cooper, et al., 1990], the problem of 3D surface esti-
image understanding that is central to the realization of mation, recognition, and segmentation from a sequence
practical service robots. We feel that the repair person's of images is put into a general Bayesian framework. This
assistant creates a useful laboratory environment be- appears to be able to handle essentially all situations
cause it starts at a practical technology level, and prob- from highly variable surfaces through segmentation into
lems of increasing difficulty can be tackled and incorpo- objects. In [Dean, ei al., 1990], we present an approach
rated into increasingly sophisticated systems. The Den- to building planning and control systems that combines
ning surveillance robot and the TRC helpmate robot, for sensor fusion and sequential decision making for active
transporting food and supplies to locations in a hospital, perception. The approach is based on Bayesian decision
are examples of presently useful technology, theory, and involves encoding the underlying planning

Basic research will be covered that is generally appli- and control problem in terms of a compact probabilis-
cable to indoor and outdoor scenes, as well as to the tic model for which evaluation is well understood. We
demonstration projects. The systems aspects of the illustrate our approach using a robotics problem that re-
projects will force considerations that would not arise quires spatial and temporal reasoning under uncertainty
were some of the topics to be considered alone. Among and time pressure. We use estimates for the computa-
the major topics that will be covered are the following. tional cost of evaluating the probabilistic model to justify

1. 3D geometric modeling with emphasis on high- representational tradeoffs required for practical applica-
degree polynomials in x,y,z, for surfaces or groups of sur- tion.
faces, and algebraic representations for nonplanar curves
or groups of curves. These curves are represented as in- 3. Continuous-contact tactile (force/torque) sensing.
tersections of polynomial surfaces. This is both for ob- Our primary objective, with respect to force/torque
jects that are to be recognized or manipulated and for sensing, is to determine how touch can be used for ob-
scenes. This work can be viewed as extensions of the ject recognition via force-contact motion control along
use of collections of planar and quadric patches for mod- the surface of an unknown object. Since force informa-
eling 3D surfaces or 2D curves, or using collections of tion employs only "local" information, in that it involves
high curvature points as significant features for object only the contacted object, and not the environment, far
representation. Since our higher degree polynomials can less information need be processed (when compared to

represent larger patches of surfaces, which may be dis- vision) in order to identify a contacted object. We have

connected, by a single analytic function, they can cap- developed a new technique, termed "dual-drive" control,
ture more significant structure of objects, thus providing for moving the end-effector of a robot along a surface,
greater discriminatory power that is important for object without explicit knowledge of the surface, in order to ob-
recognition and position estimation when the number of tain trajectory information which can subsequently be
possible objects is large and clutter and occlusion are used to identify the object. This work is detailed in
prevalent. They also appear to have computational ad- [Wolovich, 1990].
vantages. Objects of interest will often belong to large 4. Sensor fusion. This involves fusing models and
classes, e.g., the class of chairs. Since the number of dif- data from multiple images for passive stereo, tactile data,
ferent shapes in this class can be large, we will model and data from active sensing. The active sensing will be
the geometric variability prubabilibLicdlly. M,,dkUV Rdl- btL utuitd light and pcrhaps othcrs. Our approach is
dom Fields show promise for this purpose. This is true to mod, ' the structural mutual dependencies among the
for other highly variable surfaces as well, such as human data sets produced by the various sensors, and then treat
figures or creased or crumpled paper. recognition or position estimation as decision theoretic

2. 3D surface estimation, volume occupancy determi- problems based on these mutually coupled data sets. We
nation, object recognition, and object location and ori- have developed machinery for doing this down at the
entation estimation. These are all difficult problems with raw data level. Examples of this are global inferences
respect to computational cost and inference accuracy for about 3D objects from patches of range data [Bolle and
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Cooper, 1986] and 3D surface estimation from a sequence W. A. Wolovich Force/Torque Sensing for Object Recog-
of images [Hung et al. , 1990]. The challenge in the nition, This Proceedings, 1990.
proposed research will be to use these tools we developed T. L. Dean, T. Camus, J. Kirman, Sequential Decision
for limited domains, and apply them to data from this Making for Active Vision, This Proceedings, 1990.
broad range of sensors. Other tools will be brought to R. M. Bolle and D. B. Cooper, On Optimally Combining
bear as well [Dean et al., 1990], and additional ones will Pieces of Information, with Application to Estimating
have to be developed. 3-D Complex-Object Position from Range Data, IEEE

5. Planning for image understanding occurring in task Trans. on PAMI, September, 1986.
implementation. This involves determining the appro- Y. P. Hung, D. B. Cooper, B. Cernuschi-Frias, Asymp-
priate level of sensed information for the task at hand; totic Bayesian Surface Estimation Using an Image Se-
choice of appropriate sensors; determination of the most quence, Technical Report LEMS-73, June, 1990.
advantageous sensor position; grasping and manipulat-
ing objects in a cluttered environment, and navigation
in a complex environment, guided by information ob-
tained from sensors. Bayesian decision theoretic tech-
niques play a role here, and useful approaches and results
have been obtained in recent years by us and others.

6. Learning Environmental Geometry. Learning ob-
jects, classes of objects, and configurations of objects
that the robot is to manipulate or deal with for purposes
of navigation is key to a useful robot system. We recog-
nize three levels at which geometric model information
can be put into the robot. The first is user programmed.
The second and third are supervised and unsupervised
learning, respectively. The latter two are the most inter-
esting, and in the long run, the ones of primary useful-
ness for any intelligent system. In supervised learning,
the object is shown to the robot and identified as to its
class association. If it has identifiable sub-parts such as
patches of primitive spheres, cylinders, and planes, these
are identified by pointing to and labeling each. But the
segmentation and representation parameter estimation
are carried out by the robot. In unsupervised learning,
the robot would figure out for itself what the meaningful
sub-parts of an object are. At a more general level, in
unsupervised learning a robot would have to figure out
for itself just what in a scene are useful or interesting ob-
jects. The latter takes considerable processing time, but
if a robot has periods of otherwise low demands on it, it
can use these periods for unsupervised learning. Situa-
tions between the supervised and unsupervised extremes
will be common. More generally, as we see it, learning in-
volves determining those models in the defined universe
of possible models under consideration that are appropri-
ate to the given information and learning data. The role
of the supervisor is solely to provide information that
narrows the search space so as to reduce the search and
learning times and ambiguity in the end result. This
work is being done in projects jointly with Dr. Ruud
Bolle of the IBM T. J. Watson Research Center, York-
town Heights, N. Y., and with Professor Jeffrey Vitter
at Brown University.
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Abstract vision tasks. Section 6 concerns work on object recog-

This paper presents an overview of the research in nition which is a new area of activity at UI. Represen-

image understanding (IU) at the University of ni- tative projects in each of these areas are summarized

nois (UI) conducted since our last report in the pro- in the following sections. To keep the paper brief, we
ns ohave minimized discussion of and references to relevant

ceedings of the 1988 DARPA IU Workshop. Dur- work done by others; such discussion and references areing this period (1988-90), we have made progress available in our publications cited.

in four areas: integration in three-dimensional vi-

sion, motion analysis, navigation, and parallel al- 2 Integration
gorithms and architectures. Work in each of these
areas is reviewed. Research in a more recent area Our goal in this area is to perform 3-D or other in-
of activity, object recognition, is also summarized. terpretation of images, such that the interpretation si-

multaneously satisfies a range of constraints imposed

1 Introduction by the image structure and the model of the scene. To
do this, we use different computational processes eachA major part of our recent research is in four areas of of which carries complementary or redundant informa-

image understanding. The first area (Sec. 2) deals with tion derived from different image cues. Image interpre-
integration of multipe image cues in performing image tation is the result of a cooperative computation that
interpretation. These cues capture different aspects of resolves conflicts and ambiguities arising from the indi-
the scene structure, and their integrated analysis leads vidual processes. We present below three examples of
to a more robust inference about the scene chatacteris- our integration approach; for others, see [2, 7, 8, 22].

tics than possible from individual cues. The second area

(Sec. 3) is concerned with our work on interpretation of 2.1 Integrated Passive Stereo
image sequences showing dynamic scenes. Here we con-
sider the problem of estimating the three-dimensional The traditional formulation of the problem of estimat-
(3-D) motion parameters and the 3-D surface structure ing three-dimensional surfaces from stereo images con-
from feature correspondences over a sequence of images sists of three steps: feature detection, feature matching,
and examine the nonrigid motion problem. Projects in and surface interpolation. We have argued in our pre-
the third area (Sec. 4) report work on different compo- vious work that the latter two tasks would be more ac-
nents of an evolving 3-D representation and navigation curately executed in an integrated manner rather than
system with the goal of autonomously aquiring, main- sequentially si ice they are strongly interdependent. We
taining and using 3-D information about the environ- have reported an algorithm that performs such integra-
ment. Finally, in the fourth area (Sec. 5), we summa- tion [22]. We have further developed this integration
rize our work on a specific multiprocessor architecture algorithm; it now performs surface fitting directly on
that we have proposed for image understanding com- depth data (points), rather than on disparity values [16].
putations, and on parallel algorithms for a variety of Clusters are detocted in the three-dimensional distribu-

tion of points which result from the matching of feature
'Parts of this research were supported by grants from points in the stereo images. Different clusters corre-

the National Science Foundation grants IRI-89-11942 and spond to different surfaces. The depth estimation can
IRI-89-08225, Air Force Office of Scientific Research under be performed using arbitrary vergence angles for the
grant AFOSR-90-0061, Army Research Office under grant
DAAL 03-87-K-0006, Joint Services Electronics Program un- cameras.
der grant N00014-90-J-1270, State of Illinois Department The integration results in a number of advantages
of Commerce and Community Affairs under grant 90-103, not possible to obtain otherwise. We have explored a
Rockwell International, and and Eastman Kodak Company. new approach which performs a broader integration of

stereo; it integrates all three steps instead of just fea-
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ture matching and surface interpolation. This is accom- rently in focus has been completed [17]. The location
plished using an analog formulation in which all three of the object boundary can be obtained from the varia-
parts of the computation are performed by a monolithic tion of image sharpness with focus setting. To select a
computational structure of dynamical systems. The in- new fixation point, information about the layout of the
tegration is carried out in parallel by analog signals. scene away from the object under fixation is necessary.
This new approach is also expected to be useful for sev- This presents a dilemma since to acquire such surface
eral other low level integration tasks. The details of structure is the objective of fixation in the first place!
this work and the advantages of the dynamical systems To this end, we present an approach to acquiring coarse
approach are presented in a separate paper in these pro- structural information about the scene in the vicinity
ceedings [6]. of the next fixation point during the current fixation,

and utilizing this information for fixation and accurate
2.2 Integrated Active Stereo surface reconstruction in the vicinity of the next fixa-

In this work, we are concerned with the problem of sur- tion point. This work is described in a separate paper

face reconstruction from stereo images for large scenes in these proceedings [18].

having large depth ranges, where it is necessary to aim During our work on the focussing process, we have

cameras in different directions, to fixate at different ob- observed that image blurring effects in the vicinity of

jects, and to construct the global surface map of the occlusion boundaries are quite complex. We have shown

scene from small patches. Since the beginning stage of that blurring processes operating in the vicinity of large

the work reported in [3], we have now developed an ac- depth discontinuities can give rise to spurious and pro-

tive stereo system with a broad range of capabilities. nounced image details which cannot be explained by

We have carried out the work in two stages. In the first previously available blurring models, which usually pre-

stage, we consider the problem of surface reconstruc- dict suppression and not creation of image details due

tion of a single object, although the object surface may to blurring. We have argued that blurring in high-relief

have large breadth and depth. Cosequently, the scan of scenes should be viewed as a multicomponent process.

the object surface can proceed smoothly with no depth To this end, we have developed a model of blurring. Ex-

discontinuities. We have developed a formalism for the tensive experiments with images of real scenes obtained

integration of three depth cues: focus, vergence, and with a CCD camera point toward the qualitative valid-

stereo disparity. Individually, these sources of depth ity of our new blurring model. The details of this work

have their strengths and weaknesses which make them are presented in a separate paper in these proceedings

suitable for specific contexts. We have noted that these [37].

strengths and weaknesses are quite complementary, and 2.3 Integrating Region, Border and
our approach attempts to dynamically combine the use Component Gestalt for Extracting
of these cues in a context sensitive manner, so as to
take advantage of their strengths while eliminating their Perceptual Structure
,weaknesses. There are two components to the approach: This research concerns perceptual grouping, or goal in-
selection of a point of fixation on the object, and gen- dependent detection of perceptual organization in im-
erating a local surface map in the vicinity of the fix- ages. The image tokens that may be grouped include
ation point. A point is chosen for fixation if it mini- blobs, edge segments, and geometrical features of image
mizes a certain objective function. The construction of regions. One way of understanding grouping phenom-
the surface patch in the vicinity of the fixation point ena is to eliminate all but one property at a time and
uses another objective function which contains as one examine the effects of that property on grouping. Since
component the camera calibration parameters; thus, the dots are without size, orientation, color and shape, dot
surface reconstruction can be performed using an unre- patterns provide a means for studying the effect of to-
liably calibarted camera system. This is an important ken positions on their grouping, while minimizing the
property, since the imaging parameters of a dynamic role of nonpositional properties.
camera system tend to be different from the true pa- The single variable that determines such low level
rameters, and the relationship between the two often grouping of dots is the relative locations of dots. We
changes clue to mechanical and other errors. By in- have reported in the past on our approach to perceptual
cluding the camera parameters in the objective func- grouping of dots that integrates multiple constraints,
tion, camera calibration is also carried out dynamically active at different perceptual levels and having differ-
along with surface reconstruction. The overall approach ent scopes in the dot pattern. We have extended this
interleaves the processes of image acquisition and sur- integration approach for perceptual grouping to extract
face estimation. The details of this work can be found perceptual structure in gray level images. The extended
in [1]. approach infers the structure by integrating evidence

When the scene contains small objects and depth from region boundaries and region interiors. Although
boundaries, the selection of new fixation points becomes the Gestalt constraints used in our approach are justi-
difficult if the other objects in the scene are not in fo- fled on perceptual grounds, we have carried out a quan-
cus, and the surface reconstruction of the object cur- titative analysis of their significance in defing a per-
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ceptual segmentation. We have conducted experiments tion or short range motion.
with a set of dot patterns designed to satisfy to differ- In the first category, we have used point correspon-
ent degrees the different constraints: interior homogene- dences to estimate long range motion and structure from
ity, border smoothness, and component compactness. perspective views [44]. For a planar surface, we have de-
The segmentation results obtained by our algorithm for veloped an algorithm that gives a closed-form solution
various combinations of these properties are compared for motion and structure parameters along with asso-
with and are usually the same as perceptual segmen- ciated errors, for a sequence of monocular perspective
tation. Further, we have compared the results of our images of feature points [39]. The algorithm is simpler
approach with those obtained by traditional clustering and more reliable in the presence of noise than the ex-
algorithms. These results show that the global opti- isting ones. For general surfaces, we have developed
mization of some simple function of interdot distances an approach that consists of two steps [40]. The first
which is used as the criterion function by the cluster- step is estimating the motion parameters using a ro-
ing algorithms does not lead to perceptually acceptable bust linear algorithm that gives a closed-form solution
segmentation. The clustering algorithms fragment per- for motion parameters and scene structure. The second
ceptual clusters, merge them, or do both. The results step is improving the results from the linear algorithm
are qualitatively unacceptable, and the types and ex- using maximum likelihood estimation. Algorithms have
tents of the errors point to a basic deficiency in the been developed using point correspondences as well as
approach rather than to minor problems of adaptation line correspondences, and tested on images of real scenes
to the data. Our integration approach gives satisfac- from automatically computed displacement fields.
tory performance in all the tests. Details of this work We have developed an approach to optimal estimation
are reported in [4]. of motion and structure which is applicable whether the

type of noise distribution is known or not [41]. For noise3 Motion Analysis distributions with Gaussian model and the uncertainty
The long-range goal of our research in this area is the polyhedron model, we have investigated maximum like-
understanding of dynamic scenes. The framework we lihood estimation. For Gaussian noise, this amounts
have used consists of three stages: finding feature cor- to minimizing a so called image plane error. For the
respondences in a sequence of frames, determining rigid cases where the type of noise distribution is unknown,
motion parameters and surface structure from the cor- it is shown that minimizing image plane error corre-
respondences, and analyzing and visualizing nonrigid sponds to an unbiased, minimum variance estimator for
motion. a locally linearized system, independent of the type of

noise distribution. The performance of the algorithm
3.1 Detecting Feature Correspondences is compared with a theoretical lower bound called the
Detecting feature correspondences is difficult due to a Cramir-Rao bound. Simulations show that the actual
wide variety of three-dimensional structural disconti- errors are very close to the bound in the case of Gaus-
nuities and occlusions that occur in real world scenes. sian noise. It is shown that in general a batch technique
We have developed a computational approach to im- will perform better than a sequential technique for any
age matching that uses multiple attributes associated nonlinear problem. Recursive batch processing is pro-
with a pixel to yield a generally overdetermined sys- posed for nonlinear problems that require recursive es-
tem of constraints, taking into account possible struc- timation.
tural discontinuities and occlusions[38, 43]. In our algo- Lines, when available in the images, can serve as more
rithm, intensity, edgeness, and cornerness attributes are robust features than points. We have obtained a closed-
used in conjunction with the constraints arising from form solution to motion and structure from line corre-
intraregional smoothness, field continuity and discon- spondences in monocular perspective image sequences
tinuity, and occlusions to compute dense displacement [42]. The algorithm requires a minimum of 13 lines over
fields and occlusion maps at pixel grids. A multireso- three perspective views. Necessary and sufficient con-
lution multigrid structure, using both bottom-up and ditions for degenerate spatial line configurations have
top-down flow, is employed to deal with large dispari- been derived. Simulations are performed which show
ties. Coarser level attributes are obtained by blurring the performance of the algorithm in the presence of
the finer level attributes. The algorithm is tested on real noise. An approach to optimal estimation of motion
world scenes containing depth discontinuities and occlu- and structure using line correspondences is presented in
sions. For short range motion, we obtain time trajecto- [45]. Simulation results show that, contrary to the gen-
ries of feature points, which are defined by sequences of eral view, a line-based algorithm is not necessarily more
point corrcspondcnccs across framcs. unstable than a point-based algorithm.

[23] describes methods of formulating motion prob-3.2 Rigid Motion and Structure from lems as the solution of simultaneous polynomial equa-
Correspondences tions, and discusses the use of homotopy methods for

Our work in this area can be divided into two categories solving the polynomial systems. In [31], an example of
according to whether the images show long range mo- using a priori information to narrow down the search
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space in a 3D object recognition problem is presented. recognition (e.g., computer lip reading). The key is-
The main goal of this work is to test how well exist- sue in both analysis and synthesis is the static and dy-
ing feature extraction/matching and motion estimation namic modeling of the human face/head. The head can
algorithms work on outdoor scenes, be reasonably modeled by a rigid ellipsoid. The face,

In the second category, we analyze an image sequence being nonrigid, is much more complicated; it can be ap-
showing short range motion. We have developed an al- proximated by triangular patches where the vertices of
gorithm for estimating motion and structure from or- the triangles can have restricted motions. To be realis-
thographic projections [19]. The objects can have ar- tic, perhaps around 400 triangular patches are needed.
bitrary shapes. The algorithm uses closed form expres- Our effort has been in setting up the mechanism for vi-
sions to find estimates of the motion and the structure sualizing human face/head motion. A crude 3D model
parameters, and can accept any number of points over of a generic face (containing 80 triangles) has been con-
any number of frames as input. The algorithm con- structed and stored. We have developed an interactive
sists of two steps: (i) finding the trajectories of feature procedure for fitting the model to a particular person
points over the image sequence, and (ii) grouping these using one or more images of the person's face-this may
trajectories into sets corresponding to distinct rigid ob- be called the customization of the face model. We can
jects, and finding the structure and motion of each of move the model globally (e.g., to make the head nod)
these rigid objects. We have shown that the accuracy and locally (e.g., to make the face smile) and generate
of the algorithm improves with larger total rotations, 2D sequences for visualization.
with more intermediate frames, with smaller amounts In our work on fluid motion, we are interested in
of input noise, and to a limited extent with the number developing automated analysis and visualization tech-
of points, niques for turbulent fluid flow with a view toward ap-

plications in the acquisition of flow data, the interpreta-
3.3 Nonrigid Motion tion of complicated fluid motions, and the active control

of flows and flow systems. Our main emphasis is on the
Many scenes of interest contain nonrigid objects, e.g., oetflows and flonytms our an h in

peope. e hae rportd o analgoith foranays- detection and recognition of vortices and the trackingpeople. We have reported on an algorithm for analyz-

ing the motion of objects consisting ofjointed rigid parts of their evolution. We have worked on vortex modeling.
(e.g., robot arms) [21]. More recently, we have consid- Using a linear prediction approach, we have developed

ered scenes in which objects undergo nonrigid motion. a mathematical model for vortices. By changing the
Some of our initial thoughts on nonrigid motion analysis parameters in the model, we can generate vortices withSoe ofourainiial thoughtso ana various degrees of deformation. Some of the results areare contained in 124] and [25]. contained in [46].

Many of the techniques and concepts for rigid mo-
tion analysis and object recognition are also useful for
nonrigid objects. The few projects on nonrigid motion 4 3-D Occupancy Maps from Images
reported in the literature have been concept and tech- and Navigation
nique oriented. To complement these efforts, we have The goal of our work in 3-D mapping is to develop al-
taken an application-motivated approach. Three im- gorithms for acquiring 3-D information about the occu-
portant problems in elastic and fluid motion are picked: pancy of space by objects. We are concerned with only
modeling and analysis of heart wall motion, human a coarse 3-D representation of filled/empty space, not
face/head motion analysis and synthesis in model-based with representing fine shape details of occupied space.
image compression, and studying the evolution of coher- There are three different aspects to representation of
ent structures in fluid motion. The starting point of our spatial occupancy: initial generation of the representa-
research is realistic data from these problems. tion for a given scene, its maintenance as the objects

In our work on heart motion, we have concentrated on in the scene move, and its use in environment manip-
the left ventricle (LV). We have worked mainly with bi- ulation including tasks such as planning trajectories of
plane cineangiograms. 20-40 vessel bifurcation points moving objects through the scene. Our work has ad-
are identified and tracked over the successive image dressed all three of the these aspects. Our emphasis re-
frames. By stereo triangulation, the 3D coordinates of cently has been on the generation and navigation parts.
these points are determined at each time instant. We We have reported on algorithms for generating the oc-
have devised algorithms to determine the global motion tree representation of an object from its silhouettes seen
of the LV, and after compensation for global motion in orthographic views [5] and perspective views [36].
to determine the local motion in terms of stress ten- In navigation, we have concentrated on the problem
sors. We have also experimented with several methods of path planning, i.e., deriving an efficient and colli-
of visualization. Some of our results are described in sion free trajectory to move an object from a given
[20, 9, 10]. source location/orientation to a give destination loca-

The theme of our research on human face/head mo- tion/orientation through an environment with given oc-
tion is modeling, analysis, and synthesis, and it is moti- cupancy map. To represent the free space, we have used
vated by applications to visual communication (model- a potential field. The problem is divided into two stages.
based image compres~lon) and time-varying pattern First, a candidate topological path is selected. Second,
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the candidate path is cost-optimized to derive the final ancing over the static one, the improvement in the per-
path and orientations of the moving object. The details formance using dynamic load balancing is by more than
of our path planning work can be found in [28]. A sur- a factor of two for the stereo algorithm when imple-
vey of the state of the art in autonomous path planning mented on a hypercube multiprocessor (11]. We have
among obstacles is presented in [29]. Recently, we have also evaluated our load balancing techniques using a mo-
begun to use the more realistic, Newtonian potential tion estimation algorithm implemented on a hypercube
function which improves the computational efficiency multiprocessor [13]. The motion estimation task con-
[15]. We have used the new potential field to represent sists of the following steps: 1) extraction of features, 2)
2-D objects and obstacles consisting of line segments. stereo matching, 3) matching between images obtained
The computational efficiency arises from the fact that at different times, and 4) computation of motion pa-
we have closed-form expressions for the potential field rameters. The performance gain using these techniques
as well as some other gradient related quantities. The is again shown to be significant while the overhead in
availability of the closed form expressions eliminates the using them is minimal.
need for search based evaluation of the risk of collision
which requires discretization of the object and obstacles. 6 Object Recognition
Further, it becomes possible to use binary search to find This section summarizes our work on object recognition.
the optimal object configurations for path planning.

6.1 3D Curved Objects
5 Parallel Architectures and Our goal here is to develop algorithms capable of recog-

Algorithms nizing and locating in a single image instances of curved
To design an efficient computer architecture requires 3D objects modelled by parametric patches and their in-
taking into account the characteristics of the algorithms tersection curves. We focus on the following three areas:
to be executed by the architecture. A major feature Object representation: We have developed and imple-
of image data is its planar nature, and an important mented a new algorithm for computing the exact aspect
feature of many image computations is that they are graph of solids of revolution [30]. We have extended
spatially local. Together these two characteristics im- this work to objects modelled by parametric patches
ply that parallel subtasks may be generated by using and their intersection curves, and have demonstrated a
the divide-and-conquer paradigm to perform computa- preliminary implementation [34].
tions on subimages, in parallel, and by merging their Pose determination: We have already demonstrated
results. The degree of exploitable parallelism in com- recognition and positioning of solids of revolution from
puter vision tasks varies with time and image position. their monocular image contours using elimination the-
Therefore, an architecture for vision must be highly flex- ory [33]. We are currently investigating new methods for
ible and modular. We have reported [3, 14] on a highly positioning curved 3D objects from contour orientation
flexible multiprocessor system called NETRA for image and curvature and from image intensity and gradient
computations which we have been developing. NETRA [35].
is highly reconfigurable and does not involve the use Matching strategies: For curved objects, image fea-
of complex interconnection schemes. The topology of tures such as contours or t-junctions are not the pro-
this multiprocessor is recursively defined, and hence, jections of particular object features; this makes purely
is easily scalable from small to large systems. It has object-centered feature matching difficult, maybe im-
a tree-type hierarchical architecture each of whose leaf possible. We are investigating the qualitative and quan-
nodes consists of a cluster of small but powerful proces- titative constraints imposed by image features to match
sors connected via programmable crossbar with selec- these features to aspect graphs.
tive broadcast capability.

We have simulated NETRA on a hypercube multi- 6.2 Evidential Reasoning
processor and evaluated the performance of one pro- We have implemented a recognition system based on
cessor cluster for stereo computations [12]. The stereo the Dempster-Shafer formalism [27]. The system con-
algorithm selected for implementation requires corn- structs belief functions that define credibility in candi-
putation of two-dimensional Fast Fourier Transform, date hypotheses as a function of the differences between
template matching, histogram computation and least- model and scene data. We have implemented belief
squares surface fitting. The superior performance of functions based on the quantitative difference in fea-
NETRA has been demonstrated by comparing the re- ture attributes, relational consistency, and aspect con-
sults with those from a similar implementation on the sistency. In each case, the belief functions are normal-
hypercube. We have developed techniques for static ized confidence values, these values being obtained by
partitioning of data for the data independent tasks such specifying a nonlinear mapping from quantitative dif-
as two-dimensional Fast Fourier Transform, and dy- ferences between model and scene data to confidence
namic scheduling and load balancing for the data de- values.
pendent tasks of feature matching and disambiguation. A major criticism the Dempster-Shafer formalism is
As an indicator of the significance of dynamic load bal- that the complexity of Dempster's rule is, exponential in
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the number of hypotheses. We have shown [26] that for appear in Int. Jour. of Imaging Systems and Tech-
our approach, the belief functions constructed belong to nology, Dec. 1990.
a distinguished family known as disjoint belief functions, [10] C.W. Chen, T.S. Huang, and M. Arrott, Anal-
and that, in this case, Dempster's rule has a polynomial ysis and visualization of heart motion, Proc.
time implementation. SPIE/SPSE Symp. on Electronic Imaging Science

A further application of our recognition system is and Technology, Conf. on Biomedical Imaging Pro-
planning sensing strategies to reduce ambiguity in scene cessing, II, Feb. 24-March 1, 1991, San Jose, CA.
interpretation. We have developed a system [26] that
proposes and evaluates sensing operations based on [11] A. N. Choudhary, S. Das, N. Ahuja and J. Patel,
maximum reduction of ambiguity. The worst case am- Surface Reconstruction from Stereo Images: An
biguity for a proposed sensing operation is computed by Implementation on a Hypercube Multiprocessor,
predicting features that would be observed for each of Fourth Conference on Hypercube Concurrent Corn-
the currently held hypotheses. These predicted features puters and Applications, March 1989.
are used to derive resulting scene interpretations. The [12] A. N. Choudhary, S. Das, N. Ahuja, and J. H.
worst case ambiguity over all currently held hypotheses Patel, A Reconfigurable and Hierarchical Parallel
is a measure of the effectiveness of the proposed sensing Processing Architecture: Performance Results for
operation. Stereo Vision, 1990 International Conference on

Pattern Recognition - Computer Vision, 389-393.
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Vision-Based Navigation

William B. Thompson,
Computer Science Department

University of Minnesota
Minneapolis, MN 55455

Abstract tered indoor environments. Laser sensing, while offering
utility in some outdoor navigation problems, loses effec-

Formidable challenges are faced by developers tiveness as distances increase. In some situations, active
of autonomous systems for vision based navi- sensing is simply not possible. Our work assumes that
gation in general outdoor environments. Basic passively sensed visual imagery is the primary input for
research efforts at the University of Minnesota map matching and positional updating.
are focussed on the localization problem, a key Research on vision-based navigation in outdoor envi-
task of vision based navigation. The localiza- ronments has primarily focused on lower-level problems
tion task is concerned with the visual determi- such as road following (e.g., [Thorpe et al., 1988]). Work
nation of viewpoint and viewing direction rela- on using maps has concentrated on closed-loop feedback
tive to a map. Our current efforts are concerned methods in which map data, knowledge of current posi-
with the process of establishing the correspon- tion, and dead-reckoning are used to predict visual fea-
dence between a set of map features and image tures occurring after a short time interval (e.g., [Fen-
features as one aspect of the localization task. nema et al., 1988, Ernst and Flinchbaugh, 19891). Lit-

tle research within the image understanding community
1 Introduction has addressed navigation problems that arise due to the

increased uncertainty associated with locomotion over
We are initiating an interdisciplinary investigation of the longer time intervals, greater distances, and unfamiliar
interactions between visual perception and navigation, terrain. The matching of maps and aerial imagery has
Navigation problems typically involve purposeful maneu- been extensively studied (e.g., [McKeown and Denlinger,
vering through unfamiliar terrain in order to accomplish 19841 and many others), but few of the low-level image
some goal. Our emphasis is principally on navigation understanding algorithms currently available are directly
through large-scale space - a space whose structure is applicable to the outdoor, horizontally viewed imagery
of a significantly larger scale than that of the observer, necessary to support mobile robot navigation.
(This definition is closely related to that of [Kuipers and More so than most other problems in vision, naviga-
Levitt, 1988].) There are two important perceptual con- tion seems to require substantial problem solving closely
sequences of navigation through large-scale space. The integrated with lower-level perceptual analysis. As a re-
first is the difficulty of estimating accurate locations of sult, our research is combining a computational analysis
objects and orientations of surfaces at a significant dis- of navigation with a study of the methods used by peo-
tance from the observer. The second is that only a small ple experienced at solving difficult navigation problems
portion of the space is typically visible at any one time. (see [Heinrichs et al., 1989]). The computational analy-
As a result, planning activities must apply some form of sis provides the power of formal tools and points towards
cartographic information that describes relevant aspects implementable computer algorithms. Experience with
of the terrain. expert navigators provides insight into efficient problem

Fundamental problems in navigation involve deter- solving strategies for image understanding that would be
mining an agent's present position and orientation on difficult to discover in any other manner.
a map, determining the desired route, and performing
position updates with respect to the map as the route is 2 Localization
traversed. While non-visual navigation aids such as in-
ertial guidance and satellite-based locating systems can Localizaiion is the process of establishing a match be-
provide relatively precise information on position and/or tween particular locations in the environment and the
orientation, they have characteristics (e.g., drift or sus- corresponding locations on a map. Locations of interest
ceptibility to countermeasures) that make them inap- can involve the viewpoint (current position) and/or dis-
propriate for robotic systems where the mission requires tant features. The methods necessary to solve localiza-
high precision and robustness under adverse conditions. tion problems vary significantly depending on how much
Active range sensing also has important limitations. For is known about the actual viewing position. Compu-
example, sonar is appropriate only for relatively unclut- tational analysis has in the past been limited almost
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exclusively to updating problems, where the task is to 3 A. Formalism for Drop-Off Problems
m aintain a sense of the current position w ith respect to W a e c e t d a f r a o c p u l s r c u e w t ia map as the current position changes due to locomotion. W aecetdafra ocpulsrcuewti
Updating problems are ypically solved by developing ex- which drop-off problems can be specified and analyzed
pectations about the imagery likely to be available at a [Thompson et al., 19901. This formalism has much in
future point in time, comparing these expectations with common with several successful approaches to object
the actual sensed data, and finally revising the position recognition. In the the case of localization, the task is
estimate to account for any discrepancies. to recognize a "model" that describes the topographic

features visible from a particular vantage point. As
Updating is not sufficient, however, to solve all local- with object recognition, the solution involves the selec-

ization problems when a mobile agent travels through tion of appropriate subsets of image features to match
large-scale, outdoor spaces. Problems arise due to a against models, the selection of appropriate models, and
frequent lack of distinctive landmarks, occlusion and establishment of correspondences between model and im-
disocclusion of features, the weak correspondence be- age features using alignment techniques [Grimson, 1990).
tween low-level image features and topography, terrain Unlike object recognition, however, a discrete, prede-
in which small changes in viewpoint produce substantial fined set of models is not available, since even modest
changes in the imagery, and difficulties revising estimates uncertainty in location leads to a very large number of
of current position when expected and actual views dif- possible, distinct viewpoints. As a result, drop-off prob-
fer by more than a small amount. In addition, updating lems require that models be assembled from map data on
requires continuous image analysis over a wide field of a problem specific basis before they are matched to ira-
view and this is often not possible. ages. Localization problems also involve a unique form

of alignment. Topography creates an approximately hor-

Reliable localization requires the ability to solve drop- izontal plane that is viewed on end. Much of the three-
off problems involving substantial initial uncertainty in dimensional structure is lost due to the horizontal projec-
viewing location and/or direction. 1 Figures 1 and 2 show tion involved in imaging. Only certain sorts of features
an example of a map and image that might be involved can be simultaneously located in horizontally viewed ira-
in the solution to such a problem. Localization can be agery and the "downward looking" representation of tr-
used to identify the prominent canyon visible in the ira- rain contained in a map.
age, estimate viewpoint position, and determine the map This conceptual structure accounts nicely for several
locations of peaks and ridges visible in the image. Drop- strategies that have been observed in expert map users.
off problems, particularly in outdoor scenes, are an as- For example, we know that on the ground, proficient
pct of navigation that has received almost no study by map users most often start solving localization problems
the robotics and image understanding communities, save with a visual examination of the environment and then
in situations in which unique, identifiable landmarks are proceed to an examination of the map. Fighter pilots,
available and visually recognizable. on the other hand, start with the map and only after

selecting appropriate landmarks look out to search the
environment. Our analysis shows why these two strate-
gies are appropriate in the two different situations. The

'The name comes from the extreme case in which an ob- formalism also indicates how certain difficulties in visu-
server is "dropped off " into a totally unfamiliar environment, ally estimating spatial relationships between topographic
though drop-off methods are needed for a far broader class features can be aided by an appropriate choice of view-
of problems. point - suggesting that there may be important interac-
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tions between path planning and localization for a mobile outdoor scenes. (Somewhat surprisingly, no references
robot. appear in the psychology literature regarding perceptual

We are building a computer system within which to ex- competence in the sorts of scenes relevant to outdoor,
plore specific aspects of the localization task. In this sys- non-urban navigation.) A key problem to be solved is
tern, knowledge bases hold eyplicit descriptions of possi- the development of formal representational tools capable
ble topographic structures, information about map and of describing the information that is available in images
image extracted from each individual problem, and a of this sort [Thompson and Kearney, 1986].
listing of currently active hypotheses about which map The ambiguities and inaccuracies inherent in vision
features match which image features and what the view- require the use of specialized navigation problem-solving
ing position and direction actually is. A set of control techniques. Understanding the knowledge and strate-
structures focuses search to manage computational corn- gies involved in the navigation process is essential to
plexity and provides procedures for recognizing features, understanding how vision relates to the navigation task.
assembling configurations of features, and posting, eval- Close integration of low-level vision and higher-level rea-
uating, refining, and accepting or rejecting hypotheses soning will be needed. In particular, the strengths and
about correspondences and viewpoint. As with a num- weaknesses of computer vision methods applied to the
ber of approaches that have been proposed for object problems in which we are interested should be identified
recognition, we emphasize the importance of establish- and formalized so that compensatory reasoning strate-
ing potential correspondences between image and map gies can be developed.
(model) features prior to the estimation of the viewing
transformation relating map (model) and image. References

Lower-level image understanding aspects of the system
draw on techniques for limiting complexity in the match- [Ernst and Flinchbaugh, 1989] M. D. Ernst and B. E.
ing of map and image features together with an analysis Flinchbaugh. Image/map correspondence using curve
of how knowledge about topography can be used to aid matching. In AAAI Symposium on Robot Navigation,
in the segmentation of outdoor scenes. Expert map users pages 15-18, March 1989.
employ several heuristics for selecting viewpoint invari- [Fennema et at., 1988] C. L. Fennema, Jr., E. M. Rise-
ant features with which to establish a correspondence man, and A. R. Hanson. Planning with perceptual
between map and image. Some are as simple as looking milestones to control uncertainty in robot navigation.
for a distinctive ordering of primitive features physically In Proceedings of the SPIE, 1988.
adjacent and lying along a straight line. These heuristics [Grimson, 1990] W. E. L. Grimson. Object Recognition
appear to be directly applicable to computer implemen- by Computer: The Role of Geometric Constraints.
tations. At a more primitive level, information about the The MIT Press, 1990.
distribution of slopes and ridge rise angles can be used to
generate constraints on the orientation of occluding con- [Heinrichs et al., 1989] M. R. Heinrichs, D. R. Montello,
tours that will appear in the image. These constraints C. M. Nussl6, and K. Smith. Localization with topo-
lead to simple techniques for improving the reliability graphic maps. In Proceedgins of the AAAI Symposium
of edge detectors which form the first step in extracting on Robot Navigation, pages 29-32, March 1989.
topographic features from an image. Future work will [Kuipers and Levitt, 1988] B. Kuipers and T. S. Levitt.
improve upon these methods and study the problems Navigation and mapping in large-scale space. AIMag-
associated with the visual recognition of features needed azine, 9(2):25-43, 1988.
to solve localization problems. [McKeown and Denlinger, 1984] D. M. McKeown, Jr.

Related Research Activities and J. L. Denlinger. Map-guided feature extraction
from aerial imagery. IEEE Workshop on Computer

In the coming year, two additional research activities Vision: Representation and Control, pages 205-213,
will be pursued. The first deals with low-level issues 1984.
involving the perception of spatial information in out- [Thompson and Kearney, 1986] W.B. Thompson and
door scenes. The second addresses higher-level questions J.K. Kearney. Inexact vision. Proc. Workshop on Mo-
about the interaction of problem solving and perception tion: Representation and Analysis, pages 15-21, 1986.
for navigation. [Thompson et al., 19901 W. B. Thompson, H. L. Pick,

Few of the "shape-from-X" techniques that have been [THomps n net , . . homs, . L. ik,so extensively investigated over the last decade are all Jr., B. H. Bennett, M. R. Heinrichs, S. L. Savitt, and
so etenivey ivesigaed verthelas deadeareall K. Smith. Map-based localization: The "drop-off"

that effective in outdoor environments, particularly with problem. 1990. These Proceedings.
ground-level imagery. Calculating depth from stereo or
motion becomes less feasible as the features of interest [Thorpe et al., 1988] C. Thorpe, M. H. Herbert, T.
become more distant. Shape from shading or texture is Kanade, and S. A. Shafer. Vision and navigation for
confounded by the complex surface coverings that are the Carnegie-Mellon Navlab. IEEE Trans. on Pattern
usually present. A study of the perception of large-scale Analysis and Machine Intelligence, 10:362-373, 1988.
space will examine limits on the performance of vision
systems intended to support outdoor navigation. As part
of this work, we are interested in learning more about the
visual cues used by people when analyzing large-scale,
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NEW RESULTS IN SHAPE FROM SHADING

J. Oliensis

Computer and Information Science Department
University of Massachusetts at Amherst

Abstract can lead to a distortion of the recovered shape. It is also
important to understand what the constraints on the so-

It is argued that the solutions to shape from shading lutions to shape from shading are, especially if they areare often well-determined, with little or no ambiguity, significant enough to render the problem well-posed. By

for general illumination direction. For the case of illu- incating l a en tr in a se rn
minaionsymetrc arundthevieing iretio, i is incorporating all available constraints in a shape recon-ruination symmetric around the viewing direction, it is struction algorithm, one can hope to improve the robust-

proven that there is a unique shape solution for general ssco aperrecoery.

images. Also, the long open question whether the im-

age of the occluding boundary significantly constrains This paper summarizes the first arguments showing

the shape solutions is answered in the negative. An ir- that the solutions to shape from shading can be well-

age example is presented which demonstrates, for the determined, or even uniquely determined, for general im-
case of general light source direction, that shape from ages, and for illumination of a Lambertian surface from
shading can be well-posed and ill-posed simultaneously: a general direction. Our main result is a proof that foralthough the shape corresponding to most of the image generic images, and the reflectance functions consideredexample is uniquely determined, the shape for a specified by Bruss, the solution to shape from shading is actuallysmall image region is ill-determined. Such 'ill-posed' re- unique [7]. This is the first uniqueness result not limitedgions are probably small fractions of images in general, to a restricted class of images. For general illuminationbut can occur frequently. The existence of soutions is direction, it is demonstrated that the solution is not nec-also studied. It is argued that for almost all images, essarily unique, but that it is frequently well-determinedi.e., for almost all intensity functions, no solution exists, over much of the image, with little ambiguity [8]. These

Finally, a new local algorithm for reconstructing shape are the first such results valid for general illumination
from shading using a general quadratic surface model is rection.presented. Also, the constraints determining the solutions are

analyzed, and it is shown that singular points provide

1 Introduction strong constraints, but that the image of the occluding
boundary does not [8]. This is surprising since the sur-

Shape from shading has traditionally been assumed to face orientations are determined at the image of the oc-
yield multiple object solutions. In fact, it has usually cluding boundary. Lastly, we show that shape from shad-
been considered an ill-posed problem, with an infinite ing, over different image regions, can be well-posed and
number of solutions. These assumptions have previously ill-posed simultaneously [8]. An example is presented
been shown to be false, but only for quite restricted light- for which the shape is uniquely determined over most of
ing conditions and classes of images. Thus, the unique- the image, but ill-determined corresponding to a partic-
ness theorem of Bruss [2], which is the most substantial ular small image region bordering the image boundary.
result of this type, requires the reflectance function to It is argued in [7] that such 'ill-posed' image regions
be symmetric around the optical axis, and the image can occur frequently, but that they are probably small
to contain exactly one singular point, that is, a single fractions images in general. The implication is that reg-
maximally bright point. ularization is sometimes necessary for shape reconstruc-

The question whether shape from shading is ill- or tion, but should be used judiciously, that is, only in the
well-posed is important, because the traditional ap- appropriate regions. Also, shape should ideally be re-
proach to reconstructing shape employs regularization constructed from the interior of the image outwards, in
techniques, implicitly assuming the problem to be ill- order to avoid propagating errors and instabilities asso-
posed. If the problem is actually well-posed, then regu- ciated with the possible ill-posed regions at the image
larization is unnecessary, and should be avoided since it boundary.

*This work was supported by the Defense Advanced Re- The existence of solutions to shape from shading is
search Projects Agency under grants F30602-87-C-0140 and also studied. It is argued that for almost all images,
DACA76-89-C.0017, and by the National Science Foundation i.e., for almost all intensity functions I(m, y), no solution
under grant DCR-8500332. to shape from shading ezists (7]. Thus, true images of
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objects are very special intensity functions. We argue mal perturbation will yield an instance contained in the
that a true image can be converted into an 'impossible' class. Thus, a generic class of images contains essen-
one, with no object solution, by a small perturbation of tially all images. The special cases not contained in this
its intensities. The only previous non-existence result class can be avoided by infinitesimal perturbations of
was limited to a narrow set of images [13]. the object shape, or by an infinitesimal object rotation.

Although our result, like that of [13], has been derived Similarly, a generic property is true of essentially all in-
just for refiect.tnce functions symmetric around the op- stances, and false only in special and unstable cases.
tical axis, it probably holds in very general lighting con- In [7] it is shown that the class of structurally stable
ditions. The possiblity that no consistent solution exists images is a generic class of images. This is generalized
provides an important failure criterion for shape from to the case of general illumination direction in [8]. A
shading. If the method is applied to an inappropriate structurally stable image is one satisfying a certain set
image, then this will probably be signaled by the non- of properties, for instance it must contain a finite number
existence of any consistent solution, showing that the of singular points. The exact definition of this concept
assumptions made about the scene were incorrect, is given later. Also, among images of closed, non-self-

Finally, we describe a new local algorithm for recover- occluding objects, the images with smooth limb are a
ing shape, which uses a general quadratic surface model generic class [14]. In other words, essentially all images
as a local approximation of the imaged surface. The of non-self-occluding objects have smooth limb curves.
model is recovered from the local image data. Previ-
ous algorithms used rather special local surface models, Theorem: Assume .) an image of a closed, smooth,
for instance the spherical model of Pentland [10], or the non-self-occluding, genus zero object is produced by or-
restricted quadratic model of Ferrie and Levine [6]. thographic projection, 2) the reflectance function is a

Bruss reflectance function, 3) the object is completely

2 The Uniqueness Theorem contained in the image, and the limb is a smooth, closed,
curve (this is generically true from the above), 4) the

In the following sections we present our uniqueness the- image belongs to the generic class of structurally stable
orem, and sketch its proof. images. Then the visible surface of the original object is

First, we give some definitions. The following are stan- the unique solution to shape from shading corresponding
dard: A singular point in the image is a point of maximal to a closed ol.ject.
brightness for the given reflectance function. The surface Alternatively, the conclusion of this theorem can be
orientation corresponding to a singular point is iniquely restated as follows. The pose of a non-self-occluding
determined. For a smooth, closed, object, the occluding surface is defined to be accidental if an infinitesimal ro-
boundary is defined to be the set of all object points at tation will cause the surface to self-occlude. Theorem:
which the surface normal is perpendicular to the optical Assume conditions 1-4 above. Then the visible surface
axis; the limb is the image of the occluding boundary. Fi- of the original object is the unique solution to shape from
nally, a smooth, closed object is non-self-occluding if all shading whose pose is non-accidental.
points on the limb are also on the boundary of the image This uniqueness result may seem to conflict with the
region containing the projected object. This is actually well-known, two-fold, 'convex-concave' ambiguity in re-
just a slight extension of the standard, common-sense constructing shape from shading. However, for the 'con-
meaning of non-self-occluding. In addition to the usual cave'solution, the occluding boundary is seen edge on in
cases of self-occlusion, it excludes cases where the ob- the i n, whe clarly couna ciden edgn-
ject 'virtually' self-occludes-where the surface normal the image, which clearly constitutes an accidental align-
becomes perpendicular to the optical axis with no actual ment of the viewing direction with the rim of the sur-
self-occlusion. face. Moreover, this solution is impossible for a closed

The following definitions are new. A Bruss reflectance object-there is no way to extend the surface to a closed
function R(p, q), where p, q are the usual partial deriva- object without occluding it. The second solution is
tives of the depth z, is defined to be one which satisfies: therefore excluded as an acceptable one.
1) R is a smooth, non-negative, function depending only These theorems may be summarized as stating that
on p2 + q2 (thus, it is symmetrical about the optical axis for a Bruss reflectance function, and an object wholly
i), 2) R attains a unique global maximum at p = q = 0, contained in the image, there is almost always a unique
with the surface normal to the optical axis, 3) the deriva- solution to shape from shading. In sketching their proof,
tive of R with respect to its argument p2 +q2 is less than we will assume for simplicity that the imaged object is
zero at this point, 4) R --* 0 as its argument goes to infin- actually Lambertian, and that the illumination is due
ity, so that R vanishes on the occluding boundary, 5) R to an infinitely distant point source. We will first derive
is monotonic (thus, the image irradiance equation can be constraints on the solutions to shape from shading which
inverted, and transformed into eikonal form). A typical are valid for the case of general light source direction.
Bruss reflectance function corresponds to the illumina- (Note, however, that we exclude backlighting: the light
tion of a matte or Lambertian surface from the viewer source and viewer must be in the same hemisphere with
direction. respect to the imaged object.) Then, we will indicate

A generic class is one containing essentially all in- how the proofs can be completed when the illumination
stances, apart from a few special cases. Moreover, for . from the viewer direction.
any special case not contained in this class, an infinitesi- With these simplifications, the image intensity is given
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by This form makes it clear that the surface curve corre-
I -" -h. (1) sponding to a characteristic trajectory depends only on

w is the the light ray direction, and ft is the surface the 3D object and the illumination direction, and not onwherel Explictl the viewing direction. In other words, if the lighting is
normal. Explicitly, kept constant, characteristic strips in different images of

(p, q, -1) an object represent the identical surface strips. Also, it
(1+ p2 + q2)1/2' is clear that the surface strips can be extended smoothly

beyond the illuminated region in accordance with eq. 3,The surface normal is defined so that it points towards so as to cover the whole of the object. The right-hand
the viewer located at negative z. side of this equation is just L projected into the surface

Characteristic Strips as Surface tangent plane. Thus, surface strips are curves of steepest
Churf ascent in the Lt direction.Curves

A characteristic strip is, roughly, a line in the image 4 Singular Points and the Flow of
along which the surface depth and orientation can be Characteristic Strips
computed, assuming that these quantities are known at
the starting point of the line. Characteristic strips were In this section, we derive properties of singular points,
used by Horn in his original algorithm for reconstructing and describe the global structure of the flow of charac-
shape from shading. (see, e.g., [5]). A consistent solution teristic strips for a generic image. At singular points,
to shape from shading determines a flow of characteris- the right-hand sides of the equations 2 and 3 vanish, so
tic strips in the image, with every image point lying on that a characteristic strip originating exactly at a singu-
exactly one characteristic strip line. Conversely, such a lar point never leaves it. Singular points are therefore
flow of characteristic strips uniquely determines a shape fized points of the characteristic strip equations.
solution. Most of our proof is focused on uniquely speci- Also, singular points correspond to points on the ob-
fying the flow of characteristic strips, and thus, from the ject where the surface normal is parallel to the light
above, a unique shape solution. source direction. Thus, considered as object points, they

The characteristic strip curves are computed by solv- depend only on the light source direction, and not on the
ing a system of differential equations. In terms of a viewer. We have seen that surface strips are also inde-
Hamiltonian function H [7], where pendent of the viewer. Thus, it is clear that the flow of

characteristic strips in the image can be analyzed by con-
H(x, y, p, q) _= I(m, y) + h. L = 0, sidering the flow of surface strips on the corresponding

the characteristic strip equations can be written as: object.

aH. Consider a smooth, closed surface S. Define a carte-
Hp (- ) ! = Hq, - -H., = HY. sian coordinate system ( 1, 6, ,3), where 3 = L, i.e.,

aP the third coordinate measures distance along the light
(2) ray direction, and consider b as a function on S. A crit-

The dot denotes a derivative with respect to 'time', an ical point of 3 is a point on the surface where the deriva-
arbitrarily chosen variable that parameterizes the posi- tive of 3 vanishes. A critical point is non-degenerate if
tion along the characteristic strip. The subscripts denote the matrix of second derivatives of 3 is non-singular
partial differentiation. Explicitly, there. Thus, a non-degenerate critical point is a local

L,,; a. maximum, minimum, or saddle point of 6; the surface

= , at this point is respectively concave, convex, or saddle-(1 + p2 +q2 ) 1  P (1+ p2 q2 )' shaped.

H9 1 *./f A singular point in the image corresponds exactly to a
= Hq (1 + p2 + q2)1/2  q (1 + p2 + q2)" critical point on the object. Also, corresponding to the

Also, -three different types of non-degenerate critical points,
Also, one can show that the flow of characteristic strips near

z = pdi + q, their singular point images can be classified into three
by the definition of p, q. After some algebra, and a possibilities. This follows from the Grobman-Hartman
redefinition of the arbitrary time parameter, the above theorem [9], and was first pointed out by Saxberg [12]. A
equations may be re,ritten as: local mini or cvrivex surfdte tuitespuids Lu a source

singular point, with an infinite number of outwards-
_d ( Y ( pointing characteristic strips originating at the point.

dt- di Y = (. Similarly, a local maximum corresponds to a sink sing,

lar point, with all nearby strips converging
A curve generated by this equation is on the surface of For a saddle singular point, the flow i,
the illuminated object, and will be referred to as a sur- cated. Each saddle point is the originati:. 6
face strip. Note our convention for the time direction: as characteristic strips, and similarly the tern
time increases, the trajectory heads away from the light for two. Other characteristic strips appr ...! ,n,
source. recede from the saddle point, without actu. connect,
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ing to it (see, e.g., [7]). only been demonstrated for Bruss reflectance functions.
In [8], the following theorem is proven. A closed sur- It implies that there is at most a four-fold ambiguity

face S is defined to be structurally stable with respect in reconstructing shape locally around a non-degenerate
to the function b if 1) the surface has a finite num- point. The proof of this fact is difficult, and is based on
ber of critical points, 2) they are all non-degenerate, the mathematical theory of dynamical systems. How-
3) there are no surface strips connecting saddle critical ever, the result is actually not very important in the
points. Theorem: 1) Every smooth, closed surface can uniqueness proof, as we shall see. It is used only to give
be approximated arbitrarily well by a structurally stable a precise definition to the class of structurally stable im-
surface. 2) For all sufficiently small perturbations of a ages. This point is elaborated in a brief digression.
structurally stable surface, the perturbed surface is also The 'definition' of structurally stable images in the
structurally stable. Thus, almost all surfaces are struc- previous section was flawed in that it referred to the
turally stable. imaged object. Since we are only presented with the

It is easy to show that at a singular point correspond- image, and have no knowledge of the object, the defi-
ing to a non-degenerate critical point on the object, nition should be amended so that it only refers to the
the second derivative matrix of the intensities is non- image. The third defining property is therefore altered.
singular. A singular point with this property will also A structurally stable image has the defining property:
be referred to as non-degenerate. Then, for an image of 3) For any two singular points in the image, consider
a structurally stable object, the above results imply: 1) the local saddle solutions around these points (if they ez-
the number of singular points in the image is finite, 2) ist). For any possible extension of these solutions, there
every singular point is non-degenerate, and 3) there is is no characteristic strip which connects the two singular
no characteristic strip connecting two saddle-type singu- points. This guarantess that, under any interpretation of
lar points. The last property is valid for the flow of strips the singular points, there will be no characteristic strip
corresponding to the structurally stable object. Eventu- connecting saddle points in a structurally stable image.
ally, we will define a structurally stable image to be one The proof that this amended definition yields a generic
that has these three properties. However, to make this class of images relies on the above result that there are
definition precise, one further result is needed. In any only a finite number of saddle solutions to consider. We
case, from the theorem, it is clear that structurally sta- now return to outlining the uniqueness proof.
ble images are generic. From now on, we consider only The second step of the proof is the demonstration that
these generic images and objects. the convex and concave solutions around singular points

By taking advantage of the interplay between surfaces can be extended over large image regions (assuming a
and their images, one can demonstrate many proper- consistent solution exists). In fact, the image can essen-
ties of surface and characteristic strips rather easily. For tially be covered by these regions. This does not quite
example, it is easy to show that all surface strips be- determine the solution, since the relative depths of the
gin and end at critical points. Thus, all characteristic singular points may not be known-one needs to deter-
strips begin and end either at a singular point, or on the mine how the splicing of the different solution regions
limb (if a terminal singular point is occluded). Also, by should be done.
the Poincare-Hopf index theorem of differential geome- The third step proves that all singular points in a con-
try (see, e.g., [1], [4]), one can show that: sistent solution actually are connected together by se-

Nell - Ngad = E, quences of characteristic strips. Since the surface can be
computed along these strips, this determines the rela-

where Nat is the number of critical points with posi- tive depths of the singular points and the splicing of the
tive curvature (local maxima or minima of 6), Njad is different solution regions.
the number of saddle critical points, and E is the Euler The above is sufficient to show that if the nature of
number of the surface. For a genus sero surface, E = 2. the surface solution is known at each singular point-i.e.,

whether it is concave, convex, or saddle-shaped-then
5 Sketch of the Uniqueness Proof the shape solution is uniquely determined. The last step
The first step in the proof is a local uniqueness theorem. in the proof shows that the type of the solution at each
It was previously shown by Bruss [2] that for some lo- singular point is in fact uniquely specified, and that the
cal neighborhood of a non-degenerate singular point in solution is therefore unique.
the image, there exists a unique surface solution that is The steps of the proof are now described in more de-
convex around the singular point, and a unique surface tail. The second result follows from well known proper-
solution that is concave around this point. She proved ties of characteristic strips-basically, the standard exis-
this for the case of Bruss reflectance functions, but it was tence theorems of differential equations. Also, it depends
later realized by Saxberg [12] that the result was valid on the observation made earlier that every strip on a con-
for illumination from a general light source direction. In sistent surface begins and ends at a critical point, and
fact, this local result is the essential content of Bruss' on the Grobman-Hartman result that there are only four
uniqueness theorem. strips connecting to any saddle point. It is valid in the

In [7], it is proven that there are most two additional, general illumination direction case.
saddle-shaped solutions in the local neighborhood of a The third step is also true for general illumination di-
non-degenerate singular point. So far, this result has rection for the surface strips on the object. For char-
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acteristic strips in the image-the important case-it is 6 Non-Existence of Solutions
valid if the relevant connecting strips are not partially Characteristic strips corresponding to a consistent shape
occluded. For Bruss reflectance functions, this partial solution cannot intersect in the image. This is so because
occlusion never occurs. The complete proof of this step an intersection would imply two different surface otien-
is given in [7]. Although it is somewhat technical, its es- tations corresponding to a single image point. On the
sential content is a topological or continuity argument. other hand, for an arbitrary intensity function which is
Also, it is argued in [8] that the partial occlusion of con- not a true image, it is perfectly possible that the com-
necting characteristic strips is probably not very signifi- puted characteristic strips do intersect.
cant even for general light source direction. Suppose we begin with a true image produced with a

Various arguments are used to demonstrate the last Bruss reflectance function, in which some singular point
step. One of the most important, which is valid also for is uniquely determined to be a source. This in turn
general light source direction, is the following. Suppose uniquely determines the characteristic strips emanating
some singular point is assumed to correspond to a source, from this point. In [7], it is argued that a small pertur-
that is, to a convex solution. This uniquely determines bation of the intensities can be found for which 1) the
the characteristic strips emanating from this point in the only consistent interpretation of the given singular point
image. Then, one can show that the nature of the solu- remains a source, and 2) some of the strips emanating
tion at any other singular point to which the first is con- from this source intersect due to the perturbation. Then,
nected by a characteristic strip is uniquely determined, this perturbed image cannot correspond to a physical
This again follows from a topological argument. By a object-it is an 'impossible' image.
chain reaction of this reasoning, one can determine the Clearly, an impossible image with intersecting strips
nature of the solutions at many singular point which are will continue to have intersecting strips for a small
connected to the original source by sequences of strips, enough perturbation of its intensities. Thus, impossible
An equivalent result holds if the original singular point images are an open subset of all images.
is a sink.

Another important constraint on the solution is due to 7 Shape Ambiguities near the
the shadow boundary, defined as the curve separating the Occluding Boundary
illuminated from the non-illuminated region of the ob- It this section, the characteristic strip equations near the
ject. For general light source direction, we assume that limb are examined, and it is shown that the limb does
the object is non-self-shadowing, where this is defined not constrain the shading solution. First, the equations
similarly to our earlier definition of 'non-self-occlusion'. are rewritten in a rotated coordinate system, in terms of
Then, by similar arguments to those following the state- variables that remain finite on the limb (see also [12]).
ment of the uniqueness theorems in section 2, e.g., by The characteristic strip equations are eq. 3 above and:
non-accidentalness, the surface at the shadow bound- 91
ary must be 'convex', and 'rolling away' from the light =_!(I+p2 + q2)1/2, _ ( + + q(1 +9 /+

source. Since characteristic strip lines projected on the TX a,
object are lines of steepest ascent in the direction away (4)
from the light source, this implies that these strips are with the surface represented by z(x, y), p, q. Instead, we
eziting only at the shadow boundary. Thus, a singu- switch to representing the surface by a function y(m, z),
lar point connected to the shadow boundary by a strip and y,, y., which should be possible at least locally.
cannot be a sink, but must correspond to a convex or These quantities indeed remain finite on the limb.
saddle-shaped surface. Define the variables w = -p/q, and v a 1/q. If a

surface solution y(x, z) exists, then w = y. and v = y,.
These results are already enough to show that the so- These variable evolve via:

lutions to shape from shading are strongly constrained - - 2 1 2

for general light source direction. A more complete treat- b _ v( + W )(1 + W2 +v2
ment is presented in [8]. For Bruss reflectance functions, q q2 

- I
the essential ingredient giving uniqueness is the fact that (VY) (I + W2 + V2)1/ .  (5)
the shadow boundary is completely visible in the image, = - -(1
and coincides with the boundary of the object as pro- q l
jected in the image. The occluding boundry per se is not The existence of a surface solution y(x, z) also implies
important. In this case, the strips at the image bound- that
ary exit only. As a consequence, surface strips connect- ai ail
ing visible singular points are never occluded, as stated I. = I. + Y.Ip, Iz = IY'

previously-if they were to exit the visible region of the z

object, they could not return to it. Another consequence where on the left-hand side I(z, y = y(x, z)) is thought
is that the Poincare-Hopf theorem quoted in section 4 of as a function of z, z. Although I, or 4, must be singu-
can be applied, and determines uniquely the number of lar on the limb, I. and I, are both finite. The equations
saddle type singular points in the image (7]. Finally, 5 appear to have almost the same form in the rotated
using some other topological arguments, the fourth and coordinated system as they did in the original one, with
last step of the uniqeness theorem can be proven. y playing the role of z.
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At least one surface solution of the characteristic strip absolute scale is not determined. Thus, we again define
equations can be assumed to exist-namely the original new variables
object from which the intensity image was derived. The v w - y,
basic strategy of our proof is to write the equations with s = -, r = (8)
reference to this "pre-existing" solution. Below, there- Y" Y"

fore, y,. and y,, denote the partial derivatives correspond- The time evolution equation for s is:
ing to this reference solution. Similarly, I and 1" denote
the partial derivatives of the intensity assuming the ref- h = -(ID 1 / 2 - , (9)

erence solution. These quantities should be thought of YX

as fixed functions of x and y, like the intensity I itself, where
They have the nice property that they remain finite on 2 + v2 2 2 (
the limb. D + wys+(yzr +y)2. (10)

One has: Since

_Y L i a _Y a 1, i? 1 0

Substituting into the eqs. 5 yields: the time evolution of y, is:

= sign(v)(I4 + 4 - )(I + w 2 +,V2)1/2, = - + -.

sign(v)vL-(1 + w 2 + v2 )1/ 2 . (6) From the equation for I, eq. 1,

The surface normal can be written as: (y..,, 0, ) . I (y2.lyx2 + yZyl),

= .g (-w, 1,-v) (7)= D172 Dr

slgn~v)( 1 + w2 + v2)1/2' where

Since ft is expressed as a function of w and v, the system Dr I + y2 + y2.

of equations 3 and 6 form a complete set that can be After some algebra, one obtains an expression for the
solved for x, y, z, w, v as functions of time. For the time evolution of s which is clearly well defined at the
reference solution, the surface normal nr has the same limb [8]. The evolution depends on the first and second
form as eq. 7 with (v, w) replaced by (yz, y.). Since derivatives of y for the reference solution, on I, and on r
the limb is defined by n; = 0, it follows that yz = 0 on and s. The equation for r can be derived similarly, and
the limb, and only on the limb. The singularity of the is also well defined on the limb. With s and r finite and
eqs. 6 is due solely to this vanishing of y,. yz = 0 on the limb, w = y, and v = y, = 0 are forced

Let us restrict our considerations to a small portion of there, as stated above.
the image bordering the limb. Image plane coordinates y, is not a continuously differentiable function of the
are chosen so that the limb is tangent to the x direction image plane coordinates x and y. Thus we replace the
at some point; this point can be taken to be the ori- variable y by zr(n, y), the value of z for the reference
gin. For convenience, we assume that y attains a local solution given x, y. The differential equation for the
maximum at this point, so that the limb is convex there. time evolution of Zr is:
Also, it is assumed that the reference surface is 'rolling =  Y +
away' at the limb. zr=- , z- (ry. z .) + L,, +

In the evolution equation for v, the variation of v is -Y \ D 1 /2  ) - D112

proportional to v itself, so that v never changes sign ex- y Ir 1I/2D /  + + !

cept at singularity points of the right-hand side, namely - L_ + - + (-D D1  1+ ). (12)
on the limb. Therefore, v and yz can be chosen positive D 1/2  yz D l / 2  r

over the given region, and the sign factors in eqs. 6 and Again, it is clear that this is well defined on the limb
in i can be neglected. Henceforth, we will drop the sign when yz = 0. The system of equations for P _
factors from these equations. Also, the sign of Ir is as- (x, z,, s, r) is consistent and differentiable everywhere in-
surmed negative over the given region. From the equation cluding on the limb. Let the limb considered as a curve
for v in eq. 6, this implies that v decreases with increas- in the x-zr plane be parameterized by a. For arbitrary
ing time, and similarly for y, in the reference solution. choice of initial conditions for s, r on the limb, the usual
This choice of sign therefore implies that the direction of theorems of differential equations state that there exists
the characteristic strips is outwards at the limb, towards a unique solution of the system of differential equations,
the invisible region. The singularity in the eqs. 6 implies with P a differentiable function of a and t. Given this
that v and w are forced respectively towards 0 and y,, as solution, y and z can also be computed by simple inte-
a strip approaches the limb. gration of their equations of motion.

The possibility of multiple solutions to shape from It now remains to show that wn = y,, v = y., and
shading arises from the following fact: although v and that the parametric form expressing x, y, z in terms of
w - y, scale towards zero with y, near the limb, their and a can be converted into a surface function y(x, z) or
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z(x, y). This can be done via a mostly standard argu-
ment (3] [8). The conclusion is that there is a range of
possible solutions specified by 1) the choice of z(z, y) on
the limb, and 2) by the choice of a combination of the
parameters s(z, y) and r(m, y) on this boundary. More-
over, these surface solutions are non-self-occluding. The
shape solution in the neighborhood of the limb therefore
has a two parameter ambiguity, as opposed to the one
parameter ambiguity around an interior image curve (3].
It is also possible to generate arbitrary numbers of solu-
tions by specifying the depth on an interior image curve
that terminates at the limb [8]. This fact is used for the -0,example image of the next section. ... , ' "

8 Shape from Shading as a Partially
Ill-Posed Problem

In this section, an image example is presented for which
shape from shading is ill-posed over a (very) small im-
age region. Over the bulk of the image, the shape is
uniquely determined. The exceptional region consists of
points which are unconnected by characteristic strips to
the only singular point in the image-a source. The re-
gion is bounded by the limb and by part of a strip from Figure 1: A composite view of the standard
the source: the bounding strip at one point is tangent and perturbed surfaces, showing the
to the limb, but actually exits the image elsehere. Thus, discrepancy between them.
this region is completely isolated from the source. Since
we have argued that only singular points constrain the
shape solution, and not the limb, shape reconstruction is This is a composite picture, with the standard and per-
expected to be ambiguous in this region. This has been turbed solutions displayed together. That the two so-
demonstrated numerically in (8]. It is also argued there lutions differ is clear due to the sharp discontinuity be-
that such 'ill-posed regions' are expected to be small tween the occluding boundaries of the two surfaces.
fractions of the image.

The imaged object is essentially an elongated egg- 9 Recovering Shape Locally from Image
shape, viewed from a direction reasonably distinct from Intensities
the long axis of the egg. In a body-centered coordinate
system, it is given by: In this section, it is shown that if a surface is locally

2 2 141quadratic at a point p, then it can be recovered locally

3 +=Y!+ 1. (13) directly from the image data. Special cases (e.g. singu-
27 +lar points, or equal principal curvatures) are not consid-

In this coordinate system, the light source direction is: ered here, and can be handled separately. The surface
is assumed Lambertian, and the illumination is by an

Ib -- (1,-1,5), (14) infinitely distant point source. For local shape recon-
and the viewing direction is: struction, these are reasonable assumptions apart from

specularities.

b (- sin, 0, cos), sin = .15, cos = (1 - sin2)1/ 2 . The stipulation that the surface be locally quadratic
(15) means that there is a coordinate system at p in which

The object is considered to be at positive z with respect the surface can be represented by:
to the viewer. 1 2 + by2

Our strategy for generating new solutions correspond- - = (am + ). (16)
ing to the ill-posed image region is as follows. We choose This coordinate system, distinguished by underlined co-
an initial curve spanning the region, which runs from the ordinates, will be referred to as the object coordinate sys-
bounding strip to the limb. The surface depths n tem. Its origin is p . At p, the unit vector i is equal
perturbed essentially arbitrarily on this curve, except
that the perturbed surface must join smoothly onto the to the surface normal fi (note that this differs from the

standard one at the bounding strip. Finally, by comput- convention of previous sections), while _ and ' give the

ing numerically the characteristic strips passing trans- principle curvature directions. At points away from p,

versely through this curve, the perturbed solution is ex- the surface normal is:

tended over the whole ill-posed region. The result for
one arbitrary perturbation is shown in Figure 1, from a -by (17)
viewpoint behind the object, i.e., opposite the viewer. 1 -
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Differentiating the image irradiance equation in this co- Subtituting this result into the equation for the second
ordinate system yields: derivatives yields:

-a 1 1a2 , 021 = 8 Ri2I
0 122 +L2y2)1/2 2ZR by ajrjrh a + 6)c '.aio 0 + -- + kin m -r

(18) Now, define three unit vectors to be the columns of

with a similar equation for 4y. (Although the intensity the rotation matrix R:
I is a function of the image plane coordinates, it can
be considered also as a function ofn and y through pa- ( fl y_ & )A, R.
rameterising the surface with these variables, as detailed
below.) At p, tihe above equations reduce to: Further, define:

0 b 04=L.( )~ I =L.(b). 19)
IY~~~~ ~ =~ 4,, --- I. 0Differentiating again yields at p: T = I m 4, 0

I.. = -a 21, I. =0, I ,= -b21. 0 0 0

These equations are not directly useful since they are In terms of these quantities, and etpressed in the camera

expressed in terms of the unknown object coordinate sys- coordinate system, the image irradiance equation and the

tem: they must be converted into the camera system. derivative equations are:

Let the origin of the camera coordinate system be at p I = L. R,, (22)
also. Then the camera coordinate system is related to
the object coordinate system by a rotation: (XA+ a).Af. = 0, (23)

(; ) = ( ; ) . (20) (+b)-A '(4• ~ 0 _(, )T. + aX .A, + a 21 = 0, (5
AITRA. AzaI (25)

Since z is a function of x and y, the image plane coordi- ATTy + bA - R. + b 2 = 0, (26)
nates m and y can be considered functions of these two - T +
variables also, via the above equation. STR_ = 0, (27)

In a unified notation one has: These are the six basic equation that we will work with.
80 Or, 0 The unknowns to be determined include the direction of

Or, =  8ri Or)' the surface normal A (two unknowns), the direction of
maximal curvature of the object surface (one unknown,

where the subscripts i, j denote the a, or y coordinates, assuming f. is known), and the magnitudes of the prin-
i.e., (r., r.) = (x, y). From eqs. 20 and 16, ciple curvatures of the object, a and b. Thus there are a

8 E(Rji 8 + c 8riRij_-8), (21) total of five unknowns, and the above six equations are
j .( sufficient to determine these, and also provide a measure

of the error when there is no exact solution, for instance
where (c.,., c,,) (a, b). because of departures from the surface model. (This

The first derivative equations at p, eq. 19, can be fails in special cases which can be handled separately.)
rewritten as: Alternatively, if the surface albedo is also unknown, in

I =principle it too could be recovered.
E Rj 8 = -ciL1 .

-rj  The solution of these equations is carried out as fol-
i lows. For convenience, the camera coordinate system is

This corresponds to two equations, for i = x and _. defined so that the light source direction i is in the x-z
The second derivatives evaluated at p are: plane. The first of the six equations constrains R . In
821 81 Or I terms of variables r and s satisfying

8r18,r, - Rk , orkor + cj E RkiR. aOrm"1% - kin ki - + / ! - J 2 - r 2 ,

The expression

E O ±j R may be written as:

k ark Lr + LI
which appears in this equation must be evaluated at p. At = ( .
This can be done since k = Rkj at p, and: -Lr + LI

8rj ark r The strategy in solving the six equations will be first to
Rki Z) = - .express all unknowns in terms of r, and then to solve for

. ark k 8:r-i arj5 r.

152



Since A,- = 0 by the orthogonality of R, and from 4. V. Guillemin and A. Pollack, Differential Topology.
eq. 23, one has: Prentice-Hall: New Jersey, 1974.

AS -_ k. x (I4+at). (28) 5. B.K.P. Horn and M.J. Brooks (eds.) Shape from
- -z Shading. MIT Press: Cambridge, MA, 1989.
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Posed Problem," University of Massachusetts TR
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is unique. Note that there is no convex-concave-saddle 11. B. Saxberg, "An Application of Dynamical Systems
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a, b, and therefore Ri_, Ay, are now expressed in terms Image Understanding Workshop, Palo Alto, CA,
of r. Substituting for these quantities in eqs. 25 and May 1989, pp. 1089-1104.
26 yields two complicated equations for r, which can 12. B. V. H. Saxberg, "A Modern Differential Geomet-
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can therefore be determined as the root of a high order cial Intelligence Laboratory, TR 1117, 1989.
polynomial. However, the only admissable solutions for 13. R. Szeliski and B. K. P. Horn, "An Impossible
r are those which satisfy the condition Shaded Image," unpublished.

Irl < (1 - 12)1/2, 14. P. Giblin and R. Weiss, "Reconstruction of Surfaces

following from the fact that A, has unit norm. Therefore from Profiles," in Proc. International Conference on

the strategy we adopt for finding the solutions r is a Computer Vision, London, England, June 1987, pp.

simple search: the above admissable range of values for 136-144.

r is sampled, in order to bracket the seros of eqs. 25 and
26. This procedure has been implemented, and works
reasonably well. Moreover, in all cases studied so far,
there is a unique solution for r when a common solution
to both equations exists. Thus the image data appears to
determine a unique local solution for the object surface
shape, assuming that this surface is quadratic.
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The Mathematical Foundations of Smoothness Constraints: A New

Class of Coupled Constraints

M. A. Snyder
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Abstract U = (U1, U2 )T _= (u, v), and in qth derivatives of the grey-
level image intcnsity function 1. These smoothness densi-
ties are therefore of the form:

" Pe 1ra ,, , q dl' b '' 'b ;r ,..d P (49. ... 0,,Ur)( b, ...Ob, U. ) Ir.,. 1,d....d,,

Gradient-based approaches to the computation of optical (1 ,
flow often use a minimization technique incorporating asmoothness constraint on tihe optical flow field. Smooth- where tihe quantity f.. does not involve derivatives of either

smoohnes costrinton te otica flw feld.Smoth. U or of I. As in our previous work [Snyd89J, we are using

ness constraints are also of interest in surface interpola- t EIsin umatio corntion) in w arepeated

tion, where they are known as "performance functions." tie Einstein summation convention, in which all repeated

All known smoothness constraints used to compute opti- indices are understood to be summed over from 1 to 2. We

cal flow have a subtle property, namely that they do not are using the notation that Ok -O/OXk (k = 1, 2), and a

mix derivatives of different components of the optical flow subscript of I denotes differentiation with respect to that

field. We present an analysis of smoothness constraints coordinate, e.g.,

which do not satisfy this "decoupled" property, but rather Oql
in which derivatives of different components of the flow can 1d,...d, = OXd ""Xd," (2)

interact. By using the representation theory of the group of
Euclidean motions in the image plane, we show that the the (Note that the subscripts of U denote components, not
single assumption that the smoothness constraint is invari- derivatives.) We will call a smoothness density of the form
ant under this group of transformations allows us to write (1) a smoothness density of type (p,q). The well known
down a complete list of all possible invariant smoothness smoothness constraint of Ilorn and Schunck [llorn8l, for
constraints of type (p,q), by which it is meant that they instance, is a particular smoothness constraint of type
are quadratic in pth derivatives of the optical flow field, and (1, 0), while that of Nagel and Enkelmann [Nage86) is of
in qth derivatives of the grey level image intensity function. type (1,2).
This is done explicitly for the values 0 _ p,q < 2. So far In our previous work [Snyd89), we asserted that a
as the author is aware, all of these smoothness constraints, smoothness density should satisfy three physically reason-
excepting those linear combinations which are decoupled, able conditions:
are new. We find that there are 4 of type (1,0), 5 of type
(2,0), 8 of type (1,1), 14 of type (1,2), 15 of type (2, 1), 1. The smoothness density should be invariant under a
and 24 of type (2,2). In addition, we find using our method change in the Cartesian coordinate system of the im-
all invariant "performance measures," used in surface inter- age, i.e., it should be invariant under the Euclidean
polation, when the performance measure is quadratic in no group of the plane ISO(2). We called this the 0"' Law
higher than fourth derivatives of the objective function. of Computer Vision.

2. The smoothnuebb density should be positivc dcfinitc.

1 Introduction 3. The smoothness density should be decoupled, by which
is meant that no terms involving the product of deriva-

In this work we consider smoothness constraints which can tives of different components of U (e g., uv,) should
be written as an integral, over the image plane, of a quan- appear in (1).
tity called the smoothness density E (see (Snyd891 for a
fuller discussion). We consider only densities which are We used these three constraints in [Snyd89] to give a
quadratic in both pth derivatives of the optical flow field completeness proof for decoupled smoothness constraints
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of type (1, 1) and (1,2), i.e., we found all the independent constraints of type (1,0), (2,0), (0,1), and (0,2). We re-
such smoothness constraints, produce the well known decoupled smoothness constraints

It is the purpose of the present work to drop the third of these four types, and exhibit new coupled smoothness
assumption, and hence to find all possible smoothness den- constraints. In Section 4, we use the results of Section 3
sities which satisfy the first two assumptions, namely Eu- to find all invariant smoothness constraints of type (1, 1)
clidean invariance and positive definiteness. We recall that and (1, 2). We reproduce the well known decoupled con-
the "decoupling" assumption in [Snyd89] had no obvious straints of Nagel and Enkelmaun [Nage83, Nage86] and give
physical or mathematical motivation, but was characteris- new coupled constraints. In Section 5, we find all the con-
tic of all known smoothness densities. straints of type (2, 1) and (2, 2), all of which, so far as we

We cannot yet justify the ezperzmental relevance of are aware, are new. In Section 6, we consider the case of
considering coupled smoothness constraints, but it is pos- performance functions for surface interpolation, and find
sible that coupled smoothness constraints may find future all the invariant smoothness functions quadratic in 3 d and
application in the analysis of visual motion. Our own in- 4 1h derivatives. These are, so far as we are aware, new.
terest in this problem, however, is from a purely theoretical We conclude with some remarks on further investigations
standpoint, of these ideas.

We will use the notation and ideas developed in
JSnyd89], to which the interested reader is referred for 2 The Representation Theory of
mathematical background and the physical justification of
our approach. ISO(2)

We recall that an element of the Euclidean group
ISO(2) of the plane is specified by a rotation matrix t E Because all the quantities which appear in our smoothness
SO(2) and a translation vector t, and that this element density are translationally invariant, we need only consider
(R, t) of the Euclidean group has the following effect on the SO(2) subgroup of ISO(2). The reader unfamiliar with
the position vector r of a point with respect to some origin. SO(2) can consult [Snyd89] for the necessary mathematical

background. A general reference for this section is the book
(11, t) : r -- r' = Rr + t. (3) by Murnaghan [Murn38].

Furthermore, an object Fk,...k, which transforms under this It is well known that the irreducible representations of
Euclidean transformation according to the rule: S0(2) are labelled by an integer n, called the weight of the

corresponding irreducible representation. We will denote
Fk....k, (r) Ft,.. k.(r') = 11 , . . RkkFk,...k.(r), (4) this irreducible representation by n. In what follows we

will use superscripts and subscripts to label where a par-
where r and r' are related by (3), is called an r"h rank tensor ticular representation comes from, but these indices have
(under ISO(2)). An "ordinary" vector A (for example, the no other significance. Since SO(2) is an Abelian group,
optical flow vector U) is just a I" rank tensor, i.e., A - all its irreducible representations are one dimensional. The
A' = RA. carrier space for such an irreducible representation can be

It follows easily from the tensor transformation law taken to be the image plane, so that we say that a "vector"
that if E is to be an invariant under the Euclidean group, (not to be confused with an ordinary vector) A = (A,, A 2 )T
then the quantity f..: must be a tensor of rank 2p - 2q + 2. transforms according to the irreducible representation (ir-
In [Snyd90a we show that the number of smoothness con- rep) n if, under a rotation (of the coordinate system) by 0,
straints of type (p, q) is in principle at most (p + q + 2)(2p + A transforms like
2q + 1)!!. Of course, not all of these can be independent.
In the table, we give the number of such tensors in princi- A -- A' = R(nO)A, (5)
pie, the maximum number which can be independent, and
in the last column, the actual number of independent such i Type Example I Number of Maximum # Actual #
tensors found in this work.L.. Tensors Independent Independent

Clearly, the calculation of all the possible invariant [(1,0) (UY 9 9 4
smoothness constraints rapidly becomes a daunting task if (2,0).{ (02U)z  60 21 5
one proceeds by trying to write down all possible tensors, (1,1) (0U)2(1 60 30 8
even though various symmetries lead to relations between (1,2) _(a(_2I)

2  525 60 14
the tensors. We will not pursue this train of thought fur- (2,1) (02U)2 (1) 2  525 64 15
ther. (2,2) a U)2 (9 2I)2  5,670 126 24

In the next section, we develop the representation (0,1) (0I)2  9 3 1
theory of ISO(2) (or, since all our quantities are maui- (0,2) 9 60

festly translation invariant, the representation theory of (0,2) (I)2 520 6 2

S0(2)). In Section 3, we use these results to find sin- (0,3) (a31)l 525 10

ply and quickly all possible ISO(2)-invariant smoothness (0,4) (041)2 5,670 15 3
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where To see how this is done, consider a vector A of weight

R(nO) cos nO sin nO (6) m, y 0, and a vector B of weight n2 0 m 1 0 0. Then the
- sin nO cos nO/ direct product representation m1 0 m2 consists of the four

We write the fact that A transforms according to (5) as quantities

A - n. We note that 1f n = 1, then A is an "ordinary" {A.Bb ; a,b = 1,2} = {AB13,AIB 2,A 2B1, A2 B2}.
vector (corresponding to the irrep 1).

It can be shown [Snyd89] that with no loss of generality, It is shown in [Snyd90a] that by taking the linear combi-
we can confine our considerations to non-negative weights, nations of {AaBb} given by
We note that an alternative, and somewhat more powerful, = -- A1B + A2 B2 = B. A,
approach to the representation theory of SO(2) is to asso-
ciate with each vector A = (A 1,A 2)T the complex number %P2 = A2B1 - AB 2  B x A (9)
A = A, + iA2. The transformation law then assumes the -ti = A1B - A2B2 , t2 = A2B, + AiB 2, (10)

simple form A --.o einfA. We do not pursue this avenue then the following two vectors transform irreducibly under
here1 , although the complex approach is used extensively SO(2):
in the sequel to this work [Snyd90bI.

In our work, we are interested in quantities of the form 'P-- i' R((mi-m2 ))* (11)

A( A (2)... A
(k), (7) q-r(

I ~ ~ ~ ~ ~ ~ ~ 4 a: ahI1 \m +M)- (2
where A(W is a vector of weight n; (normally, ni = 1). For- -

=  
( ) R((mm + m2 )) P. (12)

mally, (7) is a tensor. Such tensors are not, in general, That is, T is a vector of weight m, - M 2, so that I ,,
irreps of SO(2), but rather have "pieces" which do trans-
form irreducibly under SO(2), i.e., like (5) for some n. That m, - mn and 4' is a vector of weight m1 + in, so that
is, a quantity like (7) can be written as a sum of quantities 1P n if in. (Note that im ± n is not any sort of "sum"
which transform irreducibly under SO(2). In the language or "difference of two irreps-it is the representation of

of group representation theory, we say that the representa- weight m < n.) This is exactly the decomposition of the

tion of S0(2) given by (7) is reducible under the action of direct product into a direct sum of irreps:

S0(2) into a direct sum of irreps of SO(2). m 0 12 = M, - M, m r, + M, (MI 0 ra2 $ 0). (13)
These comments can be made more precise. A quantity If either m, or 2 is zero, then the above derivation is

of the form (7) is an element of the direct product space
V2 0 V2 0 ... 0 V2 (p factors of V), where V2 is the image invalid, siice there are not four independent quantities of
plane. It therefore transforms (following (7) according to t e form o witht a st is c a scrthe irec prouct epreentaion(-' 0) times a vector of weight in just gives back a vector
the direct product representation of weight m, i.e., m 0 0 = m. A slight complication does

nl 0 n2 0 .. 0 nk (8) arise, however, if m, = M 2 . In that case (11) says that
%P1 = AiBi+A 2B2 = B.Aand 92 = A2B1 -AB 2 = BxA

of SO(2). This transformation is not, in general, irre- are both invariants (note that in two dimensions, the cross
ducible, but can be written as the direct sum of irreps of product of two vectors which transform in the same way
SO(2). Our interest here is in the specific combinations of under SO(2) is a scalar, not a vector). Furthermore, if
the A(i') that transform as scalars (invariants) under S0(2), Mi = in 2, and both of these irreps come from the same
since these will correspond to ISO(2) -invariant smoothness quantity (i.e., A = B), then 'k2 = 0, so there is only one
constraints. That is, we are interested in the irreps 0 con- non-trivial invariant instead of two. In the latter case, we
tained in the direct sum decomposition of the direct prod- say that the representations m, and m2 are identical We
uct (8). This can be done as follows. summarize these results as:

We first note tht the direct product and direct sum of
representations m, ii, and p satisfy the following two rules: a 0 a - 0+  0 ® 2m (A # B, m # 0) (14)

mo(nop) = (moml)a(arop) mom = 0 (2m =
mo(nop) = (m n) mp -(m0m),, (A=B, m#0) (15)m0(n~p) = (m~n)0p. 110=O ~ i.(6

TnO0 = 00m=m. (16)
Consequently the reduction of (8) into a direct sum of irreps Hre, 0+ aid 0- are the approriate T, and T2, respec-
can be made if we can reduce the direct product mi 0 M2 tively, and 2m is the representation of weight 2m. We have
of two irreps m, and 12 introduced the notation (M 0 m)id to denote the direct

'The reader can easily show that if A = (A,,A 2) is a vector of product of the two representations in when the representa-
weight 1, then the complex number A = A, + iA2 transforms like tions are in fact identical.
A .-. A' = exp i A, and hence, (RA', .RAn)T is a vector of weight
n, where RZ and 1,1Z are the real and complex parts of the complex These results will be crucial to the remainder of the
number Z, respectively, analysis.
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3 The Direct Sum Decomposition constraints of type (p,O) are {Yi('o), i = 1,...,m}, and

of 1®m {;o0 ), i = 1,.., n} are the constraints of type (0, q), then
the mn quantities

The problem of finding all (coupled or decoupled) ISO(2)- y-pO)y(0q) 1
invariant smoothness constraints of type (p,q) is just the ,mj ... ,r
problem of finding all possible linear combinations of quan-
tities like are all smoothness constraints of type (p, q). We call such

\ constraints composite.
(, 0 " U, ) (0b, ObU.) (eCcd,...d,) Our second remark is that there is a relation between

such that the linear combinations transform as scalars un- the constraints of type (0, q), used for surface interpolation,
der ISO(2) (this is exactly the point of finding all the ten- and the de-coupled constraints of type (q, O) used for op-
sors f:: !). But the set of all quantities of the form (3) spans tical flow computations. If we show the explicit functional
the tensor product space V2 0 V2 0 ... 0 V2 (2p + 2q + 2 dependence of the former constraints as

factors of V2). Since {0.} and {U.} transform according to i = 1,...,
the 1 representation of ISO(2), and I is a scalar, so that
{OaI} transforms according to the 1 representation as well, Then it is easy to see that the decoupled constraints given
it follows that Then it by

by

P+1 {.17iU] = Fi°o)[u] + Tioq)[v) ; i = 1,...,n}.
lq... ,, ... C, 1 -I® (17)

qare decoupled constraints of type (q,0). This is, for in-
(18) stance, the relation between the smoothness constraint

used by Anandan and Weiss JAnan85] for computing optical
Consequently, (3) must transform according to the (re- flow, and the "quadratic variation" smoothness constraint
ducible) representation introduced by Brady and Iorn [Brad83] and by Crimson

[Grim8lJ.
01(p. 1 , (19) In the next two sections, we find the direct sum de-

composition of 1(pO) and 1(0,9).
of ISO(2), where we have defined:

(Oa,,...o~,u,) (os, ... , u.),,®(p+ ® 8(p+1 - (0) 3.2 The direct sum decomposition of

Ic... cq Id ...d,  - 1 ® 1 =-- 1 (0.q)
.  l(P ')(p = 1, 2)

Therefore, there is a one-to-one correspondence between According to the remarks in the previous section, we have
invariants of the form (1), and representations of weight 0
which occur in the direct sum decomposition of (19) into
irreps. Therefore, we can find all the invariants of type and so
(p, q) by simply making this decomposition. Indeed, the
decomposition will tell us not only how many invariants OUO6U, - (1 0 1) 0 (1 0 1) = 1(10).
there are, but also gives us their explicit form. by using
(9)! That is, the theory of group representations Our goal is to find the direct sum decomposition of this
gives both a complete list of all the invariants and direct product.
their explicit construction. (This is the most important It is shown in [Snyd90a] that
sentence in this paper!)

We can therefore find all the invariants of type (p, q) 0,U, ~ 1 0 1 = 01 02 22,
by finding the direct sum decomposition of 1(P'° ) and 10-,q), where, according to (9) and (10),
taking their direct product, and identifying all the repre-
sentations of weight 0 which occur in the direct sum de- 0 ~ 01U- + 02(U 2 = u + vY = A1  (20)
composition of that direct product. 02 - 021UI - 01U2 = - v. = A2  (21)

3.1 Some general remarks on invariant 92U U2  = ( - - " (2

constraints
Therefore

We note a few general properties of smoothness constraints
of type (p,q). Our first remark is that if the invariant OUObUo l (1®1)(101) (01 02 ED21)0(0 1 0 0 2 21).
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We show in [Snyd9Oa] that this direct product has the direct 08 ~_ F(20) _ (0 4 u + 0-v)2 + (8-u - O%)l

sum decomposition: 09 F'2 °
3 - V2u(0+u + 0v)-+ V 2v(-u - 0%)

010 _ F(20) -V2U (8-U _ 9+V) - V 2v (O+U + O-v)
(aU) 2  () 03 0 04 (D 0s e 01 22 e 23 (41 (23) Oi ~F501 ' )(0+u - 0v) 2 + (0-u + 0V)2

where 2i - K, (i= 4,5,6,7,8)

o = --- = _-- o) 4i M (j = 2, 3),
03 _ f 10) -N, (.- -V)2 - (-u + OV)2

04 = , AI - o) A 2= N1 2(0+u- 0-v)(0-u + +v) '

2 - 1:13 where
0o= K().K(I) =Y 'l)

22 = K ( KM=10)( 4) (V 2u) 2 - (V2V) 2  (29)
22 = A'K )  (24) K 2V 2u V 2v

23 = A2K() (u - (u + V.2 (25) K ((O+u +-v) 2 
- (0-u - O+v) 2  (30)

41 M( v1 (2  v) 2 ). (26) k 2(0+u + 0-v)(O-u - O+v)
- 2(u. - v ,)(u1 + v.)((+ frv) _ V2V (0-u

Here we use the symbol "" to mean that on the right- V 2u (0-u - 0l v) + V2V (04 u + v) )31)

hand-side, all multiplicities have been set equal to one (V 2U(8u- 0-1) + V2V (8-u + O+v) \
so that we do not have any redundant quantities (see KM V 2u (u-- 0%) - V2V (0%- -v) 132)

[Snyd9oa for a discussion). (O0 + 0-v)(&u - v) 1

We note that in the process of finding the direct sum K(8) (a, u + 0-v)(O-u + &V) +
decomposition of 100), we have also found that the invari-
ant smoothness constraints of type (1, 0) are given simply + ((O-u - O+v)(O-u + 0% ) (33)
by the four invariants in (23), namely (0u - 0+v)(09u - 0-v)

{1), ( 1(27)0 (O (2 V2u (0+u_ -V) _ V2v (0-U + 0tV 34.F= -F A 4()2u (0- + O+V) + V2v (0+u - V)

It is easy to check that these are linearly independent, M(3 ) = (10+u + 0-v)(Ou - 0) -

and that the only de-coupled invariant smoothness con- (0+ + 0v)(0u + 0%)

straint that can be formed by taking linear combinations ((u - O+v)(O-u + ) (35)
of these is just the smoothness constraint .Fi-s of Iorn and - (O-u - 0+v)(O"u - 0-v)
Schunck [Horn8li :

We note that there are here five invariants of type (2,0):

V~ + Y1 1+ 5 = -1:(10) + -3l)+ )) {-j20), ),20), ),320), F(2 0), A(20)}

We note that if the invariant of type (0,1) (given by equa-
tion (38) is denoted by Fill, then the decoupled invariant where (expanding out the expressions above):

of type (1,0) is just of the form Y120) = (u.. + uY) 2 + (v.. + v ) 2

Flu] + Flvl• 2 = (uz. - uy, + 2v , )
2 + (v y - v 2u, - )

20 = U. _ 2_V2+V 2u.,(v.. + y) + 2v.y(u..+u)
This is an example of the general comments made in Section -F20) = uzz - uu1 - v , - 2u v + v+ u1 ,)

A similiar analysis for the direct sum decomposition 4 = 2[Ux1 (uzz + u1 ,) - v.,(v. + v1 ,) + u1 ,vVV - uzvx]

of 1(2,0) can then be made, whereupon JSnyd9OaJ we find YS(20) = ("- U, - 2V.,) 2 _ (v _ - - 2u.,)

(ncglccting multiplicities):

It is easy to show that these five invariant constraints
(02U)2  1(20)_ [07 ( 0 0 09 E 010 (D 011 a (28) are linearly independent. It is also easy to show that pre-

cisely two linear combinations of these invariants are de-
(24 D 2s C) 26 a) 27 D 28] U [42 (D 43J a 6 coupled. J-2o) = g(20) is manifestly so, and so is the linear

where (with 0- 0., - 01,1 and 0- - 20.O) combination

07 ~ (20) = (V2U)2 + (V 2v) 2  g(20) -U
2  u2 + {U _I { V.

0584 u , 1
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It is clear that both of these cunstraints are positive defi- generalization of the results of (Brad83] and [Grin18l], who
nite. We note that 9(20) is just the smoothness constraint also gave completeness proofs for smoothness constraints

used by Anandan and Weiss [Anan85] for computing op- of this type, but for the more restricted case of "rotational

tical flow. We note also that the decoupled constraints of symmetry" Our method is, we believe, more direct than

type (2, 0), 9g2 °) and .2o), are related to those of type (0, 2) that of the aforementioned authors. We remark also that

(cf. the discussion following equation (37), as was remarked J I has been called by Grimson [Grim8l] the "squared

upon in Section 3.1. Lagrangian," and that the (positive definite) linear combi-
natiou

In summary, then, there are 5 scalar smoothness con-

straints of type (2,0). The two decoupled ones are: I v(02) *. 2)] 121. 2)
j[ 2) ( 2,,+ 212 Vj2

gQ2o) _ (uz + uY,) 2 + (vx + vz,) 2  has been called by hini the "quadratic variation." As is well

g(2o) [(u - u) 2 +) 2 +-4v-] known, the quantity .F(02 ) y(o 2) is a total derivative (the
divergence of a vector).

and the Lhree coupled ones can be taken to be:
20) - - % _ + V + 4 Invariant Smooth-

+2u :(vx. + v.) + 2v,(u,. + u..) ness Constraints of Type (1, 1)
v.(20) (2 (u0 ( - tyy)vlz - (Vxr - vyy)u.-v and (1, 2)

1(2o)2 t , (u,,, + u~) - ,(v 4- vz,) + Now that we have found the direct sum decompositions
2 4of the portion of each smoothness constraint of type (p, q)

+UYv W - UXv,:. which depends only on the optical flow, or only on the

image intensity, it is a simple matter to find the invariant

3.3 The Decomposition of 1(0,1) and 1(0.2) constraints for arbitrary p and q. We limit ourselves in this
section to the cases (p,q) = (1, 1), (1,2).

We will also need the direct sum decomposition of quan- Before proceeding, we note that some of the invariants
tities quadratic in I" and 2 "*d derivatives of the grey-level of type (p,q) can be written down immediately. Namely,
intensity function I. We find that the product of an invariant of type (p,0) and one of type

(0, q) is clearly an invariant of type (p, q). We shall call
(81)2 012 @ 29 (36) such invariants "composite invariants of type (p, q)." Since

(021)2 Oj3 (D 014 ED 21o (D 44, (37) there are 4 invariants of type (J, 0), 2 of type (2, 0), 1 of
type (0, ), and 2 of type (0,2), it follows that there are

where 4 x I = 4 composite invariants of type (1, 1), 4 x 2 = 8 of

0 type (1,2), 2 x I = 2 of type (2, 1), and 2 x 2 = 4 of type
0 1 , VI" -= y(Oi ) (38) (2,2). We will see this explicitly in the remainder of this
01 " (V 2 1)2 =

(o2) (39) Section and in Section 5

0- ,) 2  (40)
(01 1-I + (40) 4.1 Invariant Smoothness Constraints of

29 ,. KJ) 2 , ' Type (1,1)

21o O (v 21) - K00 - Iz , (42) These smoothness
\ 21.JT constraints are quadratic in 1" derivatives of the optical

( (,( 3- 41) flow and of the image intensity function:

4 - 4( 1.. - Iy)I .  (0.UrObUo)OIOdI , (OU) 2 (0I)2  (44)

We note that in finding these direct sum decompositions we From (23) and (36). we have that (44) transform.s like the
have also found all the invariant smoothness c6nstraints of direct product representation
types (0, 1) and (C, 2). Namely, the smoothness constraint ( 60

of type (0, 1) is just the single quantity Flo') defined in OaUr ObU, OIOd- I ( ,) ) 2(23 4 ® (O12)

(38), whereas the smoothness constraints of type (0, 2) are i= 2

two in number: .f0 2 ) and 1-i°2), defined in (39) and (40), Iere, we have defined
respectively. These constraints are maifestly positive def-
inite, and hence are suitable for "performance functions" .. i = in, a . .
for surface interpolation. Our results therefore constitute a
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We are only interested in the terms in the direct sum de- which are invariant. From (23) and (37) we have that a
composition that transform like 0. These can arise only quantity of the form (45) will transform under ISO(2) like
from the terms of the form m 0 m in the above expression. the direct product
Thus:

OUtObU.OI8dI E (o0 o,2) ( (22029) a (2a 029) 1
We see imn ,diately that there are 4 x 2 = 8 "composite"
invarian , x 2 = 4 invariants coming from the two O's in

where {O.T.} represents the terms which cannot give rise to each of the two 2&2"s, and 2x 1 = 2 invariants coming from
scalars. We then find the direct sum decomposition of each the two O's in the 41 044, making a total of 8 + 4 + 2 = 14

of these double products, and identify the resulting scalars. invariants of type (1,2). These can be easily constructed
The result is the eight invariant smoothness constraints of to yield:
type (1,1): .02) _ -1o)170 2

) = (u2 .- v) 2 (I. + JI)2

) = 1o).o) 2 V1(u 2 + )2  = , = (, ,)2 [(1. - I,)' + 41.2]

-(i,) = JW ,o11 ) - 1iV12(u. + V, )(u1 - V.) ',(12) =- 2,(o)jo(2 ) = (u. + V, )(u, - v.)(I.. + IVm)2

, = 11) = 01) -Fio) = IV11(U , - V")2  12) = I) 1O2) = (U. + vy)(u, - V.)[(. - ) + 41.2]

-11) = jo0).4,o0)= iV112(uy + V,)2 + (uz - vY)2  .(12) _ .10)- A 02 ) = (u , - V)
2(I/= + J")2

A(1") = (u. + v , )[(u. - vy)(. - I ) + (uy + v.)(21.1y)] y(
1 2 ) = = (i - vF)2 [(122 -/I,)2 + 41.2y]

-F(11) = (u. + v,)(u , + v.)(12 - 12) + (v1, - u.)(21.Iy)] 12 ) -y(1o)jy(o
2 ) = [(u. _ v) 2 + (t , + Z)2] (I.. + '. )2

A,) = (u, - v.)[(u. - v ,)(4 - I,) + (uy + v.)(21.Ij,)] p12) _ y(1O).( 2) =[(U._ v) 2 + (u, + v.)21 [(i._ )+

.
" ) = (u - v.)1(u , + v.)( - 1Y) + (, - u.)(21.4f) 2) (u. + vy, )[(u. - v, )(1 2 - Iy,) + (u , + v.)(21iV2

where the JP0) are the invariant constraints of type (1,0). y 2) (u. + v1)[(uy + v.)(12 - 121) - (u., - v ,)(2l 21 V2l)]

It is easy to check that the eight invariants listed above C1 2 (12) , - v2)[(u2 - v1 )(I 2 - I ) + (i 1 + vz)(2: 1 V2I)]
are, in fact, linearly independent. One can further show

that there are exactly ihree independent linear combina- F 2
12 (uy - v.)[(u , + v)(I.2 -n2 - (u. - vy)(212, V2]

tions of these eight invariants which are decoupled con- p12)

straints (of type (1, 1)): A3 -((U.-_v)2-(_ +V.)2)((I.. _ )2-41,2)+

1) + 11) 1+ _,) + (2(u. - vy)(u. + v.)) (4I.(1..- Iy))

g = J1 2( + u + + v~ ViFis ~ 12) ~ - 12 - 4T) (12 - v1,)(u, + v.2 )) -

gil) - 11) _ (U.2 + V.2 _ U2 2~(I 2 ) + -(4I.y((1.. - I,,.)) ((u, - v V)2 _ (it1 + V.)2)_

_ V2)(1. _ )

(uuy + v=vy)(41I1,,) One can show that all fourteen of these are linearly inde-

= + -= (u- V _ Uv 2 _ v2)(-2l.Iy) + pendent. Further, one can show that there are exactly four

ur-2)) Ylinear combinations of the ,( 2) which are decoupled:(Uuy + ,,.,,)(2(1. - j)),

These are related to the two decoupled constraints of type q(1
2 ) =  [ (12) + ,S

(12) + y7(1
2)] = r--._S[V21]2

(1, 1) defined in [Snyd89] (but due to Nagel and Enkelmaun 1

(Nage86l (see also [Nage83, Nage871). See [Snyd90aj for the 2i' 2) V + + ,2)] = -[(1 - I 41.2 + ,4J]

details. - [F(12) + - u ,+vv,) +
- _j I, U ,V

4.2 IS0(2) invariant smoothness con- +21.Vy X(-u + V
straints of type (1,2) g(12) _ l[C(2) _-: 1(2)] = (12 _ )2+v2 + V )+

In this section, we consider smoothness constraints of type 4 21Y V21(uu , + v.v 1 )
(1, 2), i.e., combinations of thie form

The relation between these decoupled invariants and
(OaUobU,)O O trOnI (45) the two positive definite ones found in [Snyd89] (originally
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proposed by Nagel and Enkelmann [Nage86]) is given in [Grim8l] W. E. L. Grimsoa, From Images to Surfaces: A Com-
[Snyd9Oa]. putational Study of the Human Early Visual System,

MIT Press, Cambridge, Mass. (1981).

of Type ( 1) aIIorn8l B. K. P. Horn and B. G. Schunck, "Determining Op-
5 Invariants oe (2, 1 and tical Flow," Art. Intell. 23, 1?5-2G3 (1981).

(2,2) [Murn38] F. D. Murnaghan, The Theory of Group Representa-
tions, Dover, NY, NY (1938).

As far as we are aware, smoothness constraints quadratic [Nage83] H.-IH. Nagel, "Constraints for the Estimation of Dis-
in the 2nd derivative of optical flow have been considercd placement Vector Fields from Iaage Sequences," Proc.
only by Anandan and Weiss [Anan85], who used a decou- IJCAI83, 945-951, Karlsruhe, W. Germany (1983).
pled constraint of type (2,0). Although there are proba- (Nage86] II.-H. Nagel and W. Enkelmann, "An Investigation
bly good reasons why such constraints have been neglected of Smoothness Constraints for the Estimation of Dis-
(they would probably be sensitive to small errors), this placement Vector Fields from Image Sequences," IEEE
may be an artifact of present algorithms. At any rate, Trans. Patt. An. Mach. Intell. PAMI-8, No. 5,565-593
in [Snyd90a] we show that there are 15 invariants of type (Sept. 1986).
(2,1), two of which are decoupled, and that there are 24 [Nage87] II.-H. Nagel, "On the Estimation of Optical Flow:
invariants of type (2,2), six of which are decoupled. The Relations between Different Approaches and Some New
interest in constraints of the latter type is that unlike the Results," Art. Intell. 33, 299-324 (1987).
other cases, there are two decoupled constraints which arenot products of lower-ranking invariants. These are given [Snyd89J M. A. Snyder, "On the Mathematical Foundations of

Smoothness Constraints for the Determination of Opti-by: cal Flow and for Surface Reconstruction," COINS Tech.

g22 = (I 1. 12' [U.2 _~ + 4IV 2 I [,21tl+ U Rep. 89-05, Univ. of Mass., Amherst (January 1989);
=+-4- also in Proc. of Workshop on Motion, Irvine, Calif.

(March 1989).
= 2- uU [Snydg0a] M. A. Snyder, "The Mathematical Foundations Of

Smoothness Constraints: The Case of Coupled Con-

6 Summary and Conclusions straints," COINS Tech. Rep. in preparation.

[Snydg0b] M. A. Snyder, "Closed-form Solutions for Smooth-
ness Constraints of Type (p, q) for Arbitrary p and q,"

We have used the representation theory of ISO(2) to give COINS Tech. Rep. in preparation.
a complete list of all possible ISO(2)-invariant smoothness
constzaints which are quadratic in pth derivatives of the op-
tical flow, and in qth derivatives of the grey-level intensity,
for p, q < 2. We also found all the possible smoothness
constraints for surface interpolation which were quadratic
in I" or 2nd .In [Snyd9Oa] this is extended to constraints of
type (0, 3) and (0, 4). In the sequel to this work [Snyd90b],
we use the complex formulation of the representation the-
ory of SO(2) to find explicit formulas for the performance
function quadratic in nth derivatives, for arbitrary n. We
find that the number of such invariants is given by [n/ 2] + 1
(where [z] is the integer part of z), as well as their explicit
form.
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A PHOTOMETRIC INVARIANT AND SHAPE
CONSTRAINTS AT PARABOLIC POINTS

Lawrence B. Wolff'
Computer Science Department

Columbia University
New York, N.Y. 10027

ABSTRACT

Recent research has revealed the invariance of the direction of im- Interest in shading analysis at parabolic points on smooth
age curves of equal reflected radiance (i.e., isophotes) from smooth surfaces began with the paper by [Koenderink and van Doom
surfaces at parabolic points with respect to all possible smooth 1980]. They showed that the local direction of lines of equal re-
reflectance maps assuming a fixed vantage point. This has en- flected radiance (i.e., isophotes) at parabolic points on Lambertian
abled the relatively easy detection of parabolic points in images surfaces are invariant to varying illumination conditions, viewed
from shading analysis. For smooth surfaces possessing curves or from a fixed vantage point. Later the paper by [Blake, Zisser-
2-D regions consisting of parabolic points, the identification of man and Knowles 1985] suggests a clever way of showing that
these curves and regions provides important information about this photometric invariance property of the direction of isopbotes
the structure of the surface. This paper enriches this photometric at parabolic points holds with respect to all possible smooth re-
invariant for isophotes by using differential geometry techniques flectance maps (i.e., continuously differentiable reflectance func-
to show that the invariant direction of isophotes in the image tions) as functions of surface orientation. From the image irradi-
plane for pixels corresponding to parabolic points has significant ance equation
geometric meaning; namely it is the projection of the principal di-
rection with curvature zero. Therefore we demonstrate that this
photometric invariant at parabolic points is directly related to
the geometry of the surface at such points. Furthermore, we care- they considered the resulting matrix equation in image coordi-
fully discuss under which physical imaging conditions this pho- nates (x, y) and in gradient coordinates (p, q), from [Woodham
tometric invariance property breaks down and when it is best 1978]:
approximated, generalizing from orthographic images to perspec-
tive images. We present experimental evidence of this photomet- (I4) (Op/O Oq/Ox )( R
ric invariance and discuss applications to constraints on surface O = p/Oy Oq/Oy Rq (1
orientation and curvature at parabolic points. where subscripting means partial differentiation. The 2x2 matrix

Topic Area: 3-D vision, shape from shading, differential ge- of partial derivatives is the transpose of the Jacobian transforma-
ometry tion between image coordinates and gradient coordinates. The

1 INTRODUCTION

Parabolic points on smooth surfaces are points which possess
one principal curvature of value zero. Planar points are trivially
parabolic, but the subject matter discussed in this paper is not
applicable to these points due to lack of shading information. A
parabolic line on a smooth surface is a curve whose locus of points
are all parabolic. As pointed out in [Koenderink and van Doorn
1980], a parabolic line on a smooth surface cleanly divides elliptic , WE

and hyperbolic surface regions. Elliptic points have principal cur-
vatures which are both positive, and hyperbolic points have princi-
pal curvatures with opposite sign. The identification of parabolic
lines on a smooth surface therefore gives a structural cue desig-
nating the boundary between "saddie-iike" hyperboiic points and
points which are completely concave or convex. Two dimensional
neighborhoods of parabolic points on a smooth surface are neigh-
borhoods which resemble exactly the surface structure of certain
ruled surfaces including the cylinder and the cone Figure I shows M" s 0Acc50.IJJJxh
some examples of parabolic lines on various surfaces. PAPABOLC LMAE oASHo

'This work was supported in part by ARPA grant #N00039-84-C-0165
and NSF grant IRI-88.00370. This work was supported in part by an IBM Figure 1:
Graduate Fellowship Award.
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Jacobian transformation between image coordinates and gradi- elliptical, clover-leafed, etc...) , all points are parabolic. Cross
ent coordinates is the viewer centered curvature matrix relating sections of these surfaces are principal lines of non-zero curva-
the rate of change of the surface normal, expressed in gradient ture. Isophotes give cues for the principal direction of zero curva-
coordinates, to a corresponding displacement vector in the im- ture, and at intersections of isophotes with cross sections surface
age coordinate system. When an image coordinate displacement orientation is constrained by observing how the orthogonality of
vector is multiplied by the viewer centered curvature matrix, the principal directions of curvature is skewed. In addition a "net" of
resulting vector is the rate of change of the surface normal along rulings is provided by the directionality of isophotes along these
this image direction, expressed in gradient coordinates. In the cross section lines, which is useful to algorithms trying to recover
approximation of local orthographic imaging (i.e., rays of projec- the orientation of the axis of cylinders with arbitrary cross section
tion change very little between adjacent pixels) the 2;.2 matrix of [Ulupinar and Nevatia 1988]. This is only one basic application
partial derivatives in equation 1 becomes symmetric as the object of this photometric invariant for shape determination. Hopefully
surface can be locally parameterized as a (possibly foreshortened) other possible applications will arise in tile future.
height function over image coordinates. Under such conditions There has been much research done on determining shape
this 2x2 matrix becomes the viewer centered curvature matrix. from reflectance maps in monocular views. Shape from shad-

[Blake Zisserman and Knowles 1985] point out that the diag- ing techniques [Horn 1970, Pentland 1984, Cernuschi-Frias and
onalization of the viewer centered curvature matrix at parabolic Cooper 1984, Lee and Rosenfeld 1985] utilize shading of diffuse re-
points is a scalar multiple of: flectance. Shape from specularity [Thrift and Lee 1983, Babu Lee

and Rosenfeld 1985, Healey and Binford 1987, Buchanan 1987,
0 0 Brelstaff 1989] utilize the nature of specular reflection. All these

methods depend upon some assumption about a reflectance map
in some transformed image coordinate system. Since the image and/or imaging geometry. Even though the geometric implica-
intensity gradient is related to the reflectance function gradient tions of the photometric invariant presented in this paper is ap-
according to equation 1, the image intensity gradient will he par- plicable only to parabolic points, the beauty is that whatever
allel to the eigenvector direction, with non-zero eigenvalue, in the information is learned from such a photometric cue, is obtained
image plane for all smooth reflectance maps. essentially for free, assuming one knows where parabolic points

In section 2, we present a more formal derivation of the di- are to start with. This paper does not concern itself with having
rectional invariance of the image intensity gradient at parabolic to find parabolic points, and assumes that these are given. There
points for smooth reflectance maps as a function of surface orien- are already some existing methods that do consider the problem of
tation. In section 3 we generalize to smooth reflectance maps as finding parabolic points [Koenderink and van Doom 1980, Blake
a function of an arbitrary number of physical parameters. This Zisserman and Knowles 1985, Ponce Chelberg and Mann 1988].
formality allows us to carefully analyze the physical imaging con- Perhaps this paper helps motivate the importance of developing
ditions under which the directional invariance of the image inten- even better methods to discern parabolic points.
sity gradient at parabolic points breaks down. Even though such a DERIVATION OF THE IMAGE
photometric invariance theoretical breaks down under some com-
mon circumstances, we show under which practical conditions it INTENSITY GRADIENT
is at least well approximated. We also consider edges of specu- AT PARABOLIC POINTS
larities to be isophotes, and therefore apply the same directional
invariance to these edges passing through parabolic points.

In section 4 we show that image isophotes at parabolic points We derive an image coordinate representation of the image inten-
are parallel to the projection of the principal direction of zero sity gradient at parabolic points which directly demonstrates its
curvature, under conditions of local orthographic imaging. We directional invariance with respect to all smooth reflectance maps,
depend on the theoretical development in section 2. The basic R(p,q), as a function of surface orientation gradient coordinates
idea is that the tangent direction to isophote curves at parabolic p and q. In the next section we generalize to reflectance maps as
points are shown to be a zero of the viewer centered curvature functions of an arbitrary set of physical parameters.
matrix. That is, the viewer centered curvature matrix multiplied Consider a non-singular linear transformation M of image co-
by this tangent direction is the zero vector. We prove a theorem ordinates:
stating that under orthographic imaging, a direction in the image(x'\ x
plane is a zero of the viewer centered curvature matrix if and only y', = M x
if it is the projection of the principal direction of zero curvature. (
This involves relating the measure of surface curvature provided The resulting transformation on the gradient of the image inten-
by the viewer centered curvature matrix to the measure of surface sity function, I, is as follows 2:
curvature provided by the differential of the Gauss map (which we
term in this paper the surface ccntercd curvature matrix). Tris Mt is =
theorem easily extends to local orthographic imaging. I ) I

In section 5 we show experimental evidence that the direction where t implies matrix transpose, and as usual subscripting im-
of isophotes at parabolic points provides a good cue for the pro-
jected principal direction of zero curvature. We then show how 2The duality of the transformations on image coordinates and image gra-
surface orientation can be constrained at parabolic points with dient vectors with respect to coordinate transformations is common in tensor
the help of this cue. On straight cylinders with arbitrary smooth analysis. In this case, image coordinates are said to transform contravariantfy
cross section (e.g., a cylinder with cross section being circular, while image intensity gradients are said to transform covarnltly
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plies partial differentiation. Using equation 1 we get:

Comparing equation 4 with equation 2, the direction of the image

(t- (9/o \qa t 1 R intensity gradient will be invariant along the x' axis for all smooth
Op/Oy Oq/Oxy) Mt-t R . reflectance maps, R, unless perturbed by a non-zero second com-
O y OYRq ponent of the right most term in equation 4. Hence the directional

invariance of the image intensity gradient is true if and only if theAssuming local orthographic projection the above matrix of Op/tOy' are zero for each pi.
partial derivatives is symmetric and therefore equivalent to the
viewer centered curvature matrix. At a parabolic point there ex- For most practical purposes we would hope that there would
ists an image coordinate displacement vector along which the rate be a number of parabolic points on an imaged object, in fact we
of change of the surface normal is zero. i ne viewe Lameu Lui- would hope to find parabolic lines or 2-D parabolic regions. The
vature matrix must therefore have a zero eigenvalue. Hence we transformation of image coordinates to diagonalize the 2x2 ma-
can select a non-singular image coordinate transformation, M, trix of partial derivatives at each parabolic point will in general
such that a similarity transformation with respect to M t1 of the be different. Therefore the minimal necessity for the invariance of
viewer centered curvature matrix produces: the direction of the image intensity gradient to hold for EVERY

parabolic point is that the Opl/Oy' are zero for each y' axis re-
I., ( A 0 )Mt- R = \(mliRp + m12Rq) spective of each parabolic point. For simplicity, we can assume a
I = 0 0 Rq 0 ) slightly stronger (but less physically contrived) constraint on the

(2) physical parameters, pi, that simply Op, /x and Opi/Oy are zero
where for each pi. That is, image gradient directionality is invariant at

Mt-1 mil m12 parabolic points if the right most term of equation 3 is the zero

M21 in 22 Jvector.
Siikce we are diagonalizing a symmetric matrix (i.e., the viewer For perspective images the precise invariance of the image in-
centered curvature matrix), Mt', is in fact a2-D rotation matrix. tensity gradient at parabolic points is violated because in such a

case the reflectance map, R, is necessarily dependent upon image
Clearly, for all smooth reflectance maps, R(p,q), the image coordinates x and y. For instance, given a flat surface in a per-

intensity gradient is always parallel to the x' image coordinate spective view the relative orientation of this surface varies from
axis. pixel to pixel as rays of projection onto these pixels are nonpar-

allel. The constant orientation (po,qo) exists with respect to one
ray of projection (e.g., with respect to the optic axis). Hence the

3 PHYSICAL CONDITIONS AND PRAC- reflectance function will vary as the relative surface orientation
TICAL CONSIDERATIONS varies from pixel to pixel. Also, according to [Horn and Sjoberg

1979] for pure pinhole perspective projection,
We detail in this section the ideal physical conditions under which
the photometric invariant at parabolic points discussed in this pa- I oc (cosa)4R
per holds. We also discuss what practical considerations are most
important for the photometric invariant to be best approximated. where a is the angle between the ray of projection and the optic

axis. However this second mal-effect of perspective projection can
We can assume that the reflectance function, R, is a function be avoided by appropriately correcting image irradiance values

of an arbitrary number of physical parameters. Suppose then that according to which pixel they correspond too.

From our analysis here the invariance of the direction of isophotes
I(x,y) = R(p,q,pup2,...,p, ...) at parabolic points holds ideally under physical conditions of or-

where p, can be any physical parameter (e.g., surface albedo, sur- thographic projection, and no varying surface parameters, such as
face roughness, incident light source orientation, image coordi- albedo or roughness, in the local vicinity of the parabolic point.
nates, etc...). Then Also, lighting elements must ideally be at a large distance from

the object with respect to the size of the object in the field of the
S p-q'. , image. Otherwise incident light source orientation can vary across

= the image plane. This means that the direction of isophotes at
I 11p111 Oq/Oy 1 ? / ) + parabolic points can be sensitive to mutual illumination effects.

(3) The invariance of the image intensity gradient at parabolicTo be general, we do not necessarily assume local orthographic points is closely approximated for practical purposes in most per-
imaging so that the matrix of partial derivatives in equation 3 may pective images wih a er a s f prac ti el r esoin it hbe the non-symmetric transpose of the viewer centered curvature spete imgswith cameras of sufficient pixel resolution. With

a small relative variation in the orientation of rays of projectionmatrix. However a 2x2 matrix and its transpose have the same
characteristc equation [Hildebrand 1965] so that at a parabolic between a ant pixels, the image intensity gradient at parabolic
point the transpose of the viewer centered curvature matrix has a points is invariant up to a good approximation. With all other
zero eigenvalue. Therefore we can diagonalize the 2x2 matrix of physical parameters fixed across the image plane except possiblyi dfor surface orientation p, q accounted for in the 2x2 matrix term,partial derivatives in equation 3 at a parabolic point as follows:
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consider the right most term of equation 4 for a perspective view: passing through parabolic points will still be invariant, as long
/ \ I'as the intensities within the specularity are large relative to the

Op'0P/Ox'Rp + OqrOP/OxRq (5) albedo/material diffuse intensity changes.
R1, aprpOIy tRp + iOqrop/OyIRq )

where as usual subscripting implies partial differentiation. The
superscript rop for p and q refers to orientation of the correspond- 4 ISOPHOTES AT PARABOLIC POINTS
ing ray of projection, so the respective partial derivatives quantify
how the orientations of the rays of projection locally vary from 4.1 A THEOREM ABOUT CURVATURE MIATRI-
pixel to pixel in a perspective view (with respect to x' - y' coordi- CES
nates). Taking note of equations 2 and 4, the smaller in magnitude
OpP/Oy ' is with respect to Am1i, and the smaller in magnitude Our main motivation for the matheinatial development in this
8q10P/8y' is with respect to Am12, the smaller the perturbation subsection is to prove a theorem which is essential to establishing
of the direction of the image intensity gradient for different re- the relationship between the direction of isophotes in the image
flectance maps. This quantifies how close physical imaging con- plane at parabolic points and intrinsic surface geometry. We use
ditions should approximate local orthographic imaging in order the same style of notation as in [do Carmo 1976]. When we refer to
for the direction of image gradients at parabolic points to be use- a surface, S, the notation S(x, y) implies a particular parameteri-
ful. To give an idea about the size of the partial derivatives in zation of that surface with respect to two dimensional coordinates
a fairly wide perspective view, consider the rays of projection for x and y. Referring to a surface, S(x, y), which is parameterized
a 30 degree half-cone angle field of view taken with a 512x512 by height over the coordinates, (X, y), implies there exists a twice
pixel resolution camera. The size of the partial derivatives are differentiable height function f(x, y) such that:
approximately 1/443, which is very small. With all other phys-
ical parameters being constant at a parabolic point, equation 4 S(x,y) = (x, y, f(x,y)).
and equation 2 become identical in the limit as the partial deriva-
tives of the orientation of rays of projection go to zero towards Note for the height parameterization, at occluding points where
local orthographic projection. the surface normal is orthogonal to projection onto the image

The same analysis applies to distant light source approxima- plane, the tangent plane appears collapsed to a line and does not

tion where the partial derivatives of surface orientation in equa- exist for such a parameterization. Therefore our discussion ex-

tion 5 now refer to the rate of change of incident orientation of the cludes occluding points.

light source between adjacent pixels. In both cases of local ortho- The theorem that is proved is as follows:
graphic approximation and distant light source approximation, it
is clear that the higher the non-zero viewer centered curvature Theorem 1 Consider a surface, S(x,y), parameterized by height
eigenvalue, A, the better the invariance of the direction of the over the image coordinates (x, y). At a point on the surface, S, a
isophote at the corresponding parabolic point, direction in the tangent plane at this point is a principal direction

The photometric invariant at parabolic points can be practi- of principal curvature zero :f and only if the orthographic projec-
cally applied using edges of specularities that pass through these tion of this direction onto the zmagc plane when multiplied by the
points. Within a specularity, intensity variations can be quite viewer centered curvature matrix produces the zero vector.
large in magnitude due to small surface orientation changes and
non-uniformities in the light source. Isolating isophotes within This theorem establishes an equivalence between two mea-
a specularity is not practical. llowever specularities have well sures of curvature of a smooth surface for a special direction at
defined edges at where diffuse reflecting points usually exponen- a parabolic point, namely the principal direction possessing zero
tially increase in intensity (e.g., the Torrance-Sparrow reflectance curvature. We have encountered in the introduction the viewer
model [Torrance and Sparrow 1967]) into the specularity region. centered curvature matrix which measures the rate of change of
Under the assumption that the specularity can be completely seg- the surface normal at a point with respect to an image coordinate
mented using a single intensity threshold (i.e., the image intensi- direction. Principal directions at a point on a surface and their
ties composing the specularity are all above the surrounding dif- respective curvatures are determined from another type of curva-
fuse reflecting intensities), the image curve running along the edge ture matrix which measures how the mui face normal is changing
of the specularity where it begins to dominate over the diffuse with respect to a local coordinate system defined on the tangent
component approximates very closely the isophote at that con- plane at the surface point. We will call this the surface centered
stant intensity threshold. Ience the direction of specular edges at curvature matrix. Looking at figure 2, the rate of change of the
parabolic points, under the ideal physical conditions stated above surface normal at a point with respect to a displacement by a
(i.e., orthographic image projection, and distant light source), is vector v, in the tangent plane coordinate system is given by the
invariant to how the object is situated with respect to the light surface centered curvature matrix mulliplied by this vector. This
s ource. rate of change of the surface normnal is exprmsed in tangent plane

The biggest perturbation to a diffuse image intensity gradient coordinates. The above theorem states that the measure of the
at parabolic points is albedo and material variations that might change of the surface normal by the surface centered curvature

occur at these points. Unless these variations are minor, the ap- matrix and the viewer centered curvature matrix are equivalently

plication of the photometric invariant discussed in this paper is zero for t.,,gent plane and image plane displacemerts correspond-

not practical for diffuse reflection. Ilowever, in the case of large ing to the principal direction of zero curvature.

reflected diffuse intensity changes due Iv object albedo and/or
material changes, the direction of imaged edges of specularities
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N4.2 THE DIRECTION OF ISOPHOTES AT PARABOLIC

POINTS

We now prove the theorem that is central to this paper:

Theorem 2 Assuming local orthographic projection, the tangent
direction of an image isophote curve at a parabolic point is always
parallel to the projection of the principal direction of zero curva-

AGE ture. This assumes that except for surface orientation, no other
physical parameter varies at a parabolic point.

Vim
The tangent direction of an image isophote curve is perpen-

dicular to the image gradient. Since the theorem assumes lo-
cal orthographic imaging, the viewer centered curvature matrix is

Figure 2: symmetric and therefore has orthogonal eigenvectors. Looking at
equation 2, the tangent direction of an isophote curve is therefore

What is termed here as the surface centered curvature matrix parallel to the y' axis which has eigenvalue zero as:
is more standardly known as the differential of the Gauss map
(see [do Carmo 1976] pp.13 6- 140 or [liesl and Jain 1985]). The A I) 1) 0
principal directions are defined as the eigenvectors in the tangent 0 0 1 0
plane of the surface centered curvature matrix and the principat Hence from theorem 1, this direction must be the rojection of
curvatures are the respective eigenvalues. Therefore, by defini- Henci rom to of zero dircti e t
tion, the principal direction with curvature zero is the tangent the principal direction of zero curvatnie.
plane direction for which the surface centered curvature matrix 5 EXPERIMENTATION AND APPLICA-
multiplies to zero.

Observing figure 2, with respect to moving along the surface
S from point w, a displacement by the vector vtp in the tangent
plane is equivalent in the parameterized sense to a displacement
by the vector vim in the image plane. That is, S is parameter-
ized by height and vim is the orthographic projection of vtp. The We discuss how theorem 2 compares with experimental determi-
corresponding rate of change of the surface normal is expressed nation of isophote curves on different objects. All the experimen-
as a vector in the tang..,nt plane at w by multiplying the surface tat was done on real 0)jects.
centered curvature matrix by vtp. The same rate of change of the Figure 3a shows different isophotes, depicted in white, on the
surface normal is expressed as a vector in gradient coordinates by image of a glass bottle sprayed withI diffuse white paint. The
multiplying the viewer centered curvature matrix by vm. Clearly bottle is illuminated with a circular light source, with diameter
if the rate of change of the surface normal is zero, this rate of about 1/4 the length of the bottle, and placed about 4 bottle
change must be represented simultaneously by the zero vector in lengths away. The surface of the bottle consists of three 2-D
both tangent plane and gradient coordinates. regions of parabolic pointb. Starting from the bottom, the bottle

of his t e is consists of (i) a cylindrical region, and then (ii) a cone regionA more formal quantitative proof othstheorem is given in

the appendix. It involves a bit more background in differential with significant cone half-angle, and then towards the top, (iii) a

geometry, but the proof in the appendix shows the precise quan- narrower cone region. In figure 3a the isophotes clearly appear to
titative relationship between the surface centered and viewer cen- follow along the principal direction of curvature zero in each of
tered curvature matrices, as well as the relationship between a these regions. At the very bottom of the bottle there is a tapering

local tangent plane coordinate system and gradient coordinates. inwrd which bends the isophote curves towards the horizontal.

These are useful geometric relationships in their own right. Where the approximation to a distant light source becomes
Theorem I easily extends to a surface, S, which is parameter- a problem for theorem 2, is for isophotes close to the specular
heoe 1y t easiplyne extresp to aura, o, w cin pame highlight region on the lower cylindrical portion of the bottle.

ized by the image plane with respect to rays of projection at some Ideally, for a light source placed far away from the bottle, the

constant angle between 00 and 900 to the image plane (i.e., local Ig

orthographic projection). Just consider the vector v,m to be the highlight region should appear as a linear stripe for a cylinder or
cone region along points of equal surface orientation. This is true

projection of vtp aioni thieu rays. to good approximation for the faint highlight region near the top
of the bottle where the non-zero curvature is high. However, for
the cylindrical portion of the bottle wheic the non zero curvature
is lower the highlight appears more elliptical due to the finite
circular extent of the light source. Recall the discussion in section
3 regarding how the approximation to invariance of isophotes at
parabolic points gets better for higher non-zero viewer centered
curvature A.
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Figure 3:

Figure 4:

As depicted in figure 3b, isophutes become elliptically shaped is very good relative to its given finite distance of only about 2 feet
very close to this highlight region. Figure 31 shows how well from the objects. The linear specular highlights align themselves
behaved isophotes, with respect to theorem 2, degenerate into very well along the direction of zero curvature, and serve as a
tightly closed ellipses as they approach closer to the highlight on good cue for constraining their cylindrical orientation in 3-space.
the cylindrical portion of the bottle. At least the major axis of the Note the intensity threshold segmentation image on the right.
ellipses is aligned with the principal direction of zero curvature. Figure 5 shows the edge of a specular highlight on a torus for

Figure 4| shows a perspective view of a number of cylindrical twodifrerent orientations in 3-space, defining its parabolic line (in
objects in various orientations illuminated by the same circular this case a circular ring). The tangent direction to the parabolic
light, source as in figures 3a and 3b. The non-zero principal curva- line on a torus is the direction of zero curvature giving experi-
ture is large enough so that the distant light source approximation mental evidence of theorem 2, in this case for a speculai isophote.
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Figure 5:

Figure 6:

Figure 6 shows diffuse ibophotes onl a torus as they approach thle Figure 7 shows specularities produced from linear fluorescent
ring of parabolic puints oin a torus. True left image shows for a lighting onl a curved glass bottle. In spite of large albedo vari-
giveni gray value two dlisjoint isojphote curses. As the gray value is ations due to dlifferent intensities being transmitted through the
increased, thle disjolint isupliote. -- re uImrgeu otl~t the tup half partlally transparenit glass, thc highlight .ur'.eb dulinuate thue di
of each disjoint curve form the parabolic ring on top) of the torus rection of zero curvature within p~arabolic regions of the bottle
(see right image of figure 6). Hence the tangent to the diffuse which are cone shaped. Observe how some of the highlight curves
isophlote curves at the p~arabolic points on the torus is parallel to get perturbed at non-lparabolic points where tile bottle bulges
thle direction of zero curvature. outward.
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Figure 7:

5.2 CONSTRAINTS ON SURFACE ORIENTATION

With respect to the tangent plane at a point on a smooth surface,
principal directions of curvature are orthogonal. If the projection
of the principal directions of curvature onto the image plane are
known, then a surface orientation constraint is produced from the
skewed symmetry of these orthogonal directions. The direction of (o~j
an isophote (or equivalently the direction of the image intensity
gradient) serves as a cue for finding one of these projected princi-
pal directions of curvature at parabolic points. Such a cue can be
useful in recovering the shape of cylinders with arbitrary smooth
cross section.

[Kanade 1981] was the first to apply skewed symmetry con. \l ,/"

straints to understanding polygonal line drawings. Given a pair 3 \of directions depicted in figure 8a at ar Sles ce and P relative to the,/ W'

horizontal, if in 3-D space these directions are orthogonal, then
[Kanade 1981] derives the following orientation constraint on the
normal to the plane within which these directions lie relative to
the image plane:

cos(cr - P) + (pcosca + qsina)(pcos/p + qsinfl) = 0. (6)

This constraint equation produces a hyperbola of solutions in gra-
dient coordinates depicted in figure 8b. (b)

On a cylinder with arbitrary smooth cross section, all points
are parabolic. From theorem 2 isophotes give a cue for the pro. Figure 8:

jected principal direction of zero curvature. The contour of the Consider generalizing to right linear straight homogeneoR
cross section gives a cue for the projected non-zero principal curva- generalized cylinders (e.g., cones with arbitrary smooth cross sec-
ture direction. Therefore equation 6 is applicable to the tangents tion), on which all points are also parabolic, but cross sectional
of intersecting cross section and isophote curves. If the reflectance contours are no longer necessarily lines of curvature. Isophotes
map, R(p, q), is known as a functioi. of surface orientation then serve as a cue for the direction of the meridians for such gener-
the image irradiance equation can further constrain surface orien- alized cylinders. Such a cue can help generate a "net" which is
tation to a discrete number of points, an array of intersecting cross section and meridian curves. Using

this "net" (Ulupinar and Nevatia 1988] derive 3-D orientation con-
straints for the axis of certain right linear straight homogeneous
generalized cylinders which have symmetric contour.
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On right straight homogeneous generalized cylinders (SHGCs) In fact it is the image gradient in the first place that gives us the
(i.e., cylinders with arbitrary smooth cross section that cai be ar- directional cue for zero curvature at parabolic points.
bitrarily scaled along a straight axis, see [Agin and Binfod 1973], Even though the 4 linear equations 7 and 8 have some depen-
[Shafer 1985), [Ponce Chelberg and Mann 1989)), theorem 2 is ap- dency upon each other, there is enough constraint information
plicable only at cross sections and meridians 3 which are parabolic to dete mine curvatures Op/Ox, Oq/Ox,Oq/Oy under certain con-
lines. [Ponce Chelberg and Mann 19891 show that parabolic points ditions. Together with the constraint equation 9 they determine
occur on occluding contour curves and cross section contour curves the equation
at inflection points of these curves, They then show a method for
determining the projection of the straight axis of SHGCs onto the a
image plane. Using these methods of [Ponce Chelberg and Mann T= p/x(Rp - aRq). (10)
1989], the paper by [Gross and Boult 1989] shows how to generate Clearly if surface orientation is known, as well as the reflectance
all visible cross sections and meridians along an SIIGC. This in-
cludes those cross sections and meridians that are parabolic lines map R(p,q). the quantity Op/ x a can be uniquely determined.
which necessarily connect between points of inflection on contours. quently determined.

What more can be learned about the 3-dimensional shape of If surface orientation is not known a priori, curvature can be
an SHGC by observing isophote cues for principal directions of determined up to a discrete set of solution points if the projection
zero curvature at points along these parabolic lines (assuming of the nor-zero principal direction of curvature is known onto the
these parabolic curves exist) ? Relatively little work has been image pne.-e icui n ection 5.2chow urfe orienttontImage plane. We discussed in section 5.2 how surface orientation
done on shape determination of SHGCs from principal directions in this case is constrained by the skew symmetry equation 6, and
of curvature, primarily because, in general, cross sectional and how together with the image irradiance equation surface orien-
meridian curves are rarely principal lines of curvature (see [Brady tation is determined up to a discrete set of points. Substituting
et al. 1985]). However this newly discovered geometric prop- these orientation measurements into equation 10 yields a discrete
erty of isophotes at parabolic points supplies more motivation to set of curvature measurements.
study shape determination of SHGCs from knowledge of certain
principal directions of curvature.

6 CONCLUSION
5.3 DETERMINING CURVATURE COMPONENTS

AT A PARABOLIC POINT In this paper we have caiefuiiy considered the invariance of the
direction of isophotes (equivalently the image intensity gradient)

We have already encountered 3 equations constraining surface at parabolic points on smooth surfaces with respect to all smooth
geometry from radiometric measurement, the image irradiance reflectance functionw. While other researchers have considered
equation using an image irradiance value: this photometric invariance property as a unique characteristic of

parabolic points that could lead to their identification on sr'ooth
I(x, y) = R(p, q) objects, we have considered this photometric invariance prope, .

in terms of how it relates to the geometry of surfaces at parabolicand equations 1 using the comnponents of the image gradient: points. Using rigorous methods we have shown that the invariant
direction of isophotes at parabolic points is the projection of the
principal dircction of zero curvature onto the image plane. We

I_ = I4,Op/Ox + RqOq/Ox ,y = ROq/Ox + Rq/Oqiy . (7) have gone beyond just considering the limited case of pure ortho-
giaphic projection, and have shown under what conditions thisHere we have assumed symnetry of the viewer centered curvature photometric invariance property breaks down and is best approx-

matrix so that Oq/Ox = &p/Dy. Determining the image direc- imated in perspective images, and for a nondistant light source.
tion, (a, b), of zero curvature at a parabolic point introduces twolinear equations: In addition to giving experimental evidence supporting ourclaim about how isiphotes are parallel to the direction of zero

( Op/Ox OqiOx \( a) ( 0 curvature at parabolic points, we suggest possible applications ofOq/Ox Oq/Ol x b = 0 (8) this geometric cue to determination of orientation and curvature/ bat parabolic points. The best advantage taken from this geomet-
At first it may appear that we have a chance at a discrete local ric cue is when constraint information can be obtained, knowing

solution, at parabolic points, tr. the shal.e from shading problem, absolutely nothing about the reflectance map. Time true power
in 5 variables; of a physical invariant is the information it gives under the most

generic conditions possible, in this case any type of smooth re-
p,q, p/Ox,mq/8X,Oq/Oy, fiectanuc aiap. Tliahips there are Other P"ysical •nariants await

lHowver theorem 2 tells us that the ratio of a and bare constrained to he discovered Ui lision.
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curves parameterized by lines of constant x or y. At a point, where
w, on the surface, consider the unique two intersecting parallels, all = fF - eG gF- fG

one parallel parameterized by an image line of constant x and EG- F 2' a EG- 2'
the other parallel parameterized by an image line of constant y.
Consider the tangent vectors S, and St at the point w. Since the a21  - eF - fE fF - gE

surface is a height parameterization, F2 ' F 2 '

where E, F, G are coefficients for the first fundamental form and
S(X , y) = (Z, y, f(x, y)), e, f, g are coefficients for the second fundamental form. The equa-

where f(x, y) is called the height function. Therefore tions of Weingarten can be easily derived for the height parame-
terization by computing the first and second fundamental forms
for this parameterization.

The first fundamental form ([do Carmo 1976] p.92 ) is com-

where we are using the gradient coordinates p and q defined by puted from the following inner products:

p = Of/Ox, q = OflOy.

The tangent vectors S, and S, at w form a local coordinate sys- E = (S..S.) 1+p', F = (SeSy) = pq,

tem. At image coordinates (xt,) lying orthographically be-
neath w, the local displacement in image coordinates (a, b) corre- G = (S,, Sy) = 1+q 2

sponds to the local displacement
The second fundamental form ([do Carmo 1976J p.141) is com-

aS_ + bSy = (a, b, ap + bq) puted from a set of inner products involving the rate change of
the surface normal, N. Using equation 12:

in local surface coordinates at point w. Therefore the relation-

ship between local image coordinates and local surface coordi-
nates with respect to corresponding image coordinate tangents e = (N., S = Op/Ox N - qlOx

with surface parallel tangents is quite simple; local image coordi- e1 + p2 + q2' f = (N., Sy) 1 + p 2 + q2'

nates (a,b) correspond to local surface coordinates (a,b), just as
long as it is kept in mind that these representations are with re- -_=____y)___

spect to image coordinate tangents and surface parallel tangents, 0 = (N', s_ = Oq/Oy
respectively. V1 + p2 + q2

The derivation of the surface centered curvature matrix in
The Gauss map with respect to the surface, 5, maps each [do Carmo 1976 p.155], using local surface coordinates, involves

point, w, onto the point on the unit sphere with local surface a useful decomposition of the surface centered curvature matrix
normal parallel to the normal at w on S. Using equations 11 the into the product of the following two matrices:
unit normal at point w is

N= SxS = ( p q -1 a12 a2) F G f g "

MY X S-11 11+ p2 +q 2 p/ + q2 ' + P2 +q 2  That is, the surface centered curvature matrix is the product of
(12) the inverse of the first fundamental form matrix, with the second

The differential of the Gauss map relates the rate of change of fundamental form matrix.
the surface normal at point w on the surface S with respect to
local vector displacements in the tangent plane at point w ([do For the height parameterization:
Carmo 1976] pp.135-137). The differential of the Gauss map can

be represented by a 2x2 matrix which multiplies vectors in the

tangent plane to produce the vector displacement of the local (E F'\ = 1 2  -pq)
surface normal parallel to the tangent plane. In this paper we term F G J 1+ p2+ q2  --pq 1+ p2

the differential of the Gauss map the surface centered curvature

matrix. The Gaussian curvature is the determinant of this matrix

and the principal directions are the respective eigenvectors. (e f ' ~ 1 (Op/Ox Oqltx

A representation of the 2x2 surface centered curvature matrix f g = /1+p 2 + q2  Oq/Ox Oq/O "

in local surface coordinates using surface parallel tangents, is given Note that the second fundamental form matrix is simply a scalar
by the equations of Wingarten (do Carmo 19761 pp.153-155). multiple of thc viewer centered curvature matrix in equation I.
For a general parameterization of a surface, the surface centered Hence,
curvature matrix in surface parallel tangent coordinates is all a2

all a12 02( a22

a/ 021 22

'\ 21 a22 ) 1 .( 1+ q2  -pq Op/Ox Oq/Ox
(I+ p2 + q2 ) 3/2  -pq I + p1 OqlOx Oq/Oy "

T
(13)
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The matrix T transforms the viewer centered curvature matrix
into the surface centered curvature matrix, under matrix multipli-
cation. The matrix T represents the transformation of gradient
coordinates into local tangent plane coordinates. T is negative
definite at non-occluding points since

DET(T) = (1 + p2 + q2 + 2p2 q2)
(1 +p2 +q 2 )31 2

Therefore a vector v gets multiplied to zero by the surface centered
curvature matrix if and only if the vector v gets multiplied to zero
by the viewer centered curvature matrix. Theorem 1 follows from
the discussion of the geometry in figure 2.
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Abstract Section 2 discusses the radiometry of image formation
in the presence of sharp discontinuities. The object-and-

A new model (called multi-component blurring, camera configuration used in this analysis is also adapted toor MCB) to account for image blurring effects the real-scene experiments presented in section 3.

due to depth discontinuities is presented. We

shows that blurring processes operating in the Section 3 presents the results from extensive ex-
vicinity of large depth discontinuities can give periments with images of realistic scenes taken with a
rise to new image details that can be quite dis- Cohu-4815 CCD camera with 8-bit accuracy. Various
tinguishable and that cannot be explained by settings of camera parameters (focal length f, aperture A
previously available blurring models (which can and back-focal distance v) are employed. Also, controlled
only predict suppression, and not creation, of experiments for background checking were performed
image details.) Extensive and carefully con- to ensure valid data. Though no quantitative analysis
structed experiments to obtain images of real was conducted, due to the unavailability of radiometric
scenes taken by a CCD camera with typical pa- calibration equipment at our Robot Vision Lab, we were
rameters, point towards the qualitative validity of nevertheless able to apply the MCB (multi-component
our new blurring model. Due care has been taken blurring) model to predict qualitatively all of the various
to ensure that the image phenomena observed are image blurring instances that were observed.
mainly due to blurring and not due to mutual Section 4 discusses some implications of the MCB
illumination, specularity, objects' "finer" details, effects, especially towards applications such as depth-from-
coherent diffraction, or incidental image noises, sharpness and other radiometric stereo methods as well as

deblurring for images of close-range, high-relief (large depth
range) scenes. Finally, further directions for research on

1 Introduction multi-component blurring effects are outlined.

The objectives of this paper are: to present a simplified
image blurring model that is sufficiently general to account 2 Modeling of Multi-component Blurring
for blurring effects due to depth discontinuities, and to show
that blurring in images of realistic 3-D scenes can be quite In this section, we consider a particular camera configuration
interesting and detectable. Experimental results are also to study blurring in the presence of depth discontinuities.
presented and discussed. The setup is chosen to be amenable to 1-dimensional anal-

The original motivation was just to find a simple model ysis for clarity of discussion only, since extension to two
to describe image blurring so that depth-from-sharpness dimensions is straightforward.
methods can be improved, especially in regions near depth The width of a blurring kernel can be defined as:
discontinuities, since none of the depth-from-sharpness for- (similar to Subbarao [6])
mulation so far has discuss such important cases in details.
See [5-10]. Upon analyzing the blurring phenomena, it was 02
realized that such a model must be composite (ie. consisting f (x - )' Ki(x)dx 00
of a (possibly unknown) number of sub-processes.) And it wKi = CO xKi(x)dx (1)
is precisely the composite nature of blurring due to depth- f KI()dx -o
discontinuities that the net blurring effects can be quite -00
interesting, with new local extrema generated, entirely in dis-
cord with commonly employed blurring models (even those related to:
allowing a shift-varying kernel.) Even if each blurring sub-
process is very simple, (shift-invariant Gaussian blurring, f
for example), the composite kernel can be quite complex, wil = kD- ; when Uo >> u (2)
exhibiting discontnuities, and is strongly shift-varying. u -

The organization of this paper is as follows: so setting the focus to very far away from camera is
a desirable technique for depth-from-sharpness to prevent

Support from the National Science Foundation, through the Enginecr- ambiguities. We will assumed such a setting in discussing
ing Creativity Award EID.8811553, is gratefully acknowledged. MCB below.
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2.1. Image formation across depth discontinuities behavior of Kb(X, x') is not important, hence in the
Refer to figure 1 for the subsequent discussioas in this next step of modeling, we will assume a shift-invariant
section. Gaussian form for both Ke(x), Kb(X).

Figure 1 represent a simplified model of a camera 2.1.2. Image formation and blurring effects
imaging a sharp edge that "touches" on the optica' axis and For the one-dimensional model in figure 1, we can
lying in front of a uniform background. The Lambertian see that, at each image coordinate value x, the resulting
assumption, though convenient, is not required here, only intensity also contain the sum of all blurring (or diffusion)
that no specular reflection is registered onto the image, and contribution from neighboring image regions (ie. pixels,
that no significant mutual illumination effects (interreflec- etc.), each of which may have a different blurring kernel.
tions) are present near the points of interest. Care must be Concisely, then:
exercised to prevent the aforementioned effects since they
sometimes also create spurious image features that can be
confused with multi-component blurring effects [1, 2]. (x =

Quantities re!ated to the background are subscripted jEJ

with a B (or b). Those related to the edge by E or e. The j indexes the set of different blurring kernels
separate image components due to background and edge are that have significant contribution at x
analyzed independently. We will concentrate on the cases (3)
where one of the blurring process is dominant (ie. having a
much larger spread than others) in the image neighborhood. for our 2-component case, in particular, we have:
(In figure 1 the blurring due to E is dominant.)

I(X) =Ie,(X) +Ib(x) : 2 components2.1.1. Notations and configuration =2

a. The back ground B is assumed to be in better focus Ie(x) = KJ K (x, x')IOTe(x')dx
(closer to the best-focus plane) than the edge E. As (4)
explained earlier, in depth-from-sharpness systems, it o
is convenient to have the camera best focused at very Ib(x) K b(x, x')IboTb(x')dx'
far, so that closer objects are more blurred. J

b. The unblurred images of the background patch B and -00
edge E are Ie0j(x), and Ib0W(-X), disjoint half lines,
or half plane in 2-D images. This is taken so that where:
the emergence of any new details due to blurring at * e(x) is the blurred image component for edge E.
the "interface" (x = 0) are readily observable and notshifed ue o cang inmagnfictio fatordueto The operator (blurring kernel) that give Ie(x), from anshifted due to cha nge in m agnification factor dlue to i e l r d o e rc i a e o d e E ( e x) s m dideal radiometric image of edge E (Ie(x)), is mod-
camera parameters so that direct interpretations on real eled approximately by a shift-invariant Kwe(xx'), with
image below is straightforward. width we. (Later, a shift-invariant Gaussian G w(x) is

c. Due to the fact that Wb varies along the (image) x-axis, used in next stage of modeling simplification.)
(due to occlusion), the blurring kernel Kb(x, x') is shift- * x is the lens interception function that describes
varying, despite the fact that the depth value across how much image intensity results from a particular
the background patch is constant. However, since Wb
is taken to be negligible compared to We, the exact direction.

it-I I~

Figure 1. Imaging a sharp discontinuity
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From the above rather general model, we will make the
folowing further simplifications to facilitate discussions on The resulting conditions and solution for Xz, coordinate
the MCB effects. The Gaussian shape with shift-invariant of local extrema formed by MCB blurring, are:
widths are subsequently assumed for all blurring kernels.
This will hold well only for the dominant blurring kernel Iio, 4
(here is Ke(x), corresponding to the surface patch closest if (a.> cb) and (. <
to the camera, with largest blur width), but this is precisely /.0 Ibo
what we look for here, since the closest surface is usually or if (a. < 0%) and -> 

of immediate interest in navigation, picking, etc. \ r 0b,

These assumptions enable an approximate analytical 2 In
representation of multi-component blurring with Gaussian which gives abs(x 2) = rab ( b (_b-

kernels in the next section. With the analogy between ((7 + Ua) (Cb (A)
Gaussian blurring and heat diffusion [3, 4], multi-component
blurring is analogous to multi-component particle diffusion,
whereas each type of particle has a different diffusion Physical limitations such as blooming and smear of
constant, and none of them react chemically with each other. the imaging sensor (pixels) [13] and the Optical TransferNote that MCB is more complex than anisotropic diffusion Function (OTF) [11, 12] of the lens system means that
[4, 14]. there is an upper limit to LAW/bo above. That is, chargespilling between adjacent pixels, prevents too large a charge
2.2. Creation of image details by Multi-component difference between neighbors. Similar limitation due to roll-
Gaussian Blurring Effects off of the (OTF) also play a role. The net effect is that

Now, we want to show that multi-component blurring can the local extrema by MCB are detectable for some range

give rise to new image features (or details), by which we of I&04bo. with some upper limits dictated by CCD sensor

mean specifically new local extrema, ie. local peaks and characteristics, and lower limit at least as high as given

valleys. These are relatively simple to represent mathe- by equation (10). This suggests that MCB effects is more

matically for detection schemes, and also readily observed detectable at low local contrast, a rather surprising prediction
visually. Please also refer to figure 2 and figure 3 (a through that was observed in real images. See figures 3 to 4.d), for the following discussion. If one try, for example, to describe the image profiles

The 1-dimensional unblurred image is again taken to 3a, 3b, 3c and 3d by the convolution of a single kernel with

be two disjoint step functions with heights 120, 'bO. The the total unblurred profile (a step edge): the resulting kernel

Gaussian-blurred components are Ia(x), Ib(x) respectively. Kcomposlte(x, x') must be given by:

Iublurred(Z) = Ia0 () + Ib4(-); 1 Ga(x - x'), x 0 (8)
I(X) = I(X) + Ib(X); KCoIpSlte(X, X ) =,f Gb( x'), ' <0

1() = Ga(x) * Iau (); Ib(X) = Gb(X) * Ibi(-) which looks innocuously simple, until we see some sample

r1; u> 0 unit step function plots of it in figures 3a, 3b. As seen, with oa=3, O'b=5(u) = u <o1 , Icomposite(x, x') is neither Gaussian (it's a patching of

(5) 2 truncated Gaussian segments), nor shift-invariant, and not
even continuous at x' = 0. Though this case is rather special,

Where * denotes convolution. We are interested in we can readily appreciate that blurring in high-relief 3-D
finding the conditions that leads to resulting images like scenes can be a complicated process to estimate, because
those in figures 3b, 3c and 3d (new local extrema created). even for shift-invariant Gaussian blurring we cannot get
Note that with ideal step functions as shown, any continuous, exact inverse solution (ie. for de-blurring or estimation of

uni-modal single blurring kernel will not introduce new the blur width.)[3]

details, like new local extrema. (This is the main assumption
in the Gaussian scale-space concept, however, MCB does
not obey such restrictions.) Let's look at the total image's
derivative:

a V
XCGa~x ) * I.o(x) + Gb(X) * Ib0(-X))

= IaoGa(x) - IboGb(x) = 0;

or lao ( exp ( '. ) - b exp : )) = 0;0a 2o,.2.Orb.2a

or !- = exp
IbO'a (6) Figure 2. Composite kernel
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3 Investigation of MCB Effects

in Real Images

From the above model for MCB, we set out to experiment
with real images to test the hypothesis that MCB effects do (a)
exist and can be detected in images of realistic scenes.

3.1. Experimental setup
The set up is quite similar to the imaging model in figure 1.
Distances from camera are: 1.33 meters to edge of board
(E), and 5.69 meters to the 3 cardboards that served as (b)
background (B) on the wall. The camera optical axis makes (b)
angles of about 10.3 degrees and 12.5 degrees respectively
to the surface normals of the edge E and background B,
in opposite orientations to prevent "details" by specular
reflections. We have insisted that other phenomena different
than MCB are excluded from registering onto the images, ...
by providing indirect, diffuse and non-polarized lighting and (c)
well-separated surfaces [14]. Coherent diffraction blurrings
in our case are also limited to less than a pixel's width, so
negligible to phenomena discussed here [13, 14].

3.2. Data (real-images) collection and interpretation

3.2.1. Image data (d)
Almost a thousand images have been taken, with tens of (d)

different scenes giving consistent results. Here we included Figure 3. Contrast effects
only two typical sets of images and their video scan lines
for further discussions. See figure 3 and 4. There are a few Only a middle segment of the image is shown in figure
interesting points to note: 4. Figure 4a has blur widths of 3.919 pixels and 3.454

pixels respectively for the fore- and background. Figure 4b
a. Multi-component blurring effects are more detectable has 3.233 pixels and 2.622 pixels for the respective blur

at low local contrast, other factors unchanged. widths. Camera aperture is reduced form figure 4a to figure
b. A small difference of blurring widths (due to different 4b. Note the reduce in overall image brightness from 4a to

depths) could be detected and estimated. 4b, and the vertical blurring streaks in both 3 and 4.

Figure 3 illustrates the effects of local contrast across
the depth-discontinuities, seen by varying the lighting on the
front surface (board edge) and background independently.
To test the MCB model validity, the real image profiles have
been superimposed on the theoretical MCB profiles, which
ace based on separate estimations of blur widths for fore-
and background by method of Subbarao [6]. Blur width of
front edge estimated at 2.081 pixel widths, or about 23.9 pm,
while that of background is about 1.666 pixels, in figure 4.

(a)

(b)

............ Figure 4. Effects of camera parameters
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3.2.2. Interpretations MCB recognition through evolution could be possible [12,
Pair-wise comparisons of slices 3a with 3c, and 3c with 13]. However, we would have to wait for any in-depth

3d: reduced local contrast enhances the "MCB spike"! This psychophysical investigation into the human perception of
could imply that human depth-perception may be enhanced multicomponent blurring for definite results [141].

for free by MCB in low-contrast, large depth-range scenes.
The rough fitting of theoretical and actual image profiles References

above points towards the coarse accuracy of our current
model. More refinements taking into account effects of [1] Forsyth, D., and Zisserman, A., "Mutual Illumi-
occlusions are currently investigated by us (14]. No other nations", Proc. Computer Vision and Pattern Recognition
blurring models so far has been able to describe the profiles (1989), California, USA, pp. 466-473.
in figures 3 and 4 above, however. [2] Healey, G. and Bindford, T., "Local Shape from

A side remark: the magnitude of the MCB peaks Specularity", Proc. of the 1st Intl. Conf. on Computer Vision
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either have not taken account of effects due to MCB blurring from Focus", Proc. Computer Vision and Pattern Recogni-
[5, 6, 7, 8, 9], or unknowingly treat them as noise [8, tion (1988), pp. 504-509.
9, 10] (by spatial pre-averaging of intensity and post- [9] Pentland, A., Darrell, T., Turk, M., and Huang,
averaging of depth estimates.) Such practices will give W., "A Simple, Real-time Range Camera", Proc. Computer
inaccurate depth estimates (averaging of estimates mainly Vision and Pattern Recognition (1989), pp. 256-261.
serves redistribution of errors) and unknowingly discard [10] Garibotto, G. and Storace, P. "3-D Range Estimate
valuable depth information carried in these image features. from the Focus Sharpness of Edges", Proc. of the 4th Intl.
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Illuminant Precompensation for
Texture Discrimination using Filters

Robert S. Thau*
M.I.T. AI lab, NE43-710
Cambridge, MA, 02138

Abstract and important problem. A common approach is to look
for texture discriminants which are somehow defined at

Typically, texture-discrimination algorithms every point in an image. One type of texture discrimi-
have been tested on images containing either nant, to be explored here, is based on the outputs of a
mosaics of synthetic textures, or artificially cre- set of linear filters applied to a (preprocessed) image.
ated mosaics of real textures - in any case,

images in which most of the changes in inten- Now, the output of the filters themselves (or even the
sity can be ascribed to the textures themselves, full-wave rectified output) is inadequate for use as a dis-
However, real images aren't formed like this, criminant; it must be post-processed somehow. For ex-
and may contain steep gradations in intensity ample, the output of a vertically-oriented real Gabor fil-
which have nothing to do with local texture, ter applied to a vertical sine grating will have high peaks,
such as those caused by incident shadows. but it will not be consistently high (it will have zeroes!).

A texture discrimination algorithm based on Therefore, changes in the filter's output do not, in and

linear filters can fail in the presence of strong of themselves, signal changes in the underlying texture,
intensity edges generated by shadows or object and so they cannot be used directly to locate texture
boundaries, as they may easily contain an order boundaries. Rather, we must process the filter outputs
of magnitude more energy than the gradations further, in order to obtain a discriminant which does not
in intensity due to any texture in the image per vary so long as the texture stays the same. This prob-
se. In these cases, the mechanism may become lem has received considerable attention in the literature,

responsive only to strong luminance effects, and and there have been many proposed solutions; see vari-
not to texture. We have found that good per- ously [Malik & Perona, 1990], [Bovic et al., 1990), [Reed
formance on natural images containing texture & Wechsler, 1990], [Turner, 1985], etc. The approach to

can only be obtained from a filter-based texture computing discriminants from the outputs of the filters
which we follow here is a radically simplified version ofdetection scheme if it includes a stage which at- ta sdb ai eoa n hci hudb

tempts to bring large intensity gradients within that used by Malik & Perona, one which, it should be
bounds. This may be accomplished by a pre- noted, they specifically consider and reject, due to its in-
liminary nonlinear filtering step involving en- ability to match human performance on certain texture
tirely local computationg pairs. (Other salient differences between this work and

that of Malik & Perona are the use of a different set of

filters, and of course, the absence in their model of any
1 Statement of problem effective illuminant precompensation).

Images contain regions of different textures; determining But there is another problem. Even if we have a corn-
the boundaries between these regions is an interesting putation which yields workable discriminants for artifi-

This paper describes research done within the Center cial texture samples, or mosaics of natural texture sam-
for Biological Information Processing, in the Department of pies, that still does not guarantee good performance on

Brain and Cognitive Sciences, and at the Artificial Intelli- real images. The trouble is that real images contain fea-
gence Laboratory of the Massachusetts Institute of Technol- tures other than texture which may excite the filters,
ogy. This research is sponsored by a grant from the Office of such as shadows or strong intensity edges. Even if these
Naval Research (ONR). Cognitive and Neural Sciences Divi- irrelevant features are not what th filters are directly
sion, by the Artihicial Itelhgence Center of Iughe". Aircraft tuned fur, the filter5 will stiil rcspoi:d if the featuies are
Corporation, by the Alfred P. Sloan Foundation, by the Na- sufficiently strong. For instance, if the image contains a
tional Science Foundation, by the Artificial Intelligence Cemt- very strong vertical intensity edge, then any filters tuned
ter of Hughes Aircraft Corporation (S1-801534-2), and by the to respond to anything like a vertical edge will produce
NATO Scientific Affairs Division (0,103/87). Support for the a response.
A. I. Laboratory's artificial intelligence research is provided
by the Advanced Research Projects Agency of the Depart- If the filters' responses to non-textural features are
i,:ent of Defense under Army contract DACA76-85-C-0010, comparable to the responses produced by elemenits of
anti in part by ONR contract N00014-85-K-012.1. the textures which are present, tlien a properly designed
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1987 Geiger et al., 1989]. Alternatively, given sufficient
computational resources, one could use the individual
discriminants, or various combinations of the discrimi-
nants (e.g. by scale), as input to an MRF-based integra-
tion process.

3 Image preconditioning

Figure 1: Point spread functions of the filters - Gabor, An ideal preconditioning step would completely dis-
DOG1, and DOG2, respectively, count the effects of illumination on the texture discrim-

inants, and hence, on the detected texture boundaries.
It is impossible to disentangle the two completely, of

discriminant mechanism will simply reject them as spuri- course. Consider, for instance, a movie - all the tex-
ous. However, if the responses produced by non-textural ture in the perceived images, along with everything else,
features are much stronger than the responses produced results solely from the highly structured illuminant, the
by actual texture, then suppressing them can become a screen itself, on which the images ,re projected, is un-
serious problem (as shown in the figures below). One textured and flat. I will restrict mys ,f here to heuristics
approach which we might choose to deal with these spu- which attempt to compensate for ,ariations in illumi-
rious features would be to run an edge detector on the nation which is on a scale several times larger than the
image, and to suppress the texture computation in the scale of the texture itself (e.g., changes in global scene
presence of strong intensity edges. In this paper, we illumination, and shadows).
have chosen a different approach, namely, to preprocess In the usual model of image formation, the light re-
the image so that the intensity edges in the textures will flected by a surface patch is the reflectance of that patch
be as strong as any others in the image. multiplied by the incident light (with compensation for

the difference between the angle of incidence and the
2 The Algorithm angle of observation). If we assume that the angle of in-

XWe have considered two algorithms, of which only one cidence and the intensity of the incident light will both
isepresenderedI mton thsohh only topotowe tend to be constant over large regions of the image, theis presented here; I mention this only to point out we effect of the illuminant is reduced to a constant factor

have found that the exact nature of the best precondi-

tioner may actually depend on what happens in subse- multiplying the image intensities within a local region,
the exact value of which may vary. We seek to remove

quent computations, the influence of this constant factor. A simple-minded

" We begin with an image I and a collection of filters approach would be to divide the image intensity at each
Fi. pixel by the average image intensity in a neighborhood

" The image is conditioned, with the intent of reduc- centered on that pixel.
ing the influence of illumination on succeeding steps. Indeed, an ad hoc method which works well on many
This conditioning step is the main subject of this textured images is only slightly more sophisticated than
paper; remaining steps form the discriminant mech- this. Rather than computing a simple average (which
anism. would be susceptible to rapid fluctuation from pixel to

" The filters Fi are applied to the image I, yielding pixel), I smooth the image with a Gaussian filter, and
raw results Ri. These are divided into positive nd divide the raw image intensity at each point by the re-

negative parts, R,+ and R,-. sponse of the filter at that point:

" The Ri+ and Ri- are further processed to yield = II(5 * I)

a set of discriminants, Dj, which are still defined, where S is a Gaussian smoothing filter. It is interesting
pointwise, across the image, being computed from to note that similar approaches to removing the influence
local values of Ri+ and Ri-. of the illuminant have been found useful in maintaining

is computed, aby color constancy, another problem which may be phrased
A"texture gradientis o as of Maik in terms of removing the effects of the illuminant. (This
Perona, the pointwise maximm of the magnitudes is in some sense analogous to the prefiltering necessary
of the gradients of the discriminants, that is, to enforce color constancy in schemes such as those of

G = max JJVDiIJ [Land, 1986] and [Hlurlbert & Poggio, 1988]).
1 Note that we have now introduced a new parameter

" Location of texture boundaries is determined by - the choice of the standard deviation of the filter S.
appl ing non-maxinum suppression and adapticu Perhaps surpri.sinigly, I found thdit it %%orkb best to choose
thresholding to the texture gradient, as in the S to be quite small, well under the size of the scale pa-
Canny edge detector [Canny, 1983]. rameters of the largest filters in use (o=5 pixels). Larger

The end result of this process is a binary field which values worked somewhat worse; see below.

contains isolated "texture edges". In the MIT vision ma- 4 The filters
chine, these fields could be used as input to a Markov
Random Field process for assigning t.,pcs to the inten- The bais of the: texture discrimination aigorithin I dis-
sity edges to the imagc [Gcma & CeInan, 198.1, Gamble, cu., lier is the application, of a .,t of oriented and wn-
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Figure 2: Results with smoothed filter half-outputs and illuminant compensation by division

oriented linear filters to the image. The oriented filters spaced around the circle. P, int spread functions of the
were Gabor functions of various orientations and scales. two sets of filters are in figure 1.
The oriented filters were sums of Gaussians, correspond- In addition to the Gabor filters, we also experimented
ing to Malik & Perona's two unoriented filters, described with oriented filters produced by summing offset oriented
as being of type DOGI and DOG2. Gaussians. In general, the type of oriented filters in use

Note that only one phase of the Gabor filters was used. didn't affect which types of texture boundaries could be
A more conventional approach would be to use a quadra- found by the algorithms. However, with the Gabor func-
ture pair, and combine the results of some sort of energy tions, peaks in the computed "texture gradients" were

measure. This was not done here for reasons of efficiency; generally sharper and more prominent, leading to some-
instead, we used one element of the pair, and computed what better performance overall. All figures in this paper
an energy-like measure by smoothing. This may not were computed with 1--bor-function oriented filters.
seem like much of a gain of efficiency; we have removed
an oriented filter, and replaced it with a smoothing fil- 5 A simple discriminant - smoothing
ter. However, the smoothing filter is separable (in fact, filter half-responses
a Gaussian), and thus can be computed much more effi-
ciently than the nonseparable orientation-tuned filter it The simplest, crudest, way of computing a texture dis-
replaces. All filters used were of even phase. (In this, criminant is to smooth the outputs of the positive and
we follow Malik & Perona, whose choice of even phase negative parts of the filters with some appropriately cho-
was dictated by the apparent absence of odd-symmetric sen Gaussian. That is, for each filter, we compute two
mechanisms in human texture discrimination). discriminants:

Now, in a real image, features occur at a variety of M +
scales and orientations. The filters used by a texture dis- and
crimination algorithm must be able to pick up all these = M * (Ri-)
features. The brute foace approach taken here (as, ap- where R,+ is the positive response of the filter F, to the
parently, in the mammalian brain), is to use filters tuned preconditioned image ', and similarly for R,-. Al is the
to several different scales. All examples used in this pa- Gaussian smoothing filter, for all examples in this paper,
per use filters whose overall size (a) parameter is chosen I chose the standard deviation of M to be twenty-five
from 2, 3, 4, 6, 8 or 10 pixels. The two unoriented filters pixels. (Recall that the largest scale parameters for the
were replicated at each scale. Also present at each scale filters in use was ten pixels, corresponding to a maximum
were six oriented filters, whose orientations were evenly texton size of that order. This consitutes smoothing over
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Figure 3: Results on the same images as in fig.1, with no preconditioning. Note that the mechanism's responses are
determined mostly by the placement of strong intensity edges. Texture boundaries which are not accompanied by
an intensity edge receive a meager response.

two or three textons diameters, for the largest textons likely to find the true texture discontinuity, and more
that the filters could be expected to detect). likely to pick up the shadow, which is not a texture dis-

Applying this scheme with a set of Gabor filters and continuity. (In the limit of extremely large areas, we
difference-of-gaussian filters at various scales, we obtain would find ourselves dividing each pixel value by the av-
the results shown in figure 2. Note that the algorithm erage intensity of the image, which is, of course, equiva-
reliably picks up texture boundaries, and is insensitive lent to no compensation at all).
to pure intensity edges. This is particularly noticable
of the image of a finger casting a shadow on a wicker 6.3 Pointwise logarithm
background, in which we see the boundary of the finger The observation behind this approach is that if the
completely found, and the shadow (a strong intensity observed image intensity I is the product of the re-
edge) not found. (The latter is legitimate; the textures flectance R and some undetermined (and undesirable)
on either side of the boundary are identical). As we shall luminance factor L, then taking logs turns I = RL into
see, other ways of attempting to compensate for areal log I = log R + log L, turning the multiplicative factor
intensity variations yield much poorer results. Note also into an additive one, which should have less of an influ-
that the algorithm succeeds in finding even fairly subtle ence on the output of the linear filters. Unfortunately, a
texture boundaries, such as the boundary between the strong edge in the intensities in an image is also present
legs and the body of the cheetah, and that it detects in their logarithms. As a result, not only do we find the
orientation discontinuities as well as differences in texton "texture detector" picking up the intensity boundaries at
density, the shadow, but it also picks up an intensity boundary

within the homogeneously textured finger itself. Results
6 Alternative preconditioners are shown in fig. 4.

In this section, I compare performance the precondi- 6.4 Normalizing filter values
tioner described above with several alternatives (includ- The rationale here is that a constant factor affects the
ing having no preconditioner at all), which all perform output of all filters equally, so normalizing the output
worse. of all filters to keep their sum a constant should cancel

6.1 No prebonditionir g out the constant-factor affects of the illuminant. The ap-
proach suffers a fatal flaw: in large, featureless regions ofWhen adding a stage such as preconditioning to one s constant intensity where no filter has a substantial out-

model, one can never help wondering whether the step put, the minor noise in the filters' outputs gets amplified
is really necessary. As results in figure 3 show, a precoh- out of all proportion to reality.
dwtion ng does appear to be necessary. Without the pre-
conditioner, performance on synthetic images is pretty 7 Conclusion
much unaffected, but as the figure shows, performance
on real images is substantially worse. This paper has explored a simple, but effective, texture

6.2 arints n te dvisin peconitiner discrimination algorithms based on the application of ]in.
6.2 ain on tedivisio preconditioner whhear filters to images.
As mentioned above, the choice of the mask in the It has shown that in order to get good performance on
smooth-and-divide image precoiditioner is ebsentially natural images (especially those containingshadows), it
arbitrary. Figure 4 illustrates results fur one image, in is necessar i to preprocess the images to renov strong
which the mask is replad by Gaussian masks with dif- intensit gradients. In the absence of such preprucessing,
ferent pace constants. Note that as thue size of the ar- differences i intensity from region to region in the imag
eas being averaged increa5e&s the algoritlun beconmeb less can "hijacia te texture discriminator. In mal 3 natural

182



Figure 4. Texture gradients for the same image, with different scales on the smoothing for illuminant compensation.
In order of decreasing quality: a = 5 pixels (the default), ten, fifteen, or twenty.

images broad intensity differences may be detected as [4] Gamble, E., and Poggio, T., "Visual Integration and
texLure edges, even if the texture on both sides of the Detection of Discontinuities: The Key Role of Inten-
discontinuity is the same (as for shadows), while texture sity Edges", MIT Al lab memo 970, 1987
discontinuity without an intensity difference may yield [5] Geiger, D., and Girosi, F., "Parallel and Determin-
only a weak signal, which could easily be neglected. Most istic Algorithms for MRFs: Surface Reconstruction
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Surface Reflection:
Physical and Geometrical Perspectives
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Abstract reflection process. While shape extraction and object recog-
nition methods are being refined, it is also essential for the

Machine vision can greatly benefit from the de- vision community to research and utilize more sephisticated
velopment of accurate reflectancc models. There are two reflectance models. Once a "general" re.lectance model is
approaches to the study of reflection: physical and gcomct- made available, we are free to make reflectance assumptions
rica optics. While geometrical models may be construed as that are rcasonable for the vision application at hand. The
mere approximations to physical models, they possess sire- resulting rnore bpecific model may then be used to develop
pier mathematical forms that often render them more usable efficient perception techniques.
than physical models. However, geometrical models are ap- Various reflectance models have been used in the
plicable only when the wavelength of incident light is smal achineFvisioctan delsahace been used the
compared to the dimensions of the surface imperfections. areas of machine vision and graphics. Horn [8] used the
Therefore, it is incorrect to use these models to interpret or Lambertian diffuse reflectance model and the double-delta
predict reflections from smooth surfaces, and only physical specular reflectance model to develop shape-from-shadingmodels are capable of describing the underlying reflection algorithms formachine vision. Horn [7] has alsoprovidedan
mechanism. excellent review of some of the early models used in graphicsfor hill shading. Phong [201 proposed a parametrized contin-

This paper is directed towards unifying physical uous function to represent specular reflectance, and used the
and geometrical approaches to describe reflection from sur- model to produce computer-synthesized images of objects.
faces that may vary from smooth to rough. More specifi- Woodham [33] used the Lambertian model to determine ob-
cally, we consider the Beckmann-Spizzichino (physical op- jemt shpe by means of photometricstereo. Ikeuchi [12] used
tics) model and the Torrance-Sparrow (geometrical optics) the double-delta specular model to determine the shape of
model. We have chosen these two models in particular as specular surfaces by photometric stereo. Pentland 119] de-
they have been reported to fit experimental data very well. veloped a local shape-from-shading algorithm that assumes
Each model is described in detail, and the conditions that Lambertian reflectance. Coleman and Jain [4] proposed the
determine the validity of the model are clearly stated. From four-source photometric stereo, which discards specular re-
studying the bcha iors of both models, we propose a model flcctions and uses the diffuse reflections and the Lambertian
comprising three reflection components: the diffuse lobe, model to determine shape information. Sanderson, Weiss,
the specular lobe, and the specular spike. The dependencies and Nayar [25] have used the double-delta specular model
of the three components on the surface roughness and the to determine the shape of specular surfaces by means of the
angles of incidence and reflection an analyzed in detail, structured highlight technique. Recently, Nayar, Ikeuchi,

and Kanade [16] have developed the photometric sampling
method that uses a hybrid reflectance model, comprised of

I Introduction both Lambertian and specular models, to extract the shape
and reflectance of Lambertian, specular, and hybrid surfaces.Most machine vision problems involve the analysis of im-

ages resulting from the reflection of light. The appa.rent The above applications have proven that the Lam-

brightness of a point depends on its ability to reflect inci- bertian model does reasonably well in describing diffuse re-

dent light in the direction of the sensor: what is commonly flections. Moreover, its simple functional form has made it a
known as its reflectance properties. Therefore, the predic- popular reflectance model in the vision research community.
tion or interpretation of image intensities requires a sound On the other hand, the specular models used above perform
understanding of the various mechanisms involved in the well only when the object surface is very smooth, in which

case, most of the reflected light is concentrated around the
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specular direction. Specular reflection from rough surfaces, * How do the reflectance curves predicted by these two
however, requires careful examination, and its dependence models compare with one another, and how are the
on the imaging and illumination geometry can only be ob- surface roughness parameters of the two models related
tained by a formal treatment of optics. There are two differ- to each other?
ent approaches to optics, and thus two different approaches
to the study of reflection. The physical optics approach a e th mary ompoens o repreflectio
uses electromagnetic wave theory to study the reflection and which model should be used to represent each of
of incident light. The geometrical optics approach, on the the primary components?
other hand, uses the short wavelength of light to simplify * How are the reflection components dependent on the
the reflection problem. Hence, geometrical models may be surface roughness, and on the angles of incidence and
viewed as approximations to physical models, reflection?

The Beckmann-Spizzichino physical optics model
and the Torrance-Sparrow geometrical optics model have The paper is structured as follows. In section 2,
recently attracted considerable attention. Both models we define radiometric concepts that are useful in the analysis
have been developed to describe specular reflection mech- of surface reflection. In -section 3, we look at different
anisms, and both have been found to fit experimental data approaches to modeling surface profiles T.. setaln 4, we
quite well [11] [31]. Owing to its simpler mathematical highlightthemainstepsthatareinvol,, ed nteitn
form, the Torrance-Sparrow model is more popular than the the Beckmann-Spizzichino and TorraPv.e-Spzr:ow iodels,
Beckmann-Spizzichino model, and has been used in the ar- and clearly state the assumptions mz.c "'i ti'c' proc..s of
eas of computer vision and graphics. Healey and Binford their development. On the basis o. tile rcflctanc" c,'vez
[6] have used the Torrance-Sparrow model to determine lo- predicted by the two models, we tp'rpoi 9 'eflt-tance nio4el
cal shape from specular reflections. Wolff [32] has used that has three primary compone-I.; ut,: dblse lobe, ilhe
the model to develop spectral and polari.ation stereo meth- specular lobe, and the specular spik.-, Iiieci'u 5 . ve su2'dy
ods. Cook and Torrance [5] have modified the model and these reflectance components in detail.
used it to render images ot objects. Tagare and Figuciredo
[30] have discussed both the Beckmann-Spizzichino and the 2 Radiometric Definitions
Torrance-Sparrow models in their survey of various reflec-
tion mechanisms.

When applying physical and geometrical models, source
it is important to satisfy the conditions that determine the Z
validity of the models. This requires an understanding of
the restrictions imposed by the assumptions made while de-
veloping the models. Most of these assumptions are related
to the microscopic shape and physical properties of the re-
flecting surface. In this paper, we study these assumptions N, d

i,. detail and determine which reflection mechanisms are de- OdW

scribed only by physical models and which ones may be
approximated by the relatively simpler geometrical models. i -x
Our objective, therefore, is to unify physical and geomet- ,-. .

rical reflectance models to develop a single model that can --..
describe reflection from surfaces that may vary from smooth
to rough. In the process of achieving this goal, we address Figure 1: Basic geometry needed to define radiometric
the following questions: terms.

In this section, we present definitions of radiometric termsHow is the microscopic shape of a urface modeled, that are useful in the study of surface reflection. Detailed
and when is a surface rough? derivations and descriptions of these terms are given by

* How are physical optics and geometrical optics models Nicodemus et al. [18]. As shown in Figure 1, all directions
developed? are represented by the zenith angle 0 and the azimuth angle

4i. The light source is assumed to lie in the x-z plane and
* Under what conditions are the Beckmann-Spizzichino is therefore uniquely determined by its zenith angle 0,. The

and the Torrance-Sparrow models valid? monochromatic flux dP, is incident on the surface area dA,
from the direction Oi, and a fraction of it, d245,r, is reflected
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in the direction (0,, tb,). The irradiance 1,1 of the surface is
defined as the incident flux density:

I1 = -. (1)dA3

The radiance Lr of the surface is defined as the flux emitted
per unit fore-shortened area per unit solid angle. The surface
radiance in the direction (0, Or) is defined as: h Y

Lr = d2dfr (2) (xy)
dA, cosO, dw, X

The BRDF (Bi-Directional Reflectance Distribution Func-
tion)f, of a surface is a measure of how bright the surface Figure 2: Surface height as a random function of the spatial
appears when viewed from a given direction, when it is illu- coordinates.
minated from another given direction. The BRDF is defined
as: L, The height coordinate h of the surface may be expressed

fr = L .(3) as a random function of the coordinates x and y, as shown
in Figure 2. The shape of the surface is then determined

In the following sections of this paper, we will frequently by the probability distribution of h. For instance, let h
use the above radiometric definitions, be normally distributed, with mean value <h> = 0, and

standard deviation ah. Then, the distribution of h is given
3 Surface Model by:

The manner in which light is reflected by a surface is depen- ph(h) = 7-e (4)
dent on, among other factors, the microscopic shape char- V5Joh

acteristics of the surface. A smooth surface, for instance, The standard deviation o'h is also the root-mean-square of
may reflect incident light in a single direction, while a rough h and represents the roughness of the surface. The surface
surface will tend to scatter light in various directions, maybe is not uniquely described by the statistical distribution of h,
more in some directions than others. To be able to accurately however, as it does not tell us anything about the distances
predict the reflection of incident light, we must have prior between the hills and valleys of the surface. In Figure 3,
knowledge of the microscopic surface irregularities; in other both surfaces (a) and (b) have the same height distribution
words, we need a model of the surface. All possible surface function, i.e. the same mean value and standard deviation.
models may be divided into two broad categories: surfaces In appearance, however, the two surfaces do not strongly re-
with exactly known profiles and surfaces with random irreg- semble each other. In order to strengthen our surface model,
ularities. An exact profile may be determined by measuring we use an autocorrelation coefficient C(r) that determines
the height at each point on the surface by means of a sensor the correlation (or lack of independence) between the ran-
such as the stylus proftlometer. This method, however, is dom values assumed by the height h at two surface points
quite cumbersome and also inapplicable in many practical (x ,yi) and (x2,y2), separated by a distance r. We describe
situations. Hence, it is often convenient to model a surface the autocorrelation coefficient by the fairly general function:
as a random process, where it is described by a statistical
distribution of either its height above a certain mean level, or C(r) = e- Tr(5
its slope with respect to its mean (macroscopic) slope. In this
section, we discuss these two approaches to surface model- where T is the correlation distance, for which C(r) drops to
ing in greater detail and explain how surface roughness is the value e- 1. We see that the surfaces (a) and (b) shown in
pertinent to the study of reflection. Figure 3 have small and large correlation distances, respec-

tively. By varying the parameters o'h and T of our surface
3.1 Height Distribution Model model, we can generate surfaces that match in appearance

almost any rough surface met in practice. Moreover, if we
are dissatisfied with the performance of the model, we can

'Irradiance is usually [81 denoted by the symbol E. In the following always use another height distribution function and/or an-
sections, we will be using E to denote the cle tric field, and therefore we other autocorrelation function than the ones given above.
will denote irradiance by Ito avoid confusion.
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tion model, which requires two parameters. Larger values
of o,, may be used to model rougher surfaces. While the
importance of an autocorrelation coefficient was shown for

(a) h -0 the height model, the concept of slope correlation is more
difficult to interpret and, therefore, is not of much use in
the generation of surfaces. The advantages of using a sin-
gle parameter come with the cost of a weaker model when

(b) h - 0 compared to the height model. Given a probability distri-
bution function for a, it is difficult to visualize the shape of
the surface and to estimate the root-mean-square height of
the surface. However, the slope distribution model is popu-

Figure 3: Random surfaces with (a) small, (b) large correla- lar in the analysis of surface reflection, as the scattering of

tion distances. light rays has been found to be dependent on the local slope
of the surface and not the local height of the surface. For
this reason, the slope model, though relatively ambiguous, is

3.2 Slope Distribution Model more directly applicable to the problem of surface reflection.

It is sometimes convenient to think of a surface as a collec- Shortly, we will see how both height and slope models are
tion of planar micro-facets, as illustrated in Figure 4. A large used to develop surface reflection models.
set of micro-facets constitutes an infinitesimal surface patch
that has a mean surface orientation n. Each micro-facet, 3.3 What is a Rough Surface?
however, has its own orientation, which may deviate from
the mean surface orientation by an angle a. We will use One would expect humans to respond to this question with a

variety of answers. We seem to have a rather loose definition
of the term "roughness." A surface that appears to be rough
from a short distance may appear to be smooth from far away.
In some cases, by changing the direction of illumination,
surface imperfections can be made less visible and a rough
surface can be made to appear smooth. If the observer is
unable to discern from its appearance how rough the surface
is, he or she is inclined to feel the surface and make a

Ex judgment on the basis of the resulting sensation.

In contrast to the human definition of roughness,
- - surface reflection theories offer a stronger definition: one

that relates surface irregularities to the wavelength of inci-
Figure 4: Surface modeled as a collection of planar micro- dent light and the angle of incidence. For incident light of
facets. a given wavelength, the roughness of a surface may be esti-

mated by studying the manner in which the surface scatters
the parameter a to represent the slope of individual facets. light in different directions. If the surface irregularities are
Surfaces can be modeled by a statistical distribution of the small compared to the wavelength of incident light, a large
micro-facet slopes. If the surface is isotropic, the probabil- fraction of the incident light will be reflected specularly in
ity distribution of the micro-facet slopes can be assumed to a single direction. On the other hand, if surface irregulari-
be rotationally symmetric with respect to the mean surface ties are large compared to the wavelength, the surface will
normal n. Therefore, facet slopes may be described by a scatter the incident light in various directions. Conversely,
one-dimensional probability distribution function. For ex- the same surface can be made to appear smooth or rough
ample, the surface may be modeled by assuming a normal by varying the wavelength of incident light; or for the same
dibltibution for the facet slope a, with mean value -a> 0 0 wavclcngth it can be made to appear smooth or rough by
and standard deviation a,: varying the angle of incidence.

I _.(.2 Rayleigh suggested a way of relating surface
p,(a) = 1 e 27 (6) roughness to wavelength and angle of incidence, and estab-

V ra, lished a simple criterion for classifying surfaces as smooth

The surface model in this case is determined by or rough. Consider rays I and 2 in Figure 5, incident at an

a single parameter, namely, o,, unlike the height distribu- angle / on a surface with irregularities of height H. Since
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the two rays strike the surface at locally smooth patches, criterion that states that a surface is considered to be rough
both rays are specularly reflected. The rays originate from when:
a source plane that is perpendicular to the rays, and they H > '(9)
are received by a detector plane that is perpendicular to the 8sin(
reflected rays. We are interested in finding the difference This is, of course, a rather simple approach to de-

termining the roughness of a surface. Some papers that dis-
cuss the height distribution model have defined a rough sur-
face as one whose root-mean-square height is much greater

detector than the wavelength of incident light, i.e. o-1 A. More so-
2 /phisticated criteria have been developed since the Rayleigh

3/ criterion was first proposed. We will not pursue these cri-
J7 teria here but direct the interested reader to [1] for a more

detailed treatment. In fact, we have described the Rayleigh
%% criterion only to bring forth the concept of roughness and to
% \ emphasize its significance in the study of surface reflection.

4 Reflection Model

When light is incident on a boundary interface between two
different media, it is reflected according to well-known laws.

Figure 5: Analyzing surface roughness from the view point There are two different approaches to optics and, conse-
of reflection. quently, two different approaches to the study of reflection.

Physical or wave optics is based directly on electromag-
between the paths traveled by the two rays. Using basic netic wave theory and uses Maxwell's equations to study
geometry it can be shown that ray 2 and the imaginary ray 3 thpragioofih.Gemriloraypisnth
travel the same distance. Therefore, the path difference Ad the propagation of light. Geometrical or ray optics, on the

other hand, uses the short wavelength of light to simplifybetween rays 1 and 2 is equal to the path difference AOB many of the light propagation problems. Geometrical opticsbetween rays 1 and 3, and is determined as: is generally able to explain the gross behavior of light when

A:d = 2llsin/3. (7) the wavelength is small compared to the pertinent physical
dimensions of the system (in our case, the surface imperfec-

If A is the wavelength of the incident rays, the phase dif- tions).
ference between the rays received by the detector may be In this section, we study surface reflection from
determined from the path difference as: the perspective of physical and geometrical optics. More

4,'r ,specifically, we discuss a physical optics reflection model,
AS? = ---- sin. (8) namely, the Beckmann-Spizzichino model, and a geometri-

cal optics reflection model, namely, the Torrance-Sparrow

When A60 is very small, the two rays received model. We highlight the main steps that are involved in the
by the detector will be almost in phase with each other, derivation of both models and clearly state the assumptions
and the received energy will be nearly equal to the sum made in the process of their development. The derivations
of the energies carried by the two rays. In this case, the will draw on the surface modeling approaches discussed in
surface reflects light specularly. However, as the phase the previous section. Later, the two models are compared
difference approaches ,r, the the two rays will be in phase by plotting the predicted reflectance as functions of viewer
opposition and will tend to cancel the effects of each other. and source directions.
In fact, at AS? = 7r no energy will flow in the direction of
the detector. The incident energy is thus redistributed in 4.1 Physical Optics Model
other directions, and the law of conservation of energy is
preserved. Hence, the extreme cases are: AS2 = 0, when Light tromagnetic phenomenon. Therefore, in a
the surface reflects light specularly and is thus smooth; and strict se. . .ics should be studied as a branch of ele-
AS2= -r, when the surface scatters light and is rough. We trolynam;.s. Optics is usually treated as a separate field
can thus classify surfaces as smooth and rough by picking because it was studied long before its electromagnetic char-
an arbitrary threshold between AS? = 0 and AS? = r. By acter was realized. Before we address the scattering of
selecting a threshold value of 7r/2 we have the Rayleigh incident light waves by smooth and rough surfaces, we feel
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that a very brief introduction to electromagnetic waves is in values. However, the actual field is determined only by
order. the real components of the field vectors, i.e. Re[E] and

Re[HI, and the complex notation is used only for ease of
4.1.1 Electromagnetic Waves mathematical manipulation. Bearing this point in mind, we

will continue to use the complex forms of E and H.In the atomic theory of matter, electromagnetic

effects are considered to arise from the forces exerted on
each other by elementary ch.,ged particles. The elementary
positive and negative particles are the proton and electron, 'i
respectively. Consider two charged particles placed in the oil P
vicinity of each other. Due to their respective charges, the i .,

particles will exert a force on each other. If the particles
are at rest, they will experience a constant electrostatic force
resulting from the electric field generated by them. How- ,,g,,t hold

ever, if the particles have different relative velocities with h

respect to a common frame of reference, the folice acting
between them will differ from the electrostatic force. This /
statement can be verified by simple experiments [2]. The
discrepancy between the forces experienced when the parti-
cles are at rest and when they are in relative motion suggests
the presence of another field, namely, the magneticfield, in Figure 6: A plane electromagnetic wave.

addition to the electric field. In fact, Maxwell's equations
may be interpreted as a mathematical formalization of the The first exponential term in the above field equa-
following physical phenomenon: associated with a time- tions suggests that the magnitudes of electric and magnetic
varying electric field is a magnetic field. Therefore, the fields vary sinusoidally as a function of the distance along
forces experienced by a moving charge can be conveniently the direction of propagation. The direction of the vector
represented by means of electromagnetic field vectors: the k corresponds to the direction of propagation of the wave,
electric field intensity E and the magnetic field intensity H. while its magnitude k, called the propagation constant, de-
Conversely, an electromagnetic field may be generated by termines the spatial frequency of the wave. The propagation
applying forces and physically moving charges ir, some re- constant is related to the wavelength A of the plane wave as
gion of space. The electromagnetic field does not require follows:
a medium for its existence. Therefore, electromagnetic en- k = 2. (11)
ergy can be radiated from the space in which the charged A
particles are moving, to form a traveling electromagnetic If the wavelength lies between 400 nano-meters and 700
wave. The field equations for the electromagnetic wave can nano-meters, the wave can be detected by the human eye
be derived directly from Maxwell's equations. and is called monochromatic light.

Consider the light waves radiated by a point source The second exponential term in the field equations
of light. When the source is at a large distance from the point indicates that the field intensities also vary sinusoidally as
of observation, the spherical waves radiated by the source a function of time at a radian frequency of oscillation, w.
may be assumed to be plane waves, like the one shown in The functions that describe the spatial and temporal field
Figure 6. The electric and magnetic field vectors of the plane variations are dependent on the function that represents the
wave may be expressed as follows: forces applied to the charged particles to generate the wave.

E =Ee -ik r iwt In most engineering applications dealing with plane waves,
ei  the field is considered to be sinusoidal steady state. Using

H =11, h e- ik 'r eiwt  (10) Maxwell's equations, it can be shown that the unit vectors
e and hare orthogonal to each other and both these vectors

where k is the wave propagation vector, r is the displacement are orthogonal to the propagation vector k. The direction
vector that determines the observation point in space, the of either e or h determines the polarization of the plane
unit vectors e and h correspond to the directions of the wave. In Figure 6, the plane wave is shown at a particular
electric and magnetic fields, respectively, and the complex instant in time. At that instant, all points on the plane P
coefficients E, and 11, represent the strengths of the electric experience the same electric and magnetic field intensities,
and magnetic fields, respectively. It is important to note that, namely, E' and 11', respectively. Therefore, the plane wave
in gencial, the above expressions give E and II complex can be thought of as being constituted of infinitely large
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"equi-field" planes, where each plane is perpendicular to the involved in the derivation of the model and to clearly state
propagation direction k. the assumptions made during its development. Later, we

Since time variations in the electric field are the will study the reflectance curves predicted by the model for

cause of the magnetic field, and vice-versa, the amplitudes surfaces of differing roughness.

E, and 1l, of the two fields are dependent on each other, and Consider a plane wave incident on a surface, as
are related as follows: shown in Figure 7. All vectors and surface points are defined

using the Cartesian coordinates x, y, z with origin 0 and unit
Ho = E /Eo, (12) vectors x, y, and z. The height of the surface is determined

V by the function h = h(x, y), and the mean level of the surface

where e and p are the permittivity and permeability of the is the plane z = 0. The location of a surface point Q is
medium, respectively. The coefficient V/-lu is often re- described by its displacement vector r:

ferred to as the wave impedance of the medium. Due to the r xx + yy + h(x,y)z. (16)
above stated dependencies between the electric and mag-
netic field vectors, we see that an electromagnetic wave is
completely defined by either of the two field vectors, E or
H. 'P

A/

While studying surface reflection, we will be inter-
ested in determining the energy of light reflected by the sur-
face in various directions. However, as we will see shortly,
reflection models based on physical optics estimate the elec- /V
tromagnetic field scattered by the surface rather than the
energy. Therefore, a relationship between the field and the
energy carried by an electromagnetic wave would be useful. ,
The rate of flow of complex energy per unit area in an elec- R,

tromagnetic wave can be described by a vector S called the hi
complex Poynting vector [2]. S is defined as: ey

and the quantity , o , r f

1

Sa = Re[S] = 2Re[E x H*] (14)

defines the time-averaged rate of flow of physical energy Figure7: A plane wave incidenton a rough surface, scattered
per unit area and has the dimensions watts/meter 2. Let E, H, in various directions.
and S. be the scalar values of the E, H, and Sa,, respectively.
Then the average rate of flow of energy per unit area is All quantities associated with the incident field
determined from equations 14 and 12 as: will be denoted by the subscript 1 and all those associated

1 "1 with the scattered field by the subscript 2. We will represent
Sa = - = 1./II1111. (15) the plane wave by its electric field intensity only, keeping

2 2 VP in mind that the magnetic field intensity may be determined

This equation will be used later to find the radiance of a sur- from the electric field. The incident field at the surface point

face from the electromagnetic field scattered by the surface. Q may be written as:

4.1.2 Becknmann-Spizzichino Model E1 = E , eteikl.r eiOt (17)

The Bckmnann-Spizzichino model uses physical where E0, represents the electric field amplitude, el is the

optics to describe the reflection of plane waves from smooth direction of the electric field, k, is the wave propagation

and rough surfaces. Owing to the electromagnetic character vector, and w is the radian frequency of field oscillation.

of light, this model is directly applicable to the reflection of We are interested in the instantaneous scattering of
light by surfaces. A detailed derivation of this model can the incident plane wave by the surface. Hence, we can drop
be found in [1]. Our intention is to highlight the key steps the second exponential term in the above equation, which
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represents the temporal variation of the incident field. The the point of observation, and let the variable R' denote the
incident propagation vector k, will be assumed to always distance between P and points on the surface S, as shown
lie in the x-z plane of the coordinate frame. The angle of in E.gure 7. We would like to find the scattered field E2 at
incidence 0, of the plane wave is the angle between the prop- the point P. To this end, let us consider a volume V that is
agation vector k, and the z axis of our coordinate frame. If bounded almost everywhere by the surface S but is extended
we are interested in the field scattered by the surface in the such that the point P lies just outside the volume. Then, it is
direction k2, the corresponding scattering angle 0r is the an- reasonable to assume that the field (E)s is continuous, and the
gle between k2 and the z axis. For scattering directions that above wave equation must therefore be satisfied everywhere
lie outside the plane of incidence (ki, z), we must introduce inside V. Furthermore, the point inside the volume that is
an additional angle 0r, as shc in in Figure 7. The propaga- nearest to P will experience almost the same field as the
tion constant k corresponding to the propagation vectors k, point P. Using these assumptions and Green's first and
and k2 is related to the wavelength A of the incident wave second theorems, the scattered field E2 at the point P can be
by equation 11. determined [1] from equation 19 as:

The polarization of the incident wave is deter- 1 ( Ob (OES
mined by the direction of the vector el. For parallel polar- E2(P) = P (E)s- t -( )s dS, (20)
ization, el lies in the the plane of incidence; for perpendicular On O

polarization, el is normal to the plane of incidence. An un- where:
polarized incident wave is one whose el vector is neither ei '

parallel nor perpendicular to the plane of incidence, and in R---. (21)
general, can vary in direction as a function of time. We will This is called the felmholtz integral, which gives us the so-
see later how the polarization of the incident field E1 affects lution of the wave equation at any point inside (P is almost
the intensity of the scattered field E2. We will not, however, lu ion of the a o the fuis (st
concern ourselves with the polarization of the scattered field inside) a region in terms of the values of the function (sur-
E2, as we are only interested in the intensity of E2. From face field (E)s) and its normal derivative on the boundaryhere on, we will assume the polarization of the incident wave (the surface S) of the region. A detailed derivation of the
to be either parallel or perpendicular, and the incident field Hlmholtz integral is provided in [1]. Though it is derivedwill be denoted by the scalar El, where: for a closed surface, it is also applicable to open surfaceslike the one in Figure 7.

El = ei .E1 . (18) In order to evaluate the above integral, we must
find (E)s and (OE/On)s, i.e. the field and its normal deriva-

What happens when the incident plane wave tive on the surface S. In general, these two quantities are
strikes the surface? A simplistic description of the phys- unknown. Kirchoff's assumption may be used to approxi-
ical situation is as follows. A conducting surface will have mate the values of the field and its normal derivative at each
an abundance of electrons that are very loosely bound to their point on the surface. The approximation is obtained by as-atoms. When these electrons are subjected to the electro, suming that the surface does not have any sharp edges, and
magnetic field carried by the incident wave, they experience thus the field at a point on the surface is equal to the field

forces. These forces result in a movement of the electrons, that would be present on a tangent plane at that point. Under

often referred to as surface currents. The surface currents this assumption, the field on S may be determined as:

give rise to new electromagnetic fields that interact with the

incident field to determine the resultant field at the surface. (E)s = (1 + F)Et . (22)
Mathematically, the resultant field (E)s at a surface point Q
must satisfy the wave equation2: And, by differentiating this equation, the normal derivative

L 2(E)s + k 2(E S = 0, (19) of the field is determined as:
(OE\ =( -)_tn, (3

where k is once again the propagation constant. Thcreforc, - (I - F) Ei ki . n', (23)
the field (E)s at the surface may be determined by solving
the wave equation for the boundary conditions imposed by where n' is the normal to the surface at the point under
the surface profile. consideration and F is the Fresnel reflection coefficient for a

The field scattered by the surface in any direction smooth plane.
can be determined from the field at the surface. Let P be Consider a plane wave incident on a smooth sur-

2It can be shown [21 that for a source.free region of space, Maxwcll's face, as shown in Figure 8. As described above, the intensity

equations reduce to the wave equation, of the reflected wave is determined by the surface field (E)s,
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which in turn is dependent on the surface currents. The sur- incident wave propagation vector k, and the normal vector
face currents induced by the incidentwave are determined by n' at the surface point under consideration. Therefore, the
the angle of incidence, the polarization of the incident wave, angle 0' will have different values at different points on
and the electrical properties (permittivity, permeability, and the surface, while a, is constant for a given incident wave.
conductivity) of the surface medium. A fraction of the in- The term Y in the above equations is called the normalized

admittance of the surface medium and is a function of the
complex index of refraction q'. Hence, Y is also a function
of the electrical properties of the medium. For a conductor,

Incident wave reflected wave Y approaches infinity, while for a dielectric (non-conductor),
Y is almost zero.

smooth surface

boundary

Figure 8: Light wave incident on a smooth surface. -

Figure 9: The "local" scattering geometry. The local angle
cident electromagnetic energy, determined by these factors, of incidence 0[' and the local surface orientation n' may differ
will be reflected by the smooth surface, and the remaining from the global angle of incidence #i and the mean surface
energy transmitted by the surface. The Fresnel reflection orientation n.
coefficient F determines the fraction of incident energy that

is reflected by the smooth surface. It is often written as
F(O', q), where Oi represents the angle of incidence, and Let us now return to the problem of finding the
n' is the complex index of refraction whose value is deter- scattered field E2 by evaluating the Helmholtz integral given
mined by the electrical properties of the surface medium. by equation 20. Let us assume that the surface under con-
In equations 22 and 23, F represents the fraction of the in- sideration is a rectangular patch of area A and dimensions
cident field that is reflected by a smooth surface. As we 2X and 2Y in the x and y directions, respectively; i.e. A =
have shown before, the reflected energy may be determined 4XY. Further, we assume that the observation point P is at
from the reflected field by using equation 15. In deriving a great distance from the surface compared to the physical
their reflectance model, Beckmann and Spizzichino have as- dimensions of the surface patch and, as a result, the vector
sumed that the incident wave is of either perpendicular or k2 is constant over the entire surface area. Therefore, it
parallel polarization. The Fresnel coefficients for parallel can be seen from Figure 7 that, for any surface point, the
and perpendicular polarization are, respectively [I]: distance R' can be expressed in terms of the distance R. and

the displacement vector r as:

Y'cosOf - (Y' - sin2 O)
Fpara = y ts V __ , (24) kR' = kRo - k2 .r. (26)

Y'cosO'+ /(Y2-_ sin20[')o +By substituting equations 22, 23, and 26 in equation 20, we

S "!Oy2 - sin20') can express the scattered field E2 as:

Fperp = o I - (25) E Yike, ofx
cosO' + (Y' - sin2 Os' E i f (ah'X + ch'Y - b) eiv 'r dxdy

It is important to note the difference between the angle of (27)
incidence 04 shown in Figure 7 and the angle of incidence 04' where
in the above equations. As shown in Figure 9, the angle O0
is the "local" angle of incidence, i.e. the angle between the v = (v., vY, v)
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= k(sinOi - sinOr cosO,) x distribution function. Though Beckmann and Spizzichino

+ k(sinOsinO,) y - k(cosOi + cosOr) z have discussed a variety of distributions, they consider the
normal distribution to be the most important and typical of

a = (1 - F)sinOi + (1 + F)sinOcosO,. a rough surface.

b = (1 + F)cosO, - (1 - FlcosOi The normal height distribution model was de-

C = - (1 + F)stflOrslfr (28) scribed in the previous section. The surface height has the
mean value <h> = 0, standard deviation oh, and correlation

If the admittance of the surface is finite, we can see from distance T. The normal distributionpl(h) is given by equa-
equations 24 and 25 that the Fresnel reflection coefficient F tion 4 and the autocorrelation function C(r) by equation 5.
is an involved function of the local angle of incidence 0 ' For Since h and the scattered field E2 are related by equation 27,

a rough surface, the local orientation will depend on the local the statistics of E2 can be determined from the statistics of

slope of the surface. In other words, the factors a, b, and h. Beckmann and Spizzichino have derived in detail the
c in equation 27 will not be constant over the surface area. mean field and mean power scattered by the surface in an
Therefore, for finite admittance, the integral becomes very arbitrary direction for any given angle of incidence. They

cumbersome to evaluate, and no solution to the scattering normalize the field and introduce the scattering coefficient

problem is known that is general and exact at the same time. p = E21E 2., and present a detailed derivation of the first and

This leads us to our next assumption: the surface medium second order statistics of p. This normalization gets rid of

is considered to be a perfect conductor, i.e. Y -- oo. F rom the factor in front of the integral in equation 27 and helps
equations 24 and 25, we then see that: reduce the number of terms involved in the derivation. Since,E2ss is constant, p and E2 are proportional to each other, and

FPa. = 1, and F = -- 1 (29) the statistics of E2 can be determined from those of p. It
turns out that the mean field <E2> will be non-zero in the

and the terms a, b, and c in equation 27 are independent specular direction (0, = O) but will tend rapidly toward zero
of x and y. We also assume the incident wave to be of as 0 deviates from the specular direction. Since <E2> is
perpendicular polarization, i.e. F = Fpep = - 1. a complex quantity, a physical interpretation of its depen-

The terms h'x and hy in equation 27 denote the dency on O and 0, is not obvious. For example, it does
slopes of the surface h(x, y) in the x andy directions, respec- not follow from <E2> = 0 that <I E2 1> = 0. Therefore,

tively. If the surface is perfectly smooth, we see that h = 0, Beckmann and Spizzichino have only used <E2 > as a step-

h'x = 0, and h' = 0. A perfectly smooth surface will reflect ping stone to derive the mean scattered power <E2E2*>
light only in the specular direction Or = Oj, and for this direc- = <I E2 12>. For an incidence angle O, the mean power
tion we see that v.r = 0. Therefore, the field E2. scattered scattered in the direction (0r, 0,) by a rough surface, whose
in the specular direction by a smooth perfectly conducting height h is normally distributed with mean value <h> = 0,
surface is: standard deviation ah, and correlation distance T, is given

by:

E 4Zm - Ew ikeikR ° x Y 2 cosOt dxdy (30) <EE* > = cs20 g ( 2IrO JXLY < ' *>A 2 R0
2  e9(P

or: = E jikeikRo cosCiA (31) r T 2 D 2  m '00 e v2 /4m \33)

2-,R0 (1 + A =i m!m e

The magnitude of the field scattered in the specular direction where
by the smooth perfectly conducting surface is:

= EoA cosO9 (32) g = 2,r (cos0i + cosOr)) (34)

, po = sinc (vEX) sinc (vyY) (35)

We see that for a perfectly smooth surface, the D = ( + cosOi cosOr - sinOi sinO, cosor )
scattered field is obtained with ease. However, a perfectly , ( ;si + cosO (36)
smooth surface is only the limiting case of a rough one. We
will assume that our surface has random irregularities. By Vxy = FVx2 + Vy2  (37)
using a statistical model for the irregularities, we can predict
the reflection characteristics of the surface. The uncertainty In the previous section, the Rayleigh criterion was
in height of a surface point can be described by a probability described to illustrate how the roughness of a surface is
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related to the wavelength of incident light. We see from we study the reflectance curves predicted by this model, it is
equation 34 that the factor g in equation 33 is proportional important to understand the conditions that ensure the valid-
to the square of o'A/,. Therefore, g represents the rough- ity of the model. We therefore summarize the assumptions
ness of the surface, and the three cases g < 1, g z: 1, and we have made during the derivation of the model and discuss
g > 1 correspond to smooth surfaces3, moderately rough the restrictions imposed by these assumptions.
surfaces, and rough surfaces, respectively. It is important
to note that the model under consideration only attempts to 4.1.3 Assumptions and Related Comments
describe the reflection mechanism that is often referred to
by the vision research community as "specular reflection". The surface height is assumed to be normally dis-
As seen from equation 33, the mean scattered power is the tributed. However, Beckmann and Spizzichino have
sum of two terms. The first term, e-gpa2, is the specular derived reflectance models for surfaces with other
spike component of the specular reflection. It is seen from height distributions, and also surfaces with periodic
equation 35 that when the surface dimensions are small, P. profiles.
becomes a very sharp function of Oj and 0, and is equal to The radius of curvature of surface irregularities is large
zero for all scattering directions except a very narrow range compared to the wavelength of incident light (Kir-
around the specular direction. Since the mean slope of the choff's assumption). This assumption is required to
surface is constant and is independent of the roughness of approximate the electromagnetic field and its normal
the surface, a privileged scattering in the specular direction derivativeon thesurface. The approximation will break
is expected. The second term in equation 33 corresponds down if the surface irregularities include sharp edges
to the specular lobe4, i.e. the diffusely scattered field that or sharp points.
results from the roughness of the surface. As we will see
shortly, the specular lobe component is distributed around The surface is assumed to be a perfect conductor. This
the specular direction. For a perfectly smooth surface, g = assumption forces the quantities a, b, and c in equa-
0 and the specular lobe vanishes, while the specular spike tion 27 to be constants, thus making it easier to evalu-
is strong. As the roughness measure g increases, the spike ate the Helmholtz integral. Beckmann and Spizzichino
component shrinks rapidly, while the lobe component in- claim that this assumption is not as severe as it may first
creases in magnitude. The exponential series given by the appear and that surface roughness has a greater effect
summation in the lobe component may be approximated for on the scattered field than the electrical properties of the
smooth (g < 1) and very rough (g > 1) surfaces. The ap- surface medium. Moreover, it is possible to approxi-
proximations result in simpler expressions for the scattered mate the scattered field and power for finite conductors
power for these two extreme surface conditions: by averaging the Fresnel coefficient F over the entire

surface area and using the resultant value <F> as a
E°12* cos2Oi -g (po2  constant in the Helmholtz integral. This way the mean.X> A2 R e 2  field and mean power scattered by a finite conductor

Ar 2  e v' 2T'14 are found [1] to be

A a- <E2 >f = <F> <E 2 >o (40)
when g < 1 (38) <E2E2 * >f = <FF* > <E2E2* >oo,(41)

Eo2 Acos2 Oi ,r T2 D2  ( -vxy2W2\
< E2E2 * >roug E 2 A 2 2 v' -rh2Dexp 2 2 -2  where the indicesf and oo denote finite and infinite

A2R 2 V,2 ch 2 x" 4 2conductivity, respectively.

when g > 1 (39) We have ignored the masking and shadowing of surface

points by adjacent surface points. Adjacent points mayThe above equations for scattered power repre- obstruct either the wave incident at a given point or
sent the Beckmann-Spizzichino reflectance model. Beforeobtutehrtewaeicdnatagvnpntrthe waves scattered from it. Clearly, these effects are

3 functions of the angles of incidence and reflection. It
3We define a smooth surface as one that is either perfectly smooth or iscpos oc the sadn g and mask-

slightly" rough. is possible to compensate for the shadowing and mask-

4Bcckmann and Spizzichino have referred to this component as the ing effects by replacing the height function h(x, y) by
"diffuse" component. The term "diffuse" has historically been used by the S(x, y)h(x, y), where S(x, y) is the shadowing function
vision community to describe the reflection component that results from [28] that tends toward unity for surface points that are
other mechanisms such as multiple reflections and internal scattering. To illuminated and zero for those that are not.
avoid confusion we will refer to the diffuse component of specular reflection
as the specular lobe.
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a We have assumed that the incident wave is reflected
only oncc and does not bounce between surface points lens Image
before it is scattered in the direction of the observation dA, N i*
point P. Without this assumption it would be very R-. ,
difficult to compute the scattered field; no closed-form
solution that takes multiple scatterings into account is . ............
known at the present time.

" The incident wave is assumed to be perpendicularly"w/ 1
polarized. The mean field and power can also be 1
determined for parallel polarization. Beckmann and
Spizzichino have also discussed possible approaches 6s Z i1 f--

to solving the scattering problem when the polarization
vector el of the incident wave is neither parallel nor Figure 10: Image formation: light waves radiated by the
perpendicular to the plane of incidence, surface area dA, and gathered by the lens are projected onto

an area dAi,, on the image plane. Adapted from [10].
" The incident wave is assumed to be a plane wave. This

assumption is reasonable when the source is at a great
distance from the surface, relative to the physical di- projected onto the image area dAMi. Therefore, dw, in equa-
mensions of the surface. If the source is relatively close tion 42 corresporids to the solid angle subtended by the lens
to the surface, the incident waves must be considered when viewed from from the area dA,, and is determined as:
to be spherical waves. Ve have also assumed the ob- dA, cosy
servation point to be sufficiently far removed from the dw, gR2  (44)
surface to regard the scattered waves as plane waves.

The flux d2l, in equation 42 is the energy of light received
4.1.4 Surface Radiance and Image Irradiance from by the lens area dA, and can be determined from equation 15

Scattered Field as:

The physical optics reflection model predicts the d20, = S. dAcos, = < E2E2 * > dAjcos-7.
mean field and mean power scattered by a rough surface.
We are interested in the radiance of the surface sirce we (45)
know that radiance can be related to image irradiance [10]. By substituting equations 43, 44, and 45 into equation 42,
Radiance was defined in Section 2 as: we obtain:

d2 (pr =1 p7 Rof <EE 2 *> (46)= br(42) Lr=2Ve z2 dAis cosyt
L' = dWr dA, cosOr (45)

Consider the image formation geometry shown in Figure 10. It is not possible to determine the exact value of the radiance
from the statistics of the scattered field. The radiance LrFor convenience, we will use the areas and solid angles inheaoeeatnisataytemanepeedr-

shown in the figure to determine the surface radiance. The in the above equation is actually the mean (expected) ra-
surfaceelementfiguresprjeterdine the ensurfe onan. are diance, <Lr>. The mean scattered power <E2E2*> wassurface element dA is projected by the lens onto an area determined as an integral over the entire area of the surface.
dAim on the image plane. Since the solid angles subtended In Figure 10, we see that the image element dAim receives
from the center P of the lens by both areas dA and dAim are light radiated only by the surface element dA, and, therefore,
equal, we can relate the two areas as: the mean scattered power must be computed as an integral

dAim cos (z 2  over the surface area A = dA. Since the image element area
dAS = CO k f (43) dAi, is constant for all viewing directions 0., the area of inte-

gration dA, is determined by equation 43. Thus, for a given

As the viewing direction 0, changes, we see that the sur- incidence angle 04, the radiance in the direction (Or, 0,) of a
face area dA, that is projected onto the same image element rough surface, whose height h is normally distributed with
(pixel) area changes as a function of 0,. Since the image mean value <h> = 0, standard deviation ah, and correlation
element area dAi,, is constant for a given sensor, the surface distance T, is given as:
area dala must be determined from M~i,,. All light rays ra- L, FuE12 cOs20, e-g 9 2 dAi. cosy 2diated from dA, that are incident on the lens area dAl are 6 2A2 e C PO
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7r 74 D2  image irradiance values, however, and since image irradi-+ cosO, m!m (47) ance is proportional to surface radiance, we will illustratern-1 Msurface reflectance properties by radiance diagrams, where
Similarly, from equations (38) and (39), the surface radiance absolute surface radiance is plotted as a function of viewing
for smooth and rough surfaces may be written as angle (Or, 0,) and incidence angle Oi. Radiance diagrams

will be plotted for different values of the surface roughness
= i/'E1

2 cos2Oe ( Iz\ 2 dAi. cos7 2 parameters. For simplicity, we will assume that the observa-
LV C 2 A2) O s2  po tion point P lies in the plane of incidence, i.e. or = 0. In this

section, we will plot radiance as a function of the viewing

7r T2 D2 g angle 0, for fixed values of the incidence angle O. Later,
+ o we will investigate how the radiance changes as a function

of Oj, for fixed values of Or.

/'iEo 0j V T2 2 OS i ' 2 D2  -VZy2 T2  As mentioned earlier, the parameter g in equa-
L = V 2 2 COSOr vz 2  e 4Vz22(h2 tion 47 represents the roughness of the surface. We see

when g > 1 (49) from equation 34 that g is a function of the ratio ojA In
Section 3 we have also seen that the shape of a normally
distributed surface can be represented by the ratio oa'/. We

As stated in Section 2, we can also obtain the would like to see how the radiance diagram changes with
BRDF, f (Om; Or, ir) of the surface from its radiance and the two ratios rh/A and oah/T. We will vary the values of
irradiance. From Section 2, we see that surface irradiance the two ratios by keeping ah constant and varying A and
su is defined as the light energy incident per unit area of the T. Figure II shows radiance diagrams for different values
surface. If E1 is the scalar value of the incident plane wave of (Th/A. All the radiance diagrams are generated by using
E, the surface irradiane can be obtained by once again the general radiance expression given by equation 47. The
using equation 15: specular lobe component of the radiance was computed by

1 summing the first 100 terms of the exponential series. In
1, = S. cosOi = FL < EIEI* > cosOi (50) Figure Ila, we see that ah/A = 0.002, ie. g ;z 0. From

YC equation 47 we see that when g ; 0, the lobe component is
where the term costi accounts for the fact that the same near zero and the spike component is dominant. The surface
amount of incident energy is received by a greater surface behavcs in a mirror-like manner and teflects light only in the
area when the angle of incidence O is increased. Hence, the specular direction 0, = 0, Also note that the radiance in the
BRDF of the surface is determined using equations 47 and specular direction is constant for different values of 0,. This
50 asfr = L,/I. is consistent with our real-world experience; when we look

at a perfect miror from the specular angle, we see a virtual
Using the imaging geometry shown in Figure 10, image of the source. Further, the image appears the same

Horn [10] has established a relationship between surface irrespective of the angle of incidence. We have found that
radiance L and imae irria e . he radiance and isaivn this mirror-like behavior is observed when (Th/A < 0.025. In
is found to be proportional to surface radiance and is given Figure 1 Ia, the spike component look like a delta function.
by: However, from equation 35 we see that the spike component

1i, = Lr 2 cos47. (51) is really a sine function. This is seen in Figure lib, where
4 one of the radiance curves in Figure 1 Ia is magnified.

When the image covers only a narrow angle of the scene, As (Th/A is increased above the value 0.025 (Fig-
we see that - ; 0 and it is reasonable to assume that cos7'= ures lIc and 1ld), we find that the spike component de-
1 in the above equations. creases rapidly in magnitude 5. However, the spike compo-

nent is still very strong for large values of 0, and Oi. This is
4.1.5 Radiance Diagrams because g (equation 34) is a function not only of (Th/A, but

also of (cosOj+ cosO,). Therefore, for large values of 1i and
The performance of a physical optics reflectance 0,, g approaches zero, the spike component increases, and

model is usually illustrated by scattering diagrams [1] in the surface tends to behave like at mirror. However, we see
which either the scattered field or the scattered power is that when (7h/A is increased further (Figures Ile and 110,
plotted as a function of the source and viewing angles. In
radiometry, surface reflectance is often represented by the 5lf ute radianceor he BRDF is normahzed bythe correspondingvaluein
BRDFf,(O,; 0r, 0',) normalized by the BRDFf,,, in the spec- the specular direction, the decrease in the spike component is not observed.
ular direction [31]. Since we are interested in interpreting his for this reasonthat wehavechosentoplottheabsoluteradiancevalue.
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Figure 11: Radiance diagrams predicted by the Beckmann-Spizzichino model for different values of oh/A.
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Figure 12: Radiance diagrams of the specular spike component predicted by the Beckmann-Spizzichino model for
different values Of Oaz/T.
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Figure 13: Radiance diagrams of the specular lobe component predicted by the Beckmann-Spizzichino model for
different values Of 'hI T.
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the spike component fades away, and the lobe component the specular reflection mechanism. To their specular reflec-
begins to dominate the radiance value. We have found that tion model, Torrance and Sparrow have appended the Lam-
when Oh/A > 1.5, the spike component disappears, and the bertian model to account for internal scattering and multiple
radiance value is determined solely by the lobe component. reflection mechanisms. We will very briefly describe the

Figure 12 and Figure 13 illustrate how the radiance Lambertian model 6 and proceed to explain the Torrance-
diagram is affected by the surface roughness ratio oh/T. For Sparrow model, once again highlighting the important steps
the radiance diagrams in Figure 12, oh/A = 0.002. We see and assumptions. Later, we will present radiance diagrams
that the spike component is unaffected by changes in the cor- predicted by the Torrance-Sparrow model for different sur-
relation distance T. In other words, for a given wavelength face roughness values, and compare it to the Beckmann-
of incident light, the spike component would be the same Spizzichino physical optics model.
for two surfaces with different shapes but the same root-
mean-square height oh. However, in Figure 13 we see that 4.2.1 Lambertian Model
the shape and magnitude of the lobe component are greatly Lambert [15] was the first to investigate the mech-
dependent on the ratio oh/T. anisms underlying diffuse reflection. Surfaces that satisfy

In Figure 13a, we compare the radiance diagrams Lambert's law appear equally bright from all directions. In
generated by using the general radiance expression (equa- other words, the radiance of a Lambertian surface is inde-
tion 47) and the approximate radiance expression for rough pendent of the viewing direction. Broadly spealdng, there
surfaces (equation 49) for ohIA = 10.0 and oh/T = 0.1 . are two mechanisms that produce Lambertian reflection. In
We see that the expression Lrrush approximates the lobe one case, the light rays that impinge on the surface are re-
component of the Lr quite well, and may be used when the flected many times by surface undulations before they are
spike component is negligible. In Figure 13b, we see that scattered into space, as shown in Figure 14a. If these multi-
the lobe component is sharp and concentrated around the pie reflections occur in a random manner, the incident energy
specular direction. We have found that when oh/T < 0.02, is distributed in all directions, resulting in diffuse reflection.
the shape of the lobe component resembles that of the spike Another mechanism leading to Lambertian reflection is the
component. However, the magnitude of the lobe peak in- internal scattering of light rays. In this case, the light rays
creases with the incidence angle 0,. This effect results from penetrate the surface and encounter microscopic inhomo-
the term l/cos0, in equation 49. From Figure 13c-13f, we geneities in the surface medium, as shown in Figure 14b.
see that as the ratio Oh/T increases, the lobe gets wider and The lightrays are repeatedly reflected and refracted atbound-
the lobe peak decreases in magnitude. In fact, for OhIT < aries between regions of differing refractive indices. Some
0.05 the lobes may be approximated by Gaussian functions of the scattered rays find their way to the surface with a
with mean values corresponding to the specular direction 0, variety of directions, resulting in diffuse reflection. When
= 0,. For larger values of Oh/T, however, the the lobes tend diffuse reflection produced by either or both of the above
to peak at viewing angles greater than the specular angle; mechanisms produce constant surface radiance in all direc-
these are called off-specular peaks. Also note that as 0, ap- tions, we have Lambertian reflection.
proaches 90 degrees, the radiance values approach infinity. The surface radiance Lr of a Lambertian surface
By using a shadowing function, this effect can be minimized, is proportional to the irradiance I, (incident energy per unit
while preserving the shape of the radiance curves for smaller area) of the surface. Consider an infinitesimal surface area
values of 0,. dA, illuminated by an infinitesimal source area dAi, as shown

in Figure 15. The flux incident on dA, may be determined
4.2 Geometrical Optics Model from the source radiance Li as:

An outstanding feature of visible light is its short wave- d2Oi = LidwtdAi. (52)
length. Often, the wavelength of incident light is far shorter
than the physical dimensions of the surface imperfections From the solid angles subtended by the surface and source
it encounters, and in such cases it is possible to solve the areas, we obtain:
problem of reflection in an approximate way. The approxi- dAi = d-iw r2 , (53)
mation that is valid for short wavelengths of light is known dA, cos0O
as geometrical optics, and it allows us to treat the reflec- dws = r2 (54)
tion problem in a way far simpler than the physical optics
approach of solving Maxwell's equations. 6Lambertian reflection is normally categorized as "body" reflection

In this section, we will discuss the Torrance- rather than surface reflection. The model is discussed here only because it
Sparrow model, which uses geometrical optics to describe is used later to represent one of the primary reflection components.
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by rough surfaces. Based on geometrical optics, this model
is valid only when the wavelength of light is much smaller
than the root-mean-square surface roughness. The surface
is modeled as a collection of planar micro-like facets. As
explained in Section 3.2, the surface has a mean surface
orientation n, and the slope a of each planar facet with
respect to the mean orientation is described by a probability
distribution. Each facet reflects incident light in the specular

Atli, direction determined by its slope. Since the facet slopes
are randomly distributed, light rays are scattered in various
directions. Therefore, it is possible to assign a specific

Multiple Rellbctons Intemal Scaenq distribution function to the facet slopes and determine the
radiance of the surface in any given direction.

Figure 14: Diffuse reflection resulting from multiple reflec- Torrance and Sparrow have assumed the facet
tion and internal scattering mechanisms. slopes to be normally distributed. Further, they have as-

sumed the distribution to be rotationally symmetric about
Substitutingequations 53 and 54 into equation 52, we obtain: the mean surface normal n. Hence, facet slopes may be

represented by a one-dimensional normal distribution:
d2Oi = LidwidAscosOi . (55) 2

The surface irradiance is determined from the above equa- p( = ce -2a (58)
tion as:

d2 (5 where c is a constant, and the facet slope a has mean value
I = I <a> = 0 and standard deviation a. As we have stated

Since surface radiance is proportional to surface irradiance, earlier, for this surface model, roughness is represented by
and since it is meaningful only when it attains positive val- the parameter or.

ues, it can be expressed as: Consider the geometry shown in Figure 16. The
surface area dA, is located at the origin of the coordinate

Lr =tzdff max [ 0 , (Li dwi cosOi)], (57) frame, and its surface normal points in the direction of the z-
where tf, determines the fraction of the incident energy axis. The surface is illuminatedby abeam of light that lies in
that is diffusely reflected by the surface thex-z plane and is incident on the surface at an angle 0j. We

are interested in determining the radiance of the surface in

the direction (0r, 0,.). Only those planar micro-facets whose
d normal vectors lie within the solid angle dw' are capable ofdA; specularly reflecting light flux that is incident at the angle O0

into the infinitesimal solid angle dw,. From the angles 0i,
O, and 0, we can determine the local angle of incidence O;
and slope a of the reflecting facets:

O = O Cos- (cosOcosOi - sinO, sinOicost,) , (59)

dw. 
a = cos- (cosOl cosO['

-dA, + sinios ( 'cos(sin - 1 (sino, sinOr i sin20 ) ))(60)

Figure 15: Dependence of the incident light energy on the The number of facets per unit area of the surface
source direction. that are oriented within the solid angle dw' is equal to (pa(a)

dw'). Therefore, the number of facets in the surface area dA,4.2.2Torrlthat are oriented within d is equal to (p d d). Let
4.2.2 Torrance-Sparrow Model a1 be the area of each facet. Then, the area of points in dA,

The Torrance-Sparrow model was developed with that will reflect light from the direction 0 into the solid angle
the aim of describing the mechanism for specular reflection d,, is equal to (a p, .a) dw dA,). All the reflecting facets
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Torrance and Sparrow have also considered the
masking and shadowing of one micro-facet by adjacent
facets. Adjacent facets may obstruct flux incident upon
a given facet or the flux reflected by it. In order to compen-

n' n sate for these effects, the geometrical attenuation factor7

Incident beam 01 G(Oi, 0r, Or) is introduced. The obstruction of incident or
Or reflected beam reflected light will depend on the angle of incidence and the

dangles of reflection. Each facet is assumed to be one side of
a V-groove cavity, and light rays are assumed to be reflected
only once. A detailed derivation of G(Oi, Or, 0,) is given in
[31], and the final expression is found to be:

( 2 cs coO, 2cos O,
- - G(Oi,Or,0r) = min 1, 2coscosO7  2 cosa cosi "

(65)
Taking the Fresnel reflection coefficient and the geometrical
attenuation factor into consideration, the flux AP2 , reflected

Figure 16: Coordinate system used to derive the Torrance- into the solid angle dWr may be determined from the flux
Sparrow model. d245i incident on the reflecting facets as:

d20, = F'(Oi', q')G(Oi,O,(r) 2P . (66)
are assumed to have the same local angle of incidence, O .
From equation 55, the flux incident on the set of reflecting The radiance L, of the surface dA in the direction (0,, 0,r) is
facets is determined as: defined as: d2@,

d2Oi = Li dwi (a1 p,,(k) dwdA,) cosO . (61) dWr dA, cosO," (67)

The fraction of incident light that is reflected Using equations 61 and 66, equation 67 may be written as:

by each planar facet is determined by the Fresnel reflec- F'(Oi', i') G(Oi, r, 0,) Li dw (af p,(ce) dw'dA,) cosOf
tion coefficient. The Fresnel coefficients Fpara(O/ , n') and Lr =
Fpp(Oi', qi') determine the electromagnetic field reflected in (68)
the specular direction by a planar surface when the incident Earlier we stated that only facets with normals that
wave is of parallel and perpendicular polari~ation, respec- earlid w e st a re a l f rel s ht
tively. In this section, however, we are interested in the lie within the solid angle dw' are capable of reflecting light
reflected flux, i.e. the energy ilowing through a unit area. into the solid angle dwr. Therefore, dw' and dwr are related
The reflection coefficients for energy reflectance may be to one another. Though Torrance and Sparrow have only
determined from those for field reflectance as: used this relationship and have not derived it, we feel that

it is a very important one and deserves at least an infor-
Fpr(Oi, fl') = I Flrp(Oj', 71') 12 and, mal proof. To this end, let us consider the plane shown in

Figure 17, which includes the incident and reflected beams.
F (i') I Fperp(Oi', 71) 12 . (62) We will assume all incident rays of light are parallel. This

assumption is valid when the source is at a large distanceLeats a e that the polarization vector e of the nci- from the surface. We see that the areas dAr and dA"' sub-
dent light wave lies outside the plane of incidence, and let hz tend the same solid angle from the point I, and that JR =

and v represent the magnitudes of the resolved components 21P. Therefore, we can relate the twoiarea ans dA dAI4.

of el in the parallel and perpendicular polarization planes, Similarly, we see that dA" and dA" subtend the same solid

respctively. The Fresnel coefficient F'(O/, ti') for the inci-

dent wave may be expressed as a linear combination of the angle dw' from the point 0. Noting that OP = cosOi', we can
Fresnel coefficients for parallel and perpendicular incident relate the two areas as dA" = dA"/cos20'. Further, the areawarese coe s fdA' is a projection of the area dA" onto the surface of the

unit sphere, i.e. dA' = dA"cosOi. Using the above relations,

F'(Oi', n') = h F'para(O,', i') + v F'perp(Oi', q'), (63) we can relate dA' to dA,: MA=dA /4cosO'. Since dw' = dA'

where 7 ,his factor plays the role of the shadowing function Simentioned in the

h, v > 0 and h + v = I . (64) previous section.
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stated that their model is only valid when orhIA > 1.0.
n- Therefore, this model must not be used to predict or inter-

pret reflection from very smooth surfaces, i.e. when h/,A
In t beam reflected beam < 1.0. To make their model more generic, Torrance and

re Sparrow have appended the Lambertian model to their spec-
ular model to account for diffuse reflection that may result
from multiple reflections or internal scattering. Thus, for an
angle of incidence 0j, the radiance in the direction (0,, 0,r) of
a rough surface whose facet slopes are normally distributed
with standard deviation o,, may be expressed as:

oa2

L, = csff max [ O, (Li dw LcosOi) ] + p, e

(72)
Figure 17: The source-viewer plane, illustrated to establish where t¢if and tcp,, determine the fractions of incident en-
the relationship between dw' and dwr. ergy that are reflected as components of the diffuse and

specular lobes, respectively. From the radiance and irradi-
ance, the BRDF of the surface may be obtained asf, = Lr/Is.

and dw, = dAr (areas on the unit spheres), we have: Once again, we will summarize the assumptions we have

I d= r made during the derivation of this model and discuss the
dw = 4 cost' "(69) restrictions imposed by these assumptions.

Hence, for a given dw,, the shape and size of the corre- 4.2.3 Assumptions and Related Comments
sponding dw' is dependent on the local angle of incidence * The surface is modeled as a collection of planar micro-
0, which is in turn dependent on the angle of incidence 0i facets, and thu facet slopes are normally distributed.
and the angles of reflectance (0r, 0P,) (equation 59). Note Other distributions, however, may be used io describe
that for a perfectly smooth surface, the parallel incident rays the facet slopes. For example, if the surface height is
will be reflected in a single direction (the specular direction) assumed to be normally distributed with standard devia
and will not be scattered into a cone as shown in Figure 17. tion orh and correlation distance T, the slope distribution
Therefore, for this limiting case, the above relationship be- may be determined from the height distribution as (1]:
tween dw and dw, will not be valid.

Substitutingequations 58 and 69 into equation 68, p"(a) T exp (_.coo xp . (73)
we obtain: 2 oh /fcos2 a \2ah/IT

L, dwi - . The size of the planar facets is much greater than the
L = s , e , (70) wavelength of incident light, i.e. oh > A. Therefore,

we can assume that the light rays are reflected by each
whr c af F'(Oi', qi') G(O,, Or, Or) (7)facet in its specular direction only. Furthermore, ch

whrec = (71) > A implies that the spike component of reflection is
4 negligible and that the model determines only the lobe

Note the similarity between the above equation component of reflection.
and the expression for the specular lobe predicted by the The geometrical model takes the Fresnel reflection co-
Beckmann-Spizzichino model (equation 49). Thus, the efficient F1 into account. Therefore, the polarization
Torrance-Sparrow specular reflection model describes only of incident light and the conductivity of the surface
the lobe component of specular reflection; there is no term incdiunneednot beconstrained. Asaresult,themodel
in the above equation that represents the spike component of is capable of predicting reflections from both conduc-
specular reflection. The radiance is determined only by tors and dielectrics.

the roughness parameter a4, and unlike the Beckmann-

Spizzichi: . model, there is no dependence on the wave- Each facet comprises one side of a symmetric V-groove
length A of incident light. However, from the physical optics cavity. With this assumption, the shadowing and mask-
model we have seen that the spike component is significant ing effects are compensated for by using the geometri-
only when ah/A < 1.5. Torrance and Sparrow have clearly cal attenuation factor G.
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" The source is assumed to be at a great distance from different values of Oi. We see that, forangles ofincidencenot
the surface, so that all light rays that are incident upon near the grazing angle, G equals unity over an appreciable
the surface area "A are nearly parallel to one another. range of 0,. In the following radiance diagrams, we will see
This assumption simplifies the relationship between the that it is within these ranges of O that the surface radiance
solid angles dw' and dwr (equation 69). attains maximum values. Therefore, we assume that G = 1

for all values of O and 0,. With the above two assumptions,* The final model includes the Lambertian model to ac- we see that , is constant for all values of Oi and 0,.
count for diffuse reflection mechanisms such as multi-
ple reflection and internal scattering.

4.2.4 Radiance Diagrams

,jrrance and Sparrow have evaluated the perfor- S"
mance of their model by plotting the ratio of the BRDF in a e..Y5,
given direction to the BRDF in the specular direction. The
normalized BRDF distributions predicted by the model for
a dielectric (MgO) and a conductor (Al) were found to fit
the experimental data very well. We feel that plots of the
normalized BRDF could lead to misinterpretation of the re-
flectance characteristics, however. Since image irradiance
is proportional to surface radiance, we once again choose to
plot absolute radiance diagrams. Since our intention is to
compare the Torrance-Sparrow model with the Beckmann- Figure 19: Geometrical attenuation function plotted as a
Spizzichino model, we will neglect the Lambertian com- function of the viewing angle, for different values of the
ponent of the Torrance-Sparrow model. Further, since the incidence angle.
Torrance-Sparrow model is valid only when h > A, we will
only compare it with the Beckmann-Spizzichino model for Figure 20 shows radiance diagrams for different
rough surfaces given by equation 49. values of the surface roughness parameter o,. Very small

values of o-, correspond to smooth surfaces, and for these
r(Or,. In;) values the specular lobes are similar in appearance to the

specular spikes shown in Figure 1 la. If the normalized
1.0 ------------------------------------- -- BRDF is plotted rather than the absolute radiance, the lobe

peaks will have constant values for all angles of incidence,
0.8 and the resulting plot will appear exactly like the radiance

0.6 diagram shown in Figure 1 la. It is important to note that
Figure 20a shows the specular lobes fora smooth surface and

0.4 not the specular spikes. Therefore, the Torrance-Sparrow
model is capable of predicting the specular lobe for smooth

0.2 _surfaces. However, for smooth surfaces, orh is comparable
.... _____ _ to A, and the spike component is generally much stronger

TT -J :d 020 0 7 s o p"' than the lobe component.
We see from Figure 20 that the peak value of the

Figure 18: Typical plot of the Fresnel reflection coefficient specular lobe increases in magnitude with the angle of in-
as a function of the local i.cidence angle. cidence Oi. As in the case of the physical optics model,

this effect results from the term 1/cosO, (equation 70). It
Consider the Fresnel coefficient F'(O,', q') and the is also clear that the width of the lobe incrcscs with the

geometrical attenuation factor G(O,, 0,, 0,) in equation 71. roughness parameter o,. It, fact, for relative',, .niall values
A typical plot of F'(01 , 77') as a function of 0,' is shown in of o,, the lobe may be aproximate, by .Gaussian func-
Figure 18. For metals and many other surfaces, it is observed tion that is symmetric with respect tt, twe specular dirwc:on.
[21] that F' has a nearly constant behavior until the local However, for higher values of a, (Figure 21), the lobe )eak
angle of incidence 0,' approaches 90 degrees. Therefore, we occurs at reflection angles greater than the specular angle.
will assume that F' is constant with respect to 0, and 0,. As with the physical optics model, these off-specular peaks
Figure 19 shows G(O,, 0,, 0) plotted as a function of 0,, for result from the term 1/cosO, (equation 70). For large values
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Figure 20: Radiance diagrams predicted by the Torrance-Sparrow model for different values of o',,.
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Figure 21: Radiance diagrams predicted by the Torrance-Sparrow model for different values of o',.
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of Oi and near-grazing values of 0,, the radiance values ap-
proach infinity. From Figure 19 we see that G approaches sensor

zero for near-grazing values of 0r. Torrance and Sparrow
have proved that G approaches zero at a faster rate than
the rate at which the plotted radiance approaches infinity. dition
Hence, in practice, the surface radiance equals zero when Or sou/e

=90 degrees. In Figure 21d, we have compared the radi- nietfyseua pk
ance diagrams predicted by theTorrance-Sparrow model and
the Beckmann-Spizzichino model. Though the two models
were developed using different approaches and different sur-
face models, we see that the resemblance between the two s l
radiance diagrams is remarkable. In the following section, diffus lobe

we relate the roughness parameters of the two models.

5 Observations
mroghne5.1 Primary Reflection Components m hn..

Figure 22: Polar plots of the three reflection components as

From the physical and geometrical optics reflection models, functions of the viewing angle for a fixed source direction.
we see that surface radiance may be decomposed into three
primary reflection components, namely, the diffuse lobe,
specular lobe, and specular spike. Polar plots of these three be written as a linear combination of the three reflection
components are illustrated in Figure 22. The sum of the components.
three lobe components determines the surface radiance de- C (
tected by the viewer for a fixed position of the source. The h, = CaU + T-- - -) + C 6 (Oi Or) 6 (0r)
diffuse lobe is represented by the Lambertian model, and is SOr 2 ,2 (74)
constant with respect to the viewing direction. The specular where, the constants Cdl, C,1, and C, represent the strengths
lobe tends to be distributed around the specular direction, of the diffuse lobe, specular lobe, and specular spike com-
and has off-specular peaks for relatively large values of sur- ponents, respectively.
face roughness. The specular spike is concentrated in a small
region around the specular direction. The strengths of the
specular lobe and specular spike components are related to 5.2 Moving Source and Fixed View
one another. For a smooth surface, the specular spike corn- In all the radiance diagrams we have presented so far, surface
ponent is many orders of magnitude greater than the specu- radiance was plotted as a function of viewing direction 0r,
lar lobe component. As the surface roughness increases, the for fixed values of the incidence angle O. In shape extraction
spike component shrinks rapidly, and the specular lobe be- techniques such as photometric stereo, structured highlight,
gins to dominate. We have seen from the radiance diagrams and photometric sampling, however, images of the observed
for the physical optics models that, for a given wavelength object are obtained by varying the source direction while
of incident light, the spike and lobe components are com- keeping the viewing direction constant. Note that when the
parable to one another only for a small range of roughness viewing direction is fixed, the term atcosOr in the specular
values. component of the Torrance-Sparrow model (equation 72) is

Owing to its simplicity and its conformity with constant, and the shape of the specular lobe is dependent
experimental data [31], the specular component of the solely on the term
Torrance-Sparrow model may be used to approximate the
specular lobe component. However, this model does not ( °2 ) (75)
have a spike component, so the spike component of the exp 2 '2 (

Beckmann-Spizzichino model may be used. We see from
equation 47 that the shape of the spike component is deter- Since a = 0 when Or = 0j, the specular lobe is found to be
mine by the term pa. Since p, is a very sharp function of 0 symmetric with respect to the specular direction. A similar
and 0,, we can approximate P, by a Gaussian function with analysis is applicable to the physical optics model for rough
low standard deviation or a double-delta function. Using surfaces (equation 49). The only term that is significantly
the above approximations, the image irradiance equation, affected by variations in 0, is the term e-V' 2 7'T/4v '2 ahA.
for fixed source direction and varying sensor direction, may
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Figure 23: Radiance diagrams predicted by the Beckmann-Spizzichino model and the Torrance-Sparrow model. In
these diagrams, radiance is plotted as a function of Oi for fixed values of 0 ,.
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Further, it can be shown [1] that * The radiance diagrams predicted by the physical optics
and the geometrical optics models resemble each other

tan a = Lz, (76) very strongly. Therefore, even though the two models
use two different surface modeling parameters (height

where, as with the slope distribution model, a is the angle and slope, respectively), equation 79 does very well in
between the bisector of the incident and viewing directions relating the physical roughness parameters of the two
and the surface normal vector n. Let us assume that tan a,, models.
- 2 o,.T. Then, we can write: We can further illustrate the difference between

/ v 2 T2  (77)taoa varying source direction and varying viewer direction by in-
v,2 or2 J ep tan2 a " (77) troducing a new representation of the reflection components.Figure 24 shows polar plots of the diffuse lobe, specular lobe,

Many rough surfaces are gently varying, and the slopes (a) and specular spike.
of most facets are small. Therefore, we may approximate
the tangents in equation 77 by their arguments, obtaining:

V,,2 7 "2 2 off (78 &' ree senso-r

exp - 4 v.2 0% 2 (a 2)2 (78) don

specular spike
From equations 78 and 75, we see that the roughness param- a

eters of the Torrance-Sparrow model and the Beckmann- -uc
Spizzichino model may be related as:

C~o ] 2 o'h, = - J= tan-J -T (79)

Figure23 shows radiance diagrams plotted for sur- specular lobe diffuse lobe

faces with different roughness values using the Beckmann-
Spizzichino model (left column) and the Torrance-Sparrow
model (right column). Here again, only the specular lobe rding luce
component is considered. Note that these radiance diagrams
differ from all of the previous ones in that radiance is plotted Figure 24: Polar plots of the three reflection components as
as a function of the source angle Oi for fixed values of the functions of the source angle for a fixed viewing direction.
viewing angle 0, rather than vice-versa. Once again we This time, however, the magnitudes of the three
assume that 0, = 0, the geometrical attenuation factor equals components of the radiance value in the viewing direction
unity, and the Fresnel reflection coefficient is constant. For are determined by intersections made by the lobes with the
each oah/T ratio in the left column, we have used equation 79 linejoining the source and the origin. In this case, the diffuse
to find o, for the corresponding diagram in the right col- cmnent vare wit the oiin of th se, sne its
umn. Three important observations can be made from these component varies with the position of the source, since it is
umnhe imr t a ts cproportional to the surface irradiance. Note that the specular
radiance diagrams: lobe is symmetric with respect to the source specular angle

"v = 0,, and the spike is concentrated around the same angle.
• When the source direction, viewer direction, and sur- From the above observations, the image irradiance equation,

face normal are coplanar, the radiance curves can be for fixed sensor direction and varying source direction, may
represented by Gaussian functions. This statement can be written:

be proved analytically by setting (, =0 in the specular

lobe component of both models. Ii. = KdncosO~i +Ksiexp + K.b(Oi-0)6(ofr)

" The peak for each radiance curve is observed at the (80)
specular angle, i.e. 0, = Or. Varying source direction, where the constants Kd, Kg1 , and K. represent the strengths
rather than viewing direction, prevents off-specular of the diffuse lobe, specular lobe, and specular spike compo-
peaks from occurring. In addition, the radiance value nents, respectively. Note that the ratio KI,/IK is dependent
exhibits reflection symmetry with respect to the viewer- on the surface roughness and the angles of incidence and re-
normal plane. flection. Seldom are Kl and K. comparable to one another.
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Abstract doing theoretical work study just one simple phenomenon at
a time, but cannot deal with the interactions that are always

A sense ofvisionis aprerequisite forarobot to func- present in realistic scenarios. These circumstances have led
tion in an unstructuredenvironment. However, real- to very slow progress in developing real vision systems that
world scenes contain many interacting phenomena have generality and a sound theoretical foundation.
that lead to complex images which are difficult to
interpret automatically. Typical computer vision
research proceeds by analyzing various effects in
isolation (e.g. shading, texture, stereo, defocus),
usually on images devoid of realistic complicating
factors. This leads to specialized algorithms which
fail on real-world images. Part of this failure is due
to the dichotomy of useful representations for these
phenomena. Some effects are best described in
the spatial domain, while others are more naturally
expressed in frequency. In order to resolve this di-
chotomy, we present the combined space/frequency
representation which, for each point in an image,
shows the spatial frequencies at that point. Within
this common representation, we develop a set of
simple, natural theories describing phenomena su:h
as texture, shape, aliasing and lens parameters. We
show how these theories lead to algorithms for
shape from texture and for dealiasing image data.
The space/frequency representation should be a key
aid in untangling the complex interaction of phe-
nomena in images, allowing automatic understand- Figure 1: Cylinder and cube with Brodatz textures
ing of real-world scenes.

In this paper, we examine the area of spatial vision - all of

I Introduction the 2D and 3D geometric factors that combine to result in the
arrangement of features in the image. The factors of spatial

In order to function in the real world, robots need to be able to vision include:
perceive what is around them through a visual sense. Unfor- 2D Texture Patterns "painted" on a flat, smooth surface show
tunately, the world is very complex, and current approaches up as patterns in the image.
to machine vision have not proven successful at dealing with
this complexity. Because of this, most "real systems" for 3D Texture Roughness and topography of the surface inter-
machine vision are actually based on many very specialized act with lighting to produce additional patterns in the
assumptions about the world; on the other hand, researchers image.

*This research was suppotedby the DefenseAdvancedResearch Surface Shape and Perspective The 3D orientation of a sur-
Projects Aenacy, as toug tARPA Order Number 4976, mci- face causes its patterns to project in a particular way ontoProjects Agency, DoD, through Athe image plane.

tored by the Air Force Avionics Laboratory under Contract F33615-
87-C-1499 and by the Jet Propulsion Laboratory, California Institute Image Resolution The resolution of the sensor induces sam.
of Technology, sponsoredby the National Aeronautics and Space Ad- pling and aliasing in the image data, sometimes even
ministration under Contract 957989 and by the National Aeronautics causing noticeable moire patterns.
and Space Administration under the Graduate Student Researcher's
Program, Goddard Space Flight Center, for the first author, grant process due to efocus.
NGT-50423. Any opinions, findings, conclusions or recommenda-
tions expressed in this publication are those of the authors and do Other factors There are numerous other factors we shall not
not necessarily reflect the views of the United States Government or address further in this paper, including some whose mag-
the Jet Propulsion Laboratory. nitude is much smaller than the factors listed above (e.g.
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diffraction), and some that involve additional imaging problem of spatial vision. In this paper, we show that this
parameters (e.g. shadows, motion blur). same class of representations can be used as an elegant repre-

been sentation for all of the phenomena described above, in 3D asFor each of the above phenomena, there has already b well as 2D. We concentrate on a particular space/frequency
substantial theoretical vision research and sometimes real sys- distribution, the image spectrogram, because it has properties
tems. However, the theories invariably deal with just one or that appear most desirable for general robot vision.
just two of the above factors; and the real systems work by
virtue of the highly limiting assumptions that are embedded
within the algorithms, such as building in a specific size range
of textures to be analyzed.

The real world is not so well-behaved. Real images exhibit
these factors simultaneously, as we illustrate in Figure 1. This
image, synthetically generated, shows two objects with Bro-
datz [Brodatz, 1966] textures mapped onto their surfaces. The
textures themselves would pose a difficult analysis problem
even if they were viewed frontally, as is usually presumed in ID signal taken
research into 2D texture analysis. However, in this scene, the from this scan line
textures are mapped onto 3D surfaces, one curved and one -
polyhedral. Thus, the size and spatial relationships among .r-

the repetitive elements may change across an object or a sur- .

face. Because the resolution of the imaging sensor is finite, S .
the textt ', elements or their component features may even be-
come so small that they are blurred out of perceptibility - yet "
the same texture persists in that place in the real world, even space (x)
though we can't explicitly see and measure it. The texture sletrogm
patterns themselves are not perfectly repetitive and may vary,
and these variations should not be confused with the other
sources of variation across a surface. And, this figure doesn't Figure 2: Figure 1 with spectrogram of center row
even demonstrate the effects of 3D texture - we mapped the
Brodatz intensity patterns onto simulated smooth surfaces - or
of defocus, which would cause the texture to blur selectively We show the spectrogram of the center scan-line of Fig-
at some places in the image. ure 1 superimposed in Figure 2. The spectrogram is a two-

Analyzing such combinations of spatial features is far be- dimensional function of space (horizontal axis) and frequency
yond the capability of current robot vision systems. Yet, the (vertical axis). Because the underlying patterns on the two
real world presents just such interactions, not just on rare oc- objects are periodic, there are dark, frequency peaks in the
casions, but on virtually every surface in every image that we spectrogram where the objects occur. The large, "U"-shaped
care to analyze. In order to build reliable, general vision sys- frequency peak on the left shows that the frequency of the tex-
tems, we need to explicitly understand, model, and analyze ture pattern projected from the cylinder appears higher near
each of these phenomena and their interactions. the edges than in the middle, as one would expect. At the

One of the principal reasons for the slow progress in this extreme edges of the cylinder, the projected frequency is so
direction is the lack of even a suitable representation that high it cannot be adequately reproduced in the image. This
would allow us to model all of these spatial phenomena in one is shown in the spectrogram as the frequency peak bumping
framework. The use of a single framework is critical, because into the Nyquist frequency at the top. On the left iide of
if each phenomena is described in a different formalism, then the cube, we see a slowly decreasing fundamental f :quency
their interactions become combinatorially complex even to and overtones which are likewise decreasing. This decrease
describe mathematically. But, if a single framework is used, continues to the comer of the cube, where the fundamental
then all of the interactions can be naturally expressed within and harmonics begin to increase as the side recedes into the
the same vocabulary, distance. This is a sample of the kind of analysis possible

What framework can be used? The spatial/geometry do- with the spectrogram.
main provides elegant descriptions of surface shape and per- The remainder of this paper explores in more detail the con-
spective, not-so-elegant descriptions of focus and resolution, nections between the image spectrogram and the 3D scene.
and, as the 2D texture community has shown, poor descrip- We foresee space/frequency representations as an important,
tions of 2D texture and repetition. The Fourier domain ap- unifying framework for future work in computer vision. Our
pears elegant for 2D texture, focus, and resolution. Unfor- research is in its early stages, so the power of the representa-
t.unately, the frequency domain has great problems with 3D tion remains speculative but promising.
surface shape, multiple surfaces in the scene, and cur.,ed sur- 11 Previous Work
faces or other sources of local texture variation, because the
Fourier transform mixes together frequency inform tion from The work presented here draws on two separate efforts in
all across the image without any notion of locality. Obviously, computer vision - image representation and texture analysis.
no representation can be a general basis for spatial vision if it Because the space/frequency representation is so well-suited
has no concept of locality within the image, to texture analysis, researchers in that field have often used

What we seek is a representation for image data that pro- local spatial frequency decompositions for their work. Re-
vides frequency data, but does so within the context of sur- searchers in image representation have been similarly drawn
faces and other local neighborhoods of the image. There to the idea, because it offers so muzh promise for a wide vari-
exists a class of representations that does just this. the so ety of analysis. However, neither effort has shown the general
called space/fiequency distiibutions. These have been pro- utility of the representation. Work in texture has not addressed
posed specifically for analysis of 2D textures on flat surfaces the use of space/frequency representation in a formal sense,
in the past, but as shown above, that is a small part of the total instead using ,he concept in an ad hoc, shallow manner. And
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while work in image representation has addressed the concept wavelet representation". It is composed of a low resolution
more deeply, it is primarily concerned with issues of computa- image and successively higher resolution "difference" images
tion and completeness rather than actually solving problems. that fill in the details of the previous images. The represen-
Our work is intended to give a deeper understanding of the tation falls between the space and frequency domains, and
representation for computer vision problems, especially for gives an idea of the predominant frequencies at every point in
three-dimensional texture analysis. the image. A significant difference between the wavelet and

Gabor representations is that the wavelet representation has
1.2 Image Representation orthogonal basis functions, making the representation easy to

There are many different choices for computing representa- compute.
tions which combine space and frequency. One of the oldest
and simplest is the spectrogram, long used on 1D signals in 1.3 Texture Analysis

speech analysis. Spectrograms of 2D images were probably Because local spatial frequency analysis is especially well-
first used for texture segmentation of aerial images. The spec- suited to investigating repetitive patterns, the field of tex-
trogram is satisfactory for signals which are locally stationary ture analysis has made use of this representation. There is
(constant frequency), but tend to smear the frequency peaks a large set of work on texture analysis in general, so much
of signals whose frequency is changing quickly. A similar, so that at least three survey papers have been published on
but more sophisticated, method of computing instantaneous the topic [Haralick, 1979] [Wechsler, 1980) [Van Gool et al.,
frequency distributions is the Wigner distribution (WD), in- 1985]. This section will be restricted to comments on those
troduced by Wigner for use in quantum mechanics. Like the efforts in which local spatial frequency analysis plays a dom-
spectrogram, the WD produces a function of both space and inant role.
frequency from a function of space alone. I An informative There have been many efforts aimed at 2D texture seg-
introduction to the WD can be found in a three-part series by mentation using windowed Fourier transforms, for instance
daasen and Mecklenbrauker [Claasen and Mecklenbrauker, the work of Gramenopoulos [Gramenopoulos, 1973] and
1980a] [Claasen and Mecklenbrauker, 1980b] [Claasen and Kirvida [Kirvida, 1976]. These algorithms usually proceed
Mecklenbrauker, 1980c]. Practically speaking, the WD can by picking some set of features from Fourier space and then
effectively deal with signals whose frequency is changing, clustering using traditional pattern recognition techniques.
giving a clear indication of their instantaneous frequency. The method has been compared to others both empirically
Both the spectrogram and WD are joint representations of by Weszka et al. [Weszka et al., 1976][Dyer and Rosenfeld,
space and spatial frequency. Such image representations are 1976] and theoretically by Conners and Harlow [Conners
reviewed and compared by Jacobson and Wechsler [Jacobson and Harlow, 1980]. While the Fourier features performed
and Wechsler, 1988]. The Wigner distribution has proven adequately, they were outperformed by other statistical tex-
unsuitable for the work described in this paper because it pro- ture measures. More recently, the Wigner distribution has
duces cross terms - peaks in the space/frequency function been used for texture segmentation. Compared to windowed
that do not represent any actual frequencies in the signal. The Fourier transforms, the WD can more effectively deal with
work that does use the Wigner distribution successfully is signals whose frequency is changing, giving a clear indica-
based on more global properties of the distribution rather than tion of their instantaneous frequency. It has been applied to
a detailed analysis of the distribution at each point, so cross texture segmentation by Reed and Wechsler [Reed and Wech-
terms are more tolerable. sler, 1990]. Gabor-function fitering has been applied to the

An early effort aimed at creating a space/frequency repre- tasks of texture segmentation by Turner [Turner, 1986] and
sentation was that of Gabor [Gabor, 19461, who proposed the Bovik et al. [Bovik et al., 1990]. Fogel and Sagi [Fogel and
use of one-dimensional, Gaussian-modulated sinusoids as ba- Sagi, 1989] found that Gabor function texture segmentation
sis functions that are maximally compact in both time (space) closely paralleled human performance. All of this work in
and frequency. Mar~elja [Marcelja, 1980] found that these 2D texture, however, has used the frequency data as merely
functions describe the response of visual cortex cells. The features to be grouped rather than trying to attach any higher-
theory was extended to two dimensions by Daugman [Daug- level meaning as we do.
man, 1985], who showed that the two-dimensional Gabor One form of higher-level meaning is the effect of three-
functions can describe the cells of the visual cortex. Most dimensional effects on image texture. This was first inves-
work in image analysis of this type uses the Gabor functions tigated by Bajcsy and Lieberman [Bajcsy and Lieberman,
as convolution filters, but not as a form of complete image 1976] who computed texture gradients in images using non-
representation. The Gabor functions are a complete, but not overlapping, windowed Fourier transforms. Their insight into
orthogonal, set of basis functions. Nonorthogonal basis func- the problem was largely qualitative, and their methods served
tions complicate the process of decomposition, althoughit has as demonstrations rather than useful algorithms. The only
been achieved with a neural network by Daugman [Daugman, other research like this was that of Jau and Chin [Jau and
1988]. Chin, 1988]. They computed slant and tilt angles of textured

There has been much work on "image pyramids", starting planes using integrated, low-frequency regions of the Wigner
with that of Tanimoto and Pavlidis [Tanimoto and Pavlidis, distribution. Although the results were good, the research did
1975]. A pyramid representation of an image consists of notshow anythingmore than an empirical connection between
a series of versions of the image at ever decreasing spatial shape and frequency, and it was based on arbitrary values for
resolution. Tle degree of resolution at any level implicitly the window size and low-pass frequency limit.
enforces an upper frequency limit. This is similar to the Other work which is more peripherally related to tex-
space/frequency representation in that each level of the pyra- ture in computer vision shows the wider, potential utility of
mid contains only a certain band of frequencies. the space/frequency representation. Heeger [Heeger, 1988]

Mallat [Mallat, 1989] has developed a theory for the mul- showed how Gabor function filtering of the space/time cube
tiresolution representation of images called an "orthogonal couldbe used to extract image motion of moving texture fields.

Matsuyama et al. [Matsuyama et al., 1983] used Fourier trans-
'Much of the work in space/frequency representations is pre- forms taken over regions of uniformly distributed texture ele-

sented in terms of time, not space. ments in order to find the two spatial vectors that characterize
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the placement of the elements. The Fourier transform has also part occurs in the middle one quarter. This localization is the
been considered for calculating the point of best focus for an power of the space/frequency representation.
entire image by Horn Horn, 1968), and for a subsection by
Krotkov [Krotkov, 1987]. Pentland used the Fourier trans-
form for both shape from focus [Pentland, 1985] and shape
from shading [Pentland, 1988].

Compared to the previous work in texture, our work is dif-
ferent in that, although it uses a similar representation, it goes
farther by taking into account many other phenomena in ad-
dition to just texture. The previous texture work using spatial (a) I
frequencies has not emphasized the detailed, quantitative in- lid
teraction between scene parameters and frequency, and has
not presented the space/frequency representation as one for
general image understanding. In contrast, other researchers
in space/frequency representations have speculated that the
representation may prove useful for computer vision applica-
tions, but have not shown it to be true in general. We use
an existing method of computing the space/frequency repre-
sentation (the spectrogram) and demonstrate how it can be
used to reason naturally about a wide variety of phenomena,
emphasizing the effect of three-dimensional shape.

1.4 This Paper (b)
In this paper we show how ajoint space/frequency representa-
tion can be used to effectively examine a variety of important
phenomena in computer vision. In the next section, we ex-
amine two of the most popular joint representations - the
spectrogram and the Wigner distribation - and we describe -0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5
which one is most useful to us. In Section 3 we show how u
the spectrogram maintains coherence over regions of similar
texture, even if the texture is changing in frequency. Mak- 0.15
ing this coherence explicit means that the spectrogram can be
used for segmentation on textures other than just those on a
plane viewed frontally, which is an implicit limitation in most
texture segmentation algorithms. In Section 4 we show how 0.10
textured shapes affect the spectrogram. We examine in de- (c)
tail the spectrogram of a texture along a line and demonstrate
how we can accurately extract shape parameters in this simple 0.05
case. Section 5 shows how spatial aliasing (moire patterns)
affects the spectrogram. In Section 6 we show how changes
in a camera's lens parameters (zoom, focus, and aperture) af- 0.00 1 ' ' ' '

fect the spectrogram in a predictable way. The zoom analysis, 0 63 127 191 255 319 383 447 511
combined with the development on aliasing, leads to an algo- x
rithm for dealiasing images of simple textures. We examine
other issues in Section 7. Figure 3: (a) two sinusoids (b) Fourier transform shows only

frequency (c) space/frequency representation shows structure
2 Space/Frequency Representations Signals whose frequency changes with position are called

Contiguous texture patterns in a scene normally do not ap- nonstationary. A simple example is cos(2ru,,x/2). The
pear as constant frequency patterns in an image, because the instantaneous frequency of such a signal is defined as the
underlyingshape is usually notplanar. Even ifitwere, the fre- derivative of the argument with respect to the spatial vari-
quency would only appear constant if the texture were veiwed able - in this example, uox (in cycles/unit distance). Certain
along the plane's normal. Thus, frequency analysis of texture frequency-based, texture segmentation algorithms [Dyer and
in nontrivial scenes requires a method which can account for Rosenfeld, 1976] do not require an accurate estimate of the
changes in frequency with position. This is beyond the ability instantaneous frequency, only one which is sensitive to sig-
of conventional, large support, Fourier transforms, so other nificant differences in frequency. Thus, they can work with
methods have been devised, only a coarse sampling in frequency. In our work, however,

An illustration of the space/frequency representation is we are concerned with small changes in frequency, due to, for
shown in Figure 3. Figure 3-a shows two sinusoidal waves in instance, surface slope or variations in zoom. Thus, we re-
which the higher-frequency wave occupies the center quarter quire a high resolution, accurate estimate of the instantaneous
of the signal. The Fourier transform of this signal is shown in frequency.
Figure 3-b. Although it shows two pairs of frequency peaks, We consider in this section the twoprimary means of calcu-
it does not show where in space the subsignals of correspond- lating space/frequency representations: the spectrogram and
ing frequency occur. The structure of the signal is made clear the Wigner distribution. A third method is to fit sinusoids to
in the space/frequency representation of Figure 3-c, which the signal over small windows; although it is slow, it leads
shows that a relatively low-frequency component exists at to high resolution estimates. Both this method and the spec-
the ends of the signal in question, while a higher-frequency trogram are based on the assumption that the signal is locally
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stationary. The WD relaxes this assumption.
Our analysis in this section and the rest of this paper will

be limited to one-dimensional signals. This not only sim-
plifies understanding the mathematics, but makes visualiza-
tion of the representation much easier. For a ID signal, the
space/frequency representation is two-dimensional, while for -product of function and window
a 2D signal (an image), it is four-dimensional. Our exam- f(x) rFourier triasfomple spectrograms are superimposed on 2D images. In these function Foue fosple - manitude of positive half
figures, the spectrogram was computed from the center row
of the image. We include the entire image to illustrate more
clearly the various effects we are considering. p

2.1 The Spectrogram
The spectrogram of a signal is a series of small-support, W.(X-X window SAXo,U)
Fourier transforms of the signal, each centered around a differ-
ent point of the signal. For a one-dimensional signalf (x), the • x
spectrogram is S (x, u), where u is frequency in cycles/unit -x X.
distance. Sf(x, u) is an estimate of the power of frequency x.
u at the point x. The continuous spectrogram of the one- -i --1
dimensional functionf (x) is given by Figure 4: Computing the spectrogram

S1 (x, u) = j wt(a - x)f(o)e-A "udo 2, point. Equation 1 above shows that the effect of windowing

is to convolve the Fourier transform of the signal, F(u), withwhere wj(x) is a window function with support length I. the Fourier transform of the window, Wj(u). This can be
The process by which a spectrogram is calculated is shown thought of as a blurring of the signal's spectrum with Wi(u).

in Figure 4. To calculate one vertical slice of the spectrogram As the width of the window decreases, the width of W, grows,
for a given value of x, say xo, the signal is first multiplied meaning that the spectrum will be more smeared. Thus, a
by a window offset by xo. This product is Fourier trans- large window is desirable for a sharp spectrum. However,
formed; the magnitude is calculated from the complex values a large window will compromise the localization ability of
of the Fourier transform; and the non-negative half of the the spectrogram, as it will include components of the signal
magnitudes serve as Sf (x0, u), which is one column of the which are distant from the point of interest. In practice, we
spectrogram. This process is repeated for every x. We only have found n = 63 to be satisfactory on discrete signals of
consider the non-negative half of the magnitudes since the length 512 (one image scan-line). We investigate a more
Fourier transform of a real signal (the only kind we have) is sophisticated windowing technique in Section 7.1.
symmetric in magnitude. The discrete version is computed
using the discrete Fourier transform (DFI), which is discrete 2.2 Wigner Distribution
in both space and frequency. The window function controls An alternative method of calculating a joint space/frequency
how much of the rest of the signal contributes to the spectro- representation of a signal is the Wigner distribution. The
gram at the point x. In terms of W,(u) and F(u), the Fourier Wigner distribution has been used in the computer vision
transforms of w,(x) andf (x), the spectrogram is community for both texture segmentation[Reed and Wechsler,

2 1990] and shape from texture[Jau and Chin, 1988]. Fora one-
S1(x, u) = (e-"xWi(u)) * F(u) , (1) dimensional functionf (x), the Wigner distribution is

where '' is convolution. -2 f(ruad/f
The spectrogram of a two-dimensional function f (x, y) is Wf(x, u) = of(x+ ct/21*(x - a/2)e- d.

a straightforward extension of the equation above, giving a
four-dimensional spectrogram, Sf (x,y, u, v), with two spatial In words, the way to compute Wf (x, u) is to first calculate
variables and two frequency variables, the product f (x + a/2)f*(x - a/2), which is the original

There are ongoing questions about the best shape and size signal multipliedby a conjugated version of the original signal
of the window wg(x). Many window shapes are considered flippedaroundthepointx. This productis Fouriertransformed
by Harris in [Harris, 1978]. He illustrates the compromises to get the WD at x. In practice, f (x) is first windowed,
involved in the selection, and concludes by recommending the leading to the pseudo-Wigner distribution (PWD) [Claasen
4-sample Blackman-Harris window. We use the minimum, 4- and Mecklenbrguker, 1980a]. The open questions pertaining
sample Blackman-Harris window, which for a discrete set of to the window function for the spectrogram also apply to the
n points is given by PWD.

The WD generally works best on analytic signals, i.e. sig-
2v" nals whose Fourier transforms contain no negative frequen-

ao- cies [Boashash, 1988]. It is fairly straightforward to calculate
o n- I" an analytic signal which corresponds to a real signal defined

/2r k) by samples. Thus, our two examples will be for analytic
a2 cos ( r I2k -a3 cOS l 3 (2) signals.

The example to which many WD advocates point is the

for k = 0,1,..., n - 1 and WD of the chirp signalf (x) = e,,/2. This nonstationary,
(ao, a,, a2, a3) = (0.35875,0.48829,0.14128,0.01168). complex sinusoid is the analytic extension of cos(2rux 2/2),

The window size I (or in the discrete case n) affects how whose instantaneous frequency is ux (frequency proportional
much of the signal is included in the Fourier transform at each to x). The WD is
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terms introduced by the WD would make it even more dif-
00 ficult to distinguish the true frequency peaks. It is for this

Wf (x, u) = J2)ux+2/2) ru.(x- af/2)2e 21 uada reason that we have chosen not to use the Wigner distribution.
fThe WD is just one member of a more general family of

00 d ae-J'1dse joint representations. Others [Choi and Williams, 1989][Zhao
= e Oda et al., 1990], may be able to deal with nonstationarities as

00 well as the WD while still suppressing cross terms. However,
= 6(u - ux). there does not exist a definitive method for calculating the

In (x, u) space, this is a 6-ridge which tracks at exactly the space/frequency distribution.
instantaneous frequency off (x). For any x, the position of
the ridge is at uox, which is exactly what we would like to see 3 Two-Dimensional Texture Segmentation
for this signal. With the Spectrogram

Most textures are not simple sinusoids, however. They are,
rather, sums of sinusoids in the sense of Fourier series. It is de- It is often the case that regions in an image can be grouped
sirable that the joint representation show multiple frequency by their similarities in texture. In segmenting a road image,
peaks at the constituent frequencies of the texture. This means for example, it may be that the only common feature that the
that the representation should be linear - that the representa- grassy areas share is texture, because the intensity and color
tion of the sum of two sinusoids should be the sum of the repre- of the grass in the image may be very different from shad-
sentations of the two sinusoids by themselves. Unfortunately, owed to nonshadowed regions. By two-dimensional texture
the WD is not linear. That is, Wf +g(x, u) 0 W (x, u)+Wg(x, u). segmentation we mean segmentation on images with textures
We show in Figure 5 the spectrogram (on the left) and the whose frequency does not change appreciably over the image.
Wigner distribution (on the right) of a sum of two sinusoids. The textures must be viewed frontally; this is how almost all
Letf (x) = eiJ r uf x and g(x) = ei", both constant-frequency, texture segmentation algorithms are tested.
complex sinusoids with frequencies uf and u. respectively. The spectrogram ofa structuredtexture shows that the spec-
We have trogram gives a clear, easily interpretable representation of the

texture and a good idea of the texture's boundaries. In Fig-
ures 6 and 7 we present two pairs of textures along with the

Wf(x,u) = 6(u - u), spectrograms of the rows indicated by the lines across the
W(x, u) = 6(u - ug), middle of the images. The smaller, left plate in Figure 6 has

Wf R(x, u) = Wf(x, u) + W(x, u) + a sinusoidal intensity pattern, while the larger plate visible
on the right has a square wave pattern. The left half of the

2 cos[2urx(uf - u+)] - spectrogram shows one peak in frequency which is constant
2- with respect to position, as we expect from a sinusoidal in-

Thus the WD of a single, complex sinusoid is what we tensity pattern. The right half of the spectrogram shows the
would expect, but the WD of a sum of sinusoids has a cross fundamental frequency of the square wave pattern as the dark
term. This term is a 6 in u at the mean frequency of the two line near the bottom of the spectrogram along with fainter
original sinusoids, modulated in x at a frequency which is the overtones at evenly spaced intervals above. The frequency of
difference in frequencies of the two original sinusoids. The the square wave's first harmonic happens to be about equal to
WD gives cross terms for every pair of constituent sinusoids, the frequency of the sinusoid on the left. The sharp transition
The cross term of the WD is clearly visible in Figure 5. between the two textures produces a short region in the spec-

trogram where nearly all frequencies are present. The light,
vertical bars on the right half of the spectrogram are due to the
interaction of the simulated pixels with the periodic pattern.

spectrogram. Wigner DistributionH

Figure 5: Spectrogram and Wigner distribution of two ___..._____-___-_ -summed sinusoids ,,,,,,,,,,,,,,,,,"

The analysis that follows in this paper depends on accu- Figure 6: Two plates with sinusoidal and square wave gratings
rately finding the frequency peaks in the joint representation.
Noise in some of the images complicates this task. The cross Figure 7 shows the same two plates with Brodatz textures
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superimposed. The complexity of the Brodatz images makes the reason that the spectrogram is a natural choice for this
the spectrograms messier, but the representation is still easy to kind of analysis. In Figure 8 we show a plate receding into
interpret. The white band at the bottom of the spectrogram has the distance with a sinusoidal intensity pattern superimposed.
been zeroed to eliminate low frequency intensity variations The spectrogram of the center scan line shows that the pro-
due to lighting. We see that the scan line of the canvas texture jected frequency increases as the plate recedes. This scene
on the left is close to sinusoidal since it has only one significant was contrived to show the effect of a vanishing line. The plate
frequency component. The screen texture on the right has a asymptotically approaches a point in the image, while the fre-
lower fundamental frequency than the canvas as well as some quency peak in the spectrogram asymptotically approaches a
overtones, line which corresponds to the plate's vanishing point. Be-

fore the plate reaches the vanishing line in the image, the
frequency has so grown that the spectrogram shows aliasing
(see Section 5).

ideal spectrogram

Figure 7: Two plates with Brodatz textures (sketch)

There have been many efforts aimed at 2D texture segmen-
tation using windowed Fourier transforms, for instance [Gra-
menopoulos, 1973] and [Kirvida, 1976]. These algorithms
usually proceed by picking some set of features from Fourier Figure 8: Plate with sinusoid receding to vanishing point
space and then clustering using traditional pattern recogni-
tion techniques. The method has been compared to others Figure 9 shows two plates meeting at a convex comer, each
both empirically [Weszka et al., 1976][Dyer and Rosenfeld, with a sinusoidal intensity pattern. The spectrogram shows
1976] and theoretically [Conners and Harlow, 1980]. While how the projected pattern increases in frequency as the plates
the Fourier features performed adequately, they were outper- recede.
formed by other statistical texture measures.

The advantages of Fourier texture segmentation come from
the variety of textures it can manage and the ease with which
it can be extended to textures which are viewed obliquely. For
structural textures, the Fourier transform approach requires no
feature detection. Windowed Fourier transforms can be used
for purely statistical textures, because Fourier transforms can
bring out statistical coherence. In all textures, the spectra
remain coherent over changes in shape, as we show in the
next section, which means that the method can be smoothly
extended to non-frontally viewed textures. In addition, the
spectrogram is a powerful framework for analyzing many
other scene phenomena (as we will show) and can be used to
extract intrinsic scene characteristics. These intrinsic param-
eters provide another, more reliable basis for segmentation
(Section 4.2).

4 Three-Dimensional Shape and the
Spectrogram

Texture is an important indication of 3D shape, and the Figure 9: Two plates with sinusoids forming a convex comer
connection has been studied extensively in computer vi-
sion [Kender, 1980][Stevens, 198 1][Witkin, 1981]. The pro-
jected, local spatial frequencies on a textured surface change In Figures 10 and 11 we show the plates of Figures 6 and 7
with the surface's depth and orientation. This is the plic- rotated around a vertical axis. Both the fundamental frequen-
nomenon which makes shape from texture possible, and it is cies and the overtones show the same reaction to the change
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in orientation. In the following discussion, we describe how attention to the X3D-Z3D plane (Y3o = 0) and a ID image plane
to quantitatively extract shape information from the spectro- in x.
grams of textured surfaces by calculating the effect of depth
and orientation on the spatial frequencies of the texture pat- intensity
tern. pamern

g (a t)

surface C(X., 0 ) (WYDZ

P,

XID

pinhole
d

(zXy) image
plane

.141111Figure 12: Geometry of 1D image formation through pinhole

On the X3D-Z3D plane, a line runs in front of the camera
Figure 10: Two rotated plates with sinusoidal and square wave whose equation is X3D sinO + z3D cos = - p. 2 We will
gratings suppose that this line has a periodic pattern superimposed

on it. We will find the perspective projection of this pattern
onto the image plane, and then calculate the instantaneous
frequency of the projection so we can apply the spectrogram.
We will find that the instantaneous frequency is a function of
the orientation of the line, meaning that the spectrogram can
be used to determine this parameter. Points on this line are
parameterized by s, where s = 0 occurs at the intersection of
the line and its perpendicular to the origin. Given an s, we
have

(x3D,z3D) = (-psin 0 +scos 0, -pcos 0 - ssin 0)
which projects to

Ix~ ,ooSOs o.sin O
.Solving for s, we have have the position along the line for a

given x on the image plane:

S(X =-dpsin 0 - xpcos 0s(x) = xsnedos (3)
xsinO dcosO

Suppose that the line has superimposed on it a periodic
Figure 11: Two rotated plates with Brodatz textures reflectance pattern given by g(s) = cos(2ruls), such that the

frequency of the pattern along the line is ul. If the pattern is
projected onto the image plane, we can write the equation of

4.1 Mathematical Formulation the projected pattern by replacing the s in cos(27ruls) with the
equivalent value of s given in terms of x in Equation 3. Thus,

The coordinate system and other quantities are defined as in the projected pattern on the image plane will be given by
Figure 12. The pinhole of a pinhole camera is placed at the r dsin 0 + xos 0
origin of the right-handed (x3D, Y3D, Z3D) coordinate system, cos[21ruls(x)] = cos I-27rulp si 6 -+-co- 61
looking along the -Z3D axis. Objects are projected onto the L xsino -dcos0J
image whose axes are (x, y). The pinhole-to-sensor distanceis d, meaning that point (xV, y3D, z3D) will be projected onto The instantaneous frequency, u(x), of cos[27ruts(x)] is de-
this agemean t th point (x, y)= 3D _ w xil b p e fined in the signal processing literature to be the derivative of
the image plane at the point (x, y) = -, _) under per- the argument with respect to x, which is
spective. There is a surface in front of the camera whose
depth is given by the function C(X3D,Y3D). Superimposed on In terms of traditional shape-from-texture notation (cf. [Witkin,
the surface is an intensity pattern given by g(s, t), where (s, t) 1981]), the tilt angle here is always zero because we are working in
are coordinates of a coordinate system on the surface. We only two dimensions, while 0 is like the slant angle except that the
will ignore the Y3D and y coordinates, in effect confining our slant angle cannot be negative and 0 can be.

220



.0U() ulpd (4).
u~)=(xsin 0 - dcosf 0" (4) .-.

The peak frequency in the spectrogram of the projected .0 .
cosine will occur at approximately this frequency. In a corn- 0(
puter vision application, the known quantities in Equation 4 250•. "Moup k
are d (the pinhole-to-sensor distance), x (the pixel position), ow . 8. NifUi,,CY

and u(x) (the instantaneous frequency from the spectrogram). 20(
The unknowns are u, (the frequency of the pattern along the
line), and p and 0 (the parameters of the line). Since ut and p
occur as a product in Equation 4, they cannot be distinguished 150 .

from each other. This is a manifestation of a familiar effect:
a small object (high frequency) at a small distance is indis- 100.0
tinguishable from a large object (low frequency) at a large
distance. Thus, we treat the product ulp as a single unknown. 50.0.
With 0 as the other unknown, we can solve Equation 4 for 0
and ulp if we have two or more sets of (x, u(x)). The result -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3
is a space/frequency formulation of the shape-from-texture xparadigm.4. xra ti g SFigure 13: Peak frequencies from spectrogram of Figure 104.2 Extracting Shape from the Spectrogram

To demonstrate the use of Equation 4, we will determine
parameters of the two plates in Figure 10 based on the spec-
trogram of the center row. We simplify the spectrogram to
u(x), the dominant frequency, determined by finding the max-
imum value in each column of the spectrogram. These values
are shown in Figure 13 as the dotted, stairstep-like line. The
stairstep effect is due to the limited resolution of the DFT,
which is in turn due to the limited size of the window used
to calculate the spectrogram. This low resolution means that
many adjacent points will appear to have equal instantaneous
frequencies. If the instantaneous frequency of two adjacent
points is equal, it implies that the surface is perpendicular to
the line of sight, which is usually not the case. Thus, we
calculate a "subpixel" value of the instantaneous frequency
which gives better resolution than the raw DFT. We calculate
the subpixel estimate by fitting a quadratic to the peak value
and its two vertical neighbors and then finding the maximum
of the quadratic. This is done for each column in the spec-
trogram. The higher resolution estimate is shown as the solid
line in Figure 13. As a point of reference, we show the actual
instantaneous frequencies (calculated from Equation 4) as the
dash-dot line in the same figure. The estimate based on the Figure 14: Segmentation of center row of rotated, patterned
spectrogram seems to consistently underestimate the actual plates
frequency, and we are currently investigating the reason.

Each pair of (x, u(x)) values from the high-resolution spec-
trogram estimates can be used to calculate a value of (ulp, 0).
In order to reduce the effects of the wavering in the instanta- dient descent, minimization routine. The results are shown in
neous frequencies, we calculate each (ulp, 0) using five pairs Table 1. We know the actual values of the parameters from the
of(x, u(x))'splaced symmetrically around thepoint of interest. graphics routine used to generate the images. In this example
We then segment the regions by histograming the (ulp, 0)'s, the errors are quite small.
manually picking the peaks, and classifying each (ulp, 0) pair
by finding which peak it is closest to. We performed the same analysis for the textured plates in

The resulting segmentation is shown in Figure 14. The Figure 11. The results of the segmentation are shown in Fig-
bar across the middle of the image indicates the regions, and ure 15. This segmentation is not as good as for the other
we show the dominant instantaneous frequencies below. This set of plates. Much of the error occurs near the boundaries
segmentation works not only in spite of the changing fre- of the plates where the Fourier transform window contains
quencies across similar regions, but because of the changing only part of one of the textures or some of both. The other
frequencies as dictated by the mathematical projection of a misclassified areas occur in regions where the instantaneous
single 3D plane onto a 2D image. In contrast to traditional frequency value has unusual dips or wiggles. Possible so-
region-grouping methods, note that this segmentation is based lutions to this problem are using a spectral estimator which
on reasoning about the uniformity of intrinsicproperties of the accounts for noise, or averaging the dominant frequencies
scene, not merely the uniformity of a property in the image. from the spectrograms of neighboring points. Also, using a
In this sense, it is based on the "model coherence" approach variable-sized window as described in Section 7.1 may help
developed for color image segmentation [Shafer et al., 1990). alleviate the problem. The performance figures in Table I are

With the regions segmented, we calculate the best fit (ulp, 0) based on a manual (perfect) segmentation of the instantaneous
from Equation 4 based on the region's (x, u(x))'s using a gra- frequencies for the rotated, textured plates of Figure 11.
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From Figure 10 From Figure 11
Periodic Pattern Brodatz Textures

semi-automatic segmentation manual segmentation
Left Plate Right Plate Left Plate Right Plate

UIP & uIp 0 Up UiP
actual 177.25 50.000 40.00 -60.00P 152.1 50.00 47.0 -60.007

calculated 172.92 4.75F 39.31 -59.72 141.37 50.82 .7 -58.850
error -2.4% -0.25 °  -2.4% U.28' -7.1% 0.82°! 2.7% 1.15 °

Table 1: Actual and calculated line parameters

e.g. stereo matching errors [Matthies, 1989](p. 117). This
is because the patterns cannot be detected in single images
without detailed a priori knowledge of the scene, meaning
that in most situations there is no hope of recovering the true
signal.

The DFT of such a signal does not give a true indication
of the original signal's frequency content. The DFT can only
show frequencies up to and including the Nyquist frequency
(one half of the sampling frequency). Frequencies higher
than the Nyquist frequency are "aliased down" into lower
frequencies of the DFT.

image shows moire patterns after second
tue Pattern after fist bounce bounceII I

Figure 15: Segmentation of center row of rotated, textured
plates

4.3 Other Shapes
This method could be extended to other shapes in two different
ways. Above we presented a method in which the instanta-
neous frequencies are fit to a known class of shapes (lines) in
order to derive the parameters of the shape. The parameters
were those which best fit Equation 4, which describes the in-
stantaneous frequencies on a line. Other equations could be
derived which relate instantaneous frequencies to any parame-
terized shape. Given some aprioriknowledge of the shapes in Figure 16: Plate with sinusoid showing aliasing
the scene, the spectrogram peaks (as well as overtones) could
be used to instantiate the shapes' parameters. Alternatively, This is illustrated in Figure 16, which shows a plate with
a program could calculate local surface normals by using the a sinusoidal intensity pattern rotated to the right. Beginning
instantaneous frequencies from a small neighborhood along at the left of the plate, the spectrogram shows that the in-
with an equation which relates frequency and surface normal. stantaneous frequency is rising as the plate recedes into the

Although this method and results are meant to be only il- distance. At a little less than halfway across the spectrogram,
lustrative, they show the power of the method for analyzing the peak frequency has risen to the top of the spectrogram,
the effects of 3D shape in images. The spectrogram is a sim- which corresponds to the Nyquist frequency. Although the
ple, natural method of quantifying the relationship between actual frequency on the image plane continues to rise, it ap-
texture and shape, and it requires no feature detection except pears to decrease after the Nyquist rate has been exceeded.
for finding frequency peaks. In this region of the image, moire patterns begin to appear

as lower-frequency variations caused by the beating of the
5 Aliasing signal frequency against the sampling frequency. There is

another "bounce" on the spectrogram after the apparent peak
Aliasing occurs when a signal is sampled at a rate less than frequency has fallen to zero. This bouncing would continue if
twice its maximum frequency, causing lower-frequency arti- the plate were longer. If the signal had overtone frequencies,
facts to appear in the sampled signal. This phenomenon can these will bounce also, although not at the same places as the
often be seen on television in images of periodic patterns like fundamental or other overtones. This is shown in Figure 17,
striped clothes, automobile grills, or tall buildings. In two di- which is a plate whose intensity pattern is the sum of two
mensional imaging, these artifacts are called moire patterns, sinusoids. Below we examine the mathematics of the bounc-
and they can lead to insidious problems in machine vision, ing frequencies and show how the spectrogram provides an
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elegant basis for analyzing these artifacts. F,(u), the Fourier domain version of the sampled cosine
wave, is illustrated in Figure 18-a. It consists of the Fourier
transform of the cosine repeated at intervals of u,, the sam-
pling frequency. These repeated Fourier transforms are called
spectral orders. Spectral order o, E {... -2, -1,0, ,2...}
is centered at frequency ou,.

In orderto recover an estimate ofthe original signal from the
samples, the Fourier domain representation is multiplied by
a rectangle function to extract one repetition of the repeated
transforms. (It is also scaled by -to recover the original
amplitude.) The rectangle function, also shown in Figure 18-
a, is cut off at the positive and negative Nyquist frequencies.
This corresponds to interpolation with a sine function in the
spatial domain. Thus, the reconstructed signal becomes

fr(x) =f 3 (x) *sinc(ux)

Vu 00 , '
.; = 6 X • sinc(usx)

h C
00

Figure 17: Plate with sum of two sinusoids showing aliasing = cos(27ruoi/u,)sinc [u(x - i/u')],
1=-o

5.1 Bouncing Frequencies where sinc(x) =

In this section we discuss the mathematics of aliasing and how In the Fourier domain,
it produces bouncing in the spectrogram. We will demonstrate
the effect using a simple cosine wave, although the ideas are 1 (u\)
generally applicable. The effect is most easily visualized in FC(u) = -rect F,(u)
the Fourier domain, so we will develop the equations in the u,
spatial and spatial frequency domains in parallel. re(u

Suppose the original, continuous signal is a cosine of fre- - rectu
quency u,, cycles per unit distance.

f (x) = cos(27ru,,x) 6(u + U - iu,) + 6(u - Uo - iu,)

Its Fourier transform is two delta functions placed symmet-
rically around the frequency origin. where 0 if jEI>

= if IEl-
F(u)= [(u +u,)+(u-u)]1 if l I<2

Sampling at a frequency of u, is modeled as multiplication is a rectangle with support length b.
by a series of 6's spaced at intervals of l/u,. The sampled As shown in the top graph of Figure 18, if luoI < !, the
signal,fj, is original cosine can be recovered exactly. We illustrate in both

Figures 18 and 19 what happens as the frequency of the orig-
00 inal signal rises past the Nyquist frequency. Figures 18a-d

f2 (x) = f(x) F 6(x - show "side views" of the situation for various, increasing val-
)_--o u, ues of u, from the top down. The horizontal arrows indicate

00 which direction the 6's will move with increasing u. Fig-

ure 19 shows a "top view" as u, increases linearly from left
= cos(27ru,,x) E 6(x - -) to right. The spectrogram has been shaded. The four vertical

1=_0 u,,s cuts in this figure correspond to the four situations shown in
Figure 18.

The corresponding operation in the Fourier domain is con- In Figure 18-b, the cosine's frequency has exceeded the
volution with the Fourier transform of the space-domain 6's. Nyquist rate, and 6's from neighboring spectral orders have

moved into the the interpolation rectangle. We show how
the various S's correspond with the dashed lines drawn from

F2 (u) = F(u) * u, Z 6(u - iu3) graph to graph. The apparent effect of a rise in u, is a bounce
i- 00 in frequency, which is more apparent in Figure 19. Just as the

00 outgoing 6's leave the interpolation rectangle, incoming 6's
[6(u+u,)+ 6(u - u,)] * u., E 6(u - iu,) enter, moving toward the frequency origin. These two incom-

2 ing 6's continue past each other, producing another bounce
i=-00 in apparent frequency, as shown in Figure 18-c. When these

FG 10 6's leave, they are replaced by two more, as in Figure 18-d,
2 E 6(u + uo - iu,) E 6(U - Uo - ius) . and the process continues on and on. This process causes the

2 0-00 apparent bouncing in the spectrogram illustrated in Figure 19.

223



interpolation no U0 if o, = 0
ind-ow ,=+1 0 oUu - sgn(o)uo otherwise. (5)

1-7 - 1- 1-where or is the spectral order contributing a 6 to the positive
-2u . .-u. . ./ . u, .. . ..2u half of the interpolation function, u, is the sampling frequency,

first -I ifx<0S.iesgn(x) =0 ifx = 0
W--H %--. s+1 ifx > o.

second .. 5.2 Unfolding the Spectrogram

--- Of course, it would be better to have no aliasing in the spec-
Uo trogram. We could then get an accurate idea of the true signal

at ''" "at every point. We can think of the spectrogram as a distorted,
,%windowedversion of an ideal, space/frequency representation

) -t - -- -- -om - - the ideal spectrogram. The ideal spectrogram's frequency
(d) +_ axis extends from zero to infnity, and it does not suffer fromaliasing. We can see from the analysis in the previous subsec-

Figure 18: Aliasing causing bouncing, u,, is increasing from tion that the actual spectrogram of a simple sinusoid whose
the top graph down frequency is changing is a folded version of the ideal spec-

trogram. This is illustrated in Figure 20. The folds occur at
positive, integer multiples of the Nyquist frequency, u,/2. In
the ideal spectrogram, the frequency peak continues to grow
with the frequency of the underlying signal, while in the actual

spectrograr spectrogram aliasing causes the apparent frequency to bounce
u (shaded) between zero and the Nyquist frequency.

2u) o,=+2

* . . *....... .€ .° .. °

u 2u ............................. ....

..u i am-........

-2u,

() (') () (d)
Figure 20: Folding the ideal spectrogram to show aliasing

Figure 19: Aliasing causing bouncing, u. is increasing from In Figure 21 we show an unfolded version of the spectro-
left to right gram in Figure 16. The unfolded spectrogram gives a true

indication of the signal's frequency, even beyond the Nyquist
limit. Unfolding the spectrogram of a signal with overtones,
like that in Figure 17, would not be as simple. Multiple peaks

In Table 2 we illustrate with equations what is happening in the same column may come from different folds of the ideal
in each of the four subfigures of Figure 18. We label each spectrogram. The key is to determine which fold a giver, peak
situation with o,, the spectral order which contributes the 6 came from. In the next section, we propose an algorithm for
in the positive half of the interpolation window in frequency this based on computer-controlled zooming of the lens.
space. In (a), or = 0, and the cosine's frequency is below the
Nyquist frequency, so the reconstruction is true to the original
signal. In (b) the reconstruction is based on one 6 from each 6 Lens Parameters and the Spectrogram
of the two closest neighboring spectral orders, and or = +1. Much research in "active vision" concerns the control of the
The reconstructed signal is cos[2r(u, - u,)x]. Since u. < Us three lens parameters: zoom, focus, and aperture. We show
in this case, an increase in u0 (the original signal's frequency) in this section how these parameter affect the spectrogram,
will cause a decrease in the frequency of the reconstructed which in turn provides new insights into how they affect the
signal. In (c) no new 6's are introduced, but the two 6's pass image. This point of view leads to algorithms which let us
each other. Thus, in (c) or = -1. The reconstructed signal deduce intrinsicscene parameters by purposefully altering the
is cos[2ir(-u, + u,)x], which is the same as case (b) (because lens settings.
cos(-t) = cos(t)). However, in (c) u, > us, so an increase
in u, causes an increase in the frequency of the reconstructed 6.1 Zoom
signal. The transition from (c) to (d) is like the transition
from (a) to (b), thus the frequency of the reconstructed signal 6.1.1 How Zoom Affects the Spectrogram
decreases again with increasing u. In general, the frequency In equifocal camera lenses (such as most one-touch zoom
of the reconstructed cosine is given by lenses) a change in zoom can be modeled as simply a change
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Uo o, frequency domain reconstruction space domain reconstruction
(a) 0 <u o u,/2 0 1 6(u + Uo) + 6(u - Uo)] cos[2ruox
(b) u,/2 < uo < u , +1 -,6(u+u,-uo)+6(u-u,+U,) cos[27(u,-uo)x]
c) u, < Uo :_ 3u,/2 -1 6 6(u - u, + u°) +.6(u + u, - uo)i same as above

(d) 3u,/2 < U, < 2u, +2 16(u + 2u, - u,) + 6(u - 2u, + uo)J cos[27r(2u, - uo)xJ

(oS - O)us u <oOS_ O > 0 <o(u + o.u, - u0) + 6(u - ou + u) cost2r(o.,u - u&]
-OU, U 0< (-o,+ )u, o,<0 - 6(u-ou,+uo)+6(u+o,u,-uo) sameasabove

Table 2: Analytic expressions of Figure 18

(a) ............ X

unmagnified

fWx NyquW tftcqueny -M(n-i)/A21)

(b)2M ........ )
magnified

Figure 21: Unfolded version of spectrogram in Figure 16 Figure 22: Effect of zooming on imaged signal

in magnification. We can imagine the situation in Figure 22- between coverage in space and spatial frequency. These ar-
a where the section of the signal which falls on the center guments also apply to the four-dimensional hypervolume of
window of the spectrogram extends from j1 to L. We will the spectrogram of a two-dimensional signal.
arbitrarily call the magnification here one, and we will say
that the entire portion of the signal seen by the camera is of 6.1.2 Dealiasing With Zoom Changes
length L. Both I and L are measured on the image plane. If A slight change in zoom can be used to find the true, un-
there are n pixels in the spectrogram window, the sampling aliased frequency of a sinusoid, because aliased frequencies
frequency is pixels per unit distance, making the Nyquist from different spectral orders respond differently to changes in
frequency -. Since the spectrogram extends in frequency magnification. Since image textures can be decomposed into
from zero to the Nyquist frequency, the spectrogram resulting simple sinusoids, we could use two images taken at slightly
from this signal will cover the region indicated by the short, different zoom settings to dealias texture images.
wide box in Figure 23. Suppose as above that we have a I -D image of a cosine of

If the magnification M is changed, a larger or smaller por- frequency u, cycles/pixel sampled at a rate of u, cycles/pixel.
tion of the original signal will be contained by each window. The cosine may be sampled above or below the Nyquist rate.
In Figure 22-b we have indicated the effect of an increase in Referring to Figure 19, we can see there will be only one
magnification, showinghow a smallerpart of the signal is now spectral order contributing a 6 to the spectrogram (because
imaged. The section of the signal which falls on the central the spectrogram only shows positive frequencies up to u,/2).
window now extends from = to 1, and the entire signal The apparent frequency of the unmagnified (M = 1) signal,-2M 2. ul, is given by Equation 5, i.e.
seen by the camera covers = to - The magnified window
is spread out over the same number of pixels as before, so the f
Nyquist frequency is now 2 ) pixels per unit distance. O - sgn(o)u, otherwise. (6)

The spectrogram after the magnification change is shown
in Figure 23. For an increase in magnification, the spectro- If the lens is zoomed slightly such that the magnification
gram covers more in frequency but less in space. The "area' is changed to M, the sampling frequency (measured in cy-
of the spectrogram (actually a unitless quantity, "spatial dy- des/pixel of the unmagnifiedimage) will beaMu cycles/pixel,
namic range") is L%-1) and is independent of the magnifi- where u, is the sampling frequency on the unmagnified image.
cation. Thus for changes in zoom, there is a direct tradeoff The apparent frequency of the cosine will then be
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Figure 23: Effect of zooming on spectrogram dimensions Figure 24: Horizontally split image of aliased plate and mag-
nified aliased plate

- ifo5=O1.4

0 uif_ = 0
U2 -o sgn(o)uo otherwise. (7) f 1.2 __ id - age

We can eliminate u, from Equations 6 and 7 by subtracting. 1.0
Solving this difference for o, gives 0.8

U2 - U1

uA(-) 0.6 Nyquist _eny v_ -

0.4,
We note that this equation applies forboth o =0 and o, 0.

Thus, the difference in apparent frequency between the two 0.2 .
images is proportional to the spectral order o. After solving 0.0. 1 . L '.,  ,
for o,, we can use Equation 6 or 7 to solve for u., which 0 50 100 150 200 250 300 350 400 450 500
is the true frequency of the signal. The dealiasing does not column number
require the solution of a correspondence problem, since the
two signals are related by a simple difference in magnification. Figure 25: Dealiasing with magnification change

An implicit assumption here is that o, remains the same
in both images. This will be true for small changes in mag-
nification unless the 6 is very close to either extreme of the In fact, in the pinhole model we have been using (Figure 12),
interpolation window and the zoom change causes it to be the aperture is infinitesimally small, meaning that every point
replaced by another 6. in the scene is in perfect, sharp focus.

We have applied this technique to the image of the receding We will generalize the pinhole model by introducing a sin-
plate in Figure 16. We show a split version of the image gle, thin lens with a variable aperture as shown in Figure 26.
in Figure 24. On the top is the unmagnified image, and The aperture of the lens is a, the focal length of the lens is
on the bottom is the same image magnified by M = 1.075. b, and the distance to the image plane remains d. We can
It is easily seen how the moire patterns shift. Figure 25 approximate the effects of focus and aperture with geometric
shows the "subpixel" frequency peaks from the spectrograms optics. Each point in the scene with a different value of z31
of the center rows of the two images. The frequency data will be in sharp focus at only one point behind the lens. This
from the magnified image has been adjusted so it is shown point, z, is given by the Gaussian Lens Law: .+ 1 = .If
in terms of the space and frequency units of the unmagnified -

image. The dotted line shows the dealiased frequency based the image plane is not at the proper distance behind the lens,
on the technique outlined above. Except for the glitches at the i.e. d 0 z, the point will be spread into a blur circle. Using
frequency extremes, the figure shows correctly the dealiased geometric optics, the radius of the blur circle is given by
frequency. Thus, the spectrogram has been dealiased without ad1
detailed a priori knowledge of the scene. r(3D) = L-

2 1b d ;3D 1
6.2 Focus and Aperture
Changes in the lens' focus and aperture combine to change A point can be out of focus by having the image plane in
the point spread function (psf) of the lens, which can be easily front of or behind the point of best focus. The equation above
visualized with the spectrogram. (The psf is a function which applies to both cases. r(Z3D) goes to zero when 1 + 1 =
can be convoluted with an ideal, sharp signal to model the which is a restatement of the Gaussian Lens Law above. In
effects of blur.) In general, points in sharper focus will show the one-dimensional imaging case illustrated here, the shape
more high frequencies than if they are blurred. A smaller of thc blur "circle" is actually a rectangle of width 2r(z3D).
aperture tends to have the same general effect as sharper focus. Thus, the point spread function of the 1D camera system is
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where 3 is a representative depth value for the region cen-
tered at x, and F(u) is the Fourier transform of the unblurred
image. Each windowed Fourier transform has associated withit its own transfer function which depends on the approximate

depth of the region within the window.
This is the approximation used for most depth from fo-

cus and depth from defocus algorithms in computer vision.
Following Krotkov's [Krotkov, 1987) depth from focus algo-
rithm, the spectrogram can be used as a criterion function to
calculate the point of best focus over several images taken at
different focus settings. The setting closest to perfect focus

b is the one which gives the most high frequency energy in the7 d spectrogram at that point. Knowing this setting along with a
precalibrated table of focus distances, the depth to all points in
the scene can be calculated. Pentland [Pentland, 1985) uses

-2r,- a spectrogram, essentially, to calculate depth from defocus
Z' based on only two focus settings. He uses the two spectro-

grams to calculate directly the depth to each scene point by
calculating the width of the psf.

Figure 26: Geometry of ID image formation through thin lens Formulating the effects of the psf in terms of the spectro-
gram is a natural way to reason abo tt the space-variant nature
of the transfer function. For example, it reveals how pre-
cisely each point can be focused. Points in the scene with no
high frequencies will never show high frequencies no matter

1 [I___)] how well they are focused, meaning that a focusing criterion
h(X, Z3D) = 2r(Z3), function based on frequency would not be sensitive to suchS Ipoints. Another issue is the separation of the space-invariant

where we have normalized so the area under the rectO is part of the psf (due to, say, pixel averaging and the camera
one. 3 The corresponding transfer function, H, is the Fourier electronics) from the space variant part. It may be that the
transform of h: space-invariant psf is so large that depth effects are insignifi-

cant.
H(u, Z3D) = sine [2 ur(z3D)] .

In order to calculate the effect of h(x, Z3D) on the spectro- 7 Other Lssues
gram, we suppose there exists a function f (x) which is an 7.1 Variable Window Size
unblurred, pinhole projection of the scene. The new image,
fh(x), taking into account the point spread function, is a con- A constant window size for the spectrogram means that the
volution of the unblurred image with h. Thus, Fourier transforms cover a different number of wavelengths

of each constituent frequency. That is, a window size I over
a signal of frequency u covers lu wavelengths or periods of

fh(x) = J (C)h(x - C, Z3)d, the signal. In detecting repetitions at different frequencies, it
- makes intuitive sense that the detector window should cover a

where the Z3D is the one corresponding to C on the image plane. predetermined number of wavelengths rather than a predeter-
This equation holds for changes in the camera's aperture. It mined length or area. This intuitionis based on the feeling that
does not apply for change in the focus distance d, because this a texture pattern is one comprised of some minimum number
causes a change in magnification as well as a change in the of similar elements rather than some minimum sized region.
point spread function. The conventionally defined spectrogram uses a constant win-

The point spread function h is not space-invariant, because dow size, which means that forhigher frequency signals, more
it depends on the depth of the surface. This means that its wavelengths of the signal will be included in the window than
effect cannot be described accurately by multiplication in the for lower frequency signals. Thus the localization (spatial
frequency domain. If h were space-invariant, e.g. due to resolution) of the constant-window spectrogram is effectively
integrating over the surface of the pixels, then the effect on reduced at higher frequencies, because the window is spread
the spectrogram would be simple to describe: each windowed out over more wavelengths.
Fourier transform would be multiplied by the Fourier trans- We propose adding another dimension to the spectrogram
form of the point spread function. This is also approximately which indicates the window size 1. We define the 3D spectro-
true for the space-variant point spread function if the surface gram given by
depth varies slowly and/or the window used for the spectro- 2
gram is small. Then we have Sf(x, U, = w(a - x, ly (a)J-..ada

which covers all possible (positive) window sizes.
3This psf ignores three optical effects. One is diffraction, whose The 3D spectrogram is a great deal of data which is highly

magnitude is much smaller than defocuseffects in typicalTV images. redundant. The constant-window spectrogram, Sf (x, u), is
The second is the fact that points which are occluded in the pinhole a slice of S (x, u, 1) with I = constant. The problem with
image can actually be seen by parts of the lens in an image with a a constant (is that, as we mentioned above, the number of
finite aperture. The third is that, by normalizing the area of the psf to wavelengths included in the window varies with frequency.
one, we are ignonng the most obvious effect of a change in aperture. A more reasonable slice through the 3D spectrogram is to have
a change in the overall brightness of the image. I c 1/u, which means that the window width will shrink with
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decreasing wavelength. This tends to make the spectrogram bump, and would therefore give higher precision matches.
scale-invariant, in that the detector window will cover a con- This spectrogram has window size I = 5/u.
stant number of elements of a given wavelength independent
of their spacing frequency. We call this the variable-window 255
spectrogram.

We show an example of the the variable-window spectro- 191
gram in the bottom half of Figure 27, which can be compared
to the traditional, constant-window spectrogram in the top 127
half of the same figure. The variable-window spectrogram I
has window size I = 10/u. One notable aspect of the variable- 63
window spectrogram is the large spreading of the higher fie- 0. 1 .
quencies. This is due to the familiar effect in Fourier analysis 0 63 127 191 255 319 383 447 511
of a smaller spatial domain window giving more spread in the column number
frequency domain. Thus, the variable-window spectrogram
provides greater spatial resolution at a cost of frequency res- Figure 28: Intensity profile to be matched
olution. The spreading of the high frequencies leads us to
a conjecture that a nonlinear sampling in frequency may be
appropriate for the variable-window spectrogram. In the case
of I ox 1/u, the frequency sampling interval should get larger
as the frequency increases.

.

- Figure 29: Spectrogram and repeatogram for image matching

The spectrogram also provides insight about another as-
pect of image matching: False matches. One of the hardest

Figure 27: Variable window (bottom) vs. constant window problems in motion or stereo vision is to know whether a
(top) spectrogram potential feature match is a real, dependable correspondence,

or whether it is a false match with a different feature in the
other image. For example, in Figure 28 above, the right side

7.2 shows several bumps closely spaced - if there were a large
Repetition and Image Matching uncertainty in the displacement between images, the wrong

Image matching is important for 3D stereo and motion se- bumps might be matched with each other.
quence analysis. In these tasks, matches are found by shifting There is a clear relationship between false match potential
one image to match the other, the amount of shift needed at and frequency content, for a false match must be character-
each point reveals the 3D structure of the scene. If a portion ized by a repetition in the image signal at the corresponding
of the image is uniform with no features, then matching is scale. Yet, each bump in the group on the right of the figure
impossible; if features are present, a match can be obtained, has the same profile as the isolated bump just to their left. So,
In the ideal case of a step intensity edge, a match can be made the distinction must be more complex than just examination
with infinite mrecision. Usually, heuristic measures of poten- of the spectrogram at each point. The key is that false match
tial precision are used, such as finding "feature points". But potential implies not just high frequency content, but a real
here, as in other spatial vision tasks, the spectrogram is useful repetition of the image data, which means frequency content
to quantify this effect. The match precision available at any that persists over more than one wavelength of the underlying
point in the image is limited by the highest spatial frcqucncy sinusoid. Thus, to detect false matches (or image structure
present at that point. This is illustrated in Figure 28: a nar- r-petition in general), one must search the spectrogram for fre-
row bump or step edge can be matched with greater precision quency entent that persists over long intervals in the spatial
than the shallow, broad bump in the signal. This is reflected dimension.
in the higher spatial frequency content for the more precise To represent this, we propose a new transform we call
features, as shown in Figure 29. The figure shows an im- the repeatogram, which is derived from the spectrogram as
age whose scanlines are all identical to the intensity profile follows: At each point x and frequency u, the repeatogram
shown in Figure 28. On top is the variable-window spec- R(x, u) is the minimum magnitude of the spectrogram over an
trogram of one scanline, which shows that the step edge and interval centered at x and extending for k wavelengths of the
narrow bump have higher spatial frequencies than the broad underlying sinusoid on either side of x, i.e.

228



surface texture, radiometry (lighting and reflection), and 2D
image texture; and the development of effective algorithms

R(x, u)= min [S(x', u)] for x' E [x -(k/2u),x + (k/2u)]. to compute and analyze the spectrogram. It may also turn

We call this the k-repeatogram, and note that for k> 1.5, out that the spectrogram is primarily useful not as a represen-

there must be at least two relative maxima or relative minima tation to use in the vision system itself, but rather as a way

of the underlying sinusoid within the interval of examination; of understanding the theory behind an implementation that
of > 2, there must be at least two of each. In general uses, for example, a small set of Gabor functions instead. Infor k any event, we believe that the power of the space/frequency
where R(x, u) is high, a real repetitive structure exists in the distributionwill make itpossible to develop far more compre-
image, with period 1/u pixels wide. hensive methods for low-level spatial vision than the current,

For a spectrogram with a nonzero window size, these con- limited, techniques allow.
siderations must be modified slightly, because a window can
contain part of a repetition before it is actually centered on
the repetition. Specifically, for a window of length I and a 9 Acknowledgements
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ABSTRACT (discontinuities) (Cavanagh and Leclerc, 1989).
In the most often employed image analysis method

Representation of an image by piecewise polyno- the relationships among delineated homogeneous
mial surfaces is an important computer vision patches are examined. (Note that we consider here
task Unfortunately the traditional least squares only the lowest-level image analysis in which the
based techniques are prone to error when applied assumed model is that of a local polynomial surface
to nonhomogeneous regions We introduce a new, structure.) The duality of the two primitive types
robust algorithm which recovers the fit allows two different approaches. In the discontinuity-
corresponding to the absolute majority (at least 51 based approach first the discontinuities are detected by
percent) of the pixels in the processing window, local operations and the regions bounded by contigu-
The algorithm uses the least median of squares ous discontinuities are then defined as homogeneous
(LMedS) estimator recently introduced in the patches. A similar principle can be used to achieve
statistics literature We show that the estimator high image compression ratios (Kunt et a., 1987). In
may yield incorrect results when applied to im- the dual, homogeneity-based approach, first the homo-
ages, and propose a two-stage procedure for the lo- geneous patches are found and the discontinuities are
cal description of the image structure and of the obtained where they meet. In Section 2 we review
corrupting noise. Robust region growing can also recent results obtained by each approach and argue
be performed with the same technique. The goal that the homogeneity-based approach is more
of this paper is to introduce the LMedS paradigm th ate homgeised proachm s m
to the computer vision community, the possible appropriate for computer vision problems.
applications are not restricted to the ones treated Detection of homogeneous patches first requires,
here. however, powerful algorithms. When seeking regions

with the same polynomial fit, the underlying assump-
tion is that only one such surface is present in the pro-

1 Introduction cessing window. Thus when the analyzed region con-

The information in an image is carried by two types of tains discontinuities, due to the incorrect model

primitives: homogeneous patches and discontinuities. erroneous decisions may be made. To reduce the

Homogeneous patches are regions in which the values dependence of the performance on the initial assump-

can be characterized by a small number of parameters. tions robust detection techniques must be employed.

In this paper homogeneity is defined relative to a poly- In Section 3 we discuss the necessity for robust pro-

nomial surface fit, i.e., the parameters are the cedures and their required characteristics, and intro-

coefficients of a polynomial taking values on a grid duce least median of squares estimators.

with sites corresponding to integers. Discontinuities The specific nature of the image data requires

occur where homogeneous patches meet. The two adaptation of the least median of squares estimators.

primitive types are dual to each other. Homogeneous In Section 4 we describe a robust, homogeneity-based

patches are delineated by discontinuities, while discon- image analysis algorithm making use of the least

tinuities are defined by pairs of adjacent homogeneous median of squares estimators. The algorithm recovers

patches. When primitives of one type are known those the parameters of the polynomial fit and supplies the

of the other type are immediate. description of the local image structure as well as of

Human visual perception offers several examples of the corrupting noise. Recovery of extended homogene-

the interaction between discontinuities and homogene- ous regions is achieved by a fusion/region-growing pro-

ous patches. In the Craik-O'Brien illusion (Cornsweet, cedure using the same least median of squares based

1970), if a local discontinuity similar to the smoothed technique.

first derivative of a step is introduced in the middle of The goal of this paper is to introduce the paradigm

a uniform field, a difference in brightness between the of the least median of squares robust estimators in

two entire halves of the field is perceived. The visual computer vision. We have chosen the analysis of noisy

system couples shadows (homogeneous patches) to images modeled as piecewise-polynomial surfaces to

their generating objects by analyzing only the borders illustrate the potential of the technique. Several other
computer vision applications exist in which the
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properties of least median of squares estimators are to have a zero-crossing correspond to the correct loca-
beneficial. We discuss some of them in Section 5. tion of a discontinuity in the original image. Without

additional processing, however, the detectable discon-

2 The Two Approaches to Image tinuities are restricted to steps in the image, i.e., the
Analysis two functions around the discontinuity cannot have a

common boundary value. Analysis of the necessary
In this section we review the recent literature on image condition for the presence of a zero-crossing (Theorem
structure analysis. Section 2.1 treats discontinuity- 2.1 in Lee et at.) shows a strong dependence of the
based approaches, and Section 2.2 homogeneity-based results on the shape of the image around the discon-
approaches. tinuity. Recently Chen et al. (1989) extended the

The feature property of interest for us is the local method by taking into account the shape of the auto-
polynomial fit to the data. That is, can a small region correlation function around discontinuities.
in the image be represented as a polynomial surface? In a more general framework, Lee (1988, 1989) has
Koenderink and van Doom (1982) have shown that proved that discontinuities in one dimension can be
elliptic and hyperbolic patches suffice to decompose an optimally detected in noisy signals by using derivatives
object in the physical world. In computer vision, of splines as matched filters. For two-dimensional
partly due to quantization effects, higher order fits are images the procedure has to be applied independently
also employed. Haralick et al. (1983) used bicubic sur- in the row and column directions.
faces to build the topographical primal sketch of inten- Analysis of the residuals is also employed in change
sity data, Besl and Jain (1988) used biquartic polyno- detection algorithms (see the book of Basseville and
mials for the description of range images. Benveniste, 1986, for a collection of theoretical papers

on the subject). The underlying autoregressive model
2.1 Discontinuity-based Approaches is a composite one; it is assumed that the description

Discontinuities in an image can result from adjacency of the data may have changed from one model to

of any two polynomial surfaces. A step edge appears another at an unknown position in the processing win-
when the two polynomials are both of degree zero, roof dow. The location of the transition is determined by

edges are the result of two first order surfaces with maximizing the likelihood ratio between the

common boundary values, etc. The number of possi- hypotheses "transition present" and "no transition

ble discontinuity profiles is very large. present". To discriminate a transition, however, the

Optimality of several recently proposed edge detec- autoregressive model on one side of the discontinuity
tors (Canny, 1986; Bergholm, 1987) is contingent upon should be known a priori. This constraint implies
the presence of the discontinuity profile they were sequential processing along one dimension at a time.

designed for, usually a step edge. These detectors Basseville et al. (1981) applied the change detection

incorporate differentiation of the image, an operation method in a line-by-line horizontal scan to discrim-
whose efficiency decreases steeply with the amount of inate step edges in images. The potential edges were

noise present. To improve performance in noisy than smoothed by a Kalman filtering based edge-
environments smoothed derivatives are employed, following scheme along the vertical direction. A simi-
trading off the accuracy of discontinuity localization. lar technique was proposed by Dattatreya and Kanal

The optimal amount of smoothing is difficult to assess (1988). Chakraborti and Misra (1987) compared

and multiresolution approaches are employed in which several transition detection algorithms employing

results from several scales are combined, autoregressive modeling of the local image structure.

By allowing several discontinuity profiles to be Note that in this paper we do not discuss the problem

present in the image, profile dependent edge detection of texture segmentation where autoregressive models

methods become unwieldy. The difficulties are only are also frequently employed.

increased if non-stationary noise is present in the A simple CUSUM (cumulative sum) test can be

image. In this case smoothing should be position derived from the likelihood ratio for detection of

dependent, resulting in variable degradation of the jumps in the mean if the perturbing noise is zero mean

discontinuities in the original image. Blurring in the Gaussian (see Chapter 1 in Basseville and Benveniste,

image formation process also contributes to the spread 1986). These sums involve only the values of the sam-

and diversification of the discontinuity profiles. pies, the a priori known mean before the transition,

The limitations of edge detection methods based on and the smallest significant jump size.

differentiation are well understood and different Chow's (1960) test comparing the parameters of

approaches are often sought. Lee et al. (1988) and two polynomial fits was employed by Leclerc and

Pavlidis and Lee (1989) proposed a residual based pro- Zucker (1987) to discriminate discontinuities in

cedure. The residual is defined as the difference images. This test too can only be applied in one

between the value of the pixel and its estimate dimension, separately along the rows and along the

obtained by smoothing in a small neighborhood. columns of an image. Polynomials are fit to the left

Smoothing can be achieved either by convolution or and right neighborhoods of any pixel in the one-

by regularization. The discontinuities are localized at dimensional signals. The residuals of the fits in the

the zero-crossings of the residual image. Lee et al. neighborhoods, as well as of the fit in the combined

(1988) established a necessary and sufficient condition region, are used to build an F-type statistic. The
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existence of a discontinuity at that pixel is then tested seed regions were grown by iterative polynomial sur-
by comparing the value of the statistic with a thres- face fitting with increasing model order. Yokoya and
hold corresponding to the degrees of freedom. The Levine (1989) proposed a similar hybrid method in
method was implemented multiscale and bottom-up. which surface identification is integrated with edge
Some of the discontinuities found at the beginning are detection.
later eliminated by retesting their locations with Several homogeneity-based methods iteratively col-
increasing neighborhood size. The use of the F-test lapse the input image into a piecewise polynomial
requires that the noise be of a Gaussian nature. representation. The motivation is that once the image
Bottom-up discontinuity discrimination is usually less structure is similar to the ideal, piecewise polynomial
efficient at small signal-to-noise ratios where the pro- structure, detection of discontinuities becomes more
bability of false alarms increases steeply and numerous reliable. In these methods, based on the current local
artifacts are introduced. image structure, the values of the pixels are modified

We conclude this survey of "non-traditional" in parallel. The technique employed for the facet
discontinuity detection methods by mentioning an model (Haralick and Watson, 1981) is one of the best
algorithm proposed by Nalwa and Binford (1986). The known. The same order polynomial fit is computed
existence of a transition in a neighborhood is first within every window of a given size to which a pixel
tested with successive fits in one and two dimensions. belongs. For example, if the window size is 3 X 3
Potential discontinuities are then fitted with a hyper- there are nine different fits. The updated value of the
bolic tangent function to achieve subpixel accuracy pixel is taken from the window having the smallest
localization. The image before and after the transition variance (residual power). The procedure is shown to
is taken to be constant (a zero order polynomial). converge, but the final result is not necessarily the best

piecewise polynomial approximation of the input.
2.2 Homogeneity-based Approaches In the one-dimensional smoothing technique pro-

In homogeneity-based approaches the discrimination of posed by Heinonen and Neuvo (1988) a different rule is

homogeneous surface patches is usually assisted by employed to combine the descriptions of a pixel from
hypotheses about the presence of discontinuities. several windows. The value of the pixel is predicted
Therefore the distinction between these methods and based on different model orders in neighborhood on its

discontinuity-based methods is sometimes not entirely left and its right. For example, the predictions can be

obvious. Additional support for homogeneity-based computed assuming zero order (constant) and first

segmentation is gained when constraints about the order (ramp) structure in the neighborhoods. The

physical world are also taken into account. In this predictions can be obtained by simple convolutions.
paper we are interested only in the low-level com- The median of the list containing the values of the
ponent of the segmentation process, and thus this part predictions and the current pixel is used as the new
of the literature will not be surveyed, value. Application of the method in two dimensions,

Homogeneity is defined for our purposes as a satis- other than one dimension at a time, is not straightfor-

factory polynomial surface fit within a local region. A ward.

minimum size (say 3 X 3 pixels) must be used for the Excessive smoothing across discontinuities, while

regions in order for this feature property to become collapsing the input image into a piecewise representa-
meaningful. Real gray-level images, however, even in tion, is avoided by using adaptive smoothing tech-

the noiseless case, do not have perfect piecewise poly- niques. In these algorithms the weights of the smooth-

nomial structure. To identify polynomial surface ing kernel are updated at every iteration to restrict the

patches the homogeneity-based methods must assume smoothing to homogeneous regions. Several adaptive

that the data arise from a piecewise polynomial image. methods have been described in the literature (see

We will not deal here with traditional region growing Saint-Marc and Medioni, 1988, for a review of earlier

and "split and merge" techniques (see Haralick and results). Perona and Malik (1987) proposed an aniso-

Shapiro, 1985, for a review), or with methods which tropic diffusion process as a smoothing procedure.

combine edge detection and region growing (e.g. Diffusion barriers defined at large values of the gra-

Bajcsy et at., 1986; Pavlidis and Liow, 1988). dient keep the smoothing within the boundaries of

The adaptive surface labeling method proposed by piecewise constant regions. They proved that no new

Mowforth et al. (1987) is an example of a simple discontinuities can be introduced during the diffusion

homogeneity-based approach. The regions best fitted process. A simplified anisotropic diffusion technique

by a simple polynomial model are searched with using similar principles was described by Saint-Marc

decreasing window sizes and increasing model orders, and Medioni (1988).

The method requires a priori knowledge of the noise The correct choice of the conduction coefficient

variance, which is used as a threshold for decisions. (defining the strength of the diffusion barrier) is essen-

Besl and Jain (1988) employed, for segmentation of tial for efficient discontinuity preserving smoothing,

range images, eight fundamental surface types defined leading to an increased sensitivity of the results to the

in differential geometry by combinations of the signs of values of the design parameters. Many iterations (on

the mean and Gaussian curvatures. Each delineated the order of hundreds in some cases) are required to

surface in the image was then reduced to a seed region achieve the final result. Anisotropic diffusion methods

by applying a morphological (erosion) operation. The always collapse the input into a piecewise constant

233



image. To apply the method to more general image those discontinuities which do not have a step jump
structures, Saint-Marc and Medioni (1988) first when at least one of the two polynomials has p > 1,
transformed the input to carry the desired information we already obtain (P +1 ) possible cases. (The
in a piecewise constant representation. For example, number results from the combinations with replace-
in the case of piecewise linear range images, the image meats nature of the problem.) "Traditional" edge
is first differentiated and the resulting first derivative dentcn qu re of the i a ge
is smoothed. The transformation into a piecewise con- detection techniques require smoothing of the image,
stant image, however, enhances the effect of the noise and therefore the discontinuity profiles are subject to

and it is not clear if the method can recover the origi- data-dependent distortions, further multiplying the

nal signal if the signal-to-noise ratio is high. possibilities.

Somewhat related to adaptive smoothing tech- In homogeneity-based approaches, the number of

niques is the use of non-linear local operators to col- features sought is never more than p, the number of

lapse the image into a piecewise constant representa- polynomial coefficients. We can also assume that far
tion. The symmetric nearest neighbor filter (Harwood from discontinuities local smoothing does not

et al., 1987) is a good example of this subclass. The significantly modify the order of a homogeneous patch,
value of the pixel in the center of the window is i.e., after smoothing we can still approximate the
modified based on p differences of symmetri- patch with a model having the same degree. Another

mdfebaeonpairwise difrne osymt impratavnaeo-ekn ooeeu ace
cally located pixels. The method appears to be sensi- important advantage of seeking homogeneous patches

tive to local structure, and produces many relative lies in the similarity of the models. The parameters of

small constant regions. a constant fit and of a high dimensional polynomial

A different homogeneity-based approach is the surface fit are computed using the same mathematical

minimal-length encoding technique proposed by technique, regression analysis.

Leclerc (1988, 1989) and Pednault (1989) based on This computational convenience is also used in

information theoretical concepts. The images were many of the recent discontinuity-based approaches.

modeled as piecewise polynomial regions, corrupted To avoid a combinatorial explosion of different discon-

additively with white, Gaussian noise. Local tinuity profiles the residuals of polynomial fits are

differences in gray level were used as information used. Statistics are then computed in neighborhoods
about possible discontinuities. Tile segmentation is around the location to be analyzed. It is assumed that
abedoutposldiotuities. The segloba menation iso- the detection criterion takes on extreme values when
achieved as the output of a global optimization, pro- the neighborhoods meet at a discontinuity. Such

cedure seeking a description of the image in a thodsgarhowee rtic onein ion,

minimum number of bits. The minimal-length encod- methods are, however, restricted to one dimension,

ing method tends to extract the largest homogeneous since in two dimensions a unique mapping between the

regions and reduce the number of accepted discon- value of the detection criterion and the local image

tinuities. The reliability of the discontinuities is structure usually does not exist.

described by a stability measure. The majority of the homogeneity-based approaches

In connection with homogeneity-based methods of discussed in Section 2.2 require the definition of a
segmentation we should also mention the large class of discontinuity measure at every location in the image.
visual reconstruction methods (see Blake, 1989, for a Note that when we define this measure the problem of
comprehensive list of references). These methods seek discontinuity profile diversity is back again! To
copeensie lonito rerees).tTheseomethodsisee extract only the significant discontinuities, i.e., to
a piecewise continuous representation of the inputy g

through the minimization of an energy function define large homogeneous patches, numerous iterations

derived from a Markov random field description of the of the algorithms are required. The reliability of the
image structure. The procedures yield the maximum a discontinuity measure is of importance and limits per-
posteriori probability estimate of the image. It is formance in the presence of severe corrupting noise.

beyond the scope of the paper to discuss this class of Collapsing the input image into a piecewise polyno-

algorithms. We note, however, the importance of mial description can also be achieved without making

"line processes" in the definition of the energy func- explicit use of a discontinuity measure. Computation

tions. These processes assign a locally computed of the facet model is the best example of such a
measure to every location, homogeneity-based technique. Most of the discon-

In the above two sections we surveyed the less tinuities are preserved by updating the value of a pixel

"traditional" methods of low-level image analysis. using the window that provides the best fit. The least

Several common characteristics emerge for each of the squares regression technique employed in the facet

two different approaches. We discuss them in the next model, however, may yield erroneous results close to
todfn. atransitions.

To avoid the effect of discontinuities as much as

2.3 Discussion of the Two Approaches possible, most homogeneity-based methods use pixel
level parallelism. Thus after collapsing the image into

We have already mentioned at the beginning of Sec- the piecewise polynomial description region growing is
tion 2.1 that in a piecewise polynomial image the required to delineate a homogeneous patch. If the
number of possible discontinuity profiles is very large. description is not very successful region growing may
For example, in one dimension with polynomials hay- fail.
ing maximum degree p-i, if we take into account only We conclude that the class of homogeneity-based
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methods is more adequate for low-level image analysis emphasize the number of regression coefficients fk

since the number of possible models depends only that must be estimated. In matrix notation (1)
linearly on the assumed polynomial image structure. becomes
The drawback of these methods is the need for an ini-
tial hypothesis about the discontinuities and the pixel z X fi + v (2)
level definition of the output. where x is a (2n+1)2X 1 vector of data, X is a

In this paper we introduce a new, robust technique (2n +1)2 X p matrix of regressor variables, P is a
to analyze local image structure which is immune to p X 1 vector of regression coefficients, and v is a
the presence of a discontinuity in the processing win- (2n +1)2 X 1 noise vector. The noise vij has zero
dow. The Gaussian nature of the corrupting noise can mean and is correlated:
be relaxed; the method handles a large variety of noise
processes including impulse noise. The independence E[vj = 0 Oov[vj = a 2 V (3)

of the method from hypotheses on discontinuities where V is a known (2n +1)2 X (2n +1)2 covariance
allows processing of the image in non-overlapping matrix.
tessellations, thus loosening the need for pixel level In the generalized least squares method the regres-
parallelism. Delineation of larger homogeneous sion coefficients are estimated by minimizing the qua-
patches by region growing is achieved by the same dratic form
technique. 

(Z. - Xfl)' V (z - Xp) (4)

3 Regression Analysis where the superscript 1 means transpose. The minimi-

For images with piecewise polynomial structures local zation yields the estimate vector (see any textbook on

analysis involves the recovery of the polynomials' linear estimation)

coefficients. The problem is known in the statistical = (X' V -1 X)X' V - ' Z (5)
literature as regression analysis. In this section we
first show that even under ideal processing conditions having the properties
with no discontinuity present in the local processing E[] = ] Cov[ --- a2 (X'V'X)-1 . (6)
window least squares based techniques cannot yield
satisfactory results. We then argue for the importance The estimate of the vector of regression coefficients

of applying robust regression methods to computer is an unbiased estimate of fl. It can be shown that A
vision problems. We show that of the many robust has minimum covariance and thus is the best linear

regression techniques developed in the statistical litera- unbiased estimate of ft. Optimal, however, does not

ture, the least median of squares (LMedS) estimator is necessarily mean satisfactory! If v is not a Gaussian

best suited for local image analysis. We also give a noise process, all linear estimators return erroneous fits

detailed algorithm for its computation. (Hampel et al., 1986, p. 33). If the noise is assumed to
be Gaussian the estimate (5) is also identical with the

3.1 Least Squares Regression in Image maximum likelihood solution. The covariance matrix
Analysis a2 V of the noise was assumed known. When this

information is not available and we mistakenly take
Least squares regression is the estimation technique V = I, the identity matrix, the estimator remains
most frequently employed in computer vision. The unbiased but no longer has minimum variance.
properties of the estimates, however, are rarely given We have assumed that the model (1) agrees with
any consideration. In this section we show that most the data and have seen that in this case the least
of these estimates are unreliable even in the ideal case squares estimate is the best estimate we can obtain.
in which the assumed model is in agreement with the We show now, however, that this estimate is often not
data. The more realistic case of inconsistency between reliable unless the processing window is larger than the
the model and the data is discussed in the next sec- ones typically used in computer vision. Let us esti-
tion. mate the coefficients of a planar fit (p =-3) in the

Let zn,_n,..., z,,n be samples of the noisy image presence of i.i.d. noise (Covtv] = a12 ). The fit is then
on a square window centered at the origin. Note that of the form
we define the image on a grid with nodes correspond-
ing to integers. Assume that the image is a two- z = 0+Ai+A2j i,j =-n,..., n (7)
dimensional polynomial corrupted by additive noise. and it is immediate to obtain from (6)
That is, assume that we have succeeded in placing our
processing window on a homogeneous patch of the 1 0 0
image. The data then obeys the model (2n+1)2

P-1 COVIP) = a2 03 0 .8
Z,. = + ;,xk j)+ , + = -n,. n .(n) 0o~lY .(8)

k=O 3

where the p regressor variables Zk(ij) are of the form n(0+l(2n+1)2
ik, 1 k2 (k1 , k2 =-J,1,...). We prefer this somewhat The estimates of the three parameters, the intercept

awkward definition of the polynomial in order to
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and the two slopes, are independent as one should piecewise polynomial models.
expect. A simple quality measure for unbiased esti-
mates is the ratio between the correct value 13k and 3.2 Characteristics of a Regression Method
the standard deviation of the estimate. We obtain For convenience, the discussion in the following sec-

_ =2 1 t= 11 1tions deals with one-dimensional signals, but it can
=l0 =-(2n+1) - = (2n+1)Vn a. .(9) readily be extended to higher dimensions. The resi-dual ri is defined as the difference between the data

The larger the ratio the better the estimate. We will and the value of the estimated fit ii:
consider an estimate reliable if n is larger than 5. This p-i
roughly corresponds to ± 10% estimation error. The r;Z-
more accurate measure of confidence interval involves k=O
additional assumptions and for our purposes (9) Note that in spite of (1), ri does not necessarily have
suffices. From the expression for U, we can obtain the the same probability law as v. since fk depends on the
normalized upper bound for the standard deviation of data z;. The regression coefficient estimates are
the noise yielding reliable estimates: obtained by minimizing a penalty function of the resi-

a (2n+l)VnTn +1 (10) duals ri. A large variety of penalty functions are
5\/3 employed in the statistical literature. An important

class is that of the continuous, symmetric, positive
In Table 1 the values of this bound are shown for valued penalty functions p(u) with a unique minimum
several window sizes. at u =0. For this class, finding the regression

Table 1: Dependence of the normalized noise upper coefficients is equivalent to the minimization problem
bound on window size. n

min p(rj). (12)

n Window Size Upper Bound The particular case p(u) = u2 yields the least squares
0.49 regression discussed in Section 3.1 for the case V=I.

2 5 X 5 1.41 The noise is assumed zero mean in the least squares
2 5 X 5 1.41 model (3). This is, however, not necessarily true for
3 7 X 7 2.80 the local window operators used in computer vision.
4 9 X 9 4.65 Small data sets often yield significantly skewed sam-
5 11 X 11 6.96 pies, even when the original noise process is symmetric
6 13 X 13 9.73 (Rousseeuw and Leroy, 1987, p. 166) and thus asym-

metric noise can also be generated by a zero mean ran-

In images the slope values #I have the order of magni- dom process.
tude of units. The bounds in Table 1 show that small The limitation of least squares regression to data
windows cannot provide reliable estimates for the that arise from a polynomial surface is related to its
slopes of a planar fit even in the presence of negligible inability to handle non-zero meai noise. Whenever
noise. For example if /1 = 1 a 5 X 5 window is able to two surfaces meet within the proc,'ssing window we
handle only noise with a < 1.41! The intercept esti- can regard the surface generating the majority of the
mate is much more reliable since fl0 has the order of pixels as the signal and the remaining pixels as sam-
magnitude of hundreds and Y10 is always larger than 5. pies corrupted by noise. In this case the noise always

We conclude that the small window based least has non-zero mean.
squares operators usually employed in computer vision In the last two decades, statisticians have
cannot return a reliable estimate of a polynomial sur- developed new, robust regression techniques which
face, except for its intercept. Since the least squares tolerate deviations from the assumed models. The
estimate is the best estimate with a linear estimator books of Huber (1981), Hampel et al. (1986) and
structure, the only way to recover the correct polyno- Rousseeuw and Leroy (1987) are the leading references
mial fit is by employing larger processing windows, for robust statistics. Robust methods make use of a
Large windows, however, with high probability contain priori available information through the assumed
discontinuities, i.e., the data no longer can be model from which, however, deviations are allowed.

represented by a single polynomial surface as in (1). Thus robust methods are more powerful than non-
In this case the least squares technique is no longer parametric methods which, in order to avoid erroneous
optimum. We have assumed that the window is cen- assumptions, do not involve models at all. See Ham-

tered on a homogeneous patch, a hypothesis which pel et al. (1986), Section 1.1b, for a discussion of the
cannot be satisfied in real applications. When no a place of robust methods among other statistical tech-

priori information about discontinuities is available, niques.
many windows will cover piecewise polynomial local A large variety of robust methods exist today. To

image structures. We now introduce the concept of evaluate which of these techniques is best suited for

breakdown point which captures the property required image analysis, we discuss three characteristics of

of an estimator in order for it to be able to handle regression methods. The one-dimensional location
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estimation problem is used as an example to illustrate The breakdown point, c', of a regression method is
the meanings of different regression characteristics, the smallest fraction of contamination of the data
This is the simplest regression problem, in which the which yields arbitrarily incorrect estimates. This is
value of the best fitting constant o to the data zi, the most important regression characteristic for our
i =-n, ... , n is sought. Two penalty functions discussion since it captures the behavior of the estima-
p(u) will be considered for (12). In the case of least tor when the data severely deviates from the model.
squares regression, also known as L2 regression, the The data points yielding severe deviations are called
solution of the location estimation problem is the outliers. Note that whenever two surfaces meet in a
arithmetic mean processing window (i.e., a discontinuity is present) the

1 pixels belonging to one of the surfaces can be regarded
2 Z . (13) as outliers for the fit to the other one. The largest

2n+1 , a possible value for c" is 0.5, since above this bound the

When p(u)-- u is used in (12), the least absolute outliers become the majority. Both finite-sample and
values or L1 regression is obtained. The solution is the asymptotic definitions exist for the breakdown point.
median In our examples

1 n+lLI: ,Po medzi. (14) mean: 2n+l -0 mda:-n+,l 05(7

The relative efficiency of a regression method where the numerical values are the asymptotic break-
describes the quality of the estimate by a positive down points. One large, incorrect value suffices to cor-
number between 0 and 1. It is computed as the ratio rupt the arithmetic mean, while the median tolerates
between the lowest achievable variance for the regres- half the data being corrupted.
sion coefficients and the variance obtained when the We cannot conclude, however, that in the general
current method is employed. In the former case any case L 1 regressions have c' =0.5. When the data is
method is allowed. The asymptotic relative efficiency no longer defined in a compact region on a lattice, i.e.,
is obtained when the size of the data set n tends to some points could lie far from the rest, it can be
infinity. The relative efficiency clearly depends on the shown that the asymptotic breakdown point of L,
nature of the corrupting noise. In most cases the noise regression is 0 (Rousseeuw and Leroy, 1987, p. 20 and
is assumed to be normal. p. 145). A similar remark is valid for minimax (or L, ,)

In our examples, the asymptotic relative efficiencies regression in which the minimization of the maximum
for Gaussian corrupting noise are squared residual is employed to compute the regression

2 coefficients (ibid., p. 125). These remarks are of
mean: 1 median: 7 = 0.637. (15) significance for computer vision. It suggests that L1

and Loo regression methods should not be applied to
The arithmetic mean (13) is indeed a minimum vari- problems with sparse data (e.g. line fitting to noisy
ance estimator, achieving the lowest possible (Cramer- edge detector output) since distant points could yield
Rao) bound. The relative efficiency of the median is incorrect results.
lower; for the same degree of precision a sample size The equivariance properties of an estimator are of
7r/2 larger should be employed (Wilks 1062, p. 364). lesser importance for us. They characterize the
This is due to the fact that while L2 regression is behavior of the estimator under transformations of the
optimal for Gaussians, L, regression is optimal for regressor variables or of the data. (For more detailed
Laplace (doubly exponential) noise processes. definitions see Hampel et at. 1986, Section 5.3;

The convergence rate of the estimators is also stu- Rousseeuw and Leroy, 1987, p. 116.)
died in statistics-that is, as the size of the data Although they represent a class of robust estima-
increases, how fast the ratio of variances approaches tors, we are not interested here in techniques based on
the asymptotic relative efficiency. Both L2 and L, order statistics (trimmed-mean filters, for example),
regression converge toward zero at a rate of n- 1/2.  which have already been employed for a long time in

The complexity of a regression method refers to the computer vision (see Coyle et al. 1989, for a complete
amount of computation required to obtain the esti- literature survey). Recently, estimators making use of
mate. It is desired to keep the amount of computation more sophisticated robust regression methods have
low, although with progress in parallel computer been designed. M-eatimator8, corresponding to
hardware, the precise definition of what low means in different p(u) functions in (12), are a family of robust
no longer clear. In our examples we have techniques. In the broadest sense our previous two

mean: 0[n] median: 0[n] (O[nlogn])(16) examples are M-estimators, but usually M-estimators
use more complex p(u) functions to limit the influence

so that the complexity depends linearly on the data of outliers on the regression coefficients. The books of
size. The 0 [n I algorithm for the computation of the Huber (1981) and Hampel et al. (1986) offer a complete
median is not recommended if n <50 (Aho et al. 1974, treatment of the subject. The minimization problem
Section 3.6). Thus for the local operators used in com- (12) is solved for M-estimators as iteratively
puter vision, the 0 [n log n complexity median algo- reweighted least squares with the definition of the
rithm involving direct sorting is more appropriate, weights depending on p(u). Note that the resulting
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estimators no longer have linear structure and thus In the next section we show that for low-level process-
superior estimates can be obtained for non-Gaussian ing in computer vision the least median of aquarei
corrupting noise. The reliability of the initial guess (LMedS) regression estimator appears to be the most
used in the iterative process is extremely important; appropriate. (We prefer to use the LMedS notation
otherwise the final results could be nonrobust (Hampel instead of LMS, which is used in the statistical litera-
et al., 1986, p. 106 and p. 263). Since least squares is ture, to avoid confusion with the usage in the image
employed, the relative efficiency of M-estimators is processing field where LMS stands for least mean
good and the complexity is low. squares.) We have already applied this technique to

The attractiveness of the good computational clustering problems and to recovery of images cor-
features of M-estimators is somewhat lessened by their rupted by impulse noise (Kim et al. 1989, Jolion et al.
low breakdown points. It can be shown that no M- 1990). Tirumalai and Schunck (1988) and Sinha and
estimator can have a breakdown point larger than Schunck (1989) used least median of squares to inter-

= 1, where p is the dimensionality of the parame- polate sparse data over a rectangular lattice, and
p Kumar and Hanson (1989) used it to solve the pose

ter space (Hampel et al., 1986, p. 329). For example, estimation problem.
in the case of biquadratic surface fitting (p = 6) the
upper bound is c* < 0.167, i.e., only about 15% of the 3.3 Least Median of Squares Regression
data can be severely corrupted if we want to be able Rousseeuw (1984) introduced the least median of
to recover the correct fit. Note that the breakdown sq usee ( 194) itroduced the astm ia
point is a "worst-case" characteristic. Higher levels of literature, although the idea was mentioned by Ham-
contamination may be tolerated in certain cases, but lte arealug t ide was m eied by hthere is no guarantee that the performance can be pel ten years earlier. If not othe- ,ise specified, all the
repeated for all the outcomes of the noise. references in this section refer to page numbers in the

Recently M-est:mators were applied to several book of Rousseeuw and Leroy (1987). We prefer to
important computer vision problems. Kashyap and use this excellent, application oriented source, instead
Emotant (1 mplethe m v isin pege detectitask, td of the original papers which approach the issues on aEom (1988) employed them in edge detection tasks, to moegnrlev.

estimate the parameters of causal autoregressive image In the least median of squares technique the follow-
models driven by Gaussian noise contaminated with a ing minimization problem must be solved to estimate
small fraction of impulse noise. The same technique tng miniizion obem s t
was used by Koivo and Kim (1989) for classification of the regression coefficients:

surface defects on wood boards. Haralick and Joo min med r;2 . (18)
(1988) used M-estimators for pose estimation. A simi- P

lar algorithm was used by Lee et al. (1989) for estimat- Note that (18) is of a different nature than (12), where
ing 3D motion parameters. Besl ct al. (1988) imple- an analytical expression in the residuals had to be
mented a hierarchical surface fitting scheme based on minimized. The objective function in (18) can have at
M-estimators, in which successively higher degree fits most O[ni] local minima (ibid., p. 206) and there
(up to bicubic) are evaluated through a fit quality always exists a solution to the minimization problem
measure. (ibid., p. 113). It can be shown that (18) is computa-

High breakdown point regression methods are desir- tionally preferable to the apparently equivalent least
able in computer vision. Let us restrict ourselves for median of absolute values (ibid., p. 170).
the moment to an uncorrupted one-dimensional exam- The breakdown point of least median of squares
ple having piecewise polynomial structure of maximum regression is (ibid., p. 118)
degree p-1. Assume that the regression technique p + 2
used has e'-0.5 and the operator returns the + 0.5. (19)
estimated value of the pixel in the window center, 2n+1

located in the (n +1)" position. Since the input is an The upper bound on any regression equivariant esti-
ideal piecewise polynomial signal, a contiguous group mator (ibid., p. 124)
of n+1 pixels always carries information about the 1 [(2n -p + 1)/2]1 +
same polynomial. The 0.5 breakdown point assures (20)
that the estimated regression coefficients are those of 2n +1
this polynomial and the value returned by the operator (where ] is the integer function) is slightly larger
is the value of the polynomial at the window center. than (19). This bound can be achieved by the
The noiseless one-dimensional piecewise polynomial repeated median mcthod (which is not affine equivari-
signal remains undistorted when processed by a regres- ant and is computationally prohibitive) and by vari-

sion operator with breakdown point e* = 0.5. This ants of LMedS (which are computationally more
root-signal property is not necessarily valid in two expensive than LMedS). From (19) we can see that if

dimensions. When the window is centered on a corner, n + p data points are always uncorrupted in the pro-

it is not always the case that 51 percent of the pixels cessing window, the root-signal property discussed at

belong to the surface in the window center. the end of Section 3.2 is satisfied.
Several robust regression methods with c* close to The efficiency of least median of squares regression

0.5 exist (see the book of Rousseeuw and Leroy, 1987). is low since it involves median operations. Its conver-
gence rate is only n- /  (ibid., p. 178). This

238



disadvantage can be compensated by applying a one- to use squared and not absolute values in (28), see
step reweighted least squares (RLS) procedure to the ibid., p. 166. If more than one minimum is found in
output of the LMedS estimator. We now proceed to (26), the value of the mode is taken as the average of
describe the sequence of computations yielding the the midpoints of the intervals. The minimization
least median of squares estimates. problem defining the LMedS regression coefficients (18)

The objective fiaction (18) is not an analytical is now reduced to finding
expression in the residuals and the regression
coefficients. The least median of squares estimator -yd2  in -',(J). (30)
uses a projection pursuit type procedure (ibid., p. 143)
in which the data set is projected onto a one- The final regression coefficient LMedS estimates are
dimensional space. obtained from the p-tuple achieving the minimum in

Let a p-tuple of distinct data points be character- (30), k(d).
ized by the indices The way LMedS estimates are computed also pro-

vides a physical interpretation of the least median ofj--=- { i1,..., ip j 1,2,..., (2n+1) . (21) squares method (ibid., p. 126). First the thinnest
hyperstrip containing half the data points is deter-

For every p-tuple the values of the initial estimate mined. The width is measured along the dimension of
regression coefficients #l0, i.e., of the intercept. The LMedS surface fit is then

0) k = , . .. , p-1 (22) the medial axis of the hyperstrip.
The global minimum value, -f (30), also returned by

are computed by least squares regression. Since the the LMedS estimator can be employed for a robust
number of data points and the number of unknowns estimate of the standard deviation
are equal the regression coefficients can be computed
from closed form expressions. Note that the coefficient 1.4826 +

or = .482 1 +(31)p0(J) is not sought. The data is then projected onto 2n-p+1
the lo subspace by computing where the term 5/(2n-p+l) is the finite sample size

a (j) -z - 3k(j) ik i =-n..., n. (23) correction (ibid., p. 202) and 1.4826 is the correction
k=1 factor for median based standard deviation estimates.

The next step is to determine the mode (location of This correction factor is based on normal distribution
the maximum) of the probability distribution of a(j). around the fit. This assumption is satisfactory in most
The 2n +1 values are sorted in ascending order cases, but if the nature of the noise is a priori known

other correction factors can easily be computed. For

C[l1J(j):[2J(j)___ ... ' ' 2n+1~j0) (24) example, the uniform distribution yields 1.1547. The
residuals of the LMedS fit normalized by the standard

and the differences deviation (a scale estimate) define the set of weights

(j) - ajn+,(J)-al(J) 1=1,2,..., n+1 (25) w.:
r[ <2.5

are defined. The mode is then located at I - mj yield- 1 -
in- (32)

in 7 j) = min -i(j). (26) 0 1'0 i >2.5

The value of the mode is taken as the value of the yet &

undetermined intercept for the given p-tuple All the data points having w,. 0 are outliers, i.e.,
severe contaminations of the data. The LMedS esti-

0J) = a[+m(J) + a['n~i(J) (27) mator tolerates a discontinuity in the processing win-
2 dow. If at least half the pixels belong to one surface

The ordering relations the most of the remaining pixels are detected as
outliers. The quality of the procedure depends on the

<-y (j) if mi < i < mj + n presence of noise corrupting all the pixels and on the
underlying image structure as will be discussed in the

(00)..-a[l(j))r -- 'ij(j) if i =mj or i- mj+n(28) next section.
'19 > ' if 1 < i < nj or m. + ( The LMedS regression algorithm requires an

extremely large amount of computation. From (21) we
< i < 2n+1 can see that the number of p-tuples is O[nP] and for

are immediate to verify. Thp relation (28) can also be every p-tuplc the mode seeking procedure has com-
plexity 0 [n log n j. Edelsbrunner and Souvaine (1988)

written C 2 proposed an algorithm of O [n2j for LMedS based

mj.(j)) -med (r(j). (29) linear regression (p 2), but its practicality in appli-
i i cations especially in higher dimensions is not clear.

For a more rigorous proof, and comments on the need In order to reduce the otherwise impractical
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amount of computation of the LMedS estimator only a 2 rp (4reduced set of p-tuples are selected at random from wr/ -(
the total (2n,+1) (Rousseeuw and Leroy, 1987, p. A V /--. " " 4

198). By doing so, we accept a probability of error Q New weights wi° can be determined by using &° in
in recovering the correct regression coefficients. Let (32). Let w ° be the (2n +1) X 1 vector of these
the fraction of outliers in the data be 0 < c <0.5. The weights. If we define V-1 = (w °)(w °)' the reweighted
probability that from q independently chosen p-tuples least squares regression coefficients are given by (5).
at least one does not contain any outliers is This solution is ordinary least squares applied to the

1-[1-(1-f)P I, <1-Q. (33) inliers of the window. The standard deviation value
can be updated by repeating (32) and (34) for the

From (33) we can find the value of q for any given resulting fit values.
p, c and Q. For example, if in planar surface fitting
(p =-3) the data contains c = 0.45 outliers and the 4 Least Median of Squares Estimators
tolerated probability of error is Q = 0.01, only 26 tri- in Image Analysis
pies must be used, independent of the processing win-
dow size. Rousseeuw and Leroy (p. 199) recommend In computer vision the optimum breakdown point is
taking a larger set of p-tuples than the number the most important property of the least median of
obtained from (33). Note that precautions must be squares (LMedS) estimators. It allows analysis of
taken to assure that no two p-tuples are the same, a images near discontinuities by recovering the surface
possible outcome if the size of the processing window which contains the majority of pixels in the processing
is small. We avoided such ties by using a novel ran- window. The local structure then can be described in
dom sampling algorithm (Mintz and Amir, 1989). an inlier/outlier representation. The LMedS estima-

In Section 3.1 we have shown that the reliability of tor, however, was designed to suit the data used in
least squares estimates is extremely low when com- statistics. In this section we show the limitations of
puted based only on a few samples. Can we improve direct (one-step) application of LMedS estimators to
the performance of the LMedS estimator if instead of images. We then propose an algorithm based on
p-tuples (and closed formulas) we use larger samples LMedS computational modules that eliminates most of
(and explicit least squares)? From (33) we see that for the inherent problems of the original estimator.
the same probability of error Q the number of tuples
increases exponentially with the size of the tuple. If 4.1 Limitations of LMedS Estimators
instead of 3-tuples, 5-tuples are used in the above for Image Data
example, at least 90 distinct quintuples must be Analysis of the LMedS estimator computation (see
drawn. On the other hand, the standard deviation of Section 3.3) shows that the necessary and sufficient
the least square estimates decreases only linearly with condition to obtain the correct estimate is the
the size of the tuple and remains large for all the feasi- existence of at least one p-tuple carrying the true
ble tuple sizes. We conclude (based also on simulation regression coefficients of the polynomial surface defined
results) that no real improvement can be obtained by by the majority of the pixels. Noise corrupting all the
increasing the size of the tuples while the amount of samples can only be tolerated if it does not yield
required computation increases drastically, significant degradation of all the initial estimates used

The above described random sampling procedure is in the projection pursuit procedure. In statistics appli-
similar to the RANSAC paradigm of Fischler and cations this condition is satisfied since the data usually
Bolles (1981). In RANSAC, however, the model contains just a few outliers caused by severe measure-
derived from the first p-tuple chosen determines the ment errors or faulty inputting.
set of data points agreeing with it within a given toler- In computer vision ideal conditions for LMedS esti-
ance limit. If the set is large enough, no more p- mators are only rarely met. Near transitions about
tuples are drawn. The only significant difference half the pixels are outliers; the noise corrupting all the
between RANSAC and LMedS is that the latter gen- pixels thus destroys the dichotomy between the inliers
erates the error measure, while the former must be and outliers. The high breakdown point loses its
supplied with it. For a more detailed discussion see meaning; a p-tuple chosen from the correct surface
Meer et al. (1990). does not necessarily yield a reliable estimate.

We conclude this section with a short description Nevertheless, there exist applications in which
of the re ;'.;,hted least squares (RLS) postprocessing LMedS estimators can be used without additional safe-
step. Rousseeuw and Leroy (1987, p. 211) show that guards. Such an application is the interpolation of
using reweighted least squares after LMedS is more noiseless (or weakly corrupted) data. That is, we want
effective than using a one-step M-estimator. In com- to recover from a sparse set of pixels an image defined
puter vision the application of this postprocessing step on a regular grid. For our discussion neither the prob-
should be examined carefully; we discuss it in the next lem of data density required for satisfactory recon-
section. struction, nor the influence of noise due to the pres-

The weights wi allow computation of a new stan- ence of image structure corresponding to polynomials
dard deviation estimate by applying the well known with degrees higher than p-1, is of importance.
formula for all the data points which are not outliers:
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In a simple LMedS based non-linear interpolation
procedure a (2n+1) X (2n+1) window is centered at
every pixel and the intercept value of the fit is allo-
cated to it. Thus the pixel gets its value from the fit
containing the majority of the available samples in the
window. The sparseness of the data and the minimum
recoverable feature size define the trade-offs on the
window size. From the 128 X 128 aerial image in Fig-
ure la 14% of the pixels were removed by random
selection (Figure 1b). A 5 X 5 window based first
order LMedS estimator was then applied at every pixel
to interpolate the image (Figure 1c). The larger
features are correctly recovered. The smaller features
can be recovered only if the available samples are the
majority in the windows centered on them.

b) Image with 14% of the pixels removed.

a) Original aerial image.

Figure 1: Least median of squares as a non-linear in-
terpolation operator.

When a relatively small number of pixels in an
image are corrupted by asymmetric (non-zero mean)
noise processes, an LMedS based window operator can
recover most of the original image. The synthetic
image in Figure 2a %as corrupted by a Weibull noise c) Interpolated image using
process affecting 14% of the pixels (Figure 2b). The c Interplaed imausn
process has the probability density function a 5 < 5 LMedS operator.

10 U <0 window operator makes systematic errors at corners.
f(U) 2(35) In Figure 2d the result of processing the noiseless

) 216 iU > 0 image (Figure 2a) is shown. At corners the center
wixel may belong to the surface containing the minor-
ity of the pixels and therefore is assigned to the

In Figure 2b the noise is multiplied by 50 before being incorrect fit. A possible way to eliminate this artifact
added to the selected pixels. The image recovered is by using a multiwindow approach similar to the one
with a 5 X 5 degree-1 LMedS estimator is shown in employed for computation of the facet model (Ilaralick
Figure 2c. Note that except near discontinuities where and Watson, 1981). Fits from several overlapping win-
tihe number of incorrect samples may now exceed half dows containing the pixel as an inlier are compared
the window size the estimator recovers the fit. As was and the final fit is taken from the window which has
mentioned at the end of Section 3.2 the LMedS the smallest robust variance estimate. The artifacts at
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Figure 2a) A piecewise planar synthetic image. 2c) Image filtered by a 5 X 5 LMedS operator.

2b) Image with 14% of the pixels 2d) The noiseless image processed
corrupted by Weibull noise. by a 5 X 5 LMedS operator.

corners can also be eliminated in other ways as will be and roof discontinuities in the presence of significant

discussed in the next section. zero mean noise corrupting all the samples. In this

In the above examples only a subset of the pixels paper we will not consider image structures containing

was corrupted by a noise process, yielding outliers in higher order polynomial surfaces.

most cases. In imag(,,, however, usually a zero mean In Figure 3a a noisy step discontinuity with ampli-

additive noise process is present at every pixel. The tude h is shown. The image is corrupted by noise tak-

p-tuple based initial estimates then have large vari- ing values in the interval (-a, a). This assumption is

ance and become unreliable. This is especially severe for convenience only and has no influence on the

near discontinuities where the number of outliers is results. For example, in the case of Gaussian noise we

close to half the window size and only a few p-tuples can take a = 2.5g. An LMedS based window operator

are drawn from the surface to be recovered. We now is centered on the edge, i.e. the data has c close to 0.5.

analyze the behavior of l,MedS estimators near step For the moment, to recover the horizontal plane
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containing the majority of pixels, let us use the deviation is about twice its real value. The overes-
degree-0 LMedS estimator (p = 1). As was shown in timated standard deviation yields fewer outliers since
Section 3.3 the zero order estimate is the mode of the 2.5& is already larger than the step size, and local
pixel values' distribution. Assume that the correct fit image structure is not identified correctly.
is recovered with a negligible error. To detect the We can also apply a degree-1 LMedS estimator
outliers in the processing window the standard devia- (p =3) to the step discontinuity. As was discussed in
tion estimate & is also needed (32). This estimate is Section 3.1, the initial regression coefficient estimates
proportional to the median of the absolute values of have the correct mean but due to their huge variance
the residuals relative to the final fit (31). Our fit is can take any value. Assume that we h.,.ve chosen two
correct and therefore the absolute values of the residu- 3-tuples, one generating (by chance) the correct hor-
als are distributed as follows: slightly more than half izontal fit, the other yielding a plane tilted at about 45
between zero and a, and the rest in the range degrees across the edge. The latter fit is similar to
(h-a,h~a). The value of the median is close to a what a least squares estimator would have recovered
and & is always an overestimate for the noise's stan- from the window.
dard deviation. If significant noise is present (a is close to h/2),

most of the absolute values of the residuals for the
tilted plane fit are between 0 and a. The median of
this residual sequence is significantly lower than the
median of the sequence obtained when the horizontal
fit is employed. The minimization criterion of LMedS
estimators seeks minimum median residuals, and
therefore the tilted plane is preferred. Note that tilted
planes are always obtained from 3-tuples since any
sample containing pixels from both surfaces can yield
one. The estimator will choose the correct, horizontal
plane only when the amplitude of the corrupting noise
is very small relative to the amplitude of the step. In
this case, the tilted plane yields larger residuals. The
correct fit, however, implies an overestimate of o, as
was shown above.

Figure 3a) Noisy step edge. Results obtained with a degree-1 LMedS estimator
applied to the same input data as above, are shown in
Table 3.

Table 3: Results of the degree-1 LMedS estimator
applied to a step edge.

Estimate Min Max Mean Std. dev.

3b) -10.83 20.00 10.83 5.00
3b) Noisy roof edge. #2 -12.00 13.83 -0.05 4.52

We performed 100 trials on a 40 gray level vertical 0 5.00 18.88 11.31 2.87
step edge (128/168) corrupted with Gaussian noise,
o- 10. The LMedS estimator was based on a 5 X 5 The spread of the regression coefficients is very large
window containing three columns of data derived from and any slope value could result. Note that the plane
the surface with amplitude 128. Thus ten outliers are is always tilted across the edge; the mean orientation
present in the noiseless window and c=0.4. The along that direction is 10.83. The tilted planes yield
results are shown in Table 2. significantly smaller standard deviation estimates than

Table 2: Results of the degree-0 LMedS estimator the correct, horizontal surface fit (see Table 2).
applied to a step edge. The processing of roof discontinuities (Figure 3b)

presents different problems. For the same noise amp];
tude, the local signal-to-noise ratio (the one of ina.

Estimate Min Max Mean Std. d-v. tance in parallel processing) is much smaller at a
discontinuity than at a step edge. Small a-

10 119 150 128.68 5.14 noise already erases the precise loc,'"
9.85 29.56 19.92 4.05 i.e. the intersection of the two ph

operators are more likely to retur..

We see from Table 2 that the crrrect fit is recovered tal fit when processing this region

with reasonable accuracy but the estimated standard cannot be eliminated by employin, (,*
with large supports. Assume that correc ,.
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containing the majority of the pixels as well as the the noise &. The inlier/outlier structure within the
correct standard deviation for the noise are recovered, processing window can then be determined. To avoid
The definition of an outlier implies a minimum devia- the problems discussed in the previous section, we
tion from the estimated fit (31). Thus several pixels combine an LMedS estimator based on a small window
adjacent to the roof discontinuity but belonging to the centered at every pixel with a second LMedS estimator
other plane are always incorporated into the fit. This operating on a coarser tessellation of the image. The
fact also reduces the usefulness of reweighted least first estimator achieves a robust presmoothing of the
squares postprocessing in image analysis. image as well as supplying the initial regression

The degree-1 LMedS estimator applied to a single coefficient estimates; the second estimator then recov-
noisy plane underestimates the standard deviation of ers the underlying polynomial structure.
the noise. A local planar fit aligns the noisy data A small (2n +1) X (2n +1) window based LMedS
better than the original plane and thus the distribution estimator is applied centered at every pixel of the
of the absolute values of the residuals is shifted down- image. The estimator is employed as described in Sec-
ward. tion 3.3 and returns the estimates /i, i = 0, .. . , p-1

We conclude from the above discussion that several and &. Since these estimates are available at every
precautions should be taken when the LMedS estima- 2ixel they can define several "estimate images". The
tor is used for the analysis of piecewise polynomial /30-image is of special interest. In Section 3.1 we
image structures: showed that the intercept estimates are the only ones
" The fit estimate should be taken from the estimator reliably recovered from noisy data. Thus the &0-image

using the correct degree for the polynomial surface is a robustly smoothed version of the input. All the
containing the majority of the pixels in the window, problems of LMedS estimators discussed in the previ-

ous section, however, are present and in the )30-imageFailing to do so may lead to an erroneous decision, discontinuities might be blurred.
as in the application of the degree-i LMedS estima- Next, a nonoverlapping N X N (N > 2n+l)
tor to a noisy step edge. tessellation is defined. The tessellation delineates the

" The noise's standard deviation should not be windows in which an LMedS estimator is applied to
estimated simultaneously with the fit. Usually the 0-image. As initial regression coefficient esti-
under- or overestimates are obtained, diminishing mates the set of N 2 values fir, i = 1, . . . , p -1 stored
the efficiency of the outlier detection procedure. at the pixels in the window are used. Note that N 2 is

local operator cannot achieve the correct of the same order of magnitude as the number of p-
Often the ooperaton cann wieve houldrre tuples recommended by the random sampling criterion
decision and cooperation between windows should be (33). The estimates fi I = 0, . . . , p-i and J are
considered. For example, roof edges are not locally obtained. The former are the final robust estimates of
recoverable, but the intersection of surfaces the polynomial surface containing the majority of the
estimated from homogeneous patches could yield the pixels in the N X N window.
desired result. The estimate of the standard deviation J is always
Applying a local operator at every pixel does not an underestimate since it was derived from the

explicitly define patches resembling polynomial sur- smoothed 80-image. The outliers in the f0-image are
faces in the output image. To recover small homo- outliers in the input image as well. The converse,
geneous patches in the image, we analyze the output however, is not true. Isolated impulses are removed
of the pixel level local LMedS estimators with a second by the (2n +1) X (2n +1) LMedS estimator. We detect
LMedS estimation process defined in windows yielding the outliers of the fio-image by computing the residu-
a nonoverlapping tessellation of the input. It is shown als relative to the final fit and using J in (32). These
in Section 4.2 that this two-step approach also solves outliers are marked on the original image. The residu-
most of the above mentioned problems of the LMedS als r, of the input image relative to the estimated sur-
estimators. To delineate larger homogeneous regions face are also computed. The final standard deviation
the small patches belonging to the same surface must estimate & is obtained from the input image by apply-
be fused by region growing. When the input image is ing in the N X N window the following well known
noisy the structure of the output is not perfectly piece- robust estimator to the pixels marked as inliers
wise polynomial of degree p-1. The region growing = 1.4826 medl r - med r; i. (36)
procedure may stop too early, or may fuse two sur-
faces with similar parameters. We show in Section 4.3 The estimator (36) has a breakdown point of 0.5 and
how the high hreakdown point of the ,MedS estimator thus will tolerate the outliers not detected in the
allows its use in a robust region growing algorithm, smoothed image.

For degree-0 surfaces the algorithm becomes
4.2 An LMedS Based Image Analysis simpler. The value of N should be taken sufficiently

Algorithm large that more than half the pixels in the window
have (2n+1) X (2n +1) centered neighborhoods lying

The goal of image analysis in the piecewise polynomial on only one surface. These pixels then carry reliable
domain is to identify the parameters of the underlying estimates. Recall that if a (2n +1) X (2n +1) window
polynomial surface f, and the standard deviation of is centered on a step edge o is strongly overestimated.
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The zero order LMedS estimator is mode seeking, and Table 4: Results of the degree-0 algorithm
thus both X and & are obtained in the N X N win- applied to a step edge.
dow as the modes of the &%- and &-images.

The above condition imposes a lower bound on the C = 0.11
value of N for a given n. For example, if n =2
(5 X 5 window) we must have N > 9. The lower Estimate Min Max Mean Std. dev.
bound theoretically suffices only for edges aligned with
the window (horizontal, vertical). Edges oriented I0 162.75 174.25 166.89 3.05
along diagonals yield many (2n +1) X (2n +1) windows o 7.17 11.94 9.45 1.06
having only a few pixels belonging to the other sur- No. outliers 6 13 9.81 1.72
face. These windows may still provide good & esti-
mates but comparison of the final & estimates from
several windows should be used for corroboration. We C - 0.44
return to the subject in the next section.

Two parameters of the algorithm can be used to Estimate Min Max Mean Std. dev.
indicate that the result of estimation within a N X N
window is incorrect. Whenever either or both the fol- 10 163.5 169.75 166.75 1.95
lowing are violated, the returned estimates are not 26791 11.55 9.93 1.04

trswrh:No. outliers 26 39 33 2.93

- the number of inliers must be larger than half the
window size; algorithm but their spread increases. If c = 0.44 the

- for noisy images & > a. degree-1 algorithm fails because the number of undis-

This may happen when more than two surfaces are torted pixels is no longer more than half the window

present in the processing window and no absolute size. A tilted plane is recovered from the data and

majority for the pixels is available. The output of only a very few outliers are detected in the smoothed

such windows should be discarded and the local image image. The noise standard deviation is overestimated.
structure is recovered by region growing from the Table 5: Standard deviation estimates.
adjacent windows as will be shown in the next section. Degree-1 algorithm applied to a step edge.

In Table 4 the results of applying the degree-0
algorithm (both LMedS estimators are of degree-0) to Case Min Max Mean Std. dev.
a noisy vertical step edge are shown with n = 2 and
N = 9. Two positions of the edge relative to the win- = 0.11 7.07 13.37 10.1 1.62
dow were investigated. In the first case, only one = 0.44 11.36 20.77 14.47 2.27
column of the data is derived from the surface with _ I _ _

amplitude 128. Thus the noiseless data has 9 outliers
and c = 0.11. In the second case, the 9 X 9 window is In Table 5 we compare the standard deviation esti-
centered on the edge. Five columns of pixels are from mates obtained with the degree-1 algorithm for the
the surface with amplitude 168 and four columns from two edge positions. We can define the following a-
the surface with amplitude 128. The noiseless data deci8ion rule to determine the desirable estimator
has 36 outliers and E = 0.44. The step discontinuity order for the analysis of the local image structure:
was corrupted with Gaussian noise having a= 10, and compare the standard deviation estimates and take the
100 trials were performed. Both the constant surface results corresponding to the smaller value.
and the noise standard deviation are correctly In our experiment when E =0.44 the a-decision
estimated. Note the slight but significant improve- rule chose the degree-0 estimator in all the 100 trials.
ment for the case of the 9 X 9 window centered over The c-decision rule is valid when the degree-1 results
the edge. Since h = 4a, a few noisy pixels belonging should be preferred. Significantly tilted planes or step
to the amplitude-128 surface may have values close to and roof discontinuities between such planes all yield
the amplitude-168 surface and vice versa. Thus the standard deviation overestimates when processed as

spread in the number of detected outliers is not neces- degree-0 surfaces. The rule may not yield the degree-0

sarily due to incorrect decisions. estimator for step edges at the borders of the window
When the degree-1 algorithm is applied to the step as can be seen by comparing Tables 4 and 5. How-

discontinuity most of the 5 X 5 windows lying across it ever, in this case the fit recovered by the degree-I
will return incorrect (tilted plane) estimates. If algorithm is also close to the correct one. For horizon-
e = 0.11 the correct surface is still recovered because tal surfaces the degrce-1 algorithm is preferred since

the majority of the pixels in the window belongs to the the local alignment of noisy data by a slightly tilted

amplitude-168 surface. The average estimate values plane reduces the standard deviation. Again, the error
are similar to the ones obtained with the degree-0 is not significant and if the horizontal surface spans

several adjacent windows, the fit is further improved
after region growing.
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In Figure 2d we showed the artifacts of LMedS parameters, and & is the uncertainity about the fit. If
estimators at corners. The proposed algorithm does the residual of an outlier pixel relative to the fit from
not suffer from these artifacts. The image in the an adjacent window is less than 2.5& the pixel may
N X N window is redefined at the output as an belong to that inlier component.
inlier/outlier structure relative to the estimated fit. If The expansion process of the inlier components,
the corner pixels are classified as outliers their fit can i.e., the definition of the outliers, must be performed in
be assigned by region growing. When applied to the parallel. At every expansion step, the inlier corn-
image in Figure 2a, the output of the algorithm is ponents try to conquer a one pixel wide ring along
identical to the input. We have thus succeeded in their perimeter. Only the outlier pixels from adjacent
extending the root-signal property discussed at the end windows are examined. To avoid biasing the fit, the
of Section 3.2 to two dimensions parameters of the initial surface are not updated dur-

ing the expansion. The expansion process stops when

4.3 Robust Region Growing all the pixels of the outlier components have been con-
quered, or when no more expansion is possible. If

In this section we describe the application of the more than one expanding inlier component reaches a
LMedS based image analysis technique to region grow- pixel simultaneously, the component yielding the smal-
ing. The region growing algorithm is only loosely con- lest residual/& ratio wins. The expansion process can-
nected with the local image structure recovery pro- not take more than N steps.
cedure discussed above and therefore it can also be The fit and standard deviation estimates are
used alone in applications involving fusion of similar recomputed for the new, expanded regions. Since
patches. these regions should not contain discontinuities, a sim-

In Section 4.2 we mentioned the warnings about ple least squares applied to the inliers (outliers could
possible estimation errors that the N X N window exist inside the region due to impulse noise) suffices.
based LMedS estimator provides. If the noise homo- The use of LMedS estimator may, however, provide
geneously corrupts the entire image, an additional warnings about an erroneous expansion process.
safeguard against errors can be secured. The mode of Several outliers, not claimed by any neighboring inlier
the 6 values from the N X N windows is the robust component, can remain, especially in noisy images.
(degree-0 LMedS) estimate of the corrupting noise The initial influence of the window tessellation on the
standard deviation, say w. As we have seen in Section result of the expansion process is removed by later
3.3 the standard deviation of this estimate is also iterations of the algorithm.
returned by the estimator (31), say ao. Then any win- Step 2. At the beginning of the second step of the
dow which yields & > w + 2.5 ao can be removed region growing algorithm, most of the image is tessel-
before region growing, i.e., its pixels are declared lated by regions of inliers. Our goal is to fuse in paral-
outliers. In these windows the large fitting error is lel the best matching pairs of contiguous regions. Let
probably due to an incorrect model. Recall that & is A 0 , &0 be the area (number of inlier pixels contained
already a robust estimate and the presence of a discon- within) and the standard deviation of an inlier region.
tinuity in the window should not influence its value. Assume that the region has common borders with

Our input in the region growing algorithm thus has j = 1,2, . . . , m other inlier regions. Let Ay, &j be
the following characteristics. The image is tessellated the corresponding parameters of such a region.
with N X N windows. Inside a window a subset of For the concatenated region obtained from the pair
pixels (always less than N 2/2) may have been declared 0, 3 we re-estimate the underlying image structure.
as outliers, that is, they belong to a surface not This can be achieved by either applying the full algo-
represented by the fit recovered in the window. Win- rithm described in Section 4.2 or only the degree-0 or
dows in which warnings were generated are completely degree-1 procedures. Robust techniques must be
discarded and are regarded as containing only outliers, employed since the two regions may belong to different
In our experiments (see Section 4.4) the number of surfaces. Let &0,, be the robust standard deviation
such windows never exceeded 10 percent. estimate of the concatenated (0, j) region. The new

The region growing algorithm may run either on inlier/outlier structure is then defined within both the
the original image or on the smoothed, /50-image. In 0 and the j region. Let A0 ,; be the area of the new
both cases, however, the same set of pixels are defined inlier connected component in region 0, and Aj, 0 be
as outliers and the same operations are performed. the area of the new inlier connected component in
The algorithm is iterative and has two steps per itera- region j. These new inlier components cannot be
tion. larger than the original regions; thus

Step 1. We can define 8-connected inlier and
outlier components inside a window. In the first step AoJ _ A0  A].o _ Ai • (37)
of the region growing algorithm only the components Note that the sum of A 0,, and Aj,0 gives the area of
containing at least one pixel at the window border the inlier component in the concatenated region (0,]).
present interest. Most of the pixels in such an outlier The efficacy of region growing can be measured either
component belong to surfaces recovered in adjacent by the increase in the area or by the reduction of the
windows. (See Section 5 for a more careful analysis.) standard deviation, of the concatenated region relative
All the recovered surfaces are defined by a set of to its parts. We define
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?. Ao,( Amoi components can be fused and outliers conquered. In
A0' =mini A 0 'A (38) our experiments the number of iterations never

exceeded ten. Some of these experiments are described
t7,( 0 , j) = max [ T0 , min ( &o ,8 )& in the next section.

where T. is an absolute threshold of smoothness. The 4.4 Experimental Results
0, ; regions are considered as candidates for fusion if In the experiments the local image structure analysis

1
7A (0, j) > 0.8 (39) (Section 4.2.) employed a 5 X 5 window at every pixel

or and a 9 X 9 window based tessellation of the image.
Region growing (Section 4.3.) was performed on the

f1A (0, j) > 0.5 and 0oj < %(0, j). (40) smoothed /?-image and the parameters were estimated
The condition (39) enables fusion when the regions by the degree-i algorithm. The absolute smoothness
extend one over the other almost completely, i.e., the threshold was T. = 0.4 yielding a minimum residual
represented surfaces are very similar. There is no need for an outlier pixel of one gray level.
for a condition on smoothness. However, if the newly In Figure 4a the synthetic range image of a cube
obtained region of inliers has an area which is just with three holes is shown. The image is noiseless; we
larger than the average of the areas of the initial use it only to illustrate the evolution of the region
regions, a smoothness criterion must also be satisfied growing. The tessellation of the image after the first
(40). The new standard deviation should not exceed iteration of the region growing algorithms is shown in
the standard deviations of the parts or an absolute Figure 4b. That is, the local inlier/outlier structures
smoothness threshold. were determined, most of the outliers were defined by

Definitions (38) are symmetrical and a processing adjacent windows, and some small regions were
scheme sequential at the paired regions level but paral- already fused. The original 9 X 9 tessellation can be
lel over the image must be designed. The adjacency recognized in Figure 4b. Significant edges of the cube,
relations among the inlier regions can be described by however, are already delineated as region boundaries.
an undirected graph and the maximal independent set After five iterations the tessellation shown in Figure 4c
of this graph is the sought solution. We did develop a is obtained. The faces of the cube and the background
parallel algorithm which solves the problem in a few are correctly delineated. The result after the last
steps (Meer 1989, Montanvert et al. 1989) but its (ninth) iteration is shown superposed on the input
description is beyond the goal of this paper. From all image in Figure 4d. As was mentioned in Section 4.3.
the candidates the neighbor indexed by the fusion was not implemented in a completely paral-

lel procedure, and several iterations are necessary to
k = argmin 0 ,i (41) fuse -the few regions forming the background. The

inon-planar surfaces (inside the holes) are segmented
is chosen for fusion with region 0. Criterion (41), how-
ever, is not symmetrical. The region k can choose as
its best fusion candidate a neighbor not contiguous to
region 0. Thus, "chains" of regions trying to fuse may
be obtained. The "chains" are described by directed
graphs with the arcs weighted by 60,j. Since these . ...
graphs are a few arcs long, we allowed only the fusion .
of the pair having the smallest weight along the path. XKV.
Using the already mentioned technique (Meer 1989), a - ,
parallel solution in which more than one pair is fused
can be obtained. Further iterations of the region j '. I "

growing algorithm, however, makes the effort
superfluous.

At the end of the second region growing step the / 4
image contains larger inlier components and some new " /

outlier components with pixels rejected during fusion.,.
These outliers will be defined at the first step of the
next iteration, as was shown above. Note that the
artifacts created by the initial N X N tessellation of __

the image are reduced with each iteration, as the
robust image analysis shifts the region boundaries
toward the discontinuities in the image. With parallel
fusion procedures a large homogeneous surface is a) Original.
recovered in a logarithmic number of steps. Indeed, at
every iteration two adjacent regions are fused, yielding Figure 4: Segmentation of a synthetic range image of a
exponential growth. cube with three holes.

Region growing stops when no more pairs of inier
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somewhat arbitrarily by the planar model. Many of
these pixels, however, are retained as outliers (Figure
4e) underlining the robustness of the region growing.
In this picture the inlier pixels take their values from
the recovered fits.

In Figure 5a the same range image is shown cor-
rupted with Gaussian noise having a = 6. This noise

level yields a very low signal-to-noise ratio at the roof
edges of the image (Section 3.1.). The smoothed go-
image on which the region growing was performed is
shown in Figure 5b. In Figure 5c the final segmenta-
tion (aftrr seven iterations) is given. Pixels retained as
outliers are shown in Figure 5d together with the

d) Final segmentation superposed on the input.

b) Tessellation after one iteration
of the region growing algorithm.

e) Reconstructed input.
Outlier pixels marked with black on the cube.

They are not classified as background.

recovered fits. Note that the background is not
recovered with zero gray level since the clipping of the
Gaussian noise yields non-zero mean. A comparison
with the original image (Figure 4a) helps to assess the
quality of the reconstruction.

The range image of a ring on sceps obtained with
an ERIM sensor is shown in Figure 6a and its
smoothed version in Figure 6b. After nine iterations,
the boundaries of the recovered regions, superposed on
the smoothed image, are shown in Figure 6c. Note
that the upper surface of the ring is delineated as one

c) Same after five iterations. region. Several pixels on non-planar surfaces or at the
noisy roof edges were declared outliers (Figure 6d).
The reconstruction of the input is also given in
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a) Input. c) Delineated regions after seven iterations.

Figure 5: Segmentation of the noisy cube image I

~d) Reconstructed input.

(Pixels retained as outliers are marked with black.)

b) Smoothed image. ing. The robust technique allows us to maximize the
amount of smoothing by employing only planar fits for

Figure 6d. image analysis. Non-planar surfaces are then broken
All the previous examples used range images. The along natural boundaries; see for example the inner

frequent roof edges make range images difficult for parts of the holes in the cube (Figures 4d and 5c). A

traditional image analysis techniques. Our segmenta- robust postprocessing procedure applied to regions
tion results are more fragmented than the outputs where the local structure suggests the p~resence of a
from similar images obtained by Besl and Jain (1988) higher-order surface can then be used. The (definition
with a different method. (The cube is noisier, the ring of the optimum robust model order is an open problem
image is the same.) We did not use any postprocessing; in statistics, although several methods for doing it

our goal is to use image structure analysis as an exam- have been developed (Ilampel et a!., 1986, p. 366).
ple for the potential of the LMedS paradigm. Also, In Figure 7a the gray level image of a house is
our surface model was restricted to planar fits, while shown. 'rho obtained segmentation, superposed on the
B~esl and Jain used up to biquartic surfaces. In noisy input (Figure 7b), correctly identifies the long
images, higher-order surface fits achieve less smooth- elongated features. These features are defined as
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of the later, non-local stages of the algorithm (region
growing) is possible using the data driven pyramids
techniques we developed in the context of a different
problem (Montanvert et al. 1989). The simulated
parallel implementation on a VAX 785 requires less

, ,than six seconds on the average for the definition of a
- - %pair of regions to be fused (analysis of all the neigh-

bors).

5 Discussion

In this paper we have presented the mathematical
background of Least Median of Squares (LMedS) esti-

a) Input.

Figure 6: Segmentation of a range image showing a
ring on steps.

c) Final segmentation superposed
on the smoothed image.

b) Smoothed image.

outliers at the output. Tihe performance of the algo-
rithm can be assessed from the output of the aerial .

image (Figure 8). In this case the degree-0 algorithm
was used for estimation. Note that all the large 'k,
and/or high contrast features are correctly delineated.

Robust image anialybi is uomputationally uxpel iv C. .
if not implemented on a parallel machine. In spite of E.
the Monte Carlo speed-up (Section 3.3) it takes about
40 minutes of CPU time to obtain the initial estimates
IhS at every pixel of a 128 X 128 image. The same
procedure, however, requires less than one minute oil d) Reconstructed input. Pixels retained
the Connection Machine where pixel level parallelism as outliers are marked with black.
can be achieved. Parallel, hierarchical implementation

250



a) Original, a) Original.

b) Segmentation superposed on the input. b) Segmentation superposed on the input.

Figure 7: Segmentation of the house gray level image. Figure 8: Segmentation of the aerial gray level image.

mators. The minimization criterion (18) separates the estimators. The local-to-global image recovery tech-
data into two classes: inliers on which the recovered nique described above is not necessarily optimal.
surface fit is based, and outliers whose origin cannot Same quality segmentations can be obtained by a dual,
be determined. Thus, the LMedS estimators will global-to-local technique involving clustering in feature

return perfect estimates whenever the inlier data is not space. We developed such a technique, again using
corrupted by noise. For example, the use of a.LMedS LMedS estimators (Jolion ct at. 1090).
based technique in template pattern matching should The images in this paper are scalar-valued and

eliminate the artifacts of least squares type cost func- defined on a regular square lattice. This is not a

tions. prerequisite for the application of LMedS estimators.
We used the problem of image structure recovery Sparsely defined data points and/or vector-valued pix-

as example for developing a LMedS based algorithm. els can be processed by the same method. We per-

Since the clear dichotomy between "good" and "bad" formed preliminary experiments applying LMedS esti-

data does not exist in noisy images, the problem is inators to stereo disparity detection and texture seg-

worst-case for the high breakdown point robust mentation (sparse data), as well as optical flow
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decomposition (sparse vector-valued data). [Bassevifle and Benveniste, 1986] M. Basseville and A.
The LMedS estimator is a good candidate for an Benveniste, eds. Detection of Abrupt Changes in

edge detection operator. When applied to an edge, the Signals and Dynamical Systems. Springer, NY.
high breakdown point robust operator selects the sur- [Bergholm, 19871 F. Bergholm. Edge focusing. IEEE
face to which the majority of pixels belong. Note that
no differentiation process is employed in the recovery Trans. Pattern Analysis Machine Intelligence

of the inliers' fit. Depending on the size of the PAMI-9, 726-741.

operator's support the same inlier/outlier structure is [Besl and Jain, 1988] P.J. Besl and R.C. Jain. Seg-
recovered in several shifted positions around the edge. mentation through variable-order surface fitting.
Thus, the operator can be applied at every pixel and IEEE Trans. Pattern Analysis Machine Intelligence
the inlier/outlier descriptions of the same region stored PAMI-10, 167-192.
pixelwise in an accumulator. By locating the border [Besl et al., 1988) P.J. Besl, J.B. Birch and L.T. Wat-
between the inlier and outlier connected components sot. 1988] Pido Bes. Brcn LT t-
in the accumulator detection of edges in noisy images son. Robust window operators. Proceedings of the
is achieved. The method is not restricted to step Second International Conference on Computer

edges since the operator can employ higher order Vision, December 5-8, 1988, Tampa, Florida,

models as well. 591-600. See also Machine Vision and Applications
Features smaller than the half the window size 2, 1989, 179-214.

employed in the analysis (9 X 9 in our examples) are [Blake, 1989] A. Blake. Comparison of the efficiency
discriminated as outliers. If these features are well of deterministic and stochastic algorithms for
defined (i.e., have high contrast) they remain del- visual reconstruction. IEEE Trans. Pattern
ineated as outliers during region growing. Thus, by Analysis Machine Intelligence PAMI-11, 2-12.
tracing an outlier connected component, features can
be recovered below the expected resolution of the [Canny, 1986] J. Canny. A computational approach to
analysis. We classified a pixel as an inlier or outlier by edge detection. IEEE Trans. Pattern Analysis
a binary decision (32). The value of the normalized Machine Intelligence PAMI-8, 679-698.
residual can be used to define an outlierness measure. [Cavanagh and Leclerc, 1989] P. Cavanagh and Y.G.
Description of the local image structure by this con- Leclerc. Shape from shadows. Journal of Ezperi-
tinuous measure may be of interest in certain applica- mental Psychology: Human Perception and Perfor-
tions. mance 15, 3-27.

In conclusion, we believe that the LMedS estimator
is a valuable tool for solving computer vision prob- [Chakraborti and Misra, 1987] N.B. Chakraborti and

lems. Its application, however, should be preceded by R. Misra. Transition detection in image processing.
a careful analysis of the characteristics of the available Signal Processing 13, 197-207.
data. If the two classes (signal arid noise) are clearly [Chen et al., 1989] M.H. Chen, D. Lee and T. Pavlidis.
separable the LMedS estimator yields superior results. Residual analysis for edge detection.
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A FAST, HIGH BREAKDOWN POINT ROBUST ESTIMATOR

FOR COMPUTER VISION APPLICATIONS
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ABSTRACT computational cost of LMedS, but it is still quite slow
and its usefulness for on-line applications is limited.

This short note presents a fast algorithm for the However, if we take into account the special structure
computation of parametric models in computer vi- of most computer vision problems, a fast algorithm
sion appliations; it supplements the preceding pa- that preserves the high breakdown point of LMedS
per [2] in these Proceedings The algofithm is can be developed.
similar to the Least Median of Squares (LMedS) There is a strong similarity between the computa-
estimator (which it uses extensively as a corrputa- tion of LMedS estimators and the RANSAC paradigm
tion module) and preserves its high breakdown
point property. Reduced computational time is [i], as pointed out in [3]. The proposed new fast algo-
achieved by recognizing that in many computer vi- rithm may therefore be useful for speeding up applica-
sion problems the data is defined on a square sam- tions employing RANSAC as well.
pling lattice In such a case, the model estimation
can be decomposed into independent degree-0
LMedS estimation problems. Since degree-0 2. Motivation
LMedS is much faster than its higher degree coun-
terparts, the new estimator yields a significant In most computer vision problems the parametric
speedup without perceptible degradation in the model to be estimated is a function of the image coor-
quality of the output. The algorithm should dinates. Note that these variables are independent,
make t feasible to use high breaklown point and that the denseness or sparseness of the data is not
tems relevant to our discussion. The data is assumed to be

linear in the model parameters and additively cor-
rupted by white noise (Eq. 2 in [2]). This model
includes polynomial surface fitting, since the regressor

1. Introduction variables (Eq. 1 in [2]) can be monomials in the coordi-
f ates. It is always possible to find an orthogonal base
for the vector space of the processing window [4], andThe Least Median of Squares (lMedS) estimator todfnthmderlaieotisbe.W nte

hasto define the model relative to this base. When the

131, primarily due to its high breakdown point, which resulting model parameters are estimated by least
squares regression they are unbiased and uncorrelated,principle recover the paraotl tric model (surface) i.e., their ensemble mean is correct and their covari-

rpreentincil r fo the aaintercmoelsurfe wance matrix is diagonal [51. See also the example in
representing half of the data in the processing window, [2], Section 3.1.
even when the rest of the window is severely corrupted In the original LMedS method the data is projected
by noise (outliers). However, we have shown [2] that onto the subspace of one of the desired parameters and
the presence of (say) Gaussian noise corrupting all the a cost function (the median of the squared residuals) is

pixels increases the sensitivity of LMedS to outliers. computed. This procedure is repeated several times

Also, transitions in images are not always sharp, and with the goal of minimizing the cost function. In our
at such transitions often none of the models accounts

for half of the dlata in the window, new approach, most of the parameter estimates are

In [21 we described a two-stage algorithm that obtained independently by successive application of

overcomes most of the difficulties with LMedS. It degrec-O LMedS estimators.

uses a random sampling technique to reduce the
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3. Algorithm subspace using the already available model parameter
values. Then the projected points which correspond to

We consider every data point in the processing inliers in both slope windows are selected. The value
window as the center of a small neighborhood. There of the intercept is obtained by again applying a
should be enough points in this neighcorhood to allow degree-0 LMedS estimator. The problem of higher
least squares estimation of the local model parameters order polynomial fits is currently under study.
For example, a 3 X 3 neighborhood suffices to recover The speedup of the algorithm is due to the elimina-
the three parameters of a plane from the data on a tion of the random sampling in LMedS [2]. Since, at
dense grid. The neighborhood estimates can be stored least for a piecewise planar structure, all the parame-
in separate parameter windows defined on the same ters are found by mode seeking, the complexity is
sampling lattice. The estimates are uncorrelated and r, uced to the amount of computation previously
therefore the parameter windows can be processed required for one sample. Furthermore, the piecewise
independently. constant parameter windows can be processed in paral-

At this stage of our research we have restricted lel.
ourselves to piecewise planar models. In this situation
the locally estimated slopes of the planes are noisy The following is a summary of the piecewise planar
constants, as long as the neighborhood does not algorithm for dense data.
include data from another model. Therefore, after the
local least squares estimation the slope windows are 1. Define an N X N processing window.
either constant or consist of a blurred step edge cor-
rupted by noise. Under the same conditions the inter- 2. At every pixel obtain by a least squares procedure
cepts of the planes vary linearly with the coordinates, in a centered (2n + 1) X (2n +1) neighborhood the
Note that the three variables of the planar model two slope estimates of the local plane. This yields
themselves form an orthogonal base. In the general two slope windows.
polynomial case, only the highest degree coefficients
remain constant when estimated in small neighbor- 3. For each slope window:
hoods over a homogeneous region. 3.1. Estimate the variance of the residuals rela-

Consider a parameter window containing a blurred tive to the mean in the (2n +1) X (2n +1)
step edge. Away from the edge the neighborhoods neighborhood.
have the correct models. In our algorithm these neigh- 3.2. Estimate the mode of the variance distribu-
borhoods are selected from the window without expli- tion by a degree-0 LMedS estimator. Select
citly delineating the position of the discontinuity. The the pixels within a given range from the
variance of the residual relative to the local mean is mode.
estimated in the same neighborhoods. Under the 3.3. Estimate the slope parameter of the window
assumption of stationary noise in the window, all the from the selected pixels by a degree-0 LMedS
neighborhoods away from the edge yield variance estimator.
values from the same random process. Therefore the
variance distribution over the window is approxi- 4. Project the data in the window onto the subspace of
mately unimodal, and a degree-0 LMedS estimator the intercept. Select the points corresponding to
(i.e., mode seeking) is "well behaved" [2]. The estima- inliers in bot, slope images.
tor returns a reliable variance value for the parameter
window, and also separates the data into points which 5. Repeat 3.3 for the projected data.
supplied reliable variance estimates and points which
did not. The former points are selected as reliable for 6. (Optional) The complete model can serve as an ini-
estimating the parameter of that parameter window. tial estimate for a reweighted least squares or an

The selected data comes only from the distinct M-estimator based refinement to increase the
models; i.e., the regions of smooth transition between efficiency of the method.
models have been eliminated. The clear dichotomy
facilitates degree-0 LMedS estimation, and the param- 4. Experiments
eter estimate corresponding to the majority of the
selected points in the parameter window is obtained. The superior performance of the new algorithm is
Its value is the parameter estimate used for the model, due to the variance-based data selection process in its
The points in the parameter window belonging to the computational module (step 3 above). In Table 1 a
model, i e., supplying the estimate, are marked as the comparison between the output of this module and the
inliers of that parameter. original degree-0 LMedS estimator is given. The 9 X 9

In the current (piecewise planar) implementation of processing window contained a step edge (gray level
the algorithm only the intercept cannot be estimated values 128 and 178), there were four columns of 128
with the above dccsibed procedure. As in the LMedS and five columns of 178 (c = 0.44). The edge was cor-
method the data is projected onto the intercept rupted with zero mean Gaussian noise with standard
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deviation a. The mode and the spread (standard devia- resubmitted to International Journal of Computer
tion of the mode) of the distribution of estimates in Vision, June 1990.
100 trials were recorded. The increased robustness of
the estimates computed with the new method can be 14] P. Meer and I. Weiss: Smoothed differentiation
seen in Table 1. filters for images. In Proceedings of the 10th

For comparison with the results in [2], the new International Conference on Pattern Recognition:
algorithm was implemented using 3 X 3 neighborhoods Image, Speech and Signal Pt'oce88ing. Atlantic
defined in 9 X 9 windows. (The latter size can be City, NJ, June 1990, 474-479.
reduced.) All the images in [2] were processed. On a
128 X 128 image the previous method required at least
40 minutes of CPU time on a VAX 785. A non- 15] D.C. M-ntgomery and E.A. Peck: Introduction to
optimized implementation of the new algorithm on the Linear Regression Analysis. John Wiley & Sons,
VAX 785 achieved the same quality results in less than New York, 1982.
2 minutes. On a parallel machine, substantial further
speedup will be possible.

In the new algorithm we no longer have the model
order problem discussed in [2]. When a planar fit is
applied to a step edge the estimates obtained from the
two slope windows are both approximately zero.

TABLE 1

5. Discussion

This short note has described a preliminary imple- Comparison Between Degree-0 LMedS
mentation of our algorithm, restricted to piecewise and the Computational Module
planar models. The extension of the technique to Used by the New Estimator
higher order polynomial fits as well as to other com-
puter vision problems is a main focus of our current
research.

We do not know the new estimator's breakdown Noise Estimator Estimate
point. The local variance based selection process uses Mode Spread
less than half the data in the window to estimate the
model parameters. We conjecture that the estimator
can be modified to recover the model representing the a 0 Degree-0 LMedS 178 0
relative and not the absolute majority of the data in New Module 178 0
the window.

It is important to note that the estimated model
does not necessarily yield the minimum value of the o,-10 Degree-0 LMedS 176.5 1.5
median of squared residuals. Our goal in designing the New Module 177.4 1.1
algorithm was to develop a high breakdown point
robust method for computer vision applications, not
to preserve a particular optimality criterion. 7.5a = 25 Degre-0 LMedS 159.5 7.

New Module 176.4 3.2
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Abstract eracy of a matrix that gathers all the image measurements. To
our knowledge, this observation has not previously appearedInferring the depth and shape of remote objects and i h ieaue

the complete camera motion from a sequence of im- in the literature.

ages is possible in principle, but is an ill-conditioned Since we use many, closely spaced frames, the results are
problem when the objects are distant with respect to insensitive to noise, and the correspondence problem is sim-

their size. We show how to overcome this problem plified. Previous multi-frame approaches usually assume a
motion model to combine estimates of the camera positionby inferring shape and rotation without computing over many frames. Typically, this model is some form of

depth as an intermediate step. motion smoothness. In our method, on the other hand, we
On a single epipolar plane, an image sequence can assume only the invariant of shape constancy over time.
be represented by the F x P matrix of the image As an illustration of our theory, we used our algorithm to
coordinates of P points tracked through F frames. recover the shape of a one-dollar silver coin (about 4 cm in
We show that under orthographic projection this diameter) placed at 3.5 meters from a real moving camera with
matrix is of rank 3. a long lens. The total rotation of the camera was 30 degrees
Using this observation, we develop an algorithm to around the coin (and in the midplane of the coin). The error in
recover shape and camera rotation, based on sin- the computed angle of camera rotation was always less than
gular value decomposition. The algorithm gives a tenth of one degree, and usually substantially smaller. The
accurate results, and does not introduce smoothing error in the shape of the coin was always less than 1.5 percent
in either shape or motion. of its diameter, and typically considerably smaller. The small

errors due to the effect of perspective are also analyzed.
1 Introduction In the following, we introduce our scenario, summarize the

results, and sketch the relations of our work with previousIn principle, the shape of an object can be computed from literature on the subject. Section 2 introduces the degeneracy
a sequence of images by first estimating camera motion and principle mentioned above. Section 3 shows how to use it
depth, and then inferring shape from the depth values, to decompose the measurement matrix into shape and cam-

In practice, however, when objects are distant from the cam- era rotation. The experimental results in Section 4 show th,.
era, relative to their size, this computation is ill-conditioned. ability of the algorithm to leal with jerky rotations without
First, the translation component along the optical axis is diffi- smoothing its output. The conclusion (Section 5) compares
cult to determine, because the image changes that it produces direct shape algorithms with algorithms that base the compu-
are small. Second, shape values are very sensitive to noise tation of shape on that of depth, and shows the former ones to
if they are computed as the small differences between large be superior for remotc scenes.
depth values.

These difficulties can be circumvented by inferring shape The Scenario
directly from variations in the relative position of image fea-
tures, without computing depth as an intermediate step. The world is still, and the camera moves in a plane, where it

In this paper, we show that shape and camera rotation can can freely rotate and/or translate. P feature points, far away
be inferred precisely from many features and frames, without from the came-a, are visible in a riven scanline, parallel to the
assuming any model for the motion, and reduce the computa- plane of motion. Since the frames are taken frequently, it is
tion to decomposing a matrix of image mcasureiiieiit casy to track the features from frame to frame. As the camera

The resulting algorithm, tested in simple situations, gives moves, it is panned so as to keep the features in the field of
remarkably precise motion and shape estimates, without in- view.
troducing smoothing effects into the result. After F frames, an F x P matrix U of image measurements

For simplicity, we will limitour consideration to oneepipo- is available. This matrix is the input to the algori 'm.
lar plane at a time, and assume hat motion occurs in that plane. This scenario approximates what happens with a camera
In other words, our images are single scanlines. on an airplane, with suitable control mechanisms to align

Our theory is based on the observation that the incidence the camera scanlines with the direction of flight, and to keep
relationsamongprojectionrayscanbeexpresscdasthedegcn- the same object within the field of view. Because bjects
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are distant from the camera, we can assume orthographic Even with a well-conditioned algorithm, however, noise
projection. degrades performance. Few points and/or few frames give

bad results, regardless of how good the math is. Our algorithm
The Results allows using many frames and many points, thus exploiting
This paper first shows that if the measurements are noise-free, redundancy to counteract noise. If frames are closely spaced,
the image coordinate matrix U is highly degenerate: its rank the correspondence problem is also made easier to solve.
is 3. As a result, U can be decomposed into the product of two Many, tightlyspaced frames have been used in [Bolles et al.,
smaller matrices: an F x 3 matrix that encodes the F camera 19871 and [Matthies et al., 1989], but only for the inference of
positions, and a P x 3 matrix that encodes the positions of the depth when the motion of the camera is known. Determining
P world points, shape and motion simultaneously, on the other hand, has been

When noise corrupts the measurements, the rank of U can often suspected of being practically infeasible.
be defined in an approximate sense, and is still 3. In [Spetsakis and Aloimonos, 1989], an interesting algo-

The noisy matrix U is factored by Singular Value Decom- rithm is presented for the case of unknown motion, using
position [Golub and Reinsch, 1971], which is known to be several frames and points and a perspective projection model.
efficient and numerically well behaved. If more points and In spirit, our approach is akin to theirs: the projection lines of
frames are used than prescribed by equation-counting argu- the same world point are a bundle (or pencil) of lines, and the
ments (which require a minimum of three points and three resulting incidence relations between them allow casting the
frames), the effects of noise can be reduced. computation of shape and motion as a minimization problem.

The resulting shape and motion algorithm is simple and When applied to remote objects, however, their solution suf-
efficient, and has been implemented and tested on objects as fers from thr same ill-conditioning problem discussed above,
distant as one hundred times their size (see Section 4). The since depth is explicitly represented in their model.
rotation errors are always smaller than one tenth of a degree.
The relative precision in the computed shape is of the order 2 The Decomposition Principle
of the relative depth range, defined as the iatio between the This section introduces the fundamental principle on which
size of the object and its distance from the camera. our shape-and-motion algorithm is based: theF x P matrix of

The good performance of our algorithm derives from the the image coordinates of P points tracked through F frames is
fact that shape is obtained directly, without using depth as an higly rank-deficient.
intermediate result. In traditional approaches, depth is first As we stated in the introduction, we consider only one
computed by triangulation. For remote objects, the quality of scanline per frame, and assume that the camera moves in a
depth estimates by triangulation is very sensitive to noise, and plane parallel to the scanline. In this plane, we define an
degrades as the realtive range decreases. Consequently, the arbitrary orthogonal system of coordinates (X, Z).
shape estimates degrade even faster, since the computation of The images are orthographic projections of P points,
shape from depth is itself ill-conditioned. tracked through F frames. The registered measurements ufp

In our approach, instead, no triangulation is done. Depth can then be collected in an F x P matrix
becomes irrelevant, and the results are highly accurate. [ ui ... Ui, "

Relations with Previous Work U : .

Our goal is to compute world point coordinates, relative to UFi ... Upp
each other, and camera motion from multiple image frames. From figure 1 we see that the projection ufp of pointp onto

Our algorithm does what photogrammetrists for more than framef is given by the equation
thirty years have done by hand and with two frames at a time
[Thompson, 1959]. Ullman proposed an automated solution U = c1 Xp + sf Zt, + tf , (1)
to this problem eleven years ago [Ullman, 19791, and called where cf and sf are the cosine and sine of the angle Cr- that
it structure-from-motion. He also considered only two frames framef forms with the X axis. The scalar if is the projection
at once, and as few points as theoretically possible. onto thef -th image of the vector that joins the world origin

Most of the initial efforts in this area have been devoted with the origin of thef -th frame.
to finding closed-form solutions with a minimal or nearly- We can now collect all of the F x P equations (I) in matrix
minimal number of points and/or frames (see, for instance. form:
[Longuet-Higgins, 1981]). U=MS (2)

In general, structure-from-motion is hard to solve. The ma- where
jor difficulty is the inherent sensitivity of shape and motion [ sl t1 ]
to noise in the image, especially when objects are distant. If M= [ cl (3)
depth is explicitly represented as an in!tcrrncd;i,,te stge in the........ ... . . .... CF F tF
computation, performance degrades with reductions in the is the motion matrix, and
relative depth range. For instance, the algorithm presented
in [Tsai and Huang, 1984] works very well for close objects [Xi ... XP]
(which is the intended goal of that algorithm), but the perfor- S= i Zp (4)
mance is likely to degrade when objects become more remote, I I
and the relative depth range becomes smaller. is the shape matrix.

The remedy is to by-pass the computation of depth, as we Since M is F x 3 and S is 3 x P, we have just proven the
do in this paper, to remove the main cause of ill-conditioning, following fact.
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The Rank Principle Here, I is the P x P identity matrix, and the singular values
Without noise, the rank of the measurement matrix al,..., up are the diagonal entries of E. This is called the

U is at most three. I Singular Value Decomposition (SVD) of the matrix U.
We can now restate our key point.

Appendix A discusses the degenerate cases in which the

rank of U is even smaller than three. These degeneracies The Rank Principle for Noisy Measurements
correspond to all-aligned points or to special types of motion. The first three singular values of the noisy measure-
They can always be detected, and treated as special cases.
Consequently, we can simplify our treatment and assume that ment matrix U are much greater than the others:
the rank principle is satisfied in a strong sense: the rank of U al , o2, r3 > 4,..., rp . (6)
is exactly three.

Intuitively, the rank principle expresses the simple fact that It can be shown [Forsythe et al., 1977] that the rank-3
the F x P image measurements are redundant. Indeed, they matrix U* that is closest to U in the L2-norm sense can be
couldall be described more concisely bygivingFframe angles obtained by setting to zero all the singular values after the
and P points, if only these were known. third in the decomposition:

Geometrically, the rank principle expresses an incidence
property. In fact, if we replace X, and Z, in the projection U' = L* ER*, (7)
equation (1) by the generic coordinates X and Z, we obtain the
equation of the projection line of pointp onto framef: where L* collects the first three columns of L, L'" is the first

third-order principal minorof E, and R* gathers the first three
ufp=cfX+sfZ+tf . rows of R.

Equation (1) and, equivalently, the rank principle, say that 3.2 The Metric Constraints
there is a point that belongs to these lines for all values off.
In other words, the projection lines of a given point form a Golub and Reinsch [Golub and Reinsch, 1971] give an ef-
pencil. ficient and well-behaved algorithm to compute the singular

In the next section, we show how to use the rank principle value decomposition of a matrix. We use that algorithm to
to determine the motion and shape matrices M and S. obtain a decomposition of the measurement matrix U.

The singular value decomposition of a matrix is unique
3 The Algorithm because the left and right factors L and R are required to be

orthonormal. However, this does not mean that there is only
When noise corrupts the images, the measurement matrix U one way to decompose the measurement matrix U into M and
will not be exactly of rank 3. However, the rank princi- S. Since the rank principle expresses an incidence relation,
ple can be extended to the case of noisy measurements in it only determines the two matrices M and S up to an affine
a well-defined manner. Subection 3.1 introduces this ex- transformation of the plane. In fact, if A is any invertible
tension, using the concept of Singular Value Decomposition 3 x 3 matrix, the matrices MA and A-IS are also a valid
(SVD) [Golub and Reinsch, 1971] to introduce the notion of decomposition of U, since
approximate rank.

However, although the rank principle is the key to our (MA)(A-'S) = M(AA-t )S = MS = U.
algorithm, it is not the whole story. In Subsection 3.2, we
show that, based on the rank principle, the matrices M and Therefore, ifwe want to find M andl S from the measurement
S are determined only up to an arbitrary affine warping of matrix U, we need additional constraints. We approach the
the plane. Therefore, in Subsection 3.2 we also point out the problem by first decomposing U into two matrices M and
additional constraints needed to complete the solution. of the appropriate sizes via the SVD algorithm. Based on

Subsection 3.3 outlines the complete shape-and-motion al- equation (7), we can define, for instance, the two matrices
gorithm. M = L*(L)t/ 2 (8

3.1 Approximate Rank 1 =R, (8)
Assuming 2 that F > P, the matrix U can be decomposed
[Golub and Reinsch, 1971] into an F x P matrix L, a diagonal Then, we can complete the solution by finding the matrix
P x P matrix 7, and a P x P matrix R, A that transforms Mr and S into the actual motion and shape

matrices M and S:u = LDR, (5)
such that M =M -

S = AS.
LTL = RTR RRT =I

The matrix A can be found by looking at the structure of the
't > ... > upj,. motion and shape matrices. The first and second column of

'In [Tomasi and Kanade, 1990], all image coordinates were mea- M gather cosines and sines of the frame angles (see equation
sured with respect to those of a reference feature. In that case, f was (3)), and must therefore be normalized. Furthermore, the third
always zero, so the rank of the measurement matrix was two. row of S contains all ones (equation (4)). These are metric

2This assumption is not crucial, if F < P, everything can be constraints, as opposed to the incidence constraints expressed
repeated for the transpose of U. by the rank principle.
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Formally, let us partitionA andA - 1 into rows and columns, subject to the constraint
respectively: a3BT= [ 0 0

A = a2]
I a3 (9) 4. Complete the matrix A and its inverse from their subma-

A-1  = [ b b2 b3 ]= [BT b3 ] , trices a3 and B by solving the system

where BT gathers the first two columns b, and b2 of A- '. AA-' = I.
Then, the metric constraints above can be written as follows:

amTB TBf = 1 5. Compute the motion matrix M and the shape matrix S asaMi 1 (10)
Am = MA - 1

where mi f and 8p are thef -th row and p-th column of M and S = AS.
S, respectively. These two equations say that the points ffim
are on a cylinder in a three-dimensional space, and that the The details of the fitting algorithm in step 3 and of the
points 8p are on a plane in a three-dimensional space. The two matrix completion of step 4 are described in appendices B
equations are not independent, since a3 and BT are submatrices and C, respectively.
of A and A- 1 , respectively. If we write out the product of A
and A- as partitioned above, we see that the coupling can be 4 An Experiment
expressed by the following equation: We implemented the algorithm described in the previous see-

a3BT = [ 0 0 ] (11) tion, and applied it on several image sequences.
The experiment described in this section illustrates the rankEnforcing the pair of equations (10) leads to an overcon- principle, demonstrates the good quality of the results, and

strained problem, and we can find the cylinder and the plane quantifies the influence of perspective effects on the accuracy
by data fitting. of the motion estimates.

In doing this, we encounter two difficulties. First, fitting The key parameter for the evaluation of performance is
a cylinder is a non-linear problem. Second, the two fitting the relative depth range, which we defined as the ratio of the
problems are coupled through equation (11). object size along the optical axis and the distance between

However, a well-behaved algorithm for our problem can be camera and object. In a nutshell, the conclusion drawn from
found by first determining a good approximation to the solu- our experiments is that the relative errors in the computed
tion, and then refining the latter with a numerical function- shape are of the same order as the relative depth range. Con-
minimization routine. This two-stage solution of the metric sequently, modeling inaccuracies that are small with respect
equations has proven to be accurate and robust in our experi- to the latter can be ignored.
ments and simulations. We put a one-dollar coin (about 4 cm in diameter) approx-

3.3 Outline of the Algorithm imately 3.5 meters away from a Sony CCD camera with a
300 mm Tokina lens. Thus, the relative depth range was

The incidence and metric constraints expressed by the rank 4/350 - 0.011. Figure 2 shows the setup.
principle and by the cylinder and plane equations (10) are all The camera was moved in the plane of the coin, so that
we need for our algorithm. In conclusion, given an image only the edge of the coin was visible in every frame. The
measurement matrix U, the algorithm for computing the mo- motion was roughly circular around a point in the vicinity of
tion matrix M and the shape matrix S defined in equations (3) the coin. Only the rotation component was controlled with an
and (4) can be summarized as follows, accurate positioning mechanism, so that precise ground truth

1. Compute the singular value decomposition of U: was available for performance evaluation. Translation was
such as to keep the coin in the field of view, but was otherwise

U = LL'R. uncontrolled.

2. Define the initial decomposition of U into two matrices The edge of the coin was approximately aligned with the
as follows: image scanlines, thus yielding easy-to-track image features

(the thin vertical notches on the coin's edge). The first 101
1i = L (*) 1/2  frames were taken in steps of 0.1 degrees between consecutive

=(*)1/2R*  frames. After that, the velocity was doubled to 0.2 degrees
per frame, and 100 more frames were taken. Thus, the overall

where L* collects the first three columns of L, E* is the rotation was 30 degrees. The resulting 201 scanlines are
first third-order principal minor of E, and R* gathers the stacked together in figure 3, top to bottom. This figure is what
first three rows of R. is called an epipolar plane in [Bolles et al., 1987].

3. Simultaneously fitacylinder to therows ofk andaplane The image was filtered with a thirteen-tap finite-impulse-
osof by minimizing the error criterion response approximation to the Laplacian of a Gaussian, and

to the columns othe 104 zero crossings of the result, shown in figure 4, were
F P used as features in the experiment.

e(a3 , B) = Z'iljBTB uif - 1)2+ -(a§P - 1)2 The measurement matrix was thus 201 x 104 in size. All
f=1 p.1 of the processing, including feature extraction and linking,
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matrix decomposition, and motion and shape computation, The results of this paper can be extended in many ways:
took about three minutes on a VAX 8800. accuracy, three-dimensionality, completeness, efficiency.

The rank principle is illustrated graphically by the similar- Accuracy can be increased even further by correcting for
ity of figures 4 and 5. To obtain figure 5, we decomposed the perspective effects. Once a good shape estimate has been
matrix U representing the crossings, set to zero all the singular computed, the solution can be perturbed with a steepest de-
values except the first three, and reconstructed the measure- scent search to account for the slight divergence of projection
ment matrix. Thus, figure 5 represents the rank-3 matrix U* rays in each frame. Furthermore, if depth varies dramatically,
of equation (7). The rank principle says that the only differ- looming effects must be accounted for.
ences between figure 4 and figure 5, under orthography, are The algorithm can be extended to three dimensions. For
due to noise. obvious reasons of applicability, this is the direction we have

The singular values are plotted in figure 6; without noise, chosen to pursue next in our research.
and if the projection were exactly orthographic, only the first Completeness: if a motion model is available, depth and
three values would be different from zero. camera translation can be estimated independently. Shape

Figure 7 shows the computed and the true rotation. The er- and rotation, computed by our algorithm, would be inputs to
ror is always smaller than one tenth of one degree, and almost a separate depth and translation algorithm, possibly together
everywhere substantially smaller than that. The algorithm with external motion information. Shape and depth are of-
assumes no motion models, and does no smoothing. As a ten several orders of magnitude apart. We have shown that
result, the sharp change in rotational velocity after frame 100 they should be computed separately, not that depth cannot be
is faithfully preserved in the motion output. estimated.

Figure 8 shows the shape results, and the best circular fit Our implementation of the algorithm uses an efficient
to them. The accuracy of shape is of the order of the relative singular-value-decomposition routine. However, it treats a
depth range (1 percent), even if variations in depth during the whole batch of frames at once. An incremental implementa-
motion of the camera were of the order of the coin size. tion would be more desirable. The feasibility of this is being

In spite of image noise, perspective effects and unmodeled investigated.
small variations in depth, the quality of both shape and motion
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[Tsai and Huang, 1984] R. Y. Tsai and T. S. Huang. Unique- We introduce the angles wfp between framef and the line
ness and estimation of three-dimensional motion parame- from the origin to point p; the determinant 6(pq) is easily
ters of rigid objects with curved surfaces. IEEE Transac- expressed in terms of these angles:
tions on Pattern Analysis andMachine Intelligence, PAMI-
6(1):13-27, January 1984. Adgq)  det dcoswft dqcoswgq

[Ullman, 1979] S. Ullman. The Interpretation of Visual Mo- 1 dpCOSwgp dqCOSwgq
tion. The MIT Press, Cambridge, MA, 1979. = dpdq(cos wf, cos Wgq - cos Wfq COS Wgp)

A Degeneracies of the Measurement Matrix = P-_ [COS(Wfp + dgq) + cos(Wdp - Wgq)

If both the scene and the camera motion are sufficiently corn- - cos(wfq + wgp) - cos(Wfq - Wgp)].

plex, the measurement matrix U is exactly of rank 3. On the
other hand, special object shapes and/or particular types of If we now observe that
camera motion can further reduce the rank of U.

In this section we show that the object shape is degenerate Wfq = W jp + pq
if and only if all feature points are aligned, and that camera Wfp = g + WP = fg+ Wgq -^ pq

motion is degenerate if and only if it is such that all optical
axes pass through the same point, we can write

Shape degeneracies Wfp+Wgq = Wfq+Wgp=2w fpg+"pq

We now interpret the determinants Wf p - Wgq = Ofg - ^pq

rfq-gp = Ofg+7,pq,
-Aq det Uf1p Ufq]

18 I Ugp Ugq so that

in terms of intrinsic geometric parameters which describe the pq) = dpd [os(Vfg - 7pq) - cos(Ofg + Ypq)]
relative position of the three world points, and of the angles fg 2
between frames. = dpdq sinYpq sin kg

It follows immediately from this interpretation that a nec-
essary and sufficient condition for the existence of at least one as promised.
non-zero determinant of the type above is that there be at least
three non-aligned points, and at least two distinct frames. Motion degeneracies

Since we consider only shape degeneracies, we can set The motion matrix M defined in equation (3) is of rank smaller
t = 0 for allf. This is equivalent to saying that the camera thanthree ifand onlyif ne olumn isalinearcombination ofmoves by pure rotation, as shown in figure 10.thntreianolyfoeclunialnaromntonf

Lovet bdy e athn agshoni nd phe of thvct theothertwo. Weconsider separately twocases, dependingonLet dp and -y, be the magnitude and phase of the vector whether the two vectors c = (c, ... cF)T and s = (s, ... sF)T
which joins the center of rotation, chosen as the world origin, are mutually dependent.
with object point number p: The vectors c and s are dependent only when all inter-frame

,= V/  + 2 rotations are integer multiples of 7r/4. The only interesting
P P case of this type occurs when the camera moves by pure

-y, = arctanz(Zp,Xp) translation. In this case, all optical axes pass through the
(see figure 10). same point at infinity.

If, on the other hand, c and s are mutually independent, the
Here arctan2 is the two-argument inverse tangent function, motion matrix M (and therefore the measurement matrix U)is

which differs from the one-argument function in that it returns of rank two if and only if there are two numbers at and P such
the angle in the appropriate quadrant, and has no singularities: that

arctan(y/x) ifx > 0 t- = c. + Psf. (12)
arctan2(y,x) = sign(y)(7r - arctan ly/xl) ifx < 0

g 0 ifx = y = 0 For a generic point (X, ), the projection equation (1) can
sign(y)r/2 ifx = 0, y O 0 be rewritten in the following form:

Furthermore, let OfP8 be the angle between frame f and I = uf , - Xc- - 4
frame g, measured counterclockwise fromf to g (figure 10),
and let 7pq = -yp - 7q. By comparing this equation with equation (12), we see that

Then, if uf, is the projection of point p onto frame f, we for the latter to hold there must be a (possibly invisible) point
have with coordinates X = -a and Z = -,3 that is always projected

Apq, = det up Ufq ]dpdq in pq Sin to the origin, that is, such that ufp = 0.
u8 [ Up Ugq s Since the projection ray of a point that projects to the origin

is the optical axis, this proves that motion is degenerate if and
Proof only if all optical axes pass through the same point.
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B Simultaneous Cylinder and Plane Fitting To complete the task we need the derivatives of the cylin-
der residue function y = mTBTBm - 1 and the plane residueThis Appendix elaborates on step 3 of our algorithm: the function 7r = a3(b, x b2)s - 1 with respect to the unknown

minimization of the error criterion parameters a3 and B, for use in a standard minimization rou-

e(a3, B) = e.(B) + e.(a3) tine.

where Simple algebraic manipulation shows the derivatives to be
F T7e,(B) E - )2 =2Bmmr

f=1 (a 2 x 3 matrix of derivatives), and
and

e,(a3) = E(a3§p - 1)2 b-- = a3(b2 x s)

subject to the constraint b- = -a3(bi x s)

a3BT=[0 0] (13) 07r = det [
We compute the solution in the following steps: a I t

" find the cylinder AT that minimizes e,(B) C Completion of the Matrix A and its Inverse
" find the plane A3 that minimizes e,(a3) This Appendix shows how to complete the matrix
* minimize e(a 3, B) numerically, using A3 and/j as a start- [ a,

ing point, and enforcing the constraint of equation (13). A = a2
We now examine the first and the third step in some detail. a3

The second step, fitting a plane, is trivial, and its inverse
Fitting the Cylinder A-'=[ b b2  b3  =[BT b3 ]
Fitting a cylinder mTBTBm = 1 to a set of three-dimensional
data .,..., r is a non-linear problem in the entries of the given their submatrices a3 and B. This is step 4 of our algo-matrix B. rithm.matrx B.The 3 x 3 matrix equation

Consequently, we use the same strategy as above: we first
find a good approximation to the solution, and then we refine AA-1 = I
it numerically.

The approximation can be found by first fitting a quadratic can be expanded into nine scalar equations:
formm Qm = 1 tothedata. Thus, rather than finding a cylin- alb 1 = 1 alb2 = 0 alb 3 = 0
der, we find an ellipsoid. This is a linear problem in the entries
of the symmetric matrix Q, and can be solved easily. We then a2bi = 0 a2b2 = 1 a263 = 0
decompose the result, Q, and set its smallest eigenvalue to a3b = 0 a3b2 = 0 a3b3 = 1.
zero. The decomposition yields a first approximation to b. In The two equations
this way, instead of finding the optimal cylinder, we obtain the
cylinder that is closest to the optimal ellipsoid. From there, a3b = 0 and a3b2 = 0
we can reach the optimal cylinder by numerical minimization contain only known quantities. They coincide with the con-
of e,(B). Our experiments indicate that this last step is hardly straint equation (13), and can be ignored here. Since the
necessary: the cylinder obatained by suppressing the smallest unknown scalars are still nine (the entries of al, a2, and b3),
eigenvalue of Q is almost the same as the optimal cylinder, we need two more eqdations.
Refining the Minimum of e(a3, B) These two degrees of freedom derive from the fact that the

origin of the world coordinate system was left unspecified.
We now have a cylinder bT and a plane 63 which separately Rather than constraining the origin to be at (0,0), we use
minimize the two error functions em(B) and e,(a3). However, these degrees of freedom to improve the noise performance
B and a3 may not satisfy the constraint (13) exactly. of the shape result as follows.

In order to enforce equation (13), and at the same time min- The shape matrix is computed as S = AS in the last step
imize the global error function e(a3,B), we use the constraint of our algorithm. Of the three columns of t, the third is the
to write a3 as a function of B. Equation (13) says that a3 is most sensitive to noise, because it corresponds to the smallest
orthogonal to both rows, b, and b2, of B, so we can write singular value of the decomposition (5). Consequently, it is

a3 = a3(bi x b2) advantageous to avoid using that column in the final result.
This can be accomplished by requiring the third entries of at

where x denotes the cross product, and a3 is a scalar. and a2 to be zero:
As a result, we obtain a function e'(a3, B) of only seven

variables, rather than nine. The minimization of e' is now aiv = 0
unconstrained. a2v = 0,
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where v - (0,0, 1)T
We now have the nine equations we need. The six ho-

mogeneous equations express orthogonality, and we can use
them to find the directions (unit vectors) wl, w2, and w3 of the
unknown vectors a1, a2, and b3. From ab2 = 0 and av = 0
we deduce that a, is orthogonal to both b2 and v, so that its
unit vector is b2 xv

W1 = lb2 x v' feature ointIb2 x vj(X p , 9
Similarly, for the unit vector of a2, the two equations a2 b, = 0 -
and a2v = 0 yield

1b, x v" line

From these two results, and equations a, b3 = 0 and a2b3 =origin of
0, we obtain the unit vector of b3: frame f . U

W3 "
Iwi X W21

The signed magnitudes a,, a2, and of a, 92, and b3 can world
now be found from the non-homogeneous equations origin X

al b1 = 1 ItfI

a2b2 = I
a3b3 = 1,

which yield Figure 1: The basic geometry.

al = I/,Ji cos 01)
a2 = I/('Cos0 2 )

3 = 1/(aIcos03),

where P1, 02, a3 are the magnitudes of the known vectors bl,
b2, a3, and 01, 02, 03 are the angles between a, and bl, a2 and
b2, a3 and b3 , that is,

1b,COS02 = W2 b2

Ib2lCOS 02 = W3 a-

a3C0S03 = w]

350

Figure 2: The setup in our experiment. Measures are in
centimeters.
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Figure 3: The input to the algorithm; each scanline is a new frame, and represents the edge of a one-dollar coin seen from a
new angle. In [Bolles et al., 19871, a figure like this is called an epipolar plane. We use it to recover shape and rotation, instead
of depth given known motion.

Figure 4: The zero crossngs from figure 3.

Figure 5: Zero crossings reconstructed after suppres.,ing all but the first three singular values of the measurement matrix.
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Figure 7: Camera rotation. In the top plot, both the computed (solid) and the true (dashed) rotation are plotted, but the difference
is so small that they can hardly be distinguished. In the plot below, the difference between the two graphs is enlarged.
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Figure 8: Shape. The top figure shows the computed shape (dots) of a one-dollar coin, with the best fi circle. The bottom
figure magnifies the difference between true and computed shape values along the radius of the coin.
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results were obtained by simulating noise-free images of a circular object with 10 features, and a pin-hole camera rotating by
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A Unified Theory of Structure from Motion

Minas E. Spetsakis* John (Yiannis) Aloimonos
Computer Vision Laboratory, Center for Automation Research,

University of Maryland, College Park, MD 20742-3411

ABSTRACT pixels in the image. If one uses oniy point and line
features, the vast majority of the image remains

The long sought linear al,7orithm for the point and unused. The feature points carry more information
line correspondence problem is presented in the than the rest of the pixels, but the rest of the pixels
first section of this paper Next a new statistical are much more numerous. They should not be left
definition of feature points is introduced, under unused. This underutilization is not the only problem;
which point features and !ine features are just the two additional, more solid problems arise. First, there
two extremes of a spectrum of possible features is no consensus among researchers in computer vision
Almost any pixel in the image can be classified on what a feature point or line is, either in a rigorous
and used as a feature point in this scheme Based mathematical sense or even in an intuitive practical
on this definition we have designed an optimal al- sense, judging from what different detectors detect as
gorithm for the structure from motion problem features. The main consequence of this is that there is
that can utilize information from across the whole no general algorithm to detect features and match
image. The input to the algorithm is the image them. Second, even if one can detect point and line
displacement, and its uncertainty, at each pixel for features, there exists no algorithm that works with
a set of three frames. The only assumptions used both of them at the same time and guarantees a
are rigidity and Gaussian noise in the image dis- unique solution, although there are algorithms for each
placements. The outputs are the parameters of
the motion between the frames and the structure one separately [Longuet-Higgins, 1981; Spetsakis and

of the scene Aloimonos, 1987; Tsai and Huang, 19841. A special

The theory behind our approach is simple and case of the theory presented here is an algorithm that

elegant, can be extended in several ways (e.g. to can treat both of them at the same time.

multiple frames), and is developed with noise sta- There is another approach to structure from

bility in mind However, more important is that motion that assumes continuous motion and grey level
the new statistical definition of the features relaxes images that are differentiable in time and space.
the requirements for the image displacement con- Despite its theoretical elegance, this approach is
putation In fact, if the tangential component of a plagued by the aperture problem: the motion (optic
displacement cannot be computed then its uncer- flow) of a point on a moving curved line (isophote,
tainty is set to infinity, and the algorithm can zero crossing, etc.) cannot be recovered fully; we can
tolerate infinite uncertainty for all the tangential recover only its projection on the normal to the line.
components In this way the aperture problem is Most algorithms based on this approach assume that
avoided derivatives up to second order of the (not fully known)

image flow are given or can be computed, and that the

1 Geometry and Statistics flow is smooth. The resulting algorithms are local
(and hence unstable) in nature [Longuet-I-Iiggins and

When one looks at a real image one can see a number Prazdny, 1980; Waxman and Wohn, 19871.
of identifiable features such as points and lines. It has Obviously there is need to overcome these
been argued that these features are the only things difficulties and combine the advantages of all the exist-
needed for computing the motion and structure ing methods. This does not seem to be an easy task
because they carry reliable information, there exist within the existing theories, since they all are rather
mathematical and computational tools to treat them, incompatible, with different input requirements and
and extensive experience and literature from photo- conflicting assumptions, and they operate on different
grammetry can be tapped. On the other hand the geometric entities. But are points, lines, curves or iso-
number of image pixels that are covered by these photes different entities or can they be defined in a
features is only a tiny fraction of the total number of uniform way? The truth is that they are different

when compared as abstract geometric entities. In the
*Current address Department of Computer Science, York Universi- context of visual motion a feature point is a small area
ty, 4700 Keele Street, North York, Ontaria, Canada M3J IP3. of the image that (besides the statistics of its grey

The support of the Defense Advanced Research Projects Agency level that made the detector locate it) is moving with
(ARPA Order No. 6989) and the U.S. Army Engineer Topographic a motion whose uncertainty is more or less circularly
Laboratories under Contract DACA76-89-C-0019 is gratefully ack- symmetric and small (finite). In the same context, a
nowledged. line is an area whose motion has an uncertainty that is
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finite in one direction (normal to the line) and infinite f (p) 1 e
in the other direction (along the line). These \/(2 ,Tr' det(A)
definitions, having an obvious statistical flavor, seem A is an n X n square matrix and p an n X 1 vector.
natural and uniform. We can forget the separate I is I and 2, in n a ve tydefinitions of points and lines and concentrate instead In Figures 1 and 2, in the areas where the probability
defiiion s f sa its on le d t coneds.nt e ined density is significant we have drawn a cloud of dots.
on the statistics of the disparity fields. The only These clouds have ellipsoidal shapes the main axes of
geometric entity we need is the curve in its most gen- which are the eigenvectors of matrix A. The eigen-
eral sense, whether it be a chain of edgels, a zero
crossing, or an isophote (Figure 1). Thus any point in values of A represent the variances along the
the image can be considered. If such a curve is mov- corresponding main axes. In Figure 2 the meaning ofing then a point that was on it in the first frame will points and lines is given in these terms.move with the curve but we do not know where on the One final word about this framework. Part of thelength of the curve it will be in the next frame. We difficulty in structure from motion is its absolute.only know that it is on the curve but we have only a separation from the preceding stage of computing t..eprobability distribution for where it can be on the displacement vector field (or flow field or correspon-curve. This probability distribution accounts for the dence; they all are of the same flavor). This unavoid-

tangential component of the uncertainty of the motion ably leads to the idea of trying to find the exact dis-

of the point. There is also another component of placement field using restrictive assumptions such as

uncertainty, the normal one, because due to the fuzzi- smoothness (Horn and Schunck, 1981] and then, pre-

ness of the curve we cannot assume that the motion of tending that this is the correct field, find the structure
the point along the normal direction can be recovered and motion (Spetsakis and Aloimonos, 1988; Subbaraoexactly. Thus we have a probability distribution along and Waxman, 1985; Tsai and Huang, 1984]. Here

both directions. So we do not assume that we shall be instead we require much less from the preceding step

given the exact displacement vector of any point but than a complete, accurate disparity field, thus elim-

only a probability distribution for it. The estimation inating the complete reliance on assumptions such as

of this distribution is not within the scope of this smoothness. Then, using the theory described below,
paper. As a working assumption we will assume that the only assumptions of which are rigidity and Gaus-this distribution is Gaussian and its parameters are sian noise, we find the motion and structure (withgiven. Gaussian is a very good choice because it some uncertainty depending on the data). If indeedmakes sense intuitively and leads to very stable statis- the error in the data follows the Gaussian distribution,tics meninthtif ti lassu ds onverystab l y then the structure and motion we compute is thetics, meaning that if this assumption holds only optimal one. Otherwise it is not, and what we have
approximately then the consequences are not catas- otmloe tews ti oadwa ehvtrophic and the degradation is graceful. Also, coupled computed is a good approximation which is the collec-wtophc manimum teeldit gives rise to least-squares tive result of information from a large area of thewith maximum likelihood i gie t e ss s image. Once we have this collective result, which is a
estimators which have nice analytic expressions.cosritnthflw(ybkpjein)weanouAn n x 1 vector p (either position or displacement constraint on the flow (by backprojection), we can cou-
vector) follows a Gaussian distribution with joint van- ple it with the original gray level based constraint and

ance A and mean p when its probability density func- compute the displacement field again. It seems
tion is

Geometric Statistical
Approach Approach

Moving Lint p nnMot lb,

Movin: rolt N.tomig c

's4'

Po:nt: Circulhi uncertaiity

Axe or d.S 1 Eq ial tincertainty in the two axes,

,. ' Line: Information in

Curve- cnetr case, one axus only.
I .Elongated uncertainty

Cloud of uncertainty Un t i unceai nty in the two axes

Figure 2. A curve is a general notion and a line or a point
Figure 1. We need to redefine the meaning of features so are special cases. Since the image plane is fully

that almost any pixel carrying some information covered by isophotes practically any pixel can be
can fit in, used.
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intuitively true that the uncertainty should decrease point vectors.
with this iteration. But a rigorous treatment of non-
Gaussian noise is among our future plans. Summariz- 2.2 Two Frames, Three Frames.
ing, what we effectively do is postpone any attempt to It has been proved [Tsai and Huang, 1984] that two
find the undeterminable components of the displace- frames, in the absence of noise, are enough to recover
ment field, thus eliminating the necessity of the motion and structure. But if noise is present two
smoothness assumption; instead we use the rigidity frames are not enough! Even if we squeeze every bit of
assumption. information out of the data by using an optimal algo-

rithm [Spetsakis and Aloimonos, 1988b] we cannot do
2 Geometric Analysis many things that we can do using more frames and it

is easy to see why.
2.1 Camera Geometry Suppose a point P that belongs to a rigid object

undergoes rigid motion with rotation matrix R, and
We use here the pinhole camera model with a 3-D translation vector T, and moves to P2. Then
coordinate system OXYZ and an image plane parallel
to the XY plane at Z=1, which sets the focal length P2-= RI'PI + T,
equal to unity. An object point Pi= [XI, Yi, ZgJT is or
projec ed on t~e image plane on the point

X= Y P2*p2"p iR 1 'pI + T1 ()
P = Z, Z 1 P (Figure 3). Often in the literature where pI, P2 are the lengths of P, and P2. Then the
point p, is represented as a 2-D vector structure (e.g. the length of the vector PI) is

PI-= [Xi --, Which is the same thing. We [(RI'Pi) x P2]

prefer, though, to stick to the 3-D vectors for one more xpl) X P2 [T, P2
reason beyond uniform notation: one can normalize ['J P

the image vector P, to unit length pIt= Pi and If we consider a third frame then
II PillP3=R' +Tthus avoid having the length of the image vector arbi- P3  R 2 P1 + 7'2

trarily distort the weights in the least squares. Furth- or
ermore, when an object point P1 rotates to R 'PI, then
the corresponding image points are Pl' and R'pl' if P3 p 3 :plR2 "p1 + T2 (2)

they are normalized to unity and p I and if and the structure is now

they are not (2 is the unit vector along the Z axis). (R2 .PO × Ps]
This normalization simplifies things considerably. R2P') PS T71Th j 3
Note, though, that we don't use spherical coordinates 1( A L I
but just a notation convenient for mathematical mani- In the absence of noise Pi = Pi' should hold. In the
pulations. From now on, we use normalized image presence of noise it doesn't necessarily hold, if the

motion parameters are computed using the frames
pairwise. Forcing p, =Pit is one more constraint on
the motion parameters. So we can get three equations
for every point with three frames (Figure 4) instead of
two if we use the frames pairwise. It is important to

(X. .z) stress that this is not "yet another" equation. If we
needed more equations we could use more points. But
this extra equation changes things radically. To say
the least the aperture problem is no longer a problem
in this three-frame formulation, and we can easily
expand to many frames, as we explain later.

__Z With the need for three frames established we can
/ /' go on and describe the theory. The only assumption

we need is the rigidity assumption which is expressed
by equations (1), (2) above. Indeed these equations are
actually equivalent to the rigidity assumption because
if a rigid body is undergoing a motion then a rotation
matrix and a translation vector are enough to describe
its motion in the fashion of equations (1), (2). If we

Figure 3. Basic camera geometry now eliminate the structure unknowns pi, P2, P3 from
(1), (2) we are left with a matrix equation in terms of
the data (the position of the image point p, in the
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every point we get three independent equations and we

The 3 'd constraint / need at least nine points to find the essential parame-
These two points mustConcide ters by solving the system of linear equations that

•come from applying (3) to several points.x

2.3 Lines, Aperture Problem

Using equation (3), which is a general constraint, we
can derive the constraints for several other problems.
We show now how to solve the line correspondence
problem and the aperture problem. Both results are
very interesting: the line correspondence result because
we derive the same solution as (Spetsakis and
Aloimonos, 1987b] using a general theory, and the

Frame 3. aperture result because for the first time a "linear"
y r 2 Ysolution is presented (an optimal one is presented later

in the paper) for the famous aperture problem.
Frsme i. Suppose an image point p I is moving and due to

the aperture problem we do not know its position in
the other two frames but only

Figure 4. This third constraint is the critical one that
makes the unification possible P2 P12 + 914 1 and P3 P 13 + ^l' I

where 01, yj are undeterminate real numbers and b1,
three frames) of the form (see Appendix I for the c, are unit vectors parallel to the tangent directions.
derivation) Since I, yj are unknowns we eliminate them by pre

P [(K,L,M) * P,] 0= 1 (3) and post-multiplying (3) by b1, e1 .

where if P2 Y2 then (P2 X b1 )T. [(K,L,M) * P 1](Ps X c1)

[2 or

[0 Z W2 P2 X b I)T. [(K,L,M) * p1]-(p'3 X c)=0 (5)
P2= 0z 2 0 Y2  Now we have one equation with unknowns the ele-

Y2 -X2 0 ments of K, L, M, and using at least 26 points with

and the same for p3 . The matrices K, L, M are tangential motion uncertainty, we can find the motion.
STTSo as a byproduct we have a "linear" algorithm that

K= T.(R2"X)T-(R1.X)•T T  does not suffer from the aperture problem.
The line correspondence problem is essentially the

L = Tl(R 2 ')T-(RI-))T2 (4) same, if we represent a line ej as a vector normal to
both the line and to a vector of an image point that

M = T,(R' 2.)T-(R .)'T T  belongs to the line. Let c=p11 X a1, 2 -P' 2 X b ,
o p 3 X c 3 where p', and aI are (as before) a point

and the operation (I ",L,M) * Pi is zvK + yvL + on the line and its direction, respectively. Then (5)
Xl implies

zlM where p= yj 6 T. [(K,L,M) * p.,= 0

These three matrices do not appear here for the which holds for every image point p1=-p'i+aea1

first time. In [Spetsakis and Aloimonos, 1987b] they where a1 is any number. Then

appear in the solution of the line correspondence prob- j-1K'e3

lem which here we also solve as part of the general T . a
problem. 'r"L -c3 1 (p1j+ ai)=0

Looking at expression (3) one can make some [ 2TAf.E3j
interesting observations. It is a matrix equation that
is equivalent to nine scalar equations, only three of or
which are independent. They are non-linear in terms T .K'c,
of the motion parameters but, since we replaced the, /[*rL.c, × 1=0 (6)
non-linear terms with a set of 27 essential parameters TL M ' 0(
(the elements of the three matrices K, L, M), are
linear with respect to the essential parameters. For
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This is a vector equation that is equivalent to three are of rank at most 2 and hence at least one of their
scalar ones only two of which are independent [Liu et singular values is zero. Assuming for a moment that
al., 1987; Spetsakis and Aloimonos, 1987b]. only one of them is zero we can easily see that the

corresponding singular vectors are orthogonal to T 22.4 Linear Estimation of K, L, M and to R 2.i for K, to R 2 1 for L and to R 21 for M.
As we mentioned above, equation (3) is linear with Since these three singular vectors cannot be collinear
respect to the essential parameters. We arrange the (due to their orthogonality to the columns of the
elements of these three matrices in a 27 X 1 vector x matrix R 2) it is obvious that we can determine T2.
which is the column vector of the unknowns. Let Ai But since up to two out of three matrices might have a
be the 9 X 27 matrix of coefficients of the unknowns in second singular value there is a set of rare cases in
(3) for the i th point. Then which this simple method will not work. This set of

cases is extremely rare when there is no noise but
T . A when noise is present then the solution is unstable if

X . :Awe are in the neighborhood of such cases.In Appendix II we describe how to construct aor 3 X 3 matrix J one eigenvalue of which is zero (in the
XT'A "x =0 (7) absence of noise) and the corresponding eigenvector is

with condition [x II = 1, is the equation that gives parallel to T2. In the same way we can find the direc-

vector x (the essential parameters) in the absence of tion of T1. We now have to find the lengths of these
noise. In the presence of noise, though, the r.h.s. of (7) vectors. Let f'I be a unit vector normal to T2. Then
is not going to be zero. In any case the solution for x [ ] r T
is the eigenvector of A with the smallest eigenvalue 'T)1 

T2
(zero, if there is one). K.-T= TR 1 .j •

This solution, although simple and nice, is not the
best in the presence of noise. Indeed we have to T
minimize the l.h.s. of (7) but x is not just any vector. I R2R.fTT
Its elements are the elements of the matrices K, L, M T1 R141[ 0 = T1 (IT.R2 1/)
which are matrices with specific properties-e.g., all
are singular, etc. Thus x belongs in a constraint space
whereas the aforementioned eigenvector is just the Similarly
solution to the unconstrained minimization. Although L'f - T' TR2
this solution is not the best one, it is a very good guess
for the iterative procedure of constrained minimization M'fI = T,'( T.R2f 1 )
that we describe later in the paper. So

3 Deciphering the Essential (Kf 1 )2+ (L .f 1 )2 + (M.f 1 )-
Parameters I [p lT T2(pT

In the previous paragraphs we described a method 2 2 2  T 0

to compute the matrices K, L, M using point or line In brief, the procedure to find the translation vectors
matches or normal components of the flow. Assuming up to a sign is: Construct matrix J as described in
now that we know the matrices we shall describe how Appendix II. Find the eigenvector with the smallest
we can find the motion parameters from the matrices eigenvalue. This is the direction of T 2 . Take two
K, L, M. unit vectors f and f. mutually orthogonal and both

These three matrices can be written as orthogonal to T 2 (the other two eigenvectors of J are

(R24) IC). Then
K= [T R1[ • T ='[(K'I )2+(Lf1) 2+(Mf 1)2 +

+ (Kf.)2 +(L f. )2 + (M.f.)2]

[ [ (R 2
1 )T Exactly the same is done for the direction of T, and

-T the length of T2.J "Now we describe the procedure to find the rotation
parameters. Let f 1, f2, f3 be three non-collinear unit

R2.)1 vectors that are all orthogonal to T2. As we have

M= T, Ri (R2i already seen, for vectors normal to T2
-T2 K'fI= TiNqT-RT'f ),L'fI= T ( T RT'f1),

Since trv are products of two matrices of rank 2 they
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M'f l=T T -(rR2' 1) ,2*.E 2 - U2 .R2 X.

and in the same way Then obviously

K' 2= T,'( TR'f 2),L'f 2= Ti'Y'R'f 2), [2 1
M'f 2 = T1 '(ST'RT'f 2 ) U2 .R .X 2 - 2

T U2 282

Kf T3 = T R2 Lfs T,'(.R2'f 3), where o2 == det(U 2)'det(X). The a2 takes values ±1

M'f 3 = T1 (~.RIT' f 3) and this enforces the R2 to be right handed. Finally

Define [1 0 2'U 2 1T
FR 2 X2 * 82 j Ij(8

In a similar way

to be a 3 X 3 matrix whose columns are f, 12, f3.[
Then we can compute up to a sign a matrix A 2 such
that R -Xl" s " T

A- 8s2 'R2F 2  81
The 82 represents the sign ambiguity that was inher-
ited from the computation of the translation vector; it There are four possible combinations of signs a,, 82.
is an unknown. This ambiguity is due to the lack of information along

the direction of T, and T2 . In 'Spetsakis andThe SVD's (Singular Value Decompositions) of A2, F2 Aloimonos, 1987a] it is explained how one can resolveare this ambiguity.
A 2 --- U2 'E2 'V and F 2 = X 2s'4V 4 Statistical Analysis

These are a set of the possibly infinite number of
different SVD's these two matrices can be decomposed So far noise was treated as a secondary issue, with
into. We can always find a set that shares the geometric constraints being the main focus. But with
matrices V. and E2 because IStewart, 1973; Strang, all the necessary theoretical tools involving thematre Vgeometry of the problem at hand we can deal with the
19801 Tnoise at the level it deserves. Working in the frame-

A T 'A - FT'F2 = V2'2"Vj work described in [Spetsakis and Aloimnos, 1988b] we
derive the expression to be minimized and develop the

Using a standard routine to find the SVD's for both of procedure to do so.
them does not guarantee that they will share V2 and The vector equations (1), (2) are no longer ade-

E2. To achieve this we can compute the SVD of A 2, quate. We must add a term to stand for the noise.
from which we know V2 and E2, and from We choose to introduce a 3-D noise vector; although it

does not seem to have a unique meaning, it simplifies
X2"E2 = F2 ' V2  the equations, and in the final expression only a func-

we can find tion of it appears which is equal to the image plane
noise, and this is precisely what we need.

We rewrite equations (1), (2) to reflect the presence
X2 = ±X-2 X2 X 23  of noise:

p1 p2 =pl'Rvpl+ T,+ n2

The ambiguity in the sign comes from the zero si'-gu-
lar value. There is only one singular value because the p3 'P3 pl"R2 'p + T2 + n3
three f 's are not collinear. With some complex mathematical manipulations,

So described in Appendix III, we get finally

s2 A,; = rXiF 2  P2 [(K,LMI) *pIJ'P
which implies

52 U2'E2 VT 2 2'X "  VT = P2 x n2)(p x T) = Q

By premultiplying and postmultiplying by UT and V2  n3
respectively we get Vector p3 X - is always normal to p3 and containsP1

the visible component of the 3-D noise vector divided
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by p, so it is very close to being of equal length to the variance in this space arbitrarily. The Hawking-
image noise vector. In order for it to be equal to the Penrose pseudo-inverse then is a good choice since it
image noise vector it should be divided by P3, but we sets this variance to kero. The standard procedure to
show how this can be taken care of later in this paper. find the pseudo-inverse of a matrix is to take its SVD,
We can analyze it in two components such that the invert the non-zero singular values, leave the zero ones
two of them are independent (something we can zero, interchange the left and right orthonormal
always do if the noise is Gaussian). So matrices, and multiply. Since the zero singular values

2x = 'I In the same fashion we correspond to improbable events the arbitrary choice
P I of zero instead of their inverse does not affect the end

n 2  result.analyze P2 X - = -/lb I +/'b 2. Of course b 1, b 2, P2W.TPi The pseudo-inverse of E[W" W ] is

form a orthonormal system and the so do c I, C2, P3 .jT + ri -i.+ (
Thus E[W'WJ -+T'E[N'NTJ"l+ ([1)

Q =-(P2x T1).('9cl 1 2c,2)r +(jYlbl+ 132b2).(pSX T2)T In Appendix IV we deal with the analytic computation

In the previous paragraphs we explained why this of 11'. The most interesting thing is the singular
is equivalent to three equations. Any choice of three values of fQ. The diagonal matrix of the singular
equations though will have instances in which two of values is
them are dependent, causing abnormally high numbers 1
to appear in the inverse of the covariance matrix. So
we take four of them and we pick them so that they 1
are symmetric:

b T.c --- (b2. T)-/.(c ' T 2) 1

b T. Q.c 2 = y 2.(b r ' T) +9l.( cT 2 ) /g + 9_ + V +4 V

b.Q.C = -Y -'(b T " T) - 2.(c T. T 2) What makes the above matrix interesting is the range
of the diagonal elements:b T'Q " -'"( T) + ff2"(e T. T2) +v---(bf.T) +( r .T) T(p.T)=(T 'p)
v1 +1 v - T) 2 +(2 .T 1 )2 = T2-(P2 -T1 )2=(Tj X p 2

We can write this in matrix form after substituting Since (T1 X p2)2 can take then values from the inter-
b T - -v, bT'T,-- V2, CT'T2-g1, Cr'T2 -g2: Sic1T 2cntk hnvle rmteitr

, 2 1 2  val [0,11T, II2], the singular value 1 can
W7 =2":N

where take values from[ ITI
wheretakevalue fro T,oo). These singular values

bT.O.Cl represent the weight of the least squares, and from theb ~above expression it is obvious that solutions for the
Tb'Q'c2 02 translation that are close to an image point vector getW br.Q.c , N = / very high weight. There is a reason for this: if they

b2.Q.c2  1/2  did not get this weight then in the presence of noise
we would s, a tendency for the translations to be

and closer to the center of gravity of the image points. If

-92 0  V2 0 for example the actual translation vectors fh.rn an
angle 0 with the center of gravity vector of the image

91 0 0 V2  points, then the computed translation vectors will
0 -g2 -V1  0 form angles, yielding a mean noticeably less than 0.

0 g, 0 -Vj So the singular values are there to penalize solutions
for translation that tend to be biased towards the

The covariance matrix of W is center of gravity. This phenomenon is quite interest-
E[W'WT] =OpE[N'N T .T (10) ing but nonetheless not new. Exactly the same situa-

tion was encountered in (Spetsakis and Aloimonos,

In weighted la0st squares estimation we need the 1987b] although there there were only two frames and

inverse of the covariance matrix. But the one given one equation per point so there were no singular

by (10) is noi,-invertible because it represents three values; the weight was a real number and equal to

equations while it is 4 X 4. This means no more than IT x p2 2 if we use the same conventions.
that the probability for the vector W to be in the left Finally as we mentioned earlier 11 P3 X _ L does
null-space of 02 (e. g. to have non-trivial component P
there) is exactly 0. So since vector W will not have not represent the image noise which actually is

any component in this null space we can set the p,3 X .. This aberration is passed down to -/j,
P3
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/2, and the same for Yl, 92. We just have to multi- to the optimal solution much faster. The process is
Pt which are not totally different from what is done in the case of

ply Ai, 92 by -l and Yl, Y2 by , two frames [Spetsakis and Aloimonos, 1988b). We first
P2 P3

approximately, from the law of the sines: get a "linearized" solution using unconstrained minim-
ization, then use a constrained minimization scheme to

P 1 1 T, X P211 Pi 1 1I T 2 X P311 improve the linearized solution which is now close
P2 11 T, X P'l 11 -P 1 T2 X P"i 11 enough to the optimal so that a general routine can be

where p' 1  Rlpl and p1l"-R2Pl. Now we can used efficiently.

write Let x be a 27 X 1 vector which consists of the ele-
ments of the matrices K, L, M one on top of the

$] other. Define Ai to be the matrix of the coefficients of
the elements of the three matrices that give the vector

E[ , W,e. g.

E[N.N] E E [/1 e. WC = A,'x

Of course A. is 4 X 27 (remember that the equations

E[-/2] are linear with respect to the elements of the
L J matrices). Then set Ci equal to some matrix C'i

independent of the motion parameters. If there is a
[#2 ] PI reasonable guess for the motion parameters then one

p-2 can use this to construct C'• from these and if there is
no guess one can set Ci to be a diagonal matrix

E [022] P- whose diagonal elements are the sum of the squares of
P2 the noise variables involved in each entry of the vector

E V ".s After setting a value for C'• the expression to be

E[12] P'  minimized is

where =l P etc. The variances
P2 or

E [,02] E[12 are supposed known because they XT A-x

represent the uncertainty in the measurements of the with ][ 1 constant.
displacement vectors. The eigenvector of A with the smallest eigenvalue is

5 Minimization Process the solution for x which minimizes the above qua-
dratic. This vector x is supposed to be the elements

We have now to solve the problem of doing the of matrices K, L, M that are decomposable to motion
non-liriear minimization which we break into three parameters. But it is not. So we find motion parame-
successive minimization steps, the first two approxi- ters that give matrices K, L, M close to the ones that
mate to get a good initial guess, and the last one that come from x. The process of finding the motion
converges to the minimum, parameters was described in the previous section. The

As we ie tioned above vector W should have second step is to take into account that x is not. just
0 any vector but one that belongs to a subspace which is

o non-linear. All the vectors x that are decomposable to
value IV but due to noise it is of non-trivial motion parameters belong in this space. If we define

the vector " to be I= [b1 , b2, . . . , 66, tIo, , 15
where bI, be, . • • , b6 are the Rodrigues parameters for

value. So we do weighted least squares (as we see the matrices R:, R2 and tit,.1..., t8 are the com-
from a simple maximum likelihood argument) on ponents of the translation vectors T 1, T2, then x has
_ WIT'C • GW1, where Wi is the expression W for the the Taylor expansion

ish point. and C EIi/i." Wi -  which we showed Aq)== x( ) ± D()-+ higherorderternis

how to compute analytically in the previous section The column space of D(5) is a linear space tangent to
This expression can be minimized using any commer- the non-linear space where x belongs. D is a 27" X 12
cial package for optimization but would prove very matrix of the derivatives of x with respect to . Now
expensive in computation time if a random guess is one can minimize the quadratic xTA.x in the colunmn
used. Instead we present a method to derive a good space of D. The solution again is not a decomposable
suboptimal solution which if fed into a general purpose vector z so we find one close by that belongs. This is
routine serves as a good guess and makes it converge

a new guess, improved, and can be used for a new
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iteration of finding D and theer minini-ting. This is
expected to converge quickly.

Now the solution for z is a very good guess that
can be used for an iterative algorithm to find the
optimal solution. The complicated method we used to
get a good guess is justified by the high cost of cor- F
puting matrix A (to do this we have to go through all (r.ne

points, now these are on the order of the number of Frame 1. Fame 2. Frame 3.

pixels since with the unified definition practically all of
them can be used). Matrix A has to be computed at
every iteration of a general purpose algorit-hm whereas
for the approximate ones it doesn't, need to be com-
puted more than once.

6 Many Frames

The main issues in the problem of computing structure
given optic flow, correspondence, or anything
equivalent are instability and lack of uniformity in . .
representation. Almost all the well-known algorithms
are sensitive to random perturbation of their input and
not compatible with each other. In this paper, so far,
we have presented very optimistic results on the issue Figure 5. The three frames can be encoded as the displace-
of uniformity in representation by unifying the ment of two pairs. The uncertainty in this dis-
definition of "features" in such a way that their placemen, is less than initially. The two, along
motion can be described with the same set of parame- with a fo'irth one, are again a set of three
ters. In this way we were able to design an algorithm frames.
that deals with all of them in a unified fashion. We
derived the expression that if minimized yields the information, that was computed from the three
optimal solution for three frames. Thus we achieved frames, in two frames that have less uncertainty than
two steps towards noise stability at the same time: we the original three. Now the two frames that encode
increased the number and the type of features that can the structure plus the fresh one can be used to derive
be used in the motion estimation process (in this an even better estimate of structure.
framework the whole image can be used), and we util-
ized all the information contained in them. But 8.1 Computing Structure
feature redundancy and optimality are not enough. The structure is not hard to compute. Taking into
One thing any biological vision system has, and which, consideration the noise, equations (1), (2) are
so far, is not properly used in artificial systems, is
redundancy in the frames. We need to be able to P2(P2+flIbI+ 2b2) p(RIrpI)+ T,
incorporate many frames without severe increase in
computation time. In our previous work [Spetsakis ps (p3 +,71 cI + i2c2) = pI(R 2'P 1) + T2
and Aloimonos, 1988a] such a solution is presented,
but it cannot fit into the statistical paradigm of the Set fli -P/ 3 1, f 2P212, q =P 'Yi, 'v"2"P'Y2.
present approach (in other words, it is restricted to
deal only with points), and its complexity is 0 (N4 ) for P2 P2 +P*1bI + 0*2 b2  PIP'1 + T,

each iteration, where N is the number of frames used. P3 P3 + 'Y IC + 7 2C2  P III + T 2
A truly real time system should be able to perform in
time linear in the number of frames. Then the solution of the system

Given three frames it is easy to extend to more. A' .x b (12)
The basic idea is recursion. Assume the system has
three frames in its memory. It computes the motion T.C. w min (13)
as we described, then computes the structure, as we
describe below (Figure 5). Now the system has the gives the structure for every point, where
best estimate of the structure in its memory. Now a
new frame comes in from the camera. How can the
system update its estimate of the structure? It is well
known that two frames are enough, at least in princi-
pie, to recover structure and motion. Hence the oppo-
site is also true: if we have the shape of an object we
can find what its image would be in two different pro-
jections. So the system can encode the structure
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"2 brl 6,2 -X'i 0 0 0 can be used in anoth.,r iteration to get a new C and
Sbri '2 - ,' 0 0 0 then a new a. This henomenon, where the computa-

Z. bJ b,2 -Z'S 0 0 0 tion of the structure that minimizes the squared error
A 0 0 0 -- 'j X3 ¢=! Lr2 is the solution of some non-linear system of equations,

appears in two-frame optimal estimation [Weng et al.,
0 0 0 -Y"1 Ys cyl cY 1987]. The intuition behind the two is the same. If it

0 0 0 -z', rt c,, c, was the distance of the 3-D point from the extensions
of the image point vectors that we wanted to minimize

. ~., p2  then the equations would be linear. But since we want
., t to minimize the projections of these distances we have

tyi to use non-linear equations. The two solutions are
0t*, almost the same except that when minimizing for the

b 142 , = pt projections the solution tends to be a little farther

3. paway so that the projections become smaller.

6.2 Multiple Frame Iteration

- Now that we know the structure we have to find how
and much we can trust what we have found, in other

words find the uncertainty. It was the knowledge of
0 the uncertainty that permitted us to unify a broad

class of motion problems. Again the uncertainty will
help us transfer information from one set of frames to
the other.

[ ]- Let tit =x'.Cx. Vector x can have only one
E degree of freedom and we choose this to be p, instead
INS of a. Then the variance of the estimate is approxi-

0 mately

0 1 .- E[Orn]E~ [72 arp,-

P2 as can be verified from any textbook on statistics.
~ .4 2

E [J So varp- 2X'I'xN where PIV is the fourth

102 component of the vector xN. Introducing an artificial
Fron equation (12) we get, using the Hawking-Penrose translation vector T, the induced displacement vector
pseudo-inverse, for an image point vector P i (with the convention that

the image point vectors are unitary) is
x1 :=A 4 "b PI X (PI X T")

We try to estimate the parameter a so that the solu- P1
tion x = xI+crxN where xv belongs in the null space
of A, minimizes (13). We can either minimize (13) which again approximately has an uncertainty along

accurately (it ends up to being the solution of a its direction which is (writte i as a product of the unit

seventh degree polynomial) or use approximate values vector along its direction and the variance)
for P2, P$ and consider C. which depends on them, to Pm x (Pi X T") P2tv

be constant: 2 xvT" C'x, p'IlI ,x p' I IIT 2X P'lII2XCN P
P i Px P21 ' P 3 It. seems that we have found the uncertainty for the

11 PI PX P2 artificial motion but we are still missing something.
Then (13) becomes The reason we have used this artificial translation T0,

which we can choose arbitrarily, is to encode the struc-
(X(I + Q XxV C (zi + Y XN) ture we computed from the three frames. There are

two kinds of error introduced in the structure compu-
IV a(4 ,z., Hz it('.g 7X aLion. one kind ib due to uncertainty in cooriespon-

and the minimum occurs for dence and is uncorrelated for all the I ints for which
we computed the structure, and the other kind is due

a -XC'Xn to the uncertainty in estimating the motion parame-

- XNT.c.7N ters. The latter introduces a highly correlated error
which deforms the 3-D scene smoothly it computing

This computation is very simple and the better esti- (above) the artificial disparity rert.or and its
mates for P2, P3 that we get from the a we estimated
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uncertainty for every point, we took into account only P2'(xj-(Rj"i) + yl'(RI'j)+ zj"(R'i )) "T2 T.jp-
the first kind of error. So we had uncertainty in one
direction only. The two uncertainties will be in
orthogonal directions so a good choice is to pick the P2'T 1 '(x,'(R2 'i)T + y+(R2"P/)T '+ z1 '(R 2 "i)T) "P3

uncertainty in the second direction as the same as the
first. By defining

Interesting questions for future research are to find K -(R2"1) -(Rj-')" T
which choice of T and uncertainties leads to the
fastest convergence of the structure computation, and
also the possibility of designing an optimal algorithm L -
for many frames that does not have to store all the
previous data but only a small number of them. M=TI"(R2' )-(R,'!)"T2

The importance of this algorithm is that it incor- we get
porates many frames with minimal increase of compu-
tation time and storage. Although it is based on an P2 '(xjK + y 1 L + z-'M)P 3 = [0]
optimal unified algorithm, it doesn't so far have the
advantage of proven optimality, but it is still a unifiedalgorithm. P 2" [(K,L,M) *p.]p3 [0] (a.l1)

APPENDIX I with the obvious definition of (',')*.
Equations (1),(2) aNow we have to show that eq. (a.1) is equivalent to

a set of nine equations of which only three are
/p 2  p IRrpI + T, independent. It is easy to see that (K,L,M)*p1 is a

singular matrix for every vector pI. The left singular
pa =pIR 2 'p + T2  vector of the zero singular value for this matrix is nor-

are two vector equations that represent the rigidity ,- al to P2, This is one condition, The other two come

condition. They are equivalent to six scalar equations. from the fact that Ii [(Kj,L,Af)*p] has only one
We want to eliminate P1, P2, and p.. To do this we non-zero singular value the corresponding singular vec-
first take the cross product of the equations with P2 tor of which is parallel to p.. These are three con-
and P3 

straints in all.

o =PIP2 X (R1 -pl) + p2 X T, APPENDIX II

O PIP3 X (R 2 "pl) + p T3X 2 If K, L, M are not degenerate (have two eigcn-

We rearrange the terms values equal) then each one has an eigenvector ft, f2,
f which corresponds to the zero eigenvalue and is

ppX(R 1Xp)------pX T1  orthogonal to T2. If we know f1, f2, f3 then To is a

left eigenvector ofPaX T2 =--plP3 X (R2 "p) r 1

and then take the outer product of both sides F2 = Ifl f2 1 3
-P2.(Rj-pj-T2T).p3==P-p.Tj.(R2.p )T.l3 F2 is a 3 X 3 matrix whose columns are fl, f2, f 3.

This eigenvector corresponds to the smallest eigen-
where value, which means it is closest to being normal to

0 Z2 -Y2 vectors fl, f2, f3. But the solution cannot be com-
0 12plete because K, L, M can be degenerate or almost--- -Z2 0 72degenerate so that the above method cannot always

Y2 -2 0 work. If one tries to identify the problematic cases
and treat them separately, then one is going to run

and into difficulties in the presence of noise where the
Z2' border between degenerate and non-degenerate is

vague.
P2= IY in order to avoid this we make the following obser-

vations:

and the same for . * Matrices K,L,M are equal to (K,L,M)*p for
P = , ,

I 1 The matrix (K,L,M)*p where p is a unit vector
If p = yj then is non-degenerate for every p, with the exception

zI of a set of measure zero, because
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(K,L ,M) *p = Ti"(R 2 "p )T - (R iP )T. T 2  MK = adj(M + K)-adj(M)-adj(K)

and in order to be degenerate, either The product N(p).N(p)T is a fourth degree homo-
I= aRf* T or p = aR " T1 for some real geneous polynomial in x, y, z. To integrate each term

The adjoint of (K,L,M) *p, of the polynomial separately we take into considera-
adj((K,L,M)p)= N(p), is a matrix with two tion
zero eigenvalues, and the eigenvector of the third
eigenvalue (which is the product of the two non- fx 4  fy 4 = fz 4 = 5

zero eigenvalues of (K,L,M)*p ) is the same as
the eigenvector with zero eigenvalue of X2 Y 2 2Z2 (f2X2 =
(K,L,M)*p. So the columns of N(p) are paral- f fy 15
lel to this eigenvector. If cI is a column of N(P) where the integration is done over the unit sphere.
then

T The integrals of all the other terms are zero.
c1 .T2=0 So finally

This is one equation. Using the rest of the
columns does not offer more constraints but in j =3(adj(K)adj(K)T+adj(L)adj(L)+adj(Af)adj(M)T)+
the presence of noise they contribute to the sta- adj(K).adj(L)r + ad(L).adj(M)r+ adj(M).adj(K)r +
bility. The least squares expression for them is

T 2T'N(p )N(p )T T2--*min adj(K).adj(M)T + adj(M).ad(L .' +adY(, )adj(g)r+

The vector T2 that minimizes the above must be
normal to the eigenvector with zero eigenvalue of KL .KLT+ LM.A,;'+ MK.MK7+
(K,L,M)*p. Notice that the above expression is This is a very easy procediri to co-'jpu,., 7 One has
implicitly weighted by the product of the two only to compute J, whiA :3 seri#s f awjAnt matrix
other eigenvalue3 of (K,L,M)*p. If one of them computations, matrix jt dtp'.i¢,s a'd aiditions,
is zero or close to zero then their product is close and then find its eigenve:vor wi.'t the araaletign-

too. value. The same, of course, for w' t.

The above leaste squares expression represents one

equation only, at least in the absence of noise. We APPENDIX III
need at least one more to have a solution. The
method mentioned at tht beginning of this appendix We rewrite equations (1),(2) to reflect the presence of
took this equation for p = ,#,i, but had the risk noise:
that two ot these p's lead to degenerate matrices.
One way around this is to find p's that do not display P2P2 -p1 (Rt)+ T1+n2
this property. A better way is to use all of them by
integrating with respect to p over the unit sphere. So P3P = P1 (R 2 p ) + T 2+n 3

we have to minimize By taking the left cross product with P2 and p3 and
T2TJ"T2  rearranging the terms we get

where P1 P2 X (Rvp)"=-P2 X T1-P2 X n2

j= f N(p).N(p)r dp p3 X n3 +p 3 X T 2 =--pIP3 X (R 2"p1 )

unit sphere We take the outer product of these two equations

If p ' then "P2"(RprTT)'p3 + 12"(RIpl)'n"

Pt

-t- y z -LAlf + z'adj(AM) + z z MK wihimle1)u,, -zzM which implies

where "P2. [(K,L,M)*pi]. p
KL = adj(K + L)-adj(K)-adj(L) r

LM = adj(L + M)-adj(L)-adj(M) P1

APPENDIX IV
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g[ 0 0 V don B 208, 385-397, 1980.g1  0 0 v[Spetsakis and Aloimonos, 1987a] M. E. Spetsakis and

0 -g 2 -vI 0 J. Aloimonos, "Closed Form Solution to the
10 g 0 -v,. Structure from Motion Problem from Line

has a singular value decomposition Correspondences", Technical Report CAR-TR
274, Computer Vision Laboratory, University of

Q U.-E.V Maryland, College Park, 1987.

that can be computed analytically. Then the pseu- [Spetsakis and Aloimonos, 1987b] M. E. Spetsakis and

doinverse can be comnuted analytically too. J. Aloimonos, "Closed Form Solution to the

Let G = V/g1 + g , V = + v2 and Structure from Motion Problem from Line

S=ITG . Then Correspondences", Proc. AAAI, 1987.
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FIXATION: A Direct Method for Recovery of Motion and Shape in
the General Case

M. Ali Taalebi-Nezhaad
MIT Artificial Intelligence Laboratory*

545 Technology Square
Cambridge, Massachusetts 02139

Abstract issues in image flow theory and motion vision are dis-
cussed by [Waxman and Wohn, 1988] and [Aloimonos

In motion vision, the problem is to find, from and Shulman, 1989]. Much of the earlier work on re-a sequence of time varying images, the rela- coeigmtnhabenasdnetersalsig

tive rotational and translational velocities be- covering motion has been based on either establishing

tween a viewer and anl environment as well as correspondences between the images of prominent fea-

the shape of objects in the environment. This tures (points, lines, contours, and so on) in an image

paper introduces a direct method called fi sequence (for example, [Prazdny, 1979], [Ullman, 1979;
papefr singte agdire motion vision prob- Ullman, 1980], [Longuet-iliggins, 1981], and [Aloimonoslon for solving the general motion vision prob- and Basu, 1986]) or establishing the velocity of points
emthais fation ethn trsltin ad co- over the whole image, commonly referred to as the op-

tational velocities that in combination with the tical flow (for example, [Ballard and Kimball, 1983],

Brightness- Change Constraint Equation solves (Bruss and Horn, 1983], and [Adiv, 19851).
tBeighneral.motion visionaproblemtarbitrarys .In general, identifying features here means determin-the general motion vision problem, arbitrary ing gray-level corners. For images of smooth objects, it
motion with respect to an arbitrary rigid envi- is difficult to find good features or corners. Further, the
ronment, correspondence problem has to be solved, that is, feature
Avoiding correspondence and optical flow has points from consecutive frames have to be matched.
been the motivation behind the direct methods The computation of the local flow field exploits a con-
because both solving the correspondence prob- straint equation between the local brightness changes
lem, and computing the optical flow reliably, and the two components of the optical flow. This only
have proven to be rather difficult and compu- gives the components of flow in the direction of the
tationally expensive. brightness gradient. To compute the full flow field, one
Recently direct motion vision methods, which needs additional constraints such as the heuristic as-
use the image brightness information such as sumption that the flow field is locally smooth ([Ilildreth,
temporal and spatial brightness gradients di- 1984], and [Ilorn and Schunck, 1981]). This leads to an
rectly, have used the Brightness-Change Con- estimated optical flow field that is not the same as the
straint Equation for solving the motion vision true motion field.
problem in special cases such as Known Depth, Both solving the correspondence problem, and com-
Pure Translation or Known Rotation, pure Ro- puting optical flow reliably, have proven to be rather
tation, Planar World and Quadratic Patches. difficult and computationally expensive. This has moti-
In contrast to those solutions, our fixation vated the investigation of direct methods which use the
method does not put such severe restrictions image brightness information directly to recover motion
on the motion or the environment. Recently direct motion vision methods have used

the Brightness-Change Constraint Equation (BCCE) for
1 Introduction solving the motion vision problem in special cases such as

Known Depth [Ilorn and Schunck, 1981], Pure Transla-
In motion vision, the goal is to recover, from time vary- tion or Known Rotation [llorn and Weldon Jr., 1988, Ne-
ing imagcb, thu rulative oiutiun bct vccin a icvbr dud dli gahdaripur and iumi, 19876], u1a Ruliaion iluril d11
environment as well as the structure of objects in the en- Weldoia Jr., 1988], Planar World [Negahdaripour and
vironment. A survey of previous literatures on machine Iorn, 1987a] and Quadratic Patches [Negahdaripour,
vision is given by [Barron, 1984]. Some of the current 1986]. In this work, a method called fixation has been

'Support for the research done at the Artificial Intelli- introduced which in combination with the BCCE solves
gence Laboratory of the Massachusetts Institute of Technol- the direct motion vision problem of arbitrary motion
ogy is provided in part by the Advanced Research Projects with respect to an arbitrary rigid environment. That
Agency of the Department of Defense under Office of Naval is, it recovers the shape, rotational velocity and trans-
Research contract N00014-85-K-0124. lational velocity in the general case. In contrast to the
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tracking methods presented in [Aloimonos and Tsakiris,
1988; Bandopadhay et al ' 1986; Sadini et al., 1986;
Sadini and Tistarelli, 1990J, our fixation method is not
only different but also is general. For example, [Aloi-
monos and Tsakiris, 1988] propose a method for tracking
a target of known shape and [Bandopadhay et al., 19861
use optical flow for tracking. Also [Sadini and Tistarelli,
1990] do tracking for the special case in which the com-
ponent of rotational velocity along the optical axis is
zero.ocioncen 0

A block diagram of the ideas behind this work is shown
in figure 1. We start with a brief review of the BCCE in

Prindpal PolX

image Plane

@COEg

1S1 m Coot Figure 2: The viewer-centered coordinate system. The
Formulator Gerwaf translational velocity of the camera is t = (U V W)T,I. Inltl r".- to Patch Motion-.... ,,z

2nd Image V.tm l ynRnl.. D and its rotational velocity is w = (A B C)r ,

axes of the image plane. Image coordinates are measured
relative to the principal point, the point (0 0 1)T where
the optical axis pierces the image plane. The position

Figure 1: The fixation method modules. vectors r and R are related by the perspective projection
equation

section 2. Then in section 3, it is shown that by choos- T
ing a fixation point in the environment, r0 , and knowing r (x y ) (X Y Z \ I(3
the component of rotational velocity along the position r =Z = 7) (3)
vector associated with that fixation point, wit, we can where i denotes the unit vector in the Z direction and
obtain a Fixation Constraint Equation (FCE) between R - = Z.
the rotational velocity w and the translational velocity t When the observer moves with instantaneous transla-
just by keeping the image of the interest point stationary tional velocity t = (U V W)T and instantaneous rota-
in the image plane. Section 4 shows how the FCE can be tional velocity w = (A B C)T relative to a rigid envi-
combined with the BCCE and applied to fixated images ronment, then the time derivative of the position vector
in order to find t, w and depth Z in the general case. of a point in the environment, R, relative to the viewer
Recovering "R., needed in the fixation constraint equa- can be written as
tion, and finding the components of fixation velocity, uo
and vo, necessary for obtaining a fixated 2nd image, are Ri = -t - w x R. (4)
discussed in section 5. In order to apply the FCE, a se- The motion of the world point R results in motion of its
quence of two fixated images is needed. Initial 1st image corresponding image point r. It can be shown [Negah-
can be used directly and section 6 shows how a fixated daripour and Horn, 1987a] that the motion field in the
2nd image is obtained from the initial 2nd image. image plane is obtained by differentiating eqn. (3) with

2 The Brightness Change Constraint respect to time as

Equation r. = d ( R i x, (5)

Using a viewer-based coordinate system which is adopted
from [Longuet-Higgins and Prazdny, 19801 is very com- Substituting for I., r and Rt from equations (1), (2) and
mon in direct motion vision. Figure 2 depicts the coor- (4) into eqn. (5) gives, [Longuet-Iliggins and Prazdny,
dinate system under consideration. 1980; Bruss and Ioin, 1983]

In this coordinate system, a world point ( -U:Exw 1 Axy-B(X 2 +1)+Cy
R=(X Y Z) T  (1) r= yg -Bxy + A(y2 + 1) _ Cx

is imaged at 0

r = (X y 1)T. (2) This resu't is ju-.t the parallax equations of photogramme-

That is, the image plane has the equation Z = 1 or in try that occur in the incremental adjustment of relative
other words the focal length (f) is 1. The origin is at the orientation [Ilallert, 1960; Moffit and Mikhail, 1980]. It
projection center and the Z-axis runs along the optical shows how, given the environment motion, the motion
axis. The X- and Y- axes are parallel to the x- and y- field can be calculated for every image point.
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Image brightness changes are primarily due to the rel- follow the moving object, in order to keep the image of
ative motion between an environment and an observer a point of interest stationary in the retina. There are
provided that the surfaces of the objects have sufficient also some formal studies that support such observations
texture and the lighting condition varies slowly enough [Bahil and LaRitz, 1984; Bahil and McDonald, 1983;
both spatially and with time. In this case, brightness Bandopadhay, 19861. Consequently in this computer vi-
changes due to changing surface orientation and chang- sion work, the fixation is defined as:
ing illumination can be neglected. Consequently, we may Given two subsequent images, initial 1st and
assume that the brightness of a small patch on a surface 2nd images, and a point in the 1st image, find
in the scene does not change during motion. Then ex- a new image, fixated 2nd image, from the initial
pansion of the total derivative of brightness E leads to 2nd image such that the image of the selected

dE point in the new image is located at its original
T= E + xtE + y1 Eu = 01 (7) position as in the initial 1st image.

which is referred to as the Brightness Change Constraint As shown in figure 3, we refer to this selected image point
Equation (BCCE) [Horn and Schunck, 1981]. By substi- as the fixation point, ro, and to its corresponding point
tuting for xt and Yt from eqn. (6) into eqn. (7), we obtain on the object as the interest point, Ro.
the brightness change constraint equation for rigid body
motion [Negahdaripour and Horn, 1987a], namely

s.t

Et+v.+ -T= o(8)

where the auxiliary vectors s and v are defined as

- E.= (9)
an( XE + yEY ) ,terest point vcor

v - - x + y,) . (10)
yE - E y

Considering that s . r = 0, v . r = 0 and s . v = 0, the
vectors r, s, and v form an orthogonal triad. The vectors
s and v represent inherent properties of the image. Also Z

it can be shown that v = r x s. The vector s indicates the Environnent

directions in which translation of a given magnitude will
contribute maximally to the temporal brightness change Figure 3: In fixation method ,the image of the interest
of a given picture cell. The vector v plays a similar role point, fixation point, is kept stationary in the image

for rotation. plane despite the relative motion between the camera

The brightness change constraint equation is un- and the environment.
changed if we scale both Z and t by the same scale factor.
We conclude that we can determine only the direction of 3.1 Derivation of General Fixation Constraint
translational velocity and the relative depth of points in Equation
the scene. This well-known ambiguity is referred to as
the scale-factor ambiguity in motion vision. For a sequence of two fixated images, at fixation point

we should have
3 Fixation Formulation rot=0 (11)

Our common visual experience suggests that fixation where rot is the time derivative of the fixation point vec-
may play an important role in the analysis of moving tor and similar to eqn. (5) can be written as
objects. When we want to understand the motion of an i x (Rog x ro) (12)
object we do not keep our eyes and head stationary in rot =
front of the moving object. Instead our head and/or eyes Ro •

I- Rni is the time derivative of the interest point vector.To account for smooth variations in the image brightness Comintio of euatio (1 e an()hst t for
due to other factors such as shading, spatial and temporal Combination of equations (11) and (12) shows that for
illumination changes, and variations in reflectance properties, fixation we need to have
the BCCE can be extended to i x (Rot x ro) = O. (13)

E, + xtE. + yEy = mE + c,
where in general mt and c, are time and position dependent In other words, we want to find out when Rot x ro is
[Negahdaripour et al., 1989b; Negahdaripour et al., 1989a]. zero or parallel to i. For Rot x ro to be parallel to , we
For simplicity, we have not used this extension here but %. should have ro perpendicular to i which is impossible
may use it for implementation. xi'.h a finite field of view (FOV), so only Rot x ro = 0
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applies. Conclusively, considering that R. and ro have determined by the fixation formulation. Physically this
the same direction, eqn. (13) is simplified as makes sense because the rotational velocity along Ro,

R x ot. = 0 (14) denoted by wR., does not move the fixation point. This
observation leads us to find wR in a separate step be-

Now substituting for Rot = -t - w x Ro, eqn. (4), into fore using the fixation formulation results. Derivation
(14) gives of wR. will be shown in section 5. Finally the general

(w x Ro) x Ro + t x Ro = 0. (15) fixation constraint equation (GFCE) is written as

Expansion of eqn. (15) by using (a x b) x c = (c . a)b - w = wto, + --- (t x ft.) (25)
(c . b)a results in 11R.011

(Ro • w)Ro - (fto • Ro)w + t x Ro = 0. (16) where t is the translational velocity and fto = i'o is the

As long as the translational velocity t is neither zero unit vector along the position vector of an arbitrary fix-

nor parallel to the interest point vector R, then any ation point, a point in the image chosen for fixation.
vector, including w, can be expressed in terms of the 3.2 Derivation of Special Fixation Constraint
triad of vectors Rto, t x Ro and t. So we can write w in Equation
its general form as When the translational velocity t is zero or parallel to

w = aft0 + 3(t x Ro) + yt (17) the interest point vector Ro, eqn. (16) is simplified as

where ae, / and 7 are constants to be determined. Later (Ro • w)to - (ft0o. Ro)w = 0. (26)
in this section we will consider the special cases where t
is zero or parallel to Ro by defining w based on another We define w based on the triad consisting of vectors Ro,
triad. *, and * x Ro as

Substituting for w from eqn. (17) into eqn. (16) gives w = lRo + m(* x fto) + nk (27)
[I- fl(Ro. Ro)]t x Ro) +-(Ro. t)Ro -y(Ro.- Ro)t = 0.(18) where 1, m, and n are constants to be determined. Here

Now, we should find the constants 6 and y such that we assume that ot is not parallel to *. This is a rea-
(18) holds without putting any restrictions on R sonable assumption becaus otherwise we should at leasteqn. (18) have a field of view of 1800 to be able to choose an awk-and t. We start by finding the dot product of eqn. (18) wr neetpitaogtexaiwihrslsi

by t x Ro that results in ward interest point along the x-axis, which results in
a fixation point at infinite distance from the principal

[1 - fl(Ro • Ro)]llt x Ro112 = 0. (19) point and near the border of an infinite image plane.

Equation (19) will hold without restricting Ro and t if Substituting for w from eqn. (27) into eqn. (26) gives

1 [mR0 (k x Ro) + n(Ro .:)]Ro - m(Ro. Ro)(k x Ro)

= IIRo1l 2 . (20) -n(Ro. Ro)f) = 0. (28)

Another possibility for satisfying eqn. (19) is to have The dot product of eqn. (28) with (f x Ro) results in

lit x Roll = 0 which implies that t = 0, Ro = 0 or t - m(Ro.Ro)[[f x Rol11 = 0. (29)
is parallel to Ro. But Ro cannot be zero and also we
assumed that here t is neither zero nor parallel to Ro. Considering that Ro cannot be either zero or parallel to
As a result, lit x Roll cannot be zero. Similarly the dot *, eqn. (29) is satisfied only if rn is zero
product of eqn. (18) by t gives =0. (30)

f t)(fo t) - (Ro . f 0)(t . t) = 0. (21) Substituting for m into eqn. (28) and finding its dot

Knowing that (a x b).(c xd) = (c.a)(b.d)-(d.a)(b.c), product by k results in
eqn. (21) can be simplified as

-111t x Roll' = 0. (22) n(Ro . )(Ro . ) - n(Ro. Ro)(* . k) = 0. (31)

Using (a x b) . (c x d) = (c .a)(b. d) - (d . a)(b . c), eqn.
We discussed that lit x Roll cannot be zero here, so eqn. (31) can be written as
(22) is satisfied only if 7 is zero

= 0. (23) 'o!!2  -- 0. (32)

Substituting for 6i from eqn. (20) and 7 from eqn. Again Ro cannot be either zero or parallel to *. As a

(23) into eqn. (17) gives result, eqn. (32) will hold for arbitrary Ro if n = 0.
Substituting for n and m into eqn. (27) gives

1
w = a11o + l-- -i(t x Ro) (24) w = lfto (33)

where a is still unknown. This means that the corn- where 1 is still unknown. We can substitute ,R 1 o for
pouent of the rotational velocity along 1o cannot be lRo. It will be shown later how wRo is found separately.
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As a result for the special cases we obtain the special 1987b]. Questions such as "How large can the FOV or
fixation constraint equation (SFCE) as fixation patch be to guarantee the validity of this approx-

imation?" can be answered by implementation results.
W = wR R, (34) Considering that the depth range is finite, we can solve

which means that when the translational velocity t is eqn. (37) by minimizing
zero or parallel to R0 then the corresponding rotational f f s" t 2

velocity may only have a component along R0 . if Zddy = ( E. j-dxdy = J (38)

Our method for deriving the SFCE, eqn. (34), is not with respect to t. In other words, we are looking for the
different from what we did for deriving the GFCE, eqn. tre to t inize s e areolooking f the
(25). In fact, eqn. (34) is a special case of eqn. (25). true motion t which minimizes the sum of squares of the
But we could not directly derive eqn. (34) from eqn. (25) depth estimates over the image of a scene with a finite
because eqn. (25) was derived based on the assumption depth range. In order to avoid te thrivial solution t = 0,
that t is neither zero nor parallel to R. As a result, a constraint such as = 1 is put on this minimization
for implementation it is enough to use the GFCE, eqn. problem. This is a valid constraint on t because due to
(25), without knowing whether the present condition is the scale factor ambiguity we can only find the direction
the special case or not. of t. This constraint on t can be written as

tTt = 1. (39)
4 Solving the General Direct Motion Moreover we can rewrite J as

Vision Problem j - tTMt (40)

Here we assume that we are given a sequence of two where M is a fully computable 3 x 3 matrix
fixated images. In other words we have made the fixation ff 1
point stationary in the image plane. This can be done M =dxdy. (41)
by finding the fixation velocity, the apparant velocity at
the fixation point in the 1st image, as shown in section 5. Minimizing J in eqn. (40) under the constraint eqn. (39)
Then the shifting method explained in section 6 can be is an ordinary calculus constrained minimization prob-
used for generating a new image, fixated 2nd image, in lem which can be solved by minimizing
which the fixation point is located at the same position I(t, A) = tTMt + A(1 - tTt) (42)
as in the initial 1st image.

We start by studying the general case where the trans- with respect to t and the Lagrange multiplier A. Then
lational velocity t is neither zero nor parallel to the in- we will have
terest point vector Ro. Then we will consider the special 01 = 2Mt - 2At = 0 (43)
cases of t separately. which is simplified as

Substituting for w from the general fixation con-
straint equation (25) into the brightness-change con- Mt = At. (44)

straint equation (8) gives Equation (44) is an eigenvalue problem where A is an
1 1eigenvalue of the known matrix M and t is the corre-

Et+wR~v.Ro,+ -[v-(tx×I)]+z(St)= 0. (35) sponding eigenvector. Substituting Mt from eqn. (44)
i1,Roll Zinto eqn. (42) gives I = A which implies that under the

Knowing that a. (b x c) = (a x b) c and doing some given constraint tTMt is minimized when the smallest of
manipulations on eqn. (35) results in three eigenvalues is used for calculating the eigenvector

1 1 t.

El + [ s - 1 -(v x fto)] t = 0 (36) It is concluded that the fixation method can be used
for solving the motion vision problem in its general case.

where E' is a notation for Et + wRnv • fto which can The translational velocity t can be calculated from eqn.
be computed at any pixel. In general, eqn. (36) can (44) by using the smallest eigenvalue. Then we can use

be solved numerically for t and Z using images of any eqn. (36) for finding the environment depth
size and with any field of view (FOV). In the following, = (s. t) - (s. t) (45)
a closed form solution is presented for the case that a E Vx -'t
small patch around the fixation point is used or the field -

of view is small and the whole image is used and finally eqn. (25) gives the rotational velocity w
We know that at the fixation point v x 1Ro = vo x Ro =

0. For a small field of view, the product of v x 7o "l:ill w + (tX A(6

be negligible. Even for an image with a large field of IlrtIlI

view this is still true for the image area near the fixation where IlRoll = Zollroll and Zo is obtained from eqn. (45)
point. As a result, for these casps, eqn. (36) can be The total rotational velocity of the vehicle with re-
written as spect to the environment is obtained by adding w to the

E + !(S. t) P 0 (37) equivalent rotational velocity 9 given in section 6. It can
E ( be seen that for the general case, the fixation formula-

which can be solved similar to the pure translation case lion lets us find the shape and motion parameters based
(Horn and Weldon Jr., 1988, Negahdaripour and Ilorn, on an arbitrary choice of fixation point r,.
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4.1 Special Cases: t Is Zero or Parallel to Ro Xt and yt from the above equations into the BCCE, eqn.

When the translational velocity t is zero, we showed that (7), gives
the rotational velocity w has only a component along Ro. [no + pR~o(Y - y0)]E. + [%v - (pD, (x - xo)]E + Et = 0.
In this case we basically cannot obtain any estimation for (49)
the depth Z but there are methods for finding the rota- Due to noise, eqn. (49) does not necessarily hold for any
tional velocity w [Horn and Weldon Jr., 1988J. For the r so we try to find uo, vo and @R by minimizing the
other special case where t is parallel to Ro, we substitute sum of squares of errors over the fixation patch, denoted
for w from eqn. (34) into the BCCE eqn. (8) to obtain by p. In other words we want to minimize

Et + y(s. t) = 0 (47) Jj[(uo+JR,(Y-Yo))E-+(vo-@R(XX))E+E2dxdy

(50)
where Et is again a notation for 'he computable value of with respect to uo, vo and CRo which results in a system
Et +wpR v.A 1o. Because no approximation is involved in of three linear equations which can be solved for the three
deriving eqn. (47), an exact closed form solution exists unknowns
for t and Z without any restriction on the field of view
or the image size. This exact solution for finding t and [all a 1 2 a 13 1 'to =(C).
Z is the same as the solution given in the general case, a 21  a 22 a23  (51)
starting from eqn. (38). a31 a32 a3 3  Ro = c3

5 Computing the Fixation Velocity and Matrix A is symmetric and its elements are given by

WRo f a 1 2 = a21 = ff, EEydxdy

The fixation formulation is based on the assumption that a 13 = al = ff E.[E.(y - yo) - Ey(x - xo)]dx dy
the fixation point remains stationary in a sequence of a23 = a32 = j'f Ey [E. (y - yo) - Ey(x - xo)]dx dy
fixated images. We use the term fixation velocity to refer all = E 2dx dyto the apparent velocity at the fixation point in the initial a22 = f E2 dx dy

1st image. We also represent x and y components of the a -

fixation velocity by uo and vo respectively. The basic a33 f -Y) - (52)
fixation requirement, a sequence of two fixated images in
which rot = 0, can be satisfied by finding uo and vo, and and the elements of vector C are as follows:
then using these components for obtaining a new image,
fixated 2nd image. The shifting method for obtaining the ( cl = -ff EE.dx dy

fixated 2nd image is explained in the next section. C2 = -fEtEydxdy
We also saw that the component of the rotational ve- C3 = -f Et[E(y-Yo)-Ey(x-xo)]dxdy.

locity along Ro, WRo, cannot be obtained from the fixa- (53)
tion formulation because this component does not move Considering that the fixation point coordinates xO and
the fixation point. Here, we will introduce algorithms yo are known, then the sets of equations (52) and (53)
which can be used for finding both wp, and the compo- show that the elements of matrix A and vector C can
nents of the fixation velocity, uo and vo. be calculated easily.

If we assume that depth is approximately constant In the special case where the fixation point is at the
on a small patch around the fixation point, the fixation principal point, Xo = yo = 0, elements of A are simplified
patch, then uo and vo will be approximately constant
on this patch. Possible sensitivity of this assumption a12 = a21 = ff E-,Eydx dy
to special cases such as slanted surfaces can be checked a13 = a31 = ff E,_(yE , - xE,)dx dy
by implementation. Moreover the motion field velocity a23 = 032 = ff
due to the component of the rotational velocity of the all = f (yE - xE)dxdy 54)
camera relative to the environment along Ro is given all =f E dxdy

a 22 = ff E2dxdyby -(wpo × r)= -w°(le × r) = rb a33  = ,'Roa3o , r) 1(y.11 -r x E))be-dy

cause 1o = io is the unit vector along ro. Knowing that a co o et o C as

ro = (Xo Yo 1)T and r = (x y 1)T, the components of and components of C are given as follows:

the total motion field velocity along the x and y axes, r = -f E
due to fixation velocity and wR., are given by { 2 = -f,, EtEydxdy (55)

= eC3 -fp Et(yE x-xEy)dx dy.Xt = no- 'O i .(ro xr) = uo+ CvRo(y -yo) rip=

Yt = Vo - jR .(ro x r) = vo - 1Ro(x - xo) After finding Wp , we can easily calculate wlw as

(48) w.= wRo -I. (56)
where R and ' are the unit vectors along the x and y When the fixation point is at the principal point, wRo

axes and CR. is a notation for ]ro " . Substituting for is exactly the same as
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6 Obtaining a Fixated 2nd Image fixated 2nd image is obtained by finding the brightness
The fixation method assumes that a sequence of two im- at the corresponding original point (x - Tu, y - Tv) in
agesTareavailableinwhichthe fixation me d ass t e e pt tw - the initial 2nd image. Where T is the time interval be-
ages are available in which the fixation point is kept sta- tween two initial images. In general a computed original
tionary. Referring to figure 1, we are given two initial point is not located at the center of a pixel in the initial
images. The initial 1st image is used directly but we 2nd image. As a result, its brightness cannot be read
need to find a fixated 2nd image. directly from tie image file and should be computed by

Physical rotation of the camera with respect to the dverom the imaerfilan ou beotdb
vehicle is a hardware solution to this problem which is averaging, bilinear interpolation or bicubic interpolation
basically a tracking problem. Considering that in general of the brightnesses at its neighboring pixels.
the interest point has a relative motion with respect to
the vehicle, the fixated 2nd image cannot be obtained 7 Conlcusions and Future Work
in one step. As a result, a feedback loop is required for The algorithms and formulations presented in this fixa-
the camera rotation system to compensate for the errors hon method show how to solve the motion vision problem
resulted from the new position of the fixation point. This to r thod oto elve ton viion rigidhardware approach is avoided not only because of the directly for arbitrary motion relative to an arbitrary rigid
errors involved but also because of the concern about scene. In contrast to previous work done in the area ofthe real time applications, motion vision, this solution is general and does not putIn the following we will show how a fixated 2nd image any severe restriction on the motion or the shape of en-vironment. More importantly the fixation method uses
can be obtained by applying a compensating rotation to neither optical flow nor feature correspondence; instead
the initial 2nd image through software. It is assumed direct image information such as temporal and spatial
that the fixation velocity has been already computed brightness gradients are used. There is no restriction on
from eqn. (51). We introduce an equivalent rotational choosing the fization point. However using the princi-
velocity Q = (Q, Q%) which could result in the same pal point as the fixation point makes the equations more
fixation velocity (uo, vo) at the fixation point (xoyo). concise and the calculations easier.
According to eqn. (6), the components of 02 must satisfy Implementation of this fixation method, which will be
the following set of equations: our next work, is essential for supporting the feasibility

Uo = xoyoQ - (X2 + 1)Q2y + yo 2 z of the scheme. Referring to fig. 1, we can implement the
Vo = (y2 + 1)Q2= - XoYoQ, - Xo01. fixation method in the following steps.

(57) STEP 1: Finding the fixation velocity components
Among infinite number of 0 that satisfy the system of (1o, vo) and the component of rotational velocity along
equations (57), we choose the only one that does not re- 1 wR,, by applying the system of eqn. (51) to the
suit in any rotational velocity along the fixation point t image information from two initial images.
vector ro. Mathematically this means that 1 io = 0 TEP 2: Knowing the fixation velocity components,
which results in the following constraint on the compo- 0 and vo, the fixated 2nd image is obtained by the shift-
nents of Q , method explained in section 6.

XoQz + YoQY + Q, = 0. (58) STEP 3: Using the general fixation constraint equa-

Given the fixation velocity (U0 , vo) and the fixation point tion (25), original 1st image, and the fixated 2nd image,
coordinates x0 and yo, the equivalent rotational velocity the method presented in section 4 can be used for re-
02 is obtained by solving the combination of three linear covering the depth, the translational velocity and the
equations in (57) and (58). In the case that the fixa- partial rotational velocity. Note that we had to derive
tion point is at the principal point, x0 = yo = 0, the the special fixation constraint equation (34) separately,
equivalent rotational velocity is but for implementation it is enough to use just the gen-

eral fixation constraint equation (25) because eqn. (34)
a = (vo, -u 0 ,0). (59) is a special case of eqn. (25). As a result, the general

Let's define the rotational fixation velocity as algorithms can be used for recovering the motion and
depth, without knowing in advance whether the present

no= ( ., I ,, ) = -. (60) condition is a special case or not.

In other words 00 is equal to but in opposite direction of STEP , The total rotational velocity wiot is simply
the equivalent rotational velocity 02 given by equations obtained by adding the equivalent rotational velocity fQ,
(57) and (58). The 2nd fixated image can be obtained by from equations (57) and (58), to the partial rotational

applying 110 to the initial 2nd image. Considering eqn. velocity w from eqn. (46).
(57), the following set of equations must be satisfied in
the shifting process of the initial 2nd image 8 Acknowledgement
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Direct Non-Linear Methods for Recovering Structure and Motion

David J. Michael
MIT Artificial Intelligence Laboratory

545 Technology Square
Cambridge, MA 02139

Abstract ages cover a small field of view or lack texture[Horn and
Weldon, 1988]. We do, however, demonstrate that theWe discuss a non-linear least squares technique algorithm is robust in the presence of quantization noise

to recover both rigid-body camera motion- using synthetic (8 bit) image sequences. While we use
translation and rotation-and depth directly three image frames, we do not assume that the motion
from time.-varying imagery. No assumptions between frames one and two is identical to that between
are made about spatial smoothness. Neither two and three.
correspondences nor optical flow are computed The properties of this structure-from-motion algo-
or required. The motion and scene can be ar- rithm can be summarized as follows:
bitrary (within the usual confines of sampling
theory). Three image frames are used, but the # No spatial smoothness is assumed (neighboring pix-
motion between frames one and two does not els are not assumed to lie on the same surface).
have to be the same as that between frames * No correspondences are computed or required.
two and three. We only assume that the same
surface is visible in all three frames. * No optical flow is computed or required.
We present the algorithm and some preliminary * The brightness change constraint equation is em-
experimental results with synthetic 8 bit ira- ployed at three image frames (two time instants).
ages. * The method requires solving a non-linear least

1 Introduction squares problem.
* A dynamic model of the camera motion can be in-

Estimating the structure of a scene and the motion of a cluded.
moving camera from the time-varying imagery is an in-
herently non-linear problem when no special structure is The mnethod identifies places in the image where
assumed for the scene or the motion. By special struc- depth cannot be estimated accurately.
ture, we mean assumptions such as that the scene is
planar (or very smooth) or that the motion is purely 2 Motion Vision
translational (or purely rotational) or that we are able The passive navigation paradigm in motion vision in-
to match features in successive image frames. volves estimating at each instant of time the six motion

In this paper, we accept the non-linearity of the vorves a a eainta me the smtiequations and demonstrate experimentally that standard prmtr famvn aeai nukonsaitecqueons for seoingtrate noliena y t s andaun- scene from a time sequence of images with N picture cellstechniques for solving non-linear least squares and un- in each image. Three of the motion parameters estimateconstrained optimization problems can be applied in this rotational velocities and three estimate translational ve-
case. locities (only five of the parameters are unique because

We use the direct approach of Horn and Weldon[Horn of a scale factor ambiguity). After the motion parame-
and Weldon, 1988], avoiding the problems of estimating ters have been obtained, it is straightforward to obtain a
optical flow and of finding correspondences. We look th hap otine it i agry. toughtinfor solutions which minimize the deviation-in a least depth map of the scene from the imagery. (Although in
sfore solutnswhcf nm iz te fdevihaion-in,,,az, east practice, it is difficult to obtain motion estimates with-
squares semse-froin the brightness change constra in 4 u nacrt et a-hsi h oinvsoequation at each picture cell. In addition, we discuss how out an accurate depth map-tis is the motwn vson
to incorporate the physically meaningful constraints of paradoxr.)
small unknown applied linear forces, small unknown ap- reeare rent apoc te rbmwi
plied torques and depth is always positive, three different techniques:

Since we are not restricting ourselves to special classes 1. Discrete Methods involve finding corresponding fea-
of imagery we cannot prove that the algorithm always tures in successive image frames and obtaining a
converges. In fact, we expect the algorithm not to con- transforn that maps the features from one frame
verge (or find the global minima) in cases where the im- to the next[Longuet-Higgins, 1981] This transform
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contains the motion parameters. The main draw- where t = (U V W)T and w= (A B C)T are the
back to these methods is that finding robust match- rigid body translation and rotation parameters, respec-
ing features (solving the feature detection and cor- tively, corresponding to instantaneous velocities along
respondence problems) is very difficult, in general. and about the X, Y, and Z axes, respectively.
Another drawback is that since these methods rely Direct methods rely on the brightness change con-
on data from such a small area in the image (at, the straint equation (BCCE) [Horn and Weldon, 1988] that
features), they are very sensitive to noise [Weng et relates the temporal and spatial brightness det;vatives at
al., 1989]. a single image plaue location and time to the motion pa-

2. Optical Flow Methods use the 2-dimensional motion rameters and depth of the world (corresponding to that
field as a starting point in estimating motion pa- image plane location):
raneters. Here, the problem is that accurately es- Et + 1S" t + v W = 0
timating dense optical flow from imagery is still an (
open problem in computer vision and may be more where E(x,y,t) is the image brightness at the point
difficult than the problem described here. Sparse es- (z y 1) on the image plane at time 1. Et is the tem-
timation of optical flow is equivalent to solving the poral derivative of the image brightness. The vectors
correspondence problem mentioned above. [ F. "yE' + (y2 + I)E "

3. Direct Methods estimate motion directly from im- s - E!, and v =-( 2 + ]
age intensities and their first spatial and temporal x.E. + yE, =E -4
derivatives in the whole image. This is the formu- are simple functions of the spatial derivatives and posi-
lation that we use. So far, only the special (linear) tion on the image plane. Z is the depth or Z coordinate
cases of pure translation, pure rotation, known rota- in the camera-centered coordinate frame corresponding
tion, known depth, and planar and quadratic scenes to (z y 1) on the image plane. This constraint equation
have been considered. Here, we will discuss the gen- should be satisfied at every location in the image and
eral case. assumes that the brightness of a particular patch in the

world does not change when the camera moves. This as-
3 Direct Methods sumption is reasonable in the case of passive navigation.

0) 4 Places Where Depth is Inaccurate

Yr v It is important to note that in the J3CCE above,theIdepth, Z, always appears in a product term with s . t.
This m'ans that wherever s and t approach perpendic-
ular or their dot product is otherwise small, the depth
will have no effect on tite BCCF'> And, therefore, solv-
ing the BCCE at such a point will not give us reliable
information about depth.

In other words, we expect holes in our depth map-
..: certain places where we expect depth to be inaccurate--

u and we will know where these places are once we estimate

Also note that. depth Z, and tray.,slation t, can be
z / scaled by a constant factor without effecting the BCCE.
w This is the scale factor ambiguity in motion vision.

5 Formulation
Figure 1: Perspective projection and viewer centered co-

ordinate frame. 5.1 BCCE in Time
If each pair of images has N pixels at time ti. then N

We assume perspective projectimn with the optical axis BCCE equatiuns can be constructed (at the time instant
of the camera along the positivc Z axis of the viewer halfway betveen the image frames), each of which con-
or camera-centered coordinate frame (see figure 1) and tains a (potentially) different, independent depth, Z4(ti),
without loss of generality assume the image r = (x y l)T and the same six camera motion parameters, w(ti), the
is at Z z1 (Lorrebpondiag to a focai kicuth of i) then rotational velocities, and t(t,), the translational veloci-

R ties. Taking into account the scale factor ambiguity, this
r = . (1) adds up to P1 + 5 unknowns and N equations.

The BCCE can be rewritten to make the time and
Thus, points in the world I. = (X Y Z)T are inaged on spatial dependencies explicit. Consider it at time ti at
the image plane at coordinates (.V I )T" SuperscriptT picture element j.
denotes taking the transpose.

We consider instantaneous rigid motion of the carneia '1'(t,) Et, j (t,) + -s(t,) t(t,) + v(t,) w(t,) = 0

R, w- x 1R. (2) (4)
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Recall that E1 (t1 ), s(t,), and v(t,) are intrinsic properties (I, = Ij), or is not rotating at all. (It would appear from
of the image pair at each picture element. the equations (11) that an asymmetric camera could ro-

At a single picture element j, we can evaluate <'j at tate with constant velocity about E single axis. Alas,
time t, and time t1 + At. When At is small, and the even that configuration is mechanicaly unstable.)
same surface is visible in the third frame we can relate Note that in general, F and N, tht applird force
the equations at the two time instants, and torque are unknown parameters that need to be

estimated. Some (or all) of their components may be
5.2 Taylor Series Expansion obtained at least approximately from other sensors or
The unknowns Z,, t, and w can expanded in terms of from the desired control input. These known forces and
Taylor series as functions of time torques can be separated out from the unknown forcesand torques

Z ct + At) = Z Q1) + z(t)(At) + Z(t)(At) 2 + ... Forque(
2F = Fknowon + Funknown (12)

t(t, + At) = t(t,) + j(t,)(At) + .(t.)(At)2 
.

co(ti + At) = W(t) + .,(ti)(At) + (b(ti)(At) 2 + ... N = Nktown + Nunknown (13)
(5) where only Funknown and Nunknown are unknown pa-

We use the rigid motion assumption from equation (2) rameters. One additional constraint that can be imposed
to estimate Z(ti). is that these unknown forces and torques are small. (If

we could stochastically model these unknown forces and
SZt = Rt.'2 = (-t-wxR).2 = -W+AY-BX (6) torques, we could recast the problem into the framework

of optimal estimation.)
This is not the whole story. The images used at the The known forces and torques propagate through to
second time instant must be dynamically resampled or and cs, so
unwarped to align with the images used at the first time t= known + iunknown (14)
step. This is necessary for consistency.

The physics of the particular moving camera platform 4 = 'known + C'unknown (15)
can be used to find equations for t and c. if it is well- If we ignore second order and higher terms from the
characterized. The equations may be analytic or merely Taylor series expansion, we can rewrite the brightness
a big look-up table. The following is an example of an- change constraint equation (3) at time t, + At as
alytic equations. It would be appropriate for a camera
mounced on a satellite. *j (ti + At) = E,, j (ti + At)

If the camera plus satellite has mass m, Newton's sec- + L sj (, + At) (t(t,) + i(t,)At) (16)
ond law relates the object's change-in-velocity (acceler- z1(t,)+z,(t
ation) to the forces applied to it and its mass tSymon, +vj(ti + At) . (w(ti) .+- L(tj)At) = 0
19711, mt = F (7) where At = ti+i - ti.

This can be rewritten as 5.3 Additional Constraints and Choice of
Variables

t F (8) Combining the brightness constraint equations at two
m times, equations (4) and (16), results in 2N equations

where F is the applied (linear) force. The equation of and N+ 11 unknowns. The system may be constrained in
motion for the rotation of a rigid body relates the change the likely case that N-the number of picture elements-
in angular momentum of the rigid body with the applied is greater than 11.
torque Additiona! .)nstraints can also be imposed such as

dL requiring depth to be positive and requiring that theTdt unknown forces and torques be small. We will show how

where L=Iw is the angular momentum, I is the inertia to impose these in the next section.
tensor, and N is the applied torque. Thus, We are interested in estimating the N depth values

Zj at each pixel and the eleven degrees of freedom de-
c = -I-1w& x Iw + I- 1N (10) scribing the translational and rotational velocities at two

time instants. Our choice of variables for these eleven
The inertia tensor may be diagonaized by choosing a degrees of freedom, t, W, t, and c' is merely convenient.
coordinate axes the principal directions of inrtia, and Instead, we could choose a set of 11 unknowns that ex-

lhe conmponets can be :ritten out n slight y snmpler plicitly represents the unknown forces and torques or one
form F N1 /11 - w 3w 2 (1a- 12)/I1 that completely separates the motions at the two time

w =[ -,/l wa(I - 13)/I.,| (11) instants.N3/1 3 - ww(I. - l()/1)
N3_13 -W2WI(12 11)13 16 Non-Linear Least Squares

Note that even in the case where N = 0, that is, where
there is no applied torque. L is not zero. In ,ther words, Even if the additional constraints are ignored, it is gen-
rotation 1- not constan I in tIme unless the camera is con- erallN impossible to satisfy all 2N equations exactly, due
strained (special, non-zero choice of N) or symmetric to noise in the image data and the inpreciseness of the
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BCCE. Instead we will seek to minimize the sum, S, of
the squares of the equations at time tj and time tj + At

N N N+6

S = E( (ti))2 + "(,pj(t, + At)) 2 + E apj (17)
j=1 j=i j=1

where pj are penalty terms. To encourage depth to be
positive, penalty terms for depth are

pj = min(0, Zj)

To penalize unknown forces or torques, components of
Wunknown and itunknown can be assigned to pj

PN+j = Wj unknown

PN+3+j = ij unknown

The choices of ai should depend on our belief in the
constraints and on noise in the images.

Finding unknowns that minimize S is an uncon-
strained minimization problem. We implemented an
iterative procedure that combines an initial steepest-
descent with a Quasi-Newton's method near the solution Figure 2. Initial depth map used for these experiments.
(Levenberg-Marquardt algorithm). Depth is chosen from a uniform distribution. (All depth

maps in this paper are at the same scale.)
7 Experiments

7.1 Overview Without the penalty terms, excluding places where
Some of the results presented here do not include any depth is estimated to be inaccurate, 63 percent of the
penalty terms (a, = 0). In these cases the depths were depth estimates were within 10 percent of the correct
not constrained to be positive and unknown forces and depth. 90 percent of the depth estimates were within 17
torques were not required to be small. When penalty percent of the correct depth. With the penalty terms,
terms were included, the coefficients for unknown forces excluding places where depth is estimated to be inaccu-
and torques were chosen as unity and 1/N for positive rate, 95 percent of the depth estimates were within 10
depth, respectively. percent of 'e correct depth. 90 percent of the depth

The image sequences all consist of small 8 bit images. estimates were within 8.5 percent of the correct depth.
Temporal and spatial derivatives were all estimated di-
rectly from the images using a first difference approxi- 7.3 Tilted Plane
mation [Horn, 1986). The images are of a tilted plane covered with a sinu-

The initial conditions were chosen carefully not to bias soidal grating in both directions-much like the previous
the solution. They always consisted of a uniform distri- sequence, except the camera is no longer hcad-on to the
bution of depth and no motion. The scale factor was plane. (See figure 6). The spatial frequencies of the sinu-
allowed to be free and normalized out at the end. See soidal grating were 33 percent higher then in the frontal
figure 2 for an example of initial depths.

The images are small because we did not worry about
the speed or efficiency of the implementation. (We are Par. Value Estimate
currently working on improving the implementation. It t (3, 3, !) (2.9, 3.0, 1.0)
appears from the results so far that the algorithm should
also be practical on larger images.) W (0, 0, 0) (1.5 x 10- 3, 6.3 x 10- 4, -4.1 X 10- 3 )

7.2 Frontal Plane t (0, 0, 0) (0.31, 0.34, 0.049)

The images at, of a huntal plane covered with a si- , (0,0, 0) (8.5 x 10-4,3.8 x 10-5,-1.8 x 10- )
nuboidal giating in both dir.ctions. (See figure 3). This
is similar to a head-on picture of a wall covered with 1 t(3,3,1) (2.9,3.0,1.0)
a blurry checkerboard. The algorithm converged to tile w (0, 0, 0) (5.7 x 10- 4 , 1.3 x 10- 4 , -1.1 X 10- 3 )

correct solution in approximately 50 iterations. Table (0, 0, 0) (0.33, 0.34, 0.053)
1 show, the resulting motion parameters. Figure 4 are
the depth maps of the surface at the same scale as the (0, 0, 0) (4.9 x 10-', -1.9 X 10-4, 5.1 X 10- 4 )

initial conditions depth map. Figure 5 shows imagp" loca-
tions where we expect depth to be less accurate. iliaces Table 1: Estimates of motion parameters from three 8
where depth is predicted to be inaccurate late not been bit images of a frontal plane without penalty terms (top)
removed from the depth maps. and with penalty terms (bottom).
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deph 1- p .,ercent of the correct
depth. 90 percent of the depth estimates were within 12
percent of the correct depth. With the penalty terms,
excluding places where depth is estimated to be inaccu-
rate, 90 percent of the depth estimates were within 10
percent of the correct depth.

8 Conclusion

We demonstrated the feasibility of estimating general
structure and motion from time-varying image sequences
using direct methods, without imposing smoothness on
the surface or linearity on the motion.

We showed that incorporating physical models of the
moving camera platform can improve our structure and
motion estimates.

9 Future Work

More experiments need to be done using real images.
Further improvements to the implementation are nec-
essary. The scheme can be extended using stochastic
models of the camera motion.

Figure 3: Three 8-bit images of frontal plane that were Filling in the holes in the depth map is an important
iuse as int d ta. iissue tiat we do not address here.used as input data.
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Figure 5: Places where we expect depth estimates to
be inaccurate for the case of the frontal plane without
penalty terms. Dark picture elements have estimated
values of Is • ti larger than 50. The remaining picture
elements are scaled to be brighter when the estimated
is. ti is nearer to zero.

Figure 4: Estimated depth maps for the case of the " i
frontal plane without penalty terms (top) and with R n
penalty ternis (bottomi). (Ali depthl Maps in this paper
are at the same scale.)

Figure 6: Three 8-bit images of tilted plane that were
used as input data.
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Figure 8: Places where we expect depth estimates to be
inaccurate for the case of the tilted plane without penalty
terms. Dark picture elements have estimated values of
Is ti larger than 50. The remaining picture elements are
scaled to be brighter when the estimated Is . ti is nearer
to zero.

Figure 7: Estimated depth maps for the case of the tilted
plane without (top) and with (bottom) penalty terms.
(All depth maps in this paper are at the same scale.)
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Robustness of Correspondence-Based Structure from Motion 1

R. Dutta M. A. Snyder
Computer and Information Science Department

University of Massachusetts at Amherst
Amherst, Massachusetts 01003

Abstract Ahuja [8] have given some qualitative conditions for bet-
ter structure recovery, based primarily on simulations.

This paper examines the robustness of Adiv [141 has characterized and demonstrated situations
correspondence-based approaches to structure where inherent ambiguities exist in the interpretation of
from motion. Unlike earlier studies it is proven noisy flow fields. In addition to the above there are a
in an algorithm-independent way, that small large number of other serious studies of this problem
absolute errors in image displacements cause (see the review in (15]). However, what is lacking is
absolute errors in rotational motion param- a comprehensive algorithm-independent study of the is-
eters significant enough to lead to large rela- sues associated with the correspondence-based structure
tive errors in the determination of environmen- from motion problem. The present paper is an attempt
tal depth. Even if the motion parameters are to remedy this situation.
known exactly, through sophisticated naviga- The key problem is to show, in an algorithm-
tion systems, small errors in image displace- independent way, the effect of all relevant quantities on
ments still lead to large errors in depth for envi- the computation of environmental depth. We start by
ronmental points whose distance from the cam- using the small rotation image displacement equations
era is greater than a few multiples of the total and show mathematically that small absolute errors in
translation in depth of the camera. the determination of rotational motion parameters cause

large relative errors in depth computation unless the im-
age displacements are really very large. This is proved

1 Introduction in an algorithm-independent way and has the immedi-
ate consequence that motion algorithms must precisely

Alarge number of mathematically elegant approaches for estimate rotations. The question might be raised as
determining structure from motion have relied on some to whether motion algorithms can indeed estimate ro-
form of point or feature correspondences between two tations precisely. We prove that it is not possible to
or more perspective views [1-8). These correspondence- do so by showing that small absolute errors in image
based approaches take advantage of the image displace- displacements give rise to significant rotational errors.
ments induced by egomotion. Most such methods match The proofs also show that the occurrence of the large
a large number of points or features in two temporally errors is ubiquitous. We therefore conclude from this
separated images and quantitatively measure the image theoretical analysis that it is in general difficult to secure
displacements. A consistent set of motion parameters is robust depth of environmental points. We emphasize
then determined to explain these displacements. Once that in contrast to our algorithm-independent theoreti-
the motion parameters have been determined, the depth cal approach the conclusions of the earlier studies have
of environmental points can be found by using their in- eithe been based on qualitative frameworks or have been
dividual image displacements. In a few algorithms (e.g. algorithm-dependent.
[5]) optimal values of environmental depths and motion In addition to the above, we explore the direct rela-
parameters are found concurrently. tionship between small errors in the image displacement

In spite of the extensive research that has been con- and computed relative depth. This is necessary because
ducted on this problem, robust depth determination un- of suggestions that sophisticated navigation systems can
der a wide variety of scene structures (especially in an ve motion parameters exactly. It is shown that even
outdoor environment) has remained elusive. Naturally, i t
this has led to investigations into the reason for such fail- rors in motion parameters are known exactly, small er-

ures. Algorithm-specific errors have been explored by computing the magnitude of the correct image
Tsai and Huang [gj, Barron [10), and Fang and Huang displacement generally cause large errors in depth.
[71. General methodologies for computing the precision We begin our analysis by stating the small rotation
of 3-D Parameters in The case of translational motion image displacement equations in the next section.
have been explored by Snyder [11). Large shifts in the
Focus of Expansion have been shown to occur in the 2 Depth from Image Displacement
case of approximate translational motion when small ro-
tations have been ignored [12,13]. Weng, Huang, and In this section we give the equations for computing depth

from motion. We assume a right handed coordinate sys-
'This research has been supported by the Defense Ad- tem fixed with respect to the camera as shown in Figure

vanced Research Projects Agency under RADC contract 1. Let us also assume that the right hand rule is used
F30602-87-C-0140 and Army ETL contract DACA76-89-C- for rotations. We consider the case where the camera is
0017. undergoing motion. As can be seen from Figure 1 the

299



Y J +(a/Z)- - (T 3/Z) %'

K + (1Z)
-TI- (T3 Z) (8)

In addition, we choose units in which TI = 1, so that
T +T + 2 = 1.(9

The depth Z of anenvironmentalpoint P canbe de-
Y I termined from either equation (7) or equation (8). We

X denote by Z. the depth determined from equation (7)
T - and by Zy the depth determined from equation (8).

- x Hence,

Z - T3u + a (10)
ZiT l / Iu-J

z Z v+ I (11)
Iv - K

It should be noted that it is possible to write the depth

in terms of the displacement vector I and the motion
Figure 1: Coordinate System parameters by using equations (6),(7) and (8). Since this

environmental point P, with world coordinate (X, Y, Z), becomes rather cumbersome to manipulate for analyzingenvronentl pintP, ithword cordnat (X Y1Z), errors, we shall often (but not always) work with Z.T
is projected onto point p, in the image plane with image ers w shatl ofen (bu no t y orklith arcoordinates (x, y). Let .f be the focal length of the cam- and Zn separately. When we use Zx the conclusions are

t ( )made using the x-component of the image displacement
era, and denote by T = (T1 , T2 , T3), fl = (fl1 , S1, f13) and when we use Zy the conclusions are made using the
the translational and rotational rigid motion of the cam- y-component of the image displacement. The depth is
era (This implies that P' = RP + T where R is the expressedin
rotation matrix and P' is the new position of P after units of the total translation, TI.
undergoing rigid motion). It is often convenient to measure image distances inWe shall be working with the small rotation motion pixels. The focal length measured in pixels given by
equations. For small rotations 2 sin(O) ; 0 and cos(O) z = - cot V (12)

For simplicity we define the following abbreviations: where the image dimension is (N pixels x N pixels) and
f22Z i1lY FOV is the field of view of the camera. For a 256 x= 1+ -- (1) 256 image with a 450 field of view the focal length is

S - 2computed to be 309 pixels with this formula.
J= ( 1 xY - - f=2f + fl3y (2) With these preliminaries in mind we proceed to an-

S f alyze the effect of various quantities on environmental
K = (jiy 2 f 2 XY) + P2f - X (3 depth in the next few sections.

C1 = -fT 1 + XT3  (4) 3 Effect of Small Rotational Errors on
P = -fT 2 + yT 3. (5) Depth

It should be noted from the abbreviations that I, J, In this section we prove mathematically that small abso-
and K are functions of rotational parameters whereas o lute errors in computing rotations cause very large rela-
and 0/ are functions of translational parameters. With tive errors in depth.
the above abbreviations the image displacement I, in- Equation (10) gives us the depth of an environmental
duced by the motion of the camera, is given by point in terms of the motion parameters, camera focal

length and image displacement at that point. Hence, to
I = u i + v (u, V) (6) find the effect ofsmall rotational errors on environmental

where i and g are unit vectors along the x-axis and y- depth we use equation (10) and take the partial deriva-
axis respectively, and 3 tive with respect to the rotation around the Y-axis, f12

____________to get 4

2With this approximation, for small angles the errors in toget_4

the sine and cosine of 0 are negligible. F i example even [7,16]. Usually most derivations proceed by assuming f to be
if 1 0 1 = 0.100 radians (5.70), the relative error in sin(O) 1. For convenience of experimental verification we have not
is 0.167% and in cos(O) is 0.500%. It should be noted that made this assumption.
even though we are considering small angles in the deriva- 4 There would have been higher order terms in the expres-
tions, the absolutz rrors in rotation we shall be considering sion on the right hand side of equation (13) if we had consid-
will sometimes have a least value that is roughly 600 times ered higher order terms in the expansion of sines and cosines
smaller. Besides, it will be shown later that the small angle of angles. However, it can be shown that for small rotations
assumption is not a restrictive one in practical situations, of the camera the higher order terms contribute negligibly

3 Various equivalent versions can be found in the literature when compared to the terms that we have considered.
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214 1 xe

(T 7 :400 - f 309 pixel (45 deg. Field of View) UIPU

+ 2S123Xo_ (256 by 256 image)
1+f f ,200 _

% 200-

- a2f + 3Y (13) i 0

This can be rewritten as

=z .(f2 + X2 + XU)W 
2

5Z . _-1 z
6Z

fu + 12Xu - fl21 yu - f2 1ny 500
-1 400_

+l2X2 + 12f 2 - 1 3YfJ M2. (14) 30 _ Me-s

From equation (14) 200

Z = -G(x,y) M2, (15)

where o.0 ,. . 2.5
G~xy) (f+x~nu)Absolute error In XL2 (in degrees)

Ifu + 112XU - n1lyu - 111XY

- Figure 2: Relative Error in Depth
+12X2 + 2 f2 

- 3Yf] (16) there is an uncertainty (not error) associated with it.

Hence this is modelled as a random variable. When we
Equation (14) gives the relative error in depth, due to measure 12 there is some error A12, which is the dif-

a small error in the rotational parameter S12, at coordi- ference between the experimental and theoretical values
nate (,y) in the image. (i.e. ground truth) of f22. It should be noted that we

In section 3.1 we discuss the errors at the center of choose the distribution of 122 so that it is similar to the
the image and in section 3.2 we derive an approximate distributions usually encountered for the true values of
expression for the error at all locations in the image. We the rotational parameters of a moving camera 5. On the
begin by choosing for illustration the center of the image other hand, 12 is the error which a motion algorithm
because the principal objects of interest are frequently makes in finding the true 122.
projected there. Also, in applications using tracking it Case 1: $2 is close to 0 - When 112 ,z 0 equation
is a commonly used point. However, it is insufficient to (17)can be written as (considering only absolute values
show that the large errors occur only in a specific posi- of the error)
tion and therefore we also search for a general solution.

3.1 Error at the center of the image Zze f j8
At the center of the image (x = 0, y = 0) the relative T "-"  tD (18)
error in depth is found by substituting 0 for both x and Equation (18) gives the relative error in computed
y in equation (14): depth with respect to the absolute error in the computa-

_z_ / f. tion of the rotation around the Y-axis. Note that since
= - ( ) (Mz2) (17) the image displacement, I u 1, is necessarily much lessn 1) i t t than the focal length of the camera (recall that f is typ-Equation (17) indicates that we are not just consid- ically several hundred pixels), even a small error in S12

ering very small rotational errors in small rotations be-
cause what is important is the sum of u and S12f. If
(u + 102f) is small, the large magnitude of S12 by it- . chicle (not camera) rotations measured by a land [17]
self will not be able to help reduce the relative error in igation system on the Autonomous Land Vehicle (ALV) [17]
depth. In any case, for practical motion analysis, the ro- strongly suggest a bell shaped distribution for the rotation R
tations cannot be very large because they would induce of the ALV around the axis perpendicular to its base when
such large image displacements that correspondence al- it is moved approximately straight ahead. Since the ALV
gorithms would be unable to handle them.' is 16000 pounds in weight, eight wheel powered, and hydro-

We shall consider three cases: statically driven, it is expected that the spread of the angles
1. 12 0 would be very small on an almost level terrain. However
2. 122 actual data from a 30 frame sequence collected on almost

. -level ground has the spread of R at about 2.4'. For smaller,
3. S12 is a random variable, centered at 0 with standard lighter vehicles and uneven terrain the spread is likely to be

deviation a. even more. In our theoretical analyses, whenever we assign
Of the three cases the third requires some clarifica- specific values to the parameters for illustration, we choose

tion. Often the true value of the rotational parameter the spread in such a way that it becomes apparent that we
of the moving camera is not known. That is to say are seeking some kind lower bound on the errors.
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results in a large relative error in depth.
In Figure 2 the results of using equation (18) to find 0.6

the relative error in depth are shown. It is remarkable to
see that we get over 100% error in depth estimation when
6S12 is as small as 0.50 and the displacement vector, u is
2 pixels. We also note that even when 6Ql2 is 0.10 and the
displacerfient vector, u, is 2 pixels we get a 27% relative -i-.7Md._.in
error in depth. Hence the absolute error in finding the 6d

rotational parameter f12 must be very small indeed. Y-axis: f(x)
Case 2: f 2 is nearly equal to (-u/f) - From

equation (17) we see that when S12 = - the relative 0.2
error in depth is infinite. This result shouid be treated -

with caution since we have ignored (6 2) and higher order
terms in in the Taylor series expansions of the sine and
cosine of f 2. However, as shown earlier, for small angles 0.0
the errors in the sine and cosine of fQ2 are negligible.
Hence we can safely say that for a 256 x 256 image -4 -3 -2 -1 0 1 2 3 4
with a field of view of 450 the relative error in depth
can become enormous for many combinations of values
of the displacement vector, u and the rotational angle fQ2  X-axis: x
e.g. u = 5 pixel and fl2 = -0.016 rad. = -Pa). When
fl2 is nearly equal to (-u/f), this means that the image Figure 3: Normal and Modified Inverse Square
displacement u is nearly equal to (-fl2 f). Qualitatively density functions. Normal Distribution shown has
speaking the image displacement in this case is solely
due to rotation and hence depth cannot be determined, mean = 0 and standard deviation = 1. Modified Inverse
As a corollary the larger the contribution of rotation to Square Density has M = 1.25
the image displacement the larger the error in depth. trying to find lower bounds) for a vehicle which is trying

Case 3: fl is a Random Variable - Let fQ2 be a to move without much rotation.
random variable. Then we find the probability that the
relative error in depth , is less than I k 1. From Table l it can be concluded that even with very

With a normal distribution for Q22 numerical solutions small errors in rotation the relative errors in depth are
are needed for computing the relative error in depth. We very high. As an example it can be computed from the
secure a closed form solution by considering a different table that with an absolute error in rotation of 0.10' for
probability density function, q(f02) for S12 which we call displacement vectors of 5 pixel length, in 78 out of 100
the Modified Inverse Square Distribution, given by cases the relative error in depth will be more than 5%,

and in 45 out of 100 cases the relative error in depth

q(Q2) = - 1 (19) Will be more than 10%, and in 13 out of 100 cases the
7r 1 + M 2Q2" relative error will be more than 25%. For smaller imagedisplacements like 1 or 2 pixels the results are not very

From Figure 3 it can be seen that the modified inverse good even with absolute errors in rotation of 0.010 (e.g.
square distribution looks similar to the normal distribu- with an image displacement of 1 pixel, in 1 out of 5 cases
tion. However it lacks some of the nice properties of the relative error is more than 5% and in 1 out of 10 cases
the latter. The spread of the normal curve is controlled the relative error is more than 10%).
by the standard deviation, a whereas the spread of the
modified inverse square curve can be controlled by ad- Conclusions - We can safely conclude from the
justing i (i.e. large a - small M). For our purposes above analysis that small errors in estimating rotations
either distribution for 112 would be fine. can cause very large relative errors in depth computa-

The relative error in depth is a function of the ran- tion. This conclusion is strictly true for error in rotations
dom variable S12. Using equation (17) we find that around the x and y axes, since analogous results can be

obtained for fQ by considering ZY. Hence the absolute
1 (20) error in the estimation of rotational parameters, partic-

af2 + b ularly Q'l and 112, has to be very small indeed. It should
where be noted that at the center of the image fQ3 (rotation

a b=- fu (21) around the Z-axis) does not cause any error in depth.

We can solve analytically for the the probability
P( <1 k I) that the relative error in depth is less 3.2 General solution by approximations with
than fk . This is shown in equation (22) Taylor Series

A2 DC .1L 1N t , 1 .l (a2 
+M

2 b 2)k±.M'bP' < ' L MIal In section 3.1 we found the relative error in depth at the

1 (a+Mb)k- M 2b] center of the image with no approximations except for
+ tan- Mi) ] (22) ignoring second and higher order terms in the expansionsa I of sine and cosine of small angles. It is seen from the

Table 1 has been constructed using equation (22 )with results of section 3.1 that for small displacements the
M = 100. This choice of M gives a 0.94 probability relative error in depth is high. In this section we give
that I Q2 J< 0.1 rad., a 0.87 probability that I S12 1< somewhai more general results. It should be noted that
0.05 rad. , i'nd a 0.5 probability that S12 J< 0.01 rad.. this is much harder because in order to arrive at good
From the point of view of error analysis this kind of approximations we have to take into account the feasible
distribution for f02 is a conservative model (i.e. we are range of various parameters in typical scenes.
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Table 1: Probability(Relative error in depth"1, using Modified inverse Square distribution (I....
no Taylor series approximations). The results of this table are strictly valid only for the center of the image. M

1 100; 256 x 256 image; Field of View = 450.

sM2 = 0.o50 62 = 0.105
displ. Relative error in depth, k displ. Relative error in depth, k

(abs val) "15 55 107o 2 55 5 0'7 1007o (abs val) 117 517 10% 2576 50% 10 0%

1 pix. 0.U1 0.04 . .1 .4 0.5 1 pix. 0.04 0.18 0.34 0.63 0.80 0.90pix. '0.01 0.04 0.07 0.18 0.36 0.61 2 pix. ' 0.04 I0.18 0.36 0.69 0.84 0.92
. 1 .4 .0 0.4 .5 .8 j 5 pix. _0.04 0.2 0.755 0.87 0.94 0.99

10 pix. .1 0.04 0.0 .7 0 75 10 .pix. 0.04 0.47 0.87 0.96 0.98 0.99

602 = 0.05' 62 = 0.010
displ. Relative error in depth, k displ. Relative error in depth, k

(absva) 00 (abs val) o 1017o 257o 50b 005
I pix. 0 .0 4 0.56 0.80 0.90 0.95 1 pix. 0.34 0.80 0.90 0.96 0.98 0.99
2 pix. .0.84 0. 2 pix. 0.36 0.84 0.92 0.97 0.98 0.99
5 ix. . 05 0 0. 5pix. 0.55 0.94 0.97 0.99 0.99 1.00
0 pix . 1 0 pix. 0.870 0.99 .00 .00 .00

Let I = and T = . Then the function (x, y) in) . (
equation (1 ) can be written as u - -

Gxny=F(T, ) (14'p2+u !T For a 256 x 256 image (n/f) is strictly less than or
f equal to 0.4 whereas (f/u) is about 15.4 even with a

[flu f displacement u, of 20 pixels. Hence we can omit (n/f)
+ 02- -II T - f1 FT in equation(24) with negligible error. It should noted

that u is much greater than (112f).

+f2f 2 + S2 - 03T (23) Therefore, we can write
G(xy) (+ X2 +U)

We expand F(T,, T) in a Taylor series To about ('P =
0, T = 0) and ignore terms involving second or higher or- fU + S2XU - S1YU - Q1Xy
der derivatives of F. This aproximation means that we
are omitting O((I)2), O(() ) and higher order terms. +22

2 + S12 f '
This is a very good approximation in the central region + 2 J - 3Yf
of any image. Even in the periphery of almost all com-
monly collected images it is a very good approximation f f 2

[e.g. with a Field of View of 450 for a 256 x 256 image, 1 -1 ( " (25)
f = 309 pieis, and so ( )2 and () are about 0.17 at Using equations (14) and (25) we then can express the
most, in any part of image]. Within To there are some relative error in depth as
expressions which are functions of flP2 . We expand these 6Z f f:\2
functions of 112 in a Taylor series about S12 = 0 and ig- = M [ + (f) 2 (26)
nore terms with second or higher order derivatives. The Z2 7x \U-j
larger the value of u when compared to S2f the bet-
ter the approximation. Note that in section 2 we had Note that equation (26) is also an approximation to
omitted O( ) and higher terms while a~proximating equation (17) under the conditions that the magnitude of

cos(Q2 ) and' sin(S12 ) in the rotation matrices. We also the displacement vector u, is greater than the magnitude
omit terms which are of order greater than or equal to of 02f. Hence under these conditions the results of the
O(PQ) where P E {fh, fS2 , f?3} and Q E {T T}, since previous section can be extended to a large part of the
they are of the second order or more in smallness (i.e. image. However, for ease of analysis we shall consider
they are insignificant when compared to the lower order equation (26) rather than equation (17).
terms). We obtain We now find the probability that the relative error in

I + +depth is less than or equal to I k 1) where Q 2 is a ran-
F(T, T) = dom variable with modified inverse square distribution.

As an aside it should be noted that numerical computa-
u u tions using normal distribution gives very similar results.

S f '22 fU T T - T '12 with Modified Inverse Square Distribution

I ~The modified inverse square distribution has already
.. , 2 been defined in section .. 1.

Let
= f

~.G(x, y) +z (f + xu) C= 2 M (27)d= - A(28)(fu 4 2 nu - fliyu- fli, y+4 d = 62()

U

S12 X 
2 + f1 2 f2 

- Since relative error in depth is a linear function of the
a) random variable 112 (from equation (26)] it is relatively

easy to arrive at the following result
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known [141 that a large field of view is necessary to facil-
r i m ±k d) ~ l i t h- . deemnaino motion Da4LLLtewI. Hoevrrt- cj for the same image resolution a large field of view means(29) [that the focal length is small. Hence it does not seem

Equation (29) gives the probability that the relative likely that this problem can be surmounted.
error in depth will be less thank I.

Table 2 has been constructed using equation (29). The 5 Effect of Small Displacement Errors
value of M used is 100, the rationale for this being the on Depth
same as in section 3.1. It should be noted that this
table does not contain results for image displacements From sections 3 and 4 we conclude that unless the im-
less than 10 pixels in magnitude as the approximations age displacements are extremely large (of the order of
used are not valid for small displacements a at least 20 pixels), it is not possible to compute depth

Conclusions - From this approximate analysis we robustly with the correspondence-based approach. Re-can conclude that even with large image displacements cently, some researchers have tried to avoid the issue of
we can still get moderately high relative error in depth computing correspondence-based egomotion parameters
at all positions in most images, unless the absolute error by incorporating sophisticated navigation systems into
in rotation is really quite small. We have already seen their vehicle. However, this section shows that small ab-
in section 3.1 that for small image displacements the solute errors in image displacement can cause significant
relative error in depth can be very high indeed, even errors in dept

withverysmal erors n rtatin. ger even if the motion parameters are knownwith very small errors in rotation. exactly. Obviously, imprecisely known motion parame-
ters would only increase these errors.

4 Effect of Small Errors in Image Taking partial derivative of equation (6) with respect
Displacements on Rotational to Z, we find that

Parameters 67 _ 1 /(aI1+JT3)2 +(0+KT3)2.

In section 3 we found that small absolute errors in rota- Z (In7 - T3)3
tional parameters leads to large errors in depth. How- 1 1 (33)
ever, the question might be posed as to whether it is This implies that
indeed possible to measure rotations to a very high de- h
gree of precision by any algorithm. In this section we 6 ,Z I (IZ - T3)2 1 f65.[
show that it is very hard to determine rotations to the 1 2
precision required in section 3 and hence it is difficult for 3 )2 + (1+ KT 3)

any algorithm to determine depths. (34)
To show this let us consider the center (0,0) of the im- Equation (34) expresses the relative error in depth as a

age. Then using equation (7) we can write the rotational function of depth, the motion parameters, and the uncer-
parameter f12 as a function of the x-component of the tainty in the magnitude of the displacement vector. To
image displacement, u understand equation (34), let us consider the most fre-

1 3 T1  quently attempted situation in motion - a vehicle moving
112 = -U ( ) (1 - Z-) straight ahead along the optical axis with no rotations 6.

To first order in the uncertainty bu, the error M2 in 02 Of course, this is an idealized situation and is not real-
is given by izable in practice without good instrumentation. In this

, case the only non-vanishing motion parameter is T3 =1.
I&2 = I (1 - 3II l. (31) Hence, equation (34) can be rewritten as

f Z - I 6Z (Z _ Z1) 2  1
Since (T3 /Z) < 1 for almost all scenes, we can write _ 16 1( )35)
equation (31) as Z - y 11

1 To illustrate the relative error in depth given by equa-2 IZ l. (32) tion (35), we have in Figure 4 used shading to indicate

Quantization of the image plane implies that 6u is at regions of the image in which the relative error in depth
least of order 1 pixel. In this case, for a 256 x 256 image lies in certain ranges, at a uniform depth of Z = 10 (i.e.,
with a field of view of 450, 5fl2 can be calculated from the depth is ten times the total translation). We have
equation (32) to be 0.191. Even if we did not make the considered that the uncertainty in the magnitude of the
assumption that (T3 /Z) < 1 and let (T3 /Z) be 1, which displacement vector is the minimum of just 1 pixel (dig-
is a large translation indeed for most motion algorithms, itization uncertainty). From the figure it can be con-is 2 is still 0.140 under the above conditions. In section cluded that the relative error in depth can be rather3 weihav seen 0.140underthe abolute errior. In ro- high for a very large portion of the image when the en-3we have seen that even 0.140 absolute error in rota- vironmental points are just ten times as far away as the
tion can cause difficulties in depth determination both io tal poin aepjust te time raw as t
at the origin and else.here unless the image displace- total translation in depth of the camera. Measurementsments are really very high. Hence small absolute errors to subpixel accuracy and higher resolution images can
ineimagerdisplacementsycause.sinfcsman absolute errors often reduce the error as can be observed by comparingin image displacements cause significant absolute errors t eer r nFg r n i u e5
in rotational parameters. The assumptions for our con- the errors in Figure 4 and Figure 5.
clusion are : (a) image displacements are not measured
to subpixel precisions; (b) f is of the order of hundreds 6Although approximate motion of this type is frequently
of pixels or less. used in experimental setups this causes the image displace-

In this context it should be mentioned that equation ments to be the smallest. For depth determination it is some-
32) suggests that the effect of uncertainties in image times better for the camera to move sideways rather than

displacements on rotational motion parameters can be ahead. In some sense at least binocular stereo is better than
reduced by having a larger focal length. However it is this kind of motion for depth determination.
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Aff C,-. 4~~ ;CjFr;hjjfj'n" W~fh
Table 2: Probability(Relative error in ieptli, { <; u 4.... " ....................... re
Ta lor Series approximations. M=100; 256 x 256 ima e; Field of View = 450

60 2 = 0.50' 602 = 0.109displ. Relative error in depth, k displ. Relative error in depth, k

(abs val) 17o 10% 25 7b 503o 10 05 (abs val) 1% 5% 10% _ 25% 505 100%
10 pix. 0.01 0.03 0.07 0.38 0.86 0.94 10 pix. 0.03 0.38 0.86 0.96 0.98 0.99
15 pix. 0.01 0.04 0.10 -T87 0.95 0.9 15 pix. 0.04 0.82 0.95 0.98 0.99 1.06

-2 pix 0.01 0 0.14 0.93 0.97 0.9 20 pix. 004 0.93 0.97 0.99 0.99 1.00
-30o p -ix. 0.010.050.750.97 (.99 -. 9 - 30 pix. 0.05 0.97 '0.99 T.0 1.00 1.00
40 pi. 1 0.08 .94 7.9 _0_. 1 40 pix. 0.08 0.99 0.99 T.00 T. 1.00

60l2 = 0.05' 502 = 0.010

displ. Relative error in depth, k Tdis p _ Relative error in depth, k_
(abs val) 15 o 105 255 50% 10 0o (abs val) If1% 5% 10% 25% 50% 100%

10 pix. 0.07 0.86 10 pix. 0.86 0.98 0.99 1.00 1.00 1.00
15 pix. .1 9F 1.00 15 pix. 0.95 0.99 1.00 1.00 1.00 1.00
20 pix. .1 0.9 7 U .9 1.00 1 20 pix. 0.97 0.99 1.00 1.00 1. 1.00
0 ii. W-107r 1.9 110 0 W0 30-w pOix. 0.99 "1.00 1.00 .00 .00 1.00
40 pix. n7 0T. -1.0 1.00 .00 1. 40 pix. 0.99 1.00 1.00 1.00 1.00 1.00

6% to 7% <2%2<2%
100 0'' 1%to2

" 7 to0

50 + 100+

20 - 40

0 X5 0
-20 + -40 +

-50 "' ., -100

-100+ -200 mF
.4 -, .:,, . , .. . .. . 4. .' . 4 .. ,i' "
+ + .. :... +. + ,. +'., + + ... ,+ ++

-100 -50 -20 0 20 50 100 -200 -100 -40 0 40 100 200

Figure 4: Relative Error in depth marked in dif- Figure 5: Relative Error in depth in different re-
ferent regions of a 256 x 256 image. Uncertainty in gions of a 512 x 512 image with uncertainty in
displacement vectors = 1 pixel; Field of view = 450; The displacement vectors being 0.5 pixel. The other
only camera motion is translation along the optical axis parameters are the same as those for Figure 4.
and (T3 /Z) = 0.1 . shown in Table 3.

6 Experiments on the Effect of It can be seen from Table 3 that at smaller depths
Rotational Errors errors in rotational parameter have less effect. However,

even when depths are in the range of 5 to 20 units and
total translation is 1 unit we get over 45% error when

In section 3 we theoretically studied the effect on depth the rotational parameters are changed by 0.10. From
recovery of small errors in rotational parameters. In or- the table it looks as if only rotational error of the order
der to study experimentally the effect of small pertur- of 0.010 can be reasonably safely permitted even if the
bations of rotational parameters we generated true im- depths are small.
age displacements at various image locations with the
help of the known motion parameters and known depths
at these locations. Then from the image displacements 7 Conclusion
we computed depth at each of the locations with the
motion parameters perturbed from their true value and We have analyzed the important factors affecting the
found the error in depth determination. That is to say computation of environmental depth in correspondence-
we knew the motion parameters a priori so we compared based methods. Based on all this we arrive at the fol-
the depths obtained by using the right motion parame- lowing conclusions:
ters with those obtained by using wrong motion param- Effect of small rotations - Small absolute errors in
eters. The wrong motion parameters were obtained by rotations (even of the order of 0.10) cause very large
perturbing the right motion parameters. The results are relative errors in depth determination. This result is
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COMPARATIVE RESULTS OF SOME MOTION ALGORITHMS

ON REAL IMAGE SEQUENCES

Harpreet S. Sawhney Allen R. Hanson

Computer and Information Science Department
University of Massachusetts at Amherst "

Abstract reliable combined fits and hence to accurate 3D recon-
struction. As reported in [11,121, a grouping algorithm

This taper resents comparative preliminary results which exploits the approximately common parameters
from the application of three motion algorithms [1,6,10J amongst a set of proximal point tracks, to incrementally
to two sequences of images obtained through a rotational group these into combined conic fits, has been developed.
motion of the camera in indoor scenes. The rotation was The next section describes the two image sequences
off-centered from the camera origin and thus structure used and the processing involved to obtain point cor-
could be derived. Two of the motion algorithms [1,6] respondences. Section 3 briefly describes the TRAJ-
compared represent two popular techniques in structure 3DEST algorithm, contrasts the trajectory fits obtained
from motion. The third algorithm is an algorithm for from independent fits with those from the combined fit
reconstructing the scene from image trajectories of ro- algorithm and also compares the 3D estimates obtained
tational motion [10). All the algorithms compared use from the two fits. In section 4 an overview of the other
point correspondences. It is demonstrated experimen- two motion algorithms, ADTV-3DEST and HORN-
tally that two-frame algorithms produce very unreliable 3DEST, and the pose refinement algorithm, POSE-
depth estimates when both rotation and translation par-a,, e to thIm g l r r se t u t e m r , e e 3 D E S T , is p resented . Section 5 is d evoted to the coin
alel to the image plane are present. Furthermore, even parison of the four algorithms and section 6 summarizes
temporal integration of the two-frame estimates cannot the conclusions of this study.
improve the depths. This work represents an ongoing
effort into developing and understanding various tech-
niques for recovering robust scene structure from monoc- 2 Input Data
ular motion.

The two sequences used in this work were digitized with
1 Introduction a GOULD frame grabber which outputs 512 by 484 pixel

images. These were reduced further to 256 by 242 pixels
This paper presents preliminary results of three struc- for our experiments.
ture from monocular motion algorithms as applied to For the first sequence, called the boz-seq, a rectangu-
two sequences of images of real scenes. The algo- lar chequered box was rotated around its body-axis us-
rithms compared are Adiv's [2] small-rotations based ing a cartesian robot arm and the camera looked down
3D estimation algorithm, Horn's relative orientation obliquely at it. Using a SONY B/W AVC-DI camera,
[6) algorithm and Sawhney's algorithm for estimating with effective FOV 24 deg. by 23 deg. (computed using
scene structure from image trajectories of rotational the method of Lenz et al. [9), a sequence of 20 franies
motion [10,12]. (Henceforth, we refer to these three was captured. The approximate angle of rotation be-
algorithms as ADIV-3DEST, HORN-3DEST and tween consecutive frames was 3.6 degrees. The range of
TRAJ-3DEST, respectively). The results are com- depths in this scene was about 550 to 700 mm. Frames
pared both with hand measurements of distances and I and 10 are shown in Figs. 1 and 2, respectively.
with the camera-centered coordinates of scene points The second sequence, called the room-seq, are a set
obtained using Kumar's [7] pose refinement algorithm images taken inside a robotics laboratory. Objects in
(POSE-3DEST). All of these algorithms use point cor- the scene varied in depth from 10 to 30 feet. Twenty-five
respondences as input and generate estimates of rigid frames were captured with a SONY B/W XC-77 camera
motion and the 3D coordinates (up to a scale) of the mounted on a PUMA arm which in turn was mounted
imaged points, on a platform at one end of the room. The effective field

presentation is also intended as a progress report of view (FO ) of the lens-camera and grabber systems
on results obtained from the trajectory description also- was found to be 42 deg. by 40 deg. The arm was rotated
rithm developed in [11,12J. In [101 a closed-form solution with the axis of rotation nearly parallel to the optical
to the problem of extracting the circular 3D trajectory of axis of the camera as constrained by the configuration of

point, .gl !v .con!. ima . .a , w .s esented - te giippei. The angle of rotation between consecutive
We also demonstrated the'highly unreliable trajectory frames was 4 degrees. Frames 1 and 13 of this sequence
descriptions obtained when conics are fitted to small arcs are shown in Figs. 3 and 4, respectively.
of point tracks in the image. It was also shown that a To generate point tracks, corner-like points defined
grouping algorithm which could exploit spatio-temporal by line intersections were tracked using the line-tracking
constraints across a group of point tracks could lead to system of Williams et al. (161. This system tracks lines

obtained from the line-extraction algorithm of Boldt
*This research has been supported by the Defense Ad- et al,151 by predicting their appearances in successive

vanced Research Projects Agency under RADC contract fiame's tsing the displacement field output of the algo-
F30602-87-C-0140 and Army ETL contract DACA76-89 C- rithm by Anandan [4]. Figs. 5 and 6 show a sample
0017. set of tracked lines overlaid over frame 1 lines for the
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respective sequences. Figs. 7 and 8 depict the respec- 4 The Motion and Pose Algorithms
tive point tracks that form the input to our trajectory
algorithm and the pairwise point correspondences over We chose Adiv's [21 (ADIV-3DEST) and Horn's [6]

me among these are the input to the two-frame motion (HORN-3DES' )'motion algorithms for comparison
algorithms, for two main reasons. Firstly these are representative of

a set of techniques available ?or computing the rigid mo-
tion parameters between two frames using image point

3 Algorithm TRAJ-3DEST correspondences, followed by computation of the 3D co-
ordinates. Secondly, the implementations of the two al-

In [10] a closed-*form solution to the problem of esti- gorithms were easily available to us in a packaged form.Adiv's ADIV-3'DEST isrersntieothst
mating the rotational trajectory of a 3D point given its moion ali representative of the set
conic image projection under perspective projection was of motion algorithms which approximate the rotational
developed. For reliable 3D reconstruction, it is required transform upto the first order assuming the rotations be-
that stable conic fits be obtained to the discrete point tween two frames to be small. Using Adiv's notation, the
correspondences over a sequence of images. In reaistic displacements are,
situations, only a fraction of the full circular 3D trajec- x'-x = _W= - 24w+(+ X2 )- T+

tory can be imaged. Conic curves can be very "creative" - I

when fitted to small sections of an arc. = =
We observed that the approximate commonalty be- -r W

tween the image trajectory parameters of proximal point
tracks could be exploited to obtain stable combined fits where, R = w= 1 -wJ is the approximate
to a group of point tracks. In [10] we presented results WV 1
for one real sequence for which we obtained good com- rotation matrix.
bined fits by manually grouping a set of point tracks. (x,Y), (X',Y' )  

Point coordinates in frames I and 2,
Exploiting the idea of combined trajectory grouping -Y oiscents on framean

11,12 an algorithm was developed which generates re- a, fi X-Y displace,nente over two frames.
iable its to a set of proximal point tracks automatically. (T,T ,T.) The translation vector.
The two major components of this algorithm are a group- Focal length.
ing schedule and a combined fit error measure. Given a
set of proximal point tracks as input, the grouping sched- Adiv minimizes
ule decides which track to try next in a cycle based on the N
covering, the gap and the overlap amongst the alreadygrouped tracks and the new track. The idea behind this Wi a,) 2 + (1, .
schedule is to guide the incremental algorithm to the cor-
rect solution most of the time by generating good initial where ci, , and /3 are the measured image dis-

uesses. The error measure is the sum of the first-order placenients. lie first l' ininates the depth, z, from this
distance of a point from a conic over all the participating error. Then, using a sampling on the unit sphere for
point tracks in a cycle. It is parameterized to make ex- translations he computes the rotation vector for each
plicit the common and the independent conic parameters of the sampled translation vectors. The pair of rotation
among a set of points. For further details refer to [11,12]. and translation ,ectors leading to a globally minimum
Here we present some salient results of independent fits error is found as the solution.
versus combined fits on the two sequences. Two observations can be made for Adiv's formulation.

Figs. 9 and 10 show the results of fitting trajectories Firstly, it cannot handle large rotations. Secondly, his
independently to sample sets of points for the boz-seq search method is sensitive to the quantization of the unit
and room-seq, respectively 1. It is graphically evident sphere of translations. In order to get a good perfor-
from these figures that there apparentl y is nothing in mance, we ran his algorithm as three passes of a coarse-
common between the motion of the points generating to-fine search.
these trajectories. This is amply borne out by the highly Horn's [6] relative orientation algorithm represents the
inaccurate results obtained for the 3D depth of these most widely used constraint, with slight variations, in
points (e.g. see Tables 1 and 2). computing motion and structure parameters from two

For the boz-seq, Fig. I1 shows the results of combined frames of point correspondences. The constraint ex-
fits to a sample set of point tracks obtained using the presses the coplanarity of the view rays for a point in
grouping algorithm described above. In contrast to the the two views with the translation vector joining the two
independent fits (Fig. 9), the new trajectories make the positions. Formally,
common 3D motion of the underlying points explicit by
the approximate collinearity of the minor axes of various = b * ( r x.
groups. Note that for this case of motion, under perspec- 1 2
tive projection, the minor axes should not be collinear where,
globally. b The translation unit vcctor in frame 2 coordinates.

Fig. 12 shows the combined fits for a sample set of
tracks for the room-seq. There is a visually dramatic , Frame ray for point i rotated.
improvement in the nature of the resulting trajectories. ri. Frame 2 ray for point t.
The Common axib of lotatioll lbeci(em explicit, by t.ie
collinearity of the minor axes of the trajectories. This Horn minimizes J, , over all the available point cor-
makes the resulting 3D parameters very accurate. Note respondences in Two frames with the constraint that b
that for this sequence, where the rotation is nearly par- is a unit vector. Weight w, is chosen as the inverse of
allel to the image plane, our grouping constraint [12] is the variance of the triple product, f,, with respect to the
globally valid. The image trajectories in this case are variance in the measurement of the two rays.
expected to be nearly circular. One problem in minimizing the above measure is that

the orthonormality of the rotational transformation is
to be maintained throughout the optimization. All al-

'Notc that in all the figures showing trajectories, only a gorithms based on the essential matrix (e.g. [14,151) de-
subset of all the trajectories is shown for clarity. rived from the coplanarity constraint do not explicitly
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impose the orthonormality constraint and hence suffer
with even small amounts'of noise. The representation Table 1: Depths from I-Fits vs. C-Fits
chosen for the rotational transform is crucial for good compared with Pose depths for the Box Sequence
convergence. (IN MM.)

Horn devised an elegant Gauss-Newton type tech-
nique for his error measure using quaternion represen- i Pt. Pose [ I-Fit Err.ll C-Fit I Err. 1
tation for the rotations. The orthonormality of the ro- # z z z M
tational transform and the unit magnitude of the trans- -__)___

lation vector is maintained from iteration to iteration. 1 591.38 257.71 -56.42 588.89 -0.42
Convergence to a local minimum is fast. In most cases, 2 666.34 572.13 -14.14 665.84 -0.08
the local minimum with the least error is the correct so- 3 621.78 664.52 6.87 617.77 -0.64
lution and hence can be found by varying the starting
points as suggested by Horn. However, the unweighted 4 640.66 353.75 -44.78 635.02 -0.88
error measure does converge to solutions which are global 5 637.68 726.36 13.91 637.71 0.01
minima but are wrong solutions [11,13,15]. 6 647.94 370.81 -42.77 650.89 0.46

The estimates of the ground truth were obtained by 7 656.56 603.94 -8.01 661.89 0.81
two means. For the boz-seq, the (M, y, z) coordinates of 8 639.99 974.83 52.32 653.80 2.16
a set of points on the three faces of the box were mea- -

sured to within 1mm. Then Kumar's [7] pose estimation 9 709.68 675.07 -4.88 700.74 -1.26
algorithm was run to compute the camera transforma- 10 614.79 56.93 -90.74 603.58 -1.82
tion relative to the box centered coordinate system. Pose 11 602.34 527.88 -12.36 606.16 0.63
estimates from different frames were used to reconstruct 12 628.94 11.18 -98.22 636.52 1.21
the camera centered coordinates of sample points using
the resulting relative orientation. As discussed in Kumar
et al. 181, given the accuracy of model measurements, the
camera centered measurements were obtained to within estimates from six pairs of framies for each of ADIV-
1% for distances of approximately 600mm. These are 3DEST and HORN-3DEST were averaged. The re-used as the ground truth data. sults of this three-way comparison with pose estimates

For the room-seq, in addition to the camera cen- are shown in Table 4. The percentage errors for both
tered depth data obtained as above using pose, we also HORN-3DEST and TRAJ-3DEST come down to
measured distances to points directly from the camera. within 1-2 % but ,.z ADIV-3DEST they are slightly
These distances are accurate to about 0.1 feet. So for the higher. One possible explanation for this behavior is
room-seq, results from the motion algorithms are com- that because Adiv approximates the rotation matrix up
pared both with the direct distance measurements and to the first order, his algorithm may suffer from a bias in
estimates derived from pose. the estimation of the motion parameters which in turn

For all the three motion algorithms, the translational bias the depth estimates.
scale to obtain absolute depths was provided by POSE-
3DEST. 5.2 Room Sequence

Table 2 shows the comparison between distances from
5 Comparative Results ii,4ependent fits and those from combined fits for the

We have performed a number of different compar- room-seq for a sample set of points. Again, the tremen-
isons using the algorithms discussed above, Firstly dous improvement with the latter is evident. The aver-
results from inde endent fits versus the combined fits age percent error is about 2.5 % with most errors wellreut.fo idpnetftvessheomndfts within 5 %.
from TRAJ-3DEST are compared. Then we com-
pare results from ADIV-3DEST, HORN-3DEST
and TRAJ-3DEST. For the former two, depths are
computed both on a two-frame basis and those averaged Table 2: Distances from I-Fits vs. C-Fits
over a number of pairs of frames. vs. true dists. for the Room Sequence

5.1 Box Sequence (IN FEET)

In Table 1 we show the results of depths from individ- Point True a I-Fit Error I C-Fit Error
ual trajectory fits versus those from the combined fits Num. Dist. IIDist. % () IIDist. 0 ()
for the box-seq with depths derived from pose as the 1..5.
reference for a sample set of 12 points. The significant 1 18.25 5.98 -67.23 18.54 1.59
improvement in depths from the combined fits is evi- 2 17.94 9.73 -45.76 17.47 -2.62
dent. The percentage error in depth computation by 3 19.59 5.60 -71.41 19.75 0.82
TRAJ-3DEST are mostly within 2 % with the aver- 4 19.90 4.68 -76.48 19.75 -0.75
age at approximately 0.87 %..

In Table 3, two-frame depth estimates obtained from 5 22.65 7.96 -64.86 22.84 0.84
ADIV-3DEST and HORN-3DEST for two pairs of 6 29.29 5.01 -82.90 28.28 -3.44
sample frames are compared. Forty sample points were 7 25.65 6.71 -73.84 24.87 -3.04
usedto compute the motion parameters whkch in turn 8 26.25 13.40 -48.97 11 25.55 -2.67
were used to compute the depth estimates for twelve 9 14.90 3.44 -76.91 i14.83 -0.47
sample points. The first pair of frames chosen was 1-2 __ _ _

with an average displacement of 3.2 pixels and standard 10 14.60 5.93 -59.38 14.61 0.07
deviation of 1.3 pixels. The second set of data is from 11 14.35 4.65 -67.60 15.12 5.37
the pair 1-7 with average displacement 17.3 pixels and 12 14.70 5.86 -60.14 15.19 I 3.33
standard deviation of 6.7 pixels. The percent errors for
1-2 are within 10 % which go down to about 2-4 % for
1-7 as the displacements increase. For the room sequence the motion is parallel to

To compare the above two two-frame algorithms with the image plane with both rotations and translations
our multi-frame TRAJ-3DEST, the two-frame depth present. It has been shown that for some restricted cases,
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this case of motion leads to inherent ambiguities in ro- [4] P. Anandan. A computational framework and an algo-
tations in depth ar4 translations parallel to the image rithm for the measurement of visual motion. Interna-
plane [3]. We rar. Horn's algorithm on 22 points or tional Journal of Computer Vision, 2(3):283-310, 1989.
the frame pairs 1-4 and 1-19 and Adiv's for the pair
1-4 only to limit the amount of rotation. The aver- [5] M. Boldt, R.Weiss, and E. Riseman. Token-based ex-
age T/Z ratio was about 2% for the pair 1-4 and about traction of straight lines. IEEE Transactions on Systems
10% for the pair 1-19. It was found that for both cases Man and Cybernetics, 19(6):1581-1594, 1989.
the errors in depth were very high. This is shown in
Table 5 where we compare these two with the results 6] B. K. P. Horn. Relative orientation. International Jour.
from TRAJ-3DEST. The reference depths are from nal of Computer Vision, 4(1):59-78, 1990.
POSE-3DEST. The estimates from TR1AJ-3DEST [7] R. Kumar and A. Hanson. Determination of camera
are well within 5 %. However, the two-frame estimates location and orientation. Proceedings IEEE Wkshp. on
are very erroneous. Furthermore, the estimates are bi- Interpretation of 3D Scenes, pages 52-60, 1989.
ased well away from the true values for every pair of
frames and hence, even temporal integration as in the [8] R. Kumar and A. Hanson. Pose refinement: Application
case of box-seq does not improve the depths. We wish to model extension and sensitivity to camera parame-
to emphasize that these results are preliminary in that ters. Submitted to the DARPA Image Understanding
a very accurate calibration of the camera center has not Workshop, 1990.
been performed. However, if the results of [8] can be
extended to the case of motion estimation then such [9] R. K. Lenz and R. Y. Tsai. Techniques for calibration
large errors in depth cannot be explained by a wrong of the scale factor and image center for high accuracy 3d
estimate of the center. There is definitely a role of the machine vision metrology. IEEE Transactions on Pat.

inher( ., ambiguities in the presence of noise in such ir- tern Analysis and Machine Intelligence, 10(5):713-719,
accurate results. To verify this under a controlled ex- 1988.
periment Horn's aorithm was run on simulated data [10] H. S. Sawhney and J. Oliensis. Description and inter-generatedusing a 3 model similar to that in the room-
seq with a sirnilar motion too. With uniform noise of pretation of rotational motion from images trajectories.
0.5 pixel added to the ideal data, the resulting errors Proceedings DARPA Image Understanding Workshop,
in depth were even worse than those for the real data. pages 992-1003, 1989.
We are currently studying the quantitative relationship [11] H. S. Sawhney and J. Oliensis. Description and inter-
between ambiguities in the motion parameters and the pretation of rotational motion from images trajectories.
input noise for this case of motion parallel to the image Technical Report COINS TR 89-90, University of Mas-
plane. sachusetts at Amherst, 1989.

Conclusions [12] H. S. Sawhney, J. Oliensis, and A. R. Hanson. Image de-
6scription and 3d interpretation from image trajectories

We have presented preliminary results comparing our of rotational motion. Forthcoming TR, COINS, Univ.
multi-frame rotational trajectory algorithm with two of Mass., Amherst, 1990.
popular motion algorithms. For the case of motion paral- [13] M. E. Spetsakis and J. Aloimonos. Optimal computing
lel to the image plane, we demonstrated the large errors of structure from motion using point correspondences in
which two-frame algorithms could suffer from. However, two frames. Proc. 2nd Intl. Conf. on Computer Vision,
definitive statements about this can be made only after pages 449-453, 1988.
a careful analysis and more experiments with accurately
calibrated cameras. We also presented results from our [14] R. Y. Tsai and T. S. Huang. Uniqueness and estima-
grouping algorithm for rotational trajectories contrast- tion of 3d motion parameters and surface st ictures of
ing these with independent trajectory fits. We are con- rigid objects. Image Understanding 1984, pages 135-
tinuing both analytic and experimental work to under- 171, 1984.
stand the performance of two-frame and multi-frame
algorithms with real data to help us develop robust 3D [15] J. Weng, N. Ahuja, and T. S. Huang. Optimal motion
reconstruction algorithms from monocular motion. and structure estimation. Proceedings Computer Vision

and Pattern Recognition, pages 144-152, 1989.
Acknowledgments [16] L. R. Williams and A. R. Hanson. Translating opti-

cal flow into token matches and depth from looming.
Many thanks to Teddy Kumar and Prof. Ed Riseman Proc. 2nd Intl. Conf. on Computer Vision, pages 441-
whose sustained encouragement made this work possi- 448, 1988.
ble.
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Table 3: Two-frame Depth Estimation Comparisons

Point Pose Frames 1-2 Frames 1-7
Num. J Depth I Horn Error(%) Adiv Error(%) I Horn J rror I W v I

1 591.38 553.41 -6.42 547.14 -7.48 613.88 3.80 585.36 -1.02
2 666.34 617.06 -7.40 609.60 -8.52 694.42 4.21 658.52 -1.17
3 621.78 588.97 -5.28 582.28 -6.35 648.36 4.27 619.64 -0.34
4 640.66 598.89 -6.52 593.93 -7.29 667.46 4.18 647.27 1.03
5 637.68 598.02 -6.23 591.16 -7.30 665.04 4.29 635.15 -0.40
6 647.94 608.63 -6.07 603.24 -6.90 679.23 4.83 657.39 1.46
7 656.56 614.36 -6.43 609.16 -7.22 687.45 4.70 666.35 1.49
8 639.99 600.81 -6.12 595.56 -6.94 667.96 4.37 646.77 1.06
9 709.68 666.16 -6.13 656.02 -7.56 744.84 4.95 697.09 -1.77

10 614.79 580.57 -5.57 575.09 -6.46 644.11 4.77 621.41 1.08
11 602.34 568.51 -5.62 j 562.74 -6.57 626.85 4.07 601.03 -0.22
12 628.94 591.09 j -6.02 ] 585.02 -6.98 655.33 I 4.20 627.58 -0.22

Table 4: Two-frame Depths vs. Trajectory Depths for the 12 points Compared with
Pose Depths for the Box Sequence (IN MM.)

Point Pose Adiv Error [ Rot. Error Horn Error 1
Num. Depth Avgd. Depth ([) Depth (%) Avgd. Depth I (%) I
1 591.38 575.73 -2.65 588.89 -0.42 591.68 0.05
2 666.34 646.68 -2.95 665.84 -0.08 666.44 0.02
3 621.78 608.83 -2.08 617.77 -0.64 624.91 0.50
4 640.66 630.83 -1.53 635.02 -0.88 641.54 0.14
5 637.68 622.84 -2.33 637.71 0.01 639.58 0.30
6 647.94 640.01 -1.22 650.89 0.46 651.68 0.58
7 656.56 647.64 -1.36 661.89 0.81 658.75 0.33
8 639.99 630.92 -1.42 653.80 2.16 642.31 0.36
9 709.68 687.42 -3.14 700.74 -1.26 714.42 0.67

10 614.79 606.12 -1.41 603.58 -1.82 618.49 0.60
11 602.34 590.67 -1.94 606.16 0.63 604.80 0.41
12 628.94 615.43 -2.15 636.52 1.21 630.46 0.24

Table 5: Two-frame Depths vs. Trajectory Depths for 12 points
compared with Pose Depths for the Room Sequence (IN FEET)

Pt. Pose Horn Err. Horn Err. Rot. Err. Adiv Err.
#I z z ( ) z (,) z (%) z (%)

1f 1-4 1-19 j 1 1-4
1 17.45 8.11 1-53.5 10.08 -42.2 17.73 1.6 7.08 -59.5

2 17.47 8.31 -52.4 10.05 -42.5 17.01 -2.6 7.23 -58.6
3 19.28 8.50 -55.9 10.55 -45.3 18.43 -4.4 7.42 -61.5
4 19.27 8.42 -56.3 10.56 -45.2 19.11 -0.8 7.35 -61.8
5 22.21 8.56 -61.5 11.02 -50.4 21.74 -2.1 7.56 -66.0
6 27.61 9.10[ -67.0 I 12.05 -56.3 26.71 .3.3 8.11 .70.6
7 24.18 8.58 -64.5 11.32 -53.2 23.48 -2.9 7.65 -68.4
8 25.07 8.89 [-64.5 11.80 -52.9 24.45 -2.5 7.84 -68.7
9 14.95 8.11 -45.8 9.15 -38.8 14.71 -1.6 7.11 -52.4

10 14.27 7.76 -45.8 8.96 -37.2 14.34 0.5 6.79 -52.6
11 14.31 8.08 -43.6 8.95 -37.5 14.90 4.1 7.02 -50.9
12 14.62 7.57 -48.2 9.00 -38.4 15.11 3.4 6.5 3 -55 3
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Fig. 1: Frame 1 of the Box Sequence Fig. 2: Frame 10 of the Box Sequence

Fig. 3: Frame 1 of the Room Sequence Fig. 4: Frame 13 of the Room Sequence

t) -I,; -''

Fig. 5: Some Tracked Lines Overlaid on Fig. 6: Some Tracked Lines Overlaid on

Frame 1 Lines(BOX) 
Frame I Lines(ROOM)
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Abstract

Image-flow is a major source of three-dimensional information. This paper describes a new framework for computing image-flow
from time-varying imagery. In this framework, image-flow information is classified into two categories - conservation information and
neighborhood information. Each type of information is recovered in the form of an estimate accompanied by a covariance-matrix.
Image-flow is then computed by fusing the two estimates using estimation-theoretic techniques. This framework offers tile following
principal advantages. Firstly, it allows estimation of certain types of discontinuous flow-fields without any a-ptiori knowledge about
the location of discontinuities. The flow-fields thus recovered are not blurred at motion-boundaries Secondly, covariance matrices
(or alternatively, confidence-measures) are associated with the estimate of image-flow at each stage of computation. The estimation-
theoretic nature of the framework and its ability to provide covariance matrices make it very useful in the context of applications
such as incremental estimation of scene-depth using techniques based on Kalman filtering. In this paper, an algorithm based on
this framework is used to recover image-flow from two unage-sequences. To illustrate an application, the image-flow estimates and
their covariance matrices thus obtained are also used to recover scene-depth.

1 Introduction

Inage-flow is a commonly used representation for visual-motion. It assigns to each point on the visual-field, a two-dimensional
velocity vector that depicts the projection of the instantaneous three-dimensional velocity of the corresponding point in the scene.
Typically, all the information that is available about a dynamic scene is an image-sequence. The image-flow field must be computed
from -the image-sequence. Furthermore, the process of image-flow computation must make use of local spatial and temporal
neighborhoods. This restriction is generally imposed for reasons of computational efficiency as well as physiological plausibility.

This paper describes a new estimation-theoretic framework for image-flow computation. The principal advantages offered by
this-framework are as follows. (i) Covariance matrices (or alternatively, confidence-measures) are associated with the estimate of
image-flow at each stage of computation. (ii) It is possible to estimate certain types of discontinuous flow-fields without any a-priori
knowledge about the location of discontinuities. The flow-fields thus recovered are not blurred at motion-boundaries. (iii) Because
of its estimation-theoretic nature, the framework lends itself naturally to incremental estimation of scene-depth from image-flow
using techniques based on Kalman filtering. A contribution of this framework that is not discussed in this paper because of space
limitations is that it serves to unify a very wide class of existing techniques for image-flow computation. The issue of unification
will be discussed in a sequel paper. Before giving an overview of this framework, a brief review of the state of the art will be in
order.

It is well understood [4, 15] that by using local measurements alone, the true velocity can be recovered only in those image
regions that have sufficient local intensity variation, such as intensity corners, textured-regions, etc. This constitutes the %,I known
aperture problem. Velocity must be propagated from regions of full information, such as corners etc., to regions of partial or no
information. This implies that any approach to local computation of image-flow must incorporate too functional steps. In the first
step, local information about velocity is recovered using the image-intensit) distribution in small spatiotemporal neighborhoods In
the second btep, the loual iiiormation is propagatcd into neighboring regions to recover the correct image-flow The past research
is summarized below in light of these two steps. A detailed review can be seen in [2, 19]. Most of the current frameworks for
image-flow computation use one of the following three basic approaches for the first step mentioned above. (i) correlation-based
approach [.4, 1], (ii) gradient-based approach [7, 8,-11, 15, 22] and (iii) spatiotemporal energy based approach [1, 9], The output
of the first step is in the form of initial-estimates that are updated iteratively in the second step. For tile second step, the current
frameworks use either a smoothness constraint (4, 10, 11, 15] or the analytical structure of image-flow [14, 21].

In the framework described here, the image-flow information available in time-varying imagery is classified into tNo categories -
conservatwn mnformation and neighborhood information. It terms of the two-step solution suggested above, conscrvation information
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is extracted in the first-step. I call it conservation information because it is derived from the imagery by using the assumption of
conservation of some image-property over time. Typically, this property is intensity [8, 11, 15], some spatiotei)oral derivative of
intensity [7] or intensity distribution in a small spatial neighborhood [4. 18] etc. Other choices are possible, e.g., color. Similarly,
neighborhood information corresponds to the second step. I call it neighborhood information because it is deived by using the
knowledge of velocity distribution in small spatial neighborhoods in the visual-field. Each type of information is recovered ill the
form of an estimate accompanied by a covariance-matrix. Image-flow is then computed by fusing tie two estimates on the basis of
their covariance-matrices.

The organization of this paper is as follows. In section 2, I show how to recover conservation information. For simplicity of
presentation, I use a correlation-based approach. In the sequel paper, I show that one could use any one of the three basic approaches
to recover conservation information. In section 3, 1 discuss the procedure for recovering neighborhood information. I also show that
image-flow computation can be posed as a problem of combining conservation information and neighborhood information optimally
(in a statistical sense). I present an iterative solution to this problem. I show an algorithm based on this framework in section 4
and describe the results of applying this algorithm to a variety of image sequences in section 5. In order to put this framework in
context of an application, 1 also show the results of using the image-flow estimates to recover scene-depth using a variant of the
Kalman filtering-based technique proposed by Matthies et. al [13]. Finally, I give concluding remarks in section 6.

2 Step 1: Conservation information

An implicit assumption on which most image-flow computation techniques are based is that sonic image-property is conserved over
time. In other words, in each image of a sequence, the projection of a given moving point in the scene will have the same value
of the conserved property. Factors that affect the robustness of the choice of conserved property are illumination, type of motion
(rotational/translational), noise and digitization effects etc. [4, 19]. For reasons of computational simplicity, I use the Laplacian of
intensity (computed by the difference-of-Gaussians operation using the masks suggested by Burt [6].) as the conserved property. I
refer to the Laplacian image as just "image" for sake of brevity.

Based on the assumption of conservation, estimating image-flow using a correlation-based approach [4] amounts to an explicit
search for the best match for a given pixel of an image in a search-area in bubsequent images of the sequence. The extent of
the search-area can be decided on the basis of a-priori knowledge about the maximum possible displacement between two images
or by using a hierarchical strategy [4]. Correlation gives a response, i.e., a matching-strength, at each pixel in the search area.
Thus, the search area can be visualized as coveted with a "response-distribution". Anandan [41 had shown that using the sum-of-
squared-differences (SSI)) offers several computational advantages over correlation. Using SSD, which is a measure of mismatch,
one obtains an "error-distribution" over the search area. The procedure for obtaining error distribution and converting it into
response-distribution is discussed below.

For each pixel P(x,y) at location (x,y) in the first image 1, a correlation-window Wp of size (2n + 1) x (2n + 1) is formed
around the pixel. A search-window V of size (2N + 1) x (2N + 1) is established around the pixel at location (x, y) in the second
image 12. The (2N + 1) x (2N + 1) sample of error-distribution is computed using sum-of-squaed-differences as:

n~ n

e'(nuv) = E (1l(x+i,y+3) -12(X+u+i,y+lv+j))
2

-N < , v :5 +N (1)

The (2N + 1) x (2N + 1) sample of response-distribution is computed as follows:

1?c(u,v) = e- V(ux)

-N < u,v < +N (2)

The choice of an exponential function for con verting error-distribution into response-distribution is based primarily on computational
reasons. Firstly, it is well behaved when error approaches zero. Secondly, the response obtained with an exponential function varies
continuously between zero and unity over the entire range of error.

I suggest that response-(istribution be interpreted as follows. Each point in the search area is a candidate for the "true match".
ilowever, a point with a small response is less likely to be the true match, as compared to a point with a high response. Assuming
that the time elapsed between two successive images is unity, each point in the search area ropressmit, a point in ii - 1, space. in
estimation-theoretic terms, each of these points can be thought of as a measuremcnt of the true velocity. Further, the response at
the point can be thought of as a weight that reflects our faith in the measurement. One could compute an c,'tmtinale of velocity using,
for instance, a weighted-lest-squaies approach. Under the assumption of additive and zemo-imean errors, one could also associate
a covariance-matrix with this estimate Quantitatively, the weighted-least-squares based estimate, denoted by U,, = (u,, v,), is
given by:

7, '(11 , v)u
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Figure -1: Response-distribution over the search-window for some representative examples -darker the pixel, higher the response.
The labels "high" and "low" refer to the confidence measures associated with the eigenvectors.

=C E" RAU V0,v (3)

and the covariance-inatrix associated with this estimate is given by:

( IZ . ,zc(u,V)(uuc.) 2  ()(U-U.)(V-v)
E., *,,.,)(,,-,-(,-,,) E .7MUo,,,)(,V-,-.(?

=u L..(v L. L&(uv)

where the summation is carried out over -N < u, v < +N. It is known [5] that reciprocals of the eigenvalues of the covariance-
matrix serve as confidence-measures associated with the estimate, along the directions given by the corresponding eigenvectors.
Figure 1 shows the eigenvectors and the corresponding confidence measures for some typical response distributions. Further, these
eigenvectors correspond to the principal axes of response distribution. Principal axes have been used to represent velocity earlier
by Scott (18].

Summarizing, there are three essential steps underlying the computation of conservation information. They are: (i) selecting
the conserved quantity and deriving it from intensity imagery, (ii) computing error-distribution and response-distribution over the
search-area in the velocity-space and (iii) interpreting response distribution, i.e., computing an estimate of velocity along with a
covariance-matrix. The estimate, Ur, can be thought of as the "initial estimate" that serves as input (along with the covariance S,,)
to the velocity propagation procedure. As mentioned earlier, velocity propagation is accomplished using neighborhood information
Before discussing neighborhood information, the following clarification would be in order. In interpreting the response-distribution,
I have assumed that it is unimodal. This assumption does get violated in the presence of texture, specially if the size of the
search-window is greater than the scale of intensity variations. The weighted-least-squares approach used above "averages out"
the various peaks, giving an incorrect estimate of velocity. lowever, since the "spread" of the distribution is large in this case
(as compared to the situation where tile response-distribution has a single well defined peak), the confidence associated with the
estimate will be low. In essence, although the procedure for interpreting the response-distribution gives an incorrect estimate if
the distribution is not unimodal, it does associate a low confidence with the (incorrect) estimate. Further, the problem of multiple
peaks can be alleviated, at least partly, by using three images to compute conservation information. This is done by computing two
response-distributions - one between the current image and the previous image and other between the current image and the next
image - and adding the two appropriately.

3 Step 2: Neighborhood information

Tile objective of the second step in image-flow recovery is to propagate velocity by using neighborhood information. Assump for
a moment that the velocity of each pixel in a small neighborhood around the pixel under consideration is known. One could
plot these velocities as points in i - v space giving a neighborhood velocity distribution. Some typical distributions are shown ill
figure 2. What can one say about the velocity of tile central pixel (which is unknown)? Barring the case where the central pixel
lies in the vicinity of a motion-boundary, it is reasonable to assume that it is "similar" to velocities of the neighboring pixel'; Il
statistical terms, the velocity of each point in the neighborhood can be thought of as a measurement of the velocity of the central
pixel. It is reasonable to assume that all of these measurements are not equally reliable - they must be weighted differently if used
to compute an estimate of velocity of the central pixel. I weight the velocities of various pixels in the neighborhood according
to their distance from the central pixel - larger the distance, smaller the weight. Specifically, I use a Gaussian mask. Based on
this information, a weighted-lest-squares estimate of velocity, V, caii be computed. Further, assuming additive and zero minean
errors, a covarance-inatrix, S, can be associated with this estimate. The estimate and the covariance-matrix thus obtained serve
as the "opinion" of the neighborhood regarding the velocity of the cential pixel (as opposed to those obtained from conservation
information that reflect the central pixel's own opinion).
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Figure 2: Velocity distribution for some representative neighborhoods.

Quantitatively, if the neighborhood size is (2w + 1) x (2w + 1), the velocities of these (2w + 1)2 pixels map to the points (ui, vi)
in u- v space (where 1 < i _< (2w + 1)2) and the weight assigned to the point (u,, v,) is l-n(u:, v), the weighted-least-squares based
estimate V = (U, -), of velocity of the central pixel is given by:

Zu E,1, V,,)
= u E 1Zn0u, V)()

and the covariance-matrix associated with this estimate is given by:
= , 7,,(U,,v,)(u,-i)2 7 Zn( ,,V,)(t,,-7)(V,

S T n( .)(U,-U)(V,-V) (6)
L, Rn(u,,V,) 7, .(.....

where the summation is carried out over 1 < i < (2w + 1)2.

At this point, we have two estimates of velocity. Uc and UT - from conservation and neighborhood information respectively.
each with a covariance-matrix. An estimate of velocity that takes both conservation information and neighborhood information
into account can now be computed as follows. Since this estimate is a point in u - v space, its distance from 'U, weighted
appropriately by the corresponding covariance matrix, represents the error in satisfying neighborhood information. I refer to this
error as neighborhood crror. Similarly, the distance of this point from 11c, weighted appropriately, represents the error in satisfying
conservation information. I refer to this error as conservation error. Computing the velocity estimate, therefore, amounts to finding
a point in u - v space that minimizes the sum of neighborhood error and conservation crior.

In quantitative terms, neighborhood error is a quadratic form commonly used in estimation theory (5) and is given by:

(U - F)TS I(U - U) (7)

Similarly, conservation error is the following quadratic form:

(U - UJ)Ts i(U - U.:) (8)

and the sum of conservation error and neighborhood error represents the squared error in the velocity estimate U Statistically
speaking, the optimal estimate of velocity is the one that minimizes the mean squared error over the visual field. That is:

J {(U- - )TSi(U_ -_U) + (U - Uc:) TS I(U - U,,)] dzdy = MINIMUM (9)

Calculus of variations cami be used to derive the optimal estimate. Let VU be defined as follows:

V = (10)

The condition for minimum mean squared error can be written as:

vu[J[((I - tl)TS-I (U - 11,j+ (U VTSn I(U -U)1 dxdY 0 (11)

which gives [5):
SV U-U) + S; I(U -T) = 0 (12)
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In this:equation, U,, and S, are-derived directly from-the underlying intensity pattern in-the image. Therefore, they are
known (and fixed) for a each pixel. T" and ,., on the other hand, are derived on the assumption that velocity of each pixel in
the neighborhood is known in advance from an independent source. This assumption is invalid in practice. Hence, U and S,, are
unknown and the velocity U cannot be derived directly from equation 12. However, equation 12 is available at all the pixels in
any given neighborhood in the image. If the conditions discussed below are satisfied, we essentially have a system of coupled linear
equations that can be solved by an iterative technique such as Gauss-Siedel relaxation algorithm [16]. The iterative solution can be
written'as [16]:

U+ = [S + S;11 [s,-,, +s_1Vk

U ° = U.¢ (13)

and the covariance matrix associated with the final estimate of velocity is given by [S;' + S; l -l, where S;" is computed from
the final iteration. The eigenvalues of this matrix depict the confidence measures corresponding to the final estimate. The notion
of final (post-propagation) covariance matrix is novel and unique to this framework. It serves several purposes. Qualitatively, it
indicates what regions in the image have the most reliable image-flow estimates from the viewpoint of applicability to high-level
interpretation. Quantitatively, it serves as an essential input to procedures for incremental scene-depth computation that use
estimation theoretic techniques such as Kalman filtering. This is discussed in appendix A and used in depth-estimation experiments
reported in the next section.

The two conditions that must be satisfied for the iterative solution to converge are discussed below. Firstly, for equation 12 to
represent a system of coupled linear equations, 5,, must be a constant and must be known in advance. Such is not the case here.
In the current implementation, I obtain S,, from the neighborhood velocity distribution corresponding to the previous iteration.
However, I have found empirically that either of the eigenvalues of S,, does not change by more than about 15% from the beginning
to the end of the iterative procedure. This holds true particularly for the pixels that do not lie on a motion boundary. Secondly,
for the iterative procedure to converge irrespective of the value of initial estimate U°, both SZ' and S;"1 must be positive definite.
As discussed in [20], this criterion is generally satisfied in real imagery except in pathological cases such as absolutely flat regions.

So far, I have assumed that the pixel under consideration does not lie on a motion-boundary and that neighborhood velocity
distribution forms a single cluster in u - v space. In the following discussion, I will analyze the performance of the framework
at motion-boundaries. Specifically, I will show that (1) the procedure discussed above for using neighborhood information is still
justified and (ii) in absence of texture, it does a better job of preserving the step-discontinuities in the flow-field as compared to
conventional smoothing-based procedures. For this purpose, recall that each of the two estimates L€ and T7 maps to a point in u- t,
space. Similarly, each of the two covariance matrices Sc: and ,, maps to an ellipse that has its center at the respective estimate and
that has its major and minor axes equal to the eigenvalues of the covariance-matrix. Therefore, each iteration amounts to finding
a point in u - v space that has the minimum weighted sum of squared perpendicular distances from the axes of the two ellipses -
the eigenvalues serving as weights.

The behavior of this procedure in the vicinity of a motion-boundary is depicted in figure 3a. For the conservation-ellipse
Ecc, only the major axis is shown because the minor axis will be very small in this region. In other words, all that conservation
information tells (with high confidence) about the velocity of the central pixel is that it lies somewhere along the major axis of
the ellipse E,,. Velocities of neighboring points are also plotted from the previous iteration. Given that there is no texture in
vicinity of the boundary (i.e., conservation information is reliable) and that the boundary corresponds to a step-discontinuity in the
flow-field, the velocities of neighboring points form two clusters in u - v space. As a result, the minor axis of the neighborhood-ellipse
E,, will be very small. In other words, all that neighborhood information tells (with high confidence) about the velocity of the
central pixel is that it lies somewhere along the major axis of the ellipse E.. Since the "correct" velocity will lie in one of the two
clusters, this opinion of neighborhood is correct. In other words, the iterative update procedure developed for the non-boundary
pixels is justified even for pixels that lie on a motion-boundary. Furthermore, since the velocities of the neighboring pixels are
derived from conservation information (at the beginning of the iterative procedure), one of the two clusters will be very close to the
conservation-constraint for the central pixel. This is depicted in figure 3a. As a result, the updated velocity for the central pixel
(denoted by an upper case "X" in the figure), which is given by the intersection of tile two major axes, will be very close to one of
the clusters. This cluster corresponds to that side of motion boundary (in the image) with which the velocity of the central pixel
is more consistent. Effectively, the pixel under cvusideration is binncd to the correct side-of the motion boundary. For purpose of
comparison, the result of conventional smoothing [4, 11] is shown in figure 3b. Clearly, the updated velocity lies somewhere in the
middle of the two clusters, effectively blurring the flow-field at the boundary.

4 An Algorithm and its implementation

An algorithm based on the new framework is given below followed by the details of its inplementation. The algorithm uses three
images as its input. It recovers conservation information unl) on.e at the onset (steps I through 3) and neighborhood information
once for each iteration (steps 4 through 6).
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Figure 3: Performance at motion-boundaries.

Algorithm:

(1) Convolve each image with a Laplacian. (2) Form a (2n + 1) x (2n + 1) correlation-window around the pixel in consideration
in the central image. Also, form a (2N + 1) x (2N + 1) search-window in around the corresponding location in the other two images.
Compute the error-distributions over the two search windows and transform them to the corresponding response-distributions, 1Z'
and 71Z+ respectively. Finally, rotate 1Z;' about both vertical and horizontal axes and add it to 1Z' to compute the resultant
response distribution 1c. (3) Compute tile estimate U and the covariance-matrix Sc from response.distribution using equations 3
and 4 respectively. (4) Form a (2w + 1) x (2w + 1) window around the pixel in consideration. Denote each pixel by a distinct index
i, where 1 : i _< (2w + 1)2. Denote the current- estimate of the velocity of ith pixel by (u,, v,). (For the first iteration, the velocity
Uc computed in step 3 can be used as the current estimate). Assign weights 1Zn(u,,v,) to these velocities. Compute the mean V
and the covariance-matrix S, using equations 5 and 6 and iespectively. (5) Update the velocity at the pixel under consideration
using equation 13. (6) Repeat steps 4 and 5 until the change in velocity over two successive iterations is less than a threshold. (7)
Compute the confidence measures associated-with the final estimate of velocity as the eigenvalues of the matrix given by S,' +$-I.
These confidence measures are associated with the directions of maximum and minimum confidence,.i.e., along the eigenvectors.

Implementation Details:

Firstly, one has to establish the parameters N, i, w and k in order to compute response-distribution. The choice of N depends
on the maximum possible displacement of a pixel between two frames. If the displacement is small (of the order of one to two pixels
per frame), N = 2 (i.e., a 5 x 5 search window) is appropriate. If the displacement is large, one can still use N = 2 along with
a hierarchical search strategy [,4]. The values of 7 and tw are decided on the basis of how many neighbors should contribute their
opinion in estimation of velocity of the point under consideration. Too small a neighborhood leads to noisy estimates. Too large a
neighborhood tends to smooth out the estimates. Empirically, n, w = 1 (i.e., a 3 x 3 window) appears appropriate. The parameter
k is essentially a normalization factor. In the implementation used here, k is chosen in in such a way that the maximum response
in the search-window is a fixed number (close to unity). Secondly, inversion of various matrices poses problems when one or more
of the eigenvalues are zero or very small. For this reason, singular value decomposition is used for matrix-inversion. Thirdly, tle
choice of (TaC as the starting velocity for the iterative procedure is justified because it denotes the estimate that can be derived from
conservation information alone. This ties well with the two-step approach to image-flow recovery - the output of the first step,
If, serves as an input to the second step. Finally, some criteria has to be established to stop the iterative update process. In the
experiments reported in this paper, iteration is stopped when the magnitude of each component of velocity, when rounded to the
second decimal place, (oes not change anywhere in the image.
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5 Experiments

Tile experiments described in this section can be divided into two categories- qualitative and quantitative. For sake of brevity, only
one experiment from each category is described. A detailed description of the objectives, methodology and results of each category
of experiments is given below.

Qualitative experiments: The objective of this category is to judge the qualitative correctness of flow-fields recovered by the
algorithm, specially in terms of preservation of motion-boundaries. The experiment described here uses a toy truck on a flat (and
mostly dark) table. Three images are shot as the truck rolls forward. The motion is largely translational, except for in the vicinity
of the wheels where it has a small rotational component. Furthermore, the motion-boundaries are expected to show up primarily as
step-discontinuities in the flow-field. The images are 256 x 242 in resolution and the maximum image-motion is about three pixels
per frame. For image-flow computations, the images are low-pass filtered and subsampled to get a resolution of 128 x 121. At this
level of resolution, the maximum image-flow is expected to be between 1 and 1.5 pixels per frame. In the various flow-field images
that follow, the velocity vector for only every fourth pixel (in both horizontal and vertical directions) is shown for sake of clarity.
Further, the magnitude of velocity is multiplied by a scale-factor of four in order to make the velocity vector clearly visible.

Figures 4 through 7 show various flow-fields and confidence measures. Figure 4a shows the central frame of the original
sequence. Figures 4b and 4c show the two confidence measures associated with conservation information at each point in the
visual-field. It is clear that the one of the confidence measures is high both at edges and corners of the intensity image whereas the
other one is high only at corners. Figure .ld shows the initial estimate of the flow-field (i.e., the velocity 'cc). Figure 5 shows the
flow-field after iterative velocity propagation (10 iterations), superimposed on the wire-frame of the truck. For sake of comparison,
figure 6 shows the flow-field after 10 iterations of conventional smoothing [4, 111 (with the smoothing factor a set to 0.5), also
superimposed on the wire-frame. For this purpose, the conservation-based estimate U,, is fed into the smoothing procedure in
the manner shown by Anandan [4]. A comparison of figure 5 and 6 clearly shows that the new propagation procedure does an
excellent job of preserving motion boundaries. It is apparent that there is very little "bleeding" of velocity from the truck into the
background in figure 5. On the other hand, there is considerable blurring of motion-boundaries in figure 6. Figures 7a and 7b show
the two confidence measures after propagation. As expected, the confidence has propagated outwards from the pre-propagation
high-confidence regions.

The estimation-theoretic nature of the framework and its ability to provide covariance matrices make it very useful in the context
of applications such as incremental estimation of scene-depth using techniques based on Kalman filtering. One such technique was
shown by Matthies, Szeliski and Kanade [13]. A variant of their scheme that uses the image-flow estimates and the covariance
matrices produced by the new framework is briefly described in appendix A and is used below to recover scene-depth. For this
purpose, the toy-truck experiment is repeated with the truck stationary, the camera looking from top (about 15 inches above the
truck) and undergoing a one-dimensional translation in a plane perpendicular to its optical axis. Eleven frames are shot at regular
intervals as the camera translates horizontally by 1.5 inches. The true depth-map (obtained with a laser range-finder) is shown in
figure 8. The depth-map obtained after eleven frames is plotted in figure 9. It is apparent that the depth-estimates are very good.
For sake of comparison, the depth-map obtained after eleven frames using the image-flow estimates obtained front the smoothing-
based implementation described earlier is plotted in figure 10. It is apparent that the blurring of depth-discontinuities is much more
prominent in figure 10. It must be emphasized that the objective of this exercise (of depth-estimation) is to put the new-framework
in the context of an application, rather than to make any claims about the performance of a specific depth-estimation scheme.

Quantitative experiments: The general objective of this category of experiments is to judge the quantitative correctness of
the flow-fields. In order to accomplish this, the "ground-truth" flow-field must be known. Typically it is possible to know (or
compute) the ground-truth flow-field only if (i) the motion is synthetically generated, e.g., by warping a given image in some known
fashion or (ii) the camera motion and the depth of each point in the scene is exactly known. The second scenario is considered
in the experiment that follows. The imagery for this experiement is selected in such a way that the flow-field does not have any
discontinuities, simply because it is very difficult to come up %ith the ground-truth flow field in the presence of discontinuities.

Specifically, the scene is comprised of a textured poster rigidly mounted on a precision translation table. A 512 x 512 camera
is mounted oIL the table as well, but its (translational) motion can be accurately controlled. The poster is placed facing the camera
and slanted in such a way that (i) the optical axis is not perpend"-ular to the plane of the poster and (ii) the distance between the
camera an the poster is very small (about 12 inches). Both these arrangements help to make the resulting flou -field interesting even
when the camera is undergoing a pure translation. The camera is made to translate in a plane perpendicular to its optical axis so
that the image displacement is roughly 6 pixels where the poster is closest to the camera and roughly 3 pixels where the poster is
the farthest froin the camera. The exact amount ot camera tianslatiouL as %ell as the dibtance of the lentI ftili the ilgkd itiitjit lb
recorded. The camera is then calibrated and its focal length is determined. The "correct" flow-field is determined using the theory
developed by Waxman and Wohn [211. The images are low-pass filteied and sub-sampled to get a resolution of 128 x 121 using
Burt's technique [6]. Both components of image-velocity at each point are divided by four to get the correct flow field corresponding
to the reduced image size1 . The central image and the correct flow-field are shown in Figures lla.and lb respectively.

I Actually, the rvdnmed-size imagery will correspond to image-flow that is not exactly equal to the original image-flow reduced in magnitude by a factor
of four. This is because uf the intensity changes that accompany low-pass filtering and subsainplig Due to lack of a quantitative characteizatiot of these
changes, I do not account for them.

320



Figuire 4: The toy-truckh experimnit (a) central frame of the image-sequence. (hConfidence Ilneasi es associated With conl-
serv'ation information, i.e.. thle icciprocals of thle elgenivallues of the covariance miatrix S, andl (d) initial estimate of velocity.

Figure 5: The~ toy-t rock ex pet iinetIlo- ild ft( %i dcil Figuie 6: The t o.%- tiuck expewrIimentt: llo%% -field after It) iteralions
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(a) (b)

Figure 7: The toy-truck experiment: (a) and (b) confidence measures associated with the flow-field after velocity propagation.

Figure 8: The toy-truck experiment: the true depth-map obtained with a laser range-finder.

Figure 9: The toy-truck experiment: a plot of the depth-map after eleven frames using estimation-theoretic image-flow computation.
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Figure 10; The toy-truck experiment: a plot of the depth-map after eleven frames using conventional smoothing- based image-flow

(a) (b)

Figure 11: The poster experiment: (a) central frame of the image-sequence and (b) correct flow-field.
Two experiments are conducted, with correlation-window size set to 5 x 5 and 3 x 3 respectively. In each case, the percentage

of-pixels-that have both components of velocity (a) within 5% (of the true value) (b) within 10% and (c) within 25%, before and
after propagation (15 iterations), is determined. The results are shown in table 1. As expected, larger size of the correlation window
(5 x 5) gives more accurate results, although reasonable results are obtained with a 3 x 3 corrPlation window also - specially after
velocity propagation.

Figures 12 through 14 show various flow-fields and confidence measures obtained with the 3 x 3 correlation window. Figure 12a
shows one frame of the original sequence. Figures 12b and 12c show the two confidence measures associated with conservation
information (i.e, the "initial" estimate of velocity) at each point in the visual-field. These confidence measures are the inverses of
the small and the large eigenvalue, respectively, of the covariance matrix Sc,. It is apparent that the one of the confidence-measures
is high both-at edges and corners of the intensity image whereas the other one is high only at corners. Figure 12d shows the initial
estimate of the flow-field (i.e., the velocity U,,). Figure 13 shows the flow-field after iterative velocity propagation (10 iterations). It
is apparent that the flow-field is qualitatively correct almost everywhere in the image, except at a few randomly placed points. The
velocity-estimnate at these few points is incorrect because of a very high confidence associated with a wrong initial estimate (Ucc).
As discussed earlier, such a situation call arise in some textured regions. Figures Ma and 14b show the two confidence measures
after propagation.

Once again, in order to view the image-flow estimates obtained above in the context of depth-estimation, the procedure shown
in appendix A is used to recover depth-maps. Eleven frames (shot at regular intervals as the camera translate horizontally by 0.5
inrh, starting from the initial configuration described before, in-a-plane perpendicular to its optical a-%is) are used. Figure 15 shows
the correct depth-map. Figures 16, 17 and 18 show the depth map recovered by the procedure after three, seven and eleven frames
respectively. Qualitatively, it is apparent that tile depth estimates improve with time. Quantitatively, the root-mean-square error
in depth (over the entire image) is 11.2%, 4.3% and 2.8% after three, seven and eleven frames respectively.

In each of the two categories, the experiments reported here have omall inter-frame motion. In order to handle the cases where
motion can range fromn very stmall to vcry large, a hierarchical version of the algorithm has been developed based on the scheme
proposed by Ananda [1]. The algorithm has been tested oi a vvide variety of scenes (including the famous dinosaur sequence used
by Anandan, where velocity is of tile order of eight pixels per frme) and it works very well. The results are not included here
because of space limitations.
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Percentage of Percentage of Percentage of
WINDOW pixels with vector pixels with vector pixels with vector

SIZES error less than error less than error less than
5% 10% 25%

V Without With Without With Without With
Prop. Prop. Prop. Prop. Prop.

5 X 5 Search
53.0% 56.1% 66.4% 77.5% 71.3% 83.1%3 X 3 Correl.

5 X 5 Search
56.2% 61.2% 68.6% 81.6% 73.2% 86.4%

5 X 5 Correl.

'able 1. Error statistics for tile poster experinent. The two row. coriebpoltd to tuo diffelelt sizes of tile correlation window. For
each row, the first and the sucotid colituts indicate the percentage of total pix.l fui %dih the error in both conpoitnts of %elocity
is less thtan 5%, of the correct value, before and after velocity Inopagation iebpectively. The third and the fotuth columns give
the corresponding percentage of pixels with erroi less that 10%. Fmally. the fifth and the sixth colmis give the coriespoding
percentage of pixels with crior less than 25%.

4

(a) (b)

(c) (d)

Figu re 12: The p)oster experinue ii. (a) ceitial franie of the i idage sequene. (b),() coufideme ittasures a,.so( i, ed witi cowervaton
itfu niation, i.e., the recip)rocals of Ile vigeiwallies of the covariaii(e mta rix S. ,and (d) iiiitial estimnt e of 'e o t y, I.e.. U,.
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Figu ie 13: Th le p)oste ex(~p ermen t: flow- field( aftei velocityN polpaga ion (10 it eiat ions).
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Figure 16: The poster experiment: aepth map after three frames. Figure 17: The poster experiment: depth-map after seven frames.

Figure 18: The poster experiment: depth-map after eleven frames.

6 Conclusion

In this paper, I have shown a new framework for recovering image-flow from time-varying imagery. This framework recognizes tile
fact that velocity information available in small spatiotemporal neighborhoods in the imagery is not exact - there is uncertainty
associated with it. It classifies the available information into two categories - conservation information and neighborhood information
- and models each one of them using techniques that are common in estimation theory. It recovers the image-flow field by performing
an optimal combination of the two types of information. Some of the distinctive features of the framework are sunmmarized below

1. It quantifies the velocity information contained in each of the two local sources - conservation and neighborhood - by an
estimate and a covariance matrix. A similar approach has been used before by Anandan [4] for conservation information.
lowever, as far as neighborhood information is concerned, this approach is novel. In essence, the current formulation accounts
for the "spread" (in velocity space) of neighborhood velocities in addition to their "average" that has been used in earlier
formulations [10, Il].

2. It formulates the problem of estimating image-flow as that of performing a statistical combination of velocity estimates
obtained from the two sources, on the basis of their covariance-matrices. The solution to this problem is iterative and
amounts to propagating velocity information from regions of low uncertainty to regions of high uncertainty.

3. Because of the statistical nature of the procedure used to represent and propagate velocity, there is an explicit notion of
confidence measures associated with the velocity estimate at each pixel, both before and after propagationi The idea of
pre-propagation confidence measures has been used before [4] but that of post-propagation confidence measures is novel
The experiments shown in the previous section reveal that the iterative propagation procedure used ti tlmu fidmiucwrk does
actually enhance the confidence during each iteration. The post-propagation confidence measure reflects the reliability of tlw
final estimate of image-flow and it can be a valuable input to a system that uses image-flow to recover three dimensional
information. In the Kalman filtering-based depth estimation procedure used in this paper, the post-propagation variance
(reciprocal of the confidence measure) serves as one of the inputs to time "prediction" stage.

4. The propagation procedure does a much better job of preserving the step-discontinuities in the flow field, specially in the
absence of texture in the vicinity of such discontinuities, as compared to the classic smoothing based propagation procedures
[4, 11]. I have demonstrated this for the toy-truck sequence and the tori sequence in the previous section Propagation
procedures used in several frameworks proposed in the recent past [3, 10, 12, 15, 17, 21] are capable of preserving motion

326



boundaries. lowever, the propagation procedure used in this framework is different from them in tile following respects. (i)
it gives image-flow in tile entire visual-field, not just at the edges, (ii) it does not require any a-priori knowledge about the
location of the boundaries, (iii) it does not assume that all intensity edges correspond to motion boundaries and vice versa,
(iv) it does not use high order derivatives of the intensity function and (v) it is computationally simple.

There are several ways in which this framework can be extended and improved. Firstly, the behavior of response-distribution
needs to be analyzed in greater detail, specially for the multimodal case. Secondly, in the current version of the framework, the
velocity -propagation procedure utilizes only the estimate of velocity at neighboring pixels. It does not utilize the covariance-matrix
associated with the estimate. It appears plausible that the knowledge of covariance matrix might assist in identifying motion
discontinuities, thus making the velocity-propagation procedure even more robust at disconti nuities. Finally, the formulation of
optimization problem assumes that conservation-error and neighborhood error are independent. In the current implementation,
however, neighborhood information is derived from conservation information. This makes the two errors dependent. An investigation
of the effects of this dependence will certainly be very useful in predicting the performance of the framework with respect to any
given imagery. Also, efforts could be made to ensure that the two errors are, in fact, independent.
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A Kalman filtering-based depth estimation from image-flow

Matthies, Szeliski and Kanade [13] had reported a Kalman filtering-based algorithm to recover dense depth maps from image-flow
in the case of a stationary scene and known one-dimensional camera motion. This algorithm requires that an estimate of image-flow
be produced along with its covaiiance for each new frame acquired (in a time-sequence) and be used to update the existing estimate
of disparity (reciprocal of depth) and its variance. The principal advantage of such a scheme is that the uncertainty in depth
estimates decreases with time. Matthies, et. al. had used Anandan's [4] smoothing-based algorithm to estimate image-flow and
had performed error-analysis on the SSD surface to compute its variance. I hve adapted their algoithm to use the framework
for image-flow estimation discussed in this paper instead of Anandan's. Silne this framework has an explicit covariance-matrix at
each stage of computation, it fits into the Kalman filtering-based mechanism very naturally. Secondly, because of the discontinuity-
preserving nature of the ne' framework, the discontinuities in the depth-field are better defined. This makes three-dimensional
feature extraction (for inteipretation of depth-fields) more reliable. Since the only modification to the original scheme of Matthies,
et. al. is the way in which image-flow and its variance is estimated, the reader is referred to their original paper [13] for details of
the procedure and its implementation. A block diagram of the modified scheme is shown in figure 19. The blocks 1 and 3 in this
diagram depict the two steps of image-flow estimation and have been discussed in detail in this paper. The blocks 2 and 4 depict
the "updating" and "prediction" steps of Kalman-filtering and are exactly the same as in [13].

Imagery Image-flow/Disparity Updated disparity
and its variance and its variance

12 3

Conservation Neighborhood
Information IntegrationInformation

(Measurement) (Update) (Regularization)

4

Predicted disparit Prediction

and its variance

Figure 19: A bloch diagram of the Manan filtering-hasel depth o'timation schemp.
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Qualitative Detection of Motion by a Moving Observer
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Abstract: (see e.g., [Ande85]) Unfortunately, a system cannot always
Two complementary methods for the detection of keep still. For a moving observer, the problem is much

moving objects by a moving observer are described. The harder, since everything in the image may be undergoing
first is based on the fact that, in a rigid environment, the apparent motion; and the overall pattern may be quite com-
projected velocity at any point in the image is constrained to plex. In principle, independently moving objects can be
lie on a 1-D locus in velocity space whose parameters identified through through quantitative, shape-from-motion
depend only on the observer motion. If the observer motion analysis [Heeg88, Burt89]. However, such approaches are
is kznown, an independently moving object can, in principle, generally computationally expensive, and they suffer from
be detected because its projected velocity is unlikely to fall the fact that current shape-from-motion techniques tend to
on this locus. We show how this principle can be adapted be very sensitive to the accuracy of the underlying motion
to use partial information about the motion field and data [Tsai84], often requiring a precision which is difficult
observer motion that can be rapidly computed from real to attain in practice.
image sequences. The second method utilizes the fact that A few studies have concentrated specifically on the
the apparent motion of a fixed point due to smooth observer detection of moving objects by a moving observer. Thomp-
motion changes slowly, while the apparent motion of many son [Thom90] describes some basic principles that can be
moving objects such as animals or maneuvering vehicles used to discriminate moving objects when various aspects
may change rapidly. The motion field at a given time can of the observer motion are known, but leaves open some
thus be used to place constraints on the future motion field questions about how these principles might be applied in
which, if violated, indicate the presence of an autonomously practice. In our discussion of the constraint ray filter, we
maneuvering object. In both cases, the qualitative nature of show how one of these principles can be adapted to allow
the constraints allows the methods to be used with the inex- the use of imprecise and partial motion information. Bhanu
act motion information typically available from real image et al. [Bhan89] propose a method of detecting moving tar-
sequences. Implementations of the methods that run in real gets based on the identification of a fuzzy focus of expan-
time on a parallel pipelined image processing system are sion and a qualitative analysis of the motion of scene points.
described. This also has some aspects in common with our proposals

but it utilizes motion information derived from point
I. Introduction correspondences, and invokes a rule-based system of quali-

The ability to rapidly detect moving objects seems to tative reasoning, making it considerably higher level (and
be almost universal in animals with eyes. An obvious rea- more expensive) than the methods described here.
son is that some of the most pressing issues in the survival We argue that the movement detection problem, can
of an organism involve objects that move (e.g. predators, be effectively solved using a qualitative, pattern-recognition
prey, and falling rocks). Robotic systems that interact with strategy. In particular, we present two complementary
real-world environments face similar issues. They too are qualitative measures that can be used to tag motion that is
frequently critically concerned with objects that move. For inconsistent with an interpretation of global rigidity. The
example, an autonomous vehicle must avoid hitting people first method, which we term constraint ray filtering, makes
or animals that wander into its path; a surveillance system use of knowledge about the observer's motion. It is based
must identify intruders; and a smart weapon may pursue a on the fact, noted in this context by Thompson [Thom90],

fcing target. A reasonable heuristic for interaction with that in , ligid cnvlihialumnt, ti, pij4tcd 3-D vckxity at
the real world is if it is moving, you should probably pay any point in the image is constrained to lie on a I -D locus in
attention. A method of detecting independent motion is velocity space whose parameters depend only on the
thus valuable as a method for directing more sophisticated observer motion. Thus in principle, if the motion field and
(and costly) processing to areas where it can be most effec- observer motion are known, an independently moving
tively utilized, object can be detected because its projected velocity is

For a stationary observer, a simple method of move- unlikely to fall on this locus. In practice, quantitative esti-
ment detection is to difference images obtained a short time mates of the motion field and observer motion are both
apart, and mark the non-zero regions of the resulting image. difficult and computationally expensive to obtain. We show
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how the basic principle can be alapted to use partial infor- identification directly, and much more efficiently, than than
mation about the motion field and observer motion that can via traditional 3-D reconstruction. The movement detection
be rapidly computed from real image sequences. The techniques presented here are one example. For others and
second method makes use of qualitative knowledge about for further discussion see [Nels88a, Nels88b, Nels89].
the motion of the object to be detected. It takes advantage
of the fact that the apparent motion of a fixed point due to 2. Background and Notation
smooth observer movement changes slowly while the
apparent motion of moving objects such as animals or 2.1 Structure-from-motion
maneuvering vehicles often changes rapidly. We term such The techniques described here, although they make
movement animate motion. Such motion can be detected somewhat different use of the available information, have
by using the motion field at a given time to constrain the roots in research that has been done in the context of the
future motion field under smooth continuation, and then structure-from-motion problem, and in methods developed
looking for violations of these constraints, to obtain local motion information from image sequences.

The techniques presented here reflect our conviction The following is a brief review of some of the relevant ter-
that vision in general and motion in particular is better minology and results.
suited for recognition than reconstruction. This position is A camera moving within a three dimensional
best clarified by examining how the two paradigms are dis- environment produces a time-varying image that can be
tinguished. A major distinction is that of specificity. characterized at any time t by a two dimensional vector-
Reconstruction can be viewed as a general transformation valued function f known as the motion field. The motion
of information in one form into another (presumably more field describes the two dimensional projection of the three
useful) modality (e.g., time varying imagery into depth dimensional motion of scene points relative to the camera.
maps). Recognition, on the other hand, serves to identify a Mathematically, the motion field is defined as follows. For
specific situation of interest to the system, for instance, the any scene paint (x,y) in the image, there corresponds at
approach of a fly if you are a frog, or a bird if you are a fly. time t a three dimensional scene point (x,,y,,z,) whose pro-
A reconstructed world model contains a lot of information, jection it is. At time t+At, the world point (x,,y,,z,) pro-
possibly enough to find a fly if you are a frog, but it also jects to the image point (x+Ax,y+Ay). The motion field at
contains a lot of information that a frog has no interest in, (x,y) at time t is given by
and that was expensive to obtain. More specifically, a
characteristic of reconstructive vision is that information is f (x,y,t) = lim I.-7-,--:--.
transformed without regard for its intended use, following a At-'o At At
policy of least commitment. The usual justification is that The motion field depends on the motion of the cain-
since you never know what information you will need, you
should preserve as much as possible. The disadvantage is era, the three dimensional structure of the environment, and
that, since most of the information is never needed, such a entremenIoal m one an e n the
policy can result in a huge amount of wasted effort, espe- movionmel If ale c oanens are knon, he
cially if attempted at higher levels. We advocate instead, motion field can abe calculated in a relatively straightfor-
what might be termed a policy of most commitment; that is, ward manner.
compute only what is necessary to solve the problem of In the traditional approach to motion analysis, the
interest. It might be argued that such a policy is poor sci- question has been whether the process can be inverted to
ence because it will never produce generalizable systems. obtain information about camera motion and structure of
On the contrary, we believe that the world is so structured the environment. This is the basis of the structure-from-
that what is useful for one purpose will, perhaps in slightly motion problem. In general, the problem is ill-posed, and
modified form, prove useful for another. Such a statement some assumptions (most commonly involving rigidity and
is, of course, impossible to prove; we can only point at the surface continuity) must be made in order to attempt a solu-
history of science which is rife with examples of one struc- tion. Various appraoches to regularizing the problem have
ture being built on another, or at evolution, which also led to large body of literature on the subject. The problem
seems to operate in this manner. has been addressed both in terms of isolated data points

A second distinction is the one between qualitative [Ullm79, Tsai8l, Long8l, Tsai84], and in terms of a full
and quantitative methods. Reconstruction is, in essence, a motion field and its derivatives [Praz8l, Bo!187, Waxm87],aquantitative mroedure, and consequently dependent for its and a number of solutions have been described. Most of

success on the numerical accuracy of the algorithms UIes .udie s, ...... .. sf ..... .w -h the. assumption
employed. This has been a problem in shape-from-x ana- that detailed and accurate information, either in the form of
lyses in general. Recognition, on the other hand, can make point correspondences or dense motion fields, is available.
use of qualitative distinctions (moving up, moving down, Unfortunately, the solutions to the equations are frequently
rotating, expanding) and relative relationships (faster, inordinately sensitive to small errors in the motion field,
slower, in front, behind), which can be computed from which has made them difficult to apply in practice.
much less exact information. What we feel has been over- From the other direction, a number of methods have
looked is a wide variety of applications in which robustly been proposed for obtaining motion information from
computable motion information can be used for image sequences. There have been two main approathes.
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One uses matching methods similar to those employed in Ordinary cameras do not utilize spherical projection,
stereo vision to identify corresponding points [Moro79, but if the field of view is not too wide, the approximation is
Barn8O]. This process is well known to be difficult since reasonably close. Since the distortion is purely geometric in
features may change from one image to the next, and even origin, it could be corrected should it prove to be a problem
appear and disappear completely. The other attempts to for any particular camera. In experiments we performed
determine the motion field from local computations of the using a camera with a field of view of approximately 20x30
spatial and temporal derivatives of the gray scale image. degrees, no correction was necessary in order to obtain
The first derivative methods originally proposed by good results.
[Horn8l] must deal with what is known as the aperture
problem, which refers to the fact that only the component of 3. Movement Detection via Constraint Ray
image translation parallel to the gradient can be recovered Filtering
locally from first order differential information. As both
methods must deal with incomplete and inaccurate informa- 3.1 Theoretical basis
tion, much research has concentrated on techniques for Ile first method of detecting an independently mov-
cleaning the data and filling in the gaps. [Hom81, Schu84, ing object is based on the observation that the projected
Arian85, Nage86]. Well known variations of the basic motion at any point on the image sphere is constrained to lie
methods include using higher order derivatives [Nage83, on a half line (ray) in local velocity space whose parameters
Uras88], spatio-temporal energy methods [Heeg87], Fourier depend only on the observer motion and the location of the
methods based on phase correlation [Burt89J, and direct image point. In other words, despite the fact that objects at
correlation of image patches [Barn80, Litt88]. different depths typically display different apparent motion,

On the whole, despite a great deal of effort expended the possibilities are constrained to a one dimensional locus
in devising motion invariants, regularization methods, and in a two dimensional space. On the other hand, the pro-
matching techniques, neither correspondence nor differen- jected motion for an independently moving object is uncon-
tial field methods have yielded data sufficiently accurate to strained and is unlikely to fall on this locus. Thus testing
allow the theoretical structure-from-motion results to be the motion field to determine whether it is consistent with
reliably applied. Adiv [Adiv85] argues that inherent near the local constraint ray provides a means of detecting non-
ambiguities in the 3-D structure-from-motion problem may rigid motion. The basic nature of the constraint is fairly
make unfeasible the extraction of information sufficiently well known, and it has been discussed as a means of move-
precise to allow uniform application of the theoretical solu- ment detection [Thom90]; however its adaptation to partial
tions. Verri and Poggio [Verr87] make essentially the same and inexact motion information for use in a fast, practical
point, arguing that the disagreement between the motion system does not appear to have been much developed.
field and the optical flow makes the computation of As a simple motivating example, consider the case of
sufficiently accurate quantitative values impractical. An an observer translating to the right while looking straight
alternative is to devise qualitative strategies that can make ahead. The apparent motion of imaged objects rigidly
use of partial or inaccurate motion field information attached to the world is horizontal and to the left with mag-
[Thom86, Nels88a, Nels89]. The movement detection stra- nitude inversely proportional to the distance to the project-
tegies described here represent one such application. ing world point. Any point of the motion field that contains

a vertical component must thus arise from an independently
2.2 Notation: spherical images and the local frame. moving object. Constraint ray filtering is a generalization

We consider the image formed by spherical projec- of this idea.
tion of the environment onto a sphere of radius p termed the To see how the constraint ray arises consider the local
image sphere. The use of spherical projection makes all projective plane centered at point p on the image sphere.
points in the image geometrically equivalent with respect to The projezted velocity at point p is expressed by the vector
the observer, which considerably simplifies some of the (u,v) where u and v are the apparent (angular) velocities
analyses. In particular, we can define local coordinate sys- parallel to the local x and y axes respectively. The rota-
tems with respect to an arbitrary image point p. The loca- tional motion of the observer can be decomposed into com-
tions of points in the environment are expressed in terms of ponents 0 x , wy, and oz parallel to the local X, Y, and Z
coordinates (X,YZ) where (0,0,0) coincides with the center axes. The projected velocity due to this rotation is given by
of projection, and the positive Z axis passes through p. V(=(ow,o~y) independent of the distance to the world point
Image positions in the neighborhood of p are expressed in projecting to p. Similarly, the translational motion of the
terms of coordinates (x,y) where (0,0) coincides with p 2_1d observer can be decomposed into components v, vy, and v2,
the x and y axes with the local projection of the X and Y again parallel to the local axes. In this case, the projected
axes respectively. This is permissible because the image velocity is given by V,=(v./ZvylZ) where Z is the distance
sphere is locally Euclidean. The Euclidean neighborhood from the origin to the world point that projects to p. The net
of p will be referred to as the local projective plane. Since projected velocity is the sum of the two pieces is
all points in the image are geometrically equivalent under
spherical projection, we can notationally simplify much of V = Vo+V' = Vo+-LVxY
our local analysis by carrying it out in terms of these local
coordinate systems. where VXy is (Vx,Vy). For a given observer motion, both V,,
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and Vxy are uniquely determined, and I/Z runs from 0 to
.-oo. The possible values for V thus lie on a ray in velocity
space parallel to Vx, and with endpoint V, (Figure 1).

3.2 Practical considerations
As noted in Section 2, many methods for approxi nat-

ing the motion field utilize low-level computations that pro-
vide only the component of the field parallel to the local
image gradient. These components are then combined by
various methods to obtain an approximation to the complete
motion field. Since such methods are often computationally __

expensive it is worthwhile to examine the constraints that
can be placed on the gradient parallel component and to
consider whether it alone might provide information which constrint circle
could be used to identify independently moving objects.
Consider a point x in velocity space representing the value
of the motion field somewhere in the image. The gradient
parallel component of the motion field can be represented
by the vector describing the projection of x onto the line
that is parallel to the gradient and that passes through the
origin. Recall from elementary geometry that chords drawn Figure 2: The constraint circle representing all possible
from diametric points on a circle to a third point on the cir- projections of the point x onto lines passing through the ori-
cle meet at a right angle. Thus all points on the circle gin, consequently all possible values for the gradient paral-
whose diameter is the line segment ox represent possible lel flow component.
gradient parallel projections of x (Figure 2). Conversely, all
lines passing through the origin intersect the circle at a point
representing the projection of x onto them. Hence this cir-
cle represents all the possible gradient parallel components
consistent with the motion vector. Suppose that the 1/Z lies
between 0 and a. Then the possible image motions lie on point on the line segment generates a circle as described
the line segment with endpoints V(, and VO+oxVxy. Each above. The union of all these circles thus represents a con-

straint on the gradient parallel component of the motion
field. It is easily seen that all these circles pass through
both the origin and the projection of the origin on the con-
straint ray (or its extension). Thus the constraint region can
be determined from the circles generated b) the segment
endpoints. In particular, the constraint region ;s the union
of the two solid circles less their intersection (i.e. their
exclusive OR). Figure 3 shows the partitions for several
situations. In the limiting case of a=o- (Z=0) the partitions

Sare formed by the intersection of a circle and a half space.
The fraction of the plane representing gradient paral-

lel components consistent with a rigid environment is fre-
quently sufficiently small that an independently moving
object has a good chance of generating gradient parallel
components that fall outside of this region. This is particu-
larly true if c can be bounded (e.g by knowing that the
observer is at least a certain distance from the nearest
object). Thus a movement detector can be can be con-
structed that utilizes local results of a differential motion
computation. Such a detector would exhibit more false
negatives than one utilizing the complete motion field, but

Figure 1: The constraint ray generated by the parametric on the other hand, the approximation of the gradient parallel
equation V=V,+Vxy/Z for Z ranging from zero to infinity, component is far less computationally expensive.
Intuitively, the ray is generated by adding all positive mul- The next issue is determining the motion of the
tiples of the vector VXy, whose direction is determined by observer. It was assumed in the above analysis that this
the observer's translation, to the constant vector V,, which motion was known. In some situations, such information
is produced by the observer's rotation. The axes v, and vy might be available from external sources, for instance, from
represent the components of the image velocity, inertial sensors or from explicit knowledge of the observer
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instance, in the case of camera mounted in a car and stabil-
ized against high frequency rotational jitter (much as the
eyes of most mammals are stabilized by the reflexive VOR
system), the motion is primarily straight ahead with slow
rotations about the axes perpendicular to the forward
motion as the car goes around corners and up and down
hills. This suggests that the necessary information about
observer motion can be obtained by matching against a rela-
tively small set of prototype motion fields. The following
are examples of canonical motion fields that would be use-
ful when utilizing images having angular extent small
enough so that the distortion produced in projecting the
spherical image onto a plane is relatively small. (i.e. < about
40 x 40 degrees).
1. Field that is all approximately in the same direction:

This corresponds either to rotation about an axis
approximately perpendicular to the direction of the

,gaze, translation roughly perpendicular to the direc-
tion of gaze, or a combination of rotation with a
translation such that the directions of the flows align.
Such motions frequently arise in systems navigating
on approximately flat terrain. The constraints effec-
tively exclude motion with a component parallel to
the dominant direction but of opposite sign, or with a

Figure 3: Constraint regions generated by segments of the significant perpendicular component.
constraint ray in several situations. The shaded areas 2. Field having a focus of expansion in center of image:
represent the portion of velocity space in which the gradient This corresponds to translation in the direction of the
parallel component of the motion field is constrained to lie gaze. Here the constraints exclude motion towards
when a bound can be placed on how close objects may be to the origin or having a significant tangential com-
the observer. If no such bound can be justified, the con- ponent.
straint ray extends to infinity, and the bounding disk associ- 3. Field with a distinct focus of expansion anywhere in
ated with the far end becomes a half plane. the image (2 above is a special case). This

corresponds to pure translation, or to movement while
fixating on a distant point.

4. Field having an expanding periphery with uniform
components perpendicular to lines passing through

motion (stationary robots). For many applications though, the image origin. This corresponds to straight ahead
it is desirable to have a self-contained system that does not motion with slow rotation about a perpendicular axis.
rely on outside sources of information. Unfortunately, The rotation can be obtained from the motion field
determining the observer motion from an image sequence components normal to a perpendicular pair of lines
is, in the general case, tantamount to solving the structure through the origin (e.g. the local x and y axes in the
from motion problem for static scenes, which can be hard to image) and used to set the constraints.
do. Assuming such information to be available might thus 5. Field that is all in one of two directions 180 degrees
seem to be begging the question concerning the hardest part opposed. This results from fixating an object in theof movement detection. poe.Ti eut rm iaiga beti h

scene while moving in a direction roughly perpendic-
It turns out, however, that the technique can be used ular (e.g. +- 20 degrees) to the direction of gaze. Fix-

in practical cases without the ability to determine observer ation on a point at infinity or the nearest point in the
motion exactly. Two facts make this possible. First, recall image will produce a field fitting the criteria for case
that a major difficulty of solving the ego-motion from 1. The constraints exclude motion with a significant
motion problem arises from the fact that, in certain situa- perpendicular component.
tions, the motion field arising from rotation and translation These cases all have robust signatures that allow
can be very similar, while the implications of each about the them to be identified from relatively sparse information
3-D structure of the world are very different. In our case, using simple pattern classification techniques (eg. nearest-
however, the constraints arising from such similar fields are
similar. Thus, unlike the case for structure from motion, it neighbor methods) They also span a wide range of motions,
does not much matter if the two sources are confused. covering nany of the situations that occur in practice in
Second, for many practical problems, the system spends moving systems.
most of its time executing only a few types of motion. For
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There are a few situations that will cause trouble. detecting independently moving objects, and ignoring the
The most common arises when an isolated nearby object apparent movement due to its own motion. The expected
appears in front of a distant background. Without external exception occurred when the independent movement was in
information about either the observer's movement or the the same direction and near the same velocity as the
distance to the object, there is no way to determine whether apparent motion, corresponding to landing on the constraint
the object is stationary or undergoing uniform motion. This ray. Figure 4 shows the detector's response to a person
would be a problem with any movement detection system. walking across the field of view as the observer rotates and
Another, which might be called the moving moon illusion, translates so that the entire scene appears to moving
results from an isolated distant object and a strong, flat fore- upward. The magnitude of the motion field due to the cam-
ground. In this situation, it is possible to fixate the fore- era motion is of the same order as that due to the walker.
ground and interpret it as distant, whereupon the distant Everything in the image is moving, yet the system reliably
"moon" appears to move.

3.3 Implementation

We have implemented a movement detector based on
the above principles that operates in real time ( -.Is
latency), and robustly detects independent motion in a wide
variety of situations. The first step is the computation of
local motion information. We use a differential method
similar to the first step of the Horn and Schuick algorithm
[Horn8l], dividing the temporal derivative by the gradient
magnitude to obtain an estimate of the gradient parallel
component of the motion field. This operation is performed
on a 512 x 512 video signal at 30 hertz using a collection of
Datacube Maxvideo image processing boards, and provides
usable values for angular velocities between about 20 and
200 pixels per second (see Appendix A). This array is then
subsampled to 64 x 64 and downloaded to a Sun 360. A
Hough transform technique is used to rapidly compute a
coarse representation (here a 4 x 4 array quantized to one
of 8 directions) of the true motion field from the gradient
parallel values. This is normalized to form a feature vector
which is then compared against a stored library of canonical
motion fields in order to determine which of the known
types of motion the observer is making. Currently the sys-
tem recognizes motions in classes I and 2 described above.
The canonical field is used to generate a filter image which
specifies, for every point in the image, the range of gradient
parallel components consistent with the presumed motion.
The filter image is then compared with the measured esti-
mates of the gradient parallel component, and regions exhi-
biting inconsistent motion are marked as potentially con-
taining independently moving objects. By using bit encod-
ings to coarsely represent the motion field, an update rate of
about 10 Hertz was achieved.

The system has been tested using the Rochester
Robot which consists of a two-eyed (we used only one),
three degree of freedom head attached to a six degree of
freedom robot arm, to provide observer motion
[Brown88a]. For the cameras we used, having a field ofview ....... :-. l_. IAt X In de-,,, . n.-;; h, y r

vprimUtely 2V x 3V degrees, 0 sur,rng.. ar, g

range of what might be considered "natural" movements Figure 4: Detection of a walking figure in a moving scene
produce image motion which matches case I above (all by a movement detector based on constraint ray matching.
approximately in the same direction). This included rota- The camera motion is a combination of rotation and transla-
tions about and translations along not only axes parallel to tion whose net effect is to provide impart upard apparent
the picture plane, but almost any axis which did not actually motion (at velocities which depend on distance) to objects
intersect the image. Even with the sacrifices in resolution in the scene. The walking figure is detected as inconsistent
and accuracy made in the interest of achieving real-time with a rigid interpretation of the motion. The system
performance, the system proved quite successful both at operates in real time (10 frarnes/sec).
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identifies those regions whose motion is inconsistent with a objects reverse themselves (180 degree phase shift)
rigid interpretation of the world, significantly faster than they traverse 180 degrees on the

image sphere. This condition holds in a large variety of
4. Detection of Animate Motion real-world situations.

The above analysis holds for a spherically projected
4.1 Theoretical basis image. In a planar image, there will be an additional

The constraint ray filter described above depends on acceleration induced by planar distortion at all points away
having some knowledge of observer motion. It is also pos- from the image center. By twice differentiating the expres-
sible to use knowledge about the motion of the object to be sion for planar projection we can show that the planar pro-
detected. In particular, we take advantage of the fact that, jection of a point moving away from the image center with
fbr an observer moving smoothly with respect to a rigid apparent angular velocity v displays an apparent linear
environment, the apparent motion of a world point pro- acceleration given (in one dimension) by
jected on the image sphere is a relatively slowly changing sin(e)
function of time. Independently moving objects such as Ro62 COs()
people, animals or rolling rocks, on the other hand, fre-
quently maneuver, that is, they or their component parts fol- Where R is the distance from the center of projection to the
low trajectories for which the projected velocity changes image plane, and 0 is the angular distance of the projection
rapidly compared to the apparent velocity change due to of p from the image center. Since sin(x)/cos 3(x) is less than
self motion. This suggests that high rates of change or tem- unity for x < 34 degrees, as long as the images are smaller
poral discontinuities in the the projected velocities of world than about 70 degrees square, this effect is smaller than
points could provide a basis for distinguishing a wide those already mentioned.
variety of moving objects against an apparently moving
background. Since the types of motion which would be 4.2 Practical considerations
detected by this method are characteristic of living creatures We next address the problem of identifying highly
(though they are not the only source) we will use the terni accelerated regions. Because of the effects of occlusion
animate motion to refer to highly accelerated movement and depth discontinuities, simply differentiating the motion
used in this context. field with respect to time will not work. Conceptually, the

The intuitive argument presented above can be for- problem can be solved by tracking the projections of world
malized as follows. Consider an observer translating with points from image to image, but actually doing this is often
velocity (Vx, Vy.Vz) and rotating at (ox, tyaz) with respect difficult as it requires solving a correspondence problem.
to the local Euclidean coordinate system established by the Fortunately however, identifying regions where rapidly
projection of world point p on the image sphere at time 0 (p changing motion is present is simpler than obtaining quanti-
projects to (0,0) at t=0). The apparent acceleration of the tative values for the accelerations. The idea is to use the
projection of p in terms of this local image plane contains measured motion field at a point in the image to predict
two terms: a coriolis term arising from the interaction of where associated world point might project in the next
the apparent translation of the projection of p with Oz, and a frame. Since the image motion due to non-maneuvering
divergence term arising from the apparent expansion of the objects changes slowly, the candidate locations can be
image due to translation in the Z direction. In component flagged to indicate that motion as a lpossible value. If the
form the (angular) acceleration in the local coordinate sys- motion field were known precisely, then each point in the
tern is original image would flag a unique location and direction in

the next frame. In general, however, since the field is inex-
a, = Owz(-ox - V)- 2-- actly known, a multi-dimensional "footprint" of non-zero

volume, whose exact shape depends on the nature of the
available information, should be flagged. This makes even

Va + V -vVy incomplete information, such as the gradient parallel com-
a = -OZ-o + - 2- . ponent available from local differential measurements,

The first term in each expression is the coriolis effect; the usable. Carring out this operation for each point in the ori-
second is the divergence, ginal image produces a constraint map which lists possible

values of the motion field for each point in the new image.
We can use these expressions to determine the condi- Typically, since footprints from different antecedent points

tions under which the method is usable. Examining the can overlap, a point in the map may contain more than one
acceleration equation, we observe that the accelerations due value. This constraint map can be compared to the com-
to self motion are on the order of the (angular) velocity of puted field in the new image, and inconsistent points
points in the image squared. The accelerations of indcpen- marked. These represent potential regions of high accelera-
dently moving objects, on the other hand are on the order of tion.
their (projected) angular velocity times the characteristic
frequency of their movement. Thus, for example, if the The above approach can yield a false negative if, due
components of the motion field due to self motion and to the local complexity of the original motion field, so many
independent motion are of comparable magnitude, the different directions occur close together that their overlap-
accelerations due to autonomous motion will stand out if ping footprints obscure genuinely new values due to
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changing motion. For most scenes, however, such regions
constitute a smali portion of the image if they occur at all,
so this will generally not be a big problem. The approach
can yield a false positive only at occluding boundaries when
previously invisible points appear. Since they were not
present in the original image to flag their future location,
such points can produce spurious indications of changing
motion. This problem can be greatly ameliorated by
extending the footprint through and slightly to the
counterflow side of its generating point. Thus an object
which is partially visible and emerging from behind an
occluding object will predict the appearance of similarly
moving points at the boundary. The only case where this
will break down is on the first appearance of such an object.
Such events occur infrequently enough that they do not gen-
erally cause a problem and, in fact, represent situations
which shou!d be noticed, since a suddenly appearing object
may very well be an independently moving one.

The animate motion method of has the advantage that
it does not require any information about the observer
motion, and is thus applicable for any smooth observer
motion rather than just a subset. On the other hand, it can
detect moving objects only when they maneuver. For
animals, this is almost any time they move, since legs or
wings must move back and forth to provide propulsion.
Certain manmade targets such as ships and airplanes, on the
other hand, may move at the same velocity for long periods.
In this case, the technique would be inappropriate. The
method would also be sensitive to jitter produced by small
rotations of the observer, and thus requires some method of
rotationally stabilizing the gaze. It is interesting to note in
this connection, that animals which rely much on their eyes
almost always possess some such system.

4.3 Real-time implementation and testing.
We have implemented a version of the animate

motion detector described above. The first stage is similar Figure 5: Detection of animate motion. The camera is
to that utilized in our implementation of the constraint ray translating to the left, which means that all the objects in the
algorithm described in Section 3, with Datacube boards scene are apparently moving to the right with velocities that
arranged to compute gradient parallel components of the depend on their depth. The waving hand, however, can still
motion field. This information is subsampled as before, and be detected. The procedure runs in real time (10
downloaded to the Sun, which computes the constraints at frames/sec).
each pixel of the image using the footprint method
described above. These constraints are encoded in an
intrinsic image, which is used to filter the next image for
motion which violates the temporal smoothness constraints.
The algorithm runs in real time (about 10 hertz) robustly smooth independent movement when the observer motion is
identifies animate (e.g. human) motion while the camera known.
translates and rotates in a complicated 3-D environment.
Figure 5 shows the detection of a moving hand from a mov- 5. Conclusions
ing camera. Unh:n ur inipienieniaion of the coistUrailt
ray filter, this method is not restricted to a limited set of We have described two methods for the detecton ot
observer motions, and seems to perform equally well under independently moving objects by z moving observer. The
a very wide range of movements, the only criterion being methods are robust in the sense that they are both resistant
that they not be too violent (in the sense quantified in sec- to error in the input, and can make use of motion informa-
tion 4.1). The limitation of course, is that the system is tion of low accuracy. This robustness results in large part
insensitive to smoothly iaoing objects. Combining the from the use of matching and filtering techniques based on
systems could provide the best of both worlds, with the con- qualitative features of the motion field rather than numerical
straint ray algorithm operating providing detection of computations based on quantitative measurements. The

methods are not infallible, in fact, as mentioned in section
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3, there exist situations in which no method involving pas- [Brow88a] - C. M. Brown (Ed), with D.H. Ballard, T.G.
sive monocular observation can distinguish autonomous Becker, R.F. Gans, N.G. Martin, T.J. Olson, R.D. Potter,
movement from apparent motion due to observer egomo- R.D. Rimey, D.G. Tilley, and S.D. Whitehead, The Roches-
tion. However, it is possible to characterize precisely the ter robot, TR 257, Computer Science Dept., U. Rochester,
circumstances under which the techniques are effective, and August 1988.
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first uses information about the motion of the observer, conversions, and kinematics for the Rochester Robotics
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ments, Proc. Topical Meeting on Image Understanding and
References Machine Vision, Optical Society of America, 1989.

[Heeg87] - D. Heeger, Optical flow from spatio-temporal
[Adiv85] -G. Adiv, Inherent ambiguities in recovering 3-D filters, Proc. 1st International Conference on Computer
motion and structure from a noisy flow field, Proc. IEEE Vision, 1987, 181-190.
Computer Society Conference on Computer Vision and Pat-
tern Recognition, 1985, 70-77. [Heeg88] - D. Heeger and G. Hager, Egomotion and the

stabilized world, International Conference on Computer
[Anan85] - P. Anandan and R. Weiss, Introducing a Vision, Tampa, 1988,435-440.
smoothness constraint in a matching approach for the com-
putation of optical flow fields, Proc. Third Workshop on [Horn8l] - B.K.P. Horn and B.G. Schunk, Determining opt-
Computer Vision: Representation and Control, 1985, 186- ical flow, Artificial Intelligence 17, 1981, 185-204.
194.

[Litt88] -J. J. Little, H. H. Bulthoff, and T. Poggio, Parallel
[AndeS5] - C. H. Anderson, P. J. Burt, and G. S. van der optical flow using local vote counting, 2nd International
Wal, Change detection and tracking using pyramid Conference on Computer Vision, 1988,454459.
transform techniques. Proc. SPIE Conference on Intelligent
Robots and Computer Vision, Boston MA, 1985, 300-305. [Long8l] - H.C. Longuet-Higgins, A computer algorithm

for reconstructing a scene from two projections, Nature,
[Barn80] - S. T. Barnard and W. B. Thompson, Disparity 293, 1981.
Analysis of Images, IEEE Trans. PAMI 2, 4, 1980, 330-
340. [Moro79] - H. P. Morovec, Visual Mapping by a Robot

Rover, Proc. UCAI 1979, 598-600.
[Bhan89] - B. Bhanu, P. Symosek, J. Ming, W. Burger, H.
Nasr, and J. Kim, Qualitative motion detection and tracking. [Nage83] - H. H. Nagel, Displacement vectors derived from
Proc. DARPA Image Understanding Workshop, 1989, 370- second order intensity variations in image sequences, Com-
398. puter vision, Pattern Recognition, and Image processing,

it 1 9 0), OC
4.,

A 
1 UJ 0J-1.

[Bo1187] - R. C. Bolles Epipolar Plane Analysis: an
Approach to Determining Structure from Motion, Proc. [Nage86] - H. H. Nagel and W. Enkelmann, An investiga-
International Joint Conference on Artificial Intelligence, tion of smoothness constraints for the estimation of dis-
1987,7-15. placement vector fields from image sequences. IEEE

Trans. PAMI, 85, Sept. 1986, 565-593.

337



[Nels88a] - R.C. Nelson and J. Aloimonos, Finding motion
parameters from spherical flow fields (or the advantages of
having eyes in the back of your head) Biological Cybernet-
ics, 58, 1988, 261-273.

[Nels88b] - R. C Nelson Visual Navigation, Ph.D. Thesis,
University of Maryland, 1988, also University of Maryland
Computer Science Department TR 2087.

[Nels89] - R.C. Nelson and J. Aloimonos, Using flow field
divergence for obstacle avoidance in visual navigation,
IEEE transactions on PAMI, 11, 10, Oct. 1989, 1102-1106.

[Praz81] - K. Prazdny, Determining the Instantaneous
Direction of Motion from Optical Flow Generated by a Cur-
vilinear Moving Observer. Computer Vision Graphics and
Image Processing, 22 1981, 238-248.

[Schu84] - B. G. Schunck, Motion segmentation by con-
straint line clustering, IEEE Workshop on Computer Vision:
Representation and Control, 1984, 58-62.

[Thom86] - W.B. Thompson and J. K. Keamey, Inexact
vision, Workshop on Motion, Representation, and Analysis,
May 1986, 15-22.

[Thom90] - W. B. Thompson and T. C. Pong, Detecting
Moving Objects, International Journal of Computer Vision
4, 1, 1990 39-58.

[Tsai8l] - R. Y. Tsai and T. S. Huang, Estimating 3-D
motion parameters of a rigid planar patch I, IEEE ASSP, 30,
1981, 525-534.

[Tsai84I - R.Y. Tsai and T.S. Huang, Uniqueness -rod esti-
mation of three-dimensional motion parameters of rigid
objects with curved surfaces, IEEE Trans. PAMI, 6, 1984,
13-27.

[Ullm791 - S. Ullman, The interpretation of structure from
motion, Proceedings of the Royal Society of London, B 203,
1979,405-426.

[Uras88] - S. Uras, F. Girosi, and V. Tone, A computa-
tional approach to motion perception, Biological Cybernet-
ics, 60, 1988, 79-87.

[Verr87] - A. Verri and T. Poggio, Against quantitative opt-
ical flow, International Conference on Computer Vision,
June 1987, 171-180.

[Waxm87] - A. Waxman, Image Flow Theory: a Frame-
work for 3-D Inference from Time Varying Imagery,
Advances in Computer Vision, C. Brown (Editor),
Lawrence Erlbaum Inc. 1987

338



Multiple Frame Analysis of Translation Dominant Motion
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Abstract in a considerable error in the estimation of the motion

An approach to fiultiple frame analysis for even with a slight deviation of the assumption of motion
translation dominant motion is presented. It1989].
is generally known that 3 dimensional motion It is often found that an algorithm that works in the
analysis algorithm is sensitive to noise t A long absence of noise has difficulty in accurately estimating
aeqenaly iagrm e en erally to oisre - motion at a realistic level of noise [Tsai and Huang,
sequence of image frame generally provides re- 194.ntrencofoieaenaidlendeig

dundant information. This redundancy can im- 1984]. Interference of noise are unavoidable in dealing

prove robustness to noise and thus soothe in- with real image data. At the front end of image acqui-

consistencies among the partial interpretations. sition, the physical limit of sensory systems introduces

Focus of expansion is computed from the re- measurement noise to data, e.g. errors introduced by the

gion matches, refined by corner matches. Mo- digitization process. Variations in the extracted feature

tion parameters and depth map for regions are set from frame to frame may decrease the reliability of

compued from FOE. Regions with similar mo- the data. The most common source of noise is in feature

tion vectors are grouped together under the as- matching. Establishment of correspondence is subject

sumption that there are a multiple number of to some matching errors since it is essentially identical

independently moving objects. In the motion to an incomplete graph matching. The possibility of in-

analysis, higher priorities are given to data sat- correct matching increases for multiple frames leading to

isfying the assumption of translational motion, breaks in the sequences of matches. A strict screening on

the result of which guides the analysis of the correspondence would decrease not only erroneous data

noisy regions in the same motion group. but also useful data.
A more reliable result can be expected when a global

1 Introduction approach is used, where motion analysis is done as a
part of an integrated process rather than as a single iso-

One of the prime research areas in computer vision is lated process. An integrated process means the com-

motion analysis using multiple images. The goal is to bination of all phases of motion interpretation, includ-
recover the relative motion between a viewer and the ing segmentation of an image, feature extraction, fea-
environment as well as the structure of the environment. ture matching, motion parameter estimation, and three-
Over the last decade, there have been many works in mo- dimensional structure estimation.
tion analysis, most of which are based either on the es- A global approach in the motion interpretation of a
tablishment of feature correspondences between frames sequence of images should control two tasks. One is the
[Broida and Chelappa, 1986; Shariat and Price, 1990; control of the interactions among the phases of the in-
Tsai and Huang, 1984], or the estimation of the intensity tegrated process. The global module and its slbsidiary
velocity of points [Adiv, 1985]. Both of them are compu- modules exchange information in both directions. For
tationally expensive and sensitive to noise. With noise example, segmentation and motion estimation are so
added to the optical flow or feature correspondence, it is closely related that both of them can be improved with
difficult to correctly estimate the motion parameters. feedback from one to the other.

There have also been approches in which some con- The other task is the coordination of partial int,
straints are imposed on the motion and relatively sire- tations. A long sequence of image frames gener c
ple analysis is done on the restricted inotio in order vides redundant information for motion analysis. '1,.
to speed up the computation and improve robustness to motion is consistent throughout the obser"
noise. It is reported that a simplified analysis may result the necessary information can be

'This xesearch was supported by the Defense Advanced of the whole sequence. If an
Research Projects Agency under contracts F33615-87-C-1436 has multiple matching local t ,
and F49620.89-C.0126, monito-ed by the Wright-Patterson subset of them may supply the
Air Force Base and the Air Force Office of Scientific Research, there can be many partial intei, .,:ons o
respectively. sequence, which should be consi. .t with e..- .. ner.
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However, separate partial interpretations of noisy datt
are often inconsistent and mutually contradictory. With
an appropriate management of redundant data, this in-
consistency may be remedied, or at least a confidence
factor for each interpretation may be computed. V . - Regions

Three basic ideas are incorporated into our integrated
motion analysis system:

" Get a rough estimation using data less sensitive to Grouping yMo

noise.

" Verify and correct rough estimates.

" Make use of all information available. R Groups of Ungrouped

Our integrated motion analysis system is being used to Muing Regions Regions

generate a rough description of three-dimensional struc- G

ture of the environment, using matches for region-based Group Z..
features, with refinements from matching corner fea-
tures. All of the processing is applied over multiple (at
least 5-10) frames. The current effort is on computing a
depth estimate when the dominating motion is transla-
tion along the axis of the camera. gmupm Hypo... or motion parametcr

An estimate of the FOE (focus of expansion), which is A.
computed from the region or corner matches, guides the
computation of the direction of motion. The estimates Grouping by verincntlo

of the motion parameters and depth map on each re-
gion are monitored globally. Priority is given to regions
with clean data. Regions with inconsistent parameters
go through a guided analysis where the result of the more
reliable ones give some constraints to the motion param- Figure 1: Sequence of data analysis
eters.

A brief outline of data analysis is given in the next
section. In subsequent sections, feature matching, es- translation, both the direction of the translation vector
timation of the FOE and motion vector, grouping and ind the relative depth of the object are computed from
depth estimation of regions are described. The results the position of FOE in the image plane. The position of
of experiments on real image sequences are given in sec- FOE for each region is verified using the computed three-
tion 6. dimensional structure. A constant incremental depth

from frame to frame is the criterion in the verification
2 Sequence of Data Analysis step. Regions with validated FOE's are grouped accord-

ing to the direction of their translation vectors. This
The block diagram of the integrated motion analysis sys- assumes that there may be multiple independently mov-
tem is shown in figure 1. ing groups of objects. The motion groups act as a guide

Each image is segmented into a set of uniform regions for similar analysis of the noisy regions.
using a recursive region splitting technique [Ohlander et The analysis for the regions with low reliability fac-
al., 1978], where the segmentation for the previous image tor is based on the hypothesis and test paradigm. The
frame guides the segmentation for the current image. hypotheses are the motion parameters for each motion
This guidance helps to insure that the segmentations are group and the three-dimensional structure for the noisy
somewhat consistent from frame to frame. region computed from these parameters. The region is

Feature matching is performed in 2 steps. First, re- merged into the motion group that produces the most
gion correspondences over multiple frames are computed. constant incremental depths from frame to frame.
Then correspondences are established for corner points Finally, the depth is computed over the surface of the
extracted from the contours of the matched regions. matched regions in the motion groups, with the surfaces
Each region receives a reliability factor that measures approximated as planar patches. This surface recon-
the linearity of the corner matching associated with the struction step is not the thrust of the effort and is one
region, i.e. this measures the similarity to translational of many different techniques for such analysis.
motion. Matching data with low linearity are considered
to be erroneous. Higher priorities are given to data sat- 3 Feature Matching
isfying the assumption of translational motion. Motion
analysis is first performed on regions N ith high rcliabil- Feature matching is done in an hierarchical manner to re-
ity factors, which guides the analysis of the uthers. More duce computation time and increase stability First, re-
details of this work are described in section 3. gion correspondences are established for adjacent frames

The next step is to compute the FOE for those re- in the sequence. Then point correspondences are ob-
gions with a high reliability. For an objtct undcr pure tained for the corner points extracted from the bound-
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aries of the matched rcgions. A single relaxation-based placement of a point in a CMS and the mean square
matching routine [Faugeras and Price, 1981] is used for error when the CMS is approximated by a straight line.
matching both sets of features (regions and corners) by M
changing the feature set used by the matching routine. 3linCMS =
Corner matching for a region is guided by the motion D
computed for the center of mass of the matched regions where M and D represent the average and standard de-
and by the fact that corresponding corners must appear viation of incremental depth of the corner.
on corresponding regions. This produces stable feature The 2-linearity and 3-linearity of an RMS is defined
correspondences over multiple frames of a sequence. as the weighted sum of the measures of its best three

For convenience, we define an RMS (region matching CMS's. Hence preference is given to an RMS with more
sequence) as a sequence of matched regions over mul- than three CMS's.
tiple frames and a CMS (corner matching sequence) as
a sequence of matched corners based an RMS. In fig-
ure 3 and figure 6, CMS's over an RMS are shown for 21inRMS = E21inCMS(i)w(i)
each frame sequence used in the experiment. The region i=1
boundaries are shown with dots indicating the corners 3

in the CMS. The approximate motion of a region can 31inRMS = E 3inCMS(i)w(i)
be compted from an RMS, and the fine structure can be
computed from the CMS's of the region. w=4where w(1) = 27 w(2) = 4 wo(3) = 1.
3.1 Reliability of Matching Sequences

There are many factors to decrease the reliability of a 4 Estimation of the FOE and
matching sequence. If an RMS contains errors, then the Translation Vector
CMS's based on it will be erroneous,too. There are also
fluctuations in the detected location of the corners from It is well known that the two-dimensional (iamge plane)
frame to frame as can be seen in figure 3. Even if an RMS flow vectors of an object under pure translation all pass
is correct, the CMS's are subject to matching errors. through a single point, the FOE. The same also holds for
Because of these problems it is necessary to measure the sets of matching feature points. Ideally, all the CMS's
reliability of a matching sequence and to depend on the intersect, when extended, at the FOE. As stated in sec-
most reliable measurements. tion 3, CMS's may have erroneous components, thus

The reliability factor of a CMS is related to how many spreading the intersection point for the CMS's over a
image frames are included and how many CMS's occur wide range.
in an RMS. Without occlusion, a CMS for a prominant Other work on the selection of an estimate of the
corner should contain as many matches as the associated FOE from a set of possible values includes using a mod-
RMS. A missing match for a corner at some frame breaks ified Hough transformation [Manmantha et al., 1989]
a long corner matching sequence into two CMS's. So, a or by searching [Bhanu et al., 1989]. We chose to use
higher reliability is given to a longer CMS. The number a weighted average in LMSE sense. In the average,
of CMS's for an RMS depends on the size and shape the intersection points for a set of unreliable CMS's
of the region associated with the RMS. Usually several were discarded to minimize the spuriousness of erroneous
reliable CMS's are available for a region. But if the RMS matches. The weighting factor is given by:
is unstable (or has errors) or the region does not have
prominant corners, few reliable CMS's are available. So, weightingfactor = CA x CB x abs(sin(O))
a higher reliability is given to an RMS that contains more where CA and CB are the 2-linearities of the CMS's for
CMS's. the intersection point and 0 is the angle between the

When a point undergoes a pure translation in 3 dimen- CMS's. Intersections with a weighting factor below a
sional space, its depth change is constant and its image given threshold are not included in the average, since
lies on a straight line in the image plane. This leads us to they may have a large deviation from the exact FOE po-
choose the linearity of matched sequences as a reliability sition that influences the result even though the weight-
measure. The 2-linearity is a measure of the linearity ing is small.
of a matching sequence in the image plane and is used When
to choose more reliable ones. For a CMS, 2-linearity tion of the motion vector of a translating object is eas-
is defined as the product of its length and the fitness ion ofpte mot ve omaltranslatin oect ie
when approximated by a line segment. 3-inearity ily computed. Let the normaized motion vector be
sures the uniformity of incremental depth from frame to T= (T Ty 1) and the FOE lies on (Vz Vu) in the image
frame and is used to verify estimated parameters. The plane. Then
3-linearity of a CMS is then defined as the standard de- T= - V- C.
viation of depth difference normalized by the mean value F
of the difference. VV - CV

D TY F
2liiiCMS = Iengh(CMIS)T-

1n ewhere (C,, Cy) is the center of the image plane and F is
where D and M respectively represent the average dis- the focal length.
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The environmental depth of a point can be obtained frame 120-frame long hallway sequence from SRI. The
by a simple function from [Snyder, 1989], length of the analyzed sequence is 12 and the image size

Zi+1 ri is 256 by 240. The other one is a car sequence consisting
= - of 6 frames during which a car moves from the right side

of a 760 by 512 image to the left side.
where Z, is the environmental depth of a point at frame Figure 2 through figure 4 shows the result for the hall-
i and r, is the distance from the FOE of an image point way sequence. The image of the 6-th frame of the se-
at frame i. T is the unit advance (scaling factor) of the quence (51st from the original) and its region segmenta-
object and can be set to any nonzero value if unavailable. tion are shown in figure 2. As shown, the average number
When a point correspondence (e.g. CMS) of length N is of regions from segmentation is around 10. CMS's su-
available, the depth at each frame is obtained by perimposed on an RMS is shown in figure 3 with their

N-2 estimated FOEs as large dark circles. The estimated
Zk= 1 =0o rr+ depths for the best three corners are shown in table 1.

rk(rN-1 - to) Using a planar approximation of the surface of a region,
Thus the depth is inversely proportional to the distance depth interpolation was performed for the surface of the
of a point from the FOE position. regions from these three corners. The result of interpo-lation is shown in figure 4.

5 Grouping and Depth Estimation The results for the car sequence is shown in figure 5through figure 7. The image of the 4-th frame and its
Since the interpretation of sequences with noisy data can region-based segmentation are shown in figure 5. CMS's
be guided by that of clean ones, analysis is performed superimposed on an RMS is shown in figure 6 with their
first on reliable regions and then on the other regions. estimated FOEs, As shown in fig, the average number of
First a set of regions with a high value for the 2-linearity regions from segmentation is around 7. A 3 dimensional
of the RMS is selected. The FOE is computed for these plotting of depth of the surfaces of regions is shown in
regions and verified by the computed depth of the re- figure 7.
gion. Using the assumption of uniform translation, the
incremental depth from frame to frame does not change. 7 Conclusions
The FOE of a region is considered correct if the varia-
tion in incremental depth associated with that FOE is In this paper, we described a method of multiple frame
small. Those regions with verified FOEs are classified analysis for translation dominant motion and showed the
into motion groups by similarity of the direction of their result for 2 real image sequences. It has been shown thattranslation vectors. The grouping of the other (unreli- redundant information in a long sequence of images can
able) regions are guided by this motion group. The block be used to improve robustness to noise and coordinatedag f regione gupin byis showtin igoure k inconsistencies among partial interpretations. We haved ia g r a m o f r e g io n g r o u p in g is s h o w n in fi g u re 1 .al o s w n t t a p r e r h d i g o f o s y c r s o -

This Self Grouping step applies for all reliable regions also shown that a proper handling of noisy correspon-
and generates a translation vector that represents the dence data can result in fairly good estimation of FOE
motion for all regions within the group. Any number of and motion vector by giving appropriate reliability to
independently moving object groups are allowed in the Moio nalysi a v rio
image sequence. Motion analysis heavily relies on grouping of regions

Supported Grouping uss the motion parameters of based on hypothesis and test paradigm. Regions with
the motion groups formed from the self group~ing pro- clean data are grouped in accordance with their motion
cedure as a guide for valid motion groups. If at least vectors. The motion parameters of motion groups are
one reliable correspondence from each motion group is used as hypotheses in the analysis of the noisy regions.
available, then it is highly probable that any moving ob- We could get a depth map of regions, which fairly well
ject is in coherent motion with one of the motion groups. represents the relative depth of the environments.
For each of the the ungrouped regions, the POE position This system is working well at a reasonable level of
computed for each motion group is used to compute the noise, including matching error and localization errordepth for the regioni and to choose the motion group in feature extraction. However, there still remain some
which produces the least variation in incremental depth. uiiidetified regions, which are either very noisy or too
If the variation is within a given threshold, the region is far from the camera.
merged into that motion group. References
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fame-num[1 2 1 3 1 4 [ 5 1 6 1 7 1 8 9 10 1 11]
reg-2 09.89 08.88 07.89

13.47 12.42 11.42 10.37 09.38 08.42
10.98 09.89 08.95 07.95

reg-3 13.76 12.74 11.76
23.89 22.92 21.97 20.93 19.83

22.80 21.84 20.70 19.67 18.74 17.89 16.84 15.85 14.80 13.77
reg-4 32.26 32.40 30.38 29.72 28.12 27.22 26.37 25.11

19.77 31.26 18.54
reg-8 74.97 73.95 72.97

32.77 31.85 30.99 29.79 28.67 28.30 26.96 25.75 24.64 23.85
36.36 35.36 33.93 33.49 32.61

reg-lO 13.05 12.05 11.05 1 1 1
09.75 08.79 07.75

09.96 08.96 07.95 07.07
reg-12 44.08 43.30 42.36 41.36

Table 1: Depth of the best 3 corners from each region of Hallway sequence

frame-numJ 0 [ 1 2 3 [5]
reg-3 07.99 07.01 06.00

10.44 09.40 08.38 07.40 06.41
09.80 08.78 07.75 06.78

reg-5 10.75 09.72 08.70 07.67 06.69 05.71
10.89 09.83 08.81 07.81 06.81 05.84
10.77 09.71 08.71 07.68 06.69 05.72

reg-6 10.05 09.04 08.00 07.00 06.03
10.10 09.06 08.06 07.03 06.07
11.01 09.97 08.81 07.99 06.97

reg-7 10.88 09.89 08.88 07.88 06.88
10.85 09.86 08.81 07.84 06.84
11.02 10.05 08.99 08.00 07.01

Table 2: Depth of the best 3 corners from each region of Car sequence
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(a) Region 2 (b) Region 3
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(c) Region 4 (d) Region 8

Figure 3: FOE from each region of hallway sequence
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Figure 4: 3 dimensional depth of 6-th frame of hallway sequence
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(a) Region 3 (b) Region 5

(c) Region 6 (d) Region 7

Figure 6: FOE from each region of car sequence

Figure 7: 3 dimensional depth of 4-th frame of car sequence
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DETECTING MOVING OBJECTS FROM A MOVING PLATFORM

J. Frazier and R. Nevatia
Institute for Robotics and Intelligent Systems

University of Southern California
Los Angeles, California 90089-0273

Abstract results indicate that, once the threshold is set high enough to
eliminate false alarms, it can be increased by a factor offive

We present a system that successfully detects edge segments and still correctly detect moving objects.
of moving objects viewed by a translating camera. The sys-
tem uses two key concepts. First, a Complex Logarithmic The moving-edge detector requires no object matching or
Mapping (CLM) is used to simplify detection of the desired recognition, and can thus detect moving objects that are par-
movement. This converts the problem from one of detecting tially occluded or camouflaged.
a complex motion along both the X and Y axes, to one of de- We show results of processing both synthetic and real im-
tecting vertical motion along an angular axis. Second, a age sequences. The synthetic sequence is used to illustrate the
mechanism to detect "vertically-moving edges" has been de- approach. The real sequence consists of imagery, containing
veloped to detect the requisite vertical motion within the a moving truck, taken from an observation vehicle that was
CLM image. Unlike other techniques, the method presented following a road. The system correctly detects (with no false
here does not require densely-sampled imagery. The system alarms) portions of the truck as it passes the observer. The
also provides insight into uses and organization of moving- system works even though (1) the truck moves a large dis-
edge detectors found in biological vision systems. tance between each image at the beginning of the sequence,

(2) the size (in the image) of the truck varies considerably
over time, and (3) the camera slowly tilts throughout the se-

1 INTRODUCTION quence.
Detecting moving objects from a moving platform has sever- 2 PREVIOUS WORK
al important uses, including military and automotive applica-
tions. It is a difficult problem, however, because observer Several researchers have created systems to detect moving
motion causes stationary objects to appear to move in the im- objects, in the presence of a moving background, fiom a mo-
age. Thus, to detect moving objects, we must separate genu- nocular image sequence. [Zhu, 1988] and [Lee and Lin, 1988]
ine motion from the apparent motion of the stationary apply a multiresolution approach. [Blostein and Huang,
environment. 1988] perform a tree search to match trajectories within a

We present preliminary results of a promising technique to scene.
solve this problem. The technique assumes that non-transla- [Thompson and Pong, 1990] have implemented systems
tional components of the observer's motion are very small. that track interest regions, and separate systems that utilize a

To simplify detection, a Complex Logarithmic Mapping constraint based on both optic flow and knowledge of scene
(CLM) is first performed. This converts the problem from one depth.
of detecting a complex object motion along both the X and Y
axes, to one of detecting vertical motion along an angular [Heeger and I-lager, 19881 utilize camera motion parame-
axis. The CLM requires the location, projected on the image ters (for translation and rotation) to find optical flow vectors
plane, of the distant point in space toward which the observer (in the rectangular reference frame) that are inconsistent with
is moving. We assume this location (called the focus of ex- the assumption of a stationary environment. They show re-
pansion, or FOE) either is constant, or changes slowly, suits on synthetic imagery.

A mechanism to detect "vertically-moving edges" has been [Bhanu and Burger, 1988] apply a technique to qualitative-
developed to detect the icquisitv. ve tical motion wituhin the ly determine the focis, of expansion. They then detect moving
CLM image. This moving-edge detector senses any vertical objects by assuming that they have a higher rate of translation
motion between frames that is greater than a specified dis- in proportion to their size than arbitrary background regions.
tance threshold. Thus, the system can detect objects that [Jam, 1984] assumes a translating observer, and performs a
move distances of many pixels per frame, and therefore does Complex Logarithmic Mapping to simplify detection of mov-
not require densely-sampled imagery. ing objects. A series of accumulative difference images are

The distance threshold is currently the only parameter (giv- computed, object segmentation is performed based on motion
en the FOE) required by the system, and the system performs in CLM space, and CLM object trajectories are estimated.
properly over a wide range of threshold settings. Preliminary Moving objects arc then detected based on their trajectories.
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The technique presented here also uses the CLM, but with We use, however, a variation of the polar coordinate trans-
a simplified method to detect moving objects in CLM space formation called a Complex Logarithnic Mapping, or CLM
that requires only two frames for analysis. The method used [Jain and O'Brien, 1984]. This mapping differs from the con-
to detect the moving objects does not rely on traditional opti- version to polar coordinates only in that we use the logarithm
cal flow computations, which require densely-sampled imag- of the radius:
ery. Nor does the technique require segmentation of objects log (r)
within the scene.
3 FOCUS OF EXPANSION

where the CLM subscript indicates the Complex Logarithmic

When an observer moves in a straight line, toward a distant Mapping (versus polar) versions of the radius and angle vari-
point in space, stationary objects in the environment appear to ables.
move along paths radiating from that point. The point from The CLM provides scale, rotation, and projection invari-
which the paths radiate is called the focus of expansion, or ances under certain conditions as described in [Tain and
FOE (see figure 1). We assume that non-translational compo- O'Brien, 1984]. It is also believed to approximate the retino-
nents of the observer's motion are very small, which implies striate mapping in the human visual system [Schwartz, 1980].
that the FOE and camera orientation are relatively stable be- Although these properties are not specifically required by the
tween two successive images. In other words, the observer motion detection process, they are potentially useful for ex-
must not sharply turn or tilt between images. tensions to this work.

Figure 2 graphically illustrates the CLM. In the standard
rectangular coordinate system (figure 2(a)), the white lines
become brighter with increasing radius, and the black lines
become darker with increasing angle. In CLM coordinates
(figure 2(b)), we see the white lines of increasing radius, and
the black lines of increasing angle. Notice the scalloping that

FOE Ooccurs on the right side of the CLM image. The sharp points
,.. of the scallops correspond to the comers of the rectangular

image, and the curves between the points correspond to the
boundaries of the rectangular image.

Figures 3(a) and (c) show two synthetic images from a se-
quence depicting a road, horizon, billboard, and airplane. As
the observer travels along the road (figure 3(a) to figure 3(c)),
the billboard travels along a path radiating from the FOE, inFigure 1: The paths of stationary objects radiate from the fo- this case the point at which the road meets the horizon. Unlike

cus of expansion. the billboard, the plane is not a stationary object, and its path
does not radiate from the FOE.

In the current system, the FOE is measured manually. Figures 3(b) and (d) show the corresponding images in the
Many systems for automatically computing the FOE have CLM coordinate system. The images show that the billboard,
been deveioped in previous work, e.g. [Burger and Bhanu, being stationary with respect to the environment, moves only
1989]. We are developing software to automatically compute in the direction of increasing radius (i.e., horizontally and to
the FOE as described in the Future Work section. the right). This is in contrast to its motion in the rectangular

reference frame, in which the billboard moves in both the hor-
4 COORDINATE TRANSFORMATION izontal and vertical directions.

The plane, on the other hand, is moving with respect to theTo simplify motion detection, we first transform the image to environment. Its path does not radiate from the FOE, and
a different coordinate system. We could convert to polar co- therefore it exhibits a component of motion along the vertical
ordinates, using the FOE as the origin: (or angular) axis of the CLM image. Thus, to detect genuinely

moving objects from a moving platform, we must detect ver-SJ(x - XF~oE) + (y _ YFOE) 2tical motion in the CLM coordinate system.
0 = angle (xxFOEY YFOE) 5 VERTICAL MOTION DETECTION

where r is the radial distance from the FOE to the rectangular
image coordinate (xy), and 0 is the angle (from 0 to 2n radi- The technique described here to detect vertical motion is de-ans) subtended by the rcortangular image coord~nate tu, h-a sun ten ,,, t. signed to detect vertical movement of horizontal (or near-hor-
FOE, and the rectangular image coordinate (1,0). izontal) edges. Detecting vertical movement of non-

That simplifies the problem because, in a polar system, sta- horizontal edges is difficult because of the aperture problem
tionary objects move through the image only in the direction (i.e., determining the component of an edge's motion parallel
of increasing radius (given the assumption of a translating ob- to the edge requires knowledge of the motion of an endpoint
server), and their angular coordinate remains constant. Thus, of the edge, which can be difficult to obtain). Several tech-
any object that moves in the angular direction must be a mov- niques have been developed to detect moving edges (e.g.
ing object. [Kahn, 1988]). Many, however, assume densely-sampled im-

349



N 4

7N 1

(a) Rectangular reference frame. X 0 (b) CLM reference frame.

Figure 2: Image of radial lines and concentric circles transformed from rectangular to CLM reference frames.

* Plane
Plane

Billboard
Billboard

*Horizon Horizon

(a) Ninth frame. (b) CLM of ninth frame.

- ----------
(.)'rwelfth fraime. (dI) CLM of twelfth frame.

igure 3. Two. synthetic; images, and t.ori c~spond Ifg CLIN iuiiagc~s, of at mo-v ing airplane and stationary billboard s viewed by a
moving observer traveling along a road.
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agery (e.g. that objects move less than one pixel per frame), tected around edges of the airplane in each of the 20 frames
whereas the approach described here does not. of the synthetic sequence, with no false alarms.

The basic idea of our approach is as follows. If a horizontal 6 RESULTS ON REAL IMAGERY
edge in an image moves horizontally (figure 4(a)), then the
overlap between the edge from one image to the next is very Figure 6 shows images 4, 5, 8, and 15 of a real road sequence
large. On the other hand, if a horizontal edge moves vertically containing a truck passing a moving observer. Figure 7 shows
(figure 4(b)), there is very little overlap, if any. Thie following the resulting detected motion overlaid upon the original im-

technique first enhances horizontal edge components of the

CLM image, then uses the idea of overlap to detect any verti- ages.

cal motion of those edges. Notice that the truck moves a very large distance between
the consecutive images of figures 6(a) and (b), illustrating
that the imagery is not densely sampled. Also note the large
change in the truck's size from figures 6(a) to (d). When

......... viewed in rapid succession, the images also reveal a gradual
.. .rotation, or tilt, of the camera. Despite these circumstances,

the system successfully detects portions of the moving truck
(with no false alarms) in each of the 15 frames of the se-

(a) Horizontal motion. (b) Vertical motion. quence. The FOE was determined manually (for one image in
the sequence), and ite same image coordinate was used for
the FOE over the entire sequence.

Figure 4: The overlap of a moving horizontal edge from one ote that the eyte cuentee
n Note that the system currently detects portions of moving

image to the next depends on the edge's direction of motion, objects, and that we plan to extend it to detect complete mov-

ing objects.

First, we convolve the CLM image with the horizontal edge 7 ADVANTAGES AND LIMITATIONS
mask of the Sobel operator. Figure 5(a) shows the effect of
performing this convolution on the image of figure 3(b). The The advantages of the system are:
result is an estimate of the partial derivative of the CLM im-age, along the vertical direction. • It does not require densely-sampled imagery, meaning

that objects may move distances of many pixels per
Next, each pixel value of tthe partial derivative image is frame without detrimental effects.

squared. This produces large positive values along horizontal - It currently requires (assuming the FOE is given) only
edge components of the image. It foims a reference image of one parameter, the threshold used for vertical movement
all horizon:tal edge components, detection. Note that this version of the system does not

IThen, we multiply the partial derivative of the current CLM include automatic computation of the threshold, and that
image by that of the previous CLM image. This produces an the threshold was set manually for the results presented
image similar to the above reference image. The difference is here. One threshold value was used for the entire plane
that the result has large positive pixel values only along hori- sequence, and another threshold was used for the entire
zontal edge components that overlap from one image to the truck and road sequeace. Preliminary results indicate
next. Edges that move vertically produce little overlap, and that, for a given pair of images, once the threshold is set
are eliminated. high enough to eliminate false alarms, it can be increased

This product is then subtracted fromn the reference image, by afactor offive and still detect the moving object.
producing a map (shown in figure 5(b)) of all horizontal edge • The system requires only two images for analysis, which
conpoents that have moved ve-tically since the previous reduces sensitivity to gradual orientation changes.
frame. Actually, this map does contain small pieces of hof- - It is computationally efficient and highly suited to paral-
zontally-moving edges that did not completely cancel out. In lel implementation.
practice, however, these small pieces are very weak, and are Because the system requires no object matching, it may
filtered out by a threholding process. Thie result, after thrsh- be abue to detect moving objects that are camouflaged or
olding, is shown in figure 5(c). pai obd.

The threshold was set manually for the results presented Tie limitations of the technique are:

here. We expect that it can be computed from image statistics
(namely, ftom rhc correlation fuii,_tion and histogr,,m of the * It requires the location of the FOE. However, this may be
hri/oiiki Subci imwagc), ,tid fiumi tic desired diStami1e km ,1 fumdaimcilmi requircmnent for systems that are to reh-
pixels) of vertical movement above A liLlh motion is to be de- ably detect moving objects from a moving platform.
tected. Initial results indicate that the system works properly * The method used to detect vertical motion is most effec-
over a broad ratige of threshold settings. tive when detecting vertical movement of horizontal (or

After thre.holding is completed, the detected motion is near-horizontal) edges in the CLM image. It requires that
transformed back to the rectangular reference frame (figure moving objects contain such edges.
5(d)), and then overlaid upon the original image. Figure 5(e) * The system ignores motion that is exactly along lines ra-
shows a dimmed version of the original image, with the bright diating from the FOE, but such motion appears to be rare.
white areas representing the detected motion. Motion was de- Note that the truck in the road scene was traveling rough-
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(a) CLM image convolved with hor- (b) Map of horizontal edge compo- (c) Thresholded map depicting
izontal edge mask of Sobel operator. nents exhibiting vertical motion. detected motion.

(d) Detected motion transformed (e) Resulting motion overlaid upon
into rectangular reference frame. dimmed version of original image.

Figure 5: Intermediate and final results of detecting vertical motion i-i the CLM reference frame.

ly along lines radiating from the FOE, but was still de- by adding a mechanism to detect horizontal movement (in-
tected. stead of just vertical movement) in the CLM reference frame,

we can produce a motion detector suitable for a stationary ob-
8 SIMILARITIES TO BIOLOGICAL server.

SYSTEMS 9 FUTURE WORK
Two important similarities exist between biological vision

systems and the techniques presented here for motion detec- The next step in development of the system will be to deter-
tion. First, the CLM approximates the mapping found be- mine requirements for computing the FOE. It may be possible
tween cells of the retina and the visual cortex [Schwartz, to simply use an FOE computed from the orientation of the
1980]. camera with respect to the vehicle.

Second, areas have been found in the visual cortex that spe-
cifically detect the motion of edges as described in [-lubel, We are also exploring a Hough-transform based method for
1981J. However, the movirig-edge detector described here determining the paths of edges within the scene over time.
differs from those observed in biological systems in the fol- When plotted as x-location (y-location) versus time, vertical
lowing way. In the v cor. . ., m o . ..g - ,,". ...c,, ,s arc (horizontal) edges associated w ith stationary objects form hy-
sensitive to the sense of movement 'if an edge. That is, if a perbolas (assuming only translational observer motion). All
horizontal edge moves upward, then one set of detectors is such hyperbolas share a common asymptote, which can be
triggered. If the edge moves downward, then a different set of detected by the Hough transform, and which is the FOE. Also
detectors is triggered. The detector presentedl here has o note that the parameters of such hyperbolas should be suffi-
such sensiuvity, and responds equally to both directions of cient for detecting potential collisions with stationary objects
movement, via looming information as described in fArbib, 19891.

One possible use of suh dctcmors in biulogical systems is We will study automating the setting of the movement
to detect moving objects when the obsvcrvcr is moving. Also, threshold, based on image statistics of the horizontal Sobel
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(a) Fourth frame. (b) Fifth frame.

< % %

...... .

---- --------- .. " .' .' .. .- ... .. .:.. ....

(c) Eighth frame. (d Fifteeqth frame.

Figure 6: Real imagery of a moving truck, taken from a moving observation vehicle following a road.

image ana on thc desired distance (in pixels) of vertical Tlhis preliminary segmentation can then be passed to other
movement above which motion is to be detcd, processcs for more detailedl analysis.

Segmntaionof he mvin obectwdl e ivesigaed. Finally, merging of system rcsults over time may provideSegmntaionof he ovig ojcc wil b incstgatcl. more accurate information about detccted moving objects,
Initial experiimental rcsults indicate that, once a moving ob- and will be examined.
ject is detected, a rough segmentation (or separation of the
object from its background) may be perforined by redlucing
the movement threshold in the neighbc ':ood of the object.
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(a) Fourth frame. (b) Fifth frame.

TI.'%v. rC
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(c) Eighth frame. (di) Fiftccnth frame.

Figure 7: Detected motion overlaid upon dimmed versions of images from the real truck seqluence.

10 CONCLUSION been developed to detect vertical motion within the CLM im-
age.

We have prcscntcd a systcmn to detect edge segments of mnov- The system has been tested on a sequeclie of r Ai images in
ing objects viewed by a translating camera. TL.- system uses whiih it successfully detects, with no false alarms, portions of
two key concepts. First, a Complex Logarithitic Mapping is a moving vehicle that is viewed by a translating observer. The
performed to simplify the proicss of detecting the desired s> stem docs not req.uire densely-sampled imagery, it dctccts
movement. S~Lcnd, a mcch,igisin to dctek.t mo% ing edges has moving objects of various sizes, and tolerates gradua. -hang-
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es in camera orientation. It currently requires only one param- approach to coding. Vision Research, 20:645-669, 1980.
eter whose value is not critical, it is computationally efficient,
highly suited to parallel processing, and may be able to detect [Thompson and Pong, 1990] W.B. Thompson and T.C. Pong.
moving objects that are camouflaged or partially obscured. Detecting moving objects. International Journal of

We plan to extend the system to detect complete objects Computer Vision, 4:39-57, 1990.
(instead of portions of objects), and to automatically compute [Zhu, 1988] Q. Zhu. Structural pyramids for representing and
the FOE. locating moving obstacles in visual guidance of navigation.
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Motion and Binocular Stereo Integrated System for Passive Ranging
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ABSTRACT ments due to object motion in the scene. Li and Duncan2

Range measurements to objects in the world relative to estimated the platform motion from measures for the optical
mobile platforms such as ground or air vehicles are critical flow of the left and right cameras for a series of binocular
for visually aided navigation and obstacle stereo images, without point-to-point correspondences. In
detection/avoidance. Active (laser) range sensors can be used addition, stereo matching procedures based on the estimated
to provide such range measurements although they have a translational velocity and the flow fields were derived. An
limited field of view, suffer from slow data acquisition, and empirical evaluation of the robustness of the approach to
are expensive. This paper reports the results obtained to date image noise (which degrades the accuracy of the flow field)
for a robust and efficient passive technique for obtaining for synthetic images was carried out. The approach was
range measurements. Our approach consists of a unique and demonstrated to be robust for representative flow field magni-
synergistic combination of two types of passive ranging: bi- tude and direction errors. Binocular and motion stereo rang-
nocular stereo and motion stereo. The problem that we ad- ing techniques attain distinct degrees of accuracy for various
dress is the optimal combination of sparse motion stereo image regions. The regions of good and poor perf rmance of
range estimates, rm (xy), and sparse binocular stereo range each approach was derived by Sridhar and Suorsa for bino-
estimates, rs(xy), so the resulting range map is as accurate cular images obtained with a computer controlled motion
and dense as possible throughout the entire field of view. table. These images were a scaled representation of the

imagery that would be obtained by a helicopter traveling at a
1. INTRODUCTION speed of 20 knots. The image processing rate was 2

frames/sec. The scaled stereo baseline was .1 inches which
The objective of this research is to develop a passive ranging corresponds to a true baseline of 5 m. They demonstrated a
system that reaps the benefits of binocular and motion stereo "recursive motion algorithm", based on an extended Kalman
and requires only two cameras. The innovative stereo system filter aided by an inertial navigation system, which produced
synergistically combines binocular and motion stereo modali- good results for scene objects whose images where not near
ties by combining of interest point matching, range measure- the image location corresponding to the instantaneous direc-
ment blending and Kalman filters. tion of travel. They also demonstrated a "recursive stereo

algorithm", based on geometric disparity, which produced
good results for all portions of the image. The binocular and

1. The system is cheap to build (compared to active sen- motion stereo algorithms were not integrated and no method
sors). for estimation of confidence factors for each measurement

2. It is passive (i.e. non-detectable, covert), approach was presented.

3. A more dense and more accurate range map is generated The following tasks were carried out to demonstrate the
than is generated by either passive technique alone motion and binocular stereo integrated system:
which is necessary for obstacle avoidance. 1. Laboratory collection of binocular and motion stereo

4. Negligible motion distortion is caused by the moving data (a total of 5 pair of frames). For use in validating
platform (i.e. fast data acquisition). our integrated stereo technique, ground truth range to a

Previous efforts in the derivation of approaches for the syn- selected number of image points was obtained.

ergistic combination of binocular and motion stereo rar,,,ag 2. Development and software implementation of binocular
have placed restraints on the problem specification to reduce and motion stereo algorithms and the integration of the
the complexity of the analysis. To date, no demonstration of two algorithm suites. This includes the extraction of
a totally general, comprehensive characterization of the rang- "interest" points and the matching of interest points for
ing problem for multiple binocular stereo frames has been subsequent binocular and motion stereo range computa-
derived. The purpose of the technique which this paper tions.
discusses is the empirical evaluation of the performance and 3. Modeling of errors in binocular and motion stereo. The
robustness of such a system for various scenarios, functional form of these equations is given in a subse-
Features from - ,nn'-yis.-.et stere pairs of images can quent section.4

be matched with greater reliability to improve the accuracy of 4. Kalman filter definition and implementatiun. We
disparity-based range calculations. Leung, et all derived an developed Kalman filter software to process range data
algorithm for finding point correspondences among stereo measurements and derive estimates for the error states
image pairs at two consecutive time instants ( t I , ti ). which contribute to range error.
They demonstrated significantly improved feature matching 5. Evaluation of the integrated stereo system with real
accuracy for scenes that demonstrate large feature displace- imagery.
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The next section of this paper presents the motion and bino- The total differential of motion stereo range:
cular stereo integrated system technical approach. Section 3 RRf al?, , aRf DRf
discusses results obtained during an empirical evaluation of dR = + dz + y + -dz+ (1)
the performance of the system with the laboratory data and - d -yd
simulated Inertial Reference Unit (IRU) data. The last sec- aRf DRf v Rf
tion of the paper discusses our plans for future research to dfov h + -.-+ -dF
further optimize the system. Dfovh d -ovdf + +

2.0 TECHNICAL APPROACH dRf + aRf , Rf, dA , +
With a two camera system in motion, a stereo ranging system ,AV1 A8 AV
is formed which consists of binocular stereo and motion Rf Rf +Rf
stereo range computations. In the case of binocular stereo -- dv. + v
two cameras are rigidly mounted on the same fixture such av. d  -y z
that their optical axes are parallel and yet horizontally dis-
placed by a fixed, known distance. Whereas the cameras are where,
laterally displaced for binocular stereo, the cameras are longi-
tudinally displaced, due to forward vehicle motion, for (y',z') = pixel location of an interest point in the left
motion stereo. On a moving platform, the same two cameras frame of a motion stereo pair of images that is acquired
can provide the imagery required to perform one binocular at time ti,,.
and two motion stereo range calculations. (y,z) = pixel location of the interest point in the left

frame of a motion stereo pair of images that is acquired
Tradeoffs between binocular and motion stereo are shown in at time tj and matches (y ',z').
Figure 1. Binocular stereo and motion stereo compute range fov, = camera vertical field-of-view.
to "distinguished" points in the image. As shown in Figure
1, binocular stereo range computations suffer the greatest fovr = camera horizontal field-of-view.
error at the edges of the camera's field of view (FOV), where AV ' = change in yaw angle that occurred in the time
motion stereo range is most accurate. The converse error interval ti+l-t i .
relationship holds true in the vicinity of the focus of expan-
sion where motion stereo range error is great and binoclIar AO' = change in pitch angle that occurred in the time
stereo range error is small. interval ti+x-ti.

Ao' = change in roll angle that occurred in the time
Our integrated stereo system shown in Figure 2 uses two key interval ti, 1-t i .
elements which constitute the unique features of our (v ,vy,v 2 ) =the velocity of the camera.
approach:
(1) matching of interesting points in binocular stereo and F = the focal plane to lens center distance.

motion stereo imagery, The total differential of binocular stereo range:

(2) modeling of range errors present in the motion and aRf +RJ dR
binocular stereo techniques. These errors determine the i =ay, d zr
state vector in the Kalman filter application used to
obtain improved estimates of range values. DRf o Rf d ov + Ry + +R f

-dfovh, + 'd-fov, -d - - AThe coincident points of interest, i.e. those points for which afov-"h fovv -A1V A +
range is computed by both motion and binocular stereo tech-
niques, are used as measurements to estimate errors in the dRf +f E)y
ranging processes. The points in the range maps which are A + - D a
not coincident can be corrected with these error estimates,
improving the overall quality of the composite range map. where,
This can be achieved with the use of a blending filter as
shown Figure 3. This filter derives a composite range map (yt,z ) = pixel location of an interest point in the left
for each measurement location as the weighted average of the frame of a binocular stereo pair of images acquired at
Kalman filter estimates for the range, where the averaging time ti .
weights are the current estimates of the measurement noise (yr,z,) = pixel location of an interest point in the left
obtained from each filter. The confidence in each range frame of a binocular tereo pair of images acquired at
measurement is inversely proportional to the estimate of the time ti and matches (yt,zt).
measurement noise, so that when the measurement noise for
the binocular stereo algorithm is large, the estimate obtained AV = the boresight yaw angle.
from the motion stereo Kalman filter is weighted more AO = the boresight pitch angle.
heavily. Conversely, when the measurement noise for the A0 = the boresight roll angle.
motion stereo algorithm is large, the estimate from the bino-
cular stereo algorithm is given more weight. The filtered a = camera separation distance.
estimates of the measurement noise are used to smooth out We also derf,,nl tho fvrtt;r~nl lt between the vai-
the effects of isolated bad measurements. ance of range error and the location of an interest point in the

field of view.
2.1 Range Error Modeling Results

We derived the functional relationships of errors in range
values.
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An approximation to the range calculation error for the case SA 8 = Accelerometer error states (states 28 and 29).
of motion stereo range computations is described as

ARM (u1A ,v () A L = Local level acceleration.
___u____)=__H (3)1

4F2+u+vj7 co = Shuler frequency ('0.00125 rps).

where R IR = unit vector.
aD,, = an initial estimate of the range calculation error -
due to the error in motion stereo point matching algo- 8g' = gravity deflection and anomaly errors.
rithm.
ARM (uA,vA) = is the computed error in range for the The vertical error states (8, 9, 10) assume an IRU vertical
world point whose projection onto the image plane is channel damped with a reference altitude. Figure 5 shows a
described in three space by (F,uA ,vA). typical IRU vertical channel filter. The error model imple-

F = is the distance between the lens center and the mented in the Kalman Filter can be expressed as:

image plane. .i8 = -x9 (8)

Likewise, an approximation to the range calculation error for
the case of binocular stereo range computations is described -ig = KIx 9 + x 10 (9)
here,

ARB (UL,VL) (4) -i0 = x 24 
+ K2x9 - K3x 8  

(10)

arB(uv)=a 1 _, 4 ,( where K1 K2,K 3, are the vertical channel gains. These

where gains were selected as 0.6, 0.15, and 0.0156, respectively.

aD, = an initial estimate of the range calculation error The remaining error states are modeled as Gauss-Markov
due to the error in the binocular stereo point matching Processes with large time constants. The large time constants
algorithm, effectively model the error sources as constants. A Gauss-

AR (uL,vL) = is the computed error in range for the Markov process can be represented as:
world point whose projection onto the image plane is
described in three space by (F,uL,vL). -1 (11)

In computing range with either the motion stereo or binocular le
stereo techniques, all range measurements are made relative
to the first of a temporal pair of images (i.e. A of A and B where "q is a white noise process and x is the time constant.
images) and the left image of a stereo pair, as shown in Fig-
ure 4. Hence the subscripts A and L are used for the vari- The binocular stereo and motion stereo range errors are not
ables that describe points in three space on the image plane. states within the Kalman Filter. They are linear combina-
In our implementation, the A and L images are the same tions of the Kalman Filter error states. This linear combina-
image. tion can be expressed as:

2.2 Kalman Filter Implementation 5R, = H (12)

The twenty-nine error states summarized in Table I are
mechanized in the Kalman Filter. The first 7 states are based
on the level axis "PSI-Angle" IRU error model developed by SRm = 111 (13)

M. Ignagni.5  where H is the measurement matrix defined by the equations

= -(p + f) X V - C 8 (5) given earlier and R is the estimated error state vector. There-
S--fore to calculate improved binocular stereo and motion stereo

V = C SA8 - X A L(8R.R IR)(R IR) + 8g' (6) ranges, the input values to the binocular and motion algo-
.. .=8V 61rithms would b. modified by their error values and rerun.

R =_V -p xSR (7) Alternatively the H-matrices for each binocular or motion
where: stereo range point could be formulated and the ranges

where: corrected for the linear combination of error states. The

= Psi-angle error (states 1, 2, and 3). latter is done in the current implementation of the binocular
and motion stereo integrated stereo.

5V = Psi-angle horizontal velocity error (states 4 and 5). The filter's binocular stereo measurement consists of motion
stereo range subtracted from binocular stereo range. The

5R = Psi-angle horizontal position error (states 6 and 7). filter's motion stereo measurement is the negative of the
filter's binocular stereo measurement. The measurement pro-

p = local level transport rotation rate (V/R). cess is modeled as follows:

= Earth rate in local level coordinate frame. ym  (k) = Rmj "R = H xm + vm (14)

C = Body to Local Level Direction Cosine Transformation Ysj (k )Rj - Rmj =H x, +Vs (15)
Matrix where,

&0 = Gyro error states (states 25, 26, 27). Ymj (k) is the measurement for the motion stereo Kal-
man filter for the j 'th feature point location at time k,
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Y., (k) is the measurement for the binocular stereo Results from processing the first frame of the five frameKalman filter for the j 'th feature point location at time sequence with the Kalman Filter is shown in Table 2. These
k, results are with simulated IRU noise and a 1 Hz video frame
Rmi is the estimate of the range to the three- iteration rate, which equates to a 2 ft/sec velocity.dimensional location from the motion stereo algorithm, Groundtruth measurements for the 12 matched feature point
R, is the estimate of the range to the three-dimensional locations of frame I are presented in Table 3.
location from the binocular stereo algorithm, The processing of the first frame does show promise. As
vm is measurement noise, E (VmT Vm ) = 0Mn2, small shown for measurement 1, the corrections added to the bino-near focus of expansion (FOE), large near periphery and cular stereo range and motion stereo range tend to converge
v, is measurement noise, E (v T v, } = 2. the solutions to a common point as expected. In general this

T behavior can be observed in the results for measurements 1The noise variances 0M 2 and 0112 are calculated with equa- through 12. There are some exceptions (measurement 8 andtions (3) and (4). 10) which could possibly be due to the measurement weight-
ing.

3.0 EXPERIMENTS
For experimentation with the system, we modified existing The 20 ft/sec velocity case (.1 Hz video frame iteration rate)
Kalman Filter software previously used in a real-time provided results similar to the 2 ft/sec case. Table 4 containsenvironment. The software is written in C and FORTRAN filter output from processing the first and second framesand was modified for a simulation environment. The PSI- through the Kalman Filter. Results for Frame 1 processing
angle IRU error model was already implemented in the match the results presented in Table 2. Frame 2 which is asoftware. We added states 8 through 29, modified the routine propagation in time shows favorable results with the excep-
which calculates the H-matrix, and wrote new input/output tion of measurements 8 and 10. The filter has propagated
routines. forward a large binocular stereo range error which is not

reflected in measurement 8 of frame 2. Groundtruth meas-
For the initial evaluation phase, our stereo system is not fully urements for the 13 matched feature point locations of frame
integrated, but left in modular components. These com- l and the 13 matched feature point locations of frame 2 are
ponents consist of laboratory collected video files, an IRU presented in Table 5.
error model simulation, binocular stereo range algorithm, 4. CONCLUSIONS
motion stereo range algorithm and Kalman Filter algorithm.
Each of these components are run separately with communi-
cation between the components through input/output files. We presented the basic concept and initial results of our

binocular and motion stereo integrated system. The basicFive frames of video data were collected in the laboratory at software is in place with the exception of the blending filter2 foot intervals. An example of the experimental data is and work at improving its performance is continuing. Ourshown in Figure 6. From these five frames the binocular current iterations do show a lot of promise and exhibitstereo ranges are calculated to various points with the binocu- expected behavior. Thorough evaluation of the system's per-lar stereo range software. formance for large amounts of data and muhiple scenarios
will be reported in the future.

To simulate motion for the motion stereo algorithm we chose
two velocities, 2 ft/sec and 20 ft/sec. These two velocities 5. REFERENCEScorrespond to processing the four frames at 1 second inter- 1. M. K. Leung, A. N. Choudhary, J. H. Patel, and T. S.vals or 0.1 second intervals. The attitude of both experi- Huang, Point Matching in a Time Sequence of Stereoments was chosen to be level and in a northerly direction. A Image Pairs and its Parallel Implementation on a Mul-detailed description of the motion stereo algorithm is tiprocessor, Proceedings of the Workshop on Visualpresented in the paper by Bhanu and Roberts.4  Motion (March 20-22, 1989).
IRU errors were simulated by running an off-line IRU error 2. L. Li and J. H. Duncan, Recovering 3-D Translationalsimulation and adding the errors onto our nominal motion. Motion and Establishing Stereo Correspondence fromThe simulation used is commonly called the HINS simulation Binocular Image Flows, Proceedings of the Workshop
and is a monte-carlo simulation of the IRU error equations. on Visual Motion (March 20-22, 1989).
For this research, we simulated a GG1328 gyro based IRU.

3. B. Sridhar and R. Suorsa, Integration of Motion andThe trajectory chosen was a northern cruise at 15 ft/sec. Fig- Stereo Sensors in Passive Ranging Systems, Proceedingsure 7 shows simulation results for the first 10 seconds. For a of the American Control Conference (1990).cruise scenario such as the trajectory above, IRU errors are
essentially a function of time, therefore, to formulate IRUerrors for our two multieye stereo cases the true trajectory 4. B. Bhanu and B. Roberts, INS-Integrated Motionwas subtracted from the Figure 7 data. The resultant error Analysis for Autonomous Vehicle Navigation, Proceed-data was then added to our multieye stereo trajectory to ings of the DARPA Image Understanding Workshop
simulate corrupted IRU data. (1990).

The output binocular stereo and motion stereo range files, 5. M. Ignagni, "Error Analysis of a Strapdown Terrestrialand simulated IRU data files are read into the Kalman Filter Navigation System," Internal Honeywell Docu-software. The filter software runs a range matching algo- ment (1989).
rithm to detect coincident range points. For each coincident
point the corresponding H-matrix and filter measurements are
calculated and processed by the filter.
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Figure 3. Composite Range Map/Blending Filter Figure 4. Motion and binocular stereo data collected

Figure 5. Block diagram of vertical channel filter

Table 1. Error states used in Kalman filtering
1. IRU psi 1 angle error
2. IRU psi 2 angle error 16. y, right camera Y optical axis offset error

3. IRU psi 3 angle error 17. z, right camera Z optical axis offset error

4. IRU x velocity error 18. Camera yaw angle boresight error

5. IRU y velocity error 19. Camera pitch angle boresight error

6. IRU x position error 20. Camera roll angle boresight error

7. IRU y position error 21. Camera separation distance (a)

8. Ver,tical che, . cc.. lerao etrr. 22. -yt' left camera Y optical axis offset error (Frame B)

9. Vertical channel velocity error 23. z1' left camera Z optical axis offset error (Frame B)

10. Vertical channel position error 24. Z accelerometer bias
11. Horizontal FOV error (fovh) 25. X gyro bias error
12. Vertical FOV error (fov,) 26. Y gyro bias error
13. Camera focal plane to lens center distance (F) 27. Z gyro bias error
14. yj left camera Y optical axis offset error 28. X accelerometer bias error
15. z, left camera Z optical axis offset error 29. Y accelerometer bias error
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(a) (b)

(C)

Figure 6. Laboratory image database, frame 1. (a)
Frame I image obtained from left camera of stereo pair,
(b) Frame 1 image obtained from right camiera of stereo
pair, (c) Frame 2 image obtained from left camera of
stereo pair.

Table 2. KF Computed Range Errors One Hertz Processing

Simulated IRU Errors, 2 FPS Velocity
CAMERA PARAMTERS

hfov =0.754160 vfov = 0.313147 F =0.041000 a = 2.000000
Time = 1.0 second (Frame 1)IT - -- ___________

measurement raw raw KJ K corrected correctedi
binocular motion binocular motion binocular motion

range range error error range range
1 23.470947 13.229049 9.257078 -1.906973 14.213869 15.136022
2 15.250125 19.987539 -2.715582 -1.591671 17.965708 21.579210
3 23.286278 11.497955 5.687111 -4.775131 17.599167 16.273087
4 17.710770 22.075123 -1.643602 1.591987 19.354372 20.483137
5 13.850588 20.908190 -3.369545 7.472088 17.220133 13.436102

6 1.973729 21.540310 -3.376971 2.2y 6 19.350700 18.61744i
7 16 .092087 17.760782 -1.714687 2.406360 17.806774 15.354422
8 16.151932 14.471107 -2.965745 2.350610 19.117678 12.120497
9 21.183895 22.302511 2.563853 2.367056 18.620041 19.935455

10 15.358275 14.538172 -3.013412 1.480840 18.371687 13.057332
11 18.167021 20.215263 0.081987 1.600948 18.085033 18.614315
12 15.797955 21.457747 -1.679191 1.594449 17.477146 19.863297
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Figure 7. Simulation of a GG1328 gyo based 1RU

Table 3. Groundtruth Measurements for" O1,e Hertz Processing;
measurement Yt" zt Yr zr YI .Rf

rpixels] rpixels] [pixelsl [pixels] [pixels]. ipixcls] [feeti
Time =1.0 second (Frame 1)

'1-152 ' -39 '-i82 -53 -128 -5I" 3.904
2 -52 122 -131 114 -46 111 18.8474

3 -4 -50 -94 -38 -38 -43 12.2229
4 -12 113 -83 106 -9 104 19.1300
5 41 65 -58 57 37 60 19.28266 49 202 -39 189 44 i 84 20.2861
7 92 -61 0 -49 82 -53 18.0941
8 95 167 0 149 82 144 14.0358
9 124 -15 51 -8 113 -12 22.3442

10 151 152 48 143 134 138 14.2818
11 170 -8 81 -1 153 -5 20.1257

12 170 -16 71 -9 154 -12 21.4648
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Table 4. KF Computed Range Errors 0.1 Hertz Processing
Simulated IRU Errors, 20 FPS Velocity

CAMERA PARAMETERS
hfov = 0.754160 vfov = 0.313147 F = 0.041000 a = 2.000000

measurement raw raw KF KF corrected corrected
binocular motion binocular motion binocular motion

range range error error range range
Time = 0.2 (Frame 1)

1 23.470947 12.980159 9.617279 -1.099180 13.853668 14.0/9339
2 15.250125 19.459459 -2.733061 0.434156 17.983187 19.025303
3 23.286278 10.937357 5.861856 -2.925393 17.424423 13.862750
4 15.922381 14.836158 -1.956218 -4.532531 17.878599 19.368689
5 17.710770 22.263815 -1.671963 2.354116 19.382732 19.909698
6 13.850588 21.918085 -3.384527 9.700621 17.235115 12.217464
7 15.973729 21.828583 -3.465710 6.287485 19.439438 15.541098
8 16.092087 18.314566 -1.659888 0.328105 17.751974 17.986462
9 16.151932 14.771038 -3.026224 2.168971 19.178156 12.602067
10 21.183895 22.844698 2.680561 1.348993 18.503334 21.495705
11 15.358275 14.761926 -3.051116 0.234672 18.409391 14.527253
12 18.167021 20.570257 0.180036 0.792287 17.986984 19.777969
13 15.797955 21.834696 -1.613573 0.830073 17.411528 21.004623

Time = 0.3 (Frame 2)
15.395482 15.3/5104 -2.823521 -1.19993U 18.219004 10.5/5033

2 15.055490 18.953318 -3.251050 -3.732748 18.306541 22.686066
3 15.658957 19.364252 -2.859818 -3.794225 18.518774 23.158478
4 14.771465 16.280893 -3.150485 -4.380288 17.921949 20.661182
5 16.188807 18.075811 -3.643293 6.040530 19.832100 12.035282
6 16.690779 18.752043 -2.562827 4.724038 19.253607 14.028005
7 15.174622 18.209389 -3.081228 3.214266 18.255850 14.995123
8 19.333355 24.704124 -1.267558 6.274734 20.600912 18.429390
9 14.181705 17.482733 -3.954892 1.894178 18.136597 15.588555
10 16.496565 16.344479 -3.117268 0.850061 19.613832 15.494417
11 14.511797 16.740181 -4.223449 1.269790 18.735247 15.470390
12 15.358172 18.337030 -2.874749 2.921894 18.232922 15.415136
13 13.100904 19.790014 -4.306006 2.210015 17.406910 17.580000

Table 5. Groundtruth Measurements for .1 Hertz Processing
measurement Yt" Zt" Yr Zr Yt zt Rf

[pixels] [pixels] [pixels] [pixels] [pixels] [pixels] [feet]
Time = 0.2 (Frame 1)

1 -152 -59 -182 -33 -128 -51 13. 9/64
2 -52 122 -131 114 -46 111 18.8474
3 -47 -50 -94 -38 -38 -43 12.2229
4 -13 0 -93 13 -11 7 12.2720
5 -12 113 -83 106 -9 104 19.1300
6 41 65 -58 57 37 60 19.2826
7 49 202 -39 189 44 184 20.2861
8 92 -61 0 -49 82 -53 18.0941
9 95 167 0 149 82 144 14.0358
10 124 -15 51 -8 113 -12 22.3442
11 157 152 48 143 134 138 14.2818
12 170 -8 81 -1 153 -5 20.1257
13 170 -16 71 -9 154 -12 21.4648

Time = 0.3 (Frame 2)
1 -15 -26 3- -21 15.9601
2 -85 -7 -161 3 -76 -3 20.0576
3 -34 -71 -115 -53 -32 -59 22.9181
4 -33 -95 -118 -86 -30 -81 19.5996
5 79 205 -11 183 71 180 16.4573
6 85 -19 -3 -8 76 -13 17.7225
7 103 -73 5 -56 92 -61 17.7855
8 125 -43 47 -30 115 -34 23.7157
9 143 56 33 60 126 54 16.6384
10 145 138 46 125 126 126 15.4135
11 172 168 59 158 150 152 15.9483
12 204 -50 96 -35 181 -40 17.9549
13 207 50 85 52 185 49 19.1903
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INERTIAL NAVIGATION SENSOR INTEGRATED MOTION ANALYSIS
FOR AUTONOMOUS VEHICLE NAVIGATION

Barry Roberts and Bir Bhanu
Honeywell Systems and Research Center

3660 Technology Drive
Minneapolis, MN 55418

ABSTRACT In this paper, we briefly describe the use of INS meas-
urements to enhance the quality and robustness of motion

Many types of existing vehicles contain an inertial navi- analysis techniques for obstacle detection and thereby provide
gation system (INS) which can be utilized to greatly improve vehicles with new functionality and capability. For a detailed
the performance of motion analysis techniques and make algorithmic description of our approach, the reader is referred

theperormnceof otin aalyis echiqus ad mke to the references. ,3The objective of the work presented in

them useful for practical military and civilian applications. th

This paper presents the results obtained with a maximally this paper is to present the results of our obstacle detection

passive system of obstacle detection for ground-based vehi- approach when applied to sequences of indoor (laboratory)

cles and rotorcraft. Automatic detection of these obstacles and outdoor imagery that has associated INS data.

and the necessary guidance and control actions triggered by In Section 2, we briefly review our approach to motion
such detection would facilitate autonomous vehicle naviga- analysis by describing the fundamental details of the tech-
tion. Our approach to obstacle detection employs motion nique. Secion 3 describes the results we have obtained with
analysis of imagery collected by a passive sensor during our INS integrated motion analysis approach. Finally, Sec-
vehicle travel to generate range measurements to world points tion 4 provides the conclusions of the paper.
within the field of view of the sensor. The approach makes
use of INS data to improve interest point selection, matching
of the interest points, and the subsequent motion detection, 2. INERTIAL SENSOR INTEGRATED
tracking, and obstacle detection. In this paper, we concen- MOTION ANALYSIS
trate on the results obtained using lab and outdoor imagery.
The range measurements that are made by INS integrated The purpose of this section is to describe the inertial
motion analysis are compared to a limited amount of ground sensor integrated motion analysis approach we have under-
truth that is available, taken. The block diagram of this system is illustrated in Fig-

ure 1. The system uses inertial sensor integrated motion
analysis, scene analysis, and selective applications of active

1. INTRODUCTION sensors to provide an obstacle detection capability. 2

A variety of active sensor-based techniques for obstacle As shown in Figure 2, the data input to the obstacle
detection have been explored to date. 1' 6' l l These approaches detection algorithm consists of a sequence of digitized video
mainly focus on the processing of laser range (ladar) imagery or FLIR frames that are accompanied by inertial data consist-
and millimeter wave (MMW) radar data. In our approach, ing of rotational and translational velocities. This informa-
we prefer a passive sensor which will enable the vehicle to tion, coupled with the temporal sampling interv between
be covert and therefore minimize any possible threat to the frames, is used to compute the distance vector, d, between
vehicle and the pilot. Of equal importance are the field of each pair of frames and the roll, pitch and yaw angles,
view, resolution of the data used for obstacle detection and (0,0,y), of each frame. Both a and (0,0,xv) are crucial to the
the access time of such data. Both MMW and ladar suffer in success of the algorithm, as will be described later.
one of these categories. The blocks shown in Figure 2 define the major steps involved

Passive sensors, such as a TV camera are also being within the ODIN (Obstacle Detection using Inertial Naviga-
used to detect obstacles for ground vehicles.2,3,7,8 However, tion data) motion analysis algorithm suite. In the subsections
state-of-the-art motion analysis techniques for obstacle detec- that follow, we briefly address the function of these boxes.
tion are not robust and reliable enough for many practical
applications. Many of these techniques require that unrealis- 2.1 DISTINGUISHED FEATURES
tic constraints be placed on the input data in order to make
them work. The largest sources of error are unknown sensor The features within the imagery (TV or FLIR) that are
motion and incomplete/ambiguous information in the sensed most prominent and distinguished mark the world points to
m.... d t..... ,,,. ,any types of land and air vehicles which range measurements will be made. These prominentcontain an INS whose output can be used for applications wuild poiiits, knuwn is interest poits, are (by definition)
beyond the original intent of the system. Within such vehi- those points which have the highest promise of repeated
bes, the INS information can be used to greatly simplify extraction throughout multiple frames. The interest points

within the field-of-view of the monocular sensor are of fun-
some of the functionalities nonnally provided by computervision, such as obstacle detection, target motion detection, damental and critical importance to motion analysis calcula-

tions. In the following subsections, the extraction and subse-
target tracking, etc. quent use of interest points is briefly described.
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2.1.1 Image Segmentation -- Unfortunately, not all regions the FOE. The interest points along these special edges are

within a scene can contain reliable interest points. We ighted differently because they are more difficult to track

employ scene analysis techniques to ascertain the goodness of and therefore less reliable.

regions prior to interest point selection.4 Hence, the interest The second metric makes certain that candidate matches
paint extraction routine takes as input a segmentation of the lie within a cone shaped region, with apex at the FOE,
original image and returns nj, 0 5 j < N, interest points in bisected by the line joining the FOE and the interest point in
each of the N segments. The value of nj for segment j is frame M. The third metric restricts all candidate matches in
proportional to the segment size and other segment features. frame M to lie closer to the FOE than the points in frame N
More than nj interest points can exist per segment; only the (as physical laws would predict for stationary objects). The
points with the highest interestingness values are reported. fourth metric constrains the distance between an interest point
The result of incorporating scene segmentation results into and its candidate matches. This is done by imposing max-
interest point extraction is that for a given scene, the interest imum and minimum range constraints upon the resulting
points are more uniformly distributed, match.

2.1.2 Interest Point Selection -- We compute a set of distin- Hence, the second, third and fourth metrics combine
guishable points by passing an operator, which is a combina- such that for an interest point in frame M, Mj, to be a candi-
tion of the Hessian and Laplacian operators,9 over each frame date match to point N1i, Ni must lie in a region which is
of imagery. The operator, I, takes the form shaped like a sector of an annulus.

l(g) = g~g,, - g - k(g + ) The reasoning behind the maximum and minimum range
where k is a constant and gs l gy erestriction is that world objects of range less than Rmln are

isnot possible considering the sensor mounting location on the
and g. for example, is the local 2nd derivative in the x vehicle and its field of regard. In another way, world objects
direction. At the current time, local maxima of I are selected
as interest points, that would lie closer than some Ruin have been visible for

some time and have been detected and therefore avoided by
2.1.3 Interest Point Derotation -- To aid the process of the vehicle navigator (machine or human). Likewise, objects
interest paint matching, we must make it seem as though at a range greater than R. are not yet of concern to the
image plane M+l is parallel to image plane M. If this is vehicle.
done, the FOE and pairs of interest points in frames M and
M+l that match would ideally be co-linear should the image 2.1.5 Matching and Range Confidence Factors -- We
planes be superimposed. further improve range computations (based upon three or

mc:e sequential frames) by predicting and smoothing the
The pixels in the imagne can be described in the range to each interest point that can be tracked through multi-

sensor's 3-D coordinate frame by the vector (F, y, z), where ple frames. The procedure for prediction and smoothing of
F is the focal length of the sensor. To make the image range using multiple frames is to compute, for all interest
planes parallel, derotation is performed for each vector, points in a pair of images, the matching confidence,
(F,yi,zi) that corresponds to each interest point in frame B. confidence in range, and predicted ranges. Once the
The equation for the derotation transformation and projection confidences and predicted range are computed, thresholds are
(in homogeneous coordinates) is applied and a smoothed range is computed.

F F] [F The Matching Confidence of the ith point in frame A is

O- -- -ED CeNED R given byZ =P R -IRO-IR -IR R 0,R 0, P C E N DZ,
OA OA WA %V) Z IA,-IB, I

¢ 1W1]-max 1AB - min IA
where NED (north, east, down) is the coordinate frame in
which inertial measurements are made. W il- min di 1

The matrix P projects a world point onto an im e plane + W2[ 1 - n + W3
gpd is used to compute the FOE, FOE =P , where max d

= V'At. The matrix CNAED cojiverts points described in the
NED coordinate frame into an equivalent description within a where
coordinate frame parallel to the A coordinate frame. Like-
wise, the matrix c4BED converts the descriptions of points in max lAB = max(lA, IBi) , min 1AB = min(IAi, IBi)
the B coordinate frame into descriptions in a coordinate i i

frame parallel to NED. w 1,w2 ,w3 0 and w-I-w 2 +w 3
= 1

2.1.4 Interest Point Matching -- The goal of interest point
matching is to identify and store the best match in frame M The variable lxi is the interestingness of the ith point in

for each interest point in frame N (= M+l), (F,yN,,zN,). frame X and di is the projection of the ith point onto the

Several metrics/constraints assist us in this task. To deter- line connecting its match point with the FOE. The unit vec-

mine the candidate matches to us m th, each of the tor 6 is in the direction of the line connecting the FOE and
(F,YNZB), ee the ith point in frame A. The unit vector d represents the

interest points in frame M is examined wit the successive normal to the edge on which the ith interest noint is located.
use of four metrics. The first metric requires that U1C The purpose of l& . d I is to cause the match confidence to
interestingness, edge magnitude, and edge direction of both fall when 6 and t! are perpendicular (see section 2.1.4).
points of a candidate match are nearly equivalent. Edge
direction is treated differently than the other parameters. We The Range CL nfidence, C~i, of the ith point in frame X
recognize that when an edge's normal is perpendicular to the is given by the following set of equations:
line cnnecting edge pixels to the FOE, the interest points on Rio -in 0 £ re a
this edge will not be reliably matched and ranged. This is final i predicted -a n
due to the way that interest points travel radially away from
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Rpredicted iti a - velocityi x time (2) These variables are illustrated in Figure 3. The range equa-
don is used to compute the distance to a world point relative

If (Rspredicted 0) then to the lens center of frame A (similar equ.itions would com-
pute the distance from the lens center of frame B). The

R final= Rpredicted = Rimeasured and Cni = 1 (3) accuracy of the range measurements that result is very sensi-tive to the accuracy of the interest extraction process, the
matching process, and the accuracy of the INS data.

R!'cprede
Else, if (ct< -peitd< 2 -cX) then

3. EXPERIMENTAL RESULTS

IRi measured-Ri predicted 1 Our inertial navigation sensor integrated motion analysis
CAI- (4) algorithm has been used to generate range samples on both

1 measred+Ri predicted indoor (laboratory) imagery (plus sensor motion parameters
measured without an INS) and outdoor imagery, with real

R Ia = R!,meaured + (1 - Cni) D, (5) INS data, obtained from onboard a moving vehicle. In thissection, we describe the conditions under which the data was
where D = [R -R ) (6) created/collected and provide images illustrating the results of

, predicted i meas (6) the major steps in the motion analysis algorithm.

If (Rfiai < 0) then 3.1 INDOOR DATA

R a Rpredited A sequence of imagery was collected inside of a com-
Rf' = , (7) puter lab by moving a camera forward in discrete 2.0 ft steps.Rniteasured+ Rl'predicted The velocity and attitude of the camera were estimated as 2

The variable a is a user defined parameter that controls the ft/sec forward with no attitude changes throughout all 5
range of the ratio Ri predicted/Ri measured" frames. Five frames of the resulting imagery are displayed in

Figure 4. The field of view of the camera used to collect
2.2 RANGE CALCULATION these images is 43.21 x 180 and the focal length = 12.5 mm.

An example of the processing that was performed is
Given the result of interest point matching, range can be displayed in Figure 5. The results of the various steps are

computed to each match. Given these sparse range measure- illustrated; (a) segmentation, (b-c) interest point extraction
ments, a range or obstacle map can be constructed. The obs- and derotation, (d) matching, and (e) computed range. Note
tacle map can take many forms,5 , 10 the simplest of which that only the interest points in the second frame of the pair
consists of a display of bearing versus range. In what fol- are derotated. The derotated locations of the points are
lows, range calculation is described and the important issue represented by diamonds and their original positions are
of range interpolation is discussed. shown as squares. The points in the first image of the pair

Given pairs of interest point matches between two suc- are denoted by circles.
cessive image frames and the translational velocity between The image in Figure 6 is the cumulative result of pro-
frames, it becomes possible to compute the range to the cessing the 5 frame sequence shown in Figure 4. Ideally, we
object on which the interest points lie. Our approach to would see a chain of connected circles which would denote
range computation is described by the equation the location of strong interest points which were tracked

R:ZX,- 1 through all 5 frames. In this case, we see very few instances
AZ x'-x c1 of chains of circles due in part to the large separation
X' -X COSoaA between frames.

where For the lab images in Figure 4, we have a limited
Xf = the distance between the FOE and the center of the amount of ground truth information. By ground truth, we
image plane, mean that we have actually measured the range between the

camera and various lab objects. With this information, wex = the distance between the pixel in frame A and the center can study the accuracy of the motion analysis generated
of the image plane, range values. Figure 7 shows the locations of the objects for
x'= the distance between the pixel in frame B and the which ground truth exists. Table 1 provides a comparison of
center of the image plane, ground truth range values and the range values generated

through motion analysis for 4 pairs of imagery. Note that
AZ = IVIAt cosQt: = the distance traversed in one frame some motion analysis range values are missing. This istime, At, as measured along the axis of the line of sight, because a computer selected interest point did not fall on the
o(F = the angle between the velocity vector and the line of corresponding ground truthed object. For the table entries
sight, that are provided, there existed an interest point that fell on

the corresponding ground truthed object
oA = the angle between the vector pointing to the world Table 2 illustrates the effect that the smoothing filter has
object and the line of sight, on interest point range values when a world object is tracked
x' - xf = the distance in the image plane betwe.n through multiple frames. The final range values, as described
(F,yBJ1ZB ) and the FOE, and in equations 1-6, are dependent on the listed values of match

J Yconfidence, range confidence, predicted range, and measured
x' -x = the distance in the image plane between (F,yB,,zB,) range.
and (FyA,,ZA,). To explore the sensitivity of motion analysis range cal-

culations to INS errors, we have added noise to the INS data
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and performed the motion analysis. Two different amounts motion analysis problem greatly improves the analysis and
of INS sensor drift were added to the original INS measure- makes the process more robust. We have learned the benefit
ments. Tables 3 and 4 show the velocity and attitude of the of scene analysis which can be used to guide interest point
sensor at the time of each frame acquisition. Note that the extraction and surface interpolation, and we have gained
terms in the velocity columns are actually the amount of insight into the sensitivity of the motion analysis ranging to
error that is added to the actual velocity. The velocity error, interest point position shifts and INS errors.
composed mainly of positive azimuthal drift, was significant Our ongoing efforts have the ultimate goal of develop-
enough to move the FOE anywhere from 8 to 15 pixels to ing a complete, fieldable system for obstacle detection during
the right. The first case allows less drift to occur as com- ing a copltielde sytepared to the second case. The locations of the interest poin rotorraft low altitude fligh
did not change in either case. ACKNOWLEDGEMENTS
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(b)

Figure 4: The five frame sequence of indoor (lab) imagery.ti

(C)
(a) Figure 5: The results of processing one pair of the indoor

imagery: (a) the segmentation of both frames, (b) the interest
points in the 1st frame, (c)the interest points in the 2nd
frame

369



(d) Figure 6: The cumulative result of processing five frames of
indoor imagery. Every interest point which was matched and
assigned a range is superimposed here on the first flame of
the sequence.

A

(e)

Figure 5. The results of processing one pair of the indoor Figure 7: The locations of the lab points which had associ-imagery: (d) the set of matched points, (e) the range to the ated ground truth information.
matched points.
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Figure 9: The hardware used to collect the outdoor imagery(a) and INS data.

(b)

Figure 8: The results of the matching of the frames in Fig--
ures 4(a) and 4(h) wheni noise vas add-d th ie "'S informa-
lion: (a) case one, (b) case two. "

Figure 10: The five frame sequence of outdoor imagery.
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(a)

(d)

(b)

(e)

Figure 11: The results of processing one pair of the outdoorimagery: (a) the segmentation of both frames, (b) the interest
points in the Ist frame, (c)the interest points in the 2nd
frame, (d) the set of matched points, (e) the range to the

(c) matched Points.
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Figure 12: The cumulative result of processing five frames of
outdoor imagery. Every interest point which was matched Figure 13: The locations of the world points which had asso-
and assigned a range is superimposed here on the first frarne ciated ground truth information.
of the sequence.

Table 1: A comparison of ground truth and nuition analysis
range values for the indoor imagery. The coltmns labeled
Acwual contain the ground truth values and tht columns
labeled ODIN contain the motion analysis generated range.

Ground Truth A-B Range (ft) B-C Range (ft) C-D Range (ft) D-E Range (fit)

Location Actual ODIN Actual ODIN Actual ODIN Actual ODIN
A. 13.76 -- 11.80 9.45 9.84 7.17 7.57 10.90
B. 14.28 15.42 12.33 -- 10.40 11.77 8.50 --
C. 14.00 14.72 12.05 -- 10.12 9.52 8.22 --
D. 20.95 -- 19.00 16.99 17.02 19.72 15.07 13.77
E. 18.13 -- 16.16 21.41 14.20 -- 12.24 11.34
F. 20.64 -- 18.65 17.88 16.67 -- 14.70 12.03
G. 21.14 -- 19.14 19.36 17.15 23.52 15.16 12.64
H. 20.14 18.50 18.14 15.31 16.14 12.37 14.14 11.92
I. 22.37 -- 20.37 -- 18.38 - 16.38 --
J. 23.00 21.80 21.02 20.96 19.( -- 17.08 --
K. 20.66 21.60 18.73 18.30 16.80 15.28 14.91 --

Table 2: A set of 4 example interest points which were
extracted from 3 consecutive frames. One can see the effect
of the smoothing filter in generating the final range value and
the filter's dependence upon the confidence factors.

Rage smoothing results
Range (fi) I A - B-C C -D D .E M easured

Measured -- 1278 1227 u -- 22.33 15.89
Predicted .. -- 10.88 -- Predicted --- .. . 20.39
Final -- 1 12.78 1 12.02 -- Final ... . 22.33 17.55

Match Confidence 0.61 0.88 Confidence -- 0.57 072

_g qonfidenre - 1.0 -Range Confidence .. -- 1.0 0.63

Measured 21.79 ' 1770 Meased - 11.04 18.88 --

Predicted -- 19.81 Predicted . . 9.07
Fhial 21 79 18.32 ... Final -- 11.04 12.72

Match Confidence 088 075 .. .Match Confidence -- 0.50 0.57
[1 Range Confidence 1.0ange Confidence -- 1.0 0.37
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Table 3: The first set attitude and velocity error terms which
were used to add noise to the INS data of the indoor
imagery.

Frame Attitude (radians) Velocity (fts)
roll pitch yaw L v, , V,-

A 1.335e-04 -6.938e-05 -1.594e-02 0.0 0.0 0.0
B 1.371e-04 -6.795e-05 -1.594e-02 30.51e-06 0.68e-03 0.0
C 1.369e-04 -6.778e-05 -1.594e-02 63.32e-06 1.36e-03 0.0
D 1.374e-04 -6.802e-05 -1.594e-02 92.85e-06 2.03e-03 0.0
E 1.375e-04 -6.817e-05 -1.594e-02 127.30e-06 2.71e-03 0.0

Table 4: The second set attitude and velocity error terms
which were used to add noise to the INS data of the indoor
imagery.

Frame roll Attitude (radians) Velocity (ft/s)
roll pitch yaw v., h  v-,t, vM

A 1.36e-04 -6.75e-05 -1.5942e-02 0.31e-03 6.7e-03 0.0
B 1.35e-04 -6.36e-05 -1.5940e-02 0.48e-03 134e-03 0.0
C 1.34e-04 -6.06e-05 -1.5947e-02 0.53e-03 20.0e-03 0.0
D 1.36e-04 -6.54e-05 -1.5944e-02 0.70e-03 26.5e-03 0.0
E 1.41e-04 -6.33e-05 -1.5944e-02 0.95e-03 33.2e-03 0.0

Table 5: A comparison of ground truth and motion analysis
range values. This table represents the results obtained when
the first set of INS errors were added.

Ground Truth A-B Range (ft) B-C Range (ft) C-D Range (ft) D-E Range (ft)

Location Actual ODIN Actual ODIN Actual ODIN Actual ODIN

A. 13.76 -- 11.80 -- 9.84 -- 7.57
B. 14.28 -- 12.33 13.71 10.40 - 8.50 --

C. 14.00 15.71 12.05 13.84 10.12 9,55 8.22 --

D. 20.95 -- 19.00 -- 17.02 23.49 15.07 14.54

E. 18.13 -- 16.16 14.20 -- 12.24 --

F. T 20.64 -- 18.65 - -- 16.67 -- 14.70 14.25
G. 21.14 19.14 19.99 17.15 22.94 15.16 13.81

H. 20.14 -- 18.14 15.90 16.14 -- 14.14 14.67

I. 22,37 -- 20.37 23.66 18.38 -- 16.38 -

J. 23.00 20.14 21.02 19.30119.04 -- 17.08 --

K. 11 20.66 2054 18.73 17.42 16.8 14.18 14.91L[ -- .
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Table 6: A comparison of ground truth and motion analysis
ranvge values. This table represents the results obtained when
the vccond set of INS errors were added.

G U A-13 Ptange (fi) B-C Range (ft) C-D Range (ft) D-E Range (ft)

Location Acual ODIN Actual ODIN Actual ODIN Actual ODIN
A. 13.76 -- I 1.8 10.12 9.84 -- 7.57 --

B. 14.28 16.91 12.33 -- 10.40 -- 8.50 --

C. 14.00 16.01 12.05 14.21 10.12 9.84 8.22 --

D. 20.95 -- 19.00 -- 17.02 23.82 15.07 15.25
E. 18.13 .- 16.16 -- 14.20 -- 12.24 --

F. 20.64 -- 18.65 -- 16.67 -- 14.70 14.05
G. 21.14 -- 19.14 18.65 17.15 -- 15.16 14.77
11. 20.14 -- 18.14 -- 16.14 -- 14.14 12.37
I. 22.37 -- 20.37 -- 18.38 -- 16.38 15.38
J. 23.00 -- 21.02 18.07 19.04 -- 17.08 --
K. 20.66 20.20 18.73 16.99 16.8 13.71 14.91 --

Table 7: The actual attitude and velocity measurements made
simultaneously with the acquisition of the outdoor imagery.
These measurements are in the coordinate frame of the INS.
The vehicle was moving roughly E-NE.

Frame Attitude (radians) Veloit, ('/fs)
roll pitch yaw . ..

A 3.49e-02 2.72e-02 1.33 2.24 8.36 -0.149
B 2.99e-02 2.75e-02 1.328 2.30 8.32 -0.150
C 2.61e-02 2.90e-02 1.327 2.23 8.23 -0.150
D 2 .4 2e-02 3.Ole-02 1.326 2.19 8.23 -0.120
E 2.53e-02 2.99e-02 11.325 2.01 8.23 -0.133

Table 8: A comparison of ground truth and motion analysis
range values for the outdoor imagery. The columns labeled
Actual contain the ground truth values and the columns
labeled ODIN contain the motion analysis generated range.

Ground Trutl A-B Range (ft) B-C Range (ft) I C-D Range (ft) D-E Range (ft)

Location Actual ODIN Actual ODIN Actual ODIN Actual ODIN
A, 1st Telephone pole 231 185. 228 276. 226 245 223 202
B 2nd Telephone pole 486 367 483 366 480 427 478 --
C Treeline #1 502 -- 499 -- 497 430 494 --
D Treelie #2 665 300 663 298 660 -- 658 446
F. Treeline #4 388 -- 385 -- 383 255 380 --
F. Pole by gate 214 298 212 -- 209 236 206 175
G. Red light post 153 186 150 322 148 -- 145 165
(closest to road)
i. Red light post II 156 167 153 343 151 114 148 157
(closest to gate) I
1. Fence Post by gate 169 160 167 172 164 -- 162 161
(West end, closest)
J. Fence Post by gate 156 209 153 -- 151 165 148 153
(West end, farthest)
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Abstract tained from a sequence of images. The objective was to
improve the rather poor structure estimates that result

This paper presents a solution for the problem from using only two temporally sequential frames.One
of obtaining and improving an estimate of the of the investigated alternatives was the epipolar im-
3-D structure of a scene from a sequence of ima- age technique of Bolles and Baker in which images are
ages. It establishes a connection between sur- "stacked" temporally and slices through this stack are
face reconstruction techniques used in single- analyzed (Bolles and Baker s2], Yamamoto (21]). A more

frame analysis and Kalman filtering which is widely studied approach is baed on recursive estima-

used for multi-frame integration of informa- tion or Kalman filtering. Ullman's incremental rigid-
tion. The formulation allows for multiple, de ity scheme [20] pointed in this direction and Broida andpendent sources of structure information to be Celpa[]peetdafrtapiain ihsm
combined over time. Based on this concept, al- Chellappa (3] presented a first application. With some

significant modifications this finally lead to practical al-
gorithmis are presented that integrate structure gorithms for real images as shown by Matthies, Szeliski
from motion, stereo and shading information and Kanade [15] and Heel [8], [9].
over time and improve significantly over single In the light of these developments a rather obvious
frame estimates on a variety of image examples question is how both approaches could be combined. Is
some of which are presented towards the end o it possible to integrate information from an arbitrary
the paper. source of depth data over time to reduce the effects of

noise by coupling the surface reconstruction techniques
I Introduction with the recursive estimation procedure? Is it further
Recovering the 3-D structure of a scene from its images possible to combine depth information from multiple

Recovringsources in this way?
is an eminent problem in computer vision. It has been In this paper we show a fundamental and very si-

studied extensively for shape from stereo, shading, mo- plI connection between the surface reconstruction tech-

tion and non-vision sources of distance data. Most work

has focused on image snapshots at a fixed instant in time niques widely used in vision and the recursive estimation

with the exception of work in motion vision in which in- procedures that have recently been developed.

formation is inherently available as sequences of images. 2 Surface reconstruction, and recursive
The work in "instantaneous" structure estimation has

focused on recovering smooth surfaces with discontinu- estimation theory
ities that are compatible with the image data. Examples In this section we will briefly review basic concepts in
of visual surface reconstruction are Grimson's stereo al- surface reconstruction and recursive estimation theory.
gorithm [7] and Horn's shape from shading algorithm The presentation is extremely simplified and focused on
[10]. Based oil theoretical foundations by Geman and the aspects of both fields that are relevant to our specific
Geman [6] and Marroquin [14], the study of surface re- problem of depth estimation from image data.
construction evolved detvhed from vision for some time,
until Terzopoulos (19], Blake and Zisserman [1], Poggio, 2.1 Surface reconstruction
Gamble and Little [17] and Geiger and Girosi [4] ex- A surface estimated from image data can be repre-
plored applications of the theory to vision using both sented by giving the distance Z along the optical axis
stochastic relaxation algorithms which are computation- between the focal point of the imaging system and the
ally quite intensive and more efficient deterministic ap- surface for each pixel location in the image as shown in
proximations. figure 1. If this is done for each pixel location (i, j) a

On the other hand, researchers in motion vision have depth map Zij is obtained.
been considering, how depth information may be ob- Using this concept we will now consider the following

*This research was conducted at the MIT Al Lab with problem formulation (illustrated in figure L): We are
support from ARPA contract DACA 7685-K-0685 and ONR given two depth map estimates Z, and Z2 I ' pixel
contract N00014-85-K-0124. locations (i,j) of a discrete grid G) of the sarne - face.
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Irno Plans falso allow information from neighboring pixels to propa-
gate and thereby achieve the smoothness of the resulting
surface. Additional constraints such as allowing for dis-
continuities (Poggio, Gamble and Little [17], Blake and
Zisserman [1], Geiger and Girosi [4]) have been incorpo-
rated recently. The formalism presented here extends to
this case as well although the derivation is omitted here

s as it is rather lengthy
ePth Z1r 2.2 Recursive estimation theory

" Surface~j oved There are many in-depth treatments of recursive esti-
|"Reconstructinj Depth Z niation theory such as Gelb [5]. The presentation here

Depth Z 2 is again extremely simplified and uses notation from thevision domain which is chosen to suggest the relationship

to the surface reconstrucion ideas introduced above.
Figure 1: Top: The measurement of "depth" for a given Suppose our task is to estimate a (scalar) quantity
pixel location. Bottom: Surface reconstruction problem Z(k) from a sequence of measurements Zk taken at dis-
depiction. crete points k in time. Suppose further that the Zk are

generated by a stochastic process

Our objective is to compute a depth map Z that is as ZM = Z(k) + nk (6)
close as possible to both Z and Z2 as a "better" estimate where nk is zero mean Gaussian noise of known variance
of the surface structure. This problem is formulated as pk. Finally, we know that the quantity Z changes over
an ol)timizationi problem: time according to the difference equation

ijn E _ Zlj)2 + A2(Z1 - Z2 ) 2  (1) Zk+= f(Zk). (7)

The goal is to compute at every time instance k an
where the parameters A, and A\2 can be used to weight estimate 2k which is as close as possible to the true value
either input depth more strongly. The optimal Z that Z(k). Kahnan formulated and solved this problem in a
minimizes the sum of squared errors to both Z1 and Z9 far more general case (see the literature cited above) and
is the resulting algorithm is referred to as a Kalman filter.

S0The Kalman filter maintains an estinate 2k and its
Zij A + (2) variance Pk. When a new measurement Zg with variance

A1 +±\A. Pk becomes available we perform the following update
The smoothness constraint can be imposed on the re- operation (denoted by the superscript changing from -

constructed surface by adding a term that penalizes large to '+'):
gradients to the optimization criterion

rni
2 (3) 7, = (8)z JC 1/pk + Wk

where VZij denotes a discrete approximation of the mag- P+ = 1/p + 1/ (9)

nitude gradient of Z at location (i,j). In the continu-

ous domain, the solution can be obtained very elegantly In words. the new estimate of 2+ is a weighted buin
using the calculus of variation (see Horn [10]). In the of the old estimate 2- and the new measurement Z
discrete version a careful consideration of the indices in- with the inverse variances as weights. Since the depth
volved leads to the same result Z changes according to the known dynamics (7) we can

AI(Zij - Zij~) + A2(Zj - Z2ii) - PA i= 0 (4) use this known temporal behavior to predict how the new
improved model from the update stage would appear in

where AZ7i is a discrete approximation to the Laplacian the next iteration k + 1
of Z at location (i, J). With a suitable discrete approx-
imation of the Laplacian, an iterative solution scheme f (10)

(see Iorn (10]) can be developed for the discrete differ- -_ (Of\ 2'
ence equation (4) Pk+i = \ /P5. (11)

-~t AI-Z-, + A,,Z 2 ,+ ) The Kalman filter consists of recursively invoking update
(A + A) + and predict stages on each new measurement obtainedand is known to be both optimal and convergent in the

where n indicates the iteration number, Z,, is a local av- case where the dynamics f are linear. We can visualize:
erage of Z at location (i,j) and y' is proportional to ,u.In the operation of the Kalman filter with the help of ai
addition to combining the input data, this scheme will block diagram as shown in the tol) diagram of figure 2.
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update is the solution to a simple surface reconstruction
Update Predict problem. By choosing the weights Ai to be the inverse

za variances at every pixel the elementary surface recon-
struction problem leads to a Kalman filter update.

This observation suggests that the Kalman filter up-
date stage can be replaced with a surface reconstruction
procedure that is modified to take the variances into

E, Surface account and provide for smoothness and discontinuity
e cnSuct 5: Predict preservation. In particular, the simple update equationReconstruct (2) could be replaced by the advanced iterative scheme

(5) to recover a smooth depth map.
t__t;., While this procedure of integrating depth information

over time is interesting, the actual acquisition of the data
from the image brightness E is not accounted for. This
can be done as follows. In vision domains such as mo-

Figure 2: Top: Block diagram of a Kalman filter. Bot- tion, stereo and shading functional relationships between
tom: Block diagram of the temporal surface reconstruc- measured brightness E and depth Z have been formu-
tion algorithm. lated, that can be written in tile implicit form

f (E, Z) = 0. (15)
The Kalman filter provides an intuitive and elegant

way for the integration of depth measurement data over Examples hereof are given in the frd,1wing section.
time. Notice, however, that t.he estimation process op- Rather than use Z as the measuve.aicnt i.put to the
erates independently for each depth value so that the temporal surface reconstruction ani cniving nf dE-
estimation of an entire depth map requires a Kalman fil- parture from this value, we will p . directl" fo, tbv.
ter for each pixel and that smoothness or discontinuity error in the underlying relatiorsh:p (iZ) between aIeptii
constraints on the surface cannot be incorporated, and brightness:

2.3 The missing link: temporal surface miZ 1 +)2 + I -+ 4, l - ? Z)2
reconstruction 2+ iC PsjPi

In this section we will describe a fundamental link be- (16)
tween the surface reconstruction techniques and the re- where p,, is the variance in the measurement of bright-
cursive estimation procedure. Ti.. ability to couple both ness. The solution to the minimization problem satisfiestheories will enable us to integrat.e structure data from
independent sources in both space and time. f f 1 _+ )

we will investigate the relationship between the up- Pij 02+ +  + 0 (17)

date stage of the Kalman filter the simple surface re-
construction problem (1). In both cases, the objectives from which an iterative scheme can be derived as before.
are the same: compute a depth map that best matches However, as we will see, the functional relationship (15)
two input depth maps. In the Kalman filter case, the is not usually this simple and each case must be studied
two input depth maps are the measurement Z1 and the individually. A block diagram depicting the generalized
current estimate Z-. temporal surface reconstruction procedure is shown in

To understand the relationship between both cases let the bottom diagram of figure 2.us suposa the arlaetrship beand A oth costlt It is straightforward to extend the above procedureu s s u p p o se th e p a ra m e te rs A l a n d A2 a re n o t co n sta n t t o i c r r a e d p h nf m t o n r m d f e e t d p hbut may vary spatially. At each pixel location (i, i) we to incorporate depth information from different depth
set sources by adding terms fi(E,Z)2 /s for each source it Alij = 1/plij and A2 ij = 1/p2ij (12) to the cost function (16). Another issue is the fact that

the variances p must be updated in each iteration of
Intuitively, points with higher variances (higher uncer- the Kalman filter analogous to (9). The description of
tainty) contribute less to the optimal depth map. If we this process is quite lengthy if smoothness constraints
solve the resulting optimization problem are taken into account. The reader is referred to the

m 1 2 1 )2description of the underlying Bayesian theory provided
ruin ," j - Z1i) + P (Zi, - Z2.;)

2  (13) in Szeliski [18].

we obtain 3 Applications of Te:-r,.oral Surface

= Z h,lP1. + Z2 ii/P2.*3  (14) Reconstruction

1/Pliij + In this section we will show how temporal surface recoil-
struction applies to particular problems in vision. We

This is identical to the update procedure of the Kalman have selected depth from motion and depth from shad-
filter (8) if Z, is the new measuremeut Z and Z 2 is the ing as application domains and provide a brief derivation
current estimate 2-! In other words, the Kalman filter of the temporal reconstruction equations below.
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3.1 Deptl from motion--"

We will consider the case in which a single moving cam-
era acquires a sequence of images from which depth is , ,f.ZE..) sui r(,y)/

to be extracted under the assumption of known mo-
ion. The images acquired by the camera are denoted
t,3 E(x, y, t) where E is the brightness, x, y are the co- 1-9 P..
ordinates in the image plane and t is the time.

Horn, Negahdaripour and Weldon [12], [16] use the
brightness constancy assumption ME = 0 to derive a rela-
tionship between image brightness and motion/structure
parameters Figure 3: The motion warping.

T- + v w + Et = 0 (18)Z J-() j + ( ,, n ,.,,,)., R i + pZ ,ij

Thisfunctionalisof the form f(E., EyEt, Z) = 0. The q(-+i, '. _ '+

quantities s, v and Et are computable from the acquired
images, the motion t and w is assumed to be known and (25)
Z is the unknown depth. This approach is known as the
direct method since it links image brightness directly to Z(n+i). -

P..) I +s,,., (26)
motion and structure obviating the need for the previ- - ' +P-1
ously used computationally expensive optical flow. Where A' and p' are constant multiples of A and p re-

To avoid the nonlinearity in Z we introduce the quail- spectively. The iterative scheme converges provided the
tity d = 1/Z and formulate the update stage of the tern- details of the boundary conditions and derivative oper-
poral surface reconstruction in terms of d: ators are handled correctly, these issues are discussed in

mill E -L((Sij . t)d,j + vii • W + Etj) 2  Horn (13].

i:jCG 3.3 - The prediction stage

+-7(d,3- dj)2 + p(Vd,) 2 . (19) So far, our description has focused on the update stagevhere the "+" and "-" superscripts have been omitted of the temporal reconstruction algorithm. As we can see
fore implici and the satudenots he eten obted from figure 2 the prediction stage plays the vital role of
for simplicity and the hat denotes the estimate obtained transforming the depth map estimates Z between itera-
from tile previous images. The solution to the nfifiniza- tions to account for the motion of the camera between
tion problem is obtained by the iterative scheme frames. This is simply a geometric transformation and

d(a+) d) + Ldi3 --- (s, t)(v, , w + Em,) poses no particular difficulty except for the fact that the
'P 1 surface Z + is only known through discrete samples.

+ P (si )  We begin with a depth map Z(x, y) with a depth value
(20) stored at every point in a discrete grid corresponding to

in which di3 is a local average of neighbors of d,, which, the image array as shown in figure 3.
as the constant p' depends on the choice of finite differ- Each depth map value corresponds to a point Rl =
ences apl)roximation made for the derivatives. [X, Y, Z]T on the surface via the equations of perspective

projection. Due to the motion t, w between frames, such
3.2 Depth from Shading a point will move according to the equations of rigid
The image irradiance equation body motion

E(x,y) - R(p,q) = 0 (21) it = -t -w x R (27)

is a functional of the form so that the resulting surface may appear as in the bottom
diagram of figure 3. The difficulty arises when we note

f(E, Z, Zx, Z4) = 0 (22) that the next measurement which will be used to update

Adding smoothness and integrability constraints (bee the warped surface is available only at. the grid point lo-
Horn [13]) to the temporal surface reconstruction we get. cations and that the discrete points in the warped surfacc

may not project back to those grid point locations. It
[E(Z, - R(p, q)J2 (Z Z,b) becomes necessary to resamnl)le the warped surface at the

rMill [  P 'q) + grid point locations by interpolating between the given
arped sapics. This procedure is straightorwamd, but

+A [(Vp) 2 + (Vq) 2] + / [(Z. - p) 2 + (Z4 - q)2 ] . (23) somewhat lengthy especially when we also consider the

Minimization of the above functional leads to three cou- variances 1)+ in the process. The reader is referred to

pled partial differential equations in Z,p and q whose heel [9] for details.

solutions are obtained by the iterative scheme: 4 Experiments/ri00~ ~ Experimentsq I)

(+) _n) + " I?,, + I Z"r,,.I In this section we will illustrate the operation of the

A' + p temporal surface reconstruction with results obtained on
(24) sample images.
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Figure 5: Wire frame plots of the structure from the
pepsi scene. Top: after 1 iteration. Bottom: after 8
iterations.

can, large regions of constant brightness underneath the
logo. A wire frame structure plot of the recovered depth
after 1 and 8 iterations on the pepsi scene is shown in
figure 5.

In a second experiment a more complex scene and mo-
Figure 4: Top: The pepsi scene. Middle: Depth map of tion were employed. An image from the "cup" scene in
a single measurement without reconstruction. Bottom: which the camera translates t = [2,0,41 mm between
Depth map after 8 temporal iterations (9 frames). frames is shown in figure 6. The recovered depth map

after 8 iterations is shown in the bottom diagram of fig-
ure 6. Note that the algorithm detects the spoon that

For the depth from motion algorithm we present re- was placed in the cup but is barely visible in the image.
suits from two real image sequences An image from the To test the shape from shading algorithm lambertian
first sequence entitled "pepsi" is shown in figure 4 along shaded shapes were used. Successive overrelaxation with
with two brightness coded depth maps (brightness is pro- a = -1.7 and linearization of the reflectance map were
portional to depth). The middle depth map is the result in effect. The motion between frames was uniform traiis-
of simply measuring depth from two images using (18), lation in both x and y. Brightness values are in the range
the bottom depth map shows the result of 8 iterations (9 [0, 1] and Gaussian noise of variance 0.05 was added to
frames) of the temporal reconstruction algorithm. The each pixel. Random numbers were used as initial guesses
camera translated uniformly from left to right during for the depth map. Figure 7 shows the top view of a
the experiment. In both motion experiments the initial hemisphere which translates diagonally during the se-
guess for the depth map is a constant (a plane) Since quence along the development of the root mean squared
the minimization procedure in each step of the tempo- error of the depth values (with respect to the true depth
ral reconstruction procedure can be initialized with the values) as a function of the frame number.
current structure model Z,.1 only few iterations (10 in Figure 8 compares the actual input depth on the top
this case) are necessary per frame. The noise reduction with the recovered structure after 8 iterations of the al
effect achieved by the algorithm is clearly visible gorithm. Since the estimate from the previous iteration

Note that the pepsi scene poses a iumber of difficult can be used to initialize the minimization in the next
problems which have plagued other algorithms in mo- time step, only 50 iterations are necessary for each frame
tiun vision but are handled nicely by the recursive esti- as opposed to several thousand in the static depth from
ination and surface reconstruction. specularities on the shading algorithm. As multiple frames are used to re-
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Figure 6: Top: An image from the cup sequence. Bot-
tom: recovered depth map after 8 iterations.

Figure 8: Top: wire frame plot of true depth in the
S*...:::i sphere sequence. Bottom: wire frame plot of depth re-

covered after 8 iterations.

duce the effect of noise, higher accuracy can be obtained
Rthan with a repeated application of the static algorithm.

• ... 5 Conclusion

N ° This paper has presented a method for the temporal in-
tegration of surface reconstruction. This algorithm com-
bines the features of recursive estimation theory and sur-
face reconstruction and is capable of aggregating depth
information from different sources into one continuously

, ,improving structure model of the scene. The effective-
ness of this method has been demonstrated for different
domains on a variety of images. Combination of different
sources has not been demonstrated here but is achieved
in a straightforward manner and will be the focus of our
future research.
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Abstract the signal (intensity variation) to noise ratio is low. If, on
the other hand, the window is too large and covers a region

A central problem in stereo matching by computing in which the depth of scene points varies, then the disparity
correlation or sum of squared differences (SSD) within the window is not constant. Therefore, the position of
lies in selecting an appropriate window size. If maximum correlation or minimum SSD may not represent a
the window is too small and does not cover enough correct estimate of disparity. For this reason, an appropriate
intensity variation, itgives a poor disparityestimate, window size must be selected locally.
because the signal (intensity variation) to noise ratio
is low. If, on the other hand, the window is too However, there has been little research for adaptive win-
large and covers a region in which the depth of dow selection. Most correlation- or SSD-based methods in
scene points varies, then the disparity within the the past have used a window of a fixed size that is chosen
window is not constant. As a result, the position empirically for each application. Uncertainty in matching
of maximum correlation or minimum SSD may not due to the variation of unknown disparities within a window
represent a correct estimate of disparity. For this is unaecounted for by existing stereo algorithms. Levine et.
reason, an appropriate windowsize must be selected al [Levine et al., 1973] presented a method of changing the
locally. There has been, however, little research window size locally depending on only the intensity pattern.
directed toward the adaptive selection of matching However, window selection must also depend on the disparity
windows. (ie. depth) variations which changes from pixel to pixel in an

The stereo algorithm we propose in this paper se- image. In fact, the difficulty in obtaining an adaptive window
Tets aswino adptivhel propoeauin the oapr slies in a difficulty in evaluating and using disparity variances.lects a window adaptively by evaluating the local While the intensity variation is directly obtained from the ima-
variation of the intensity and the disparity. We em- age the insparity variation is note im-

ploy a statistical model that represents uncertainty age, evaluation of the disparity variation is not easy, since

of disparity of points over the window: the uncer- the disparity is what we intend to calculate as an end product
of is assumed to increase with the distance of the of stereo. To resolve the dilemma, an appropriate model ofpoint from the center point. This modeling enables disparity variation is required which enables us to assess how

us to assess how disparity variation within a win- disparity variation within a window affects the estimation of

dow affects the estimation of disparity. As a result, disparity.
we can compute the uncertainty of the disparity es- The stereo algorithm we propose in this paper selects a
timate which takes into account both intensity and window adaptively by evaluating the local variation of the
disparity variances. So, the algorithm can search intensityand the disparity. We employ a statistical model that
for a window that produces the estimate of dispar- represents uncertainty of disparity of points over the window:
ity with the least uncertainty for each pixel of an the uncertainty is assumed to increase with the distance of
image. The method controls not only the size but the point from the center point. This modeling enables us
also the shape (rectangle) Gf the window. The algo- to compute both a disparity estimate and the uncertainty of
rithm has been tested on both synthetic and real im- the estimate. So, the algorithm can search for a window that
ages, and the quality of the disparity maps obtained produces the estimate of disparity with the least uncertainty
demonstrates the effectiveness of the algorithm, for each pixel of an image. The method controls not only the

size but also the shape (rectangle) of the window.

I Introduction in this paper, we first develop a model of stereo matching
in section 2. Section 3 shows how to estimate the most likely

Stereo matching by computing correlation or sum of squared disparity and the uncertainty of the estimate based on the
differences (SSD) is a basic technique for obtaining a dense modeling in section 2. These two sections provide theoretical
depth map from images [Matthies ct al., 1989][Forstncr and grounds of our proposed algorithm. In section 4, wc presents a
Pertl, 1980][Wood, 1983][Mori et al., 19731. A central prob- complete stereo algorithm which selects appropriate window
lcm with this method lies in selecting an appropriate window size and shape adapti% ely for each pixel. Section 5 provides
size. If the windov' is too small and does not cover enough experimental results with real stereo image. The quality of
intensity variation, it gives a poor disparity estimate, because the disparity maps obtained demonstrates the effectiveness of

383



the algorithm, and parallel to the baseline, but it is less certain as the window
becomes larSer. We also assume that the image intensity

2 Modeling Stereo Matching derivatives -f2( , q) within a window follow a zero-mean

We will first develop a statistical model of the difference of Gaussian white distribution, 2 and that intensity derivatives
intensities of two images within a window. The analysis is Zf2(, q) and disparities d,( , 0) are mutually independent.
based on the uncertainty model presented in [Okutomi and These assumptions allow us to model a statistical distribu-
Kanade, 1990b]. Let the stereo intensity images bef I(x, y) tion of the intensity difference (7). Let us denote the right
andf 2(x, y). Assume that the baseline is parallel to the x axis, hand side of equation (7) by n,( , q). First, we compute the
and f 1(x, y) and f2(x, y) come from an underling intensity mean and variance of n,( , 9):
functionf (x, y) with a disparity function d,(x, y). Then,

fi(x,y) = f(x,y)+n(x,y) (1) E[n,( ,
f 2(x+d(x,y),y) = f(x,y)+n2(X,Y), (2) = E[d,( ,r)-d,(0,0)]E [.fz( +d,(0,0),o)1

where nt(x,y) and n2(x, y) are independent Gaussian white L-J
noise for both images, such that +E[n( , 7)] = 0 (8)

ni(x,y), n2(x,y) - N(O,0',2). (3) E [(n,( ,01))21

From equations (1) and (2), [( _ )2]

f1(XY)-f2(X+dr(XY),Y) = nxY), (4) E [ (d,( , ) - dr(O, 0)) f2( + dr(O, 0), )

where n(x, y) is Gaussian white noise such that [
n(x,y) - N(0,20). (5)+[d, 0 ,

To simplify the notation, suppose that we want to com- ( ) ]pute the disparity at (x,y) = (0,0), i.e., the value d,(0,0). . 2( + d,(0, 0),07) n( ,,0)

Also, suppose a window W = {(, )} is placed at the correct a, / .2
corresponding positions in both images, that is, at (0,0) in + E [(n(a, 0))2]
image f (x, y) and at (d,(0,0), 0) in image f 2(x, y). Figure 1 E[(d,(,) _ ,(0, 0)) ]

illustrates the situation. Then, the difference of intensities be- )2 1

tweenf1 andf 2 at ( , ) in the window can be approximated E + E 2] 2
by using the Taylor expansion of the left hand side of equation • E[ . 2(V + d(0, 0), 0) + E [(n(a, 7)))]

(4)
= 2n2 + Of adV' + 2 , (9)

f1V,3?)-f 2 V+d,(0,0),) Z (6) where
(d,( , 77) - d,(0, 0))t 2( + 0,0, 0), q) + n( , q). o f= E W2( + C,0, 0), 77) • (10)

At this point, let us introduce the following statistical model Appendix I shows that n,( , q) is white noise and its distribu-

for the disparity d,( , q) within a window: tion can be approximated by a Gaussian distribution with the

dr( , ) -dr(0, 0) -- N (0, ad V 2), (7) above mean and variance. That is,

/n.,(, 77) h fV,,7) -fh( + dA,O0), 7)
where ad is a constant thatrepresents the amount of fluctuation N (0 2 + f on2) (11)
of the disparity. That is, this model assumes that the difference_ f
of disparity at a point ( , q) in the window from that of the The intuitive interpretation of (11) is as follows. Referring
center point (0, 0) has a zero-mean Gaussian distribution with to
variance proportional to the distance between these points. In wfigure 1, n dw, ) is the difference between f and f 2 at
other words, the expected value of the disparity at ( , 0) is the (c) within a window when the window is placed at thesame as the center point, but it is expected to fluctuate . .ore as corresponding positions for obtaining the disparity at (0, 0).
sae pointasfart the center . r point, butiti cter oftte .re, If there is no additive noise n(x, y) in the image (i.e., or,, = 0)the point is farther from the center. Or, in terms of the scene, and the disparity is constant within the window (i.e., ad =thesurface covered by the window is expected to belocallyfiat 0), then the two images match exactly, and n,( , q) must be

'The statistical model of (7) can be shown equivalent to as- null. Otherwise, however, the difference has a value which
suming that d,( , ij) is gera-ted oy Brownian motion (refer to shows a combined noise characteristic which comes from both
[B.B.Mandelbrot and Ness, 1968][Voss, 1987]). More generally, intensity and disparity variations. As derived in (11), it can
we can assume d,( , il) to be a fractal. This corresponds to choosing be modeled by zero-mean Gaussian noise whose variance is
a different degree of e + i? in the variance in (7). The Brownian
motion is the simplest case in which the degree is 1. However, 2This is also equivalent to assuming the pattern f2(C, 71) to be
our preliminary experiments have shown no noticeable advantageof result of Brownian motion: i.e., locally it has a constant brightness,
using a general fractal assumption. but has more fluctuation as the window becomes bigger.
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a summation of a constant term and a term proportional to Since n,( , j?) is white noise, , are mutually independent. So
Vf + 2. The constant term is from the noise added to the we get
image intensities. The second term is from uncertain local p( y(i,j E W)Ad) = " p( jlAd), (20)
support. That is, while the points surrounding the center point ijEW
in the window are used to support the matching for the center where p( ij E W) 1,d) is the conditional joint probability
point, itshouldbenotedthatthesepointsmay actually increase repoit i i the ondIionw dnt proilt
the error in computing the disparity of the center point. This for the points in the window, and ]IjEW denotes the product

is because, in general, the disparity of the surrounding points over the window. From the continuous version of Bayes'
deviates from that of the center point. This uncertainty is theorem,
represented as if the intensity signals have additional noise p(Adlij(ij E W))
whose power is proportional to the distance from the center
point in the window. If the disparity is constant over the ( p(21i(i,j E W)Ad)p(Ad))
window (i.e. ad = 0), the additional noise is zero. If the f.7 op( ,(ij E W)ILd)p(Ad)d(Ad) (
disparity changes more in the window (i.e., the larger ad is), Assuming no priorinformationofAd (i.e.,p(Ad) = constant),
its effect becomes larger and the information contributed by substitution of (19) into (21) yields
the surrounding points becomes more uncertain.

3 Estimating Disparity and Its Uncertainty p(AddJij(i,j E W)) = 1 exp ( ( - ,d)2

Now, we will show how the disparity and its uncertainty can (22)

be estimated based on the modeling presented in the previous where

section. Let do(x,y) be an initial estimate of the disparity
d,(x,y). By using the Taylor expansion, equation (11) be- Zd = -jw(Ol(i, 7j)h2(i, q])) (23)
comes EiJUw(E2(i, lj)) 2

1
n,(, 77) (12) O'1d =  ZiEW, 2(i, 77j))21 (24)

= fl( , 27) -f2( + dO(0,0), 7) - Adf 2( + dO(O,0), where wdenotes the summation over the window. Or,

where Ad is an incremental correction of the estimate to be by substituting equations (15) and (16) into equations (23)
made, such that Ad = d,(O, 0) - do(0,0). Dividing both sides and (24), we obtain

of this equation by /2o'.2 + af ad FV/'7 yields
z 3Jd = (25)n.(e,~~ 17)-.3)(_f(. +doCO,O),,?j)) 2

n.( ,o) (1) uw 2a.+af, ,/f,2+i42
fl (C,27) -f 2(+ do(, 0), 7) - Adf 2( + do(0, 0),7) W1

2fadV T52 od 01d (26)dd(*-/( ,+d(o1o),,?))

where n"((,") is Gaussian white noise EijEw 2o a+, 1,

such that Equation (22) says that the conditional probability density
n.( , q) - N(0, 1). (14) function of Ad given the observed stereo intensities over the

By letting window becomes a Gaussian probability density function.
The mean value and the variance of the Gaussian probability

, ( , 7) -~ f( , 27)-fz( + do(0, 0), (15) are Ad and o2Ad, computed with equations (25) and (26). That
2yr2 + af adv/'T + is, Ad Pnd a2d provide the maximum likelihood estimate of

_ 9 fthe disparity (increment) and the uncertainty of the estimation
02(V, 7) - f2 + d0, 0), 77) (16) for the given window W, respectively.

+ 22 a 2 ' Tad and af are parameters that represent the disparity fluctu-
2 o t ation and the intensity fluctuation, respectively. We estimate

we have them locally within the window from equations (7) and (10),
0 (=, r) - A d 2( , nn(, ). (17) 0)2

Now, by sampling 01 and 02 at ( i, 2j) in the window W we d 1 (do(,)
can define 1as i6w + 11i2

= 01 ( j, 77j) - Aq2 1, 77j) = l i 7). (18) 12
From equation (14), the conditional probability density func- df = - -f2(&, + do(0, 0), 7,) (28)
tion of 0 given Ad is Niw'

1 ( (lVi i, 27) - Ad02( i, qj))2\ where N, is the number of the samples within the window.
p( qVAd) = - 2 These parameters change as the shape and size of a window

(19) changes.
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4 Iterative Stereo Algorithm with an Adaptive First, we will examine the result of window selection. The
Window four images in figure 4 show the length (increasing brightness

corresponds to increasing length) by which the window has
In the previous sections we have developed a theory for corn- been extended in each of the four directions. For example,
puting the estimates of the disparit) increment and its un- the vertical dark stripes in figure 4 (a) on the right hand side
certainty, which take into account the fact that not only the of the vertical disparity edge show that the windows for those
intensity but also the disparity varies within a window. We points are not extended to the left so that the windows do not
now describe the complete stereo algorithm based on the the- cross the disparity edge to a region of different disparity. We
ory: observe the same phenomena in the other directions. We can

1. Start with an initial disparity estimate do(x, y). This ini- examine the size and shape of selected windows at several
tial estimate can be obtained by any existing stereo algo- representative positions shown in figure 5. The windows

rithm. selected at those positions arc drawn by dashed lines in figure
6 relative to the disparity edges drawn by solid lines. For

2. For each point (x, y), choose a window that provides the example, at P0 a window has been expanded to the limit for
estimate of disparity increment having the lowest uncer- all directions, whereas at P1 expansion to the right has been
tainty. For the chosen window, calculate the disparity stopped at the disparity edge. At P5, a window is elongated
increment by (25) and update the disparity estimate by either vertically or horizontally, dependingon the image noise,
di+ (x, y) = di(x, y) + Ad(x, y). but consistently avoids the comer of the disparity jump.
Here we need a strategy to select a window that results Next, let us examine the computed disparities. For com-
in the disparity estimate having the lowest uncertainty. parison, we also have computed disparities by running the
In the discussions so far the shape of the window can be same iterative algorithm but with a fixed window size; that
arbitrary. In practice we limit ourselves to a rectangular is, in Step 2 of the stereo algorithm we use a window of
window, as illustrated in figure 2, whose width and height predetermined size rather than the window selection strategy.
can be independently controlled in all four directions. We run with three window sizes, 3 x 3, 7 x 7, and 15 x 15.
Our strategy is as follows: Figures 7 (a), (b) and (c) show the result produced by fixed
(a) Place a small 3 x 3 window centered at the pixel, window sizes, and (d) by the adaptive-window algorithm. We

can clearly see the problem with using a predetermined fixedand compute the uncertainty by using (27), (28), window size. A larger window is good for flat surfaces, but it
and (26). blurs the disparity edges. In contrast, a smaller window gives

(b) Expand the window by one pixel in one direction, sharper disparity edges at the expense of noisy surfaces. The
e.g., to the rightx+, for trial, and compute the uncer- computed disparity by the proposed algorithm shown in fig-
tainty for the expanded window. If the expansion ure 7 (d) shows both smooth flat surfaces and sharp disparity
increases the uncertainty, the direction is prohibited edges. The improvements are further visible by plotting the
from further expansions. Repeat the same process absolute difference between the computed and true disparities
for each of the four directions x+,x-,y+, and y- as shown in figure 8, with a table that lists their mean er-
(excluding the already prohibited ones). ror values. The adaptive-window algorithm has the smallest

(c) Compare the uncertainties for all the directions tried mean error, but more importantly we should observe that the
and choose the direction which produces the mini- algorithm has reduced two types of errors. A small fixed win-
mum uncertainty. dow results in large random error everywhere. A large fixed

(d) Expand the window by one pixel in the chosen di- window removes the random error, but introduces systematic
rection. errors along the disparity edges. The adaptive-window based

(e) Iterate steps (b) to (d) until all directions become method generates small errors of both types. In fact, we have
prohibited from expansion or until the window size shown that at each point the expected value of the error by the
reaches to a limit that is previously set. adaptive-window method is always smaller than or equal to

that produced when any fixed-size window is used [Okutomi
Thus, our strategy is basically a sequential search for and Kanade, 1990b].
the best window by maximum descent starting with the Figures 9 (a) and (b) show another example of synthesized
smallest window test data. Figure 10 presents the computed disparity by the

3. Iterate the above process until the disparity estimate new method in (d), together with the results produced by
d,(x, y) converges, or up to a certain maximum number fixed window sizes in (a) to (c) for comparison. As with the
of iterations, previous example, we clearly see better performance with thenew method.

Now, by using synthesized data we will examine how the

window is adaptively set by the stereo algorithm for each C . , s, .,
position in an image, and demonstrate its advantage. Figures ., IAIIA 1 AI L

3 (a) and (b) show the left and the right images of the test We have applied the adaptive-window based stereo matching
data. In generating the data set, a linear ramp in the direction algorithm presented in this paper to real stereo images.
of the baseline is used as the underlying intensity pattern. Figure 11 shows images of a town model that were taken
It is deformed according to the disparity pattern in figures by moving the camera vertically. The disparity, therefore, is
3 (c) and (d), and Gaussian noise is added independently to
both images. We apply the iterative stereo algorithm to the 3A(.tually these are the average of ten runs with different noises
resultant data. to obtain the general tendency, rather than accidental set up.
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in the vertical direction. To give an idea of the arrangement The experimental results have demonstrated a clear ad-
of objects in the scene, a picture taken from an oblique angle vantage of this algorithm over algorithms with a fixed-size
is given in figure 11 (c). window both on synthetic and on real images.

For initial disparity estimates, we have used a technique
of multiple-baseline stereo matching [Okutomi and Kanade, References
1990a] which can remove matching ambiguities due to repet-
itive patterns, especially in the top portion of the image. Fig- [Barnard, 1980] S. T. Barnard. Disparity analysis of images.
ure 12 (a) shows the disparity map computed by the adaptive IEEE Transactions on Pattern Analysis and Machine In-
window algorithm. In addition, the uncertainty estimate com- telligence, 2(4):333-340, July 1980.
puted by the algorithm is shown in figure 12 (b): increasing [B.B.Mandelbrot and Ness, 1968] B.B.Mandelbrot and
brightness corresponds to higher uncertainty. With this un- B. Ness. Fractional brownian motion, fractional noises
certainty estimate we can locate the regions whose computed and applications. SIAM, 10(4):422-438, 1968.
disparity is not very reliable (very white regions in figure 12
(b)). In this example, they are either due to aliasing caused by [de Coulon, 1986] F. d. Coulon. Signal Theory and Process-
the fine texture of roof tiles of a building (in the middle part ing. Artech House, Inc., 1986.
of the image) or due to occlusion (the others). The disparity [Forstner and Pertl, 1986] W. Forstner and A. Pertl. Pho-
estimates of those uncertain parts can be discarded for later togrammetricStandardMethodsandDigitallmageMatch-
processing. The isometric plot of the disparity map is shown ing Techniques for tligh Precision Surface Measurements,
in figure 12 (d), which roughly corresponds to the viewing pages 57-72. Elsevier Science Publishers B.V., 1986.
angle of figure 11 (c). We can see that each building wall has [Grimson, 1985] W. E. L. Grimson. Computational experi-
a smooth surface and yet is clearly separated from others, andthe hap ofthe istnt ride (o th let) i reoveedments with a feature based stereo algorithm. IEEE Trans-
the shape of the distant bridge (on the left) is recovered, actions on Pattern Analysis and Machine Intelligence,

Figure 13 shows perspective views of the recovered scene 7(1):17-34,January 1985.
by texture mapping the original intensity image on the con-
structed depth map and generating views from new positions [Horn and B.G.Schunck, 1981] B. Horn and B.G.Schunck.
which are outside of the original stereo views. They can give Determining optical flow. Artificial Intelligence, 17:185-
an idea of the quality of reconstruction. This stereo data set is 203, 1981.
the same one used in [Matthies et al., 1989]. We can observe a [Levine et al., 1973] M. D. Levine, D. A. O'Handley, and
noticeable improvement of the result over the previous result. G. M. Yagi. Comnputer determination of depth maps.
Also it should be noted that this is extremely narrow baseline Computer Graphics and Image Processing, 2(4): 131-150,
stereo: the baseline is only 1.2 cm long and the scene is about 1973.
Im away from the camera, thus the depth to the baseline ratio
is approximately 80. [Mallat, 1988] S. Mallat. Multiresolutionrepresentations and

Figures 14 (a) and (b) show another set of real stereo images wavelets. PhD thesis, University of Pennsylvania, 1988.
which are top views of a coal mine model. Figures 15 (a) and [Marr and Poggio, 1977] D. Marr and T. Poggio. A theory of
(c) show the isometric plots of the computed disparity. For human stereo vision. In Al Memo, volume451. MIT, 1977.
comparison, actual pictures of the model taken from roughly [Matthies and Okutomi, 1989] L. Matthies and M. Okutomi.
the same angles are given in figures 15(b) and (d). The shapes A bayesian foundation for active stereo vision. In SPIE,
of buildings, a A-shaped roof, a water tank on the roof, and a SensorFusion 1: Human andMachine Strategies, Novem-
flat ground have been recovered without blurring edges. ber 1989.

6 Conclusions [Matthies et al., 1989] L. Matthies, R. Szeliski, and
T. Kanade. Kalman filter-based algorithms for estimat-In this paper, we have presented an iterative stereo matching ing depth from image sequences. International Journal of

algorithm using an adaptive window. The algorithm selects Computer Vision, 3:209-236, 1989.
a window adaptively for each pixel. The selected window
is optimal in the sense that it produces the disparity estimate [Mayhew and Frisby, 1981] J. E. Mayhew and J. P. Frisby.
having the least uncertainty. By evaluating both the intensity Psychophysical and computational studies towards a the-
and the disparity variations within a window, we can compute ory of human stereopsis. Artificial Intelligence, 17:349-
both the disparity estimate and its uncertainty which can then 385, 1981.
be used for selecting the optimal window. [Mori et al., 1973] K. Mori, M. Kidode, and H. Asada. An

The key idea for the algorithm is that it employs a statistical iterative prediction and correction method for automatic
model that represents uncertainty of disparity of points over stero .omparison. Computer Graphics and Image Process-
the d thncertainty s assumed to increase with the ing, 2:393-401, 1973.
distance of the point from the center point. This model has [Ohta and Kanade, 1985] Y. Ohta and T. Kanade. Stereo by
enabled us to assess how disparity variation within a window [Ota and nade, seach and namic proby
affects the estimation of disparity. intra- and inter-scanline search using dynamic program-

An important feature of the algorithm is that it is completely ming. IEEE Transactions on Pattern Analysis andMachine
local and does not include any global optimization. Also, the Intelligence, PAMI-7(2): 139-154, March 1985.
algorithm does not use any post-processing smoothing, but [Okutomi and Kanade, 1990a] M. Okutomi and T. Kanade.
smooth surfaces are recovered as smooth while sharp disparity A multiple-baseline stereo matching algorithm, in prepa-
edges are retained, ration, 1990.
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[Okutomi and Kanade, 1990b] M. Okutomi and T. Kanade. [Witkin et al., 1987] A. Witkin, D. Terzopoulos, and
A signal matching algorithm: An adaptive window based M. Kass. Signal matching through scale space. Interna-
on a brownian motion. Technical Report in preparation, tional Journal of Computer Vision, pages 133-144, 1987.
School of Computer Science, Carnegie Mellon University, [Wood, 1983] G. Wood. Realities of automatic correlation
Pittsburgh, PA 15213, 1990. problem. Photogrammetric Engineering andRemote Sens-

[Voss, 1987] R. F. Voss. Fractals in nature. In Course note on ing, 49:537-538, April 1983.
FRACTALS: Introduction, Basics, and Perspectives, 1987.

f1(x)

4 Window

f2(x)

f2(x) fj ) - f2 + dKO))

fl(x- d(O)) 0

(4+d,(4)) = fl(4)

d(x) f2( + d,(O))

4(0) dA()

0 4x

Figure 1: Illustration of n q( , ) in one dimension. The graph at the top showsf 1 (x); the middle one,f2(X) (the thicker curve)
withf 1 (x) shifted by d,(O) (the thinner curve); the bottom one, d,(x). The region indicated by the very thick lines on the axes
indicate the region covered by the window.

y-plus

1
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Figure 2: Window expansion
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P6 PSI

(c) (d)

Figure 3: Synthesized stereo images, with a ramp in- Figure 5: Positions for which size and shape of selected win-
tensity pattern with Gaussian noise: (a) Left image; (b) dows are examined.
Right image; (c) Disparity pattern; (d) An isometric plot
of the disparity pattern

Ir
(a) (b)

L L -11*'d I

Figure 4: Extent of window-size expansion for each di-
rection: (a) Left (X-minus) direction; (b) Right (X-plus) Figure 6: Selected windows for each position

direction; (c) Down (Y-minus) direction (d) Up (Y-plus)
direction
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(a) (b)

(c) (d)

Figurc 7: Isometric plots of the computed disparity by: (a) a 3 x 3 window; (b) a 7 x 7 window; (c) a 15 x 15 window; (d) the
adaptive window algorithm.

Winldow Mean Error Value
(a) (b) 3x3 0.22

7x7 0.20

15x15 0.34

Adaptive 0.08
Window (pixel)

(c) )

Figure 8: Difference between the true disparity and the computed disparity: (a) by a 3 x 3 window; (b) by a 7 x 7 window; (c)
by a 15 x 15 window; (d) by the adaptive window.
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3~ k 24

(a)<% (b%

X,\ Z,'

Figure 9: SyntliesI7.cd stel.. mnages no. 2: (a) Left image; (b) Right image; (c) Disparity pattern; (di) Isometric plot of the
disparity pattern shown in (c).

391



(a) (b)

(c) (d)

Figure 10: Computed disparities by: (a) a fixed 3 x 3 window; (b) a fixed 7 x 7 window; (c) a fixed 15 x 15 window; (d) the
adaptive window.
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(a) (b)

(C)

Figure 11: "Town" stereo data set: (a) Upper image of stereo;(b) Lower image of stereo; (c) Oblique view.
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((b)

Figure 12: Computed disparity anld uncertainty for the "town" .tcrco data: (a) Disparity map, (b) Uncertainty, (c) Isometric
plot of thc disparity map.
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(a)()

Figuire 13. Perspeuive views of the rec~l mxred ~. (a) from the original Wla position, (b) from in uppci position;, (L) f10111
2n tipper left position; (d) from an tipper right position.
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(a) (b)

Figure 14: "Coal mine" stereo data set: (a) Lower image; (b) Upper image.
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(a)()

*4

4 ' A~

Figure 15: Isometric plots of the computed disparity map and their corresponding actual view: (a) (b) Isometric plot and
corresponding view from the lower left corner; (c) (d) Isometric plot and corresponding view from the upper right corner.
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where b is a constant. Therefore, z is also white.

A Approximating Distribution of n3( , )) The density function pz(z) can be calculated as

We will examine the statistical properties of n,(e, 77), which is p,(z) = 1 p(x)py ( z)dx
the right hand side of equation (4) i-O I

, 10 1 [ol ( x 2  z2-yx
7r0')y exp 22 2 dx)

We see that n,(, 7) has the form of 7-K oY ( )
xy + n,

where where Ko(z) is the modified Bessel function of order 0
=d,(, q)- d,(0,0), Ko(z) = x 1 p Z2) dx.y = -¢2( + ,(o,o0),,0 T,

The thick curve in Figure 16 shows this density function. p,(z)n = n( , 7) is a monomodal distribution which is symmetrical about the
Our assumptions are that: x is a zero-mean Gaussian noise; y mode at z = 0. For simplicity, it is reasonable to approximate
and n are both zero-mean Gaussian white noise; and x, y, and the distribution by a Gaussian distribution that has the same
n are statistically independent, mean and variance as p,(z), which are

Let pz(x), o2, and R,(r) denote the density function, vari-
ance, and autocorrelation function of x, respectively. E[z] = Eix]E[y]

1 2 0
=E[(z - E[zJ)2] = E(xy)2 = E[x2]Ey]

We define notations for y and n in the same manner. Since y = O.Y2

is white, we have The faint curve in figure 16 shows the zero-mean Gaussian
Ry(r) = a6(r), distributionN(O, oa.2o-).6(7) is the delta function and a is a constant. Once we approximate the white noise z = xy by a Gaussianwhere, let us te e un eti es a rant, distribution, it is straightforward to see that z + n is also a

which is product of x and y Gaussian white noise and to calculate its mean and variance,
since it is sum of two Gaussian white noises. Hence, equation

z = xy. (11).
Since x and y are independent, the autocorrelation function of
z is given by (see [de Coulon, 1986]):

R.(r) = R.(r)Ry(r) = b(r)

p(z)

0.

0.

3

.2

0.1

-4 -2 2z

Figure 16: Probability density functions, Ko ad
N(0, aoY) The horizontal axis is normalized; i.e., z'=
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1 Introduction pattern seen on the surface. Then if I denotes the la-
bel for the object surface model, the solution to the first

A unified geometric-probabilistic approach is presented problem is
to 3D surface estimation, recognition and segmentation
from two or more images. The central idea here is maxp(II,..., INva)xmaxp(Ii,...,I INa)p(a) (1)
to model the joint probability of the images involved The solution to the second problem is
given the apriori unknown parameters in the model used.
Then standard techniques from statistics and image pro- maxp(Ii,. •, IN 11, a)p(a I I)p(l) (2)
cessing can be used for parameter estimation, image seg-

mentation and model recognition. Using this formu- The solution to the third problem is
lation, we illustrate algorithms for: estimating highly max P(Ii, . •. , IN I , a)p(or I l)p(l)da (3)
variable 3D surfaces, including depth discontinuities; es- 1 co
timating parameters for modeled curved surface; seg- Note that in (2), maxp(I,..., IN I I, a) can be ap-
menting images into regions, each viewing a different 0'
3D surface model; and recognizing objects viewed in the preciably larger when I specifies cylinder than when 1
images. Other results not presented here include the specifies plane, since a cylinder can always approximate
Cramer-Rao lower bound on the error in surface recon- the image data better than can a plane. Hence the pres-
struction from the raw image data [Cernuschi-Frias el ence of p(a I 1) in equations (2) and (3) is usually nec-
al., 1989]. The situations that can be handled include essary when the different surface types have different
virtually all those of interest in the stereo problem, and functional forms because, e.g., if a plane is present in
the results should be of maximum accuracy since the the data, p(a I ) should be larger for 1 = plane than
algorithms are either maximum likelihood or maximum for 1 = cylinder. The solution to (3) will have smaller
aposteriori probability estimation or minimum probabil- recognition of surface type error than will the solution
ity of error recognition. to (2), though, in many cases, the difference will not be

significant.
2 Problems of Interest and Basic More generally, there will be many objects in a scene.

Equations Assume the number of objects in a scene can vary. Then
the generalization of the preceding is that what must be

Among the problems of interest are the following, estimated is the number of surfaces present, their types,
and their parameter values. These generalizations are1. Maximum aposteriori probability (MAP) estima- the following.

tion of a 3D parameterized surface from a sequence tefloig
of images. 4. MAP estimation of the number of surfaces present,

of imges.the surface types, and their parameter values.

2. Joint MAP recognition of 3D surface type and sur- 5. M um pobailt er retio olte
face parameter estimation. 5. Minimum probability of error recognition of the
faceinimu para it on enumber of surfaces present and their types.

3. Minimum probability of error recognition of3D sur- Suppose there are K surfaces in the scene. Let LV -

face type. (11,12, .. . , 1K) denote the labels for these K surfaces, and
It turns out that for these objectives, it is also neces- at - (atc,..., ak) denote the associated parameter

sary to estimate the parameters specifying the pattern vectors. Then the solution to problem 4 is
(i.e., reflectance, seen on the object surface). Consider max p(II,. .IN I a, L)p(a, L, K) (4)
a sequence of images I1(.), 12(.),..., IN(.). Let a denote K,L,a
the vector of parameters for the object surface model, Note that the solution to (4) is also a minimum descrip-
and let a be the vector of parameters that includes the tion length (MDL) solution [Leclerc, 1989]. Finally, the
surface parameters and the parameters that specify the solution to problem 5 is

'This work was partially supported by NSF Grant #IRI- max '00 p(11,. IN I a, L)p(o, L, K)da (5)
8715774 and NSF-DARPA Grant #IRI-8905436 K,La.p_,od (5
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Equations (1)-(5) are reasonable to compute. We now projected ray determined by s with the surface specified
briefly discuss the functions involved, by a. This point is seen in image 2 at the intersection of

There are a number of models possible for In. In the image plane at camera 2 with the forward projected
(Cooper et al., 19881, a polynomial contour model is ray from P, through the lens center of camera 2. Hence,
used. In the present paper, we assume I,(u) is some true we denote this point in 12 by u(s, a). Because of the
noiseless image pn(u) plus white gaussian noise having Lambertian assumption, if a is the true parameter value,
mean 0 and variance a2. We assume a pinhole camera we have
model and a Lambertian surface for the object. Then a pn(u(8, a)) - p1 (s) (7)
point P on the object surface is seen with equal bright- Consequently, an approximation to (6) is
ness in all the images. Hence, the function in (1) can be N
written approximately as "(2 2)-d/2eP E [In(u(sa)-pI(s)] 2} (8)

N n1I (27D0.

r2)eTp 1n=1 seD,
2 (() -I ((6) Unfortunately, the values p1(8) are apriori unknown.

n=1 uED. Hence, they must be treated as apriori unknown param-
where D,, is the set of pixels in the nth image, and d is eters. They specify the pattern on the 3D surface. The
the number of pixels in D,. The pn(u) are functionally apriori unknown parameters a then consist of the 3D sur-
related. This can be seen as follows. Consider Figure 1 face parameters a, the pattern parameter vector P1 hay-
illustrating the geometry for the two images, I and 12. ing components pl(s), 8 E D1, and perhaps a2. When

N=2, equation (8) has some very nice properties. In
particular, if the pl(s) are independent, uniformly dis-
tributed random variables, then

maxp(I, I21 a,pi)p(pi)p(a)
COMPLEX
3D SURFACE (27r¢ 2)-d 2 eeP{--4i E [I(s) - I2(u(s,a))]2 } x (9)

sED1

3D PRIMITIVE P(PuMAP)p(a)
' SURFACE SPECIFIED where PIMAP(8) = 1[Ii(s) + 12(u(s,a))] is the MAP

BY PARAMETERS a estimate of pl(S), anp(plMAP) is constant over a rect-
angular solid. For 3 < N, the situation is more complex,

I \but can be treated effectively. See [Hung et al., 1990].
/ \Equation (9) is to be used in the maximization (2) when

p(p;) is the uniform probability density function and
/ \N=2.

/ \One other equation that facilitates the practical com-
/ \putation of equations (1)-(6) is

p(I,..., IN IO) A-
P(I 1 ,...-IN I&N)exp{-'(a -&N)JV(a -&N)}

2. (10)
where &N is the maximum likelihood estimate (MLE) of

u(s'a) a based on the image data I,,..., IN, and '1 N is the 2nd
derivative matrix having ijth component [Hung et al.,
1990]

02

IMAGE(PLANE1 IMAGEPLANE2 ,a(j),a(i)

Hence all the useful information about a is summa-
Srized in the quadratic form. When (10) is used for

(Reference Image) p(I1,..., IN 11, a) in (3), the result is
maXP(h,,... , IN 11 &N),

FIGUIE 1 (-%ro'2)-9/21 p., 1-1/2p(&, 1 I)p(1)

where q is the number of components in ct, and I (DN

is the determinant Of DN. Note that this should give
Take any point in image 1. Since the two cameras are better recognition results than use of (2), because, e.g.,

calibrated, it is known that the surface point P seen at s eeN 1- 1 2 will in general be smaller for a cylinder than
s lies along the backward projected line from s through for a plane.
the camera lens center. Assume the surface point seen We now discuss how problems 1-5 can be solved and
lies on the surface specified by the parameter vector a. show examples of experiments for the solutions to two
then the point P seen is the intersection of the backward problems.
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3 A Computationally Practical T I K with a Markov Random Field(MRF) by choosing
Approach to Surface Estimation an appropriate neighbourhood system and its associated

potential functions on all the cliques. Unless prior infor-
In order to use parallel processing to achieve real time mation is available, we take
operation, we partition an image, e.g., the first, into K
square windows, assume each window is a view of a p(a I T) = llP(ak I lk)
single 3D surface and first estimate these surfaces in- =
dependently in parallel. (Within each window, parallel k=1
processing can also be used.) Then, these initial esti- , and ak is uniformly distributed over some region. Note,
mates can be used as a starting point for global esti- we assume the p(ak Ilk) are independent of one another,
mation of the entire complex surface seen in the im- and that all p(ak I !k) for the same type of surface, e.g., a
ages. Since gradient descent is the optimization tech- sphere, are the same. Using the MRF-Gibbs equivalence
nique used in most of our solutions, some care must [Besag, 1974], the prior distribution for T I K can be
be exercised to deal with the multimodal functions in- written as follows.
volved. We handle this at the individual window estima- -1
tion stage, as discussed in [Cernuschi-Frias et al., 1989, p(TZ) = ezp{-U(T)} (15)
Hung et al., 1990]. where Z is a constant and the energy function is of the

4 Sequential Algorithm for Surface formU(T) = c(T) (16)
Estimation Vc(

Here we want to process each image as it is received with Vc(T) being the contribution of the clique c to the
to extract what is useful, and then discard it, thus not energy of T. Here, C denotes the set of all cliques with
having to store all the images or to process them simulta- respect to the chosen neighbourhood system. In this pa-
neously. The final estimate based on N images should be per, the first order neighbourhood system is used, where
roughly as if all the images were processed at the same the cliques are individual sites and pairs of adjacent hor-
time. We do this by making use of (10). izontal and vertical sites, and the potential for a clique

p(I1,..., I+1 I a) c = {m,j} is chosen to be:

=p(,h,...,IN Ia)P(IN+l I a) 11) Vm}(T) = V,j)(tm ,t) 0 if tm =t
P(It....IN I &N)X (/4 if t- 0 tj

exp{-1(a - &N)N( - &N))p(IN+. I a) (17)
Then &N+1 is obtained by maximizing (11) with respect The potential functions for the cliques is not restricted in
to a, and DN+l is obtained from (11) by DN+I = N + any way, and can be designed to formulate a wide variety
AN+i where AN+1 is a matrix having iJth element of fields. The preceeding MRF is homogeneous. It tends

2 hito generate blob-like regions. Blob size increases with
inp(IN+ I &N+I) (12) increasing f3. It is the simplest field, and was designed

solely to discourage segmentation into small regions or

Note that this algorithm makes full use of the multi- regions with wiggly boundaries.
ple images and the increasing camera baseline, and the We now focus on the data term in Equation (14),

crain cal era sedloriobject reh p(I 1 2 I PlMAP, a, T). Let I'7 denote the image inten-resulting expressions can also be used for object recog-in image and be itsnition [Hung et al., 1990, Hung, 1989]. corresponding image data seen in image 2. Let am de-
5 MAP Estimation of the Number of note the parameter vector that describes the 3D surface

patch seen in the mth window. Then, am is the surface
Surfaces, Their Types and Their parameter vector associated with the surface label tm.
Parameter Values Since the noise in an image is white and independent ofthe noise in the other image,

The solution to problem 4 is given in equation (4). For

two images this equation becomes Mp(II,,12 1 PIMAP, a, T) 11 All 12 I'I 1 IJMAp tm',a)
max p(I, 121 ,L)p(a, L, K) (13) m1
K,L,a (18)

Suppose the reference image I, is partitioned into M which, from section 2 is
windows, and V- denotes the label associated with the p 2 P1MAPa,T) oc
surface patch seen in the mth window, i.e. tm E L. Then, M

the problem can be equivalently stated as getting the H ezP{--4I  E [Is(s)-12(u(s, am))]2 }  (19)
MAP estimate of K, T = (t ,... tM) and a, i.e., finding exp 4

G [.(

the K,T and a that maximize the following posterior m=1 BED-
probability Then, the MAP estimation of the number of surfaces

p(Ii,12 1a, T)p(a, T, K) (14) preseit, the surface types and their parameter values
p(a, T, K) = p(a I T)p(T I K)p(K). We take p(K) to becomes the maximization of

be uniformly distributed over some interval and model p(II, 12 I 1 lMAP, a,T)p(a)p(T I K)P(K) (20)

401



Stochastic relaxation [Geman and Geman, 1984] for whether planar surfaces are found when nonplanar sur-
maximizing (20) is computationally too costly. Deter- faces are present, and second to explore the quality of
ministic relaxation, such as the Iterative Conditional the planar approximation to nonplanar surfaces. Fig-
Means(ICM) [Cohen el al., 1984, Besag, 1986] is compu- ures 4(a) and 4(b) show the two images used as input.
tationally simple but is only guaranteed to find a local Two of the cylinders and one of the planes have shiney
maximum. It is necessary to have fairly decent initial surfaces. Patches of size 32 x 32 pixels are used to do the
estimates for a, T and K to get good final estimates. local surface estimation and the unsupervised K-means
Therefore, the first two steps of the algorithm are corn- clustering. The unsupervised K-means clustering pro-
putationally reasonable operations for getting the initial gram in this case comes up with 12 classes. Five of them
estimates for a, T and K. have small likelihood of data and are therefore rejected

To start out, the reference image is partitioned into Mo by the performance functional (14). Two of the classes
windows. A maximum likelihood estimate (m.l.e) for the correspond to the two planes, pl and p2 and are well
3D surface patch seen in each window is computed. The fit by the model. The cylinders ci and c3 are approxi-
estimate for a window is carried out independently of mated by one plane each and cylinder c2 is approximated
those for other windows. Here, the window size is chosen by three planes. The reason for this is that ci and c3
to be small enough that the 3D surface patches viewed have small curvatures and only a small portion of each
in most windows are of a single surface, but large enough of these cylinders is seen in both images. Cylinder c2,
that there are enough data present in most windows for however, has large curvature and most of it is seen in
acquiring good local surface estimates. both images. For the final MAP segmentation and rees-

Once the maximum likelihood estimates for the 3D timation using a MRF, windows of size 16 x 16 pixels

surface seen in each window is obtained, any clustering were used. Figure 5(a) shows the segmentation of the

algorithm can be used to decide the number of surfaces portion of the reference image that is seen in both the

present and the parameters for each surface. In the ex- input images. Here each region of constant intensity cor-

periments run with a limited data set, the K-means al- responds to one plane found. The surface reconstruction

gorithm with a simple performance functional provided after the fine segmentation is shown in Figure 5(b).

very satisfactory results. The inputs to the K-means al- The details of the algorithm are given in [Subrahmo-

gorithm are the m.l.e's for the 3D surface patches seen nia et al., 1990, Chou, 1988]. We are exploring the limits

in all the windows, to the smallest surfaces that can be found with this ap-

The experimental results using real images are shown proach.

in Figures 2-5. Experiments are run on two different data 6 Estimation of Highly Variable
sets. All the experiments are run using only planes as
primitives. The maximum likelihood surface estimation Surfaces
has been implemented for a larger primitive set consist- Our approach to the estimation of highly variable sur-
ing of planes, cylinders and spheres and we are in the faces is to model the surface as a stochastic process and
process of implementing the MAP segmentation and es- then do MAP estimation. For this purpose, the vector a
timation for this larger primitive set. The first data set is models the surface, and the surface estimation is given
a portion of a cube consisting of two planes. Figures 2(a) by (1). Perhaps, the simplest surface model is the depth
and 2(b) show the two images used of the cube. Figure map, and am is then the surface depth at the mt h pixel
2(c) shows the 3D surface, the camera positions and the in image 1. Or, image I may be partitioned into M0 win-
direction from which the reconstruction is viewed. In the dows, and the surface depth modeled as being constant
experiment, patches of size 40 x 40 pixels were used to over a window. Then am is this surface depth over the
do the local surface patch estimation. Figure 3(a) shows mth window in image 1.
the surface reconstruction after the local surface patch Figures 7(b) show the results of the Surface MAP Es-
estimation. The surface reconstruction after the unsu- timation based on the images shown in Figure 6. The
pervised K-means clustering is shown in Figure 3(b). We images are of a cylinder lying on a planar surface. Fig-

see that the unsupervised K-means clustering technique ure 7a shows the depth map reconstructed based on the

comes up with three classes. The two large classes are two 7asw s the maxinuced estimae
well fit by the model and the small one inbetween is not two images by using the maximum likelihood estimates

and is rejected by the performance functional (14). For While this reconstructed depth map reveals the struc-
the final MAP segmentation and estimation, patches of Whltisrcnruedephmpevashetu-
thze fina MAP psre etiod. Thestiaerecoction ture of a cylindrical box lying on a flat surface, it is noisy
size 10 x 10 pixels are used. The surface reconstruction because each depth parameter is estimated using inten-
isftern tht fie p atesbeoni tow in Figure 3(c). It sity data in only a small window. By modeling both
is seen that the patches belonging to the reject class get the smoothness and the discontinuities of the 3D sur-
classified into one of the other classes, thus producing faces with a doubly stochastic process, specifically a cou-
two classes corresponding to the two planes., pled Markov Random Field [Cohen and Cooper, 1987,

For the second experiment shown, the scene consists Geman and Geman, 1984], we obtain the better recon-
of three cylinders (c1, c2 and c3) and two planes (p1 struction shown in Figure 7b [Hung and Cooper, 1990].
and p2). In this example, the two planes fit the primi-
tive model well whereas the three cylinders cannot be
well approximated by a single primitive planar patch
each. The purposes of this experiment were first to see
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Abstract motion during the extended time interval must be modeled properly
so that it can be used to derive the motion constraint. Therefore, a

Previous attempts to the 3-D motion interpretation common assumption of "rigidity of object" often used in the
which utilize a large number of frames require a priori instantaneous analysis is not sufficient for the extended analysis.
model that limits their usage to the motion allowed by the The causality of 3-D motion must be specified in an explicit form.
model only In real environment, however, 3-D motion is [Bo1185] assumes that the motion involves only translation.
seldom described by the simple model such as constant [Weng87] assumes that the translation is given as a polynomial
angular velocity, polynomial trajectories. while the external torque is zero. Broida and Chellapa published a

In this paper, we identify three sources of model series of articles in which both translaion and rotation were
mismatch - parameter jumping, undermodeling and overmo- modeled in terms of power series of known degrees [Broi86a,b].
deling - and analyze the performance degradation due to In a similar vein, we have shown that, by imposing the temporal
each of them. We find that these model mismatches cause constraint, the 3-D motion of a single feature point could be
a very large estimation error or even make the estimation recovered up to a scale fac.tor [Iu89].
process diverge sometimes. As a solution, we propose a All of these extended-time analyses are based upon the
new recursive filter called the Finite Lifetime Alternately assumption that the actual motion is matched to the a priori model
Triggered Multiple Model Filter (FLAT MMF). A number which has to be fixed by the user prior to the execution of algo-
of simulations are conducted to illustrate the performance rithm. An example would be a model which requires tie object to
degradation of the conventional filter due to the model move with a constant acceleration over the time interval of interest.
mismatches and the performance improvement when the Since an object may move almost arbitrarily in front of the camera,
proposed FLAT MMF is used. st,- i.,,del becomes invalid as the length of the observation time

interval increases, although tie model fits pretty well during a short
1. INTRODUCTION initial period. Such model mismatch may cause a very large esti-
The problem of estimating the 3-D motion and structure of moving mation error or may even make the estimation process diverge.
objects in space from time-varying images has attracted many The above observation motivates us to study various prob-
vision researchers for more than ten years. Many interesting results lems associated with the model mismatch. For an object that
on the theoretical and computational aspects of the problem have moves rather freely in front of the camera, tere are three classes
been published, but there is no canonical algorithm accepted by the of model mismatch we must consider. The first one is "parameter
majority of researchers, that can be applied to a wide range of jumping" in which the 3-D motion parameters change abruptly at a
time-varying images. This is partly due to the fact that each indi- finite number of instances. An example is a bouncing ball off the
vidual algorithm counts on the different type of image features or floor. In this case the trajectory of motion parameters is piccewise
on the different assumptions about the motion and the scene. continuous. The second class of model mismatch is called "under-
Perhaps another, bigger reason is that most of previous analyses modeling" in which the computational model does not fully
rely on a small number of image frames (typically two or three) to describe the actual motion, but is a good approximation within
derive the constraint between the image and the 3-D motion, and as some interval. This case interests us most, since we will need to
a result, the algorithms suffer from the serious instability with adopt a generic model which may not be fit to all types of motion,
respect to the input noise. but may fit to a large bodies of natural motion that occur frequently

Recently, a number of researchers have proposed to use a in the real world. The last is "overmodeling" in which the actual
large number of frames in the attempt to beat down the effect of motion is simpler than the model being used. This case is less
noise [Weng87, Broi86a,b, Bo1185, Iu89, Kumia89J. The 3-D serious than undermodeling, but as we shall see, the overmodeling
motion estimate is smoothed not only spatially, but also temporally. may drop down the performance of algorithm.
The major challenge in the "extended" motion analysis is, unlike In this paper, we shall first analyze the performance degrada-
the "instantaneous" motion, that tie temporal behavior of 3-D tion due to the model mismatch, and propose a new parallel, rccur-

sive algorithm which handles all three classes of model mismatch.
This researdi was supported in part by DARPA grant N00014-88-K. The new algorithm is called Finite Lifetime Alternately Triggered

0632 and NSF grant IR189-06770. Multiple Model Filter (FLAT MMF). Our analytical derivation
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will be limited to the "2-D" motion since it is impossible to obtain where f(.) and h(.) arc nonlinear vector functions, and n(t) is a
a closed-form solution for the 3-D motion for the extended time discrete-time random process describing the noise in the measure-
interval. However, experiments were don.. on the 3-D motion as ments. The components of n(t) are assumcd to be independent and
well as 2-D motion. The experimental result will be presented in ( n(t ), j = 0, 1, ... ) are assumed to be white zero mean Gaussian

Section 5. random vectors with common variance matrix. Then the goal is to

Also we limit the scope of paper to the (2-D and 3-D) motion estimate the state vector at different time from the available meas-

of a single feature point. This is necessary because of the following urements vector ( m(tj), j = 0, 1, .. }.

reasons: (1) To make mathematical formula in the paper compact In our case, the state and measurement vectors are defined as
by reducing the number of parameters involved, and (2) to conduct follows.
a formal analysis on the performance of FLAT MMF against the
conventional recursive technique. In Section 2 we begin with our s(t) =X ) z(t-Zlt

discussion on the motion of a single feature point in space. Z(t Z(t Zt Zt Z(t

XzI(t) Y""(t) zk Z(0 1 (2.6)
Z(t) Z(t) ZW t) ZL

2. MOTION OF A FEATURE POINT

In our earlier work [Iu89] we have shown that the 3-D motion of a r x
single feature point could be recovered up to a scale factor. The x(t I(2.7)
motion of a point was approximated in terms of a power series of mt = I. y(t) + t.

predetermined degree. A b-atch approach was used to solve the The total number of states is (3d,, + 3) and the total number of

nonlinear optimization problem that tried to minimize the difference measurements at each instant is 2. The evolution of the states can

between the model and the observation. Unfortunately, the batch be found as follows. For s, 2 and S 3

approach cannot handle the model mismatch we have discussed
briefly in the previous section. Here, we reformulate the problem d [S1 [S3] [s1 d

as a state estimation problem. Let P(t) = (X(t) Y(t) Z(t)IT, dS s = - s2 s  
j

' .3d,,+3 =-3.+3 5. (2.8)

2(t) = (x(t) y(t)]T and V(t) = [Vx(t) Vy(t) Vz(t)]T be the 3-D position,

the projected position and the instantaneous velocity of the moving For the rest of stat, let p = 3 + 3(i - 1) for i = 1, d.• •, - 1,

particle at time t, respectively. The symbol 'T' denotes the tran- d~ 1 [Sp+ 3  [SP 12.a
spose of a vector. Then we have dt sp = Sp + 4 . (2.9a)

d(2.1) Lp +J L+ S+2
PtE (t) -

x(t) = X(t)/ Z(t) , y() = Y() / Z(t), (2.2a,b) d Ss3d S. (2.9b)

under the perspective projection with the normalized focal length. T 3d. + I 3SM +I S5

If the particle moves smoothly in the 3-D space, we may model its s3d+,,+2 S +53d,2j

trajectory as the following power series.t aThe measurement equation is rather simple. From the definitions
P(t) = P P(~(t) (t 't)" (2.3) of state and measurement vectors in (2.6) and (2.7), and using
-t = o (2.2), the components of h((t)) at time t, h,, are given by

where d. is the order of the model of the translation and Ih = s1, h2=s2. (2.10a,b)

ptl(to) = [ Xt nto) ylnl(to) Zl~(t 0) ]T is the n-th derivative of P(t)
evaluated at time t = to. Note that pOl(to) = Po(to). The physical Thus, the soluti e onl r te of particle can be obtained by
interpretation of pSI)(to) and P l(to) are the velocity and the solving the above nonlinear state estimation problem. Extended

acceleration of translation at time to, respectively. It is well known Kahnan filter, iterative extended Kalman filter and nonlinear filter

that we can only recover the translation up to a scalar factor [Mayb82] are commonly used for solving this type of problem

because of the nature of projection. Then our goal is to estimate recursively with different computational complexities. Note that

the translational coefficients P"(to), n = 0, 1, .• , d, in (2.3) scaled the measurement equation in (2.10) is linear.

by a factor representing the absolute depth, given the measurements
ofpl(t), j=0, 1, "...of 2tj),j =0, 1 --- .3. PERFORMANCE ANALYSIS FOR 2-D MOTION UNDER

We may formulate the problem discussed above as the non-

linear state estimation problem. Let the state vector s(t) which is MODEL MISMATCH

.unipu ed uf die unknown parametcrs, and the measurement vector Parameter jumping occurs when the actual motion switches its

rn(t) which is formed by the available measurements, satisfy the parameters abruptly during the observation period Undermodeling

following plant and measurement equations, and overmodeling occur when the order of the power series of the

d particle trajectory is less than and larger than, respectively, that of
- s(t) =f((t)), (2.4) the actual motion. Since we do not know the exact order of the

+ t(2.5) particle motion, it is worth analyzing the performance of these two

problems in detail.
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Since the estimation problem of the particle motion from per- where
spective measurements is nonlinear, there is no closed-form solu- p

tion in general. In order to understand the details of the perfor- (p)- 1"I (J -r )
mance degradation due to the model mismatch, in this section, we S(P, J) - (2p)! (2p + I)!

assume that the particle moves on a plane parallel to the image and Sp q is the Kronecker delta. Using the definitions of j(u) in
plane. For this kind of -2-D motion", we will be able to find thean al ti c cl o ed -f r m ol u i o ns fo r th e m oti n p ra m te rs an d th e (3 .3 ) an d S (p , 3) in (3 .6 ), o n e m ay sh o w th e fo llo w in g p ro p e rtie s
analytic closed-fonn solutions for the motion parameters and the which will be used in the later discussion [Iu9Oa].
corresponding mean-squares error. For the general 3-D motion dis-
cussed in section 2, we will argue that, based on a number of Proposition I
simulations conducted in section 5, the estimation have the similar
behavior as that of the 2-D motion. (a) For large u and m < p - J, the m-th derivatives of j(u) can be

For the 2-D motion, the analysis can be reduced further to the approximated as

following I-D motion problem since the depth does not change and 4pl.n=(u) - 1- uP -
the states related to the X and Y coordinates are decoupled. (p -

Let m(t) be the positional measurement at time t of the trajec- (b) For large J and m _< p :5 J,
tory of a moving particle in one dimension. Assume that the actual [(jN(J)]2- (2p)! (2p + 1)! j - (2m + I)
trajectory X,(t) is piecewise differentiable up to d,-th order. The S(p, J) (p!)2 ((p_ m)!)
symbol 's' denotes the actual signal (trajectory). Let Xml(t) be the
m-th derivative of X,(t). Let A be the time separation between 0
measurement samples. Suppose that J total samples of m(t) at time Now we can express X(t) in (3.2) alternatively in terms of the
t! = j A, j = 0, 1, • •. J, are available, and that we model them as orthogonal polynomial as follows.

m(t1) = X,(t,) + n(t) , (3.1) d,X(t) I o p. J ,. (ut)) (3.7)

where n(Q is a discrete-time random process describing the noise P.0
in the measurements. The ( n(Q )!;- is assumed to be white zero where the argument of 4(.) is the normalize-and-shift function
mean Gaussian random sequence with common variance c-2. Then
our goal is to find the estimates k1ml(t) of XI 1(t), m = 0, ... d. at u(t) = t / A + 1 . (3.8)
time t, - , optimally, in the sense of the minimum mean-squares The m-th derivative of the X(t) is given by
error (MMSE). The subscript 'J' in k1ml(t) indicates that we shall d.

use the measurements ( m(t,) ),TJ in the estimation process. XtmI(t) = 1 0. (u(t)) , (3.9)

In general, we do not know the exact form of actual trajec- P~m
tory X,(t). However, if we assume that the particle moves where 4.) (u(t)) stands for the m-th derivatives of p,.h (u)with
smoothly, we may model X,(t) as a finite order power series; respect to u evaluated at u = u(t).

d,
X(t) = Xp(to) (t - O P  (3.2) If the trajectory model X(t) matches to the actual trajectory

P.p X,(t), i.e., X(t) = X,(t), then the minimum variance unbiased

where d,, denotes the order of the trajectory model X(t), and X[PI(to) (MVUB) estimates XPml(t) of XKml(t), and the corresponding covari-
is the p-th derivative of X(t) at time to. Since it is almost impossi- ances are given by [Peeb70j as
ble to derive the closed-form analytical solution for the estimate i-i

kjmn(t) of XW(t) when the order of the power series is greater than xkmi(t) = I W (t1) , (3.10)
three, we opt to use orthogonal polynomials to describe the actual J.0

and model trajectories. where

Let ( pj(u) )P = o be a set of orthogonal polynomials with 1 I .] (0)) 4P. J 0 + 1)
respect to the discrete points u = 1, 2, • .. , J. The function 4p j(u) wij, j (t) = - (pJ) ' (3,11)

is a p-degree polynomial and its factorial representation is given by 2( n

IRals65] as Vm2 d (t) ' (u(t))p.J (u(t))
S., , S(p, J) (3.12)

4, At) = do. pj + i dk. pj (u-lI) (u-2) ... (u-k) , (3.3) A (,J

k u (3 It can be shown that the estimates 4ml(t) in (3.10) are equal to the

where MMSE estimates, because of the earlier assumption of Gaussian
( 1 )p+k (p + k)! (J - k - i)! ()!)2  noise in the measurement [Mayb821. Also, these estimates can be

dk. PJ - (2p)! (p - k)! (J - p- l)! (k!)2  (3,4) obtained recursively by formulating the problem as a linear state

estimation problem and using the Kalman filter. Since the relation
Note that the leading coefficient of 4,.j(u) is equal to one, i.e., of the coefdicients f XtP(to) o in (3.2) and d . o in (3.7)
do i= I. The orthogonal polynomials satisfy the following ortho- satisfies a linear invertible transformation, one can show that the
gonality property: MMSE estimators of XPM'(t) for the trajectory models in terms of

,. (u) q. (u) = S(p, J) 8p. q, (3.5) power series and the orthogonal polynomials are the same flu90a].
U-1
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Note that if X(t) = X,(t), then Xtr)(t) = Xt m"(t), and we can ver- [sw1 - I-i
ify that the estimates j1(t) of Xst'"lt) are unbiased by using (3.1), = Wmj. j(t) X,1(t) + W" A.i(t) X,2(t)
(3.7) and (3.6); io .rswl

J-1 fswl - I

E [ Xlml(t) = w., (t) X2(t) + 7 w. j(t) I Xs)(t) - XA(tj) 1 , (3.18)
j=O 3=0

E- Wmj (t) m(tj)] where rswl is tie smallest integer which is greater than or equal toIJ0  
sw. Similarly to the derivation of (3.13), one may show that the

, dxo o o (0)~p, + 1) dJ t first term in the right hand side of (3.18) is equal to X1m)t) ifP q J tq) t So the bias of the estimate at time t-, is:

I d_"p- )(u() q. ) S(q, J) Sp q B. j(t,-) = wJ. (ti1) I X.i(t i) - X,2(t,) ], (3.19)

- d . and the error correlation of the estimate R,,,,. j(tj-) is evaluated from
M P (3.16) with the above Bn.j(t-t). Note that the bias is independent

of the noise.
=X- (t). (3.13) The bias Bm.j(t-) and the mean-squares error Rlmj(tj.,)

decrease as more frames are involved in the estimation process. It
Also, the covariance V,,.j(t) in (3.12) is equal to the error correla- may take a large number of frames until the bias and mean
tion sequares error are reduced to a manageable size, but we are likely

Rm j(t) = E ( [ xJkt) -- XlJ(t) ] [ t) - Xt~t) ] }. (3.14) to lose track of the particle if another parameter jump occurs beforethe process settles down. To illustrate this situation, let us consider
Note that there is difference between V.,. j(t) and R, .j(t). The a simple example. Suppose we use a constant value model to esti-
former is the covariance of the estimate RJ'I(t) whereas the latter is mate a piecewise constant trajectory, i.e., dm = d, = 0, for which the
the correlation between the errors [ Xj'"(t) - Xml(t) ] and particle switches its position from 0,o.j to 0,20.j abruptly at time
[X P1(t) - X, l(t) 1. The auto-correlation Rm. j(t) is the mean-squares (sw A), where sw is an integer. Then the bias and the mean-squares
error of the estimate xifm)(t), error of the estimate xl°J(tj) can be found as

Whenever the trajectory model does not describe the actual Bo. j(-,) = !w (0.. - 0.20. j) (3.20)
trajectory, the above properties are not valid in general, i.e., the [ W
estimator xRml(t) may have the bias Ro. j(35))= +  

] (0&10. J - 0,20.) )2 . (3.21)

Bm j(t) = E [ Xjml(t) ] - Xml(t), (3.15)

and the error correlation becomes The first term in the right hand side of (3.21) is the error due to
the noise, and the second term is the extra error due to the parame-ter jumping. Although this bias Bo.j(t 3.1) and the mean-squares

The bias Bmj(t) and the mean-squares error Rm. j(t) are two useful error Roo.(t 3 ) will decrease as J increases, a large number of J is
quantities for monitoring the performance of the estimators. The required to suppress it if sw is large. For example, if we want the
former indicates how close the estimate *Jml() in average is to the bias B. (c-,) to be (0,o. j - 0,20, ) / 2, then we must wait until 3
true value X"'(t), while the latter measures how large the error in becomes equal to (2 sw). It means that, after the particle switches
the estimate is, in average, its value from 0,10, j to 0,20. j at time (sw A), we must wait another

total sw samples to get an estimate whose value, in average, equals
3.1 Model Mismatch due to Parameter Jumping to the average of 0so.j and 0,20.j. This is because the estimation
Suppose a particle which undergoes a smooth motion changes its process has memorized all the past 'invalid' measurements. There-
motion abruptly at time 4 such that its true trajectory is given as fore a large number of new measurements are required in order to

nullify' these invalid values.
d,

X,=(t) Z ,O, . j .j(u(t)) 0 < t < 3.2 Model Mismatch due to Undermodelingp=O

X,(t) d, , (3.17) Suppose that the actual trajectory X,(t) is described by
X,2(t) = Z Os2p. 1 4. (u(t)) ts, t < ti_.P=O d,

X,(t) = P 0 P. .(u(t)), (3.22)

where d, is the order of the trajectory. If we use the d.-degree P.-

polynomial! X(t) in (3.7) to model X,(t) and assume d,, d,, then, then XPml(t) which we would like to estimate is given as
from (3.10), the mean of the estimate x(mt(t) of XP'I(t) are given by 1 -(

xIm(t) E 0 p 41m) (l(t)). (3.23)El [ Rmi(t) P - m
J-1

= E -' w,,. j(t) m(t) I For the traiectory model in (3.7), the estimate k}mi(t) of X1")(t) and
J.0 the covariance V,, .,(t) are given in (3.10) and (3.12), respectively.

If the model is perfect, i.e., d = d,, then these estimates are
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optimal. The estimation problems are called undermodeling and U2 1[r)(J) ]2

overmodeling if d, < d. and dm> ds, respectively. We will analyze R.. (t-i) =
the performance of the estimators of (3.10) for the undermodeling S(m 3)

first. G 2 d, [(fJ) ]2 0
2  

d
'. ,, + (j 1 (3.31

For the actual trajectory in (3.22) and the model of trajectory P= m S(p, J) A "d- I S(p, J)
in (3.7), we can find the mean of estimates *ml(t) of Xlm)(t), simi-
larly to the derivation in (3.13), as follows: The first term in the right hand side of (3.31) is equal to the

d. minimum mean-squares error if the model matches to the true tra-
E [ Xlm(t) Y= 0,- 0,p lm (u(t)). (3.24) jectory. By using Proposition 1(b), each term in the summation

AM P=m converges to zero at the rate of J .-(m + 1) as J increases. The second
term is the additional error due to the overmodeling. Since S(p, J) is

From (3.15), (3.23), (3.16) and (3.12), the bias and the error corre-

lation at tj-l are obtained as greater than zero for J > dm > d,, this additional error is positive and
will increase as dm increases. Fortunately, this error converges to

1  0 (J) (3.25) zero at the rate of J -(Im + 1) as J increases.B,.. AJ~-1) Y -P -J pH (J (325

R. 2  
d-) i+ 4-- (p, J) + B.., "(tJ-l) B n j(t- 1). (3.26) 4. FLAT MMF

In this section, we propose the new filter FLAT MMF to solve the
The mean-squares error of the estimates k1ml(t) at time tii becomes problem of the model mismatches we have discussed so far. Sec-

2: d_ [ /.ml(J) ]2  1 [2 tion 4.1 discusses the motivation of this filter. Section 4.2 reviews
Rmm. j(t-i = S [ ) + %P. ( j) .(M the multiple model filter and describes the basic structure of FLATp=m J) p = d. + I MMF. Section 4.3 summarizes some properties of FLAT MMF

(3.27) regarding the model mismatches.

The first term in the right hand side of (3.27) is proportional to the 4.1 Motivation of FLAT MMF
common variance of the noise. From Proposition 1(b), each term in Let us consider the problem of parameter jumping first. As we
the summation will converge to zero at the rate of J -(m "1) as J discussed in section 3.1, the reason that the estimates of the parani-
increases. The second term in (3.27) reveals the additional error eter jumping have a very large biases and mean-squares errors after
due to the undermodeling. From Proposition 1(a), the particle switches its value is that the filter has memorized many
4p(j) -= p. ip-m. Consequently, as J increases, both the 'invalid' measurements. Thus, we would like to design a filter in

(p- m)! which part or all of these 'invalid' measurements are suppressed.
additional error term and the magnitude of the bias in (3.25) will, For the example presented in section 3.1, one may have observed
in general, increase without a bound! that if we had started another filter some time after the first one,

then the estimate from this filter would have had smaller bias and
mean-squares error. In the extreme case, if the filter is started after

In the following, we will show that, in the case of overmodeling, the switch time, then the estimate will be unbiased and have the
the estimate is unbiased but the mean-squares error increases as the minimum mean-squares error. To enlighten this discussion further,
order of the model dm increases, let us consider a simple experiment.

Similarly to the discussion on the undermodeling, we can
show that the mean of estimates xlmI(t) for the actual trajectory Experiment 1
(3.22) is given by Consider a particle moving from (5, 5, 20) units to (-4, 2, 20) units

dm  d (t)) d, with velocity (-4.16, -1.38, 0) units/second then moving to (0, -5,
E [ XlJt/ A = -Y Y S(q, J) 8p.q. (3.28) 20) units with velocity (2.176, -3.81, 0) units/second. Thus, there is

m =qn J)no depth change in the motion, and the velocity is piecewise con-
Since d,, > d, and using (3.2.2), stant. Assume that we use a constant velocity model and that we

d, start the identical estimators at times 0, 20, 40, 60 and 80 samples.
E [ xkmJ(t) Z = 4 ](u(t)) Figure la depicts the estimates of velocity Xll'(t) I Z(0). (Detail of

AM Pm the experiment setup and the procedure for finding the estimate will
XIMI(t) .(3.29) be discussed in section 5). As we expected, the model error due to

the velocity jump makes the estimates possess a very large error.

Thus, the estimates are unbiased and the error correlation R.. j(t) is Filters that started after the velocity jump yield the better estimate

equal to tie eovaitance of ebtiniates Vmn. At), i.e., On tile ohr hand, the older filter has 'he better noise suppmssion
than the younger one. 0

R aj(t) + = (p, J) (3.30) The above observation may suggest that we restart the filterP--= m (J every few samples in order to keep the number of 'invalid' meas-

This implies that the mean-squares error Rmm j(t) of Ximl(t) at time urements small. But this suggestion does not work because the

t,.1 is given by filter needs a large number of samples to find the estimates and to
suppress the noise. However, if we use two or more filters which
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are started (triggered) at different instants and combine the esti- 4.2 Basic Structure of FLAT MMF
mates from these filters adequately, then we may be able to obtain In this section, we will first review briefly the multiple model filter
the estimates which have a good noisy suppression and avoid the (MMF) and then describe the basic structure of the proposed FLAT
problem of parameter jumping. It is because that the older filter MMF. The idea of multiple model filter is first proposed by
provides the estimates from more measurements while the younger Magill in 1965 for estimating the state of system with uncertainty
one memorize less 'invalid' measurements. Moreover, we may res- [Magi65]. Since then, numerous applications and researches on the
tart the oldest filter again once it becomes too old, say after 100 behavior of MMF have been conducted. The detail of MMF can
samples, because the extra old measurements memorized in this be obtained from the references in [Mayb821. Only a brief
filter become out of date. The above discussion motivates us to description of MMF is given here.
propose the FLAT MMF. We will discuss it in next section in Suppose we want to estimate the state (t) at time i of a sys-more detail.Supswewntoetmtthsttst)atietofay-

tem of interest from the measurements (2!(t))1o. Assume that this
The proposed FLAT MMF may also solve the problem of state estimation problem can be modeled adequately by the one in

undermodeling. As we discussed in section 3.2, if we use a low- which the plant equation and measurement equation are linear,
order model to estimate a high-order trajectory, the estimates will except there are some uncertainties in the modeling, such as the
possess biases and these biases increase without a bound in gen- covariance matrices of the model noise and measurement noise,
eral. However, we observe that these biases arn small around the
time the filter is started because the actual trajectory can be approx- some parameters defining the state transition matrix. Let a
imated adequately by the model within a small neighborhood. The dnote the vector of these uncertain parameters and assume that a

following experiment is conducted to illustrate this observation, belongs to the set of values J K. Then, for each ak, we may
construct a Kalman filter, based upon the model associated with 2,

Experiment 2 to estimate the state. These K filters are independent to each other,
and thus they can be processed simultaneously. The final estimate

Suppose a particle moves with a constant acceleration, but without of the state is obtained by combining the estimates from these K
a depth change. Further suppose that we use the constant velocity filters. The state estimation based on the above structure is called
model. The initial position of the particle is (-6.8, -6.8, 20) units. multiple model filtering. It can be shown that for the above MMF
It moves with velocity [ 3.4 10 0 1'+[0 -5 0 ]T t units/second. structure, the optimal state estimate, in the sense of MMSE, is
Figure 2a shows the estimates of Y1l)(t) / Z(0) as the identical filters given by [Mayb82]
are started at different times. From this figure, it is obvious that the
model error due to undermodeling makes the estimates diverge. _Qt,) = Y, &(tP(t) (4.1)
However, each filter gives reasonably good estimates during a short k=1

interval right after it is started. 0 where g(t ) is the state estimate produced by k-th Kalman filter
For the overmodeling, the opposite is true. Recall that the based on the assumption that the parameter vector equals Pk pk(t)

estimates for overmodeling are unbiased and the extra mean- is the hypothesis conditional probability and
squares errors come from the trajectory model that provides 'over- P() = Prob{ a = _I Mo,}
freedom'. If the trajectory model is fixed, then the only way to
achieve the better estimate, i.e., less mean-squares errors is to use = ((W ' Pk, ,-) P -(
more measurements. Consequently, the estimates from the filter F f(mQ(t) a oMo,_) p3(t,.1)
started later will have larger mean-squares errors because it has J=,
used less measurements. However, if one could conceive a where M is th
mechanism that combines the estimates from multiple filters in ment i om ot ve cimentn(t) from t, to t,, i.e.,
such a way that the final estimates are dominated by those from the
oldest filter, then the estimate obtained from the new filter does not M, = I m(t) mT(,+) ... " !r(t,) T

degrade significantly, compared to the estimates obtained from a The covariance of (t,) is
single filter. Note that, due to the numerical stability and the com-
putational cost, the order of the trajectory model can not to be vcK) = p(t) [ Vk(t,) + [ (tz) - it ) I [ hdt,) - ( P ) (4.3)
high. This is especially true for estimating 3-D object motion from k=1
perspective measurements because the size of the state vector
equals at least three times of the order of the trajectory model where V.(,) is the covariance of (t) computed by the k-th Kal-
being used [Broi86b]. Thus, the problem of overmodeling is less manuiter T(
serious than the problem of undermodeling and parameter jumping. evaluated as

Up to this point, we observe that we may solve the problem exp - A-' (t,)
of parameter jumping. idermodeling and overmodeling all at f(t )W I a . M ,a,)= (4.4)
once, by using a number of filters triggered at different instants, (2) ' " I
provided that we combine the estimates from these filters ade- where
quately. Thus, one may raise two questions: How do we combine
these estimates adequately and what do we mean by 'adequately'? Ak(ii) = H Vk(ti) F + R, (4.5)
The multiple model filter discussed in next section provides an 5(Q = e(t) - H _(t) , (4.6)
answer to these questions.
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and Wtf-, Vk(t) and rk(k) are the state estimate, the covariance and ize the result as follows.
tie residual at t, of the k-th Kalman filter, based upon the measure- (1) For the parameter jumping, the overall estimates before the
ments m(tj))J. 1o, respectively. R, H and nm are the covariance feature point changes its motion are dominated by the esti-
matrix of measurement noise, the measurement matrix and the total mates from the oldest filter, which is the one that provides the

number of measurements at each time, respectively. Note that most noise suppression. After the jump occurs, the overall

Ak(t) and h(t,) are available as intermediate results of the k-th Kal- estimates approach exponentially to the estimates produced by

man filter. Thus, the conditional probability f(Ln(t,) I , M0,I) as the youngest filter. Then after another filter is triggered, the

well as the weighting factors pk(t) can be obtained by a small estimates from this newly started filter get control of the

amount of extra computation. overall estimates, and the estimation of FLAT MMF

In summary, the MMF is composed of a bank of K separate approaches to the one with unbiased and minimum mean-

Kalman filters, each based on a particular parameter vector p. The squares error estimates.

overall state estimate is the linear combination of the state esti- (2) For the undermodeling, the overall estimates approach

mates generated by these Kalman filters. The weighting factors exponentially to the estimates from the newly started filter

pk(t is updated recursively as (4.2), using the current Ak(t,) and whenever a new trigger occurs. Although the overall esti-

rk(t) The block diagram of the MMF is depicted in figure 3. All mates have biases, these biases are considerably smaller than

the filters are run simultaneously and the extra computation for those of one filter. These biases depend on the time interval

updating the weighting factors pk(t compared to the normal Kal- between the triggers (it A) and the discrepancy between the

man filter is negligible, trajectory model and the true trajectory.

The basic structure of the FLAT MMF we are proposing is (3) For the overmodeling, the overall estimates are dominated by

composed of a set of K identical Kalman filters, each triggered at the estimates of the oldest filter. The estimation does not

different time The overall state estimate is the probabilistically degrade significantly even if we use the FLAT MMF instead

weighted average of the state estimates generated by tnese Kalman of the normal filter.
filters, as for the MMF. Without loss of generality, we assume that
the k-th filter is triggered at time (k - I) Jt A, where t is an integer.
Each filter will die after (K Jt A) seconds and then it will be trig- 5. SIMULATION RESULTS
gered again, i.e., each filter only has a 'lifetime' of (K t A). Figure In order to demonstrate the perfonmance degradation of the model
4 shows the timing of the FLAT MMF for K = 4. At each instant, Ismatches nd the performance improveme n as the mMF

in enealthee ae Kfilersbeig pocesedsimltaeouly. mismatches and the performance improvement as the FLAT MMF
in general, there are K filters being processed simultaneously. is used, a number of experiments on simulated data are conducted.
Thus, a FLAT MMF is a MMF in which all the filters are identical Thnosmeuretsfthpojcdpsionlt)atapig

but have the different starting time, i.e., the uncertain parameter The noisy measurements of the projected position 2(t), at sampling

vector a discussed before is the time that the filter is started. For instants t, j = 0, 1, . • , are generated by adding white zero mean

e nGaussian noise to the exact values of 6)(t), which is obtained bythe nonlinear state estim ation problem such as th e problem of u i g ( 3 n 2 2 . T e s a d r e i t o s o h o s r e

motion estimation discussed in section 2, FLAT MMF can still be using (2.3) and (2.2). The standard deviations of the noise re uset
used to estimate the state if the Kalman filter is replaced by the to 2.5 pixels. The focal length of the camera is set to one unit.extnde Kamanfiler r sme the nolinar iltr. urtermre, The visible portion of the image plane is (-0.36, 0.36) × (-0.36,
extended Kalman filter or some other nonlinear filter. Furthermore, 0.36) units. This corresponds to the viewing angle of ± 20 degrees.
we may include other uncertain parameters into the estimation pro- The observed image is considered as 256 x 256 pixels. The time
cess by replacing each filter with a MMF concerng on those unc- interval between frames is 0.04 second. For the 3-D motion,
ertain parameters. extended Kalman filter is used to solve the nonlinear state

The key feature of the proposed FLAT MMF is that the inul- estimation problem. For tie 2-D motion discussed in section 3, the
tiple, asynchronous filters operate on the different sets of past problem becomes a linear one, and the Kalman filter is used. In
measurements. Hence, as we discussed in section 4.1, the esti- both cases, the initial estimates of projective position are set to
mates from these filters contain the one that has good noisy their measurements and die states relating to their derivatives are
suppression, the one that contains small number or none of ir o n the tate relati e de rivatis ae
'invalid' measurements, and the one that has small model error. t one.
The structure of MMF provides a way to combine these estimates
appropriately, in the sense of MMSE, so that the 'correct' estimate
will appear at the final estimate. The behavior of FLAT MMF for
model mismatch is discussed further in next sub-section. Another
feature of FLAT MMF is that all the filters can be processed Experiment I and 2 (continue)
simultaneously and the computdtional cost for combining the For the experiments I and 2 discussed in section 4.1, we usc the

FLAT MMF with two Kalman filters. Each filter is triggered at
estimates from the filters i relatively small Thus, the FLAT every 25 samples. Figures lb and 2b depict tie estimates of
MMF can be implemented efficiently for real-time applications. Xt II(t) / Z(0) and Y111(t) / Z(0) for these experiments, respectively.

These results show that the FLAT MMF works quite well in han-
4.3 FLAT MMF and Model Mismatch dling the model mismatches. Comparing figures lb and 2b to

For the 2-D motion discussed in section 3 1, we have analyzed in figures la and lb, one may find that the overall estimates of the
detail the behavior of the estimation for these three model FLAT MMF are formed as just 'cutting out' the correct portions of
mismatches Iu90aJ. Due to the space limitation, we only suimar- the estimates from two filters.
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Experiment 3: parameter jumping Experiment 6: undermodeling

In this experiment, the particle moves on the plane Z 20 units In this experiment, a helix motion is simulated, the particle moves
from the initial position (-5, 0, 20) units. After six turns, the parti- circularly while it travels in the Z-direction with constant velocity.
cle moves back to its starting position. The angles of these six The angular velocity is 0.07 radians/second and the Z-velocity is

turns are 900, 1200, -600 180, -1200 and 1500. Figure 5a shows the 1.5 units/second. The initial position of the particle is (3.3, 3.3,

ideal trajectory and its noisy measurement. Figures 5b compares 10) units. Figure 10a depicts the exact and noisy trajectories. Fig-
the estimates of velocity X 0

11(t) t Z(0) for the normal Kalman filter ures 10b and 10c show the estimates of velocity X111(t) I Z(t) and

and for the FLAT MMF. Figure 5c compares the position esti- Z'11(t) / Z(t), respectively. These results show the same conclusion

mates. The improvement is substantial both in the position and in the estimation using the normal filter suffers seriously by the model

the velocity. From these results, we observe that the estimation mismatch while the estimation using the FLAT MMF can provide

using one filter almost lost the track of the motion immediately much better estimates.
after the first turn. On contrast, the FLAT MMF provides very
good estimates even at the place having very sharp velocity change
(180 ° turn).

When we re-run the FLAT MMF on the same data with

increasing the velocity of particle, its performance gets worse, but In this paper, we have shown that the performance of conventional

the estimates are still fairly good. Figure 6a shows the estimate of estimator would degrade significantly if the motion model did not

x11)(t) / Z(0) when the particle moves three times faster than the ori- match to the actual motion. In order to solve the model mismatch

ginal speed. In order to improve the estimation, one may use more problem, we proposed the FLAT MMF, a parallel, recursive filter.

filters in the FLAT MMF. Figure 6b shows the estimate of Since each filter inside the FLAT MMF operates on a different set

X111(t) / Z(0) with the FLAT MMF using five filters, each filter is of past measurements, there must be a filter that provides the esti-

triggered at every ten samples. mates with the best noise suppression, another one that estimates
from the smallest number (or none) of invalid measurements, and

Experiment 4: undermodeling the ona that possesses the smallest model error. The FLAT MMF

In this experiment, the particle moves on the plane Z = 20 units, uses the structure of multiple model filter to combine these esti-

along an ellipse with angular velocity 0.15 radian/seconds. The mates optimally, in the sense of MMSE. Hence, the FLAT MMF

length of the principal axes of the ellipse are 12 and 8 units. The is quite effective in suppressing the various adversary effects due

particle is at (6, 0, 20) units initially. Figure 7a shows the exact to the modeling error. Our claim is verified by the formal analysis

and noisy trajectories of the first 160 samples. Each filter assumes of the FLAT MMF on the 2-D motion of a single feature point. A

that the particle moves with constant acceleration. Thus, this situa- numerous simulations performed on the 3-D motion of a feature

ti-'n is highly undermodeled because the circular motion requires a point further support the effectiveness of FLAT MMF.

very high-order power series to describe it properly. We have used
the normal Kalman filter and the FLAT MMF with two filters, trig-
gered at every 25 samples. Figures 7b and 7c show the estimates Reference
of velocity X111(t) / Z(0) and the prediction of trajectory, respec- [Bo11851

tively. From these results, we observe that the estimation using R.C. Bolles and H.H. Bakers, "Epipolar-plane image analysis: a tech-
nique for analyzing motion sequences", in Workshop on computer

one filter has a very large error while the estimation using FLAT vision: representation and control, Oct. 1985.
MMF is quite good. Figure 8a and 8b depict the estimates of [Broi86a]
Xr(t) / Z(0) using the FLAT MMF with two and five filters respec- T.J. Broida and R.Chellappa, "Esumation of object motion parameters
tively, when the particle moves four times faster. These results from noisy images", IEEE PAMI, Jan 1986, pp. 90-99.
show that even for such high-speed circular motion, FLAT MMF [Broi86b]
can still provide fairly good estimates. T.J. Broida and R. Chellappa, "Kinematics and structure of a rigid

object from a sequence of noisy images", IEEE workshop on motion

5.2 Simulation on 3-D Motion 1986, pp. 95-100.

In the following two experiments, the motion is modeled with con- 11u891
S.-L. Iu and K. Wohn, "Esumation of 3-D motion and structure based

stant acceleration. In building the FLAT MMF, three extended on a temporally-oriented approach with the method of regression",
Kalman filter, triggered at every 33 samples are used. IEEE Workshop on visual motion, March 1989, pp. 273-281.

llu90al

Experiment 5: parameter jumping S.-L. lu, "Analysis of the Effects of Model Mismatch and FLAT

This experiment simulates the motion of a bouncing ball. The ini- MMF for Estimating Particle Motion", Grasp Lab Tech Report MS-

tial position of the particle is (-6.5, 1, 20) units. It moves with CIS-90-10, Univ. of Pennsylvania, Feb. 1990.

velocity J 1.5 5 2 1T r. 0 -2.5 0 1T uinitbibcconid. When it hits !IUQOhI

the point (-0.56, 1.198, 27.92) units, the velocity changes to S.-L. lu, "Estimation of 3-D motion and structrue from images by

-ct and using temporal-based approach", Ph.D. Thesis, Elec. Engineering
11.5 4.5 2 ]T + 1 0 t. Figure 9a depicts te exa Department, Univ. of Pennsylvania, 1990.
noisy trajectories. Figures 9b and 9c show the estimates of velo- lKia891
city Y1'1(t) / Z(t) and Z111(t) / Z(t), respectively. From these results, R.V.R. Kumar, A. Tirumalat and R. C. Jam, "A non-hinear optimi.a-
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while the estimates from using one filter is almost useless. IEEE Workshop on visual motion, March 1989, pp. 136-143
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Fig. la Exact and estimated X1(t)/ Z(0) versus Eijb. Exact and estimated X111(t) / Z(0) versus
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number of frames for experiment 2. Estimators are number of frames by using FLAT MMF, for experi-
triggered at samples 0 (0), 20 (A), 40 (13), 60 (x) and ment 2.
80 (+).
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Integrated Multiresolution Image Acquisition and Surface
Reconstruction from Active Stereo

Subhodev Das and Narendra Ahuja
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Urbana, IL 61801

Abstract We present an approach to using coarse structural infor-

This paper is concerned with the problem of surface mation about the scene in selecting a new fixation point
reconstruction from stereo images for large scenes in the peripheral field and acquiring structural informa-
having large depth ranges, where it is necessary to tion in the vicinity of the selected point at increasing res-
aim cameras in different directions and to fixate at olution as the cameras reconfigure and aim at the point.
different objects. In the past we have reported an Section 2 describes in greater detail the background
approach to acquiring multiresolution surface in- and motivation behind the work reported in this paper.
formation and using it to devise a strategy for sys- Section 3 presents an algorithm that interleaves coarse-
tematic sensing of different parts of the scene. This to-fine acquisition of stereo images with their analysis
paper concentrates on the selection of new fixation for coarse-to-fine surface reconstruction. Section 4 gives
points from among the nonfixated, low resolution details of implementation and the experimental results.
scene parts, and subsequent processing for surface
reconstruction. The coarse stereo estimate of the 2 Background and Motivation
new fixation point is refined as the images of the In this section we summarize the past research related
new fixation point gradually deblur during the pro- to the work reported in this paper, and the motivations
cess of refixation and is subsequently used to ana- that lead to the development of the approach described
lyze the fixated parts of the scene, in the following sections.

1 Introduction 2.1 Background

This paper is concerned with the problem of surface re- This paper pursues the basic theme of active, intelligent
constperu ionomsereo withae frolreo scere data acquisition [Bajcsy, 1985, Bajcsy, 1988]. Compu-construction from stereo images for large scenes having tational active vision has become more feasible in the
large depth ranges. At any stage of such a surface re- recent years with the availability of sophisticated hard-
construction process, sharp images can be acquired only ware for controlling imaging elements [Ballard, 1989,
for narrow parts of the visual field, capturing a limited Burt, 1988, Clark and Ferrier, 1988, Krotkov, 1987].depth range. The high resolution parts of the scene, In their analysis of surface reconstruction from stereo

contained within the depth of field of the cameras, are
said to constitute a central visual field, while the low images, Marr and Poggio (Marr and Poggio, 19791 alsopoint out the role of eye movements in providing large
resolution parts out of the depth of field, and typically relative image shifts for matching stereo images having
away from the image center, are said to belong to the lage iaesits imlying teeo ace ataperipheral visual field [Das and Ahuja, 1989). Accurate large disparities, thus implying the need for active data

acquisition. Ballard and Ozcandarli (Ballard and Ozcan-
surface map is extracted for the central visual field by darli, 19881 point out that the incorporation of eye move-
integrating the use of camera focus, camera vergence, ments radically changes (simplifies) many vision com-
and stereo disparity [Abbott and Ahuja, 1988]. When putations; for example, the computation of depth near
the entire surface of the fixated object has been scanned, the point of fixation becomes much easier. Aloimonos
the acquired surface map does not smoothly extend, and et al [Aloimonos et al., 1987] show that active control
therefore surface reconstruction must be resumed by fix- of imaging parameters leads to simpler formulations of
ating on a new object, selected from the periphery of many vision problems that are not well behaved in pas-
the current visual field. This presents a dilemma since sive vision Gee a ure nGeigea d ie 1987theexat lcatonsan shpesof newo' . sive vision. Geiger and Yuille (Geiger and Yuille, 1987]
the exact locations and shapes of "new objects" are un- describe a framework for using small vergence changes
known (otherwise there would be no need for fixation to help disambiguate stereo correspondences. Abbott
and subsequent surface reconstruction.) and Ahuja [Abbott and Ahuja, 19881 demonstrate the

This research was supported in part by the National Sci- efficacy of integrating image acquisition and image anal-
ence Foundation under grant IRI-89-11942, Army Research ysis for a single object, by interleaving the processes of
Office under grant DAAL 03-87-K-0006, and State of Illi- camera vergence and focusing with those of depth esti-
nois Department of Commerce and Community Affairs under mation from camera focus and stereo disparity. Shmuel
grant 90-103. and Werman (Shmuel and Werman, 1990] have consid-

418



ered the related problem of surface map generation from which is computationally simpler but more effective for

multiple viewpoints; they use iterative Kalman-filtering short range objects. The exact, global order in which
techniques to predict a new camera pose for maximal objects are selected for fixation will also depend on their

reduction of uncertainty in depth information. Some re- locations in the scene in addition to their depths.

cent studies have considered higher level criteria for fix-
ation (called attention), e.g., for recognition [Bolle et al., 3 Algorithm
19901. In this section we describe an algorithm to achieve the

2.2 Motivation desired integration of multiresolution image acquisition
and their coarse-to-fine processing. The algorithm con-

Consider the initial state in which one of the objects in a sists of the following steps: (1) For a given fixation point,
scene is fixated on. Any parts of the scene in the periph- coarse peripheral surface map is obtained along with fine
eral visual field appear out of focus, with the degree of map for the current central visual field; (2) an unoc-
blur determined by the distance from the fixation point. cluded peripheral point whose selection involves mini-
Stereo analysis of the out of focus peripheral image re- mum lateral movement of cameras and reconfiguration of
gions would result in surface estimates which would be their image planes is chosen as the new target point; and
inaccurate due to poor localization of features. This cre- (3) a sequence of images of increasing resolution is ac-
ates an ordering on different parts of the scene such that quired and stereo analyzed, thus obtaining surface maps
the earlier a part is in the ordering the better is the with increasing accuracy, during the time the cameras
accuracy of its surface estimate, verge and focus on the new target point. These steps of

Traditionally, the scope of stereo has been restricted to the algorithm are discussed in the following subsections.
provide accurate depth estimate from sharp images for
the parts of the scene corresponding to the beginning of 3.1 Acquisition of Multiresolution Surface Map

the ordering. However, stereo can also be used to obtain Stereo images are acquired with a focal length (fitrco)
inaccurate estimates for peripheral objects that occur smaller than the one used for estimating depth from fo-
later in the ordering. In fact, the availability of coarse cus (fjocus) to increase the field of view. The fixation
peripheral maps would make it possible to select a new point is in focus in these images. The parts of the scene
fixation point on a new object. Once the cameras are fix- that are in sharp focus (corresponding to objects that lie
ated at the newly selected object, the resolution of the within the depth of field of the scene) are segmented out
rest of the objects lying in the direction of the selected [Das and Ahuja, 1989] to constitute the central field of
object also improves. Therefore, as the finest stereo re- view and the defocused regions comprise the peripheral
construction is achieved for the selected object, the accu- field. If the point spread function (p.s.f) of a finite aper-
racy of the surface information available for those other ture lens is modeled by a 2D Gaussian then the spread
objects which are now closer to the fixation point also parameter a of the Gaussian signifies the degree of op-
improves. tical blurring of a defocused point. The parameter al is

The availability of the coarse depth map for the un- proportional to the focal length, aperture and the dis-
mapped parts of the scene has advantages other than the tance of the defocused point from the fixation point.
ability to select a new fixation point. While moving from Stereo reconstruction for the high resolution (using
one fixation point to the next, the mechanical reconfig- an N x N grid) central visual field takes place using
uration of the image planes is not instantaneous. Inter- a small value of o (o',tl) for the Laplacian of Gaussian
mediate images are obtained with decreasing blur which (V 2G) feature detector. This a gives the best trade-off
may be continuously stereo analyzed to improve the es- between localization and stability of the detected zero-
timate for the new point. In this process, the compu- crossings (features). The stereo estimates from previous
tational blurring operation is replaced by instantaneous fixation, wherever available, are used as initial estimates
optical blurring. The number of stereo pairs acquired for the sterec, analysis, else the stereo-based estimate of
before fixation is achieved would depend on the amcunt the depth of the current fixation point from target horn-
of image plane reconfiguration required. The improved ing (Section 3.3) is used. The result of stereo reconstruc-
coarse depth estimate from stereo can help in predicting tion is a high resolution fine (accurate) surface map for
and expediting the search for the best focus axis setting the central visual field.
corresponding to the new fixation point and the camera Matches for the defocused (al = a,,) peripheral fea-
vergence. tures in any unmapped parts of the scene (coarse es-

The ordering discussed above is defined by the increas- timates obtained during previous fixation are used for
ing depth property - the closest object is fixated on and the mapped parts) that are uncovered during camera re-
stereo analyzed first followed by the next closest object. configuration are found by searching over large image
There are two computational advantages of using schi regions. A T-r', larger than ori; is used for the pcrip-
a near-to-far scan. One, by reconstructing the surfaces eral feature detector to introduce additional smoothing
of the near objects first, the occluded portions of the so that the number of matchable features be small. The
farther objects can be identified. Thus, knowing those Gaussian expressing the optical and computational blur-
parts of the scene which are occluded from at least one ring effects at a given peripheral point has a spread pa-
viewpoint would avoid selection of such points for fix- rameter of at = V4a2

1$ + pil, p. In addition to smooth-
ation. The second advantage in starting with the near ing, the periphery is subsampled using an M x M grid
objects is that doing so maximally exploits the focus cue (Al < N). The effects of blurring and subsampling are
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detrimental to the accuracy of stereo resulting in a low the ith stage (all = aio') during reconfiguration:

resolution coarse (inaccurate) surface map for the pe-
ripheral visual field. H1 = at- and IL L+-1 (2)

3.2 Selection of a New TargetM alHi il

where ffocus/ftareo = n,n > 1. Since the optically

At this stage, the surface of an object currently in focus blurred images are obtained continuously, the improve-
has been estimated, and the extension of the surface map ment in the stereo-based depth estimate of the target
must resume by fixating at another object. The avail- point from the analysis of two consecutive image pairs is
ability of the peripheral surface map makes the selection significant only when the difference Aa = ou'] - ai+11!

of a new fixation point possible, albeit with limited ac- is significant. Hence, the intermediate images in which
curacy, and thus helps to avoid the need for knowing the blur of the target point is between all! and oi+l i
object depths before they are estimated! are skipped for stereo analysis.

Given an approximate surface map in the peripheral Features are detected in the stereo images using
visual field, how should we select a fixation point? In Nevatia-Babu operator [Nevatia and Babu, 1980]. The
[Abbott and Ahuja, 1988] some criteria were identified surface estimates derived from an image pair at any
for selection of a fixation point which were motivated by stage during camera reconfiguration serve as coarse es-
known characteristics of fixation in human vision as well timates for surface reconstruction from later images ac-
as computational considerations. We use similar criteria quired with smaller a!. This process of coarse-to-fine
here. A target point at position p, in a coordinate sys- image acquisition interleaved with surface reconstruction
tem fixed with respect to the camera locations, is chosen is continued till al! reaches actl, at which stage surface
from the current periphery so that the folloving weighted reconstruction for the next object is initiated.
average is minimized: 3.4 Target Fixation

E = all P - PCAM 11+a211 P - PPOF 11+a3A(p, ppoF)

(1) The target homing stage terminates with the cameras
oriented such that the estimated target point location

era reference frame and the current point of fixation, falls at the center of each image. The increasingly im-

respectively; 11 . 11 is the Euclidean distance norm; and proved stereo estimate obtained during target horing
the function A gives the angular separation between two brings the two cameras close to focus and sets up the

3D points in the camera reference frame. Candidate tar- approximate vergence angle for the cameras. In order

get p must be visible to both viewpoints, and must lie to focus the cameras exactly, this depth estimate Z, is
within camera travel limits, used to establish an interval of focus axis settings [po, pi]The first term enforces a near-to-far ordering on fix- symmetric about an axis setting p (po < p and Pi > p).ation points whose advantages are explained in the pre- This interval which corresponds to the depth of field at
vious section. The second term favors selection of an p is finely quantized and searched for a peak of the focus
object close to currently fixated object since the cloer it criterion function, defined as the total squared gradient
is the more accurate the target location information from over a fixation window centered at the target point. As
the peripheral map is. The third term biases the choice in [Abbott and Ahuja, 1988] we perturb the camera ori-
otaet to sera apits whehih lie iairets coe entations slightly to maximize sharpness of images and
of target to scene points which lie in directions close to the correlation between the area around the target loca-
gular movements of the cameras between fixations, tions (image centers), which serves as the final step in

fixation.

3.3 Target Homing 4 Implementation and Results
Once a target point has been selected on a new ob-
ject, the cameras need to be reconfigured to fixate on In this section we present details and results of imple-
the point. This involves changing camera orientations meriting our active stereo algorithm on a dynamic imag-
and focus settings. Such homing on to the target is at- ing system. The system consists of two Cohu 4815 CCD
tempted using the largest available focal length f cameras mounted on a stereo platform and equipped
that causes significant blurring (at = a,) of the target with Vicon V17.5-105M motorized zoom lenses. High-
point, precision stepper-motor rotational units are used to con-

Initially, the stereo based depth estimate of the pe- trol independent pan, tilt and vergence angles. The
ripheral target point is inaccurate due to blurring by a imaging system is controlled by a Sun Microsystems
Gaussian kernel of spread parameter at (Section 3.1). 3/160 workstation.
The target point which is outside the depth of field of
the current focus setting is significantly blurred (optical, 4.1 Implementation Details

at = al]). As the image plane is gradually reconfig- For the left and the right cameras focal lengths (cali-
tired by changing the focus settings, stereo images are brated) of , = 47.7 mm and 47.2 mm are used to
acquired continuoualy. Each pair of optically blurred acquire the stereo images, and ffou, = 105.4 mm and
images is subsampled, reducing th,. degree of subsam- 101.0 mm (full zoom) are used in the fixation process.
pling as images become less blurred (al] decreases). Let The baseline between the cameras is 28 cm. The pa-
H, x H, denote the resolution of the sampled images at rameters of (1) are chosen as a, = 0.25, a2 = 0.5 and
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a3 = 0.25; orca = 6 and N = 256 for the central visual [Bajcsy, 1985] Ruzenu Bajcsy. Active perception vs.
field; opf = 9 and M = 128 for the peripheral field; and passive perception. In Proc. Workshop on Computer
Aalf = 3 is used. Vision, pages 55-59, Bellaire, MI, October 1985.

4.2 Experimental Results [Bajcsy, 1988] Ruzena Bajcsy. Perception with feed-
back. In Proc. DARPA Image Understanding Work-

The dynimic carera system was made to scan an in- shop, pages 279-288, Cambridge, MA, April 1988.
door scene consisting of a vertical barrel (approximately [Ballard and Ozcandarli, 1988] Dana H. Ballard and

cylindrical) next to a rectangular box, both resting on a a. Ozcandarli ye fan Harly v n

flat table top and in front of a rear wall. During one of A. Ozcandarli. Eye fixation and early vision: Kinetic
the fixations of the barrel the stereo images of Figure 1 depth. In Proc. Second Intl. Conf on Computer Vi-
are acquired. Here, the barrel being in focus occupies the sion, pages 524-531, Tarpon Springs, FL, December

central visual field while the box and the back wall con- 1988.
stitute the peripheral visual field. The fine central range [Ballard, 1989] Dana H. Ballard. Reference frames for
map together with the coarse peripheral range map for animate vision. In Proc. 11th IJCAI, pages 1635-
this fixation is shown for the left viewpoint in Figure 2. 1641, Detroit, MI, August 1989.
A window in Figure 3 marks the newly selected target [Bolle et al., 1990] Rudd M. Bolle, Andrea Califano,
point on the box which minimizes (1). The world coor- and Rick Kjeldsen. Data and model driven focus of
dinates of the new target from the coarse stereo depth attention. In Proc. 10th Intl. Conf. on Pattern Recog-
estimate are (0.308, 0.098, 2.188), all in meters. niton, pages 1-7, Atlantic City, NJ, June 1990.

Upon selecting the target the system aims the cameras
at it. The focal length of each camera is set to full zoom [Burt, 1988] Peter J. Burt. Algorithms and architec-
as required by the fixation process resulting in the opti- tures for smart sensing. In Proc. DARPA Image
cally blurred left and right images of Figure 4, alff = 8. Understanding Workshop, pages 139-153, Cambridge,
During the previous fixation al, = 4 for the new target MA, April 1988.
point and opif = 9, hence at = /ro27, + G2ppt = 9.9. (Clark and Ferrier, 1988] J. J. Clark and N. J. Ferrier.
Using these values of all/ and ot in (2) and taking the Modal control of an attentive vision system. In Proc.

Fnow'1/o't1, H, = 64. Nevatia-Babu line extraction al- Second Intl. Conf. on Computer Vision, pages 514-
gorithm is used to detect features which are matched to 523, Tarpon Springs, FL, December 1988.
obtain the coarse stereo map of Figure 5. The recom- [Das and Ahuja, 1989] Subhodev Das and Narendra
puted depth the target from stereo is 2.228 rn. The next Ahuja. Integrating multiresolution image acquisition
set of images that would have been stereo analyzed would and coarse-to.fine surface reconstruction from stereo.
have a 21f = ail! - AtI = 5. But ,2 1f < o',, and the In Proc. IEEE Workshop on Interpretation of 3D
mechanical reconfiguration is therefore continued with- Scenes, pages 9-15, Austin, Texas, November 1989.
out stereo analysis until the focus setting corresponding [Geiger and Yuille, 1987] Davi Geiger and Alan Yuille.
to the depth of 2.228 m has been attained. To fixate Stereopsis and eye-movement. In Proc. First Intl.
the target, the search interval of focus axis settings is Conf. on Computer Vision, pages 306-314, London,
p0 = 5355 and pi = 5714 (left camera) and p0 = 5282 UK, June 1987.
and pi = 5687 (right camera). The peak of the focus
criterion function is detected at p] = 5578 (left camera) [Krotkov, 1987] Eric P. Krotkov. Exploratory visual
and p! = 5675 (right camera). The focus based depth sensing for determining spatial layout with an ag-
estimate is 2.252 m while the measured distance is 2.18 ile stereo camera system. Ph.D. Thesis MS-CIS-87-
in. The stereo images of Figure 6 have the box occu- 29, GRASP Laboratory, University of Pennsylvania,
pying the central visual field while the barrel and the Philadelphia, PA, 1987.
wall belong to the peripheral field with the barrel being [Marr and Poggio, 1979] David Marr and Tomaso Pog-
less peripheral (blurred) than the wall. The coarse map gio. A computational theory of human stereo vision.
for the box is now replaced with a fine map as shown In Proc. the Royal Soc. of London, vol. B, no. 204,
in Figure 7 which has been added to the composite map pags 301-328, 1979.
in Figure 8 that previously contained only estimates for [Nevati&. and Babu, 1980] Ramakant Nevatia and K. R.
the barrel. Babu. Linear feature extraction and description.

Computer Graphics and Image Processing, 13:257-References 269, 1980.

[Abbott and Ahuja, 1988] A. Lynn Abbott and Naren- [Shmuel and Werman, 1990] Amir Shmuel and Michael
dra Ahuja. Surface reconstruction by dynamic inte- Werman. Active vision: 3d from an image sequence.
gration of focus, camera vergence, and stereo. In Proc. In Proc. 10th Intl. Conf. on Pattern Recognition,
Second Intl. Conf. on Computer Vision, pages 532- pages 48-54, Atlantic City, NJ, June 1990.
543, Tarpon Springs, FL, December 1988.

[Aloimonos et al., 1987] John Aloimonos, Isaac Weiss,
and Amit Bandyopadhyay. Active vision. In Proc.
First Intl. Conf. on Computer Vision, pages 35-54,
London, UK, June 1987.
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(a) (b) Figure 5: The coarse stereo map in the vicinity of thetarget point from the optically blurred images (64 x 64).
Figure 1: Stereo image pair, (a) left and (b) right, after

the fixation of the barrel.

(a) (b)
Figure 6: Stereo image pair, (a) left and (b) right, with

Figure 2: High resolution central range map of the barrel the box in the central visual field while the back wall
and coarser peripheral range map of the box. continues to occupy the peripheral field.

Figure 3: A window marks the new target (on the box) Figure 7: A higher resolution (than in Figure 2) range
chosen by minimizing the target selection criterion, map for the box along with a coarse peripheral map for

the wall.

. I

(a) (b)
Figure 4: Coarse (a) left and (b) right images at full Figure 8: The composite range map is updated by
zoom as the cameras begin homing on the new target. adding the reconstructed surface of the box.
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A Dynamical Systems Approach to Integration in Stereo
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Abstract at increasingly fine image resolutions down a coarse-to-fine
An analog approach to stereo integration of fea- representation hierarchy [Hoff and Ahuja, 1989]. The in-

ture detection, matching, and surface interpolation is tegration results in a number of advantages not possible to
presented. The integration is accomplished through obtain otherwLe [HC,,; and Ahuja, 1989].
the monolithic use of dynamical systems as the corn- This paper is primarily motivated by the desire to
putational mechanism. The presence of different fea- achieve (t) a more complete integration, than realized us-
tures in an image neighborhood is indicated by the ing our above-referred, macrolevel, temporal interleaving
normal mode energies of a feature detection dynam- scheme, and (ii) integration of all three steps, instead of
ical system when initialized by the gray-levels in the just the latter two. To this end, we present an analog formu-
neighborhood. The system converges to one of a set lation which implements the three stages of stereo using the
of n stable states, thereby detecting one of n possible same analog process, as well as the integration of feature
features. Stereo disparity of a feature is computed detection, feature matching and surface estimation.
by a disparity dynamical system which identifies that Section 2 presents an overview of our formulation. Sec-
candidate as a match whose feature dynamical sys- tion 3 reviews basic concepts from dynamical systems used
tem contains the largest normal mode energy among in this paper. Section 4 discusses the feature dynamical
the candidates. The smoothness of disparity is en- describes the disart dynami-
forced by introducing spatial coupling among dis- cal system and Section 6 summarizes the modifications ofparity dynamical systems. Simulation results for a clsse n eto umrzstemdfctosoone-dimensional implementation are given, the disparity dynamical system needed to enforce surfacesmoothness. For brevity, we are not able to present the

1. Introduction analytical details from the dynamical systems theory which
we have used in developing the formulation presented in

The traditional formulation of the problem of estimat- this paper. Simulation results are provided in Sections 4-5.
ing three-dimensional surfaces from stereo images consists Section 7 presents concluding remarks.
of three steps: feature detection, feature matching, and sur-
face interpolation. It has been argued that the latter two 2. Overview
tasks are more accurately executed in an integrated manner Before presenting the details, we will first explain the
rather than sequentially since they are strongly interdepen- concept of a nonlinear dynamical system which we have
dent [Hoff and Ahuja, 1985, Boult and Chen, 1988, East- used to develop the formulation of integration presented in
man and Waxman, 1987]. For example, when an image this paper. A nonlinear dynamical system models the tempo-
neighborhood is relatively featureless, or there are multiple ral evolution for a set of variables and their interrelationships
matches possible for a feature, matching may lead to am- through a system of differential equations. In this paper,
biguous results. Alternately, noise may change image gray each variable is viewed as representing a nonlinear oscilla-
levels resulting in none or wrong matches for a point. In tor. The variables exhibit mutual coupling (interdependence)
such circumstances, matching of a point may be performed and change nonlinearly with time. The values taken by the
more accurately by taking ino account the matching de- variables and interrelationships among them define states of
cisions in the vicinity of the point. We have described a the system. A dynamical system which is sable, converges
digital realization of integration in which the integration of to one of a set of what are calledsic stabltes, or normal
matching and surface interpolation tasks is approximated by modes, of that system for any set of initial values of the vari-their interleaving, and iteration of the interleaved sequence ables. On convergence, the oscillatory energy of the state

* This research was supported in part by the National Science variables of the dynamical system is concentrated in one
Foundation under grant IRI-89-11942, Army Research Office under normal mode with a common frequency for all variables.
grant DAAL 03-87-K-0006, and State of Illinois Department of The "computation" performed by the system is represented
Commerce and Community Affairs under grant 90-103. by the specific normal mode to which the system converges.
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The incorporation of such dynamics into the formula- comparably good matches, then competition among the sta-
tion of binocular stereopsis brings in new complexities, since ble states corresponding to each of the good matches will
it introduces a time factor into stereo analysis which is oth- drive the system into an intermediate state which can be
erwise only spatial. However, the temporal behavior adds a strongly influenced by interactions from nearby systems.
new and common dimension for formal interaction and inte- Interestingly, as mentioned at the beginning of this sec-
gration among the different types of operations that comprise tion, the above, ambiguous initial states correspond precisely
the three steps for stereo. The characteristics of temporal be- to the situations that have motivated integration in the pre-
havior, as exemplified by the stable oscillatory modes, can vious work, wherein information from a pixel's vicinity is
now serve as the common language for cooperation among propagated to the pixel to disambiguate or override the local
the different information sources being integrated, decisions. To incorporate such spatial interaction, we mod-

The formulation in this paper uses two types of dynami- ify our disparity dynamical system so that the stable state
cal systems. The first, called the feature dynamical system, is it converges to is influenced by the disparity variables at
concerned with feature detection in an image neighborhood. nearby locations. Thus, the disparity variables are not only
Simple features, such as vertical or horizontal edges, can be constrained by the matching of features, but also by the dis-
described by relations among the gray-level values of pixels parity variables at nearby locations. Whenever ambiguities
in an image neighborhood. The co-occurrence of a set of arise, the corresponding dynamical systems are slow to con-
gray-levels satisfying these relations indicates the presence verge; convergence towards any such stable states which are
of the feature in the image. The feature dynamical system in common with nearby dynamical systems associated with
(1) detects features from the co-occurrence of such pixel unambiguous neighborhoods is then accelerated due to local
values. The convergence of the system to one of its normal support from these systems.
modes of oscillation achieves the analog classification of the
image neighborhood. The amount of energy present in each 3. Dynamical Systems Concepts
normal mode of the dynamical system provides a measure A dynamical system is a system of differential equations
for the presence of the corresponding feature. where the relations among the state variables can be used

A second type of system, called the disparity dynamical to represent relationships among physical quantities. When
system integrates feature matching and disparity detection. the values for the state variables of a nonlinear dynamical
This system is a winner-take-all network which converges system are confined to a closed surface, that surface is called
to a stable state based upon the binocular co-occurrence of an integral manifold which is a nonlinear generalization of
similar features. The inputs in this case are obtained from the notion of invariant subspaces in linear systems theory
the distribution of normal mode energies along an epipolar [Hale, 1980].
line composed of k feature dynamical systems. There is one The complex interdependencies among the system vari-
variable di for each feature dynamical system, thus there are ables can often be simplified by transforming the dynamical
as many variables as the number of discrete disparity values system to normal form [Guckenheimer and Holmes, 1983].
possible. The stable state with the largest d, indicates the The normal form of a nonlinear dynamical system is anal-
disparity value. Since each feature dynamical system has ogous to the representation of a linear system in terms of
n normal modes, the disparity dynamical system selects as an orthogonal basis set. The normal modes of a dynamical
its set of inputs from the epipolar line that mode which is system are the oscillatory states of the normal form systemthe same as the dominant mode in the feature dynamical where each variable has a common frequency. The energy of
system at its own location, thus realizing the task of feature a normal mode is a measure of the magnitude of oscillations
matching. for the state variables.

The convergence rate of each of the above dynamical
systems is proportional to the ambiguity of the classification 4. Feature Dynamical System
of the initial state. Consider, for example, the feature dy- Let the set {x} denote the state variables of a dynam-
namical system. In our current implementation, this system ical system. The gray-level values of a set of pixels in an
has four stable states corresponding to a horizontal edge, image neighborhood are sampled at time to to establish the
vertical edge, diagonal edge, or a uniform region. If the initial values of the corresponding xi. The specific feature
gray-level distribution of a given neighborhood of pixels dynamical system we use in our current implementation is
does not resemble any of these structures, i.e., there is a an ensemble of four coupled van der Po1 oscillators
low level of similarity between the neighborhood structure
and the closest stable state, the dynamical system will take O- (1 - XD' + w'Xi = c(-Xi + X2 )
a long time to converge, and thus be more susceptible to
interactions from other dynamical systems. As another ex- i2 - C(1 - X2) i 2 + O~X2 = O(X - X 2 + x 3 ) (1)
ample, consider the disparity dynamical system and the case - C(1 - i3).. + WX3 = ca(X2 - X3 + X4)
where there is no match along the epipolar line. Then all - (1 - ) + W2 4 = a(x. - x4)
energy inputs to the dynamical system will be small and
the convergence will be slow. Finally, if there are multiple where
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xi - state variables for the dynamical system,
wo - natural frequency of each isolated oscillator,
a - coupling strength within an ensemble,
c - strength of nonlinearity in the system.

and the terms on the right-hand side indicate the coupling 2, .. ", . A , '.. A AA, A

of oscillators within the ensemble. The initial state for • : I' ., *

each variable is the gray-level associated with an image "AlV ' R i' 'P
pixel. Using normal form theory, it can be shown that c V..2l, 1
a set of n possible features can be identified through the I
convergence of the dynamical system (1) to one of n stable .' V.11 -2 V ' V" ',

modes of coherent oscillations corresponding to the normal (a)
modes of the feature dynamical system. The actual features
are detected by observing the energies in the normal mode 2
oscillations of the dynamical system, each of which serves
as a measure for the presence of a specific feature. A /\ [ P /

The matrix form of (1) is expressed by 0 5

X+Bnx = e(k- 3 k) (2) (b)

where x = [xl,.,x]. x, = [x3,.. . t e 2A , A /' '

the right represents the nonlinearity of the system, and A1 I ' i.
1 - 0 

51

-n = 1 + a - a 
" v

a i

1 1 a - a (3) 
(C)

0 0°  -a 1+a

2
is the coupling for n = 4. The frequencies of the oscillatory ' "'
modes are determined by the eigenvalues of B,. 0 A

The dynamical system (1) can also be written as a
system of first order equationsil = C(2:1 - X3 --oy (d)-

,3l-oy D = WOX: I ( -l (d)-(

i2 = C(X2 - , 2) -WOy2 1/2 = wo0x2 - ( -a - X2 + X3) Figure 1: Simulation results for stable oscillatory modes of
the feature dynamical system (1): (a) 2x2 vertical edge pat-

i3= C(X3- 3 31 = W X- -,) , ( x 2 X3 + X4) tern and the coherent oscillations among the state variables
4- d X 4) -Y 4-jX= X4 ' . - ) [X1,''', X4], (b) diagonal edge, (c) horizontal edge, and (d)

4 =homogeneous region. The parameter values used; c = 0.1,
where the xi's are initialized by the image pixels and the ae = 0.5, and wo = 1.
gi's are initialized to zero. Experimental results for this
system are illustrated in Figure 1 where inputs from different
2x2 gray-level patterns lead to the different stable modes of
oscillation among the state variables [x1, . . X4. 4.1. Normal form of the dynamical system

Linearization of the above system by the method of The dynamical system exhibits complex interdependen-
normal forms results in an equivalent dynamical system cies among the system variables which may be simplified
with four oscillatory modes. A system with two oscillatory by construction of the normal form. The normal form is ob-
modes has been investigated extensively by [Guckenheimer tamined by first diagonalizing the system (1) using the singular
and Holmes, 1983] using the methods of normal forms and value decomposition of the coupling matrix B,, = urndvT

bifurcation theory. Analysis for a system with n coupled to obtain the coordinate transformation v = ux. Energy in
oscillators has been reported in [Chua and Endo, 1988] the n normal mode oscillations is then obtained by apply-
using the method of integral manifolds. Interactions among ing the transformation p? = v + , and the phase of
dynamical systems have been investigated in [Altman, 1990] th"ocllton[i, .,r].
using integral manifolds of the normal form equations. the oscillations is i = arctan[, ,4]. The

425



equations describing the normal form of (1) are system
C 3e 3 c_ 2 2 2, = -p" pjd1 + id + TpIf2(d) (5)

3c a C 2 2 2 where the input to di is the normal mode energy of the kth
P2 = 2P2 - "P2 - P(2P+ 3pa + 2p 4) feature of the ith feature dynamical system along an epipo-

3e a - 2 +(4) lar line. The parameters pi, )ti, and ij determine the stable
P-3 = 2p3 - TOP .3 - Topa (2pj + 3p2 + 2p4) states and the convergence properties of the system. The

= 3c c I function fj(d) describes the interactions among the state
P4 =  P4 - P - ToP4(3P2 + 2P2 + 2p2) variables d = [dj,. • ., dn]. The task of feature matching is

achieved by using the dominant mode of the feature dynam-
Stability analysis shows that this system exhibits four stable ical system at the same location as the disparity dynamical
states each defined by deterministic phase relations among system to select only those inputs which are due to the same
the four oscillators for which pi = 2VIV and Pt , , 0 for normal mode.
1 $ i and i E [1,.. ., 4]. The stable states of the normal form 5.1. Detection of binocular disparity
are related to the stable modes of the original system through
a linear transformation v = ux. The normal form analysis The process of disparity detection is illustrated in Figure
is used here to obtain the linear coordinate transformation 3 for 6x6 regions in a stereo pair of images. The epipolar
which yields the energy for each of the normal modes. The line in the right image is indicated by the ellipse. Two
significance of the normal form analysis is to show that the features are present within the ellipse; a vertical edge and a
coherent oscillations among the variables xi in the feature diagonal edge. The distribution of normal mode energies for
dynamical system (1) correspond to the normal modes of (4). the feature dynamical systems associated with the epipolar

The stable states for two of the amplitude equations line are displayed in the center of Figure 3(a) where each
in (4) are illustrated in Figure 2. The points A and B on row shows the energy in the stable state associated with the
the p, and P2 axes, respectively, are stable fixed points of feature at the left. The disparity dynamical system at the
the amplitude equations and correspond to the energy in location Lo,o is identified by the circle in the left image.
two of the stable oscillatory modes of the original system Since the feature at Lo,0 is a diagonal edge, the inputs to
(1). Point D is unstable and point C has a saddle type the disparity dynamical system are selected from the stable
stability. The segment CD forms a separatrix between the states corresponding to a diagonal edge along an epipolar
two stable points at A and B. For illustrative purposes, only line.
two components pi and P2 have been shown in Figure 2.
Similar relationships exist among the other normal modes +3 -- -- --
of the dynamical system. This shows that (4) exhibits the +21 _
properties of a winner-take-all network. +1 A 1 411

.2

A-2 -. 21 0 +1+2+3 -2 -1 0+1+2+3

Left Image Distribution of Right Image
Normal Mode Energy

<(a)
D B

Figure 2: Locations of stable equilibria at A and B for two 3 ......... .

components of the normal form equation. 3----

5. Disparity Dynamical System 2 ... .............

Inputs to the disparity dynamical system are normal t

mode energies; therefore, we use a dynamical system in 20 40 60 80 100 120

which the state variables correspond to energy. The design (b)
of the system begins with a winner-take-all network similar Figure 3: Simulation results for disparity detection using
to the normal form system (4) where the normal modes now Equation (5) with n = 6: (a) stereo pair of images and
correspond to a discrete set of disparity ranges, rather than the distribution of normal mode energies along an epipolar
feature types. line for the right image (darker shading indicates larger

The detection of k discrete values of disparity, d, for i E energy), and (b) the selection of a stable state of the disparity
[1,., n], can be accomplished by the disparity dynamical dynamical system corresponding to a disparity of +2 units.
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Once the feature dynamical systems have converged to the same analog process. The dynamical system for feature
the stable states, the state variables d, for i E [1,..., n] detection integrates the effects of multiple filters or masks
are initialized to the normal mode energies for the diagonal commonly used for pattern classification. Dynamical sys-
edge. The variable d, with the highest initial value, (i.e., the tems also provide a natural method for the integration fea-
diagonal edge with the strongest support among neighboring ture detection, feature matching, and surface interpolation
locations), determines the stable state of the disparity system. in binocular stereopsis. The inherent parallelism of analog
There is a I-to-1 mapping between stable states and disparity systems matches the parallel nature of stereopsis, and the
ranges selection of stable states of the dynamical systems matches

the tasks of feature and disparity detection. Finally, the syn-
dl - -2 units, , d. -. 0 units, .. , d i - +3 units chronization of systems with oscillatory dynamics matches

(6) the grouping of simple objects with similar properties (e.g.,
The selection of d, as the dominant state variable in Figure the selection of compatible disparities at nearby locations).
3(b) indicates a disparity value of +2 units. The difficulty of designing analog devices provides a
6. Disparity Dynamical System with Smoothness primary limitation of this approach. The nonlinear nature of

Enforcement of surface smoothness is accomplished the dynamical systems introduces further complexity into the

through spatial coupling of disparity dynamical systems to design which has been reduced by using weakly nonlinear

insure local consistency among the disparity values. To re s cae inestigation th tnsionlofadyam

achieve this coupling, we introduce additional variables in requires careful investigation. The extension of dynamical

the disparity dynamical system (5) corresponding to the systems concepts to higher levels of vision and to the in-
normal odeisa r giestyfthe dynamical systemr sndi te tegration of multiple sources may require the use of highernormal mode energies of the dynamical systems at adjacent order dynamical systems which would greatly increase the
locations in the image. For example, if di" denotes the complexity of the design.
energy in the ith mode of the disparity dynamical system
at the location L, in the left image, then the disparity
dynamical system at the location Ln can include spatial References
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smoothness [Hoff and Ahuja, 1989]. Further work is neces- from stereo. In Proc. DARPA Image Understanding Work-
sary to modify this system so it enforces surface smoothness. shop, pages 98-106, Miami Beach, FL, December 1985.
7. Concluding Remarks [Hoff and Ahuja, 1989] W. A. Hoff and N. Ahuja. Surfaces

from stereo: Integrating feature matching disparity estima-
The primary advantage of using dynamical systems for tion, and contour detection. IEEE Trans. Pattern Anal. Ma-

feature detection is that multiple tasks can be integrated into chine Intell., PAMI- 11(2):121-136, 1989.
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Abstract Motion estimation methods using feature correspondences
consist of two steps: (i) Extract and match features over several

The main goal of this research is to test how well ex* images. (ii) Determine the motion parameters from feature cor-
isting feature extraction/matching and motion estima- respondences. Both these steps are addressed in this paper. We
tion algorithms (with appropriate modifications) work use algorithms available in the open literature with appropriate
on outdoor scenes. For this purpose, a carefully cali- (and by no means minor) modifications. Since the emphasis of
brated image sequence data base has been created. The this paper is on experimental results, we shall not dwell on the
data used for the results reported in this paper con- details of these modifications.
sists of a sequence of 24 stereo images of an outdoor The image data we use are difficult in the sense that the
scene containing a moving track with a stationary back- Te ie at we use a nd tifi rang to s en gth
ground. Two motion estimation methods using feature range to baseline ratio (t 10:1) and the range to focal length
correspondences were applied to the data: Point corre- ratio ( 900 :1) are both large. The question we have tried to
spondences over two stereo image pairs, and line cor- answer is: Could existing algorithms with modifications give
respondences over three monocular images. reasonable motion estimation results? As we shall see, theanswer is a qualified yes.

1 Introduction 2 Motion Estimation Using Point

Motion estimation has evolved into a major research area in Correspondences over a Stereo linage sequence
computer vision during the last decade. Many algorithms have
been proposed. However, most algorithm have been applied 2.1 Image Data Base
to only computer synthesized data, a few to images of indoor The experiment reported in this paper was performed on
scenes, and very few to images of outdoor scenes. And among a sequence of 24 stereo image pairs taken at consecutive time
the last category, we have not found results which are based instants of an U. S. Army 10-ton truck in a parking lot, asphalt
on data obtained with careful camera calibration and which are surfaced, with trees and one building as the background [1].
compared with carefully calculated ground-truth. The path of the truck was approximately a circular arc. The

To remedy this situation, we have created, jointly with the images were digitized to 400G x 400G pixels (pixe' size =
U. S. Army Engineer Topographic Laboratory (Al Center) and 13ptn) using a PDS Microdensitometer at U. S. Army tingineer
Purdue University (Photogrammetry Group), a set of image Topographic Laboratories. However, for the experime ital work
data base which are well calibrated and with ground-truth. The reported in this paper, the original digitized images were sub-
data base consists of stereo image sequences of an outdoor sampled to 2048 x 2048 pixels. Then, a region of 512 x
scene containing moving vehicles with a stationary background. 512 pixels around the truck on each sub-sampled image was
The purpose of the present paper is to give some experimental segmented out and used as the input for the experimental work.
results of applying several motion estimation algorithms to an
image sequence from this data base. There is only one moving 2.2 Motion Estimation Using 3-D Point Correspondences
vehicle, a truck, in the scene, and we aim to estimate its motion In this section, we present the process of motion estima-
in 3-D. tion using 3-D point correspondences [2]. The process consists

We restrict ourselves to algorithms which are based on only of four stages: (1) Determination of point correspondences on
two or threc time instants, and which use feature correspon- two stereo image pairs, (2) Corrction of distoions in im-
dences. In Section 2, we present results using point correspon- age coordinates, (3) Derivation of 3-D point coordinates from
dences over a stereo image sequence, in Section 3, results using 2-D correspondences, and (4) Estimation of motion parameters
line correspondences over a monocular image sequence. based on the 3-D point correspondences. We shall give a brief

description of each stage.
This work was supported by the National Science Foundation Grant In the first stage, we employ the 4-way matching algo-

IRI.89.08255, the Joint Service Electronics Program Grant N00014.90-J-
1270 and State of Illinois Dcpatmcnt of Commerce and Community rithm suggested in [3] to obtain matched point pairs in two
Affairs Grant 90.103. stereo image pairs at two consecutive time instant (1, and t i.).
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The algorithm has two steps which are extracting features and The matching algorithm is applied to all these image sets to
matching. The features used in this algorithm are edge points obtain the matched point pairs. Figure 1 serves as an example
that extracted by locating zero crossings of an image. In the and depicts the matched results of the image set timnelO-)1.
matching step, there are three procedures which are i) stereo The procedures of the other stages discussed, which in-
matching, ii) time matching and iii) elimination of multiple lude image distortions correction, 3-D coordinates calcula-
matches. tion and selection and motion parameters computation, are

Since the image sequence used in this paper was obtained applied to the matched points of the eight sets of stereo im-
from optical cameras, the images were corrupted by two major age pairs (time-78, time-89, time9-10, tinelO-11, timell-12,
distortions of film and lens. The distortion of film is caused timel2-13, time13-14 and tinzel4-15). The estimated motion
by the unstable nature of the acetate base of the commercial parameters of the eight sets of stereo image pairs are tabu-
film while the distortion of lens is due to aberrations. These lated as shown in Table 1. We also show the estimated motion
two distortions on the image coordinates have to be corrected parameters with hand picked point correspondences (their Y
before any process, such as derivation of 3-D coordinates, coordinates in 3-D are set to zero) of the same eight sets (ex-
can be applied to the matched points. Therefore, after the cept time8-9 and time9-O) of stereo image pairs in Table 2
matching process, the next stage is correction of distortions (regarded as ground-truth values).
in the image coordinates. We use the method described in [1, For our comparison, the error E between two translation
2] to perform the required corrections. The method consists -7 V
of two procedures which are i) use of bilinear transform for vectors (V, 1 t) is defined as E - and the angle
the correction of film distortion and ii) use of lens distortion
formulas for the correction of lens distortion. h between them is given by 1 cos- Hence, we

Having corrected the distortions in the image coordinates, have the following summary 121:
the next stage is to derive 3-D coordinates from the corrected 1. For the rotation axis (flt, 2,Aa), the angle -y between
2-D position. The procedure used to compute 3-D coordinates the two axes (the estimated and the ground truth) has an
is photogrammetric intersection with collinearity equation mod- average value I = 4740 with standard deviation a.
ification described in [1, 2]. The result of this procedure is a 2.320.
list of 3-D coordinates. For the motion estimation algorithm 2. For the rotation angle a, the average absolute error t al is
used in our work, it requires two such lists of 3-D coordinates 0.94* with standard deviation o,, = 0.60 .

(X, Y, Z) that correspond to each other at two different time
instants (t and t,+I); however, due to data noise, the majoritv 3. For the translation of centroid T,, the average error ET,
of these 3-D coordinates are not suitable for estimating the mo- is 6.44% with standard deviation arr, = 4.08%. For the
tion parameters between two different time instants. Therefore, angle -t between the two centroid translation vectors (the
we use the technique suggested in [2] to select the best 3-D estimated and the ground truth), the average value 5 is
point sets for motion estimation. It involves two constraints, (1) 8.97* with standard deviation a., = 6.97'.
rigidity between different time instants and (2) uniform point 4. For the translation T, the average error E1 is 13.90% with
distribution across the object on the image, to accomplish such standard deviation 0 T = 8.52%. For the angle y between
kind of selection. the two translation vectors (the estimated and the ground

At this stage, we have 3-D point sets that correspond truth), the average value I is 3.57* with standard deviation
to each other at two different time instants, i.e. pi and P'; a-Y = 1.61'.

= 1,2,...,N (pi and p, are 3 x 1 column matrices). Based
on these 3-D point correspondences, the motion equation is: 3 Motion Estimation Using Line Correspondences
p[ = Rpi + T + N,, where 1R is a 3 x 3 rotation matrix, T is over a Monocular inage Sequence
a translation vector (3 x 1 column matrix) and N, is a noise
vector. To compute the motion parameters, we employ the There are three major stages in motion estimation using
method presented in [2] which consists of two steps: line correspondences: straight edge extraction, straight line

matching and motion estimation using line correspondences.
1. Find rotation matrix R'. We shall briefly describe them below. The details can be found
2. Then, calculate the translation T by T = p' - Rp and the in [4].

centroid translation T as P - P.3.1 Straight Line Extraction

Since the translation T is the result of the motion parameters The steps of straight edge extraction are as follows: First,
formulation and may not represent an actual physical transla- edge support focusing is performed over an intensity image to
tion, the centroid translation T, provides a more realistic trans get an edge support image, which contains the pixels around the
lation representation of the rigid object. significant edges of the original image. Then, the edge support
2.3 Experimental Results image is segmented into line support regions by analyzing

the similarity of gradient orientation of the intensity image.
We now report the results of our motion estimation method Potentially, one straight edge can be obtained from each line

(using 3-1D correspondences) on eight sets of stereo image support region. Finally, a line representing the straight edge is
pairs, each at two consecutive time instants (t, and t,+1). computed from the pixels of each line support region.
These eight sets of images are time-8, time8-9, time9-O,
timelO-ll, timell-12, time12-13, tine3-14 and timel4-15.
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3.2 Matching Straight Lines line correspondences are obtained over 3 frames.

We decompose multi-frame matching into several two- 3. Camera Alignment: For the problem of motion estimation,

frame matching in our match process. In general, relaxation is it is assumed that the camera is stationary. The violation of

often used in the process of matching. However, since straight the assumption in real experiments will lead to erroneous
lines have many significant attributes, such as position and results. Thus, the camera must be aligned for different time
orientation, powerful matching functions [5] can be computed. instants. To do this, we rotate the image line representations
The matching function is defined as a weighted sum of the by the matrix representing the camera orientations at each

time instant.
differences of the attributes of image lines between the two 4. With the initial guess of rotation axes being (0,1,0) andframes. 4 ihteiiilgeso oainae en 010 n

rotation angles being 11, the computational results are listed

A "kernel" method is used in our matching process. With in Table 3.
this method, one first search for correspondences between sub- 5. Table 4 gives the ground-truth for the motion of the truck

sets of the lines in image A and in image B. The line correspon- also measured in the world coordinate system.

dences obtained in this step is called the match base or kernel.
After kernel matching, a further matching for the remaining 4 Concluding Remarks
lines is performed. In this step, the matching function is esti-
mated based on the lines already matched. Since the matching Motion estimation algorithms based on stereo image se-

function is computed only with respect to the already-matched quences appear to work as well as theoretical analysis indicates.

lines, the cost of computation is reduced. The fundamental limitation appears to be the spatial quantiza-
tion (sampling) of images. For the typical outdoor scenario

3.3 Algorithm of Motion Estimation we worked with, where the range to baseline ration is around

We do motion estimation using line correspondences de- 10 : 1 (35m to 3m), rotation can be estimated with an error of

scribed in [6]. For the algorithm, we assume that an object is around 10- 20%. The 3-D object location at each time instant,

moving in front of a stationary camera in the 3-D world. The however, can be estimated to only within a meter or so, which

images used for motion estimation are taken by the camera at makes the translation estimation quite inaccurate.

consecutive time instances. The coordinate system of the 3-D With the ratio of range to focal length being 900 : 1,

world is chosen to be fixed on the camera with the origin coin- the monocular motion estimation using line correspondences

ciding with the focal point of the camera, the Z-axis coinciding can obtain the rotation with comparable errors. However, the

with the optical axis and pointing to the front of the camera. translation estimation is grossly in errors. Monocular point

The focal length of the camera is assumed to be one unit for methods are even worse.

simplicity. The image plane is then located at Z = 1 with its

coordinate axes x , y parallel to the axes X and Y of the 3-D References
world coordinates respectively. We consider the motion of the
3-D object first from time tt to time t2, then from time t2 to [1) E. M. Mikhail and F. C. Paderes, "Photogrammetric series of

moving vehicle," Scientific Services Program DAAL03-86-D-
time t0, ti < t2 < ta. In each time interval, the motion is 0001 (0683), CAI-RI, U. S. Anny ETL, Fort Belvoir, Virginia
considered as a 3-D rotation around an axis though the origin 22060-5546, Nov. 1988.
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translations from f, to t2 and from t2 to 13 respectively; then (31 M. K. Leung, A. N. Choudhary, J. 11. Patel, and T. S. Iluang,
the motion equations are "Point matching in a time sequence ofstereo image pairs and its
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p3 = R 23P2 + T 2:t [4] Y. Liu and T. S. liuan%, "Estimating 3-D vehicle motion in
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matrices and T2 and T 2a are 3-D vectors. Urbana-champaign, Urbana, IL 61801, Apr. 1990.

[51 J. H. McIntosh and K. M. Mutch, "Matching straight lines,"
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We only consider the motion of the truck in time intervals 1988.
of timel3-14 and timel4-15 using the left image sequence. (61 Y. Liu and T. S. luang. "Estimation of rigid body motion

using straight line correspondcnccs," Coini. Graphics inage

1. Edge Extraction: In addition to edge support focusing, line Proccssing, vol. 43, July 1988.

support region segmentation and physical edge computa-
tion, image geometrical distortion correction, is performed
in this process. First, lens distortion and film distortion
are corrected for the coordinates of the points in line sup-
port regions. Then, physical edges are determined from the

corrected points of each line support region.
2. Matching: Besides matching function and kernel method,

a similarity based technique for background removing is
used. Figure 2 shows the result of this stage. A set of 36
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Table 1. Estimated motion parameters of the eight sets of stereo image pairs.

File Rotation Axis Angle a Translation of Centroid Te Translation T

41 fl 43 Deg X (mm) Y (mm) Z (mm) X (rm) Y (MM) Z (rm)
*ia7.8 .0.1361 0.9906 0.011 6.17 -931.42 2.20 537.36 .3831.67 436.00 4004.03
timn8.9 0.0709 0.9949 0.0721 3.74 .989.33 -10.00 478.26 .2773,00 -293.17 263298

dmeg.IO .0.0024 0.9992 0.0402 5.08 .791.31 .1.33 857.38 .3328.95 102.23 3584.18
A,.1-Ol1 0.0219 0.9993 .0.0315 8.00 .738.31 .9.09 585.13 -4782.79 216.75 4931.64
bmll.12 0.0925 0.9949 -0.0401 4.82 47.26 -11.76 414.51 .3271.42 321.40 2992.77

tinw12.13 0.0973 0.9931 .0.0655 6.13 -587.12 3.93 900.55 .3838.46 526.85 3996.81
tinme3.14 .0.0764 0.9970 .0.0091 5.72 ,523.02 -18.46 830.93 .3741.30 .239.98 3607.94
timaI4.S1 0.0137 0.9997 .0.0213 5.45 .544.22 .15.87 778.34 .3587.09 81.81 3406.88

Table 2. Ground-truth for motion estimation.

File Rotation Axis 0 Angle a Translation of Centrold T. Translation T
Y = 0.00 il 1 4 Deg X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (Mm)

im7T-8 0.00 1.00 0.00 5.23 .945.41 0.00 286.88 .3475.65 0.00 3424.76
if,,.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

fimW9.)O NIA N/A N/A N/A NIA N/A N/A N/A N/A N/A
t6NeIO.1) 0.00 1.00 0.00 5.91 .743.04 0.00 642.98 -3787.28 0.00 3798.66

ownel).12 0.00 1.00 0.00 4.53 .642.27 0.00 757.66 -3089.39 0.00 3056.09
ima2.13 0.00 1.00 0.0 5.48 .590.79 0.00 745.81 .3602.12 0.00 3491.67
inla3.14 0.00 1.00 0.00 4.50 -562.40 0.00 792.53 -3082.15 0.00 3016.54

Iima/4.15 0.00 1.00 0.00 5.87 -459.67 0.00 864.27 .3796.00 0.00 3751.46

Table 3. Result of motion estimation using line correspondences.

File Rotation Axis r Rotation Angle a Translation

F l'2 q3 Deg X Y Z
fI31.14 .0.0407 0.9991 -0.0048 4.08 0.8839 0.0174 -0.4674

tijal4.1 j-0.0504 0.9987 0.0055 4.76 1.0400 0.0237 -0.2639

Table 4 Ground-truth motion

Rotation Axis i) Rotation Angle a Translation |File r- nsla i,

Deg X Z
amaI -14 000 .O w 4.5 0.9999100ooo 0.0124

Um1 I 0000 1.0000 0.00 5.87 1.3864 0.0000 -0.1067

432
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This paper demonstrates how confidence regions for with an uncertainty that reflects the uncertainty in the
line and surface orientation can be obtained directly from original vectors. For more than two vectors, the prob-
stereo line correspondences or vanishing point analysis. lem can be viewed as finding the polar axis of a great
Since orientations are represented as unit vectors, sta- circle defined by the heads of several uncertain unit vec-
tistical techniques for estimating the azes and uncer- tors. Perpendicularity constraints between orientation
tainty of point distributions on the unit sphere are e-
plored. Bingham's distribution is introduced to describe vectors also lead to an efficient Hough transform tech-
both equatorial and bipolar distributions of unit vectors. nique on the sphere for clustering vectors that lie in a
Statistical parameter estimation based on Bingham 's dis- great circle.
tribution is used to solve for the polar axis of a great cir- Although this paper focuses on the extraction and sta-
cle of points and to represent the statistical uncertainty tistical description of line and plane orientations from
in the resulting orientation estimate. In addition, the stereo line pair correspondences, the methods are appli-
problem of estimating the orientation and uncertainty of cable in other situations as well. An application of this
the cross product of two uncertain unit vectors is con- work to vanishing point analysis will appear in [7], and
sidered, and an approzimate solution is given in terms is briefly outlined in Section 1.3.
of the "intersection" of two equatorial Bingham distribu-
tions. 1.1 Line Orientations from Stereo

1 Introduction The orientation of 3D lines can be computed directly
from stereo line correspondences without first comput-

Many objects in man-made environments have planar ing point depths, in contrast to methods that compute
surfaces. For automatic construction of 3D models it depth in order to obtain the orientation of line segments.
is necessary to recover these surfaces together with an Consider a 3D line segment with unit orientation vector
estimate of their uncertainty. Line and plane orienta- U, projecting onto the image plane of a single camera.
tions can be computed whenever the images of parallel The focal point of the camera together with the 3D line
3D lines are observed. Particular examples are vanishing defines a plane called the projection plane of the line.
point analysis on monocular images of groups of paral- The image projection of the 3D line lies on the intersec-
lel lines, and the analysis of multiple images of a single tion of the projection plane and the image plane, thus
3D line undergoing pure translation with respect to the the projection plane can be computed given a line seg-
camera, either as part of translational motion sequence, ment in the image and the focal point. Since a 3D line
or from a stereo image pair where the camera axes are lies in its projection plane, the plane normal 40 is per-
aligned. pendicular to the orientation U. If the same 3D line is

The represention of orientations as unit vectors leads imaged from a second camera, oriented the same as the
naturally to an examination of distributions on the sur- first, but translated by a vector T, a second projection
face of the unit sphere, and to 3tatistical inferencing tech- plane that is still perpendicular to U will be measured.
niques. over such distributions. One uscful tool for de- The 3D line orientation can thus be recovered as a unit
riving orientation information is the estimation of a unit vector parallel to the cross product of the two projection
vector perpendicular to a set of derived unit vectors. For plane normals, except when the line image lies along an
instance, the normal vector to a planar surface is perpen- epipolar line for the two images.
dicular to the orientations of all the lines in the plane. Looking at th's another way, translating the coordi-
For two input vectors, this inference is a cross product nate system by T is equivalent, to translating lines by

*This work was supported in part by DARPA and RADC -T. Pure translation does not change line orientations,
under contract number F30602-87-C-0140, by DARPA and so the new line remains parallel to the original. Under
U.S. Army ETL under contract number DACA76-89-C-0017. perspective projection, parallel 3D lines of orientation U
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project to converging image lines which intersect at the
vanishing point associated with U. Therefore the image --

of a line in one camera coordinate system intersects the
image of the same line in a translated coordinate system
at a vanishing point, from which the line direction can

be derived.
Unfortunately, the input line data is always imper- .

fect due to noise in its imaging and extraction, and the
effects of noise on the computed 3D orientation must
be taken into account. When working with real data,
any computed quantity should be treated as an estimate
only, with an associated measure of uncertainty. In this
instance, a method is needed for computing the distribu-
tion of the orientation of the cross product of two random
vectors. This problem is addressed in Section 2.2.

1.2 Recovering Planar Surfaces

Having first computed 3D line directions, it is possible
to discover coplanar lines and thereby recover the orien-
tation and distance of the planar surfaces that contain Figure 1: Matched input lines from the left image of a
them. This is done in two stages. First the lines are stereo pair are shown upper left; also shown are 3 sets of
broken into groups consistent with a family of parallel lines consistents with hypothesized surface planes.
planes, then distances are finally computed to partition
the lines into sets consistent with individual plane equa-
tions. histogram represent sets of lines consistent with a single

The normal vector to a planar surface is perpendicu- plane equation.
lar to the orientations of all lines on that surface. Con- Figure 1 shows an example of the partition created for
versely, given a line of orientation U lying on a planar a stereo hallway image. The algorithm forms hypothe-
surface, the set of possible surface normals is the set of ses of all three visible wall planes, and correctly identi-
unit vectors perpendicular to U. On the unit sphere, the fies that one plane orientation is shared by two parallel
heads of this set of possible normals trace out a great cir- planes at different depths.
cle with polar axis U. This geometric constraint leads to The above method for hypothesizing planes from
an efficient Hough transform technique for finding pos- stereo line correspondences has some unique features.
sible surface normals on the sphere, a transform first The method typically employed to solve the same prob-
employed by Barnard in the context of locating poten- lem is to compute 3D line segments or points, then clus-
tial vanishing points [3]. Each line orientation is mapped ter them into planar patches. We believe our approach
onto a 2D histogram representing the surface of the unit has the following advantages:
sphere, partitioned by azimuth and elevation. Each ori- The computation of plane distance is decoupled
entation casts a vote in all buckets along the great circle from computing plane orientation, thus the Hough
representing vectors perpendicular to it. Potential sur- transform for detecting surface normals is 2-
face normals are detected as peaks in the histogram, cor- dimensional instead of 3, and the entire process is
responding to areas where several great circles intersect. roughly C(N) in the number of lines [6].

Once potential plane orientations have been identified,
the unit normal can be estimated with more accuracy. * Parallel planes are immediately identified, and their

Although the true line orientations lie on a great circle shared orientation is computed from all of the lines
around the true plane normal, this relationship will not on them.
be exact due to errors in the derived line orientations. * When the depth to a point on a line is finally com-
Instead, line orientations lie scattered in an equatorial puted, the line is assumed to lie in a plane with
belt. In the Section 2.1, an estimate of the polar axis of a given orientation that has been estimated from
this belt is developed, providing a vector estimate plus several lines. The depth computed under this con-
an uncertainty region for the 3D surface orientation. straint is presumably more accurate.

Finally, for lines within a family of parallel planes, a
ID histogram of plane distances is formed by computing 1.3 Vanishing Point Analysis
for each line a hypothesized distance. The distance is Several of the techniques described above can also be ap-
computed as d, = . p,, where p, is a 3D point on line plied to the analysis of vanishing points. When parallel
z and i is the estimated plane normal. Peaks in this ID 3D lines are projected onto an image plane, their images
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converge to a common point of intersection called the trace of a matrix.
vanishing point. A ray constructed from the camera fo- It is easy to verify that B(-x; K, U) = B(x; K, U),
cal point towards the vanishing point has the same 3D thus the distribution is antipodally symmetric, and it is
orientation as the original world lines, appropriate to interpret x as an undirected axis, or as

It was shown in Section 1.1 that the projection plane an observation confined to the unit hemisphere. Further
normals of parallel lines in 3-space are perpendicular to analysis shows that the "shape" parameters K, are deter-
the 3D line orientation U. This constraint suggests that mined ,nly up to an additive constant. For uniqueness it
the 2D Hough transform method of Section 1.2 can be is customary to subtract out the largest Kt, in this case
used to find candidate vanishing points [3]. Each pro- K3, leaving ki = Ki - K3 with k, : k2 f k3 = 0. Figure 2
jection plane normal votes for a great circle of possible displays the Bingham distribution for varying values of
line orientations; potential orientations are then found k, and k2 .
as peaks in the histogram. Analogous to the situation Given a set of n unit vectors 4bi = (xi, yi, z,) assumed
described for stereo line correspondences, a more accu- to be distributed according to Bingham's distribution, a
rate estimate of the line orientation perpendicular to a sufficient statistic for the orientation and shape param-
great circle of projection plane normals can be obtained eters U and K is the sample second moment or scatter
by estimating the polar axis of a equatorial distribution matrix
on the sphere [6].

- Xi i2  EXy EXyi • (2
2 Estimates of Orientation M E i 2i Ey i EZi (2)

In this section, the statistical problem of representing E MI E yZ Zz 2  I
and estimating orientation vectors and deriving confi-
dence regions for the resulting estimates is examined. Since the scatter matrix is a symmetric real ma-
Two particular cases are explored: estimating the polar trix, it can be decomposed into M = AAA where
axis of a great circle of unit vectors, and estimating the A = [a,, a3 , a 3] is an orthogonal matrix of eigenvectors,

cross product of two uncertain unit vectors, and A = diag(Al, A2, A3 ) is a diagonal matrix of corre-

Unit orientation vectors really have only two indepen- sponding eigenvalues with A1 < A2 < A3 summing up to

dent values, thus representing the entire vector as a 3D 1. It can be shown [4,9] that the maximum likelihood

normal variable leads to near-singular covariance matri- estimate of the Bingham orientation matrix U is the ma-

ces. One possibility is to represent unit vector uncer- trix of eigenvectors A. Maximum likelihood estimates of

tainties as bivariate normal vectors in a local coordinate the shape parameters k, and k2 are nontrivial functions

system on the tangent plane or in spherical cordinates of A [8].

on the sphere surface. However, this approach leads to Recall from Section 1.2 that a set of line orientation

some messy coordinate system bookkeeping when trying vectors perpendicular to the surface normal formed an
to combine the uncertainties of two or more vectors. We equatorial belt around the surface normal direction. We
choose instead to represent the uncertainty as a 3D nor- will assume the distribution of line orientation vectors

real variable constrained to conform to the surface of the can be described as an equatorial Bingham (Figure 2d-
sphere. e). Finding the planar surface normal reduces then to

Bingham's distribution is a standard statistical dis- estimating the polar axis of the distribution. If the con-
tribution for representing both bipolar and equatorial vention A, < A2 <_ A3 is adhered to, the polar axis of an
clusters of points on the sphere [4,9]. It describes a equatorial Bingham distribution will be ul, the eigen-
trivariate normal vector with zero mean and arbitrary vector associated with the smallest eigenvalue A, of the

covariance matrix, conditioned on the length of the second moment matrix.
vector being unity. Bingham's distribution thus rep- After finding the maximum likelihood estimate A

resents the portion of a trivariate normal distribution it, = ai of the desired 3D orientation vector, the con-
N3 (x; 0, E) that intersects the surface of the unit sphere. struction of a confidence region can begin. Bingham sug-
The covariance matrix E7 can be written as US U', gests [4] that for large sample sizes, an approximate 1-a
where U = [u,_. U2. u 3] is a 3 x 3 orthogonal matrix and confidence region for u, is an ellipse centered at la,, with
S = diag(a 2, ,,2) is a diagonal matrix of variances, axes of lengths {X.,/(2n(k, - k,)(A, - A;,))}I directed
Without loss of generality, assume that a2 < a < a2. along great circles towards 2,j i, where ,, is the

Letting K = diag(,, r-2 , K 3) -S' and constraining upper c critical point of the X2 distribution with 2 de2 to have unit length yields the Bingham distribution grees of freedom. For small errors this is appr.,xitr

13(a;K,U) = B(K) exp{tr(KU'xxLU)} (1) the set of vectors

where B(K) is the normalizing constant required to vf: vt Rv <
make fmt= B(x;K,U) = 1, and tr(.) denotes the 2 n
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Figure 2: Bingham's Distribution - representative contours for varying shape parameter magnitudes

where R is the matrix will also yield the z-axis as the rotated plane normal vec-
a (ki- k2)(Al- A2) 0 tor. More importantly, the confidence region associated

[a2, a3 ] 0 k(, - A3) [a2, a3]t. with this linear least-squares plane fit is an approximateI krotated confidence region.

2.1 Approximate Confidence Regions Without detailing the intermediate steps in building
a confidence region for a linear least squares solution

In addition to decomposing the scatter matrix into prin- (see [51, for example), the following approximation to
ciple components (eigenvalues and eigenvectors), con- the Bingham confidence region is derived
struction of a Bingham confidence region requires com- 2 F(2, n 2)
putation of the shape parameters k, and k2. This pro- V: VtP V < (4)
cess is computationally expensive, however, due to the I I
complexity of the distribution normalization constant where F(2, n - 2) is an F variable with 2 and n - 2
[8]. To find a more convenient approximation, first note degrees of freedom, and P is the matrix
that a decomposition of the sample -catter into princi-
ple components is also found at the heart of the least- [a2, a 3] 0 A3/' I [a2, a31t
squares perpendicular error plane fit [2]. In particular, L 3/i I

the eigenvector associated with the smallest eigenvalue of This region most closely approximates equation (3) for
the sample scatter matrix is an estimate of both the pole rotationally symmetric, low variance equatorial distri-
of the equatorial Bingham distribution, and the normal butions, as in Figure 2e. Furthermore, approximating
of the least-squares best-fit plane. Bingham polar axis estimation as a least squares plane

To develop an approximate confidence region, further fit allows us to include information about non-equal vari-
note that the linear least squares plane fit z = ax + f3y ances among the input vectors simply by substituting the
yields the same plane estimate as the perpendicular er- formula for a weighted least squares fit.
ror plane F ,',hen the estimated plane is perpendicular
to the z axis, since then the distance parallel to the z- 2.2 Cross Product Confidence
axis from a point to the plane is the orthogonal distance Recall that the 3D orientation of parallel lines in the
[1]. This means that if the original coordinate system is world is computed from the cross product of the projec-
rotated such that the normal of the orthogonal plane fit tion plane normals of their images. A cross product is a
coincides with the z-axis, a linear least squares plane fit great circle pole estimate for two vectors. Unfortunately,
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the formula for estimating polar axis confidence regions
is not valid for less than three vectors. In this section
a formula to compute an approximate confidence region
for the cross product is derived, based on intersecting
equatorial Bingham distributions.

A geometrical intuition for computing an uncertain
cross product is to intersect belts on the sphere, each
belt representing all the points perpendicular to the un-
certainty region at its pole [10]. In the current for-
malism, if two equatorial Bingham distributions exist,
with distributions P(m -, N(O, 2 1) 1 xI = 1) and
P(a ,- N(O, E 2 ) I M = 1), the probability that a 2
vector lies in the intersection of the two is their joint
probability, which assuming independence is the prod-
uct of the individual probabilities. It can be shown
that this joint probability has the Bingham distribution

- N(O, (2 1 + 2 = 1).
The only remaining task is to construct a "dual" equa-

torial Bingham distribution from a bipolar one, where
dual means that the longitudinal variance across the Figure 3: An equatorial Bingham distribution E is the
equator of the equatorial distribution is the same as the "dual" of a bipolar one P if the variance along a line
longitudinal variance at the pole of the bipolar distri- of longitude across the equator of E is the same as the
bution (see Figure 3). For geneial asymmetric bipo- variance along that line of longitude at the pole of the
lar distributions this is difficult, but an approximate P.
dual for rotationally symmetric forms exhibiting small
variances can be constructed. Under those conditions was applied to the line directions in the group, using a
k1 = k2 ' -1/(2a 2 ), where a2 is the variance across weight inversely proportional to the line direction vari-
the pole [4]. If the axis of the pole is u3 , the matrix of ance. Approximate confidence regions were computed
shape parameters K becomes diag(0, 0, -1/(2ar 2)), and using equation 4.

T-1 =_-2UK Ut. Decomposition into principle compo- The mean orientation vector for the right wall was
nents of the sum of X 1 and Z2 

1 yields the orientation computed to be (.665, -. 061, -. 744), as depicted in Fig-
and shape of the resulting joint Bingham. ure 4a. A 95% confidence region around the right wall

orientation is approximately an ellipse, with half-lengths
2.3 Numerical Results on the sphere of 2.48 and 2.76 degrees. The shared

The stereo line correspondence example from the last orientation of the two left walls was estimated to be

section was taken with a two-camera setup with paral- (-.739, -. 021 - .673), with a 95% confidence region of

lel focal axes and a baseline of 20 inches. The distance half-lengths 2.53 and 2.0 degrees. The relative orien-

from the left camera to the corner was approximately 18 tation between the two estimated orientations is 89.4

feet. As described in Section 1.1, each line orientation degrees, and the actual walls are in fact perpendicular
was computed as the cross product of two corresponding within the usual limits of construction accuracy.
projection plane normals. The variance in each input In partitioning the lines into individual plane equa-
normal was taken to be circular, and inversely propor- tions, the two parallel left walls were separated. The
tional to the average length of the matched lines in the perpendicular distance from the camera to the extended
image. From these two uncertain projection plane nor- plane of the far left wall was computed as 155.16 ± 2.45

mals, the line orientation was computed as their cross inches, and that of the closer left wall as 146.06 ± 1.82

product, and an associated confidence region was com- inches (see Figure 4b). This gives a nominal difference
puted as described in Section 2.2. Although this gener- of 9.1 inches, whereas the faces of these two walls are

ally gave an elliptical confidence region, uncertainty in in fact 8.k inches apart, or a 7% error in depth for the
the line direction was taken to be a circular distribution estimated value. The wall on the right hand side of the
circumscribing the elliptical one on the sphere, summa- image was estimated to be 162.2 ± .98 inches away.
rizing the region description with a single variance.

Two plane orientations were discovered from the
Hough transform array (two planes of the three share the [1] L. Ammann and J. Van Ness, "A Routine for Con-
same orientation). To compute plane orientations from verting Regression Algorithms into Corresponding
each line group found, a weighted least-squares plane fit Orthogonal Regression Algorithms," ACM Trans-
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Figure 4: Numerical results for planar surface hypotheses. Left depicts tyie orientation and uncertainty in surface
normals. Right shows perpendicular distance estimates to each plane.
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Abstract

As part of the SRI research effort involving stereo com- -p___p-___P__"

pilation, we both contribute to and monitor other work
relevant to the state of the art in this field. This paper Vieth-MOller Circle
is a survey, intended tror a general technical audience, of v

both computational and biological approaches to stereo
vision. 1

1 Introduction

Two eyes or cameras looking at the same objects from
different perspectives provide the means to determi ne
three-dimensional shape and position. Scientific investi-
gation of this effect (called variously stereo vision, stere-
opsis, or single vision) has a rich history in psychology, A t
biology, and, more recently, in the computational mod-
eling of Oerception. The human visual ability to per- L cyclopean origin

ceive depth is both commonplace and puzzling: one per-
ceives three-dilmensional relationships effortlessly, but
the means by which one does so are largely unknown Pr

andl hidden from introspection. Stereo vision, however,
is one way to perceive depth that is relatively well under- Figure 1: Basic Stereo Geometry.

stood from a computational standpoint. Stereo is an im-
portant method for machine perception because it leads
to relatively direct measurements and, unlike monocular 2 Stereo Geometry
techniques, does not infer depth from weak and unveri-
fiable photometric and statistical assumptions, nor does The geometrical principle behind stereo vision, illus-
it require specific detailed models of objects. Once two trated in Figure 1, is quite simple. Assume that two
stereo images are brought into point-to-point correspon- cameras form images through left and right centers of

dence, recuxcring depth by triangulation is straightfor- perspective 1 and r, onto planes L and R. (In practice
ward. these would be imperfect optical lens systems, but for
We begin with a discussion of the geometrical basis this discussion we assume ideal "pinhole" projections.)

for stereo vision. We then focus on three distinct corn- Furthermore, assune that the cameras are fixed upon
put.ational models, selected t.o tepresent. both difference.s point v, which is to say that the two rays l)erpendicu-
and commun themes in approach. Next, we discuss some lar to the image planes passing through the centers of
aspects of biological stereo vision and practical applica- perspective (the principle rays) intersect at. v. Let 0O be
tions of computational stereo. Finally, we conclude by the angle between these principle rays. We say that the
identifying the important open questions. absohlte disparity of v is 0O Now consider another point

JSonc of the work describd iii this ar icc was supported under p projected onto image planes L and R as shown, and

DARPA cotracts MDA03-86-C-O008 and DACA76.85-C-000,1. let the angle between these rays be 0,,. We say that the

The article will appear in the Wiley Encyclopedia of Artificial relative disparity of p with respect to v is plv = Op - 0"
hilcligencc (2nd edit ion) to be ublished in thc alci ptast of 1991. Rclatic disparity is time more commonly used definition
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The circle through 1, r, and v (actually a sphere)
is called the Vielh-Mliiller circle /closely related to the
horopter discussed below in Section 4.2). Note that. rel-
ative disparity c,lv, is positive for points inside, nega- eppple

tive for points outside, and zero for points on the circle.
Positive at(d negative relative disparities are sometimes
referred .o as crosscd and uncrossed, respectively.

Clearly, disparity is related to distance. Let
c = (I + r)/2 be the midpoint between the focal points
(the cyclopean origin), and 1) an( q be two points on
a line with c; if IP - el > I1( - el (i.e., p is farther from
the observer than (1) then 6

p, < 6q. The two projections
of a single point in the scene are called conjugate poin ts,
and they determine the location of the point in the scene
uniquely.

This property of conjugate points establishes the im-
portance of the correspondence problem: how can one
determine which pairs of Poit.s in the two images cor- Figure 2: The epipolar constraint. Any other point
respond to actual points on suufaces in the scene? The in the epipolar plane (for example, the point shown as
scene is presuniabl% made of liglit-ieflectiig surfaces, and an open circle) must project to image locations on the
individual markings on these surfaces will, in some sense, epipolar lines.
look about the same ill the two images. In realistic im-
agery the corrcsponlence problem is much harder thanit may flrst appear, howevr, due to many complicat- that confront any stereo model to a greater or lesser de-
ing factors such as occlusion (inl which some parts of gree: image acquisition, camera modeling, feature acqui-
the scene are seen only by one camera), periodic sur- sition, image matching (the correspondence problem),
face markings, surface areas with no markings at all, depth determination, and interpolation.
distortion of the surface markings in the images dues to im*ge acquisition. Stereoscopic images can be
perspective projectio , sensor noise, optical distortion, i a .u large va re o s o r i m le , tn e
etc. recorded in a large variety of ways. For example, theymay be recorded either simultaneously or itn a tinie se-

Knowledge of the relative orientation of the two cam-e mquence of any duration; from very similar or from veryeras makes the coriespondenee problem much More

tractable by reducing the dimensionality of the search different perspectives; with accurate, well-calibrated in-
space. Any point in three-dimensional space, together struments or with a crude hobbyist camera. The mostcenters of projection of the two camera sys- important factor affecting image acquisition is the spe-with the cetr fpoeto ftetocmr y- cific application for which the stereo computation is in-
tem s, defines a plane called an cpipolar plane (Figure ti n ed (ppli ction for mre o application s
2). The intersection of an epipolar plane with an i- tended. (See Section 5 for more on applications.)
age plane is called an cpipolar line. Every point on an
epipolar line in one image must correspond to a point on cara on e ave sethasn g f
the corresponding epipolar line in the other image. This disparity allows one to calculate depth, assuming full
constraint, often called the epipolar constraint, therefore knowledge of the geometrical arrangement of the cam-
limits the search for the match of any point in the first eras. In practice, this means one must knowv both the
image to a one-dimensional neighborhood in the second interior orientation of each cameras (the relationship
image, as opposed to a two-dimensional neighborhood, between points in the image and the coordinate sys-
with an enormous reduction in computational complex- tern of the camera) and the exterior orientation of the
ity. two-camera system (the relationship between the local

camera coordinate systems and an invariant world coor-
dinate system). Exterior orientation requires knowledge

3 Computational Models of the locations of the focal points and the orientations
of the cameras in the world. A stereo camera model

Many computer models of stereo ,vision ha,,e been pro- is normally separated iito an absolale component that
posed. In some cases these models have been offered specifies the transformations between a camera coordi-
as a theory of human stereo vision; in other cases the nate system and a, world coordinate system, and a rel-
models have been pragmatically task-oriented and un- alive component that specifies the transformations be-
constrained by knowledge of biological vision. In this twecn two camera coordinate systems without reference
section we examine thiee distinct approaches illustrated to a world coordinate system. Knowledge of the relative
by characteristic cxampilcs. We first examiiie the ibsues caniera model alone is sufficieit to exploit the epipolar
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constraint to simplify natching, as described in Section
2. The absolute model is required to translate disparity
measurements into absolute measurements of the posi-
tions-bf points in the world.

The derivation of a relative camera model given a large
number of matched points is usually accomplished by
least-squares parameter estimation. Gennery [10] has
developed such a method for finding the relative camera
model in terms of azimuth, elevation, pan, tilt, roll, and
focal length. From a theoretical standpoint, the min-
imum number of conjugate points that is necessary to
derive a unique relative camera model is 5, but the so-
lution involves three simultaneous nonlinear equations
(21]. If as many as eight conjugate points are available,
the relative camera model can be obtained directly as
the solution of a system of linear equations (18,25]. Fis-
chiler and Bolles [9] have provided a number of results
with respect to the minimum number of points needed
to obtain an absolute camera model, given a single im-
age and a set of correpondences between points in the
image and the points' locations in space; they also pro-
vide a technique for finding the complete camera model Figure 3: Thrce coiniiioi filters for stereo prepro-
when the given set of correspondences contains a large cessing. The Gaussian (top), the difference of Galls-
percentage of errors. sins (middle), and the Laplacian of the Gaussian (bot-
preprocessing Many stereo systems perform some sort torn)
of preprocessing of the images before matching, either
to set the stage for feature acquisition (see below) or to
build-image hierarchies (e.g., pyramids) for coarse-to-fine used either as elementary tokens for matching or as "in-
matching algoiithrns. Preprocessing is typically a linear tcijst opei atos," indicating the locations of promising
filtering operation in which the raw image intens ities aie .oriclation windows. Many kinds of features have been
conv6lved with one or more digital kernals. The three fil- used; for example:
ters illustrated in Figure 3 are commonly used: the Gaus-
sian, the difference of Gaussians (DOG), and the Lapla- Isolated point-like features can be found by a va-

cian of the Gaussian (V 2 G). The Gaussian is lowpass, riety of methods, often modeled along the lines
while the difference of Gaussians and the Laplacian of of Moravec's interest operator (20], which selects

the Gaussian are bandpass. These circularly-symmetric points where there is high variance in four direc-

filters are parameterized by a, the space constant of the tions.

Gaussian. By using a series of filters with different space
constants, one can construct of series of images restricted e Edge features can be detected by a variety of meth-

to different spatial frequencies. The lower-frequency ir- ods. One commonly used method is to select zero-

ages can be subsampled into smaller images to create a crossings in bandpassed images; that is, those con-

pyramid-like resolution hierarchy. Such hierarchies are tours where the bandpassed images change sign.

extremely useful because the range of possible disparity
values across the field of view decreases linearly with the i Haigher-level features, such as line junctions, specif-
sample spacing, which implies that the number of pos- ically shaped "primitives," and segemented regions
sible matches is relatively smaller at lower resolutions. are sometimes used.
Coarse matching can be done quickly at low resolution
and the result used to initialize the search at the next image matching. The matching step - solving the
finer scale. correspondence problem - is clearly a critical compo-

nent of any stereo model. There are three distinct ap-
feature acquisition. Clearly, some parts of the images proaches:
will be easier to match than others because of the pres-
ence of characteristic surface markings. Many computa- * Area matching. Areas of image-intensity mea-
tional stereo models select sets of discrete features in the surements (possibly afte: preprocessing) are t'ie ba-
two images and then seek, at least, a sparse set of corre- sic units to be matched. This typically involves
spondences between these feature sets. Features can be using a feature detector to select promising areas,
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angles, the disparity of another point p with respect to
V is

-BAD

D 3 *IID where B is the distance separating the cameras (the

baseline), D is the distance from the cyclopian origin
to the fixation point, and AD is the difference in the
depths of p and v. To a first approximation, the error
in stereo distance measurements is inversely proportional

B a to the baseline and directly proportional to the square of
V the distance to the point being measured. Lengthening

the baseline reduces error, but complicates the matching

problem by increasing both the disparity in the images
and the difference in appearance of the areas or features
being matched. Given a constant image size and sam-
pling rate on the focal plane, increasing the focal length

8 p = P-a Is the disparity of p with respect to v. will decrease error proportionally, but at the cost of de-
creasing the field of view.

Assume that and 03 are small: uB/D, PSB/(DAD)

and D >) AD. interpolation. Stereo applications usually demand a
dense array of depth estimates. The variational models

Then can produces a dense array directly, but feature match-
ing and area matching can only produce sparse corre-
spondences. (This is obvious for feature-matching. Area
matching cannot produce correspondences unless there

Figure 4: Disparity as a function of depth and is significant photometric variation in the areas to be
baseline, matched.) Consequently, both approaches usually re-

quire an interpolation step. The most straightforward

and then using a selected "area patch" in a tem- way to derive a dense depth array from a sparse one
ch is simply to treat the sparse array as a sampling of aplate search to either maximize a measure of cross-0

correlation or minimize IRMS error, continuous function using a conventional interpolation
method. More elaborate and specialized methods have

Feature matching: Discete features are the ba- been proposed for interpolation when the depth may be
sic units to be matched. Once the features have discontinuous. An additional approach to interpolation
been detected no reference is made to the under- is to fit prior geometric models to the sparse depth array.
lying photometry. In addition to location, features We will now describe three stereo systems in detail.
may have other properties, such as contrast sign, (There are many other models, see the survey articles
contrast magnitude, and directionality. [1], [5].) These three systems were chosen to illustrate

" Variational mnodels: A set of mnatches is sought by the range of computational approaches to stereo, and

explicitly minimizing a cost. function. For example, also to identify common thees - the use of a scale

the cost function may combine a measure of photo- hierarchy, use of the continuity of depth and disparity

met-ric, error with a measure of the complexity of a to resolve ambiguity, and the of the epipolar constraint

dense disparity map. to limit search. These are also well-tested systems that
have been used in real applications.

In all three approaches hierarchical scale-space tech-
niques, based on the pyramid structures described in 3.1 STEREOSYS
preprocessing above, have had success.

The goal of STEREOSYS [13] is to find as many reliable
dcl)l determination. Once accurate matches have point-to-point matches as possible in an approximately
been found, the determination of distance is a elati cly aligned stereo pair. Matches ate determined by maximimz-
stiaightforward matter of triangulation using the abso- ing the cross-correlation of image intensities, normalized
lute camera model. Nevertheless, this step can present by mean and variance, between two rectangular areas
significant difficulties if the matches are somewhat inac- (typically 11 by 11 pixels). STEREOSYS is an eclectic
cui ate or unreliable or if the camera model is uncertain. approach to area matching: several effective techniques
Figure 4 illustrates how disparity measurements are re- have been combined into one system. The strategy is
latcd to depth and the separation of the camncias. Sup- to usc different nmatching algorithmis in sequence, begin-
pose the cameras arc fixated on point v. Absumiig small ing %%ith the more general algorithmis to get a relatikely
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few- matches -with -very high confidence, and then using- the Laplacian of a Gaussian kernal (V 2 G). As described
this information to constrain further matching with more above (preproccssiig), the choice of-the space constant
specifically tuned algorithms. of G controls the center of the passband; the MPG filters

The-first step is to select a set of well-scattered points are separated by about one octave. Zerocrossings are se-
in one image that indicate the centers of promising areas lected in the filtered images, and are classified according
for which to find matches in the second image. This is to contrast, sign.
done-with an "interest" operator, applied over a small Matching begins at the lowest frequencies, as in
windows, that penalizes windows with little information STEREOSYS. Each zerocrossing point in the left
(i.e., small variance of image intensity) or whose only in- bandpass-filtcred image is compared to all zerocrossing
formation is contained in strongly linear features (both points in the right image within a fixed distance of the
conditions that cause problems for coirelation match- left point's coordinates, corresponding to the maximum
ing). The local maxima of this measure identify the set range of disparity. (A small amount of vertical dispar-
of feature points. ity is allowed to permit an approximate epipolar cam-

The first matching algorithm, unconstrained hierarchi- era model.) Those pairs of points that have the same
cal matching, operates over a Gaussian image hierarchy contrast sign are considered as matches. Next, a fig.
by tracing the locations of the feature points (located in aral continuity constraint is used to cull false matches
one of the full-iesolution images) through the hierarchy from the set, of possibilities. The basic idea behind figu-
of lower-resolution, low-passed images. Starting with the ral contim, it\ is that, because zerocrossing contours are
lowest resolution, this algorithm finds the best matches most likely to be caused by continuous features in the
by searching for disparities that maximize a normalized scene, the correct matches should lead to to continuous
cross-correlation of image intensity. It then uses the re- features in ,pace. Those subsets of matches that pro-
stilt to begin a more constrained seatch at at. successively duce only vety short linear features are discarded. In
higher resolutions. In this %.ay the system bootstraps the event that only one match remains for a point, the
itself up to al acceptable set of matches at the highest disparity of the feature is determined, but if more than
resolution. A back-iuatchiug technique is used to confirm one match ib found the amlbiguit is resolved by selecting
each match by repeating the search, starting " ith the op- the most common disparity in a local neighborhood.
posite image. The next algorithm, epipolar constrained
hierarchical matching, uses the highly reliable matches to 3.3 CYCLOPS
derive a relative camera model. Feature points that were
not matched in the first stage (perhaps because they we CYCLOPS [2 computes a dense disparity map by pos-
not pomising enough) aie now matched though the ima- ing the corrc.-.pondence problem as a combinatorial opti-
age hierarchy using the epipolar constraint. The third mization: find the simplest (i.e., flattest) map with the
algorithm, anchorcd matching uses the matches found so least photometric error. Like STEREOSYS and MPG,
far to establish a continuity constraint for further match- CYCLOPS operates across a a sequence of resolutions, in
ing. this case a Laplacian pyramid. The Laplacian pyramid

is a particularly convenient structure because it is con-
structed of DOG filters with passbands separated by one

3.2 MPG (Marr, Poggio, Grimson) octave, quantitatively very close to the V2G bandpass

The MPG model [19,11,12] was motivated by a desire to filters of MPG. Furthermore, the lower-frequency im-
model the human visual system, at least approximately. ages have larger sample spacings, and hence are smallerIt has been modified since it was first proposed y ere images, leading to faster search at low resolution as inIt ha bncofied nc ith ws fret prpio -1e STEREOSYS. The Laplacian pyramid can be computedwe shall consider only the most recent description [12]. very efficiently by exploiting the separability of the Gaus-
Briefly, the MPG model matches discrete, oriented edge sian and by using a small recursive kernal, as described
features from epipolar-corrected images across it resolu- by Bud [4].
tion hierarchy, resolving ambiguity by enforcing conti- by Burt [P.At each level of the hierarchy CYCLOPS selects a (dis-
nuity of disparity. The use of the epipolar constraint is parity map by minimizing a discretized form of the stereo
justified by the effect of eye movements to align retinal pait m a ini
images, the use of the hierarchy is justified by the exis- constraint equation:
tence of independent channels tuned to dilerent spatial ff [f j V ))2
frequencies in the human visual system, the choice of 2(,-(+ ,2 + V }ddy,
time feature detector by the existence of similar receptive
fields in neural structures, and the use of the continuity where £ and R, are the DOG-filtered image intensities,
constraint by the existence of "cooperative" processes in D = D(x, y) o. a cyclopean disparity map, and A is a coin-
the brain. stant. Note that the epipolar constraint is used because

The first step is to preproce.s both imag.s hy couvolv- only horizot ,l disparities are allowed. (Tile sbtem uses
iug them with a series of bandpass filters. .\PG uses a camera miudcl to perform the epipolar correction if nec-
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essary.) . is a combination of two terms. the photomet- system signal their response to visual stimuli through the
ric error associated with the map and a measure of the optic nerves. 'FiTe optic nerves partially cross in the optic
first.order variation of the map. chiasma, carrying information from the left half of the

A multigrid simulated annealing algorithm is used to visual field to the right half of the brain, and informa-
minimize C. The annealing algorithm uses random num- tion from the right half of the visual field to the left half
bers to model heat. By slowly cooling the system to zero of the brain. The '.isual field projects to an area on the
temperature, aa approximation to the optimal disparit back surface of the biain called the primary visual cor-
map is constructed each level of the pyramid. Simulated tex (also called stiate cortex or area 17). The primary
annealing is more robust than a deterministic gradient- visual cortex is almost certainly the place where the first
descent search because it allows "uphill" state transi- stereoptic computation is performed.
tions, and therefore the possibility of escape from the The visual cortex is a sheet of half a dozen distinct
local optima that cne is likely to encounter in nonlinear layers of cells. It is morphologically uniform across its
objecti~e functions such as the stereo constraint equa- entire expanse. groups of cells on one part of the sheet
tion. Using the theory of Markov random ficlds, simu- appear essentially the same as groups of cells anywhere
lated annealing can be interpreted as maximum a pos. else on the sheet. The visual stimulus is topographically
leriort estimation. This Bayesian interpretation shows mapped to the cortex: each part of the cortex responds to
that by minimizing C one finds the most probable dis- stimulation at. specific location on the retina, and there
parity map D given £ and R"., subject to a prior proba- are no discontmuities except for the separation of the
bility distribution of D. The a priori distribution of D visual field into left and right halves.
is given by AIVVl 2, the measure of first-order variation. Visual stiuilat,.ion entcib (lie cortex at one laser (layer
disl)arit-y maps are considered to be more probable % hen IV), and tici projects to other lIers local,;, spread-
they are flatter. ing only about, 1mm to neighboring cortical cells. The

Starting with a base disparity of zero at the lowest res- cells in layer IV, (so-called "simple" cells) are strictly
olution of the pyramid (typically 32x32). al increnuelal monocular. they tepomid exclusiel, to one input friom
dispavily map with values in {-1, 0, 1) is found that nin- one eye. The "complex" cells in the subsequent layers,
imizes L for the full disparity, which is the sum of the howe cr, can be stimulated b) both e.es to greater or
incremental and the base disparity. Note that the incre- lesser degrees. Globally, the visual cortex is organized
mental disparity is interpreted as a correction to the base into ocular-dominance columns. The preference for one
disparity, which is inherited from the previous, coarser eye (a coml)lete I)reference in layer WV) entends through
level (or which is zero at the coaisest level). To set te the width of the cortex (i.e., through a colunn of cells
base disparity for the next higher resolution, the dispar- normal to the surface of the cortex), and eye-preference
ity range is expanded by a factor of 2 and the values of is also highly correlated between neighboring columns.
the full disparity are doubled, reflecting the change of Ocular dominance colunis are thought to play an im-
spatial scale. Even though the incremental disparit can portant role in stereopsis, but the mechanism is not un-
only assume three values at any level of the pyramid, the derstood. To a large degree this organization is innate,
full disparity can increase by a factor of 2 across levels. but it does undergo further elaboration and sharpen-

Because of the Laplacian pyramid structure and the ing after Uirth. Depriving one eye of stimulation after
locality of the interactions in the stereo constraint equa- birth causes the formation of deviant ocular dominance
tion, the CYCLOPS algorithm is ideally suited to nias- columns [14) dominated by the active eye. In addition,
sively parallel SIMD (single instruction, multiple data) there is a psychological effect that is probably related:
architectures. The current implementation (on a Con- the development of stereo vision passes through a criti-
nection Machine with 4096 processors) can produce cal period of postnatal development. If an animal is not
dense elevation maps of 1024x1024 aerial images in about exposed to stereoscopir stimulus during this relatively
eight minutes. short period, it will never be able fully to develop stereo

perception.

4 Aspects of Biological Stereo 4.2 Limits to Stereo Fusion and Depth

Vision Perception

4.1 The Neuroanatomy of Stereo About 95% of people with otherwise normal vision have
the ability to perform stereopsis. As discussed in Sec-

Much is known about the biological and psychological tion 3, the accuracy of stereo measurement falls with
basis for stereo vision, but there is currently no complete the square of distance. At 100 ft. human stereo depth
explanation for how the brain exploits biaocular ijnfor- perception is accurate to only about 25 ft. The maxi-
mation. (See Kandel [1G] and Kuffler [17) for more de- mum distance at which human steico vision is possible
tailed information.) The two retinas of the human visual is about. 1500 ft.
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disparity-gradient limit change of disparity with respect to visual angle (a di-

Panurn's area mensionless number) must be-bounded. Most observers
have a limit-of about one. While Panum's area is an

oopter \absolute limit of fusion, the disparity-gradient limit is
S%11more subtle. It implies that fusion of one point excludes

the possibility of fusion of some nearby points, even if

they fall within Panum's area. As shown in Figure 5, if
a point p is fused then no points in a cone centered on p
can be fused simultaneously. It has been shown [26] that.
if an imaged surface has disparity-gradient limit of less
than two, then the left and right images are topologically
equivalent; that is, all points in one image are visible
in the other (i.e., the surface is not self-occluding), and
furthermore the ordering of points is the same in both
images. The disparity-gradient limit has been used to
limit search for correspondences in at least one compu-
tational model [23].

4.3 The Modularity of Stereo Percep-

Figure 5: Limits to fusion. tion

The question of whether stereopsis is inextricably linkcd

The locality of interaction on the cortex apparently to other modes of visual perception, or whether it can

limits the fusion of the two visual fields in human stere- stand alone as an independent mode, was clarified by the

opsis. The range over which fusion occurs is called invention of the random-dot stereogram [15] A random-

Panum's area (Figure 5) [22]. Points inside Panum's (lot stereogramn consists of two synthetic images of ran-

area are seen as single points (fusion), while points out.- dor points, which are constructed to depict perspective

side are seen double (diplopia). It. is known that while views of the same virtual surface (Figure 6). A random

fusion is an important feature of stereo vision, it is not (lot stereogram can be constructed as follows. The points

absolutely necessary - even diploptic stimuli can be a in, say, the left image are randomly placed. The right

cue for depth within limits. The largest, disparity that image consists of these same points, properly displaced

still gives rise to a single, fused image varies from 6 rain- to provide disparity values consistent with another view

utes of arc at the center of the visual field to 20 minutes of some scene model. Each image by itself usually con-

of arc at a peripheral angle of 6 degrees [8]. The thresh- tains no depth information because it consists only of

olds for diploptic stereo perception are about four times random dots. When the pair are viewed stercoscopi-

those for fusion. The center of Panuni's area, shown in cally, however, the surface is readily perceived. Stereo

the figure as a curve passing through the fixation point, vision is therefore capable of producing depth perception

is called the horopter. Points on the horopter project independently of any monocular cues such as size con-

to identical positions on the two retinas (i.e., they have stancy, texture gradients, shading, and so on. Random-

zero disparity). Note that the horopter does not follow clot stereograms enable systematic comparison of hu-

the Vieth-Miiller circle precisely because the geometry man and machine performance because their parameters

and optics of the ocular system don't quite satisfy the (such as noise, dot density, and the shape of the virtual

ideal model of Figure 1. surface) can be controlled precisely.
Experiments with stabilized images, in which the sub-

jects were prevented from using eye movements to change 4.4 Relationships between Biological
vergence, have revealed that the limits to fusion are ac- and Computational Models
tually much more complex than Panum's area [8]. For
example, fusion exhibits a time dependence, called hys- So far, computational models of stereo vision have ad-
tercsis: as the dispaiity uf fubud, stabilizcd images is in- diussed only some of the many phenomena associated
creased, they remain fused far be)ond Panum's area, un- with human stereo perception. A complete computa-
til they suddenly "break away" into diplopia. Also, the tional theory would have to include descriptions and
limits to fusion for stimuli rich in features, such as ran- explanations of issues such as the limits to stereo dis-
dom dot stereograms (see Section 4.3), is much greater cussed in Section 4.2, the relationship between fusion
than for simple stimuli such as individual fines, and diploptic depth perception, temporal effects (e.g.,

Another limit on fusion is the disparity-gradient livid hysteresis), the relationship to accomodatioii and ver-
[3], which states that for fusion to occur the rate of gemuce, multistable and multivalucd depth perception
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Figure 6: Random-dot stereogram.

(e.g., transparency), the relationship to monocular cues Three pools of disparity. Studies of anomolous
for depth, the nature of the features that are matched, stereo vision suggest that theic are three psychophysi-
and the perception of depth when there are rivalrous cally distinct "pools" Dr disparity detectors, correspond-
features (e.g. liles of different orient.atons). Ne',erthe- ing roughly to crossed (positite), u,,cros.ed (negative),
less, in spite or the incomplete understanding of biolog- and near-zero disparity rielative tu thc vergence point
ical stereo vision, it. is no accident that we find several [24]. CYCLOPS uses the sane representation, coupled
analogies betwecn Lonipttational stereo models and cur- with several octr.ves of hieram h, to addieve efficienc)
rent knowledge of bt.erco vision in higher mammals. Itis- without sacrificing d),i,ami,: rangc. At every level in the
torically, the formulation of models was often guided by hierarchy, componeuts of incremental disparity can as-
biological knowledge (in particular, in the MPG model). sume only three loca, %alue.: 1 (crossed), -1 (tmcrossed),
From a pragmatic standpoint, machine models and bio- and zero. The bast, disparit , houcxer, can grow by a fac-
logical neural systems operate under similar constraints, tor of two across every level. The scai ch spac, in any
and this is increasingly so with the introduction of mas- one level is therefore kept to a minimum, while the f£-
sively parallel architectures, nal composite disparity is allowed to have a substantial

Independent spatial-frequoncy channels: The range.

most imntediate parallel is the use of resolution hier- Visual cortex. The visual cortex has a ieiarkably
archies. There is considerable evidence that the human uniform structure.
visual system has at least four, and possibly more, inde-
pendent channels tuned to different spatial frequencies Gvei what has been learned about the
separated by about. one octave [27]. The lowpass pyra- primary visual cortex, it is clear that
raids of STEREOSYS, the bandpass sequences of MPG, one can consider an elementary piece of
and the bandpass pyramids of CYCLOPS perform the cortex to be a block about a millime-
same function. The filters used in MPG and CYCLOPS, ter square and two millimeters deep. To
V 2G and DOG, have about the same "Mexican hat" know the organization of this chunk of
shape as the receptive fields of cells in the early visual tissue is to know the organization for all
system (see Figure 3). of area 17; the whole iiiust be mainly an

Vertical disparity: Human stereo vision can deal interated version of this elementary unit.
with a small amount of vertical disparity, but it resorts [14]
to eye movements to align the visual fields as closely as
possible [6,7]. The epipolar constraint allows one to use As a computational substrate, the visual cortex is quite
information about the camera orientation to remove ver- similar to a large grid of locally-connected processors.
tical disparity. The MPG model assumes that this con- Since the cortical columns appear to be anatomically
straint is satisfied, while STEROESYS and CYCLOPS and functionally equivalent, they can be all be sinum-
use inforumation about the camera orientation to apply lated by identical, locally interacting programs applied
it. Because error in the camera model may cause some to different parts of the visual field, and therefore the
residual vertical disparity, the search for corresponding visual cortex as a wshole can be simulated efficiently by
points must be robust enough to hanalle at least a small a fine-grained SIMD (sinle-insti action, multiple-data)
amount of error. Appareintly, the search-space reduction architecture. All three systems described above have
of the epipolr constrait is so useful in biological vi- algoritfhmic structures that fit massively parallel SlMD
sion that vertical disparity is to be avoided as much as architectures, and CYCLOPS is actually implemented
possible, but. must. be tolerated to degree. on such a system.
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5 P'ractical Applications the functions of general purpose vision.
Computational models usually treat stereo as -an in-

There are many existing and potential applications of dependeiit module. While this is a useful reductionist
stereo vision, but perhaps the two most important are tactic, stereo processing must ultimately be integrated
cartography and robot vision. The current state of the into a more extensive and general perceptual (and pos-
art of computational stereo is most relevant to carto- sibly motor) framework. There is no reason why stereo
graphic applications, where real-time performance is not processing .,hould not be coupled with other perceptual
requircd. modalities such as motion parallax and monocular per-

In standard cartographic practice, a human analyst ceptio of formn, and with other cognitive functions such
uses a precise stereoscopic viewing and pointing device as memory and motor control. IHuman stereo vision is
(called a slercoanalytic plotter) to develop a terrain- only one part of a complex ocular-motor system; effec-
elev-.ion map from stereo images. As one might imag- tive stereo vision for advanced applications such as in-
ine, this work is tedious, slow, and costly. Computa- telligent robots will doubtless require a similar degree of
tional methods that automate stereopsis, sometimes im- integration.
plemented in special-purpose hardware or on massively
parallel computers, are now practical for this important
application. References
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A System for Stereo Cartography
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Abstract views, in addition to the central task of image matching.
One of the goals of this work has been to develop ef-

Recent progress in the development of a system for auto- ficient stereo-processing methods for massively parallel
mated cartography is presented. This system, called CY- SIMD architectures. The CYCLOPS system is imple-
CLOPS, produces cartographic products - regular-grid mented on the Connection Machine. The current imple-
elevation maps, ortho-images, and contour plots - from mentation is capable of producing a dense terrain model
standard, digitized aerial stereo images. First, camera (depth for every pixel) for a typical pair of 1024x1024
model information is used to produce corrected images aerial stereo image in about eight minutes, using a Con-
with only horizontal parallax. The corrected images are nection Machine with 4096 processors.
then matched with a multigrid optimization algorithm. Historically, the computational modeling of stereo vi-
Essentially, the matching algorithm is a stochastic reg- sion has been driven by two motivations. The prac-
ularization method that tries to find the flattest dense tical applications of automated stereo are so impor-
disparity map that matches the photometry with least tant, especially in cartography and robotics, that many
error. It does so by iterating a microcanonical version of engineering-oriented approaches have been tried. These
simulated annealing across several levels of a resolution often use "correlation" techniques: patches of intensi-
pyramid, using the results from the coarser levels to ini- ties in one image are searched for in the other image
tialize the optimization search at the finer levels. After by maximizing a measure of correlation or minimizing
the corrected images are matched the disparity measure- a measure of error. The other motivation is the de-
ments are converted into a dense but irregular mesh of sire to model biological stereo, and these approaches are
depth measurements, which is then resampled into a grid typically feature-based. discrete local feai., ,!s (usually
of elevations with respect to regularly spaced ground co- edges) are matched across images. A th.rd approach,
ordinates. A Bayesian interpretation of the method is which could be called the optimization approach, repre-
given and some analogies between CYCLOPS and the sents a dense disparity map as the state variable of a sys-
human visual system are discussed.' tem, usually defined on a two-dimensional grid. Stereo

matching is then formulated as an optimization prob-
lem: find the best disparity map by maximizing an ob-

1 Introduction jective function that measures the "quality" of the map,
or, quialetly miimiingan enegy"function that

CYCLOPS is a system for automated cartography. 2 It or, equivalently, minimizing an energy
measures the lack of quality.

began as a stochastic-optimization approach to stereo Optimization approaches to stereo usually involve
matching [1,2], but has recently evolved into a more com- minimizing some variant of the fornwing function, the
plete system for cartographic terrain modeling, including stereo constraint equation:
software modules for camera modeling, epipolar resam-
pling, and the generation of regular-grid elevation maps, E ((,C(X_ iy)_1Z(X+ Dy))2+AIVDI2)axdy
ortho-images, contour plots, and synthetic perspective TjT (1)

IThe work described in this article was supported under where £ and 7Z are functions of image intensities (usu-
DARPA contracts MDA903-86-C-0084, DACA76-85-C-0004, and
89F737300. Use of the Connection Machine was provided by ally bandpassed images), V = V(x, y) is a disparity map
DARPA. (a cyclopean map in this case), and A is a regularization

2The name CYCLOPS derives from the notion of cyclopean constant. The first term in the integrand is a measure
disparity; that is, disparity defined symmetrically with respect to of the photometric error associated with D, and the sec-
the two camera origins. In classical mythology a Cyclops is a
member of a class of giants having one eye in the middle of the ond term (proportional to the squared magnitude of the
forehead. gradient of disparity) is a measure of the first-order com-



plexity of V. By minimizing fone finds the flattest map
with least photometric error, with the tradeoff between left Image
error and complexity specified by the regularization con- right Image
stant A.

CYCLOPS uses a multigrid, stochastic-optimization
algorithm to minimize a discrete version of equation (1).
The following section describes the basic CYCLOPS al-
gorithm for image matching. In particular, an impor-
tant modification to the algorithm, the three-pools mech- baseline
anism, is described. The three-pools mechanism not only
leads to improved speed and generally better estimates,
but it is also in agreement with psychophysical results.
This leads to a further discussion of the analogies be-
tween CYCLOPS and current knowledge of biological world coordinate
vision. Next, the techniques used for completing the system
cartographic functionality of the system (generation of z
DTMs, ortho-images, etc.) are briefly described. y

2 Basic CYCLOPS

2.1 Epipolar correction / 60% overlap

Note that in equation (1) disparity is a scalar function:
corresponding points between C and R? are assumed to
have the same y coordinate, so disparity car be charac- Figure 1: Epipolar correction.
terized as a shift in x alone. Aeria! stereo images are typ-
ically recorded with cameras pointed in approximately
parallel directions and separated along a baseline ap- the camera in an invariant world-coordinate system and
proximately parallel to the cameras' s-coordinates. Ide- an orthogonal transform matrix for translating between
ally, there will be no y-parallax (also called vertical dis- world and camera coordinates. This camera-model in-
parity), and the locations of corresponding points in the formation is routinely compiled in standard cartographic
two images will differ only in x (this difference being practice. CYCLOPS uses the camera models to remove
called x-parallax or horizontal disparity). In practice, vertical disparity as shown in Figure 1. A rectification
however, the camera coordinate systems will have some plane is selected parallel to the baseline, passing through
rotational error that will cause vertical disparity to be the origin of world coordinates, and approximately paral-
present. lel to the two image planes. (The normal of the rectifica-

The well-known epipolar constraint provi;des a way to tion plane bisects the angle between the principal rays of
use camera-model information to remove vertical dispar- the two views.) The images are then backprojected onto
ity. Any point in three-dimensional space, together with this plane (a perspective transform) and then :esampled
the centers of projection of the two camera systems, de- using bilinear interpolation. In typical aerial imageiy
fines a plane called an epipolar plane The intersection the views are spaced to give approximately 60% over-

of an epipolar plane with an image plane is called an lap in coverage. Images are chosen in the overlapping
epipolar line. Every point on an epipolar line in one area of the resampled images and given to the matching

image must correspond to a point on the corresponding algorithm.
epipolar line in the other image. The epipolar constraint
constraint therefore limits the searches for the matches 2.2 Bandpass pyramids
to one-dimensional neighborhoods, as opposed to two-
d,mensional neighborhoods, with an enormous reduction The multigrid strategy of CYCLOPS starts by convert-
in computational complexity. ing each epipolar-corrected image into a bandpass pyra-

CYCLOPS assumes that complete information about mid, in which the image is separated into band-limited
the camera models of the two stereo views is known. This components separated by one octave. F urthermore, ech
model information includes, for each view, both the in- component is sampled at a rate half that of the next
terior and exterior orientations. Interior orientation in- higher-frequency one, producing a pyramid structure.

cludes focal length, principal point, sampling rate, and There is a particularly efficient method of comput-
possibly othr parameters or even interpolation func- ing this structure (see Burt [3]) that works as follows.
tions. Exterior orientation includes both the origin of Suppose we have a digital image I(i,j) with dimensions
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2N x 2 N. A low-pass, approximately Gaussian pyramid range of disparity between them. For typical aerial im-

is defined recursively by ages with which we work the lowest resolution in the
pyramids would be 32 x 32. If the original images were

go(i,j) = I(ij) 1024 x 1024, the pyramids would be six levels deep and

and the system would accommodate a disparity range of 127
pixels.

g,(i,j) = - w(m,n)gi (i+m2- ,j+n2 -1) 2.3 The three-pools mechanism

for I up to log N. The array w(m, n) is a symmetric, CYCLOPS uses a version of simulated annealing to min-

separable generating kernal chosen to be approximately imize a discrete version of the stereo constraint equation
Gaussian. Note that gi is a weighted average over a 5x5
pattern of samples in gi- , and that the sample spacing, Et= -[-] j)- R(i+ ,)
21-1, doubles across each level. Next, bandpass com- 2 2

ponents are constructed as approximate differences-of- j 1

Gaussians: + A VD(i, j) (2)
i j

DOGI(i, j) = gl(i, j) - gu, (i, j), I = 0, .. (log N) - 1 where Li and Rt are components of the Laplacian pyra-

This structure is sometimes called a Laplacian pyramid mids of the left and right images, D, is a discrete dis-
because it provides a good approximation to the Lapla- parity map, and the operator IV7.

2 is now a discrete
cian of the Gaussian kernal, V2G. approximation of the squared gradient magnitude com-

There are several benefits in using the Laplacian pyra- puted over four nearest neighbors.
mid: The discrete disparity map, D, can be represented

within the system in different ways. In earlier versions of
1. Disparity has a linear scaling property: if the sam- CYCLOPS, D was represented as a grid of 8-bit signed

piing rate of the images is reduced by a factor of integers and could attain any values (within this range)
2, then the range of disparity is also reduced by a at any level. In the current system, however, a represen-
factor of 2. Therefore, at some very coarse sampling tation called the three-pools mechanism is used to obtain

rate, disparity is negligible. A matching system can mon ced th ot ch an e t
stat a a ow eve ofreslutonfin a oare ds- more efficiency without sacrificing dynamic range. Itstart at a low level of resolution, find a coarse dis- works as follows: At each level of the resolution pyramid

parity relatively quickly, and then use it to initialize the disparity map D is the sum of a constant base dis-
the search at the next higher octave, etc. parity (inherited from the previous level) and a variable

2. Raw image intensities are not usually invariant incremental disparity:
across stereo images for a variety of reasons, includ- D(i, j) = D(i, j) + 6,(i, j)
ing sensor bias and illumination effects. However,
these systematic sources of error primarily affect with 6t(i, j) E {-1,0, 1}. Now 6, is the state variable of
the low-frequency components of the image. Us- the system and is represented as a signed 2-bit integer.
ing bandpassed images provides a kind of automatic The local photometric errors (the terms in the first sum
gain control, similar to the effect of lateral inhibition in equation (2)) are tabulated into the three possible val-
in neural systems. ues they can attain at each level. Note that incremental

3. It may be impossible to eliminate vertical dispar- disparity is interpreted as a correction to the coarse an-

ity completely. That is, the epipolar constraint swer obtained from the previous level. In this way the

may be satisfied only approximately. Neverthe- system can handle a substantial range of disparity, but

less, y-parallax will always be much smaller than the search space at each level of the pyramid is kept as

x-parallax, typically only 2 or 3 pixels at the high- small as possible.

est resolution. At coarser resolutions it will be neg- 'The three-pools mechanism is illustrated in Figure 2.

ligible. The resolution pyramid therefore allows a The optimization algorithm assigns disparities at the

degree of tolerance to vertical disparity. coarsest level as shown by the filled-in circles in 2(a).
It then sets the base disparity (the shaded circles) at

CYCLOPS constructs truncated Laplacian p raniids the next higher level 2(b) of the resolution hierarchy as
from each epipolar-corrected image: specified by the following equation:

{(Lt, RI)IlI = 0,..., 1,,,r}. D'(ij) = 2DI+I([i/2J , [j/2J)

The lowest lc cl of resolution, l,,,., is determined by At this level the incremental disparity is allowed to vary
the size of the original images and by a limit ol the between -1 and 1 during the next optimization phasc, as
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indici.ced by the short arrows in the figure. After the
optimization determines the best incremental disparity,
it uses the composite disparity in 2(c), DO(i, j)+ bt(i, j),
to set the base disparity of the next level.

Note that if the difference in composite disparity be-
tween neighboring grid points becomes too large the
points become decoupled. This is caused by a thresh-
old in the squared-gradient-magnitude operator:

IVD(ij)12 = min (1,(D(i,j)- D(i',j'))2)
{i',j')E (i,j)

(a) minimum at low resolution where N(i,j) specifies the four nearest neighbors of
d-1 0 0 0 0 {i,j}. 3 Once a component of the squared disparity gra-

d-O 0000 dient becomes greater than 1, further separation of the
disparity values between neighboring points has no effect

d-- 10 0 0 0 on the second term in equation (2). The effect of this
Idecoupling is that the system can establish sharper es-

(b) initial condition at high resolution timates for disparity along occlusion boundaries. Occlu-

d-30 0 O a 0 0 sions are not usually encountered in aerial cartographic

Sindicates a 0 0 f images - at least not at the level of detail present in the

composite 0 0 0 0 data - but they can be significant in oblique, ground

disparity 0 0 level stereo.

* indicates a 2.4 Stochastic optimization

4 4 The method for minimizing E at each level, called micro-
incremental 0 0 0 0 0 0 canonical annealing, is somewhat different from the stan-disparit Yin
dipait1 i d - 0 0 0 0 0 dard forms of simulated annealing. It has been adapted

cfrom a result in statistical physics [4] to be particularly

(c) minimum at high resolution efficient on data-parallel computers with no floating-
0 0 0 0 0 0 0 0 point hardware. Perhaps the most interesting property
0 0 0 0 1 0 0 0 of microcanonical annealing is that, unlike the standard

2 forms, it doesn't use temperature as a control parame-

0 0 0 0 /0 0 0 0 ter. Instead, it represents kinetic energy explicitly with
decoupled a grid of demons. Temperature is measured as a statis-

0 0 00 0 0 • 0 tical feature of the system (the average demon energy).

0 0 0 0 0 0 Details can be found in [1].

0 0 0 0 0 0 0 0 Like conventional simulated annealing methods, the
microcanonical algorithm generates a sequence of states,

* 0 0 0 0 0 0 0 {Sk), that in the limit converges to a Boltzman distri-
bution:

Figure 2: The three-pools mechanism. Pr(S) o e- /

where 8 is temperature (in units of energy), which char-
acterizes the rate of decrease of the probability of a state
with increasing energy. Simulated annealing works by
gradually reducing #,4 causing the distribution of states
to "relax" from a high-temperature, highly uncertain en-
semble into a minimum-energy state at /3 = 0. In prac-
tice, the aGrith.m. docs not find t-heasolute rin"Mr,

but rather a good approximation to the minimum with
high probability. The major advantage of simulated an-
nealing over deterministic gradient-descent methods is

3 A value of ,\ = 64 seems to work well for this operator, assum-
ing that the images are digitized properly into 256 grey levels.

4 0r, in the case of inicrocanonical annealing, reducing kinetic
energy.
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that, by permitting "uphill" moves to states of higher en- between this computational model and current knowl-
ergy, it can avoid getting trapped in locally stable states. edge of the working of the human visual system. CY-

Subpixel estimates of disparity can be obtained by av- CLOPS is by no means unique among computational
eraging over many states. When the finest level of res- models in this respect. The MPG model, in particular,
olution has been obtained the system is not cooled to which was expressly based on neurobiological and psy-
# = 0; instead, it is heated to a a fairly high tempera- chophysical evidence [8,9,10], shares many of the features
ture and a sequence of disparity maps is generated. The of CYCLOPS.
average disparity (over this sequence) quickly converges
to a good subpixel estimate. In terms of the discussion 3.1 Independent spatial-frequency chan-
to follow, this technique averages over samples from the nels
posterior distribution.

There is considerable evidence that the human visual
2.5 A Bayesian interpretation system has at least four, and possibly more, independent

channels tuned to different spatial frequencies separated
One view of the computation is that of maximum a pos- by about one octave [13]. The Laplacian pyramid in CY-
teriori (MAP) estimation [7]. We observe (L, R) which CLOPS and similar structures in other models play the
contains information about D. The Bayesian approach same role. The reasons why this encoding is important in
is to find D that maximizes Pr{DI(L,R)}. Applying CYCLOPS (efficiency of coarse-to-fine search, automatic
Bayes' Rule we have gain control, and less sensitivity to y-parallax) suggest

functions these channels may perform in human vision.Pr{D(L, )}_ Pr{(L, R)ID}Pr'{D}
Pr{(L, R)} 3.2 Sensitivity to vertical disparity

The probability in the the denominator, Pr{(L, R)}, is Human stereo vision can deal with a small amount of ver-
constant, so the posterior probability Pr{DI(L, R)} is tical disparity but it resorts to eye movements to align
proportional to the numerator: the visual fields as closely as possible [5,6]. CYCLOPS

Pr{ DI(L, R)} c Pr{(L, R)ID}Pr{ D} .uses information about the camera orientation to re-
move vertical disparity. Error in the camera model may

Pr{(L, R)ID} is determined by the photometric error cause some residual vertical disparity, but the simulated-
in the stereo constraint equation. (Given a disparity annealing search is robust enough to handle this under
map, image pairs with less error are more likely.) The reasonable conditions. Apparently, the search-space re-
prior probability Pr{D} is determined by the variational duction of the epipolar constraint is so useful that ver-
term. (Disparity maps that are flatter are more likely.) tical disparity is to be avoided as much as possible, but

The state variable of CYCLOPS, that is to say the must be tolerated to degree, in both CYCLOPS and the
discrete cyclopean disparity map D, is an MRF whose human visual system.

distribution of energies is guaranteed to be Boltzman
in the limit. Writing the probabilities in terms of the 3.3 Three pools of disparity
distributions we have Studies of anomalous stereo vision suggest that there are

Pr{DI(L, R)) o e-Ei(L,R,D)/,6 (e-E 2 (D)/IO three psychophysically distinct "pools" of disparity de-
( e ) 'i tectors, corresponding roughly to crossed (positive), un-

oc e( '+ E 2)/ crosssed (negative), and near-zero disparity relative to
oc e- E / P the vergence point [12]. CYCLOPS uses the same repre-

sentation, coupled with several oLtaves of resolution hi-
where E1 and E2 are the error and the variational terms erarchy, to achieve efficiency without sacrificing dynamic
in E, respectively. Therefore, Bayes' Rule and tells us range. At every level in the hierarchy, components of in-
that by minimizing E we are maximizing the posterior cremental disparity can assume only three local values:
probability Pr{DI(L, R)}. 1 (crossed), -1 (uncrossed), and zero. The base disparity,

however, can grow by a factor of two across every level.
The search space in any one level is therefore kept. to a

3 Analogies to Biological Stereo minimum, while the final omposite disparity is allowed
to have a substantial range.

The design of CYCLOPS was intended to perform dense
stereo matching as efficiently as possible on massively- 3.4 Visual cortex
parallel, locally-connected hardware; there was no con-
scious intent to model biological stereo vision. Neverthe- The first stereo computation in the human visual sys-
less, there are several nontrivial analogies to be drawn tern occurs in the primary visual cortex This part of
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the brain is remarkably uniform across its surface: a whether as a straightforward mensuration tool for indus-
column of tissue about a millimeter square appears to trial applications or as part of an integrated perceptual
characterize an elementary building block [11]. As a system of an autonomous, mobile robot.
computational substrate, the visual cortex is then quite The mobile robot application, in particular, poses sev-
similar to a large grid of locally-connected processors. eral challenging problems not encountered in the carto-
Since the cortical columns appear to be anatomically graphic domain. If stereo vision is to be used effectively
and functionally equivalent, they can be all be simu- for real-time control, it must respond at nearly video
lated by identical, locally interacting programs applied frame rates. Instead of processing independent pairs of
to different parts of the visual field, and therefore the images, the system would have to integrate temporally a
visual cortex as a whole can be simulated efficiently by continuous stream of stereo data. The stereo subsystem
a fine-grained SIMD (single-instruction, multiple-data) would have to be coordinated with and integrated into
architecture such as the Connection Machine. the total perceptual, motor, and cognitive framework.

Of course, if the robot could control the stereo cameras
quickly and accurately this could be used to advantage.

4 Depth Determination The data would be streams of oblique, ground-level im-

Once the disparities of the epipolar-corrected images are ages of general terrain. One would expect much greater
ranges of disparity, the presence of occlusions, and indetermined it is a relatively simple matter to compute general a more complex scene than one finds in cartog-

the depth of each matched point. Using the camera ray.

model, rays from the centers of projection through the raphy.

matched points are intersected to produce a grid of tu-
ples in world coordinates: References
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Abstract trees, bushes, rocks, and rivers). In this paper and its
predecessois [5, 6, 15], we have outlined a new paradigm

This paper desciibes plogless in an ongoing pioject con- which explicitly invokes context and stored lnowledge to
cerned with recognizing objects in complex scene do- control the complexity of the decision-making piocesses
mains, and in paiticular, the domain that includes the involved in correctly identifying natural objects and de-
natural outdoor world. Traditional machine recognition scribing natural scenes.
paradigms a.ssume either (1) that all objects of inter- SUcne dcsUiption is properly %iewed as a pioblem in
est ale definable by a relatively small number of explicit scientific discovery. Ultimately a collection of assertions
shape models, or (2) that all objects of inteiest have mubt be pio% ided, each assertion stating the identity and
characteristic, locally measurable featuies. Y'he failure of relevant attibutes (e.g., spatial location) of some ob-
both assumptions in a complex domain such as the nat- ject depicted (or possibly invisible, but inferied to be
ural outdoor world has a dramatic impact on the form present) in an imaged scene. Thice are two critical dif-
of an acceptable architecture for an object recognition ferences between the problem domain addiessed in this
system. paper and the class of problems capable of being solved

In our work, we make the use of contextual informa- by existing machine vision paradigms.
tion a central issue, and explicitly design a system to
identify and use context as an integral part of recogni- 1.1 Hypothesis Generation
tion. In so doing, we provide a new paradigm for visual
recognition that eliminates the traditional dependence The first critical difference is that of hypothesis gen-
on stored geometric models and universal image parti- eration. The acceptance of either of two assumptions
tioning algorithms. Initial experimentation with the sys- trivializes the hypothesis generation problem for con-
tern on ground-level outdoor imagery has already demon- ventional machine vision systems. Conventional systems
strated competence beyond what we believe is attainable have no effective machinery for hypothesis generation
with other existing vision systemsi. when both assumptions are invalid - in a sense, this

failure of both assumptions is one of the main attribi es
of a complex domain.

1 Introduction The two assumptions are:

Much of the(! i.rogress that has been made to date in ma.- 1. All objects of interest are defined by a relatively

chine vision has been based, almost exclusively, on shape small number of explicit shape models. This makes
comparison and classification employing locally measur-
able attributes of the imaged objects (e.g., color and tex- for the presence of these models (via "geometric

ture) [2,4, 9. Natural objects viewed under realistic con- alignment") as a way of producing a suitable de-
ditions do not have uniform shapes that can be matched scription of some given scene (as in [3] and [11], for
against stored prototypes, and their local surface proper- exainpl")
ties are too variable to be unique determiners of identity. 2. All objects of interest have characteristic features,
The standard machine vision recognition paradigms fail homogeneous and locally measurable iii an image
to provide a means for reliably recognizing any of the ob- (e.g., color or texture), which are reliable indicators
ject classes common to the natural outdoor world (e.g., of the object's identity. This either allows direct,

ISulppoi icdby the i)cfensc Advanccd Rescaich Piojects Agency determination of the presence of objects using sta-

under contracts MDA903-86-C-0084, DACA76-85--0004 anid tistical decision theoretic methods (based on clas-
89F737300. sification of the corresponding feature vectors); or
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permits the successful employment of a "universal" The architectural and colnputational implications of
partitioning algorithm which finds regions (homoge- context-bamed definitions i6 of equal significance to those
neous in the given attributCS) in th-, imasery corre- caused bv the need to provide special machinery for hy-
sponding to the objects of interest. pothesis generation. Fortunately, much of the needed

machinery can serve both functions. Thus, context setsThe validity of assumption (2) allows a single universal not only define objects, but control the generation of

procedure (the partitioning algorithm) to find regions in (candidate) hypotheses and the subsequent evaluation

the imagery which are good delineations of the objects of those hypotheses.

of interest. These regions provide an effective basis for ofaving to deal with contexts, rather tha indepen-

generating the required hypotheses for object location de n t e it u c etmajo r c a inco put-
0 dent objects introduces a major increase in computa-

and identity. tional complexity. Contexts are much more numerous
The failure of both assumptions has a dramatic im- than the objects they are composed of, and contexts are

pact on the form of an acceptable architecture/control- less precisely defined. The verification problem changes
structure for an object recognition system. Not only from identifying objects based on sufficient conditions
are we required to introduce an explicit mechanism for (e.g., of similarity) to that of eliminating alternatives
computationally feasible hypothesis generation, but we based on failure to satisfy necessary conditions. We are
must provide additional machinery for representing and required to deduce mucl more about the nature of the
accessing the supporting information necessary for such overall scene - especially its physical structure.
hypothesis generation. We are forced to cross the line To the extent that the Condor architecture, and its
from what has been called model-based vision to an "AI- representations and partitioning of knowledge are suc-
compolete' problem domain. cessful in advancing the state-of-the-art in machine vi-

Much of our work has addressed devising the represen- sion for complex natural scenes, we believe that this suc-
tations and control structures (i.e., the introduction of cess will also contribute to increased competence in other
context sets in a production rulee eframework) needed non-vision related Al classification tasks in complex do-
to merge the vision-specific and more general AI tech- mains, but especially to those tasks which require deci-
nologies, sion making involving both iconic and symbolic informa-

tion.
1.2 Hypothesis Evaluation

The second critical difference between the approach we
propose and existing machine vision paradigms is their CANDIDATE CLIQUE

distinct treatment of the scene objects to be recognized. COMPARISON FORMATION

Conventional machine vision paradigms define scene ob- ,,TI /
jects to be independent entities which can (and should C. M8

be) isolated from the rest of the scene and then labeled
on the basis of their differences from other objects for CONTEXT

which we have names (and models). The system we de- CONTEXT

scribe in this paper, called Condor, treats objects as com- CORE

ponent parts of larger contexts (me'-y different contexts KNOWLEDGE

for each object) from which they cannot be separated CANDIDTES

- like quarks in modern physics, they never appear in CONTEXT

isolation and have no independent existence. Once a CANDIDATE 3D MM CLIQUE

context is recognized, its individual components may be OAYST

instantiated and given names. TrARGET'

The need to embed objects in more extensive contexts,
rather than treating them as independent entities, is due
to the following considerations (in complex domains): USER

INTERFACE

1. The image appearance of an object can be quite
v.rinble, not nnly dlie to intrinsic shape variability,
but also due to viewing conditions (e.g., resolution,
occlusion, and lighting). The object's relationship Figure 1: Conceptual architecture of Condor
to its surroundings is often a major factor in deter-
mining its identity - even for a human.

2. Some objects (such as a river or a bridge) cannot be
defined, let, alone recognized in an image, indepen-
dent of their embedding in the surrounding terrain.
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2 Conceptual Architecture some operation on an image. Syntactically, a context, set
is embedded in a rule denoted by

The conceptual architecture of the system we describe,
called Condor (for context-driven object recognition), is L {CEI, CE2,.., CE,) A
depicted in Figure 1. The input to the system is an
image or set of images that may include intensity, range, where L is the name of the class associated with the
color, or other data modalities. The primary output of context set, A is an action to be performed, and the
the system is a labeled 3D model of the scene. The labels CE comprise a set of conditions that define a context.
included in the output description denote object classes For convenience, we often refer to the entire rule as a
that the system has been tasked to recognize, plus others context set.
from the recognition vocabulary that happen to be found Example: The context set {SKY-IS-CLEAR, CAMERA-IS-
useful during the recognition process. An object class is HORIZONTAL, RGBIS-AVAILABLE) defines a set of
a category of scene features such as conditions under which it is appropriate to use the

{sky, ground, geometric-horizon, skyline, foliage, bush, operator BLUE-REGIONS to delineate candidate sky
tree-trunk, tree-crown, tree, trail, ... ) hypotheses.

A central component of the architecture is a special-
purpose knowledge/database used for storing and pio- There is a collection of context sets for every class in
viding access to knowledge about the visual world, as the recognition vocabulary. In theory, Condor performs
well as tentative conclusions derived during operation of the actions A that are associated with every satisfied
the system. In Condor, these capabilities are provided context set.
by the Core Knowledge Structure (CKS). A context set is satisfied only when the known context

The conceptual architecture is much like that of a pro- is sufficient to establish the truth of all its elements. Of-
duction systenI, there are many computational processes ten it will not be possible to establish whether a context-
interacting through a shared data structure. Interprcta- set element is true or false, in which case the element is
tion of an image involves the following four process types. considered to be unsatisfied.

Visual interpretation knowledge is encoded in context
" Candidate generation (hypothesis generation) sets, which serve as the uniform knowledge representa-

tion scheme used throughout the system. Context sets
* Candidate comparison (haypothesis evaluation) are employed in three varieties of rules.

" Clique formation (grouping mutually consistent hy- * Type I: Candidate generation
Iotheses) * Type II: Candidate evaluation

" Clique selection (selection of a "best" description) * Type III: Consistency determination

Each process acts like a daemon, watching over the Context sets of each type are constructed for each ob-
knowledge base and invoking itself when its contextual ject class in the recognition vocabulary. The most dif-
requirements are satisfied. All processing occurs asyn- ficult part of building any Al system is encoding the
chronously and each process is assumed to have access knowledge that. drives the system. Constructing con-
to sufficient computational resources. All processes have text sets in Condor is tantamount to knowledge base
access to the entire knowledge base, but each type of construction and remains a critical task requiring a solid
process will only store the kind of information shzwn in understanding of the limitations and applicability condi-
the diagram (Figure 1). tions of potential :mage unde'rstanding routines. Condor

has been designed with this in mind, and offers several

2.1 Context sets fedtures that facilitate this process.
First, the construction task is eased somewhat by the

The invocation of all prc.cessing operations it, Condor separation of the knowledge base according to classes.
is governed by context through tic .ise f c.t iexi sets: Therelfore, when constructing context sets for class L,
an action is initiated only when one or more uf its, con- the only other classes that must be considered are those
trolling zontext sets i, satisfied. ''hus, the actual se- that are immediately relevant for recognizing instances
quence of computations, and the labeling decisions that of class L.
are made, are dictated by contextual information (stored Second, context sets need only define zufficient condi-
in the Core Knowledge Structure), by the computational tions for applying the associated operation - they need
state of the system, and by the image data available for not attempt to define the iall bourndary of applicability.
interpretation. Thus, one can be quite conservative when constructing

A (outcxl set i* a collection of context elements that context sets, only encoding knowledge that is clearly rel-
are sufficient for inferring some relation or carrying out evant, and ignoring that which may be dubious.
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Third, although it is desirable that tile context sets is associated with the class of which it is potentially an
and their associated operations be as infallible as pos- instance.
sible, they need not be perfect. The entire architecture A large portion of the Condor architecture is devoted
of Condor has been designed to achieve reliable recogni- to sorting out the better candidate hypotheses from the
tion results, even in the presence of unreliable operators, poorer ones. Figure 2 shows the generation and subse-
imperfect evaluators, and faulty decision-makers. This quent processing of candidates throughout the system.
is achieved primarily through the use of large numbers The invocation of recognition procedures is governed
of redundant operations in every stage of processing, so by candidate generation context sets which define the
that a single mistake is unlikely to affect the final inter- conditions under which it is sensible to employ each
pretation. recognition procedure.

Finally, we have proposed a mechanism whereby con- Example: Horizontal surface patches are likely to be
text sets can be modified automatically, using the expe- part of the ground, but they can only be computed
riences of the systcm to refine the knowledge base incre- when range data is available. The context set in the
mentally. The collection of context, sets can be allowed to following production controls the invocation of the
evolve, with or without human intervention. Some form associated operator.
of learning is essential if a large system with a broad
range of competence is to be constructed. GROUND:

{CLIQUE-IS-EMPTY, DENSE-RANGE-IS-AVAILABLE)

2.2 Hypothesis generation = HORIZONTAL-SURFACE-PATCHES

The elements in a candidate generator context set en-
The customary approach to recognition in machine vi- code the assumptions that were made when the associ-
sion is to design an analysis technique that is competent ated operator was written. This formalism ensures that
in as many contexts as possible. In contrast to this ten- each operator will only be employed in circumstances in
dency toward large, monolithic procedures, the strategy which it can reasonably be expected to succeed. The
embodied in Condor is to make use of a large number context set not only identifies an applicable procedure,
of relatively simple procedures. Each )rocedure is corn- but also supplies the information to establish intelli-
petent only in some restricted context, but collectively, gently the inevitable parameters (such as a threshold or
these procedures offer the potential to recognize a fea- a window-size) associated with that operator.
ture in a wide range of contexts. The key to making this Obviously, context sets can be very specific, very
strategy work is to use contextual information to predict generic, or anywhere in between. It is intended that
which procedures are likely to yield desirable results, and candidate generator context sets be provided that span
which are not. this range. One encodes very specific context sets for

While it may be extremely difficult to write a recog- operators that work well only in very special circum-
nition procedure that is competent across many differ- stances, presumably a context that has some special sig-
ent contexts, it is often quite easy to devise a procedure nificance to the larger goals of the embedded system.
that works well in some specific context. For example, Generic operators that provide reasonable performance
finding foliage that is silhouetted against the sky is far over a broad range of contexts, are employed when the
simpler than finding foliage in general. Similarly, find- more competent specialized procedures are not applica-
ing foliage in an environment where only a single species ble. Generally, the more candidate generator context
of tree occurs, is easier !tan finding foliage associated sets that are provided, the more operators that will be
with any kind of tree. By assembling a collection of such applicable in any given context. Ideally, there will al-
context-specific procedures, it has been possible to rec- ways be multiple operators invoked so that the system
ognize foliage in many different situations under a wide need never rely on a single routine.
variety of conditions. It should be clear that it. is possible to make use of

A collection of recognition procedures is associated large, carefully constructed procedures when they exist.
with each class in the recognition 'ocabulary. Of course, Thus, if one has already expended a great deal of effort
no )rocedure, not even oae applied in very restricted tuning a large, monolithic recognition procedure, it can
contexts, will be sufficiently reliable that its results caii be incorporated into Condor alongside any other opera-
be accepted with confidence. Accordingly, the output of tors that might also exist.
each procedure is treated as a candidate hypothesis. The interaction of context sets across classes is of in-

A candidate hypothesis is any image feature that is terest. The context elements in one context set may refer
potentially an instance of some specified class. In most to the existence of other labeled entities. For example,
of our examples, an image legion is associated with each a tree trunk candidate generation routine may iequire
candidate, but in general, a candidate is any hypothesis knowledge of the ground location as part of its context.
that asserts thL presence of some object in the sb scene Whenever a need for recognition of other classes is de-
depicted in the image bfig analyzed. E~ery candidate tected, Condor adds that class to its list of labels that
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Figure 2. Schematic diagram of data dependency in Condor. A separate organization of information is required for
each clique being formed.

are actively being recognized. In this way, when Condor order (described in tile next section) to increase the like-
is tasked to recognize a specific class from its target vo- lihood that a good interpretation is found early. Thus,
cabulary, it will automatically seek to instantiate other the longer that Condor analyses an image, the better its
classes from its recognition vocabulary that are relevant, interpretation is likely to be.

Inconsistency is determined by context-specific proce-
dure.s whose application is mediated by context sets (see

2.3 Clique formation also Figure 2).

The result of the candidate generation process is a collec- Example; A candidate for ground cannot extend above
tion of candidates for each label in the active recognition the skyline.
vocabulary. Because the operators cannot be expected GROUND : { CLIQUE-CONTAINS(skyline) }
to be sufficiently robust, extra steps must be taken to PARTIALLY-ABOVE-SKYLINE
find- those candidates that truly are instances of their
associated classes. As was the case with candidate generation, the in-

To obtain this increase in reliability, we make use of a consistency determination routines are assembled into
principle of maximal coherency which holds that the best context sets that encode the assumptions necessary for
interpretation of an image is the one which coherently their successful application. Each operator tests a can-
explains the greatest portion of a scene. Candidates that didate for consistency with all the incumbents already
are not consistent with a partial image interpretation present in a clique. If any satisfied context set finds a
cannot be part of the final interpretation The goal is to candidate to be inconsistent, then it is not admitted into
find a mutually consistent set of candidates that explains that clique, although it may participate in other cliques.
as much of the image as possible. Thus, consistency determination context sets provide

A set of mutually consistent candidate hypotheses, necessary (but not sufficient) conditions for clique in-
called a clique, represents a possible interpretation of the clusion.
image. Condor builds a number of cliques and chooses A clique contains a collection of candidates annotated
the "best" one as its final interpretation. Naturally, it with inferred 3D properties and relations. The inconsis-
would be computationally infeasible to generate all pob- tency operators encode geometric and physical relation-
sible cliques - instead, cliques are generated in a special ships that must be consistent with known facts about
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the environment and the various semantic classes. The cliques before those below them.
operators may involve either 2-D image-plane compu- An evaluator is a function that scores the relative like-
tations or such 3D constraints as size, support, orienta- lihood that a candidate for a class is actually an instance
tion, occupancy of solid objects, etc. The 2-D constraints of that class. The evaluators that apply in any context
are useful for rapidly eliminating some candidates when are described by candidate evaluation context sets.
they are easily seen to be inconsistent, or when sufficient
3D information cannot be established to allow more so- Example: When viewed obliquely, the ground usu-
phisticated spatial reasoning procedures to be applied, ally exhibits a horizontally striated texture.
The consistency determination context sets include con- HORIZONTALLY-STRIATED is a function that mea-
text elements that specify what 3D information must be sures this property within a candidate region.
known. Their use causes an attempt to infer that infor- GROUND {CAMERA-IS-HORIZONTAL)
mation if it is not already known. GROUD : CAMEA-IS-ORIZNTAL

== HORIZONTAI.LY-STRIATED

2.4 Candidate comparison As before, the context sets allow the relevant knowl-
edge to be subdivided into manageable pieces. The el-

The search for the largest coherent set of candidates can ements of each context set encode the conditions un-
be combinatorially infeasible without further constraint der which a relatively simple-minded evaluation function
- the number of potential cliques is exponential in the gives meaningful information. It is intended that many
number of candidates. For this reason, cliques are gen- evaluation functions be provided within context sets, so
erated in a special order. that robust comparisons result whenever a unanimous

At any point during the processing of an image, there vote occurs. One tandidate is preferred over another
will be a collcction of candidates for each label to be in- only when all evaluators occurring in satisfied context
stantiated. Some of these candidates are obviously bet- sets score it as least as high as the other candidate.
ter examples of the class denoted by the label than are As alvays, context-set elements that refer to other ob-
others. By first building cliques from the best candidates ject classes cause other computations to be triggeied.
of each class, we are much more likely to encounter good Satisfied context-set elements also provide information
cliques early in the search (typically several within the for setting parameters that may be required by the as-
first half-dozen cliques). Condor has used this "best- sociated evaluation functions.
first" strategy to successfully avoid the comnbinatorics The structure of the comparisons is noteworthy be-
that would otherwise prevent recognition. cause it contrasts with the way comparisons are per-

The task here is to order the candidates within each formed in nearly every other recognition system. The
class so the better ones may be added to cliques before usual approach is to partition an image and to consider
the others. The difficulty is choosing a suitable metric which of several potential class labels is the best descrip-
to accomplish this ordering. For most classes of interest tion of a region. In Condor, we start with several parti-
in the outdoor world, there is no single evaluation met- tions (candidates) and consider which of several candi-
tic that gives a reliable ordering. One could conceive of dates is the most likely instance of a class. For exam-
multiple metrics that evaluate the candidates along vari- ple, a conventional recognition system would consider
ous dimensions, but that would still leave the problem of whether a particular region was more likely to be a tree
comparing multi-dimensional evaluation vectors. In or- trunk or a road. Condor would have several potential
der to justify a weighted sum of the vector components, delineations of a tree trunk and would consider which is
one would have to make the unlikely assumption of some the best description of the trunk.
form of independence. A similar independence assump- This departs from conventional approaches in two sig-
tion would be required if the evaluation measures w.;re nificant ways. First, comparing candidate regions for ,
to be given a probabilistic interpretation and combined given label requires knowledge of the semantics of that
using probability theory. label only, whereas the customary approach of compar-

The solution we have adopted is to make use of multi- ing two labels for a given region requires knowledge of the
pie evaluators, but not to assume that they are indcpen- relationships between many semantic categories. When
dent in any way. Instead, they are used to compare two considering which candidate is the best tree trunk, Con-
candidates for a given label, with each evaluator casting dor needs to know only about tree trunks and related
a vote for the candidate it ranks higher. If all evaluators categories (such as branches, roots, and the ground). In
favor one candidate over another, a preference ordering contrast, to decide what label 'o assign to a given r:.gion
between the candidates is established. Otherwise, no or- using a conventional approach, one must be able to com-
dering is imposed. The net effect of comparing (pairwise) pare any pair of labels. This requires knowledge of the
all candidates for a given label is to impose a partial or- relationships between every pair of semantic categories,
der on those candidates. The candidates at the tops of and grows rapidly as new classes are added to the recog-
the partial orders will be tested for consistency with the nition vocabulary. The Condor orientation provides a
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basis for believing that sufficient knowledge might even- mantic labeling of the image on the basis of the portion
tually be encoded in the system to allow robust compar- of the image that is explained and the, reliability of the
ison even in a large-scale system. operators that contributed to the clique,

Second, we enforce the condition that the comparisons Each of the processing steps occurs simultaneously in
lead to a preference only if one candidate is clearly a our conceptual view, but there are some implicit se-
better choice than tie other. With this conservative ap- quencing constraints. Candidate evaluators begin to
proach, we can reap additional computational savings by construct partial orders as soon as candidates become
pruning large portions of the search for maximally con- available. Incremental addition of candidates to cliques
sistent cliques. For example, if candidate C1 is clearly begins as soon as partial orders are available. Theoreti-
a better instance of class L than candidate C2 in the cally, there is no need to wait for one stage to complete
context of a particular clique, and C, is found to be in- before latter stages are begun, but it may be desirable
consistent with that clique, then C2 can be eliminated when computational resources are limited.
as a potential member of that clique as well. Ruling out The interaction among context sets is significant. The
C2 may eliminate other candidates recursively. Thus we addition of a candidate to a clique may provide context
avoid the need to test the consistency of C2 and any of that could trigger a previously uns1atisfied context set
its inferiors. Furthermore, it may at times be impossi- to generate new candidates or establish new pieference
blk otherwise to establish C as inconsistent, in which orderings. For example, once one bush has been recog-
case this pruning step pievents the clique from being nized, it is a good idea to look specifically for similar
contaminated with a bad candidate. Although it does bushes in the image. A candidate generation context set
not follow logically that, C. cannot be a class L instance, that includes an element that is satibfied only whan a
its elimination is a powerful hcuristic that is nearly al- bush is in a clique implements this tactic.
ways justified. We can afford to take this chance because Similarly, as cliques evolve, the partial oders for each
additional cliques will be generated simultaneously that class may change. Ideally, one should wait for all candi-
may happen to avoid repeating an unjustified elimina- date generation and comparison activity to subside be-
tion. Thus even when some generators yield unreliable fore nominating a candidate into a clique. We regard
candidates, and the comparisons make occasional mis- this synchronization as an implementation issue that is
takes, it may still be possible to build a clique that yields not of theoretical importance because additional cliques
a completely accurate semantic labeling of an image. will always be generated later.

It is important to remember that multiple cliques will
be in various stages of construction simultaneously. Each

2.5 The recognition process clique has its own partial orders from which to choose,

Let uts summarize the processing steps that have been although many candidates will be identical in several orLet s smmarze he pocesin stes tat hve een all of thle cliques. Context set satisfaction is determined

described so far (Figure 2). For each label in the active

recognition vocabulary, all candidate generation context individually for each clique.

sets are evaluated. The operators associated with those
that are satisfied are executed, producing candidates for 3 Implementation of Condor
each class. Candidate comparison context sets that are
satisfied are then used to evaluate each candidate for a 3.1 Processing Sequence
given class, and if all such evaluators prefer one candi-
date over another, a preference ordering is established All of the computations carried out by Condor are con-
between them. These preference relations are assembled trolled by context sets. At any given time, there might
to form partial orders over the candidates, one partial be many satisfied context sets whose operators could be
order for each class. Next, a search for mutually co- invoked. Condor, as implemented, evaluates context sets
herent sets of candidates is conducted by incrementally in an order that is designed to provide edditional iafor-
building cliques of consistent candidates, beginning with mation rapidly. For example, it is sensible to build all
empty cliques. A candidate is nominated for inclusion partial orders as completely as possible bcrore starting
into a clique by choosing one of the candidates at the to build cliques, although this is not required by thc
top of one of the partial orders. Consistency determina- conceptual architecture. Although the comjtext sets are
tion context sets that are satisfied are used to test the evaluated in a fixed order, their satisfaction depends on
consistency of a nominee with candidates already in the t'ie context so far derived. Thus, the order in wh;.h op-
clique. A consistent nominee is added to the clique, an erators are invoked depends primarily on the contextual
inconsistent one is removed from further consideration information. The order of context set evaluation we have
with that clique. Further candidates are added to the chosen serves mainly to accelerate the interpretation of
cliques until none remain. Additional cliques are gen- images.
crated in a similar fashion as computational resources Tlme sequence of operation in Condor is summarized
permit. Ultimately, one clique is selected as the best se- in Figure 3. The serialization of an inherently paral-
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IMAGE(S) tern is rewound to that point and construction of the sec-
ond clique begins. Condor generates different cliques by
nominating candidates in different orders. Many strate-
gies exist for selecting different orders and the heuris-

TYPE CANDIDATE
CONTEXT SeTS GENERATION tic nominating function can be modified to implement

them. The strategy that Condor standardly uses is to

CANDIATESseed each clique with a candidate that had been ruled
out by an earlier clique, thereby guaranteeing that a new
and different clique will result.

TYPE I1 CANDIDATE After each clique is completed, it is compared with the
CONTEXT COMPARISON best previous clique to determine which interpretation of

the image is better. There is no theoretically sound way
PARTIAL ORDERS of comparing two cliques, and the method we employ

is somewhat ad hoc. Each clique is scored on the basis
TYPE III CLIQUe of the portion of the image that is explained and the

CONTEXT SETS FORMATION reliability of the operators that generated the candidates
in the clique. The higher scoring clique is retained and

7 CLIQUES additional cliques are generated until a scoring threshold
is exceeded or available computation time is exhausted.
At that point, the highe4t scoring clique is accepted as

CLIQUe ] the best interpretation of the image, and the candidates
SELECTIONI it contains are considered to have been recognized.

The contents of this best clique are then used to up-
3 MODEL date tie 3D model of the environment. Newly found

I objects are inserted in the CKS. Candidates depicting
Figure 3: Sequence of coml)utation previously known objects are used to update the loca-

tion, size, shape, and appearance of that object in the
CKS. The name of the operator that successfully delin-

lel architecture is complicated by the interdependencies eated each object in the image is stored with the object
so that it might be invoked again when that object comesa m o n g th e p~ro cessing step s. W hen first p resen ted w ith n t e f ld o vi w T h r su t s a p a ed m el f

an image and tasked to recognize a target vocabulary, il the field of vied. The result is an updated mdel of
Condor generates candidates and compares them to im- tle visual world, that will provide more context for the
pose a partial order on tIe candidates in the target vo- recognition of objects in subsequent images.
cabulary. Any additional classes that are found to be
of use are added to the active recognition vocabulary 3.2 Representation of context
and are processed similarly. Next, a candidate from the Because Condor has been designed to make use of a per-
top of one of the partial orders is added to a clique. This sistent store of information about the visual world, it is
changes the context relevant to that clique, so the candi- necessary to provide a mechanism for its representation.
(late generation process is repeated and the partial orders Condor requires access to scene objects based on theirare reevaluated in that new context. A comprehensive location or any of various semantic properties. This role
caching mechanism is employed to prevent reevaluating is filled by the Core Knowledge Structure.
any operations that have not changed. A new nominee
is chosen from the tops of the partial orders ad checked Th Cvas n deined sr ateentalain

forc n tthat was originally designed to serve as the central in-

sistent, it is added to the clique and removed from its formation manager for a perceptual system [13, 14]. The

partial order. If inconsistent, it is removed from further following four facilities of the CKS are of particular im-partial ~ ~ ~ ~ ~ ~ pota order Condosrniti emvd rmfute
consideration for membership in that clique, although it portance for Condor.
may join another clique later. The inconsistent nomilnee
is removed from its partial order along with any candi- 3.2.1 Multiple Resolultion
date over which it is preferred. This cycle is repeated The CKS employs a multiresolutlon octree to locate ob-
until no candidates remain for nomination, thus com- jects only as precisely as warranted by the data. Sim-
pleting the development of the first clique. ilarly, a collection of geometric modeling primitives are

Additional cliques are generated by iterating the cntire available to represent objucts at an appropriate level of
process. Any ol)crations that occurred before construc- detail. III parallel with the octree for spatial resolution
tion of the first clique began need not be repeated since is a semantic network that reprebents things at multi-
their context is btill valid. To accomplish thi. , the sys- ple levels of semantic lesolution. Condor's recognition
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vocabulary is represented as nodes in the semantic net- candidate is stored in the CKS as the opinion of the
work, which allows the system to refer to objects at an clique to which it pertains.
appropriate level in the abstraction hierarchy.

3.2.4 User interface

3.2.2 Inheritance and inference Although Condor is designed to be a fully automated
recognition system, a comprehensive user interface is in-The OKS uses eenc nease to perf que valuable for development and debugging. The CKS pro-

limited types of inference that ease the burden of query- vides a menu-driven query mechanism that is useful for
ing the data store. Thus, query responses are assemblednot only from those objects that syntactically match inspecting the intermediate states of computation. In
the query, but also from objects that can be inferred addition, the CKS has been integrated with SRI's Car-to match given the relations encoded in the semantic tographic Modeling Environment (10] to provide a ca-ntor Frch givexa the ations encadein e e oaic pability of generating synthetic views of terrain. Thisnetwork. For example, the CKS can be queried for all alosoetviuizthcnetsftedtbsero

trees within 10 meters of any dirt road, and will find all allows one to visualize the contents of the database from
suchtres rgarlessof heter hey ereoriinaly a n a arbitrary viewpoint by rendering a synthetic image.such trees regardless of hether they were originally cat- Doing so provides a window into the information thategorized as oaks or pines or whether any roadwvay wvas Condor is assuming as it interprets an image.

present when they were instantiated in the database.

Spatial inference is provided based on geometric con-
straints computed by the octree manipulation routines. 3.3 Context set construction
Inheritance of attributes that are unspecified is per- Context sets are the key to any recognition abilities that.
formed in a similar fashion. For example, a query for Condor demonstrates. While we have not yet evolved
all objects taller than 5 meters will be satisfied by all a precise procedure for designing context sets, we can
trees not specifically known to be shorter than 5 meters, provide some insight based on our experience in building
but not satisfied by any rocks (unless they are known to context sets for natural object recognition.

be higher than 5 meters). Type I context sets (candidate generation) are con-

structed based on an assessment of what operators may
3.2.3 Conflicting data work for each label in the recognition vocabulary. Based

on a representative sample of imagery from the target
One of the realities of analyzing imagery of the real world domain, we omposed image processing operations that
is that conflicts will result from mistakes in interpre- work reasonably well in various circumstanccs. Factors
tation and from unnoticed changes in the world. The that influenced the choice of which operators to include
database used by Condor must not collapse when con- were the likelihood of success, the ease of implementa-
flicting information is stored. The CKS treats all incom- tion, the lack of any alternative operators, and the avail-
ing data as the opinions of the data sources, so logical ability of existing code. Table 1 lists the types of op-
inconsistencies will not corrupt the database. Similarly, erators that are actually employed by Condor to gener-
values derived through multiple inheritance paths are ate candidates (for the experimental site in the Stanford
treated as multiple opinions. This strategy has several foothills). For each operator, the assumptions that it re-
advantages and disadvantages. Rather than fusing infor- quires are encoded as context elements in a context set
mation as it arises, the CKS has the option of postponing that controls the invocation of the operator. These con-
combination until its results are needed. This means that text elements limit the situations in which the operator
the fusion can be performed on the basis of additional will be applied, ensure the existence of any required data,
information that may become available, and in a manner and establish the parameter settings associated with the
that depends on the immediate task at hand. Some in- operator.
formation may never be needed, in which case the CKS Type II context sets (candidate evaluation) are assem-
may forego its combination entirely. The disadvantages bled from evaluation metrics that can be used to corn-
are the need to store a larger quantity of data and a pare two candidates. Context elements that define the
slowed response at retrieval time. For an object recogni- conditions under which the metrics are meaningful are
tion system like Condor, the CKS seems to provide the collected into context sets for each label iii the recogni-
right tradeoff. tion vocabulary. The metrics themselves need not or-

Condor uses the multiple opinion facility to store the der candidates perfectly, but should perform substan-
attributes of recognized objects. Each attribute value is tially better than a random ordering. Condor requires a
annotated with the image in which it was identified, its unanimous vote of all applicable metrics before ordering
time of acquisition, and time of recognition. In so doing, two candidates, so a faulty metric is likely to leave some
it is possible to reason about the validity of the stored candidates unordered but not reverse ordered. It is iri-
data, and to react accordingly. The opinion mechanism portant that preferences be correct when they are made.
is also used to store multiple cliques in Condor. Each Non-preferences will require more cliques to be searched
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Algorithm Explanation
ASSOCIATION Finds connected sets of pixels in a binary image
STRIATIONS Finds the orientation and strength of local texture
DELINEATION Finds line-like structure
OUTLINING Finds the boundary of a region
THRESHOLDING Uses scale-space techniques to choose thresholds
EDGE FINDING Any of several well-known edge-finding routines
CONTRAST enhancement Stretches the histogram of an image
SMOOTHING Low-pass filter
HISTOGRAMMING Computes a histogram and associated statistics
TEXTURE Any of several well-known algorithms for measuring texture
SEGMENTATION Completely partitions an image using KNIFE [12]
DENSE STEREO Computes a dense depth image using CYCLOPS [1].
SPARSE STEREO Computes depths at some easily correlated points [81
HOMOGENEITY A noise tolerant algorithm for measuring local homogeneity

Table 1: Candidate generation operators

Evaluation metric Explanation
ABOVE-GEOMETRIC-HORIZON Raised objects are more likely found above the horizon

ABOVE-SKYLINE Raised objects above the skyline are preferred
BELOW-GEOMETRIC-HORIZON Prefer ground candidates below the horizon

BELOW-SKYLINE Prefer ground candidates below the skyline
BLUE Prefer blue sky candidates on a sunny day

BRIGHT Prefer bright sky candidates
ELLIPSOIDAL When range data is available, prefer ellipsoidal bushes and tree-crowns

ELLIPTIC Prefer bushes and tree-crowns that are shaped like ellipses (in 2D)
GREEN Prefer green grass in the winter and spring in California

HIGHLY-TEXTURED Prefer foliage candidates that are highly textured
HORIZONTAL Prefer ground candidates that are horizontal (in 3D)

HORIZONTALLY-STRIATED Prefer ground candidates that exhibit horizontal striations
NEAR-TOP Prefer sky candidates that are near the top of the image

NO-SKY-BELOW Prefer bush and rock candidates that are not above the sky
REASONABLE-SIZE Prefer trees and bushes that are sized appropriately

SIMILAR-COLOR Prefer candidates that are similar in color to known objects
SIMILAR-TEXTURE Prefer candidates that have similar texture as a known object
UNDEFINED-RANGE Prefer sky candidates that is uncorrelated in stereo

2D-VERTICALITY Prefer tree trunks that are approximately vertical in the image
3D-VERTICALITY When range is available, prefer tree trunks that are vertical

Table 2: Evaluation metrics

Consistency constraint Explanation
ABOVE-SKY-REGION Most objects must not be completely off the ground

LEANING Objects that lean too much are unsupported
MISMATCHED-BRIGHTNESS The intensity of sky, for example, cannot vary too much

NOT-SUPPORTED-BY-GROUND Most plants must be rooted in the ground
OVERLAPS-IN-IMAGE Some hypotheses that are inconsistent in 2D are ruled out

PARTIALLY-ABOVE-SKYLINE The ground cannot extend above the skyline
PARTIALLY-BELOW-GEOMETRIC-HORIZON The sky cannot extend below the horizon

Table 3: Consistency constraints
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Class -Context elemnents Operator
ISKY CLIQUL.LN-EPTY -SEGMLNI A 'tON.REG IONS

2 SKY CLIQUE-IS-EMPTY' W EAK LY.TEx-rURED- REGIONS
3 SKY CLIQUE- IS-EMPTY WVEAK LY-STRIATED-REG IONS
4I SKY CLIQUE. IS-EMPTY' BRIGHT-REGIONS
5 SKY CLIQUE-IS-EMPITY A SKY-IS.CLEAR BLUE-REGIONS

A RGB-IS-AVAILABLE
6 SKY 1,AST-SELECTED-CANI)IDATE-IS(sky) SI MI LAR- REG IONS

7 GROUND C QLI.MiSEGMENTATION-REG IONS
8 GROUND CLIQUE-Is-EMPTY' A CAM'%ERA-IS-IIoRZONTAL HORIZONTALI-STRI ATION-REG IONS
9 GROUND CLIQUE-IS-EMIPTY A DENSE-RANGE-IS-AVAILABLE IIORIZONTAL-SURFACE-PATCiES
10 GROUND LAs'r-SELECTED-C-ANDIDAITE-IS(groiind) SIMILAR-REGIONS-REG IONS
I I FOLIAGE CLIQUE-"IS-EMPTY" ''EXTIUliE-ABOVIE-IIIIESIIOLD
12 FOLIAGE CLIQUE-IS-EMP]ITY VEGETATIVE-TRANSPARENCY
13 FOLIAGE CLIQUE-IS-EMIPTY A RG13-IS-AVAILABLE GREEN-REGIONS
14 FOLIAGE LAs'r-SE LECT'ED-CAN\DIDA'rE.IS(foliage) SIMILAR-REGIONS
is FOLIAGE CLIQUE-IS-EM%,PTY A DENSE-RANGE-.IS-AVILABLE IIIGILY-FRACTAL-REGIONS
16 RAISLD-)OI3J ECT CLIQUE-IS-EMPTY SGEATO-EIONS
17 RAISED-OBJECT CLIQUE- IS-EMPTY VERTICAL-STRI ATION-REG IONS
is RAISED-OBJ ECT CLIQUE-IS.-MPTY A DENSE-.RANGE-IS-AVAILABLE DENSE-REGIONS-A BOVE-G ROUND
ID' RAISED-OBJECT CLIQUE- IS-EMI'1 r'1 A SPARSE-RANGE-IS-A' ULABLE SPA RSE-REG IONS-ABOV E- GROUND
210 RAISED-OBJ ECT LAST-SELECTED- CAN 1)I DATE- ISLI -Jlete-sky) NON-SKY-REG IONS- ABOVE-SKYLIN E
21 COMP'L~LT-GROUND LA!STI-!LLC I RLCNIAf-SCr~L cIoi~a tGION-BELOW-7GEOM'F~lRIC-1 ION
22 COMPLETE-G ROUND LAST-SELECTED-CA ND I I)ATE-IS(ground) UNION-OF-G ROUND-REG IONS
23 COMPLETE-GROUND LAS'r-SELEC'rED-CANDIDATrE-IS(skvliiie) REG ION-BELOW-SKYLI NE
215 COMPLE'I-SKY LAST'I-SE]LCTE'D-CAN\DIDATE'-IS(sky-) UNION-OF-SKY-.REGIONS

_________________________A ASITE-IS(sta~nfrod-hUIs)____________________________

Table 4: Type I Context. Sets: Canididate Generation

Class Context elements [Operator
41 SKY ALWNAY S ABOVE-IIORIZON
-12 SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGnT'
43 SKY SKY-IS-CLEAR A TIMlE-IS-DAY UNTEXTURED
-14 SKY SKY-IS-CLEAR A TIMIE-IS-DAY A RGB-IS-A\'AIlABLE BLUE
45 SKY SKY-IS-OVERCAST A TIME-IlS-DAY BRIGHT
46 SKY SKY-IS-OVERCAST A TIME-IS-DAY UNTEXTURED
47 SKY SKY-IS-OVERCAST A TIME-IS-DAY A WHITE

RGB-IS-AVAILABLE
48 SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED
49 SKY CAMERA-IS-11ORIZONTAL NEAR-TOP
50 SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE

51 SKY ~~~CLIQUE-CONTA INS(coinplete-sky)SIIAITNIY
51 SKY ~CLIQUE-CONTAINS(sky) ILA-NEST

52 SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE
53 SKY RGB-IS-AVAILAI3LE A CLIQUE.-CONTAINS(sky) SIMILAR-COLOR
61 GROUND CA MERtA-IS-I IORIZONTA L HORIZONTALLY-STRIATED
62 GROUND CAMERA-IS-IIORIZONTAIL NEAR-BOTTOM
63 GROUND SPARSE- RANGE-IS-AVA ILABLE SPARS E-RA NG ES-FORM-I IORIZONTAL-SURFACE
64 GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTAL-SURFACE
65 GROUND CAMERA-IS-IIORIZONTAL A BELOWV-SKYLINE

CLIQUE- CONTA INS(conmplete-grouind)
66 GROUND CAMERA-IS-IIORIZONTAL A BELOW-GEOMETRIC-HORIZON

CLIQUE-CONTrAINS(geometric-hioi izon) A
,CLIQUE-CONTAINS(skyline)

67 GROUND TIME-IS-DAY DARK
71 FOLIAGE ALWAYS H-IGIILY-TEXTURED
72 FOLIAGE ALWAYS HIGII-VEGETATIVE-TRANSPARENCY
73 FOLIAGE CAMERA-IS-HIORIZONTAL NEAR-TOP
74 FOLIAGE RGB-IS-AVAILABLE GREEN
76 RAISED-OBJECT SPARSE-RA-NGE-IS.AVAILABLE S1'ARtSE-I]EIGiT'-AI3OVE-GROUUND
77 RAISED-OBJECT DENSE- RANG E- IS-AVA ILABLE DENSE-HEIGHIT-ABOVE-GROUND
78 RAISED-OBJECTr CAMERA-IS-IIORIZONTAL A ABOVE-SKYLINE

____________I CLIQUE-CONTAINS(coinplete-sKy) I________________________

Table 5: Type 11 Context Sets: Candidate EValuation

Class TContext celments Oeao
81 SKYGLO~lb It~cHold O-K -TA1?lIALLY-B3ELOW.GELOMI I RI-IIORIiZON

82 SKY ADDING-TO-CLIQUE INCONSISTENT-WITH-CLIQUE
83 SKY ADDING-TO-CLIQUE A CLIQUE-CONTAINS(sky) MISMATCHED-I3RIGIITNESS
84 SKY SI5ARSE-RANGE-IS-AVAILAI3LE MUST-NOT-IIAVE-FINITE-RANGE
87 GROUND C;LIQUE -CONTIAINS(colnplete-sky) PAlICTALLY-AIJOVE-SIYLINE,
88 GROUND ADDING-TO-CLIQUE INCONSISTENT-WITII-CLIQUE

89 GROUND DENSE- RANGE-IS-AV'AILABLE SLOPE-TOO-STEEP
-9 91 1OLI AGE lAD i)N C-T5. C ,IQ U 1E -MNCOTNSIS TWTNI-VITI I -C 1 1Q U L ____

93. COMI'LEGROQUND IA DDING-I'[O-CL[IQULE INCONSIS'1'ENT'I'I ~rl-CLIQUIW-777

Tab~le 6: Type III Context Sets: Consistency Determination
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but will not lead to incomplete recognition results. Ta- color, stereo, or other range data is used.
ble 2 shows some of the evaluation metrics that are used
by Condor. 4.1 Candidate generation

Type III context sets (consistency (letermination) de-
fine the conditions under which inconsistency of a can- Condor begins by generating candidates for each of the
didate with a clique cani be establishcd. Any constraints classes in the target vocabulary. The relevant candidate
that make it impossible for a candidate hypothesis to be generation context sets are shown in Table 4. Tables 5
valid given the assumption that the candi(,ates already and 6 show the relevant Type II and Type III context

in the clique are correct, are encoded and assembled into sets used in this example.
T. pe Ill context sets. It is important that inconsistent While generating candidates for the sky label, context

candidates be correctly identified so that physically ir- set 5 was not satisfied because no color image is available
possible cliques are itot constructed. lIoweer, it is not and context set. 6 %as not satisfied because no candidates
iccessary that a complete definition of consistent candi- hae been selected yet for inclusion in a clique. Context
dates be encoded. This a-yinietiv was designed specif- sets 1-4 are satisfied and the sky candidates they gen-
ically because it is fdr simpler to specify what could not crate are shown in Figure 5a. Notice that three of the
be a tree, for example, than it is to specify what is a candidates (910, 912, and 914) are fairly similar - Con-
tree. Some of the consistency dete ruination constraints dor must eventually sort out which one(s) to include in
that are used by Condor are listed in Table 3. each clique based on how well they fit in the context of

other members in the clique.
Ground candidates are generated by context sets 7-10

4 Example of natural object and are shown in Figure 5b. Foliage candidates are gen-
recognition erated by context sets 11-15. The candidate generation

context sets for raised-object are used to generate addi-
tional foliage candidates because foliage is a subcategory
of raised-object in the abstraction hierarchy. The foliage
candidates are depicted in Figure 5c.

. > i . 4.2 Candidate comparison

Next, Condor compares the candidates for each class to
construct the partial orders. Candidate evaluation con-
text sets 41-53 are used for evaluating sky candidates.

- Only context sets 41, 42, 43, and 49 are satisfied. Their
associated operators are used to evaluate each of the

- sky candidates and the results are assembled in Table 7.
Each evaluator returns a score between 0.0 and 1.0. Only

. "the relative magnitude of this score for each evaluator is
meaningful. The scores are not normalized across eval-
uators because there is no basis to do so.

Evaluator 909 910 911 912 914
ABOVE-HORIZON 1.00 1.00 1.00 1.00 1.00

BRIGHT 0.44 0.71 0.94 0.76 0.67
UNTEXTURED 0.19 0.67 0.52 0.50 0.36

Figure .1. A typical image from the Stanford foothills NEAR-TOP 0.51 0.79 0.37 0.73 0.66

Table 7: Initial evaluation of sky candidates
To illustrate the basic processing sequence, Condor was
tasked to recognize the sky, the ground, and the foliage, Examining the table reveals that candidate 910 was
appearing in the image shown in Figure 4. This rela- scored at. least as high as candidate 909 by every evaln-score(] easy leasge was acqire as cadiat 9oohi9~ behind e
tivc!y easy image wvas acquired in the foothihlls behind ator. Therefore, 910 is preferred over 909 as a sky can-
the Stanford University campus in the afternoon of a didate. Other unanimous preferences are
sunny oay using an ordinary 35amm camera. To make
the dess:rption as clear as possible, some of the machin- 910 >- 914, 912 >- 909, 912 >- 914, and 914 >- 909
cry incorpo:'ated in Condor has been deactivated while
.reati:ng thL txample In particular, no prior kno%, ledge These relations are asembled into a partial order and
of the terrain -r features on that terrain is used. Th(' displayed in Figure 6, after remvUing transitivities. Can-
digitized image i., single imionochruie 8-bit fraiic, no didate 909, which roughly delineates the trees, is at the
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Figure 5: Some candidates generated by Condor
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bottom of the partial order as one would hope. Candi- 4.3 Clique formation
dates 910, 911, and 912, were found to be equally promis- When all satisfied context sets for classes in the active
ing sky regions. recognition vocabulary have been employcd, Condor be-

gins tu build cliques of mutually consistent candidates.
The candidates at the tops of the four partial orders are

TR=: SKYeligible to be introduced into an (empty) clique. The
choice of which candidate to nominate first is made with
the aid of a heuristic that chooses on the basis of the
reliability of the operator that generated the candidate,
the desirability of adding the candidate's class to the
clique, the nearness of the candidate to the camera, and
the size of the candidate. If this choice is made poorly,
it may lead to a small clique and more cliques will have
to be generated before a large, mutually coherent clique
is constructed.

According to the heuristic, the geometric-horizon can-
didate is chosen first and added as the sole candidate in
Clique 1. This tentative conclusion constitutes new con-
text, albeit for Clique I only. All Type I context sets are
reevaluated to see if any new candidates are generated,
and all Type II context sets are reevaluated to update
the partial orders. The only new candidate that is pro-
duced is a complete-ground candidate generated by con-

Figure 6: Partial order of candidates for sky text set 21. Type II context set 66 is now satisfied and
adds BELOW-GEOMETRIC-HORIZON to the list of evalu-
ators for ground candidates, Its use happens to cause no
changes in the ground partial order.

Th4. GROUND Condor continues to test candidates for inclusion in
the clique, adding those that are consistent and pruning
those that are not. After each addition to the clique,
the context sets are reevaluated to determine whether
additional candidate generation operators or evaluation
metrics have become applicable in the new context. The
partial orders are updated after each change and process-
ing continues until no candidates remain to be tested.

Figure 9 shows the complete sequence of nominations
to the first clique. The composite labeling of the image
that results from those that were accepted is given by
Figure 10. A total,' 36 candidates were generated for
this clique, of which 18 were accepted in the clique, 10
were found to be inconsistent, and 8 were pruned without
testing.

4.4 Clique selection

Figure 7: Partial order of candidates for ground In this case, the first clique generated (lid a good job

recognizing the target vocabulary, but Condor has no

The partial orders generated for ground and foliage are definitive way of knoving this. Condor generates addi-

shown in Figures 7 and 8. tional cliques to see if its interpretation can be improved.
In this experiment, six additional cliques were generated,Atthi p on , I e reogniticon , vocabularyis but none of them exceeded the reliability and coverage{sky, ground, f oliage, geometric-horizon, of thle components of the first clique.

complete-sky, complete-ground, skyline) As tresultpondsorfet the first cliquea tsbs
and Condor proceeds to generate candidates and partial As a result, Condor slects the first clique as its best

orders for the remainder of tlise classes 2 . interpretation and stores its results in the CKS database
to be used as context for future reference. When range

2These are of no speial interest and are not shown. data is available, it is used to position the objects in
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TRI4: POUAGE

Figure 3: Partial order of candidates for foliage

the world. Without range data, Condor uses the image variations due to sun angle, weather, seasonal changes,
location of detected objects along with a digital terrain normal plant growth, and disciete changes such as when
model stored in the CKS to constrain the possible lo- a tree has fallen or a new trail has been blazed. A key
cations of each object. This updated database is then issue in our research has been determining what con-
used by Cordor during analssis of subsequent images as textual information should be recognized and stored to
context to aid interpretation. enable robust recognition under such a diversity of con-

ditions.
We have taken over 100 photographs at the experi-5 Status and Future Plans mental site of which approximately 30 so far have been

digitized and analyzed by Condor. This data includes
We are currently conducting an extevtsive series of ex- monochrome as well as color imagery, and range data
periments to test. the validity of our ideas and to explore obtained from automatic compilation of binocular stereo
the limits of the implemented system. For purposes of pairs. A digital terrain model of the area and the infor-
this experimentation, we have concentrated on tailoring mation appearing on a USGS map provide initial con-
the context-set knowledge base to the t&ask of recognizing text.
natural objects in ground level images obtained from a We are in the process of conducting a series of experi-two-square mile portion of the foothills behind the Stan- ments to demonstrate the competence of the system and

ford JniwsiLty e'mpmns, Our ult-imate goal is for Condor the value of contextual information dniig recognition.
to be able to umderstand the scene in any non-degenerate

image acquired in this area. The natural objects occ.r- Expurimeiit 1: A single image is analyzed using only
ring in this environment consist of trees, bushes, rocks, the initial context obtained fruminm the map. Ulot
trails, and gras. in addition to the sky aknd the ground. cumpletion, Condor stores its rccognition rcsults in

Our intent is to develop a recognition capability that the CKS and reanalyzes the same image or a simi-
is on a par with that exhibited, say, by a rabbit, whiclh ldr but different image of the Game scene. I many
inhabitr the same cnviromment. This rcqulircs thl abil- cases, the recognition result is imlprovud by using
ity to recognize s(ccjic- under many conditions including the n.;%,ly acquired comtext. Repeated auiilysis of
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Figure 9: Sequence of candidates nominated for inclusion in Clique 1 (reading downward)

Figure 10: Composite labeling found by Clique I
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the image set leads to both faster recognition of [6] Fischler, Martin A., and S ,t, Thomas M., "Recogniz-
hnown objects as well as detection of pome previ- ing Objects in a Natural Environment: A Contextual
ously unrecognized objects. Vision System," Proceedings: DARPA Image Under-

standing Workshop, Palo Alto, California, May 1989,
Experinient 2: A sequence of imagery collected dur- pp 774 - 796.

ing a simulated traverse of the terrain is analyzed [7] Fua, Pascal, and Hanson, Andrew J., "Using Generic
by Condor. The results of processing each image Geometric Models for Intelligent Shape Extraction,"
are stored in the CKS and made available as con- Proceedings, DARPA Image Understanding Workshop,
text for analyzing subsequent images. The temporal Los Angeles, California, February 1987, pp. 227-233.
continuity provided by the information in the CKS [8] llannah, M.J., "SRI's Baseline Stereo System," Pro.
allows Condor to improve the results it would have ccedings: DARPA Image Understanding Workshop,
obtained without this additional contextual infor- Miami Beach, Florida, December, 1985, pp. 149 - 155.
mation. Upon completion of the sequence, Condor (9] Hanson, A.R., and Riseman, E.M., "VISIONS: A Com-
has built a 3D model of the objects visible during puter System for Interpreting Scenes," in Computer Vt-
the traverse, and has annotated each with informa- sion Systems, Academic Press, New York, 1978, pp.
lion that aids its recognition. 303-333.

Experiment 3: A collection of images from a restricted [10] Hanson, A.J., tind Quam, L., "Overview of the SRI
area but varying widely in viewpoint, scale, time- Cartographic Modeling Environment," Proceedings:
of-day, season, and sky conditions are analyzed by DARPA Image Undertandin9 Workshop, Cambridge,
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recognitiot result, demonstrating that the context- [1] Iluttenlocher, Daniel P., and Uhnan, Shimon, "Rec-
set knowledge base is insensitive to these types of ognizing Solid Objects by Alignment," Proceedings:

change. DARPA Imo9c Understanding Workshop, Cambridge,
Massachusetts, April 1988, pp. 1114-1122.

In the future, additional imagery will be digitized to [12] Laws, Henneth, I., "Integrated Split/Merge Image Seg-
more fully evaluate the approach. We expect to have mentation," Technical Note 441, Artificial Intelligence
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Region Grouping
Using the Minimum-Description-Length Principle

Yvan G. Leclerc

Artificial Intelligence Center
SRI International

333 Ravenswood Ave., Menlo Park, CA 94025

Abstract or scene would, under normal conditions, most likely fit
the sensory pattern we receive," whereas the simplicity

A new algorithm for region grouping is presented, principle states that "we perceive whatever pattern or
This algorithm is based on an old idea-simplicity of object would most simply or economically fit the sen-
description-but uses a relatively new mathematical sory pattern." The debate between these two forms of
formalism: the Minimum-Description-Length Principle. Priignanz can be resolved by using the MDL principle
Also presented is a brief outline of how this principle can because the simplicity and likelihood principles can be
be applied to vision in a hierarchical fashion. Previous made equivalent (Chaitin 1975).
research in implementing the first layer of this proposed Since the Gestalt psychologists, many researchers !ave
hierarchy (image segmentation) is briefly reviewed, defined visi'-: perception in terms of simplicity of de-

scription (I.ttneave 1954, lochberg and McAlister 1953,

1 Introduction Leeuwenberg 1971). Almost exclusively, however, this
work has dealt with the coding of schematic line draw-

A basic task for any visual system is to infer properties ings of two- and three-dimensional objects, rather thanof the outside world given a stream of incoming images. images of the objects. Although the kinds of encodingThe primary difficulty is that there are always an infinite schemes they advocate are probably important, it seemsThepriarydificltyis ha thre re lwys n ifinte that the most important applications of the principle
number of combinations of world properties (e.g., sur- ta t most i n aoici o f th e princ
face shape, albedo, and illumination) that can produce of simplicity will be in going from the image to suchthe same image. Thus, one cannot simply deduce these schematic representations.
pties rom an image. Inhtead, one ann im uthse a We begin with a brief exposition of how the MDL prin-p ro p erties fro m a n im age. In stead , o n e m u st ch o ose a c p e c u d b p l e o t e g n r l v s o r b e . F l
single combination according to some guiding principle. ciple could be applied to the general vision problem. Fol-

We hypothesize that an important guiding principle in lowing this, we briefly describe our previous research in
vision is simplicity of description, or, more formally, the applying the MDL principle to one of the first stages
Minimum-Description-Length (MDL) Principle (Chaitin in image analysis (image and boundary segmentation).
1066, Minsky 1962, Rissanen 1978, Solomonoff 1964). Finally, we describe in more detail the specific applica-

According to this principle, prior information about the tion of the principle that is the main focus of this paper:
world and image sensor is incorporated in the language region grouping.

used to describe the world and sensor, and the inference For a more complete presentation of the ideas, algo-

process is to find the simplest (i.e., shortest) description rithms, and results described herein, see (Leclerc 1988,

in the language that exactly reproduces the given images. Leclerc 1989a, Leclerc 1989b, Leclerc 1989c, Leclerc

The basic motivation behind this inference process is the 1990). For other applications of the minimal-length en-
hypothesis that, if one can find a language that provides coding approach to vision, see (Keeler 1990, Pednault

an efficient description of a large number of observations 1989, Pentland 1990, Pentland and Darrell 1990, Sander-

(images), then the simplest descriptions in that language son and Foster 1990, Smith and Wolf 1984).

tell us something about the causes of the observations.
The general notion of simplicity of description in vision

has been very much a part of the field since the Gestalt 2 Applying the MDL Principle
psychologists' exposition of the principle of Prdgnanz to Vision
(Koffka 1935). Hlochberg (1981) and others distinguish
bctween two different forms of Priignanz. simplicziy and One way of formalizing the MDL principle for the vi-
likelhood. To quote Ilochberg (1981, p. 263), the likeli- sion problem is as follows. Define a model for surface
hood principle states that "we perceive whatever object shape such that one can define a measure of the com-
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plexity of any given surface. Typically, the complexity trast (what one might call subjective edges). Further-
measure will be proportional to the number of param- more, the algorithm is adaptive in the sense that the
eters required to specify the surface. For example, one variance of the noise need not be known a priori and can
could use three-dimensional polynomials to describe a even be non-uniform across the image. It is also adaptive
surface. In this case, a planar surface (requiring four in the sense that it automatically determines the appro-
coefficients) would be simpler ahan a wrinkled surface priate amount of smoothing required at every point in
such as the skin of an orange (requiring dozens of co- the image.
efficients). (Note that the (omplexity of a surface de- A brief description of this first layer, the approximate
pends entirely on the model 'e choose. If we had chosen solution technique used, and some results illustrating the
fractals, say, instead of polynomials, the complexity of claims made above are presented in the following section.
the planar surface would be quite different.) Similarly,
define a model for the distribution of albedo on a sur-
face and for the distribution of light sources. Of the 3 The First Descriptive Layer
many combinations of shape, albedo, and lighting that
can produce a given image, the principle of simplicity In the first descriptive layer, the image is decomposed
of description is to choose that combination for which into an underlying piecewise-polynomial image and spa-the sum of the complexities of each of the components is tially varying white noise. The underlying image is de-
lesuoft.(his cprep es fchat the components ae scribed as a set of regions covering the entire image; theleast. (T his presupposes that the three com ponents are b u d r f e c e i ni e c i e s n i o e
independent, which is usually a good approximation.) In boundary of each region is described using a c pin code,
short, one chooses the simplest way of describing a given and the intcrior intensity variation is dc,.crib d .y" a poly-shortnomial. The complexity of the underly :,g irrage is the
image given the set of models available to us. sum of the complexities of each region, where tU'e c,.n-

The above principle cannot, in general, be imple- plexity of a region is a linear comb'intin o, tie larigh of
mented exactly because it involves an exhaustive search the region boundary and the nunbe" of non-zero
through the set of all possible combinations of shape, thentsgon bonary an th ibee ton , nei

albedo, and illumination. The combinatorial nature of cients of the polynomial. In this lenjc,".htatipen, fithep

the problem necessarily leads to approximate solution the number of regions, nor the len 1h aid 41ape of t!e
description in region boundaries, nor the number oi o,.ficents in each

techniques that typically find the simplest region is known ahead of time. The diflere:.cc b,.,.,'een
a limited variety of circumstances only. this underlying image and the given image is modeled as

Thus, to implement the simplicity principle, one must white noise who:;e variance is unknown and independent
do two things: one must define a s(t of models, and one from one region to the next. The theoretical complexity
must define a set of approximate solution techniques. As of the noise for each region is roughly n log a, as derived
is traditional in the computer vision field, we hypothesize by standard information theoretic means. By construc-
that the search for the simplest description takes place in tion, the underlying image and noise completely describe
a hierarchical, layered fashion. Furthermore, we hypoth- the original image.
esize that each layer can itself be viewed as a search for The task of this first layer is thus to find the underly-
the simplest description, but using a more constrained ing image for which the overall complexity, the complex-
set of models. ity of the underlying image plus the complexity of the

This approach has led to a high-performance image noise, is least. Since the noise iis simply the difference
segmentation and reconstruction algorithm, which we between the underlying image and the given image, one
view as the first (or, at least, one of the first) layer in need only search over the set of all possible underlying
the hypothesized descriptive hierarchy (Leclerc 1989a, images. However, this set is exponential in the number
Leclerc 1989c). The algorithm has been imp!emented of pixels in the image, so that the simplest description
on a massively parallel architecture (the C-rnnection cannot generally be found in less than exponential time.
MachineT). It has been tested on a large number of This search problem can be recast as an optimization
synthetic and natural images, and its performance com- problem in which the objective function is an approxi-
pared against standard techniques such as the Canny mation to the overall complexity. This is done by using
edge operator. a finite-element grid to represent the underlying image.

From these tests we conclude that, without adjust- Each element of this grid represents a polynomial within
ing any parameters, the algorithm is capable uf finding a unit square. B) specifyiiig the ueflicuts of tl, Pul
region boundaries whose contrast-to-noise ratio is sig- nomials for each element, we dire -.. j specify the under-
nificantly less than one. High contrast boundaries are lying image, and implicitly s. -cify t'ie set of regions.
accurately located to within a pixel and are as smooth That is, two adjacent elements are defined to be within
or ragged as those of the true underlying image, while the same region if the two sets of coefficients, when ex-
low contrast ones are smooth. Also, bf cause it is a pressed in a common coordinate system, are identical.
global optimization technique, the algorithm can even With this representation, the objective function (over-
close boundaries across gaps that have zero local con- all complexity) can be written as thf sum of spatially lo-
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cal terms that involve only the polynomial coefficients of continuities in the underlying image is preserved. As
an element, those of its four neighbors, and the pixel of the image is degraded, the precise details are sometimes
the iven image. Finding the vector of coefficients that lost, but the procedure continues to find the distinct re-
minimizes this objective function is difficult because the gions in the underlying image. (Eventually, of course,
objective function has exponentially many local minima, the regions are lost entirely. The precise point at which
so that st ifda,'d optimization techniques cannot be used. this occurs depends on the total size and shape of the

Instead, we devised an approximate solution tech- regions, and, to a lesser extent, on the vagaries of the
nique based on a general approach called a "continua- noise.)
tion method." (Dahlquist and Bj6rck 1974, Terzopou- For other examples using the more complex piecewise-
los 1986, Blake and Zisserman 1987). In this approach, polynomial model, see (Leclerc 1989a), and the examples
the original objective function is embedded in a family discussed in the following section.
of functions parameterized by s. This embedding has
the property that for sufficiently large s, the function
has a single local minimum that is readily found, while 4 The Next Descriptive Layer-
for s arbitrarily close to zero, the function is arbitrarily Grouping
close to the original objective function. The continu-
ation method starts at the local minimum found for a For a large class of scenes, each region recovered by the
large value of s, and tracks the minimum as s is progres- above segmentation algorithm will correspond to a single
sively decreased. Specifically, the local minimum found pan of some surface in the scene. However, because of
at a given value of s is used as the starting point for albedo changes, shadows, creases, and partial occlusions,
a kind of steepest descent algorithm applied to the em- a single surface will be broken up into many regions.
bedded objective function for a smaller fixed value of s. The next simplification stage is thus to group together
This is repeated until s is sufficiently close to zero. regions that belong to a single surface. In this section, we

The advantage of having written the original objec- explore in detail one possible basis for grouping regions
tive function as the sum of spatially local terms is that that originally belonged to a single surface in the scene.
the resulting descent algorithm is entirely parallelizable. Consider Fig. 2(a). It was constructed as a middle-
That is, at each iteration of the descent algorithm, the Consr i a it waconuc d as ain te ceffciets f te poynoialfora gven grey annulus against a light background, occluded bya
change in the coefficients of the polynomial for a given darker surface with regularly spaced holes, all of which is
grid element can be computed using only the coefficients embedded in white noise. This construction corresponds
of the adjacent elements and the corresponding image to one possible percept of this image. The other percept
pixel value. This kind of parallel and iterative algorithm that I am aware of is that of a regularly spaced grid of
is perfectly suited to massively parallel architectures, light disks on a dark background, partially occluded by
such as the Connection Machine75 1 that was used for a translucent grey annulus. In either case, one immedi-
the current implementation. ately groups the middle-grey regions (composed of disks

and parts of disks) into one "object," and groups the

3.1 An example light regions into a second object.
On what basis can we perform this grouping of re-

An example of the result of this algorithm is illustrated gions? One possible basis is the "good continuation"
in Fig. 1. Fig. la is the original image, which consists of of segments of the region boundaries (Wertheimer 1955,
a st of white scalloped disks on a black background, em- Lowe 1985, Zucker 1985). Within the MDL paradigm,
bedded in additive white noise. The variance of the noise we interpret good continuation to mean that it is simpler
increases linearly from left to right. Before the addition to describe these segments as parts of a single curve than
of the noise, all of the disks had exactly the same shape. as independent curves. For example, Fig. 2(c) shows
Fig. lb is the underlying piecewise-constant image recov- the boundaries of the recovered regions. From this im-
ered by the algorithm, and Fig. 1c is the residual image, age, it seems quite plausible that one could describe the
representing the difference between the original image segments of the outer perimeter of the annulus more effi-
and the recovered piecewise-constant image. Note that ciently by using a single curve (i.e., a circle) than as inde-
the first column of disks, where the local signal-to-noise pendent curves, thereby recovering the outer perimeter
iati. is klUitt, 1h, lld bctA IULu .cd exadtly all of of the annulus from the region boundaries alone. But it

the recovered disks have the same shape. In the next seems rather implausible that the inner perimeter could
column, the shapes are quite similar, but not exactly so. be so recovered, given that there are only four unoc-
As the local signal-to-noise ratio decreases, the shapes cluded segments of the inner perimeter. We shall not
of the disks becme more dissimilar, but also smoother, further explore good continuation of region boundaries
as is clear in the final column. in this paper.

From this example we see that when the signal-to- A second possible basis is the "good continuation" of

noise ratio is sufficiently high, every detail of the dis- the intensit variation within the regions. In this case,
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we interpret good continuation to mean that the inten- quickly grows beyond 21RI, making the search for the op-

sity variation within a group of regions is simpler to de- timal group computationally infeasible. Although this

scribe using a single polynomial model than with the in- number is much smaller than the number of possible seg-
depend.,nt polynomials (one per region) original recov- mentations, it is still too large to search through explic-

ered by the segmentation algorithm. For a piecewise- itiy. Thus, as with the segmentation problem, we need
constant image such as Fig. 2(a), this basically means to use an approximate solution technique.
that regions with roughly the same intensity should be We now define a continuation method that is quite
grouped together. Figs. 2(d,e,f) show the three resulting similar to the one used by the segmentation algorithm.
groups of regions found by the grouping algorithm (the However, rather than having a node for each pixel in the
algorithm will be described shortly). The first group of image, we now have a node for each region. The node is

regions correspond to the light background regions, the a vector repr senting the coefficients of tile polynomial
second group to the middle-grey regions of the annulus, for the entire region. For convenience, a local coordinate
and the final group (a single region with many holes, system is def ned for each region, with the origin at the
shown in black), corresponds to the occluding grid. centroid of the region. Rather than having each node

Fig. 3 illustrates the results of the segmentation and linked in a graph to its four (or eight) spatially nearest

grouping algorithms for a piecewise-first-order image. In neighbors as in the segmentation algorithm, each node is

this case, a different polynomial was used for the regions now linked to the k nearest regions according to a met-

within the inner perimeter of the annulus, resulting in ric which includes both the spatial distance between the

four groups of regions. regions and the difference between the coefficients of the

As a final illustration, Fig. 4(a) is an image of tree independent polynomials. The purpose of the continu-

branches against the sky. Even in such a low-resolution ation method is to determine which links to maintain.

image one immediately perceives the occlusion of the sky When the continuation method is complete, the groups

by the branches, and groups the sky regions together as are defined to be the connected subgraphs.

one "object" in the scene. Furthermore, because of the In principle, each region should initially be linked to all

nature of the occluding objects (tree branches), it seems other regions, but, to reduce the computational burden,

quite implausible that any kind of good continuation of only the k nearest regions (as defined above) are used.

the boundaries could lead to the correct grouping. Of course, if two regions in the optimal grouping are

Note that the sky has a strong gradient, being brighter not a part of a connected subgraph of the initial graph,

in the lower right corner of the image, and darker in then the continuation method will fail to find the optimal

the upper left. Thus, a piecewise-constant model (such grouping. Thus, to minimize this possibility, k must be

as simple thresholding) is insufficient. A piecewise-first- chosen sufficiently large so that any errors induced by the

order model was used. The recovered piecewise-first- heuristic use of the pair-wise metric will not disconnect

order image is shown in Fig. 4(b), and Fig. 4(c) shows regions that belong to the optimal grouping. In practice,

one of the groups of regions recovered by the grouping k = 16 seems to be sufficient.

algorithm. Note that most of the larger occluded sky Formally, let zi denote the intensity of the original

regions have been correctly grouped together. image at the ith pixel, located at coordinate (xi, yi) (a
single index is used to simplify the notation). Let Rr
denote the set of pixels in the r t h region recovered by

4.1 The Grouping Algorithm the segmentation algorithm. Let Gg denote a group of
regions. The cost of encoding the intensities in a group is

Informally, a group of regions is defined as aset of regions the sum of (1) the cost of encoding the p non-zero coeffi-

for which the intensities within all of the regions of the cients of the polynomial and (2) the cost of encoding the

group are modeled as the sum of a single iolynomial residuals. The cost of encoding the region boundaries,

and white noise. The cost of encoding the intensities required for the segmentation algorithm, is ignored here

in a group is thus the cost of encoding the p non-zero because the boundaries remain fixed.

coefficients of the polynomial plus the cost of encoding As derived by Rissanen (1983), the cost of encoding
the residuals (the point-by-point differences between the the p non-zero coefficients of the polynomial is of order l

polynomial and the original image intensities).

A complete grouping of an image is defined as an ex- P log it,
haustive set of mutually exclusive groups. That is, each 2

region in an image belongs to exactly one group, and where n is the total number of pixels in all of the regions

each group must contain at least one region. An optimal in the group. Because Eq. 1 is accurate only when n is
grouping is defined as a complete grouping for which sufficiently large, this causes some difficulties in directly
the cost of encoding the intensities (which is the sum applying this formula for segmentation and grouping. In

of the costs for each group) is least among all possible a ring t h n fo s m a tis a g nfi n t y

groupings. If there are IJR regions produced by the seg- particular, when n is small, this formula significantly

mentation algorithm, then the number of possible groups Unless otherwise noted, logarithms are base 2.
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underestimates the encoding cost. In practice, adding a This choice of c has the interesting property that it
constant to the formula is a better approximation, makes this cost equal to the cost of introducing a dis-

The cost of encoding the residuals is proportional to continuity in the segmentation algorithm. Thus, the seg-
(Leclerc 1989a) mentation algorithm can be viewed as a special case of

Ur(i)2 grouping where all the regions are one pixel in area, and
___-____ the regions are initially linked in a regular fashion.

r:RrEag i o Using the above local approximation to the cost, wedefine the following objective function for a given set of
where ur(i) is the value of the least-squares polynomial neighborhood relations (graph) N:
evaluated at the i th pixel, 2 and o-1 is the measured vari- 2
ance in the group. L(u, N) a a0'\tr~)

As with the segmentation algorithm, the cost of encod- ieR,
ing the coefficients must be approximated locally because b
n, the number of pixels in the group, is unknown until + 2 (1 - 6(ur - Ur))
the grouping is complete. We use the following approxi- r r'ENr

mation, in which we define the cost of breaking a link be- = Ur 2

tween two regions as the difference in encoding costs be- - aErI
tween using a separate polynomial for each region versus rb
a single polynomial for both regions. This cost is well- +_
defined because the area of each region is known from the r r'EN.
start. For simplicity of exposition, we derive the costs where Nr is the set of regions linked to region R, b is
and continuation method for the piecewise-constant case from Eq. 2, and mr is the mean of zi over the region Rr.
when the variance of the noise is fixed. In this case, (Note that b is divided by 2 because links are counted
p = 1, and the polynomial coefficient corresponds to the (Notete
mean of the regions. The more general case can be de- twiice.)
rived in the same fashion as the segmentation algorithm The first term in Eq. 3 is the cost of the encoding the(Leclrc 199a).residuals, and the second term is the cost of breaking
(Leclerc 1989a). a link between neighboring pairs of regions. (A link is

If we were to encode two regions, R, and R,, sepa-
ratey, hen e wuld eeddefined to be broken whenever Ur 0 Ut.'.)

Note that when the graph is fixed, the objective func-
SlogR + C tion is a simple quadratic with the global minimum at

~IO9IUr = Er'EN, [JR .m r
bits to encode the mean for region R, and Ur - Er'EN,, IRrI

logIRr, I+ C That is, Ur is the mean of the image intensities over the
group of regions that Rr belongs to, as expected.

bits to encode the mean for region R,. If we now encode The purpose of the continuation method is to deter-

the two regions together, we only need mine the correct neighborhood relations by eliminating
links from the initial graph. That is, the continuation

llog(JRrt.+jRtJ) +c method must determine the values of the Ur such that
Ur = Uri when regions Rr and Rr, belong to the same

bits for the mean of the combined regions. Thus, we group for the optimal grouping, and u, equals the mean
define the cost of keeping two regions separate as the of the intensities within the group that it belongs to.
difference between these costs: The continuation method embeds the original objec-

tive function L(u, N) in a family of functions L(u, N, s)
b =-[logJRr I + logIRr, I - log(IRrI + IRr, 1) + 2c]. such that L(u, N, 0) = L(u, N). The specific embedding

used here, as in the segmentation algorithm, replaces

We choose c by demanding that this expression be posi- (Ur - Ur,) with an exponential,
tive in the extreme case when both regions are one pixel / (Ur - Uri)

2 \
in area. Thus, we choose 2c = log2, and get (Ur - Ur) -+ er,r'(U,S) exp -(s_ 5 .)2

b = 1log 1?,.R .'I (2) so that
2 IRrl+ Rr' 2

21o a iLu ,s r -Ur
2For a fixed p, the least-squares polynomial minimizes the en- L(u, N, s) - a (m....

coding cost for a white-noise model (Leclerc 1989c). In general, r
p is a variable that must be deterndned as part of the optimiza-
tion process, as it was for the segmentation algorithm. For the + 2purposes of this paper, we assume Chat p is fixed. r r'EN,
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We begin with a large value of s, for which Eq. 4 is Blake, A. and Zisserman, A. (1987). Visual Reconstruc-
a quadratic with a single global minimum at Ur = Mr. tion. MIT Press, Cambridge, Massachusetts.
This local minimum is tracked as a decreasing function
of s, and the local minimum arrived at for a sufficiently Chaitin, G. 3. (1966). On the length of programs for
small value of s is the solution. computing finite binary sequences. Journal of the

More specifically, we start with a large value so, and ACM, 13, 547-569.
apply the following iterate, Chaitin, G. J. (1975). A theory of program size for-

b t , t+1 t mally identical to information theory. Journal of
mrT+ )Uri e,, o st ) ' the ACM, 22, 329-340.

+ H~i r'EN,
U + b t+ (5) Dahlquist, G. and Bj6rck, A. (1974). Numerical Meth-

a(st+) E e,,(u t, s ods. Prentice Hall, Englewood Cliffs, New Jersey.
HlEN,

t =Hochberg, J. (1981). Levels of perceptual organiza-
with s l = st until Iut+l - u~I < (see (Leclerc 1989a) tion. In Perceptual Organization, pages 255-278,
for the derivation of this Gauss-Jordan iterate). When Lawrence Erlbaum Associates, Hillsdale, New Jer-
the iterate has stabilized, u t+1 is at a local minimum of sey.
L(u, N, st+l). Then, s is reduced by letting st+1 = cst
for some positive a less than 1. All of this is repeated Hochberg, J. and McAlister, E. (1953). A quantitative
until st+l becomes sufficiently close to 0. approach to figure 'goodness'. Journal of Experi-

mental Psychology, 46, 361-364.

5 Summary and Conclusions Keeler, K. (1990). Minimal-length encoding of pla-
nar subdivision topologies with application to im-

The significance of the MDL approach is that it can deal age segmentation. In Working Notes of the AAAI
with all aspects of the visual interpretation problem (de- Spring Symposium on the Theory and Application
lineation, partitioning, recognition, etc.) in a uniform of Minimal-Lengih Encoding, pages 95-99, AAAI,
and principled manner. It appears to be computation- Stanford University.
ally feasible with current computing technology and has
been demonstrated to be effective in situations where Koffka, K. (1935). Principles of Gestalt Psychology.
conventional techniques fail. Harcourt, Brace and World, New York, New York.

We have presented one application of the MDL prin- Leclerc, Y. G. (1988). Constructing simple stable de-
ciple to vision. This application was presented as one scriptions for image partitioning. In Proceedings of
possible layer in a hierarchy, where each layer would pro- the 1988 DARPA Image Understanding Workshop,
duce an increasingly more compact representation of the
previous layer (the first layer being the image itself). pages 365-382, Cambridge, Massachusetts.
The second layer of this hierarchy is image segmenta- Leclerc, Y. G. (1989a). Constructing simple stable
tion, which was briefly reviewed here. The third layer descriptions for image partitioning. International
is region grouping, which was described in detail in this Journal of Computer Vision, 3(1), 73-102.
paper.

In conclusion, the simplest description principle is a Leclerc, Y. G. (1989b). Image and boundary segmenta-
new paradigm in computer vision that has produced im- tion via minimal-length encoding on the connection
pressive results with respect to some of the problems of machine. In Proceedings of the 1989 DARPA Image

early vision, and it is currently being extended to the Understanding Workshop, Palo Alto, California.

later stages of visual interpretation. Leclerc, Y. G. (1989c). The Local Structure of Image
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(a) (b) (c)

Figure 1. An illustration of the segmentation algorithm. (a) The input image. (b) The recovered piecewise-constant
image. Note that the boundaries of the recovered regions are identical in the first column, where the local sig-
nal-to noise ratio (SNR) is high. As the local SNR decreases because the variance of the noise increases from left to
right, the stability of the boundaries decreases, and the boundaries become smoother. (c) The residual image, defined
as the difference between the original image (a) and the underlying image (b). Note that there is no perceptible
structure remaining in the residuals, which indicates that the recovered image is correct.
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Figure 2. An illustration of the segmentation and grouping algorithms on a piecewise-constant image (a) The input
image. (b) The underlying image recovered by the segmentation algorithm. (c) The boundaries of th regions
recovered by the segmentation algorithm prior to grouping. (d) Shown in black is one group of regions that can be
more compactly described using a single intensity model, as found by the grouping algorithm (e) A second group
(f) The last group, composed of the single region (shown in black) with many holes.
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Figure 3: An illustration of the segmentation and grouping algorithms on a piecewise-first-order image. (a) The
input image. (b) The boundaries of the underlying image recovered by the segmentation algorithm. (c,d,e,f) The
groups of regions that can be more compactly described using a single intensity model, as found by the grouping
algorithm.

(a) (b) (c)

Figure 4. An illustrtion of the segmentation and grouping algorithms on a real image of tree branches against the
sky. Note that there is a sufficient gradient in the sky that simple thresholding or a piecewise-constant model are
inadequate. A piecewise-first-order model was used here. (a) The input image. (b) The underlying image recovered
by the segmentation algorithm. (c) One of the groups of regions, found by the grouping algorithm. Note that this
group contains most of the sky regions.
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How to decide from the first view where to look next

Jasna Maver* and Ruzena Bajcsy*
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Abstract views the structure of relations between these topologi-
cal features may be constructed. An important problem

The task we want to achieve is the description which arises in merging 3-D information from different
of a random arrangement of unknown objects views is how to deal with the errors which appear in
in a scene. First, a complete spatial map of measurements and transformation parameters of applied
the scene has to be acquired. To resolve the transformations [Krotkov and Kories, 1988].
ambiguities that are caused by occlusions in We limit ourselves to planning the next view. Some
range images, we need to take sensor measure- work has already been done on the planning of visual
ments from several different views. We have sensors [Sakane et al., 1987a; Sakane ei aL., 1987b]. Here
limited ourselves to the images obtained by a the plan generation is done on the bases of geometrical
laser scanning system which possesses certain and physical knowledge of the environment and models.
features - occluded regions which are easily This approach is model-based. N. Ahuja and J. Veen-
detected and can be used in designing an effi- stra [1989] construct a 3-D model from the orthographic
cient algorithm. We develop a strategy to de- projections of an object onto a plane perpendicular to
termine the sequence of different views using a viewing direction. Thirteen views must be selected
the information in a narrow zone around the from any subset of directions corresponding to the three
occluded regions. Occluded regions are approx- "face" views, six "edge" views, and four "corner" views
imated by polygons. Based on the height infor- of an upright cube.
mation of the border of the occluded regions In our work we use range data. The first range image
and geometry of the edges of the polygonal ap- can be obtained from any direction in the scanning plane
proximation, the next views are determined, of our sensor system. All the next views are defined from

the incomplete information of the previous views, and

1 Introduction we also take into account the properties of our sensor
system. We made experiments on real data.

The task we want to achieve is the description of a ran- The paper is organized as follows. In section 2 we
dom arrangement of unknown objects in the scene. Mul- describe our sensor system. The task of 3-D data ac-
tiple views [Bajcsy, 1988] are required because of geomet- quisition is divided into two subproblems: to see what
rical complexity of the opaque objects in the scene. The is illuminated and how to illuminate everywhere. The
problem of acquisition of multiple views, "where to look problem definition of the first subproblem and a proposal
next", can be decomposed into several sub-problems. to its solution is described in section 3. The second sub-
Developing the strategy for choosing the next viewing problem is represented in section 4. Experimental results
directions is perhaps the most challenging one. Another are presented in section 5.
problem is: how to merge information from different
views. This problem is closely related to object repre- 2 Sensing
sentation. We can merge the 3-D information obtained
from each view into a common coordinate frame. When The depth of the scene is mansured by the range scanner
the complete spatial map is obtained it can be modeled system [Tsikos, 1989]. It is an active binocular system
by volumetric primitives such as superquadrics [Solina consisting of a laser, a CCD camera, and a turntable
and Bajcsy, 1990]. Another approach is to find some which supports the scanned object. The laser and the
topological features (vertices, edges, faces, etc.) which camera are coupled. The laser produces a beam whichrepresent the basic elements for building the model of is spread into an illuminating plane. The illuminating
a scene. Based on incomplete information of different plane intersects with the object surface, forming a pla-ntar curve (laser-stripe). Each point on the curve is

*This research was supported in part by AFOSR Grants mapped onto a single point in the camera image plane.
88 0244, AFOSR 88-0296; Arny/DAAL 03-89-C-0031 PRI; The distance of the point on the curve to the camera cen-
NSF Grants CISE/CDA 88-22719, IRI 89-06770, ARPA ter is determined by the intersection of the illuminating
Grant N0014-88-K-0630 and Dupont Corporation. plane and the line which goes through the camera center
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3.1 Finding the next view.
and the point on the image plane. The range image is In all occluded regions the information about the height
obtained by scanning the object in a series of parallel il- of the surface with respect to the scanning plane is un-
luminating planes. This is achieved by moving the scene known. The question is how to define the next scanning
support with constant velocity perpendicular to the illu- direction to acquire the missing information.
minating plane. The y-axis on the image corresponds to
the laser-stripe and the x-axis corresponds to the shift 3.1.1 Problem definition
of the support. During the scanning, the laser sweeps For a given point pi(x,y) in the scanning plane, we
out a plane, called the scanning plane (see fig. 1). The want to find out all the directions from which pi(x, y) is
distance measurements are transformed into the perpen- visible.
dicular distance between the scanning plane and the sur- In order to determine whnther a given point pi(x, y) is
face of the objects and are stored as intensity values in visible from the direction pj, we must check if any of the
the final range image. The higher values correspond to points pk(x,y) in the scene along this direction (fig. 3)
smaller distances, the lower to greater distances. The occludes the point pi(x, y). We czsider the relation be-
system is calibrated so that the depth of the support tween the distance I of two points in the scanning plane
plane has the lowest value, which is greater than zero. and the length of occlusion ' produced by pk(xr, y) in
This enables us to detect the occluded regions whose in- direction 'pj and defined as:
tensity value is zero. Occluded regions arise when the
reflected laser light does not reach the camera but is in- l h(pk) - h(pi)
tercepted by some parts of the object. We can construct tan(a(h(pk)))')
a complete 21-D data of the scene by scanning from dif-
ferent directions (in the same scanning plane). For every where h(p,) and h(pk) represent the height of the scene
pair (x, y) in the scanning plane, we get the distance of at points pi(X, y) and pk(x, y), respectively.
the closest point on the surface to the scanning plane If the distance between p5(x,y) and each pk(x, y) is
(fig. 2), greater than the computed length of occlusion 1', then

p(x, y) is visible from direction 'pj. In the same scan-

h(x, y) = max(hon surface(x, ) (1) ning plane the point pi(X, y) can be seen from several dif-
ferent directions 'jp, pj+,.... To comput- the set of all

We generate complete 21-D data of the scene from directions from which pi(x, y) is visible, we have to know
a union of all those views that together eliminate the the corresponding height for each point in the scanningoccluded regions, plane.As indicated previously, after the first scan, the height

of the points that belong to the occluded regions is un-
3 Getting the complete 21 -D data of known. To determine the next scanning direction we

the scene want to compute the visible directions for all the points
in the occluded regions. It follows that we must make

Definition of the scanning direction. Let the laser some assumptions about the height of these points. The
stripe and the camera move from left to the right where question is. how restrictive assumption about the height
the camera is to the right of the laser-stripe. The scan- of the point in the occluded region can be made. If the
ning direction is the angle of counterclockwise rotation assumption is too restrictive then the solution may not
of the camera-laser configuration about the origin of the be found at all, while if the assumption is too weak then
scanning plane. However, in our experiments we rotated it may give a direction from which the point is not visi-
the support in clockwise direction instead. ble.
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Border height definition

.YThe height of the contour h(s) is found by searching in
a narrow zone around the occluded area. For each pixel

- on the contour the search is done for n pixels in three
- .directions. The directions of the search are defined by

P.(XY) sthe change in the x and y coordinates of the new pixel
__ .ca g pln, on the contour (fig. 4). The heighest value found in

the search is chosen as the pixel height. The height of
the border between two vertices is approximated by a

scanning pla n...- constant. It is defined as the median of all height values
on the contour between the two vertices.

plane Figure 4: Searching directions for the pixel height.

Polygon representation

The points of maximum curvature pi(, y) with i =
1,..., n are the vertices of a polygon P(pi,p2 ,... ,pn)

suppr which approximates the occluded region. The vertices
are ordered clockwise so that when one moves in the
direction of ordered vertices an occluded region is on

Figure 3: The relation of the distance I between points the right side of an edge. For each edge ei(p,,pi+l) in
p1(x, y) and pk(x, y) and the length of occlusion P polygon P its angle (fig. 5) with respect to the common

coordinate frame is defined by the equation

3.1.2 Occluded region representation O(ei) = tan-I( ,yi - yi+ ) (5)
We approximate the occluded regions by polygons. Xi -X+l

The next views are computed from the analysis of these where (x,, y,) and (xi+,, yi+,) are the coordinates of the
polygons and from the height values of their borders. vertices pi and Pj+i respectively.

The contours of the occluded regions in the image are 3.1.3 Analysis of occluded regions
found by Pavlidis' algorithm TRACER [Pavlidis, 1982].
The contours of the occluded areas are represented as Two properties are added to each edge according to
contour descriptors x(s) and y(s) for each area sepa- its angle O(ej) in the common coordinate frame and its
rately. Each contour must be segmented into a series of height h(ei) (fig. 7).
straight lines. The breakpoints on the contour are points 1. Occlusion If p is the scanning direction by which
of maximum curvature. the image was obtained then an edge ei(pi,pi+1)
Points of maximum curvature with angle O(ei) E (so, o + 180 0)counterclockwise i

called an occluding edge eo [iI and belongs to the
In order to find the points of maximum curvature, the set of occluding edges, 0.
contour descriptors x(s) and y(s) are first smoothed to If in polygon P we draw lines through the endpoints
filter out noise. The derivatives dz(s and dy(') are com- of the occluding edges in the direction 9, we cutputed to get the tangent angle function as the polygon P into areas A, as shown in figure 6.

To each edge eocc[i] in the polygon P belongs such
= tan- dylds( an area Aj. Polygon P can then be defined in the

dx/ds (3) following way

Special processing is required to handle phase wrapping. P(PjP 2, ...,Pn) = U A, (6)
The breakpoints of the contour are obtained from curva- U
ture function which is the derivative of the tangent angle {ilc,,o(i]6o}
function Note that only occluding edges create areas A.

X(s) = d4s (4) 2. Activity The second property is derived from the
ds height of the border. Let us say that eoc,[i] is an

The positive maxima and negative minima of the cur- occluding edge to which the area A, belongs, and
vature function re(s) represent the convex and concave ej is an edge which limits the same area Ai. We
vertices of the polygon. compare the length of occlusion 1' on the range
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Figure 6: Areas A belonging to occluding edges.

Figure 5: Angle 0 of the edge ej with respect to the
common coordinate frame.

image caused by the occluding edge e...[i] with
the occlusion caused by the difference in heights
(h(eo0 c4i]) - h(e1)) for ct(h(eoc~(i)). For each area
Ad, the edges which limit the area are tested as fol-
lows:
If ej limits Ad then ecann direction 0

tcie l an a(h e.0,b])C

where j=1,...,n and JI is measured at the middle a
point of the edge eJ. An occluding edge is also an
active edge. Active edges are these edges of polygon
P which are able to occlude the polygon P.

cluded regions can be visible only from inactive edge.
This statement implicitly includes two assumptions:a

1. Changes in surface heigth inside the occluded re-
gions are so small that they cannot cause occlusions.

2. Changes in surface heigth outside the border of oc-
cluded regions are so small that they cannot c~.use IU occluded region

occlusons.t occluding eddie.
occlusons, active edge.

Computing visible directions for each black pixel in the a i.nactive edge.
image is cornputationally expensive. Instead of comput-
ing visible directions for each pixel, we compute the vis- Figure 7: Definition of edges.
ible directions for areas A.

For each area A in polygon P, we shall define the
viewing angle $(At) as the sector containing all direc-
tions from which the area Ad can be seen. The viewing
angle is computed in two steps:
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Figure 8: Narrowing the angle ib(Aj) of the viewing angle. The narrowing is done
through the endpoints of the active edges on

1. Initial viewing angles -tA~,,ta are set up. both sides of the area Ai (fig. 8b). The new
2. The viewing angles are narrowed by each active viewing angle for area Ai is then:

Tediitalge. in anls eiito(A 1) = ['Pi 'P2]cotinterockwie. (10)
The nit al v ewi g an lesdefi iti n V and VO2 are the lower and upper bound ofThe initial viewing angle t(jjt~ for each area Ai the viewing angle, defined as

is defined by the angle of the occluding edge eocc[i] the
area Ai belongs to: oj = tan-( (

'xj - Xi

(A )i.itii. = ['(eo [i]). '(eoc[i])+ 1800 ]counterclockwije - Yi+i
(8) V,2 = tan- -k - i+ (12)

Viewing angles modification. (Xj, Yj), (xk, Yk) are the coordinates of the ver-
To each initial viewing angle $('Ai)initial belongs an area tices pj (x, y) and pk(X, y) in the common coor-
which is to the right of the line defined by the occluding dinate frame. Vertex p? (X, y) is that vertex of
edge eocji] (fig. 8a). This area can be divided into three the upper area which narrows the viewing angle
parts, an area above Ai, an area in which Ai lies and an of the area A, the most from above. Similarly,
area below A1 . Only the edges within these three areas the vertex pk(x,y) narrows the viewing angle
modify the angle: the most from below.

* Inactive edges do not modify the angle. Whenever the viewing angle Z (Aj) becomes empty the
* Active edges can modify the initial viewing angle area A, can not be seen from one view. In this exam-

P(Aj)jiniia in the following way. pie the area Ai must be split on smaller parts and new
- if the edges et,...,e,. are active and limit the viewing angles must be computed.

area Ai, the viewing angle (fig. 8c) is defined as 3.1.4 Determination of the next scanning

D(Aj) = $(Ai)initjai fn [O(et), O(e,) + 180 0]n direction
After having defined the viewing angles, we must de-n... n [O(e,),O(e,) + 1800). (9) termine the next scanning direction. If there exists a

- If an edge e, is active and is not a part of the direction from which the whole occluded region can be
border of the area A, then the angle d,(A,) is seen at once then this direction must appear in all view-
narrowed so that e, is excluded from the area ing angles. We have to intersect the viewing angles
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a) Histogram decomposition
Some viewing angles can include more than one maxi-

r-F-1 ...... ,["mum which means that some areas A will be seen more
0 360 0 340 than once if we take a scanning direction from every

b) maximum. We must test if views from all maxima are
really necessary. For each viewing angle we must find
the number of maxima it includes. If in viewing angle

o 360 0360 (Aj) there exists only one maximum then the area Ai
can be seen only from this maximum, so the scanning

a) .direction from this maximum is necessary. We label all
such maxima and remove from the histogram all view-
ing angles which include at least one labeled maximum.

0 360 0 360 From the remaining viewing angles we construct a new
d) histogram and repeat the procedure until all viewing an-

gles are removed. Then the new scanning directions must
be selected from all labeled maxima.

0 363 340 3.2 Combining images from different viewing
positions in one scanning plane into one
coordinate frame

The images obtained from the previously selected scan-
0 360 0 360 ning directions are combined into one coordinate frame

where the largest pixel value is kept as the pixel height.
Figure 10: Including a new viewing angle into the his- The coordinates (xi, y) of the pixels in the range im-
togram age obtained by the scanning direction p, are transformed

into the coordinates (x, yc) of the common coordinate
frame by the following transformation:

and choose a scanning direction from the global inter-

section if it is nonempty or from more partial intersec- X[ 1 cos(V) -sin(V) 1 r[zi (13)
tions otherwise. To select the scanning directions from yc sin( ) cos( (13)
the right partial intersections we build a histogram which
shows in how many viewing angles a certain direction ap- Because of imprecise sensing and inaccuracy of the trans-
pears. The histogram can be constructed by succession- formation parameters the final merging is achieved by
ally adding viewing angles and incrementing the count correlation;
of all directions in added viewing angle. Since the view-
ing angles are closed sets, two viewing angles, [V1, p2]cw
and [V3,4]ccw where Vl < Va, can form the histograms [ Cj [A j +
like in (fig. 9 case a,b,c,d,e). The case (fig. 9f) is not +
possible. Whenever we include a viewing angle into the
histogram, there exist the following possibilities:

1. The viewing angle forms a new maximum (Fig. 10a). + cos(9 + AV) - sin(V + Ac,) 1 [
2. The viewing angle leaves the width of an old max- s) () J V

imum unehanged from the left and from the right (14)
side (Fig. 10b). where Ax, Ay, and AV are discrete values from the in-

3. The viewing angle modifies an old maximum from tervals [-X, X], [-Y, Y], and [-0, q], respectively, which
" the right side (Fig. 10c), give the maximum correlation between the image of the
" the left side (Fig. 10d), common coordinate frame and the current transformed

image.
* both sides (Fig. 10e). The height at pixel (x, Yc) is the maximal height of

In the third case above we de -ease the maximum's all pixels which are transformed into it.
width but increase its height by oe which means that
maximum remains withir, all pievious viewing angles. 3.3 Completion of the analysis of one plane
In each viewing angle thcre is at least one maximum. If To compute the new scanning directions from the first
there is only one maximum in the histogram, it repre- view we assume that the changes in surface height in the
sents the global nonempty intersection. From each direc- occluded regions are too small to cause occlusions. The
tion in the global maximum the whole occluded region same is assumed for the regions outside the border of
can be seen at once. If there is more than one maximum the occluded regions. If this is not the case, and after
in the histogram and we select one scanning direction combining images from different viewing positions into
from each maximum, then we are able to see the whole one coordinate frame, there still exist occluded regions,
occluded region. they should be explored from other directions. Since
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Figure 11: Example 1
Figure 12: Example 2

we use only the height information of the border of oc-
cluded regions to compute the viewing angles, we may direction (P 00 of the first scan.
end up with too wide viewing angles. When we com- In general the computation of the next view is com-
pute the next scanning direction it is important to use pleted in the following way. For each scanning direction
the information about the active borders obtained by the that was taken we compute corresponding viewing an-
previous scan. In our algorithm, we incorporate this in- gles. A single histogram is then constructed from both
formation by building a new histogram from the previous the old one and new viewing angles. New scanning di-
one. Let us illustrate this by two examples. rections are computed in a similar way as in subsection

Example 1 3.1.4. During the histogram decomposition we do not re-
move the viewing angles of the old histogram. We do not

In the image of the first scan we find two occluded re- select the scanning direction from those maxima which
gions (fig. 11). From their borders the viewing angles include the scanning directions already taken. A possi-
are computed. The viewing angles are [90' , 2700] for the bility exists where there is no viewing angle which in-
larger region and [1800, 2700] for the smaller region. The cludes only one maximum. In this case, a histogram de-
viewing angle of the smaller region is too wide, because composition must be done for each local maximum. The
we do not check the visible region outside the border of solution with the minimum number of necessary scan-
the occluded regions. In the histogram we get one max- ning directions is selected. The procedure stops either
imum at [1800,270]. If we select 1800 as the second when all occluded regions are removed or when from all
scanning direction we still have an invisible part after maxima scanning direction have been taken.
merging both images. The maximum of the histogram
of the second view is again not restrictive enough. By 4 Searching for the next scanning
combining both histograms, we get two maxima. Since plane.
all viewing angles include the maxinnum 2700 that one
is selected as the next scanning direction. In the previous section we described how to rotate the

sensor system in one plane to get the complete 2--D data
of the scene. In each scan we illuminate the same part

In the image of the first view (fig. 12) we find one of the scene surface but we see its different parts. The
occluded region. The computed viewing angle is next problem is how to orient tile illuminating plane to
(900, 27001. After the second view we detect a low box illuminate the whole surface. We would like to solve this
inside the occlusion of the first scan. If in the second problem on the base of the 2 -D information we already
view the occluded region of that box does not reach the have.

larger box, the histogram of the second view does not The points on the surface to which the illumination is
give the correct solution. By incorporating the first his- tangent (fig. 13) form borders which separate illuminated
togram into the second histogram, we get three maxima. from non-illuminated surfaces. These borders are occlud-
We do not select a scanning direction from the middle mg borders. An occluding border makes a projection on
maximum [-45o,45*] because it includes the scanning the other parts of the surface in direction of illumina-
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tion. The surfaces, which are spread between occluding the next scanning plane we will assume that the surface
borders and their projections, must be illuminated, which is spread between the occluding line segment i

and its projection, is a flat face Fi. In a similar way, as

illumination we did in the previous section, we would like to define for
each line segment 1i the illuminating angle @(F) as a set

occluding border of all direction from which the face Fi can be illuminated.

projaction 4.1.1 The height of occluding border and the
height of its projection

The height of occluding border hb(li) and the height
occluding border of its projection hp(li) are found by searching in a nar-

. projection row zone left and right of the linked edge elements. The
direction of the search is defined by the change in x and
y coordinates of the new edge element in the link. The
directions of the search on the left side are the same as

Figure 13: Occluding borders, and their projections those in figure 4 where the searching directions on the

Assume that the scanning plane in which we con- right side are just opposite. For each edge element, we
sue th2-D data is the upper basic face of a cylin- calculate a left height taking the median of the height

structed the 1 da the upe ca o b per- values found in the search on the left. Similarly, we do
der (fig. 14). I the new scanning plane can only be per- the same on the right for each edge element. The left and
pendicular to the first one, it can be defined by anangle right height of the line segment i are approximated by
6, which is the angle of rotation of the illuminating plane constants which are defined as medians of all height val-
about the origin of the upper basic face of the cylinder. ues, between break points pi and pi+1, which are found
From the occluding borders we would like to compute on the left and on the right side from the edge elements
the rotation angles 6 of the next scanning planes, in the link, respectively. The higher value corresponds

to the height of occluding border hb(l4) and the lower to
the height of its projection hp(li).

4.1.2 An angle of a line segment

The endpoints pi, Pi+1 of the line segment i are or-
. illuinating dered such that the higher surface is always on the right

A $ plane side going in direction from pi to pi+I. The angle of the
0 i line segment 1i in the common coordinate frame of the

first scanning plane is

t b(,) - tan-1(Yi+S - Yi (15)
-Xi+5 Xi

Since the higher surface is on the right side of the
44, line segment 1i the face Fi can be illuminated only from

directions in the range [0(4), 0(/i) + 180']cw •

Figure 14: Orientation of the illuminating plane defined 4.2 Illuminating angles computation
by angle 6 To compute the illuminating angle IF(F) for each face F

we must locate the areas (islands) I in the 21-D image

4.1 Occluding borders of tue first scanning plane which are higher than the

Occluding borders are defined by the jumps in height height of projection hp(li) of the occluding line segment
in the 21-D image of the first scanning plane. With an i. We find the contours for each i of such islands I with

2 the same TRACER algorithm as we found the contours of
edge operator which is sensitive to CO discontinuities, occluded regions in the previous section. These islands
we can locate occluding borders. Occluding borders can represent the obstacles for the light. We must find all
be approximated by piecewise linear segments 1i with these directions from which the light reaches the face F
i = 1,...,m. In our experiments we use the algorithm without collisions with the islands. To find a solution
proposed by R. Nevatia and K. Ramesh Babu [1980]. to this problem we use the work of G.T.Toussaint and
In their algorithm, line finding consists of the follow- J.R.Sack [1983] which has solved the problem of moving
ing steps: determining edge magnitude and direction by polygons in the plane.1 The line, on which lies the line
convolution of an image with a number of edge masks, segment li, separates the first scanning plane into two
thining and thresholding these edge magnitudes, linking parts. If on the left side of the line there is no such
the edge elements based on proximity and orientation, island I which is higher than hp(li), then the face F
and approximating the linked elements by piecewise lin-
ear segments. 'The authors answered the following question: Given a

Each line segment i represents, at the same time, the direction d can the polygon P be translated in an arbitrary
part of occluding border and its projection. To compute distance in direction d without colliding with polygon Q.
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can be illuminated from any direction in [¢(0), 0(i) + side view top view
180']ccw. If there is an obstacle island, then each line a) P1
Icj, on face Fi connecting the point Pj on the occluding P 1C\
line segment i and its projection pp,, (fig. 15a) can be t CJ

seen from a di',erent subset of directions from the range P1
[0(1i), (li) + 1800]ccw. The illuminating angle of line icj,-
for K ob stacle isla n d s is: 2C +1* ---.. -----

, = =['P(),'(4,) + 180o0]c" - (UK =oj(Ik)). (16) PJ Pi
b) top view top view

The angle aj(Ik) includes all directions from which the b) tpvewtpve

island Ik occludes the line lj. If we insist upon illu-
minating the whole face F at the same time, then the
face can be illuminated, if the intersection between the
illuminating angle T(Ici) (of the line connecting the first
endpoint on the line segment and its projection) and the
illuminating angle *(lci+,) (of the line connecting the Pi PI+1

second endpoint and its projection) is not empty. If the .1+1,
intersection is empty, then the face F cannot be illumi-
nated at once. The solution can be found by splitting the
line segment 1i and respectively the face F into two parts
and computing the illuminating angle for each part sep- Snai Ii ,.na,-7, ,
arately (fig. 15b). In the drawing on figure 15a, each line
lcj on the face F is occluded from all directions inside Figure 15: Illuminating angle computation
the angle aj. If the ¢(!i) is the angle of the line segment
li, then the whole face Fi can be illuminate from any di-
rection in the range [0(1i), tP(li) + 180']ccw - (ai Uci+l).
In the illustration on figure 15b the line defined by the support. The contour of the occluded region whose in-
first endpoint pi and its projection pp, can be illumi- tensity value is 0 (black area) is represented in the image
nated from any direction in the angle fi. Also, the line of figure 17. From the curvature function of the contour
defined by the second endpoint pi+1 and its projection of the occluded region (fig. 18), the polygonal approxi-
pp,+, can be illuminated from any direction in the an- mation is computed (fig. 19). By searching around the
gle fPi+l. Since the intersection h nfli+i is empty, the contour in the belt of 7 pixels wide, the border height
face F belonging to the line segment 1i cannot be illu- is obtained (fig. 20). The height of the border between
minated from only one scanning plane. By splitting the two vertices is approximated by a constant which is the
line segment 1i into two parts, the solution is found. The median of all height values between the vertices (fig. 21).
face Fi must be illuminated from the two planes. The From the angle of the edge and from its height, the type
orientation 6 of the first scanning plane must be selected of the edge is defined (fig. 22, 23, 24). After computing
from the angle 7i, and the orientation b of the second the viewing angles, the histogram is built (fig. 25). It
scanning plane from the angle 7i+l. has two maxima [1290, 1440] and [157 , 1880]. We need

two additional views to get the complete 2--D represen-
4.3 Computation of the next scanning plane tation of the scene. We can select as a next scanning
After computing the illuminating angles %I(F) for all direction any direction from the range of both maxima.
faces F, the angles 6 of the next scanning planes are Since the maximum [1570, 1880] is wider and so more
determined from the histogram in the same way as we stable, the next view is selected from it. The selected di-
compute the new scanning directions in the previous sec- rection is 1800. The third direction can be selected from
tion. The directions in the necessary histogram maxima the lower maximum. If we remove all viewing angles
are the initial candidates for rotation angles 6 for the which include the direction 1800 from the histogram, we
next scanning planes. can build a new histogram (fig. 26) where we get wider

range [900,1440] for the third view. The third selected
5 Experimental Results scanning direction is 1200. In figures 27 and 28, there are

the images of both selected directions. By merging the
We tested our algorithm on a number of different scenes. images of the first and the second view we get the image
Results arc shown for two diffcrcnt scenes. The range in figure 29. The image of all threc vicws in the common
images were scanned using a structured lighting laser- coordinate plane is in figure 30. To compute the rotation
scanner with approximately 1mm/pixel spatial resolu- angles b for the next scanning planes from the side, we
tion and 1.2mm depth resolution. first locate edges in the image of all three views (fig. 31).

Scene 1: The scene consists of four boxes of differ- The edges represent the occluding borders which are ap-
ent heights and different sizes. The first view is done in proximated by piecewise linear segments (fig. 32). For
direction 00. In the image of the first view (fig. 16) the each line, the illuminating angle is computed and the
highest box partially occludes the lowest box. The other histogram of illuminating angles is constructed (fig 33).
three boxes are arranged so that they occlude only the In the histogram there are seven maxima.
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Figure 16: The first view Figure 19: The polygonal approximation of the occluded
region

law-

Figure 17: The contour of the occluded region
Figure 20: The height of the border of the occluded re-
gion
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PFigure 18: Tihe curvature of tihe contour of tihe occluded Figure 21: The height approximation of the border of
region the occluded region
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Figure 22: Occluding edges

Figure 25: Histogram of viewing angles

Figure 23. Active edges
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Figure 26: Histogram

Figure 24: Inactive edges
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Figure 27: The second view
Figure 30: The first, second, and third views in the com-
mon coordinate frame

Figure 28: The third view

Figure 31: Edges

Figure 29: The first and second views in the common
coordinate frame Figure 32: The linear approximation of the edges
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Figure 39: The third view
Figure 42: The linear approximation of edges
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Figure 40: The first, second, and third views in the corn- Figure 43: Histogram of illuminating angles
mon coordinate frame
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Figure 44: Histogram after the decomposition
Figure 41: Edges
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During the bistogram decomposition, two necessary Orthographic Views," IEEE Trans. Pattern Anal-
maxima are found [20,50] and [3120,3240]. From the ysis and Machine Intelligence, vol. 11, pp. 137-149,
illuminating angles which do not include the necessary Feb. 1989.
maxima, the new histogram is built. In the second his- [Bajcsy, 1988] R.Bajcsy, "Active Perception," Proceed-
togram (fig. 34) we have only one maximum [1300, 1440]. ings of the IEEE, Avgust 1988
From all three maxima the rotation angle 6 for the next
scanning planes must be selected. [Krotkov and Kories, 1988] E.Krotkov, R.Kories, "Inte-

Scene 2: The scene consists of a cup and a low grating Multiple Uncertain Views of a Static Scene
geometrical object which represents a half of a cylin- Acquired by an Agile Camera System, " Univer-
der (fig. 35). The first view is done in direction 00. sity of Pennsylvania, Tech. report MS-CIS-88-11,
From the polygonal approximation of occluded regions GRASP LAB 135, 1988.
(fig. 36) the histogram of viewing angles is constructed [Nevatia and Babu, 1980] R.Nevatia
(fig. 37). The histogram has two maxima: [1500,2120] and K.R.Babu, "Linear Feature Extraction and
and [256,2910]. Two additional views are done from Description," Computer Graphics and Image Pro-
directions 2700 (fig. 38) and 1800 (fig. 39). All three cessing, Vol.13, 1980, pp. 257-269.
views are then merged in the common coordinate frame [Pavlidis, 1982] T.Pavlidis Algorithms for Graphics and
(fig. 40). The complete 2.-D image is obtained. From image processing, Computer science press, 1982

the edges (fig. 41) their linear approximation are made
(fig. 42). For each linear segment the areas which are [Sakane et al., 1987a] S.Sakane, M.Ishii,
higher than the height of its projection are located and and M.Kakikura, "Occlusion avoidance of visual
the illuminating angle is computed. From the illuminat- sensors based on a hand-eye action simulator sys-
ing angles, a histogram is constructed (fig 43). During tem:HAVEN," Advanced Robotics, Vol.2, No.2, pp.
the histogram decomposition one necessary maximum is 149-165, 1987.
found [2580,2600]. From the illuminating angles which [Sakane et al., 1987b] S.Sakane,
do not include the maximum [2580,2600] the second his- T.Sato, and M.Kakikura, "Model-based planning
togram is built (fig. 44) which has only one maximum of visual sensors using a hand-eye action simulator
[590 , 690]. The scene must be illuminated from the side system:HAVEN," Proceedings of the 3rd Interna-
from two scanning planes. The angles 6 must be selected tional Conference on Advanced Robotics ICAR'87,
from the intervals [2580 , 2600] and [590 , 690]. pp. 163-174, 1987.

(Solina and Bajcsy, 1990] F.Solina and R.Bajcsy, "Re-
6 Conclusions covery of Parametric Models from Range Images:

We have developed an algorithm for selecting the proper The Case for Superquadrics with Global Defor-

views to produce the complete 21-D data of the scene mations," IEEE Trans. Pattern Analysis and Ma-
2 chine Intelligence, vol. 12, pp. 131-147, Feb. 1990.

then from this complete 21-D data of the first scanning
plane we compute the next scanning planes for 3-D data oussaint and Sack, 1983] G.T.Toussaint
acquisition. Both planar and curved surfaces are treated and J.R.Sack, "Some New Results on Moving Poly-
in a uniform manner. For the construction of 21-D data, gons in the Plane," in Proc. Robotics Intelligence
only the information in a narrow zone arounA the oc- and Productivity Conference, Detroit, Michigan,
cluded regions are used. The holes in the surface which November 18-19, 1983.
are occluded to the camera from all directions in the [Tsikos, 1989] C.J.Tsikos Laser Range Imaging System
first scanning plane cannot be seen because of geometri- User's Guide, 1989.
cal properties of the sensor system. To compute the next
scanning planes we exploit the occluding borders which
are located by an edge operator in the image of first
scanning plane. In planning the next scanning planes,
we have limited ourselves to the planes which are per-
pendicular to the first one.

Research is continuing on solving the problem of plan-
ning the next scanning planes without limitation.
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Task Oriented Vision'
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ABSTRACT localization and grasping of objects because it is a good illus-

This paper proposes a task-oriented approach to the design of tration of the task oriented approach. In order to illustrate this
vision systems. The approach changes the architecture of a approach, this paper will overview two vision systems recently
vision system depending on each task. Toward establishing completed: Rock Sampling Vision for planetary rover robots
a systematic methodology for task-oriented vision, this paper and Bin Picking Vision for industrial robots. We will illustrate
overviews two recently completed vision systems, analyzes their the task oriented approach in designing these two vision sys-

design philosophy, and derives a general framework for the task- tems. Then, we will derive a general framework for designing

oriented vision, vision systems under the task-oriented approach.

1 Introduction 2 Rock Sampling System
A critical issue in designing a model-based vision system is to One of the most important goals of a planetary exploration mis-
organize the relevant components into a vision program. Such sion is to collect and analyze terrain samples. As part of the
components include object representations, features, segmen- CMU Ambler project [21, we are investigating techniques to
tation methods, and image acquisition sensors. The choice of collect small rocks in sand. This section overviews the architec-
such vision components governs the quality of the resulting vi- ture of the rock sampling system.
sion programs. Image Acquisition Sensor Figure l(a) shows a typical scene

There are two approaches to the problem of organizing to the system. From this scene, the range image, as shown in
the components: general purpose oriented and task-oriented. Figure 1(1), is acquired using a range finder [19].
Researchers in the general purpose oriented school claim that
we should build the vision system to solve all the vision tasks Segmentation From a range image, three types of features are
using a single architecture, that is, an architecture in which a extracted:
fixed selection of components is executed in a fixed order. On
the other hand, researchers in the task oriented school claim that * shadows
we should prepare different architectures of vision systems and * orientation discontinuities
that, depending on the task, we should change an architecture
by using an analysis of the task specifications to systematically * range discontinuities
select the vision components.

We believe that the task oriented approach is more reason- Figure 1(c) shows the features extracted from the scene.
able in the current stage of computer vision. In the task-oriented These features give an indication of where the boundaries
approach, however, few attempts have been made to clarify of the rocks may be located in the scene. These features are,
and establish a methodology to choose appropriate components unfortunately, not sufficient for reliably extracting rocks from
among available ones beyond several ad hoc selections. the scene, because the rocks may be small or partially buried in

This paper proposes a task-oriented vision approach and the sand. Therefore, we cannot use a simple region extraction
investigates the design of vision systems in a systematic way. technique that would assume that the features are grouped into
We will focus on the design of robotics systems that involve the closed boundaries. Instead, we implemented an iterative rock

finding algorithm, similar to the "snake" algorithm [16], that
grows a closed contour until it fitts to the boundary of each rock.

The boundary of each shadow region is taken as a rock hy-tThis research was conducted in the Intelligent Modeling Laboratory, the pothesis. Since we know the configuration of the sensor, we can
Robotics Institute, Carnegie Mellon University. Image Understanding Research
in the IntelligentModelingtLaboratoryis supportedin partbyNASA underGrant derive the approximate location of the center of a rock from the
NAGW 1175, and in part by the Defense Advanced Research Project Agency, distribution of the corresponding shadow region. The snake is
DOD, through ARPA orderNo. 4976, and monitored by the Air Force Avionics initialized as a one-pixel contour at the hypothesized center. It is
Laboratory undercontract F33615-87-C-1499. The views and conclusions con- Lher iteratively deformed until it closely approximates the shape
tamined in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, NASA, the O1 'n. rock. Figure 2(a) shows the outline of our segmentation
Defense Advanced Research Project Agency or the U.S. Government. algeirihm.
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We implemented the snake using two kinds of energy field:
external and internal. The external energy field is given by
the interaction between the snake shape and external features
such as shadow. The internal energy field is given by the snake
shape itself. More precisely, the external energy is given by the
following three attractive forces:

" shadow attracter

" orientation discontinuity attracter

" range discontinuity attracter

Following the attractive forces, the boundary moves to-
wards the surrounding features.

The internal energy field tries to maintain the reasonable
shape of the snake. We implemented the following internal (a)
energy field:

" center attracter

" region attracter

A snake is attracted by its center position. It is also attracted by
itself; a snake tries to form a compact shape.

A snake terminates its expansion when all the forces are in
equilibrium. Figure 2(b) shows the rock region, shown in blue,
which has been extracted by this segmentation algorithm. This
approach allows us to locate rocks in the scene even when only
a very small number of visual features are extracted from the
image. This departs from other vision systems which implicitly
assume that strong and reliable features can always be extracted,
and therefore would not perform well in the type of unstructured
environment that we are considering. (b)

Representation Once a region corresponding to a rock has
been extracted by the snake segmentation method, the corre-
sponding set of 3-D points is approximated by a superquadric
surface. A superquadric is a generalization of an ellipsoid that
can represent a wide variety of shapes with a small number of
parameters [18, 1]. -... .

We chose superquadrics as our representation for two rea-
sons:

" Superquadrics are appropriate for blob-like shapes.

" Fitting superquadrics to a set of points from a partially visi- low*,.. •
ble object gives an estimate of the whole shape of the object,
whereas more local surface representations would provide W

a representation of only the visible part of the object.

The superquadric fitting algorithm is a standard gradient .__.__ .
descent on the parameters of the surface as described in [20].
Figure 3 shows a superquadric representation of the rock.

Grasping Strategy The superquadric fitting module provides
the following parameters of a rock: (c)

" mass center position Figure 1: Rock scene: (a) Input Scene; (b) Range data; (c) Ex-

" size tracted features. The black pixels indicates either discontinuities
or shadows.

• axis direction
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1 ISNAKE[ Figure 3: Shape representation by Superquadrics.

Once an object has been represented by a superquadric, the
system examines its size parameters to decide whether the rock
is small enough to be picked up by the gripper.

If so, the grasping strategy is set up so that the gripper ori-
Extracted entation direction is aligned with the rock axis direction, and the

Region approach direction is along the z axis and goes through the mass
center of the rock. Those three conditions are sufficient because
our gripper has four degrees of freedom. See Figure 4(a).

This configuration yields the minimum potential field given
(a) by the relationship between the gripper and the rock represented

by the superquadric. Figure 4(b) shows the configuration se-
lected by the system and Figure 4(c) shows the actual grasping.

3 Bin Picking System

We have developed a bin-picking system based on a vision al-
gorithm compiler for object localization [11, 13]. The central
issue in the research was how to build the compiler, which
automatically converts a geometric and sensor model into a lo-
calization program. In this section, however, we will emphasize
the architecture of the run-time system rather than the compiling
techniques.

Image Acquisition Sensors Figure 5(a) shows the input scene.
The needle image is acquired using a photometric stereo algo-
rithm [12], and the edges are obtained using Canny edge opera-
tor [4]. See Figure 5(b).

Segmentation From a needle image, two types of features are
extracted:

(b) o shadows:A photometric stereo system projects three lights onto
scene; each light generates a shadow region around an

Figure 2: Segmentation: (a) Overview of the segmentation industrial part. Since we distribute three lights in a triangle
algorithm (b) Segmentation result. shape, the part located at the top of the bin is surrounded

by shadow regions.
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* orientation discontinuities:
From a geometric model of an industrial part, we can de-
termine the angle between two adjacent faces. We can
find the minimum angle among these adjacent angles, and
use this angle as the threshold for determining orientation
discontinuities.

This segmentation method is quite stable due to the char-
acteristics of the scene (bin of industrial parts). Thus, we do not
need any detailed segmentation method such as the snake seg-
mentation method in the previous system. Figure 5(c) shows the
segmentation results given by simply overlapping shadows and
orientation discontinuities; the parts (dotted regions) are sepa-

size rated from each other by shadows and orientation discontinuities
S I (white regions).

"* Representation Once a region corresponding to an industrial
part has been extracted by the segmentation algorithm, several

Axis geometric features such as area, inertia and distance between
two adjacent regions, are extracted by the localization program.
The program performs the localization of an industrial part in

Mas center two steps: aspect classification and configuration determination.
Here, aspects are topologically equivalent classes of appearances

(a) of an industrial part. At first, the program classifies one region
into one of the aspects, that is, it determines approximate attitude
of the parts, corresponding to the aspect. It then uses more
precise features such as edges to compute the exact location of
the object.

Using the resulting configuration, the program generates
an object representation using the geometric model. It also
represents neighboring regions by dodecahedral prisms as shown
in Figure 6. These dodecahedral prisms are used for constructinga grasping strategy.

Grasping strategy The grasp configuration should satisfy the
following two conditions:

* It should produce a mechanically stable grasp, given the
(b) gripper's shape and the part's shape. Such configurations

will be called legal grasp configuration.

# The configuration must be achieved without collisions with
other parts. Grasp configurations are limited by the rela-
tionship between the shape of the gripper and the shapes of
neighboring obstacles. Such configurations will be called
collision-free grasp configuration.

In compile mode, possible legal grasp configurations are
compiled and stored at each aspect in a grasp catalogue as shown
in Figure 7(a).

In execution mode, the legal grasp configurations for the
computed aspect are retrieved from the grasp catalogue. These
configurations are then converted into the world coordinate sys-
tem based on the observed configuration of the industrial part.

(C) The system has to find a collision-free grasp configuration
among these configurations. It generates a cube representation
corresponding to the work-space of each legal grasp configura-

Figure 4: Grasping strategy; (a) Grasp plan and a superquadric; tion in the geometric representation, Then, the system examines
(b) a grasp plan; (c) Execution of the plan. whether the intersection exists between the gripper work space

cube and-the obstacle prisms in the geometric representation.
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Figure 6: Recognition result [11].

Among the possible collision free configurations found by
the system, the optimal configuration (currently the one nearest
to the part's mass center) is chosen, as shown in Figure 7(b).

(a) The system picks up the industrial part using the configuration
as shown in Figure 7(c).

4 Design Analysis
This section analyzes the design process of the two vision sys-
tems to illustrate the task-oriented approach.

4.1 Rock-Sampling System
Figure 8 shows the design flow of the rock sampling (RS) system.
The design uses the image acquisition method and starts with
the beloq.' kk specifications of the rock sampling.

Task specification The task of this system is to grasp a rock
in the sand under the following conditions:

The rocks are far enough away from each other. No colli-
sion occurs between the gripper and the neighboring rocks.

(b) * We can allow the collision between the gripper and the

neighboring sand. This is because

- damaging the neighboring sand grains is not impor-
tant,

- the collision between the gripper and neighboring sand
does not cause the configuration of the rock to change.

* * ewe do not know the exact shape of a rock beforehand.

Grasping Under this task specifications, we decided to use a
spherical grasping. See Figure 10(a). This grasping has the
characteristics that

(C) * it requires a large empty volume around an object to be

grasped, because all the fingers approach the object from

Figure 5: Bin of parts: (a) Input scene; (b) Needle map and edge all directions.

map; (c) Segmentation result [11]. * it may grasp the neighboring materials of the object, if any,

as well as the object,
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Figure 8: Design flow of Rock-sampling System

it does not require the precise attitude and position of the
object.

In order to realize this spherical grasping, we built a clam-
shell gripper as shown in Figure 4(a).

Representation Using a clam-shell gripper imposes two con-
straints on the representation:

9 the expected mass center of a rock should be inside of the
gripper

* the expected size of a rock should be smaller than the inner
hull of the gripper

(b) While working from only a partial observation of a rock and

without any prior knowledge of the rock shape, we still need
to recover the above information. We do not need to recover
a precise shape representation of a rock, however. For this
purpose, we can chose the superquadric representation, because
it 's described by a few parameters which can be recovered by
using a fitting method such as the gradient descent method.

-k Segmentation For a rock partially buried in the sand, orien-
-1wr tation discontinuities and depth discontinuitics are small. Thus,

(c) it is usually difficult to detect these discontinuities reliably and
extract a closed boundary based on them.

Because there is no a priori rock model available, the seg-
Figure 7: Grasp plan; (a) Grasp catalogue, a collection of legal mentation cannot be guided by a model as in the bin-picking
grasp configurations computed beforehand; (b) A collision free system. The only available information is that a rock forms
configuration; (c) Execution of the grasp plan [11]. a closed boundary. Along this closed boundary, the following

three boundary elements exist:
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- the collision may cause damage to the neighboring
parts,

- it may cause configuration change of the part to be
industrial part grasped, because the part is supported by the neigh-
on other parts boring parts, and thus, we may fail to grasp it.

tp grasping We know the exact shape of a part beforehand.

Grasping Under these task-specifications, we decided to use
a tip grasping. See Figure 10(f). Thi- grasping has the charac-

exact model teristics that

it requires only a small volume around an object to be
grasped compared to other grasping strategies because only

geometric model two fingers approach the object from two opposite direc-
representation tions

stable it grasps only the object
boundary * it requires the precise attitude and position of the object,

because grasping occurs as the contact of two fingers at the
region-based same time
segmentation In order to realize this tip grasping, we built a parallel-jaw

gripper as shown in Figure 7(b).

Representation In order to grasp a part using the parallel-jaw
Figure 9: Design flow of Bin-picking System gripper,

• the precise position of two parallel planes should be known.• shadow boundaries This constraint implies a polyhedral representation of the
* orientation discontinuities object. A sensor typically gives a partial observation of an ob-

ject. A pair of parallel planes has two opposite surface normals.
* depth discontinuities If one plane is visible from the sensor, it is likely that the other

plane is self-occluded from the sensor. Even though the twoThus, we needasegmentation method which onctsthese planes are visible, it is necessary to have an n2 search out of
boundary elements and extracts a closed boundary. For this n observed planes. Thus, we decided not to find such parallel
purpose, we employ a model-based segmentation method based plane pairs at run time.
on the snake algorithm described in Section 2. paepisa u ieInstead, we decided to represent a part by a polygonal
Image Sensor Since this task does not require the rock's pre- approximation given by a CAD model, to search such plane
cise configuration, the geometric information provided by the pairs in the representation at compile time, and to make the
range finder is sufficient for carrying out the task. Therefore, we relationship between such pairs and observed part attitude. At
use only a range sensor. run time, we concentrate on recovering the attitude of the part,

and recovering the pairs attitude using this relationship.
4.2 Bin-picking system Segmentation Around the object, we can observe the distinct
Figure 9 shows the design flow of the bin-picking (BP) system. depth discontinuities, because an industrial part sits on other
The design flow starts with the task specification of the bin- parts, as opposed to the RS case in which a rock may be partially
picking and specifies all the components down to the image buried in the sand. Also from the geometric model of the ob-
acquisition method. ject, we can determine the threshold value used to find surface

discontinuities from the minimum angle between adjacent faces.Task-specification The task of this system is to grasp the top- We use the following facts for segmentation:
most industrial part in a bin of parts under the following condi-
tions: 9 An object boundary is surrounded by a shadow. Since we

use a photometric stereo system with three light sources,
" The parts are close to each other. Some collisions may the object at the top of the bin is always surrounded by a

occur between the gripper and the neighboring parts if we shadow.
choose a random grasping strategy. c We can predict the threshold value that defines the surface

" We should avoid the collision between the gripper and the discontinuities by computing angle differences of every
neighboring parts. This is because face pairs in the model.
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Since these two boundaries are distinct and connected, we
do not need a method, such as the snake-based segmentation
used in RS, to connect them.

Image Sensors This task requires determining the precise at-
titude of an industrial part of the tip grasping. Unfortunately,
region information given by a rangefinder or the photometric
stereo is not sufficient for deriving such reliable information.
Thus, we have to employ a edge detector as the second sensor
so that we can use a fitting method between predicted edges and
observed edges given by the edge detector. (a) (b)

5 Towards Systematic Design of
Grasping Systems

From examples in the previous sections, we can conclude that
for grasping tasks, the following five relationships are the key
decisions for designing a vision system:

" task specification and grasping strategy

" grasping strategy and representation

" representation and features (c) (d)

" task specification and segmentation method

" grasping strategy and sensing method

Grasping In order to examine the grasping system design, we
have to determine how many grasping strategies are available.
Taylor and Schwarz [211 classified the grasping strategies into
the following six categories:

" Spherical grasping - grasps an object by closing all finger
from all directions. The contact occurs at several points on (e) M
the whole surface of the object so that very stable grasping
can be achieved. See Figure 10(a). Figure 10: Six basic grasping patterns: (a) Spherical grasp-

ing; (b) Cylindrical grasping; (c) Hook grasping: (d) Lateral
" Cylindrical grasping - grasps a cylindrical object from all grasping; (e) Palmar grasping; (f) Tip grasping.

directions in one plane. The contact occurs at the points
along the cross-sectional circle. See Figure 10(b).

We can realize one of the six patterns of grasping using various
tioks. graspinact ocpuls a obje potoard articularde- kinds of grippers. For example, our parallel jaw gripper can
tions. The contact occurs at the points along the cross- perform the tip grasping and lateral grasping; our clam-shell
sectional hemicircle. See Figure 10(c). gripper can achieve the spherical grasping.

" Lateral grasping - pushes an object on a soft side surface The workspace, that is the finger sweeping volume,
of one finger by the other finger. The contact occurs at a for the six grasping strategies decreases in accordance with
point and points on a plane. See Figure 10(d). the order listed above: the spherical grasping requires the

largest workspace, while the tip grasping requires the small-
* Palmar grasping - grasps the end of bar by closing three est workspace. The stability of grasping decreases in the order

fingers. The contact occurs at the three points. See Fig- listed: the spherical grasping has the maximum reliability in
ure 10(e). grasping, while the tip grasping has the minimum stability in

grasping. Thus, we prefer to use the grasping strategies in the
" Tip grasping - grasps an object by closing two fingers listed order, if possible. Thus, assuming that all other consid-

from two opposite directions. We can achieve very fine erations are equivalent, our preferences for using a particular
grasping. The contact occurs at the two opposite points, grasping strategy runs from those described higher on the list to
See Figure 10(0. those covered lower on the list.
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1[ Type Parameters Representation Segmentation and Sensors The fourth and fifth issues can be
Spherical (a) center superquadrics viewed as the problem of determining sensing strategies: what

(a) radius kind of sensor should be used, where it should be located to
Cylindrical (a) center of cross-section generalized cylinder detect the necessary features, and what kind of features must be

(a) axis direction superquadrics extracted.
(a) radius We have developed tools to model sensors detectability [ 14]

Hook (a) center of cross-section superquadrics and implemented them into a geometric modeler [15]. We can
(a) axis direction plus pulling direction use this tool to determine the sensing strategies: what kind of
(a) radius boundary elements are obtained, and where they are obtained.
(a) pulling direction Cowan and Bergman, and Haralick and Shapiro also devel-

Lateral (e) orientation of two planes two parallel planes oped methods to determine the optimal position of the camera
(e) position of two planes (geometric model) and the light source for manipulation tasks 16,22]. These meth-
(e) opening distance

Palmar (e) center of cross-section cross-sectional shape ods are, however, at the primitive stages. We have to explore
(e) radius (geometric model) more advanced techniques for the systematic design of sensing

Tip (e) position of points two contact points strategies.
(e) surface orientations (geometric 6 Task Oriented Approach

Table 1: Possible grasping strategies: (a) and (e) denote approx- Currently, the majority of vision community agrees with Mar's
imate and exact information, respectively, approach in designing a vision system. Researchers in Mar's

school try to design a general purpose vision machine which
performs all vision tasks using the single architecture.

Representation Table 1 summarizes the required functional Figure 11 shows the paradigm of Marr's approach [17].
parameters for a representation by these grasping strategies. From several 2D image clues such as shading, texture, and

Note that the cylindrical grasping does not require the motion, an intermediate representation (2- 1 representation) is
length of the cylinder. One convenient representation for this generated. This representation is based on the viewer-centered
grasping strategy is the superquadric. coordinate system (the coordinate system attached to an image

The hook grasping requires a feature indicating the pulling plane). Then, from this 2 - 1 D representation, a final 3D
direction as well as the superquadric representation. representation, based on the object-centered coordinate system,

The lateral grasping requires the exact position of the two is generated.
planes. For this, we need an exact model of an object which is We claim that, depending on the vision task, we should
represented using polygons. Since it is difficult to compute the systematically change the architecture of a vision system. We
distance between the two planes from an image, we need to have will refer to this as a task-oriented approach; figure 12 shows
some strong model such as a geometric model of an object and the paradigm. The basic collection of modules are the same as
to localize the object in the same way as in the BP system. Marr's except for the existence of a box, labelled as TASK. One

In the same way as for the lateral grasping, the palmar particular task for a vision system should govern the choice of
grasping requires the knowledge of the exact position of the representations, vision modules, and image acquisition sensors.
cross-section, while the tip grasping requires the knowledge of In particular, in order to design a vision system along the
the exact position of two contact points and their orientation, task-oriented approach, we propose to consider the following
Since it is difficult to extract such information precisely in run issues:
time, we need a polygonal approximation such as the one pro-
vided by a geometric model of the object. 9 task specifications

Features If a geometric model is available, the third issue can * required functional capabilities by the task

be related to the concerns of the automatic feature selection. * representations having such functional capabilities
In this area, Goad proposes a method for selecting appropriate
edges for object localization [7]. Bolles and Cain propose a * features appropriate for extracting such representations
focus feature method which selects important features and less
important secondary features [3]. We are developing a method * segmentation methods appropriate for extracting such fea-
for choosing optimal features for object localization [10]. Other tures and representattons
representative methods include [9, 8, 5]. These methods, how- * image sensors appropriate for obtaining such segmentation
ever, require a strong representation, such as a geometric model methods and features
of the object, to be handled beforehand.

On the other hand, for weak models such as superquadrics, The key element in the task oriented approach is the logi-
the third issue can be considered as the problem of finding a cal order in which the vision components are selected and built.
suitable surface fitting method. We can use a method such as The approach may be considered as a depth-first approach in that
the gradient descent employed in the RS system in other weak at each level the component most consistent with the previous
model recovery problems. level is selected. The selection starts from the task specification
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Figure 11: Marr's paradigm Figure 12: Relationship between task-oriented and bottom-up
approaches. The dashed lines indicate the points at which the
task description guides the selection of components.

and proceeds all the way down to the sensor selection. This
is in contrast with Marr's breadth-first approach in which vi-
sion components are developed at each level and are developed more robust systems but will also give a new direction to vision

independently of the other levels and of the task specification. research.
From the previous examples we can see that this task-oriented
approach is critical in building a working system. For example, 8 Acknowledgement
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1 Introduction

In this paper we describe our approach to 3D rigid ob-
ject recognition and positioning from range data. We
will restrict our analysis to piecewise algebraic objects,
that is, solid objects whose boundary surfaces can be
described as finite collections of smooth surface patches,
and each of these patches as a subset of an algebraic
surface, the set of zeros of a poiynomial in three vari-
ables. We will also show that the same techniques apply
to the recognition and positioning of rigid objects from
sparse nonplanar curve data, and to the recognition and
positioning of rigid two-dimensional contours from edge
maps.

The paper introduces new ideas for computationally
attractive fitting of 3D surfaces, 2D curves, and 3D
curves to data, 2D and 3D object representation, and
geomeric invariants. These geometric invariants appear
to be very important for dealing with the situation of a
large number of different possible objects in the presence
of occlusion and clutter.

An implicit surface is the set of zeros of a smooth
function f :R3 -+ R of three variables Figure 1: Implicit surface defined by the third degree

Z(f) = {(z, Z2, z 3 ): f(j, z, X3) = 0}. polynomial f(zI, Z2, 3 z + z2 - (az - 1) - 1.

For example, figure 1 shows an implicit surface which
is the set of zeros of the third degree polynomial can it be in any other coordinate system. That is not the/zxs) 2+X2 z(X2 ca-tbIn)n-te codnt sse.Tati o h
f(z X2 , X3) zX1 2- X 3 case with data sets represented as graphs of functions of

Similarly, an implicit 2D curve is the set of zeros of a two variables, i.e., as depth maps, the patch descriptors
smooth function f :Rt2 

- R of two variables produced by many well known segmentation algorithms.

Z(f) = {(xi,X2 ) :f(zi,z 2 ) = 0}, In the second place, the union of two or more implicit
curves or surfaces can be represented as a single implicit

and an implicit 3D curve is the intersection of two sur- curve or surface, the set of zeros of the product of the
faces, the set of zeros of a two dimensional vector func- functions which define the individual curves or surfaces
tion f : R3 -- R2 of three variables Z(fl) U Z(f 2) U... U Z(f) = Z(fl *f2...f),

Z(f) = {(X, 2, 3) f(X 2 , 3) = 0)~ so that groups of curve or surface patches, or eventually

The representation of curves and surfaces in implicit a whole object, can be represented as a subset of a single
form, as opposed to parametric form, has many advan- implicit curve or surface. For exaiple, the union of two
tages. In the first place, an implicit curve or surface cylinders
maintains its implicit form after a change of coordinates, 2+ 1)2_1)2
that is, if a set of points can be represented as a subset of {Z IX+(X3-1-4 = 0)U Ix : 0)

an implicit curve or surface in one coordinate system, so shown in figure 2, is the surface defined by the set of

'This research was partially supported by an IBM Fel- zeros of the product
lowship, NSF Grant IRI-8715774, and NSF-DARPA Grant { 2 ( + (z3 - 1)2 - 4)(X2 + (z3 + 1)2 - 4) = 0). (1)
IRI-8905436
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We are primarily interested in two families of implicit
functions. One is the linear model, where a member of
the family is an arbitrary linear combination of a finite
number of fixed functions

f()= FlX(z)+...+FhXh(z)

=FX(z)

For example, for polynomials of degree < 2 we can take

X(X) = (1, x1, Z2, X, X, ZIZ, X3, X2 3,X3

the vector of monomials of degree < 2. Equation (1) is
an example of the linear model where X(x) is the vec-
tor of monomials of degree < 4, and F is a row vector
of polynomial coefficients. The other family is the rigid
model, where a member of the family is the composition
of a fixed implicit function with an arbitrary Euclidean
transformation, that is, the curves or surfaces described
by members of this family are all the possible transla-
tions and rotations of a fixed curve or surface, and the
parameters describe the translation and rotation. Here

Figure 2: A pair of cylinders represented as a single f(x) = g(T(z))
fourth degree surface. where Z(g) is a fixed curve or surface, and T(z) =

Az+b is an Euclidean transformation, so that the curve
or surface Z(f) is equal to the curve or surface Z(g),

Hence, a single fourth degree polynomial can represent but after the translation and rotation defined by T-
a pair of cylinders, and this is true for arbitrary cylinders,
e.g., a pair that do not intersect. This property relaxes Z(f) = Z(g oT) = T-(Z(g)].
the requirements on a segmentation algorithm, and it Fitting within the linear model produces uncon-
is very important in regard to the matching problem, strained curve or surface patches, while fitting within
allowing the matching of groups of patches at once. the rigid model yields position estimates, the position

Towards building a recognition and positioning system the original curve or surface has to be moved to in order
based on implicit curves and surfaces, we have to address to minimize the mean square distance to the data. Fit-
the following topics: ting within the rigid model can be seen as a generalized

1. How to efficiently fit implicit curves and surfaces to template matching procedure.
data, and how to segment a data set into meaning- Unfortunately, there is no closed form expression for
ful regions, each consisting of an implicit curve or the distance from a point to a generic implicit curve or
surface patch. surface, not even for algebraic curves or surfaces, and

iterative methods are required to compute it. In sec-
2. How to match implicit curves and surfaces. tion 2 we replace the real distance from a point to an

3. Given a pair of matching curves or surfaces, where implicit curve or surface by a first order approximation.
one is an Euclidean transformation of the other, how The mean value of this function, on a fixed set of data
to recover the transformation which transforms the points, is a smooth nonlinear function of the coefficients,
first curve or surface into the second one. and can be locally minimized using well established non-

linear least squares techniques. However, since we are
4. How to deal with object recognition and position interested in the global minimum, and these numerical

estimation when occlusion is prevalent, techniques find local minima, we still need good initial
5. How to organize and index into a data base of known estimates for the two cases of interest, the linear model

objects for purposes of object recognition and posi- and the rigid model.tion estimation. In order to find a good initial estimate for the lin-ear model, we replace the performance function. In-
The first problem we have to deal with is how to fit stead of the approximate mean square distance we use a

implicit curves and surfaces to data. Given a family of new approximation, turning the difficult multimodal op-
implicit functions parameterized by a finite number of timization problem into a generalized eigenproblem. The
parameters, and a finite set of points in space, assumed curves or surfaces computed by this generalized eigenvec-
to belong to the same curve or surface, we would like to iorfit method usually produces good fits. The fits are of-
fit an implicit curve or surface to the data by estimating ten satisfactory, not requiring further improvement, and
the parameters which minimize the mean square distance the required computation is modest and practical.
from the data points to the curve or surface defined by The search for initial estimates for the rigid model is
those parameters. based on a theory of Euclidean invariants of algebraic
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curves and surfaces, introduced in section 3, because we
are dealing with range data. Other researchers have used
projective invariants for fitting implicit curves to the pro- :
jection of 3D curves [Forsyth et al., 1990]. This theory
of Euclidean invariants will let us decide whether two
curves or surfaces of the same degree match or not. A .
positive answer to the matching problem would mean
that the second curve or surface is almost equal to the
first one, but after an unknown Euclidean transforma-
tion. If two curves or surfaces match, the theory also
lets us recover the Euclidean transformation which trans-
forms the first curve or surface into the second one.

For object recognition, we are developing a system
that involves indexing into a data base of objects rep-
resented by features consisting of groups of moderately
high degree algebraic surface6. These high degree al-
gebraic surfaces have much more discriminating power
than does an individual low degree algebraic surface such
as a plane or a quadric surface. Two types of representa-
tions are presently under consideration. One is the rep-
resentation of a collection of a few low degree algebraic
surfaces by a single algebraic surface of higher degree.
For example, representing three planes by the set of ze- Figure 3: Fourth degree interest region
ros of a single third degree polynomial, the product of
the three first degree polynomials, each representing one
plane, or a quadric and a cubic surface by a single fifth Hough transform or geometric hashing [Ballard, 1981,
degree algebraic surface. The simple low degree primi- Lamdan and Wolfson, 1988, Bolle et al., 1989, Taubin et
tive surfaces used r.ze those that caii be found with mod- al., 1989].
est computation. Exact segmentation is not necessary.
Partial occlusion is not a problem; a primitive surface 2 Implicit Curve and Surface Fitting
can be estimated from a portion of the primitive surface Let V = {P,..., Pq} be a set of n-dimensional data
data. Once the primitives are found in the data, groups points, and let Z(f) be the set of zeros of f =
are then represented by single higher degree algebraic Rn - Rk , so that, Z(f) is a 2D curve when n = 2
surfaces. The other type of representation are the inter- and k = 1, it is a surface when n 3 and k = 1, and
est regions, which are spherical regions in which the data it is a 3D curve when n 3 and k 2. In this section
is not well represented by a low degree algebraic surface, we describe algorithms for fitting an implicit curve or
such as first or second degree, but is well approximated surface Z(f) to the data set D by approximately
by an algebraic surface of one degree higher. For exam- minimizing the mean square distance
ple, a region occupied by a portion of two intersecting
cylinders would be represented exactly by a fourth degree I q Z(f))2
surface and poorly by a lower degree surface if enough Z dist(pi,
of the surfaces were sensed. More generally, a fourth de- q i=1
gree surface might capture a chunk of information useful from the data points to the curve or surface.
for recognition purposes on a natural irregular surface In general, the distance from a point X E Rn to the set
such as a face, whereas a lower degree surface might not. of zeros Z(f) cannot be computed by direct methods.
Useful interest regions are those having the stability that The case of a linear map is an exception, in which case
the polynomial does not depend on the exact placement the Jacobian matrix Df(z) is constant, and we have the
of the sphere specifying the region of data to be used. identity
For this approach, sphere sizes should be chosen such f(y) = f(x)+ Df(x). (y-x).
that most spheres will contain data well approximated Note that for a surface or 2D curve, Df() = Vf()* ,
by low degree surfaces, and only a few will require repre- for a sD curve, Df( z) i
sentation by higher degree surfaces. These higher degree each o a chrved d ie etor.
surfaces then contain considerable discriminatory power Toe unique points that minimizes the distance y -
for object recognition. Figure 3 show an example of an The uniqu pointd bthat minimizes then y
interest region. 4 to z, constrained by f(y) = 0,is given by

In this way we can deal with the occlusion problem. = -Dtf(),
Note that the members of a group of detected patches where Dt is the pseudoinverse [Duda and Hart, 1973,
do not even have to be connected, so that hypotheses Golub and Van Loan, 1983 of Df() , so that the square
of objects and their positions can be generated from of the distance from 1 to Z(f) is
more global information, and this procedure can be im-
plemented using a voting scheme, such as a generalized dist(x, Z(f))2 = f(z)t[Df(x) • Df(x)'-'f(x).
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In the general case, where f(z) is not a first degree those which define straight lines, circles, planes, spheres
polynomial, we do not have an identity, but an approxi- and cylinders, having the value of IIVf(x)ll2 constant
mation on Z(f) . In those cases we have

dist(z, Z(f)) 2 - f(x)t[Df(z) Df(x) t]-lf(z) (2) 1 f(p,)2  k$ i = f()2

For k = 1, the case of a 2D curve or 3D surface, the q EIVf(P )112 "i IIVi(PI) 2

Jacobian has only one row Df(x) = Vf(x)t , and (2) I th

reduces to In the linear model, the right hand side of the previ-

dt, Z(f))
2  (X) 2  ous expression reduces to the quotient of two quadratic

IIf(X)112  (3) functions of the parametersdistz,11)) I- El I f~2. (3

Note that this distance is the value of the function scaled q $1 f(P) 2  FMFt (5)

down by the rate of growth at the point. Due to lack of E I II~f(pi)IP = FNFt(

space, we will continue the development for 2D curves where the matrices M and N, are nonnegative defi-
and 3D surfaces, but all the results extend to 3D curves nite, symmetric, and only functions of the data points:
as well [Taubin, 1988a, Taubin, 1988b, Taubin, 1990].

Since we are interested in fitting curves and surfaces 1 q
to data in a finite number of steps, we will restrict our- M - - [X(pi)X(pi)']
selves to families of maps described by a finite num- q i=1
ber of parameters. Let us choose a smooth function q
0 : R*+ " --) Rk defined almost everywhere. From now N = 1.- [D X(p )D X(pY)].
on we will only consider maps f : " -+ R which can be q i=1
written as The new problem, the minimization of (5), reduces to aAX) - 0(a, X) generalized eigenvalue problem, with the minimizer be-

for certain a = (ai,..., a,) t , in which case we will also ing the eigenvector corresponding to the minimum eigen-
write f = 0, . We will refer to a,..., a. as the parame- value of the pencil
ters and to l,..., x. as the variables. The family of all
such maps will be denoted F(M - \N) = 0.

= {f : 3a f = a} , The generalized eigenvector fit can be extended to 3D
curves as well, where the solution is given by the eigen-

we will say that 0 is the parameterization of the family vectors corresponding to the two least eigenvalues. For
Y. example, figure 4 shows the result of fitting an implicit

Now, we will fit curves or surfaces to data points by 3D curve, defined by the intersection of two general
minimizing the approximate mean square distance from quadric surfaces, to the data points using the general-
the data set D to the set of zeros of f = 0,, ized eigenvector fit algorithm.

q For fitting at modest computational cost, we use the
1 = : f(4)2) performance function given by the right side of (5), also
q =, IlVf(pi)11 2  in the general case where IlVf(X)112 is not constant onZ(f).

The problem of computing a local minimum of (4) is a

nonlinear least squares problem, and it can be solved us- 3 Geometric Matching of Algebraic
ing several iterative methods [Dennis and Shnabel, 19831, Curves and Surfaces
such as the Levenberg-Marquardt algorithm [Levenberg,
1944, Marquardt, 1963, Mor6 et al., 1980]. Every local Our solution to the algebraic curve and surface match-
minimization algorithm requires a good starting point, ing problem, that is, being able to decide whether two
and since we are interested in the global minimization of polynomials of the same degree define almost the same
(4), when using the Levenberg-Marquardt algorithm we curve or surface, but in different positions, and, after
need a method to chose a good initial estimate. In re- a positive answer to recover the transformation, is to
lated work, Ponce and Kriegman (Ponce and Kriegman, define for every algebraic curve or surface an intrinsic
1989] have used the Levenberg-Marquardt algorithm for frame of reference. By this we mean, a center and an or-
fitting the projections of the occluding boundaries of al- thonormal basis, functions of the coefficients of the poly-
gebraic surfaces to 2D edges. nomials, but which are rigidly attached to the curves or

Let us consider the linear model first, leaving the rigid surfaces that they define. This intrinsic frame of ref-
model for the next section. In the linear model the maps erence is commonly referred to as the object coordnate
can be written as system in the Computer Vision literature. In our object

f(x) = FiXi(x) +... + FhXh(X) = FX(x), coordinate system, the object center is at the origin, and
the orthonormal basis for the object coincides with the

where F = (Fi,..., Fh) is a row vector of coefficients, coordinate unit vectors. After recomputing the coeffi-
and X = (X, ... ,Xh)t : Rn --_ Rh is a fixed map, cients of two polynomials with respect to their intrinsic
and the parameter vector is just a = Ft . There exist frames of reference, i.e., their object coordinate systems,
certain families of implicit curves or surfaces, such as we can look at the new coefficients and decide whether
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Figure 4: 3D curve fitted to data using the generalized Figure 5: Cubic 2D curve, union of the three straight
eigenvector fit algorithm lines fitted to the data points in the dark region

there is a match or not. If the two curves or surfaces are nomials. Once an inner product (., -) is chosen in the

the same, their coefficient vectors should be the same. space of polynomials of degree < d, the following num-
Then, the rotation and translation which transform the ber is a matching measure
first curve or surface into the second one can be eas- (.f , 9 1)2

ily computed from the corresponding intrinsic frames of match (f, g) = (1'1 g) 2

reference. Though we use an intrinsic frame of referenceI! IlI1gllIthat we have found to be easy to compute, any rotation where as usual 11fl[2  (ff) is the norm of f with

of these can also be used. The polynomial matching respect to the given inner product. This inner product
measure that we use has the desirable property of being should include appropriate weightings for the different
invariant to such rotation. components of the polynomial coefficient vectors.

If z' = Az + b is a nonsingular Euclidean transforma- We will decompose the computation of the intrinsic
tion, and f is a polynomial, we denote by f the unique frame of reference in two parts. We will first find the
polynomial which satisfies the polynomial identity translation vector or center, and then the rotation matrix

or canonical orientation, but we need to introduce some
f(z) =f'(z) ; nomenclature first.

explicitly, f'(x') = f(A-I( ' - b)) . If we look at the By a homogeneous polynomial 0 of degree d we mean

Euclidean transformation as a change of coordinate sys- one that can be written in a unique way as a linear com-
tem or frame of reference, then both Z(f) and Z(f) bination of monomials of degree d
describe the same set of points which have different coor- Ob() = 1:~ z -L T,

dinates in the two different coordinate systems. We will la=d

define, for every polynomial f, an intrinsic frame of ref-erence, that is, a matrix A = A] and a vector b = by where the vector of nonnegative integers a

which are functions of the coefficients of f such that (ai,..., a,) t is a multiindez of size lal = al +'"+an,
Z(f) is located in a canonical position and orientation. a! = al! ... an! '" a multiindex factorial, (T, : lal = d)istesto ofiinso , an *=x1 . n is
Then if Z(f) and Z(g') are in the canonical positions is the set of conficients of , and x = a,1 ... i
for the polynomials f and g, respectively, we will say the monomial of degree d associated with the multiin-
that Z(f) and Z(g) match exactly if f -g', except dex a.
for a nonzero multiplicative constant, where f'(x') = A homogeneous polynomial can also be written with-

(x- b)) and g'(') = g(A 1(x' - b9)). out the multiindex factorial coefficients, but their use
for e fgr and so twcuic -bic provides us with a very important tool. If {T, : lal = d)For example, figures 5 and 7 show two cubic 2D curves and {Uc : jl = d} are the sets of coefficients of the ho-

given by the union of three straight lines extracted from mogeneous polynomials and of degree d, then the
the edge images, and figures 6 and 8 show the corre- following expression
sponding frames of reference.

This approach also lets us make approximate matches (4,, 4) = -TaU.
by comparing the vectors of coefficients of the two poly- Ial=d
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Figure 6: Intrinsic frame of reference for the curve in Figure 7: Cubic 2D curve, union of the three straight
figure 5 lines fitted to the data points in the dark region, match-

ing curve in figure 5

defines an inner product in the vector space of homoge-
neous polynomials of degree d, which is invariant under We define the center of f as the vector y which mini-
orthogonal transformations [Helgason, 1984], that is, if mizes the invariant norm of the homogeneous polynomial
X? -- Ax is an orthogonal transformation, then gd- I

( , , ,) = ( ', ') 1f d -1 + S V f d JJ2 ,

Henc, toug we hos th orintaionof a obect a least squares problem, which has a unique solution
Henc, toug we hos th orintaionof a obect if the vectors of coefficients of the partial derivativeswithin its object reference frame in one way for conve- of the term of degree d, the homogeneous polynomi-

nience, it could have been chosen in any other way, and als 8fd/0x,..., 8fd/1zx, are linearly independent. If
the matching measure we use would remain unchanged. they are not linearly independent, then the definition of

Our efiitio ofcentr o a D cuve r 3Dsurace the center has to be generalized including the terms of
of degree d > 2 is a generalization to d > 2 of the well l w rd g e s w l ,b td et h a k o p c e wlknown case Rf a nonsingular quadratic curve or surface. notwer hee ases hu ere. h ac fsac ew
Every polynomial f of degree d can be written in a The canonical orientation can be defined in several
unique way as ways, all of them based on the fact that every symmet-

d ric matrix with nonrepeated eigenvalues has an associ-
ATz) E A W/z) ated set of eigenvalues, thus generating 211 different or-

i=0 thogonal coordinate systems having unit vectors in the
where fi is an homogeneous polynomial of degree i, and directions of these eigenvectors. For example, given a
fd: 0 0. For every fixed space vector y, the polynomial polynomial f of degree d, which we decompose as a
g(x) = f(z + y), as a polynomial in x has exactly the sum of homogeneous polynomials
same degree d, and so it can also be written in a unique d
way as a sum A~X) E A (),

d i=0
AXz + y) = g(z) E 'gi(Z), we consider the symmetric n x n matrix whose (i, j)-th

i=0 element is the invariant inner product of the i-th and
where the coefficients of the homogeneous polynomials j-th partial derivatives uf fd with respect to x, and xj
gi are polynomials in y. Particularly, the term of degree Od ld
d is invariant dLf

d = fd ,Ox. ' Oxi

and the term of degree d - 1 is given by If this matrix has all different eigenvalues, the canonical
n orientation of f is defined as the orientation induced by

gd 1=_fd I+ 'fd= d~ + Yi2fd . the eigenvectors of the matrix. Then, in order to disam-
gd-1 d-I~tV f fd-+ 49aio biguate among the 2" different frames of reference, we
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tion. Technical Report LEMS-66, Brown University, Jan-
uary 1990.

514



Modeling Polyhedra by Constraints

Van-Duc Nguyen and Joseph L. Mundy* Deepak Kapur
Artificial Intelligence Program Institute for Programming and Logics

Corporate Research and Development Department of Computer Science
General Electric Company State University of New York
Schenectady, NY 12345 Albany, NY 12222

Abstract In conventional modeling systems, an object is de-
scribed by incidence relations between faces, edges, and

A constraint-based modeling system is de- vertices, as well as numerical specification of geometry
scribed. A polyhedral model is represented as in terms of vertex positions, face and edge parameters.
a network of nodes and constraints. Nodes are For polyhedral objects, edges are line segments and faces
3D vectors representing the location and ori- are bounded planes. For curved objects, the edges are
entation of the geometric entities, or measure bounded algebraic curves and faces are algebraic surfaces
variables such as length or cosine. Constraints bounded by closed edge contours. The limitation of this
are polynomial equations in the node parame- conventional representation is that specific geometric re-
ters. Modeling and recognition are viewed as lations between model entities are expressed in terms of
solving for values of the node parameters such the numerical parameters associated with vertices, edges
that all the constraint equations are satisfied and faces.
and the mean square error between model and In order to recover the geometric relations, classifi-
observed shape is minimized, cation procedures which operate on the numerical data
An approach for solving the constrained mini- must be established, and tolerances which specify the
mization problem that emphasizes the elimina- range of validity of a particular relation must be pro-
tion of dependent parameters using symbolic vided. For example, two lines may be classified as or-
algorithms and the best fit between model and thogonal if the angle between them is between 890 and
observed shape using numerical optimization 91'. The choice of such tolerances is very difficult and
techniques is described. Buchberger's Gr~bner depends on the numerical precision of arithmetic com-
basis algorithm and Ritt-Wu's triangulation al- putation.gorithm can be used for eliminating dependentparameters as well as for detecting inconsis- A major advantage of the constraint description is thattency among constraints. A modification of the the intended relationships between components are ex-triangulation algorithm is proposed which helps plicit. When two lines are intended to be orthogonal,in controlling tihe growth of the intermediate this relationship is directly expressed in the object defi-computations. nition. In order to generate an instance of a constraint-based model the constraint equations must be solved to

determine values for the model parameters which simul-
1 Introduction taneously satisfy all of the equations. It is often the case

that the specified equations are fewer than the model
The representation of objects in terms of gfometric con- parameters, so an additional restriction is imposed so
straints provides an approach for the integration of many that the model solution agrees as closely as possible with
aspects of scene description and recognition. The central empirical measurements on observable model elements.
idea is that an object is described by a set of symbolic For example, for the case of the square, we may have
geometric relations which constrain the possible configu- measured vertex locations which do not correspond ex-
rations of the entities from which the object is composed. actly to the corners of an ideal square. It is reasonable
For example, a square is composed of edges which are re- to expect that the model parameters maintain the con-
stricted to equal length and each corner must, he a right straints associatcd wi"th a square anddu niiiiiize the
angle. This description does not specify any specific in- mean square error between the model vertices and the
stance of a square but admits an infinite space of squares measured positions.
according to orientatioii, location and scale. This example brings up a general philosophical consid-

*Work at GE was supported in part by the DARPA eration concerning constraint models which is important
Strategic Computing Vision Program in conjunction with to emphasize. In our view, the constraints specified by a
time Arrn3 Engineer Topographic Laboratories under Contract user are considered to be exact in the sense of ideal ge-
No. DACA76-86-C-0007 and the Air Force Office of Scientific ometric figures. Any error involved in the specification
Research under Contract No. F49620-89-C-0033. of constraints is absorbed in the errors associated with
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empirical observations. To clarify the point, consider the most ambitious example is the ACRONYM system
the case of house walls which are closely aligned with developed by Brooks [Brooks, 1981]. ACRONYM rep-
the direction of gravitational force, through the use of a resented objects in terms of generalized cylinders with
carpenter level or plumb bob. Now suppose we wish to constraints expressed in terms of symbolic inequalities.
extract house models from image data. It is reasonable The inequalities provide a direct mechanism for specify-
to specify that house walls are exactly aligned with the ing tolerances on the position and orientation associated
gravitational field even though a specific house may have with the projection of models constructed from gener-
some errors in construction. Any error in alignment can alized cylinder components. Brooks developed an inno-
be taken up in the error minimization process. vative approach to the solution of systems of symbolic

A slight variation of this approach is possible if toler- ;nequalities, including orientation relations, but the cost
ances on model construction are known in advance. One of the algorithm permits only relatively small constraint
can specify geometric relations with slack parameters systems to be solved.
and then establish a tolerance range on these parameters As an interesting historical note, a very early exam-
to account for uncertainty in the relation. The specifica- ple of constraint modeling is Sutherland's work. In his
tion is still exact in the sense that tolerance bounds are SKETCHPAD system, Sutherland implemented a con-
themselves considered to be free of error. straint solver so that the user could crudely specify draw-

Another major advantage of representation by geo- ings by hand [Sutherland, 1963]. The sketches provided
metric constraints is that a large range of specific ob- the initial guess to an iterative process for solving the
jects can be derived from a single constraint model. The constraint system and producing accurate drawings. An-
introduction of constraints as the basic representation other early example is the model-based recognition sys-
also permits the direct specification of known relation- tem developed by Roberts [Roberts, 1965]. His recog-
ships between objects and between objects and cameras. nition system was based on polyhedral object models
The following are several examples of constraint relations which could be mapped into variable shapes by allowing
which arise in aerial photography: a full projective transformation on the 3D vertex posi-

" Shadow geometry is constrained by sun angle and tions. This mapping on 3D space can transform a cube
object boundaries, into any rectangular prism and even into a truncated

" Buildings are in contact with and perpendicular to pyramid as in a drawing with vanishing points. Thus a

the terrain surface and usually aligned with road- wide variety of shapes can be specified from a fixed poly-

ways. heron and a 4x4 homogeneous transformation matrix.
A more recent example, similar to our work, is the de-

Known relations exist between cartographic features velopment of a complete constraint-based modeling sys-
as specified by a map. tem for mechanical design by Gossard, Light, and Ser-

" Camera viewpoint is often specified by navigational rano [Light and Gossard, 1982, Serrano and Gossard,
coordinates. 1987]. Their approach is largely numerical using tech-

In model-based vision, one can take the general view niques of nonlinear programming. They have observed
that recognition corresponds to the existence of a solu- that large constraint systems can be reliably solved if
tion for a particular set of model constraints which yields the Jacobian matrix associated with constraints can be
close agreement with the observed image features and re- reduced to block diagonal form. Another important ob-
lations between image features. In current model-based servation is that it is easy for users to specify inconsistent
vision systems, the model structure is usually fixed, and constraints and that mechanisms must be developed to
six degrees of freedom associated with model pose are de- automatically detect and isolate such inconsistencies.
termined to minimize the error between projected model The goal of our project is to produce a constraint
features and image features derived from segmentation. solver which can handle large constraint systems, per-
If the agreement is sufficiently close, then recognition haps of the order of thousands of equations, and at the
is declared for the specific model pose. For more geu- same time provide a general constraint representation to
eral constraint-based systems, the recognition process permit flexible specification of object descriptions. The
is identical except that the object representation usu- focus of our current work is the development of a hybrid
ally defines a larger numLer of degrees of freedom which system which employs techniques taken from symbolic
must be pinned down bv the recognition process. The algebra as well as more conventional numerical optimiza-
final decision concerning the applicability of a particu- tion algorithms. Our view is that either approach by
lar constraint depends entirely on the error in predicting itself is insufficient to achieve the desired result. Purely
observable features. Ultimately, it is necessary to spec- numerical approaches may fail to converge or hecome
ify error bounds on observations such as vertex position trapped at a local minimum and it is difficult to detect
and edge orientation, but the availability of a general inconsistent coi 'raint specifications. Purely symbolic
constraint representation allows these specifications to approaches become intractable for even small problems
be based on a few variances associated with a particular due to the exponential growth in the size of algebraic
sensor and particular segmentation algorithms, expressions during variable elimination. We believe that

The idea of representing objects and object configu- there is middle ground where symbolic techniques can
rations in terms of geometric constraints is not recent, be used to compile geometric constraint specifications
but there have been relatively few image understand- into efficient numerical modules with well behaved con-
ing systems developed around these concepts. Perhaps vergence properties. The following sections give details
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of our approach and some recent experimental results. VERTEX EDGE FACE

VERTEX location colinearity coplanarity
2 Network of Nodes and Constraints EDGE orientation coplanarity
A model is represented by a network of nodes and con- FACE orientation
straints. Nodes are non overlapping sets of variables.
They describe the configurations of component entities Table 1: Primary geometric constraints.
such as vertices, edges, faces. Constraints are n-ary rela-
tions among nodes. They are represented by equations
which must be satisfied by the values of the nodes' vari- tween two locations, orientation constraint between two
ables. orientations, and collinearity/coplanarity constraints be-

tween the locations and orientations of any two geomet-
2.1 Nodes as Vectors or Masures tic entities with different dimensions.
Primary geometric entities in 3P are 0-, 1-, and 2- Polynomials are commonly used in geometric reason-
dimensional manifolds. In the simple case of polyhedral ing to describe constraints [Kapur and Mundy, 1989,
objects, they correspond to vertices, edges, and 'aces. Ponce and Kriegman, 1989], structures of line draw-
If we view these entities as sets of points, vertices have ings [Sugihara, 1986], and geometric invariants [Forsyth
'invariant' locations, whereas edges and faces have in- et al., In preparation]. Polynomial equations will be
variant orientations which are respectively the edge di- used to represent geometric constraints. Polynomial in-
rections and the face normals. The locations and orien- equations are only needed to describe betweenness con-
tations of the geometric entities can be represented as straints.
3D vectors, with three variables each, corresponding to Location Constraint
the three Cartesian coordinates along the x, y, z axes.

In the case of curved objects, the curved edges and Let v, and v2 be two vertices, and 1 be a length mea-
faces no longer have invariant orientations. However, sure. The location constraint equalizes the distance be-
their orientations vary slowly and so can be parameter- tween two locations and the length, and is represented
ized relative to local coordinate frames centered at their by a polynomial equation in second order:
mid points. The parameterized equations usually make
explicit salient features such as local symmetries [Faux ((vl - v2 ) (vl - v 2 )) - = 0 (1)
and Pratt, 1979, Horn, 1986], and so are preferred. I The first partial derivatives of the location constraint

To span the spectrum from polyhedral to curved ob- relative to the variables in v1 , v2 , and 1 are:
jects, we choose to represent geometric entities by their
locations and orientations. This choice reflects the com- [2(v 1 - v2)T, 2(v2 - v1 )T, -21] (2)
mon distinction between linear and angular components
in geometry and mechanics. Besides locations and ori- The location constraint becomes singular with all the
entations, we also need two measures: length to de- first partial derivatives vanishing to zero, as the lengthscribe the distance between two locations, and cosine 1 tends towards zero, and the two vertices collapse into
to describe the angle between two orientations. Men - one [Nelson, 1985]. To avoid this singularity, we putto dscrbe te agle etwen wo oienatios. ea- a nonzero lower bound on 1, and treat coincident loca-
sures are represented by scalar variables. Coordinate tionz lw b on c , an teat conident oc
frames [Paul, 1981] and camera projections [Slama, tions as a special case where the location constraint is
1980], are represented similarly with measures, location described by three first order polynomial equations.
and orientation vectors. Orientation Constraint

From now on, we restrict ourselves to the case of poly- Let dl and d2 be the directions of two edges, and
hedral objects. Each vertex, edge, or face has a repre- a be the angle between the two direction vectors. The
sentative location and orientation, denoted respectively orientation constraint equalizes the dot-product of the
by (v), (e,d), or (f,n). The locations of the vertices, direction vectors and the cosine of the angle. It is rep-
edges, and faces are related by linear combinations. The resented by a polynomial equation in second order if we
edge orientation is the unit direction vector between its use the cosine as variable, and normalize the magnitude
two end vertices. The face orientation is the unit nor- of the direction vectors to 1:
mal vector perpendicular to the first two edge directions (dl -d2) - cos a = 0
from its boundary edges. The hierarchy of geometric en- (dl . dl) - 1 = 0 (3)
tities, figure 1, leads to a similar dependency between (d 2 • d2 ) - 1 = 0
the nodes in the network.

Thc Jacobian of the above constraints respective to the
2.2 Constraints as Polynomial Equations variables in dl, d2 , and a is:
All the primary geometric constraints are exhaustively (d2 )T (d )T s
enumerated by finding all pairs between linear and an- )T  sin a
gular entities, table 1 . We have location constraint be- 2(dl)T (0) 0 (4)

'Generalized spheres and cones are special cases of curved (0)T 20 2  0 J
objects for which it is most efficient to represent with implicit The local Jacobian becomes singular with the first row
equations, rather than with parameterized equations. becoming a linear combination of the last two rows, as
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Sobject

face (f'n)

edge (e,d) osine (c) length (1)Fc I

Figure 1: Hierarchy of geometric entities.

a tends to 0 or 7r, and the two direction vectors become the above primary geometric constraints. For example,
parallel. To avoid this singularity, we put bounds on two vertices v, and v2 are symmetric about the support
cos a and treat parallel orientations as a special case plane of face f if and only if there exists a point v such
where the constraint is described by three first order that:
equations. (v- f) • n = 0(v 2 -v 1 ) X n = 0 (8)
Collinearity and Coplanarity Constraint - 0.5(v 2 + v1 ) = 0

1. Collinearity of a vertex to an edge is described by

three second order polynomial equations: The first equation constrains the intersection point v to
lie on the plane of symmetry. The second and third

(v - e) x d = 0 (5) equation makes the segment vtv 2 perpendicular to the
plane and makes the intersection point v the mid pointOnly two equations are independent. Since the edge of segment vlv2.

direction can change at run time, we are forced to

use all three equations, or we have to express the Betweenness Constraint
constraint in the local frame of the edge. Betweenness is mostly needed to describe occlusion.

2. Coplanarity of a vertex to a face is described by one To represent betweenness constraints, we need inequa-
second order polynomial equation: tions. Inequations can be handled similar to equations

(v-f) . n = 0 (6) by using active sets. A vertex v is between two vertices
v, and V2 if and only if there exist two scalars sl and S2

3. Coplanarity of an edge to a face is described by two such that:
second order polynomial equations: Si > 0

(e-f) n = 0 (7) S2 > 0 (9)
d n = 0 (v -v1) - s'(v2 - v1 ) = 0(v2 - V) -s2(v2 - v1) = 0

Alignment and attachement between geometric en-
tities are parsed into collinearity or coplanarity con- 2.3 Parse Polyhedra into Nodes and
straints. The implicit coplanarity of the vertices and Constraints
edges belonging to a face are made explicit by a min- The topological and geometric constraints that are im-
imum number of independent coplanarity constraints, plicit in a polyhedral shape are parsed bottom-up into
section 2.3. nodes and constraints. This parsing is done locally and

Symmetry Constraint as needed.

Local symmetry about a point, line, or plane could A vertex v is parsed into a location node v with three
be generated from operations on vectors and scalars and new variables (vt, Vv, V,).
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An edge e between two vertices v, and V2 is parsed into The error polynomial is derived from the correspon-
a location node e and an orientation node d. The edge dence between 3D and 2D entities, and the camera pro-
location e is the mid point of the two end vertices, and jections Pk's as:
so could be pre-compiled as 0.5(v 1 + v2 ), and no new
variable is needed. The edge orientation d is described f(x) = Ek (Pk - Pk) Wk (Pk - Pk) (13)
by three new variables and three independent nonlinear Pk = Pk(x)
equations: The cameras can be included in the fit by inserting the

d d (v 2 - v1) = 0 (10) camera parameters in the model parameters x.(d.- d) - 1 =0
The search for a feasible and best-fit model x is for-

The edge direction is uniquely defined if and only if the malized as a constrained minimization problem:
two end vertices are distinct. This non singularity con-
dition is enforced by a non zero bound on the distance Minimize f(x)
between the two end vertices. subject to h(x) = 0 (14)

Let f be a face with boundary edges (e,... ,e) and xL <x <xH
vertices (vi,...,vn). Let v2 be the common vertex be- The lower and higher bounds (xL,xH) are needed to
tween the first two edges el and e2 . The face location avoid local singularities in location and orientation con-
f can be precompiled as 0.5(v 1 + v3 ) to avoid creating straints.
three new variables and generating three linear equa- A realistic model can have thousands of nodes. The
tions. The face orientation n is described by three new geometric constraints are local since they usually relate
variables and three nonlinear equations: three and at most four nodes each. The ratio of the

n dl = 0 number of non-zeros versus the number of elements in
n d2 = 0 (11) the Jacobian is much less than 1%. So sparse matrix

(n • ii) - 1 = 0 techniques [Duff, 1981, Bunch and Rose, 1976] must be
used to speed up the solution of the constrained shape.

The face normal is uniquely defined if and only if the
first two edges are not collinear. This non singularity 3 Solving Constraint Minimization
condition is enforced by bounds on the dot-product of Problem
the two edge directions. The constraint minimization problem (14) can be solved,

If the face f has more than three vertices, the copla- in theory, using purely symbolic methods or purely
narity of the vertices or edges must be made explicit with numerical optimization techniques. Current symbolic
additional coplanarity constraints. The smallest num- methods are quite complicated to implement and are
ber of independent equations is achieved by generating practically infeasible because of exponential growth in
coplanarity ronstraints from the last n - 3 vertices and the size of polynomial equations. Numerical optimiza-
the face, using equation (6). tion techniques are not exact, can be unstable due to nu-

merical errors, or may fail to converge or become trapped
2.4 Constrained Minimization at a local minimum. The performance in either case is

Let x be Lhe vector of variables collected from all the not very satisfactory. In this section, we develop a hybrid
location, orientation, and measure nodes. Let h(x) be approach which makes use of recent advances in sym-
the vector of constraint polynomials, collected from all bolic techniques. Our framework will allow us to exploit
the geometric constraints applied to the model. The advances made in symbolic methods for solving nonlin-
shape described by x is feasible if and only if: ear constraints and replace numerical steps by symbolic

steps as they become feasible.
h(x) = 0 (12) Our approach has two main steps:

or that the residuals of the constraint equations are all 9 Elimination: Reduce the dimension of the con-
zeor tstraint problem by minimizing the number of vari-
zero. ables which must be freely varied. We will call them

Geometric models are generally underconstrained, and the independent parameters, and the remaining pa-
need to be fit in a least square error sense to data, which rameters as dependent. If a dependent parameter is
could be 2D images or 3D sketches. To fit a 3D model related to other parameters by a linear constraint,
to 2D images, wc nccd camera and projection equa- thon it can be eliminated from the constraints as
tions [Slama, 1980]. Let PL be the camera projection well as in the error function. If a dependent param-
which maps 3D entities in the model represented by x to eter is related to other parameters by a nonlinear
corresponding 2D entities in the kth image represented constraint, then root isolation techniques and/or the
by Pk. Let Pk be the observed values of Pk given by Newton-Raphson method can be employed to find
the kth image. Let Wk be a diagonal matrix of weights the feasible values of the dependent parameters sat-
1/ki, where Ork, is the standard deviation for the mea- isfying these constraints.
surement error of the ith variable in the kth image [Press * Best Fit. Search for a feasible set of independent
et al., 1988]. parameters which minimizes the error function. It
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is also necessary to ensure that any inequality con- 3.2 Numerical Approach
straints are satisfied. Inequalities arise from user The constraint minimization problem is the same as
supplied tolerances as well as the need to isolate the general nonlinear programming problem for which
singularities in the constraint system. The gradi- numerical techniques have been proposed [Luenberger,
ent of the error function (its first derivative with 1984]. In the neighborhood of a point in the parame-
respect to each independent parameter) must van- ter space, parameters are classified into dependent and
ish, which generates additional relationships among independent parameters dynamically by approximating
the independent parameters in the neighborhood of nonlinear constraints by their first-order approximation.
a minimum of the error function. A feasible solution on the constraint surface is first com-

puted using the Newton-Raphson method. Ill-conditions

3.1 Symbolic Approach are avoided by pivoting about the largest pivots [Strang,
1986, Press et aL., 1988].

Both of the abbove steps can be performed by Sym- The error function is expanded in a Taylor seriesbolic algori th abo e elimination theory [van der around the feasible solution usually up to second-order.
boiagorithms froman theeliminn theory [a r s dfiers The feasible solution is used to compute a minimum of
Waerden, 1950] and the theory of real closed fields the error function in its neighborhood by moving in a di-
[Arnon et aL., 1984]. Algorithms for solving non- rection which appears to most rapidly decrease the error
linear equations such as univariate resultant [Knuth, function. However, the convergence is only local and can
1980, Loos, 1982], Macaulay's multivariate resultant beneil. stuck in a oweak local arc is
[Macaulay, 1916], Buchberger's Gr6bner basis algorithm be easily stuck in a weak local minimum. The search is
[Buchberger, 1985], and Ritt-Wu's characteristic set (iri- a primal method which works locally in the space of in-
angulafin) algorithm [litt, 1950, Wu, 19841 can be used dependent parameters using Levenberg-Marquardt tech-oliatinalgorithmndentprt ers 1950, Wut1984cne se nique. Primal methods have faster convergence thanfor eliminating dependent parameters in the first step. In penalty and barrier methods, and are simpler to im-
the process of eliminating dependent parameters, these pltthnrcsieqaaicpoam ng[u-algorithms can be used to identify any possible inconsis- plement than recursive quadratic programming [Luen-tency among constraints. We believe it should be pos- berger, 19841. They however require that the search

tenc amng onsraits.We bliee i shuldbe os- points remain within the feasible region, which is not
sible to develop heuristics which can be used to localize poi ts inwt the faibl egion, hich is notthe atue o inonsstecy nd ientfy susetof on- so difficult since the constraint equations have at most
the nature of inconsistency and identify a subset of con- degree two. As the search moves from one feasible region
straints causing inconsistency, to another, the classification of parameters into indepen-

The minimization step also can be done symbolically dent and dependent parameters also changes. We have
by adding the conditions corresponding to the vanish- recently implemented this numerical approach and the
ing of the gradient of the error function with respect to details of the approach are given in Section 4. Our expe-
each independcnt parameter and the positive definite- rience suggests that the numerical approach works quite
ness of the Hessian of the error function. This system of well on medium-sized examples.
equations, in conjunction with the constraint equations
can determine all of the solutions using root isolation 3.3 Hybrid Approach
techniques [Collins and Loos, 1982], including the global The equations resulting from constraints and the vanish-
minimum. Techniques for handling infinitely many solu- ing of the gradient of the error function have consider-
tions describing a surface over which the gradient van- able overlap, i.e., all variables appear in the error func-
ishes may need to be employed. tion and consequently, the equation from the vanishing

The symbolic approach is very attractive in that it of the gradient are likely to have most of the variables.
enumerates all the local minima exactly and finds the As a result, algorithms for solving nonlinear constraints,
global minimum. For this approach to be feasible, it such as the Gr6bner basis algorithm and the triangula-
is necessary to develop practical methods for solving tion algorithm become quite impractical for solving such
two computational problems: (i) computing a triangular equations.
form of nonlinear equations (triangular forms are defined Our experience is that the elimination step of reducing
later), and (ii) finding solutions of a triangular form by the dimension of the constraint problem by eliminating
performing arithmetic on algebraic real numbers. Cur- variables can be done effectively using symbolic methods.
rent solutions to both problems require exorbitant corn- The second step of finding a best fit between observed
puter resoruces (time and space). We have only limited values and the model by minimizing the error function
experience with methods for the second problem, how- can be performed more effectively using numerical opti-
ever we have done considerable experimentation with mization techniques.
methods for the first problem [Kapur and Mundy, 1989]. Our current strategy is to preprocess the constraints
We have implementations of Gr6bner basis algorithm as and solve them as much as possible using symbolic meth-
well as Ritt-Wu's triangulation algorithm. We have ob- ods before applying numerical methods. It is beneficial
served that the performance of these algorithms is very is to eliminate as many variables as possibly and bring
sensitive to the degree of overlapping (number of com- the constraints to a triangular form. In particular, any
mon variables) among equations. Consequently, these inconsistency among constraints can be identified in this
algorithms have a very bad performance in computing process. It also appears that symbolic methods can ex-
a triangular form of constraints combined with the rela- ploit any compositionality property of geometric mod-
tionships arising due to the vanishing of the gradient. eling operators that can be identified. This can lead
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to incremental solutions of constraint components and incident on three distinct vertices with coordinates
combining these solutions to get a solution for the whole (uO, VO), (Ul, v), (u2, V2) with orientation vectors B1, B2
model. to be perpendicular to each other.

In the remainder of this section, we discuss methods
for solving constraints. We give an informal overview of
Ritt-Wu's triangulation algorithm with an illustration.
For more details, the reader can refer to [Kapur and h, : Bl,u2 + BlV = 1
Mundy, 1989, Wu, 1984, Chou, 19851. In the final sub- h2 : B2,u

2 + B2,v2 = 1
section, we discuss a modification of the triangulation h3 : B1,uB2,u + Bi,vB 2,V = 0
procedure which is helpful in controlling the growth of h4 (ul - uo)Bl,v + (vi - vo)Bl,u = 0 (16)
intermediate polynomials in the algorithm. h5: (ul - u0)2 + (v1 - vO) 2  = 12

3.4 Solving Constraints h6 : (u2 - uo)B 2,v + (v2 - vo)B 2 ,u = 0
3.4i S Constraints h7 : (u 2 uo)2 +(v 2 -vo) 2  = 12
Linear Constraints

Linear equational constraints can be brought to a tri-
angular form using the Gauss-Jordan method. These The algorithm described in [Kapur and Mundy, 1989]
constraints can be eliminating by substituting in the re- can be used to triangulate the above constraints. The in-
maining constraints and the error function for the de- dependent parameters are chosen to be {l, u0 ,v0 , B1,}.
pendent parameters in terms of the other parameters. To eliminate a given variable, say y, a polynomial of

Nonlinear Constraints minimal degree in y is used to pseudo-divide all other
polynomials in which y appears. If the pseudo-division

We have experimented with the Gr6bner basis al- does not result in any non-zero remainders in which y ap-
gorithm and the triangulation algorithm for solving pears, then y is considered to be eliminated. Otherwise
nonlinear constraints. Both algorithms have worked the pseudo-division operation is repeated on the original
very well for plane Euclidean geometry theorem prov- polynomials as well as additional polynomials in y ob-
ing (see [Chou, 1985, Kapur and Mundy, 1989]). These tained as remainders. A triangular form for the above
algorithms have also been used to identifying incon- constraints using the ordering Bl,, < B2,, < B2,, <
sistency among equations [Kapur and Mundy, 1989, vI < u1 < v 2 < u2 on dependent parameters is:
Kapur and Wan, 1990]. In our experience, we have
found the triangulation algorithm to exhibit better per-
formance experimentally than the Gribner basis algo- g,: B1, 2 + B1,, 2  

-- 1
rithm using the lexicographic ordering. Consequently, 92: (BI,, 2 + B,, )B2, = Bi,
we have been using the triangulation algorithm for solv- g3 : Bl,uB 2,u + B,,vB 2,. = 0
ing nonlinear equations. : (Bl,u2 + Bi,, 2')(vi -v0) 2  = B1,v 

2 12
Given a classification of variables into indepen- gs: (ul - uo)Bl,v + (vi - vo)Bl,u - 0

dent parameters {zI, .. , Zk} and dependent parameters 96 : (B2,,,2 + B2,,,2)(v2 - Vo) 2  = B2,,,2 12

{ yi,... , yj } and a total ordering on dependent parame- 97 (U2 - u0)B2,. + (V2 - vo)B2,u = 0
ters, say yI < y2 < ." < yt, the triangulation algorithm (17)
produces from a consistent set of equations, a set of non-
linear equations in the following form: The algorithm discussed in [Kapur and Mundy, 1989]

eliminates dependent parameters in the descending or-
gl(Zl,", zkY1 .yi) = 0 der starting with polynomials in the highest dependent
g2(zl," ',zk,yl,' ",yi 2) = 0 parameter. One can eliminate variables in the ascend-

(15) ing order starting with the lowest dependent parame-
ter which is likely to produce a simpler triangular form.

gm(Zl," ',z1l "i. Y.) = 0 However, this change in the algorithm worsens its per-
where 1 < il < i2 < ... < im < 1. The polynomial formance. Instead it might be better to obtain a trian-
g, is said to be the equation constraining the dependent gular form by eliminating dependent parameters in the
parameter yi,; similarly g, and 92 constraint yi, and y,2  descending order first and then process the initials (the
and so on. Usually, m = 1 and il = 1, i2 = 2,....in = 1, leading coefficients) of the polynomials in the result in
however there can be cases where one of the dependent the ascending order. The simplified triangular form thus
parameters may be skipped implying there is no equa- obtained from the above triangular form is:2

tion constraining it. Henceforth, we shall assume that
il = 1,i2 = 2, " , im = it = 1, that is, there is an equa-
tion constraining every dependent parameter. Polynmial
equations in (15) are said to be in triangular form. For a 2The above discussion of computing a triangular form is
discussion about identifying independent and dependent quite informal. There are many technical details which have

been omitted. In particular, we have not discussed degener-parameters in algebraic equations arising from geometric ate conditions generated by the triangulation algorithm; we
modelin& operations, the reader may consult [Mundy el have also not discussed the case when a triangular form is
al., 1989J. not irreducible. For a comprehensive discussion and tech-

For instance, consider the constraints arising from nical details, an interested reader can consult [Wu, 1984,
requiring two edges of equal length 1 on a plane Chou, 1985].
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dependent parameters in polynomials by new variables.
gi B1,v2 + Bi,. 2  = 1 The bindings (substitutions) of these new variables are
g1: - B , 2  = 0 stored for subsequent computations. This replacement
g3: Bl,uB 2,u + B1 ,vB2,v = 0 is performed on the original polynomials as well as any
I (vI - vO) 2 - B1 ,v2 

12 = intermediate polynomials generated. Pseudo-reductiong: (u - uo)B,, + (vi - v0)Biu = 0 computations are performed on these new polynomials
g1 . Biu 2(v2 - vo) 2  = B 1,u

2 B2 , 2 12 in which the coefficients of dependent terms are simple.g7: (u2 - uo)B2 ,, + (v2 - vo)B 2 , = 0 In step 2 of the triangulation algorithm on p. 21 in(18) [Kapur and Mundy, 1989], when a polynomial with the
Polynomial equation g6 can be further simplified by re- minimal degree of the parameter being eliminated is se-
moving the common factor B2  btlected, it is checked whether its leading coefficient (ini-

mvB, by requiring that Bl,u tial) is non-zero. If the initial is zero, then the polyno-
be nonzero. Other heuristics discussed in [Kapur and mial is simplified by deleting its leading monomial. The
Wan, 1990] as well as recently by Chou can be used to check is repeated again on the leading coefficient of the
speed-up the triangulation algorithm, simplified polynomial. When it is ascertained that the

The reader would have noted that a triangular form leading coefficient is indeed non-zero, then the polyno-
(15) obtained from nonlinear constraints is similar to mial is marked to remember that it has a non-zero lead-
a triangular form obtained from linear constraints us- ing coefficient and it has been used for pseudo-dividing
ing the Gaussian elimination algorithm, with the main other polynomials in T. If the polynomial becomes iden-
difference being that in the above case, the constraint tically zero after simplification, then that polynomial is
defining a variable is nonlinear. (In fact, if given linear removed from T and step 2 is repeated. If the polynomial
constraints, the triangulation algorithm works the same thus selected is already marked, this implies that it has
way as the Gauss-Jordan algorithm.) Consequently, it already been used for pseudo-division and the pseudo-
is not possible to just do back-substitution for the de- division of other polynomials in T by this polynomial
pendent parameters. Instead, in (15), there is a need to gives remainder which are in lower variables; so, that
solve g, = 0 for yl in terms of zl, . , zk. For each solu- polynomial is inserted into G, the triangular form.
tion s for Yl, substitute s for yl in g2. Solve g2[yl - s] There are many ways to check whether the initial of
for Y2, and so on. Methods for doing arithmetic on alge- a polynomial is non-zero or not. Of course, bindings for
braic real numbers can be used [Collins and Loos, 1982]. the new variables in the initial can be recursively substi-
The degrees of the polynomials in triangular form often tuted giving an expression in original parameters. This
grow quite fast because of which root finding could be expression can be simplified and checked to be non-zero.
very ill-conditioned. However, simplification is likely to be quite expensive,

During the triangulation algorithm, it is not uncom- especially if the initial is non-zero. Instead, for each of
mon to encounter large number of large polynomials. the independent parameters, some random rational val-
Because of this blow-up in the growth of intermediate ues are selected and the initial is computed for these
polynomials, computation of a triangular form can re- values of the independent parameters (for speeding the
quire considerable computational resources (space and computation of the value of the initial, p-adic arithmetic
time). In the next subsection, we propose some heuris- could be used instead of arbitrary precision rationals).
tics for dealing with the problem of large intermediate If the value of the initial is found to be zero, some other
polynomials. These heuristics have been implemented values for the independent parameters are randomly se-
and they appear to be quite promising. lected. If the initial keeps evaluating to 0 on a certain

3.5 Handling Big Coefficients in Triangulation number of trys (say 4), then the initial can be simplified
In applying the triangulation algorithm for proce by recursively substituting for the new variables. If the
geometrclcnshetriangulatioodeliorithmfoimproessing value of the initial is non-zero for any set of values of in-geometric constraints for modeling and eliminating vari- dependent parameters, then the initial is not identically

ables, we have often observed that the pseudo-division equadt p ero.
of a polynomial with another polynomial can be a very We illustrate these modification using an example.

expensive operation. As a result, even though a triangu- Consider a torus illustrated in figure 2. The constraints
lar form of a set of constraints may not be that big, but doesiniiig te
the intermediate polynomials become very big. This is defining the torus are:
so because polynomials are represented in recursive form
and the coefficients (which themselves are polynomials) 1. : rs cosu cost-+ rl cost = x
can be quite big. In order to circumvent the problem, 2. : rs cosu sint + rl sint = y
we have modified the triangulation algorithm given on 3.: rs sinu = z (19)
p. 21 in [Kapur and Mundy, 1989]. We will not give 4.: cosu 2 + sinu2  = 1
the new triangulation algorithm here, but instead dis- 5.: cost2 + sint2  

= 1
cuss what steps in the algorithm must be modified and
illustrate these changes with examples. The modified al- The objective is to compute an implicit representation
goritim with full technical details will be discussed in a of the torus in terms of x, y, z and the parameters rs,
forthcoming paper. the smaller radius, and rl, the outer radius. This can be

The main idea is to replace big coefficients (polynomi- achieved by successively eliminating cost, sint, sinu and
als with more than two terms say) of terms made up of cosu from the above equations.
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Figure 2: Torus.

The variable cost can be eliminated by pseudo- The result given by the triangulation algorithm for the
dihiding the polynomial from constraint 5 by the poly- torus has an extraneous factor, similar to the case of g6
nomial from constraint 1, which gives as remainder in the previous subsection. The implicit representation

6. rs2 cosu 2 sint2 + 2 rl rs cosu sint2 + r12 sint2  4 H 2 (rs 2 
- z 2) = (X2 + y2 + z 2 

-
r12 - r s 2) 2

-rs 2 eosu 2 - 2 r rs cosu - H1
2 + X,2 . is obtained by removing this common factor.

The variable sint is eliminated by pseudo-dividing poly- The gains of the above modification are quite signif-
nomial 6 by the polynomial from constraint 2. The re- icant for larger examples. There are examples which
mainder is: could not completed even after 10 hours of computing

7. -vs 4 cosu 4 N 3
+ time, whereas they could be done in a few minutes using

7 s a os -  4 rl rs 3 eosu2) the modified algorithm. More examples and technical( X2 + rs 2 y2 - 6 H2 rs 2) Cosu2+ details of the modified triangulation algorithm will be
(2 rl rs x2 +2r rs y2 - 4 r 3 rs) Cosu+ discussed in a forthcoming paper.
(r 2 X2 + r12 y2 - r14).

Similarly, sinu can be easily eliminated from the poly- 4 The Numerical Constraint Solution
nomial in constraint 4 by the polynomial in constraint 3; Algorithm
the remainder is a polynomial with 3 terms. Then cosu The following section discusses a primarily numerical al-
can be eliminated using the result of the last step from gorithm for the solution of constraint equations. Sym-
polynomial 7 above. The result of these eliminations bolic methods enter in the recompilation of constraints
are two polynomials in , y, z, rs, rl with one polynomial into algebraic expressions.
having over 300 monomials. In order to get the result,
this polynomial has to be pseudo-divided using the other 4.1 Algorithm and Example
polynomial which takes approximately 10 minutes on a 1. Consistent linear equations in (12) are eliminated
Symbolics 3600 Lisp machine, through Gaussian elimination and variable substi-

Using the modified algorithm, after polynomial 7 tution. Example is the pre-compilation of edge or
above is generated, it is replaced by the polynomial 7' face locations as linear combinations of vertex loca-
by replacing big coefficients by new variables: tions.

7'. -rs 4  cosu4 - 4 rl rs 3 cosu3 + Nonlinear equations in (12) are solved by Newton-
A, cosu2 + A 2 cosu + A3  Raphson iterations with the Jacobian derived sym-

where A1 = vs 2 X 2 + r
2 y2 - 6 r12 rs 2  bolically from the constraint equations. Since the

A 2 = 2 rl rs x2 +2rl rs y2 - 4 rl3 rs polynomial equations have at most second order,
A 3 = r12 X2 + Hl

2 y2_ 11
4 .  parabolic interpolation makes the line search for

minimum residual very fast and accurate. The Ja-
As a result, after eliminating sinu and cosu from the cobian is non singular except at local singularities
polynomials, only two polynomials with 3 and 6 terms due to being stuck at zero length or angle. These
are generated. And, the polynomial with 3 terms is the local singularities are avoided by putting bounds on
desired answer which can be found in a few seconds, the length and angle measures.
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2. Fitting or minimizing the sum of square errors is also be solved because there are usually fewer indepen-
done in the space of free variables. The decompo- dent equations than unknowns. Least-norm and least-
sition into free and dependent variables is revealed square-error are consistent with finding the nearest most
through finding the largest non singular submatrix feasible shape. The least-norm and least-square-error
of the Jacobian. The gradient and Hessian poly- solution dx can be computed from a singular value de-
nomials are computed symbolically from the error composition of the Jacobian matrix Vh(x) [Strang, 1986,
polynomial (13), projected onto the plane tangent Press et al., 1988].
to the constraint surfaces, and expressed in the re- Convergence to the nearest feasible shape is done us-
duced space of free variables. ing Newton-Raphson iterations. Far from the constraint
Levenberg-Marquardt iterations vary continuously surfaces, the speed of convergence is dictated by how suc-
between steepest descent and inverse Hessian to find cessful the line search is. The bisection search has linear
values for the free variables such that the fitting er- convergence ratio 0.5 with the fewest number of polyno-
ror is minimized. Goodness of fit and error esti- mial evaluations. The bisection search is further made
mates for the free variables can be deduced from adaptive by continuously varying the shrink factor. As
the reduced Hessian at the local minimum found. the surfaces become close, the residuals and increments

Figures 3 and 4 illustrate the convergence of a twisted become small and line search is not needed. Newton-
and broken-up airplane to a feasible shape satisfying Raphson iterations have quadratic convergence.
polyhedral, attachement, and symmetry constraints, and Iterative numerical methods can only assure local con-
then to a final shape least-square fit to views of a specific vergence. Even local convergence is hard to achieve be-
airplane model. The constrained problem has 263 vari- cause we have to watch out for singularities in the Ja-
ables, 276 equations, and about 32 degrees of freedom. cobian. The Jacobian have rows the gradients of the
The first feasible solution is found after 4 iterations, and constraint equations. The Jacobian becomes singular
the best-fit solution after 5 more iterations. Figure 3 when the number of independent gradients decrease be-
shows the convergence to a feasible shape (iterations: 0, cause some gradients become either zero or dependent.
1, 2) and figure 4 shows the convergence to a best-fit The singular location constraint has zero gradient, equa-
shape (iterations: 4, 5, 6). tion (2). It is improperly represented by a second or-

4.2 Newton-Raphson Solves for Feasible Shape der equation instead of three first order equations, and
the root has multiplicity two instead of one. The singu-

Consider the Taylor expansion of a single constraint lar orientation constraint has gradient dependent to the
polynomial h(x): gradients of the normalization constraints, equations (4).

h(x + adx) h(x) + or Vh(x) dx + Both singular value decomposition and least-norm solu-

S h dx) T Vh(x) dx + tion throw away singularities. The net effect is similar
2 dxT V~h(x) to dropping out the singular constraints, and so theircn (20) residuals are left unchanged.

Unless h(x) is singular, i.e. Vh(x) = OT , c can always

be chosen small enough so that the first order term is For most singular cases, the Jacobian is ill-conditioned
dominant relative to the second and higher order terms, with a very large condition number. To relate the condi-
and the residual of h(x) is driven to zero. tion number of the Jacobian matrix with the presence of

singularities, the increments in dx must have compara-
A line search along the direction dx finds a such that ble scales. The orientation vectors have unit magnitudcs

the residual h(x + dx) is a local minimum. The line and so their coordinates varies at most by 1. Similarly,
search is implemented by a bisection search followed with cosa is in the open interval ] - 1, +1[ and varies at mcst
a parabolic interpolation. The bisection search shrinks by 1. The size of the model must be normalized so that
the increments dx in half each time, and finds three the location and length increments varies at most by 1.
points (x,x + 0.5dx,x + dx), such that the residual at With a normalized model, the residuals and the partial
the mid point is strictly less than the residuals at the two derivatives of the constraint equations have scales com-
extreme points. Then a parabolic interpolation through parable to 1. Local singularities in location and orien-
the three points finds the local minimum. Parabolic in- tation constraints are easily avoided by choosing a pivot
terpolation gives very accurate local minimum because threshold much smaller than the threshold for nonzero
the constraint polynomial h(x) has maximum order two. length and angle.

The direction of increment dx is normal to all the An equation is redundant (resp. inconsistent) if and
constraint surfaces, and is computed from the first order only if it can be expressed symbolically as a linear com-
terms of the constraint equations (12): bination of independent equations and a zero (resp.

Vh(x) dx = -h(x) (21) non zero) constant. This is equivalent to a redundant
(resp. inconsistent) linear system (21) in the incre-

System (21) is only a linear approximation of the nonlin- ment unknowns dx if and only if the equations have
ear equations in the neighborhood of point x. This ap- order less than two. For equations with order two or
proximation makes linear system (21) inconsistent when higher, linear combinations of symbolic expressions im-
there are redundant constraint equations and point x is plies linear combinations of gradients evaluated at any
far from the feasible surfaces [Nelson, 1985]. However, point x, but not vice versa [Light and Gossard, 1982,
the least square error is small. Least-norm solution must Serrano and Gossard, 1987].
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Figure 3: Search for feasible shape.
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Figure 4: Search for best-fit, shape.
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4.3 Reduced Space of Free Variables the partial Hessians V2yf and V2Zf positive semi-

Let the Jacobian Vh(x) of the constraint equations be definite. The positive semi-definite Hessian V2yf trans-
split into two submatrices Vyh(y,z) and Vzh(y, z), formed to the space of free variables z by pre-multiplying
such that the submatrix Vyh(y, z) is non singular. The by the transpose of (dy/dz] and post-multiplying by
variables x are correspondingly split into dependent vari- [d&,'dz] is always positive semi-definite [Strang, 1986].
ables y, and free variables z. Increments tangent to the During the convergence, the matrix V2 yf [dy/dz] can
constraint surfaces are described by linear system (21), be non positive definite and ruin the positive definite-
where the residuals li(x) are zeros, or by: ness of the reduced Hessian, and so is dropped out of

dy = [dy/dz] dz the approximation. Note that the matrix V'yf con-

dy/dz] - - [Vyh(y, z)] - [Vzh(y, z)] (22) tains off-diagonal terms of the full Hessian and is mostly
zeros anyway.

The decomposition between dependent and free variables The increments dz are solved so as to minimize the
is done during convergence, instead of being fixed ahead fit between actual and observed data, expressed in the
of time from the dependency of the nodes [Mundy et reduced space of free variables z:
al., 1989, McClain, Proposal]. Gaussian elimination, (D2f) dz = - f)T (27)
with row and column pivotings about largest pivots first, r
transforms the numerical Jacobian matrix Vh(x) into an Then the increments dy are deduced from equation (22)
echelon form with maximum rank n - r. The dependent so as to stay on the plane tangent to the constraint sur-
variables correspc,,.d to the first n - r columns, whose faces. However, since the constraint equations are non-
pivots are non zero. The free variables correspond to the linear the tangent plane is only a local first order approx-
last r columns whose pivots are almost zero. imation to the constraint surfaces. To insure feasibility,

we need to return to the constraint surfaces by following
Using partial derivatives respective to the variables the old normals, described by equation (22), using a few

in y and z, and substituting the dependent increments additional Newton-Raphson iterations.
with equation (22), the first order term in the Taylor
expansion of the error function f is: 4.4 Levenberg-Marquardt Solves for Best-Fit

df = Vyf dy + Vzfdz Shape

= Vyf [dy/dz] + Vzf) dz (23) The inverse Hessian method, equation (27), is appro-
priate only when close to the minimum. Far from

The reduced gradient, denoted by Drf, is the projec- the minimum, steepest descent method must be used.
tion of the full gradient Vf onto the subspace of incre- Levenberg-Marquardt iterations use a scale A to switch
ments tangent to the constraint surfaces, expressed in continuously from steepest descent to inverse Hessian, as
the space of the free variables z: the minimum is approached [Press et al., 1988]:

(Drf) = Vyf [dy/dz] + Vzf (24) (D2f + A Diag(D 2f)) dz = -(Drf)T (28)
Large A makes the Hessian diagonally dominant, and

Similarly, the second order term in the Taylor expan- the iteration becomes steepest descent with a line search
sion of the error function f is: along the minus gradient:

2 TT V 2,fV \(d \ A Diag(D 2f) dz (I) - f)T (29)
d2 f = d Vyf V:zf dz Diag(D,2f) contains u~e diagonal elements of the lIes-

sian. The diagonal elements are approximatively equal
- Y dz ([dy/dz]T V y f [dy/dz] + V~zf) to the eigenvalues of the Hessian, and so describe the

+ dzT Vyf [dy/dz] dz relative scales of the variables. The zig-zags in ordi-
ZY(25) nary steepest descent are avoided due to the availabil-

ity of these approximate scales. The revised steep-
The reduced Hessian, denoted by D2f, describes the est descent converges with much smaller linear rate

restriction of the full Hessian V2f to the subspace of [(A -a)(A + a)] 2 , where the maximum and minimum
increments tangent to the constraint surfaces, expressed eigenvalues, A and a, are almost equal because of thein the space of free variables z: rescaling of the variables with Diag(D2f) [Luenberger,

D2f= [dy/dz]T Vyf [dy/dz] + Vzf 19841.+ 2V2~ (6 YAs the minimum is close, A goes to zero and the it-
2 f [dy/dz] (26) eration becomes inverse Hessian with quadratic conver-

. [dy/dz]T  yf [dy/dz] + Vz f  gence, equation (27). The convergence of the constrained
minimization near the local minimum is also quadratic.

The cigenvalues of the reduced Hessian must be strictly The constraint surfaces have degree at most two, and so
positive to insure convergence to a local minimum, are well approximated by their tangent planes and the

The minimization function f(x) is the sum of squares least singular mapping [dy/dzj.

of the errors between the actual and observed shapcs, At the local minimum, the rcduced gradient is zero,
and so is globally convex. The convexity of f(x) nmakcs i.e. the full gradient is perpendicular to the constraint
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surfaces. The reduced Hessian, or the full hessian re- [Kapur and Wan, 1990] Deepak Kapur and Hoi K. Wan.
stricted to the tangent space must be positive definite Refutational proofs of geometry theorems via char-
for a strict local minimum. Zero eigenvalues of the re- acteristic set computation. In ACM-SIGSAM 1990
duced Hessian correspond to free variables that can not International Symposium on Symbolic and Algebraic
be deduced by the least-square error fit. Examples could Computation - ISSAC '90, Tokyo, Japan, 1990.
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MARVEL: Location Recognition Using Stereo Vision*
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Abstract for recognition. The problem becomes more difficult

To use a world model, a mobile robot must when we realize that the world changes over time. Also,
our sensory input is imperfect. Therefore, the second

be able to determine its own position in the part of the problem is to maintain these models over
world. To support truly autonomous naviga- time as the world changes and as we receive new sensory
tion, I present MARVEL, a system that builds data which is noisy. The implemented system MAR-
and maintains its own models of world locations VEL (Model building And Recognition using Vision to
position from stereo vision input. MARVEL Explore Locations) addresses these problems by build-
podsioned fo stereobust vision es input g, using, and mantaining models of world locations
is designed to be robust with respect to input lor recognition to support navigation.

errors and to respond to a gradual!y changing To recognize a location, we first take a series of stereo

world by updating its world location models. I Toirei e a locstion i te rrentro

present results from real-world tests of the sys- pair images from a single position in the current room.

tem that demonstrate its reliability. MARVEL The stereo vision module then finds salient features of

fits into a world modeling system under devel- the room and abstracts them into the representation
fitinto awhich will be used for recognition. Recognition is per-
opmnent. formed by comparing this representation to room models

which were built by the system from similar stereo data
1 Introduction obtained previously. The results of this recognition are

To achieve navigation over a long lifetime, a mobile robot used to update the existing model to reflect the current

needs a memory of the world, i.e., a map or "world state of the room and the importance of the features

model." For true autonomy, the robot must be able t, to the recognition. This recognition system fits into a

navigate in places of which it has no previous knowl- larger modeling system under development. A summary

edge. Thus, we want the robot to build its world model of the results of this research are given here, with a fuller

instead of having it supplied a przor. Unfortunately, account of the research available in tBraunegg, 1990a].

due to the problem of cumulative error, exact metrical
models of the world cannot be used [Brooks, 19851. The 2 World Features from Stereo Vision
most piomising alternative is a topological map that con- Stereo vision provides the locations of world features in
tains world locations and information about how they camera-centered world coordinates. Since these loca-
are connected [Kuipers, 1977] (Chatila and Laumond, tions have relatively good spatial resolution (compared
1985]. However, due to errors and uncertainty in odom- with sonar data, for example), the stereo data is a good
etry, we cannot follow such a map exactly. Thus, we candidate for input to the recognition system. (The er-
need the ability to recognize the locations contained in ror bounds on the stereo data have been investigated by
such a map. [Matthies and Shafer, 1986].)

The first part of the problem we are considering, then, We use the Marr-Pogo-Grimson stereo algorithm
is how to build models of world locations and use them [Marr and Poggio, 1979] lGrimson, 19811 [Grimson, 19851

'This report describes research done at the Artificial [Braunegg, 1990b] to obtain our stereo data. This stereo
Irtclligcncc Laboratory of the MNasaciusettF Institute of algorithm is based on intensity-edge features in the im-
Technology. Support for the Laboratory's Artificial Intelli- ages. Since such features usually correspond to physi-
gence research is provided in part by the Advanced Research cal edges of visible objects, they characterize the distri-
Proj-.cts Agency of the Department of Defense under Office bution of objects in the visible world. Employing the
of Naval Research contract N00014-85-K-0124 and under
Army contract number DACA76-85-C-0010 and in part by heuristic that large objects tend not to move and thus
t~ie Office of Naval Research University Research Initiative helpl to identify the specific areas in which they reside
Program under Office of Naval Researclh contract N00014- (e.g., doorways, windows, bookcases), we eliminate short
86-KC-0685. stereo features from the stereo data. Also. since our cam-

''he author is now with tihe Image Processing lResearch era geometry uses horizontal epipolar lines, the localiza-
Laboratory, 'Fite MITRE Corporatiun. Bedford. MA 01730. tijn of the bterco fcatures deteriorates as the features
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Figure 1. Groundplane projection of the vertical stereo Figure 2. Occupancy grid imposed on the groundplane
features from the full set of stereo pairs for Room 914. projection of the vertical stereo features from Figure 1.
The circle shows the camera location and the tick mark The grid itself is used to represent the room.
in the circle indicates 00 in the camera-based world co-
ordinate system.

of the robot when the first stereo pair is taken.

become more horizontal. 4 Recognition
To get a full view of the room containing the robot,

we rotate the robot through 3600, taking overlapping We wish to build the models of locations as the robot
views of the room [Brooks, 1986]. The stereo data from explores its world instead of supplying these models a
these overlapping views is then "pasted" together for a priori. The models will therefore be very similar to the
full representation of the room. Using the camera geom- data that we obtain. For the first recognition example
etry, the stereo feature coordinates are converted into shown below, the room representation shown in Figure 2
camera-centered world coordinates and the ceiling and is used as the model. The representation obtained by the
floor features removed, robot from another position and orientation in the same

room serves as the data in the same recognition example.
3 Model/Data Representation (The simple model shown here is only the initial model

for the room. This room model is updated with the
Although it might be tempting to try to create a repre- results from each recognition in which it is used (see
sentation of a room that looks like an architect's floor- Sections 5 and 6).)
plan, this :s not possible. For a recognition system, the To recognize a data set with respect to a model, we
world is not defined as we would like it to be, but instead use a least-squares algorithm to find the best fit of model
is defined by what is observable by the sensors that are to data and then evaluate that fit. This fitting process
being used. Thus, in our case, the reprcsentation must requires a good initial estimate of the transform (2-D
be related to the matched stereo features obtained from translation and rotation) required to match model and
the stereo algorithm, data. To obtain these initial estimates, we find trans-

Other researchers have investigated the use of full 3-D forms that align model and data feature clusters.
stereo features for map building [Faugeras et aL., 1986] The feature clusters are used to obtain the initial
[Braunegg, 19891. However, our task is different in that alignments consist of colinear groups of model and data
we wish to recognize rooms rather than navigate through points. Cluster pairs from the model are matched with
them. To build our room representation for recognition, cluster pairs in the data to determine the initial align-
we project the vertical room features from the stereo ment transformations. (Other methods of grouping the
algorithm to the groundplane (Figure 1). We ha~e found points of the representations and aligning model and
that this 2-D representation sufficiently characterizes the data will need to be added for other environments [Ja-
room for the purpose of recognition. cobs, 1988], but these linear groups suffice for our indoor

The 2-D groundplane representation of the stereo fea- scenes.)
tures has the added benefit of reducing the amount of For the initial alignments, a least squares process min-
data that must be handled for each location to be rec- imizes the error between the locations of the model and
ognized. We further abstract the data by using it to data points by varying the translation (x, y) and rota-
develup au oLup ay -grid representation of the current hon 0 of the model. This process is similar to the one
room IMoravec and Elfes, 1985]. We impose a grid with described by [Lowe, 1987]. However, given an alignment,
1-foot spacing on the floor of the room and mark each we find al! possible model-data point matches before per-
grid square that has a %ertical stereo feature falling in it forming the least-squares optimization instead of adding
(Figure 2). the pairs as we incrementally refine the transformation.

The final representation of a room, then, is a set of Initially we tried the incremental refinemet approa"
grid squares that mark the locations of vertical rooni but found that one bad match could affect. the rotati
features ab determined h- the stereo algorithm. The component of the transformation enough to generate
locatiois of these squares are described in terms of a completely wrong final result.
camera-centered coordinate s.st,,nm. The orientation of Thc .Iua!ity of the final recognition is determined by
this coordinate systen is determiniied b the orientation the manbcr of modl points that haxe been nmatched and
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n Figure 4: Graph of the number of false negative recogni-
r kj tion occurrences versus the model used for recognition.

Model 1 incorporates the information from one data set,
rO 13 Model 2 from two data sets, and so on.

Figure 3: Final recognition using the model from Fig-
ure 2 (shown as solid dots) and a new set of data (shown NO
as open squares).

the transform variance. The best recognition obtained Figure 5: Updated model of Room 914 based on the
from the set of initial guesses is the one that matches the recognition shown in Figure 3. The darker squares cor-
most model points. If more than one recognition matches respond to more heavily weighted model points.
this same highest number of model points, then the one
with the lowest transform variance is chosen (Figure 3).

After finding the best match of model to data, we presented in [Braunegg, 1990a1.)
still need to determine if the match is correct, i.e., if
the model and data actually correspond to the same lo- 5 Model Building
cation. We take as the correct recognition the model In the recognition above, we used the data obtained from
that matches the highest number of data points above one 3600 view of a room for our model. This suffices
a threshold. Since it is possible that the data does not for an initial model, but a more reliable model can be
correspond to a model currently in our database, the constructed by combining later views of the same room.
threshold is used so that we can declare no recognition Once a niodel-data recognition has been established, the
in cases where the match is poor. data is transformed to the same position and orientation

Matching the wrong model to the data (a false posi- as the model and the two combined into a new model.
tive) is a serious error since the mobile robot uses this A weight is associated with each point in the model and
information to verify its location in its world map. De the weight is increased for those model points that are
ciding that the current data does not match one of the overlapped by data points (Figure 5). If the current
models in the database when the mobile robot is actu- data corresponds to no model in the database, that set
ally in one of the locations represented by a model (a of data is entered into the database as the model of a
false negative) is less serious. With no recognition (with new location.
respect to an existing model), the current data is added Combining the new data with the current model serves
to the database as a iiew room model. Over the life- two purposes. First, new features that appear in the data
time of the robot, we will be able to merge this new are added to the model. Second, the features that were
model into the existing model for this room. With data used for recognition (and thus had a model-data over-
sets obtained from three different rooms, wc ran a ociics lap) become more important in the recognition prucesb.
of recognition tests with evolving models. (Tho rooms This is accomplished by using a weighted least-squares
have almost identical dimensions and were specifically algorithm to emphasize the matching of heavily weighted
chosen to pr 'ide a worst-case test for the system.) The model points.
recognition 1,3rformance improved as the models were
built up over time (Figure 4), with the false negative 6 Model Maintenance
rate remaining below 10% for the fifth and subsequent
models. In all cases, recognitions that were accepted also B. combining the model and data bets of a recognition
determined the correct model-data transformiation. (Ex- into a weighted model, we build the model lip over time
tensive testing was performed, the details of wich are (Figure 6). Model points that arc seen repckttedl are
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covered through movement (exploration) in the environ-
ment, the connections between the locations will be tra-
versed and the location models can be annotated with
their positions. Other sensing and robot tasks assign im-

•, portance to places and features in the environment and
Vthese, too, can be annotated on the world model.

8 Conclusions

a/ MARVEL is a working system that builds, maintains,
and uses models of world locations for recognition to

Figure 6: The model for Room 914 after 6 updates. support navigation. This system uses stereo vision to
obtain information about the world for u:e as input to
the model builder and the recognizer. In addition, we

reinforced in the model, while model points that are not have described how this recogniton system fits into a
seen again have their weights reduced and are eventually larger world modeling scheme.
eliminated. This work is interesting for several reasons. The model

The model update is based on the fact that the more builder and recognition system uses sparse data from
often we see something, the more confident we are of its the real world as input. We accept the fact that any'
existence. This is important for three reasons. First, the input data is noisy and explicitly provide a method for
world changes. By adding newly observed world features handling these data errors. We acknowledge that the
into the models, we can incorporate features belonging world is not static and therefore we provide a way for
to objects that are new or are in new locations. By our location models to change over time as the perceived
removing those model features that have low weights, world changes. We provide for long-term autonomy in
we remove from the models those world features that our mobile robot by rejecting a priori models in favor
no longer exist or that are no longer in their original of models built by the robot itself, thus allowing the
locations. robot to explore areas of the world. And finally, we not

Second, no stereo vision algorithm (or any other sens- only build the models that are used by the recognition
ing scheme) is perfect. There will be both errors of omis- system, we also maintain them over time in the presence
sion and commission. The blind spots will be filled in of sensing errors and a changing world.
by later data that is incorporated into the models. The The recognition system has been tested on over 1000
hallucinations will slowly disappear since they will not model-data pairs from actual scenes with less than a 10%
be seen again and their weights not reinforced, false negative recognition rate and a 0% false positive

Third, the locations of world features determined recognition rate. The error rates demonstrated are low
by the stereo algorithm (or, again, any other sensing enough to permit the inclusion of this world location
scheme) are not perfect. When a world feature is seen recognition system in the larger world modeling scheme
several times and its location entered into the model, the that we have outlined.
average perceived location gradually increases in weight.
As the data points are added over time, the marked A Models for Room 914
model points approximate a Gaussian distribution about Figures 7 through 18 show the evolving models for
the true location of the feature. Thus, the model updates Room 914 in the MIT Artificial Intelligence Laboratory.
also serve to refine the locations of the world features in Model 1 was created from Data Set 1. Model 2 is the
the model. This approach avoids the additional com- update of Model 1 based on recognition with Data Set 2.
putation needed to model the uncertainty of the sensor update of Model based on recognition
data (Durrant-Whyte, 1988] [Matthies and Shafer, 1986]. Model 3 is the update of Model 2 based on recognitionwith Data Set 3, and so on. The weight of a model point

7 Location Recognition and the World is indicated by its darkness. Low weight points are shown
as light grey squares while darker squares denote more

Model heavily weighted model points.

The location (room) models described above are part of a
larger world modeling system that is under development. References
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Figure 7: Room 914 Model 1.

Figure 11: Room 914 Model 5.

Figure 8: Room 914 Model 2.
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Abstract part of another range image with a particular view of
We present an approach for the recognition of multiple a known object. This requires the ability to match one

three dimensional object models from three dimensional surface patch of one range image against a surface patch
scene data. We are addressing the problem in a realis- of another range image. The question is: "How can we
tic environment: the viewpoint is arbitrary, the objects represent a surface patch so that it can me matched in
vary widely in complexity, and we make no assumptions an efficient way?"
about the structure of the surface. We come up with a Reviewing the systems of the past, no system (known
data structure which we call a splash. A splash consists
of circular groupings of surface normals. Such a splash to the authors) was able to represent, match, and rec-
captures structural surface properties in a way that we ognize general three dimensional objects. Most object
can represent them by sets of two dimensional structures recognition systems to date either rely on exact, CAD-
called super segments. Encoded super segments provide like models, or make restrictive assumptions on the pos-
the mechanism for fast matching. The acquisition of the sible shape of the surface patches.
three dimensional models is performed automatically by
computing splashes in highly structured areas of the ob- 1.1 Previous Work
jects. For every model all splashes are mapped on super
segments. The encoded super segments are recorded in Grimson and Lozano P&ez [8, 9] describe a system which
a data base. The scene is screened for highly structured is able to recognize objects from sparse scene data. They
areas. In these areas splashes are computed and mapped exploit geometric constraints to prune the search tree of
on super segments. The encoded super segments retrieve all possible matches between scene data and model data.
hypotheses from the data base. Clusters of mutually con- Still, the number of combinations that need to be tested
sistent hypotheses represent instances of models. The lo- grows rapidly with object complexity. If a consistent
cation of the instance in the scene is found by applying transformation is found, the object is recognized.
a least squares match on all corresponding points. We
present results with our current system TOSS (Three di- Bhanu [1] presents a 3D scene analysis system for the
mensional Object recognition based on Super Segments) shape matching of real world 3D objects. Object models
and discuss further extensions. are constructed using multiple-view range images. The

object is represented as a set of planar faces approxi-
1 Introduction mated by polygons. Shape matching is performed by

matching the face description of an unknown view with
In this paper we present an object recognition system the stored model using a relaxation-based scheme called
which is able to match general three dimensional objects stochastic face labeling.
in an efficient way. By using the words "three dimen- Horaud and Bolles [2] present the 3DPO system for
sional" we talk about models and scenes having a three recognizing and locating 3D parts in range data. The
dimensional representation. By talking about "general model consists of two parts: an augmented CAD model
objects' we do not make any assumptions about the and a feature classification network. The model objects
shape of the objects. Matching and recognizing in an are represented by a tree-like network such that each
"efficient way" is based on a fast indexing and retrieval feature contains a pointer to each instance in the CAD
system that has a complexity which grows as O(kN) models. A local-feature-focus method is used for the
when N is the number of models, and k < 1. matching process.

Representing a three dimensional object is either pos- Faugeras and Hebert [7] developed a system to recog-
siblc by using a surface or a volumetric description. Vol- nize and locate rigid objects in 3D space. Model objects
umetric descriptions from a single view require a diffi- are represented in terms of linear features such as points,
cult inference step to compensate for the unseen part, so lines, and planes. Range images are used as input. At
we will use descriptions based on visible surface instead, first, possible pairings between model and scene features
The task of object recognition involves identifying a cor- are established, the transformation is estimated using
respondence between a part of one range image and a quaternions. Then, further matches are predicted and

0This research was supported in part by DARPA contract verified by the rigidity constraints.
F33615-87-C-1436 and an AT&T grant. Ikeuchi [10] developed a method for object recognition
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in bin-picking tasks. The models consist of surface in- 1.3 Plan
ertia, surface relationship, surface shape, edge relation- The paper is organized as follows: Section 2 introduces
ship, extended Gaussian image, and surface characterstic our basic feature, the splash. It consists of a group of
distribution. Since this system is mainly designed for the surface normals which are mapped on a two dimensional
task of bin-picking, only one type of object, which is the structure. We show how we can use our two dimensional
same one as in the model, appears in the scene, approach to represent these two dimensional structures

Fan [6, 5] presents a system which takes range images in a way that allows us to match the three dimensional
as input and automatically produces a symbolic descrip- splashes. Section 3 focuses on the representation of a
tion of the objects in the scene in terms of their visi- general three dimensional object, the matching and the
ble surface patches. This segmented representation may verification process. In Section 4 we show results of our
be viewed as a graph whose nodes capture information current implementation.
about the individual surface patches and whose links rep-
resent the relationships between them. The matching of 2 The Splash
a scene with a model is based on the comparison of the
two graphs. Extending the two dimensional basic feature of the super

With 3D-POLY Chen and Kak [4] developed a system segment to three dimensions to obtain a feature which
in which they present a novel approach of organizing the represents surfaces is awkward: the polygonal approxi-
feature data for three dimensional objects. They present mation of a two dimensional boundary has a property
a data structure which they call feature sphere. The which is crucial for the super segment idea, but which
matching and verification step is based on comparing is not extendable to higher dimensions: the well defined
spatial relationships of special feature sets. order of the neighborhood of a linear segment. Every

The closest work to our approach was done by Radack segment on a two dimensional polygon has two adja-
and Badler [11]. They introduce a new surface represen- cent neighbor segments. Based on this fact, super seg-
tation called distance profile. These profiles are used for ments can be generated by grouping adjacent segments
the matching process. This method reduces the match- together. In three dimensions this ordered neighborhood
ing of three dimensional surfaces to the matching of two property does not exist. Linear or other segmentations
dimensional curves. They use points with high curvature of a surface (or volume) lead in general to patches which
to position the centers of the distance profiles. can have any number and order of neighbor patches.

Many systems were developed which based on differ- This is a reason why we decided not to go the path of a
ent assumptions about shape, such as polygonal shapes, linear (or higher order) surface segmentation to obtain a
solids of revolution or generalized cylinders. In contrast, representation for matching and recognition. What are
we believe that our proposed system TOSS (Three di- the requirements that a representation for general three
mensional Object recognition based on Super Segments) dimensional objects has to meet? We want the represen-
is able to recognize rigid objecs, whose shapes are not tation to be
constrained by any simplifying assumptions. Our algo- 1. translation invariant,
rithm uses a representation, which is designed to capture
the structure (curvature) of a surface patch and allows 2. rotation invariant,
fast matching. 3. general, in that we do not have to make any assump-

1.2 Our Previous Work tions about the shape of the object,
4. local enough, so that we can handle occlusion,

This paper describes a continuation of our early work [12] . obus enough, so that we can handle oise.

which addresses the problem of recognition of multiple 5. robust enough, so that we can handle noise.
flat objects in a cluttered environment from an arbitrary In the following we will use lower case to describe vec-
viewpoint (weak perspective). The models are acquired tors (n, p...), and upper case to describe coordinate
automatically and initially approximated by polygons frames (N, 0... ). The basic feature for representing a
with multiple line tolerances for robustness. Groups of general surface patch is the splash. The name originates
consecutive linear segments (super segments) are then from the famous picture of Professor Edgerton (MIT),
quantized with a Gray code and entered into a hash ta- showing a milk drop falling into milk (see Figure 1 (a)).
ble. This provides the essential mechanism for indexing This picture bears a resemblance to the normals in our
and fast retrieval. Once the data base of all models is basic feature. A splash is best described by Figure 1 (b).
built, the recognition proceeds by segmenting the scene At a given location p we determine the surface normal n.
into a polygonal approximation; the Gray code for each We call this normal the reference normal of a splash. A
super segment retrieves model hypotheses from the hash circular slice around n with the surface radius p is corn-
table. Hypotheses are clustered if they are mutually puted. Starting at an arbitrary point on this surface
consistent, and represent the instance of a model. Fi- circle, a surface normal is determined at every point on
nally, the estimate of the transformation is refined. This the circle. In practical we walk around the reference nor-
methodology allows us to recognize models in the pres- mal with a 66 angle (typically 10 < 6 < 150) and obtain
ence of noise, occlusion, scale, rotation, translation and a set of sample points on the surface circle. The normal
weak perspective. Unlike most of the current systems, at the angle 6 is called no. A super splash is composed of
its complexity grows as O(kN) when N is the number splashes with different surface radii p, with ie{1, ... mi,
of models, andk <k 1. where m is the number of splashes in a super splash.
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(a) Milk Splash 0

n (a) Relationship between n and no

zno  ,0 we

p = surface radius Xex
lrmo" x0 = angle (b) Definition of q and .

(b) Splash
Figure 2: n and nl

Figure 1: Splashes
two angles e and 4'e.

We compute a normal in our system by approximating qbe = angle(n, n =0 )
the environment of a normal with triangles of small sizes.
Every triangle votes for a triangle normal. The average -o angle(n =° , ne).
of the three closest triangle normals is the surface nor- For every sample point of a splash we obtain such a tuple.
mal. This is a very rough method, but the results were Drawing a mapping for and with respect to 9 results
always good enough for our approach, in two mappings as in Figure 3(a). These two mappings

The frame N9 (see Figure 2 (a)) is defined in the fol-
lowing way:

1. The surface normal n is the z axis. ,.I ,

0 -0

normal p and the tip of the reference normal n + p
describe a plane E. The z axis is defined as the
vector which is perpendicular to n and lies in the
plane E. Furthermore the angle between the z axis (a) and Mapping with (b) Polygonal Approxima-
and a vector which is defined bn respect to 9 tion of the and Map-
of Frame No and the location of ng has to be in the pings
interval [-90o f 900].

3. The y axis is perpendicular to the z and the z axis Figure 3: Mapping Tuple
in a right handed coordinate system.

This frame has the property that the ry-plane always have the following properties:

approximates the tangent plane of the surface in p. We 1. Dependent on where n is, the mappings are shifted
represent oc in spherical coordinates: we compute the along the axis.
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2. The variation of the curve represents the structural the polygons) are periodic (00 = 3600). For the
change in the surface environment around the ref- purpose of robustness we use multiple line fitting
erence normal n. tolerances. Therefore we get a set of polygons for

(a) For a splash on a sphere or plane, the mappings every mapping.

are constant. 3. For every polygonal approximation we compute a
(b) A highly creased surface results in a curved set super segment. The start of the super segment is

of mappings. defined at its global maximum value. If there is

3. Splashes which are located close to each other have more than one global maximum we use one super

a similar shaped set of mappings. By using the word segment for each of the maxima. With this super

similar we mean similarity in the sense, so that a hu- segment choice, we obtain rotational invariance in

man would classify them as "pretty much the same". our representation. By starting all super segments

That does not automatically implicate that the pair- at the maximum of the approximation, two shifted

wise difference results in small values. To be able to polygons with the same shape result in the same

compare two mappings, we therefore need a metric, super segment.

At this point we have reduced the original question "How 4. All the obtained super segments are encoded. The
do we capture the shape of a general surface patch into a encoding works as described in [12]. As encodable
representation?" which is a three dimensional problem, attributes we take
into a two dimensional question "How do we capture the (a) the angles between two consecutive segments
shape of two mappings into a representation?". of a super segment (they capture the curvature

information)

D O(b) the mapping label 0 or

(c) the maximum of the mapping ( or 0 .)

(d) the surface radius of the splash.

Incorporated in the code of the angles of the su-
per segments is also the cardinality (number of seg-
ments) of the super segments (by the number of
angles). That avoids matching super segments of
different cardinality. The encoding of or, or,
allows to distinguish between different curved sur-

Sur -splashes c ) ") faces of the same shape (e.g. two spherical surfaces
a with different sphere radii). The encoding of the ra-

dius avoids matches between splashes with different
hae •splash radii.

S h5. All the encoded super segments serve as keys into
HIIa hash table (the data base), where we record the

corresponding splashes as entries (see Figure 4).

Linear Approximations 3.2 Mthi
.ncoded 3.2 Mathin

- .. By using indexing for the matching process, we only se-
S lect a small set of candidate models that are likely to be

present in the scene. We assume that most objects inour data base (hash table) are redundantly specified by
4: Representation of a Model their splashes. The scene is preprocessed as explained in

Section 3.1 to generate all the splashes and their super

segments. The encoded super segments are used to re-
trieve the matching hypotheses between the splashes of

3 Recognition model and scene.

3.1 Object Representation 3.3 Verification

The solution is straightforward based on our two dimen-
sional approach [12]. The verification stage is fully described in [12] and con-sists of the following steps:

1. For all splashes of a model we compute the map-

pings. In Section 3.4, we talk about the locations of 1. We compute all possible matches for the splashes
the splashes. of the scene with the model splashes to generate

2. For each splash the two mappings are approximated multiple hypotheses.

by polygonal approximations (see Figure 3(b)). It is 2. These hypotheses are stored with respect to the
important to note that the mappings (and therefore model they vote for.
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3. The next step is the formation of consistent clusters want to capture the structure of the edges in the
based on angle and distance constraints. A clus- splash. Therefore the best place for a splash is in
ter of mutually consistent hypotheses represents an the neighborhood of an edge. We get this area in 3
instance of a model. steps:

4. After this grouping of hypotheses into clusters, we (a) We dilate the edge image by replacing every
can compute the transformation from the model pixel on the edges by a disc of a certain radius
coordinates to the scene coordinates by applying (e.g. r, =8 pixels). The resulting image is
a least squares calculation on all the matching called dilatation 1.
splashes. Because of noise, we get in general a good (b) We dilate the edge image with another radius
first guess for the transformation but not an ex- (e.g. r2 =3 pixels with ri > r2). The resulting
act match. A second least squares match on corre- image is called dilatation 2.
sponding corners or segments can refine the result. (c) The subtraction of dilatation 1 and dilata-

3.4 Interest Operator tion 2 gives us a mask. This mask describes
an area with the above described characteris-One question remains open: at which locations of an ob- tics. Points in this mask are no high curvature

ject should we compute the splashes? The brute force points, but they are close to edges.
answer would be: at every pixel (in a range image). A
more sophisticated answer would include the observation 3. We compute a grid of splashes on the range image

that we will not get structurally rich splashes at every with respect to this mask.
point, which lead to good and unambiguous matches. As we will see in Section 4, this simple method works
Splashes in fiat areas result in super segments with low pretty well.
cardinality. Super segments with low cardinality are less
descriptive than super segments with high cardinality, 3.5 Complexity Analysis
which represent high structured surface patches. There- In [12] we show that for the two dimensional case, under
fore to obtain good and unique matches we are interested the assumptions that every model has the same num-
in matches of structured patches and high cardinality ber of super segments and that the entries are equally
These can be found at or near points of high curvature, distributed over the hash table, the overall cost is

Orecognze = Omatch + Oiify = o(q) + O(M) = O(M),

where M is the number of models in the data base and q
the number of super segments in the scene. We assume

2/ 3 q constant to study the behavior of a large data base
- 0-I ~TI (large M). We show further that the slope of the linear

b/ cost function is dependent on the occurrence of a model
in the scene or its absence. In our results for the two

dimensional case the cost for detecting the absence of a
model is less than 10% of the cost for the detection of
the occurrence. In the three dimensional case, we map

Figure 5: Interest Operator each splash onto a constant number of super segments.
Therefore we claim that this result is also valid for the

Our simple selection method works as follows (see Fig- three dimensional case. To support this claim, we cre-

ure 5): ated a data base of 100 objects. Every object consists
of a random range image. The scene is a composition

1. We compute the edges of the artificial shaded range of four of these objects including translation, rotation,
image (by assuming a light source at the viewer and and occlusion. In our results the cost for detecting the
computing a gray value for every pixel in the range absence of a model is less than 50% of the cost for the
image under the assumption of Lambertian condi- detection of the occurrence. We believe that the cause
tions) with the Canny edge detector [3]. We want for the higher relative cost of absence detection in three
to position the splashes in areas where we can ex- dimensions compared to two dimensions lies in the fact
pect structured patches on one object. This prop- that splashes for surfaces are less descriptive than super
erty is not given on the boundary. A boundary segments for boundaries.
edge typically has the object as one neighborhood
and other objects or background information as the 4 Results
other neighborhood. Therefore we use only the "in-
ner object edges" and throw away the boundary With the current implementation we are able to show
edges. that the proposed recognition mechanism of recognizing

2. For positioning the splashes we are interested in ar- general three dimensional objects works. We choose two
eas around the edges. Placing a splash on a high different scenes:
curvature point has the disadvantage of an unreli- 1. A Mozart bust, which is highly curved, and which
able reference normal. A reliable reference normal partially has a structured surface. Because of lack
is important for a stable splash. Nevertheless we of data we cannot deal with a real three dimensional
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model and a scene which consists of range data. 3. The plane consists of about 60 splashes, therefore it
Therefore we take the original data of the Mozart took about 7 minutes to compute all splashes.
bust as model, rotate the range data synthetically 4. The matching process is always below 20 seconds.
to obtain the scene. We rotate pixel by pixel and fill
the holes by averaging the values of neighbor pixels. 5. The verification process takes less than 3 minutes.
This rotation process is guaranteed to add a lot of The items 1 to 3 are processed ofline to build the datanoise! Teies1t ~ rcse ftn obidtedt

base. The recognition process itself consists of item 4 and
2. A scene composed of a plane and a wagon, which 5. All these numbers reflect neither the high parallelism

shows that our method works for objects which can which is theoretically possible nor the data redundancy
be approximated by polygonal surfaces. We have with which we work at the moment. Simple improve-
four range images, two of the plane from different ments can significantly increase the performance. This
views and two of the wagon from different views, is the goal of our future studies.
One wagon and one plane image serve as models.
The scene is composed synthetically by combining 5 Conclusion and Future Research
the other two range images into the scene image.

4.1 Mozart The results with our current implementation of the
TOSS system described in the last sections show that

Our input data is the range image. For better visibil- the idea of describing the surface of an object based on
ity we show the artificially shaded images. Figure 6(a) splashes is powerful enough to handle complex three di-
shows the model of the Mozart bust, Figure 6(d) shows mensional shapes. Our future research will extend vari-
the scene, which is the model rotated by 20 degrees ous aspects of this mechanism. Our system is designed
around a tilted axis. The inner edges are shown in Fig- for the recognition of surface patches. Several other
ure 6(b) and (e). The results of our interest operator are pieces of information are not used to enhance the perfor-
the masks shown in Figure 6(c) and (f). The recognition mance. One is for example the boundary of an object.
result is shown in Figure 7. (We overlayed a grid of the There might be a possibility of including the different
range image of the model, transformed by the resulting boundaries derived from different views of the object by
transformation on top of the Figure 6(d).) including two dimensional super segment recognition in

4.2 Plane and Wagon the three dimensional recognition process. We have to
study this possibility. Our long term goal is to build a

Figure 8(a) shows the shaded range image of the plane recognition system which is able to recognize three di-
and Figure 8(b) shows the shaded range image of the mensional models in a two dimensional gray level image.
wagon. Figure 9 shows the best detected solution. It is
interesting to note that the plane has no highly struc-
tured areas on the wings. Therefore we get no matches References
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Abstract

We analyze the properties of Straight Homo-
geneous Generalized Cones (SHGCs) and Con-
stant Generalized Cylinders (CGCs), and de-
rive the types of symmetries that the limb
boundaries and cross sections of these objects
produce on the image plane. The constraints Figure 1: Sample SHGCs.
on the 3-D shape of the objects are formulated
based on the symmetries and from the geome- Our approach is based on an analysis of the symme-
try of the projection models. Finally the meth- tries in a scene. In section 2 we define the symmetries we
ods that recover the 3-D shape from the image use. Then we show how such symmetries arise naturally
of their contours are discussed and recovered in images of the class of objects we study. In section
surfaces are shown for sample objects. 3 we summarize the constraints that derive from these

symmetries and other properties of boundaries for deter-
1 Introduction mining the 3-D shape. In section 4 we give a summary of

previous work on ZGC surfaces. In sections 5 and 6 we
This paper is about inferring 3-D shape from 2-D con- show how these constraints, and other properties of the
tours for a class of objects, namely generalized cones boundary allow us to infer 3-D shape of the objects in
of constant cross-section (but possibly having complex the scene. Some computational results are also shown.
shaped axes) which we call CGCs (or snakes) and for In the subsequent analysis, we will assume that the
straight homogeneous generalized cones or SHGCs. This image is obtained by an orthographic projection (though
class of generalized cones covers a broad class of objects some of our theorems apply to perspective projection as
of interest, it includes the so-called linear straight ho- well) and from a general viewpoint.
mogeneous generalized cones, solids of revolution, and Definition 1 General Viewpoint : A scene is said to
pipes of arbitrary shape. Some examples are shown be imaged from a general viewpoi%.', if perceptual prop-
in figures 1 and 2 The method we describe is based erties of the image are preserved under slight variations
on, and is a major generalization of, the technique we of the viewing direction.
developed for inferring shape of zero-Gaussian curva-
ture (or ZGC) surfaces [Ulupinar and Nevatia, 1988, Specifically, the properties we are interested in are:
Ulupinar and Nevatia, 19901. straightness and parallelity of lines and symmetry of

Inferring shape of the surfaces in a scene from a sin- curves (symmetries as defined in the following).
gle line drawing is an important and difficult problem in
computer vision. Early work concentrated on analysis of 2 Symmetry Definitions and
line drawings of polyhedra [Huffman, 1971, Clowes, 1971, Qualitative Shape Inference
Mackworth, 1973, Kanade, 1981, Sugihara, 1986). There
have been other efforts at developing techniques for We believe that symmetries have an important role
curved surfaces such as [Barrow and Tenenbaum, 1981, in shape perception, this also has been noted and
Stevens, 1981, Xu and Tsuji, 1987, Horaud and Brady, used by many researchers [Nevatia and Binford, 1977,
1988]. We believe that the techniques presented here Nalwa, 1987, Rao, 1988, Kanade, 1981, Stevens, 1981].

extend the complexity of surfaces that can be analyzed We first define two types of symmetries and then show

significantly. the conditions under which they may be observed in ansignifiantly image of CGC or SttGC objects.

'This research was supported by the Defense Advanced 2.1 Symmetry Definitions

Research Projects Agency under coiitrct number F 33615-
87-C-1436 monitored by the Air Force Wright Aeronautical We define two types of symmetries, that we call paral-
Laboratories, Daipa Order No. 3119. lel symmetry and mirror symmetry. For curves to be
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Figure 2: Some sample PRCGCs

symmetric (parallel or mirror) certain point-wise corre- Figure 3: Tangent line, L,,, of a surface S at point P in
spondences between two curves must exist. We will call direction V.
the lines joining the corresponding points on the curves N
as the lines of symmetry, the locus of the mid points
of these lines as the axis of symmetry, and the curves L
forming the symmetry as the curves of symmetry.

Parallel Symmetry Let Xi(s) = (x,(s),Yi(s),zi(s)),
for i = 1, 2, be two curves in 3-D parameterized by arc
length s.
The curves X,(s) and X 2 (s) are said to be parallel sym-
metric if there exists a point-wise correspondence f(s)
between them such that, X1(s) = X'(f(s)) for all values
of s for which X, and X2 are defined and f(s) is a contin-
uous monotonic function. Note that projection of curves
X1 and X2 under orthographic projection produces im- Figure 4: Tangent plane, T, of a surface, S, containing
age curves that are parallel symmetric such that the 3-D all the tangent lies at point P

point correspondence is preserved. Computing symme-
try between two curves using this definition requires es- Figure 3 shows an example.
timating the function f(s) as well. A useful special case Fiure s own exmpe.is wen ~s)is rstrcte to e alinar fncton.It is a well known property in differential geometry

a [Do Carmo, 1976] that the tangent lines, L,,i, of a sur-
Mirror Symmetry For mirror symmetry, the point- face, S, at point, P, in all possible directions, V, E R3,
wise correspondence should be such that the axis of the are on a plane, Tp, called the tangent plane of the sur-
symmetry is straight, and the lines of symmetry are at face at P. Moreover the plane Tp is orthogonal to the
a constant angle (not necessarily orthogonal) to the axis normal, N, of the surface at P. This property is shown
of symmetry. This definition of the mirror symmetry is graphically in figure 4.
similar to that of skew symmetry. We use the term mir- Next, we define limb edges and their projections for
ror symmetry in the context of curved surfaces as skew smooth surfaces.
symmetry has historically been used for planar surfaces Definition 3 The limb edge of a surface is a viewpoint
only. dependent curve on the surface such that at each point on

We believe that the symmetries we have defined, either the curve the surface normal is orthogunal to the viewing
separately or taken together, give some qualitative as direction.
well as quantitative information about the surface shape.
In [Ulupinar and Nevatia, 19901 we -!howed that a figure The limb edges project on the image plane as the
bounded entirely by one mirror symmetry must be pla- bounding curve of the surface. At these edges the sur-
nar and that a figure bounded by one parallel symmetry face smoothly curves around to occlude itself. This def-
and one mirror symmetry with straight lincs of symme- inition of limb edges holds both for orthographic and
try must be a ZGC surface (assuming general viewpoint perspective projection. Limb edges (also called "occlud-
in both cases). In the following we show the proper- ing contours") can give some very i",'ortant informa-
ties that allow us to infer the presence of PRCGCs and tion about the 3-D surface they come from; Koenderink
SHGCs. [Koenderink, 19841 has given a nice analysis in previous

First, we discuss some useful geometric properties of work. We will show how the limb edges help us recover
differentiable surfaces. 3-D surface shape later in this paper.

2,2 Surfaces and Their Li:nb Edges Theorem 1 All the tangent lines of a surface at a point,
P, which is on a limb edge of the surface for a given pro-Definition 2 Tangent line, Lv, of a surface, 5, at jection geometry, project as the same line on the image

point, P, in a given direction, V, is the line from the plane.

point P in the direction of the tangent of the curve, C,

obtained by cutting the surface by a plane, II, that passes Proof The proof involves a simple combination of the
through P, and contains the normal, N, of the surface definition of limb edges and the property of tangent
at P and the direction given by the vector V. nianes. Since the normal of the tangent plane at P
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Tm ,

Figure 5: An SHGC along the z coordinate axis with Limb
both meridians and cross sections marked.

(a) Mcndians (b)

(which is also he normal of the surface at P) is orthog-
onal to the viewing direction, the tangent plane projects Figure 6: (a) An SHGC, and its tangent lines, in the
as a line on the image plane. Therefore all the tangent direction of the axis emitting from a single cross section,lines at P, which are included in thle tangent plane also m
project to the one line in th the plane projects o intersecting at a single point on the axis. (b) The tangentprojct o te on fie tat te paneprojctsint. 0 lines, TI, of limb edges are not the same as the tangents

This theorem, though simple and rather obvious, turns lines, Tn, of the meridians in 3-D.
out to be highly useful in proving other important prop-
erties of limb boundaries.

2.3 SHGCs section, intersect the image of the axis in a single point,
under orthographic or perspective projection.

Straight homogeneous generalized cones (SHGCs) are the sho wn by er afer 1]t hah

obtained by sliding a cross section, say C, along a limb edges on an SHGC are not planar. Therefore the

straight axis, say A. The cross section is also scaled limb edges of ap SHGC are necessarily not along its

as it is swept along the axis by a scaling function, say r. meridians, and the tangents of the limb boundaries at

We can parameterize the surface, S, of an SHGC, given the point they intersect the same cross section do not
the planar cross section C(u) = (x(u), y(u), 0), and the intersect the axis in 3-D. (Figure 6 (b) shows the limb
scaling function r(t), as : edge and its tangent for an SHGC after rotating it, to

S(u, t) = (r(t)x(u), r(t) y(u), t) (1) show that in 3-D the tangent of the limb edge does not
intersect the axis of the SHGOC.) Still, it has been shown

The axis of the SHGC in this case is the z axis of by Ponce [Ponce et al., 19891 that under orthographic
the coordinate system. An examp!e is shown in figure projection the tangents of the limb edges, at the point
5. Note that the cross section curves are generated by they intersect the same cross section, intersect the image
fixing t and varying u. We will call the curves gener- of the axis at a single point. Here we give a simpler proof
ated by fixing u and varying t as the meridians of the which is independent of the projection geometry.
surface. Note that cross section of an SHGC are planar
because the cross section function C(u) is plantr, and the Theorem 3 The tangents of the projections of the limb
meridians of an SHGC are planar since the SHGC has edges at the points they intersect the same cross sec-
no twist in its sweep. Let meridian edges of an SItGC be tion, when extended, intersect the image o,' the axis of
edges that are along the meridians of the SHGC. Usually the SHGC at the same point.
images of SHGCs do not contain meridian edges, how-ever, such edges may be present if the cross section has Proof Say the limb edge intersects a given cross section
ever sedsontinuiy be crsener. if e rs seos se at point P (see figure 6). Since the tanL .nt line Tm, froma tangent discontinuity (a corner). Figure 1 shows some point P in the direction of the axis of the SHGC (the
sample SHlG~s. tangent line of the meridian passing through the point

Theorem 2 For an SIIGC, the tangent lines of the sur- P) intersect the axis of the SHGC, by theorem 1, the
face in the direction of the axis from the points of any image of the tangent line T, from point P in the direction
given cross section intersect at a common point on the of the tangent of the limb edge p~oject as the same line
axis of the SIIGC. as the tangent line Tm and thus image of the line T

A proof of this theorem mnay he f-m in61 [shmafer and intersect the image of the axis at the same point as the
Kanade, 19831. Figure 6 (a) graphically illustrates the image of the line Tn intersects. 0
property. Since theorem 1 holds both under persl -ctive and or-thographic projection, the above thcrem and the prool
Corollary The tangents of all meridian edges at the hold for both of the projection geometries.
points they intersect a single cross section intersect the ,t the following we show that the cross sections of an
axis of the SHGC at a single point. Therefore in the in S3JGC are parallel symmetric in 3-D with the meridian
the image plane, too, the tangents of the images of the curves joining the parallel symmetric points of the cross
meridian edges, at the point they intersect a single cross sections.
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S~I d, Ir d~ Figure 8: Images of the cross sections and axes recovered
r for the SHGCs in figure 1

C11

C, Q Cr 2. Translate the cross section curve Ct such that the

point Paz E Ct coincides with the point P, obtaining
the curve Ct.

3. Find the point P,, E Ctt that minimizes the func-
Figure 7: Image of an SHGC cut along its cross sections. tion f(P,,) = (d, + d2)/d, which is the amount of
Image of the top cross section curve is Ct, the bottom scaling required to be applied on the curve Ctt to
one is Cb and the limb boundaries are on the left C1 and bring the point P,,. to the point P.. The quantities
on the right C,. di and d2 are the length of the line segments from

P to P,, and from P,, to PT. It can be shown that
local minima of the function f(.) above gives the

Theorem 4 The cross sections of an SHGC are parallel correct point Pa, E Ctt such that the limb bound-
symmetric in 3-D with each other such that the merid. ary condition Ct(P,,) - C,(P,) is met.
ian curves join the parallel symmetric points of the cross 4. Scale the curve Ctt by f (P, ) so that the point Pe,
sections. meets with the point P, obtaining the curve Ci.

Proof We have to show that the direction of the tan- The curve C, obtained by this algorithm is precisely
gent of the cross sections is independent of the t param- the image of the cross section curve between the points
eter curve. Using the parameterization for an SHOC P1 and P, of the SHGC. Once the correspondence of
given in equation 1 the tangent of the cross sections (u the points P1 and P, between the limb edges C and
parameter curves) is given by: C, is obtained, we can recover the image of the axis

of the SHGC by using theorem 3. Figure 8 shows the
Su = (r(t)x'(u), r(t)y'(u), 0) = r(t)(z'(u), y'(u), 0) (2) computed images of the cross section curves and the axes

Clearly the direction of Su is independent of the t pa- for SHGCs in figure 1. If the parallel symmetric points

rameter. 0 of the cross section curves are joined, by theorem 4, we
obtain the meridian curves.

Corollary The projection of the cross section curves of 2.3.2 Observing SHGCs
an SHGC are also parallel symmetric in the image plane. If there are two parallel symmetric curves with a linear
And the correspondence function is linear because crosssections are obtained by scaling a reference cross section correspondence function such that they are bound by
sct rv e iotadefin b ing acurves that has a straight axis when the axis is computed
curve without deforming it. by the above algorithm, then we can hypothesize that the

2.3.1 Recovering the Cross sections line drawing results from an SHGC.

We next show how to find the projections of cross sec- 2.4 CGCs (Snakes)
tions in the image of an StIGC, given the images of its Snakes are generalized cones that have a constant cross
external contours. Our method does not require com- section but the axis may be an arbitrary 3-D curve. Fol-
plete cross sections, but only the part that lies on the lowing Shafer's terminology [Shafer et at., 1983], such
visible face of the SHGC. However, we require that the owing Safeslter Sh e fo, 1 , suchSHGC be cut along its cross sections, otherwise we would objects may be called CG~s. We will focus on CG~s
not have a parallel is ry etwn othewimwecus that have planar axis and that are "right", ie the crossnot have a parallel symmetry between the image curves sections are orthogonal to the axis; we call such objects
of the two extreme cross-secticns (Ct and Cb in figure 7) PRCGCs. Figure 2 shows some examples.
We conjecture that humans too do not do well if this con- ths fige show some exmples.
dition is not satisfied. The following algorithm recovers In th e olowig, e s mhtlim boundr o-
the image curves C, that colrebpond to the projections thographic projection.

of the cross sections of the SHG. Let us choose a coordinate system such that the axis
For each point At E C, do: of the PRCGC lies in the x - z plane and one of the
1. Find the point P,1 E Ct such that C,(P) cross-sections, say C(u) = (c.(u), c(u),O), is aligned

C (PM ).1  with the x - y plane. Let A(t) = (a.(t), 0,az(t)) be the
axis parameterized in terms of its arc length, that is,

'The operator is used for parallelity of vectors, that is, [Al = a' +a' = 1 for all t. Also, let A(0) = (0,0,0) and
if V, - V2 then V = AV2 for some scalar A. since the cross section is orthogonal to the axis A'(0) =
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Meridians A(t)

(a) (b)

,o sssections Figure 10: A PRCGC (half of a torus) (a) from a gen-
eral view and (b) semi-transparent top view with the

C(u) limb edges of the previous view and the meridians pass-
ing from the points P and P2 marked along with their
tangent lines.

Figure 9: A PRCGC with both meridians and cross sec-

tions marked.

three vectors are on a plane (the x - z plane). Then, we
(0, 0, 1). Then the surface of the PRCGC, S(u, t) is given can rewrite 2 as:
by: S(u, t) = R(A'(0), A'(t)) C(u) + A(t) (3) OS(u, t) I(A"(t))' (
where R(V1 , V2) is the rotation matrix that transforms
the direction vector V into vector V2 . For A'(0) = It is obvious that while the length of the vector - de-
(0, 0, 1) and A'(t) = (a' (t), 0, a' (t)) the rotation matrix pends on the u parameter, the direction of it is indepen-
R becomes: dent of the u parameter. r3

r a.(t) 0 a(t) ] Although the meridian curves on a PRCGC are par-
R 0 1 0 (4) allel symmetric it can be shown that the limb edges of

-a' (t) 0 a (t) a PRCGC are not necessarily parallel symmetric in 3-D
(see Figure 10) However, the following theorem proves

Note that the curves generated by fixing t and varying that the projections of the limb edges of a PRCGC are
u are the cross sections of the surface S(u,t). We will parallel symmetric under orthographic projection.
call the curves generated by fixing u and varying t as Theorem 5 The limb edges of a PRCGC project as par-
the meridians of the surface. The meridians are also the allel symmetric curves onto the image plane.
loci of points on the cross section as the cross section is
swept along the axis. Figure 9 shows an example. Proof Here we use the property given in theorem 1
Lemma 1 The meridians of a PR CGC are parallel and in lemma 1. Consider the points P and P2 in figure
symmetric and the curves joining the parallel symmet- 10 such that both points are on the same cross section.
ric points of the meridians form the cross sections of the As can be seen in figure 10 (b) the tangent lines 11 and 12

surface. from points P and P2 in the direction of the limb edges
are not parallel symmetric in 3-D. However, the tangent

Proof We need to show that the direction of the tan- lines mi and m2 from points P and P2 in the direction of
gents of the surface in the direction of the meridians, S, the meridians are parallel symmeLric by lemma 1. Since
is independent of the parameter u. the tangent line l project the same line as the tangent

line ml, and tangent line 12 project the same line as the
aS(u, ) dR. C(u) + A'(t) tangent line m2 by theorem 1 the projection of the limbat C u) boundaries of a PRCGC are parallel symmetric. 0
= 0a,'(t 0 a •(t) 1 c(u) + a (t) 2.4.1 Observing PRCGCsS-a(t) 0 a((t)L a(t) If in the image plane there are parallel symmetric

a0 + 0 (5) and having mirror symmetry which enhances planarity
= a +cu J (5) of the cross section) then we hypothesize that it is aa,, -a t) PRCGC. The real test for the line drawing to belong to

SA'( t) + c.(u)(A"(i)) 1  a PRCGC may be performed after the cross sections are

where (A"(t))J- is a vector which is orthogonal to the recovered as dscribed in section 6.1.
vector A"(t) and is in the x - z plane. Also note that, 3 Constraints for Determining Surface
A"(t) . A'(t) = 0 since Shape

0 = d() = d(A'(t) . A'(t)) = 2A'(t) . A"(t) (6) We now give three constraints that derive from obser-

We conclude that the vector (A"(t))' is parallel to the vations of the symmetries and other boundaries in the
vector A'(t), since A'(t).lA"(t), A"(t).L(A"(t))' and all image.
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3.1 Curved Shared Boundary Constraint Proof Consider the parametric representation S(u, v)
(CSBC) of the surface S such that the u parameter curves are

This constraint relates the orientations of the two sur- parallel symmetric to each other (the {C,} family of

faces on opposite sides of an edge. It is a generalization curves) and v parameter curves join the parallel sym-

of the constraint used in polyhedral scene analysis from metric points of the u parameter curves.

the early days [Mackworth, 1973] and has been stated For the first pat of the theorem we have to show that

previously in [Shafer et al., 1983, Ulupinar and Nevatia, equation 10 holds or with the current parameterization

1990]. S1. N" = 0 (12)
Let two surfaces, Si and S2 intersect along a curve,

r, whose projection is the curve r, (s) = (r.(s), ry(s)). is true, where N = Tssy I is the unit normal of the
Let the orientations of the surfaces S and S2 along the surface. Note that N. Su = N. S, = 0 by definition. We
curve r(s), in gradient space, be given by (pl(s),qr(s)) can substitute -Su, . N for Su N, since:
and (p2(s),q 2 (s)). Then CSBC states that:

r'(s)(P2(s) - p,(s)) + r(s)(q2 (s) - q1 (s)) = o (8) 0- =(S'N) S, -' N+Su'N,*S. 'N=-S "N
Ov

A stronger constraint can be obtained if we can assume (13)
that the 3-D intersection curve, r, is planar. Say, r lies Su is the tangent of the u parameter curves, and since
in a plane with orientation (Pc, q,). With the assumption the v parameter curves join the parallel symmetric points

of planarity the constraint equation becomes: of u parameter curves the direction of Su (u, v) is inde-
pendent of the v parameter, that is Su(u, v) = c(v)Su(u)

r.1(s)(p. - pi(s)) + q (s)(qc - qi(s)) = 0 , i = 1, 2 (9) where c is a scalar function. And;

3.2 Inner Surface Constraint (ISC) S. =S U = C'(V)S,,(u) (14)

The inner surface constraint restricts the relative orien- 9V
tations of the neighboring points, within a surface. Con- By substituting this in equation 13 we get
sider a curve C(t) = (x(t), y(t), z(i)) on a C2 surface S.
For each point P E C associate a vector R E Tp such N. Su = -N. Su,, = -c'(v)(N. Su(u)) = 0 (15)
that dC For the second part of the theorem we have to show

-t . dNR = 0 (10) that 3,, • N, = 0. Using equation 15 we get:

where Tp is the tangent plane of the surface S at the 0 = N, S, = -N . Su,, = -N . S,, = S, • N, (16)
point P and dNR is the derivative of the normal N of
the surface S in the direction R.

Theorem 6 Inner Surface Constraint: Under ortho- 3.3 Orthogonality Constraint (OC)
graphic projection, if an image curve C1 is the projec- The two previous constraints (CSBC and ISC) are not
tion of the curve C on the surface S and RT = (r., ry) sufficient to determine surface orientations uniquely. To
is the projection of the vector R satisfying equation 10, further constraint the solution, we impose an additional
then the change of the orientation, (p,q), of the surface constraint. We require that the cross sections and the
S, along the curve C, in the p - q space is restricted by meridians of a surface (as defined in sections 2.3 and 2.4)
the image vector R1 , as: be mutually orthogonal. This constraint may be satisfied

d(p, q)C, • R. = 0 (11) precisely for some kinds of surfaces but is not necessarily
true for all surfaces; in the latter cases we maximize a

The proof of the theorem is given in appendix A. measure of orthogonality (given later). This constraint
To apply this constraint, we need to identify a curve is justified on perceptual observations. It may be viewed

C in the image plane for which the orientation R can be as being equivalent to slicing the surface along merid-
determined. In a previous paper [Ulupinar and Nevatia, ians and cross sections to obtain thin skew symmetric
1990] we have shown that for zero Gaussian curvature planar patches and assuming that these patches are or-
surfaces any curve on the surface can be the C curve thogonally symmetric in 3-D, as in Kanade's analysis for
if the direction R is chosen to be the direction of the polyhedra [Kanade, 1981]. The orthogonality of two vec-
rulings of the surface. Following theorem shows how we tors A and B, which lie on a plane having gradient (p, q)
can use parallel symmetric curves for this purpose in a and whose images are Ai = (a., ay) and Bi = (b., by),
general case. constrain the gradient (p, q) with the equation:

Theorem 7 Let the family of curves,{Ci}, be on a sur- f
face S such that the curves, C,, are parallel symmetric in a, a, pa, + qa 1 ) . (b., by, pb + qby) = 0 (17)

3-D. If the curves Ci are used as the C curves of equation 4 Analysis of ZGC Surfaces
10 then, the tangent of the curves obtained by joining the
symmetric points of the curves C, gives the direction R We have applied the constraints of section 3 to analy-
of the ISC. Conversely, if the curves obtained by joining sis of zero-Gaussian curvature surfaces in previous work
the parallel symmetric points of curves, C,, are used as [Ulupmnar and Nevatia, 1990]. We provide a brief sum-
C curves of equation 10 then the tangents of the curves mary of this work as the techniques for the PRCGCs and
Ci gives the direction R. SHGCs are related to it.
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A ZGC surface is indicated by the presence of a par- is to simulate the bias that humans have in orienting
allel symmetry and a mirror symmetry where lines of the cross section toward 450 . We update q, to ob-
symmetry are straight. The parallel symmetry curves tain the final q, as follows (after converting q. into
give the cross sections of the ZGC and the lines of sym- degrees):
metry give the rulings. For a ZGC, it is necessary only q, = 45' + A(q, - 45* )

to consider one cross section at a time, as the surface
orientations can simply be propagated along the ruling. Where A is a confidence factor in the range [0, 1] and

Suppose we wish to estimate the surface orientation at is a function of how well the ellipse approximates
n points along the cross section (assumed to be planar), the cross section curve. In our implementation it is
we have 2n + 2 unknowns (2n for n points, 2 unknowns given by:
for the orientation of the cross section itself). ISC and
CSBC together provide 2n- 1 constraint equations, leav- A(C) = (1 - 62) (19)
ing three degrees of freedom undetermined. Introducing
the orthogonali~v constraint (in this case requiring the Where e is the ellipse fit error (in range [0,1]).
cross section and rulings to be orthogonal) gives an ad-
ditional n equations; we now have more equations than The algorithm derives from our observations of human
unknowns. perception and we have validated it by an extensive com-

These equations are, however, not always indepen- parison with human subjects.
dent. We find that for a cylindrical surface, all equations The described method for recover ZGC surfaces from
can be satisfied exactly and still one degree of freedom image contours has been tested on a number of examples
remains for the orientation (Pc, q,) of the cross section (we assume that symmetries are given) and produces
plane (it is constrained to be on a line parallel to the results that appear consistent with human observation.
axis of the cylinder in the p - q plane). For more gen-
eral objects, all equations can not be solved exactly. We 5 Quantitative Shape Recovery of
choose to satisfy CSBC and ISC exactly and minimize a SHGC surfaces
measure of orthogonality. Unfortunately, this mininiza-
tion procedure also does not, in general, give a unique To compute the shape of an SHGC along each recov-
answer. The minimum is typically achieved when (p,, q,) ered cross section curve we can apply the constraints
is along a line in the gradient space and the variations discussed in section 3 as they are applied to a ZGC sur-
are too small along this line to pick a specific value, face in section 4. For the following; say that there are m

This last degree of freedom is removed by using the cross section curves and we would like to compute the
3-D shape of the cross section itself. We make the as- orientation of the surface n points along a cross section.
sumption that the 3-D cross section should be as com- Then we have 2nm unknowns, initially, corresponding to
pact as possible, subject to the limits given by other the gradient (p,q)of the surface at nm points.
constraints. Our method to accomplish this consists
of fitting an ellipse to the cross section and choosing CSBC The curved shared boundary constraint applies
that orientation that gives the least eccentric ellipse in between the orientation, (Pc,q,), of the cross section
the back projection subject to the orientation satisfying curves C, and the orientation, (p., q,) of each of the point
other constraints (namely, its being on a specific line), on the surface along a cross section. Note that (Pc, q,) is
Also, we apply a correction to this estimiate depending the same for all cross section curves. The curved shared
on the quality of ellipse fit to bias the answer away from boundary states that the line in the p - q space from the
highly slanted orientations. This algorithm is fully de- gradient (p,, q,) of a point P E C. to the gradient (Pc, q.)
scribed in [Ulupmnar and Nevatia, 1990], an outline is of the cross section plane is orthogonal to the tangent,
given below. C'(Pi), of the cross section Cj at point Pi. Then the

As (Pc, q,) is constrained to be on a line, the problem constraint equation is:
is equivalent to estimating only one parameter, say q,
(without loss of generality, as we can rotate the coordi- (p: - p,, q - q,)" C;(P) = 0 VPi E Cj (20)
nate system as necessary). Steps in estimating q, are:

1. First Estimation of q: An ellipse is fit to the cross This provides constraints along each cross section
section ontour, then the orientation of the circle curve.
(p,,q,), that would project as the fitted ellipse is ISC Inner surface constraint is applied along a cross
projected on the q axis, on the p- q plane to obtain section using the tangents of the meridians at each point.
the first approximation of q, call it %7. The theorem 7 indicates that ISC is applicable along
It may be necessary to segment the cross section if, the cross section curves because cross section curves
it is complex and repetitive. To achieve this, the are parallel symmetric by theorem 4 with the merid-
concavities of the contour are found and matched. ian curves joining the parallel points of the cross sec-
If they match in such a way that the cross section is tion curves. Inner surface constraint states that change
segmented into similar pieces, then a different ellipse of the orientation (p,+t - p, qs+l - q,) of the surface
is fit to each piece of the contour and average of the along a cross section curve C, between two consecutive
ellipses is used to estimate q. points Pi, P,+i E C must be orthogonal to the tangent

2. Updating q: The purpose of this updating process M,+t/ 2(P,+1 / 2) of the meridian that passes through the
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point P,+1 / 2 E C3 which is in the middle middle of the where (C,(P,,))' and (M,(P,3))' .-e the 3-D tangents of
points P and P,+,. Then the constraint equation is: the cross section and meridian curves at point P,,. These

(p,+I-p,,q,+I-q,).M+/1 1 2(P,+1 2) VPP,+112P,+l E C3 3-D tangents are dependent on their 2-D tangents on the

(21) image and on the orientation (pi,qii) of the surface at

Application of ISC provides n- 1 equations for each cross point Pj as given by the equation 17. The gradients

section curves (pij, qij) at each point is dependent on the four variables,

There are 2n unknowns for each cross section curve, (pc, q,) and (p, q.), discussed in the previous section.

and two more unknowns for the whole SHGC, the We would like to minimize the function E for (p, qc)

(pc, q), by combining the two constraints, we have 2n- 1 and (p,,,, q,,,). However from our experiments we observe

constraints for each cross section. Then for each cross that minimization of E chooses values that are always

section there are three degrees of freedom as in the case consistent with the assumption that the 3-D axis of the

of a ZGC surface discussed in section 4. SHGC is orthogonal to its cross section.
If we enforce the cross sections to be orthogonal to the

Planarity of Meridians The meridians of an SHGC axis of the SHGC, the orientation (Pc, qc) of the cross
are planar as discussed in section 2.3. Then the shared section lies along a line in the p - q space that passes
boundary constraint can be applied along a meridian through the origin and is in the direction of the image
curve as if the curve is obtained by cutting the sur- of the axis of the SHGC. This constraint also, in effect,
face of the SHGC with a plane along the meridian. The enforces the gradient (pm, q,,) of the plane of the merid-
shared boundary constraint is applied along a meridian, ians to be orthogonal to the gradient (Pc, qc) of the cross
M, between the gradient, (pm,qm), of the plane that sections. That is
the meridian M rests on and the gradient (pj, qj) of the
points Pj E M, using the tangent, M'(Pj) of the merid- (Pm, q., 1). (Pc, qc, 1) = 0 (24)
ian curve at each point P, E M. The constraint equation For simplicity, say the coordinate system is rotated
is : such that the image of the axis of the SHGC is aligned

(Pm,- p,q,,- q) .M'(P,) =0 VP3 EM (22) with the y axis of the coordinate system. Then, we have;
Enforcing one meridian curve to be planar automatically Pc = 0 from the orthogonality of the axis to the cross sec-
makes the others to be planar too. Therefore, the pla- tion and q.. = -1/q from equation 24. The parameters
narity is applied only to one of the meridians, giving m pm. and q are the free variables to be fixed by mini-
constraint equations with the expense of two additional mizing the function E. However, the minimum of the
unknowns. function 7 does not fix the variable qc (except for sur-

In total there are now 2nm+4 unknowns, 21'1 for the faces of revolution). Either the function forms a valley
(p,q) of nm points on the surface, two for (pc, q,), two along q, making any choice as good as any other or fixes
more for (p,7, qrm), and there are 2nrm constraint equa- qc to be zero which is not a realistic solution. We use
tions, am from the OSBC between the cross sections and the same method for estimating qc as described for ZGC
the face of the surface, m(n - 1) from the ISC, and m surfaces in section 4.
from the CSBC of a meridian curve. That is there are
four degrees of freedom for recovering the orientation of 5.1 Results
all the points on an SHGC. These four degrees of freedom We have implemented the constraints discussed in the
corresponds to the orientation, (pc, qc), of the cross sec- previous section in a somewhat reverse order. For an
tions and the orientation, (p,,, q,,,), of the plane contain- SHGC whose axis is aligned with the y axis of the coor-
ing the chosen meridian. Without any assumptions we dinate system the method is as follows; First the ellipse
could arbitrarily set these four variables and get a valid fit algorithm is applied to compute qc, then the function
reconstruction of the SHGC that would project like the is minimized to compute Pm. Then the surface is con-
figure in the image plane. However not all of these recon- structed using the constraints discussed in section 5 to
struction look natural to humans when they observe the somute the containt ed int.ecion 5t

imag oftheconour ofan SGC.Humns refr snic compute the surface orientation at each point. Figure 11
image of the contours of an SHC. Humans prefer sonei shows the needle images and the shaded images, with the
interpretations over the others. In the following section computed surface orientations, of the SHGCs in figure 1.

we propose orthogonality as the preference criteria.

5.0.1 Orthogonality 6 Quantitative Shape Recovery of
For SHGCs we use the orthogonality of the 3-D tan- PRCGC Surfaces

gents of the cross sections and the meridian curves, mak-
ing each little patch, formed by dividing the surface Here we discuss the application of the three constraints
alng meridians and the cross sections, orthogonal. We discussed in section 3 along a cross section curve of a
can apply the orthogonality constraint using the equa- PRCGC, to recover the surface orientation of a PRCGC.
tion given in equation 17. This constraint is not al-
ways exactly satisfied, except for surfaces of revolution. aSlon The shared boundary constraint can be a bied
Therefore we perform a minimization of the second or- the gradient of the plane that contains the cross section
thogonality constraint as:

curve, C(u), whose image is the image curve C,(u) =
= - - cos(0,,) = :.))- (23) (c(u), cy(u)). Let (p(u), q(u)) be the orientation of the

I(Ci(Pij)).II(M pi,))I 23 ) points along the cross section curve C(u). Then the
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spondence, the tangent vectors of the meridians along a equation we get:
cross section is a constant vector which is also parallel a' ' (u( , ' '( ) =0 ( 9to the axis of the PRCGC as given by equation 7. Let a %u)( Y qoc Z~f~ =0 (9
the tangent direction of the meridians along the cross Since the above equation is zero for all values of u we

! !

section C(u) be A' and its image be A = (a', a), note gtbt c- n
that A is independent of the u parameter. For the sakeI q ,=0 => o = -1 ( )of simplicity let us assume that the coordinate system is + o =0: o -/c(0
rotated such that A' is along the y axis of the coordinate Fixing q, fixes the orientation of the surface along the
system, then a' = 0. The inner surface constraint is : cross section C together with the gradient (p,, qc) (whichd is (0,q) in the rotated coordinate system) of the plane

T pu) ~u)-(a' , a') 0 #-qu)a = 0 ~)= q0 containing C. However our constraint equations do not
sr bu(26) constrain qc.

By combining this constraint with the CSBC given in 6.1 Recovering Cross Section Curves
equation 25 we get: In the previous section we have discussed how to recover

cy'(u)(q% - qo) the surface orientation at each point on a cross sectionp M i (U) + Pc (27) curve given the image of the cross section curve. How-

ever it is not directly possible to replicate the images of
Orthogonality The last constraint is the orthogonal- the cross section curves of a PRCGC, such as the ones
ity of the meridians to the cross section curves. The in figure 2, except forgive in on the PRCGC, where
reader can easily verify that the u and parameter curves we assum te tcross section curve is given. That is we
in equation 3 are orthogonal to each other for all points assume that the surface is cut along its cross sections.
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Here we discuss a method for recovering the cross sec-
tions when one or both ends of the PRCGC are avail- (a
able, the method also enables us to reconstruct the 3-D
PRCGC from the image of it.

At one end of the PRCGC let the image of the end
cross section curve be Ci(u) = (c.(u), c.(u)) and the im-
age of the axis be Ai(t) = (a.(t), ay (t)) as in the previous
section. The image of the axis at the point it intersect L(O)=A(
the cross section C is Ai(0) = (a.(0),ay(0)). Say the
coordinate system is rotated such that a'(0) = 0, and
the orientation (Pc, q,) of the plane containing the cross C
section curve C is computed using the constraints dis-
cussed in section 6 with Pc = 0. The orientation of the
points along the cross section curve C is (Pu, qo) where Figure 12: A PRCGC with a non-rotationally symmetric
qo = -1/q and p(u) is given by equation 27. Since the cross section.
meridian curves are parallel symmetric to the axis of the
PROGO we can use the gradient (p(u), qo) to recover the
tangent of the 3-D axis at t = 0 as:

A'(0) = (a'(0),a,(0),p(u)a'(O)+qoa,(0)) = (31)
a0 0 , a(0) (a) Cb) (c)

-0,-,(--, ) (0, qc,1)
Tq 1Figure 13: A PRCGC with, (a) none, (b) one, and (c)That is A'(0) is parallel to normal, (0, q,, 1), of the both end cross sections available.plane containing the cross section C, or the plane IIa

containing A'(0) is orthogonal to the plane of C. Also
since the axis, A, of the PRCGC is planar the plane H each other (and of course to its axis) as well as to the im-
contains the whole axis curve A . e s o the r dan s of he sua ce, a n e rias o the

In the following we give an algorithm for recovering ages of the meridians of the surface, and meridians of the
the 3-D cross sections from the image of a PRCGC given surface are parallel symmetric to the axis of the PRaGo
the gradient (pa, q) of the plane Ha, containing the axis. by equation 7, so are their images. Therefore the axis of
Then in the next subsection we give a method for corn- the image of the limb edges, the B,(t) curve, is parallel
puting (p.,qa) from the image. symmetric to the image of the axis of the PRCGC, the

The gradient (P,,q) of the plane of the cross sec- Ai(t) curve.
tion C can be computed if the gradient (Pa, qa) of Ia is If we take the axis A of the PRCGC as the trace of
given. The gradient (Pc, qc) must lie on a line that passes the point that is the backprojection of B,(0) to the cross
through the origin and in the direction of A,(0), in our section plane C. Then A,(0) = B,(0). Given the orien-
case Pc = 0, and (Pc, q,, 1) is orthogonal to (Pa, qa, 1) tation (pa, qa) of the plane Ila containing the axis A, to
then: recover the 3-D cross section say at point P on the im-

(0,qc, 1) • (pa,qa, 1) = 0 * q = -= (32) age axis Bi; The backprojected C ofC, is rotated by the
qa rotation matrix R(B'(0), B'(P)) to obtain the 3-D cross

We can compute the 3-D cross section C from the section curve Cp(u) at point P, where B'(0) and B'(P)
image C of it by backprojecting C, to a plane having are obtained by backprojecting B,(0) and B'(p,) onto
gradient (P, q). the plane I1a. Then the points P and P2 that produces

If the cross section is rotationally symmetric 2 the al- the limb edge on the cross section C,(u) is identified by
gorithm for recovering cross sections is much simpler. In equating the image tangents of C,(u) to the image tan-
the following we give an algorithm that applies to gen- gent of limb boundaries P and P2. The position of the
eral, not necessarily rotationally symmetric case. cross section Cp in 3-D such that Cp(P) and Cp(P 2)

It can be shown that the image of the axis of the project as the points P and P2 on the image and the
PRCGC, A,(t), is not always the same as the axis, B,(t), point Pp on Cp that corresponds to the point A(0) on
of the parallel symmetry of the image of the limb edges, C is on the plane 11a, gives the relative position of the
where the axis of the PRCGC is the trace of a single point cross section Cp with respect to end cross section C in
on the cross section as the cross section is swept. This is 3-D.
shown in figure 12. However the image curves Ai(t) and
Bi(t) are always parallel symmetric to each other such
that the corresponding points are on the same cross sec-
tion. By using lemma I and theorem 5 we conclude that
the images of the limb edges are parallel symmetric to

2A planar cross section is rotationally symmetric iff the
lines passing through the center of the cross section intersects Figure 14: The recovered cross sections for the PRCGCs
both sides of the cross section at equal distances. in figure 2.
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6.2 Computing (pa, q,) of an SHGC are parallel symmetric, and use that prop-
The gradient (p., q,,) of the plane II. containing the erty to recover the images of the cross sections of the
axis is computed by performing a search in the gradi- SHGC. Then we apply the constraints, curved shared
ent plane. The objective of the search is to compute boundary constraint (CSBC), inner surface constraint
(pa,qa) that gives a valid reconstruction. A valid con- (ISC), and the orthogonality constraint (OC) to the
struction is one that makes the projection of the cross SHGCs. An SHGO has four degrees of freedom if it is
section points Cp(P 1 ) and Cp(P 2 ) exactly the same as to be recovered from the images of its contours without
the points P and P2 on the image plane. We form an any assumptions. With the assumption of orthogonal-
objective function which is the average distance, on the ity there is only one degree of freedom which is fixed
image plane, of the reconstructed and projected point by estimating the orientation of the cross sections with
Cp(P) to the point P2 when Cp(Pi) and P is aligned an ellipse fit algorithm. Some computational results are
exactly. Then this objective function is minimized for shown on synthetic data.
(Pa, qM). For PRCGCs the limb boundaries are shown to project

The search is facilitated by finding a good initial point as parallel symmetric curves, which enable us to find
for (pa, q.) using the shapes of the end cross sections. points on the limb boundaries that correspond to the
The analysis in section 6 show that the gradient (pc, ) same cross section. We also show that the three con-of the cross section at one end is constraint to be on straints, CSBC, ISC and OC, are applicable along thea line in the gradient space. A particular value on cross section of a PRCGC. We applied the constraintsthat line may be chosen by using the ellipse fit dis- to the ends where the cross sections are available. Then
cussed in section 4. Similar analysis applies to the we present an algorithm to reconstruct the 3-D PRsGO
other end of the PRCGC (if available). Say the ori- from the images of its contours, using the ellipse fit
entation of the plane containing the other end cross sec- method to recover the orientations of cross sections at
tion C is (pn, qn). Then the plane of Cn is orthogonal the ends.
to the plane 1,. If (pn, qn) is not equal to (0,q) we We have assumed that the object boundaries and sym-
can compute an initial normal Na = (Pa, q,, 1) of I1a metries are given. Detection and computation of sym-
as N. = (p,., q., 1) x (0, qc, 1). If the other end cross metries may, in itself, be a difficult 'ask in real images.
section C, is not available then the gradient (Pa, qa) However, we do provide tests that can be used to verify
is constrained to be on a line by its orthogonality to symmetry properties. Also, we believe that 3-D shape
(0,q). The equation of the line containing (pa,qa) is recovery process will serve as an aid in segmentation and
(0,qc, 1). (Pa,qa, 1) = 0. Any particular value of (Pa,qa) boundary labelling process as well. In the future, wemay be chosen on this line as the initial (Pa,qa). Fig- hope to explore this aspect of the problem.
ure 13 shows that perception is more definite when both
ends are available, which confirms the above observation Appendix
that two ends are more informative than one only. A Proof of the theorem 6
6.3 Results Let X(u, v) be the local parameterization of the surface SWe have implemented the cross section recovery method around the point P E C(t) such that for P = X(uo, Vo),
described in section 6.1. In the implementation first the curve X(u,'vo) is the curve C and the curve X(uo, v)
the orientations (pc, qc) and (p,,, q,,) of the end cross is in the direction R. That is, u parameter curve is
sections are computed. Then the normal Na of Ha along the cuxve C and v parameter curve is in the di-
is found by searching around the gradient given by rection R at the point P. Here we have to show that
(Pc, qc, 1) X (Pn, qn,1 1) that gives a valid reconstruction. •E11 . Rr - 0 where (p, q) is the normal of the surface
The 3-D position of each cross section is then found by dt g
translating the end cross section rotating and aligning it in the gradient space, du is in the direction of C', R1 is
with the limb boundaries and the plane of the axis u1a. under orthograhic projection.
Figure 14 shows the recovered cross sections and figure Nortal ohi prfetn y
15 shows the recovered orientations by both needle and Normal, N, of this surface at any point is given by:
shaded images for the PRCGCs given in figure 2. N= XxX, (33)

7 Conclusions IX. X X.1

In this paper we have analyzed two class of objects; Then, the functions dC/dt and dNR are:
Straight .omogeneiis Generali, d Cones (SHGCs) and dC aX
Planar Right Constant cross section Generalized Cones T - "V
(PRCGCs). ON

We show the property of the limb boundaries of dNR = (35)
SHGCs, under both orthographic and perspective pro-
jection, thzt the tangents of the images of the limb By equation 10 we have X,. N, = 0. Let the normal N
bounda~ies, if extended from the points on the same of the surface around point P is represented in the (p, q)
crots section, itersect the image ofthe axis of the SIIGC space as N = c(p, q, 1). Where e is the scale coefficient
at the same point. We also show that the cross sections and equal 'o (p2 + q1 + 1)- 1/2. Differentiation of N with
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Figure 15: The recovered orientations shown by both needle image and by shading the objects for the PRCGCs in
figure 2.

respect to the parameter u gives: [Clowes, 1971] M.B. Clowes. On seeing things. Artificial

N cu(pq, )+ c(pu, qu,0) (36) Intelligence, 2(1):79-116, 1971.

cu + C(Pu, [Do Carmo, 1976] M. P. Do Carmo. Differential Geom-
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[Horaud and Brady, 1988] R. Horaud and M. Brady. On
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[Kanade, 1981] T. Kanade. Recovery of the three-
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Abstract presented in this paper in a cursory manner. A more detailed analysis,
Generalized cylinders are a flexible, loosely defined class of including relevant theorems and proofs, is presented in [8]. Methods are

parametric shapes capable of modeling many real-world objects. Straight then developed to recover the remainsing parameters, namely, the 3D axis
homogeneous generalized cylinders are an important subclass of general- slant and translation, using the SHGC intensity image.
ized cylinders whose cross sections are scaled versions of a reference curve. The algorithm presented in this paper relies on some previous results
In this paper, a general method is presented for recovering straight homo- for generalized cylinders [15],[161,[19]. In particular, the algorithm in
geneous generalized cylinders front monocular intensity images. This Ponce et al. [15] for recovering the SHGC image axis has been incorporated
method assumes the generalized cylinder being recovered has purely dif- into the larger recovery algorithm.
fuse reflectance and that the reflectance coefficient is constant. We first In adding intensity-based methods (sections 5 and 6) to the recovery
demonstrate that contour information alone is insufficient to recover a algorithm, one has to be concerned that the resulting algorithm will require
straight homogeneous generalized cylinder uniquely. The contour image a detailed a priori knowledge of the imaging model, such as the number of
fails to constrain two parameters of the underlying generalized cylinder, the light sources, their positions and intensities, and the lambertian albedo of
3D axis slant and translation. A method for recovering the generalized rul- the surface. Such a restriction is highly undesirable since, except for highly
ing of a straight homogeneous generalized cylinder image is then described. controlled research environments, such information is generally unavail-
Once the rulings of the image have been recovered we show that all param. able. We have tried to avoid this by keeping the assumptions as general as
eters derivable from contour alone can be recovered. To recover the two possible. For example, the intensity-based method for slant recovery
remaining parameters (modulo scale), not constrained by image contour, pesie tion ex a e the fo s ant imag-addiionl ifor atio mut b inorprate ino te rcovey poces, ~g. presented in section 5 makes the following assumptions regarding the imag-
additional information must be incorporated into ie recovery process, e.g. ing model: scaled orthographic projection, lambertian reflectance, and con-intensity iformation. We derive a method for recovering the slant of the stant albedo. The method, however, does not need to know the number of
object using the ruled contour image and intensity values along extrema light sources in the imaging model, nor the position and intensity of each
cross-section curves. In addition, we derive a method for recovering the
location of the object's 3D axis from intensity values along meridians of the light source, nor the lanbertian albedo of the material surface. The assump-
surface. Using the different methods outlined in this paper constitutes an tions are similarly general for the intensity-based method presented in see-
algorithm for recovering all the shape parameters (modulo scale) of a tion 6 for recovering the 3D axis position.
straight homogeneous generalized cylinder. This paper avoids some of the assumptions that have been made by

generalized cylinder researchers in the past (and have since been shown to
1. Introduction be extremely restrictive). In parti.'ilar, it can be shown that the contour gen-

erator of an SHGC is not, in general, planar, nor does it lie along a surfaceA generalized cylinder (hereafter GC) is a solid defined by its axis, meridian, nor is it symmetric with respect to its axis (see [7],[9],[l0],[15]).
cross-section, and sweeping rile. Generalized cylinders were first proposed As a result, we make no such ssumptions.
by Binford [1) as a class of parametric shapes that is very flexible and capa-
ble of modeling many different types of objects. GCs seem general enough In this paper a contour generator is defined as a 3D curve that gen-
to represent many real-world objects yet sufficiently well-defined that we are crates the image contour. There are two kinds of contour generators: limbs,
tempted to recover their shape from image data. They have been the topic whcre the surface turns smoothly away from the viewer, and edges, where
of considerable research in computer vision and robotics [31,[4],[61- the surface orientation is discontinuous.
C10],[12],[13],[14]-[181. The term generalized ruling in the sequel is an extension of the term

Exactly because GCs are such an expressive representation, recovery ruling used with respect to ruled surfaces. A generalized ruling on an
of their shape parameters from image intensity data has proven to be a SHGC surface (respectively an SHGC image) are its parallels and meridi.
difficult problem. As a result, focus has shifted towards important subc- ans (respectively image parallels and image meridihns). An example of an
lasses of generalized cylinders. The subclass that has received the most SHGC inteisity image and its ruled contour is showii in figure 1.
attention is most likely that of straight homogeneous generalized cylinders Mendians and parallels, which can be determined directly from the
(hereafter SHGCs), where the axis is straight and cross-section curves are image contour (see section 4), proviue a natural parameterization of an
scaled versions of a reference curve (defined in section 2). But even SHGCs SHGC surface and seem to convey considerable information ?bout the
have proven difficult to recover from monocular intensity images. Brooks' underlying shape (as in figure lb). Nevertheless, in section 3 of this paper
ACRONYM system [4] was successful at recovering a very restricted sub- we show that, vthout addituona! assumptions, no algorithm can recover the
class of GCs from contour images. The subclass considered by Brook,- in shape of an SHtC from the contour image alone. The underlying ambi-
the ACRONYM system consisted of GCs with a circular or simple polygo- guity is shown to have two free parameters, slant and location of SHGC 3D
nal cross section, straight or circular spine, and linear or bilinear sweeping axis. The ambiguity ir significant and can affect the sign and magnitude of
rule. Even with this restricted subset of GCs, ACRONYM was only suc- Gaussian curvature at a point on the SHGC surface [8]. Note that this does
cessful at recovenng shape from image contour because it was attempting not imply Gaussian curva'urc ambiguity along the contour generator itself
to match to an a priori set of models In fact, a monocular contour image of (see[8[l I]).
SHGCs (and certainly of GCs) is insufficient to yield a unique solution, as In section 2 of this paper, we define generalized cylinders and straight
we show in section 3 of this paper. homogeneous generalized cylinders. Next, we show that there exist classes

There have been other attempts at constructing algorithms for the of SHGCs each member ff which can generate the identical contour (sec-
recovery of SHGCs ([10],[12J,[17],[18]-[21]) from a single intensity view. tion 3). In section 4, a metho ;iven for ruling the image of an SHGC
Stch attempts generally make use of only contour information. The under- and it is shown that from the im .- of a u!ed SHGC all parameters of the
t.ostrained nature of die problem is then compensated for by either consid- underlying surface Lonstrained by the contour image can be computed (e.g.,
ering only restricted classes of SHGCs (e.g., surfaces of revolution), invok- the sweeping rule at an image point). In oection 5, a method is given for
ing heuristic methods, or having an a priori set of models in the database of disambiguating among members of a sl.nt contour-equivalent class of
the recovery system. SHGCs. This method uses the intensity information along an extremal

In this paper, we provide a method for recovering the unique shape of cross-section curve to recover the slant angle of the SHGC object (with
an SHGC (modulo scale) from its intensity image. This is accomplished by respect to the viewer reference frame). Next, a method is presented for
first determiming the parameters of shape readily available from SHGC con- recovering the 3D axis postuoit using intensity values at 2 pairs of meridian
tour. The constraints of SH1GC contour upon the underlying solid are points (section 6). Finally, the recovery algorithm is implemented on a set

of synthetic images (section 7).
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2. Generalized Cylinders: Definitions and AssumptionsFirst, a definition of generalized cylinders as it will be used in this Consider the image of an SHGC' for some vlewirg angle, 0 < P < 7V2. Let

paper. Fs Q(z.t) be the projection of surface point P(zt) onto the image plane. It
can be written as

Definition: A generalized cylinder is the solid swept by a planar cross-
section as it is moved and deformed along an axis. O (z, t) = f q 0 + (z sin 0 -f cos Pp ) it (2.4)

2.1 Straight Homogeneous Generalized Cylinders The projection of a given cross-section curve z = zr is given by O0 (z, t). It

Straight homogeneous generalized cylinders have been defined with is easily seen that each projected cross-section curve is a scaled version of a

varying degrees of generality in the literature. Typically, the more general projected reference curve. This will prove useful for ruling the contour of

the definition used for SHGCs, the less that can be said about its projective the SHGC (section 4).

invariant properties and consequently, the harder it is to develop a recovery 3. Contour-Equivalent Classes
algorithm. We now define SHGCs as they will be used in this paper. 3. respe ntas

Defiitin: n SHC i a C wih te flloing roprtis: te ais s a With respect to constraints on the SHGC shape imposed by contour,
Definition: An SHGC is a GC with the following properties: the axis i s a we want to show that contour-equivalent classes exist among SHGCs, i.e.,
straight line; the cross-sections are orthogonal to the axis; the cross- each member of a class is capable of generating the same contour. Showing
sections are deformed only by scaling; the scaling factor can be parameter- that contour-equivalent classes of SHGCs exist is equivalent to showing
ized as afunction of distance along the axis; t.at there are free parameters of an SHGC unconstrained by contour. In par-

Formally, SHGCs can be defined with respect to an orthonormal ticular, it will be shown that the parameters of axis slant and translation are
coordinate system (0, "1 1 k), where 0 is a point on the axis, and (s" 7) a unconstrained by contour. For the sake of conciseness, actual proofs of con-
vector basis of the reference cross-section plane. We define an SHGC by tour equivalence are omitted in this paper. A thorough study of SHGC con-

O'J(z, t ) =f(z)p(t) +f(z) q(t)l+ z (2.1) tour constraints, including proofs of contour equivalence, can be found in
[8].

where the function f is the sweeping rule of the SHGC andp and q are the In the next two sections, we formally define two contour-equivalent
parameterization of the cross-section curve in the r*and jdirections, respec- SHGC classes.
tively. Note that this definition does not require the SHGC axis to be con-
tained within the closed cross-section curve. SHGCs with the axis extemal 3.1 Slant contour-equivalent SHGCs
to the cross-section curve do not always appear to have a straight axis.
Hereafter, function variables are generally omitted. The definition for SHGCs is, as in equation (2.1), given by

Curves on the SHGC surface of constant t are called meridians while 0'(z, t )=f(z)p(t)r'+f(z)q(t)Y+ z k (3.1)
curves of constant z drawn on the SHGC surface are called parallels. This Consider a particular SHGC So, defined as above, with sweeping rule fo(z)
terminology is an extension of that used for surfaces of revolution. It 1 and cross-sectional "and components of po(t) and qo(t) respectively. We
assumed that both the sweeping rule function and the cross-section curve are interested in the contour, bth image limbs and edges, generated by
are twice continuously differentiable (C2). In the sequel, the terms image SHGC s vith slant angle = 3 (as in equation (2.4). We refer to this contour

cross-section and image meridian refer, respectively, to the projection of

the specified 3D curve onto the image plane. as Cs,p.

Let us define a class of SHGCs, each member of which is capable of
generating a contour identical to Csp. The intuitive idea here is to take the

2.2 The Coordinate System cross-section curve for So, where it is aligned canonically with the viewer's
Consider an SHGC originally aligned with the viewer reference line of sight (as in figures 2.a and 2.b), and stretch it along the viewing

frame, where the viewer reference frame is given by the orthonormal coor- direction Vt. We then slant it towards (or away) from the viewer until a con-
dinate system (Or, , 0), where v, is the viewer direction. The SHGC is tour identical to CsO is generated. This, then, motivates our definition for
parameterized in its own coordinate system, having an object-centered the family of SHGCs that are slant contour-equivalent to So, where S, is
orthonormal basis (I, I ). The SHGC is originally in canonical position slant contour-equivalent toSoiffCso=Cs,.r. We defineS, as
with respect to the viewer reference frame, i.e., the vectors it and , v and
i, and 0 and i are respectively parallel (see figure 2.a). Assume the SHGC OA (s(z). t) =r(s) k po (t) + r(s) qo(t) '+s(z) k (3.2)
6P is then rotated in space; the rotated SHGC can be parameterized by where k = Cos s(z)= 4 , ki 2 1, and r(s(z))=fo(z). The k term in

cosy, siny,
OP'=R,R RO'P (2.2) equation (3.2) can be viewed as the stretching factor, i.e., the factor by

which the cross-section curve for S has been stretched in the ' direction. It
where 0, W, and co are the Euler angles expressing the rotation about the v, is easy to see that, given basis SHGC So and stretching factor k,, SHGC S, is
w, and u axes respectively, and R, , R., and R. are the corresponding rota- well-defined.
tion matrices. Clearly, after the initial rotation around the u axis, the result- It can be proven [8] that, for any stretching factor k 2a, the viewing
ing SHGC can still be considered in canonical alignment with respect to the angle , and the SHGC St, defined in equation (3.2), produce an image con-
(it. it, 0) viewer-centered reference frame if the initial cross section fune- tour Cs.7 such that Cs7 , = Cso, i.e., the SHGCs So and Si are slant contour-
tions p and q are replaced with new cross-section functions p' and q' (s equivalent. That being true, one cannot ascertain more about the underlying
figure 2.b). SHGC, given a monocular image contour (and without using heuristics),

The last rotation, an angle of € around the v axis, rotates the projected than that it is a member of the contour-equivalent class defined above.
contour in the image plane but does not modify it in any other way (see Consider the 3 SHGCs shown in figure 3. It can be seen that they
figure 2.c). But this rotation in the image plane can be reversed by finding have the same contour. Yet, their intensity images are different. When these
the image axis, as described in [15], where the image axis is a projection of three SHGCs are seen from the side, as shown in figure 4, it is clear that
the object-centered k axis into the image plane. This rotation of R, in the they are quite different in shape. Next, consider the pair of SHGCs shown
image plane can then be undone by bringing the image axis into alignment in figure 5. In this figure, the two SHGCs have identical contours but differ
with (parallel to) the viewer-centered it axis. Thus, without loss of general- in their intensity images. A side view of these two SHGCs is given in figure
ity, the only SHGC rotation (from canonical alignment) considered in the 6 where it can be seen that they differ in their slant towards the viewer and
sequel is toward% or away from the viewer, i.e., around the %, axis (see in die eccentricity of the cross-section curve.
figure 2.d). This rotation around the W axis is referred to as the SHGC
slant. 3.2 Axis-translated contour-equivalent SHGCs

Suppose the viewing direction V is given by its spherical coordinates Consider the SHGC So, defined in the previous secuon. Again, we
(a, 3) in (0. 1. 1'). Based on the discussion above, without loss of gen- are concerned with the contour (both limbs and edges) produced by SHGC
erality, cc can be set equal to zero. The resulting orthonormal basis of the So, having sweeping rule fo(z) and cross-sectional 1 and I components of
viewer reference frame (it, V, W) is defined by po(t) and qo(t) respectively, with slant = P and translation of zero between

it= -cos 1*+ sinlk isin P'+ cos W (2.3) the cross-section curve's origin and the axis origin. We refer to this contour
asCs, p.o.
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Let us define a class of SHGCs, each member of which is capable of
producing a contour identical to the one produced by So when viewed from 5. Solving for the slant angle
the same viewing angle, i.e., slant angle is equal to P, but where the 3D In the previous section, a method was given for ruling the SHGC con-
location of the axis is allowed to vary (as long as it lies in the plane deter- tour. The parameters that remain unconstrained by ruling the SHGC image
mined by the SHGC image axis). The intuitive idea is to take each cross- are axis slant and translation. In this section, a method is described for
section curve of basis SHGC So, translate it with respect to the SHGC axis, recovering axis slant. The assumptions this intensity-based method relies
and then slide it up or down the axis to achieve a contour equivalent to that on (as well as the method descnbed in section 6) are exactly those men-
of Csp5o. This motivates a definition for the family of SHGCs that are tioned in section 1, namely, scaled orthographic projection, lambertian
axis-translated contour-equivalent to So, where S, is considered axis- reflectance, and constant albedo. The method, however, does not need to
translated contour-equivalent to So f Cs,.p.o=Cs,.p.A We define S,, a know the number of light sources in the imaging model, nor the position

member of this contour-equivalent class, as and intensity of each light source, nor the lambertian albedo of the material

surface. It is further assumed, however, that the SHGC has an extrema of
0il, (s(z),t)=r(s)(po(t)+h,)'r+r(s)qo(t)7+s(z)k (3.3) the sweeping rule (i.e., the sweeping rule is non-monotonic), and no self-

where h, is the distance the reference cross-section curve's origin has been shadow.
translated from the axis origin 0 in the positive A' direction, and Consider the SHGC image shown in figure 10a. First, the image axis

s(z)=zh- (I- fo) wherefoisthesweepingruleofSHGCSo. is recovered (see [15] and [7]). Next, we find contour points that are
tan P' extrema of distance between the SHGC contour and the image of the SHGC

It can be proven [8) that, for any axis translation factor h, the viewing axis. Due tc. a lemma by Ponce 1151, we know that this contour distance
direction with slant = 13 and the SHGC S, defined in equation (3.3), gen- extrema corresponds to an extrema of the sweeping rule function f This
erate an image contour Cs,.o.h such that Cs, .. = Cs,.p.o, i.e., the SHGCs So lemma is shown to generalize to the case of non-polar SHGCs defined in
and S, are axis.translated contour-equivalent, equation 2.1 [7). It can easily be verified that the image parallels connect-

Consider the two SHGCs shown in figure 7. They have the same ing corresponding contour extrema are projections of planar, lateral geo-

image contour, yet their respective intensity images are different. An desic curves, where the surface tangent vector in the meridinal direction is

oblique view of this SHGC pair is shown in figure 8, where it can be seen parallel to the SHCG axis.

that the right SHGC is a banana-like shape while the left SHGC is a vase- Using the method for ruling the image surface described in section 4,
like shape. the image parallel connecting a pair of image contour extrema can be

Thus, without heuristic methods, we are confronted with the fact that recovered. It is easy to show that there exists at least one point on this

SHCG contours belong to contour-equivalent classes, In particular, there image parallel that has its tangent vector along the image parallel curve per-

Stodegrees of freedom, axis slant and translation. pendicular to the image axis. We refer to one such image point as Co and
are two dthe image tangent vector at this point as to. Next, we find a pair of image

4. Ruling over generalized cylinders points, one on each side of Co, such that the tangents along the image paral-
lel at these points intersect the tangent to at angles 0 and n- 0, respectively.

In this section, a method is described for finding image parallels and We refer to these points as C, and Cz, see figure 10a. Let So, S1 , and S2 be
meridians from the SHGC contour. This method is referred to as recover- points on the surface of the SHGC that project onto image points Co, C1,
ing the generalized ruling of the SHGC contour, or simply as ruling the and Cz. It can be shown [7] that the tangent planes at S, and S2 make equal
contour image (see section 1). angles with the tangent plane at So, as shown in figure 10b.

In general, most non-occluded image cross-section curves tend to Consider a single light source at some arbitrary position in space,
have two or more points of intersection with the image limb, which sug- though distant from the SHGC object (i.e., projection is scaled ortho-
gests a method for ruling the SHGC contour. This method assumes that the graphic). We now select a new obect-centered coordinate system for the
image axis has already been recovered [15). Algorithms using the SHGC SHGC, obtained by rotating the ri, j. k') coordinate frame around the k'axis
contour to recover the image axis of an SHGC, where the cross-section until the ; axis is aligned with the normal vector at So. In this new orthonor-
function is assumed polar with respect to the axis, are given in [15] (though mal coordinate system ( ii' j. r), the unit normals at So, Si, and S2 are
the robustness of such algorithms is not assured). In [7] the 2D axis lemma, given by (0, 1, 0), (sin 6, cos 8, 0), and (- sin 6, cos , 0), respectively, where 8
on which the algorithm for recovering the image axis is based, is extended is the angle made by the intersecting tangent planes at S i (or S) and So.
to SHGCs with arbitrary, simple C2 cross-sections, as defined in equation We are interested in the image intensity values at Co. Ci, and C2. Let
(3.1). t=eil +esj +esr be the point source directional vector. The image

Once the image axis has been recovered, the reference curve can be intensity values at Co, CI, and C 2 are directly proportional to the cosine of
sLaled with respect to the axis so that it touches the bounding contour at 2 the angle between V and the normal vectors at So, S , and S , respectively.
or more points, without any point extending beyond the contour. Us;ng a Let -s be a constant equal to the diffuse reflectance coefficient of the sur-
non-ar.cidentalness alignment criterion, we assume that if the above s.aling face, and h, = 4e, i+ e,2 - e3

2 is the intensity of the incident light. Using
exists, it indicates that the image parallel at this point (along the axis) has Lambert's law, the image intensities at Co, C,, and Cz are given by
been correctly scaled. This method allows us to draw image parallels at any
desired point along the SHGC contour. Connecting corresponding points of Re = Xs e 2  (5.1)
image parallels together using interpolating splines provides an approxima- Ri = Xs (e, sin 8+ e2 cos6) (5.2)
tion to the image meridians.

This technique is illustrated in figure 9 which shows the contour and
image axis of an SHGC. Also shown in the figure are scaled versions of the where R, is the image intensity at image point C,. Adding R, and R2
image cross-section with respect to a certain point along the image axis. It together and dividing by Ro, we have
can be seen that only at one such scaling does the image cross-section curve R, +R2
exactly touch the contour in two places; for every other scaling, the cross- 2 coS (5.4)
section curve is either contained entirely within or extends beyond the
bounding image contour. Thus, this osculating image parallel is presumed where 8 is the angle between the tangent planes at So and S, (alternatively,
to be the correct scaling of the image cross-section at this point along the the angle between the tangent planes at So and S2 ). Thus, the value of 8 can
image axis. This method works when the SHGC axis is contained within be obtained directly from the intensity values at C0 , C,, and C 2. But know-
the cross-section curve. In a case where the axis is not contained within the ing the angle 6 between the tangent planes and the angle a between the
cross-section curve, a more gene.al method is required [7] that involves corresponding image tangents allows us to compute axis slant angle 13 since
both rescahing and translating the image cross-section. COS3 I tan 0

ta d t i o o
The possible parameterizations of an SHGC can be grouped into This method, then, computes axis slant with respect to the viewer

equivalent classes, as explained in 16]. That being the case, one can reference frame without knowledge of light source position, diffuse
decide on a particular parameterization from amongst this class by, some- reflectance coefficient of te surface, or intensity of the incident light. Also,
what arbitrarily, setting the scaling function of the top cross section curve to the method is equally valid for multiple light sources (see [7]), so long as
one. Having done so, it is clear from equation (2.4) that the scaling factor is the 3 surface points So. S1, and S 2 uscd for the slant computation are visible
also known for all image parallels detected by the method described above, to the same set of light sources. An example of this slant recovery method is
since they are all just scaled versions of a projected reference curve. given in section 7.
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6. Recovery of the 3D Axis Position computed by fitting points locally with a polynomial then analytically com-

In this section, an intensity-based method is described for recovering puting the tangent vector. Thus, the only values in equation (6.7) whose

the 3D axis translation parameter h (defined in equation (3.3)). The values are still not computable are f' and h.

assumptions required for this method include those described in the previ- We are interested in recovering h. To do so, we first rewrite equa-
ous section and, in addition, require that the SHGC have a planar top (or at tion(6.7) with f" on the left side, such that
least a rim) visible in the image. t -(

The SHGC we want to recover can be parameterized by equation ((p'q)-(p +h )q')
(3.3). We assume at this point in the recovery process that the image axis
has already been recovered, the SHGC image has been ruled (section 4), To solve for h, we need to select another set of three points on the
and the slant parameter P has been recovered (section 5). We can now, surface of the SHGC; we use the point Sro again, and additionally select a

somewhat arbitrarily, select a point on the image axis O,. It is easy to see geodesic point Sal (on the same extremal cross-section curve as Soo) and a
that, with respect to 0,, the values of p(t) and q(t) for any point along the point SMI on the same meridian as Sat and on the same cross-section curve

image cross.section can be computed (since axis slant and cross-section as Smo. This set of three points, Sol, Sul, and Sro will yield two solutions for
scaling are known). 0, as given in equation (6.5). Selecting one of the solutions for 0, the

tangent plane angle, for the surface points at Smo and Syi and using equation
Consider a point source directional vector V decomposed into rtgd (6.8) gives us two equations for f', where the only unknown parameter on

onal components, L in a direction parallel to the SHGC axis k' and/. the right side of the equation is h. Since the points Smo and Smi lie on the
parallel to the SHGC cross-section plane, as shown in figure 11. same cross-section curve, the value off" at both points is the same; thus,

Next, consider two points on the SHGC surface, Sao and SMo, which the right sides of the respective equations for f" generated using equation
correspond, respectively, to a point on a cross-sectional, lateral surface geo- (6.8) must be equal. Setting them equal, we are able to get a solution for h
desic (where such points can be found directly from image contour, as in given by
the previous section), and another point on the same surface meridian (see
figure 12). We know that the tangent plane at Sao is parallel to the SHGC h = 4 q'2+pi2( 'qo-poo) -an (6.9)
axis [5], and we would like to determine, as a first step in solving for trans- tan(.op1,' 4q -+pd2_tan0.po lqi2+pl'
lation parameter h, the angle that the tangent plane at Suo makes with the where 0o is a solution for 0 from the first set of meridian points (Sao and
tangent plane at Soo. To do this, we divide L into orthogonal components. SU0), 01 is a solution for 0 from the second set of meridian points (Sot and
Let L be the vector component of L; parallel to the surface normal vector Sun), and p,, q,, p,', and q,' correspond to the cross-section functions (as
at Sao, as shown in figure 12. Let L be the vector component of L; perpen- defined in equation (3.3)) and their derivatives at the point S,. Since every
aicular to L,. Clearly, the L component of L has no effect on the intensity term on the right side of this equation can be computed, the value of h can
values at either Soc or Suo since r, is parallel to the tangent planes at both
points (see figure 12). Without loss of generality (see (7]), assume that the now also be computed
magnitude of the point source directional vector and the diffuse reflectance To get a unique value for h, since there are two values of 0 computed
coefficient are both equal to 1. The intensity at Sao is then given by for each set of meridian points (corresponding to the two solutions for the

slant angle given in equation (6.5)), we take several sets of meridian points,
RGOt= ,. (6.1) where each set gives us four solutions for h, since there are four ways to

while the image intensity at Suo is clearly given by select one 0 value from each pair of 0 values. Only one solution for h will
appear in all sets of solutions for a, and that is the desired value for h. It

Rme = coso L., + sino ., (6.2) can be shown [7] that this method works regardless of the number of light

where € is the angle the tangent plane at Smo makes with the tangent plane at sources so long as a light source seen at point So, is also seen at point Sl,.

Soo, as shown in figure 13. Thus, it has been demonstrated that all shape parameters of the
We now consider a third point Sro, lying on the planar top (or rim) of SHGC (mf dulo scale) can be computed using constraints from both the

the SHGC, with intensity value given by contour and the intensity of the SHGC image. An example of the recovery
method is given in the next section.Rro'L, (6.3)

As can be seen in figure 13 (see also [7]), the intensity equation at Smo given 7. Experimental Results
by equation (6.2) can be rewritten as Consider the SHGC shown in figure 14a. We want to recover its slant

Rmo=cosoftro+sin0Reo (6.4) parameter. Since SHGC slant cannot be ascertained from contour alone, as
described in section 3, we will try to recover the slant value using intensity

where Rro, R0 t and Ruo are simply the observed image intensities, respec- information. The ruled contour and image axis for this SHGC are shown in
tively, at image points Cro, C0o, and C¢o correspondiig to surface points figure 15. For this experiment, the intensity image and its ruled contour
STO, SGe, and SMO. image (with image axis) were given as input to the algorithm.

From equation (6.4) and the intensities at the points Sro, Sao, and Suo, In order to recover the slant, we first need to find a contour extrema
a closed form solution can be obtained for '€. There are, in fact two solu- with respect to the image axis. Having done this, the algorithm recovers the
tions for 0, given by image parallel that touches this point along the SHGC contour. A point

along this extremal image parallel that has a tangent perpendicular to the
= Roo VRao2+Rro-Rmo2 ±RtroRmo (6.5) axis direction is then found. This can be done reliably by locally approxi-

RTo "4Ro 2+Rro2 -Ruo 2 ±RcoRmo mating the parallel curve with a polynomial curve and then computing the
This double solution is not a problem in general, as will soon be explainea, tangent to the curve at Gie point analytically. This point we label Co,
and we are able to arrive at a unique solution for 0. corresponding to the point Co in section 5 (see also figure 10a). This image

point has the property that, when vertically aligned with respect to the
Assuming, without loss of generality (see section 2.2), that the only viewer reference frame, its corresponding surface point So (shown in figure

rotation of the object is towards (or away) from the viewer, we obtain the I Ob) has a value of p = 0, q = 0 in the gradient space (with respect to the
following equation for the normal of a point on the SHGC surface viewer reference frame). We now need to find two other image points, C,

JV = q'T- p7+ +f' (p'q - (p +h )q'))k" (6.6) and C2, that make equal angles (with opposite sign) with the tangent line at
Co. These two points correspond, once again, to Ci and C2 of section 5 (as

From the equation for the normal, we can immediately obtain an equation in figure 10a). To select these points, this implementation of the method
for '. This angle 0 can be computed using the equation asks the user to specify an angle the tangents at C, and C2 should make with

q-(f'o-+p'2 (6.7) te tangent at Co. When 15 degrees was selected, the algorithm found the
4
rq-_+P 12 (7 image meridians shown in figure 16. The intersection of the image meridi-

ans with the image parallel extrema give us the desired points C1 and C 2.But we can solve for 0 drectly from the intensity image using equation The middle mage meridian co.-responds to points along the image parallels
(6.5). In addition, we assume that the values of p, q, p', and q' are either Ie tangents are perpendicular to the axis. The intersectton of ilus image
known or computable. This is a straightforward procedure as the slant of the weangets ae prplendla e to thre ais. at pint co
object has already been recovered (section 6), so that p and q at a point on
the image are directly available from the image, while p' and q' can be
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The slant is computed in stages (section 5). First, the cosine of angle JCs, such as one that allows for arbitrary sweeping rules along orthogonal
8 is computed by adding the image intensities at C, and C2 and dividing by
twice the image intensity of Co, as given in equation (5.4). The 8 angle directions of the cross-section curve.

corresponds to the angle between the tangent planes at So and S1 (altema-
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Figure 3. A slant contour-equivalcnt view of 3 vaseFigure 1. A straight homogeneous generalized cylinder: SHGCs.a. the intensity image; b. the ruled contour.

Coordinate Systems

Figure 4. A side view of same 3 vase SHGCs.

- /Figure 5. A slant contour-equivalent view of 2 SOR-
shaped SHGCs.

Figure 2. The coordinate system used to deline a
straight homogeneous generalized cylinder: a. in canoni-
cal position ; b. rotated around the it axis ; c. rotated
around the V axiW ; d. rotatcd around tihe ' axis, i.e. tilt-
ed an angle of 1 towards the viewer.

Figure 6. A side view of same 2 SOR-shaped SIIGCs.
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Figure 7. A translation contour-equivalent view of two
SHGCs.

Figure 11. Imaging model for recovering the SHGC 3D

axis translation: the point source directional vector L! is
divided into orthogonal components, LC is parallel to the
SHGC axis K" while L4 is parallel to the SHOC cross-
section plane.

Figure 8. An oblique view.

Ruling Over SHGCs.

Figure 12. The L' component of source directional vec-
tor r can be divided into orthogonal components L and
E£*, which are, respectively, parallel and perpendicular to
the surface normal at SGo.

Figure 9. A method for ruling the SHGC image: dif-
ferent scalings of the image parallel and the correct seal-
ing.

at 

Fkvre 10. SHIGC tilt recovery method: a. image
tang',s at Co, C1, and C2 ; b. overhead view of inter- Figure 13. A side view of the SHGC meridian contain-
seclin tingent planes at surface points So, Si, and S2. ing surface points SAto and So.
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Figure 17. Recovering the slant, a side view: a. original
Figure 14. Recovering the slant: a. original SHGC; b. SHGC; b. recovered SHGC.
recovered SHaG.

Figure 15. Ruled contour and image axis for SHGC of
figure 14a.

Figure 18. Recovering the translation: a. original

SHGC; b. recovered SHGC.

C,|,

Figure 16. Tihe three imagc points selected for recover-
ing slant: Co having a value of (0,0) in the gradient space
(when image axis is vertically aligned) and C, and C2,
whose tangents arc at a 15 degree angle with respect to

the tangent at Co.
Figure 19. Recovering the translation, a side view: a.
original SHGC; b. recovered SHGC.
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Abstract
This paper describes a new segmentation technique for very sparse * In surface reconstruction, the assumptions used for segmentation
surfaces which is based on minimizing tile energy of the surfaces in tile must be related to models of world surfaces.
scene. While it could be used in almost any system as part of surface * In the recovery of disparity fields, assumptions must be tied to
reconstruction/model recovery, the algorithm is designed to be usable either a model of disparity fields, or a combination of models of
when the depth information is scattered and very sparse, as is generally world surfaces and the pair of image formation equations used to
the case with depth genlerated by stereo algorithms. We show results obtain the disparity field.
from a sequential algorithm that processes laser rangefinder data or * etc ...
synthetic data. We then discuss an implementation running on the Of these, the segmentation tasks in surface reconstruction, dispar-
parallel Connection Machine. ity field recovery and certain classes of motion detection problems, have

The idea of segmentation by energy minimization is not new. How- been approached using segnentation coupled with recovery using an
ever, prior techniques have relied on discrete regularization or Markov energy-based smoothne., assumption, for example see (Terzopoulos 84],
random fields to model the surfaces to build smooth surfaces and de- ['loff and Ahuja 85], [Anandan and Weiss 85), (Blake and Zisserman 86
tect depth edges. Both of the aforementioned techniques are ineffective [Cion Brown 88], tKanade 88]. In each of these cases, the attempt at
at energy minimization for very sparse data. In addition, this method segmentation can b roughly described as follows:
does not require edge detection and is thus also applicable when edge Step 1 Do a initial smcothess-based reconstruction (this is generally
information is unreliable or unavailable. Our model is extremely gen- a minimal energy suface or configuration).
eral; it does not depend on a model of the surface shape but only on
the energy for bending a surface. Thus the surfaces can grow in a more Step 2 Mark those parts of the reconstruction which are "not locally
data-directed manner, smooth" (generally with a gradient like operator) as discontinu-The technique presented herein models the surfaces with repro- ities.ducing kernel-based splines which cal be shown to solve a regular- Step 3 Adjust the reconstruction mechanism to deal with the newly

ized surface reconstruction problem. From the functional form of these marked discontinuities and go to Step 1.
splines we derive computable bounds on the energy of a surface over a Other segmentation approaches for surface reconstruction have in-
given finite region. The computation of the spline, and the correspond- corporated smooth measures implied by volumetric models, for exam-
ing surface representation are quite efficient for very sparse data. An pIe, see [Pentland 86], [Bajcsy and Solina 87], [Rao, Nevatia and Medic
interesting property of the algorithm is that it makes no attempt to or local smoothness properties such as planarity or curvature consis-
determine segmentation boundaries; the algorithm can be viewed as a tency, see [Besel and Jain 86].
classification scheme which partitions the data into collections of points 2 Motivation and a Different Formulation
which are "from" the same surface. Among the significant advantages
of the method is the capacity to process overlapping transparent sur- This paper proposes a different model of segmentation which has some
faces, as well as surfaces with large occluded areas, fundamental differences in the formulation of the problem. This sec-

tion discusses this model, and also provides some motivation for it. In1 Segmentation: Introduction and Background defining this rood die section introduces the energy-based segniersta-
Segmentation is one of the most pervasive and most difficult problems m tion approach wherein the energy of reconstructed surface(s) is dire cty
computer vision. It rears it ugly head in such subareas as: edge/region used to segment the data.
detection, motion detection, determination of textures, shape-from.X The traditional view of the surface segmentation problem is one
(for almost all X), calculation of disparity fields (stereo matching), of determining the "discontinuity boundaries" in surface depth, surface
model recovery, surface reconstruction and medical imaging. Unfor- orientation and/or surface curvature This approach usually requires
tunately, the segmentation problem in each of these areas will not, m some reconstruction of time surface, which is related to an a priori cho-
general, be solvable by the same techniques. One reason for the failure sen measure of surface energy Unfortunately, in order to correctly
of the methods to extend to different the segmentation problems in generate a surface reconstruction, knowledge of data segmentation is
the various subareas is because the assumptions about the data vary generally required This results in a difficult chicken-and-egg problm
dramatically: Thus, researchers may assume the scene consists of a specific class of

* In edge/region detection, the data is the intensity values of the surfaces (such as planar or convex). To make matters worse, the quality
image irradiaice. Tae mtwumptiois ubed for scginentation must be of the reconstruction in tile neighborhood of an unmarked (i.e. as ye'
related to the process of image formation. undetected) discontinuity is generally poor. Thus the localization ofrelatedotondetecton, the pros cn i e m t. i the discontinuity of iterative reconstruct/segment approaches, see e.g.In motion detection, the data can be either spatio-temporal in [Terzopoulos 84] or [hloff aiid Ahiuja 87], will be questionable. More-
tensity images or spatio-temporal surface information, and the
segmentatioii assumptions must be related either to the flow of over, data from scenes with transparent surfaces cannot easily fit tointensities as objects/slf undergo motion (for spatiotemporal in- these models.
itensities imaes)oto object undeo adtephysicsf motion t o f A second shortcoming of the traditional approach is that it will
tensities images) or to object models and the physics of motion of require considerable post processing to haidle extended multiply coni-said objects.

nected objects (say an object behind a picket fence) and may never be
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able to -landle transparent surfaces where locally there are only a few The discussion of advantages and disadvantages of this-approach arp
points on any one-surface. relegated to a separate section following this one.

A final remark about traditional segmentation is related to the The algorithm constructs initial approximations of the surfaces
definition of "boundaries". It is well known that the perceived "bound- from the local data cluster 3-space * These approximate surfaces-are
aries" of surfaces in depth share many characteristics with subjective updated by subsequent processing. The algorithm then-ieuristically
contours, see [Julesz 71], [Marr 81]. This suggests that a definition of determines which point to add next (more below) and points are added
"boundaries" in depth might be accomplished by some secondary pro- to a surface as long as the addition does not cause the energy (see
cessing which is shared with "boundary" detection from other visual below) of said surface to exceed a certain threshold If the surface
modalities. Therefore the energy-based method of this paper can be cannot accept any remaining points, a "new" surface is created and
combined with a secondary boundary-detection process to obtain both the process repeats itself until all data points have been processed
the shape and the outline of each surface. A variation of the algorithm develops several surfaces in-parallel by

To accommodate the above mentioned problems, this paper pro- placing a point on several surfaces that can accept it without exceeding
'poses that segmentation of 3D information should not attempt to de- the threshold.
termine boundaries. Rather, the segmentation should simply classif In its basic form, each pass of the algorithm computes the surface
points as belonging to the same surface. The determination of bound- and corresponding energy that would result if each remaining point
aries will be relegated to some secondary process which is not discussed were separately added to the current surface. The system then adds
here. Of course this view cannot be taken too far, as there-are limits the point which would cause the minimal rise in surface bending en-
both to the number of possible "transparent" surfaces and the number ergy, assuming it does not exceed the specified threshold Because of
of times a background object is blocked by foreground objects. Psycho- the monotonic and commutative nature of the energy-measure, this
logical experiments have already demonstrated that such limits exist approach will generally find the surface of minimal energy given the
in the-human visual system. starting basis and the threshold, though it can be computationally ex-

As-mentioned above, what-is desired is some measure which can pensive. This expense is being addressed in two ways. First, through
be applied to groups of points to determine if they are part of the same a parallel implementation. Second, we recognize that the true min-
physical surface. This section presents.one such measure, surface bend- ima is not always necessary, and we develop heuristics that develop the
ing energy, and discusses its appropriateness. The authors acknowledge segmentation at lower cost.
that other measures might be used and the end of this section touches The discussion of algorithmic details can be divided into seven
upon some of these-alternatives, smaller conceptual components which appear as separate subsections.

Segmentation has been extensively studied in the context of image These components are:
segmentation, and one might wonder if the algorithm herein is new / 1. Definition of the model of world surfaces.
applicable to that domain. The crucial part of our algorithm is the use
of "surface energy" to heuristically (though reliably) determine if two 2. Definition of the reproducing kernel-based spline which is used-to
points are part of the same "extended region". Unfortunately, such reconstruct the surfaces.
measures have proven-illusive for-intensity images. 3. Definition of the energy measure.

in computer vision, as well as other domains, researchers have used 4. Calculation of bounds on the energy of a reproducing kernel-based
ininihal surface bending-energy as an assumption to aid in surface re- spline surface.

covery,7for example see [Grimson 81], [Franke 82], [Terzopoulos 84], 5. leuristics used for (a) basis point selection, (b) point selection, and
[Wahba 84], [Iloff and Ahuja 85], [Choi and Kender 85], [Lee 85], (c) culprit point selection, to remove some points and decrease the
[Blake and Zissermnan 86], [Boult 86]. Bending energy thus seems a surface energy.
natural choice for the "measure" to determine if a group of points be- 6. Method to merge similar surfaces into one surface.
long to the samesurface. Tie bending energy of a thin-plate surface f 7. A short discussion of the ongoing parallel implementation.
is given by: 3,1 Definition of the Model of World Surfaces

ia /2,/ 20
2  " The assumed model of world surface is intimately related to techiiques{j=j_ ~ +2. ((')) . (1) for regularized surface reconstruction, see Boult 86]. An important

OXOy/ \o f these classes can be parameterized formally as those functions with
otheir inth derivative in IiQ, where It'1 is the Hilbert space of functionsOf course, the use of bending energy can only be apartial basis for such that their tempered distributions v in riR2 have Fourier transform

a practical metsure for segmentation. Other issues that must be also P that satisfy
be addressed include:

* -What is the allowable class of functions for bending energy. J f2 ([r12 l (r)12 dr) <+oo.
* What is the effect ofsurface size, or the area over which tile energy

is nieasured.
* Whatis the relat:onship betwee'i the energy, the number of data This class of functions, referred to as D"tIJ", is equipped witll the ni'

-points and surface area. Sobolev semi-norm,
* -Iow to set, the threshold for separalion of a group, or alternatively 2

to define the tradeoiff between the number-of surfaces and sumn of xd(2the energies of these surface. IILD- ddy (2)
* When is the energy of a collection of points "too big".

H Ifow does one locate the fewest nunberof "culprit" point(s) in the which,if I > t1> I-ni, rfeults in asemi-lfilbertspace. Note that if one
group, i.e., the credit assignment problem, chooses in = 2, q = 0, then using the properties of Fourier transforms,

* What is the relatinship between "depth" discontinuities and "or- the above definitions yield exact)) tile space D2L which was ised by
entatiop" discontinimities, and howy do these clut tsersticti effect Grimson and Terzol-oulos.
the energy- ienasure discontinuities. Let us now give an intuitive definition of theose classes of functions

First, note that the spaces or'"fimmtions" a suime the exisitence of the
3 Aln Energy-based Segmentation Algorithm ;nI1 derivative of the function, in the disrnbutwnal scpse. 'lbis means,
This section describes one way to realize an energy based segmentation
algorithm given that one accepts the absumption of minimnizing bend- PIC size Uf the cluster is user defliable fro, 4-30 datapomts, In generod, the
ig energy, However, the algorithn is easily nmodified to handle many number must be at least I Inore iMan the size of the dimension of the null space
relnted-neasures such as those described inl (Boul. 86] and [3oult 81] of the energy measure. A number of heuristics have been developed to pick therlt msaue pont. These gcneray select an initial point along wilh, a the sabet of itsThe section describes tile inathienmatical-backgroulld of the algorithm., neighbors in 3 spacc that produce the lowest energy surface.
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roughly, that-the mth derivative of the iAnictions inxists except on sets where
of-measure of zero (e.g., at isola.ted points or line), Then the cvsses
Dm11, which are 'ilso known as Df1 .P, simply cs~uiw that-the power Aj = 6/I(olASir) i = 1,...,k;
of these futnctions is bounded, For the class D"/',r, > 0 we have Aij -a(v(x, yj; x,,py), i = 1. kj = 1,...,k i 0 j;
that the square of the spectrum ot( the derivative goeb to zero (as BV,, =Cjj =13jpj(x,t) i , .. ,k, j = 1,.. .,3;
the frequency goes to oo) faster Oai a sp .cified polynomial of the and Vtj = 0 i 1,.. ,3 j = 1,.. .,3;
frequency. Thus, these functions have less high frequentcs and are
"smoother" than functions which -simply have in derivative. For the (5)
classes Drl 11), t < 0 we see that the spectrum of the derivatives ts The important properties of the above solution to the surface re-
bounded away from zero, and that as the frequency goes to co, the construction problem are:
derivatives go to infinity no faster than a givetn polynmmial Thus, 1. The algorithm is efficient for very sparse data (anything more than
these functions have less low frequencies and are less 'smooth" than 3 non.colhnear points will do, and the fewer the number of points,
most functions with in derivatives, the faster the surface can be computed).

In the work reported here, we consider the class 9114I which, int. 2. Tre surface is defined by the solution to a linear system which
itively is the space of functions which tre smooth (almost everywhere) depends only on the location of the data and the certainty of
up to derivatives of order approximately 1.5, i.e., they are significantly the observations. The certainty is used to control the amount
smoother than membrane surfaces but are not as smooth as thin-plate of smoothing, with less smoothing for less noisy sensors. If the
splines, Tie motivation for this choice of functions (i.e., this "interme- solution to this system can be updated quickly, the surface can
diat" level of smoothing) is supported by the results of (Boult 87]. also be updated quickly.

3.2 Definition of Reproducing Kernel-Based Spline 3. 'rhe surface is given in a functional form, thus the evaluation of
An essential iiigredient of the current algorithm, at least from the point derivatives is trivial, and bounds on the energy of tile surface can
of view of eflicient serial implementation, is the use of the reproduc- be computed analytically.
ing kernel-based spline reconstruction as described in [Boult 86] This 4. The surfaces are independent of the "boundaries" of discontinu-
section introduces some aspects of that algorithm necessary for later ities, and depend only on the data values. However, the actual
discussions,. surface will change if the number/value of data points on the

We do not choose to interpolate the data, instead we follow the boundary are changed.
"regularization" approach of inininaziig a sinoothies term (thle int 5. Tile definution of the nullspace can be changed to consider different.
Subolev seini.noran) a weighted stun of squares of the distance of the polynomial combinations of initial data values.
surface from the data, i.e. we finld the surface from our class of surfaces
which minimizes: 3.2.1 Short discussion of the updatable QR algorithnThis

1 2section briefly discusses the way the algorithm updates the linear sys-
A. A + I [oD,,, (3) ten to allow for an efficient update of the surface for serial iinplemen-'i'= Cations. The algorithm begins by doing a QR decomposition of the

where the data z, at point (xh yi), i = 1 ... , is assumed to be on initial linear system. Then, using Givens rotations, the algorithm can
one surface. The g1obal snoothtn9 parameter, A, should depend on the allow for the addition or deletion of any row/column (in fact, it can
overall error in the initial data, and the factors bi allow for indiiidual handle any rank one modification), We make use of the capacity to
points to have greater "noise"; the factor A effects the overall tradeoff delete data from the system without recomputing the linear system in
between surface smoothimess (as measured by tl'e normim 11"'11o) and the order to remove culprit points, as will be discussed later
fidelity to the data points :,. The factor 61 effects the contribution of a The computation ofthe initial QR decomposition for k data points
single data point so as not to penalize the surface as nnuch (or to penal- requires time O(Aka)t The addition/deletion then costs 0(k ), and the
ize it more, depending on the value of bi) for not closely approximating recomputation of the solution with the new system costs 0(k ). The
the data at that point. techiques for choosing these parameters have algorithm is numerically stable which is important since the condition
been discussed by other researchers, see [Bates and Wahba 82]. number for reproducing kernel-based spline problems can be mioder-

One solution to the above reconstruction problem is a reproducing ately large.
kernel-based spline. It .an be shown, see [Meniguet 83], that for the A secondary advantage of using time QR decomposition is that
above model of world surfaces, D2111 , the appropriate reproducing changing the values of the data (while leaving the position unchanged)
kernel here is requires only 0(k2) to recompute the solution. We exploit this for

merging surfaces by interpolating data onto a fixed grid with a pre-
I(X,.Il; u, V)= y(( - 11)2 + (y _V)2)* computed solution. While these algorithm are not new, the authors

hope that this brief disclosure will alert the vision community to its
for some constant 7 potential uses. The algorithm is precisely defined in [Daniel et al. 76]

Given the above kernel, the spline (i.e., the reconstruction of the and widel) available inplementations can be found in various mathe-
2 D sketch) which approximates the data matical libraries, e.g. IMSL.

-1, , .:= (f(zi,1/),f(X2,,2), .... ,f(Xk, Yk), i = 1 . , k) 3.3 Definition of the Energy Measure

The basic form of the energy measure is given by equation 2 except that
cal be developed a: the region of integration may be different than that expressed therein.

a The energy of the surface will depend on the size of the region in

cr, = ZaiK(xy;x,,y,) + flpi(x, V) (4) I 2 over which the energy hiorm is computed. The two most natural
i=i ,=1 choices are lU2 itself, and the convex hull of the data defining the

where p (x, V) =P2(X, Y) = Xa(X, Y) = Y The coStanlts 0, and 8. "current" surface. Unfortunately, neither is appropriato For the clasq

are tie solutioni to the systenm of liiiear equations: used mu the initial tests, the integral over 1.2 is iot necessarily finiteJt
r l t system linear eqaWhile the energy norin over the convex hull of the data defining the

Ai, ... AlL V1, B1,2 B?,3  m "current" surface is obviously finite," this choice has two difficulties:

1. The convex hull! would continuously change as new data poits
Akr ... A ,,t. Bk, 1 . BSk, 3 4 were added to a surface.
(1,1 . .. l,k 1,1  9r,2 'D,3 0 Wlilc the decomposition could in fact be computed by adding every row one
C2 ,1  . . . C2, V2,1 D2,2 D2 ,3  0 aI a tieic, this doubles the cost of the decomposition. and ,iay slightly effect the
C31 ... ('3,k V3,1 D3 ,2 TV3,3 0 quality of the solution.
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2. The use of a domain which ends near the data points will allow The choice of norn is significant. The second norm gives zero
the addition of oew points to lower the surface energy, thus tle energy to planar surfe but large energy to conic sections. Thus
energy will no longer be monotonicly increasing, making a region it is appropriate when the world model is known to be mostly planar.
growing method less stable.1t  'rhis is eactly the case for many man-made objects, such as bent sheet

3,4 Derivation of Bounds on Energy of Surface metal, desks, and other rectangular scenes. In contrast, the third norm

Given the definition of the spline as in equation 4, one can symbolically gives zero energy to conic sections, and thus it is appropriate when

compute bounds oil the energy. To begin, the exact form of the energy many round objects are in the scene.
integral is manipulated to explicitly expand the squaring operation and Once the norm is selected we set the maximum energy thresholdsmove the differentiation and integration inside the sum, to wit, according to the precomputed energy for prototype shapes in the scenes.

A number of intermediate thresholds are also used to slowly increase

(fie-lio = the surface energy. This prevents the erroneous segmentations that
, occur if only the final threshold values occur, since it bends the surface

f ,slowly. The algorithm therefore places points onto the surface where
cAK0,Y;xt,,Y,2 they most easily fit. The next larger threshold is used when no more

+2. OYK:vg points can be placed within the current one.

2 J3.5 Heuristics
+ A - dy Heuristics reduce the cost of the energy-based method by selecting

points to be considered for the various surfaces, and also for deleting
points from these surfaces. Good heuristics should focus the system by

(6) selecting the points that should be added to each surface. The points
By letting the integration be over tile square [-B, B)2 we have can &elected by a heuristic can then be tested for the minimum energy cri-

obtain tcria, and only the low-energy points are used. We now discuss several
subproblems where heuristics help, in particular building tile initial

=IO-ID2 surfaces, adding points to them, and merging or eliminating duplicate
a.ilj a surfaces.

The system combines two kinds of heuristics. The domain in-dependent heuristits described here are sufficiently general to provide+2. -H(x, y;xi, yi) -K./ (z,.v; ,yaj) reaionable results for many scenes, including scenes with occluding sur-

+K¢£ztyzi~i).Kusz~yx/.i))dxdy } ) faces;, low-energy surfaces and high-energy surfaces. Domain specific
(1) heuristics increase efficiency by selecting points according to the ex-

While it would be most appropriate to integrate the terms symbol- pected scene characteristics, for example if information is available on
ically in the last ofthe above equations, the authors (and MACSYMA) the curvature ofa surface the program can construct an initial solution
have been unable to obtain a solution. Fortunately, a symbolic solu- from the points that are "likely" to be on the surface. This provides
tion can be obtained for the upper bound using the fact that we can a good basis for adding more points by the energy-based method. Do-
compute: main specific information also can be used to set the thresholds for the

I(B~, t)Kx, .r) ; s t) urfaces.
I(flst) = f f' {I',C(nsyt) sra s.ruction of the initial "basis" surfaces. Each surface is ini-

+2. IRZ(, V; a,t) (8) tilly described by a small number of points, between 4 and 30. Good
--Ky,(,,;st)1 dx dy starting surfaces are essqntial for accurate segmentation, and therefore

the program must find points that all lie on the same actual surface.
While we will only report on the classes D211 V" and lD31 1 3, we This is done in two steps. First a significant single point is found as a

have obtained closed form solutions for ](B,s,) tor various values of Iseed" for the basis. Second, a subset of its neighbors in 3-space are
m and q These are given in the following table, selected. Ideally each "seed" point should be from a different surface.

Since we cannot achieve this without knowing the segmentation, we
DlH =9 180B(t 2 + 1) + 1201 4  instead select the seed according to the following heuristics. A physical

252B explanation of why it is a good heuristic follows each one:
.(II90Lt5 + (357002s2 + 71'Ol1001)f * Pick the nearest point (physically, this is a point on the closest

D2  +(3,57t100s4( + 142800B'S 2 + 66G40B0) f2 object).

I 19001B2 + 71,t00B'sl + 666C,0JB182 + 8160B s) * Pick the farthest point (phys.cally, a point on the most distant
D3H15" 17100B(,4 + t4) + 34200I'tYs + 45600B4(S2 + t2) + 10640B' object).
D4H' 87300B-(s + t2) + 5820011' * Pick randomly, but not near any seed value that has already been

chosen.
Table 1 Table of 1(B, s, 1) for different classes of functions. * Pick a point near to a specific XY coordinate oil a grid (appropri-

ate when approxinateobject locations or distributions are known).
* Pick the point that is farthest from one picked previously (span as

if one considers the class D 2110, then tibe energy norm il, by definition, finite, much of the scene as possible).
However, the energy value may be very large and ihus nay be numerically unitable.

"lntutivy one can a'.cumne a Lebusge bitegral which wAy ignore sets of measure The lowest energy surface is then built from the seed and a sub-
zero. More formally, the definition of the class was in terns of distributions and get of the neighboring points This entails a combinatorial search of
the energy measure tzn be defined in a distributional sense as well. the Al near neighbors for the lowest energy N element surface. The

ftintuitivd. this anomaly i-an be understood by noting the following:
(a) Surface energp nieasuses the "bending" of ite surface in the domain of ite. starting surfaces are identified by selecting an "interesting" point and

gration. its neighbors in 3-space. We then perforii an exhaustive search of the
(b) The definition of lite rla- of stufaces insnres that the salue of "the surface" Al nearest neighbors to build N-point surfaces. If Al is too small the

must go zero as the point of evaluation approaches infinity, thus outside the constructed surface may span several actual surfaces. Likewise, if N
convex hull ofthe data the surface will approach zero, and this may cause some is too small the resultibg surface will not be sufficiently descriptive to
"ringing" in lite surface if tle data density is "low" near the edge of the region. permit accurate selection of points, The combinatorial search is ex-

(c) By increasing the data density, the vahte of the surface itstdea bounded region
call be forced to approacd a planar stufa.e which has zero energy, tus after pensive, and is an excellent candidate for parallel processing ott a large
initially building a si face using points on some region boutdary, adding new data-parallel machine.
data points with in the region can "push" the high energy portions (i.e. bent
areas) outside the convex hull. This results itn nonmonotonic energy measure.
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It is important to restrict the search to the near neighbors because the global energy threshold. The second method gives significantly bet-
it -is. otherwise quite easy to build large nearly-planar surfaces that ter results than the first, since it completes all low-energy classifications
cut through several surfaces. Moreover, the points must not be too before it increases the energy. The first lethod call misclassify when a
close to each other because the resulting reconstruction would be highly point can bL ou either -1 with large energy or on S 2 with lower energy.
distorted by surface noise. Otherwise the points are not distinguishable The approach of building all surfaces may also improve performance
in XY coordinates but the resulting surface can havc huge energy due of tile parallel mplementation. lowever, the simultaneous building of
to the variation in Z, which %%ill be quite relative to the differencc ill multiple surfaces will construct redundant surfaces, and also place co-
XY values. The Z values could be due to noise or to multiple surfaces surface pouit. onto different reconstructions. This problem is solved by

The algorithm can recover from incorrect starting surfaces. The merging similar solutions as described below.
smoothness assumption identifies as erroneous any surface that has a Mcrgi g. tvhcn and how to combine surfaces into one? Merging
large energy with a small number of points, and such surfaces .an be silular surfaces is important for tao reasons. First, we do not know of
pruned ad the points reused on other surfaces. Secondly oar system any way to guarantee that the initial basis" surfaces are from differ-
periodically deletes points and merges surfaces These actions allon a oet ,tumal surfaccs. Therefore we necessarily construct multiple similar
surface to shed points that were erroneously placed onto it, and thcn surfaces. These surfaces iiaq overlap, and thus they cannot simply
to combine similar surfaces into oe denser surface. be merged at their boundaries. Secondly, v e aiticipate increases in

Point scketmon. twhat point to add? Once the initial basis surface proesvsimig speed in the parallcl version by simultaneously processing
has been constru.ted, points must be selected and then added t0 the several subsamples of the data in different sections of the parallel con-
surface which can accept them with iirlnmumi increase in energy. The puter, and then mnerbiig tle.,e results into one representation. In both
exhaustive method would require NVin update operations (for N points ca.,vs tihe iierg, uperatU should construct one neA snuoth surface
and tit surfaces) at a cost of N2 per update. This N4 cost is excessive, from the data of both similar surfaces.
and therefore we first cstimate the energy. We have been suc(essful with We have tso deimitions of lo"'ueness". 'File first iinimizes tile
air estimation method that considcrs only tile points which are nAar to sum squared distance between the reconustructiou of surface Si with the
some point already on the surface (wt will dtscribe this shortly ). The data of surface S2 at those points which are within the bounding box
nearness criteria also prevents the erroneous additioi, of a nun-surface of 6, (and likewise the data of St with the surface of S2) The purpose
point that just "happens" to fit unto a partiall, developed surfat, for of evaluating the sun only ss)tlin the bounding box (i e between the
example with occluding transparent surfaces. minimum and maximum X - V values) is to prevent extrapolation

A point is near a surface if tie distance to some point on the error.
surface is less than half the diagonal of the box that boutnds the points lie secoiid way %%t test if tio suifaces are sufliicntly 'close" to
already on the surface. The point is temporarily igaored if it is too be merged is by interpolating the surfaces Sm and S2 on a si.arse and
far from the surface, and is considered at a later iteration after the fixed X - Y grid, and then constructing a new surface froni these
surface has accepted closer points (and the bouuding box is larger), sanmlles. We use precouiputatiou to efficlently comtpute tit. energy of
The near points are then ranked by a weighted distance formula. This si. , a zlystemn, which reducev the computational expcu.te to siuple data
combines tie distance to the nearest poiit already oil the surface, with interpolation (at tile grid values) and back-sul,stiL . ,u. This is much
the proxinital distaac- from the point to the ,at aily reconstructed clhcaper than building a new surface by adding each puint to it.
surface. The points are then added in order of increasing cost subject A surface is considered for merging only if it has at least time me-
to a global threshold. dian number of data values on it. The merge cost of all such pairs is

Culprit identification, when and how to pick points to delete ? Mis computed, and the merges are perforted in ordei of increasing energy.
classifications of data during the incremental addition of points to sur- Each pointof tile les.-deiis surface is considered for tire densetr urface,
faces results in excessively large surface energy Indeed, our underlying and is added if the point does not exceed k tm. th median energy
assumption is that smooth surfaces have low energy If the surface is of tile less-d:use surface. ill this manner erroneous points will not beo
not smooth it becomes important to delete some point(s) from the sur- umt.rged, but instead are returned to the pool of unproc.essed data and
face. In general the point which makes the largest contribution to the will be placed onto a surface iu a subsequent iteration.
energy does not belong to the surface and is the classification error. Pruning. when should a surface be einnaatcd? Sometime3 a sur-
Thus it should be deleted The exhaustive method to find this point ,face is icorrectly started from the data on several different scenie stur-
(i.e. try each possible point) is uneconomical Therefore we need soilie faces. The energy ofsuch surfaces is generally high, and tht,s time surface
way to predict which point is the "culprit" rusponsible for the excess does not accept many additional data points, These sparse surfaces alt:
energy. discarded and the points are reused on sonic other surface. The pro-

Wt. have two miethods to delete points. The first method prunes grain thereby recovers from false starts by resegmenting data that does
away any data item that is more than three standard deviations away not produce a surface.
from tile surface reconstruction, i.e. the reproducing kernel-based spline. 3.6 Parallel Implementation
After segmentation is complete at each threshold, the program coin- An prototype of segmentation is operational on the nassively paral-
putes time standard deviatio of the distence from the data to the re- lei Connection Machine. The CM-2 has 65,536 processors with 512
constructed surface. The distant points are deleted, and the test is megabytes of memory and a 300 gigabyte/sec memory bandwidth.
reapplied until the change in standard deviation is less than 5 percent This gives 9K bytes RAM per processor. Although the processors
Note that the updatable QR algorithm allows deletion of arbitrary rows are small 1-bit PEs, the typical aggregate operation speed is 2500
and columns, so this delete operation is fairly economical. We are very mflops for double precisio on a 4Kx4K matrix multiplication, and
pleased with the culprit deletions, and note that our results are free 5000 mflops for a dot product. For a complete technical summary see
from any "spikes" that indicate misclassification.Asecond indicator of the "culprit" is thec the value of a ini the [Thinking Maclines].

A scon inicaor f te "ulpit"is he ilevale o a ll ile We have implemented for the CNI-2 the updatabhe QF¢. algorithm
linear system which recovered the spline parameters. intuitively this for solving near systems, construction of the linear system (equation
is because a large or makes a large contribution to the energy. We use 5), evaluation of surface energy in parallel, and adding points to a
culprit deletion by removing the poiut with largest a after every 10 surface, Tis software has procegyed data from a minber of synthetic
insertions, if a point is erroneously removed it can still be added back surfaces including spheres and planes. Tate software is writte iln theil
in a subsequent add operation. This is because the increase in energy *Lisp language.
at each step is a good predictor of the correct segmentation We have We use data parallelism to accelerate the combinatorial search
shown experimentally that an iicorrect data point is associated with It for the initial basis surfaces. The algorithm distributes a different
large alpha value, amid are studyitig this method further subset of the data to each processor. in one data-parallel step each

Segmentation: when to create a new surface? We have investigated processing element simultaneously constructs the minimum energy sur-
two methods: first of completely building one surface at a time, and face that fits its subset. The lowest. energy sohltions are retained as the
second of building all surfaces simultaneously by gradually increasing starting-bases that accept additioial data points.
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In tile second form of parallelism, algorithm parallelism, many - The order of processing of points currently effects the resultant seg-
processors cooperate to solve a single problem instance. This form of mentation in all but the exhaustive heuristic. This is especially
parallelism is appropriate when there are more processors than problem true when two surfaces come into direct contact and join in a
instances. In this case many processors may cooperate to solve one rather smooth fashion (e.g. a wedge) This may actually be used
problem. For example, both the recovery of the spline parameters to help in the segmentation process by processing the data in mul-
and surface merging ,ndy be done in parallel. We have developed a tiple orders and using any difference in data labeling to suggest a
parallel version of tile updatable QH. algorithm[Daniel et at. 76) and refined segmentation.
are currently investirating ways to improve its efficiency. The quick - The algorithm currently uses-a threshold on the energy bounds for
solution of linear systems will allow us to process more data than we surfaces in the scene. A schedule of surface thresholds is currently
can on a uniprocessor. this should allow us to process thousands of manually set, and future work (in progress) attempts to redress
points, as occurs in nins) arse data, and also to process many surfaces this issue. Luckily, this threshold for energy-based segmentation
The heuristics can al.o be processed in parallel, ii. ,articular tile local does not seem too sensitive as say thresholds for segmenta'ion of an
properties of all points can be explored simultaneously, image based oil intensity, e.g. (variations of 10% of the threshold
4- The-pluses and minuses are generally indistinguishable.
4 T- The algorithm assumes one is interested in smooth surfaces and will

,This section critically reviews the algorithmi described in this g aper most likely fail when this assumption is not satisfied. Unfortu-
pointing out some of the major advantages +, major problIrms -, and lately, the algorithm cannot even determine if the assumptions are
some aspects which can be viewed as either a pro or a co: t:. satisfied (For example, consider a rough surface similar to a plane

covered with a large number of small densely packed cones. If the
+ The segmentation process is based on surfaces having low bending data supplied to the algorithm are points on the background and

energy, a heuristic which can be directly related to the physical the peak values of the cones, the algorithm is hopelessly doomed
process of surface formation. Since this heuristic is often used to predict two planar surfaces.)
in surfce reconstruction, it is a natural for segmentation as well. - The algorithm is surface based, and cannot deal with data from
iecause we do not attempt to sp dte discontinuities, the algorithm multiple views of a volumetric object.. Additionally, it will often
is well behaved for very sparse data, and even handles transparent fail if noise is such that a single , locatio. is assigned multiple
and occluded objects with few problems. data values (of the same type).

+ The functional form of the reproducing kernel-based spline allows for
analytic computation of bounds oil the surface energy, thu, mak- 5 Experimentation
ing the segmentation process reasonably computationally efficient. This section describes some of tite mi, tt cxntrnentaton with the
The functional form of tie energy bounds are quite simple. segmentation algorithm. TIe reader dioulc rem,:an-' *#Lat tile exper-

+ While not presented here, the algorithm can easily be extended to imentation involves some hinian iz,,-ractiuo (t-, teterm.ine threslolds)
handle the case of lerivative information (e.g. surface orientation and most of the examples i %';t ni1 tI. sytet is best be.t.avior. The
ofcurvature) in addition to depth data. The extension is accom- experiments we run on a Sun Snrc! I.o -station curji,gr-red with 12M
plished by allowing a mote complex surface reconstruction scheme, of memory.
see [Kender Lee Boidt 85]. We show here the results from two b-en.s. Th -Oist is syrithtic data

1 The complexity of the algorithm, with the selection heuristic of for three overlapping and intersecting supeiquadric surfaces with very
global minimal energy addition, is 0(n

4) for n points, and with simildr shapes. The restlts show excellent differentiation between the
the other heuristics it is 0(n 3 ). For very sparse data, this is a sig- surfaces. Segmentation result are shown as "needle-plots" where the
nificant saving over disc,*.- regularization costs, but as the data length of the line is the distance from the X - Y plane. We show

densities grow, tile algorithm becomes too costly. the segmentation of tell segments the was computed by increasing the

:- The algorithm does not reover "boundaries" for the segmented energy four times. Next %eshow the segmentation into only 5 segments
data. This is advantageous because it allows for transparent and/or after 5 merge cycles, followed by the reconstructed surfaces. Note there
occluding surfaces, and because data is generally sparse (and often are no erroneous segmentattons and thus the output is free of spikes.
noisier) near the boundary resulting in a poor boundary definition. We have processed laser range finder data from tile Purdue Vision
This is a disadvantage beause it requires a secondary pr-cesses Lab, provided by Avi Kak, and-also laser data front the University of
(possibly using ideas borrowed from work oil subjective contour Utah. We show only one of these more difficult data sets here that
perception or Gestalt psychology) to determine the actual bound- consists of complex round shapes.
ary.

The algorithm can easily be adapted to different measures of sur- 0 Conclusions and future work
face smoothness. This is advantageous because it allows for greater
flexibility, but disadvantageous becaue determination of the most This paper has piesctited a new algorithm for segmentation of depth

data. 'f lie algorithm is based oti add~inig points to a surface only when
appropriate measure is dillicult. The measure used in the expert- doigs T e ot icrase the surface bd e y ellicltspreentd hrci ha prvedto e areaonale ne.doing so does not increase the surface bonding energy above a user
netits presented hiereiti has proved to be a reasonable one. dt.termined threshold. Th'le algorithm has been experimentally tested

4 The algorithm is based oi reproducing kernel-based splines which and in most cases correctly labels all data points. The algorithm does

are essentially a global surface reconstfuction algorithm and pro- not determine boundaries between segmenled surfaces, and this which
vide for efficient serial implementa ion for sparse data (say <500 allows it to handle extended objects occluded by other objects and
tpoits per surface otn a 512hy512 grid) If there ree more points, transparent objects.
the algorithm call be extended to use local reproduciiig kertiel- One of the most obvious railings of the approach is the current
based splines (loosely based on (Franke 82]), at the cost of sakitig dpendence oti a global thresholding technique to realize the segmeita-
the surface definition localized topstches. tion. Such a process is dooted to be troublesome unless a systematic

4 The reproducing kernel-based splin, with updates to the QR factor- determination of the threshold is possible. Future work will address
iza~ton provide atllt fitiLit 'tril ihplkititl talull , 110%6U, tL. thts issUe alld Wlt .iku iiiU, ,iigaitc- tile uebi of ad.t ile threoholding (de-
do not suggest an efilcient parallel implementation other than the pending ot the actual dat.) mid the iu or Qhur properties, say rate
trivial extetision of doing the matrix computations in parallel, Fu- of change of energy, as the li.ie, of realiting aepoimentation.
ture work may explore the possibility of using parallel multi-grid The algorithni its preseiiihd has little theoretical basis for the use
techiques to solve a discretized version of tile surface recostruc- of vnergy as ain iidicator for segmientait ion. Of course, in a worst case
tion problem which call theu be used in lie segmmetation algo- setting, segmineitatiou is air tinsokable proileim. However, on the av-
rithii. Unfortunately how oie evaluates energy in this case is still erage thirc im still hope of ddermiiiig a thicoletical basis for segietn-
unclear, tatiott. Fulre work will explore Ihis idea, and attempt to show that
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Figure 1: This shows a needle plot. of three overlapping sphieres, after Figure 3:
4 segmentation cpdes at in~cMSIlig eCllCgs alues, Trhe data was gen. This shows all the recovered surfaces from the above emniple.
crated with ritdimis mid cwilitc ab-fulluoos. ile upper right siio%% thle
uusegllentedl data. rile reco~ered-sgments are listed to-thc left. 'rte
p laramneters of the spheres are. Top suirface. r 0.8, c = (0.0,0.0, 1.0).
A\iddle surface. r = 0 25, c' = (0,0,0). Bottom surface:. r = 0.25,
c = (0 ,-.-0 ).Each suirface is sampled at 150-points on-a
sphlerical coordinate .5ptc. amid ramidowil3 shifted from thle grid. Uni-
forum random noise it-thu janmgc [-U.0,,0.05] was added to-te -- alues,
of thle dlata.
Segments 0, 1, 6, 7 anid 8 rf preselit- thle simallest sphereo. Note there are
11im Z classification em rors, though there is oie error in the X direction of
suirface G. Segimntsa .3 anid 9 itpju esit thle iiideshrand segmicts
4 andl 5represent the-largest sphkere.

Figure-l: Th'lis shows laser range finder data for three-round sturfaces
(Purdue-Vision Lab data). Tlhue ulisegunentetl dat ais in t(lie tipper right,
andl the-segmients are to thie left,

Figure 2; T1his shiow, tlie segmuentationi of thie synthetic data after 5
mierge cycles. 'rl'he merged segmients are (0, 1) (2. .3, 9). (4, 5) and (6,
7). Segmenuts 1, 7 and $ aw~ iiot %vt umvmgvd mmto onev surface. Figure .5. This shows a partially merged versiomn of thle t irce roumnd

'mrfar,'; qeomuuotmts (0, 1) haive tu','m 'oubismwd, aq haive s-gmomt s (.5, 3,
9) anmd (6, u7, 8).
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Abstract
Generalized cylinders are a flexible, loosely defined class of author has since shown [7] that, given certain assumptions regarding the

parametric shapes capable of modeling many real-world objects. Straight SHGC and the imaging model, photometric invariants exist in the intensity
omogeneous generalized cylinders are an important subclass of general- image to recover these two parameters. The results of this contour con-

ized cylinders whose cross sections are scaled versions of a reference curve. straint study can also be useful to heuristic-based methods in that the free
In this paper, the constraints imposed by the contour image of a straight parameters of SHGC contour have been clearly identified. In addition, by
homogeneous generalized cylinder on the underlying 3D object are studied. showing that two degrees of freedom exist that are not constrained by the
The main result of this paper is that there are two parameters unconstrained contour image, it follows that no algorithm can claim to solve for the under-
by the contour image such that, if these two parameters can be determined lying shape of an SHGC strictly from contour information (e.g., [20]).
using some other method (e.g., intensity-based methods), the entire shape of It is necessary to differentiate between terms referring to the 3D
the object (modulo scale) can be determined. After defining generalized scene and terms referring to the image plane. A contour generator is
cylinders and straight homogeneous generalized cylinders, the author shows defined as a 3D curve that generates the image contour. There are two kinds
that projective invariants of straight homogeneous generalized cylinders of contour generators. limbs, where the surface turns smoothly away from
reduce the rotational transformations between object- and viewer- centered the viewer, and edges, where the surface orientation is discontinuous [14].
coordinate systems that need to be considered. This simplifies the ensuing The 2D curves in the image corresponding to limbs and edges are referred
analysis. Next, a proof is given to show that an infinite class of contour- to, respectively, as image limbs and image edges.
equivalent straight homogeneous generalized cylinders exists that can be
constructed from a canonical generalized cylinder by varying the slant It is assumed in the sequel that projection from the scene onto the
parameter. It is then shown that this class can vary in quantitative Gaussian image plane is scaled orthographic. It is further assumed that both the
curvature at a surface point corresponding to a fixed image point. Next, a sweeping rule function and the cross-section curve are twice continuously
constructive proof is given that a second contour-equivalent class exists, differentiable (C2 ).
this time generated by varying the translation parameter of the generalized Curves on the SHGC surface of constant t are called meridians, while
cylinder axis with respect to the cross-section curve. This class is shown to curves of constant z drawn on the SHGC surface are called parallels (see
have vanations in both quantitative and qualitative Gaussian curvature. A SHGC definition, section 2). This terminology is a generalization of that
method for recovering the generalized ruling of a straight homogeneous used for surfaces of revolution. The projections of meridians and parallels
generalized cylinder contour is then described. Finally, it is shown that the onto the image plane are referred to, in this paper, as image meridians and
two unconstrained parameters used in constructing the contour-equivalent image parallels, respectively. The term reference cr3ss-section curve (or
classes are the only free parameters not constrained by image contour, simply reference curve) in the sequel rfers to the 3D cross-section curve of

the top SHGC plane. Its scaling is used as a reference to scale the other
SHGC cross-sections.

1. Introduction Meridians and parallels, whose projections can be determined directly
A generalized cylinder (hereafter GC) is a solid defined by its axis, from the image contour (see section 6), provide a natural parameterization

cross-section, and sweeping rule. Generalized cylinders were first proposed of an SHGC surface and seem to convey considerable information about the
by Binford [1] as a class of parametric shapes that is very flexible and capa- underlying shape, see figure 1 (as opposed to lines of curvature [3]).
ble of modeling many different types of objects. GCs seem general enough Nevertheless, in sections 4 and 5 of this paper it is shown that, without addi-
to represent many real-world objects yet sufficiently well-defined that one is tional assumptions, no algorithm can recover the shape of an SIIGC from
tempted to recover their shape from image data. They have been the topic the contour image alone. The underlying ambiguity is shown to have two
of considerable research within the vision community [2]-[4],6]- parameters of freedom, axis slant and translation. The ambiguity is
[9],[121,[13]-[18]. An important subclass of GCs is that of straight homo- significant and can affect the sign and magnitude of Gaussian curvature at a
geneous generalized cylinders (hereafter SHGCs), where the axis is straight point on the SHGC surface.
and cross-section curves are scaled versions of a reference curve (defined in This paper avoids making certain assumptions that have been made
section 2). The study of SHGC contour constraints is the subject of this by generalized cylinder researchers in the past and that are generally false.
paper. In particular, it can be shown that the contour generator of an SHGC is gen-

SI-IGCs have proven difficult to recover from monocular intensity erally not planar, nor does it lie along a surface meridian, nor is it sym-
images. Brooks' ACRONYM system [4] was successful at recovering a metric with respect to its axis (see [71,[8],[14],[9]).
very restricted subclass of GCs from contour images. The subclass con-
sidered by Brooks in the ACRONYM system consisted of GCs with a circu-
lar or simple polygonal cross section, straight or circular spine, and linear or
bilinear sweeping rule. Even with this restricted subset of GCs, ACRO-
NYM was only successful at recovering shape from image contour because
it was matching to an a priori set of models. In fact, a monocular contour
image of SHGCs (and certainly of GCs) is insufficient to yield a unique
solution, as will be shown in this paper.

Recovery methods for SHGCs from monocular intensity images have
tended to fit the image SHGC using only image contour information, as in
[4],[9],[111],20). The underconstrained nature of the SHGC shape from
.ontour problem has Wen compensated for by either considering restricted

classes of SHGCs (e.g., surfaces of revolution), invoking heuristic methods,
or having an a priori set of models to match to. In an effort to derive an
overconstrained method that uses additional image information (e.g., inten- cg) b)
sity data), the author decided that a mathematical study of SIGC contour
constraints was necessary to determine precisely what constraints an SHGC
contour imposes on the underlying object. The results of that study,
described in this paper, show that exactly two parameters remain uncon- Figure I. A straight hunogcneous generalized cylinder a the intensity image, b
strained by SHGC contour. Those parameters arm the slant and translation die ruled contour.
(with respect to the reference cross-section curve) of the SIIGC axis. The
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always appear to have a straight axis. This class of SHGCs allows for a

The term generalized ruling in the sequel is an extension of the term wide variety of shapes. Examples of these SHGCs are shown in figure 2. In

ruling used for ruled surfaces. A generalized ruling on an SHGC surface particular, it should be observed that the banana-shaped object in figure 2.c
(respectively an SHGC image) are its parallels and meridians (respectively can be parametenzed as an SHGC with respect to fixed coordinate system
image parallels and image meridians). An example of an SHGC intensity (0 ,i" , k) rather than by a Frenet frame, as is typically done for curved
image and its ruled contour is given in figure 1. objects, (see [151).

In section 2, a definition of generalized cylinders and straight homo-
systems and viewpoint assumptions. After defining SHGCs, useful proper-

ties of SHGCs are derived including expressions for the normal, limb equa-
tion, and Gaussian curvature (section 3). Next, a proof is given that a )
contour-equivalent class of SHGCs can be constructed by varying the axis
slant parameter, This class, it is shown, exhibits quantitative Gaussian cur-
vature variation (section 4). Then, it is shown that a contour-equivalent b)
class of SHGCs can be constructed by varying the axis translation parame-
ter, and that the class exhibits beth quantitative and qualitative Gaussian
curvature variation (section 5). In section 6, a method is derived for recov-
ering the generalized ruling of an SHGC image given its contour. Finally,
it is shown (section 7) that if, in addition to the SHGC contour, the two
contour-equivalent parameters of axis slant and translation are known, then
the shape of the underlying SHOC can be uniquely determined modulo
scale.'

2. Generalized Cylinders: Definitions and Assumptions
First, a definition for generalized cylinders as used in this paper. Figure 2. Three SHGCs: a. surface of revolution object ; b. parabolic.sided object;

Definition: A generalized cylinder is the solid swept by a planar cross- c. banana-shaped object.
section as it is moved and deformed along an axis.

2.1 Straight Homogeneous Generalized Cylinders 2.2 A Preliminary: The 2D Intersecting Tangents Lemma

A definition is now given for SHGCs as the term will be used in this As a preliminary to discussing viewpoint assumptions and coordinate
paper. systems, a previous result for SHGC projective contour invariants due to

Definition: An SIIGC is a GC with the following properties: the axis is Ponce et al. [14] needs to be cited.

straight; the cross-section curve is a simple, smooth curve orthogonal to the 2D
axis; the cross-sections are deformed only by scaling; the scaling factor can intersecting tangents lemma: For any two contour points with the

be parameterized as afunction of position along the axis; same z value, the tangents to the contours intersect on the image axis.
a

This property of SHGC contour is helpful in the recovery process since it is
SHGCs can be p~recisely defined with respect to the orthonormal a projective invariant of SHGC contour, i.e., it holds regardless of the diree-

coordinate system (0, Y.jf i'), where 0 is a point on the axis, and (to. ) is a tion from which the object is viewed. Ponce et al. [14] have demonstrated
vector basis for the reference cross-section plane. An explicit parameteri- that this lemma can be used as the basis for recovering the image axis of an
zarion for the swept surface of an SHGC, given as a function of z and t, can SHGC. It is interesting to note [14] that this lemma is valid in two dimen-
be written as sions but not in three, i.e., in general, the 3D tangents at points along the

contour generator with the same z value do not intersect along the 3D
O(z~t )=r(z)p(t)"r+r(r)qQ)'f +z k (2.1) SHGCaxis.

where the function r is the sweeping rule of the SHGC and the functions p. Since the class of SHGCs considered in this paper is more general
and arc, respectively, the components of the crss-sction curve in the than that defined by Ponce, it is necessary to prove the lemma for the class

and j directions. The sweeping rule r is presumed to be strictly positive (to isf SHGCs defined in this paper. This is done in [7]. The 2D tangent lemma

avoid self-intersections), while p and q can be positive, zero, or negative. is illustrated in figure 3.

Note that this defintion allows the cross-section curve to intersect the SHGC
axis. Curves on the SHGC surface of constant t are called meridians while
curves of constant z drawn on the SHGC surface are called parallels. Both
the sweeping rule function and the cross-section curve are assumed to be
twice continuously differentiable (C 2) .2

The above definition for SHGCs is quite general. SHGCs as defined
above are much more general than superquadrics, as they subsume the
superquadric class even if the SHGC cross-section curve is restricted to
being superelliptic. It also subsumes the class studied by Ponce et al [141,
where the cross-section curve is restricted to being a piecewise polar func-
tion (assuming the knot points are C2). The definition for SHGC in this
paper, however, is a strict subset of the class defined by Ponce in [16],
where the sweeping tule r is not required to be a function of z. This latter
definition for SHGCs, though, is difficult to use as it includes instances of
surfaces that are not regular (e.g., self-intersections), as noted in [16].

Note that the definition for SHGCs given here does not require the Figure 3. E,..apc! of die 2D tangent lenm for SHGC corsour twungerits t. contour
SHGC axis be contained within the closed cross-section curve (as in [14]). ponts with the same z value intersect on the image of the axis.
As a result, SHGCs with the axis external to the cross-section curve do not

I. Recovering the shape of the object modulo scale is considered optimal since absolute 2.3 The Viewpoint Assumption
scale cannot be recovered from a monocular intensity image under scaled orthographic projec-tion. In this sction, the following assumption concerning viewpoint direc-

linisootva.d
2. The assumption that functions r,p. and q be C

2 is not strictly necessary. The results i tion is motivated.
this paper are valid even if the functions are only C

O 
and piecewiSa C 2, The C2 

assumption is
made in this paper in order to simplity the contour analysis Slant Viewpoint Assumption: Withoutloss of generality, the only rotation
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that needs to be considered-in analyzing the constraints of SHGC contour The projection of a given cross-section curve i = z' is given by O1 (zg t). It
on the shape of the underlying 3D object is that of slant towards (or away is easily seen that each projected cross-section curve is a scaled version of a
from) the viewer, projected reference curve. This will prove useful for ruling the contour of

the SHGC (section 6).
Consider an SHGC originally aligned with the viewer reference

frame, where the viewer reference frame is given by the orthonormal coor- 3. Properties of an SHGC
dinate system (0, W, V, 0), where V is the viewer direction. The SHGC is In this section, some properties of an SHGC are derived that will be
parameterized in its own coordinate system, having an object-centered used in the next several sections of the paper. First, surface properties of
orthonormal basis (I, 7.K). The SHGC is originally in canonical psition the SHGC are studied, then projective properties are considered.
with respect to the viewer reference frame, i.e., the vectors i and k', V and
A, and 0 and 7 are respectively parallel (see figure 4.a). Assume the SHGC 3.1 Surface Properties
6A is then rotated in space; the rotated SHGC can be parameterized by Consider a particular SHGC So, whose swept out surface (as defined

O'=RRvROP (2.2) in equation (2.1)) can be written as

where , y, and co are the Euler angles expressing the rotation about the v, Oi(zt)=ro(z)po(t)" + ro(z)qo(t)7 + z Jr; (3.1)
w, and u axes respectively, and R#, R, ,and R. are the corresponding rota- zi<z 52.
tion matrices. Clearly, after the initial rotation around the u axis, the result- where ro(.) is the sweeping rule of SHGC So, and,,(.) and qo(.) are its
ing SHGC can still be considered in canonical alignment with respect to the respective cross-section functions along the rand J axes, Hereafter, func-
(U. V, 0) viewer-centered reference frame if the initial cross section fune- tion variables and variable subscripts are generally omitted.
tions p and q are replaced with new cross-section functions p' and q' (see

aOuo = _ r'p r + r'q 1, + (3.2)

aO r p +rq" (3.3)

,1 The normal vector on the SHGC surface is obtained by taking the vector
0 ) .., cross product of the partial derivative vectors. After taking the vector pro-

____ duct and rescaling by a factor of 1, the normal can be written as
r

1Qo = q'r - p"+r'(p'q -q'p)k' (3.4)

To obtain an expression for the unit normal, equation (3.4) is divided its
magnitude, whose squared value is given by

IR0i = q1 + p' 2 + r(p'q -qp)2  (3.5)

cle Having derived expressions for the partial derivatives and surface
4normal, an expression can now be derived for the Gaussian curvature at aC) ) _ point on the surface. To compute the Gaussian curvature, second deriva-

,, .tives of So with respect to z and t are required, for which one obtains
Figure 4. The coordinate system used to dcfine a straight homogeneous generalized
cylinder: a. in canonical position ; b. rotated around the U axis ; c. rotated around the 32---- o = r". (p 1+ q)V axis ; d. rotated around the 0 axis, i.e. slanted an angle of 3 towards the viewer. aZ2

The last rotation, by an angle of 0 with respect to the v axis, rotates a2 Oo = r' .(p' + q'i) (3.6)
the projected contour in the image plane but does not modify it in any other
way (see figure 4.c). But from the 2D intersecting tangents lemma (section Opo = r. (p + q"7)
2.2), an algorithm exists for recovering the SHGC image axis as in (14].
Thus this image plane rotation R, can be reversed by finding the image axis,
which is a projection of the object-centered r axis onto the image plane, The Gaussian curvature of the surface at a point Po(z,t) is given by
and then undoing the R, rotation by bringing the image axis into alignment (see [5])
with (parallel to) the viewer-centered rt axis. Thus, without loss of general-
ity, the only SHGC rotation (from canonical alignment) considered in the K (3.7)
sequel is towards or away from the viewer, i.e., around the 0 axis (see B G - F2 '
figure 4.d). This rotation around the ,r axis is referred to as the SHGCfigureand). This otati onaround the slan t axin steed tbov e HC where the coefficients of the second and first fundamental forms in the basis
slant. This justifies the slant viewpoint assumption stated above. (( aa )7,o,( tat )oPo) are given by e, f, g, and E, F, G, respectively.

2.4 The Coordinate Systems These coefficients (see (5]), where • is the vector dot product, are given
Suppose the viewing direction V is given by its spherical coordinates by

(cc, P) in (0, , 1, k). Based on the preceeding argument (section 2.3), - __ . O
without loss of generality, a can be set equal to zero. The resulting ortho- e -IA To o -
normal basis of the viewer referencz frame (it. , W) is dcfincd by

R'=-cospr +s ni , +sinlli'+cospk, 0=7 (2.3) K"= ,o" V0 = 0

Consider the image of an SHGC for some viewing angle, 0 < 11 < n2, as
shown in figure 4.d. Let Q(z,t) be the projection of surface point P(z,t) 1 1 rl q pq")
onto the image plane. It can be written as g= to ' = - r(q'p"-p'q")

0 (z,)=r q W +(z sin -r cos[0p )i (2.4)
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E a o. 011o = r' 2 (p 2+q 2)+ 1 (3.8) so that its contour C, is identical to Co, the contour of SHGC So. Demon-
E = F strating that such an infinite class of SHGCs can be constructed from

canonical SHGC So is proof of the fact that the slant of an SHGC cannot be

=a Ottoa 'o = r r'(pp'+q q') solvedfor strictlyfrom contour.

S T1 "" rrSection 4.1 defines the class of SHGCs (St ) that are slant contour-
equivalent to SHGC So .3 Section 4.2 analyzes the projective properties of

G = a Oo - a 01 o = r2(p'2 +q 2 ) the class. Section 4.3 proves that this class is in fact contour-equivalent to

T = Tt So, i.e., that C, = Co. Section 4.4 examines the Gaussian curvature proper-
ties of the class.

Substituting into equation (3.7) the expressions for e, f, g, and E, F, G
from equation (3.8), we obtain, after some simplification, an expression for 4.1 Definition of a Slant Contour-Equivalent Class
Gaussian curvature K of SHGC So given by Let SHGC S, be defined by

Ko(zrt)= r"rp'-qP')(qP '_q") (3.9) 0'1 (s,(z).t)= f(s())-c, po(t)r + fi(si(z)) qo(t)j + s,(z)k; (4.1)
r ( p 12+ q 2+ r'2 ( q'-q p')2 I .( ! i( 5S Z2s, (zi) si (z ) sg(z).

The above expression for K will be compared in sections 4 and 5 with the where c, > 1 is the stretching factor associated with S,, y = cos-'(cosp/ c, ) is
Gaussian curvature of SHGCs having the same contour as that of SHGC So. the slant of SHOC S, in the viewer direction, si(z) = z si is the adjusted

stiy

3.2 Prejective Properties z value along the SHGc axis, and fi (s,(z)) = ro (z) is the modified sweeping

In this section, projective properties of SHGC S. are derived. Since rule. The functions po, qo and ro are as defined for SHGC So in equation

we are interested in the projective properties of an .o.ioC, some viewing (3.1). The ci term in equation (4.1) can be thought of as the factor by which

direction is required. Based on the slant viewpoint assumption (section 2.3), the cross-section curve for S, has been stretched in the tdirection, while 7,

it is sufficient to consider a viewer reference frame that has only a slant is the slant of SHGC S, with respect to the viewer. In the sequel, function

rotation with respect to the object-centered coordinate system. The result- variables and variable subscripts are generally omitted.

ing orthonormal basis of the viewer reference frame (it, V, 0 ) is defined in It is clear from examining equation (4.1) that stretching factor c, is
equation (2.3), and is given by the only free parameter .4 Once c, is fixed, SHGC S, is well-defined. The

viewing direction for S1, given by slant angle yi, is a function of the stretch-
i? =-cos P "1+ sin , V= sin i t+ cos P r, %V= ing factor ci.

As in section 3, suppose V, the viewing direction for SHGC St, is
IfQo(zt) is the projection of surface pointPo(z,t) onto the image plane, it given by its spherical coordinates (t,,y) in (0, ',jk). Based on the slant
can be written as viewpoint assumption (section 2.3), the viewing direction V, is restricted to a

slant towards or away from the viewer, i.e., c = 0. The resulting orthonor-
ORo( z,t) = roqo Wo + (z sinP - ropocos 0) it (3.10) mal basis of the viewer reference frame (M,, ., 0j) is definel by

The limbs of an SHGC are the loci of surface points satisfying the u -cosyi i+ siny, r, v= siny, + cosy, , 0o' 7 (4.2)

condition 7 -V = 0, where IV is the surface normal vector. A limb equation
is an equation that is satisfied by exactly those points lying on the limbs of where t is the viewing direction, y, the slant angle for SHGC Si, and (0 ,le)

the SHGC surface. is an orthonormal basis for the image plane.

The normal 17o given in equation (3.4), when converted into the The partial derivatives for OP, are given by
(6,V, ) basis defined above, has the form

1aor. -.~p'f q' s 43
(z, t) = [-cos p q' + sinp r' (p'q -q'p )] it + (3.11) 57 s,cpt +fsq +s, (4.3)

sinoq'+cos r'(p'q -q'p V + -p'IV 307=fcp'r+fq'7 (4.4)

Since the limb points of SHGC So are exactly those points on the surface Taking th
that satisfy go. V = 0, the limb equation for SHOC So when viewed from e vector product of the partial derivatives and resealing the result

viewing direction v, is given by by a factor of -- , we have an expression for the normal vector of SHGC
St given by

sinpq'+cosr'(p'q-q'p) 
= 0 (3.12)

/ n q'r - p''+ f, c(p'q -q'p) ' (4.5)

Having analyzed some of the projective properties of SHGC So, one

can describe the contour of S. The 3D contour generator of So is comprised
of the SHGC's edges and limbs, as described in section 1. Analogously, let 4.2 Slant Contour-Equivalent SHGCs: Projective Properties

Cathe image contour of SHGC So, be comprised of image limbs Lo and The contour Ci is generated by projecting SHGC Si onto the image

image edges Eo. The contour of So can then be written as plane along viewing direction V',. Let Q,(si(z),t) be the projection of the

Co = L0 U Eo (3.13) point Pj(s(z), t) into the image plane. We have

where Lo is given by equation (3.10) restricted to the set of (z, t) satisfying Ot (s, t) = f q vW + (siny. s - cosy, f c p) t? (4.6)

limb equation (3.12), and Eo is also given by equation (3.10) where z is res- where s =s,(),f =ft(.), andc =ci, as defined in equation (4.1). Substitut-

tricted to z = z, or z = z2 (as in equation (3.1)). igfr s,(z) and c , have

These projective properties of SHOC So will be used in the next two

sections to show that classes of SHGCs can be constructed such that their O' 2 (s, 1) =f q 0 + (sinP z - cosl3f p) It
contours are equivalent to that of SHTGC .e,

By definition (from equation (4.2)), f, (si(z))= r (z). So this equation further
4. Slant Contour-Equivalent Classes of SHGCs reduces to

In this section, a class of SHGCs is constructed and analyzed. The
class is constructed from SHGC So defined in section 3. It is constructed by 3 Contour-equivalence depends on viewer direction In section 3, the viewer direction was

changing the slant of the SHGC object with respect to the viewer. The slant gtven as V, which was equivalent to a slant of 0i in the viewer direction
of the object depends on the viewing direction V. The basic method used in 4 0 is the slant of SIIGC So with respect to the viewer reference frame It is fixed with
the construction of slant contour-equivalent SHGC S, is to vary the viewing respect to the class of SIIGCs defined in equation (4 1).
direction V, with respect to the SHGC while modifying its other parameters
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Oi(s,t) = rq9t+(z sin5-rcospp)it (4.7) sinp q'+ cosyr'c (p'q -q'p) = 0 (4.16)

But since this equation has the same form as equation (3.10), it follows that From the definition of ', in equation (4.1), one can write

OTh(sidz)t) = Oo(z.t) (4.8) cosy, = - (4.17)
C.

Consider a point Po(zi,t,) on the surface of So and a point Substituting for cos'y in equation (4.16) yields
Pi (s(z,), t 1) on the surface of Si. It follows from equation (4.8) that these
two points map onto the same point in the image plane. sinp q'+ cosr'(p'q - q'p) = 0 (4.18)

The normal IV in equation (4.5) above, when converted into the
viewer reference frame given in equation (4.2) (where v' is the viewing But this equation is identical to the limb equation for SHGC SO, given in
direction), is given by equation (3.12). Thus, a surface point Po(z,t) on SHGC So is a limb point

iffa surface point Pi (s(z),t) on SHOC Si is a limb point. This is sufficient,

M(s't) = [-cosyq'+sinf, ctp'q-q'p)] it + (4.9) using equation (4.8), to show thatLi = Lo, so the lemma is proved.
[ siny q' + cos f, c - qp + - C P' There is another lemma, this one concerning image edges, that needs

I qto be proved in order to prove contour equivalence.

Limb points on SHGC S, are exactly those points on the surface thathave17,- v = . Sothelim eqatin fo Siis ive bySlant Lemma 2: Let SHGC Si, having stretching factor ci, be constructed

from basis SHGC So as defined in equation (4.1). Let Eo be the image edges

sin q'+ coy, -c -(p'q - q'p) (4.10) of S, when the viewing direction is VO, given in equation (2.3). Let E be the
image edges of St when the viewing direction is v', given in equation (4.2).
Then the image edges for Si and So are identical, that is

4.3 A Proof of Slant Contour-Equivalence Ei = Eo (4.19)

Image contours are the projections of two kinds of contour genera-
tors, limbs, where the surface turns smoothly away from the viewer, and
edges, where surfaces nonsmoothly intersect. For the case of SHGC Si Proof: Edges are defined as curves where the surface orientation is

defined in equation (4.1), the contour Ci can be written as discontinuous. Since the cross-section curve and sweeping rule, as defined
in this paper, are both twice continuously differentiable (C2), the SHGC sur-

Ci = Li U Ei (4.11) face is smooth and edges occur only at the endpoints (i.e., top and bottom
cross-section planes).

where L, is given by equation (4.7) restricted to the set of (s,t) satisfying The 3D edges for SHGC So are generated by keeping z fixed, z = zI

limb equation (4.10), and Eo is also given by equation (4.7) where z is res- or z = Z2 , and letting t vary. An image edge, as defined in section 1, is not

tricted to s(z) = s(z1) or s(z) = s(z2) (as in equation (4.1)). simply the projection of the corresponding 3D edge on the SHGC surface

To prove that Co (the contour of SHGC So) defined in equation (3.13), since part of the 3D edge may be self-occluded. Without loss of generality,

and C, (the contour of SHGC Si) defined in equation (4.11), are equivalent, consider the edge resulting from the intersection of the bottom cross-section

we first prove the correctness of two related lemmas, plane, z = z2, with the swept surface of SHGC So. The image projection of
this 3D curve is given by

Slant Lemma 1: Let SltGC Si, having stretching factor ci, be constructed
from basis SHGC So as defined in equation (4.1). Let Lo be the image limb Oo(z 2, t) = r (z2)q 0 + z2sin3 

- r (z2)cosl pj V;

of So when viewed from direction v'O, where v is given in equation(2.3). Let t 1 b t to.
L, be the image limb of S, when viewed from direction v', where vi ts given
in equation (4.2). Then the image limbs for S, and So are identical, that is If there is no self-occlusion (i.e.. the entire projected 3D edge curve is visi-

ble in the image), then O. (s(z2),t°) = O 1 (S(Z2),tb).
L. = Lo (4.12)

From the definition of SHGC Si (equation (4.1)) and the previous lemma, it

Proof: To show that L, = Lo, it is sufficient, using equation (4.8), to show follows that the image projection of the corresponding 3D curve on SHGC

that a point Po(z. t) on the surface of So is a limb point iffa corresponding S, is given by

pointPi (s(z),t) on the surface of Si is a limb point. 00 (s( 2), ) = f (s(z2)) q W + [siny, s(z2) - cosy, f(s(z2)) c pit;

Since by definition from equation (4.1), we have t i 5 t

fi (s,(z)) = r (z) The fact that the intervals on t are identical follows from the fact that
Pi (s(z),t),satisfies its limb equation exactly when Po(zt) satisfies its

Differentiating this equation with respect to z yields respective limb equation. But since, from equation (4.8), we have that

fs, = r" (4.13) O'(s(z),") = Oo(z,t),

Differentiating s(z), as defined in equation (4.1), with respect to z, one it follows that E, = Eo and the lemma is proved.
obtains

A theorem of contour-equivalence can now be proved.
s in (4 14)
s, (4.4) Slant Axis Theorem : Let SIlGC Si , having stretching factor c,, be con-

structed from basis SIIGC So as defined in equation (4.1). Let Ci be the
Substituting fui s, 6qu~itiui (4.13) ,ui be rewritten as image contour of S, when the viewing direction is v,, given in equation

(4.2). Then the image contours for Si and So are identical. that is
f=r ' s 'rnY (4.15)

sin[l Ci = Co (4.20)

Substituting this expression for f, into the limb equation (4.10) derived for
SHGC S, and muluplying by .l., the limb equation for S, can be rewritten Proof: The theorem follows immediately from slant lemmas I and 2,

siny since
as

Ct = L, Ur i = Lo U Eo = Co.

577



4.4 Slant Contour-Equivalent SttGCs: Gaussian Curvature have been replaced with equivalent terms using the sweep rule r for SHGC

In section 4.2 it was cstabhshed that Po(zt) and Pi (s(z).t) map onto SL. This allows for comparison of expressions for Gaussian curvature given

the same point in the image. Ftrthermore, in the previous section it was by the above equation and equation (.9).

shown thst the class of SHGCs defined in section 4.1 have contours
equivalent to that of SHGC So. In this section, afixed image point is studied
to derive a form for the Gaussian curvature of the corresponding point on '- ",

the surface when that surface is allowed to vary among members of the
contour-equivalent class defined in equation (4.1). I

Consider the expression for the normal P of SHGC Si given in equa-
tion (4.5). Substituting into this equation the expression for f, givci by
equation (4.15), the normal equation can be rewritten as

'" - cp' + r' -!21 c (p'q -q'p)r (4.21) 1sin P

whose squared magnitude is given by ..... b) '

q + C
2
p'z + r'

2  c
2 (p'q -q'p)2 (4.22) . .

Since the sweeping rule f and the cross-section curves p and q are ' /
assumed to be C2, the second derivatives with respect to z and t are given
by

a- ' Sf,, .s, .(cp r1+q 3l (4.23) .

a 2 -s, = f,.s .(c p' + q'J (4.24)

_Z at Figure 5. Example of slant contour-equivalent SFIGCs: a. identical slant contour-

equivalent view for 3 SHGCs: b. side view of same 3 SHGCs seen with slanta2
Ot , = f C p" i + f q"j (4.25) decreasing in the viewer direction.

It can been seen from this equation that as stretching factor c,
changes so does the Gaussian curvature. In fact, the Gaussian curvature at a

The Gaussian curvature of the surface at a point 01', (s, t) is given by point on this surface goes to zero as k -*0. The Gaussian curvature will
equation (3.7), where e, f, g,and E, F, G are, respectively, coefficients of tend towards -* at a point where r'= 0, p'=O, and k - *. It can also be
the second and first fundamental forms of the surface in the basis determined from equation (4.28 that the sign of the Gaussian curvature will
((a/ az )OP, ,(a/ at )O7', ). These coefficients (see [5]), where is the vec- not vary at a given surface point for any member of the slant contour-
tor dot product, are given by equivalent class of SHGCs, i.e., the sign of the Gaussian curvature at

P, (s(z),t) is the same as the sign of the Gaussian curvature at Po(z,t).
e = -I I f,, s, 2C(p q'-q p') Thus, Gaussian curvature variations among this contour-equivalent class are

lonly quantitative not qualitative.

Some examples of slant contour-equivalent SHGCs are shown in
f = figure 5. In Figure 5, a contour-equivalent view is shown of an SHGC.

T 0- aThis image could have been generated from an infinite family of slant
contour-equivalent SIIGCs. For three such contour-equivalent SIIGCs, a
side view (rotating the SHGC 30 degrees around its axis) is given in figure

g = f t 0-]',=- [c(q'p"-p'q") (4.26) 5b. It can be seen that though they are contour-equivalent from a given
v.ewing direction, they are in fact very different shapes. The reader can also
verify that the Gaussian curvature at corresponding surface points varies

E= 6 . - "az O', = sz[s ' (cp2+q)+ t] only quantitatively.

5. Translation Contour-Equivalent Classes of SHGCs
F = 1 O' = In this section, a class of SHGCs is constructed and analyzed. The
Wf, sT(c~p'P+q'q) class isconstructed from canonical SHGCSodefined insection 3.1t iscon-

structed by changing the translation of the SHGC object with respect to the
reference cross-section curve. For this class of SHGCs, the viewing direc-

G = T CIP,. t OP, =f (c2 p ' + q,') tion V is the same as for SHGC So (used to generate contour Co). The basic
method used in the construction of translation contour-equivalent SI-IGC S,
is to vary the translation parameter of the axis with respect to the reference

An expression for s, is given in equation (4.14). Using equation (4.13), one cross-section curve, while modifying its othec parianeters so that its contour
obtains an equation for f,, given by C, is identical to Co (contour of SHGC So). Demonstrating that such an

infinite class of SIIGCs can be constructed from canonical SIIGC So is
Sr.. (4.27) proof of the fact that the axis translation of an SI/GC cannot be solved for

S,2  strictly from contour.

After 'ubstituting thewe expresson- for Y: and f, into the eq,,ations for the Section 5.1 defines the class of SHGCs (S, ) that are translation
first and second fundamental forms, and after some algebraic manipulation, contour-equivalcnt to SIIGC sa . Section 5 2 analyzes the projective pro-
a solution is obtained for the Gaussian curvature K of SHGC S, at point perties of the class. Section 5 3 proves that this class is in fact contour-
(s, (z), t) on the surface given by eqtiivalent to So, i.e., that C., =- Co. Section 5.4 examines the Gaussian cur-

vature properties of the class.
K, (s,r)= a,2 &2 r ".(p q' -qp' ).(q p" -p q ) (4.28)

r [a.2b.2p'2+b,2q' +ar' 2(p q'-qp') ] 2

where ai = c, = coso and b, = 4EL. Terms involving die sweep rule f,Cosy siny,
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5.1 Definition or a Translation Contour-Equivalent Class sin 13 q' + cos jif, (p'q - q' (p + h)) =0 (5.10)
Let SHGC Si be defined by

O-P, (s,(z))= [f(s(z))-(p(t)+h,) -- h13 1 + f;(s(z))'q(t) ' + s,(z) r.(5.1) 5,3 A Proof of Translation Contour-Equivalence

$i (Zl)5 Si (Z )!; Si (Z2). To prove that contour C( of SHGC St. defined in equation (5.1), is
equivalent to contour Co of canonical SHGC So, two lemmas need to bewhere h, is the translation factor associated with SHGC S,, cstablhshed, (analogous to the method used for proving contour equivalence

sj (z) = z hi (1-r(z)) is the position of the cross-section curve along the in section 4).tan P
SHGC axis, f, (s, (z)) = r(z ) is the modified sweeping rule, where r(z) is
the sweeping rule defined for SHGC So in equation (3.1). The p (-) and q () Translation Lemma 1: Let SttGC S. ,defined m equaton (S.)) and having
terms in the equation are identical to those for SHGC So. i.e., S, has the translaton factor hi, be constructed from basis SItGC So (defined in equa-
same cross-section curve as So. The h, term in equation (5.1) can be tion (3.1)). Let Li be the image iamb of St, where the viewing direction is V,
thought of as the factor by which the reference cross-section curve for given by equation (2.3). Then the image limbs for S, and So are identical,
SHGC S, has been translated from its axis in the "direction. tthat is

It is clear from examining equation (5.1) that axis translation factor L, = Lo (5.11)
hi is the only free parameter .5 Once h, is fixed, SHGC S, is well-defined.
The viewing direction for Si is given by v, just as it is for So, i.e., it is not a
function of SHGC St. The orthonormal basis of the viewer reference frame Proof: To show that L, = Lo, it is sufficient, using equation (5.8), to show
(it, Va. at) is exactly as defined in equation (2.3). that a point Po(z, t) on the surface of So is a limb point iff a point Pi (s(z), t)

The partial derivatives for OP,. with respect to z and t are given by on the surface of S, is a limb point.

By definition (equation (5.1)), one can write

zO__ s-(p +h)"I+ f,'-sq + s, (5.2) fr(s.(z)) r(z)

a = f p' r + f q' 7 (5.3) Differentiating this equation with respect to z yields

Taking their vector product, we have fs, = r' (5.12)

, = q's - p'Y + f, -(p'q -q'- (p + h))k' (5.4) Taking the derivative of s(z), defined in equation (5.1), with respect to z,
one obtains

5.2 Translation Contour-Equivalent SHGCs: Projective Properties s. = l+ r' (5.13)

The contour C, is generated by projecting SI1GC St onto the image

plane along viewing direction v'. Let Q,(s,(z).t) be the projection of the Substituting for s,, equation (5.12)can be rewritten as
point P,(s,(z), t) into the image plane. We have

O i(s(z),1) = fq W-+ sin 13s(z)--s13.(f -(p +h)-h )] it (5.5) tan ' (1

where s = s,(.), f =f.('), and c = ci, as defined in equation (5.1). Substituting this expression for f, into limb eqvtion (5.10) and rescaling
by a factor of 0 + hr'h , one obtains

Substituting for s(z) in equation (5.5), using the definition for s(z) in equa-

tion (5.1), and simplifying, yields cosl q'.(tan P+hr') + cos 0 r'(p'q -q'(p +h)) = 0 (5.15)

OP. (s.t)=fqW +[z sinPl-cosl-h.(l-r(z))-cos-(f .(p +h)h)] t (5.6) which simplifies to

But by definition (equation (5.1)), f, (s, (z ))=r (z). Substituting for f, the sinl3 q' + cos D r'.(p'q -q'p) = 0 (5.16)
above can be written as But this equation is identical to limb equation (3.12) derived for SHGC So.

O?2i (s,1) = r q W +(z sinjP-r cos Pp )it (5.7) Thus, a surface point Po(z,t) on SHGC So is a limb pointiffa surface point
P, (s(z),t) on SHGC Si is a limb point. This is sufficient, in conjunction

which is identical to the form for o-Po derived in equation (3.10). Conse- with equation (5.8), to show that L, = Lo, which proves the lemma.
quently, it follows athat There is another lemma, this one concerning image edges, that needs

to be proved.
6pt (s,(z),t) = o-'o(Zt) (5.8)

Translation Lemma 2: Let Et be the image edges of Si, defined in equation
Thus, a point Po(z,t) on the surface of SHGC So and a point (5.1), when the viewing direction is Vt (given in equation (2,3)). Then the

Pi (s(z), t) on the surface of SHGC S, project onto the same point in the image edges for S, and So are identical that is
image plane.

The normal A'i in equation (5.4) above, when converted into the E, = Eo (5.17)
viewer reference frame given in equation (2.3) (where V is the viewing
direction), is given by Proof: Similar to proof of lemma 2, section 4.3.

From the two preceding lemmas, the following theorem immediately
o(z,I) = [.-cosoq'+smnf, (p'q -q'(p +h))J t? + (5.9) follows.

[ sin1,q'scosq/, p'q -q(p 1 h -p Translated Axis Theorem: Let SIlGC S,, having translationfactorh,,be
constructed from basis SIIGC So as defined in equation (5.1). Let C be the

Limb points on SHGC S, are exactly those points on the surface that image contour of S, when the viewing direction is V (given in equation
have , Va = 0. So the limb equation for S, is given by (2.3)). Then the image contours for S, and So are identical, that is

5. As in the previous section, 5 is the slant of S1GC So with respect to the viewer refer- C, = Co (5.18)
enc frame. It isfixed with respect to the class of SIICUM defined in equation (5.1).
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54 Translation Contour-Equivalent SHGCs: Gaussian curvature K (s.1) d' r' ,(. h /t - a ') (Q'-P'q") (5.27)

In this section, a point in the image is studied to derive a form for die r (p'+q'2 +Pr'((p )q-qp

Gaussian curvature of the corresponding point on the surface when that sur- where d t B and h is the translation of the reference cross-section
face is allowed to vary among members of the contour-equivalent class -+r-
dcfined in equation (5.1). curve from the axis for SHGC S,. Terms involving the sweep rule f, have

been replaced with equivalent terms using the sweep rule r for SHGC So.Consider the exprssion for the normal Th, of SiGC S, given in iqua- Ibis allows for comparison of cxpmsir. rotr Gaussian curvature given by
tion (5.4). Substituting into this equation the expression for f, given by the above equation and equation (3.9).
equation (5.14), the normal equation can be rewritten as

.q' - P'" + [- "hJ (p'q -q'(P +h))r (5.19)

For computing the first ant second fundamental forms, the unit normal is .
required. So th expression for the normal 9, needs to be divided by its (
magnitude, whose squared value is given by

J1I p12 tan (hr' q-q'(p+h))2 (5.20)

The second derivatives with respect to z andt are given by )

a2 OP, (f,, .s,r+f, ,,).((p +h)r q3') + s,, ' (5.21)

0=,.p' +f.s,"q' (5.22)

6A ,fp"I'+fq"f (5.23)

The Gaussian curvature of the surface at a point OPi (s, t) is given by

(see [5])

K -eG (5.24)

where the coefficients of the second and first fundamental forms in the basis Figure 6. Example of trAnslauon contour-equivalent SHGC.% a identical translation
((/az )OP ,( Xat ) PA ), are given by e, f, g, and E, F, G, respectively, contour-equivalent view for 3 SHGCs; b. side view for same 3 SHGCs seen with
These coefficient,, where the • operator is the vector dot product, are given different axis trnslation values.
by It can be readily seen from this equation that as the translation factor

h changes so does the Gaussian curvature. In fact, the Gaussian curvature at
((p + hq,-, q p a pointon the surface goes to zero as d.oo this occurs when tanP =-h r'.T91 IV, I Also, it can be seen that K - 0 ash -a. Because of die d tern in the

numerator of the equation, it is clear that by varying h the Gaussian curva-
ture can be made to change not only quantitatively but also qualitativelyf = OP 0 = 0 (positive to negative or the reverse).

From the expression for Gaussian curvature K in equation (5.27) and

from the above analysis, it is clear that the Gaussian curvature at a surface= M -a2 UP$ (q'p"-P'q") (5.25) point P, corresponding tofixed image point 1. can vary both quantitatively
I'm I J INI and qualitatively.

Along the contour generator, there is an additional constraint, ie.,
a07 a OP, = s, 2f, ((p + h)2 +q)+ , 2 limb equation (5.10) is satisfied. The expression for the limb equation given

by equation (5.15), after rescaling by _'sT Ican be rewritten as

F= - ff,s, (p'(p +h)+q'q) -. (tan P +hr') = (p +h)q' - qp' (5.28)

G = a 6P, . a O, = f2(p'+q'2) Replacing (p +h)q'-qp' in equation (5.27) with 11 (tan P+hr'), one
T, T, gets a simplified expression for K given by

From the definition ofs (z) in equation (5.1), it follows that K (st)= d r"tan q'(q'"-p'q") (5.29)
r r'(p' 2 +q'2(l +tan ZP))2

hr'
= 1 + tan P5 where d = ' and h is the translation of the reference cross-section

Using equation (5.14), an equation for f,, cin be wriiten a curve from the axis for SHGC Si. Since the only term involving h in thisexpression is the d tcr in the numerator, and i" is squared, it follows that
3 .the sign of the Gaussian curvature along an SHGC contour generator does

Jr. t(5.26) not vary among members of a translation contour-equivalent class. This isconsistent with a result by Koenderink [10] that the qualitative nature of the

surface (e.g., elliptic vs. hyperbolic) at a point on the contour generator canAfter substituting the expressions for s, and f. derived above into the be determined from its projected contour.
coefficients for the fundamental forms given in equation (5.25), and after
some algebraic manipulation, we obtain an expression for the Gaussian cur- Examples of translation contour-equivalent SHGCs are shown in
vature K given by figure 6. In Figure 6a, a translation contour-equivalent view is shown of the
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contour of an SHGC. This image could have been generated from an that constant. Using that transformation, one can decide on a particular
infinite family of translation contour-equivalent SHGCs. For three such parameterization from among this equivalence class by, somewhat arbi-
contour-equivalent SHGCs, a side view (rotating the SHGC 90 degrees twarily, setting the scaling function of the top cross section curve to one, i.e.,
around its axis) is shown in figure 6b. As in the previous section, it can be r(z,) = 1. Having done so, it is clear from equation (2.4) that the scaling
seen that though these SHGCs are contour- equivalent from a certain view. factor is also known for all the image parallels detected using the method
ing direction, they are in fact very different shapes. The reader can also ver- described above.
ify that the Gaussian curvature at corresponding surface points can vary
both quantitatively and qualitatively. 7. Unconstrained Parameters ofSHGC Contour

Consider a contour whose image axis has been recovered (section
6. Ruling Over Generalized Cylinders 2.3) and that has been ruled (section 6). The scaling of an image parallel

In this section, a method is described for finding image parallels and can be determined, but it is not clear where this image parallel is located on
meridians from the contour image (image limbs and image edges) of an the image axis. This allows for a translation parameter not constrained by
SHGC. This method is referred to as recovering the generalized ruling of contour, as discussed in section 5. In addition, the image parallel is a pro-
the SHGC contour, or simply as ruling the contour (see section 1). jection of a 3D parallel curve. The actual slant of the 3D parallel curve,

however, cannot be determined from the contour (ruled or otherwise), asIn general, most nonoccluded image cross-section curves tend to demonstrated in section 4. From sections 4 and 5, then, it has been esta-have two or more points of intersection with the image limbs, which sug- bhished that at least two parameters are unconstraincd by SIIGC contour.
gests a method for ruling the SHGC image. This method naturally assumes In this sction the author will show that, given a ruled SHGC contour and

the image axis has already been recovered a7],[14]. Algorithms using the its image axis, there are exactly two parameters unconstrained by SHGCSHGC contour to recover the image axis of an 51HGC, where the cross-. otor

section function is assumed polar with respect to the axis, are given in [14] contour.

(though the robustness of such algorithms is not assured). In (7] the 2D Consider the SHGC whose contour is shown in figure 8.a. The under-
axis lemma, on which the algorithm for recovering the image axis is bas:d, lying SHGC object can be described by a reference cross-section curve and
is generalized to SHGCs with arbitrary, simple C2 cross-sections, as defined axis origin (where the SHGC axis intersects the cross-section plane), as
in equation (3.1). shown in figure 8.b., and by a sweeping rule (given with respect to the

Assuming the image axis has been recovered, the reference curve can reference cross-section curve). as shown in figure 8.c

be rescaled with respect to the axis so that it touches the bounding contour
at 2 or more points, without any point on this reseal6d curve extending -- '
beyond the contour. Using a non-accidentalness alignment criterion, it is
assumed that if such a scaling exists, it indicates that the image parallel at
this point along the axis has been correctly recovered. This method allows -

an image parallel to be drawn at any desired point on the image axis. Con-
necting corresponding points of image parallels together using interpolating ,
splines provides an approximation to the image meridians.

This technique is illustrated in figure 7 which shows an SHOC con-
tour and its image axis. Also shown in the figure are scaled versions of the ,,
image cross-section with respect to a certain point along die image axis. It
can be seen that only at one such scaling does the image cross-section curve
exactly touch the contour in two places; at these points, the image cross- , .-' .-

sectional tangent is parallel to the contour tangent. At every other scaling,
the cross-section curve is either contained entirely within or extends beyond
the bounding image contour. Thus, this osculating image parallel is taken to Figure S. Description it an SHGC a. SHCC tvi.,'; s. cwtoss-x.non ciave &nd
be the correct scaling of the image parallel at this point along the image xis origin; c. swet-pirg rule
axis. To show that exactly two pararntes, axis slht and translation, are

unconstrained by SIM1C contour, it suffices to give an algorithm to com-
pletely describe the shape of fl underlying SHOC (modulo scale) if these

cross-section curve can certainly be determined from its projected image
cross-section curve, given in equation (2.4) .? Let a point on the SHOC
image axis be selected as the ouigin of the cross section curve. Then, know-
ing the axis slant, the p and q values at any poin! along the cross-section
curve can be solved for with respect to the cross-section origin. If the trans-
lation parameter h were known, defined in equation (5.1) with respect to die
origin of the cross-section curve, then the origin of the S14CC axis would be
known, i.e., the point at which the SI{GC axis intersects the teference
cross-section curve.

A ruled SHGC contour contains information regarding the sweeping
rule of the underlying SilIGC. 'Ehe problem is that without knowing tie
SItGC origin, the sweeping rule cannot be solved for. To sec this, consider

Figure 7. A method for ruling the SHGC contour: different scalmgs of the image the contour shown in figure 9.a. Figure 9.b shows the cross-section curve,
parallel and the correct scaling, axis origin arid sweeping rule for an SIIOC that is consistent with the Con-

tour of figure 9.a. In figure 9.c, the cross-section curve, origin, and sweep-
The method describd above works when the HGC axis is contained ing rule of another such SfIGC is shown, this SHGC ts also consistent withwithin the cross-section curve. In a case where the axis is not cintained the SHGC contour of figure 9.a. The cross-section curve, ais origin and

within the cross-section curve.6  a more general method is required, swee...g rule of a hird such SH9C r" 'cnt with . ure 9.a) is Shown in
descnbed in 17], that involves both translating and rescaling the image figure 9.d. This illustrates the fact that a sweeping rile can only be deter-
cross-section curve. mined from an SIHGC contour once the origin of the SIHGC's coordinate

In [16], two SHGCs are said to be equivalent if they can be deduced system is known.
front each other through any sequence of a certain set of transformations.
One of these transformations involves scaling the swepmng ride by a non- 7 I'lie object desciptitm is, of course, only modulo scale since absotule scale cannot be
zero constant while scaling the reference cross-.ection by the inverse of determined from a monocular intensity image.

8. A general viewpoint ass. mption is implicitly assumed here. i.e., 2 points on the 3D
6 Thle dfinition of an SIGC given in this paper does net assume the axis is contained cross section curve do not project, ite the same poin is the image.

wilhin the crins-section curve.
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recover those parameters unconstrained by SIIGC image contour.
In this paper, two classes of contour-equivalent SHGC are defined

and their surface and projective properties analyzed. One contour-
equivalent class is constructed by varying the axis slant, while the oier
class is constructed by varying the axis translation. Construction of these
contour.equivalent classes is proof of the fact that these two parameters
cannot be solved for strictly from the contour image. Among the surface
properties studied for these contour-equivalent classes was that of Gaussian
curvature. It is shown that slant contour-equivalent SIIGCs can vary quan-
titatively but not qualitatively, while translation contour-equivalent SHGCs

-- ?" . --....-.. can also have qualitative Gaussian curvature variation.
A method of ruling the contour image, determining image parallels

and meridians, was then described. It was shown that, if the axis slant and
translation can be derived using other methods not based solely on contour,
the entire shape of the underlying SHGC can be determined (modulo scale).

The methodology of this paper was to thoroughly analyze the con-
,) ',\. - straints of SHGC contour. Knowing these constraints, intensity-based

methods have subsequently been found to recover the parameters uncon-
strained by contour. In a sequel to this paper, the author describes such
intensity-based methods and their implementation (8].
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ABSTRACT mentation quality varies from image to image. The search
technique used to optimize the objective function must be

One of the fundamental weaknesses of current computer able to adapt to these variations. Finally, the definition of

vision systems to be used in practical outdoor applications is the objective function itself can be subject to debate because

their inability to adapt the segmentation process as real-world there are no universally accepted measures of image segmen-

changes occur in the image. We present the first closed loop tation quality.

self-optimizing control system for adaptive image segmenta- Hence, we must apply a technique that can efficiently
tion which incorporates a genetic optimization algorithm to search the complex space of parameter combinations and
adapt :he segmentation process to changes in image charac- locate the values which yield optimal results. The approach
teristics caused by variable environmental conditions such as should not be dependent on the particular application domain
time of day, time of year, clouds, etc. The genetic algorithm nor should it have to rely on detailed knowledge pertinent to
efficiently searches the hyperspace of segmentation parameter the selected segmentation algorithm. The key elements of
combinations to determine the parameter set which maxim- our adaptive image segmentation system are: (1) A closed-
izes the segmentation quality criteria. The goals of our adap- loop feedback control technique that consists of a genetic
tive image segmentation system are to provide continuous learning component, an image segmentation component, and
adaptation to normal environmental variations, to exhibit a segmented image evaluation component; (2) A genetic
learning capabilities, and to provide robust performance when learning system that optimizes segmentation performance of
interacting with a dynamic environment. We present experi- each image and accumulates segmentation experience over
mental results when segmentatiot quality is either a scalar or time to reduce the effort needed to optimize the segmentation
vector valued function and optimization technique is either a quality of succeeding images; (3) Image characteristics and
pure genetic algorithm or a combination of genetic algorithm external image variables are represented and manipulated
and hill climbing. These results demonstrate the ability to using both numeric and symbolic forms within the genetic
adapt the segmentation performance automatically in outdoor knowledge structure, only the segmentation parameters are
color imagery. represented and manipulated in binary strings; (4) Image

1. INTRODUCTION segmentation performance is evaluated using five measures of
segmentation quality that measure global characteristics of

Image segmentation is typically the first, and most the entire image as well as local features of individual object
difficult task of any automated image understanding process. regions; (5) "Ihe adaptive segmentation system is not depen-
All subsequent interpretation tasks including object detection, dent on any specific segmentation algorithm or type of sen-
feature extraction, object recognition, and classification rely sor.
heavily on the quality of the segmentation process. Despite
the large number of segmentation techniques presently avail- The focus of our work is not to develop yet another spe-
able,4  r. general methods have been found that perform cialized segmentation algorithm that works only in a very

adequately across a diverse set of imagery. Only after many limited domain on a few images, but is directed towards

modifications ", its control parameter set can any current seg- adapting the performance of a well known existing segmenta-
mentation technique be used to process the diversity of tion algorithm 9 11 across a wide variety of environmental

conditions that cause changes in the image characteristics.
images found in real world applications. To date, no segmentation algorithm has been developed

W,.en presented with a new image, selecting the which can automatically generate an "ideal" segmentation
appropriate set of algorithm parameters is the key to result in one pass (or in an open loop manner) over a range
effectively segmenting the image. The image segmentation of scenarios encountered in practical outdoor applications.
problem can be characterized by several factors which make Any technique, no matter how "sophisticated" it may be, will
the parameter sel.,:ion proces, very difficult. First, most eventually yield poor performance if it can not adapt to the
segmentation techniques conta,, .anerous control parameters variations in outdoor scenes. Therefore, in this paper we
which must be adjusted to obtain optimal performance. The attempt to address this fundamental bottleneck in developing
s,ze of the parameter scar.h spac,. in these systems can be "useful" computer vision systems for practical scenarios by
prohibitively large, unless it is traversed in a highly efficient developing a closed-loop system that automatically adapts the
manner. Second, the parameters within most segmentation segmentation algorithm's performance by changing its control
algorithms typically interact in a complex, non-linear fashion, parameters and will be valid across a wide diversity of im.,ge
which makes it difficult or impossible to model the parame- characteristics and application scenarios. It should be noted
ters' behavior in an algorithroic or rule-based fashion. Third, that the performance of the adaptive algorithm will be limited
since variations between images cause changes in the seg- by the capabilities of the segmentation algorithm, but the
mentation results, the objective function that represents LZ- results will be optimal for a given image based on our
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evaluation criteria, appropriate reward is generated and passed back to the
genetic algorithm. This process continues until a segmenta-

2. SEGMENTATION AS A SEARCH PROBLEM tion result of acceptable quality is produced. The details of
each component in this procedure will be described in the

Figure 1 shows an outdoor image and the typical seg- following subsections.
mentation quality surface (discussed in Section 3.4) associ-
ated with the image in which only two segmentation parame- 3.1 Imagte Characteristics
ters8, 11 are being varied. Because of the large numbet of We compute twelve first order image properties for each
potential parameter combinations and the subtle interaction of color component (red, green, and blue) of the image. These
the algorithm parameters, the objective function is complex, features include mean, variance, skewness, kurtosis, energy,
multimodal, and presents problems for many commonly used entropy, x intensity centroid, y intensity centroid, maximum
search and optimization techniques. The drawbacks to some peak height, maximum peak location, interval set score, and
of these methodologies for the segmentation optimization interval set size. Since we use a black/white version of the
problem have been discussed in the paper by Bhanu, Lee and image to compute edge information and object contrast dur-
Ming.I ing the evaluation process, we also compute the twelve

Genetic a7 which are designed to features for the Y (luminance component) image as well.Gntcalgorithms, 2 , 3 5,  wihaedsgdtoCombining the image characteristic data from these four

efficiently locate an approximate global maximum in a search
components yields a list of 48 elements. In addition, we util-space show great promise in solving the parameter selectie~n ize two external variables, time of day and weather condi-

problem encountered in the image segmentation task. Since tions. The external variables are represented symbolically in
they use simple recombinations of existing high quality indi- tn le structure (e.g., time = 9am, lam, etc. and weather
viduals and a method of measuring current performance, they the is su nn, tloudy , h a , etc. anddiatner

do ot eqirecople sufae dsciptons dmai seciicconditions = sunny, cloudy, hazy, etc). The distancesdo not require complex surface descriptions, domain specific between these values are computed symbolically when
knowledge, or measures of goal distance. Moreover, due to measuring image similarity. The two external variables are
the generality of the genetic process, they are independent of added to the list to create an image characteristic list of 50
the segmentation technique used, requiring only a measure of elements.
performance (which we refer to as segmentation quality) for
any given parameter combination. 3.2 Genetic Learning System

Genetic algorithms can be briefly characterized by three Fig. 3 shows a simple example of our genetic learning
main concepts: a Darwinian notion of fitness or strength system. The image characteristics for a new image are com-
which determines an individual's likelihood of affecting pared with the individuals in the global population to obtain
future generations through reproduction; a reproduction the initial seed for the local population. The global popula-
operation which produces new individuals by combining tion represents the accumulated segmentation experience for
selected members of the existing population; and genetic all images that the system has processed whereas the local
operators which create new offspring based on the structure population contains the set of segmentation parameters pro-
of their parents. A genetic algorithm maintains a constant- cessed by the genetic algorithm during the optimization of
sized population of candidate solutions, known as individuals, the current image. To obtain the initial local population
The initial seed population from which the genetic process (seed population) for a new image from the global popula-
begins can be chosen randomly or on the basis of heuristics. tion, a normalized Euclidean feature distance is computed
At each iteration, known as a generation, each individual is from the new image to every member of the global popula-
evaluated and recombined with others on the basis of its tion and this distance is used along with the fitness of each
overall quality or fitness. The expected number of times an individual in the global population for selecting the closest
individual is selected for recombination is proportional to its individuals. Although we have limited the seed population to
fitness relative to the rest of the population. New individuals 3 in this example, our experiments utilize a seed population
are created using two main genetic recombination operators of 10 individuals. The global population holds 100
known as crossover and mutation. Crossover operates by knowledge structures in order to maintain a diverse collection
selecting a random location in the genetic string of the of segmentation experience. The parameter sets in the seed
parents (crossover point) and concatenating the initial seg- population are used to segment the image and the results are
ment of one parent with the final segment of the second evaluated to generate a fitness for each individual. The
parent to create a new child. A second child is simultane- fitness value (leftmost value in the list) varies from 0.0 to 1.0
ously generated using the remaining segments of the two and measures the quality of the segmentation parameter set.
parents. Mutation provides for occasional disturbances in the Note that only the fitness value and the action portion (seg-
crossover operation by inverting one or more genetic ele- mentation parameters) of the knowledge structure are subject
ments during reproduction. This operation insures diversity to genetic adaptation; the conditions (image characteristics)
in the genetic strings over long periods of time and prevents remain fixed for the life of the structure. If the fitness values
stagnation in the convergence of the optimi2 "tion technique. are not acceptable, the individuals are recombined and the

process repeats. Each pass through the loop (segmentation-
3. ADAPTIVE IMAGE SEGMENTATION evaluation-recombination), is known as a generation. The
Adaptive image segmentatioai requires the ability to cycle continues until the maximum fitness achieved at the

modify control parameters in order to respond to changes that end of a generation exceeds some threshold. The global
occur In the imagc as a rsul* of varying environmental con population is undated using the high quality members c. the
ditions. The block diagram of our approach is shown in Fig- local population from the current image and the system is
ure 2. After acquiring an input image, the system analyzes then ready to process another image.
the image characteristics and passes this information, in con-
junction with the observed external variables, to the genetic 3.3 Segmentation Algorithm
learning component. Using this data, the genetic learning Since we are working with color imagery in our experi-
system selects an appropriate parameter combination, which ments, we have selected the well known Phoenix segmenta-
is passed to the image segmentation process. After the image tion. algorithm developed at Carnegie Mellon Univer-
has been segmented, the results are evaluated and an
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sity.8 9, 11 Phoenix 8 contains fourteen different control W1 =.l, W2 = 0.5, dm = 10, and di= the distance to the

parameters which are used to control the thresholds and ter- nearest pixel.
mination conditions used within the algorithm. The are 1033 () Pxel Classification: This measure is based on the
conceivable parameter combinations using these fourteen
values. Of the fourteen values, we have selected two of the number of object pixels classified as background pixels and

most critical parameters that affect the overall results of the the number of background pixels classified as object pixels.

segmentation process, nuwxmin and hsmooth. Maxmin
specifies the lowest acceptable peak-to-valley-height ratio Pixel Classification = N, if N - 0
used when deciding whether or not to split a large region into
two or more smaller parts. Hsmooth controls the width of = 0 , if N < 0
the window used to smooth the histogram of each image
region during segmentation. The use of only two parameters where
for the initial tests aids in the visualization of the optimiza-
tion process since we can plot the associated segmentation r(n(A)- n(A n B)) + (n (B)-n (A n B))
quality corresponding to each parameter combination using a N = 1 - n(A)3D plotting technique. Future research will incorporate a I (

larger number of modifiable parameters. A - B = ((Xk, Yk). k = 1, ..., m where (xk, Yk) e A and

3.4 Segmentation Evaluation B }, A is the set of object pixels in the groundtruth image,

There are a large number of segmentation quality meas- and B is the set of object pixels in the segmented image.
ures that have been suggested, although none have achieved (4) Object Overlap: Measures the area of intersection
widespread acceptance as a universal measure of segmenta-
tion quality. In order to overcome the drawbacks of using between the object region in the ground truth image and the

only a single quality measure, we have incorporated an segmented image.
evaluation technique that uses five different quality measures n (A (-) B)
to determine the overall fitness for a particular parameter set. Object Overlap =
Most of the measures of segmentation performance that we n(A)

have selected for this work have been proposed in the com-
puter vision literature and similar measures have been recom- where A n B = ((xk, Yk). k 1, ..., m where (xt, Yk) E A

mended by DoDs Automatic Target Recognition Working and B 1.

Group (ATRWG) as good indicators of segmentation quality. (5) Object Contrast: Measures the contrast between the
The five segmentation quality measures are: object and the background in the segmented image, relative

(1) Edge-Border Coincidence: Measures the overlap of the to the object contrast in the ground truth image.
region borders in the image acquired from the segmentation
algorithm relative to an edge image. Cs1

Edg-brd=n (E n S) Object Contrast = -, if CGT > Cst
Edge-border Coincidence = n()Ca

n (E) Gwhere n(A)= the number of elements in set A, - S ifC <Cst.

E )S=I(k tk=1 .,mwheren (A), CsifE n
S), E is the set of pixels extracted by the edge operator, and w1 1A s IB -I'1'

S is' te set of pixels found on the region boundaries of the where Cff I A I =1
segmented image. CGT is the contrast of the object in the groundtruth image,

(2) Boundary Consistency: Similar to edge-border coin- Cst is the contrast of the object in the segmented image,
cidence, except that region borders which do not exactly

overlap edges can be matched with each other. Also, region IR = average intensity of region R = (lRmax) YI(j) , A is
j=1

borders which do not match with any edges are used to the set of object pixels in the groundtruth image, B is the set
penalize the segmentation quality, of object pixels in the segmented image, X is the set of pixels

surrounding region A in the groundtruth image, and Y is the
Boundary Consistency = M, if M > 0 set of pixels surrounding region B in the segmented image.

= 0, if M < 0 The maximum and minimum values for each of the five
segmentation quality measures are 1.0 and 0.0, respectively.

where The first two quality measures are global measures since they
-evaluate the segmentation quality of the whole image with

I W1 * (dma. - di )I respect to edge information. Conversely, the last three qual-
m . J ity measures are local measures since they only evaluate the

segmentation quality for the object regions of interest in the
n (E) image. When an object is broken up into smaller parts dur-

ing the segmentation process, only the largest region which
r rm noverlaps the actual object in the image is used in computing
_W 2  remaining pixels in E and the local quality measures. The three local measures require

the availability of object ground truth information in order to
n (E) correctly evaluate segmentation quality. Since we desire
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good object regions as well as high quality overall segmenta- 0.8 indicates that, on average, 8 out of 10 members of the
tion results, we have combined global and local quality meas- popula:ion will be selected for recombination during each
ures (with equal weighting) to obtain a combined segmenta- generation. The mutation rate of 0.01 implies that on aver-
tion quality measure that maximizes overall performance of age, 1 out of 100 bits is mutated during the crossover opera-
the system. Figure 4 shows the surfaces defined for the five tion to insure diversity in the local population.
individual quality measures that are used to create the coin- The stopping criteria for the genetic process contains
bined quality measure surface shown in Figure 1. three tests. First, since the global maximum for each seg-

4. EXPERIMENTAL RESULTS mentation quality surface was known a priori (recall that the
entire surface was precomputed), the first stopping criteria

An initial database of outdoor imagery was collected to was the location of a parameter combination with 95% seg-

demonstrate the system's ability to adapt to real world condi- mentation quality or higher. In experiments where the entire

tions and produce the best segmentation result based on our surface is not precomputed, this stopping criteria would be

evaluation criteria. The database consists of twenty frames discarded. Second, the process terminates if 3 consecutive

that were collected approximately every 15 minutes over a 5 generations produce a decrease in the average population

hour period (1:30 pm to 6:30 pm) using a JVC GXF/00U fitness for the local population. Third, if 5 consecutive gen-

color video camera. A representative subset of these images, erations fail to produce a new maximum value for the aver-

shown in Figure 5, will be used to describe the complete age population fitness, the genetic process terminates. If any

experimental results. This type of image data simulates a one of these three conditions is met, the processing of the

photointerpretation scenario in which the camera position is current image is stopped and the maximum segmentation
fixed and the image undergoes significant change over time. quality currently in the local population is reported.
Weather conditions in our image database varied from bright Figure 6 shows the combined segmentation quality sur-
sun to overcast skies. Varying light level is the most prom- faces for the three training images (Frames 1, 13 and 19)
inent change throughout the image sequence, although the shown in Figure 5. Note that due to the complexity of these
environmental conditions also created varying object surfaces, most commonly-used search techniques (as dis-
highlights, moving shadows, and many subtle contrast cussed in Section 2) would not be effective at optimizing the
changes between the objects in the image. The car in the segmentation quality. The surface pairs in Figure 6 also
image is the object of interest. The auto-ins mechanism in summarize the search point movement for the training
the camera was functining, which causes a similar appear- images. The movement of the points to highly fit areas of
ance in the background foliage throughout the image the segmentation quality surfaces is very evident. Figure 7
sequence. Notice that even with the auto-iris capability built shows the initial and final segmentation results corresponding
into the camera, there is still a wide variation in image to surfaces in Figure 6. The results are obtained using the
characteristics across the image sequence. This variation individual in the genetic population with maximum fitness.
requires the use of an adaptive segmentation approach to Note that the portion of the car that is extracted from the
compensate for these changes. image is larger in the final results for each training image.

To precisely evaluate the effectiveness of the adaptive At the end of training phase, the final local population
image segmentation system, we exhaustively defined the seg- from each of the training images (1,3,...,19) was combined to
mentation quality surfaces for each frame. The segmentation create a global population of 100 individuals. From this glo-
quality surfaces were defined for preselected ranges of max- bal population, the 10 initial seed members of each local
min and hsmooth parameters. Maxmin values, which affect population for the testing images (2,4,...,20) were selected.
segmentation performance in a non-linear fashion, were sam- The testing was performed in a parallel fashion; the final
pled exponentially over a range of values from 100 to 471. local population for each of the testing images was not
Values near 100 were spaced closer together than values at placed back into the global population for these tests. The
the upper end of the range. Hsmooth values were sampled alternative approach to testing, which processes each frame in
linearly using numbers between I and 63. By selecting 32 the outdoor imagery database in a sequential manner and
discrete values (5 bits of resolution) for each of these param- integrates the iesults into the global population, will be dis-
eter ranges, the search space contained 1024 different param- cussed at the end of this section.
eter combinations. Figure 8 illustrates the initial seed population and final

local population for the selected testing images (Frames 4,
4.1 Basic Experiments 10, and 20). When compared to the populations in Figure 6,

The first set of experiments with the adaptive segmenta- these figures clearly indicate the high quality of both the ini-
tion system was divided into two separate phases: 1) a train- tial and final populations for each image. Since the fitness of
ing phase where the optimization capabilities of the genetic each seed population is based on previous segmentation
algorithm were measured, and 2) a testing phase where we experience, the genetic process is able to converge to the glo-
evaluated the reduction in effort achieved by utilizing previ- bal maximum much faster during the testing phase. The ini-
ous segmentation experience. The image data was separated tial and final segmentation results for the testing images are
into two halves, 10 images (1,3,...,19) for training and 10 shown in Figure 9. The improved quality of the initial seg-
images (2,4,...,20) for testing. During the training phase, mentation results during testing can be visually compared
seed populations were selected using random locations on the with the initial results acquired during training (Figure 7).
combined segmentation quality surface for each image. The Note that the final segmentation quality is approximately the
genetic system was then invoked using the seed population same during both training and ic1-b.
for each image and the convergence rate of the process was During the training experiments, the maximum number
measured. Each training image was processed 100 times, of generations was 13, the minimum number was 5, and the
each with a different collection of random starting points, average number of generations was 9. By combining the
These results were combined to compute the average number information accumulated during training in the global popula-
of generations needed to optimize each surface. The genetic tion, the average number of generations was reduced from 9
component used a local population size of 10, a crossover during training to 3 during testing. The results for all 20
rate of 0.8, and mutation rate of 0.01. A crossover rate of
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frames ot the outdoor imagery are summarized in Figure 10. 4.2.1 Single Day Sequential Test- Figure 13 illustrates
Noting that the average number of generations was reduced the performance of the system for the single day sequence.
from 9 during training to 3 during testing, equivalent seg- Through the first four frames, the number of generations per
mentation performance during testing represents a consider- image decreases as the system obtains segmentation experi-
able improvement in the adaptive system's efficiency. On ence. Although the number of generations does increase at
average, the adaptive segmentation system visits approxi- several points beyond the fourth frame, the overall trend of
mately 2.5% of the search space (i.e., - 2.5 generations) for this plot does indicate a reduction in computational effort.
the experiments described here. This claim is evident by noting that the system optimizes the

segmentation quality of 50% (10 out of 20) of these imagesSince there are no other known adaptive segmentation using the information present in tihe global population. No
techniques in the computer vision field to compare our sys- iterations of the genetic cycle are necessary in these cases.
tem with, we measured the performance of the adaptive itera ti e ene c a Tese case.
image segmentation system relative to the set of default 4.2.2 Multiple Day Sequential Test - Figre 14

Phoenix segmentation parameters 8' 11 and a traditional optim- presents the results for the multi-day simulation. The images
ization approach. The default parameters have been sug- in the first "day" (frames (1,5,9,12,16,20)) show a continu-
gested after extensive amounts of testing by various research- ally decreasing level of computational effort. In this test,

ers who developed thle Phoenix agrtm8The parameters since there is a wider separation between the initial images in
for traditional approach are algorithm.a by prmeter the sequence, the number of generations required for the firstthe segntrationalgrochm aobtained by manually optimizing few frames is higher. When the second sequence (frames
the segmentation algorithm on the first image in the database (3,7,11,14,18)) is encountered, the effort increases tem-and then utilizing that parameter set for the remainder of the porarily as the adaptive process fills in the knowledge gaps
experiments. This approach to segmentation quality optimi- prarily as the oda t e p r ces beteen the imge sip
zation is currently standard practice in state-of-the-art com- present as a result of the differences between the images in

vision systems. Figure 11 presents te comparison of each sequence. The image sequence for the third "day"puters hre e ms. T he cmpation or (frames (2,6,10,13,17)) was handled with almost no effort by
these three approaches. The average segmentation quality f the genetic cycle. Finally, the fourth image sequence (frames
the adaptive segmentation technique was 95.8% (average of (4,8,15,19)) requires no effort by the genetic cycle at all;100 experiments). In contrast, the performance of the default each image is optimized by the information stored in the glo-
parameters was only 55.6% while the traditional approach bal population. Twelve of the twenty frames in this test were
provided 63.2% accuracy. As the figure shows, the perfor- immediately optimized using the global population.
mance of both of these alternative approaches was highly
erratic throughout the sequence. Figure 12 illustrates the
quality of the segmentation results associated with the adap- 4.3 Comparison of the Adaptive System with Random
tive system, the default parameters, and the traditional Search
approach. Each result corresponds to the average segmenta- Several tests were performed to compare the optimiza-
tion performance produced by each technique for the first tion capabilities of the adaptive segmentation system with a
frame in the database. By comparing the extracted car region simple random walk through the search space. This experi-
in each of these images, as well as the overall segmentation ment used only the training images (1,3,...,19) from the out-
of the entire image, it is clear that the adaptive segmentation door image database so that the adaptive system would not
results are superior to the other methods. benefit from the reuse of segmentation experience from one

image to the next. The intent of this restriction was to meas-
4.2 Sequential Testing Experiment ure the efficiency of the genetic algorithm in optimizing a

To measure the improvement in efficiency achieved by complex surface. In addition, the stopping criteria for the
i media re eusinsementin eperiencywe also -b adaptive system was simplified so that when a surface pointimmediately reusing segmentation experience, we also con- with 95% segmentation quality or better was located, the

ducted a set of experiments to investigate the reduction in optimization process would terminate. The random walk
computational effort obtained by processing the images in a algorithm searched the segmentation quality surface by visit-sequential rather than parallel manner. Two separate sequen- ing points randomly and used the same 95% stopping criteria.tial tests were performed. The first test processed the images Finally, in order to insure correctness of the results, each seg-
in their original order (e.g., frames 1,2,3,...,20). The second mentation quality surface was optimized by each technique
test altered the sequence of images to simulate a multi-day 100 times and the results are averaged to create the perfor-
scenario where the frequency of image collection decreases to mance figures.
approximately one hour. Each group of images in the
sequence (e.g., frames (1,5,9,12,16,20), (3,7,11,14,18), Figure 15 presents a comparison of the efficiency for the
(2,6,10,13,17), or (4,8,15,19)) was designed to represent a two techniques described above. The bars represent the total
collection of images acquired on a different day. Thus, using number of points visited on the surface using each technique
the sequence of images described above, we have simulated a for each of the images and the average number of points
four day long collection of images. visited for each approach. As the average values show, the

adaptive technique is far superior to the random walkFor each of these tests, the genetic population of the approach. In addition, the average number of points visited
first frame in the image sequence was randomly selected, by the adaptive approach is 6.9% of the total number of
Once the segmentation performance for that frame was points on the surface, compared to the earlier experiments
optimized by the genetic algorithm, the final population from where we processed 2.5% of the surface, since we have not
that image was used to create the initial global population. wre e processing
This global population was then used to select the seed popu- rued agene

latin fr suseqent rams intheimag seuenc. Wile earnier imag~es.lation for subsequent frames in tile image sequence. While Figure 16 contrasts the segmentation quality achieved bythe size of the global population remained below 100, the the two techniques. Since the adaptive segmentation tech-
final collection of individuals from each successive image nique insures the achievement of a near global maximum for
was added to the global population. After the size of the each image, we modified the tandom walk approach so that it
global population reached 100 individuals, the final popula- would terminate after the same number of visited locations
tions from each image had to compete (based on fitness) with required by the adaptive technique. The maximum segmenta-
the current members of the global population. tion quality achieved by the random approach was then coin-
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pared with the adaptive system. On the average, the adaptive climbing algorithms are shown in Figure 18. Figure 19 com-
system achieved 99.3% segmentation quality after the number pares the performance of the hybrid scheme and the baseline
of segmentations shown in Figure 16. In comparison, the experiments. The hybrid scheme results surpassed the base-
random walk achieved only 81.4% of the maximum quality line results by reducing the number of segmentations required
for the same number of segmentations for each image, to optimize the segmentation quality in 8 (out of 10) training

frames. On the average, during training there is 15.3%
4.4 The Effectiveness of the Reproduction and Crossover improvement in performance. Figure 20 compares the testing
Operators performance of the hybrid scheme with the baseline experi-

ments. The hybrid scheme results are no better than the
A number of tests were performed to demonstrate the baseline results, because the training results supplied the test-

effectiveness of the reproduction and crossover operators in ing seed points that are located in highly fit regions of ti~e
the adaptive image segmentation system. The optimization search space and these points can hardly be optimized by the
capability of the pure genetic algorithm was compared with hill climbing process.
two variations of the genetic algorithm. The first variation of
the pure genetic algorithm was implemented without a repro- In summary, the hybrid search process performs well for
duction operator. Instead of reproducing individuals accord- the training experiments which proceed with random starting
ing to their fitness values, the algorithm selected the individu- points. However, it can not improve performance over the
als at random for further genetic operator action with the res- genetic algorithm alone for the testing experiments because
triction that any individual be selected only once. The the search proceeds with highly fit starting points.
second variation of the genetic algorithm simply skipped a
crossover operator. To ensure that this approach generates 4.6 Simultaneous Optimization of Local and Global Meas-
about the same number of offsprings as the pure genetic ures
algorithm, the mutation rate of this approach was increased to When the local and global measures have to be optim-
the crossover rate (0.8) of the genetic process. The stopping ized simultaneously, the problem becomes a multiobjective
criteria for each technique is to locate a surface point with optimization problem. In multiobjective (or vector valued)
95% or higher segmentation quality. In order to ensure optimization, the notion of optimality can be best explained
correctness of the results each image was tested by each tech- using the concept of Pareto optimality. 10 The key concept is
nique 100 times and the results were averaged to create the the partially greater than relation between two vectors of the
performance figures. Figure 17 presents the comparison of same dimension. Given two vectors x and y, then x is
the optimization capability for three techniques. As the his- partially greater than y if each element of x is greater than or
tograms show, the pure genetic algorithm results are much equal to the corresponding element of y and at least one ele-
better than the results of the other two approaches for both ment of x is strictly greater than the corresponding element
the training and testing experiments. This demonstrates that of y. Under these conditions, we say that x dominates y or
the reproduction and crossover operators are critical for the y is inferior to x . If a vector is not dominated by any other
success of genetic algorithms. vector it is said to be nondominated or non-inferior, and the

set of all nondominated vectors is called Pareto-optimal set.
4.5 Hybrid Search Combining Genetic Algorithm and The goal of a search for optima in a vector-valued space is,
Hill Climbing then, locating Pareto-optimal set. Since, the goal of the

We also explored a hybrid search scheme for adaptive search is a set of solutions, a genetic algorithm has a built-in
image segmentation. This scheme combines the global advantage over other optimization techniques by working
search technique (genetic algorithm) with the specialized with a population of candidate solutions.
local search technique (hill climbing). In this approach the The genetic algorithm of the adaptive image segmenta-"
genetic algorithm first finds the hills and the hill climber tion system for the single objective function has been applied
climbs them. The control allows the switching between the with some modifications and extensions to include -aultiob-
genetic algorithm and the hill climbing accordinb, to simple jective functions. First, the data structure for each individual
transition rules. The switch of control from the genetic has been changed to hold a vector-valued fitness, i.e., both a
algorithm to the hill climbing takes place when the genetic local quality measure and a global quality measure. Second,
algorithm finds a new maximum point. The maximum point the reproduction procedure is modified to select a subpopula-
is passed to the hill climber as the starting point. The hill tion of individuals for each dimension of the quality measure.
climber passes the control over to the genetic algorithm when The selection process is repeated for the number of dimen-
it reaches a local maximum, a point that is better than all of sions of a vector and the size of subpopulations selected in
its adjacent points. The local maximum point replaces the each iteration is the population size divided by the vector
maximum point in the current population, which was the size. The generation of new population procedure in this
starting point for the hill climbing, and the genetic algorithm system becomes as follows. (1) Select subgroups of individu-
proceeds with the population. To find adjacent points in hill als using each dimension of the quality measure in turn, (2)
climbing, we used Hamming distance so that the points differ Shuffle all the selected individuals, (3) Combine the individu-
in one bit value from the given point in binary representation als using crossover and mutation operators. This simple pro-
of points. To reduce the cost of evaluating all the adjacent cedure ensures that any segmentation parameter which per-
points before making each move, our approach was designed forms above average on any quality measure of image seg-
to try alternatives until an uphill move was found. When the mentation will likely be survived while also giving the
hill climbing process examines all the adjacent points by appropriate selection preference to parameters that are above
flipping each bit in the current sea.rch point without finding average on more than one quality measure.
an uphill move, the current point is taken as a local max-
imum and the process passes the control to the genetic algo- The other major difference added in this implementation
rithm. is the "dominate" procedure. The procedure "dominate"

examines non-dominancy of each segmentation parameter by
The genetic algorhm used here is the same as in the comparing it with all other parameters in a population afterbasic adaptive segmei .ition technique. Tile basic adaptive the image segmentation evaluation procedure has been

technique is also referred to as the "baseline experiments." applied. It should be noted that this non-dominancy test is
The number of segmentations required by the genetic and hill
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strictly local. Pareto's concept of non-dominancy implies The intent of this experiment was to explore the applica-
comparison of a point to all other points in the search space, bility of the adaptive image segmentation system to the mul-
but our non-dominancy test is limited to the current popula- tiobjective functions. As the results show, it provides very
tion. While a locally dominated point is also globally dom- promising performance for the simultaneous optimization of
inated, the converse is not necessarily true. A segmentation the global and local segmentation qualities.
parameter which is nondominated in one generation may be
dominated by a parameter which may emerge in a later gen- 5. CONCLUSIONS
eration. The "dominate" test is still useful because the set of
nondominated parameters in each generation represents the We have shown the ability of the adaptive image seg-
current best guess of the Pareto-optimal set that will be mentation system to provide high quality (> 95%) segmenta-
improved in the future ,enerations. ton results in a minimal number of segmentation cycles.

The stopping criteria for the multiobjective optimization The goal of this research was to perform adaptive image seg-
system contains two conditions. First, the process terminates mentation and evaluate the convergence properties of the
if an utopian parameter set, i.e., the one whose both the local closed-loop system using outdoor data. The performance
quality and the global quality are above a predefined thres- improvement provided by the adaptive system was con-
hold of acceptance, is located. The thresholds for acceptable sistently greater than -33% over the traditional approach or
segmentation is 90% of the best segmentation. This criterion the default segmentation parameters. 8, 11 We also compared
is useful only when the best for each segmentation quality the performance of genetic algorithm with genetic and hill
surface is known a lori. Second, the process terminates if climbing combination and presented results on multiobjective
both the average k.,.,. quality and the average global quality optimization for local and global quality measures. In the
of the populations are decreased for three consecutive genera- future, we plan to use a data set with dramatic environmental
tions or not improved for five consecutive generations. If variations and we will also utilize a larger number of seg-
either of these conditions is met, the segmentation of the mentation parameters.
current image is stopped and the nondominated parameter
sets are represented as the current best estimates of the REFERENCES
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Figure 5: Selected color images from the outdoor experiments.
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Figure 6: Starting and final search point locations for the training images.
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Fiue9: Initial and final segmentation results for the testing images.
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Figure 10: Performance comparison of the training and testing experiments on
the outdoor imagery.
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Figure 13: Performance results for the single day sequential test.

(b) Default parameters 12

* 10

8
No. of

Generations 6

4

J2

F 0
(c) Traditional Approach 1 5 9 121620 3 7 111418 2 6 101317 4 8 1519

Frame No.

Figure. 12: Figure 14: Performance results for the multiple day sequential test.
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Figure 15: Performance comparison of the adaptive segmentation technique
and a random walk approach.
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Figure 16: Segmentation quality performance for the adaptive segmentation
technique and the random walk approach.
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Figure 17: Performance comparison of the pure genetic algo-
rithm and its variations. The superior performance of the
pure genetic algorithm demonstrates the effectiveness of the
reproduction and crossover operators.
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Figure 20: Performance comparison of the hybrid scheme
and the baseline testing experiments. The hybrid scheme
shows no performance improvement over the genetic algo- (a) Global Quality
rithm alone because the training results provided highly fit
seed points for the testing experiments.
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Figure 22: Performance summary of the training experiment
for multiobjective optimization. Starting with random seed Figure 21: Global and local quality surfacespoints on the quality surfaces, the adaptive image segmenta- for Frame 3tion process optimized the global quality and the local quality
of each image in the number of generations (average of 100
experiments) indicated in the graph.
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Extensions of a Theory of Networks for Approximation and Learning: dimensionality
reduction and clustering

Tomaso Poggio and Federico Girosi

ABSTRACT lem that has to be solved (for instance, it is not needed
Learning an input-output mapping from a set of ex- in the case of P corresponding to a Gaussian or bell-

amples, of the type that many neural networks have been shaped Green's function). We have shown (Poggio and
constructed to perform, can be regarded as synthesiz- Girosi, 1989) that the solution of the variational problem
ing an approzimation of a multi-dimensional function. (1) has the following simple form:
From this point of view, this form of learning is closely N
related to regularization theory. The theory developed f(x) = Ec G(x; xi) + p(x)
in Poggio and Girosi (1989) shows the equivalence be-
tween regularization and a class of three-layer networks
that we call regularization networks. These networks are where G(x) is the Green's function (Stakgold, 1979) of
not only equivalent to generalized splines, but are alto the self-adjoint differential operator PP, P being the ad-
closely related to the classical Radial Basis Functions joint operator of P, p(x) is a linear combination of func-
used for interpolation tasks and to several pattern recog- tions that span the null space of P, and the coefficients
nition and neural network algorithms. In this note, we ci satisfy a linear system of equations that depend on the
eztend the theory by defining a generalform of these net- N "examples", i.e. the data to be approximated. The
works which we call Hyper Basis Functions. They have form of the term p(x) depends on the stabilizer that has
two sets of modifiable parameters in addition to the coef- been chosen and on the boundary conditions, and there-
ficient8 ca: moving centers and adjustable norm-uleights. fore on the particular problem that has to be solved. For
Moving the centers is equivalent to task-dependent clus this reason, and since its inclusion does not modify the
tering and changing the norm weights is equivalent to maih- conclusions, we will disregard it in the following. If
task-dependent dimensionality reduction. P is an operator with radial symmetry, the Green's func-

tion G is radial and therefore the approximating function
1 Introduction becomes:

In previous papers (Poggio and Girosi, 1989, 1990) we N

have shown the equivalence between regularization and a f(x) = cG(lix - x,112), (2)
class of three-layer networks that we called regularization
networks and that are related to the classical interpola- which is a sum of radial functions, each with its center
tion technique of Radial Basis Functions. xi on a distinct data point. Thus the number of radial

Let S = {(xj, yi) E RI x Ri = 1, ...N} be a set of functions, and corresponding centers, is the same as the
data that we want to approximate by means of a func- number of examples.
tion f. The regularization approach (Tikhonov, 1963; In this note we indicate how to extend the technique
Tikhonov and Arsenin, 1977; Morozov, 1984; Bertero, into three natural directions:
1986) selects the function f that solves the variational 1. The computation of a solution of the form (2) has a
problem of minimizing the functional complexity (number of radial functions) that is in-

N dependent of the dimensionality of the input space
but is on the order of the dimensionality of the train-

H[f] = E(yi - f(x)) + AJPf 112 (1) ing set (number of examples), which is usually high.
i=1 We show how to justify in terms of the regularizatio-

where P is a constraint operator (usually a differential nan framework an approximation of equation (2) in
operator), I" 11 is a norm on the function space to whom which the number of centers is much smaller than
Pf belongs (usually the L2 norm) and A is a positive the number of examples and the positions of the
real number, the so called regularization parameter. The centers are modified during learning (Poggio and
structure of the operator P, that is called "stabilizer", Girosi, 1989). The key idea is to consider a spe-
embodies the a priori knowledge about the solution, and cific form of an approximation to the solution of the
therefore depends on the nature of the particular prob- standard regularization problem. Moving centers
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are equivalent to the free knots of nonlinear splines. on a finite basis. The approximated solution f (x) has
In the context of networks they were first suggested then the following form:
as a potentially useful heuristics by Broomhead and
Lowe (1988) and used by Moody and Darken (1989).

2. It is natural to try to extend the form of the solu- f°(x) - cA(x) (3)
tion (2) by considering the superposition of differ-
ent types of Green's functions (Poggio and Girosi, where {j'4j=x is a set of linealy independent functions
1989, 1990a) (for example basis functions of dif- (Mikhlin, 1965). The coefficients ci are usually found
ferent scales). This extension is natural within according to some rule that guarantees a minimum de-
the framework of regularization (and has a direct viation from the true solution. In the case of standard
Bayesian interpretation) by considering a more gen- regularization, when the functional to minimize is given
eral functional than equation (1) containing sev- by equation (1), this method gives the ezact solution if
eral stabilizers. We will show how the well-defined n is equal to the numer of data points N, and {fi}r=1 =
but underconstrained variational problem associ- {G(x; x )N 1 , where G is the Green's function of the op-
ated with the new functional cn be transformed erator PP. In this case the unknown coefficients of the
into an overconstrained problem. expansion (3) can be obtained in a simple way by sub-

3. In equation (2) the norm lix-xiii may be considered stituting expansion (3) in the regularization functional
as a weighted norm (1), that becomes a function H[f'] = H*(c,...,CN),

and then by minimizing H[f '] with respect to the coef-
1lx - xillHV = (x - X,)TWTW(x - xi) ficients, that is by setting:

where W is a square matrix and the superscript T H[P]
indicates the transpose. In the simple case of diag- =0 i=1,...,N. (4)
onal W the diagonal elements vii assign a specific Oci
weight to each input coordinate, and the standard It can be easily shown (Poggio and Giroe;, 1989) that,
Euclidean norm is obtained when W is set to the if the Green's function vanishes on the boundary of the
identity matrix. They play a critical role whenever region that is considered, the set of equations (4) is a ln-
different types of inputs are present. We will show ear system whose solution gives the standard regulariza-
how the weighted norm idea can be derived from a tion coefficients. In more general cases the basis {f}?__.1
slightly more general functional than equation (1). should be enlarged, to include terms that generate the
The associated variational problem is well-defined null space of P, in order to obtain the co.rect solution.
but underconstrained; it can be transformed into For simplicity, we disregard these terms in the following,
an overconstrained problem by using a certain ap- since they do not change the main conclusions. A nat-
proximation technique. ural approximation to the exact aolution will be theit of

We call Hyper Basis Functions, in short HyperBFs, the form:
the most general form of regularization networks based
on these three extensions. 13

f (x) " >jcG(ic; t,,) (5)
2 Moving Centers a=1

The solution given by standard regularization theory where the parameters t,, that we call "centers", and
to the approximation problem can be very expensive the coeficients ca are unknown, and are in general fewer
in computational terms when the number of examples than the data points (L < N). This form of solution has
is very high. The computation of the coefficients of the desirable property of being an universtl appioxima-
the expansion can become then a very time consuming tor for continuous functions (Girosi and Poggio, 1989)
operation: its complexity grows polynomially with N, and to be the only choicc that guarantees that in the
(roughly as N3 ) since an N x N matrix has to be in- case of n = N and {tj,= = {x3'j the correct solu-
verted. In addition, the probability of ill-conditioning tion (of equation 1) is consistently recovered. We will see
is higher for larger and larger matrices (it grows like later in section (5) how to find the unknown parameters
N3 for a N x N uniformly distributed random matrix) of this expansion.
(Demmel, 1987). We now show a way to reduce the com-
plexity of the problem, introducing an approximation to 3 Different types of Basis Functions.
the regularized solution. While the eXact regularization
solution is equivalent to generalized splines with fired This scheme can be further extended by considering in
kiots, the approximated solution is equivalent to gener- equation (5) the superposition of different types of func-
alized splines with free knots. tions G, such as Gaussians at different scales.

The function f to be approximated is regarded as the2.1 An approximation to the regularization sum of p components f"', m = 1,... ,p, each component
solution having a different prior probability. This assumption is

A standard technique, sometimes known as Galerkin's clearly meaningful only if p << N. Therefore the func-
method, that has been used to find approximate solu- tional H[f] to minimize will contain p stabilizers P,4, p
tions of variational problems, is to expand the solution regularization parameters Am and will be wvritten as
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3.1 Multiple Scales.
N P P This method leads in particular to radial basis functions

H[f]= y- E fm(xi)) 2 - -  AmIPmtPI 2 . (6) of multiple scales for the reconstruction of the function
i=1 m=1 M=f. Suppose we know a priori that the function to be

The Euler-Lagrange equations associated with equa- approximated has components on a number p of scales
tion (6) have the form: 47, ... , oP: we can use this information to choose a set

1 N P of p stabilizers whose Green's functions are, for example,
Pnpm fn(x) = E~ - Ej fk(x.))6(x - i) (7) Gaussians of variance .1,..., op. We have (Poggio and

m f=1 =1 Girosi, 1989, 1990a) :

for m = 1,...,p. As in the case of standard regulariza- of 0
tion, the solution of equation (7) is a linear superposition IpmfnI 2 = Zam. 'Rn dx(Dkfh(z))z
of Green's functions: h=o

21 ~~~O2 ==01 2 + = Q n

NV where D2k ,2k D2k+l - V 2 t and a - -, V
fm (x) - jcrG' (x; xi). (8) being the gradient operator. As a result, the solution

will be a superposition of superpositions of Gaussians of
The function F(x) that minimizes the functional H[f] different variances. Of course, the Gaussians with large

is then a linear superposition of linear superpositions of o* should be preset, depending on the nature of the prob-
the Green's functions GM corresponding to the stabiliz- lem, to be fewer and therefore on a sparser grid, than the
ers Pm, that is Gaussians with a small a.

The HyperBF method also yields non-radial Green's
P N functions - by using appropriate stabilizers - and also

F(x) E cG M (x; xi) + p(x), (9) Green's functions with a lower dimensionality - by us-
,n=1 i=1 ing the associated fn and Pm in a suitable lower-

where p(x) is a linear combination of functions that span dimensional subspace. Again this reflects a priori in-
the null spaces of the stabilizers. For instance, when formation that may be available about the nature of the
Gm(x) are Gaussian a polynomial is not needed, though mapping to be learned. In the latter case the informa-
it can always be added. For other Green's functions the tion is that the mapping is of lower dimensionality or
theory requires an appropriate p(x). has lower dimensional components.

Substitution of equation (8) in equation (7) yields a
linear system for the coefficients cr. There is a simple 4 Weighted norm
relation between the coefficients associated to two differ-
ent stabilizers, that is The norm in equation (5) is usually intended as an Eu-

clidean norm. If the components of x are of different
types, it is natural to consider a weighted norm defined

crArm=c1\n, i=1,...,N; ,,m=1,...,p. as
This means that if a component fn&(x) of the solu-

tion is given, the other p -. I ones can be recovered by II1 = XTWTWX,
a simple scaling operation. This is expected, since the W

underlying variational problem is iunderconstrained: we since the relative scale of the components is otherwise
are trying to obtaiii Np coefficients from a set of N data arbitrary. The case in which the matrix W is known
points. The form of the solution (9) is appealing: if a/ (from prior information) does not present any difficulty.
the coefficients cr were independent and free to vary, It is interesting, however, to see what it means in terms
the system could "choose" among different stabilizers, of the underlying regularization principle.
depending on the site. In order to retain the form (9) of 4.1 Weighted norm and regularization
the solutiop, while makint the problem overconstrained
instead of underconstrahied, we choose a solution of the The regularization principle consists in finding the f that
approximation problem of the following form (instead of minimizes the functional:
equation 9): N

p Hw[f] = Z(y,- f(x))2 + AIIPfII v (12)
P(x) = p(x), (10) 1

m=1 where we assume that P is radially symmetric in the
K, variable y and that y = Wx (i.e. y is a known linear

(x)= c~'G'(x; t') (11) transformation of x that depends on the parameters W).
-1 This means that the smoothness constraint is given in a

where (1 +d) J" K,, < N and the coefficients c' and space that is an affine transformation of the original x
the centers tr are unknowns. They can be found with space. The Green's function associated with equation
a technique similar to the one describ,-d in section (5). (12) i
Notice that equations (10) and (,11) arw of the same form
as equation (5) and share its approximation properties. G(lylr) = G(xI,) (13)
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with 11x112  = XTWTWX. To avoid too many indeces, we will only consider here
Suppose now that the parameters W are unknown. the case p = I in eq. 10. The extension is obvious. In

We can formulate the problem of finding f and W that this case we can use the natural definition of optimality
minimize the functional HW(f). Notice that the rele- given by the functional H. We then impose the condition
vant quantity is M = WTW, since W only appears in that the set {c., t0 I. - 1, .. , n} and the matrix M must
this form. The matrix M is symmetric and positive def- be such that they minimizes H[f*], and the following
inite; it has therefore a unique, symmetric "square root" equations must be satisfied:
R, such that M = RTR = R2 . One could chose to
identify W with R. W would be therefore symmetric, OH[f] * OH[f'] OH[a]
with 2!d2 A independent parameters. ca 0  Ota 0, , = 1,..., ?.

Thus finding the optimal W corresponds to finding
the best stabilizer among those that are expressed in a Gradient-descent is probably the simplest approach
coordinate system which is a linear transformation of the for attempting to find the solution to this problem,
original one. The parameters W of the linear transfor- though, of course, it is not guaranteed to converge. Sev-
mation become parameters of H with respect to which eral other iterative methods, such as versions of conju-
the functional is minimized, gate gradient and simulated annealing (Kirkpatrick et

The simplest case is the case of W diagonal and al., 1983) may be more efficient than gradient descent
G(x) = e- 2 . In this case and should be used in practice. Since the function H[f]

to minimize is in general non-convex, a stochastic term
G(IIxII ) = e - 82w 2e -  ... , in the gradient descent equations may be advisable to

avoid local minima. In the stochastic gradient descent
and thus the components wi of W are equivalent to the method the values of c., t. and M that minimize H(P]
inverse of the variance a of each component of the mul- are regarded as the coordinates of the stable fixed point
tidimensional Gaussian. of the following stochastic dynamical system:

In the probabilistic interpretation of standard regular-
ization (see Poggio and Girosi, 1989) the term AllpI 112 in OH[f']
the regularisation functional corresponds to the follow- a - +
ing prior probability in a Bayesian formulation in which
the MAP (Maximum A Posteriori) estimate is sought: H = + it.(t), a = 1,...,n

Prob(f) - e- ' IPII2 . OH[V']
Our extension corresponds to choosing the stabilizer +M 4(t)

= IPf(y)112, with y = Wx. The stabilizer PW where ti0 (t), tsa(t) and D(t) are white noise of zero
is parametrized by the matrix W and defines a prior mean and w is a parameter determining the microscopic
Probw () which is also parametrized by W. timescale of the problem and is related to the rate of

The solution of the variational problem (12) has the convergence to the fixed point. Defining
form

N n

f(x)= ZcG(lx- xJ2v), (14) Ai-y,- f*(x) = y- -cG([lx - t0II42)
i=1 a=1

where the coefficients ci and the elements of the matrix and setting A = 0 for simplicity (the more general case
W must be estimated. Here again we are facing an un- can be approached in a similar way) in equation (1) we
derconstrained variational problem, since we trying to obtain

determine N + 2 parameters from N data points.
The same considerations of section (3) apply: in order to N
transform the problem into an overconstrained problem, H[f*] = HctM = (A,) 2.

we look for a solution of the form i=1

The important quantities - that can be used in more
f'(x) c,,G(Ilx - t0I, 1) (15) efficient schemes than gradient descent - are, with

0=1xi 
- taIIX,_ = (xj - ta)TM(xi - t.)

5 How to learn centers' positions and.

norm weights and M = wTw:

Suppose that we look for an approximated solution of the e for the c,

regularization problem of the form (15). We now have
the problem of finding the n coefficients c,, the d x n 8HVf1 N

coordinates of the centers t, and the i elements -- 2LAiG([xi -t.J); (16)
of the matrix M so that the expansion (12) is optimal.
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" for the centers t, by assuming that Ai are constant: then the gradi-
ent descent updating rule makes the centers move

N as a function of the majority of the data, that is of
H[*f 4c. AG'(Ili t.112 )M(X, t.) the position of the clusters. In this case a technique
at. = similar to the k-means algorithm is recovered (Mac-

(17)= Queen, 1967; Moody and Darken, 1989). Equating
(17) an f * to zero we notice that, when the matrix M

is set to the identity matrix, the optimal centers t,
satisfy the following set of nonlinear equations:

OH[f n N
ma _I EC, E '(Ixi - t, = E , p a

a= i=1(18)
where Qi,,a (x,-ta)(x,-t.)7 is a dyadicpr(18) where Pi' = AG'(IIX -ta11 2). The optimal centers
and Gp is the first derivative of G. are then a weighted sum of the data points. The

weight Pi of the data point i for a given center t,

Remark is high if the interpolation error Ai is high there
and the radial basis function centered on that knot1. Instead of equation (18) for M the following equa- changes quickly in a neighborhood of the data point.

tion can be used for W:
This observation suggests faster update schemes, in
which a suboptimal position of the centers is first

,, N found and then the c, are determined, similarly to8HV*W] -4W Z c0 E AiG'(IIxi - t.112 r)Q,, the algorithm developed and tested successfully by
aW a=1 i=1 Moody and Darken (1989).

(19) 5. Equation (19) (by assuming that
2. From equation (18) the matrix M is guaranteed n

to remain symmetric in a deterministic gradient _ ctA1G'(llx,- t0 ll)
descent scheme, since the right hand-side of the
equation is symmetric (because the Qi, are cor- a---

relation matrices anJ a linear combination of sym- is asymptotically constant (!!)) contains the quan-
metric matrices is symmetric). Of course, the ini- tity Z!LI Q, which is an estimate of the correla-
tial value must be a symmetric matix and in the tion matrix of all the examples relative to ta (mod-
stochastic update scheme, the noise term must not ulus a normalization factor). Let us define Cm,a as
break the symmetry. The matrix M must satisfy the d x m matrix whose columns are the vectors of
the additional constraint of remaining positive def- the examples x, - tc, ..., x,, - ta. Then ENJ Qi,a
inite (since the scalar product xTMx must be non- can be written as ! = CNaCr0 and is the
negative). We conjecture that equations (16), (17) %ax d crin a (d ing th numr of com-
and (18) conserve the positive definiteness of M if d x d correlation matrix (d being the number of com-

d (e positive definite n Mponents of x). Interestingly, in this case, equation

(19), when inserted in the gradient descent equa-
3. Equation (16) has a simple interpretation: the cor- tion, has the form:

rection is equal to the sum over the examples of the
products between the error on that example and the w = -WQ
"activity" of the "unit" that represents with its cen-

ter that example. Notice that H[f '] is quadratic in which has the solution
the coefficients c,, and if th. centers and the ma-
trix M are kept fixed, it can be shown (Poggio and N
Girosi, 1989) that the optimal coefficients are given W(t) = W(0)e- Qt - W(O) e-AejeT
by j=1

where ej are the eigenvectors of Q and Aj are the
(GT G + Ag)-GTy (20) associated eigenvalues. All eigenvectors will decay

to 0, the ones with the largest eigenvalues fastest.where we have defined (y)i = y/, (c)a = C, Since in the full equation the other terms such as(G)h0 = G(x,;t 0 ) and (g)a = G(t0 ;t ). If A is let At will keep W from decaying toO0, we may expect

go to zero, the matrix on the right side of equation At will e ro amatrix wi row t
(20) converges to the pseudoinverse of G (Albert, that W will converge to a matrix with rows that

(20)conergs t th psudoivere o 0 Albrt, are similar to the eigenvectors of Q with the small-
1972), and if the Green's function is radial th., ap- es eigenv tors th e shold
proximation method of Broomhead and Lowe (1988) et eigenvalues. In other words, the equation should

is recovered. converge to rows of W that span the space orthog-
onal to the space spanned by the principal compo-

4. Equation (17) is similar to task-dependent cluster- nents of the input examples (i.e. the eigenvectors
ing (Poggio and Girosi, 1989). This can be best seen of Q with the largest eigenvalues). In this case, the
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matrix M is a projection operator that projects x the data (or more simply to a subset of the exam-
into a space orthogonal to the space of the principal ples' positions).
components. The principal components are the sin- * Set the rows of W to be vectors orthogonal to the
gular vectors of X, with the property that they span eigenvectors with largest eigenvalues of 0 E . i Qi,a.
a nested set of optimal subspaces. This interpreta-
tion of the gradient descent equation is just a rough 0 Use matrix pseudo-inversion to find the ca.
indication of what may happen, because of the very * Use the t,, M = WTW and c. found so far as
strong underlying assumptions. It turns out that in initial values for gradient descent equations.
the object recognition case (Poggio and Edelmann,
1990), the interpretation is perfectly consistent with It should be noticed than an even more general strat-

what one expects, given the (linear) computational egy makes sense in some cases. Suppose that the sys-

theory underlying the problem (Basri and Ullmann, tern can be made to operate satisfactorily with the steps

1990; see also the appendix in Edelmann and Pog- above or perhaps just with the first step. Suppose also

gio, 1990). Under orthographic projection, the vec- that the system can continue to accumulate examples

tors representing views of the same object span a while operating. An example could be an autonomous

linear subspace with a low dimension. Let us as- vehicle that can improve, say, the model of its dynam-

sume, according to the above discussion, that W ics by collecting appropriate example pairs while oper-

projects a new input vector into a space orthogonal ating. Then it makes sense to perform dimensionality

to the one spanned by the principal components ex- reduction and to move the centers as outlined above.

tracted from many views of the object (the "exam- As an additional step one may try to eliminate features

pies"). Then, if the new input is another view of the that receive little weight, if possible, and then to add

same object, the result will be close to zero for all other features while keeping the previously found cen-

units. In the case of the Gaussian, for instance, this ters. This is equivalent to adding centers of higher di-
means that each unit will be maximally activated mensionality. Another iteration of moving centers, find-

and by suitable choice of c any desired output may ing norm weights, eliminating features and centers then

be synthesized. On the other hand, if the new input takes place.
is the view of a different object, the result of oper- Experiments with movable centres and movable

ating on it with W will be different from zero and weights have been performed in the context of object

possibly large enough to give a very small activity recognition (Poggio and Edelman, 1990; Edelman and
of the unit making it impossible to synthesize a de- Poggio, 1990) and approximation of multivariate func-

sired output by an appropriate choice of the c (the tions (Caprile, Girosi and Poggio, 1990) and in both

output will be zero or close to it). In this case, the cases the results are promising.
appropriate W will solve the problem with just one
center (since the problem is linear). Notice that if 6 Remarks
W is symmetric (i.e. if W is the square root of M), 1. Equation (19) is similar to an operation of (task-

have the same null space. Hart, 1973) whereas equation (17) is similar to a

6. One may think intuitively that it is desirable that clustering process.
W is space dependent, that is W = W(x). This as- 2. It is conceivable that learning the weights of the
sumption, however, seems rather meaningless from norm is even more important than learning the cen-
the point of view of regularization theory. As a ters and that in many cases it may be preferable to
consequence, we believe that it is wrong to assume set the centers to a representative subset of the data
W = W(x) in a scheme such as HyperBF. On and to keep them fixed thereafter.
the other hand, it makes theoretically sense to use
different HyperBF networks for different subsets of 3. A specific matrix W corresponds to a specific met-
the domain of the given multivariate function, each ric in the multidimensional input space: W projects

one possibly with a different W. We do not have the input vector into the subspace spanned by its

any theory, however, of how to partition appropri- rows. In the case of the rows of W spanning the
ately the domain of the function. An alternative space orthogonal to the principal components of the
approach, that also makes sense, is local linear ap- inputs, W assigns a metric ellipsoid with the largest

proximation. In this case one finds a set of local axes (corresponding to a large o in the Gaussian)
charts, somewhat similarly to computing W(x). along the principal components and the small axis

(corresponding to a small o" in the Gaussian) or-
5.1 A practical algorithm thogonal to it: thus even vectors that are far away

(in the ordinary euclidean metric) are close in this
It seems natural to try to find a reasonable initial value metric if they lie in the hyperplane of the principal
for the parameters c, t0 , M, to start the minimization components and even close vectors (in the ordinary
process. In the absence of more specific prior information metric) are far away in the metric induced by W if
the following heuristics seems reasonable. they are orthogonal to the principal components.

9 Set the number of centers and set the centers' po- 4. In the case of N examples, n = N fixed centers
sitions to positions suggested by cluster analysis of and M = I, there are enough data to constrain the
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N coefficients ca to be found. Moving centers add [10] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Opti-
another nd parameters (d is the number of input mization by simulated annealing. Science, 220:219-
components) and the matrix M another 412 + inde- 227, 1983.
pendent parameters. Thus the number of examples [11] J. MacQueen. Some methods of classification and
N must be sufficiently large to constrain adequately analysis of multivariate observations. In L.M.
the free parameters - n d-dimensional centers, n LeCam and J. Neyman, editors, Proc. 5th Berkeley
coefficients c. and 42+ independent entries of the Symposium on Math., Stat., and Prob., page 281.
matrix M. Thus U. California Press, Berkeley, CA, 1967.

d2 + d [12] S.G. Mikhlin. The problem of the minimum of a
N'n + quadratic functional Holden-Day, San Francisco,2 CA, 1965.

5. In the case of Gaussian basis functions, learning [13] J. Moody and C. Darken. Fast learning in networks
the entries of a diagonal W is equivalent to learn- of locally-tuned processing units. Neural Computa-
ing the variances of each two-dimensional (or one- tion, 1(2):281-294, 1989.
dimensional) Gaussian receptive field for each cen- [14] V.A. Morozov. Methods for solving incorrectly posed
ter. It is clear that sets of units with different scales p14]lVmA . oro.ethods forling ioe4s
(see section 3.1) correspond to sets of units with problems. Springer-Verag, Berlin, 1984.
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Abstract

In model-based visual recognition, often
groups of image features are matched to groups
of model features to form initial hypotheses,
which are then verified. If all possible matches
are considered, this process can require exces-
sive computation. In order to accelerate recog-
nition considerably, the model groups can be
arranged in an index space offiline (hashed),
such that each image group can index into the
space and find only those model groups that
could have formed that image group. For the
case of 3D point model features and 2D point
image features, we prove that each model must
be represented by a two-dimensional subspace
in the index space. We also show that the index
space should be of dimension 2G - 4, where G
is the number of features in each group. This
places an unexpected lower bound on the space
required to implement indexing with 3D mod-
els. We discuss the details of how such a space
can be theoretically constructed, and introduce
an informal method for reasoning about the in-
dex spaces based on degrees of freedom. We
also discuss practical considerations for imple-
menting the approach, including the significant
consequences of image error. We argue that in-
dexing can provide a significant speed-up, par-
ticularly as larger groups are formed.

1 Introduction

Computer vision programs that recognize objects often
apl)roach the problem by attempting to match features
in an image to features in a modeled object. For exam-
pie, on may match distinctive points in an image, such
as corners or extrelna of curvature, to coml)arable model
points. Or one may match extended features, such as
line segments or curves to sections of a model that will Figure 1: For each group of image features, model-group
produce such curves. To recognize an object, one nmust indexing allows the feasible model groups to be found im-
find the correct set of such matches. A basic prol)lemn mediately, without searching through all model groul)s.
with this approach is the exponential number of possible Usually, only a small number of model groups are feasi-
sets of matches. This imakes it impractical to explicitly lie.
consider every way to match the image features with I lie
model features.

One way of speeding up this matching process is to

604



use sets of image features to index into a lookup table of ticular, determining an optimal method of describing the
model feature sets that has been constructed offline. We effects of sensing error on such a lookup table has not
will call these sets of features groups. At run time, the been addressed. However, although this paper does not
lookup table will provide the program with only those describe a practical implementation of an indexing sys-
groups of model features that might feasibly match each tem for three-dimensional objects, we demonstrate some
group of image features, as depicted in Figure 1. We ex- strong restrictions that must apply to any such system.
pect that the number of feasible model groups is much Before demonstrating these results, we wish to provide
smaller than the total number of model groups. Thus it some insight about indexing and to describe its advan-
is useful to avoid the time-consuming process of evalu- tages. In the next two sections we make the following
ating and then rejecting infeasible matches. A match is points:
infeasible if there is no possible image of the model group With a continuous, error-free image and a continu-
in which its features are aligned with the measured image ous index space, for each image group of size four orfeatures, to within error bounds.featres towitin erorbouds.more, their will only be one model group that could

In this paper we place a strict, non-trivial lower bound form an image group.
on the amount of space needed to perform indexing of
groups of three-dimensional model points using groups * Considering image error, the number of groups that
of two-dimensional image points. We also show that this could cause an image group is proportional to the
bound is tight, by explaining how to construct an index- total number of model groups. Thus, in practice, in-
ing system within this bound. dexing with groups of size four provides a constant-

factor speed-up.
1.1 Related Work * With larger groups, the speed-up factor increases
Indexing has been demonstrated in the domain of two- exponentially with G.
dimensional models, where there is no projection. A sys- * Indexing is most valuable when coupled with group-
tem of Kalvin et al.[91 based on more theoretical work ing, which can provide large groups of features eco-
by Schwartz and Sharir[13] used indexing to find those nomically.
two-dimensional model curves that could produce a spe-
cific two-dimensional image curve. Wallace[15] similarly 2 Background
performed two-dimensional indexing using a few differ-
ent kinds of groups, including pairs of vertices connected In the remaining sections of this paper, we work within
by a straight line. Jacobs[8] performed grouping of im- the following recognition domain. A model of an object
age lines based on proximity and relative orientation, consists of a set of 3D features, and an image consists
and then used indexing to match these lines to two- of a set of 2D features. We will discuss point features,
dimensional models. Each of these systems had an ap- although other kinds of features may also be used with
proach that associated only one or a small number of indexing. The image is generated by performing a 3D
entries in the indexing lookup table with each group of rotation, translation and scaling on one of the models,
model features, in the absence of error or occlusion. Ac- and projecting it along with various unknown objects
counting for sensing error or partial occlusion of model into the image plane. Projection is taken to be ortho-
features may have increased the number of table entries, graphic (parallel) with scaling (aka "weak perspective").
but still these lookup tables were relatively small and The goal is to find the correspondence between the im-
easy to build. age features and the known model features, and to find

Recently, Lamdan et al.[10][l1] have devised a method the pose of the model in the scene.
for building a lookup table for indexing when a two- A common approach to this problem is to consider
dimensional model group may be viewed from any three- groups of the image points, and for each image group,
dimensional viewpoint. That is, the model group con- to hypothetically match it with groups of the model
sists of a set of coplanar points, but may be oriented points. For each match hypothesis, if the groups are
three-dimensionally. With their method, a single entry large enough, the pose of the model can be determined
is made in a lookup table for each group of four model (or reduced to a small set of possibilities). With the pose
points, known, the hypothetical locations of the other model

It had not been shown whether it was possible to ex- points in the image can be determined, and further
tend Lamdan et al.'s indexing method to apply to three- support for the hypothesis can be efficiently discovered
dimensional models, such that each model may be rep- (Ayache and Faugeras[1], Lowe[12], Clemens[4], Hutten-
resented with a single entry in a lookup table. In this locher and Ullnan[7J). Such an approach considers (N)
paper, we proue that such an extension is not possible. image groups, and for each one considers (G) model
We show that any indexing system for three-dimensional groups, where N is the mumber of image points, M is
model points and a two-dimensional image must map the number of model points in one known object, and
each set of model points to a two-dimensional surface G is the size of the group. Its complexity is therefore
in an index space. We then show how to construct the of order N'M ('. (We exclude the number of operations
smallest such two-dimnsional surface analytically. We involved in verify ing each hy pothesis, since it will be the
also discuss many of the practical problems involved in same for all the methods considered in this paper).
building an indexing system based on these ideas, al- Consider groups of three points. It is well known (see
though some of these problems remain un.,oed. In par- for example Fischlcr and Bolles[6] or HIuttenlochei and
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Figure 2: With groups of three points, any model group Figure 3: With groups of four points, only some model
can correspond to any image group. V and 3 are used groups could have formed a particular image group.
loosely: for each model group, over all poses, it can form Each model group can form a 6D subset of the image-
all image groups. Conversely, for each image group, for group space. Intersections among the potential subsets
any model group, there exists a pose such that the model are of even fewer dimensions.
group could have formed the image group.

consistent with only one or zero model groups, depend-
Ullman[71) that this is the minimum number of points ing on whether it was formed from a known model or
needed in a match to determine the hypothetical pose (to not, respectively. This implies that the extra constraint
within a finite number of possibilities). The following in each image group can be used to eliminate all but one
equation-counting argument supports this claim: The of the M4 model groups as potential matches.
pose has six degrees of freedom (DOF): two rotation an- To see why an image group of unknown object fea-
gles to specify the viewing direction, rotation of the im- tures is unlikely to be consistent with any known model
age plane about the viewing direction, two translations groups, consider the space of all possible image groups
in the image plane, and scaling. Each point in the image (Figure 3). With four points in an image group, the
has two degrees of freedom, x and y, which may be used space will be 8D. Each point in this space represents a
to constrain the pose. (These can be called "degrees of pattern of four points in the image. Each measured im-
constraint", or DOC). Therefore, it should take at least age group will correspond to a point in this space. For
three image points to fully constrain the pose. Alterna- a particular model group, we will call the set of image
tively, the pose has six variables, and each image point groups that it can form its potential image groups. A
provides two equations. If the equations are indepen- model group will have a potential image group for every
dent, then the solution space should have zero degrees pose, since its four points may appear in the image with
of freedom. This does not guarantee a unique solution: a different configuration for every pose. Therefore, the
it means there might be no solution, or a finite number subset of the 8D image-group space that contains poten-
of solutions. Such arguments rely on properties of the tial image groups of the model group is at most 6D. With
equations which may be hard to ascertain, such as their a finite number of known models, there will be a finite
independence, the absence of degenerate cases, and the number of 6D subsets in the 8D image-group space that
absence of space-filling mappings. However, they can be correspond to known models- it will be mostly empty.
helpful in developing intuitions about the problem. If a point is chosen randomly in the image-group space

It is also the case that for any three image points and it is very unlikely to intersect any of the model group
any three (non-colinear) model points, there exists a pose potential subsets. (In fact, it will miss them with prob-
such that the image points are formed by the projec- ability one.) An image group generated from unknown
tion of the model points[7]. So, with groups of three objects is no more likely to hit the potential subsets than
points, every image group could have been caused by a random image group. An image group generated from
every model group (figure 2). Therefore, indexing can a known model group must lie on that model group's po-
offer no assistance in this case. All combinations must tential subset, but it is just as unlikely to hit a different
be checked, and the time of execution is order V3AI3. subset as any other image group.

Now consider groups of four points. Each image group Alternatively, a geometric intuit; -i may be developed.
will have 8 DOC. Intuitively, there are now two extra Consider a particular image group (four points in the
degrees of constraint in each image group. The extra image plane) and a particular model group (four points
constraint should be available to discriminate among the in 3D). We know that we may match any three of the
many model groups, since not all model groups can cause four points in each group, and from that match only
all image groups. Indeed, with continuous error-free im- two poses of the model group will be possible. With the
ages. we argue that an image group is most likely to be pose fixed, in order for the fourth model point to appear
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at exactly at the four image point, it must lie along a
particular line in 3D. Out of all the locations in 3D that
it might have, the chances of it lying on the line are very
small. However, if the image group was formed from
the model group (and the three points were correctly Model Group Index Image Group
matched), then the fourth point must lie on the line, for Space Space Space
one of the two poses.

An exception to this rule occurs if two model groups
are similar. That is, there exists a 3D rotation, 3D trans- V
lation, and scaling that will make them identical. In this P
case, they will produce exactly the same potential image 6D
group subset, and can be dealt with specially. (10D) VP

Therefore, if only the feasible model groups were con-
sidered, the run time would be reduced from M 4 N 4 to 3 P

N4 . This is a tantalizing possibility. However, it was
argued-for the case of an error-free spatially continuous 101) 6D
image. Because of image error and the discretization of
the image and the image-group space, each model group 12D 2D 8D
must be represented in a small but 8D volume of space,
where it would theoretically be represented only in a 6D Figure 4: We wish that the index space only needed to
subset. The potential subset for each model group is still represent those dimensions that are available to discrim-
much smaller than the entire 8D image-group space, but inate among models. We prove that such a space is not
the image-group space is no longer sparsely filled, and possible for general 3D models of any number of points.
theoretical speed-up is not attained. However, as the With coplanar 3D point models, however, the more com-
size of a group increases, the image-group space again pact index space is achievable, as demonstrated by Lam-
becomes relatively sparse, and the theoretical result is dan et al. [10].
approached. This important consideration is discussed
in greater detail in the section on Considerations for Im-
plementation. For now, we continue with error-free spa-
tially continuous images.

Model-group indexing is a way of using these powerful
extra degrees of constraint. Before recognition, markers
for the model groups are arranged in an index space.
During recognition, the parameters of each image group
are used to index into this space, where those models
that could possibly form the image are marked. The only
requirement is that, for a given image group, the model Model Group Index Image Group
groups found through indexing are exactly those models Space Space Space
which could produce the image group: no more and no t Space Projection
fewer. (Indexing would only be less efficient if there were Known V Views
more, but would not work reliably if there were fewer). Model
It is acceptable for several model groups to mark the Groups
same point ip the index space, and it is acceptable for
several image groups to index to the same point in the 6D Po entlal
index space, as long as the stated requirement is met. It
is also acceptable for a model group to mark more than
one point in index space, or even for an image group X4
to reference more than one point, though these increase 12D 4D 8D
storage requirements and reduce the runtime efficiency,
respectively. Figure 5: For model groups of four 3D points, allowing

From the earlier discussion, we can see that such a only one reference per image group, the smallest index
space exists: it is the image-group space, filled with space that uses all the available constraint is 4D, with
the model group potential subsets. This could theoret- each model represented along a 2D sheet. The 6D set of
ically be formed as follows, for each model group, for potential image groups will reference the sheet in index
all poses, project the model to determine which image space. In general, there will be a 4D subset of image
groups it can cause. For each of these image groups, groups that all reference the same point in index space.
place a marker for the model group at that point in the
image group index space. At recognition time, each im-
age group finds its point in the image-group space and
verifies matches with the model groups marked there, if
any.
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However, such a space would be impractical to im- two of the degrees of constraint that are available, given
plement, for many reasons. To implement any indexing that five-point groups are found.
scheme, we expect to discretize and bound the index
space. Because of the high dimensionality of the image- 3 Further Motivation for Indexing
group space, it would require excessive storage. Further-
more, for each model group, the potential image groups Despite the requirement of a 4D ining space, the ap-
must be formed by sampling all six DOF of the pose. proach still offers a theoretical reduction in execution

mstbeaformedb allytheindex sixce DouF oy hve os time from order M3 N 3 V to order N 4 V. The elimina-
Instead, ideally, the index space would only have to tion of a dependence on the number of model groups

represent the two extra degrees of constraint that are is particularly attractive if large libraries of models are
available for model discrimination. Then the index space I p
could be 2D instead of 8D, and each model group would desired, when the total number of model groups can be

correspond to a point (Figure 4). Lamdan et al.[10] de- much greater than the number of image groups. Unfortu-

scribe such an indexing scheme, but for the special case nately, as mentioned above, because the image cannot be

of planar models. In that case, the fourth point can expected to be error-free, the dependence on M returns

be represented by two values in terms of the first three in full force. To account for error in the image, either
o ,such that the values am preserved under pose an 8D volume of points in the index space must be ref-transformation and projection. The two values can then erenced during recognition, or an 8D volume of possible

be used for indexing. The main result of this paper is a image groups must be filled by each model group before

formal proof that, unfortunately, this is not possible for recognition. Under these circumstances, the number of

general 3D point models- the dimensions of the index model groups indexed by an image group is no longer
zero or one, but is proportional to the total number ofspace cannot be reduced that far. model groups in the space. The entire M 4 factor returns

It may be helpful to note that the reduction of the in- in the order of growth of the run time, but a large con-
dex space is a projection of the image-group space onto stant factor speed-up is retained, which is of practical
a subspace of lower dimension. In this case, projection interest. As discussed later in the implementation sec-
is meant in the normal mathematical sense, as distin- tion, the size of the speed-up will depend on the size of
guished from the weak-perspective projection used to the image error, and will need to be determined empiri-
form a 2D image from 3D objects. First, the image- cally by further research.
group space, along with the potential subsets in it, are Upon entering the practical domain, it is only fair
remapped to a space of the same dimensionality but with to reconsider the practicality of any method that uses
different axes. This is equivalent to changing the repre- groups of three points. With only three points, any esti-
sentation of the image-group points. Then, the space mate of the model pose in the image will vary consider-
(and the potential subsets) are projected over some of ably due to image error, and may prevent successful ver-
these axes, call them a,, a2 , etc., onto the rest, b1 , b2, ification and recognition. If the group size is increased
etc. A point in the projected space has a value for each of to four to reduce error in the pose estimate, then execu-
the b axes. It corresponds to all the points in the original tion time will be order M4 N 4 anyway, whether or not
space that have those same b values, and all other values indexing is used. In that case, indexing can be employed
for the a axes. To project the potential subsets means to achieve a significant constant factor speed-up.
the following: for each point in the projected space, a A separate but related motivation for indexing comes
model group will be represented if it has a potential im- from the middle stages of the vision process. All of the
age group anywhere in the corresponding part of the above analyses of execution times were based on trying
image-group space. all possible permutations of matches between G model

In order for an index space to work in general, the pro- and G image features (where G was four). This includes
jection must be such that the different potential image sets of features from widely different parts of the image.
group subsets would still be distinct in the projected sub- Instead, it should be possible to interpret the image to
space, for every possible set of non-similar model groups. some extent, and to decide which combinations of im-

We prove that each model group must be represented age features are more likely to come from a single oh-
everywhere along a 2D surface in the index space, given ject, without basing the interpretation on any specific
that we require each image group to index only a sin- model match. Such interpretation is called grouping,
gle point in the index space at recognition time. This and is performed in various ways by many other recog-
implies that the most compact projection of the image- nition systems, often without explicit acknowledgment
group space that preserves model group discrimination For example, Acronym[3] grouped image edges into rib-
is iD (figure 5). In Ltte btiuits we describc a specific bons or ellipses wh',ich it matched to portions of genr-
theoretical 4D index space, and then discuss some ima- alized cylinders. Bolles and Cain's[2] system grouped
portant considerations relevant to implementation, together features based on proximity. Lowe[12] first ex-

We should point out that indexing need not take the plicitly discussed the importance of grouping to recogni-
form we give it. For example, Lamdan and Wolfson[ll] tion in his very novel and influential system SCERPO.
describe an approach in which each inage group indexes SCERPO grouped together nearby edges based on paral-
a line in index space, instead of a point. However, this lelism, co-termination, and symmetry. These groups of
increases run time. Furthermore, they use groups of five two-dimensional image edges need be matched only to
points, but only a 3D index space. By the reasoning we three-dimensional model edges with the same qualities
have presented, we can see that this fails to make use of The most significant. advantages of grouping are at-
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tained if the most likely groups can be found without
even generating the less likely groups, potentially reduc-
ing the N0 factor considerably. In an extreme exam-
ple, it might be possible to find order N groups in an P3
image. This can be imagined for a grouping algorithm p4
that was based on proximity, for example. Note that L4
model features may also be grouped, based on the im- ........
age groups they may form (see Lowe[121, for example). -
Thus, grouping may reduce the search time from order
NGMG to order NM. Of course, since so few groups are
tried, it must be argued that at least one image group X
from the known object will be found, and that it will be P1
successfully verified despite image error. Nonetheless,
any kind of grouping that includes even a single correct
image group with high probability can cut the search
time drastically by avoiding combinatoric explosion. Figure 6: The relative representation of four points in

Grouping can be expected to aid almost any recog- a plane is independent of how the points are translated,
nition approach, but it is a particularly good partner rotated, and scaled as a whole. x and y are the relative
for indexing. Indexing needs the larger groups which coordinates of the fourth point- the coordinates in the
grouping provides at a reasonable cost, and conversely, basis formed by the other three points. cr and r describe
indexing is ideal for capitalizing on the increased size of the basis. r = = . The points may be image points
the groups. This is due to two effects. First, the advan- or coplanar model points.
tages of each method are not reduced by the presence
of the other- the speed-up is fully the product of each
separate speed-up. Second, with both methods in place, In the next section, we outline the proof regarding
the efficiency may be significantly increased by forming the lower bound on the size of the indexing space. In
larger groups, while the efficiency of either method alone the following sections, we describe the method for con-
is likely to decrease with larger groups. structing a theoretical indexing space, and then practical

The real power of indexing becomes available as larger considerations for implementing an indexing scheme for
groups are used. If indexing with four-point groups a recognition system.
causes a speed-up of k, then indexing with larger groups
can be expected to cause a substantially larger speed- 4 Proof Outline
up: kG- 3. (An argument for this order of growth is
presented after the index space is described in detail.) In the memo version of this paper[5] we present a proof
In fact, if G is large enough with respect to M, the den- of the following statement: it is not possible to perform
sity of the index space may be reduced so far that the model indexing by making only a single entry in an index
theoretical limit is attained, in which there is no search space for each model group and referencing a single point
for each image group. However, without grouping, the in index space for each image group, such that exactly
number of image groups to consider would rise exponen- those model groups that could have produced the image
tially with G. The total execution time for recognition group are found. In fact, we show that there is a one-to-
with indexing alone would be order N GMG/k- 3 : for one mapping from the points in the plane to the entries
each increase of one in G, the time is changed by a fac- we must make in index space for each model group. The
tor of NM/k, which is likely to be an increase. On the proof uses a general formulation of index space, so that
other hand, recognition with grouping alone is of order the result does not depend on any specific choice of rep-
P(G)Q(G), where the number of image groups is P(G) resentation for this space. This tells us, for example,
and the number of model groups is Q(G). Both of these that Lamdan et al.'s approach cannot be extended to
functions tend to increase with G (but less than expo- three-dimensional models, while still making only a sin-
nentially). This is because larger groups are harder to gle entry in index space for each model group. This re-
form reliably, and there are more possible combinations suit, combined with our degrees of constraint arguments
of larger groups of a given number of image features, made earlier, suggests that the best indexing scheme for
Overlapping groups will almost certainly be required to groups of four points will map each model group into
achieve sufficient reliability. Therefore, with indexing a two-dimensional surface in a four-dimensional lookup
alone or grouping alone, larger groups are not particu- table.
larly desirable. The proof is based on two Lemmas, which we also

When combined, however, execution is of order present here without proof.
P(G)Q(G)/kGa- 3. Since P and Q rise much less than Lemma 1: Lamdan et al. point out that if we use
exponentially with G, increasing G will decrease the to- three model points as a basis and then represent the
tal execution time, possibly by quite a lot. Together, remaining points with coordinates relative to that basis,
grouping and indexing not only provide their separate then the relative coordinates will be inmariant under pro-
advantages, but also support larger groups as a new and jection (Figure 6).
powerful tool for decreasing search.
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Model Group Index Image Group
Space Space Space

Vmtwipg Diracton linsng Plant Impgepinn

Rotation

4

W. ) 1
M" Figure 8: A model, M, can produce images Ii, and 12,2,

Modal Basin Pl... Translation so it must make entries in the index space at the points
where these two images look for matches, called X1,1
and X2 ,2. Model M 2,2 can also produce image 12,2, SO

Figure 7: The image points il, i2 , i3 , and i 4 are the it also has an entry in index space at X2 ,2 . Since M2 ,2
projections of the model points inl, m2, M3, and M 4. could not produce Ilj,, it may not have an entry at Xl,l.
The values of the image points depend on the pose of Therefore, X1,1 0 X2,2, and M must make more than
the model relative to the image plane. The pose consists one entry in index space.
of viewpoint (2 DOF), image-plane rotation (1 DOF),
image-plane translation (2 DOF), and scale (1 DOF, not
shown). In the viewing direction shown, m' and m4  situation.
project to the same image point. Note that i4 has the This fact tells us to expect each model to map to at
same relative coordinates as mi. least a two-dimensional surface in index space. Our pre-viously developed understanding of degrees of constraint

shows that an image of four points contains eight degrees

It is this invariance that allows Lamdan et al. to per- of constraint, two more than the number needed to solve
form indexing by making a single entry in the index space for a model's pose. These two extra DOC allowed Lam-
for each model, in the special case where all model points dan et al. to map models to points in a two dimensional
are coplanar. For every ordered set of four model points, index space. Similarly, if models must map to a two-
they find the relative coordinates of the fourth point, and dimensional surface, one would expect that surface to
the abe in a four-dimensional index space. That way, the twomake an entry at those coordinates in a planar 'index etaDCapa sa neigsaeta a wspace. extra DOG appear as an indexing space that has two

Lpce.a 2degrees of freedom more than the surfaces mapped intoLemma 2: Given any non-coplanar model group, it

and any relative coordinates, (X4b, Y4b), there is always
a viewing direction for which 4 (the image of the fourth 5 Theoretical Index Space Construction
model point) has coordinates (X4b, Y4b) relative to the
first three image points. We now know that, at the least, we needed to form a

two-dimensional surface in index space for every model.
We now outline the proof without describing the con- In this section we show that this lower bound is in fact

structions involved. Suppose M is any model group. We a tight bound, by constructing one such conceptual sur-
can construct two model groups, M ,1) and M 2,2), that face. We begin with models that have only four points,
have some special properties. In each, the fourth point is and then extend the result to larger models.
coplanar with the fiist three, and, respectively, has the From earlier discussion, we see that the index space
relative coordinates (1,1) and (2,2). There are image will be a 4D projection of the 8D image-group space.
groups, I(1,) and I(,2), such that M(l,1) can produce In doing this, we project the image-group space over the
10,1), M(2 ,2) can produce 1(2,2). Lemma 2 tells us that four dimensions that are independent of the index space.
M can produce both image groups. That means that But what are the axes of the index space? The poten-
A must have an entry in index spare in common with tial image groups for each model group appear as 2D
M(1,i), and an entry in common with A( 2,2). However, sheets in it, parameterized by viewing direction. View-
Lemma 1 can be used to derive that the constructed ing direction was defined to be along the line between
model groups M(l,1) and M(,,)) can never produce the in 4 and m;, where the coordinates of in' were (x4b, Y4b).
same image group. This means that they must have no For each model group, there is a point in index space for
entries in common in index space. Hence, Al must make every (X4b, Y4 ). So we will choose X4b and Y4b as two of
at least two different entries in index space. Finally, the axes. We will choose the other two axes of the in-
we show that we can generate a different model group, dex space so that they also depend only on the viewing
M(i,j) for every point in the plane. For each such model direction. Then the projection will be over the remain-
group, there will be a different point in the index space ing DOF of the pose: image-plane rotation, translation,
at which Al must, make an entry. Figure 8 depicts this and scale. Fortunately, these four pose DOF correspond
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directly-to rotation, translation, and scale of the image points (il, i2, i3), there are exactly two poses that will
points. Therefore, in order to implement indexing, we cause (in,, M2 , m3) to project to the points (il,i 2 , i3 ).
must show the existence of a representation of image Without loss of generality, suppose il and i 2 are fixed.
groups that has four independent parameters that are For a given r and a, we may calculate the location of
also independent of image-plane rotation, translation, i3 . So, given a four point model, r, and a, we may solve
and scale. Such representations have already been found, for two possible poses, and then determine at most two
for example, in Thompson and Mundy[14] and Lamdan possible values of the parameters x and y.
et al.[10].

We wilet an oIf a model group has more than four points, we may
We will represent an ordered group of four image map it to a two-dimensional surface in a higher dimen-

points, il, i2 , 3 , i4 , with four parameters: x, y, ca, and sional index space in the same manner as before. Sup-
r. As in the previous section, we will choose three of the
points, il, i2 , and i6, to use as a basis. x and y will stand describe the five image points with the same four param-
for the relative coordinates of i4 using this basis (just as eters as above, plus two additional parameters, X, Y5

Xband Y4b did for in'). Then, let a be the angle betwveen eesa bvpu w diinlprmtrXIsX4 arthe relative coordinates of the fifth point using the first
the line segments i31-' and 212 2, and let r be 11 , the three as a basis. We know that for every pair of parame-

Ilii2 1
ratio of the length of the two line segments. Notice that ter values x and y we may determine two viewing direc-
scaling and translation do not affect these parameters. tions that produce those values of x and y. Just as we
Furthermore, rotation of a model about an axis normal use those viewing directions to determine a siagle value
to the image plane produces rotation of the model's im- of a and r for a given (x, y) pair, we also find that the
age, which also does not affect these parameters. So in two symmetric viewing directions produce a single pair
considering all the images a model may produce, we must of values for xs and y5. So, we may map a model into
only be concerned with the effect of rotations about two a two-dimensional surface in the six-dimensional space,
other axes (viewing direction) on these four parameters. with axes a, r, x, y, x5, and ys. The surface will span the

It is also important to notice that this representation range of all x-y values with one point for each (x, y) pair.

does not discard any information about the model that Since we could have re-ordered the points, exchanging

produced the image. Equivalently, we must show that the fourth and fifth points, it follows immediately that

the representation, when combined with image-plane ro- this surface will also have exactly one value for every (xs,

tation, translation, and scale, fully specifies the locations y) pair.

of the image points. Image plane translation fully speci- Similarly, if the model has more than five points, we
fies il. The point i2 is fully described by rotation about may add two more parameters to our index space for
il, and the distance between il and i.,, which is set by every additional point.
scale. i3 is set by o and r. Finally, i4 is fully constrained
by x and y. This approach to building an index space is somewhat

The previous section showed that given four non- related to work of Thompson and Mundy[14], and of

coplanar model points, for any (x, y) there exists a pose Lamdan and Wolfson [111. Thompson and Mundy have
of the model that will produce an image in which the built a system that does not perform indexing as we use
fourth point, i 4, has the relative coordinates (x,y). The the term, but does use a lookup table to find the pose
point in' was constructed to have relative coordinates of an object. They describe an image group that has
(x,y) in the plane formed by the model points in,. m2, six DOC so that only two of these DOC depend on the
and M3. i4 then has relative coordinates (x, y) exactly viewing direction. They then fill a two-dimensional table

when wve project the model parallel to the line m 4m. that translates the values of these two parameters intoThere are two distinct such projections, depending on the viewing direction. They build the table by viewing
whether we view the model from above or below. View- the model from sampled points on the viewing hemi-ing the model from below is just like viewing the model sphere. So, at runtime they may determine two of the

from above, except that the coordinate frame is flipped values of the image group, and look in a table to find,
over. Flipping the coordinate frame will not affect, the for each model group, the viewing direction that would
parameters x, y, and r, but it will change ce into 2r - a. cause that model group to create that image group. In
So, we can map each model into a four-dimensional index addition to their indexing work, Lamdan and Wolfson
space by finding a single value of r and two symmetric have built a similar system.

values of a for every (x,y) pair. In fact, because the This work differs from ours in that it does not use the
tvU Vdls arc sbniiictric we may make aii entry in in- extra DOG of an image group to discriminate between
dex space only at the value nain(a, 2z - o), and then different model groups that might match it. It is similar,
calculate the appropriate index value at lookup time. in that it builds a lookup table b) sampling the viewing

It, is clear that if we project this surface, %% hich is in x- direction. In effect, our approach also determines the
y-a-r space, do %n into the v-y plane, there is one point appearance of a model from each viewing direction. The
on the index surface for cerN (x y) pair. Similarl , it approaches are also similar in that they reduce the di-
is also true that there are two points oil the surface for niensionalit) of the lookup table by choosing an image
ev cry point in the a-r plane. To see this, we recall that, representation in which sonic parameters vary onl. with
Iluttenlochier and Ullnan[7] hav: shown that for any vi;wing direction. %hiercas others ,,ary only with image-
three model poinlts, (in m . 1:). and any three image plane rotation, translation, and scale.
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6 Considerations for Implementation In addition to image error, another difficulty is de-
space into a termining which buckets to fill in the index space for

In order to convert the conceptual index s t a each model group. It might seem reasonable to sample
practical module for recognition, many issues must be the viewing hemisphere at regular intervals. In practice,
addressed. The index space will be represented as a dis- this method misses many locations in the index space,
crete lookup table. The image is not continuous, but is because the indices may change very rapidly with view-
made up of finite pixels. However, probably the most im- point. In the index space described in this paper, the
portant issue is error in the localization of the image fea- model's surface is shown to be single-valued in two of
tures. Because of image error, the 6D subset of potential the index space parameters. It easier to determine how
image groups for a given model group will thicken, and quickly the surface is changing, since only the other two
become an 8D "plate" in the 8D image group space. This parameters need be sampled. This should make prepa-
will cause the number of model groups in each bucket of ration of the index space more reliable and efficient.
the lookup table to be proportional to the total number The theoretical index space has infinite extent. The
of model groups, regardless of how small we make the useful extent of the image group parameters must be
buckets in the lookup table. The value of the constant determined if the index space is to be represented by
of proportionality will depend on how far the image er- a finite array. Bounds should exist based on the facts
ror extends in index space. The shape of the error in the that pixels are of finite size, and that objects can never
image group space is not difficult to estimate. However, cover more than the entire image. It will also probably
the conversion of the image group parameters into the be appropriate to remap x, y, and r so that the space
parameterized representation makes the error difficult to is more uniformly used, perhaps with logarithms. Even
characterize. In addition, the projection of the error intoindex space is problematic. so, the array might be too large to store, especially if

In the image-group space, the axes may be considered larger groups are used. In that case, indexing may be
to be the x and y, of each image point. The error is performed for a large group by indexing subsets of the

image group, and intersecting the resulting sets of model
commonly modeled as independent for each image point,

and s bundd b a cnstnt umbr ofpixls.Theef- groups. Again, this introduces a runtime overhead. An-and is bounded by a constant number of pixels. The ef- other alternative is to hash the higher dimensions, since

fect of independent errors in the image points on a, r, they will be sparser.

x, and y will depend greatly on the pose of the model.

For example, when the model appears at a small scale, 6.1 The Speed-Up Factor
or the basis points are nearly colinear in the image, then
small error in the image points may result in huge vari- With these considerations in mind, we may explore the
ations in the parameters that describe the image group. practical speed-up to be gained by model-group index-
In that case, the error bounds around the sheet in the ing. The index space will be a finite array of some sort.
index space should be very large. When the image group The indices of the array are (some versions of) X, V, a,
is large and the basis is stable, the index parameters may and r. Each model group is represented at every (X, Y)I
be relatively impervious to the same image pixel error, by a thickened version of one point in the a-r subspace.
so small error bounds would be appropriate in the index Since every model group appears at every (x, y), we may
space. However, when we project the image group error investigate the density of the entire space by looking at
"plates" into the index space, we combine the error over the typical density at each (x, y). Let e be the average
all scales. Even though the shape of the 2D sheet is in- numbeir of buckets each model must fill in the slice of
dependent of the pose parameters we project over, the a-r at each (x, y) in order to account for error. Let b be
error is not. the total number of buckets in each slice of a-r subspace.

Therefore, to simply thicken each model's 2D sheet Then e out of b buckets will be filled by each model at
uniformly might not be a reasonable approximation. In each (x, y). If Q is the number of model groups, then the
order to cover the largest errors, the uniform thickening typical cell in the index space array will contain pointers
might have to be so large that a significant fraction of to Qe/b model groups. Compared to searching through
the index space is filled. This would reduce the power all Q model groups, this is a speed-tip of k = e/b.
of indexing. Alternatively, the model groups could re- We may now speculate on the benefit of larger groups.
main thin, but each ;iage group could index a "cloud" With five points, two more axes will be added to the
of points in the index space at recognition time. This index space. It is reasonable to assume that each model
would allow more adaptive error estimation, because the group will need to fill e buckets out of b in each of the
scale is known from the image points. However, it. would new dimensions. for a total of e2 out of b at each (x,y).
increase recognition time instead of preparation time. A Thus, the speed-up will be e2 /b2 = k. In general, we
compromise solution would be as follows: as the model expect the speed-up to be kc - 3. The value of k will
groups fill the index space, they include a coarse encod- need to b, determined empirically, based on the image-
ing of the maximum scale value that would cause that error due to the feature detector, and on the shape of
bucket to be included in the error cloud. (In a way, this this error in the index space.
is like adding an extra axis to index space). At, recogni-
tion time, for each image group, the scale is estimated 6
and only one bucket is accessed. Of the mnany model hi addition to this speed-up, the index space has sev-
groups found there, only those that have a scale greatcr eral other practical advantages for recognition For each
than the estimated scale need be considered. ma lch found between an image group and a model group,
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it is usually necessary to solve for the pose of the model [51 Clemens, D. and Jacobs, D., 1990. Model-Group In-
in order to verify the match. Along with pointers to the dexing for Recognition. MIT Al Memo 1246.
model group, the index space may be filled with good [6] Fischler, M. and Bolles, R., 1981. "Random Sam-
pose estimates that aid the pose solution. This can be ple Consensus: A Paradigm for Model Fitting with
done because the viewpoint is known when the index Applications to Analysis and Automated Cartogra-
space is filled. That is, we may include the advantages phy." Communications of the Association of Coin-
of the lookup table used by Thompson and Mundy. Also, puting Machinery, 24(6):381-395.
views of model groups that are not visible due to self-
occlusion may be omitted. This includes any Niew that [7 Huttenlocher, D. and Ullman, S., 1989. "Recogniz-
is unlikely to cause a detectable image group, depending ing Solid Objects by Alignment with an Image."
on the way image groups are formed. Cornell University TR 89-978.

Also note that representation of the image points de- [8] Jacobs, D., 1988. The Use of Grouping in Visual
pends on choosing one as z1, unother as i 2, etc. The Object Recognition. MIT Al Memo 1177.
roles are not symmetrical. If the assignment is cho- [9] Kalvin, A., Schonberg, E., Schwartz, J., and Sharir,
sen differently, the index parameters will change. There M., 1986. 'Two-Dimensional, Model-Based, Bound-
needs to be a canonical way of choosing the order of ary Matching Using Footprints." The International
the points, such as forming the convex hull and start- journal of Robotics Research, 5(4):38-55.
ing with the longest distance between hull points, and
continuing through angles to each of the other points in [10] Lamdan, Y., Schwartz, J. and Wolfson, H., 1988.
order. When the order is ambiguous, both possibilities "Object Recognition by Affine Invariant Match-
mast be tried. Ordering the points has a practical ad- ing." Proceedings on Computer Vision and Pattern
vantage, however: the order ;n which they match the Recognition:335-344.
model group is known. Without a canonical ordering, [11] Lamdan, Y. and Wolfson, H., 1988. "Geometric
all G! matches would have to be tried, whether indexing Hashing: A General and Efficient Model-Based
was being used or not. Recognition Scheme." Proceedings of the IEEE

Conference on Robotics and Automation:238-249.
7 Conclusion [12] Lowe, D. 1985. Perceptual Organization and Visual
We have shown that, in theory, an index space can be a Recognition. The Netherlands: Kluwer Academic
powerful tool for reducing the image-model match search Publishers.
from order NGMG to order NG, when G > 3. However, [13] Schwartz, J. and Sharir, M., 1987. "Identifica-
if image groups are to index a single point at recognition tion of Partially Obscured Objects in Two and
time, then the index space must contain pointers to each Three Dimensions by Matching Noisy Characteris-
model group over a 2D sheet, and should therefore be 4D. tic Curves." The International Journal of Robotzcs
In practice, the presence of image error prevents the NG Research, 6(2):29-44.
result from being attained, but indexing still improves [14] Thompson, D. and Mundy, J. 1987. "Three-
the search by a factor that increases exponentially in G: Dimensional Model Matching from an Uncon-
NGMGIkG. When combined with grouiping, indexing strained Viewpoint." Proceedings of the IEEE Con-
utilizes the advantages of larger group sizes to provide
a match time of order P(G)Q(G)/kG. This, along with ference on Robotics and Automation:208-220.

other advantages, makes indexing an attractive practical [15] Wallace, A., 1987. "Matching Segmented Scenes to
approach worthy of further research. Models Using Pairwise Relationships Between Fea-

tures." Image and Vision Computing, 5(2):114-120.
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Abstract
In this paper we present a novel definition of
curved axis of inertia and a scheme for finding a angle. The problem becomes difficult for shapes that
frame of reference of a shape in an image based do not have a clear symmetry axis such as a notched
on such a definition. And we discuss how the rectangle, (for some more examples see figs. 3 and 11,)
frame can be used to describe the shape. The and none of the schemes presented previously can handle
scheme assigns a saliency measure to each com- them successfully. Ultimately, we would like to achieve
ponent of the reference frame that is a measure human like performance. This is difficult partly because
of its relevance, so that large and central parts what humans consider to be a good skeleton can be influ-
play a more central role in the description of enced by high-level knowledge (see fig. 2). The problem
the shape. The scheme also computes a major is twofold: establishing a definition for the frame of refer-
axis that is used to organize the description of ence of a shape, and finding an algorithm that computes
the shape, so that a canonical description can it.
be obtained. One of the remarkable features of The study of reference frames has received consider-the scheme is its tolerance to noisy and spu- Tesuyo eeec rmshsrcie osdr
rious data. Several perceptual phenomena ob- able attention in the computer vision literature. Refer-served in humans such as grouping based on ence frames have been used for different purposes andsymmetry and environmental bias in shape de- given different names. Previous schemes for computingscription can le reproduced naturally in this skeletons usually fall into one of two classes. The firstolth class looks for straight axes, such as the axis of iner-scheme. The scheme also supports other tia. These methods are global (the axis is determinederations such as finding the most "interesting" by all the contour points), and they produce a single
point in the image or defining what is inside and by a e con d cass an find p ro d aswhat is outside an object. An extension of the straight axes. The second class can find a curved axis
shet in h igh, lnobje n a nsoofth e along the figure, but the computation is based on lo-scheme to find high, long and smooth curves cal information. That is, the axis at a given locationon an arbitrary surface is presented The ex- is determined by small pieces of contours surroundingsalient blobs in images and it is suggested that this location. Examples of such schemes are, to namesimilar schemes be used in other early and mid- but a few, Morphological Filters (see (Serra 82] for andie level vision tasks. overview), Distance Transforms [Rosenfeld and Pfaltz68], [Borgefors 86], [Arcelli, Cordella and Levialdi 81],

Symmetric Axis Transform [Blum 67], [Blum and Nagel
1 Introduction 78] and Smoothed Local Symmetries [Brady and Asada

A shape description is an encoding of a shape. A com- 84], [Connell and Brady 87]. Recently, computations
mon approach is to describe the points of the shape in a based on physical models have been proposed by [Brady
cartesian coordinate reference frame fixed in the image and Scott 88] and [Scott, Turner and Zisserman 89].
(fig. 1). An alternative is to center the frame on the In contrast, the novel scheme presented in this paper,
shape so that a canonical description can be achieved, which we call Curved Inertia Frames (C.I.F.), can ex-
For some shapes this can be obtained by orienting the tract curved symmetry axes, and yet use global informa-
frame of reference along the inertia axis of the shape tion.
(see fig. 1). If the objects are elongated and flexible this The organization of the paper is as follows. The ap-
solution is not appropriate, instead, a curved frame of proach that we present for finding skeletons is divided
reference can be used (fig. 3). In this case the frame can into two successive stages. In Section 2, we present the
also be used to find a canonical description of the shape first stage, in which we obtain two local measures at
by "unbending" it using the frame as an anchor struc- every point: the inertia value and the tolerated length,
ture (fig. 3). In this paper, we address the problem of which will provide a local symmetry measure at every
finding such reference frames and how they can be used point, and for every orientation. This measure is high
to describe shapes. if locally the point in question appears to be a part of

Finding reference frames is a straightforward problem a symmetry axis. This simply means that, at the given
for simple geometric shapes such as a square or a rect- orientation, the point is equally distant from two image
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contours. The symmetry measure therefore produces a 2 Inertia Surfaces and Tolerated Length
map of potential fragments of symmetry curves. In Sec-
tions 3 and 4, we present the second stage in which we Previously presented computations to find a curved axis
find long and smooth axes that go through points of high generally suffer from three problems. First, they pro-
inertia values and tolerated length. In section 5 we in- duce disconnected skeletons for shapes that deviate from
troduce the skeleton sketch and we show some results a perfect symmetry or that have fragmented boundaries.
and applications of the scheme, and in section 6 we dis- Second, they are unstable in that the obtained skeleton
cuss the relation of our scheme to human perception. can change drastically for a small change in the shape
We conclude in section 7 by presenting an extension of (e.g. a notched rectangle vs a rectangle). Third, they
the scheme to find high, long, and smooth curves on an do not assign any measure to the different components
arbitrary surface. The extension is illustrated on the of the skeleton that indicates the "relative" relevance of
problem of finding salient blobs in images. the different components of the shape. In addition, many

In Appendix I we show that the class of measures that computations depend on scale, and this introduces the
the computation described in sections 3 and 4 can com- problem of determining the correct scale. It is unclear
pute is very limited, also what to do with shapes that are somewhat circular

because they do not have a clear symmetry axis. Heide
[84], [Bagley 85], [Brady and Connell 87], [Fleck 86],
[Fleck 89] suggest to solve the stability problem by post-
processing the SLS, eliminating the portions of it that
are due to noise, connecting segments that come from
adjacent parts of the shape, and smoothing the contours
at different scales. Fleck [86] designed a separate com-
putation to handle circular shapes, the Local Rotational

Figure 1: Left: a shape described in a image or viewer Symmetries.
centered reference frame. Center: the same shape with If we are willing to restrict the frame to a single
an object centered reference frame superimposed on it. straight line then the axis of least inertia is a good
Right: a canonical description of the shape. choice because it provides a connected skeleton and it

can handle non symmetric connected shapes. The iner-
tia In(SL, A) of a shape A with respect to a straight line
SL is defined as:

Figure 2: All the shapes in this fig. have been drawn by In(SL, A) f aSL)2da (1)
adding a small segment to the shape irk the middle. At A

a first glance, all of these shapes would be interpreted
as two blobs. But if we are told that they are letters The integral is extended over all the area of the shape,
then finer distinctions are made between them. When we and V(a, SL) denotes the distance from a point a of
use suc!, high level knowledge we perceive this shapes as the shape to the line SL. The axis of least inertia of a
bein, dtfferent and therefore their associated skeletons shape A is defined as the straight line SL that minimizes
would differ dramatically. In(SL, A).

A naive way of extending the definition of axis of least
inertia to handle bent curves would be to use eq. 1, so
that the skeleton be defined as the curve C that min-
imizes In(C,A). This definition is not useful if C can
be any arbitrary curve because a highly bent curve that
goes through all points inside the shape would have zero
inertia (see fig. 4). There are two possible ways to avoid

Figure 3: Which two of the three shapes on the left are this problem: either we define a new measure that pe-
more similar? One way of answering this question is by nalizes such curves or we restrict the set of curves that
"unbending" the shapes using their skeleton as a refer- we can use to minimize the inertia. We chose the former
ence frame, which results in the three shapes on the right, approach and we call the new measure defined in this pa-
Once the shapes have been unbent, it can be concluded per the inertia, the skeleton saliency or saliency of the
using simple matching procedures that two of them have curve. The skeleton saliency of a curve will depend on
similar "shapes" and that two others have similar length. two local measures: the inertia value I that will play a
We suggest that the recognition of elongated flt.xible ob- role similar to that of V(p, a) in eq. 1 and the tolerated
jects can be performed in some cases by transforming length T that will prevent non-smooth curves from re-
the shape to a canonical form and that this transfor- ceiving optimal saliency values. We define the problem
mation can be achieved by unbending the shape using as a maximization problem so that the best skeleton will
its skeleton as an anchor structure. The unbending pre- be the curve that has the highest saliency value. The
sented in this fig. was obtained using an implemented saliency of a curve will be defined in eq. 4 and it is de-
lisp program. fined for a curve C of length L that starts at a given

point p in the image.
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The inertia value erwise. Fig. 4 provides evidence that the curvature on a
The inertia measure I for a point p and an orientation skeleton should depend on the width of the shape. The
is dp where r and R tolerated length will be used to evaluate the smoothness

defined as: (p, o) "-" 2R (R ,w e nd of a frame so that the curvature that is tolerated depends
are defined in fig. 5. For a given orientation, the inertia on the width of the section so that high curvature is only
values of the points in the image form a surface that allowed on thin sections of the shape. The saliency of a
we call the inertia surface for that orientation. Fig. 4 curve will be the sum of the inertia values "up to" the
illustrates why the inertia values should depend on the tolerated length so that for a high tolerated length, i.e.
orientation of the skeleton and fig. 6 shows the inertia low curvature, the sum will include more terms and will
surfaces for a square at four orientations. be higher. A curve that bends into itself within a section

Local maxima on the inertia values for one orientation of the shape will have a point within the curve that will
indicate that the point is centered in the shape at that have 0 tolerated length so that the saliency of the curve
orientation. The absolute value of the local maximum will not depend on the shape of the curve beyond that
indicates huw large the section of the body is at that point.
point for the given orientation, so that points in large In this section we have introduced the inertia surfaces
sections of the body receive higher inertia values. The and the tolerated length. We will define a salient frame
constant s or symmetry constant, 2 in the actual imple- of reference to be a high and long curve in the inertia sur-
mentation, controls the decrease in the inertia values for faces that is as smooth as possible based on the tolerated
points away from the center of the corresponding sec- length. In the next section we will investigate how such
tion, the larger s is the larger the decrease. If s is very a curve might be computed in a general framework and
large only center points obtain high values and if s 0 in section 4 we will see how to include the inertia values
all points of a section receive the same value, and the tolerated length in the computation and what is

the definition of the saliency measure that results.

... lit ..:_ {.,o L' :: 'N 2,

Figure 4: Left: A rectangle and a curve that would re- ____ .
ceive very low inertia according to eq. 1. Center: Ev-
idence that the inertia value of a point should depend
on orientation. Right: Evidence that the tolerated cur-
vature on a skeleton should depend on the width of the
shape.

Figure 6: Plots of the inertia surfaces for a square for ori-
entations parallel to the sides (left two plots) and parallel/ a to the diagonals (right two plots).

R3 A network to find salient curves

P, In this section we will derive a class of dynamic pro-
Igramming 

algorithms that find curves in an arbitrary
graph that maximize a certain quantity. In the next sec-
tion we will apply these algorithms to finding high, long,

Figure 5: This figure shows how the inertia surfaces are and smooth curves in the inertia surfaces. [Mahoney 87]

defined for a given orientation a. The value for the sur- showed that long and smooth curves in binary images are

face at a point p is I(R, r). The function I or inertia salient in human perception even if they have multiple

function is defined in the text. R = d(p,,pr)/2 and gaps and under the presence of other curves. [Sha'ashua
r = d(p,p,), where p, and Pr are the points of the con- and Ullman 88] devised a saliency measure and a dy-

tour that intersect with a straight line perpendicular t.o namic programming algorithm that can find such salient

a that goes through p at opposite directions and p, is curves i a binary image. We build on their work and
the midpoint of the interval between these two points. If show how their ideas can be extended to deal with ar-

there is more than one intersection along one direction bitrary surfaces. In this section we will examine their

then we use the nearest one. If there is no intersection computation in a way geared at demonstrating that the

at all then we give a preassigned value to the surface, 0 kind of saliency measures that can be computed with the

in the current implementation. network is very limited, the actual proof of this will be
given in Appendix I.

The tolerated length We define a directed graph with properties G =
(V, E, PE, Pj) as a graph with a set of vertices V = {vi}

We define the tolerated length T for a curvature of ra- ; a set of edges E = {e,,j = (v,, v,) Is.t. v,, v) E V}; a
dius r, as 0 if r, < R+ r and r,( 7r-arcos(ro )) oth- finction PE . E -- R that assigns a vector p, of proper-
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ties to each edge; and a function Pi :-- Rj that assigns a most salient curve for all possible graphs if and only if
vector pj of properties to each junction where a junction it is monotonically increasing in its last argument i.e. iff
is a pair of adjacent edges. We will refer to a curve in Vp, x, y x < y -* .(p, x) < '(p, y), where p is used
the graph as a sequence of connected edges. We assume to abbreviate the first four arguments of Y.
that we have a saliency function S that associates a pos- What type of functions Y verify this condition? We
itive integer S(C) with each curve C in the graph. This expect them to behave freely as p varies. And when Sj,k
integer is the saliency or saliency value of the curve. The varies, we expect " to change in the same direction with
saliency of a curve will be defined in terms of the proper- an amount that depends on p. A simple way to fulfill
ties of the elements (vertices, edges and junctions) of the this condition is with the following function:
curve. Our problem is to find a computation that finds
for every point and everyone of its connecting edges, the F"(p, x) = f(p) + g(x) * h(p) (3)
most salient curve starting at that point with that edge.

This includes defining a saliency function and a compu- where f, g and h are positive functions and g is mono-
tation that will find the salient curves for that function. tonically increasing.
The applications that will be shown here work with a 2 We now know what type of function F" we should use
dimensional grid. The vertices are the points in the grid but we do not know what type of saliency measures we
and the edges the elements that connect the different can compute. Let us start by looking at the saliency S,
points in the grid. The junctions will be used to include that we would compute for a curve of a length i. For
in the saliency function properties of the shape of the simplicity we assume that g is the identity function:
curve such as curvature. = k + f(pI.-.) * - h(pk+ 1 ) =Si=_'S-_1A~i'i • *Tk=l (kt

The computation will be performed in a locally con- t =i..,-u 1 ) *'1=1~ f~ll k=l 1hPk,)
nected parallel network with a processor peij for every k coput eiheu otf+)s n
edge eij. The processors corresponding to the incoming the curve weighted by the product of the h(pij)'s. Using
edges of a given vertex will be connected to those cor- 0h cu 1 weganen a the total saliency wib
responding to the connecting edges at that vertex. We 0 < h < 1 we can ensure that the total saliency will be
will design the computation so that we know at itera- smaller than the sum of the f's. One way of achieving
tion n what is the saliency of the most salient curve of this is by using h = 1 k or h = exp (-k) and restricting
size n for every edge. This provides a constraint in the k to be larger than 1. The f's will then be a quantity
invariant of the algorithm that we are seeking that will to be maximized and the k's a quantity to be minimized
guide us to the final algorithm. In order for the com- along the curve. In the skeleton network presented in

putation to have some computing power each processor the next section, f will be the inertia measure and k will

peij must have at least one state variable that we will depend on the tolerated length and will account for the
denote as sij. Since we want to know the saliency of the shape of the curve so that the saliency of a curve is the
most salient curve of length n starting with any given sum of the inertia values along a curve weighted by a
edge, we will assume that, at iteration n, sij contains number that depends on the overall smoothness of the
that value for that edge. Observe that having only one curve.
variable looks like a big restriction, however, we show in At step n, the network as designed will know about
Appendix I that allowing more state variables does not the most salient curve of length n starting from any edge.
add any power to the possible saliency functions that can Recovering the most salient curve from a given point can
be computed with this network. Since the saliency of a be done by tracing the links chosen by the processors
curve is defined only by the properties of the elements (from eq. 2).
in the curve, it cannot be influenced by properties of el-
ements outside the curve. Therefore the computation to 4 Finding high, long, and smooth
be performed can be expressed as: curves

s,,,(n + 1) = MAX{f (n + 1,pe,p, stj(n), s,k(n)) I In this section we will show how the network defined in
(j, k) E E} the previous section can be used to find frames of refer-

ence using the inertia surfaces and the tolerated length
as defined in Section 2. The directed graph with proper-

sij (0) = F(O, P",Pj, 0, 0) (2) ties that defines the network to be used has one vertex
for every pixel in the image and one edge connecting it

WhLre F" is the function that will be computed in every to each of its neighbors thus yielding a locally connected
iteration and that will lead to the computed saliency, parallel network. This results in a network that has eight
Observe that given F, the saliency value of any curve orientations per pixel. The number of orientations per
can be found by applying F" recursively on the elements pixel can be increased to improve the accuracy of the
of the curve. output.

We are now interested in what type of saliency func- The functions f, g and h (see eq. 3) are defined as:
tions S we can use and what type of functions F are f(P) = f(p ) = I(R, r), g(x) = x and h(p) = h(pj) =
needed to compute them such that the value that we
obtain in the computation is the maximum for the re- pQTII) . a, which we call the Lircle constant, scales
suiting saliency measure S. Using contradiction and in- the tolerated length, and it was set to 4 in the current
duction we conclude that a function F will compute the implementation. p, which we call the penctration factor,
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was set to 0.5. And l,t is the length of the correspond- The skeleton sketch and the most salient curve:
ing element. Also, s,,,(0) = 0 because the saliency of a The skeleton sketch contains the saliency value for the
skeleton of length 0 should be 0. most salient curve at each point. The skeleton sketch

With this definition the saliency value assigned to a is similar to the saliency map described in [Sha'ashua
curve of length L is: and Ullman 88] and [Koch and Ullman 85] because it

SL = - I(pt -_) Ilk-7 1 p -$ = provides a saliency measure at every point in the image.
k=1-1 Fig. 10 shows the skeleton sketch for a square. The

Ell=="lr(pI _ )pZ--k=1 best skeleton can be found by tracing the curve that
Which is an approximation of the continuous value starts at the point that has the highest skeleton saliency

given in eq. 4 bellow. Where SL is the saliency of a pa- value. Fig. 11 shows a few shapes and the most salient
rameterized curve C(u), and 2(u) and T(u) are the in- curve found by the network for each of them. Observe
ertia value and the tolerated length respectively at point that the algorithm is very robust in the presence of non
u of the curve. smooth contours. Given a region in the image we can

dt find the best curve that starts in the region by finding

SL = fLT(l)fo 7 dl (4) the maxima of the skeleton sketch in the region, see fig.
11. In general, any local maximum in the skeleton sketch

The obtained measure favors curves that lie in large corresponds to a curve that accounts for a symmetry in
and central areas of the shape and that have a low overall the image. Local maxima that lie in the shape itself are
internal curvature. The measure is bounded by the area particularly interesting.
of the shape. A straight symmetry axis of a convex shape
will have a saliency equal to the area of the shape. In the The most salient point:
next section we will present some results that show the In many vision tasks, besides being interested in find-
robustness of the scheme in the presence of noisy shapes. ing a salient skeleton, we are interested in finding a par-

Observe that if the tolerated length T(t) at one point ticular point related to the curve, shape or image. This
C)ismlh can be due to a variety of reasons, because it defines

f0 -( t  s td a point in which to start subsequent processing to the
becomes very small (since p < 1) and so does the saliency curve or because it defines a particular place in which to
for the curve SL. A small a or p hence penalize curvature shift our window of attention. Different points can be
favoring smoother curves. defined, the point with the highest saliency value is one

The actual implementation of the network included of them.
a smoothing term that enabled the processors to change Another interesting place in thu image is the most
their orientation at each iteration instead of keeping only central point in a curve which can be computed by our
one of the eight initial orientations. Since we are search- scheme by looking for the saliency values along the curve
ing for smooth curves, the new orientation is computed at both directions within the curve. The most cen-
by looking at the nearby pixels of the curve at each it- trai point can be defined as the point where these two
eration so that the total curvature is minimized, values are "large and equal", the point that maximizes

min(pl, pr) has been used in the current implementation,
5 Results and applications other functions are possible, see fig. 11 for some exam-

In this section we will present some results and applica- pies. Observe in fig. 11 that a given curve can have

tions of the frame computation and in the next section several central points due to different local maxima.

we will discuss the connections of our findings to human The most central point in the image can be defined
perception, similarly as the point that maximizes min(pi,pr) for all

The network described in the previous section has orientations.
been implemented on a Connection Machine and tried
on a variety of images. The implementation works in
two stages. First, the distance to the nearest point of
the shape are computed at different orientations all over
the image so that the inertia surfaces and the tolerated
length can be computed, this requires a simple distance
transform of the image. In the second stage, the network
described in section 4 computes the saliency of the best
curve starting at each point in the image for different
orientations - eight in the current implementation. The
number of iterations needed is bounded by the length Figure 7: An airplane and its skeleton a., found by our
of the most salient curve but in general a much smaller scheme.
number of iterations will suffice. In all the examples
shown in this paper the images where 128 by 128 pixels
and 128 iterations where used. However, in most of the
examples, the results do not change after about 40 it- Shape description:
erations. In general, the number of iterations needed is Each locally salient curve in the image corresponds to
bounded by the width of the shape measured in pixels. a symmetric region in one portion of the scene. The se-
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lection of the set of most interesting frames correspond- particular humans have a bias for the vertical in 4pe
ing to the different parts of the shape yieldG a part de- description so that some shapes are perceived veiy dif-
scription of the scene. Doing this is not trivial because ferently depending on the orientation at which they are
a salient curve is surrounded by other curves of simi- viewed, for example a rotated square is perceived as a
lar saliency, in general, a curve displaced one pixel to diamond. This bias can be taken into account in our
the side from the most salient curve will have a saliency scheme by adding some constant value to the inertia sur-
value similar to that of the most salient one and higher face that corresponds to the vertical orientation so that
than that of other locally most salient curves. In order curves that are vertical receive a higher saliency value.
to inhibit these curves we color out from a locally maxi- Adding the bias towards the vertical is also useful be-
mal curve at perpendicular directions to suppress paral- cause it can handle non elongated objects that are not
lel nearby curves, the amount to color can be determined symmetric, so that the preferred frame is a vertical axis
by the average width of the curve. Once nearby curves that goes through the center of the shape. Another al-
have been suppressed we look for the next most salient ternative is to define a specific computation to handle
curve and iterate this process. Fig. 7 shows the skeleton the portions of the shapes that are circular [Fleck 86],
found for an airplane. The skeleton can then be used to [Brady and Scott 88].
find a part description of the shape in which each compo- In other cases, the preferred frame is defined by the
nent of the frame has different elements associated that combination of several otherwise non salient frames.
describe it: a set of contours from the shape, a saliency This is the case in Mach's demonstration (see fig. 11),
measure that reflects the relevance or saliency that the which was first described by E. Mach at the beginning
component has within the shape, a central point, a lo- of this century. Our scheme incorporates this behavior
cation within the shape. because the best curve can be extended beyond one ob-

Inside-outside: ject so that the saliency of one axis is increased by the
presence of objects nearby, especially when the objects

The network can also be used to determine a con- have salient axis that are aligned. This example also
tinuous measure of inside-outside. The distance from a illustrates the tolerance to fragmented shapes that the
point to the frame can be used as a measure of how near scheme has.
the outside of the shape is the point. This measure can In figure-ground segregation and grouping it is well
be computed using a scheme similar to the one used to know that humans prefer symmetric regions over those
inhibit nearby curves as described in the previous para- that are not (fig. 8). Symmetric regions can be discerned
graph: coloring out from the frame at perpendicular ori- in our scheme by looking for the points in the image with
entations, and using the time where a point is colored as higher skeleton saliency values. [Kanisza and Gervino
a measure of how far from the frame the point is. The 76] have shown that in some cases convexity may over-
saliency of a curve provides a measure of the area swept ride symmetry, see fig. 8. Convexity information can be
by the curve which can be used lo scale the coloring introduced in the inertia surfaces by looking at the dis-
process. tances to the shape and at the convexity at these points

so that frames inside a convex region receive a higher
symmetry value. Observe that the relevant scale of the
convexity at each point can be determined by the dis-
tances to the shape R and r.

Figure 8: This fig. illustrates the importance of sym- 7beawnauimaj, ,]
metry and convexity in grouping. The curves in the k
left image are grouped together based on symmetry. k.. ..V
On the right image, convexity overrides symmetry, af- -nPd. JnWU1,,m ,

ter [Kanizsa and Gerbino 76]. This grouping can be -"'w '

performed with the network presented in this paper by J
looking for the salient axes in the image.

Figure 9: Left: Text image. Center: Output of the con-
6 Relation to human perception volution of the text image with an elongated horizontal

gabor filter. Rzght: Most salient curves.
The skeleton found by the network for a given shape
agree in general with the skeleton that humans would 7 Conclusion and future research
assign to it. In this section we show how the scheme can
handle various peculiarities of human perception. In this paper-we have presented C.I.F. (Curved Inertia

Three frames of reference are important in the percep- Frames), a no~cl scheme to compute curved symmetry
tion of shape and spatial relations by humans. that of axes. Previous schemes either use global information
the perceived object, that of the perceiver and that of but compute only straight axis or compute curved axis
tht. environment. In this paper we have concentrated on and use only local information. The scheme presented
the first of them. In some cases the perception of the in this paper can extract curved symmetry axis and use
shape can be biased by the frame of the environment, ini global information. This gives the scheme some clear
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advantages over previous ones, such as: 1) It can com- Appendix I
pute curved axis, 2) it provides connected axis, 3) it is
remarkably stable to changes in the shape, 4) it pro- In the appendix we show that the set of possible saliency
vides a measure associated to the relevance of the axis measures that can be computed with the network defined
in the shape, which can be used for shape description or in [Sha'ashua and Ullman 88] (see also secion 3) is lim-
for grouping based on symmetry or convexity 5) it can ited.
tolerate noisy and spurious data 6) it provides central Proposition 1 The use of more than one state variable
points of the shape. in the saliency network defined in section 3 does not in-

We have introduced the inertia surfaces and the toler- in the se o k eine in section s ot n-atedlenth nd e hve hownhowthe ca beuse to crease the set of possible saliency functions that can beated length and we have shown how they can be used to cmue ihtentok
find skeletons using a sophisticated version of the algo- computed with the network.
rithm presented in [Sha'ashua and Ullman 88]. Similar Proof: The notation used in the proof will be the one
measures might be used to find skeletons using other al- used in section 3. We will do the proof for the case
gorithms such as those presented in [Kass, Witkin and of two state variables, the generalization of the proof
Terzopoulos 88] and [Zucker, Dobbins and Iverson 89]. to more state variables follows naturally. Each edge

We have also described how a part description of the will have a saliency state variable s,,j and an auxiliary
shape can be obtained using the frame computation. We state variable a,,, and two functions to update the state
are currently incorporating this description scheme in variables: s,,,(n + 1) = MAXkF(p, sj,k(n), a,, (n)) and
a framework for early and middle level vision in which ai, (n+ 1) = G(p, s1,k(n), a,,k(n)). We will show that for
grouping and shape description are performed in a bot- any pair of functions F and G either they can be reduced
tom up manner. The early vision modules provide a first to one function or there is a network for which they do
guess as to what the most salient structures in the im- not compute the optimal curves.
age are. Based on the grouping and shape description If " does not depend on its last argument a,,k then the
processes, certain salient structures are then selected in decision of what is the most salient curve is not affected
the image, and subsequent processing stages are applied by the introduction of more state variables so we can do
selectively to the selected structures. This endows the without them. Observe that we might still use the state
system with a capacity that is similar to the use of selec- variables to compute additional properties of the most
tive attention in human vision. We are also investigating salient curve without affecting the actual shape of the
how the obtained description can be used for higher level computed curve.
vision tasks such as recognition. If Y does depend on its last argument then there ex-

The network presented in this paper computes skele- ists some p, x, y and w E R such that: F(p, y, x) <
tons in 2D images. The network can be extended to F(p,y,w). Assuming continuity this implies that there
finding 3 dimensional skeletons from 3 dimensional data exists some c > 0 such that: F(p, y - e, x) < F(p, y, w).
since the local estimates for orientation and curvature Assume now two curves of length n starting from the
can be found in a similar way and the network extends same edge e,,, such that sl,,,(n) = y, al,,,(n) = x,
to 3 dimensions, this, of course at the cost of increasing s2,,, (n) = y - c and a2,,, (n) = y. If the algorithm where
the number of processors. The problem of finding 3D correct at iteration n it would have computed the values
skeletons from 2D images is more complex, however in sl,,,(n) = y, al,,,(n) = x for the variables s,,, and a,,3 .
most cases the projection of the 3D skeleton can be found But then at iteration n+l the saliency value computed
by working on the 2D projection of the shape, especially for an edge eh,, would be Sh,i = F7(p, y - c , z) in, tead
for elongated objects. of '(p, y, w) that corresponds to a curve with a higher

The scheme presented in this paper can be extended saliency value. 13.
to finding high, long and smooth curves in arbitrary sur-
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Figure 10: a) Rectangle. b) Skeleton sketch for the rectangle. Circles along the contour indicate local maxima in -the
skeleton sketch. c) Skeleton sketch for the rectangle for one particular orientation, vertical-down in this case. d) Most
salient curve. e) Most interesting point for the most salient curve.
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,,)b) C) d)

Figure 11. Top. Four shapes: a notched square, a stamp, a J, and Mach's demonstration. Second row: The most salient
curve found by the network for each of them. Observe that the scheme is very stable under noisy or bent shapes. Third
row. The most salient curve starting inside the shown circles. For the J shape the curve shown is the most salient curve
that is inside the shape. Fourth row. The most interesting point according to the Lurves shown in the two previous rows.
See text for details.
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Abstract in the way that other cues, e.g., form, are. This view iswell represented by lBiederman [1985]:

The color spectrum of multicolored objects pro-

vides a a robust, efficient cue for indexing into "Surface characteristics such as color and tex-

a large dr .abase of models. This paper shows ture will typically have only seondary roles in

color histograms to be stable object represen- primal access ... we may know that a chair has

tations over change in view, and demonstrates a particular color and texture simultaneously

they can differentiate among a large number with its volumetric description, but it is only

of objects. It introduces a technique called the volumetric description that provides effi-

Histogram Intersection for efficiently matching cient access to the representation of CHAIR."

model and image histograms. Color can also However, this opinion is easily challenged. There are
be used to search for the location of an object. many examples from nature where color is used by an-
An algorithm called Histogram Backprojedtion imals and plants to send clear messages of enticement
performs this task efficiently in crowded scenes. or warning. The manufacturing sector uses color ex-

tensively in packaging to market goods. Robotic vision
systems can also use representations that are heavily per-

1 Introduction sonalized to achieve efficient behaviors. For example, it

Computer vision is moving into a new era in which the may not be helpful to model coffee cups as being red and

aim is to develop visual skills for robots that allow them white, but yours may be, and that color combination is

to interact with a dynamic, unconstrained environment, very useful in locating it.

To achieve this aim, new kinds of vision algorithms need 1.1 What vs. Where
to be developed which run in real time and subserve the
robot's goals. Two fundamental goals are determining A significant feature of the gross organization of the pri-
the identity of an object with a known location, and mate visual brain is the specialization of the temporal
determining the location of a known object. Color can and parietal lobes of visual cortex The parietal cortex
be successfully used for both tasks. seems to be subserving the management of locations in

Color has been neglected recently as a recognition cue, space whereas the temporal cortex seems to be subserv-
although it has been used in earlier work [Ohlander et ing the identification of objects in the case where loca-
al., 19781. One reason for this may have been the lack tion is not the issue, In a striking experiment by Mishkin
of good algorithms for color constancy, that is, perceiv- (1987], monkeys with parietal lesions fail at a task that
ing a stable perception of color over varying light con- requires using a relational cue but have no trouble per-
ditions, as people do in most circumstances. However, forming a very similar task that requires using a pat-
recently there has been great progress in correcting for tern cue. The reverse is true for temporal lesions, Why
both the chromaticity of the illuminant [Maloney and should the primate brain be specialized in this way? If
Wandell, 1986, Rubner and Schulten, 1989] and for ge- we think generally about the problem of relating internal
ometric effects such as specularity [Klinker et al.. 19881. models to objects in the world, then one way to interpret
Given that reasonable color constancy can be achieved, this "What/Where" dichotomy is as a suggestion that
color has enormous value in recognition because it, is a image interpretation, the general problem of associating
local surface property that is view invariant and largely many models to many parts of the image simultaneously,
independent of resolution. Shape cues, by contrast, are is either too hard or unnecessary, or both (see Table 1.1).
highly resolution dependent, and only a highly restricted In order to build .ision systems which function in real-
set are view invariant (e.g. corners, zeros of curvature), time, perhaps the problem must be simplified.

Perhaps another reason that color has not been used is The approach taken in Section 2 is to answer the ques-

that it is not intrinsically related to the object's identity tion "What" assuming that the approximate location of
the object is known. This is done by using a color his-
togram as the representation, which counts how much of
each color occurs in the image.
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Object to Match Against
One Many

Image One Identification: trying to identify
Portions an object whose location can be

fixated
Many Location: trying to locate an o I- mage interpretation: Too War

I ject whose identity is known

Table 1: The biological organization of cortex into What/Where modules may have a basis in computational com-
plexity. Trying to match a large number of image segments to a large number of models at once may be too difficult.

Section 3 shows how a model histogram can be back- 2.1 Description
projected onto an image to solve one aspect of the Given a pair of histograms, I (image) and M (model),
"Where" problem, which is the location of an object of each containing n buckets, the intersection of the his-
known identity in the image. Again, the view invari- tograms is defined to be
ance of color precludes the calculation of orientation but
simplifies the algorithm enormously. Z min(Ij, Mj).

1.2 Color Histograms j=1

Given a discrete color space defined by some color axes The result of the intersection of a model histogram with
(e.g. red, green, blue), the color histogram is obtained an image histogram is the number of pixels from the
by counting the number of times each color occurs in model that have corresponding pixels of the same color
the image array. To illustrate, Figure 1 (page 4) shows in the image. To obtain a fractional match value between
the output from a color camera together with a color 0 and 1 the intersection is normalized by the number of
histogram obtained from the image. pixels in the model histogram. The match value is then

Histograms are invariant to translation and rotation
about aft axis perpendicular to the image plane, and EI=l min(Ij, Mj )
change only slowly under change of angle of view, change Ell=1 Mj
in scale and occlusion. Because histograms change slowly j

with view, a three-dimensional object can be adequately The Histogram Intersection match value is not reduced
represented by a small number of histograms, corre- by distracting pixels in the background. This is the de-
sponding to a set of canonical views [Koenderink and sired behavior since complete segmentation of the object
van Doom, 1976]. from the background is difficult to guarantee. The his-

Histograms are efficient to compute using image pro- togram intersection match value is only increased by a
cessing hardware. Generating a histogram from a 512 x pixel in the background if
485 image takes about 40 milliseconds using a MaxVideo * the pixel has the same color as one of the colors in
FeatureMax board, including the time needed to transfer the model, and
the histogram to the host. * the number of pixels of that color in the object is

Both the object identification and object location im- less than the number of pixels of that color in the
plementations described in the following sections use model.
color histograms to represent objects.

Histogram Intersection is robust to scale changes but
2 Histogram Intersection not scale invariant. However, there are a number of ways

of determining the approximate depth of an object, from
Because the model database may be large, we can laser or sonar range finders, disparity, focus or touching
only afford a highly restricted amount of processing per the object with a sensor. The depth value combined
model, but at the same time we must be able to overcome with the known size of the object can be used to scale
the problems that hinder recognition, most importantly the model histogram. Alternatively, if it is possible to

" distractions in the background of the object, segment the object from the background and it is not
" viewing the object frorn a variety of viewpoints, significantly occluded the image histogram can be scaled
" occlusion, to be the same size as the model histogram.

The Histogram Intersection approach to histogram
" varying lighting cozJ',:)ns, matching can be related to classical pattern recognition

The matching method pruposcd here, called Histogram by considering each bin in the color histogram as a fea-
Intersection, is robust to the first three problems; the ture. An object is then a point in an n-dimensional
last is left to a color constancy module that operates on space, where n is the number of bins in the histogram.
the input prior to the histogram stage. Histogram Inter- If histograms are scaled to be the same size, then His-
section is also extremely cficient and easy to implement. togram Intersection is equivalent to a scaled sum of ab-

Section 2.1 describes the algorithm. Section 2.2 shows solute differences and therefore defines a distance metric.
that histogram intersection is capable of differentiating If histograms are not the same size, as when the scaling
objects from a large database. is done by distance, then Histogram Intersection is not
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Figure 4. The results of matching all combinations of image and database histograms displayed pictorially where the
size of the squares are proportional to match values. The dominance of the diagonal values shows that the correct
match is almost always selected. Twenty nine of thirty-two matches are correct; in three cases the correct model
received second highest score. Models are along the horizontal axis; unknown objects along the vertical axis.
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Figure 5. Variation of the Histogram Intersection match value as the camera is moved with respect to a S 1X

In the Distance graph the miodel image was taken at a distance of 124 cm.
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Recognition Times (milliseconds) 400Database Size

19 37 70
Histogram Intersection 38 173 1 150 300-
Incremental Intersection 15 151 15

Number
Table 2: Recognition times as a function of database of 200-
size for the standard algorithm Histogram Intersection Matches
and the fast indexing scheme Incremental Intersection,
using the 10 largest image bins. Recognition accuracy
was equivalent for both algorithms. Timings were made 100
on a SUN SPARCstation 1.

-0 - - - I

a metric because of the asymmetry between images and 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
models. Match

Histogram Intersection is an efficient way of matching Value
histograms. Its complexity is linear in the number of Figure 6: Distribution of match values for incorrect im-
elements in the histograms. Two 16x16x8 histograms age - model matches for the models and images shown
can be matched in 2 milliseconds on a SUN Sparcstation in Figures 3 and 2. The values counted here are all the
1 (a 12 MIP RISC machine), off-diagonal elements of the matrix shown in Figure 4.

2.2 Experimental Results 3 Object Location via Histogram
Backprojection

An experimental test of histogram intersection suggests The previous sections discussed recognizing an unknown
that the technique is capable of differentiating among a
large database. For the 66 object database shown in Fig- object whose location is known, the "Identification" box
ures 3-4, the correct model is the best match 90% of the in Table 1.1. This section discusses the complementarytime and is always one of tihe top two matches. Other, task, locating a known object, the "Location" box in

timeandis away oneof he tp to mache. Oter, the same table. This task can also be a~complishied us-
more expensive, matching techniques can be used to ver- the sta s ask an alo b e o isied us
ify which of the top scoring models is the correct one, so ing color histograms and an algorithm calld Histogram
it is not crucial that the correct model is always the best Backrroiecion.
match. In the experiment the models were segmented Histogram Backprojection answers the question
from the background prior to generating the model his- "Where are the colors in the image that belong to the ob-
tograms. No segmentation was performed on the images ject being looked for (the target)?" The answer is given
of the unknown objects. in such a way so that the colors that appear in other ob-

jects besides the target are deemphasized so that they
Figure 5 shows how the Histogram Intersection match are less likely to distract the search mechanism. Ex-

value changes as the camera is rotated about the Snoopy periments show that the technique works for objects in
Doll shown in Figure 3, and moved closer and further cluttered scenes under realistic conditions.
from the doll. Compare these match values to the ones in As in Histogram Intersection, in Histogram Backpro-
Figure 6. Even at 45 degrees rotation or 1 1/3 times the jection the model (target) is represented by its multidi-
original distance the match value (about 0.6) is higher mensional color histogram M. The histogram of the im-
than 99 percent of the false matches. Thus, a small age, I, is also computed and a third histogram R, which
number of histograms may be used to represent a three- is the ratio of M divided by I, is computed. It is this his-
dimensional object. togram R which is backprojected onto the image, that

The results of experiments which show that his- is, the image values are replaced by the values of R that
togram intersection is insensitive to occlusion, and image they index. The backprojected image is then convolved
and histogram resolution have been reported in [Swain, by a mask, which for compact objects of unknown ori-
1990] entation could be a circle with the same area as the ex-

pected area subtended by the object. The peak in the
Most of the information needed for identification is convolved image is the expected location of the target,

carried by large buckets in the histograms. An algo- provided the target appears in the image.
rithm called Incremental Intersection takes advantage of More precisely, let h(c) be the histogram fiction
this fact to index extremely efficiently into very large which maps a color c (a three-dimensional value) to a
databases without sacrificing accuracy [Swain, 1990] Al- histogram index (another three-dimensional value). Let
though still linear in the size of the database, the con- D' be a disk of radius r:
stant, of proportionality is extremely low. The efficiency
of Ilistogram Intersection and Incremental Intersection r I if IX 2 + !/ <r
is compared in Table 2.2. DX, =  0 otherwise
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Figure 7. Results of step 1 of Histogram Backprojection, using Figure 2 as the image and the striped blue and white
shirt as the target. The blue hue is found only a small area outside of tihe target, so it gives a strong response. White
is found in many objects so it gives a weak response.

Ik

4 4

oA

Figure 8. Results of step 2 of Histogram Backprojection, for the same image ans aboc. The rcsultL fur all the models

are shown in the image, each in the rectangle corresponding to the location of that model the cremposite photo.

When the algorithm successfully rinds the object, the darkest black dot In the small imags is in the same lcatiol
within that image as the iage is in the composite.
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Define the index function to return a pixel (x, y) with the 3. An incremental version of Histogram Intersection,
value of its argument, and let the * symbol denote convo- called Incremental Intersection, allows fast indexing
lution. Then Histogram Backprojection can be written: into a large database without sacrificing accuracy.
1. for each i,j,k do 4. Multi-colored objects can be located in a crowded

R(i, j, k) := M scene using a technique called Histogram Backpro-
jection.

2. for each x,y do Because of color's important applications and ease of
b.,, := min (R(h(ce,y)), 1) use, color cameras and digitizing facilities should be a

feature of robotic systems that have to operate in normal
3. b:=D •b human surroundings.

4. (xt, yt) := index(max,u b.,) 6 Acknowledgments
As a demonstration of Histogram Backprojection, we Lambert Wixson, Leo Hartman, Randal Nelson and the

consider Figure 2 as a single crowded scene, and look for Rochester vision group were a source of influential dis-
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Abstract 1 Introduction

This paper considers the task of using a mo- Vision and robotics research has investigated many high-
bile camera to search for a specified object in a level visual tasks, such as object recognition, exploration
room. We call this the object search task. In- to acquire a world model, navigation, and obstacle avoid-
trospection reveals that humans perform such ance. These problem areas were identified long ago be-
tasks countless times every day. However, de- cause of their usefulness for autonomous functioning, hu-
spite its pervasive nature, object search has mans use these abilities almost constantly. This paper
been the target of little research effort. The describes a visual task, the object search task [Wixson,
paper begins with a general discussion of the 1990b], that is also constantly performed by humans
object search problem. Given that the goal but has been previously unexplored. The task is sim-
of object search is to reliably find the desired ply stated: "Using a mobile camera that can move in
object with a minimum of effort, we identify some delimited 3-D space, such as a room, find a speci-
three main abilities that any object search sys- fled object' that is somewhere in the space."
tem must possess. These are the abilities to The first half of this paper contains a general discus-
apply multi-stage object recognition strategies, sion of the object search problem. Motivations for the
to reason about occlusion, and to use high- study of object search are presented, related work is dis-
level knowledge about spatial contexts to pre- cussed, and the major issues involved in any searching
dict likely locations of objects. task are highlighted. A preliminary implementation of
A preliminary implementation of object search object search is presented that illustrates a method for
is presented that illustrates a method for real- quickly detecting the presence of known multz-coloredob-
time detection of the presence of known multi- jects in a scene. The method is based on the assumption
colored objects in a scene. The method is based that the color histogram of an image can contain ob-
on the assumption that the color histogram of ject "signatures" which are invariant over a wide range
an image can contain object "signatures" which of scenes and object poses. The resulting algorithm has
are invariant over a wide range of scenes and been easily implemented and used to build a robot that
object poses. The resulting algorithm has been can sweep its gaze over a room searching for an object.
easily implemented and used to build a robot
that can direct its gaze over a room searching 2 Why study object search?
for an object.

To motivate the study of object search, let us first con-
sider the computational benefits that a robot might gain
from a fast and robust object search system. The most
important of these is that possession of fast object search
capabilities obviates the need for the robot to construct
a detailed world model. There is no need for the robot's
perceptual system to attempt to identify and store (for
future reference) the exact locations of every object in
every image it sees wllie functioig. instead, when the
robot needs to find an object, it can simply use its search
system. Not only does this allow the robot to avoid the
computationally intractable task of image interpretation
in order to identify objects in each image (Swain et al.,

'This research was supported by DARPA US Army En- 1989], but it also eliminates the need to determine a
gineering Topographic Laboratories Contract DACA76-85-
C-001, and NSF Institutional Infrastructure grant CDA- 'This paper will refer to the object being searched for as
8822724. the target object or desired object.
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world coordinate system in which to represent tile ob- thier. In addition, search theory, a subfield of operations
jects. Such coordinate systems are often impractical due research, has produced a large body of knowledge con-
to sensor and effector error [Brooks, 1987]. As a result cerning optimal search strategies for a wide variety of
of examining fixation traces of subjects instructed to re- situations [Ahliswede and Wegener, 19871.
member the position of objects in a room, Ballard [1989] Unlike the general problem of object search, the task
Las conjectured that humans do not construct a detailed of searching for a specific object in a single nnagc has
world model routinely. It is tempting to speculate that received a great deal of attention. This is simply tile ob-
humans compensate by using their object search abili- ject recognitwn task. Work in this area will be reviewed
ties. in Section 4.1.

Besides allowing a robot to simplify its world represen- Like robotics researchers, cognitive psychologists ap-
tation, object search allows some simplifications in its pear to have neglected object search. However, they
own implementation. These simplifications arise from have devoted considerable effort to the problem of find-
the assumption that some higher cognitive process de- ing a specific object or stimulus in a single image, known
termines a single desired object, this knowledge of the as the vsual search problem [Biederman et al., 1973,
desired object allows the choice of appropriate recog- Treisman, 1988, Rabbitt, 1978, Visual Search, 1973,
nition algorithms and the selection of camera viewing Morris and hore, 1959]. In addition, much work
parameters that facilitate the chosen algorithm. No ob- [Yarbus, 1967, Fisher et al., 1981] has studied eye move-
ject recognition algorithm is applicable to all types of ments, known as fovealion sequences or fizaton se-
objects. The search system may have to choose between quences. Various researchers have studied separately eye
using a shape-based recognition technique, a recognition movements in visual search in images without context
strategy based on surface properties such as color or tex- [Cohen, 1981], the effects of context on eye movements in
ture, or a method based on "recognition by distinguish- exploration tasks [Antes and Penland, 1981], and mod-
ing features"[Garvey, 1976]. Knowing the object to be cling of eye movement strategies [Stark and Ellis, 1981,
recognized allows a proper choice to be made. Rimey and Brown, 1990]. Experiments now need to be

Once a recognition method has been selected, a robust performed which build upon these studies by studying
perceptual system must be able to select ,iewing param- and modeling eye movements used in visual search in
eters that allow the method to function properly. Doing context-rich pictures.
so involves not only knowledge about the abilities of the
recognition module, but also knowledge about the object 4 Research issues in object search
that it is trying to recognize. For example, the field-of- T
view must be large enough to allow a significant part of he previous sections have discussed the lack of work on
the desired object (enough to allow its recognition) to object search and have attempted to motivate study in

fit in the field, yet small enough that the detail needed this area. Let us now consider the major issues in build-

by the recognition module is readily visible. Since an ing an object search system. The search system should

object search system knows the size of the object it is to be robust (.e should usually find the object) and, just

identify, it can choose appropriate viewing parameters as importantly, be fast. The importance of robustness is

as a function of the depth of the scene being imaged. obvious. The importance of speed stems from Section 2's

When one recognizes the above-described benefits of hypothesis that a fast object search system can be used

object search and the implementational simplifications to eliminate the problem of identifying every object and
stemming from its goal, the utility of an object search storing its coordinates for future reference. The specd of

system seems very significant. object search is affected by two factors - the number of
gazes considered (i.e. the number of images examined)

3 Related work and the speed with which a single image is processed.
This section explores the three main issues that arise

Although there have been several projects whose goal from our concern with robustness and efficiency, con-
was to explore an area in order to construct a depth map eluding with a discussion of issues in formulating these
of the area [Krotkov, 1987] and to identify the objects issues within a single decision-theoretic framework.
in the area [Bolle c al., 1989], the problem of building
robots that search a room for a specified object appears 4.1 Object Recognition
to have received almost no attention. The only work in A major component of any object search system is the
this area is the MIT Al Lab's robot that roams an area set of metho& used to recognize the desired object. The
searching for and collecting soda cans [Connell, 1989]. task of scarct,'ug for a specific object in a single image is
This research, however, has concentrated more on the is- simply the object recogition task. We use intensity im-
sues involved in constructing robots with a subsumption age data (as opposed to 3-D range data) for recognition
architecture than on object search issues. Its treatment due to the fact that there are many different objects in
of issues such as reasoning about occlusion and using the world, such as books, magazines, and packaged goods
high-level knowledge to direct the sensors has been very that have the same 3-D shape but are distinguished by
limited, different surface markings.

Feldman and Sproull [1977] advocated a decision- Object recognition methods fall into two categories.
theoretic approach to planning, and suggested the use The first is the set of modcl-bascdstrategics that attempt
of decision theory to guide a robot searching for objects to match the 2-D image data to an internal 3-D model
needed in a plan, but did not consider object search fur- [Goad, 1987, Lowe, 1985, Lamdan and Wolfson, 1988,
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Huttenlocher, 1988, McIvor, 1988, Lowe, 1989]. Al- Krotkov, 1987]. However, unlike the majority of this
though these methods are effective, they require an work, there are no goals of constructing a qualitative
internal model of the object and are often restricted model of the connectivity of the environment or of build-
to rigid objects. More seriously, these methods cal- ing a map of the objects that comprise the scene. The
culate the pose of the object as part of the recogni- representation constructed needs only to support rea-
tion process, requiring times polynomial in the num- soning about unexamined areas. It is our hope that this
ber of image and model features. As a result, in prac- simplified goal will allow a simpler representation to suf-
tice they are slowed considerably. The typical time to fice.
process a single image (not counting edge extraction,
which can be performed in real time) is between 25 sec- 4.3 Indirect Search
onds and 5 minutes [Mclvor, 1988, Huttenlocher, 1988, The previous discussion of the cost of model-based object
Huttenlocher, 1989]. These times are significant when recognition illustrated the importance of minimizing the
one considers the possibility that many images might number of images considered in the course of the search.
have to be considered in the course of a single search. One obvious step towards achieving this goal is to use

The second class of object recognition methods is high-level knowledge to predict likely locations of objects
known as non-correspondence matching. These meth- and to order the camera gazes considered so as to mini-
ods do not attempt to compute the pose of the ob- mize the time to find the object. Garvey [1976] referred
ject in the matching process, instead relying on sur- to this use of high-level knowledge as indzrect search.
face properties such as color or texture [Garvey, 1976, There are several ways in which high-level knowledge
Swain, 1990]. Surface properties are particularly use- can guide search. One method, if the poses of certain
ful when attempting to match objects that are bard to objects are known, is to use these locations to predict
model. Non-correspondence methods based on surface likely locations for the desired object. For example, sup-
properties also have the advantage of being quickly com- pose the location of a desk is known in advance. If the
putable with local methods. Unfortunately, they are not robot is then told to search for a chair, it could start by
always robust with respect to occlusion, rotation of the searching near the desk. Moreover, if the robot knows
object, or changes in illumination, there is also a typewriter located next to the desk, it

Non-correspondence and model-based methods can be should start its search by examining the space which is
used in complementary ways in object search. For exam- near both the typewriter and the desk. We call this the
pie, surface color is not destroyed by a wide field-of-view location constraint method.
that reduces the scale of objects in the image, whereas A second method, called detectab ihty-driven search,
the edges that can be extracted from the image and in- that requires no initial knowledge of poses, determines
put to a model-based algorithm might be corrupted or whether there are objects that are more easily detectable
discarded as noise due to such scaling. In the case where than the desired object (perhaps due to color, size, or dis-
one is searching for a colored object, this suggests a two- tinguishing geometric features) and if they can be found,
stage approach. In the first stage, a wide field-of-view are likely to provide information about the relative lo-
might be used, and in each image "blobs" whose color cation of the target object. If so, then these objects
is the same as that of the desired object might be ex- are searched for, and once these are found then location
tracted. The camera could then zoom in on each such constraint may be applied. For example, when searching
blob in order to produce an image suitable for process- for a small object such as a pencil, it may be advanta-
ing with a model-based method. Sections 5, 6, and 7 geous to first search for a larger object which is likely to
describe an implementation of a similar strategy that in constrain the location of the pencil, such as a desk.
the first stage uses an object detection algorithm to esti- Probabilistic representations of high-level knowledge
mate the likelihood of the presence of the target object that facilitate these search methods as well as the learn-
in each image. ing of this knowledge have been discussed in [Wixson,

4.2 Reasoning about occlusion 1990a].

In order to robustly find objects, the system must have 4.4 Control Strategies - Putting it all together
not cnly a robust object recognition system, but also a The previous discussion has highlighted three impor-
mechanism for reasoning about occlusion. If the dcsired tant aspects of object search. Let us now consider how
object has not been found by a set of camera orienta- these topics can be integrated to form a complete search
tions about a fixed location, the camera must be moved system. Decision theory provideb an elegant frame-
to a different point in order to view as-yet-unexamined work in which to handle our dual goals of robustness
regions of space. This means that the system must be and dficiinry, and rvio, is rsoarchors have tsed der;-
able to identify those volumes in the scene which have sion theory for topics related to object search and ac-
not yet been viewed and must be able to choose a new tive v;sion [Garvey, 1976, Feldman and Sproull, 1977,
viewing position from which one or more of these vol- Bajcsy, 1988]. Efficiency issues as as the speed of the
times can be examined. search and various costs of execution can be combined

The problem thus stated implies that the object search into a single cost function, and measures of detectabil-
system, if it ran forever, would eventually examine all ity of the target object such as its size or color can be
volumes of the entire scene. Thib is similar to the goals grouped into a function that predicts the probability of
of robot exploration and mapping[Bolle ct at., 1989, actually finding the object. This allovs the formalization
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of the problem as an attempt to choose a search strategy desired object.
with minimal expected cost. Although not discussed in
this paper, we are currently attempting to formulate an 6 Qualitative Object Detection via
entire object search system decision-theoretically. Histograms

5 Preliminary Implementation In this section we present the object detection mecha-
nism. A "confidence" in the presence of an object in the

To carry out object search experiments, we have scene is hypothesized based on the presence or absence
mounted a camera platform on a Puma robot of the object's "signature" in a color histogram of the
arm[Brown, 1988]. The arm is mounted in the center of image. Signatures consist of ratios of pairs of buckets in
a 16' x 24' room that contains cluttered scenes contain- the histogram, and signature detection is accomplished
ing everyday objects. Our preliminary implementation by matching these ratios in the new histogram with a set
has neglected the issues of selecting appropriate fields- of stored examples.
of-view, reasoning about occlusion, and indirect search,
concentrating initially on studying the tradeoffs between 6.1 Generating the color histogram
non-correspondence and shape-based object recognition In order to concentrate on recognition, we have cho-
techniques. A simple search strategy is used - the cam- sen to deemphasize the difficult problem of color
era is positioned in the centei of the room and rotated constancy[Maloney and Wandell, 1986, Ilurlbert and
360 degrees in increments of 15 degrees, with the field-of- Poggio, 1987] by using an opponent-color transform that
view of the camera adjusted so that the spatial volumes yields fairly constant color in indoor flourescent lighting
seen by adjacent increments are spatially adjacent. This conditions.2 This transform takes red (r), green (g),
360 degree rotation is executed for each of several pitch and blue (b) values and produces red-green (Org) and
angles, so that the camera can examine the upper walls, blue-yellow (Oby) values, using the following transform
the lower walls, and the floor. [Lennie and D'Zmura, 1988, Balard and Brown, 19821:

Unfortunately, this results in a total of 72 images that
must be examined individually to determine whether Org = r-g
they contain the target object. With run times of at least Oby = b - (r + g)/2
25 seconds per image, shape-based recognition methods
cannot be invoked for each of these images. A mecha- The two opponent color bands are then histogrammed
nism is needed that can prune out many of the possible to form a 16 x 16 two-dimensional red-green vs. blue-
images upon which a shape-based algorithm would be yellow histogram. This transform was chosen based
invoked, leaving only a few candidate images that are on criteria outlined in Kender's [1976] analysis of color
likely to contain the object. We shall call such a mech- transforms[Wixson, 1990b].
anism an object detection algorithm. 6.2 Object signatures

We have implemented sich a pruning mechanism, us-
able when searching for multi-colored objects, that re- At least one example histogram is stored for every pos-
lies on non-correspondence matching. It is qualitative sible target object. We assign a signature to every ex-
in that it uses color histograms of the scene, discarding ample histogram h by finding buckets in the histogram
all spatial information. It is based on the assumption for which the number of pixels contained is over some
that the histogram of a scene can contain object "sig- threshold and is greater than the number of pixels con-
natures" that are invariant over a wide range of scenes tamed in any neighboring bucket (i.e. is a local maxi-
and object poses. These signatures are used to detect mum). The signature S(h) is simply the set of the ratios
the presence of multi-colored objects via a fast voting of each local maximum to every other local maximum.
scheme. Although throwing away all spatial information Thus, if there are m local maxima, the signature con-
seems rather extreme, the method is suitable for fast sists of ( ) ratios. By using the ratios between local
object detection. 2

The object detector mechanism, which produces a maxima, the signatures are scale-independent and con-
"confidence" that the object is in the scene, is run once sist of those colors that are most likely to be observed in
for each gaze. After it has been run for all the gazes, the any image containing the object that generated the his-
confidences are examined to determine which gazes pro- togram. Our experiments have shown that for 16 x 16
duced "significant" confidences. A simple and effective histograms of everyday multi-colored household objects
mechanism for this is the criterion that for a confidence such as cereal boxes, detergent containers, books, and
to be significant it must be at least one average deviation magazines there are usually -.- 5 local maxima in each
greater than the mean confidence for that object over histogram.
all of the gazes evaluated. By expressing significance in Given a new histogram h,,, we compute the "goodness
terms of the distance from the mean, we avoid the use of of match" between it and an existing histogram hd from
thresholds that may vary with the surroundings or with 2This is not to say that color constancy or highlight
the specific object detection mechanism being used. The removal[Klinker et al., 1988, Bajcsy et al., 1989 techniques
resulting set of significant gazes is then pruned further by are not desired, but rather that we are for the moment ig-
eliminating gazes for which an adjacent gaze produced a noring this issue. If we had a fast implementation of sul
larger confidence. The gazes remaining in the set after methods, we would apply them to the image before perform-
this pruning are those considered most likely to view the ing the opponent-color transform.
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the database by averaging a goodness-of-match function value. Another possible method might involve using a
for each ratio in the signature of the existing histogram. chi-square test for comparing two binned data sets [Press
More formally, et al., 1988, pp.489-490] to estimate the similarity be-

tween a model signature and the corresponding buckets

goodness(h, hd) = {a,b} Sh,) ratio.match(a, b, h, hd) in a new image.IIS(hd)ll
(1) 7 Performancewhere a and b denote buckets in thle histogram and The object detection method described above has been

ratio-match(a, b, h, h') = weight(ln r.,b(h) - In ra,(h')) implemented(Wixson, 1990b].
(2)

where weight(x) is a very narrow Gaussian with a maxi- 7.1 Acquiring Example Histograms
mum of 1 centered at 0 and r,b(h) is simply the ratio of The database of example histograms is usually acquired
the number of pixels in bucket a to the number of pixels through an iterative process. Our method is to start with
in bucket b in histogram h. a small set of histograms of each object (usually two his-

Equation 2, which determines the goodness of match tograms, taken from two different positions), and run the
between a pair of buckets in both the new and the search task. If an object is missed, we cover the back-
database histogram, is the key to the matching proce- ground with black cloth, leaving the object in the same
dure. It states that the goodness of match of one pair of orientation, histogram the scene, and save the scene as
buckets is proportional to the distance from unity of the an example of the object. By draping the background
ratio of the ratio of bucket a to bucket b in one histogram with black cloth, we eliminate the background signal
to the ratio of a to b in the other histogram. The use from the histogram. Leaving the object in the same
of logarithms is simply to make deviations from unity orientation ensures that the orientation and/or lighting
symmetric. The Gaussian is used to assign very close effects that caused the object to be missed originally will
matches a goodness value of 1, while assigning other be present in the new example histogram. The objects
matches a value close to 0. In all our experiments we are then moved to different positions, the search task is
used a Gaussian with a = In 1.5, thereby indicating that executed again, and new histograms are learned if nec-
a "close match" occurs when the ratios are within a fac- essary. This process is continued until performance is
tor of 1.5 of each other. deemed acceptable; the end result is that the database

Using the above goodness calculation, we can compute contains -. 4 example histograms for each object.
the confidence that a histogram h, contains an object o
as follows: 7.2 Object Detection

confidence(h,,, o) = max goodness(h., hd) (3) Gpneration of the 2-D opponent color histogram is per-
hdE)Io formed by a Datacube MaxVideo real-time image pro-

where H, is the set of histograms stored in the database cessing system, and matching of the new histogram to

as examples of object o. the example histograms of the target object is performed
on a Sun 3/260. A typical search requires that 72 gazes

6.3 Discussion be evaluated. Our system performs this evaluation in 3.5

The idea behind the signature scheme described above is minutes, taking just under 3 seconds to move to a new

simply that each object has some number of histograms gaze, 'rab the histogram, and compute the match.

which are stored as examples of that object. This num- Figure 1 shows the direction (but not the distance)
whrish usally reate tha n onampesin thehistogramhima of everyday multi-colored objects in a cluttered roomber is usually greater than one since the histogram may in relation to the robot for a typical run of the search
change substantially if a different side of the object be- task. In addition to these objects, the room containscomes visible or if substantial lighting changes occur. many other black, gray, or white objects such as tables,
When testing for the presence of the object in an image, canet , grs, okhelves suchaktards.the evaluation of the goodness of match between the cabinets, TV monitors, bookshelves, and chalkboards.
imae historaand ach xae hiodnes s toram b ed Figure 2 shows the gaze direcions produced when the
image histogram and each example histogram is based search strategy is executed for a "Clorox" detergent boxonly on the most significant buckets in the example his- and a "Captain Crunch" cereal box. 3 In these figures
togram. In this way, substantial changes in the back- the area of each circle is proportional to the confidence
ground of the scene should not affect the recognition of that the gaze in that direction includes the object. The
the object as long as the background pixels do not fall numbers next to the circles reflect the ordering of the

into the buckets used by the example histogram. it confidences in decreasing order; a circle with number 0
T.he . ...... .. n, denotes the gaze that the system feels is most likely to

is concerned with matching color histograms for object contain the object. For each example, we can see that
recognition. The key difference between Swain's method, the proper gaze is included in the set of gazes; it is gaze 0
called histogram intersection, and the method described the proper gaze n e the set of a a0
above is that histogram intersection is not scale-invariant (the highest-ranked gaze) for the "Clorox" box and and
and thus, without a additional segmentation mechanism, 3For these experiments, there were two database his-
is ill-suited for the object search task. tograms for each object, and in the test run, each object

Finally, it should be noted that Equations 1 and 2 was placed at a different position and distance than those at
are not the only possible ways of computing a goodness which the example histograms were acquired.
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gaze 2 for the "Captain Crunch" box. Results of other Ingo Wegener. Search Problems. John Wiley and Sons,
experiments can be found in [Wixson and Ballard, 1989, 1987.
Wixson, 1990b]. [Antes and Penland, 1981]

In theory, many possible images may give rise to the James R. Antes and James G. Penland. Picture con-
same histogram and hence to the same signature, result- text effects on eye movement patterns. In Dennis F.
ing in a possibly overwhelming number of false positive Fisher, Richard A. Monty, and John W. Senders, ed-
matches. Oir experiments with the searcher and with itors, Eye Movements: Cogntion and Visual Percep-
making forced choice classifications from a database of ior, Eae 1ov10 Lasronto ad Vis aephaveshon, oweerthatthi dos nt ocur tzon, pages 157-170. Lawrence Erlbaum Associates,
images have shown, however, that this does not occur 1981.
very often. The pruning strategy usually selects less than
7 out of the 72 possible gazes; these are the gazes that [Bajcsy et al., 1989] Ruzena Bajcsy, Sang Wook Lee,
have the highest confidence that they contain the de- and Ales Leonardis. Image segmentation with de-
sired object. This is more than a 90% reduction in the tection of highlights and inter-reflections using color.
set of possible gazes. In practice, one of these leftover In Image Understanding and Machine Vision, 1989
gazes almost always contains the target object, although Technical Digest Series, Vol. 14, pages 16-19. Optical
this is not always the gaze that produces tile maximum Society of America, June 1989.
goodness. Thus, the false positives that are generated [Bajcsy, 1988] Ruzena Bajcsy. Active perception. In
are not numerous enough to cause the correct gaze to be Proceedings of the IEEE, volume 76, pages 996-1005,
discarded by the pruning strategy. August 1988.

Situations where the system fails to find the object august 1988.
are almost always due to the presence of objects that [Ballard and Brown, 1982] D.1I. Ballard
massively obscure the signature of the object in the im- and C.M. Brown. Computer Vision. Prentice Hall,

age. In addition, it should be noted that this detection Inc., 1982.
mechanism is not appropriate for objects that exhibit a [Ballard, 1989] Dana I1. Ballard. Reference frames for
large amount of specular reflection (for which it is diffi- animate vision. In Eleventh International Joint Con-
cult to compute stable example histograms), objects of ference on Artificial Intelligence, pages 1635-1641,
a single color (for which one cannot compute ratios since August 1989.
only one peak exists in the model histogram), or for ob- [Biederman et al., 1973] Irving Biederman, Arnold L.
jects whose colors are mostly shades of white, gray, or Glass, and E. Webb Stacy, Jr. Searching for objects
black (since the opponent color transform we currently in real-world scenes. Journal of Eperimental Psychol-
use maps all of thesc colors into the same bucket and in 97l- 27, 193.
hence cannot use these as peaks in the histogram). We ogy, 97(1):22-27, 1973.
are working on extensions to handle these cases - Swain [Bolle ct al., 19891 Ruud M. Bolle, Andrea Califano,
[1990] has solved thu latter two by using a different color and Rick Kjeldsen. Data and model driven foveation.
transform and histogramming approach. I.b.m. research report, Exploratory Computer Vision

Group, IBM T.J. Watson Research Center, 1989.
8 Conclusion [Brooks, 1987] Rodney A. Brooks. Visual map making

Introspection reveals that humans perform object search for a mobile robot. In Martin A. Fischler and Os-

countless times every day. People look for their car keys, car Firschein, editors, Readings in Computer Vision,

for a pay phone, and for their TV's remote control. In pages 438-443. Morgan Kaufmann, 1987.

addition, everyday tasks such as using a map or follow- [Brown, 1988] Christopher M. Brown. The rochester
ing diiections require object search in order to find the robot. Technical Report 257, Universit of Rochester
physical objects which correspond to tile landmarks on Computer Science Dept., August 1988.
the map or in the directions. This paper has presented [Cohen, 1981] Karen M. Cohen. The development of
a foundational overview of the object search problem, strategies of visual search. In Dennis F. Fisher,
outlining motivations for the study of object search and Richard A. Monty, and John W. Senders, editors, Eye
identifying three major aspects of the problem. We have Movements: Cognition and Visual Perception, pages
only just begun our study of object search; all of the 271-288. Lawrence Erlbaum Associates, 1981.
topics described in Section 4 still require a rignificant
amount of research. [Connell, 19891 Jonathan II. Connell. A Colony Archi-

tecture for an Artificial Creature. PhD thesis, M.I.T.,
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Abstract vision. In their view, perceptual organization provides
the precursors of higher-level (i.e. more specialized)

Contours corresponding to surface boundaries are read- representations by detecting and explicitly representing
ily perceived by human observers even when local evi- image structure. They maintain that local quantita-
dence in the form of measurable image brightness gradi- tive processes are incapable of reliably computing the
ents is completely absent. Figural completion and illu- 21D Sketch, and that additional constraints provided
sory contours offer valuable clues to the computational y chn- and ttdiac rn provided
processes employed by the human visual system in con- by non-local grouping processes are required. Compared

structing image contours from the incomplete and frag- to the effort devoted to specific "shape-from" processes,strutin imge ontors romtheincoplee ad fag- there has been relatively little work: aimed at under-
mentary evidence provided by image brightness changes. terhabeneaivlltleor-aieatud-mentry vidnceprovdedby mag brihtnss hanes, standing the role which image contours playe in constrain-
In particular, they suggest that whether or not a gap in ing he role whici ons l y in,,on19raiii-
an image contour is completed tiepends on a non-local ing scene stuctre (exceptions include 11,2,14,19]). ep
process with specific knowledge of surfaces and occlu- age contours correponding to discontinuities in depth
sion. In my work, the mechanics of occlusion of one sur- are called occluding contours. Many natural scenes (e.g.
face by another are described by a set of integer linear rainforests, desktops) achieve much of their complexity
constraints. These constraints insure that the output of through clutter and are dominated by discontinuities incontour grouping process is phy.sically aidndcns- depth. Occluding contours are an important source of
atcntour iththiag pvce isphya valid and consis constraints, defining the domains within which individ-
tent with the image evidence. Amiong the many feasible ual "shape-from" processes operate. Accordingly, under-
solutions, the most compelling is the solution which best uan hero" processes which cro clungexplains the presence and form of image structure. The standing the grouping processes which create occluding

explinsthe prsenc an font f imge trutur. e contours is an important problem in computer vision.
problem of computing a complete and consistent surface
boundary representation is reduced to solving an integer Recent years have seen progress in identifying and de-
linear program. scribing image contours (occluding and otherwise). This
1 Introduction is especially true of straight lines [3,7,17]. The particu-

lar assumptions that different grouping methods make,
Marr cited the failure of edge detection and intensity and the degree and kinds of evidence each considers suffi-
based segmentation as evidence that the goal of low-level cient, vary widely. None specifically considers the effects
vision (as articulated to that point) was ill-specified. He of occlusion and interference due to clutter. The Burns
argued that a more appropriate goal for low-level vision algorithm [7] adopts a conservative strategy. Its group-
is the computation of a representation he called the 21D ing criterion is similiarity of brightness gradient direction
Sketch [151. The 21D Sketch is an explicit representa- within a (fixed) neighborhood around a particular edge
;ion of the orientation and depth of visible surfaces in pi.el. Although this criterion often results in fragmented
retinocentric coordinates. Importantly, discontinuities contours containing large gaps (i.e. undergroupmng), it
in orientation and depth are also explicitly represented. rarely produces inappropriate lines (i.e. overgrouprng).
A great deal of effort has been expended during the last The Boldt zero crossing grouping algorithm [3 is at the
for, years with the .. .rf .p.ti. prcsentatiors , otiler extieme. its notions of proximity and straight-
visible surfaces by diverse methods including shape from ness are coupled to a scale parameter that gradually
shading, texture, stereo, general sensor motion, etc, inczeases as the algorithm runs (i.e. Boldt's algorithm

Witkin and Tenenbaum [27] emphasized the impor- is non-local). As a result, Boldt's algorithm is capable
tance of perceptual organization as a goal for low-level of detecting and creating straight lines even when the

*This research was supported by the Defense Advanced image evidence at pixel scale (and at larger scales) is
Research Projects Agency under RADC contract F30602-87- fragmented and of low contrast. This is a very powerful
C-0140 and Army ETL contract DACA76-89-C-0017. capability, but results in a larger number of overgrouping
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errors. Because its reasoning is (essentially) based upon
straightness alone, Boldt's algorithm simply doesn't have
enough information to make the "correct" grouping de-
cisions all of the time. As with edge detection, part of A
the problem is the lack of any reasonable definition of C,
"correct"; Witkin and Tenenbaum [27] ask "Is there any
objective sense in which some groupings are true and
accurate, whilk others are false or inaccurate?"

Visual psychologists classify image contours as either
modal or amodal, depending on whether or not there is
a subjective impression of brightness change across the
contour [13]. For example, an image contour which con-
tinues behind an opaque surface is amodal within the
interval where it is blocked from view; this is referred to
as amodal completion. More surprising is the fact that
under appropriate circumstances the human visual sys- Figure 1: Kanizsa's Triangle.
tern constructs image contours that are subjectively ex-
perienced as changes in apparent brightness even though
there is no measurable brightness gradient. These are
called illusory contours'. Both amodal completion and
illusory contours offer valuable clues to the computa-
tional processes employed by the human visual system
in constructing image contours from the incomplete and
fragmentary evidence provided by local image brightness
changes. The problem of computing the shape of an illu-
sory contour joining two boundary fragments was origi- A$
nally studied by Ullman [25] (see [10] for a more recent
treatment). But the problem of exactly when an illusory LA
contour should join two boundary fragments is yet to be

answered in precise computational terms (as [15,27] and
others have pointed out). This is not to imply that the
problem has gone unstudied. Indeed, visual psycholo-
gists have documented many of the conditions required H
to induce illusory contours in human vision [18]. This is
epitomized by the carefully designed figures of Kanizsa .
[13] which are the most dramatic illustrations of the phe-
nomenon (Figure 1). Finally, the computational model Figure 2: A Colorforms version of the Kanizsa Triangle.

outlined in this paper is inspired in part by Irvin Rock's
view of human perception as problem solving [20]. occluding contours (which are the products of grouping

Although a representation like the 21D Sketch is not processes). Happily, the semantics of the 21D Sketch can
necessary for all vision tasks (e.g. model based object provide objective grouping criteria. Whether the human
recognition), it is clearly required for others (e.g. visual visual system is willing or unwilling to complete a gap in
obstacle avoidance and navigation in unmodeled envi- an image contour is determined by a non-local process
ionments). Yet robust computation of the 21D Sketch with specific knowledge of the mechanics of surfaces and
under the most general conditions (i.e. where all sur- occlusion.
faces aren't densely textured and smooth) is probably
impossible without additional constraints derived from 2 Demonstration System

imecssbe hot onl acoftnt dr ed ro m The demonstration system is a working model of a "com-
'Because illusory contours are often refc-red to :ca! plete" perceptual organization system, capable of pro-

illusions, there is sometimes a tendency to dismiss them as
peculiarities of human vision which occur only tinder highly ducing a surface boundary representation from fignral
contrived conditions. An alternate view is that figures liKe cues alone (albeit within a highly restricted domain).
Kanizsa s Triangle reveal the incongruity between real and As a test domain, we chose simple scenes built front flat
apparent brightness more dramatically than is typical but vinyl cutout surfaces of uniform reflectance called Col-
that the mechanism reop ,,sible for illusory contours is actu- orforms. Colorforms are straight sided, but flexible, and
ally very general. it is possible to build fairly complex scenes involving oc-
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Figure 3: Image lines for the Kanizsa Triangle. Figure 4: Contour graph for the Kanizsa Triangle

clusion, holes and interwoven surfaces. The current sys- [13,15,24). A virtual line (for which there is generally
tern is designed to complete gaps in the straight sections no corresponding image brightness gradient) is a token
of occluding contours, but isn't able to cope with more which serves as an explicit representation of a collinear
complex omissions such as missing corners or missing image line pair. Finally, wherever a virtual line intersects
sides. Nevertheless, even with this restriction, it is able another virtual line, or a virtual line intersects an image
to solve relatively complex perceptual problems such as line, the two lines are split into four sub-segments and
the construction of an illusory triangle in a Colorfornis joined by a new type of vertex, called a crossing. This in-
equivalent of the Kanizsa Triangle (Figure 2). The sys- sures that the graph remains planar. The contour graph
tern operates in two stages: 1) A problem posing stage; computed for the Kanizsa Triangle is depicted3 in Figure
and 2) A problem solving stage. 4.

By writing a fixed number of linear constraints for each
2.1 From Contours to Surface Boundaries vertex and edge in the contour graph, an integer linear
In the problem posing stage image evidence is collected program is generated. During the problem solving stage,
and incorporated in a graph, called the contour graph. branch and bcund search is used to find its optimal fea-
The contour graph is an explicit representation of prim- sible solution. The optimal feasible solution defines the
ttive image structure[27] and corresponds approximately boundary graph, which is a labeled sub-graph This is
to Marr's full primal sketch[15]. It is composed of two consistent with Witkin and Tenenbaum's [27] claim that
types of vertices and three types of edges. Every ver- "naively perceived structdre survives moic or less intact
tex is located at a point in the image and every edge is when a semantic .ontcxt is established.., the difference
a contour joining two vertices. The initial edges of the between naive and informed perception amounting to lit-
contour graph are called image lines, and are created2  tie more than labeling the perceptual primitives." The
by Boldt's zero crossing grouping algorithm [3) (Figure edges of the boundary graph are labeled with -i sign of
3). occlusion and a depth index (hidden lines hre displayed

Image lines are contours with a measurable image dashed). The boundary graph corresponding to the op-
brightness gradient. Each image line joins its two end- timal feasible solution of the in, oer linear program is
points, which are the initial vertex type. Proximal end- depicted in Figure 5. An alternate organization, which
points of image lines satisfying certain other simple cri- is a feasible but non-optimal solution, appears in Figure
teria are joined with a second edge type called a corner. 6.
Next, all pairs of roughly collinear image lines (as deter- 2
mined by the mean square error of a line fit to the four A 2 I hyr113uc., .Vali .
endpoints) are identified. The near endpoints of each We now demonstrate that all constraints necessary to
such pair are joined by a third edge type, the virtual line insure the physical validity of the boundary graph are

expressible in an integer linear program. The first cot'-2In the case of the Colorforms version of the Kanizza Tri- straint enforced is that every occluding contour must

angle, all evidence of the center triangle was first removed __ eo ds a r cli o u s

by filtering the initial zero crossing segments on gradient 'The ariows indicate the figure-ground sense of bar tokens
magnitude. (See Section 2.4).
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Figure 7: Potential continuations, j, of image line i
through endpoint p.

virtual lines and corners only join image line fragments
Figure 5: The optimal feasible solution. in the process of constructing surface boundaries. Fi-

nally, the sign of occlusion of the continuation must be
unique and consistent with the sign of occlusion of the
image line. This insures that every cycle in the surface
boundary graph has a single sign of occlusion (i.e. ei-
ther clockwise or counter-clockwise in direction). Let j
be the virtual lines and corners which are potential con-
tinuations A image contour i at endpoint p (Figure 7).
Two constraints per endpoint guarantee all of the above:

X3 (2)

' 3 (3)
3

These constraints play a role similiar to the conserva-
tion constraints in a network flow problem. In this case,

Figure 6: A feasible solution which is non-optimal. sign of occlusion is conserved at each endpoint. The
right side of each inequality is the sum of all continua-
tions with sign of occlusion consistent with the sign of

have one of two signs of occlusion (i.e. --+ and 4-). The the sponsoring image line on the left side. Since the left
two possible signs of occlusion of image line i are rep- sides are 0-1 valued, the right sides are likewise bounded
resented as 0-1 valued integers x, and x'. Image line i and at most one virtual line ci corner cr-n serve as a
is an occluding contour when either x, = 1 or x' = continuation. When x, = = 0, the right sides of both
otherwise x, = x, 0 and i is a non-occluding contour. inequalities must also equal zero, which insures that no
Using this representation, the necessary constraint is the virtual line or corner can become an occluding contour
following linear inequality: independently of its sponsoring image line. Conversely,

image line i can not become an occluding contour with-

Xi + X': < I (1) out continuation through endpoint p, prohibiting "dan-
gling" endpoints. This guarantees that all occluding con-

Since the projections of complete surface boundaries tours are part of cycles.
are closed contours, all occluding contours must be part We now systematically prsent the linear c'.nstraints
of cycles in the surface boundary graph. The continua- required to simulate the more complicated jehavior as-
tion of an image line through more than one virtual lin( sociated with the occlusion of one opaque surface by an-
or corner at each endpoint is also prohibited. other. Recall that as part of the process of construct-

Furthermore, no virtual line or corner can act as an ing the contour graph, at every point where one contour
occluding contour witho:.t its "sponsoring" image line, crosses another, the contours are split into four new con-
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".. Crossing c is in the up state exactly when XT 1

, =and xi = nF = X- = 0. The other three states are rep-
resented similiarly. Having established a representation,
it is nwpossible todescribe the first constraint enforced
at every crossing. It requires the crossing to be in one of

1 .,the four states when both u and I are occluding contours:
d

uC dn C (4)

When u and I are occluding contours, the left side of
x.and x' to equal one. Another constraint makes the

four states mutually exclusive:

T I+ + + 1 (5)
The specific signs of occlusion which are preconditions

for each of the four states appear on the right sides ofFigure 8: The four principal crossing states. teieulte hc olwthe inequalities which follow:

tours and joined by a crossing node. Call the four con- X T < nX (6)
tours u, d, I and r and the crossing node c (Figure 8). Mi. < X, (7)
Associated with each of the four contours are 0-1 valued

integers x and x' representing their signs of occlusion. X < ,, (8)

Also associated with each segment is a positive integer MC < X (9)
variable n representing the relative depth of the contour
(i.e. the number of surfaces between the contour and For example, crossing c can only be in the left state
the eye or camera). Certain constraints are immediately (i.e. x' = 1) when contour u's sign of occlusion is u - d
apparent. First of all, the signs of occlusion of contour u (i.e. z = 1).
and contour d must be consistent. Likewise for contour I It is important to note that the four principal cross-
and contour r. As simple equality constraints, they can ing states stand for specific differences in relative depth
be enforced by substitution and needn't actually appear across the crossing node. For a particular surface bound-
in the linear program: Xu = Xd, X,, = n, z = X, and ary graph to be feasible, the sum of the depth index
X1, = Mi. differences around every cycle must equal zero. The fol-

A second observation is that if u and I (and by impli- lowing constraints serve to define the crossing states as

cation d and r) are occluding contours, then the surface relative depths:

which u bounds (call it 3,,) is either above or below the
surface which I bounds (call it ,). This is independent nu -nd = x T _X (10)
of the specific signs of occlusion of u or 1. When one con- , -.
siders that only the sign of occlusion of the uppermost i- nr = -, (11)
surface has any effect on the relative depths of the four 2.3 Fidelity to Image Data
contours (i.e. n,,, nd, ,ni and nr), it becomes clear that
crossing c can be in one of four principal states. The Physical validity is a necessary but not a sufficient condi-

specific state is determined by which of u, d, I or r is tion for feasibility of the surface boundary graph. For a

being occluded by the uppermost surface. When s, is solution to be feasible, it must be both physically valid

above S,,, and the sign of occlusion of I is r - I (i.e. and consistent with the image data4. First and fore-

x' = 1), then the crossing is in the up state (denoted by most, image lines are, by their very nature, visible. We

T). If contour I's sign of occlusion is I --+ r (i.e. zi = 1) therefore require that their relative depth indices in the

then the crossing is in the down state (denoted by 1). surface boundary graph equal zero (i.e. for every image

When 3,, is above S1 the crossing is either in the left (-) line i, ni = 0). This can be enforced by simply excluding

state or the right (-i) state, depending on whether the all ni from the linear program, and needn't increase the

sign of occlusion of u is u --+ d (i.e. z' = 1) or d -- u (i.e. size of the constraint matrix.

,, -- 1). The four states are represented in the linear 4As Irvin Rfock poir.ts out[22] "the solution must conform
program with four 0-1 valued variables x4, X1, X" and to the proximal stimulhs."

643



Equally important, if a virtual line is an occluding
contour, and its depth index is equal to zero (indicat-
ing that it should be visible) then its absence as an im- S,
age line should be explainable5 . Consider virtual line j
which joins image lines I and r (possibly through an ar-
bitrary number of additional contours and crossings; see b / / r
Figure 9). Let xi be the sign of occlusion of contour j
corresponding to the I -# r direction and x be the op- 8, 81 81
posite sign. Depending on its sign of occlusion, contour
j bounds either surface S or S . Associated with 3j is
reflectance v, and with S. is reflectance o. Assuming

rf Figure 9: Virtual line j joins images lines 1 and r.roughly uniform illumination and reflectance, j and ,7
can be approximated by the average brightness within
narrow regions on either side of contour j. In a similiar visibility (or non-visibility) of the image lines. Not all
manner, we can compute , , r and " associated solution vectors are equally compelling however. For
with surfaces Sh S1, S. and 5.. example, the zero vector is always within the feasible

What conditions, at minimum, should exist before region, and corresponds to a boundary graph with no
a visual system constructs an illusory contour? Are surface boundaries; all image lines are unrelated non-
there any circumstances under which a surface boundary occluding contours. Of course, this interpretation com-
projects to the image plane with no appreciable bright- pletely ignores all figural evidence to the contrary, and
ness gradient? Let 1AW I be the magnitude of the bright- is generally not the most compelling. What basis exists
ness gradient across contour j, then: for prefering one feasible solution over another? What

=AI =WJ - Voj (12) are the coefficients of the cost vector which defines the
objective function?

When x, = I and n. = 0 then j joins I and r to form An important factor in human vision (often mentioned
a visible occluding contour bounding a common surface: in connection with the Kanizsa Triangle) is the tendency
St =Sj = ,. Assuming that the surface has roughly towards figural completion. Since all occluding contours
constant reflectance, we conclude that V, ; V3 A V,. must be part of cycles in the boundary graph, a prefer-
Similiarly, if x' = 1 and n. = 0, then j joins I and r ence for complete figures can be achieved by maximizing
to form a visible section of occluding contour bounding the number of occluding contours. Of course occlud-
surface S' - ,'. We conclude that Vt - ,7o - '. ing contours can be embedded in boundary graph cycles
Since n. = 0, there are no surfaces between the bound- only through liberal use of virtual lines and corners, and
ary and the eye, and there will usually be a detectable among the mechanisms of completion, virtual lines are
contour in the image. However, when a surface occludes preferred. With respect to human vision, this can be
another surface with similiar reflectance then o, , W3 justified by invoking the Gestalt law of good continua-
and JAV.1 j 0. This suggests that illusory contours tion. Recall that virtual lines are used to join collinear
should be permitted only where the available measure- image lines while corners join image lines with proxi-
ments of image brightness are consistent with the case of real endpoints. Where as collinearity of two image lines
two overlapping surfaces of roughly constant and approx- almost certainly implies an underlying common cause
iinately equal reflectance. This effect can be achieved by [20], endpoint proximity is frequently an artifact of oc-
adding Constraint 13 unless a 0 and clusion of one surface by another. Consider the fact
adding Constraint 14 unless o . that the brightness gradient magnitude measured along

an occluding contour varies at points where the surface
it bounds crosses other surfaces of different reflectance.

X3  <_ T2 (13) This results in a plague of "false" corners. In contrast,
) < n. (14) a virtual line which can not be incorporated into the

boundary graph requires crediting chance alone as ex-

2.4 Preference planation for the collinearity of the sponsoring image
lines. According to Rock (20], "The perceptual system

The constraint matrix defines the feasible region of the detects continuity of direction among contours. Once
linear program. All integer solution vectors within the doing so, not to accept two or more elements as parts of
feasible region correspond to physically valid boundary one larger entity is to accept that continuity as the result
graphs with boundary depth indices consistent with the of coincidental placement in space of these elements, that

'This requirement is waved for very short lines (i.e. lines is, of elements that have no intrinsic relationship to one
with length less than 2 pixels). another." It follows that boundary graphs which make
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greater use of virtual lines are more compelling because
their acceptance requires making fewer assumptions of
accidental figural alignment.

Two preference factors have been discussed so far: A
preference for complete figures in general; and a prefer-
ence for complete figures incorporating virtual lines as _
opposed to corners. Both indirectly determine the sign - " ,
of occlusion of those contours which act as facilitators "
(through crossing vertices) of figural completion. An as
yet unaddressed factor in preference concerns the deter- -

mination of a contour's sign of occlusion in the many 7
ambiguous cases where it is not directly constrained by
a role in figural completion. In fact, it might be legit-
imately asked whether or not asserting the existence of
an occluding contour is appropriate in such undercon-
strained cases. Yet it is well documented that in simil-
iarly ambiguous situations, the human visual system dis-

plays strong and characteristic figure-ground preferences. Figure 10: Blocks scene.

Among the most important of these is: A preference for
convex figure and concave ground [20]. This is easily will be instantiated (i.e. Xb = 1) only when xi = 1 and
implemented in the integer linear program by assign- , =
ing different costs to the two possible signs of occlusion r -

associated with each corner. Corner signs of occlusion
consistent with convex figure are rewarded while those Xb < X (15)
consistent with concave figure are penalized. Together Xb < (16)
with the preference for closed figure, this has the effect
of increasing the number of clockwise cycles (i.e. solids) We are finally ready to define an objective function
in the boundary graph at the expense of the counter- that is sufficient for the Colorforms domain. Let i, v,
clockwise cycles (i.e. holes). The ultimate physical basis c and b range over the sets of image lines, virtual lines,
for this preference may be the assymmetric roles played corners and bars respectively. Maximize the following:
by figure and ground in the physical world; the space
occupied by figure is opaque, while the complementary
space is transparent 6. oZ (Xi + Z) + (X, + 4)

Another set of preferences are associated with the de- V

tection and explanation of symmetries of various kinds. + 7 E (X, - X') + 6 E Xb

The simplest of these is: A preference for perceiving the b

space between closely spaced parallel lines as figure [20].
As part of the process of creating the contour graph, all Each of the four terms in the objective function re-
pairs of parallel lines with opposite brightness gradient fects one of the four preference factors discussed so ar.
and with significant mutual overlap are identified as bar A large a results in a heavy bias for interpreting iam-
tokens. A bar is instantiated when the image lines which age lines as occluding contours (and embedding them in
bound it are assigned the signs of occlusion consistent closed boundary graph cycles). The relative preference

with the bar being figure. The preferred interpretation for the two mechanisms of completion, virtual lines and

reconciles all other competing factors in figure-ground corners, depends on / and 7. The preference for convex

preference with the goal of instantiating the largest num- figure and concave ground is implemented by means of

ber of bars. Let b be a bar token bounded on the left and a minus sign in the 7 term, which rewards the former

right by image lines I and r. Let x1 and ' be the signs and penalizes the latter. The value of 6 determines the

of occlusion consistent with the bar being figure and Xb relative importance of incorporating the figure-ground

be a new 0-1 valued variable representing the instanti- sense which each of the bars requires to be instantiated.

ated bar. The following linear constraints insure that b The actual values of a, 8, 7 and 6 were chosen experi-
mentally (with the goal that the system's results should

'Hoffman and Richards [9] suggest that the human visual match the s'!utions preferred by the human visual sys-

system segments contours into parts at negative minima of tem). All of the results in this paper were obtained with
curvature. If this is true, then a preference for convex figure a = 5,/3 = 2, y = 1 and 6 = 2. Deriving values for these
and concave ground leads naturally to a contour description parameters from first principles (or through psychophys-
with a fewer number of parts. ical experimentation) is an open problem.
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Figure 11: Image lines for blocks. Figure 14: Star scene.

3 Additional Results
Figure 10 is a digitized image of a simple Colorforms
scene composed of two rectangles and a square. These
were arranged so that local evidence for the occlusion of
the horizontally oriented rectangle by the larger rectan-

- gle is hidden by the square. Figure 11 shows the image
lines produced by Boldt's algorithm. The contour graph,

, -- computed from the image lines, and showing the addi-
tion of virtual lines, corners and crossings, appears in
Figure 12. The arrows on the image lines indicate the
figure-ground sense individual bar tokens require to be
instantiated. Finally, Figure 13 is the boundary graph
corresponding to the optimal feasible solution of the in-
teger linear program. The relative depths of the contour
segments under the square, although locally ambiguous,

Figure 12: Contour graph for blocks, are assigned the values required to achieve consistency

of the figure as a whole.

The human visual system is unwilling to complete a
gap in a contour unless there is evidence of occlusion.

> A similiar effect can be demonstrated with two meshed
triangles (Figure 14). Figure 15a shows the image lines
produced by Boldt's algorithm. In Figure 15b, the image
lines corresponding to one of the triangles have been arti-
ficially removed. The contour graphs computed from the
two sets of image lines appear in Figures 16a and 16b.
Examination of Figure 17a shows that the demonstra-
tion system readily completes both triangles in the case
of the intact figure, but the boundary graph in Figure
17b contains only unrelated fragments. The collinear-
ity among the fragments is explicitly represented at the
level of primitive structure through virtual lines, but the
virtual lines are not interpreted as surface boundaries.

Construction and representation of the contour graph
Figure 13: Boundary graph for blocks, was greatly facilitated by the use of a Lisp based

database called the ISR [6]. The ISR was specifically
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designed to support intermediate level vision research.
Among other things, the ISR provides: 1) Management
of sets (and subsets) of image tokens; 2) Token pointers;
3) Fast spatial querying using grids; and 4) A file struc-
ture. Both the contour graph and the boundary graph

__ XA1 are represented by ISR token sets containing endpoints,
crossings, lines, corners and bars.

TablesJ

7/ Figure Name Var. Const. B.B. Pivots Obj.
\ --\/- - Triangle 447 465 1 209 296

Blocks 227 250 1 102 156
Intact Star 551 551 1 325 390
Fragments 187 183 3 134 131

The solutions to the integer linear programs were com-
puted with a system called IMINOS [4]. IMINOS uses

Figure 15: Image lines for intact star and fragments. branch and bound search and the MINOS [16] linear

programming package to solve integer linear programs.
Table 1 contains a summary of the number of variables
and constraints in the integer linear programs generated
for the examples in this paper. The entries in the col-
umn labeled 'B.B.' are the number of branch and bound
steps required to find the optimal feasible integer solu-
tion. Each branch and bound step requires an invoca-
tion of the Simplex algorithm. The column labeled 'Piv-
ots' contains the total number of Simplex pivot steps
required to solve the integer linear program. Although
solving integer linear programs can be computationally
prohibitive, the examples in this paper demonstrate that
specific instances can be solved quickly and efficiently.
None of the examples required more than 2 minutes of
CPU time on a Sun 3/60.

4 Relationship to Blocks World
Figure 16: Contour graphs for intact star and fragments. The current work differs from the majority of the blocks

world work because its principal goal is grouping, rather
than labeling. However, it exploits many of the same
constraints and benefits from the notation.

In the late 1960's Adolpho Guzman [8] developed a
program called SEE which grouped regions into single
objects in blocks world scenes. The rules SEE used wcre
heuristic and easily defeated. Nevertheless, grouping (in-

.. L_ cluding the completion of partially occluded objects) was
the primary goal of the system.

Huffman [11] developed a label set which allowed legal
__ -blocks world scenes to be distinguished from impossible

.r...........One blocks .-0 rd rcprtat

- -- "Huffman discusses is the labeled 'X-ray' picture, which
is very similiar to the boundary graph descibed i," his
paper. All visible and hidden lines in the 'X-ray pic-
ture are labeled with a depth index Subsequent blocks
world work ignored the labeled 'X-ray' picture and uon-

Figure 17: Boundary graphs for intact star and frag- centrated on discovering consistent labels for the visible
nients. lines only. For example, Waltz filtering [26] is a syst:m-

atic procedure for deriving a consistent labeling for the
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View variation of point set and line segment features

J. Brian Burns, Richard Weiss and Edward M. Riseman

Computer and Information Science Department
University of Massachusetts at Amherst *

Abstract objects in 2D images. In this approach, recognition is
achieved by (1) predictirg characteristics of the object

The recognition of 3D objects becomes much more difficult as projections from all views, (2) matching these predic-
the relative viewing position becomes less censtrained. For tions f avw ( th theeric-
an image feature to be effective in the discrimination of 3D tions against the input 2D image and (3) verifying all
objects, it is useful if the distribution of the feature values promising matches by determining the 3D pose of the
over permissible views tends to be narrow. This paper is a object given the data matched. In its most general form
study of the variation of point-set and line-segment features a prediction expresses the expected values for a set of
with respect to view. It is first established that there is no features of the object's projection. A feature can be any
general-case view-invariant defined for any ,number of points, measurement or function of the projection, and the ex-
given true perspective, weak perspective or orthographic pro- pectations can be any valid statement about the feature
jection models, distribution.

The remaindtr of the paper focuses on feature variation Another fundamental problem in recognition is ensur-
under weak perspective, a commonly used projection model ing that computational costs for recognition grow only
in 3D recognition. Its special-case invariants are explained in slowly with respect to model base size. This can be
terms of the invariance of linear dependence relations with achieved by organizing the predictions across objects
respect to linear transformation. The variation with respect into a discrimination structure [Grimson84, lkeuchi87].
to view is then studied for an important set of 2D line segment Such a structure, called a prediction hierarchy, has
features: the relative orientation, size and position of one been developed in our research on recognition systems
line segment with respect to another. The analysis includes [Burns87]. Objects with shared predictions are pro-
an important evaluation criterion for feature utility in terms gressively discriminated by specifying additional features
of view-variation: the relationship between fraction of views whose value distributions are different for the different
(over a view sphere) and the range of values assumed by a objects. After the discrimination structure is compiled,
feature over these views. This relationship is a function of the recognition system uses it to recursively match pre-
both the feature and the particular configuration of 3D .ine dictions that are progressively more object-specific.
segments; an anclysis and series of graphs are presented for For an im.%ge feature to be useful in discrimination, its
each of the features and for a few configurations of 3D line distribution of values with respect to each object should
segments. be narrow, and the distributions with respect to differ-

ent objects should be well separated. Since the camera
1 Introduction viewpoint may be only partially constrained, the useful-

One of the outstanding problems in visual object recogni- ness of a feature over the object projection is a function

tion is the fact that objects are usually three-dimepsional of how it varies with view. Hu.nce, the property of view-

structures, but they are typically sensed in the form of variation, the extent to which a feature varies over given

two-dimensional projections. While model-independent ranges of view, is fundamental to the recognition pro-

understanding of 3D structure [Marr82] is pos-,ible from cess. Since features of a projection usually "blow-up" to

motion, stereo, shadig and texture, the-,e cues may extreme values at some (usually small) set of views, a

quite often be unavailable, upreltable oh rovide only a feature is considered here to have low view-var ation if
roug indiaton of tunavai ecble,, re .ene it roide ony- a the variation is small in extent over a large fraction ofrough indication of the object structure. Hence it is th iw .Ielyafauesol-b ~wmvrat

portnt o dvelp sstes caabl ofrecgniing 3D the views 1. Ideally, a feature should be view-invariant,
portant to develop systems capable of recognizing 3D 'l.t is, .... ffcted by -hange in view
objects by matching them to 2D image data. . .. . .

The prediction-based methods This paper presents a study of the variation of 2D
developed in [Brooks8l, Lowe85, Burns87, Korn87] con- point-set and line-segment features v ith respect to view.

stitute a promising approach to the recognition of 3D It is first established that there is no general-case view-

*Ttis research was supported by the Defense Advanced iThe term quasi-invariant [Binford871 has been used to
Restarrh Projects Agency under contract F30602-87-G-0140 denote soimething similar. Unfo.tunately, it is used to denote

i,'l by Army ETL contract DACA76-89-C-0017. other things as well, and is thas avoided here.
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invariant defined for any number of poiits, given true
perspective, weak perspective or orthographic projec-
tion models. That is, there does not exist a feature
that is view-invariant for all point sets of a given size
n, for any n. Instead, there are only special-case in-
variants, features that are only view-invariant for spe-
cial configurations of 3D points. It is important to
determine the existence of general-case invariants since
their distribution of values for each object would always
have zero variance; only added noise and small separa-
tion between the objects would hinder their usefulness.
General-case invariants have been effectively used in do-
mains where they do exist; for example, planar objects (b) S "
with 2D rigid transformation [Tucker88], and planar ob-
jects with 3D rigid transformation and weak perspective
projection [Lamdan88a]. For the domain of 2D projec- Figure 1: Perspective and projective correspondence. Point
tions of 3D points, their existence does not seem to have sets S, and S6 , and Sb and S,, are in perspective correspon-
been determined [Ahuja68, Duda73, Lowe85, Binford87, dence; point sets S and S, are in projective corresponde-e
Aliomonos87, Lamdan88b, Weiss88]; in fact, in a chap- through Sb.

ter surveying projective geometry, Duda et al., explicitly
mention the current lack of understanding on the sub-
ject. are ordered, we will refer to the jth point of the ith set

The remainder of the paper then focuses on feature as Pij .
variation under weak perspective, a commonly used pro- Def: A feature f is a general-case view-in'ariant
jection model in 3D recognition. Special-case invariants for the class of all 3D point sets C' if VS E
are surveyed for this projection model, and the variation C-. V(R1 , TI), (R2, A), f(irR,¢ ' (S)) = f(orn,,', (S)) 3.
with respect to view is studied for an important set of 2D There is always a trivial f that can satisfy the above
line segment features: the relative orientation, size and property: any constant feature, where a constant feature
position of one line segment with respect to another. The has the same value for all 3D point sets and views. Thus,
analysis includes an important evaluation criterion for the following is another important property for a feature.
feature utility in terms of view-variation: the relation- Def. A feature f is non-trivial if there exist two dif-
ship between fraction of views and the range of values fe tres non-trivia if the s two di
assumed by a feature over these views. This relationship ferent point sets Si and $2, and a pair of views (Ri, 1)
is a function of both the feature and the particular con- and (R,;), such that f(t-,(Si)) # f(7rZ, 1,(Sz)).
figuration of 3D line segments; an analysis and series of The following are two concepts from projective geomt-
graphs are presented for each of the features and for a etry [Duda73] that must be adapted to our problem do-
few configurations of 3D line segments. main of 3D point sets and 2D projections.

Def: Perspective correspondence. Two point sets are
2 General-case view invariants in perspective correspondence if there exists a pencil of

ray. hat pass through every point in each set, and ev-
In this section, it is established that there is no feature ery ray in this pencil passes through the same number of
of the perspective projection of n points, for any n, that points from each set 4 (Figure 1a). Clearly, two such
is both a general-case view-invariant and non-trivial in 3D point sets project to the same image if the cam-
the senses defined belkw. This result is also extended to era focal point is the ray intersection point and the
orthographic and weak perspective projection models. rays are sectioned by the image plane; in other words,

2.1 Definitions rR,,fT (S.) = 7rT,,b(Sb), for some (R,i,,, Rb, Tb).

Def: Projective correspondence. Two point sets are
The perspective object-to-image transformation is in projective correspondence if they can be connected

(F/1)r 0 1 ]( + ), fo 3D point2  by a chain of perspective correspondences. For exam-
7r,(P ) = (Fz) 01 0' + or poin pie, S, and S, are in projective correspondence throughP, depth of point z, 3D rotation R, 3D translation T and perspective correspondences with Sb. This is depicted infocal length F. Each (R, 7 ) represents a distinct view. Figure 1 by keeping the focal, or ray pencil point fixed
The projection of the 3D point set S will be compactly -M. . J.. pot e S,, to aign iL with rays

'1'h proecton o th 3D oin passing through Se', and S,, respectively.
represented as 7r,¢f(S), and the value for a given feature
f, view (R, T) and 3D point set S is f(7rzT(S)). Since 3We are assuming f is defined for all but a measure zero
we will be dealing with multiple point sets and these sets set of views aud point-sets (degenerate views for f)

'Additionally, all rays must be constrained to the same
'Henceforth, lower case signifies image pointb --id upper half-space to create an image by sectioning the pencil with a

case, object points, plane
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Lemma 3 All 3D point sets of size n are in projective
correspondence.

Proof. Consider two sets of size n, 51 and
Sn. For these two sets, construct a sequence of sets
(52 ,..., S,,_ 1 ) such that, for 1 < j < n, adjacent pairs
Si and Sj+ are identical, except for their jth points.
This sequence can be constructed by defining each S to

be the union of the subset {P',i < i < j} of Si and the

A subset {P,dij _ i n} of Sn.
From Lemma2, every adjacent pair of point sets in

this sequence is in projective correspondence, and, by
transitivity, the original point sets S, and Sn are also.
0

Theorem 1: there is no feature of n projected points,
for any n, that is both a general-case view-invariant and

Figure 2: 3D point sets S1 (white) and S2 (black) are iden- non-trivial in the senses defined above.

tical up to Pj and f 2 j. To show that such sets are in Proof. Consider a general-case view-invariant f. For

perspective correspondence select a focal point in the line f to be non-trivial, there must exist at least one pair
of point sets Si and S2 , such that f(w'n, 1 1 (Sd))#

through Pi and j2,;; in this way each pair of corresponding o
points, one from each set, share a ray. f (rR,,.,(S2)) for some (RI, T1 , R2, T2).

Since all 3D point sets of the same size are in projec
tive correspondence (Lemma 3) and every pair in pro-

2.2 Theorem and proof jective correspondence must have the same value for any
Lemma 1 A general-case view-invariant has- the same general-case view-invariant (Lemma 1), the necessary
value for point sets in projective correspondence 5. condition for a non-trivial feature cannot be established

for any such general-case view-invariant. 0
Pro-f. For point sets in perspective correspondence

Si and S2 , this is immediate. Being a general-case in- 2.3 Extension to other projection models
variant, f has a single value f, for all projections of S1, Theorem 1 also holds for two other commonly used pro-
and similarly for S2 (fh). Since 7r n,f,(S) = 7r,f,(S), jection models: orthographic and weak perspective. Or-

for some pair of views (R 1, T1, R2 ,T2), we have fi - thographic projection is the same as perspective, except
f(rt,¢, (Si)) = f(7rR,,,(S2)) = f2. that the projection rays must always intersect at a point

By definition, for point sets in projective correspon- at infinity. Only Lemma2 considers the projection geom-
dence S and Si,, there exists a sequence of point sets etry, and since its construction step allows the intersec-

S2,...,S,,-i such that every pair (St, Si+i) is in per- tion point to lie anywhere in a given line, the point can
spective correspondence, for 1 < i < n. By transitivity always be placed at infinity. Weak perspective is iden-
of equality, the feature values associated with 51 and S, tical to orthographic except that the projection is also
must be equal. 0 scaled by the average depth of the 3D point set. Since

the added scaling simply represents another degree of
Lemma 2 Two 3D point sets of the same size are in freedom in the transformation, the lack of general-case
perspective correspondence if they are identical for all invariants under orthography must imply the same for
but one pointG.  weak perspective.

Proof. Consider two such sets S1 and S2, and say 3 Weak perspective projection
that they differ in the position of the jth point; i.e.,
P".1 $ P2., (Figure 2). In order to show perspective The weak perspective projection model is used in our re-
correspondence between the sets, it is sufficient to show search for the purposes of predicting image properties.
that there exists a pencil of rays that contains both sets. It is an approximation to perspective projection that is
This can be done by placing the focal point (point of applied extensively in object recognition research as it
intersection for the rays) in the line that passes through simplifies the analysis and computation for 3D object
P1 ,, and P2 ,,. Clearly these two points will then have a recognition with reasonable results when the camera is
ray in common and the other point pairs will share rays far enough from the object relative to the depth variation
by virtue of the fact that they occupy the same positions f th..obj t [......, ....... t ..... Hutt..chr87,
in space. 0 Lamdan88a]. In weak perspective, all of the points on a

3D object are treated as being at the same distance from
'Established through views not degenerate for f the camera: (x,, y,) = F/zo(X,, Y,), for average distance
'Perspective correspondence cannot always be established zo. Given this, the object-to-image transformation be-

through views non-degenerate for a given feature f. However, comes much simpler: there is a single scale factor F/z,
a projective correspondence can, by suitable intermediate instead of a different variable z, for each point, each with
point sets, and is sufficient to establish Theoremi [Burnsg00. a non-linear effect. Another reason for working with a
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weak perspective model is that there are some useful
special-case view-invariants (Section 4) that are approx- Differences from single reference Paired-off point differences
imately invariant for true perspective at an appropriately point: {(9i - 91)1i > 2) (2. -.V.-11 i _
large camera distance. For example, parallelism can be Special-case constraint: Spee al-capc con.traint:

Four 3D points such that Six 3D points such thateffectively used as a line grouping criterion in grouping- 4
based recognition [Lowe85] E i=2 ci(i- pF ) -= for non. E 3= X ci(p2i - 2i-l) =0for

zero ci(4 planar pJ non-zero ci. (The # need not
It is important to note that prediction and match er- 2 View invariants: be coplanar.)

rors generated by assuming weak perspective have yet (1) (C3/c2,c4/c2). Exam- View invariants:
to be suitably analyzed. Some understanding can be ple. affine coordinates [Lam- (3) (c2/c1,cs/c1). No known
gained by examining errors in the image point position. dan88a] example of use
Consider a point in space (X, Y, Z) on an object with (2) Subspace D (=2), not sig- (4) Subspace D (=2), not sig-

nificant for 2D images, nificant for 2D images.average camera distance zt). For perspectively projected Special-case constraint: - Special-case constraint:
x and weak perspective approximation , we have Three 3D points such that Four 3D points such that==c 9 T for non- E2 -12i = 6for

(x - )/x = FX(1/z - 1/zo)/(XF/z) = (z0 - z)/zo zero ci. (3 collinear p) non-zero c,. (Endpoints of
View Invarlants: two parallel line segments.)

(similarly for y). Thus the proportional error in image 1 (6) c3/c2. Example: ap- View invariants:
position is equal to the relative depth (zu - z) over the proach ratto in [Brooks8l]. (7) c2/cI. Example: parallel
absolute average depth zo. This depth ratio is the one (6) Subspace D (=1). Exam- distance ratio
that Thompson et al., recommend to be under one tenth; ple: collinearity. (8) Subspace D (=l), Ex-
at this range, the error in image position is at ten per- ample: parallelism, used in

g[rouping [Lowe$5].
cent. This may be quite acceptable for recognition sys- Special-case constraint: Same case as left panel.
tems that use weak perspective to predict rough ranges Two 3D points such that
in the orientation, size and position of image features. c2(IF2 - ;1) = 6 for non-zero
This is especially true if multiple features are used in c2. (2 coincident p).
discrimination and the objects are reasonably different. View invarlants:

(9) c2. Uninteresting (can be
However, it is important to remember that a weak per- anything but zero).
spective approximation can contribute non-trivial error. (10) Subspace D (=0). Ex-

ample: coincidence, used in

4 Special-case view-invariants under grouping [Lowe85]. I

weak perspective Table 1: Classification of special-case view-invariants under
weak perspective. All invariants discussed in the literature

The weak perspective object-to-image transformation is are functions of point ?osition differences, and they can be
a singular affine transformation that can be represented distinguished by two properties: the dimension of the sub-
by a 2 x 3 rank 2 matrix and 2D translation vector [Lam- space containing the set of 3D difference vectors (row), and
dan88bl. By considering only point position differences, the pattern of the point differences (column).
the translation component can be subtracted out and the
vectors representing the point position differences can be
related to their projections through a linear transforma-
tion. This is important since the property of linear de- patterns can be found in the invaria.ts surveyed: differ-
pendence for a set of vectors, the coefficients expressing ences from a single reference point #1 selected from the

the linear dependence, and the subspace dimension as- set, or f(# - 11)li > 2}, and diffe.ences between points

sociated with the dependence are all invariant to linear that have been paired off, {(152i - P2i-i)i > 1}.
transfornation. Table 1 shows the classification of weak-perspective

All of the weak perspective invariants discussed in the invariants based on these two properties of their special-
recognition literature [Brooks81, Lowe85, Lamdan88b] case conditions. It is interesting to note that special-case
follow from this observation, and other, related special- invariants can be deduced from this framework that hcve
case invariants can be deduced that may also be useful not been found in the recognition literature, for example,
for recognition algorithms. For each type of special-case invariant (3) classified under (dimension two, paired-off
invariant, the required 3D point-set conditions can be point differences).
specified as the linear dependence of some set of their There are also special-case invariants under perspec-
position differences, and the invariant feature itself can tive projection [Duda73, Lamdan88b]; however, they
be defined as a coefficient or subspace dimension associ- seem to only correspond to a subset of the above fea-
ated with this linear dependence. tures and tend to requite more points. The cross-ratio

The different special-case conditions can be distin- is analogous to the distance ratio (5), but requires four
guished by two properties: the dimension of the subspace points instead of three, anc. projective coordinates cor-
containing the set of 3D difference vectors, and the pat- respond to the affine coordinates (1), but require five
tern of the point differences. The subspace dimensions points instead of four [Duda73]. There do not seem to
given 3D point sets are two, one, and zero, the point be perspective invariants analogous to the ones in the
difference patterns specify which points are being sub- second column (3, 7, 8), requiring linear dependence of
tracted into which other points. Two types of difference paired-off point differences.
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5 View variation of relative orientation,
size and position V

Though view-invariance is restricted to certain special
3D line segment configurations, the property of low view- P4

variation, as defined in Section 1, is much more com-
mon. It is also of practical importance, since a reason-
ably small variation in feature value for each object, rel- p3 p3
ative to the value variation across the objects, can be . .......
quite effective for 3D object discrimination in the sense
discussed in Section 1. It is difficult to be precise about , u u u

pendent, being meaningful in terms of the feature value (a) p (b) p2
distributions over the particular set of objects being dis-
criminated. However, we can be precise about the extent P4
of variation o f a fea tu re as a fu n ctio n of p articu la r 3 D P " t w s .
line segment configurations and portions of view space. (cp

This section presents an analysis of view-variation for P2
four important features of a projected line segment pair.
They are the relative orientation, size and position of Figure 3: The relative features of line segments: (a) image
one segment with respect to the other. These features segments (bold) and the projected relative orientation a, size
are defined and motivated in the next subsection. For s and position (u, v), (b) coordinate frame (U, V) aligned
each feature, the following results are presented: with first segment and used to measure second segment, (c)

corresponding 3D segments and features.
" The feature value as a function of view and 3D line

segment configuration. The value is expressed as a
function only of the view parameters and parame- * relative orientation a. This is measured counter-
ters of the 3D segment configuration that affect it. clockwise from ( p*2 -p,) to (f: -p) and has a mag-
The expression is simplified as much as possible by nitude ofarccos((f-fl)(f-f)/I 4- fl),
using an appropriate object coordinate frame and * relative size 5 is the length ratio, Jf4 - 31/2 - 01 1,

coordinate transformation representation. * relative position (u, v) is the position of endpoint

* Qualitative analysis. This includes a description of 03 relative to the segment (fi,p). It is the dis-
the 3D line segments and ranges of views for which placement of p from p, measured along and nor-
the feature variation is most and least constrained, mal to (f2 - fl) and divided by its length, or
and what the feature values are at these points. u = (f3 - p)(f2 - pq)/I(f2 - pf)1 2 and v = (p -

" Quantitative analysis. Graphs are presented and fj)(f2 - f') 1/I(0*2 - ) 2 ), where ( - fl)' is
discussed showing the feature variation as a func- (f2 - fl) rotated by 90 degrees in the image plane.
tion of view and 3D segment configuration 7. In
addition, the relationship between extent of view- For each of the relative 2D features of the projected

v a r i a t i o n , t h e 3 D s e g m e n t s a n d t h e r a n g e o f v i e w s i s s e g m e c o n fi g ur a t io n din g p r met e r oh e e 3 D
explicitly presented. Feature interval size is plotted segment configuration being projected; these 3D world

agaist vew egio sie fo vaious3D egmets. parameters are indicated by: ,,s,,u,,v,, (Figure 3c).against view region size for various 3D segments. In addition, to analyze (u, v), it is useful to keep in mind

5.1 The features Pw, the angle between (fA - A) and ( - Ai), and t.,

The view-variation of four features are studied in this the distance between 1 3 and P scaled by the length of

section: the orientation, size and position (two compo- (A - A)-
nents) of one projected line segment with respect to an- 5.2 View representation
other (Figure 3). These relative features can be pictured
in the following way (Figure 3b). First, a coordinate Eahmeturoe vaer sl actin ofraviews and the 3De seg-
frame is defined in terms of the first projected segment: ments; however only certain parameters of the view and
the origin is set at its first endpoint, one axis (u) is ,D segment configuration affect this value. Ion this sec-
aligned with the segment, the other is orthogonal to it on, we define and justify a simplified expression of the
(v) and the scale is such that the first segment is of unit weak perspective object-to-image transformation that is
length. The orientation, position and size of the second only in terms of the view parameters relevant to the dis-

segment is then measured with respect to this coordi- cussed features.
nate frame. Specifically, given the projected segments All of the features considered her aree invariant to

(p, p) and (p7,, pi,), the four features are the defined in rotation about the optical z axis and all three degrees
the fo of freedom in translation. Therefore, the only aspect

tfo ll wi g an of the view transformation that affects these features
'Due to space, this is only presented here for a, see is the orientation of the optical z axis relative to the

[Burns9O] for a complete set object coordinate system, say the object Z axis. The

654



zAY z z

yY

P3 =PI I

P2

Fig. 4 View ophi're coordinates (i', 0) expressting tiw orientation of Fig. 5 3D line segment configuration with interior angle nv_ The

optical z axis relative to object Z (north poll-). The angle 0' Is tilt virA variation of a can be studied by analyzing the projections of this

azimnuth (angle about tile pole) and8 is thle angle fro"' thile (90 M pair.
elevation).

.10O

-- 30

Fig 0. 30

Fi.6,d Plrojetos of thea 3D luin emnsio Fgrfro ifrn views andq5 for (a) 3D angle ct& 90 and (h) 22.5 ere.Teage0i

erees.e Eache proectionis pnlted aont the sphero at rolyth viewa h treo'lc position, and' fro whcih emns wrepr eseen

byths way.u t sp he seotorapThcllyu projee witt objes o(itin ouf thsre ae adithes axi oitngt

the~ <et

</1 <655



relative orientation of z can be expressed in terms of example, the variation is greatest when the view direc-
two parameters (0S, 0), which represent the positions of tion approaches the orientation of the 3D line segments
on a unit view sphere about the object with the north (bold lines) and slowest when oriented normal to the
pole at Z (See [Horn86] and Figure 4). The angle 4) is plane containing the line segments (xy plane).
the azimuth (angle about the pole) and 0 is the angle Figures 6(c,d) show a less quantitative but mote intu-
from the pole (90 - elevation). The optical z axis in itive picture of the Niew variation for the same 3D angles.
object coordinates is then (sin0cosO,sin0sin4),cos0). In this figure, the actual line segment projections are
Using this representation, the essential rotation from shown for various views about the sphere parametrized
object to image can be expressed in terms of the two by (0, 4). Each projection is plotted on the sphere at the
view sphere coordinates: the magnitude of the rotation view position from which it would be seen this way, and
from Z tc z is simply 0, and the axis of the rotation alpha is the angle between the projected lines at that
z x Z/Jz x Z] = (sin 4), - cos 4, 0). We will refer to this ro- view position. The sphere is orthographically projected,
tation as ROo. The object-to-image transformation un- with the object Z pointing out of the page and the X
der consideration can now be expressed as f, = 7rRo,opi, axis pointing to the left. Additional plots, for different
where 7r is orthographic projection. values of ac,, can be found in [Burns90].

From the equations and plots, the following observa-
5.3 Relative orientation, a tions can be made:
In this section we first express the relative orientation of * When a,,, is zero (i.e., the 3D segments are parallel)
two projected segments as a function of (4), 0) and the then ot is constant (zero) for all (0 , 0).
relevant parameters of the 3D segments. The magnitude
of a is simply the angle between the two projected seg- o Aa, apos s ero the viosa
nients or arccos((5r - p,)(p - f3)/li - pjWli - f for of (6,4)) is slow over most of the views,
projected endpoints f,. * When a,, > 0, there always exists some view where

The feature a is strictly a function of the projected dif- a = 180 degrees and a = 0. In other words, a covers
fercnces (f4 -f3) and (i5 -p), and, for weak perspective the full range of possible values. Angle a approaches
projection, these differences are unaffected by transla- 0 when (0, 4)) approach (90, 90) and (90, -90), and
tion of the 3D segments relative to the object center and a approaches 180 when (0, 4)) approach (90, 0) and
to each other. Also, the angle between the projected seg- (90, 180).
ments is unaffected by the lengths of the 3D segments. * a is slowest in variation when the view is most par-
Thus, the only two factors affecting at are the orienta- allel to the Z axis and normal to the plane contain-
tion of the segments with respect to the camera (4,0) ing the segments (an 0). At this point a = ai.

and the angle between them a,,. Thus, without loss of The variation in a is still fairly slow for views near
generality, we can analyze the variation of a by studying the object Z axis, especially if the 3D angle a is
the projections of the 3D segment pair (see Figure 5): reasonably small.

P, = P3 = (0, 0, 0), A more quantitative picture can be gained by study-
P2 = (cos(a,,,/2),- sin(a,/2), 0), ing the distribution of a as (4), 0) varies, for the different
P4 = (cos(a,,/2), sin(ac,/2), 0), 3D angles a,,. Using an approximately regular sampling

of the sphere of viewpoints parametrized by (4), 0), his-
where a,, is the angle between the 3D segments. The tograms of the number of views that fall within regular
feature a can then be expressed as a function of the intervals of a were made for various 3D angles a,, (Fig-
view parameters (4), 0) defined in Section 5.2 and the ure 7). For example, the wider, symmetric graph (light
3D angle a,,: gray) represents the distribution of a over all views for

a = arccos(i 2/f lilfijI), 3D line segments with angle a,, = 90 degrees. The pro-
jected feature a ranges from 0 to 180 degrees, and for

= 7rRO,o(cos(a,,,/2), -- sin(ae,/2), 0)T the histograms, this range was divided into fifty regular
Ir = rRO,o(cos(a,,/2), sin(a,/2), O)T intervals. The view-sphere sampling was done so that

the views are approximately one degree apart 8.
Figures 6(a,b) show polar plots of a as a function of As the histograms show, the distributions of the pro-

view (4), 0), given the above 3D line segments with (a) jected features are strongly concentrated about the value
a,, = 90 degrees and (b) 22.5 degrees. The plots are of the true 3D angles, a,,, and this concentration be-
over a hemisphere of views, where 4) ranges from 0 to comes more pronounced as approaches zero (snir-
360 and 0, from 0 to 90. The angle 4) is represented by larly for 180 degrees). An even more revealing picture
the clockwise angle about the center of the plot, with can be gained by counting the number of views for which

-- 0 at the three o'clock position, and 0 is represented a falls within some interval about the 3D angle a,,; i.e.,
by the radius out from the center. The contour lines
are constant values of a (slices of the surface at various "The actual sampling produced 20447 samples for a hemi-
a). A sense of where the variation is greatest, and by sphere, with an average Lngle between adjacent ones of
how much, can be gained by observing the contour line 0.9999 degrees and standard deviation of 0.001 degrees. (For
density: the denser the lines, the greater the variation discussion on the sampling technique, see the appendix of
in feature a with respect to change in view (0),0). For [Burns9o])
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[a,. - Aa, a. + Ac]. Figure 8 shows the percentage of s actually ranges from zero to infinity - but for these
the view-sphere that falls within this interval for vari- examples, the histograms range from zero to eight and
ous Aa ranging from 0 to 90 degrees and ca, of 90, 45, contain almost all of the 20,477 samples. For reasons of
22.5 and 11.25 degrees. The amount of the view sphere symmetry, the s axis is plotted using a log 2 scale9 .
that falls within an interval clearly gets larger as a,, de- As the histograms show, the distributions of the pro-
creases. For the values of a. studied, a smallish interval jected features are strongly concentrated about the value
of [a. - 15, a., + 15] covers approximately 42, 53, 75 of the true 3D length ratio (in this case s, = 1), and
and 96 percent of the sphere, respectively. To guarantee this concentration becomes more pronounced as a,, ap-
that most of the sphere (say 80 percent of it) falls within proaches zero (similarly for 180 degrees). A more re-
the interval, Ac has to be approximately 55, 34, 16 and vealing picture can be gained by counting the number of
8 degrees for each of the a,,, respectively, views from which s falls within some interval about the

true feature s,,, = 1. Again, for reasons of symmetry, the
5.4 Relative size, s. interval is taken to be [1/As, As].
Relative size, s, is the ratio of the two projected seg- Figure 10 shows the percentage of the view-sphere that
ment lengths or, s = -

5
3I/Ip2 - fi !. This feature is falls within this interval for various As ranging from 1 to

affected by the same view and 3D line segment structure 8 and a,. of 90, 45, 22.5 and 11.25 degrees. The amount
parameters as a, for the same reasons, except that s is of the view sphere that falls within an interval clearly
also clearly affected by the ratio of the lengths of the 3D gets larger as t,,, decreases. For the values of ca,, studied,
segments, s,,,. Thus, 2D feature a is strictly a function the smallish interval of [1/2, 2] covers approximately 53,
of view (k, 0), the angle between the 3D line segments 64, 80 and 93 percent of the sphere respectively. To
ca,, and s,,,. Without loss of generality, this function can guarantee that most of the sphere (say 80 percent of it)
be represented by considering the same 3D line segment falls within the interval, As has to be approximately 3.6,
configuration as for a, except that A is scaled by ,,. 2.8, 2 and 1.5 for decreasing values of a,, respectively.
By considering the projections of this configuration, we 5.5 Relative position, u
get the following expression for s: Relative position comes in two components (u, v) mea-

3 = Ip'iI/IPl, sured in orthogonal directions in the image plane (Sec-
f2 = irR#,e(cos(a, 0/2),- sin(caw/2), O)T tion 5.1). Due to space considerations, we will present
f4 - s=.rR#,o(cos(ato/2), sin(caw/2), 0)T an analysis of the view variation of u only, and refer the

reader to [Burns90] for a discussion of v. The feature
From the above equations, s is simply a linear function u _ (5 - 5i)(f2 - pi)/I(pi - ;Q)J2 .

of s,,. The variation of s as the view varies, for different The 2D relative position features are functions of the
ac,, can be appreciated by observing the ratio of lengths vectors (f2 - fl) and (f3 - p ) instead of (f2 - fl) and
of the projected line segments in Figure 6(c,d). Contour (f4 - p3). This means that the situation is exactly the
plots of s as a function of view (4,, 0), for different a,,,, same as for the 2D feature s except that u is a function
can be found in [Burns90]. From the equations and plots, of the view (4,, 0), the 3D angle 3,, (instead of a,,) and
it is clear that: the 3D length ratio t,,, (instead of sm), for P,, and t,,

" When a,, is zero (i.e., the 3D segments are parallel) defined in 5.1. Without loss of generality, this function

then s is constant (sin) for all (0, 4). can be represented by considering a 3D line segment con-
figuration equivalent to the one used for s, except that

As (,, approaches zero, the variation as a function P3 is in the position of P4 , and the relevant angle and
of (6, 4) is slow over most of the views, length are 0,, and t,,,. By considering the projections of

* When a,, > 0, there always exists some view where this configuration, we get the following expression for u:
s = oo and s = 0. In other words, as in the case ofa,
s covers the full range of possible values. The value U P3P2/P12,
s approaches 0 when (0, 4) approach (90, a,, /2) and f2 = 7rRp,o(cos(3l/2),- sin(Q3/2), O)T
(90, 180+ a,, /2). This is when the view aligns with
the second segment. It approaches oo when (0,4,) -t)rR,e(cos(3,,/2), sin(3,/2), 0)T
approach (90, -a,,/2) and (90, 180 - a,,/2) - when As in the case for s, u is a linear function of the 3D
the view lines up with the first segment. distance ratio t,,, and the following observations can be

" As in the case of a, s is slowest in variation when made for the case of u:
the view is most normal to the plane containing the * Whcn P,, is zero (i.e., the 3D points P1 , P2 and
segments (0 = 0). At this point s = s,,. Also, P3 are collinear), u is constant (t,,) for all (0,4,).
variation in s is still fairly slow for views near the This is analogous to the special invariant called the
Z axis, especially if the 3D angle a,, is reasonably approach ratio in [Brooks8 1].
small. s As /6, approaches zero, the variation as a function

Figure 9 shows the histograms of the number of views of (0, 4,) is slow over most of the views.
that fall within regular intervals of s for various 3D an-
gles of a,,, with s,,, set to one and the same view sam- "In this way, the length ratio a = 1yi /lp has the same
pling scheme as in Section 5.3. The projected size ratio variational behavior as its inverse, which seems reasonable.
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" When j3, > 0, there always exists some view where are parallel (a,, = 0 or /, = 0) each feature becomes
= oo and u = -oo. In other words, u covers the invariant to view. When they are non-parallel, each fea-

full range of possible values. The value u approaches ture always varies across its whole range of possible val-
oo when 0 = 90 and 4' approaches -6/,12 from a ues. In the case of s, u and v, the values "blow up" (i.e.,
counter-clockwise direction, and it approaches -oo assume their extreme values) when the view aligns with
when 6 = 90 and 4' approaches -3,,, /2 from a clock- a 3D displacement of importance to the feature. In the
wise direction (the view is lining up with (P2 - PI) case of a, extreme values occur when the view lines up
from different directions). It approaches zero when with the 3D angle bisector or a position in the object
(0, 4) approach (90,3,,/2) (this is when the view plane normal to it. In spite of the fact that the pro-
lines up with the displacement vector (P3 - P])). jected features vary across the full range of their values

" As with the projected features already discussed, u for most 3D line segment configurations, all of the fea-
is slowest in variation when 0 = 0 (i.e., the view tures seem to vary reasonably slowly for a usable range

is most normal to the plane containing the points views positioned away from the planes containing the

PI, P2 and P3 ). At this point, u = t,,, cosP8.. Also, object points; i.e., 0 << 90. This is especially true for

variation in u is still fairly slow for views near the smaller 3D angles (a,, or/3T,).
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POSE REFINEMENT: APPLICATION TO MODEL EXTENSION

AND SENSITIVITY TO CAMERA PARAMETERS

Rakesh Kumar and Allen R. Hanson

Computer and Information Science Department
University of Massachusetts at Amherst *

Abstract Two important camera parameters which often need to
be calibrated are the focal length and the image center.

In this paper, we study the effect of errors in estimates In this paper, we study the effect of errors in estimates
of the image center and focal length on pose refinement of the image center and focal length on pose refinement
and other related (3D inference from 2D images) prob- and other related (3D inference from 2D images) prob-
lems/algorithms. The goal in pose refinement is to find lems/algorithms. The pose refinement algorithms used
the rotation and translation (or location) matrices which in the experiments are described in [6]. The conclusions
map the world coordinate system to the camera coor- drawn, however, are independent of the particular alg'-
dinate system. We show that for "small" field of view rithm used.
imaging systems, incorrect knowledge of the camera cen- The image center is often assumed to lie at the cen-
ter does not affect the location of the camera signifi- ter of the image frame. This default center has been
cantly. The rotation is affected however, and the amount reported to be off by as much as 30 pixels for some stan.
of error in the rotation is linearly related to the incor- dard camera and frame grabber combinations [8]. Cal-
rect estimate of the center. Finally, it is shown that ibration techniques using either lasers or high precison
incorrect estimates of the focal length only significantly calibration plates have been used to locate the center to
affects the z-component (i.e. parallel to the optical axis) within a few pixels [4,8,10]. Is this precise calibr,tion
of the translation in camera coordinates. neccessary? The analysis presented here shows that it

The output of the pose refinement algorithm is used to depends on three factors:
calculate the relative orientation between the coordinate
frames of the same camera in two different positions as
a prelude to computation of 3D depths of new points by ested in.
triangulation. A model of error for this depth is con- 2. The level of accuracy desired in the results.
structed based on the amount of error in placing the im- 3. The amount of noise in the input data.
age center. The errors predicted by this model conform
to the errors obtained for experiments with synthetic and The goal in pose refinement is to find the rotation
real data. The induced stereo process is extended to mul- and translation matrices which map the world coordi-
tiple frames to make robust estimates of the 3D locations nate system to the camera coordinate system. Given the
of new points. This process is called Model Extension. rotation (or orientation) and translation, the location of
Results are presented for two real image sequences. New the camera with respect to the world coordinate system
points are located to an average accuracy of 1.5mm and can be computed. We will show that for small field of
0.3 feet for the two sequences respectively, view imaging systems, an error in the estimation of the

camera center does not affect the location of the cam-
1 Introduction era significantly. The rotation or orientation is affected,

however, and the amount of error in the orientation is
The standard model adopted for imaging 3D scenes by linearly related to the error in the estimate of the center.
CCD and other cameras is perspective projection. A An application of the pose refinement process is model
ray from the camera focal point to a 3D point inter- extension. Given a partial model of the scene, it can be
sects the image plane at the image location of the 3D used to obtain robust 3D estimates of new image fea-
point under perspective projection. The optical axis is tures, effectively extending the model. From the poses
defined as the perpendicular line from the focal point computed using the partial model for two images taken
to the imaging plane and the image center is defined as from the same camera, the relative orientation between
the point where the optical axis pierces the image plane. the two image coordinate frames is computed as a pre-

lude to "induced stereo" analysisi. Using the computed
*This research was supported by the following Defense Ad-

vanced Research Projects Agency grants F30602-87-C-0140, 1We use the term "induced stereo" to refer to the pro.
DACA76-89-C-0017 and National Science Foundation grant cess of estimating 3D locations of points from triangulation
DCR8500332. given the relative orientation between the same camera in
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relative orientation, the 3D depth and location of points of all the image pixels in one data set by the amount
( in the coordinate frame of one of the cameras) is corn- the center estimate is offset. Associated with each of the
puted using triangulation. In the third section of this pa- input data sets is a camera coordinate frame. The re-
per a model of error for this depth is constructed based sult of the pose refinement process is to determine the
on the amount of error in locating the image center. The rigid body transformation between the world coordinate
errors predicted by this model are consistent with the frame and the camera coordinate frame. Let "W" repre-
errors obtained when applying the pose refinement algo- sent the world coordinate frame, "Cl" the camera coor-
rithm [6] to both synthetic and real data. We show that dinate frame with the correct center and "01" the cam-
these errors are small compared to the errors caused by era coordinate frame with the offset center; then
image noise of up to 0.5 pixels for 512 x 512 images with
24 deg. field of view and 3 feet long stereo baselines2 . X.; = Ri(X.) + Tcl (1)
Furthermore, if the 3D coordinates of the triangulated In this equation, the rotation Rcl and translation Tci re-
point are transformed to the world coordinates using the late a 3D point Xc1 in the first camera coordinate frame
computed pose, the error in 3D location is only due to "C1" to its coordinates X,, in the world coordinate frame
second order effects and hence negligible for small field "W". Points in the camera coordinate frame "01" are
of view systems. In section 4, the induced stereo pro- related to points in the world coordinate frame "W" by
cess is extended to multiple frames. Image tokens are equation:
tracked over a sequence of frames using the computed equation(
optic flow between pairs of successive frames. Results = Ro1(Xw) + T01  (2)
are presented for txo real image sequences. New points We would like to find the relationship between the two
are located to an average accuracy of 1.5mm and 0.3 feet camera coordinate frames "C1" and "01". As noted
for the two sequences respectively, earlier the only difference between the image data as-

The results derived for induced stereo, showing the sociated with the two frames is a constant shift of all
effect of errors in locating the image center on the rela- the pixels. Let these be AC, and ACy in the X and Y
tive orientation between pairs of frames, are also applica- image frame directions, respectively; these shifts corre-
ble to recovery of structure from motion algorithms [5]. spond to the offset of the image center for the second
Experiments for motion in depth show that these for- data set. The displacement of image points between two
mulae were able to predict moderately well changes in frames due to rigid motion [2] is given by the following
relative orientation3 as computed by Horn's algorithm equation:
[5]. However, the formulae did not predict the errors
well for experiments with motion parallel to the image ly .- (f + + + VT - T)
plane. In the case of induced stereo, the formulae were a = f - (3)
accurate in their predictions for both kinds of motions. f Z

Note that structure from motion algorithms are espe- 6 = Y + yl)Q - - X + (T- yTZ) (4)
cially non-robust when the motion is parallel to the im- f f Z
age plane [1]. where

Finally, in the last section of this paper, the effect of where
incorrect estimation of the focal length on the pose re- a, are the image displacements in the lyaxis re-
finement problem is studied. We show that incorrect es- spectively.
timates of the focal length only significantly affects the (Q2, , 1) are the small angle approximations to ro-

z-component (i.e. parallel to the optical axis) of the tation about the X V and Z axis respectively.
translation. The x and y components of the translation (T, Ty, T,) is tht translation along the (X, I', Z) axis

and the rotation are not affected significantly. However, respectively.
the location of the camera in world coordinates will be af- Z is the depth of the point in the first coordinate
fected since the z-component of the translation changes. frame.
Again, experimental results on real data are presented f is the focal length of the camera in pixels.
to support the theoretical claims. (x, y) is the location of the point in the first image

frame ("C") and (za, yj) is the location of the point ia

2 Errors in the pose refinement the second image frame ("01").
Between the two frames "Cl" and "01", a = ACz

problem from center offsets and 6 = AC, i.e. both are constant for all points in the

The question asked is this: given two input data sets to image. What transformation can account for this con-
the pose refinement problem (the first with the correct stant shift ? If we assume the field of view of the cam-image center and the second with an offset image cen- era is small, then second order terms such as xxi, xlyter) how are the thwo resulting poses related The only etc. can be neglected. If the scene being imaged is notdifference be tw ewo data sets s a constant offset a frontal plane, i.e. "Z" is not constant for all points4 then the only transformation that can cause a con-
two different locations. stant change for a general set of points is the rotations

2Therefore image noise is the most significant factor in &I and Sly about the X and Y axis; everything else
determining accurate 3D depths.

3Due to errors in locating the image :enter. 4Frontal planes are dealt with later on.
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(i.e. f0,, T., TV and T,) will be zero. The following two a and 0 and therefore more than one pose can explain
equations express this relationship: the same input data. The same observation has been

made for the structure from motion problem by other
ce = AC = -=fll (5) researchers [7]. The above model will also break down

,6 = ACy = ffn (6) for large field of view imaging systems (e.g. beyond 45

Let the rotation operator Alt represent the overall ro- deg. field of view), i.e. when the second order effects

tation composed of the rotations f1, and fP about the cannot be ignored.

X and Y axis. The two coordinate frames "Cl" and 2.1 Experimental Results
"O1" are therefore hypothesized to be related by a rota- In an earlier paper we described algorithms for pose es-
tion AR: timation given 3D model - 2D image point and line cor-

Xo1 = AR(X=I) (7) respondences [6]. We show results from our pose algo-
Combining equation (7) with equation (1) we get: rithms for two image sets with different errors in the

locating the image center. The images (512 x 484 pix-
Xo1 = A/Rl(X ) + AR(TCl) (8) els) were acquired using a SONY B/W camera (model

Comparing equation (8) with equation (2) we see that: AVC-D1) interfaced to a GOULD frame grabber. The
field of view of the imaging system is approximately 24.0

R.o = AR& 1  (9) degrees. For each set of image data, a new data set was
T.1 = AR(T ) (10) created by adding a constant pixel offset to the x and y

coordinates of the image data of the original set.
The above equations reflect how the orientation Ro, and The first image (Fig. 1) is of a hallway; the door in
location of the world origin in camera coordinates T 1  the image is 40 feet distant from the camera. Fig. 1
are altered with incorrect knowledge of the center. The shows the first set of input image lines to the pose al-
location of the camera origin in world coordinates T, is gorithm. Two more sets of input data were created by
given by the following equation: adding center offsets of 10 and 20 pixels respectively.

T, = -RT(T )  for camera frame C1. (11) Fig. 2 shows the projected lines after estimation of pose
1 cafor the first (original) set of input image data. Fig. 3

T,,, = -RT1 (T 1 ) for camera frame 01. (12) shows the projected lines after estimation of pose for the

Using equations (9, 10) and the above equation for T,,,, third set (center offset of 20 pixels) of input image data.
vie get: Note that to display the data in Fig. 3, the original in-

tensity image was shifted by 20 pixels on each axis (cor-
T, R - AAR(T.l) = -R(Tc) = T, C1  (13) responding to the center offset). It is clear from Fig. 2

and Fig. 3 that the projections align with their respec-

Therefore an error in estimating the image center does tive input images in a very similar manner. The results
not affect the location of the camera in world coordinates for location of the camera in world coordinates for the
significantly. It is only affected if the second order terms three different center offsets is given in Table 1 under the
in the motion displacement equations (3,4) are signifi- heading "HALLWAY IMAGE". The final location (in
cant. For small field of view imaging systems, they are feet) in world coordinates (for scenes and images
not significant. However, the orientation of the robot is as shown in the figure above) changes only by a
affected; the amount it is affected depends on the values few tenths of an inch. The (0,0) offset corresponds
of (AC., AC.). For instance, for a camera with field of to the projected model in Fig. 2 and the (20,20) offset
view 24 deg. and a 512 x 512 image, a 30 pixel offset in corresponds to the projected model in Fig. 3.
the camera center in either x or y coordinate would cause The second image is shown in Fig. 4. The camera was
a rotation error of 1.427 deg. about the corresponding about 650 mm distant from the top corner of the box.
ayis. Whether changes in orientation of this order are The fifteen points marked by crosses in Fig. 4 were pro-
significant or not depends on the application. vided as input to the pose refinement algorithm. Three

Finally, in the case of frontal planes, the depth value new image data sets were created by adding center offsets1Z" is the same for all points. Therefore in the motion of (10,0), (10,10) and (20,20) respectively. The results
displacement equations (3,4) both the translation com- of locating the camera for these different data sets are
ponents T, Ty and rotation terms Qx, Sl can account shown in Table 1 under the heading "BOX IMAGE".
for the constant displacement. In this case, the model of As can be seen from the table the location of the cam-
chang in pose as given in equation (7) may not be cor- era changes by only 1 or 2 mm for different center off-
rect, However, the reader is renmiided that frontal planes sets. Although results from only two images are pre-
are typically a degenerate case for pose. Even if we have sented here, the above behaviour has been observed for
a correct estimate of center, since "Z" is constant, there numerous other images.
could be an incorrect pose related to the correct pose by
a transformation composed of translation components 3 Errors in induced stereo from center
T, Ty and rotation components f11, P. The image offsets
transformations caused by rotation (f11, fl) can be can-
celled by the transformation due to translation (T,, TV) Given two image frames from the same camera at two
in equations (3,4) leading to approximately zero values of different positions, the relative orientation between the
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point to them are r,1 and r.2 respectively, the formula
Table 1: Location of camera in world oordinates for depth D, of the 3D point obtained by triangulationas compn~ted by the pose refinement algorithm in the first camera coordinate frame is:

for two sets of real image data with different cen-

ter offsets. D = = s 2ro,' ) (24)

Center Center LOCATION in 'v 0 RLD = (rc X Rc 2 (ri))' (T 12 x RCl2(rc2)) (25)
Offset X Offset Y I b., I?,I1(rc, x Ro 2(r. ))II 2

.,HALLWAY IMAG_ In this equation s is the length along the 3D ray cor-
pixels pixels feet- --feet feet responding to the vector r,1 from the origin of the 3D

Meaured Location 4 4.00 4 3.57_ point and . is the unit vector along the z-axis.
0 0 39.98 4.09 3.57 For the frames "O1" and "02" the unit vectors for the

10 10 40.00 4.09 3.58 same points ro, and ro2 corresponding to points r, 1 and
20 _ 20 40.02 - 4.09 3.58 r, 2 in frames "Cl" and "C2" can be approximated as

BOX IMAGE __- before 6 by:
pixels I pixe s mm mm m

0 j 0 418.23 260.521 381.37 ro1  - AR(rci) (26)
10 0 417.94 '260.49 381.72 ro2  - AR(rr2) (27)
10 10 417.27'1 260.56 380.85 Combining these two equations and equation (24), the
20 20 416.68 260.71 380.51 depth of the same 3D point in the image frame "O1"

coordinate system is:

camera coordinate systems for the two frames can be Do = s(ro1 . i) = s(A.R(rl) . 2) (28)
computed using a pose recovery algorithm. The rela- Note that the length along the 3D ray has not changed
tionship of the two cameras with respect to the world in the offset center case, i.e. frme "01-02" as compared
coordinate system is found and from that the relative to the correct center pair "Ci-C2". However, the depth
orientation is computed. Let the two frames with the of the point changes because of the rotation of the unit
correct center be "C1" and "C2"; their relationship to vector r,1. The X and Y coordinates of the 3D point are
the world coordinate system is: also similarly affected.

Xcl = Rci(X.) + T 1  (14) From the above derivation the percentage error in

Xe2  = R02(X,,) + TX2 (15) depth can be predicted by the following formula:

Combining these equations, the relative orientation %Derr - c + ACrcli 100.0% (29)
between the frames "Cl" and "C2" can be expressed frcis
by: We use this error to predict the percentage depth error

X =1 = Ro12(Xc2 ) + T12 (16) due to incorrect center and compare it with the actual
depth errors found when running pose and the triangu-

R 2  -Rc (17) lation algorithm on synthetic data. We also compare

T1 2 = (T,: - R:1RT(Tc2)) (18) the errors in depth computation due to an incorrect es-
timate of center and noise in the image locations versus

Similiarly, let the frames with the incorrect center be data with a correct estimate of center but no noise be-
"O1" and "02". The relative orientation between these ing present. As results show, the error for even small
frames is given by: amounts of image noise are much larger than error due

Xo1 = Ro12(Xo2 ) + T.12  (19) to incorrect center placement.
Roi,2 = RoIRTo (20) Note if the triangulated 3D point is transformed to

o2  () world coordinates, then the only error will be due to

T 12  = (T, - Ro0 R~o(T.2)) (21) second order effects. The center offset causes the 3D
Using equations (9,10) and some algebraic manipula- point to be rotated by AR in the camera coordinate sys-iongwecanrewrite equations ( ad se abr an - tem and the subsequent transformation back to world

tion, we can rewrite equations (21) and (21) for AI:2 and coordinates cancels out the AR rotation.
T0 12 in terms of R 12, Tc1 2 and AR:

Ro1 = ApRc1 2A7 (22) 3.1 Experimental results for induced stereo

To 2  = AR(T2) (23) Experimental results are presented in this section for
synthetic data and real image data. A pair of images

The above two equations represent the error in the rel- is required to do each experiment for this section. Syn-
ative orientation if the center estimate is incorrect. If two thetic data was created by taking a model of a 3D scene
corresponding points in the two frames "Cl" and "C2" very similar to the hallway shown in Fig. 1 and pro-
are given and assuming the unit vectors5 from the focal jecting the 3D points onto to the image plane for two

5We define the rays corresponding to these vectors as pro- 'The approximation is ignoring the second order terms for
jection rays. small field of view systems.
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Fig. 1: 24 input data lines to pose algorithm. Fig. 4: Box Image. Points marked by crosses
512 x 512 image with field of view equal to 21 used for pose. Points marked by circles use for

deg.. depth estimation.

Fig. 3: Projected lines after estimation of pose,

Fig. 2: Projected lines after estimation of pose, image center assumed to be offset from frame

image center assumed to be frame center; input center by 20 pixels along each axis. Note, to

data lines are shown in Fig. 1. display this flgure, the original intensity image
shown in Fig. 1 was shifted by 20 pixels Along

each axis.
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different positions of the camera (induced stereo base-
line was approximately 3.0 feet). Twenty points in total Table 3: Computed average depth errors for syn-

were used, out of which only 9 were used for pose cal- thetic uniform noise data with and without cen-

culation. Depth computations were done for all twenty ter offsets. 512 x 512 irnlage with 24 deg field of view,

points. The imaging frame was assumed to be 512 x 512 center offset by 30 pixels for each axis, 3 feet long stereo

with a field of view equal to 24 deg.. baseline.

The box image shown in Fig. 4 was the first frame Image Noise Center Offset
used for the real image data. The second image was ob- Noise only plus Noise
tained by rotating the box by approximately 25 degrees jj pixels % Depth Err % Depth Error
about its central vertical axis. The fifteen points marked r 0.0 0.000 0.277
by crosses in Fig. 4 were used to compute the pose for 0.1 0.124 0.300
each frame. Depths were computed for the fifteen points 0.2 0.247 0.350
marked by circles in Fig. 4. 0.5 0.623 0.661

0.5 1.366 1.4321.0 .43 .2

Table 2: Predicted percentage average depth er- 1.5 43 24

rors versus computed average depth errors for I. .0 2.133 2.240

different center offsets for synthetic and real im- 5 3.0 5.653 3.8676

age data. 105.0 ]51.63 51.76

Center Center 1 Predicted Computed
Offset X Offset Y % depth % depth

pixels pixels error errorJ error due to an error in estimating the center.
SYNTHETIC IMAGE

10 1 0 0.063 1 0.047 3.2 Structure from Motion

10 10 I 0.085 0.091 The equ .dons which show the effect of errors ;n locat-
20 201 0.169 0.183 ing the unage center on the relative orientation between
30 30 1 0.254 [ 0.277 pairs of frames, derived in the case of induced stereo are
50 50 ] 0.423 ] 3.469 also applicable to recovery of structure from motion al-

BOX IMAGE gorithms. The error function E, matimized by Horn [5)
10 1 0 0.082 0.078 in his relative orientation algorithm given point corre-

10 1 10 0.141 0.172 spondences for a pair of frames is:
20 I 20 0.283 0.337 n

30) 30 0.424 0.495 Eh = Z((rcl x R 12(rc2i))" T:1 )2  (30)
50 50 0.707 J 0.789 i=1

where
In Table 2 we compare the predicted percentage av- rcli, re2i are the vector representations of the projec-

erage depth errors versus the computed average depth tion rays of corresponding points.
errors for various different center offsets for both the Rc12 and T 12 are the relative orientation parameters:
synthetic data and the box data. As can be seen, the rotation and translation respectively.
predicted depth errors compare quite favorably to the If we create two new frames, by shifting the original
computed ones. The very small difference between the image data by an offset corresponding to the error in lo-
predicted and computed errors car be attributed to the cating the center, the error function Eh to be minimized
second order effects which were ignored. is:

For the comparision of error due to incorrect center n
versus error due to noisy image locations, we added var- Eh = Z_((roli x R 12(ro2 i)) " Tol2)2 (31)
ious amounts of uniform pixel noise to the synthetic im- %=1
age data. The center was offset by a constant amount of Substituting in equation (31) for the new projection
30 pixels in each axis for this experiment. From Table raystiuti in equation ( 6) and th 7 and p r
3, it can be seen that at noise leveis of greater than 0.5 rays (r ,1, a n tT) using equations (26) and (27) and for
pixels, the error with and without center offset are com- the rotation Re c l and translation To12 using equations
parable. It is only at image noise levels of lcss than (22) and (23) respectively, we can show that:
0.5 pixels that the error due to incorrect center is Eh, = Eh (32)
significant. Of course, if we increase the induced stereo
baseline and are able to make more accurate 3D mea- Therefore, if Eh is minimum for the rotation R,12
surements from induced stereo, then the 3D error caused and translation T12 then EO is minimum for the ro-
by incorrect center estimates will become comparable to tation R1i 2 and translation T,12 which are related to
3D errors at larger levels of image noise. To conclude, (Rol 2 , TMl2 ) by equations (22) and (23). The change in
given a particular stereo configuration and expectation relative orientation caused by errors in estimating the
of image noise, we can calculate the significance of 3D center are predicted by equations (22) and (23).
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Experimentally, these formulae were able to predict Since the image projection rays do not intersect at a
moderately well changes in relative orientation7 com- unique point, an optimization procedure is used to min-
puted by Horn's algorithm [5] for motions in depth but imize the sum of squares of the perpendicular distances
not at all accurately for motions parallel to the image from the 3D pseudo-intersection point to the image pro-
plane. Note that structure from motion algorithms are jection rays. The error function E minimized is:
especially non-robust when the motion is parallel to the n
image plane. E = I(ci(X.) + Ti) x ri[ 2  (33)

i=1

4 Model Extension Using elementary vector algebra, we can show that E is:

An application of the pose refinement process is model
extension. Given a partial model of the scene, it can be E = Y(DiRci(Xw)+TcII2-((Rc,(X)+Tc,).r,)2) (34)
used to obtain robust 3D estimates of new image fea- i=1
tures, effectively extending the model. In the preti.u. In this equation, the unknown variable is the 3D point
section, we discussed how this can be done using tri- in w inat e Dfn tiain ithespect
angulation and two image frames. However, two image Xo in world coordinates. Differentiating E with respect
frames provide only one 3D measurement of the point. to X and setting the resulting expression equal to zero
To increase the robustness of the computations, 2D in- results in a set of linear equations in X,:
formation from a sequence of frames is combined. In n n
this section, we present techniques for computing 3D es- nX - -(X,.r!)r = - a ; (35)
timates of new points in the world coordinate system ii=
using a sequence of frames and a partial 3D model of where
the scene being imaged. ? RT(r)

Image features (both new features and modelled im- Ri tai= R1T,(Todi - (Te+ ,
age features appearing in the images) are tracked over i te - for o

a sequence of frames using the computed optic flow be- Thus the algorithm for -mod-) e'Lenzior cax he inm-

tween pairs of successive frames [11]. Typically we track marized as follows:
corners (defined by the intersection of two image lines) Step 1 Given a partial 3D nodel a.ij an imaI,., estab-
although any image feature which can be reliably tracked lish correspondences between .aodel p.,W'ns and im-
may be used. The initial matching of image lines to age points using a matching techUi,1ae such as in
the partial model for the first frame may be done by a [3].
matching process such as in '3' Combining the results of Step 2 Track image points over a sequence of frames
the initial matching and the feature tracking, correspon- using the computed optic flow between successive
dences between image features and the partial model for pairs of images [11.
each frame are established. Using these correspondences, Step 3 Using the correspondences established above be-
pose estimation is done for each frame. The image pro- te n te oins po nts, co e te
jection ray for an image poin' for a particular frame is tween model points and image points, compute the
defined as the ray originating from that frame's optic pose [6] for each image frame.
center and passing through the image point. Given the Step 4 Estimate the 3D location of a new point in world
pose estimates for each frame, the vectors corresponding coordinates using the linear system of equations (35)
to these projection rays in the world coordinate system and the feature correspondences established in Step
can be obtained. The 3D estimate of the point is the 2.
pseudo-intersection of all the image projection rays for
a tracked image point. A nice property of this system 4.1 Experimental Results
is that in order to combine 3D measurements from a se- This algorithm has been applied to two image sequences.
quence of frames, a stable coordinate frame should be Fig. 4 and Fig. 5 show the images of the 1'st and 14'th
used; the pose estimation process provides the world co- frame in the BOX and PUMA sequences respectively. In
ordinate system as this stable coordinate system. Inde- both experiments the image center was assumed to be
pendent measurements can be made relating the coordi- at the center of the image frame and the effective focal
nate system of each frame in the sequence to the world length was calculated from manufacturers spec. sheets.
coordinate frame. Calibration for intrinsic camera parameters has not been

We now describe how the pseudo-intersection is done. done.
Let r, be the unit vector corresponding to the image The first sequence (refered to as the BOX sequence)
projection ray for an image point in the i'th frame. The was generated by rotating the box (in Fig. 4) about its
pose estimation for this frame is given by the rotation central vertical axis, the camera being kept stationary.
R., and translation T, (see equation (1)). We wish to Consecutive images in the sequence were taken after a
find the 3D point Xt, in world coordinates which is the rotation of approximately 3.6 degree [9]. The camera
pseudo-intersection of all the image projection rays for was about 650 mm distant from the top front corner of
the tracked image point over the entire sequence. the box. The location of 30 points (marked in Fig. 4) in

a world coordinate system was measured to an accuracy
'Due to errors in locating the image center. of approximately 1 mm along each axis. The depth of
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the points (in the first frame's coordinate system) used 32 points were tracked over the entire set of 30 frames.
in our experiment varied from 575 mm to 700 mm. The
thirty points were tracked over the set of 8 frames. The
fifteen points marked by crosses in Fig. 4 were used to Table 4: Absolute and Percentage 3D location er-
do pose estimation [6] for each frame. Computed 3D rors for points in PUMA sequence (see Fig. 5.)
estimates of the remaining 15 points (marked by circles
in Fig. 4). were compared with measured 3D locations Point Depth Absolute Percentage
for these points. The average error in the computation Num. Error Error

was 1.42 mm. The maximum error was 2.16 mm and the I feet feet
minimum error was 0.48 mm. The average percentage 1 24.59 0.616 2.50-%
error was 0.25 %. The percentage error is calculated 2 26.02 0.355 1.36 %
by dividing the absolute 3D error by the depth of the 3 28.32 0.373 1.32 %
point from the origin of the camera in the first image's 4 22.06 0.440 1.99 %
coordinate frame. 5 30.20 0.217 0.72 T

In this experiment, the high accuracy with which 3D 6 28.62 0.281 0.98 %
parameters of the new points were computed is due pri- 7 31.56 0.472 1.50,%
marily to the fact that the motion over the sequence is 8 32.61 0.038 0.12 %
approximately parallel to the image plane. Such mo- 9 14.33 0.125 0.87 To
tion is best for accurate triangulation. Moreover, due 10 15.34 0.279 1.82 0

to the rotation about an off-centered axis, image fea- 11 14.46 0.019 0.13 %
tures remain in the image plane for the entire sequence 12 13.50 0.081 0.60 o
and large image disparities are obtained. Unfortunately, 13 21.75 0.054 0.25 o
similar results are not obtained when the motion of the 14 18.81 0.022 0.12 %
camera is mostly in depth. In this case, the displace- 15 21.73 0.036 0.179o
ment of image points near the FOE is small and not 16 20.28 0.104 0.51 T
many points remain visible for a large number of frames. 17 21.26 0.402 1.897

In the first experiment described above for the box 18 20.28 0.731 3.60 %
sequence, the image center was assumed to be at the 19 21.55 0.234 1.09 %
frame center. In another experiment, the image center 20 20.42 0.594 2.917
was assumed to be displaced by 15 pixels along each axis
from the frame center. The experiment was repeated and The twelve points marked by crosses in Fig. 5 were
the 3D locations of the points obtained; comparing these used to do pose estimation [6] for each frame. Table
locations to the previously computed locations, we found 4 shows the errors in computing the 3D locations of
that the new estimates of the 3D points were off from the the remaining 20 points (marked by circles and num-
previously computed estimates by an average distance of bered in Fig. 5). The point numbers in Table 4 corre-
0.261 mm. This supports the earlier claim that incorrect spond to numbered circled points in Fig. 5. The depth of
estimates of the center do not affect the 3D estimation each point from the first camera coordinate frame is also
of points significantly for small field of view systems (24 shown s . The average error for the twenty points used
deg. for this sequence). was 0.27 feet. The maximum error was 0.731 feet and

The second sequence was generated by fixing a cam- the minimum error was 0.019 feet. The average percent-
era to a PUMA arm and rotating the arm by 4 degrees age error was 1.22 %. The reader must note that this
between consecutive positions of the camera. The field average is just over a set of 20 points. There are points
of view of the imaging system was 40 degrees. Fig. 5 in the sequence for which the error is much larger then
shows the 14'th frame of this sequence (refered to as the 1.2 %. Points 1-4 in Table 4 have large errors because
PUMA sequence). The plane of rotation of the cam- they were not localized accurately. The line-finding al-
era is approximately parallel to the image plane. The gorithm was not able to correctly find the borders of the
axis (off-centered) of rotation intersects the image plane lights. Points 18 and 20 have large errors because they
somewhere between points 8 and 18 in Fig. 5. The radius are close to the point where the rotation axis pierces the
of rotation is approximately 2 feet. Thirty frames were image plane. These points therefore do not have large
taken and the total angular displacement is 116 degrees. disparities. Points 17 and 19, which are a little further
The maximum displacement of the camera in these thirty away, have correspondingly smaller errors. Finally, as
frames is approximately 2 feet along the world y-axis noted above the imaging system has not been calibrated.
(vertical direction) and 1 feet along the world x-axis Since we used a higher field of view lens for this exper-
(parallel to the x-axis of the image in Fig. 5). This cor- iment (40 deg. as compared to 24 deg. for the BOX
responds to the longest baseline over these 30 frames, sequence), the 3D results are more sensitive to errors in
The location of 32 points (marked in Fig. 5) in a world locating the image center.
coordinate system was measured to an accuracy of ap-
proximately 0.2 feet along each axis. The depth of the 8 Since the plane of mo.,ion was roughly parallel to the
points (in the first frame's coordinate system) used in our image plane, these depths are approximatley constant for the
experiment varied from 13 feet to 33 feet. Most of the entire sequence.
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5 Inaccurate Estimates of the Focal since their estimation does not depend on knowledge of
Length the focal length.

In practice [6] we may minimize other error functions
The focal length of the lens supplied by lens manufac- to do pose refinement. Based on the above analysis we
turers are generally quite accurate. However, when the hypothesize that an incorrect estimate of the focal length
lens is focussed on points close to the camera (i.e. when would only significantly affect the T, component of the
the camera is not focussed to infinity) the effective focal pose parameters for other pose refinement methods9 .
length of the system must be established by a calibration This hypothesis has been supported by experiments us-
procedure [10). In this section, the effects of incorrect ing both synthetic and real data and the pose refinement
estimates of the focal length on the output of the pose algorithms described in [6]. Results of some of these ex-
refinement process is examined. periments are shown in Table 5.

The image projection (z, y) of a world point X,, given The experiments were performed using the synthetic,
an estimate of translation T and rotation R, is: hallway and box image data sets described earlier. In

(R(X,#) + Tr). each case, we ran the pose refinement algorithm using
Z- f(R.(X.) + T)_ (36) the correct focal length and incorrect estimates of the

z .focal length. The incorrect estimates of the focal length
= f (R(X.) + Tc) (37) were obtained by multiplying the correct focal length

(Rc(X.0) + T ). by a scale. Thus, in Table 5, entries in rows with focal
Dividing these two equations, we obtain: length scale 1.0 correspond to experiments with the cor-

rect focal length and entries with rows corresponding to
- (Rc(X.) + T). (38) scale not equal to 1.0 correspond to experiments with in-

y (R.(X.) + Tc)y correct focal lengths. Both the translation and rotation

The rotation operator can be represented as a (3x3) results of the pose are shown in Table 5. The rotation is
matrix: shown by its angle-axis representation. The axis vector

is a unit vector. As can be seen from Table 5 the only
8 2 (39) large change in any of the pose parameters for any of theR, ( experiments is in the T. component of the translation.

where si, i = 1, 2, 3 are the vectors corresponding to Although poses can be obtained whose projection fits
the rows of the rotation matrix Rc. Subsituting (39) into the orginal image data fairly well in the case of incor-
(38), equation (38) can be rewritten as: estimates of the image center, this is not the case for(38) equtio (38 ca be ewrttenas:incorrect estimates of focal length. Changing the focal

X (si. X. + T.) (40) length causes the projection of 3D points to be dilated
y (82. -X + Tzy) or contracted by a constant amount while changing the

T. component of the translation causes the image pro-This is a linear equation n the pose parameters jections to dilate or contract based on their depth from
si, s2, T= and T which can be rewritten as: the camera. As we have seen, however, the minimum of

n(s2 . X, + Tcy) - Y(s1 • X, + Tcz) = 0.0 (41) the pose error functions given incorrect estimates of fo-
cal length, leads only to a significant change in T,. This

One such equation is obtained for each world/ im- property of poor fits makes it comparatively easier to
age point correspondence. Given 5 or more point cor- calibrate imaging systems for focal length as compared
respondences, we can therefore solve the above sys- to calibrations for the image center.
tem of equations and get estimates of the parameters
S1, 82, Tc0 and Tcy. The rotation parameters S1, S2, how- Acknowledgements
ever, have quadratic constraints and therefore the above
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Table 5: Rotation and translation as computed by the pose refinement algorithm for the same sets of
images with different focal lengths.
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Abstract 1. Introduction
The goal of automated cartography is to generate an accurate The traditional method for obtaining a three-dimensional

three-dimensional model of man-made objects and natural model of the terrain and man-made structure involves matching
terrain. Some of the most challenging problems in cartography of stereo-pair imagery. Algorithms for stereo correspondence
exist in dense urban areas where the level-of-detail and scene can be grouped into two major categories: area-based and
clutter greatly complicate traditional feature extraction feature-based matching l . Both classes of techniques have
techniques. In this paper, we describe a comprehensive stereo advantages and disadvantages that depend on the task domain
analysis system developed to recover the three-dimensional and the three-dimensional accuracy required. Area-based
description of an urban area using high-resolution aerial approaches tend to be more robust in scenes containing a mix
imagery. Given an area of interest in terms of geographic of buildings and open terrain. However, for complex urban
coverage, our system can automatically find the appropriate scenes, feature-based techniques appear to provide more
stereo pair using a spatial database, select control points to accurate information in terms of locating depth discontinuities
register the two images so that epipolar geometry is satisfied, and in estimating height. No single technique performs well in
and recover disparity information using two complementary both circumstances. It is precisely for this reason that we are
matching techniques. investigating both methods of stereo matching with a goal of

utilizing multiple results to achieve more accurate and robust
We do not assume that the initial input images satisfy the three-dimensional interpretations.

epipolar geometry constraint as this is rarely the case in
unrectified aerial imagery. Therefore, we believe that stereo In both area-based and feature-based techniques, the epipolar
mapping research must explicitly address error and uncertainty constraint is used to simplify stereo matching by reducing it to
in both scene registration and stereo matching. We show how a one-dimensional problem. This is usually achieved by
a robust registration can be achieved using five different image registering the stereo imagery. The assumption that the scene
domain features that are automatically extracted and selected registration is ideal and that the epipolar constraint is totally
as control points for fine image registration. In the stereo satisfied, however, is rarely warranted in imagery digitized
matching process two techniques are utilized, an area-based from aerial photography. Careful local registration is often
and feature-based stereo matcher, to generate a disparity map required after the scenes have been coarsely aligned. Local
for a scene. We describe in some detail a new algorithm for registration needs a set of control points that are abundant, well
stereo matching based upon one-dimensional waveform distributed throughout the scene, and can be matched in the
matching. We show the results of each matcher on several stereo-pair. Typically, features such as road intersections have
complex scenes and the results of a merging process that been proposed for urban areas. However, our experience
attempts to fuse these disparity maps. Finally, we describe indicates that no single man-made or natural feature can satisfy
techniques to generate a rigorous performance analysis to all of these criteria across a variety of complex urban scenes.
compare stereo matching algorithms based upon a manually
derived three-dimensional ground-truth segmentation. In Section 2 we briefly present some recent results on

automatic control point detection and matching. In Section 3
we describe our two stereo matching techniques (Sl,S2), with
emphasis on a new feature-based matching technique (S2) that

1This research was primarily sponsored by the U.S. Army Engineer appears to give good results in complex urban scenes. We also
Topographic Laboratories under Contract DACA72-87-C-0001 and describe our initial results in combining disparity maps derived
partially supported by the Defense Advanced Research Projects Agency,
DoD, through DARPA order 4976, and monitored by the Air Force Avionics from both stereo matchers and we show some results on a
Laboratory Under Contract F33615-87-C-1499. The views and conclusions variety of scenes. Finally, in Section 4 we present a method
contained in this document are those of the authors and should not be for evaluating the result with respect to a manual three-
interpreted as representing the official policies, either expressed or implied,
of the U.S. Army Engineering Topographic Laboratories, or the Defense dimensional ground-truth segmentation and we show some of
Advanced Research Projects Agency, or of the United States Government. our experimental results.
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2. Scene registration corresponding points in tile two images to perform a relative

The primary goal of stereo photogrammetry is to determine orientation. As we will see, many of the techniques used in

the three-dimensional position of any object point that is computer vision to establish scene registration are

located in the overlap area of two images taken from two approximations to the photogrammetric ideal. These

different camera positions. The determination of the approximations cause the scene registration to be inaccurate

orientation of each camera at tile moment of exposure and the and have to be taken into account by the matching process.

relationship between the cameras is a necessary step in the
photogrammetric process. The camera orientation determines 2.1. Coarse registration using a spatial database
the relationship between the image points and ground points in The most common method to establish the relative

the scene. The classical epipolar geometry for stereo imagery orientation between two images is to select pairs of
establishes a very simple spatial relationship between corresponding points in the two images. One alternative

corresponding points in the left and right images. The solution method is to independently tie each image to a common frame

to the general camera orientation problem has four of reference. A cartographic coordinate system such as

components: the interior orientation, the exterior orientation, <latitude,longitude,elevation> is one possible frame of

the relative orientation, and the absolute orientation, reference. Thus, the two images are related to a ground

The epipolar geontry constraint cacoordinate system, or map. The use of landmarks with known
loThe spolargome c n saint causes conjugate points to <latitude,longitude,elevation> is a common method to orient

lie on the same scanline ill the left and right image. This each image. The overall accuracy of the registration is

dimensional search along the common scanline. Knoedto a one dependent on the accuracy of the three-dimensional position of
thedxim ua isariy lon the cnen sanlorderi wledge of the landmark and the accuracy with which we can recover thethe maximum disparity in the scene, and ordering of matches image position of the landmark. We use tie landmark dtbs

can be used to further restrict search along the epipolar line, component of CONCEPTMAP, a spatial database system that
This constraint is used as a common framework for most stereo integrates imagery, terrain, and map data to provide landmark
matching algorithms:2 , 3, 4, 5  However, these stereo matching descriptions6,7. Typically CONCEPTMAP provides a
techniques assume that the registration is ideal and that the registration accracy of between ten to thirty meters for

epipolar constraint is completely satisfied. For many risag ti acua of beten t e titme
applications in aerial image analysis one is often simply given imagery digitized to a 1.3 meter ground sample distance.

overlapping images or partial image areas where the eplpolar Figure 2-1 and 2-2 show a stereo imagL pair of an industrial
geometry must be derived, area taken from the CONCEPTMAP database. These images

were digitized from standard nine inch format mapping

1, the following section we present two methods for scene photography taken at the altitude of 2000 meters using a

registration given overlapping stereo imagery. The first camera with a 153 millimeter lens. One pixel in the image

method performs a coarse registration using landmarks from a approximately corresponds to 1.3 meters on the ground. The

spatial d,,tabase. The second method uses pairs of left image is a 512 x 512 sub-area selected from a 2300 x 2300
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image. The right image sub-area was generated by calculating disparity range for this scene. This disparity range estimate is
the <latitude,longitude> for the comer points of the left image directly used by the stereo matching algorithms to control
and projecting those points onto the complete right image. search for corresponding points and can greatly reduce initial
This projection is then used to extract the image sub-area from matching errors. In most research stereo systems the disparity
the complete right image. We have superimposed a set of range is either manually provided or it is set to what is
gridlines on both images in order to make it easier to see the considered to be a "sufficiently large" value. The drawback of
actual misregistration. the former approach is that it introduces a difficult manual step

in that the entire stereo model must be searched to find the
2.2. Fine registration using image control points minimum and maximum disparity points. The latter situation

As we have seen, the computation of the relative orientation can influence the accuracy of the resulting stereo matching
cAn be aomplshe scmpuating of corleonti . algorithm by causing some matches to be never considered, or

can be accomplished by selecting pairs of corresponding points decrease the efficiency by allowing large areas to be searched
in the two images. After the relative orientation is calculated, for which correct matches are impossible.
the two images can be transformed so that they satisfy the
epipolar constraint. We begin the fine registration with the For this experiment, we assume that a coarse registration of
coarse registration described in the previous section. We the two images, such as described in Section 2.1 has already
assume the transformation between the left and right image is been performed. Using this coarse correspondence, we are
isometric, (i.e. only translation and rot- ". After the able to limit the search to find corresponding features in the
transformation, the epipolar lines correspond to the scanlines. images. Most of the remaining error is translational rather than
However, problems with the accuracy of point selection led us rotational which simplifies the determination of corresponding
to develop a polynomial transformation adjusted by least points. Candidates for automatic control point generation
squares to fit the selected corresponding points, include shadow comers, shadow regions, BABE10 monocular

building hypotheses, uniform intensity regions, and elongated
2.2.1. Automatic selection using different features line structure pairs:

Clearly, one requirement for automated registration is the
automatic selection of corresponding points in the stereo pair Shadow corners: Shadow corners are good candidates for
images. There are two problems that must be solved. First we automatic detection and correspondence as well as for manual
must automatically detect potential landmarks in each image, selection. We use corners produced by the BABE system.
and then we must determine those landmarks that have been After removing comers that are inconsistent with shape and
found in both images. General landmark matching is an orientation constraints imposed by the sun direction angle and
unsolved problem and most automatic registration techniques estimated shadow intensity, we select sets of shadow comers in
rely on the matching of characteristic points8 that often have no both the left and right images. Figure 2-3 shows the comers
phyccal significance or relationship with the landmarks. found in the left image in white. The right image corners are

shown in black and are projected onto the left image using the
There are some important criteria for automated control point coarse registration. Those pairs of shadow corners that are

selection. First, since the elevation of the control points is not matched are shown as connected by a white line whose
known and we are using a simple geometrical model, it is endpoint circles indicate the conjugate points provided to the
important that the set of selected control points lie registration process.
approximately in the same elevation plane. Second, the
selection of control points should not rely on a single type of Building hypotheses: Control points can also be defined
scene domain feature, such as road intersections, since not all geometrically with respect to features or structures extracted
control point features are abundant in all scenes. For example, from the imagery. Building hypotheses generated by a
in urban scenes there are often many buildings and shadow monocular analysis system such as BABE can be used as match
regions available as candidate control points, and they are features. The center of mass of these structures is defined as
usually well distributed throughout the imagery. However, in the corresponding control points. Compared to shadow
airport scenes elongated line pairs and uniform intensity corners, control points defined by hypothesized buildings are
regions appear to be a better choice. In any case we use an not always accurate, but disambiguation of buildings is easier.
iterative selection algorithm 9 that converges to a consistent set Properties such as shape, size, and perimeter are good criteria
of control points that are usually a small subset of all of the that are not available for point features such as shadow corners.
possible matches in the stereo pair. Figure 2-4 shows the BABE boxes in the left and right images

with the matched features marked in the same manner as
Another advantage of using multiple features for control Figure 2-3.

point estimation is that the results of feature matching can be
used to estimate the disparity range of the scene. Once the Other scene features: We performed experiments to
scene is registered, all matched features can be remapped to the obtain control points from shadow regions, edges, and
new coordinate frame. It is then possible to calculate the segmented regions using simple histogram analysis. In each
disparity of each feature. Since all features are not at the same case, control points are defined as the center of mass of the
height, we automatically obtain a rough estimate of the structures. Shadow regions are extracted with traditional
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2.2.2. Evaluation of automatic registration ability to recover more feature-based control point descriptions

Table 2-1 shows the local accuracy of the different scene based upon other feature extraction systems, such as road
registrations performed on the industrial scene shown in detection and tracking12 .
Figures 2-1 and 2-2. POLY means that actual registration is
performed using a polynomial fit, whereas ISO means that the 3. Two Stereo Matching Techniques
images are registered using an isometric solution. Coarse Algorithms for stereo correspondence can be grouped into
registration is the result of CONCEPTMAP registration. Using a two major categories: area-based and feature-based matching.
set of manually selected control points we are able to evaluate Area-based techniques may provide a dense disparity map with
the accuracy of each registration in terms of row cffset an estimate generated at every point in the image. Feature-
compared to the ideal epipolar geometry (corresponding points based approaches provide depth information only at points
on the same scanlines). Polynomial approximation performs where the features are generated, often points of intensity
better overall than isometric approximation, but it ismrsenstve toise.Futh, th e isometric approximatis ore discontinuity that may correspond to discontinuities in depth.sensitive to noise. Further, the isometric approximation only

requires three control points. For this scene, there are enough We do not believe that any one technique is likely to be
points from any of the match features to compute a second robust enough to perform well under the diverse set of
order polynomial approximation. The resulting accuracy is conditions found in urban areas. For complex urban scenes,
comparable with that achieved using manual selection of feature-based techniques appear to provide more accurate
control points. information in terms of locating depth discontinuities and in

In summary, scene registration is a key initial step in many estimating height. However, area-based approaches tend to be
tasks involving the automated interpretation of aerial images. more robust in scenes containing a mix of buildings and open
Stereo analysis requires particular care in scene registration terrain. For this reason we have developed two stereo
because of the geometric assumptions made by most stereo matching algorithms. Si is an area-based algorithm and uses
matching algorithms and their inability to recognize and the method of differences matching technique developed by
recover from registration errors. Such registration errors Lucas 13, 14. S2 is feature-based using a scanline matching
usually end up reflected as gross errors in the stereo match. As method that treats each epipolar scanline as an intensity
a part of our goal to produce three-dimensional interpretations waveform. The technique matches peaks and troughs 1ii the
of complex urban scenes we have found it necessary to develop left and right waveform. Both are hierarchical and use a
registration techniques that are accurate and robust across a coarse-to-fine matching approach. Each is quite general as the
variety of scene domains. We have tested our system on only constraint imposed is the order constraint for the feature-
airport scenes, urban scenes, and suburban housing based approach. The order constraint should generally be
developments with varying degrees of success. We are satisfied in our aerial imagery except in the case of hollowed
currently investigating ways to evaluate the distribution of structures.
control points and to incorporate this evaluation into the Both matching algorithms assume the imagery has been
registration system. We are also looking into improving our registered into the epipolar geometry as discussed in the

Statistics on the quality of different registration for DC38008

Type of Number Avg. row S!I. row Min/Max Avg. col Std. col
Registration of points offset offset row off. offset offset

Coarse -20.4 1.6 -23/-16 0.4 1.2

POLY manual 11 0.1 0.3 -1/1 0.1 0.5

POLY comer 20 0.5 0.6 0/2 -0.5 1.2

POLY structure 14 -0.8 0.8 -2/2 -5.2 2.0

POLY edge 17 0.8 0.7 0/3 0.0 1.8

POLY shadow 12 -0.6 0.8 -2/1 -0.4 0.9

POLY blob 17 0.6 0.6 0/2 -0.6 1.1

ISO manual 11 -0.4 0.6 -1/1 0.6 1.4

ISO comer 20 1.0 0.5 0/3 2.7 1.3

ISO structure 14 -1.7 0.9 -3/1 -2.9 1.2

ISO edge 17 1.3 0.9 0/4 0.9 1.2

ISO shadow 12 -0.2 1.1 -2/2 3.8 1.7

ISO blob 17 0.6 1.6 -2/5 1.4 1.2

Table 2-1: Statistics for different registrations on DC38008 stereo pair
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previous section, and each algorithm produces a disparity map estimate is the amount by which the -stereo process must
that is registered to the left stereo pair image. Both matching correct the disparity. Initially this difference will be relatively
algorithms- also need an estimate of disparity range found in the large because the initial disparity estimate is not particularly
image. This estimate need not be perfect, but the accuracy of accurate. Because of this, the method- of differences requires
the disparity range estimate directly affects the quality of stereo that we start out with smoothed images to accommodate these
matching. An accurate disparity estimate limits the search large differences. As the disparity estimate improves, we can
range and therefore, reduces possible mismatches. The use less smoothed images because the magnitude of the
disparity range can be provided-by a user or from the result of matching error decreases.
registration process. To generate disparity ranges
automatically, we first need to select-a type of registration to Sl does not require sensitive feature extraction thresholds as
use, and register-all features described in 2.2.1 using the same is common for feature-based approaches. Stereo matching in
type of registration. Once the control points from both left and Sl is accomplished for every pixel and is not restricted to
right images are in the same coordinate frames, the column selected image features such as -interesting areas, edges, lines,
offset between a pair of matched control points is the disparity. or other extracted features. Si is not overly reliant on perfectly
We can find a good approximation to the scene disparity range registered -stereo pairs taken simultaneously by- well-
by examining the predicted disparity value -for each of the parameterized cameras, nor does it require threshold tweaking
control points9. Table 3-1 shows the true disparity range, the to accommodate matching of edges or vertices. In the resulting
disparity range selected automatically, and the manually SI disparity images the speckled areas are caused by loss of
selected disparity range. The disparity range used for all correspondence in large nondescript sections. Such nondescript-
matching examples shown in this paper were selected sections are characterized by the lack of edges or texture. Themanually. This was primarily to simplify the stereo boundaries-of the objects are fuzzy and the big discontinuities
performance analysis and avoid confusing errors in the are-not well captured. SI performs well with: objects having
disparity-estimate with matching errors generated by -the two height but often, -when it is initiated with too small a disparity
stereo systems. In most cases there is little difference in the range, it will not converge to a correct result. Thus, an-
match quality using either automatic or manual disparity approximate estimate of the expected disparity range is
estimates. As we have stated earlier, we believe that required.
researchers need to address the problem of accurate automatic To accommodate large disparities, we use-a hierarchy of
disparity range estimation as a component of a-fully automated different spatial- resolutions. Starting with a reduced spatial
stereo analysis system. The alternative, manual analysis, is resolution data set we compute an initial estimate of the scene
both tedious and prone to error especially in complex scenes disparity. With this estimate of disparity as an-initial starting
containing-large elevation jumps due to-man-made objects and point, we can better refine our estimate than ifwe had begun
natural terrain.ponwcabetrrfnouesiaetaifehdbgn matching at a coarser level. The disparity range of the scene

-Disparity Range Statistics (inunit disparity) can be used to estimate the number of different spatial-resolutions, the number of levels for each resolution, and theScene Ground Truth Automatic Manual size of the smoothing windows and scanning overlap at each
DC38008 -2:14 -4:17 -5:15 level. A good estimate of the disparity range can be-providedDC37405 -13:13 -14:12 -15:15 by shadow analysis, matched features, or external knowledgeof the terrain. We have found that good estimates of the

Table 3-1: Statistics-of disparity range disparity range are necessary to achieve reasonable results.
for DC38008 and DC37405 This approach has been used on different images and gives

3.1. SI: Method of differences better results than the standard SI method. The results are less
The Si area-based approach uses a hierarchical set of reduced sensitive to registration errors and we obtain better results on

spatial frequency images to perform coarse-to-fine matching on the discontinuities.
small windows in the two images. At each level, the size of the As a final step in the Si analysis we attempt to improve the
windows for the matching process depends on the spatial detection of the disparity discontinuities. We first compute
frequency resolution (smoothness) of the image. An initial variational-left and right images using a local variation operator
disparity- map is generated at the first level. Subsequent 15. As an initial disparity estimate, we then use the result of the
matching results, computed at successively finer levels of previous method-and rerun the Si proceduie using-just two
detail, are-used to refine the disparity estimate at each level, resolution levels with the variational images to encompass
Therefore,-the amount of error in the scene rei titLion thtt can errors in the previous result, and thereby locally refine the
be-tolerated by this matching algorithm depends on the size of disparity estimate.
the matching windows. However, since there is a relationship
between-the matching window size and the level of accuracy,
simply using larger matching windows may not be desirable.
Consider a point in the left image of the stereo pair; the
difference -between the correct disparity value and our initial.
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3.2. S2: A Feature Based Approach S2 uses a coarse-to-fine approach. We match a subset of the
S2-is a feature-based system that treats the problem of stereo matchable features that are most significant and, therefore, it is

matching as one-dimensional signal matching, similar to relatively easy to find unambiguous correspondences. We then
Witkin's scale space signal matching 16. S2 extracts intensity use this initial correspondence to constrain the matching of the
and gradient signals from each epipolar scanline and matches full set of features. We use a divide-and-conquer line fitting
peaks and valleys in the left and right signal. S2 is hierarchical algorithm 19 to approximate the original intensity profile. This
and uses a coarse-to-fine matching approach to guide algorithm is used because it identifies significant features,
successive refinements of the waveform approximation. This maintains the general shape of the original intensity profiles
work takes a similar approach to previous work in stereo and the position and magnitude of the peaks and valleys.
matching. Baker 17 used a coarse-to-fine approach with a
Viterbi dynamic programming algorithm to match edges. Features ar matched according to their relative similarity. A
Ohta's 5 technique tried to find an optimal matching surface in similarity function is used to measure the similarity between
a three-dimensional search space using inter-scanline search two features. This similarity function has three components:
and dynamic programming. However, edge matching is intensity, shape, and descrption.
difficult, especially in complex scenes, often requiring Intensity component: The intensity component is a form
thresholds based upon edge strength to avoid combinatorial of ID correlation working on a normalized intensity profile.
explosion. Edge matching methods also rely -heavily on the Intensity profiles are normalized to account for the difference
quality of edge detectors and the resulting disparity maps am in contrast that may occur in stereo pair imagery.
usually very sparse. Our approach is to view intensity profiles
of scanlines as waveforms. There has also been some previous Shape component: The shape component uses an
work using this paradigm in the pattern analysis area to approximated waveform to measure shape of the features.
perform waveform correlation by representing the waveforms During the waveform approximation, we produce a piece-wise
as trees 18, or by tracking zero crossing of intensity signals approximated line. This line is composed of segments whose
through scale spacet 6. end points identify the significant features. The shape

component measures the similarity of the length and angle fors2 aheatches epipolar scanlines in the left and right image corresponding triples of significant features. The shape
using a hierarchical approximation of the scanline intensity evaluation is performed for the center feature point and is only
waveform. It matches peaks and valleys in the waveform at
different levels of resolution. S2 uses intra-scanline
consistency to enforce a linear ordering of matches without
order reversals. It also applies an inter-scanline consistency
that considers the matches in adjacent scanlines. Application
of the inter-scanline constraint is used to increase the
confidence of matches found to be consistent across multiple
scanlines and to delete improbable matches. Since disparity
discontinuity usually occurs at the intensity discontinuity, the La
gradient waveform is matched after the intensity matching Figure3.1: Intensity wavform matching atcoarse level
phase to localize disparity jumps. Finally, efforts are made to
detect occlusions and correct them. An overview of the
matching procedure in S2 is as follows:

1. Coarse-Level approximation of intensity profile.
Match significant features found at this level.

2. Mid-Level approximation of intensity profile.
Match significant features found at this level.

3. No approximation. Match all possible features.
4. Intra-scanline consistency check.
5. Inter-scanline consistency check. Figure 3-2: Intensity waveform matching at middle level
6. Gradient Matching.
7. Post Processing.

3.2.1. S2 Hierarchical Waveform Matching
The first step in the S2 matching algorithm is to obtain

waveforms from the left and right stereo pair images. This is
accomplished by extracting an intensity profile from the
epipolar scanlines in each image. Peaks and valleys in the imp
intensity profile are identified and these points are used as
matchable features for S2. Figure 3-3: Intensity waveform matching at fine level
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computed during the first two match phases since third phase match is not consistent with its neighboring matches then S2
does not use an approximated waveform, checks to determine if a new match can be made with suffici'n

confidence. A new match has sufficient confidence if the
Description component: The description component is combination of similarity score and consistency score is better

used to disambiguate features with more than one possible than the old match. The similarity score is computed in the
match. It uses a significant feature labeling that disallows same way as during the last intensity matching phase and the
certain waveform match combinations, such as 'peak' with consistency score is the standard deviation of the disparity
'valley'. It also takes into account local minimum and local estimates of all the matches in the neighborhood.
maximum of the significant features. Gradient matching occurs after inter-scanline matching, S2

Figure 3-1 shows the left and right intensity waveform and converts the intensity profile into a gradient profile. Since we
the matching results at the coarse level of approximation. The are only interested in the intensity jump along the profile, only
waveform on the top is the profile from the left image, while the x component is relevant. We treat the gradient profile
the one on the bottom is from the right. The jagged lines are identically to an intensity waveform and proceed to match the
the approximation of the intensity waveform. Line segments epipolar gradient waveforms using the fine resolution intensity
connecting left and right waveform are the matches made. matches as constraints. Since we already have a dense set of
Figures 3-2 and 3-3 shows the intensity waveform matching at intensity matches there is no need to perform a coarse-to-fine
mid-level approximation and fine-level full resolution approximation for the gradient. We assume that there are
waveform matching. sufficient matches from the intensity phase to provide match

As with any matching algorithm the local optimal matches at constraints in the gradient domain.

the waveform level might not be correct from a more global S2 performs a final post processing step to explicitly deal
point of view. It is precisely for this reason that inter- and with the problem of boundary occlusion. We can detect an
intra-scanline consistency constraints are imposed during the occlusion using the gradient profile when we find unmatched
intensity matching phase5. 17.  Inter-scanline consistency significant features in one profile that occur between two
simply assumes that disparity should be nearly continuous successive good matches where one match is a high disparity
across the scanlines. Intra-scanline assumes continuity along estimate and the other is a low disparity estimate. This
the scanline, unless there is strong support for the disparity situation is identified and corrected by allowing a two-to-one
jump. Strong support for a match exists if two features are feature match. In other words, a extra feature in one profile is
similar and there exists no better match, or match with the matched to a feature in the other profile that already has a
same similarity, in the neighborhood. Both inter- and intra- match. At the end of this phase, we can create a sparse
scanline consistency are accomplished by looking at the disparity map as shown in Figure 3-4. Points in this image
neighborhood of a match and trying to establish a consensus. represent the actual matches found by S2 and are only a small
The intra-scanline check is performed at the end of each subset of the three-dimensional pointv in the scene. It the
intensity matching phase. Inter-scanline checking is performed following section we describe the interpolation of this sparse
after all three matching phases have been completed. If a disparity map into a dense disparity map to recover height

estimates for the entire scene.

3.2.2. Interpolation
One key issue in feature-based stereo matching is the

interpolation process. Because we are obtaining depth
estimates at sparse matching points, we must ill in depth
estimates in a consistent manner in order to achieve a complete
disparity estimate. There has been much work done in surface
interpolation techniques; some combined the interpolation
process into normal stereo processing 20' 21, while others tried
surface fitting with sparse data22 . However, we have not found
a satisfactory technique that works in both urban environments
with large disparity jumps as well as in smoothly varying
terrain. At present, a constant step interpolation is used
because it is the most suitable method given the sharp disparity
discontinuities found in urban scenes.

Figure 3-4 shows the result of the S2 process in the industrial
scene. White points are actual match points while black pixels
correspond to points with no disparity estimate. Figure 3-8

Figure 3-4: S2 sparse disparity map shov;s the result of ii;terpolating the sparse disparity map
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smoothed by a vertical.i median filter. Figuic 3-8 shows that S2 -reference -left- image, a-reference disparity timlp that has been
performs well - n discont in uites waith ost of thle m lisia tdies mainuall) compilhd ulsing Mn interactike 3-D -editing sy stcm,
and--errors occurring at thle occlusion boundlat ies. Inl tile and the SI and S: rcsuhts. Inl all-of the disparit) 1map results
follovvino section we show stereo Iladling" iesuilts for tmo Presented in this paper, brighter regions are closer to the
Complex tban-scenes, DU30uu and DC374U5, anld for a S~ecne Laicl'i a ad lim e greater heliht. Darker regions are at or below
Containing rugged terrain, AII.'. the relative terrain ground plane established by the see

registration -proCeSs. hus, thle disparity mlap enlcodes relative
3.3. Stereo 'FestlResults heighit. Given several points % it known absolute clevation in

S1 and S2 haw been testedI onl approximately fifteen stereo the scene we could -alulate the ab~olutc heighIt .&t Cedlh point
scenes including airports containing hangars, runways, and in the disparity map11.
tarmac, suburban house areas with comp~lex terrain and

builing, ad inustialares wih lrgeand ompicaed igure 3-5 is a complex inldustrial area scene, This scene

buildings. Trhe -resuilts presented here ate representative of containls marn; Of thle dliffiCultieS founld inl stereo 11mtchinlg.

0 
-CS e

Figure 3-5: iu-Asus Industrial Scene Figure-3-7: sl lDisparity Mlap

F~igure 3.6: Dr'Isus IDisparity :Referencee Figiire 3-8: S2 lDisparii Map
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discontinuities, and complicated three-dimleasionl. bc.1 s o' erall building structul es Are kuite apparent, induding ariums
Figure 3-6 shows a manually comipiled dispaz it reference and sloped roofs. Iloh e\ r, due to the Simple step
mnap. Figures 3-7 and 3-8 showms tile reCsult Of thle S1Iland S2 interpolaitionl some1 matching." errors MC epiopaga.tCLd m\er laige
matching respei'ily SI performs xwil onl textuied, portions of the scne. Iterestingly, this allowks us ito easil)
smoothed, and continuous regions. H owi- ei , thle depthI detct urrors in thle matching piocess tha wouuldl otherwise be

discontinuities are not well Captured, and theziefore thle difficult to see had %%e performed a linear interpolation. In
declineation of thle hli,, buildia., isntIip occms ddition to poinlting" usN to poss ible prIoblemIs inl thle S2 ma.tchIing

of thle terrain relicef is present, part culai ly the slope. of thle land lgori thin, this also argue CS for at More detailed 111,1y sis Of thle
toward the water Ii the bottom portion of thle scenle. One disparity imp with respect to other cues inl thle scene. SULh1
advantage of St matching is that it IS nlot O~ei ly 1ichanlt Oil cues inlu~de thle use Of shadow legionIs to inldicate pos sible
initiail scene registration and Can1 1ccommTOdate sinaIlI errors aCi.es of occlusionl and thc, analy sis of intensity -based
without produingl artifWct' inl the dispaiityinp Ther.Ll.,O IoolaIOI11 segmentat ions ito piediLt objcct suri ic oxrientations.
S2 stereo tilatehing shown inl Figuire 3-8 a e c bete l
termis of detection and estimation of depth dsontniis h Figtire 3-9 is a complex urban scene w ith hilly terrain and

141

-Figture 3-9: I)C37405 Indu(iiia SccnIC Figure 3-11' S IlDispoIrity AMap

Figure 3- 10: I)C37405 IDispai it\y ReIleremce Figmve 3-12: S2 Dispai ty Miap
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largie number of small buildings with low height. There is also good job of recovering the complicated terrain iluLding the
a great varicty of btildiiig ,iapeN inlu~Ldinlg larg"e apartmlent road/valley. Both captured thle general ground relief with SI
structures, towvn hiomes, and low density coinleicial bwlldings. providing a better terrain estimate and S2 capturing the building
Due to thle complexity of thle terrain there are many aieas shapes more crisply.
where thle man-made struLctures have significantly lower height
than thle surrounding ground. Thus, it is a very good test site 0iue31 saseewtotaysuiiatmnmd
for detecting relative strengths and weaknesses of area-based structures. This scene wvas lplovided by thle U.S. Army
and featuire-based matchers. Figure 3-10 is thle manually Engineering Topographic Laboratories, Fort Belvoir, VA., with
generated reference disparity mrap) while Figures 3-11 and 3-12 th'e imagery already registered into the epipolar geometry. It
aire thle results of S I and S2, respectively. Both S I and S2 do am
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-iue-4 Figure 3-16: SI disparity map)
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has a very large disparity range, compared to the previous regions. These regions can not be matched since the

examples, and exhibits complex terrain structure. Figure 3-14 corresponding regions in the other part of the stereo pair are

shows manually created disparity map for this scene. Figure not visible. In Si, these regions are simply filled in by

3-15 and 3-16 shows the result for Si and S2. Both methods matching areas with similar characteristics outside the

recovered the general terrain relief in the scene. S2 had occluded region. In S2, since there were no matchable features,

difficulties at the right hand edge of the image because that part the disparity values are interpolated from the nearest bounding

of the scene is not visible in the right image of the stereo-pair. pair of matched points.
A more detailed analysis indicates the surprising fact that S2 is
performing better (with average pixel disparity error of 9%) Figure 3-17 shows the result of merging the Si and S2 results

than Si (with average error of 22%). This is probably due to for the DC38008 industrial scene. The black regions within the

the very large disparity range in this scene and some inherent disparity map show the regions of possible occlusion.

limitations in hierarchical area-based algorithms, such as St, Qualitatively it appears that this result has a better delineation

when recovery of large ranges (over 25% of the scene) is of disparity jumps when compared with the SI result in Figure

required. 3-7, and is less noisy when compared with the S2 result in
Figure 3-8. Thus, the results of the two stereo matching

While improvements can be made to the intrinsic algorithms are quite complementary. We believe that it is
performance of each of the individual stereo matching possible to take advantage of the different failure modalities in
algorithms, we believe that there is much to be gained in the order to form a composite disparity map that gives a more
fusion of disparity estimates across different stereo techniques. accurate three-dimensional representation of the scene.
In the following section we describe a simple technique for
merging the disparity maps generated by SI and S2 in order to In this section and in Section 3.3 we have primarily invoked

produce an improved scene disparity map. subjective descriptions of the relative performance for each of
the matching algorithms. Unfortunately, these are precisely the
type of performance descriptions found in most of the stereo

3.4. Merging Si and S2 Results matching literature. Often researchers resort to the display of a
The disparity maps produced by area-based methods have perspective view to show the three-dimensional reconstruction.

characteristics of smooth relief and can give very accurate Such displays or qualitative statements of peformance, while
point disparity estimates. On other hand, feature-based not inaccurate, do not actually allow us to understand the
methods produce disparity maps that are noisy and sparse, but impact of small algorithmic changes to the matching technique,
have good delineation of the disparity discontinuities. Our the effect of various registration methods on the overall scene
goal is to capitalize on these different strengths to generate an interpretation, or the effect of various analysis methods such as
improved disparity estimate. Others have recognized the utility merging, in a way that is quantitative. The lack of accurate
of bringing additional information to bear in order to refine ground-truth information makes it quite difficult to evaluate
disparity estimates. For example, the Stereo Vision System 15 stereo matching algorithms performed by various researchers
from USC used features such as intensity edges to refine their even on identical imagery. In the following section we
area-based disparity map. We have taken the approach of describe some quantitative evaluation methods for performance
treating the different disparity maps as different height
hypotheses that can be evaluated with respect to each other at
every point in the scene. The idea behind this is that at the
disparity edge, the feature-based method should produce more
accurate results than the area-based method, while at smoothly
changing terrain, the area-based disparity value should
generally be considered to be more reliable.

Presently, a very simple technique is used. The system looks
at the disparity hypotheses generated by Si and S2, and selects
the better disparity value. To avoid bias, the goodness of the
disparity is measured using techniques similar to the area-
based and waveform based methods. An image patch is
extracted from both the left and right stereo pairs. The position
of the right image patch extracted depends on the disparity
value. The goodness of the disparity is simply the difference in
the two intensity patches. A similar measure is also used for
the waveform measure.

When the disparity estimates from both methods differ by
about 20% of the disparity range, we do not try to generate any
hypothesis. These areas usually correspond to occluded Figure 3-17: Result of Merging si and S2
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analysis based upon the manual generation of a- detailed with aground sample distance around-1 meter per pixel. We
disparity map and scene segmentation. have developed a display tool to manually generate disparity

maps allowing a user to select points on the registered images
and generate accurate disparity values. The user views the

4. Perfoi nance Evaluation scene using a Tektronics 920 stereo display monitor with the
It is difficult to quantitatively evaluate the results of any imagery registered using a manual ground point selection.

stereo matching algorithm working on real, rather than Once a sufficient number of points have been selected, usually
synthetic, stereo image data. While random dot stereograms a couple hundred, but depending on the complexity of the
can provide controlled three-dimensional scene structure we do underlying terrain, we can generate a dense reference disparity
not believe they are sufficient to evaluate stereo matching map of the terrain by interpolation. Similarly, we add to the
algorithms in complicated imagery with natural and man-made terrain disparity map, disparity regions that correspond to man-
structures. Two different evaluations are possible. We can made structures. In some sense these manual disparity maps
compare a disparity result to a reference disparity map or we are detailed cartographic descriptions of the scene and can be
can compare different disparity results to one another. A true much more accurate than most traditional paper-based maps.
evaluation of the results, however, requires the use of a Figures 3-6, 3-10, and 3-14 show the manually produced
reference 'ground-truth' disparity map for comparison, disparity maps for the industrial, suburban house, and Denver

terrain scenes.
It is actually very difficult to get a good reference disparity

map for an arbitrary test scene. One could imagine resorting to At least three different performance measures can be
the use of existing digital elevation models, or paper maps with calculated to evaluate a stereo disparity result. We can
terrain contours. Unfortunately, unless one is fortunate enough evaluate the general performance on a scene, the performance
to find an area with high resolution ground-truth, the accuracy for all the buildings, or the performance on a building-by-

of standard digital products or maps is insufficient, especially building basis. The global average disparity error is computed

Global Error Estimate for Stereo Matching
Using Figure 3-6 as ground truth

Stereo Min/Max Average % of points Ground Truth
Method Disparity Error % within +- 1 Disparity Range

(pixel disparity) pixel disparity

SI -12/13 7%(1) 58% -2/15

S2 -5/14 6%(1) 63% -2/15

S1+S2 -10/14 5%(1) 59% -2/15

Table 4-1: Statistics for different stereo matching methods on DC38008

Global Error Estimate for Stereo Matching
Using Figure 3-10 as ground truth

Stereo Min/Max Average % of points Ground Truth
Method Disparity Error % within +- 1 Disparity Range

(pixel disparity) pixel disparity

S1 -12/12 5%(1) 63% -13/13

S2 -15/15 4%(1) 70% -13/13

SI+S2 -15/15 4%(l) 70% -13/13

Table 4-2: Statistics for different stereo matching methods on DC37405

Global Error Estimate for Stereo Matching
Using Figure 3-14 as ground truth

Stereo Min/Max Average % of points Ground Truth
Method Disparity Error % within +- I Disparity Range

(pixel disparity) pixel disparity I
S1 -22/19 5%(2) 61% -28/-l

S2 -26/1 6%(1) 70% -28/-I

S1+$2 -25/1 6%(1) 70% -28/-I

Table 4-3: Statistics for different stereo matching methods on Denver scene
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by finding the error for each point between an estimated disparity value and the disparity result without any further
disparity value and the reference disparity map. This single classification. For our global measure we present the average
statistic provides a quick quantitative measure of the quality of error for the entire scene and the percentage of points having
the disparity map. One can further categorize points in the an estimate within +/- one pixel disparity from the reference
reference disparity map as high gradient points, low gradient for the entire scene. The use of +/- one pixel disparity reflects
points, points with high disparity, or points with low disparity, some of the accuracy limitations in the reference disparity map
Based upon this classification it could be interesting to evaluate and is discussed further in Section 4.3. These simple
the performance of various stereo matching algorithms for parameters give us an idea of the magnitude of the errors in the
specific problems such as-smoothing over depth discontinuities scene, but do not give much insight into their distribution.
or sensitivity to disparity range. Other error metrics such as min/max error are not very reliable

We describe statistics on the error between the reference since they can be caused by single point errors that may occur
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in either the calculated or reference disparity map. In areas with man-made structures global accuracy statistics

do not adequately convey the quality of the stereo matching

Tables 4-1, 4-2, and 4-3 give the global error estimates for system with respect to the buildings in the scene. In most cases
each of the three test scenes. These global statistics show that buildings may cover only a small-portion of the scene and the
St, the area-based method, S2, the feature-band method and background terrain will statistically dominate the scene-wide
merge, the combination of SI and S2, give very similar results estimate of disparity quality. Thus, we require a method that
across each of the three scenes. Interestingly, these measures allows buildings to be evaluated independently or as a class of
do not seem to statistically reveal the apparent perceptual objects in the scene. Additionally, there are several metrics
improvement achieved by merging the results of S1 and S2. We that can be used to evaluate both the disparity estimate and the
believe that this argues for a more structural analysis in quality of the depth jumps. We discuss these metrics in the
addition to global scene measures. following sections. Figures 4-7 and 4-8 are hand

segmentations of the left image where we have associated a
One way to address some of the issues that are hidden by reference building IDs. Figures 4-9 and 4-10 are graphs

global statistics is to measure the influence of the disparity showing the actual building heights referenced to the building
value on matching accuracy for each of the methods. The IDs. We have also computed, for each building in the ground-
graphics in Figures 4-1, 4-2, 4-3, 4-4, 4-5, and 4-6 plot error truth, the height of the building over its surrounding terrain.
rates sorted by reference disparity. Figures 4-1, 4-3, and 4-5 We have assigned building Ml's based upon the ground-truth
show the average error in pixel disparity at each disparity level disparity map so that taller buildings have larger numeric ID's.
for each of the test scenes. Each contains three graphs showing
the results for SI, S2, and the merged result of S1 and S2. 4.1. Quality of Building Disparity Estimate
Figures 4-2, 4-4, and 4-6 show the percentage of points within In order to evaluate the performance of S1, S2 and the merged
+/- one pixel of the ideal pixel disparity over each disparity result on buildings in the scene we can gather statistics on the
range. disparity estimate for each pixel considered to be on the roof of

the building. As before, the average disparity error in pixel
In general, these graphs indicate that the greater the actual disparity and the percentage of points within +/- one pixel of

disparity, the more likely the various matching algorithms will the ground-truth estimation are good measures for
make a mistake. This is reflected in both a higher average performance. Figure 4-11 shows the quality of the disparity
error and a-lower percentage of points within +/- one pixel of estimate for each of the buildings in the DC38008 industrial
the actual- disparity. These -global metrics also show that in scene. The x-axis represents the ID number for each building
areas of low disparity, S1, S2, and their merger give similar and the y-axis shows the errors in estimated disparity for a
results. For higher disparities S1 has much more of a problem particular building across S!, S2, and the merged result. This
in correctly- estimating the disparity than does S2. Further, in graphic, although a bit cluttered, shows no clear trend of
most cases, the result of S1 and S2 merging produces an performance advantage; both S1 and S2 produce a comparable
improved estimate causing errors to decrease.
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result, although S2 appears to perform better, especially on over its neighborhood (disparity jump) affects the disparity
buildings with greater disparity. For most buildings the error is estimate produced by stereo matching. It appears that Si is
bounded between +/- two pixels. The result of merging comparable with S2 for smaller buildings. This is because low
generally appears to improve the average error. As we have buildings can satisfy the continuity constraint of the area-based
assigned building ID's sorted by disparity we can observe a method. S2 performs better on scenes with buildings having
trend towards increased error as we move along the x-axis. significant height because low buildings can be easily masked

by random mismatches in the feature-based analysis. The
We can also represent results using the disparity jump merge of Si and S2 produces results that combine the best

instead of the building ID to index the results. These graphics properties of both methods.
represent the integration of the average disparity error over all
buildings with the same disparity jump. Figure 4-12 and 4-13 Figures 4-14, 4-15 and 4-16 provide similar statistics for the
show the effect of disparity jump on the disparity estimate and suburban house scene, DC37405. As in DC38008 the average
allow us to determine whether the actual height of a building error for each building appears to be bounded by +/- two
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pixels, S2 appears-to have slightly better performance than si, situations where matching could be improved. Once identified,
arid the result of the merger almost always improves the these improvements should have an- overali positive effect on
average error. Whereas S2 always appears to perform much the rest of the scene. The result, of course, can be subjected to
better than S1 with respect to the percentage points (within +/-1 the same rigorous performance analysis. Once we commit to
pixel of the correct disparity in DC38008), (Figure 4-13) this is working on complex scenes, as opposed to synthetic controlled
not the case for DC37405 as shown in Figure 4-16. images, the visual inspection of disparity results to discover

small variations in performance becomes very unsatisfactory,
These statistics allow us to pinpoint problems at a much finer except possibly at the earliest stages of experimentation. Such

grain of detail than can be accomplished with global analysis. manual inspection greatly limits our ability to detect subtle
Thus we can identify specific buildings in the scene and try to conceptual bugs or recognize possibilities for algorithmic
understand, at the algorithmic level, whether there are specific improvement. In some cases we can perform systematic
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analysis across multiple scenes. For example, in applying Figure 4-17 shows how we compute the edge location and
statistics that take into account the disparity jump for sharpness for each building in the scene. The two waveforms
individual buildiiags, we can aggregate performance represent the gradient of the reference disparity map and the
information for all buildings across all scenes to achieve a disparity result being evaluated. The peaks in the reference
larger statistical sample. disparity map gradient represent the true edge of the building

in the scene. The evaluation process finds the best matching
4.2. Quality of Delineation Estimate peaks in the Si, S2, or merged disparity map gradient within a

In the previous section we described techniques to measure neighborhood of the reference edge. The distance P
the accuracy with which we can recover the height of buildings corresponds to the position error of the edge in the result
in the scene. For cartographic applications it is equally disparity map. The ratio Hd/Hr corresponds to the sharpness
important that we generate an accurate delineation of the evaluation of the edge. A ratio of one is perfect. The value Hd
buildings with respect to their surroundings. In this section we and Hr correspond to the amplitude of the gradient related to
discuss another metric which is the quality of the stereo the reference zero gradient.
delineation of each building in the scene. We compute edge
location which measures the distance of the estimated disparity
jump from that in the ground-truth disparity. We also measure H d
edge sharpness which corresponds to the shape of the disparity 0j t

jump in the estimated disparity map. Ideally, we would expect ''-
the stereo-matcher to generate a step disparity jump at the point
where the actual disparity jump occurs in the reference
disparity map. As before, we assume that the ground-truth
disparity map accurately captures the location and the height of
the building edges. In order to allow for measurement error,
we tolerate some uncertainty in both the location of the edge IH r
(+/- one pixel) and the height estimate on both sides of the
edge (edge sharpness). The uncertainty in edge sharpness is
somewhat difficult to quantify since it depends on both the 0--
height estimate on each side of the building roof edge and on\
the height estimate of the neighboring ground. These estimates
may be biased, since in some cases we are interpolating theP
ground elevation from a sparse network of points. We can
alleviate this error by making sure that we select representative
ground points as close to the buildings as possible.

Figure 4-17: Gradient Matching for Edge Evaluation

687



Both the position error and the edge sharpness metric-require Figures 4-19 and 4,-21 shows the percentage of edges
that an edge point-in the reference disparity map be matched produced by the stereo matchers that are within +/- one pixel of
with an edge point produced by the stereo matcher under a reference disparity map edge. These graphs are the subset of
evaluation. In many cases no such match is possible; -that is, points -lying in the band +/- one position error from Figures
there is no suitable match for the reference disparity edge. In 4-18 and 4-20 respectively, plotted with respect to all edges in
the following examples between 35% (DC37405) and 50% the reference disparity map. In both cases the position error
(DC38008) of the reference points are not matched, hence the metric shows that the ability to accurately delineate the
matchable-edges represent between 50-65% of the reference disparity depth jump appears to be much weaker than visual
points in the scene. Figures 4-18 and 4-20 represent the examination of the disparity maps might indicate.
average position error for the matchable edges across all
buildings in DC38008 and DC37405, respectively. For the evaluation of disparity sharpness we calculate the

average edge ratio and the sharpness of edge points whose edge
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position is within +/- one pixel of the reference edge. Figure ratio) is likewise poorer than that of S2. However, there are
4-22 represents the average edge sharpness ratio for all some comparative advantages. Si gives comparable results in
matchable edges across all buildings in DC38008. A ratio of one the case of buildings with low disparity. On the DC37405 scene
indicates a perfect step edge. Figure 4-23 shows the sharpness the Si and S2 results are similar because the buildings in this
of edge points that are within +/- one pixel of the reference scene do not have large disparity jumps.
position for all buildings in DC38008. Figures 4-24 and 4-25
show the same results applied to the buildings in DC37405. It is interesting to note that errors in delineation, position,
We can make several observations based upon this and sharpness increase as the height of the buildings increase.

performance data. First, it is clear from this analysis that S1 This is an artifact of occlusion, where higher buildings will

does not perform as well as S2 in terms of disparity delineation. occlude a larger area, making it more difficult to detect the
Its ability to estimate the sharpness of the disparity jump (edge exact position of the disparity jump. Edge errors seem to be
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comparable for both Si and S2 for buildings with low disparity, inherent inaccuracies. In summary, our disparity performance
As expected, SI does not delinea:e tall buildings well and the evaluation has to be considered as a method to easily detect
merged result combining SI and S2 sometimes produces a large mismatches by the stereo analysis system; it may have
result that is an improvement over each individual method but, some limitations in the fine evaluation of disparity values.
more often, simply decreases the maximal error. Nevertheless, we see such techniques as the only method for

effective comparison of disparity results.

4.3. Limitations of Performance Evaluation
The common theme in this section on performance 5. Conclusions

evaluation is to describe a variety of quantitative measures that Fully automated stereo analysis in complex urban scenes is a
allow us to objectively judge how well a particular set of difficult research problem. In this paper we have discussed
registration/matching techniques perform with respect to a three major areas in the development of competent three-
manually compiled three-dimensional ground-truth model, and dimensional scene interpretation systems. First, we discussed
by comparison, how well they perform with respect to one the importance of accurate automatic scene registration and the
another. The reference disparity map is generated using difficulty in automated extraction and matching of scene
monocular and stereoscopic visualization and is a reference points. We showed several results in fully automated
representation of the scene within a certain accuracy. In most scene registration including the estimation of the scene
cases the ground-truth segmentation can be constructed with disparity range as a necessary parameter for stereo matching
enough care to provide for accurate detection of gross errors, algorithms.
and as a common basis for general comparison between
matching methods. However, the actual accuracy of the Secondly, we described two stereo matching algorithms: Si,

reference disparity map has to be considered if we attempt to an area-based matcher previously used in the SPAM system14;
use it for the analysis of scene micro-structure, such as roofs and S2, a new feature-based matching algorithm based upon

with shallow pitch that are modeled as flat surfaces, small hierarchical waveform matching. We also introduced a

super structures such as building air conditioner units, stair technique to merge the results of the two matching algorithms

well towers, and other small roof structures. These which appears to give an improved disparity map and also
superstructures can add an error bias into the overall statistics. indicates areas where occlusion and gross mismatches may
This bias is likely to be small; consider the fraction of error have occurred.
introduced in the case of a nine story building where we have Finally, we introduced several performance evaluation
not correctly modeled an air conditioner unit that rises another metrics that allowed us to measure the quality of the overall
story over 15% of the total roof surface. scene recovery, the building disparity estimate, and the quality

and sharpness of the building delineations. We argue that such
Nevertheless, we are sampling only a small subset of the manually generated scene reference models are critical for

actual three-dimensional points in the scene. If we count all of understanding strengths and weaknesses of various matching
the building edge pixels and terrain web points manually algorithms, and in the incremental development of
selected for scenes such as DC38008 and DC37405, less than 3% improvements to existing algorithms.
of the scene points are used to produce the dense reference
disparity map. These points are represented in a triangulated We performed these experiments on difficult examples of
irregular network (TIN) for the terrain upon which is aerial imagery containing complex urban scenes with
superimposed the building roof structures. We linearly variations in terrain, building shape, size, and height, as well as
interpolate the network in order to calculate the dense disparity in an example of open terrain.
map. Interestingly, S2 gives us matches for approximately 12%
of the scene points which is typical for feature-based matching Our future work is directed toward improvements in the

algorithms. As such, our performance analysis is subject to basic Sl and S2 matching algorithms, the refinement of our

possible errors in the evaluation of S2 matching algorithm ground-truth disparity maps to allow for a finer detail of
introduced due to interpolation from the sparse disparity map. analysis, and in techniques that will allow us to merge and

refine our three-dimensional scene interpretations using
Given the lack of performance evaluation techniques in information available from monocular analysis of the scene.

computer vision for three-dimensional scene modeling we are
probably content simply to know the height of the buildings 6. Acknowledgments
and the general shape of the underlying terrain. But we should We thank our collcagucs in the Digital Mapping Ltboratory
understand that if we attempt to push performance analysis to for an interesting and congenial working environment. We
detail the small effects of subtle algorithmic changes we may particularly acknowledge Wilson Harvey and Jeff Shufelt who
run up against fundamental limits in our ability to recover these helped in the preparation of this paper, and Emily Burke who
micro-structures. Thus, in our calculations, we have added an organized our racquetball schedules.
uncertainty of +/- one pixel of disparity to the ideal ground-
truth value and feel that this covers a large fraction of the
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Fusion of Monocular Cues

to Detect Man-Made Structures in Aerial Imagery
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Abstract
The extraction of buildings from aerial imagery is a complex fusing the symbolic data generated by these systems is

problem for automated computer vision. It requires locating described, and applied to monocular image and stereo image
regions in a scene that possess properties distinguishing them data sets. Evaluation methods for the fusion results are
as man-made objects as opposed to naturally occurring terrain described, and the fusion results are analyzed using these
features. The building extraction process requires techniques methods.
that exploit knowledge about the structure of man-made
objects. Techniques do exist that take advantage of this
knowledge; various methods use edge-line analysis, shadow 1. Introduction
analysis, and stereo imagery analysis to produce building In the cooperative-methods paradigm it is assumed that no
hypotheses. It is reasonable, however, to assume that no single single method can provide a complete set of building
detection method will correctly delineate or verify buildings in hypotheses for a scene. However, each method may provide a
every scene. As an example, a feature extraction system that subset of the information necessary to produce a more
relies on the analysis of cast shadows to predict building meaningful interpretation of the scene. For instance, a shadow-
locations is likely to fail in cases where the sun is directly based method might provide unique information in situations
above the scene. where ground and roof intensity are similar. An intensity-

based method can provide boundary information in instances
It seems clear that a cooperative-methods paradigm is useful where shadows were weak or nonexistent, or in situations

in approaching the building extraction problem. Using this where structure height was sufficientl) low that !,tereo disparity
paradigm. each extraction technique provides information analysis would not provide reliable information. The implicit
which can then be added or assimilated into an overall assumption behind this paradigm is that the symbolic
interpretation of the scene. Thus, our research focus is to interpretations produced by each of these techniques can be
explore the development of a computer vision system that integrated into a more meaningful collection of building
integrates the results of various scene analysis techniques into hypotheses.
an accurate and robust interpretation of the underlying three-
dimensional scene. It is reasonable to expect that there will be complications in

fusing real monocular data. In the best case, the building
This paper describes preliminar) research on the problem of hypotheses will not only be acLurate, but complementary. It i,

building hypothesis fusion in aerial imagery. Building just as likely, howevcr, thi~t some building hypotheses may be
extraction techniques are briefly surveyed, including four unique. Further, it is rare tl.at building hypotheses are always
building extraction, verification, and clustering systems that accurate, or even mutually supportive of one mother. For j
form tie basis for the work described here. A method for cooperative-methods data fusion system to be successful, it

must address the probeins of redundant and conflicting data.

IThis research was primarily sponsored by the U.S. Army Engineer 2, Building extraction techniques
Topographic Laboratories under Contract DACA72-87-C-0001 antd
partially supported by the Defense Advanced Re, irch Projects Agency, At the Digital Mapping Laboratory, we have developed
DoD. through DARPA order 4976, and monitored -, the Air Force Avionics several iechniques for the extraction of man-made objects from
L.aboratory Under Contract F33615.87-C-1499. evies and com'. . aerial imagery. The goal of many of these techniques is to
contained ir tis doIument ire those of the authol., aid bhould not be organize the image into manageable parts for further
interpreted as rcprescnting the offi.at polkies, either c\presed or inplied, proQ-essing, by using external kiowledge to organize thse
of the U.S. Army Engineering Tclographic Laboratories, or the Defeinse pa
Advanced Reseat ch Projects Agency. or of the United States Government. rts into regions.
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For the experiments described in this paper, a bet of four region of interest are grouped together to forn a single
monocular building detection and evaluation systems were building cluster.
used. 'ihree of these were shadow-based systems; the fourth
was line-comer based. The shadow based systems are There are many other interesting building detection and
described more fully by Irvin and McKeown [7], and the line- extraction techniques in the contemporary literature. We
comer system is described by Aviad, McKeown, and Hsieh [21. briefly mention some recently developed methods, to illustrate
A brief description of each of the four detection and evaluation the variety of techniques that produce building hypothesis
systems follows, information. Mohan and Nevatia [9] described a method by

which simple image tokens such as lines or edges could be
BABE (Builtup Area Building Extraction) is a building clustered into more complex geometric features consistiog of

detection system based on a line-comer analysis method. parallelopipeds. Hotertas and Nevatia [6] described a method
BABE starts with intensity edges for an image, and examines fcr detecting buildings in aerial images. Their method detected
the proximity and angles between edges to produce comers, lines and comers in an image and constructed chains of these to
To recover the structuics represented by the comers, BABE form building hypotheses which were then subject to shadow
constructs chains of comers such that the direction of rotation verification.
along a chain is either clockwise or counterclockwise, but not
both. Since these chains may not riecessarily form closed Fua and Hanson [3] described a system that used generic
segmentations, BABE generates building hypotheses by forming geometric models and noise-tolerant geometry parsing rules to
boxes out of the individual lines that comprise a chain. These allow semantic information to interact with low-level
boxes are then evaluated in terms of size and line intensity geometric information, producing segmentations of objects in
constraints, and the best boxes for each chain are kept, subject the aerial image. Nicolin and Gabler [10] described a system
to shadow intensity constraints [61, [10]. for analysis of aerial images. The system had four

components: a method-base of domain-independent processing
SHADE (SHAdow DEtection) is a building detection system techniques, a long-term memory containing a priori knowledge

based on a shadow analysis method. SHADE uses the shadow about thc problem domain, a short-term memory containing
intensity computed by BABE as a threshold for an image. intermediate results from the image analysis process, and a
Connected region extraction techniques are applied to produce control module responsible for invocation of the various
segmentations of those regions with intensities below the processing techniques. Gray-level analysis was applied to a
threshold, i.e., the shadow regions. SHADE then examines the resolution pyramid of imagery to suggest segmentation
edges comprising shadow regions, and keeps those edges that techniques, and structural analysis was performed after
are adjacent to the buildings casting the shadows. These edges segmentation to provide geometric interpretations of the image.
are then broken into nearly straight line segments by the use of
an imperfect sequence finder [1]. Those line segments that Thus, there is a fairly rich set of building extraction systems,
form nearly right-angled corners are joined, and the comers each with its own particular strengths and weaknesses.
that are concave with respect to the sun are extended into Although this by no means constitutes a comprehensive survey
parallelogrmms, SHADE's final building hypotheses. of building detectior techniques, it provides some examples of

tiiL. iatbc-ls used to generate hypotheses for a scene, as well as
SHAVE (SHAdow VErification) ;s a system for verification examples C the types of data that may eventually be integrated

of building hypotheses by shadow analysis. SHAVE takes as into a cooperative-methods building analysis scheme.
input a set of building hypotheses, an associated image, and a
shadow threshold produced by BABE. SHAVE begins by
determining which sides of the hypothesized building boxes 3. A simple hypothesis merging technique
could possibly cast shadows, given the sun illumination angle, Building hypotheses typically take the form of geometric
and then performs a walk away from the sun illumination angle descriptions of objects in the context of an image. One can
for every pixel along a building/shadow edge to delineate the imagine "stacking" sets of these geometric descriptions on the
shadow. The edge is then scored based on a measure of the image: in the process, those regions of the image that represent
variance of the length of the shadow walks for that edge. man-made structure in the scene should accumulate more
These scores can then be examined to estimate the likelihood building hypotheses than those regions of the image that
that a building hypothesis corresponds to a building, based on represent natural features in the scenc. The merging technique
the extent to which it casts shadows. developed here exploits this idea.

GROUPER is a system designed to cluster, or group, The method takes as input an arbitrary collection of
fragmented building hypotheses, by examining their polygons. An iniage is created that is sufficiently large to
relationships to possible building/shado% edges. GROUPER ontain all of the polygons, and each pixel in this image is
starts with a set of hypotheses and the building/shadow edges initialized to zero. Each polygon is scan-converted into the
produced by BABE. GROUPER back-projects the endpoints of a image, and each pixel touched during the scai, is incremented.
hildingghadow edge towards the sun along the san The teulting iimiag thcin has the property that the value of each
illumination angle, and then connects these projected endpoints pixel in the image is the number of input polygons that cover it.
to form a region of interest in which buildings might occur.
GEOUPER intersects each building hypothesis with these Segmentations can then be generated from this
regions of interest. If the degree of overlap is sufficiently high "accumulator" image by applying connected region extration
(the criteria is currently 75% overlap), then the hypothesis is techniques. If the image is threholded at a value of I ti.e, all
assumed to be a part of the structure which is casting the non-zeo pixels are kept), the regions produced by a ronnected
building/shadow edge. All hypotheses that intersect a single region extraction algorithm will simply be the geometric

unions of the input polygons. It is the case, however, that the
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image could1 be thiesholded at higher values. We motivate applying thle scan-cmivelsion technique to the fragmfenltedI
thresholdling experiments inl Setion 4 4. clusters produced by GROUP'ER. The technique was aplied to

each cluster individually, anld tile resulting accumulator imlagve
was thresholded at 1, and connectedl iegion extraction

4. Merging multiple hypothesis sets techniques were applied to providle thle geometric unionl of each
This section outlines the experiments petforined with thle cluster. These clusteis were then C4used as thle building,

scaln1-Collver1*sion1 hyp~othesis fuisioni technique. Thie p~rocedurei hypotheses prioducedl by GRol,111iR,
used to apply this technlique to thle results ot four building
dete~ctionl an1d evaluaRtionl -SYStems (BABEl. SIHADEt. SH AVE~. and Thle 'Second p~roblem was the fusion of each ol' these
GROUIT) is dbescribedl. A technique for1 quantitative monocular hypothesis sets into a sing-le set of hypotheses for.
evaluation of btuilding hypotheses is described. andl ap~plied to thle scenc. Again, thle scan-conversion technique was applied.
thle hypothesis fusion results. These results are analyzed to The four hypothesis sets were Scanl-convel ted, and thle r-esulting"
suggeSt imp~rovements to tile fusion technique. accumu~lator image was, thresholded at 1. Connected region

extraction technliques weic applied to p10(10ce thle final
segmlentationl for thle mnace.

4.1. The merging technique appl)ied to four- extraction I

sv'steins Fimure 4-I shows aI section of a suiburban area inl
= Thete were two merging problems under conlsider-at ion,1 Tlhe Washington. D.C. Figure 4-2 shows thle SH ADEb esulS for1 this

lirst of-these was thle creation of a Single hypothiesis out of ,j scene. Figure 4-3 sh1ows thle -sH AVti jesults. F"igure 4-4 shows
collection of fragmented hypothieses believed to coi esponLI to tile OROUPEiR results, and Figure 4-5 shows the B1ml; results.
Ita singole n1Ian-ma lde slitictie. This lpiobleif was addiessed by Figu-1it 4-6 shows thle Itision ol these bour monlocular

hypothesis sets.
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4.2. EvAaluattion of the technique corresponding grounid-truith segmentaIItionl reglion shotuld cox er
To judge the cor"iectless of' a1 [interpletatliOn Of aI~ it is roughly the Same area, and Should haxe ruhytesm

desirable -to have somenic ehanism foi quanititatively aligiiiiieit ii;Ni it espc'ct to the imiage. A scoring function can be
ex alkoat ing that intel pidat ion. One ap1p)1oadh is to IoluipJare a decelopedl that incorporates these criteria. A reggion matching
g-iveni set of hy potlieses agalist ai set that is knoxs i to be cee uhasts.oxecrsilr rmtelctht
c-orrect, aiid ilyd)/ tile diffelenc-es between the gisen set ot mutltiple buildings in thle sLcne ate segmented by a siileI
hypoth1eseS anld thle Lollect one.S. Ill peroring'1111 e% aluatilons of rei i tile byp)otheSiS Set. Inl these cases, the bUdil
thle fuion1 results. ilv UC u q *,, oId-Illith W'qIIIiIIiIIS ats tile hypo)theiSks ill 1a1% 10\ lov mtching~ scores ssth chld Of thle
correct dttinresults for a scene, G un-rt idqsitContains. (lie to the differences in overlap area.

seg entction arurertt bullclines itdcds lt1
bugilisiti iae. nntalpodce gmenta tioiis of the A simpler cov'erage-based global evaluation method was

bu i1(1ing inan mag. developedl. This evaluation method works inl the followinga
Trie exist two simp~le criteria for measuring thle deicUle Of manner. H-. a set of' buildingo 11y potliese' fIm an imnige." andL G, at

si llaritv bet vecu at building liypothesis anld a giound-truth ground -trulth segmlentation of' that inuiace. il c cixen. Thle iiiiage
-building segmientation: thle niutual atrea of oxerlap and thie is then scaiiied. pixel by pix~el. For any pixel P inl thle image,
difference lin orieiitation. A correct building hypothesis anid the there are four possibilities:

saw~

I igure-4 2: lC37 Sit DlrcSutAIS Figure 4-4: DC37 GROUPE reiil

4

I iguic 4- DC)(37 SII \v I icsuhts Figtiie 4,5: IX 37 BABE' leics
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1. Neither a ioni o re reini Gcvr By counting tilc number of pixels that fall into eachl of theseP.Ths is intrlee t or, menoi tha th cystem four categories, we may obtain measurements of thle percentage
producing H correctly denotedI 1) as being part of of building hypotheses that were successful (and uinsuccessfull)
thie background, or natural structure, of' thle scene, inl denoting pixels as belonging to mlanl-mlade structure, and thle

percentlage of thle background of' thle scenle that was correctly2. No region lin If coci s 1), but a region Ii G coxers Cadicircl aee ssc.Iitcx a s hs
1P. This is inIterpretedI to IIcIn that thle 5)se n icasuiements to define a !midin,-, pmtl hian~hii lung clol.
l)IitOuing If did not iecogizc/ P as being pait of1 MIM "ih ill tepiesent thle degice to xx hiti at building detection
aI manil-ma1de structure in thle siene. Ini this "ase. systemi ox erclassifies backgrounld pixels as buildinga pixels in
thle pixel is referred to as a 'false negatixe". tile procss Of gUenerating building hy lpothceses. The building

3. reion(orregons inH cverP. ut o rgio pixel branching factor is defied ats the number of' false
inl G Covers 1). This is inteipreted to mecan that thle positiv'e p~ixels divided by thie number of' correctly, detected
system lpfodueilicg II incorrectly denotedl 1 as building,- pixels.
belonging to some man-made structii C. when it
is in faict pat of the scene's baekgiound. InI this .. Relt fdalI'sis
ease, thle pixel is referied to as a "false positive". . Teuls ind mc as in notescesiadtontth

4. A region (or regions) inI I I and a regionl inl G both D)C37 scene: DC36A. DC3613. and DC38. three more scenes
cover P. This is interpreted to mean that the fiomi thle Washington, D.C. area:. and LAX, a scene fromn thle

sytm poducing- II correctly denloted ) ats Los Anee-nentoa ulOt 161. The rioal fusion relts;
belonin to a man-made structure in) thle scene, for ecoftsecnsae hxoinigis-7hIouh41

The covem a-e-based evaluation program" was thlen applliedl to
each of thcse iesults to genlerate Tab~les 4-I thiugh 4-5. Each

Figture 4-6: Nionocuilar hypothesis fusion for )C'37
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table gives the statistics for a single scene. The first column to occur. This region is typically larger than the true building
represents a building extraction system. The next two columns creating the shadow-building edge, and incorrect fragments
give the percentage of building and background terrain sometimes fall within this region and are grouped with correct

correctly identified as such. The fourth and fifth columns show fragments. The resulting groups tend to be larger than the true

incorrect identification percentages for buildings and terrain, buildings, and thus produce a fair number of false positive
The next two columns give the breakdown (in percentages) of pixels.
incorrect pixels in terms of false positives and false negatives.
The last column gives the building pixel branching factor. SHAVE scores a set of hypotheses based on the extent to

which they cast shadows, and then selects the top fifteen
We believe that the quantitative results generated by the new percent of these as "good" building hypotheses. In some cases,

evaluation method accurately reflect the subjective visual buildings whose scores fell in the top fifteen percent actually
quality of the set of building hypotheses, when taken as a had relatively low absolute scores. This resulted in the
relative measure. Further, the building pixel branching factor inclusion of incorrect hypotheses in the final merger.
provides a rough estimate of the amount of noise generated in
the fusion process. Judging by these measures, we note that SHADE uses an imperfect sequence finder [1] to locate
the final results of the hypothesis fusion process significantly comers in the noisy shadow-building edges produced by
improve the detection of buildings in a scene. In all of the thresholding. The sequence finder uses a threshold value to
scenes, the detection percentage for the final fusion is greater determine the amount of noise that will be ignored when
than the same percentage for any of the individual extraction searching for comers. In some situations, the true building
system hypotheses, although the building pixel branching comers are sufficiently small that the sequence finder regards
factor also increases due to the accumulation of delineation them as noise, and as a result, the final building hypotheses can
errors from the various input hypotheses. either be erroneous or incomplete.

It is worth noting that the results for the DC36B scene (Table 4.4. Thresholding the accumulator image
4-3) are substantially worse than those of the other scenes. As part of the scan-conversion fusion process, an
This is in large part due to the fact that the DC36B scene has a accumulator image is produced that represents the "building
low dynamic range of intensities, and the component systems density" of the scene. More precisely, each pixel in the image
used for these fusion experiments are inherently intensity- has a value, which is the number of hypotheses that overlapped
based. The building pixel branching factors reflect the poor the pixel. Pixels with higher values represent areas of the
performance of the component systems; in GROUPER's case, image that have higher probability of being contained in a
over 3 pixels are incorrectly hypothesized as building pixels for man-made structure. Theoretically, thresholding this image at
every correct building pixel. The fusion process, however, higher values and then applying connected region extraction
improved the building detection percentage noticeably over the techniques would produce sets of hypotheses containing fewer
percentages of the component systems. false positives, and these hypotheses would only represent

those areas that had a high probability of corresponding to
We also note that several difficulties are attributable to structure in the scene.

performance deficiencies in the systems producing the original
building hypotheses. The shadow-based detection and To test this idea, the accumulator images for each of the six
evaluation systems, SHADE and SHAVE, both use a threshold to scenes were thresholded at values of 2, 3, and 4, since four
generate "shadow regions" in an image. This threshold is systems were used to produce the final hypothesis fusion.
generated automatically by BABE, a line-comer based detection Connected region extraction techniques were then applied to
system. In some cases, the threshold is too low, and the these thresholded images to produce new hypothesis
resulting shadow regions are inumplete, which results in segmentations. The new evaluation method was then applied
fewer hypothesized buildings. to these new hypotheses.

GROUPER, the shadow-based hypothesis clustering system, In each of the scenes, increasing the threshold from its
clusters fragmented hypotheses by forming a region (based on default value of 1 to a value of 2 causes a reduction of roughly
shadow-building edges) in which building structure is expected 20 percent in the number of correctly detected building pixels.

Evaluation results for the fusion process on DC37

System % Bid % Bkgd % Bid % Bkgd % False % False Br

Detected Detected Missed Missed Pos. Neg. Factor

SHADE 37.5 98.2 62.5 1.8 15.0 85.0 0.294

SHAVE 47.2 96.8 52.8 3.2 26.8 73.2 0.408

GROUPER 48.7 95.8 51.3 4.2 32.6 67.4 0.508

BABE 58.9 97.2 41.1 2.8 28.5 71.5 0.278

FUSION 77.7 92.0 22.3 8.0 68.0 32.0 0.611

99 regions in ground truth

Table 4-1: Evaluation statistics for DC37 hypothesis fusion
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Figure 4-7: Monlocular11 hypothesis fusion for DC36A

Evailuti on r-esults for thle fusion process onl DC36A
system % Bid % B k-d % Bid % Bkgd % False % False Br

Detected Detected Missed Missed Pos. Neg. Factor

SHADE 53.8 97.0 46.2 3.0 30.7 {69.3 0.381
SHIAVE 63.6 96.2 36.4 3.8 41.8 58.2 0.411

GROUPER 58.0 95.8 42.0 4.2 I40.6 59.4 0.495

BABI 51.01 97.9 49.0 2.1 22.1 77,() 0.73
FUSION 80.9 91.9 19.1 8S.1 74.3 25.7 j0.6821

51I Ceii1nS inl Ur1Ound tUth.11

Tab~le 4-2: Evaluation statistics for DC36A hypothesis fusion
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F igure 4-8: Monocular hypothesis fusion tor DC36B

Evatluation results for the fusion process on DC36B

System % Bid % Bkgd % Bid % Bkgd % False % Falcse Br
Detected Detected Missed Missed Pos. Neg. jFactor

SHADE 29.8 93.8 70.2 6.2 46.3 53.7 2.034

SHAVE 28.4 96.7 71.6 3.3 31.3 69.7 1.146

GROUPER 10.3 96.8 89.7 3.2 25.9 74.1 3.027

BABE 9.9 98.8 90. 1 1.2 13~ 88.-7 1.159
FUSION 49.8 89.2 50.2 10.8 67.8j 32.2 22

1 33 regions in ('round11rut

TFable 4-3: Evaluation statistics for DC36B h~ypoth)esis fusion
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Figure 4-9: Monocailair hypothesis fuision for DC38

Evaluaition IeCSuLIS I01' the IlSiOn process on DC38
Sym % Bld I% Bkgd( % Bid % Bkgd % False %4 False Br

Detected IDetected Missed Missed P'os. Neo. Factor

SIAD3 51.3 97.4 -. 48.7 2.6 3. ] 86.8 -~0.144

SIIAVE -3. -1 95.3 56.9 4.7 19.1 80.9 0.311
GiROUPE'IR 54.6 -95.8 45.4 4.2 21.H) 1 79.0 0.2

BA13E 44.7 960 55.3 4.() j17.3 ] 82.7 0.260

1-USION 74.7 90.6 25.3 9.4 5s1.5 j48.5 0.360

53 regions in miound truth

Table 4-4: Evaluation statistics for DC38 hypothesis fuision
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Figure 4-10: Monocular hypothesis fusion for LAX

Evaluation results for the fusion process on LAX

System % Bid % Bk-d % Bid % Bkgd [% False Falske Br
Detected Detected Missed Missed Pos. Neg. Factor

SHADE 34.4 99.0 65.6 1.0 10.1 89.9 0.213
SHAVE 54.1 94.9 45.9 5.1 43.6 56.4 0.655

GROUPER 46.0 98.5 54.0 1.5 16.5 83.5 0.2.32
IRARF 63.3 08.8 1 6.7 1.2 18.3 81.7 ~0.130

FUSON 73.0 }92.9 j27.0) 7.1 [ 5.0 35.0 ]068
26 regions in ground truth

Table 4-5: Evaluation statistics for LAX hypothesis fusion
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This suggests that at fail number of Iiy pothiesized bulilding dimensional siess of thc scene structure using manual feature
pixels are unique. I.e.. Seseral piXelS U1an on!) be corrcctly extraction techniques. Figure 4-12 shiosss at similar perspecti% c
identified as- building pixels by onle of thle dtcion101 me1thod.s. s ies generated ss ithOut manual height estimates for thle terrain.
Anotheci interesting obsers ation is that the building pixel Figure 4-13 sliosks a perspectis e 5 ic%% M tl structulral height
b)1amdi ng tatloi totwhly doubles es ery ltme the threshold is est il mates automaltically de ris ed fili im t disparity mlap. The
deciemtlented. These obsei sations ugetthat thresholding dispait ityrial) %%as generated by the tusion of dlisparity
allone 1my eliminlate uiqueil ntmtito i io dULCed by the esttimates producied by isso steieo matchers, oneC areai-based and
ilndis idhal detction1 sy stems. and that inure "sork %% ill need to onle featutre- based 151. It is ss orth noting that height estimates
be done to liminit the nuinbei of Lse positNC is il(ad en 011oneos of' this n1ature do not conlstitulte three-dimensional
delineations) p)1oduced by eachI systint. and by the final fusion repiesentations of the scene. a trute repiresenitation s Nould~

as a-whole.include building (in eat ions. at transportation network o
roadls. andl a (ligital elevation mnodel. Thle information fulsionl
ap~proach pios'ides a mecans for integrating image eti' 5 to

4.5. Generating three-dimensional representations 1)1odIuce thle comp)onenlts of' a true thI ec-di InIen1sioniaI

The goal of ti ee-d i mnlcnsioiial sLCene anlaly sis is it)o gni ate i epi esentat ion of thle scne. Ill tis pai tiulaml ca,i thle fulSionl
an1 lmterpi elation ot tile m mna,11My that is aS -lose as possible to of builmd ing boundamijes (M i ich are thenmsel es fusions of*
thle actal1 sLcne under LonISIdLCation. It is out belief that nio building liy Po~theses,, sk ith dispai it) Illafs pro% idecs one
indis iual comniputem i.Sion technliqueI caniI ihably pros ide a mponenlt Of thie thi ee-d illinesional m epi esenitat ionl.
Lolinl)lete s-cne i CLoMstiuclion10. *ro Wfli0C tis gol.%sC %0il qul itat is ely acc-m ate building deli neat ions and higholts. Inl that
miced -to utiliz~e multiple souliice of inlfoi mntionl ichL may be senise. Figuic 4-13 Shouild be compa1ieI %%I tilte pers'peCtis C
imicoiiiI)Iete 01 iiicOnSIStent1 an1d inltegi ate1 theml inlto a conlsistent 5 iess in Figui e 4-1I2, since ss e do not ut il ize mi Mralin Model inl
linterpretation Of thle scenle. The method described inl this paper thle fusion01 tchniques desci ibed here.
integrates one type of' monocular information: building
din eat ions. Figure 4-14 showvs another perspective view for the D)C37

scene. xvith struetural estimates derived from SI tAVti by
There ameC othei ty pes of in format ion that canl be integrated nl i ftelntso h Ls hds tbidns1J

ss itl-IheSe ILUSeL- dblin dlinhieations to alloss the l'ormation Of S1 tW 1. detcts and dlineateCMs thle Shadoss s Last by eachi of thle
I CC-dnIens Onldl i Ci eseiltat ions. SinLcse has e11% qukil itkt isC c i usion building, i egmons by %s *l king ho loite shadoss /u i di ng

building on r iut om mat iou. %%C L.1a n cr thee mlong1111 thle sunl dii CLI iOn se0 101 . At echL1 p~ixel Along thle
dimnensional s esss s %ith thle i nteg at ion of' highot in formlat ion . shadossTu iId i ng ed cc anl estiiiite of' the shados length is
Thiis height inlin iat ion -an be obtatiliCI fi om ses eral s isual Loin1)Iuted. 11lie meld in lngt of' thle set of Shaos s Colis is

Ucs aS "selI. amlong" these aie shado%% infonna11tiOnl an1d computed1CL fom CeLh building, this becomeis the building shadoss
d i51)di it) in lou mlat ion f1i ointthe anlmly sis of stci co imagery . length estimailte. U. sing time t igonomnet i1 ic litionsh ip bcetsCcii

liti inhight. stin inclination angle. and length of' the cast
Fimeure 4-Il shIokss a perlSpCtfis e siess fom the DC37 scenle. shdos se cain estimate the building height wsith good

generamucd by thle LiSe Of ginound-trUt tltirali les at,101 QinsaLtieS acm. nfcti i cd ei sdieolil nmna

and buldincI~ei~it ~ ons. I is *n aceum atpthre f II(L ntei pi dat ion. It Is i ntem esting" to note that thmis s ic%% %% as

A'

~ ~~z11L

Figu re 4-Il1: Pci spect ise v ic" Ifoi )C'37 uisting goround-tIi thl Figure 4-12: I'emspecmse % mess fIm DC37 Lisng ground ti uth
building and height data bulilding- da.a. o mily
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.lcnraitcd Sold) l~ fi m ilonlot. ulla Mibil s is. n1o sti co nuifllei of Lhici co 11 to pisuc iii Mcills of* i imion hc
in ~ %, fb muin i u t d A11t0(o01h sic co Informal ioll is 1m1ca ii id mdtc and fi nal fusionls gcnic: tcd durim± thic omci li

necessary ill miany situLat ions for accoratc fci gut est init ion. fuiioni process.
mlonlocullar anlalysis is Cap~able of' providin ag reasonable effRU~R s e ctive inl ci ustcriIi tile
quLal itative bii iil17 del ineations and heights. Iiamne yohss ta iC Lii f

prodlucedf by BABti. bilt several of' thle grip~led
5. Conclusions fragments (d0 not corresponld to building stiricture

'I 1Is f)ifpcr IMs dsL a ibcd a si mple mcthod foi fusing scts of i h ~ic xcicld o t sdiI
mlonocki far build inc h~ pothcscs for acal al iiaoei . Scan- maps to icefine these diusters is currently
conveisionl andl connlected legionl extraction techniqules were underway.
app1liedl to p~roduce merers of'sets of building hypothecses. and 2 tI\i' crn ytm i illsi i~
the resulIts were analyzed by thie use of anl evaluation techniqfue soZtine oshpohsswt o h o

I~ase on ~ixelcoveage.scoies to paIss as g~ood hypoiheses. Alternative

The simple hypothesis fusion appi oach developed here scofinlg scheimes imighit be exp~loredI.
appears pronmising: tile (letlion rate can be iimplroved 3 fI1):s hdo sennttinad oir
significant ly by ap)plyi ng it to t[le i es Ilts of' several buLIiling idn yteicnb nl~oe. \oka
(detection systems. Much work remains to be donoie, ho\\ ever. curientlv underway onl a allethodl for iteratively
Analysis of' tile fusion reso Its has revealed shortcom ings ill
each of tlie builing (letect ion systeims. and thea e are aplsonatil tielctoaf cina niu
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lilies by using an impilerfect sequtence finder to difficulties inl recovering fromi local energy
break linies at potential coanetis, and applying a mininiia iii comlex high-i esolution scenes.
caadient-based Iline evaluation tinct ion to score 5. Anthe itnterestinug application of thIiis fusion

the laks.technique Woul 1(1 l b i nocular. imiatierv. One
4. Thle fusion steps Ii the overall fusion piocess couldl ilmaine ller iyl \)otle,;eN from thle left

ledto increase tilie number of Ftake pstivse and igimgso stereo pair to obtain ani
pixels, anld t1n ehloldi ni, alonle malm not imi ~ox C iinpiosed intel 1)1etat ion of a ,Celle. - iiice it is
this without (lecreasi n the nunibCei o ltie~ t K like I\ that thle Ileft anld right1 hvpot hesis sets v% ould
hypollhesized pixels as, wellI. lThe use ol at i e ined differ, dtte to changues i in iage peispective.
dlispari ty map11, as well ats tilie useC of' thle original 1\elix etiment are tiildei wax inl this aiea
intens"It x' ililae. iiia.x aid inll iinti tie" filk A oesea utoncnew ieefclvn,, fslilpositiv'e p~ixels friom hvpothesi/ed egions Ii the Aml etrlqeto ocrsteektvns lsml
finlal fusiotn. Alitet native Iv. actitve contourl I ti~ioii app)ioacies muchi as' tile onle desci ibed hiie. Cei tam ly.
niodels IS,. 41 ig it be used to i eft ne onle cati elIVIsioi ot her appi oaches for Comibiniing bui Idi tie
sego a't ioiis. u ite In sionl segnimentat il"s hypothleses that \\ on Id mlake use ol' ap I tor inloimation abot
(possibl\ thInesholded ) as tile initial seedl to the thle \Stceils p)1oduc ilug thle hypothieses to p[ouemaigu
Ipiocess. TIhis mla\ p)1ove difficult, however fi'mils of tile individual hypothieses. It ks unclear. Ito's ver.
rai rlv accut ate estimlates of thle ho 1(11ng whet het Such apl)toaches x on Id uttimatelx benefit fromi thle
bouiidaries, will be necessat v. and thet e max'v he addlit ional coiiple.\i t\ reqIuired to take advantlage of suich

Vii V 4 ti evlssIo 71 V sn ioic w hds ua
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knowledge. Although the results at this stage are rough, the [5] Hsieh, Y., Perlant, F., and McKeown, D. M.
fusion method developed here appears to be a simple and Recovering 3D Information from Complex Aerial
effective means for increasing the building detection rate for a Imagery.
scene, and may eventually provide a means for incorporating In Proceedings: I0th International Conference on
several sources of photometric information into a single Pattern Recognition, Atlantic City, New Jersey,
interpretation of the scene. pages 136-146. June, 1990.
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Map-Based Localizatiou: The "Drop-Off" Problem

William B. Thompson, Herbert L. Pick, Jr.,
Bonnie H. Bennett, Marian R. Heinrichs,

Steven L. Savitt, and Kip Smith
University of Minnesota

Minneapolis, MN 55455

Abstract and 2 illustrate a typical localization problem. Figure 1
shows a view of Moran Canyon in Grand Teton National

Navigation based on maps requires frequent so- Park. (Though we are primarily interested in ground
lutions to the iocalizatior problem. Localiza- level imagery, this particular example was taken from a
tion is the proces of establishing a match be- helicopter flying approximately 1,300 meters above Jack-
tween particular location in the environament son Lake.) Figure 2 shows a section of a topographic
and the corresponding locations on a map. map which includes both the viewpoint for the picture
Most often, localization involves determining and much of the terrain visible in the picture. The lo-
the viewpoint and thus the location and head- calization task i.volves determining the viewing pusition
ing of the navigating agent on the map. The and direction on the map which corresponds to what ie
solution requires both low-level extraction of seen in Figure 1. In Figure 2, the true viewpoint location
image and map features and high-level prob- and direction is marked by a 4-9.
lem solving to establish likely correspondences At an abstract level, localization can be modeled as
while avoiding probibitively expensive zearch. three interacting processes (Figure 3). Two perceptual
We present a formalism within which the lo- processes identify appropriate map and image structures,
calization problem can be studied, information a third process actually establishes correspondence. Per-
about how expert human map users deal with ception needs to operate in both a top-down and bottom-
localization, and aspects of a preliminary com- up manner. Operating bottom-up, perceptual compo-
putational model of the process. nents of the process return the location and type of

prominent features. Operating top-down, they search
1 Introduction the data for features of a particular type at a particular

location. In the third process, features which are candi-
Localization is the process of establishing a match be- dates for matching are found in one set of features and
tween particular locations in the environment and the then are searched for in the other set. The matching is
corresponding locations on a map. Commonly, the envi- bi-directional; that is, map properties can be searched for
ronment location of interest is the viewpoint and viewing among image features or image features can be searched
direction (i.e., the "where am I?" problem). Figures 1 for among map features. The search is guided by a priori

Moran - /

Mo)ran ca

Figure 1: View ot Moran Canyon. Figure 2: Topographic map of Moran Canyon.
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Knowledge position changes incrementally due to locomotion. We

have initially focused our research on drop-off problems,

since many of the techniques for solving drop-off prob-
lems are likely to be part of the solution to updating
problems. In addition, the drop-off problem gives us a

Correspondence Matching sense of base-level performance for map-based localiza-
tion under a high degree of uncertainty.

drop off updating

extraction ex traction P pon

increasing a priori knowledge

( n Map Data Figure 4: Variations in a priori knowledge affect the na-
ture of the localization process.

Figure 3: Top-level model of localization process.
Almost all of the previous work on localization using

vision has been directed at updating problems. Knowl-
knowledge of the likely viewpoint, together with hcuris- edge of expected pobition (typically from dead reckoning)
tics that reduce the potential complexity. The local- is used to predict visual features which are then searched
;zation problem itself is solved when correspondence is for in the image. Deviations between expected and ob-
established between the observation point and a map served images are used to update the estimate of current
location. Much of our research is aimed at understand- location. While updating plays a necessary role in out-
ing what features and feature properties are relevant to door navigation, it is not sufficient in and of itself to solve
the perception level and what strategies are used at the the localization problem. Over the long distances and
matching level to guide the search, time intervals involved in large-scale outdoor navigation,

Automated solutions to the localization problem are dead reckoning errors accumulate to prohibitively large
of obvious utility for mobile robotics in large-scale, out- values, the maintenance of a visual fix on features nec-
door terrain. In addition, a more precise understanding essary for updating becomes increasingly difficult, and
of the processes involved in localization can aid human dealing with the occlusion and disocclusion of tracked
map users through better training procedures. Finally, features introduces special problems.
outdoor localization provides a challenging research en- Over shorter time intervals, it may be possible to start
vironment within which to advance image understanding with an initial solution to the localization problem, use
technology. Most of the "shape-from-X" techniques that this to visually identify significant image features and
have been developed are ineffective in large-scale, out- note the corresponding map features, use low-level visual
door terrain due to the long distances involved and the correspondence methods to track these features when
complex reflectance models that prevail. New low-level moving, then use triangulation techniques to solve for
analysis techniques based on occlusion cues and proper- the new current location. Even if this is possible, a con-
ties such as aerial perspective will be required. tinuous 3600 view of the scene must be available and

In this paper, we describe a preliminary computational substantial computational resources are required.1 Out-
model for solving one type of localization problem. In door environments often have areas in which no distinc-
addition we outline relevant information learned from tive features are visible. In such situations, it is essen-
studies we have done involving expert map users solving tial that a method be available for reacquiring a sense
a variety of realistic outdoor and laboratory tasks. Sub- of location on the map after moving into more varied
sequent reports will elaborate this model for a broader terrain. Furthermore, low-level visual tracking of topo-
class of localization problems and show how lower-level graphic features is not as simple as it might at first ap-
vision modules and high-level spatial reasoning need to pear. The irregular shape of most topLgraphy together
interact in order to perform localization while navigating with the frequency of curving slopes preseits s;gnificant
outdoors. problems. Relatively small movements of the observa-

tion point can produce significant changes in appearance
2 Approach to the Problem of a single feature. Even worse, visually prominent as-
Localization problems can be characterized in terms of pects of one topographic feature may smoothly move to
how much a priori information is available about likely another feature as the viewpoint is changed. (E.g., a
observations points (Figure 4). At one end of this contin- visual high point may correspond to a particular hill in
uum, drop-off problems involve substantial initial uncer- 'Consider a real application: During tank battles, iner-
tainty in viewing location and/or direction. (The name tial position sensors drift at least one nautical mile per hour,
comes from the extreme case in which an observer is global positioning system (GPS) information may be unavail-
"dropped off" into a totally unfamiliar environmert.) In able or ui.reliable, and it is clearly not possible for the tank
updating problems, the task is to maintain a sense of the crew to continuously and precisely keep track of all visual
current position with respect to a map as the current changes in the local topography.
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one view and a different hill in a subsequent nearby view, subsets of image features to match against object mod-
without any obvious event in the imagery sig. %li-,g that els, selection of appropriate object models, and estab-
a different hill has come into view.) Finally, ,le frequent lishment of correspo idences between model and image
occlusion and disocclusion of structures needed for trian- features [Grimson, 1990]. Much research has focused
gulation requires the visual acquisition of new features, solving the correspondence problem using pose estima-
presenting an additional possibility for significant error. tion or alignment techniques in which the correspon-

Real world topography involves complex shapes at dence between model and image features is coupled with
many different scales. Even with an accurate map, the estimation of the transformation between model and
the number of characteristic views (nodes in the as- image coordinate systems (e.g., [Huttlenlocher and Ull-
pect graph) grows rapidly with increasing uncertainty man, 19871). Localization involves these same concep-
in viewing location. As a result, the combinatorics of tual components, though there are distinct and signifi-
the drop-off problem are such that it is usually not pos- cant differences.
sible to use a verification strategy in which an expected In outdoor navigation, the relevant "model" is a rep-
view is matched against actual imagery. Instead, local- resentation of the topographic features visible from a
ization becomes more like a recognition problem in which particular vantage point. Because the number of van-
the task is to decide what region of the map can act as tage points is effectively unbounded, we no longer have
a "model" to adequately explain visible portions of the a set of discrete models. Rather, the needed model of
scene. the topography must be assembled adaptively from the

While people can do object recognition rapidly and map. Severe combinatorial problems will result if this
with little apparent effort, they have considerably more assembly of map features is not carefully constrained.
difficulty with localization problems. Effective utiliza- The selection of appropriate image features for match-
tion of a topographic map appears to combine use of vi- ing is rather more straightforward, since all topographi-
sual skills with substantial problem solving. Localization cally distinctive visible features are potentially relevant.
is a high-level perceptual activity quite different from the (In recognition, the image is typically cluttered with
recognition tasks that are more commonly studied. This a large number of features unrelated to the object to
suggests that localization may be an application in which be identified. For localization, the "clutter" is in the
lower-level image understanding techniques and methods models, not in the image.) Proficient map users exploit
from artificial intelligence may be naturally combined, this fact by driving the generation of hypothesized view-
It also suggests that the development of computational points based more on features visible in their view of the
solutions for the localization problem can benefit sig- scene than on a search through possibly relevant map
nificantly from research on how expert map users solve features. Still, the number of visible scene features usu-
similar problems.2  ally presents combinatorial difficulties. Success in local-

ization seems to involve organizing these features into
3 Relationship Between Localization easily matchable configurations.

and Recognition Correspondence requires a one-to-one matching be-
tween particular subsets of map (model) and image fea-

Vision is a process that extracts information about what tures. Grimson describes this as a constraint satisfaction
and where from an image. Most of the research on problem, distinguishing between unary constraints which
higher-level vision has concentrated on recognition tasks. apply to single pairings of an image feature with a model
In recognition, the fundamental problem is to identify feature and n-ary constraints which apply to larger sets
what is in the image. Aspects of the problem involving of pairings. (Grimson actually considers nothing more
shape and position (where) may be both necessary and complex than binary constraints.) In localization, unary
difficult, but they are typically subsidiary to the identi- constraints consist of equivalent identifications nf map
fication process. In contrast, issues of where are central and image features (e.g., "hill"), possibly combined with
to localization. descriptive information about the feature (e.g., "high").

Many of the computational tools that have proven use- N-ary constraints relate configurations of basic features
ful for recognition turn out to be also relevant to localiza- (e.g., "two hills separated by a saddle").
tion. Use of such formalisms allows a more formal spec- In object recognition, pose estimation involves the de-
ification of the localization problem while at the same termination of the transformation that will best match
time highlighting Eimilarities and differences with exist- a particular model to a given set of image features.
ing recognition algorithms. For three-dimensional models and two.dimensional im-

Grimson separates the problem of recognition into age features, this transformation typically involves up to
three conceptual components: selection of appropriate six degrees of freedom: two of translation, une of scale

(or equivalently, depth), and three of rotation. Finally,2The fact that localization seems to be harder for people the proje _ .ion of the transformed model onto the image
than object recognition does not necessarily argue against plane must be determined.
studying human performance in order to build computational
models. Experience with expert systems suggests that it is The situation is rather more complex for localization
easier to build these programs based on how people solve dif- in outdoor environments. Recognition is not based on
ficult problems than based on seemingly effortless "common generic, three-dimensional models. Instead, topography
sense", since the processes used to solve the more difficult leads to 21-D models, since the environment can be
problems are easier to access experimentally, thought of as a 2-D, horizontal surface that has been

708



distorted out of the plane. A map is in effect a 2-D, insufficient to establish the hypothesis. Follow-up re-
downward-looking view of this 21-D surface. The im- connaissance is also useful during the refinement of a
ages on which localization must be based are horizontal- hypothesis that is being accepted. The additional in-
looking views of the same surface. Thus, in matching formation typically serves to fine-tune the hypothesis.
model (map) to image, we always have a 900 rotation The most common use of follow-up reconnaissance is as
to deal with. This perspective shift between downward- a "strategic regrouping" after the rejection of a hypoth-
looking and horizontal-looking views is quite distinct esis. This regrouping appears to serve the same purpose
from the other translations and rotations of the map as the initial extended reconnaissance, the gathering of
necessary to establish the viewpoint, information required to support the targeting of a new

The 900 perspective shift between map and image has hypothesis.
important implications for the sorts of lower-level im-
age understanding techniques necessary to support lo- 4.2 Map Orientation
calization. Knowing that the shift occurs constrains, to Map orientation involves relating the direction and scale
some extent, the problem of finding the complete trans- of the map to the visible scene. If an accurate compass
formation which specifies the solution to the localization is not available, the map is aligned with the general lay
problem. Unfortunately, the "on end" view of the topo- of the land. An approximate calibration is established
graphic model together with the difficulty of accurately between the scene and the map contour interval and dis-
determining range over long distances using passive vi- tance scale. Map orientation can occur at a variety of
sion means that it is not possible to extract a precise points in the problem solving process. It typically is
quantitative geometric description of the scene from the required only once, unless hypotheses based on a previ-
available images and then match this against the map. ously determined value are proving hard to verify.

4 Strategies for Localization 4.3 Feature Matching

The major activity during the localization task is match-
Expert map users use six distinct processes in solving ing features in the image to features in the map or vice
localization problems. Competence in all six seems re- versa. Feature matching does not require the existence
quired for effective performance. It is likely that these of a hypothesis about viewing location. Such matching
same procedures will be required in automated systems can establish possible general correspondences between
which solve localization problems without precise a pri- the image and the map, facilitating the generation of
ori information on viewing position. specific hypotheses. Once hypotheses have been estab-

4.1 Reconnaissance lished, feature matching plays a key role in evaluation.
Feature matching is based on a common identification

The purpose of reconnaissance is to gather information and a similar characterization of topographic structures
prior to the creation and/or evaluation of specific hy- in the map and in the image. Identification is done in
potheses about the viewing position. Perceptually dis- terms of a set of labels and properties that is often spe-
tinctive topographic properties of the map or scene that cific to a particular geologic landform. In the rolling ter-
are potentially relevant to establishing map-image cor- rain of southeastern Minnesota, the most common fea-
respondences are identified.' Reconnaissance involves tures attended to are hills and valleys. Matching for
an examination of either map or image features in iso- the presence or absence of an individual hill or valley
lation. The most successful map users seem to spend is not particularly diagnostic of location. Accordingly,
most of their reconnaissance time examining image fea- map users more commonly attend to properties of these
turnes, organizing the information from the environment features rather that just the existence of the feature. To
into a cohesive representation of features and configura- differentiate among similar hills and valleys, they focus
tions. Initial reconnaissance focusing on the map seems on relative size, elevation, and gradient (steepness).
less successful. Most map users tend to impose a bipolar classifica-

Localization problem solving is almost always initiated tion system to differentiate properties of features. Fea-
by an extended period of reconnaissance. The search is tures are either large or small, narrow or broad, steep
conducted broadly, without any particular focus except or shallow. Comparison is another common strategy to
as to distinctiveness and relevance of features. Follow-up differentiate features. One feature is said to be larger,
episodes of reconnaissance generate additional informa- broader, or steeper than another.
tion and can be prompted by three different situations.
Acquisition of additional information is common during 4.4 Configuration Matching
the evaluation of a hypothesis. The additional infor- Configuration matching serves the same purposes as fea-
mation is required whenever the current information is ture matching. The only difference between the two are

3Criteria for distinctiveness and potential relevance can that the pieces of information that are being attended

vary significantly over different landforms. The kinds of fea- to are assemblies of features. Configurations are speci-

tures relevant to localization in Minnesota arc very differ- fled in terms of the features of which they are composed
ent than those relevant to the glaciated topography of the and the relationships between those features. These re-
mountains in the western United States. Anecdotal evidence lationships include purely topological descriptions (e.g.,
suggests that even expert map users may require adaptation behind, in front of, next to), ordinal relations (e.g., taller
before effectively dealing with novel sorts of terrain, than), and quantitative properties (e.g., actual eleva-
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tion). Expert map users tend to do more configuration While viewpoint invariance is desirable in the spa-
matching and less feature matching than do less profi- tial arrangements of features that define a configuration,
cient individuals. The complexity of the configurations is viewpoint dependence is obviously necessary for hypothe-
usually relatively small, however, typically involving two ses. A hypothesis must necessarily describe the rela-
to four individual features. Competence in map reading tionship of topographic features to the viewpoint. Our
appears to depend on the accurate establishment of ap- experience with expert map users suggests that they
propriate configurations for matching. use rather simple, qualitative descriptions for these rela-

Configurations constrain the matching process more tionships rather than a more sophisticated trigonometric
effectively than do individual features. There are fewer analysis. Whether this is the best approach to the prob-
matches to "a hill with a dip and a ridge" than there lem or only a consequence of the difficulty people have
are to individual hills, to individual small valleys, and in making complex quantitative judgements is not yet
to individual ridges. By bundling features together into clear.
configurations, the map user effectively restricts search The search through alternate hypotheses can proceed
to models with more unique descriptors, in a variety of ways. A breadth-first strategy, typically

Experienced map users appear to follow a pair of sim- not very effective, generates a large number of hypothe-
ple but highly effective heuristics as they assemble con- ses before attempting to evaluate any of them. The gen-
figurations of features in the image. The first heuristic eration of each individual hypothesis is based on a small
restricts configurations to features that are contiguous. number of features - often only one. More focused search
Features that are joined together to form configurations strategies generate successively more precise hypotheses
are invariably physically adjacent (e.g., "the flat area based on increasingly richer sets of configurations. These
that slopes down and then up again to a ridge"), rather focused searches may alternate generation and evalua-
than just adjacent in the imagery due to occlusion. Map tion or may generate a small set of possibilities and then
users in the field have often been observed to trace out simultaneously examine all at once.
in the air with a finger the connection between features The most common error made by map users is the
as they construct a configuration. failure to generate the correct answer as one of the can-

The second, less-rigorously applied heuristic, restricts didates in a set of initial hypotheses. This type of error
configurations to features that align along a line-of-sight, seems to have as its source an inadequate reconnaissance
The majority of configurations (perhaps 80%) used by of the scene in the map user's immediate vicinity. An
map users are composed of contiguous features that fall overly simple description of the location (e.g., "I'm on a
along or parallel to a line-of-sight, along an azimuth that ohe r "Thiscriptis stee loc at cin texteds way romtheviewr. ost f te . big hill" or "This ridge is steep") ends up matching the
extends away from the viewer. Most of the remaining most prominent "big hill" or "steep ridge" in the map,
configurations (the other 20%) focus on the distribution without concern for the greater constraints that would
of features along prominent ridge-lines that cut across be provided by a richer set of configurations.
the viewing angle. The common characteristic of these
assemblages is their linearity. Whenever a feature in a A second type of error is made during the evaluation
configuration does not line up, explicit reference is made of a hypothesis. A common evaluation strategy is to
to its non-linearity (e.g., the crook in a ridge-line or the examine the map for features or configurations that can
slight offset in a string of hills and valleys), be expected in the image if the hypothesized location

Most configurations are assembled in accord with both were correct. If the model of the environment generated
heuristics. Both derive their power from the fact that from the map is poorly constructed, it is all too easy to
they disallow configurations that could be products of "explain away" expectations that are not realized. The
accidental viewpoints. Both connectivity and linearity source of this type of error is the failure to use the model
are viewpoint invariant properties of the image that sur- to identify disconfirmatory evidence in the image. This
vive the transformations required for matching. ([Lowe, is an instance of confirmatory bias, a common source of
1987] emphasizes a similar importance for viewpoint in- failure in human problem solving (Wason, 1960, Mynatt
variant configurations of features in object recognition.) et al., 1977]. The chance for error is enhanced in the

localization task by the inherent imprecision of the model
4.5 Hypothesis Generation and Evaluation upon which the evaluation is made. This is one situation

in which we might expect automated perceptual systems
A hypothesis posits a distinct map location and dire,- to perform better than their human counterparts.
tion as corresponding to the viewing position. The hy-
pothesis is initially triggered by the possible map-image
correspondence between a small number of features or 4.6 Conclude
correspondences. Hypothesis evaluation proceeds by ex-
amining other image and map features or configurations Hypothesis evaluation leads to the tentative rejection or
using expectations about correspondences derived from confirmation of hypotheses that have been generated. A
the hypothesis. Often, a brief reconnaissance of a local final step in the localization process produces the best es-
region in the map and/or image will be required to iden- timate of actual location and viewing direction. Depend-
tify additional features and configurations useful in the ing on the search strategy used, this may be based on
evaluation process. The strategies involved have much in a comparison of the likelihoods of competing hypotheses
common with those used in other diagnostic tasks (e.g., or may simply be the identification of a single hypothesis
see [Johnson et al., 1988]). which survived a sequential generate-and-test procedure.
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Figure 5: Matching of map and image features.
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5 A Computational Architecture for terrain classification depends on sometimes subtle shape
Localization properties, not on a geometrically precise object model.

The problem of assembling configurations is difficult
We have completed the preliminary specification of a not only because the criteria for choosing members of
computational architecture for the problem solving as- the configuration is seldom clear, but also because there
pects of drop-off problems. The model includes a taz- is no obvious way in which to determine the spatial re-
onomy knowledge base for aiding in the recognition of lationships within a configuration. This problem arises
topographic features and the assembly of configurations, because the individual features have spatial extent, thus
image and map knowledge bases for representing infor- limiting the degree to which relationships such as "adja-
mation specific to the problem at hand, and a hypothe- cent to" can be effectively utilized. The fact that expert
sis knowledge base for posting information on currently map users organize configurations in a linear structure
active hypotheses about viewpoint or scene-image corre- may be caused, in part, by the need for finding a compact
spondences. A set of procedures forms a control structure representation of spatial organization within the config-
for recognizing features, assembling configurations, and uration.
posting, evaluating, refining, and accepting or rejecting The extraction of image features also suffers from the
hypotheses. In addition, the control structures have ac- lack of precise object models. In addition, the primi-
cess to lower-level components responsible for extracting tive structures needed for feature identification are not
primitive features from map and imagery. well defined. As with other image understanding situa-

Figure 5 shows an example of map data partially tions, a large number of effects can generate the same or
instantiated against partially interpreted image data. similar patterns on an image. Simple edge detection is
The taxonomy knowledge base is used to create a hi- clearly not enough as a basis for finding topographically
erarchy starting with topographic features and con- relevant image features. Many open questions remain in
tinuing on down through the solid (subclass) links to this aspect of our research.
map and image features, primitives and configurations, The extraction of image features based on edges re-
etc. In this example, the image knowledge base con- quires that only edges likely to be due to topographic
sists of the frames representing two peaks (P-1 and effects be identified. Two approaches seem promising.
P-2) and a valley (IV-i) which have been recognized One, similar to methods used in other recognition ap-
in the image. These frames have been attached ap- plications, involves organizing local edge elements into
propriately into the taxonomy domain by membership larger segments likely to correspond to some meaningful
(dashed) links. The map knowledge base consists of scene structure. (See [Sha'ashua and Ullman, 1988] and
three hanging valleys (hanging-valley-1, -2, and -3), [Mohan and Nevatia, 1988] for examples in the domain
three canyons (moran-canyon along with its -south- of object recognition.) The second involves understand-
fork and -north-fork), and a col (col-1). These are ing the specific constraints that exist on image edges
attached to appropriate places in the taxonomy hierar- generated by topographic structures.
chy via more membership links. Figure 6 provides one example of using information

Several of the control structure procedures are shown about topography to generate constraints on edges. Thein Figure 5. These procedures are divided into two figure shows a sketch of a ridge viewed from slightly dif-
classes. General strategy rules include reconnaissance ferent directions. In the right view, we see the ridge in
(both initial and follow-up), map orientation, feature profile. In the left view, the ridge is seen more end-on
matching (both image to map, and map to image), con- and the faces on both sides of the ridge have become
figuration matching, hypotheses generation and evalua, visible. If the topography consists of approximately pla-
tion, and conclusions. Specific procedures perform tasks nar faces, then a ridge can be characterized in terms
such as grouping configurations and attentional pro- of its rise angle (the angle of the ridge itself relative
cesses such as looking for unique or unusual data like to horizontal) and the break angles of each of the faces
prominent high points or unusual configurations. (the slope of the face measured along its fall line). For

a horizontal viewing direction, the projection process is
6 Lower-level Image and Map such that the angle of the ridge as projected into the

Understanding image is never less than the rise angle. Furthermore,
the projected ridge angle in the image for ridges seen in

Extraction of map features is aided greatly by the avail-
ability of accurate DTM (digital terrain model) data,
since the interpretation of contour data involves a num- .%
ber of subtle interpolation problems. If DTM data is , %%
available, extraction of features such as peaks, ridges, / ,
and valleys can be done using relatively straightforward , \ / /
mathematical operators [Shapiro et al., 1988]. A signifi- %%%" / %.\
cant recognition problem remains, however, since impor- %/ / / , ,/
tant distinctions exist between features in the same class / / I / / 1,/,
(e.g., a cirque is a very different feature than a canyon, % / ' /

though both are instances of valley features). This is
different from the classic object recognition task, since Figure 6: Ridge line seen from different vantage points.
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profile is never more than the break angle of the hidden tern, also uses an estimated position which is derived
face. Thus, knowledge of the minimum rise angles and from motion information to generate a two-dimensional
maximum break angles that are common in the scene projection of the structure in the expected scene [An-
constrain to an interval the projected ridge lines in the dress and Kak, 1988]. Correspondences are found by us-
image. In most realistic situations, the viewing angle is ing the Dempater-Shafer formalism. The HILARE sys-
sufficiently close to horizontal for this effect to be use- tern, too, use, motion information to estimate position,
ful. Even in extremely rugged terrain, break angles are and explicitly represents positional uncertainty numer-
seldom more than 450, thus providing a useful way to ically [Chatila and Laumond, 1985]. The part of the
evaluate edges in the image. world model near the estimated position which best cor-

Figures 7-11 illustrate a number of the lower-level im- responds to what is currently being perceived is then
age and map understanding problems that arise in local- found using a global matching approach.
ization. Figure 7 shows topographic features extracted The second approach to localization in mobile robot
from the DTM data using methods described in [Shapiro navigation matches the expected scene with the actual
et al., 1988]. Black lines indicate ridges, white lines in- image using landmarks at the level of objects and places.
dicate valleys. The features are overlaid onto an eleva- Distinguishable objects in the environment are identi-
tion image in which lighter values indicate higher alti- fled using perceptual systems. The bearing and range
tudes. (Only a portion of the map shown in Figure 2 is to each landmark is then used to orient the system with
shown.) Figure 8 shows the output of an appropriately respect to a "world model" (i.e., map) of the environ-
thresholded Canny edge detector applied to the image ment. One example of this approach is the NX robot,
in Figure 1. Figure 9 shows the Canny edges which have which, during an exploration phase, determines locally
passed a multi-stage filtering operation involving spatial distinctive places by finding sensory features which are
coincidence across scales, minimum edge length, and ex- maximized at that place [Kuipers and Byun, 1987].
pectations about edge orientations. Figures 10 and 11 This signature is then used during later navigation to
illustrate how simple textural patterns can aid in the recognize the place. Levitt et al. developed a model
identification of topographic structures. Figure 10 shows of landmark-based localization in which landmarks are
image edges filtered to preserve only those oriented down used in a highly error tolerant manner to partition the
and to the right. Figure 11 shows edges oriented down environment into places which are recognized by the
and to the left. Concentrations of edges in Figure 10 in- landmarks configurations seen there [Levitt et al., 1987,
dicate rightward facing slopes. Concentrations of edges Levitt et al., 1988]. Another method addresses the local-
in Figure 11 indicate leftward facing slopes. (The smaller ization problem by combining low-level tracking or visual
clusters of edges in the upper left of Figure 11 are faces "servoing" with high-level perceptual verification using
associated with the far walls of side valleys branching off milestones. These milestones are defined in terms of
from the main canyon.) landmarks such as buildings, for example, and their bear-

ing [Arkin et al., 1987, Fennema et al., 1988]. Another
7 Related Work system generates a 2-D and partial 3-D scene model from
Our research draws on a diverse range of past work. the observed scene. The matching problem is then solved
Localization is a fundamental problem in mobile robot by using object groupings and spatial reasoning [Nasr et
navigation, and several different types of solutions have al., 1987].
been developed to address it. Approaches for automated Conventional approaches to landmark-based localiza-
interpretation of reconnaissance imagery relate directly tion require that the identification and global position of
to the problems of determining locations in large-scale landmarks be known a priori with a high degree of preci-
space. Finally, an extensive literature exists on human sion, and that perceptual systems exist which can accu-
competence in map reading. rately identify these landmarks and precisely determine

their relative position with respect to the robot vehicle.
7.1 Computational approaches Object recognition that is at the same time both general
Solutions to the localization problem in mobile robot and robust is difficult to achieve. As a result, errors in
navigation take two forms. Both approaches match landmark recognition will be common. In many envi-
the actual image with the scene that is expected given ronments, precisely localized landmarks may be scarce.
an estimated location, but differ in the level at which Finally, the ambiguity associated with landmark-based
the matching takes place. In the first approach, a 3- navigation can lead to a combinatorial explosion of cases
D model of the scene and an estimate of the viewing that must be analyzed. If there are many landmarks of
location is u. ,d to predict what the 2-D image should the same type, then the complexity of the task matching
look like. Edges from the predicted image are compared landmarks to map features grows quickly.
with edges found in the actual image. One example of The integration of sensed data with maps is cen-
this approach uses map data to project a potential im- tral to many navigation tasks. Map-to-image matching
age given a downward-looking perspective from an es- has been extensively studied within the context of re-
timated position [Ernst and Flinchbaugh, 1989]. This connaissance imagery (e.g., [Nevatia and Price, 1982,
potential image is then run through a low-level matcher Clark, 1983, McKeown and Denlinger, 1984, Hwang,
which compares it to the actual incoming image. The 1984, McKeown et al., 1985]). Typically, meaningful fea-
resulting correspondences are then used to refine the es- tures are found in the image and then matched to cor-
timated position. Another example, the PSEIKI sys- responding map features. Common matching items in-
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Figure 7: Extracted topographic features.

S, -

Figure 8: Canny edges from Fig. 1. Figure 9: Filtered edges.

Figure 10: Diagonal edges from Fig. 1I. Figure 11: Edges oriented in opposite diagonal.
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clude cultural features such as roads, cities, and airports, Lower-level image understanding methods which utilize
along with terrain features such as rivers, coastlines, and passive vision are unlikely to work much better than hu-
so on. [Little, 1982] describes one of the few map-to- mans. As a result, information about the limitations of
image systems that makes heavy use of topographic fea- human vision in large-scale, outdoor environments is po-
tures. Ridge lines are found in a digital terrain model tentially of great relevance in developing computational
and placed in correspondence with brightness disconti- solutions for vision-based localization.
nuities in an image. The matching is aided by informa- Preliminary research of ours using both protocol anal-
tion about illumination angle which is used to predict ysis of observers thinking aloud as they solved a drop-
which ridges in the elevation model will generate distinc- off localization problem and a memory paradigm of
tive changes in brightness. In all of these cases, imagery observers recalling photographic images suggested that
and maps have had a common, "downward-looking" per- much attention during observation of natural scenes may
spective where both imagery and maps have a similar, be devoted to qualitative topographic features [Heinrichs
two-dimensional coordinate system. The correspondence et al., 1989]. Certainly there was more mention of such
problem is essentially one of 2-D registration. features than precise metric characteristics. Among the

In the problems we are considering here, imagery has kinds of features noted were a variety of convex features
a near "horizontal-looking" perspective which is quali- (hills, ridges, rises), concave features (valleys, sinks,
tatively different from the downward view common to holes, etc.), inclinations (level plateaus and slopes). Al-
nearly all maps. There has been relatively little work re- though the organization of spatial knowledge has mainly
lating horizontal-looking imagery with maps. The work been studied in urban or restricted laboratory environ-
closest to our own is that of Lavin who was interested ments the indications are that features or landmarks ex-
in a problem complementary to that of map match- ert a strong influence on one's use of spatial informa-
ing [Lavin, 1979]. He investigated the creation of to- tion. For example, [Sadalla et al., 1980] demonstrated
pographic maps from sketches of occlusion boundaries, that certain salient features serve as reference points for
Only a very simple model of topography involving uni- organizing spatial information. Once established, these
form Gaussian shaped hills was used. Thus, many of reference points have a privileged role in spatial orienta-
the complexities encountered in more realistic situations tion, with one result being that the subjective distance
were avoided. Related to both Lavin's work and the between reference points and non-reference points is not
methods for matching reconnaissance imagery and maps symmetrical.
are techniques for automatically rendering terrain views Other research has shown that spatial information is
based on both aerial photography and elevation data hierarchically organized. This is evidenced by the fact
[Quam, 1985]. Appropriate coordinate transformations that making judgments (or thinking about) particular lo-
and resampling are done to produce a horizontal-looking cations will facilitate subsequent independent judgments
view from the original downward-looking photograph. about locations that are physically nearby [Hirtle and

The perspective shift associated with combining visual Jonides, 1985, McNamara, 1986]. Another factor which
data with other representations such as maps is related contributes to such hierarchical organization is the ex-
to several other three-dimensional reconstruction prob- tent to which various physical factors compartmentalize
lems. Koenderink developed a relationship between the a space [Kosslyn et al., 1974]. Distances between loca-
3-D structure of solid objects and the topology of pro- tions within the same subspace will often be judged as
jected contours [Koenderink, 1984]. Giblin and Weiss smaller than equivalent distances between locations in
describe how surface descriptions can be recovered from different subspaces. These subspaces might be defined
projected contours [Giblin and Weiss, 1987]. Neither by physical barriers such as rivers or fences, by optical
of these approaches, however, is directly applicable to barriers such as the edge of a field, or by political bound-
our problem. Complex terrain cannot be modeled as a aries such as state or city lines.
simple, solid object. Furthermore, the inaccuracies of
lower-level image analysis algorithms is likely to defeat Analysis of individual differences in map reading per-
any method based on the topology of projected contours. formance has also been used as a way of investigating the
Finally, Shepard's work on mental rotations may provide esses.of1extractingdinformationmfrom maps. reaang
some insight into human performance in perspective shift et al., 1985] studied how eye movements during reading

tasks [Shepard and Metzler, 19711. topographic maps were related to individual differences
in map reading experience. They found that the eye

7.2 The psychology of using maps fixations of experienced map readers were shorter and
more often focused on task relevant areas than those

An extensive literature in psychology and cartography of inexperienced readers. Sholl and Egeth [Sholl and
deals with problems associated with reading and using Egeth, 1982], in a systematic psychometric approach,
maps and the associated problem of recognizing aspects related performance on a number of topographic map
of scene geometry relevant to localization. While little of performance tasks to several more general standard psy-
this literature deals with the actual processes involved in chometric measures. The map tasks such as land form
localization, it does provide useful insight into the sorts identification, slope identification, spot elevation, and
of computational models likely to be effective. Knowl- terrain visualization were factor analyzed, yielding two
edge about the performance uf expert map users can aid major factors, one described as a spatial visualization
in understanding the heuristic strategies necessary to cs- factor and the other an altitude estimation factor. Sur-
tablishing correspondences between a map and an image. prisingly, standard tests of spatial ability are not highly
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related to the spatial visualization map reading factor steeper than they really were [Smith and Smith, 1965].
whereas verbal-analytic measures are. A standardized This result is consistent with anecdotal reports of hills
measure of mathematical ability is related to the alti- often appearing steeper than they actually are when one
tude estimation factor, yet finding the altitude of points is traversing them by foot or in a vehicle. In work prelim-
on a topographic map or finding the highest and lowest inary to the present project, slopes were estimated from
elevations wouldn't seem to involve very sophisticated photographs at points for which the actual slopes varied
mathematics. The authors suggest that the relationship from about 3 to 25 degrees. Results indicated a linear
is due to the arithmetic aspect of mathematical ability, relationship between actual and perceived slope. Con-
In general, the results seem to suggest that our stan- sistent with the observation by Smith and Smith slopes
dardized tests don't reflect very well the abilities used in were perceived as steeper than they actually were.
a practical skill like topographic map reading. The limited research that exists on reading of topo-

An obvious approach to understanding the processes graphic maps is interesting and tantalizing. The results
underlying extraction of information from topographic suggest a rather sophisticated skill, but neither an anal-
maps is the use of information processing paradigms. ysis of individual differences nor of tasks processes pro-
There are few such studies, but one example [Eley, 1988] vides and adequate understanding of the nature of that
has examined the effect of differences in orientation in skill. One reason is simply that there is relatively little
view point on speed of matching a map position to the research. Another is that the tasks used are artificial in
topography of a surface. Subjects were shown a segment two respects. The materials used are not realistic. The
of a topographic map for inspection. After they had a samples of maps themselves are real but often only very
chance to study the map, a point and direction of view small segments are used. When the experimental tasks
was indicated on the map perimeter. Their task was involve relating maps to the environment, the environ-
then to imagine what the land surface would look from ment is typically represented by relatively impoverished
that perspective. When they were satisfied that they sketches which may, on the one hand, emphasize features
knew how the surface would look they pressed a button that wouldn't be as clear with natural terrain or, on the
which presented a representational drawing of a surface. other hand, omit the incredible richness of natural ter-
They then had to indicate whether the surface drawing rain. The tasks are also artificial in the problems posed.
corresponded or not to the specified view. Of particu- Subjects may be asked only to find a high or low spot,
lar interest was how the time required to imagine the to judge the qualitative nature of a land form, etc., and
view from the specified orientation was related to the they are usually not even asked to solve a localization
viewing direction. Typical mental rotation results were problem.
obtained. The greater the required viewing direction de-
viated from the subject's own orientation the longer the 8 Implications For Training
reaction time to press the button for the drawing. In a A better understanding of the formal nature of the local-
second experiment reaction time was measured for land ization problem and the processes likely to be successful
surface views at different elevations. Results indicated in solving localization problems has the potential for im-
that an elevation providing a viewpoint of 30 degrees proving the training of map users. Knowledge about
above horizontal was more effective than either higher the perceptual limitations leading to localization errors
or lower elevations. The effects on map reading per- can be used to warn map users of potential difficulties.
formance of the mismatch in orientation between map Search and evaluation strategies which reduce the com-
and environment has also been found with street maps binatorics and minimize ambiguity can be taught, while
[Levine et at., 1984]. strategies known to be less effective can be avoided.

Although space perception has been a topic of study Map reading problems take a variety of formi. Lo-
for over one hundred and fifty years only so-called depth calization tasks such as updating and drop-off prob-
perception, the perception of the radial distance of ob- lems involve map-image correspondence. Some other
jects from the observer, has received systematic intense tasks focus solely on maps. These would include route
investigation [Haber, 1985]. Psychophysical research has planning, determination of intervisibility ("when looking
been concerned with how observers are able to obtain from point A to C, would intermediate point B be vis-
information about a 3-D world from 2-D sensory input. ible?"), finding highest and lowest station points in an
The few studies conducted in rich outdoor environments area, determining the direction of water flow, etc. Ac-
have suggested that a linear relationship exists between curacy and efficiency in reading maps is important for
perceived and physical distance for spaces relevant to both kinds of problems and accuracy and efficiency in
navigation. Unfortunately, all of these studies were done perception of the scene is a necessary prerequisite for the
in flat open fields. No such studies have been carried out correspondence problem. In addition, solving the map-
on even sloping or irregular (not to mention cluttered) image correspondence problem requires use of a variety
landscapes. of information processing and problem solving strategies.

Laboratory studies of the perception of the slant of Establishing such a correspondence involves relating a
surfaces indicate reasonable sensitivity to relative incli- two-dimensional plan perspective with an encoded third
nation as specified by optical texture and linear perspec- dimension to an eye-level view of a three-dimensional
tive (e.g., [Flock, 1965]). However, there is only one re- environment.
port of observation of the slope of a natural incline and How accurate is our perception? As noted in section
that suggested that frontally viewed slopes were seen as 7.2, the perception and memory of scene and map in-
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formation is subject to a variety of distortions. Recall However, the simulations need to be developed carefully.
the evidence that slope of inclines is over-estimated and In one attempt to develop a laboratory analog to the
that distances between locations in different subspaces actual drop-off problem using photographic images we
are over-estimated. Heights of hills and mountains can found that the simulation distorted the process by elim-
also be misperceived. Erroneous judgments of the rela- inating some of the early stages of problem solving.
tive heights of distant and nearer peaks may be caused
by not properly taking into account one's own altitude
and misperceiving whether one's own direction of gaze is 9 Discussion
above or below eye level. Such an error may have been
a factor in a military plane crash [Haber, 1987]. Localization, particularly localization involving drop-off

Similar distortions occur in processing of map informa- problems, fits well into the conceptual formalism that
tion (e.g., [Tversky, 1981, Tversky and Schiano, 1989]). has been used for several successful approaches to ob-
For example, people tend to remember map features as ject recognition. The most significant difference is that
more aligned than is in fact the case. In one case Tver- for localization, predefined object models are not avail-
sky demonstrated that people will remember continents able. Instead, drop-off problems require that models
such as North and South America as more aligned with of the scene be created from information supplied on
the cardinal axes of maps than they actually are. Thus, maps. This is possible only after preliminary hypotheses
South America is considered to be almost directly south about viewing position and direction have been gener-
of North America. Such distortions can account for fur- ated. (Updating problems are easier, in part, because
ther erroneous judgments such as New York being typi- the task of assembling models is much more straightfor-
cally judged as east of Santiago while in fact it is west. ward.) The lack of predefined object models introduces
Similar distortions occur with more local features, such significant added complexity over that involved in object
as city streets. In addition, features that are diagonal recognition. This complexity can be overcome by the
tend to be rotated toward cardinal frame axes and are re- use of heuristic search strategies which combine sophis-
membered more nearly parallel or perpendicular to ma- ticated problem solving with more traditional perceptual
jor features. processing.

Where do problems arise in the process of solving map- Our formalism predicts the desirability of focusing the
image correspondence problems? On the basis of back- search based on an initial reconnaissance of the image
ground literature and our prior work done related to this before any exploration of the map occurs. This strategy
project, it has been possible to identify some problematic is in fact often observed in expert map users. An inter-
aspects of the solution process. Recall the studies men- esting contrast occurs with localization problems involv-
tioned above that indicate misalignment between map ing a rapidly moving observer. Before the availability
and scene increase the difficulty of the map reading prob- of more sophisticated navigation aids, fighter pilots were
lem. Orienteers are trained in always aligning their map trained to do localization by first checking a stopwatch
to the scene as they traverse a course. They have found to determine the time spent on the current leg of the
that this increases the efficiency of their map following flight plan, then estimating their current location on the
when time is a premium and helps to reduce errors. It map and looking for distinctive map features, and fi-
would be easy to demonstrate to the trainees the effects nally attempting to visually locate those features in the
of misalignment between map and scene. environment [Ullman, 1990]. In our terminology, this

In our initial empirical work on map reading, protocols corresponds to an initial reconnaissance focusing on the
were collected from persons solving drop-off localization map - a sensible strategy when elapse time provides an
problems. Analysis of these protocols suggests that for initial guess as to position and the imagery is changing
drop-off problems a successful strategy is to work from at a substantial rate.
the visible scene to the map. Apparently, specifying the As with alignment methods for object recognition, lo-
scene features and configurations of features constrains calization involves the recognition of viewpoint invariant
the areas on the map that need to be examined. When configurations of features. Tentative correspondences
this strategy is not successful, one reason is that the lo- between such configurations in map and image data
cal features around the station point are misperceived, can be established prior to the generation of hypothe-
Trainees should be alerted to this danger. We observed ses about the viewpoint defined transformation between
a number of problematic strategies. One of the most map and image.
frequent was a "garden path" kind of error in which Future work will concentrate on strategies for addi-
attention was focused on one or on a very few possi- tional types of localization problems and low-level com-
ble solutions. Incorrect hypotheses were pursued over a puter vision requirements for localization. Segmenta-
long chain and discunfi.ming evidence was discarded or tion algorithms tuned to outdoor scenes are required, as
explained away. are techniques for recognizing topographic features such

In general trainees can be apprised of both success- as peaks, ridges, and valleys in an image. The ability
ful strategies and procedures that are likely to lead to to actively move the view point will be explored, since
trouble. Trainees can be drilled on such problems and an active observer can better determine scene properties
their errors pointed out. Unfortunately, field problems such as slopes, while at the same time moving to dis-
are very time consuming. Simulated problems in the tinctive positions that aid in the generation of viewpoint
classroom are a possibility [Barsam and Simutis, 1984]. hypotheses.
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B-snakes: implementation and application to stereo*
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Abstract The paper is organized as follows: we briefly review
snakes and their applications, then give details of our B-

We present B-snakes: a new implementation of snake implementation, and illustrate the methodology
snakes using parametric B-splines. This active on the accurate delineation of building tops in stereo
contour model exhibits advantages of B-splines: pairs of urban scenes.
compact representation, local control and the
possibility to include corners. This implemen- 2 SNAKES
tation is significantly faster without loss of gen-
erality. Experiments on delineation of building A snake is a deformable continuous curve, whose shape is
roofs in stereo aerial images are also presented. controlled by internal forces (the implicit model) and ex-

ternal forces (the data). Internal forces act as a smooth-
ness constraint, and external forces guide the active con-

1 INTRODUCTION tour towards image features.
Let v(s) = (x(s), y(s)) be the parametric description

Real-world images are often noisy and too complex to of the snake (a E [0, 1]). Its total energy can be written
expect local, low level operations to perform a complete as:
analysis. Higher level features have to be derived and
used in order to get a better delineation of objects. Enake - o E.(v(s))ds

When there exist enough constraints, it is possible to
use deformable models, which adapt to the data, an ex- -(
ample being "snakes" [Kass e. al., 1988]. = Jfo[ tvs)Jeft

We present an implementation of such models based with:
on parametric B-spline approximation, which offers 1
many advantages. Among them, it provides a compact Eint(s) = j,)(s) I v 12 +P(.) lv,,(s) 12) (2)
local representation of a curve, in terms of its control-
points. Furthermore, B-splines have the ability to rep- The goal is to find the snake tht minimises equation (1),
resent corners, that is, to locally override smoothness given some external energy adapted to image features
constraints. A new active contour model is built using to extract (Eedge = - I VI(X,y) 12, for example) and
this B-spline approximation for a curve and is called a internal energy whose expression is given by (2). The
"B-snake". These B-snakes converge much faster than first order term makes the snake act like a membrane
snakes and can include corners without invoking specific and the second order one like a thin plate. This energy
models, is the regularizing term of the minimization.

As an application, B-snakes are used to precisely out- The minimization of (1) is solved by using the calculus
line the boundaries of building roofs in stereo pairs of of variations and resolving Euler equations, and yields
urban scenes, given an initial rough outline from a stan- the following equations in the discrete case [Kass et al.,
dard stereo matching algorithm [Cochran and Medioni, 1988]:
1989]. Am + F.(z,y) = 0

Ay+FV(z,y) = 0 (3)

*This research was su,.,; irted ii part by DARPA contract where F = E82 t depends on the image features to extract
F33615-C-1436 and A is a pentadiagonal matrix depending on a and P.

tSupported by a grant from the French Direction Gn6rale This system of equations in (z, y) is solved by intro-
de l'Armement, contract ERE 89/1460/DRET/DS/SR. Ad- ducing an energy dissipation functional to dissipate the
dress: ONERA, 29 Ave de Ia Div Leclerc, 92320 Chatil- kinetic energy during the motion. Let y be the Euler
lon/Bagneux, France. . step size. The expression of the snake as a function of

Permanent address: Matra.SEP Image et Informatique, time is then:
Signal and Image Processing Laboratory, BP 235 "Les
Miroirs", 38 Bd Paul Cizanne, Guillancourt, 78052 St- =+ - (A +71)-1 ('zt-F (zt,yt)) (4)
Quentin en Yvelynes C6dex, FRANCE =t+t (A + 7I)-'(-yt -Fy(zt, &k))
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(A + 7)-1 can be calculated by LU decompositions in way to include corners is to set ot = 0 at some locations,
O(n) time (with n being the length of the snake). so the "cornerness" of the curve is not implicit.

A better way to simultaneously solve these problems
is to use a parametric B-spline approximation of curves
[Bartels et at., 1987], as the next section shows. We call
this new model a "B-snake".

S3 B-SNAKES

In this model, the curve is replaced by its approximation
by a B-spline and the energy of the approximation is

------------- minimized.
We first discuss the advantages of the scheme, then

explain how to compute the B-spline approximation of
the curve, and finally show the minimization procedure
with B-snakes.

Let u be the parameter describing the approximat-
ing curve (we take u instead of s to remain consistent
with notations in [Bartels et al., 1987]), and Q(u)

In this approximation, the curve is split into seg-
ments, and the joints between adjacent curve segments
are called knots. Each curve segment is approximated
by a piecewise polynomial function (order k), which is
obtained by a linear combination of basis functions Bi
and a set of control vertices V = (Xi, Yi):

i=m

Q() = E VB,(u) (5)
Figure 1: Example of snake convergence, the external i=0
energy is the negated gradient. The control polygon can be calculated by performing

a least-square fit of the data by the B-spline curve (para-
Figure 2 shows an example of convergence. graph 3.2).
This active contour model fits in an interactive human-

machine environment when the user supplies an initial In the following, let p + 1 be the number of points of
estimate of the object to extract and the snake is used the curve and m+ 1 the number of vertices of the control
to refine the results [Kass et al., 1988; Fua and Hanson, polygon.
1989b; Fua and Hanson, 1989a; Fua and Leclerc, 1988]. As is shown in paragraph (3.3), substituting v by Q(u)
However, it is also useful in an automatic processes when in the snake energy equation (1) yields a similar sys-
a first estimate is given by a firs't processing level [Ferrie tern to (4), whose unknowns are the control vertices and
et al., 1989; Zucker et al., 1988]. therefore whose size is only m + 1 instead of p+ 1.

This tool has been applied in motion [Kass et al.,
1988], in stereo matching [Kass et al., 1988; Fua and 3.1 Advantages of approximating B-splines
Leclerc, 1988], and, more generally, it can be used to Local control : elementary B-splines B have local
match a deformable model to an image by means of en- support, so that modifying the position of a data-
ergy minimization. point causes only a small part of the curve to change.

Different implementations have been performed, for Continuity control : B-splines are defined with conti-
example, Fua [Pua and Hanson, 1989a] uses a tool from nuity properties at each point: oruer k B-splines
information theory: he minimizes an objective function are C -2 continuous. But it is possible to con-
that is the length of encoding the result. This method- trol the continuity at the knots, by accepting multi-
ology is general and applies to object recognition using ple knots. These are obtained by letting successive
generic models. Amini [Amini et al., 1988] uses dynamic knots be equal, which causes intermediate intervals
programming to minimize the energy, and can handle to be empty. Let p be the multiplicity degree of a
hard local constraints. Berger [Berger, 1990] allows the knot, the continuity at this knot is then: C k - ' - ".
snake to grow along features, and also to break. When A is equal to k - 1 the knot is Co continuous

and the corresponding control point is interpolated
Unfortunately, the convergence rate of a snake, using by the curve.

all points, is rather slow. Hence, some researchers [Fua This property is very interesting for the B-snake
and Leclerc, 1988; Amini et al., 1988] use a polygonal model: if we introduce a multiple knot whose de-
approximation of the curve, but then smoothness can no gree of multiplicity is equal to k - 1, the first and
longer be guaranteed. Another problem is that the only second derivatives are no longer continuous at this

721.



knot and the smoothness constraint is broken: a That yields for the X coordinate:
corner appears at this knot. , ,n XZ;0[a(u )Bj (uj) E =o X B (j)

3.2 Control polygon ,, ,n "

To find the control polygon at time 0, we perform a least- B(uj)' F(EI X 0 Bi (uj), ELo YjBi (uj))]
squares fit of the data by a B-spline curve [Bartels et al., 0 0
1987; Saint-Marc and Medioni, 1990]. (9)

We want to mini-use the distance between the discrete and a similar equation for Y. When we change the sum-
data points of the original curve and its approximation mation order, we get:
by a B-spline. This distance is given by the expression: Y ,

R = EuI Q )-P) I+(Y(Uj)_Yj)2) Ej=o (u)B;'(u)B' (uj)]i~~o o + =Bj(uj)F.(v(uj)) = 0
p0O j=O J

where ui is some parameter value associated with the for I ranges from 0 to m.
jth data point, and Q(uj) is given by: This equation set can be written in the same matrix

form as (3), with m + 1 equations of m + 1 unknowns
i=,m i=m (X, Y) instead of p + 1 (z, y):

=(6) f y) = 0
i=o i=o( AbY +GY(XY) = 0 (10)

Since this equation is quadratic, the minima occurs for where Ab is still a band matrix.
those values of X1 and 1'j such that: This system can be solved in way similar to the origi-

= 0 nal snakes (4), and we have:
R = 0 jXti = (Ab+71)'(7Xt-G-(XtYt))

where I ranges between 0 and m. So, we obtain: Yt+ = (Ab +7I)-1(1Yt -Gy(zt,y,))

M P P 4 APPLICATION : BUILDING TOPS
EXiE Bi(u)B(u,) = E ZjB(uj) DELINEATION FROM STEREO
i=O j=O =o DATA

m p p

Y E Bj(uj)Bj(u1 ) = yj B(uj) (7) The detection of cultural features, such as roads and
i=o j O j=o buildings in aerial imagery is an important application

This equation can be solved by a LU decomposition. area in Computer Vision.
The hoie o thenumer f vetics, + 1 deer- In recent work Fua [Fua and Hanson, 1989b; Fua andThe choice of the number of vertices, m + 1, deter- Leclerc, 1988] has proposed to detect such buildings by

mines how close to the original data the approxir.-tion refining a coarse estimate through a parameter estima-
is, which is measured by R. An automatic choice can tion phase. Mohan [Mohan and Nevatia, 1988] defines
then be performed [Saint-Marc and Medioni, 1990]: we a building as a collation of rectangles and proposes to
set a fitting tolerance ro and we find the value of m + 1 solve the selection process by a Constraint Satisfaction
which yields the normalized distance r = R/(p+1) closer Network.
to r0 , using a binary search approach. These methods use monocular information only, such

3.3 Minimization resolution as edges, to generate and verify hypotheses. When stereo

We want to minimize equation (1) by substituting the data is available, they use it mostly in the verification
stage to refine the estimates.curve v by the analytical expression of its B-spline ap- Here, we propose instead to use stereo first to guide

proximation (6). in the detection of elevated structures, on the basis that
The total energy of the curve is then: their disparity is bound to be different from the dispar-

P I n , m r2 ity of the background, and to refine the estimates using
E = {a(u,)[(EXiB,(uj))2 + (EYB(u)) ] monocular information.

j=O i=o i=o Most stereo algorithms (see [Barnard and Fischler,
1 -1982; Dhond and Aggarwal, 1989] for surveys) produce

+ f(u)[(Z XiB .(u,))2 + (E ZB' (uj)) 2] reliable results in images of rolling terrain, but degrade
2 i=O ungracefully when depth discontinuities occur, since the

+ F(v(u,))} (8) smoothness assumption becomes violated. This is truefor area-based and feature-based methods. We use here
We are looking for control points coordinates X,, Y, an algorithm which combines both approaches, as de-

that minimize E, that is, that satisfy: scribed in [Cochran and Medioni, 1989]. The buildings
8B roofs appear as regions of constant disparity, but their

V M {0,..., 0 boundaries are very approximate, generally ragged.
t , 0We can refine them by using:
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" monocular information: buildings are likely to gen- 1. First stage: Regular B-snakes are implemented and
erate intensity edges; their energy is minimized until equilibrium.

" smoothness: building boundaries are mostly 2. Second stage: Corners are detected at points of
smooth, with the exception of some corners; maxima curvature (equation 13) and new B-snakes

" invariance: the boundaries should correspond in are implemented with multiple-knots at the corners.

both images. Then B-snakes converge from their previous state
toward a new equilibrium.

To turn these observations into a computational frame-

work, we use the B-snakes described above. The internal _ = ,Y,, - zU,,YU. (13)
energy captures the smoothness constraint, and we de- - ( +
fine an appropriate external energy for the other two

constraints, as shown below. Images 2 and 3 show this process.
To solve the problem introduced by corners, we pro- When corners are detected, we assume in this appli-

ceed in two stages: first, the boundary is supposed cation, that polygonal objects are encountered. Then,
smooth, and the snake reaches its convergence state, new parameters are used in the second stage, to empha-
then potential corners are detected as extrema of cur- size the behavior of the B-snake acting as a strong rod
vature and the B-snake model is applied again, between corners.

We now give the details of the process and present
some illustrative results.

4.1 Stereo energy

Kass [Kass et al., 1988] applies snakes to the problem
of stereo matching. According to some psychological
evidence [Burt and Julesz, 1980], he assumes that, if
two contours correspond then the disparity varies slowly
along the 3-D contour. This constraint can be expressed
in an additional energy functionnal:

Eatereo =('vL)- R))

where vL and vR are left and right snake contours.
Fua [Fua and Hanson, 1989b] uses a stereographic ef-

fectiveness term which encodes the projected patch in
the second image, while knowing its photometry in the
first.

In our approach, the contours of non-nul disparity ar- Figure 2: First example: Initialization, result of first step
eas are the first estimate of objects contours we want to and final result. The external energy is also shown.
improve, that is, the initialization of the snakes at time
0.

Furthermore, we can combine the left and right exter-
nal energy of each object, by projecting the right one
on the left one through the disparity map (equation 12). I o
This allows us to filter non matching areas and to rein- ' 's

force constraints in matched areas.

Estereo(s) = EL(S) + d(S)ER(S) (12)

Since edges are likely to correspond to depth or sur-
face orientation discontinuities, we use edge information
as monocular external energy. This energy supplies the o
feature-based information often used in stereo matching
algorithm but which yields a sparse disparity map.

In order to increase the efficiency when the snake is
too far from the edges, a distance map such as Chain-
fer distance [Barrow et al., 1977] is added to the edge
information.

4.2 Discontinuities CO

Polygonal objects can be processed without a priori Figure 3: Second example: Initialization, resul.
kitowledge on their shape, by using a method in two step and final result. The external energy is also i

steps:
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4.3 Results (Bartels et at., 1987] R. Bartels, J. Beatty, and B. Barsky.

Images 4 to 17 show two series of examples obtained with An Introduction to Splines for use in Computer Graphics
and Geometric Modeling. Morgan Kaufmann, Los Altos,quadratic B-snakes. CA 94022, 1987.

For each example, the left and right disparity maps r 1990] M. . Berger. Snake growing. In First Eu.

are shown, which are blurred and noisy at corners. The (Berger, 1onMer e ge a roi n Frs Eu.

initialization of B-snakes are extracted from the left one, ropean Conference on Computer Vision, pages 57G-572,

and the process is performed on this side. Antibes, France, April 1990.

Results are shown at both steps of the process de- [Burt and Juless, 1980] P. Burt and B. Juless. A disparity
scribed above. We can see that after the first step, roofs gradient limit for binocular fusion. Science, 208:615-617,

1980.
borders are improved, but remained rounded at corners.

They become sharper after the second step. [Cochran and Medioni, 1989] S. D. Cochran and G. Medioni.
While it gives the direction of the nearest edge, the Accurate surface description from binocular stereo. In

Chamfer distance helps the convergence especially when Proceedings of Workshop on Interpretation of 3D Scenes,

the curve is too far from the edges. But it does not pro- pages 16-23, Austin, Texas, Nov. 1989.

vide reliable information at locations of multiple nearby [Dhond and Aggarwal, 1989] U. R. Dhond and J. K. Aggar-
edges. This and the lack of edge information at some wal. Structure from stereo-A review. IEEE Transactions

locations contribute to cause B-snakes to stabilize into on Systems, Man J Cybernetics, 19(6):1489-1510, Novem-

local minima. ber/December 1989.

Furthermore, this energy makes the B-snakes to shrink [Ferrie et al., 1989] F. Ferrie, J. Lagarde, and P. Whaite.
or to expand only if the first estimate is around local Darboux frames, snakes, and super-quadrics: Geometry

from the bottom-up. It Proceedings of Workshop on In-maxima otherwise, it shrinks until vanishing (for exam- terpretation of 3D Scenes, pages 170-176, Austin, Texas,
ple: the highest tower cannot be handled considering the Nov. 1989.
poor edge information used). [Pua and Hanson, 1989a] P. Fua and A.J. Hanson. Objec-

tive function for feature discrimination theory. In Proceed.
5 CONCLUSION ings of the DARPA Image Understanding Workshop, pages

Snakes provide a tool to solve many vision problems by 443-460, May 1989.

means of global energy-minimizing, while taking into ac- [Fua and Hanson, 1989b] P. Fua and A.J. Hanson. An opti-
count geometrical model of curves and image features in- msation framework of feature extraction: Applications to
formation. As the energy is integrated along the entire semntomated and automated feture extraction. In Pro

length of the curve, it is less sensitive to image noise and pages 676-694, May 1989.

various photometric anomalies.

We have improved this tool by using parametric B- [Pua and Leclerc, 1988] P. Fua and Y. G. Leclerc. Model
spline approximations of curves that yield increasing driven edge detection. In Proceedings of the DARPA Im-age Understanding Workhop, volume 2, pages 1016-102,
convergence speed and allow the ,o-called B-snake to Cambridge, Massachusetts, April 1988.
include corners.

Then, the B-snake can be applied to adjustment of [Kass et a., 1988] M. Kass, A. Witkin, and D. Tersopoulos.

non-smooth shapes. For example, it is able to refine the Snakes: Active Contour Models. International Journal ofnon-mooh shpes Fo exaple it s ale o reinethe Computer Vision, 1:321-331, January 1988.
delineation of building tops from stereo aerial images, [o

with a good accuracy, without using a priori knowledge (Mohan and Nevatia, 1988] R. Mohan and R. Nevatia. Per-
or generic model. ceptual grouping for the detection and description of struc-

tures in aerial images. In Proceedings of the DARPA Image
Understanding Workshop, pages 512-526, Boston, Mas-

Acknowledgements sachusetts, April 1988.

We would like to thank J.L. Jezouin from Matra-SEP for [Saint-Marc and Medioni, 1990] P. Saint-Marc and
providing the original stereo pairs used in this study. G. Medioni. B-spine contour representation and symme-

try detection. In First European Conference on Computer

References Vision, pages 604-606, Antibes, France, April 1990.
[Zucker et a., 1988] S. Zucker, C. David, A. Dobbins, and

[Amini et a., 1988] A. Amini, S. Tehrani, and T. Wey- L. Iverson. The organization of curve detection: Coarse
mouth. Using dynamic programming for minimizing the tangent fields and fine spline coverings. In Proceedings of
energy of active contours in the presence of hard con- 2nd International Conference on Computer Vision, pages
straints. In Proceedings of 2nd International Conference 568-577, Tampa, Florida, Dec. 1988.
on Computer Vision, pages 95-99, Tampa, Florida, 1988,

[Barnard and Fischler, 19821 S. Barnard and M. Fischler.
Computational stereo. ACM1 Computing Surveys,
14(4):553-572, December 1982.

[Barrow et al., 1977] H. Barrow, J. Tenebaum, R. C. Bolles,
and H. C. Wolf. Parametric correspondence nnd cham-
fer matching. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 659-663, Cam-
bridge, Massachusetts, August 1977.

724



Figure 4: First example: stereo intensity images Figure 8: Left and right final energies

M A " 1 AlIl

>I I

Figure 5: Left and right disparity map ;. xtA %
Figure 9: Global stereo energy

t4 K

Figure 6: Left and right negated gradient

Figure 10. Different steps of delineation of buildings
roofs from the first estimate of B-snakes from edges of

Figure 7: Left and right Chamfer distance disparity map to the final result with corners
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Figure 11: Second example: stereo intensity images Figure 15: Left and right global energy
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Figure 12: Left and right disparity

Figure 16: Global stereo energy
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Figure 13: Left and right negated gradient ,
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Figure 17: Different steps of delineation of buildings
roos fom he irs esiniteof B-snakes from edges of

Figure 14: Left and right Chamfer distance disparity map to the final result with corners
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BENCHMARK EVALUATION OF A
MODEL-BASED OBJECT RECOGNITION SYSTEM

A. J. Heller and J. L. Mundy *
GE Corporate Research and Development Center

Schenectady, NY 12345

Abstract
A benchmark evaluation test of a model-based
recognition system is discussed. The system
was tested on a series of aerial reconnaissance
images to evaluate reconition performance on
the task of airfield monitoring. The effective-
ness of the model pose constraint for recogni- D Vetx V
tion is discussed as well as an approach for se-
lection of model features. The use of distance Spine
transforms for model hypothesis confirmation W2
is also discussed. WI

1 Introduction Bos V,,,t- x

It is rare that an object recognition system reaches any
degree of maturity. In most cases, a system is imple-
mented to demonstrate a particular concept and the ef-
fort terminates after a few experiments and publication
of the results. The recognition system discussed in this ,he
paper has been under continuous development for over 2D Vertex Pair
five years and we have recently carried out a benchmark
test of the system in the context of aerial reconnaissance.
The following paper describes the design of the system
and documents our experience with the model-based ob- Figure 1: The vertex-pair geometry.
ject recognition approach.

The initial version of the vertex-pair matching system
was completed in 1986 and was able to recognize three- data which will be useful in evaluating theories about
dimensional polyhedral objects in reasonably cluttered the effectiveness of filtering on transformation parame-
scenes with partial occlusion [Thompson and Mundy, ters [Grimson and Huttenlocher, 1990].
1987b]. Since that time, the system has been under con-
tinuous development and is currently being evaluated 2 The Vertex-Pair Matcher
on the reconnaissance task of airfield monitoring. We
are conducting a benchmark test of the system which 2.1 The Vertex-Pair Geometry
presents a database of images taken under a wide vari- The vertex-pair configuration is shown in Figure 1 which
ety of weather and viewing conditions. Major improve- illustrates the projection of the three-dimensional struc-
ments have been made since the original implementation ture onto the image plane. The three-dimensional struc-
of the system to provide automatic model feature selec- ture and its two-dimensional projection is referred to as a
tion and match hypothesis confirmation. In the following vertex-pair. The structure consists of two vertices, each
sections we describe the current design of the vertex pair defined by the intersection of two edges in the object
matcher and summarize the initial results of the bench- model. Associated with one vertex are the two edges
mark test. The benchmark results provide statistical that define the one of the vertices. These edges provide

*Work at GE was supported in part by the DARPA orientational constraints which are exploited in comput-
Strategic Computing Vision Program in conjunction with ing the model-to-image transformation.
the Army Engineer Topographic Laboratories under Conttact The edge orientation is defined in terms of the unit
No. DACA76-86-C-0007 and the Air Force Office of Scientific direction vectors of the object coordinate system. Note
Research under Contract No. F49620-89-C-0033. that the line joining the two vertices, called the spine,

727



does not have to correspond to an edge in the object
model. It serves only as an reference for orientation and
scale. The angles between the edges and the spine are
projected into the image plane as a, and a2, as shown
in Figure 1.

In effect, the vertex-pair provides a coordinate refer- Q
ence frame for the object which is easily related to the re- vetex-P, in Model
suits of standard image segmentation algorithms. Image IeceL Fm
vertices are usually defined by the intersection or junc-
tion of image line segments. Thus, any vertex will have W2
at least two incident edges. All vertices which are defined
by the intersection of edges which adequate orientational "w
accuracy are grouped pairwise to form the vertex-pair. ....

image feature. Note that vertex position and edge orien--v
tation does not depend on having complete projections .. Roe '

of the object edges, making the image vertex-pair geom-
etry somewhat immune to occlusion. World ertex-Pair Projected

In the absence of any other constraints, the grouping of Z Into the X-Y Plane

vertices into vertex-pairs is carried out for all pairs in the V
image. The grouping of n vertices results in 2kn 2 vertex-
pairs, since the orientation can be determined from ei- ,
ther of the two vertices of the vertex-pair. The scalar, k,
measures the number of combinations of edge pairs for
vertices that have more than two edges. The factor of 2 Figure 2: The projected angles a, and a2 determine the
arises since either edge of the vertex can be assigned to camera tip and tilt rotations of the model vertex pair
the corresponding model edge. The number of pairs can camerattipond tit ro an e m
be large; in our recent experiments with high-resolution projected onto the image plane.

images, we find that the number of vertex-pairs is on the
order of the number of pixels in the image. However, the Once the tip and tilt angles are known, the model
subsequent clustering operations on each vertex-pair are vertex-pair can be orthographically projected into the
simple and can all be carried out in parallel [Thompson image plane as shown in Figure 2. The rotation about
and Mundy, 1987a]. the axis perpendicular to the viewplane is simply the

2.2 Determining Transform Parameters angle between the projected model spine and the spine
of the image vertex-pair as illustrated in Figure 3. The

The next issue is the determination of the transformation image plane components of translation are just the 2D
between the model and the image reference frames, given translation between the projected base vertex of the
an assignment of a model vertex-pair to an image vertex- model vertex-pair and the corresponding image vertex
pair. Determining this transformation is greatly simpli- pair. The third translational component, depth, is repre-
fled by making an affine approximation to the perspec- sented as an affine scale factor (ratio) computed from the
tive mapping [Thompson and Mundy, 1987b]. An ortho- projected model spine length and the image spine length.
graphic projection with a scale factor is an afjine trans- The spline length ratio can be converted to depth units
formation. This same approximation was observed by if the camera focal length is known. Figure 4 shows the
Roberts[1965], which he calls "weak" perspective. The relationship between scale factor and depth. The pro-
affine transformation applies to viewing situations where cedure, just outlined, results in the complete evaluation
the maximum diameter subtended by the object is small, of the transformation between the model and the image
compared to the distance from the object to the camera. projection, given a single assignment between a vertex-

The transformation between the object and the image pair in the image and a corresponding vertex-pair in the
coordinate reference frames has six degrees of freedom, object model.1 The next issue is to establish a method
three for translation and three rotations. The vertex- for determining the validity of such assignments.
pair provides a sufficient number of constraints to fully
determine the six parameters of the affine transforma- 2 3 Transform Parameter Clustering
tion. 2.3.1 Validity Through Clustering

Assume that a correspondence has been made between The previous section has outlined a procedure for de-
the affine projection of a 3D model vertex-pair and a set er io s sion hasfo rocee frd
of 2D edges and vertices derived from the image intensity termining the six element transformation between the

data. The tip and tilt rotations of the model about the model vertex-pair and a corresponding pair of image ver-

x-y axes of the viewplane can be determined directly 'We note that an equivalent set of geometric constraints
from the angles between the projected edges and spine is produced if a single edge is associated with each vertex
of the vertex-pair, el and a2. In our implementation, the instead of giouping both edges at one vertex. This config-
mapping between a, and a 2 and tip and tilt orientation, uration of two vertices, each with an orientation, is a well
€ and ib, is precomputed for each model vertex-pair, known affine coordinate basis.
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tices. This transformation produces a mapping of a sin-
gle vertex-pair onto the image coordinate system. How-
ever, there is no guarantee that this assignment and the
resulting transformation actually corresponds to a valid
projection of the complete model into the image.

The basis for validity is to compare the transforma-
tion computed from a given assignment with those of
other assignments. If the object is assumed to be a rigid
body, then all valid assignments should result in trans-
formations that are close in the six dimensional space,PrjcionoD 

Vertex-Pir 
Onto 

/,

tPhjection o V - Ontaccording to the principle of view consistency.
In a number of other systems, a match of a key model

z W2 wfeature, such as a long edge, or a set of parallel lines, is
d xused to establish an initial transformation. Subsequent

assignments are added which are consistent with the ini-
tial transformation and the transformation parameters
of the evolving group are updated accordingly [Grim-
son and Lozano-Perez, 1985, Ayache and Faugeras, 1984,
Lowe, 1985].

D VetexPai One of our main assumptions is that, due to segmenta-
tion errors, there are no special or key features available

Projection Into Imale Plane Coordinates to provide an initial transformation to filter the validity
of other assignments. Instead, the validity of a trans-
form is determined solely on the number of assignments
that produce similar transform values [Ballard, 1981,

Figure 3: Image translation and rotation about the cam- Silberberg et al., 1986].

era axis are determined by vertex position and spine ori- This grouping of transforms is known as "binning" or
entation. "voting" in transform space. The use of voting as a ba-

sis for the validity of assignments follows from the con-
clusion that the fragility of existing image segmentation
techniques prevents single key features from being reli-
ably grouped. It is quite likely that features are missed
due to occlusion, shadows, or low contrast; even the sim-
ple vertex-pair group cannot always be reliably detected

Affine Projection of the Vertex-Pair in images with unconstrained lighting and viewpoint. It
is assumed that valid assignments produce transfoim val-

w2 ues that are "near" each other in transformation space.
' - The definition of "near" depends on the amount of er-

ror expected in computing the transform values from the
World ~ image. Our experiments indicate that valid clusters can
X- Phave an extent of at least 10 degrees in angle and 10

pixels in translation.

2.3.2 Decomposing Transform Space
For convenience, we factor the six parameter trans-

2DWexPa form space into four sub-spaces [, '], [ p], Lu, v], and
[w-1] (i.e. [tip, tilt], [rotation about the camera axis],
[translation in the image plane] and [image scale]). The

Zmagc Plane initial [4, 4] clustering is accomplished by sorting into
; ,a two-dimensional bin array set at 2 degree intervals.

The sequence of clustering steps is shown in Figure 5.
The basis for this choice of groups is primarily for ease

6 Eypoint of computation. The transform points are first assigned
into [€, ?] bins to begin the search for clusters.

In order to account for errors in the computation of
[4, V,] from the image features, it is desirable to include

Figure 4: The relationship between spine lengths and a range of solutions from the [al, a2] --- [4, 0] map. A
3x3 region around the measured [al, a2] pair is extracted

viewing distance. from the table. This gives a range of 15 degre,-s about

the measured values since the table is computed in in-
crements of 5 degrees. The resulting collection of [4,4]
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Translation
i Filered Clustering

Assignments

Figure 5: The clustering of transform parameters is carried out in stages using a combination of binning and nearest
neighbor clustering techniques.

values is assumed to comprise the feasible rotations that typical tolerance radius used in the current experiments
could have produced the measured vertex-pair angles. It is 10 pixels in translation and a factor of 20% in scale.
is important to allow this range of multiple inverse solu- The final group of transform clusters is further refined
tions since small variations in projected image angles can by eliminating improper assignments. An image vertex-
lead to large variations in ([, 0]. Some viewpoints pro- pair can be improperly assigned to two or more model
duce a degenerate relationship between the parameters vertex-pairs. It is also improper to allow assignments
of the transformation and the model to image correspon- that are not mutually visible from the viewpoint corre-
dence. In this case, large rotational or translational er- sponding to the transforr of the cluster. This condition
rors do not produce correspondingly large errors in the is prevented by considering visibility when computing
location of projected model features. This projection the [0, ¢] map. At this point, a cluster with four or
sensitivity is an important criterion for selecting model more assignments is considered to be a feasible hypoth-
vertex-pairs and will be discussed in more detail later. esis for an instance of a projection of the model in the

The bin array is scanned for clusters by sweeping a image.
3x3 array over the histogram. If the number of sam-
ples in the 3x3 array exceeds a minimum number (say 2.4 Search Space Reduction
4) of assignments then that cluster is used to form a one In the development of the vertex-pair matcher no as-
dimensional histogram with respect to C. This one di- sumptions have been made about the viewpoint or the
mersional array of bins is scanned with a 1x3 window parameters of the camera with which the images are
and if a sufficient number of samples are found in the made. In reality, in almost all reconnaissance applica-
window, then they are declared to be a cluster. The tions the location and orientation of the camera and
resolution of the C bins is also 20. its parameters (e.g. image plane size and focal length)

The grouping in fu, v,,w- 1] space is carried out using are known with a great deal of precision. In addition
a nearest neighbor clustering algorithm. Any point in the poses of the objects to be recognized arc subject to
a valid cluster formed in rotation space is used to start well known constraints (i.e. an airplane is parked resting
a cluster in [pv, w--] space. The euclidean distance on its wheels as opposed to being balanced on its nose;
from the initial point to subsequent assignments in the buildings have their bases coincident with surrounding
rotation cluster is calculated. If the distance is tmaller terrain.) All of this information can be used to reduce
than some allowable tolerance then the point is added to the amount of computation and increase the robustness
the growing cluster. If a point lies outside the tolerance of the algorithm.
radius, it is rejected and used to start a new cluster. A In practice we derive the location of the sensor plat-
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form by identifying known ground control points in the solutions which would correspond to an assumed spread
image and running the USGS Space Resection algorithm in the image feature parameters. For example, we as-
[Slama, 19801 on it. This algorithm computes the the sume that the projected angles, aj and a2, can be in
camera location and orientation, given the coordinates error by 5 due to uncertainty in the image segmenta-
of the corresponding pairs of ground control points and tion process. This propagated uncertainty in the model
image points and the camera parameters. This informa- transformation can lead to a range of solutions for the
tion is then used to define an unit up-vector perpendic- model match. Each solution corresponds to a slightly
ular to the ground plane at the center of projection of different value for the rotation parameters of the model
the image. transformation.

Due to perspective distortion a correction vector must The relationship between image segmentation errors
be added to the up-vector at other points in the im- and the model transformation uncertainty depends on
age. This vector is calculated by finding the vector from the viewpoint. It is also the case that degeneracies exist
the center of projection of the image to the image point in the viewing projection. In particular transformation
under consideration and dividing its magnitude by the the equations become degenerate for viewpoints which
focal length of the lens. (If the image has been made are collinear with the edges and spine of the vertex-pair.
with a long focal length lens, the uncorrected up-vector In the original implementation, the model vertex-pairs
is a good approximation for the up-vector throughout were manually selected with an interactive graphics ed-
the image plane.) We also define a unit up-vector for itor which operates on the object model. There is no
each model. The degree of alignment is then gauged by guarantee that the vertex-pairs selected in this manner
taking the dot-product of the two vectors. Typically we will exhibit good error performance. Since it is essential
would consider a value greater than 0.9 to indicate an that the set of vertex-pairs selected provide as accurate
plausible pose. This translates to an angular deviation an estimate as possible of the model transform param-
of less than 25 degrees. eters over all viewpoints, we have extended the imple-

This constraint is then used in two places in the mentation to satisfy the following goals:
matcher. The first in while computing the [er, a21 - * Establish an error measure for the model transfor-
(, ip] maps. Only values of 0 and 0 that could produce mation which can serve as a cost function in opti-
acceptable alignments at any point in the image and for
any C are entered into the map. This eliminates the mizing the selection of model vertex-pair features.
calculation of transforms for assignments that could not * Clarify the nature of viewing degeneracies for the
produce acceptable model poses. vertex-pair feature, so that these viewpoints can be

The second is after transform calculation. Only those avoided in the clustering process.
assignments which produce acceptable transforms are * Implement an optimization algorithm to automati-
passed on to the clustering stage of the matcher. In addi- cally select vertex-pairs.
tion, at this point, assignments are also filtered on scale.
Only those having scale values consistent with the infor- The remainder of this section is devoted to a discussion
mation about the camera model are used for producing of these issues and includes some experimental results
clusters. Again, due to perspective distortion, the scale obtained for an error measure which appears to satisfy
of a given object can vary due to its location on the ira- the criteria just stated.
age plane and this range 'f variation must accounted for In the discussion to follow we focus on the determina-
in the acceptance func.,un. tion of (4, 4'). The error sensitivities of the other param-

eters of the transformation depend mainly on foreshort-
3 Model Feature Selection ening and scale which are also functions of (4, 4'). The

effects of viewing distance and viewing orientation are
Initial experiments with transform clustering indicated thus mixed, which leads to the idea of multi-resolution
the need to account for the errors associated with the model feature sets.
placement of features in the image segmentation. We The key issue is how the vertex-pair is projected as the
now consider these issues in more detail. viewpoint moves over the surface of the standard view-

sphere, which is a spherical surface defined to represent
3.1 Weaknesses of this Approach the possible viewing orientations of the image plane with
It is clear that the success of the clustering process is cru- respect to the object. The object is considered to be at
cially dependent on the accuracy with which the trans- the origin of the sphere and the points on the surface
formation can be determined from each vertex-pair as- of the sphere define a vector orientation from a given
signment because we depend on having a small cluster point to the origin. Any location on the viewsphere can
radius threshold in transform space to filter out incorrect be directly represented in terms of the camera tip-tilt
matches. orientations (4, t).

Reliable cluster detection requires good accuracy in For each poilt on the viewing sphere, there should be
the location and orientation of image features since for aa adequate number of potentially visible vertex-pairs
some viewpoints, the uncertainty in these feature param- whiih have acceptable error performance and are not
eters is amplified in the calculation of transformation degenerately viewed for that viewing orientation. Natu-
parameters. rally, one can not guarantee that a given vertex-pair will

The current implementation accounts for this uicer- be visible, since it may be occluded by other objects, or
tainty in the transform values by including all transform by part of the object surface itself. In our current im-
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plementation, the local self occlusion of a vertex-pair is 3.3 A Rotation Error Measure
taken into account by not allowing occluded viewpoints The equational systems that relate (al, 2) and (4, €)
to appear as solutions in the [Ct, 02] - [0, 0] map. We are non-linear and present many special solution cases.
do not solve the full hidden line problem to determine In our approach, these equations are solved numerically
global occlusion, although this is desirable for a full so- and stored in lookup tables. We define a Taylor series
lution to the optimization problem. expansion about a particular value of (4,, tp) to provide

Next we consider the definition of an appropriate er- a linear expression for the parameter mapping.
ror measure which describeb the uncertainty in the (, 1P) We assumc that we have computed the functions,
parameters as a function of (0, tk) orientation, or equiv- ,1(0, 1p) and a2(0, 0) (see Figure 1). Then,
alently, with respect to position on the viewsphere. ( ) = ( iLo) +

3.2 Image Segmentation Error &19(0,4,) + Oft(0k ) (1)

In our current approach to segmentation [Canny, 1983], (0 --
we rely on zero crossings of the second derivative of im- a 2 (0,, 4) = a2(0o, 0) +
age intensity to define the location of geometric edge and 02 (0 _ 0) +a2 (0 l
vertex features. There are many phenomena that can "9-, )+ " -90) (2)
cause the location defined by the second derivative to be
in error with respect to the ideal location corresponding where the indicated derivatives can be computed nu-
to the image projection of a given object feature. Some merically.
of the more significant effects: The Jacobian, J, of the parameter mapping is given

* Complex image intensity behavior that does not cor- by,

respond to the simple step edge model employed = a, 8. ]
to detect object boundaries (e.g. corners and junc- J (3)
tions). 00

* Boundary characterized by texture, rather than Naturally, if J vanishes, then the mapping is not de-
simple intensity discontinuity, fined for that particular viewpoint [Whitney, 1955]. We

can solve the expansion equations for the variation in
" Quantization in image intensity and spatial resolu- (4, 4) as follows:

tion.

" Random uncertainty in sensor intensity values (Usu- A4, = " V'J(4)
ally a small effect). Aa2- -

These effects contribute to uncertainty in the detected Alp= (5)
boundary element locations. In our approach these J
"edges" are then linked, and the resulting boundary Assuming that the errors in (al, a2) are independent
chain is approximated by straight line segments [Asada and of zero mean, we can derive an estimate for the
and Brady, 1984]. This process introduces additional er- variance in the Euclidean distance between the (0, 0)
ror in the segmentation geometry. Some of the major estimate and the mean, (0, 40). We denote this squared
effects here are: distance by o-,2. A similar representation can be defined

" Boundary chains with low curvature do not have for the variance in the measured projection angles, i.e.

well defined segment endpoint location. a2,,2. The ratio of these variances is given by,

* Image spatial quantization introduces significant a2 a + 8.y2+ 2+

uncertainty in the chain curvature measurement. 2 = J2 (6)

Finally, even more uncertainty is introduced by the
necessary extrapolation of line segments to form vertices 3.4 Effective Viewing
between endpoints of lines that should (ideally) meet. We are now in a position to define the concept of ef-
This extension is necessary because some portions of the fective viewing. An effective vertex-pair is one which
boundary are missing due to poor edge detector perfor- provides a precise estimate of the coordinate transform
mance near junctions and in the case of low contrast between the three-dimensional reference frame and the
boundary intervals. image projection reference frame.

The cumulative result of these various phenomena in A single vertex-pair cannot be effective over all view-
our current implementation is that edge orientation is points. There are degenerate viewing conditions where
accurate to about 50, and vertex location is accurate to the transformation,
a radius of several pixels. These errors can be much
larger for the case of line segments with lengths that are (a 1, C2)
comparable to the vertex uncertainty (5-10 pixels), is not defined. For example, if the viewing direction is

The error in edge orientation is the focus of our dis- collinear with the spine or either of the two edges, the
cussioa in which we consider the relationship between corresponding transform equations do not have a solu-
this orientation error and the (4,, 4) parameters. tion.
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3.5 Scale and Translation Errors

A further refinement of the error measure includes trans-
lation and scale errors. Since scale is computed as the
ratio of the spines in the scene and model vertex-pairs,
the error propagates through the transformations in in-
verse proportion to the spine length of the 3d vertex-pair.
This has been observed subjectively in manually selected
vertex-pairs - those with longer spines yield more accu-
rate transformations.

Propagation of translation errors is directly propor-
tional to the distance of the base vertex from the origin
of the model. This would suggest that all models should
have their origin placed to minimize the distance to the
vertices so that the selection of vertex-pairs is not biased
by the relatively arbitrary placement of the model origin.

3.6 The Composition of Multiple Vertex-Pairs

If we assume that the variation in the projected angles of
vertex-pairs is due to statistically independent segmen-

Figure 6: Two examples of the error measure projected tation error, then a composite error measure for a set of
onto the viewing sphere. The upper panes show the vertex-pairs can be defined. That is,
vertex-pairs used to generate the spheres shown in the
lower pane.<o' , > 1 0-(, 2

The error measure that we have just defined predicts Where a2  is the expected variance in the angles
these degeneracies as illustrated in Figure 6. In this fig- associated wit ' a particular vertex-pair in the segmen-
ure, we have projected . onto the viewing sphere. tation. In general, the variance of edge angles in the

. 102 .. segmentation is not directly related to the associated
In the left column, a coplanar vertex-pair is shown in model vertex-pair. The accuracy of angle determination
the upper pane. The spine is horizontal and the dis- between image boundary segments is inversely propor-
played viewpoint is somewhat above the plane of the tional to edge length. The length is controlled by occlu-
vertex-pair. One of the edges is quite foreshortened at sion and edge contrast effects, and is not closely related
this viewpoint. The viewsphere for this case is shown in to the projected edge length of the ideal object edge.
the lower left pane. The eyepoint for this image of the Therefore we can simplify the composition process by
sphere is the same as that of the vertex-pair in the up- assuming that the variance a2 a is the same for all
per pane. The intensity in this image is proportional to vertex-pairs grouped from the segmentation, and further

the ratio, _. ,102.. The error measure becomes high at the that this variance is the worst case value corresponding

equator of the viewsphere, since this corresponds to the to the shortest acceptable segmentation edges. The re-

locus of viewpoints that lie in the plane of the vertex- suiting composite error measure is simply the average of

pair. The edges and spine of the vertex-pair all collapse the error measure for the constituent vertex-pairs.

into a single line for this set of viewpoints. Singularities 3.7 Automatic Vertex-Pair Selection
exist at the points the view axis is collinear with any of A major application for the vertex-pair error measure is
the edges or the spine. in automatic vertex-pair selection. The goal of this pro-

There is also a region of relatively high error at the cess is to select a set of model vertex-pairs so from any
poles of the viewsphere. These viewpoints correspond to viewpoint there is some minimum number (say 6) model
looking normal to the plane of the vertex-pair. This is vertex-pairs which are visible and possess good perfor-
reasonable, since the projected angles of edges lying in mance from that viewpomt. Given the large number of
a plane, have the least variation with tip and tilt of the vertices in the model, it is necessary to avoid selecting
plane when the viewpoint is normal to the plane. a correspondingly large number of model vertex-pairs.

The right column shows the same calculation except Using an excessively large number of vertex-pairs is un-
that the vertex-pair is not coplanar. The first edge is desirable since complexity of the algorithm is linear in
now inclined upward out of the hui/,uiktdl plwne at 45". the number of vertex-pairs used. Therefore we want to
There are still two great circles of high value on the view- use the smallest number of vertex pairs consistent with
sphere. These correspond to viewpoints lying in the two good error performance.
planes defined by the spine and each of the edges. The er- Candidate vertex-pairs are evaluated with three cri-
ror associated with normal views of each of these planes teria. The first criteria arises from a simple visibility
now contributes to a rather complex distribution over model. Those vertex-pairs which are occluded by other
the sphere. The dark areas on the sphere correspond to parts of the model over most of the viewsphere are not
effective viewpoints, considered.
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The second uses a simple sensor model. Short object
edges are not likely to appear in the segmentation of an
image and those that do cannot provide accurate posi-
tion or orientation information. Because of this, vertex-
pairs in the model with short spines or edges are not
likely to participate in correct clusters and therefore are
eliminated from consideration.

Finally, the error performance of each vertex-pair
is examined. A vertex-pair with either edge nearly
collinear with its spine is known to have high error over
much of the viewsphere so these are eliminated. The re-
maining vertex-pairs are evaluated with the error mea-
sure over the area of viewsphere over which they are
visible. We define the coverage area of a vertex-pair to 4W
be the surface area of the viewsphere which is visible and
of low error.

To generate the set of model vertex-pairs, first the
vertex-pairs with the greatest coverage are selected. The
remaining vertex-pairs are again sorted by the area of
the viewsphere each covers which is not covered by the Figure 7: The C-130 model and its error spheres ren-
required number of pairs previously chosen. This is con- dered from the same viewpoint.
tinued until either the entire view sphere is adequately
covered or none of the remaining vertex-pairs provide
any new coverage. The later is the more common situ- with four or less assignments produces a thousand-fold
ation, however those remaining areas of the view sphere reduction in the number of feasible model hypotheses
are still covered by vertex-pairs which exhibit high error without eliminating any actual model instances in the
there. image. However the number of remaining clusters is

still large, on the order of i04, and must be significantly
3.8 An Example pruned by testing the image feature support given to the
The automatic vertex-pair selection algorithm picked 31 hypothesized position and orientation of model.
vertex-pairs to characterize the model of the C-130 trans- This process of match confirmation carried out by
port aircraft used in the benchmark. Figure 7 shows the comparing the model edges which are predicted to ap-
model and the composite error spheres rendered from pear in the image with all of the edge segments actually
the same viewpoint. The upper left-hand sphere shows recovered by segmentation. Many of these fragments
the error performance of the single vertex-pair shown su- were too small or did not intersect to form a vertex and
perimposed on the model (it groups the forward wingtip thus were not used in the initial cluster of assignments.
vertex with the vertex where the tail meets the body and We define the concept of edge coverage in Figure 8 which
the edges along the leading edge of the tail and the top is defined as the percentage of predicted model bound-
of the body). Brighter areas on the viewsphere corre- ary actually adjacent to image edge segments. The max-
spond to areas of poor error performance. It shows that imum edge coverage achievable in practice is on the order
the error performance of an individual vertex-pair can of 60%. This figure occurs for a well segmented model
be highly complex and not related in an obvious man- outline and for close model to image alignment.
ner to the geometry of the vertex-pair. The lower right The model edges and image edge segments are associ-
sphere shows the depth of coverage of vertex-pairs on the ated as follows:
model. Lighter areas represent areas of greater coverage. * eliminate model edges occluded by the object itself;
The lower left sphere shows the areas of the viewsphere
coverered by at least six vertex-pairs. It can be seen that e remove projected model edges shorted than 10 pix-
the automatic selection algorithm has been able to cover els;
almost all of the viewsphere with low-error vertex-pairs. for each model edge collect all image edges with end-

points within 10 pixels of the projected model edge
4 Match Confirmation and orientation within .2 radians with respect to the
The criterion of view consistency is not sufficient to re- projected model edge orientation.
liably detect model instances in large and cluttered im-
ages. The probability of forming large transform clusters 4.1 Determining Edge Coverage using
from random feature assignments grows rapidly with the Distance Transforms
number of features in the image, as observed by Grim- The method for determining edge coverage described
son and Huttenlocher [1990]. We have verified their gen- above is essentially based on computational geometry.
eral predictions on the poor filtering effectiveness of ro- The drawback is that all of the edges in a segmenta-
tational parameters alone. The overall effect of filtering tion must be considered when forming the correspon-
on all six transformation parameters is still quite effec- dences with the projected model edges. In a large image
tive, however. In a typical case, removing all clusters this can mean that thousands of edges must be tried for
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% Edge Coverage Total Segmentation Length
Total Model Visible Occ. Length

Figure 8: Edge coverage is the fraction of predicted mode! projection boundary perimeter actually covered by
extracted image edge segments.

each model edge. We have recently implemented a new 1
method for determining edge coverage using a modified 11 7 5 7 11
form of chamfer matching [Barrow et al., 1977] which 5 0 5 -
eliminates this problem. 11 -7 t5 7 1 i

4.1.1 Distance Transforms in Digital Images 1
A distance transform converts a binary digital image,

consisting of feature and non-feature pixels, into an im- Figure 9: The "Chamfer 5-7-11" distance transform
age where all non-feature pixels have a value correspond- mask.
ing to the distance to the nearest feature pixel. While
in principle computing these distances is a global op-
eration, there are algorithms that consider only small 4.1.2 Computing the Edge Coverage
neighborhoods, but still give good approximations to the In our application the features are the edges in the
Euclidian distance. The algorithms are known as cham- segmentation. Figure 10 shows the distance transform
fering, because of the way in which the global distances of a corner of a typical segmentation. The pixel values
are approximated by propagating local distances. Both correspond to the distance to the nearest edge. It should
sequential and parrallel algorithms are well known. be noted that the distance transform of the segmenta-

In practice one starts with an image iii which feature tion is computed only once for a given segmentation and
pixels are set to the value zero and all other pixels are then used for each pose to be confirmed. In addition, in
set to infinity, i.e. a suitably large number. A given dis- our implementation because of efficiency considerations,
tance tranform is characterized by a mask whose entries distances greater that 20 pixels are not carried forward
are the local distances that are propagated over the ir- in the computation.
age. In the sequential algorithm, the mask is separated The edge coverage could be computed by projecting
into two mask. The masks are passed over the image the model edges on to the image plane and traversing
once each; the forward one from left to right, top to hot- each edge pixel by pixel, keeping count of the total num-
tom and the backward one from right to left, bottom to ber of pixels and the number pixels that are within a
top. The origin of the mask is placed over each pixel certain distance, in our case 10 pixels, from a segmen-
in the original image. The local distance in each mask tation edge. (The distance of any given pixel to the
entry is added to the value of the image pixel "under" nearest edge is given by the distance image.) The total
it. The new value of the central pixel is the minimum edge coverage then, is the ratio of the latter quantity to
of these sums. Borgefors [19861 considers many differ- the former quantity.
ent masks and concludes that for most applications the However, as noted by Barrow ei al. [1977] position
"Chamfer 5-7-11", shown in Figure 9, mask provides the alone is not enough of a distinguishing feature. One can
best approximation to the Euclidean distance. imagine that an edge passing though a sufficiently dense
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Figure 10: The distance transform of a typical segruen- Figure 11: A typical benchmark image.
tation.

aerial photographs of a military airfield have been col-
area of the segmentation could accumulate a relatively lected over a period of several months. The views are
high coverage figure even though it is not aligned with taken from a wide range of viewpoints and with variable
any of the segmentation edges. weather conditions. This image database represents a

To solve this problem, we allow each pixel of the image realistic evaluation of our system to carry out routine
to become a list. Each entry in the list contains two airfield monitoring.
pieces of information: The images were collected on Kodak TMAX 100

1) the distance to an edge in the image; and 35mm film and taken from an altitude of about 2000
feet. The spatial resolution of TMAX 100 is approxi-

2) the orientation of that edge. mately 70 lines/mm. The central 24x24mm region of

The distance transform algorithm was modified to carry the film negative was scanned and digitized at a resolu-
the orientation information along with the distance and tion of 2048x2048 with 256 grey levels. The main tar-
to keep the information about edges with differing orien- get for recognition is the C130 transport aircraft which
tations distinct. Since information about edges greater subtends a range of 150 to 250 pixels in the digitized
that 30 pixels away is not carried forward in the cal- images. A typical airfield view is shown in Figure 11.
culation, the number of entries at each pixel is kept to The resulting image segmentation is shown in Figure 12.
manageable size. The final result is a distance image in The segmentations are produced by a modified form
which each pixel has information about the the distance of the Canny edge detector followed by line segmenta-
and orientation of all edges within 20 pixels. tion based on chain curvature extrema [Canny, 1983,

The edge coverage is then computed as described Asada and Brady, 1984]. , peak edge detector is also
above except that to count a model edges pixel as good, employed to remove edges corresponding to thin lines
it must not only be within 10 pixels of a segmentation which cannot correspond to model projection edges.
edge but the orientations must be within .1 radians of To date, we have processed 5 of these airfield views
each other. The combination of distance and orientation which are blocked into 600x600 pixel tiles, for a total
criteria have proven to be very robust, of about 250 tiles. The tile blocking allows distributed

In addition to being more reliable that the edge- processing over a number of Symbolics 36xx machines.
grouping scheme for comfirmation, this app.oach is con- The tiles are defined with overlap so that any instances
siderably faster. Each pose takes less than one second of a target are complete in at least one image tile. Tiles
to evaluate on a Symbolics 3600. With a typical large with fewer than 10 edges are ignored so that a typical
image on the order of 5 x 10' Iough space clusters are 2048x2048 image yields 40 50 tiles.
found, so the confirmation process takes less than two Two examples of the polyhedral models used in the
hours. The previous approach took between 20 and 30 experiments are shown in Figure 13. The building model
hours to confirm the complete image. is used to establish the overall camera transformation

for the airfield. A sample recognition result is shown
5 Benchmark Test in Figure 14. The models are shown aligned with the

image according to the transformation clusters with best
The performance of the vertex-pair lecognition algo- edge coverage ratio. (The actual edge coverage value is
rithm is being evaluated i,, the context of an aerial shown next to each model.) An alternative view of the
reconnaissance application. A databtse of about 50 site configuration is shown in Figure 15 to illustrate that
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Figure 14: A sample recognition result.

Figure 12: The segmentation of the image in the previous
figure.

Figure 15: An alternative view of the three-dimensional
model configLration produced by the vertex-pair recog-
nition algorithm.

the recognition process produces a full three-dimensional
representation of the airfield.

6 Empirical Results

6.1 Computational Requirements

Table 1 shows the numbers of the various data struc-
tures used by the vertex-pair recognition algorithm to
process the image shown in Figure 11. There is rolghly a
thousand-fold reduction in the data from image to valid-
clusters.

Figure 13: Polyhedral models for the C130(t-op) and an
airfield hangar(bottom). 6.2 Recognitioni Results

Five images containing 30 instances of C-130 aircraft.
were divided into a total of 250 tiles and processed. Of
these 250 tiles, two were misclassified. One contained
an aircraft which was not found and one contained a
collection of random image features that was classified
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STRUCTURE # INSTANCES 6.5 Effect of Number of model features

Model Vertex-Pairs 31 The automatic vertex-pair selection algorithm picks in
Pixels 4.2 Y 10x the the range of 20 to 35 vertex pairs to characterize
Edges 1.6 x 104 the models which we use for matching. In early exper-

Vertices 1.7 x 104 iments with hand-picked model vertex-pairs we would

Segmentation Vertex-Pairs 3.6 x 10' typically use four to six pairs to characterize a model,

Assignments 6.3 x 10' so we initially suspected that the automatic algorithm,
Hough Clusters (na > 4) 5.9 x 10a  in choosing five times that number, was picking a some-

g Cwhat sub-optimal set,. Howcver, as mentioned earlier,
it was found that at least 31 model vertex-pairs were

Table 1: The number of instances of various structures needed for reliable operation on all of the images in the
used by the matcher. test suite.

To determine the effect oil recognition performance,
the match solutions were reanalyzed by removing model
vertex-pairs from the solution clusters and discarding

4500 those that fell below the minimum size of 4 assignments.
4 -Background- Valid--V The error measure was used to order the vertex-pairs

4000 3883 ! Targets from for removal. Those with poor performance were
771 removed first. Figure 18 show! the results. The peak

3500 - discrimination, in this instance, occurs at 10 to 12 model
ba ,Y"", vertex-pairs. This is typical number, although the indi-

3000 vidual vertex-pairs comprising this set varies from image
to image.

2500 The need for a much larger set of model vertex-pairs
arises from the effect where by the geometry of a feature

2000 -,in the segmentation is dependent on the size of the given
feature in the image. For example, at small scales the

1500 wing tip of the C130 show up as a single edge, whereas
[1156 at large scales it is broken up and may appear as two

1000777 ,, or more edges in the segmentation. The current system
556 has no way to represent these scale-dependent effects and556 L2;.:

500 . consequently additional model vertex-pairs are needed.
..... 97 Work is currently underway to characterize these effects

. .. . 12 for inclusion in future versions of object recognition sys-
.1 .2 .3 .4 .5 tems.

6.6 Tracking Assignments Through Hough

Figure 17: The distribution of edge coverage values. Space Clustering Stages

The discrimination power of the Hough space cluster-
ing technique arises from the size of the six-dimensional

as a C-130. Both errors were traced to problems in the space (> 1012 bins). This also presents a problem to the
digitization or segmentation process. implementor in that the entire space cannot be repre-

sented in a computer at once. As explained earlier, this
6.3 Effects of Cluster Size is addressed by factoring it into smaller sub-spaces, inthis implementation [0, 4], 01], [p, I], [wV1 ].
During the initial parameter adjustment experiments in Another implementation de sion was that since 0 and
preparation for the benchmark, we found that even with 4' were the first and cheapest (a table lookup) trans-
31 model vertex-pairs we had to consider all clusters with form components to be found, it made sense to cluster
four or more assignments to assure robust operation. In on these parameters first. Early matching experiments
order to study the discrimination power of clustering were conducted on small images with the object of in-
alone, we reanalyzed the match solutions varying the terest occupying a significant fraction of the image area.
minimum acceptable cluster size. The results for our In addition, only four to six model verte.:-pairs were em-
example image are shown in Figure 16. ployed.

These experiments indicated that a significant number

6.4 Effect of Edge Coverage of assignments were eliminated at this stage and !caving
very little work for later clustering stages. The original

Figure 17 shows the distribution of edge coverage val- paper on the vertex-pair matching algoritlhirt [Thompson
ues computed by the hypothesis confirmation algorithm and Mundy, 1987b] asserted that this was a significai:
for the sample image. Values greater than I have been feature of the algorithm.
found to reliably correspond to valid instances C-130 air- A recently published theoretical analysis of the use
craft in the images in the test database. of the Hough transforin in object recognition [Grimson
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Figure 16: The effect of minimum cluster size (31 model vertex-pairs).
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Figure 18: The effect of the number of model vertex-pairs (minimum cluster size four).
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and Huttenlocher, 1990] refutes this and goes on to claim
that for most images, virtually no assignments are ruled
out by the clustering on rotation alone and that, in fact,
many incorrect assignments survive clustering in the full
six-dimensional Hough space.

We have been in agreement with the latter assertion
for sometime, and in fact, this has been the among mo-
tivations for studying the error performance of model
vertex-pairs and techniques for hypothesis confirmation.
However, we should reiterate that Hough space cluster-
ing still provides over a thousand-fold reduction in the
data, yielding a relatively small number of poses that
can be rapidly assessed by other means. :-""

To test the former assertion, we added code which
tracks the individual assignments throughout the clus- Ili

tering process. With this arrangement, we examined
images yielding in the range of 3 x 103 to 2 x 105 as-
signments. For these images, 2 to 10 percent (with a
mean of 5 percent) of the assignments were filtered out
the rotational clustering stages. There was no signif-
icant correlation between the total number of assign-
ments and the percent remaining. While these figures F
are not quite as small as the theoretical prediction (< 1 igure 19: An image with heavy cloud cover. Images of
%), they are small enough that we now agree that a sig- this type cannot be analyzed by the current system.
nificant amount of work remains to be performed by the
clustering on the remaining three transform parameters. [Barrow ei al., 1977] H. G. Barrow, J. M. Tannenbaum,

7 Conclusions R. C. Bolles, and H. C. Wolf. Parametric correspon-
dence and chamfer matching: Two new techniques for

The experiments have resulted in less than 1% of the image matching. In Proc. Fifth Int. Joint Conf. on
tiles misclassified. There was one false positive and one Artif. Intell., pages 659-663, Cambridge, MA, 1977.
false negative classification in over 250 tiles. The false
positive target indication was produced in the first image [Borgefors, 1986] G. Borgefors. Distance transforma-
of the test series and before we introduced the removal tions in digital images. Computer Vision, Graphics,
of peak edge contours. The false negative classification and Image Processing, 34:344-371, 1986.
was due to very poor image exposure which can easily [Canny, 19831 J. Canny. Finding edges and lines in im-
be improved. ages. Report AI-TR-720, MIT, Artificial Intelligence

We were not able to handle images with heavy cloud Laboratory, 1983.
cover such as the case shown in Figure 19. In these im-
ages, the image segmentation process is not successful in [Grimson and Huttenlocher, 1990] W. E. L. Grimson
recovering any significant portion of the target bound- and D. P. Huttenlocher. On the sensitivity of the
aries. Images of this type were eliminated from the hough transform for object recognition. IEEE Trans.
benchmark test, since a completely different approach Pattern Anal. and Machine Intell., PAMI-12(3):255-
to image segmentation and object representation would 274, 1990.
be needed to handle such cases. [Grimson and Lozano-Perez, 1985] W. E. L. Grimson

The overall conclusion is that the current system can and T. Lozano-Perez. Search and sensing strategies
be used in a routine airfield monitoring application where for recognition and localization of two and three di-
the image contrast and resolution are sufficient to pro- mensional objects. In Proc. Third Int. Symposium on
duce reasonable segmentation of the target boundaries. Robotics Research. MIT Press, 1985.
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A MULTISTRATEGY LEARNING APPROACH FOR TARGET MODEL
RECOGNITION, ACQUISITION, AND REFINEMENT

John Ming and Bir Bhanu
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3660 Technology Drive

Minneapolis, Minnesota 55418

ABSTRACT knowledge to improve overall performance levels. This
improvement may come in the form of faster recognition
times, improved recognition accuracy, and higher confidence

Target recognition systems are currently unable to in system results.
modify their behavior automatically in environments where Machine learning technology should facilitate two main
processing requirements change or novel situations are
encountered. Most systems can not easily adapt to varying advancements in the target recognition domain: automatic
target appearances, considerable image noise, and target knowledge base acquisition and continuous knowledge base
occlusion. More importantly, these systems are constrained refinement. The use of learning in the construction of the
by the selection of target models used for recognition; typi- knowledge base will save the user from spending the enor-
cally, the target model database is fixed and individual mous amount of time necessary to derive target models and
features within a target model remain static as well. The databases. Knowledge base refinement can then be incor-
incorporation of machine learning technology into the target porated to make any necessary changes in the system's data-
recognition process will allow the system to use situation base to improve the performance of the vision system. These
context, to adapt in changing environments, and to improve two modifications, which are the focus of this paper, will
the system's performance over time. This work describes an serve to significantly advance the state-of-the-art in target
innovative approach which combines machine learning and recognition and image understanding applications.
target recognition into an integrated system. The system is Although machine learning has been used in many
called TRIPLE: Target Recognition Incorporating Positive applications, very little work has been done in the computer
Learning Expertise. It uses two machine learning techniques vision domain. Refer to the earlier review by Bhanu and
known as explanation-based learning and structured concep- Ming2 for an overview of computer vision and machine
tual clustering, combined in a synergistic manner, which pro- learning systems. Further, within the machine learning field,
vide effective target model recognition, acquisition, and very little effort has been made to combine several learning
refinement capabilities. We provide an overview of the TRI- techniques together. Typically, learning methodologies are
PLE system and provide experimental results which illus- used independently to provide adaptive ability and improved
trates the performance of the system. system performance. Our multistrategy approach to target

recognition presented in this paper, called TRIPLE (Target
Recognition Incorporating Positive Learning Expertise),

1. INTRODUCTION incorporates two powerful learning techniques, known as
explanation-based learning (EBL) and structured conceptual
clustering (SCC). These techniques filter and structure thePrior attempts to automate target recognition systems information present in positive concept examples to create

have suffered from the lack of an ability to automatically useful knowledge structures. While each of these learning
acquire new target models, to adapt to changing environmen- methods, used independently, might provide some improve-
tal conditions, and to modify system behavior based on the ment in target recognition performance, they can be best put
context of the situation in which the systems are operating- to use by combining their abilities into an integrated
In order to be effective in dynamic outdoor scenarios, a approach. We have synergistically combined the EBL and
robust vision system should be able to automatically acquire SCC learning methodologies in the TRIPLE system to offer a
necessary contextual information from the environment and consolidated technique which employs the best features of
react accordingly. Most target recognition systems lack this each method to solve the target recognition problem in an
capability. Their performance begins to quickly degrade efficient and effective manner.
when subjected to problems such as variable target appear-
ance, image noise, and target occlusion.

Due to recent advances in machine learning technology, 2. TRIPLE - A MULTISTRATEGY
some of these problems are resolvable by effectively combin- LEARNING TECHNIQUE
ing machine learning and machine vision technologies.
Learning allows an intelligent vision system to use situation The TRIPLE target recognition system integrates the
context in order to understand images. This context, as EBL and SCC learning techniques to overcome the inherent
defined in a machine learning scenario, consists of a collected limitations present in each approach. EBL,- , 6 which is
body of background knowledge as well as environmental classified as a learning by observation technique, uses infer-
observations which may impact the processing of the scene. ence to construct a useful concept description from a single
The resulting system dynamically reacts to the appropriate example of that concept. Derived from earlier learning sys-
stimuli in the environment, continuously adapting its internal tems which required a large number of examples in order to
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generalize a target description, EBL uses a collection of
applicable background knowledge to generate a useful target
description from a single example. EBL's main limitation is Image
the recognition time required when the number of target
models becomes large. 5CC",5' 7 is a method for grouping
targets into classes similar to traditional numerical clustering
techniques. However, instead of using predefined measures Symbolic Segmentation
of target similarity to determine class boundaries, SCC uses a F Symbolic
conjunction of conceptual attributes to group targets into con- Definitions Festure Extoaction n

ceptually simple classes. This process utilizes important con-
textual information relevant to the targets to assist in the
classification process. SCC can handle complex, structural
descriptions of targets, which is ideal for target recognition Feature Knowledge Explanation Target

tasks since most targets are represented using structural Monitor Matching Learning Dab
descriptions. However, SCC has problems with model biases
when the number of target class examples is small. Combin-
ing the ability of EBL to characterize a target using a single
training example with SCC's efficient method of organizing Trgt strctued Go
targets once they have been properly modeled yields an Cssication Conceptual Dependency

integrated learning system which effectively handles the tar- Clustering

get recognition task. A more complete description of the
EBL and SCC learning approaches is presented in our earlier
description of the TRIPLE system. r/////t/1Acquishion

Figure 1 shows the current configuration of the com- & Rfinementc/ ,
ponents in the TRIPLE target recognition system. The pro- -
cessing elements, which are indicated by rectangular boxes, \\Targct F..ture Value
transform the input image data and generate the target recog- Refinement le
nition results. The Segmentation and Symbolic Feature
Extraction component segments and locates the regions of Figure 1: Multistrategy Machine Learning Approach for
interest in the original image and then extracts the symbolic Target Recognition.
feature information from these regions. The Knowledge-
Based Matching component parses the classification tree
using the symbolic target features and identifies the various occlusion, new target, target model refinement, or recognition
recognition states of the TRIPLE system. The matching failure.
component also initiates the proper learning cycle based on Figure 1 also highlights the two distinct learning cycles
the target recognition results. EBL, when invoked by the which are present in the TRIPLE system. The first learning
matching component, selects the relevant target features from cycle is the target model acquisition and refinement process,
the symbolic feature information during the target model The components used in this loop include the knowledge-
acquisition process. EBL also identifies new, pertinent target based matching, explanation-based learning, and structured
features for target models already present in the classification conceptual clustering processing elements as well as the tar-
tree. SCC is responsible for constructing and maintaining the get model database and the target classification tree. This
target classification tree using the relevant symbolic features learning cycle also includes the background knowledge base
selected by the EBL component. The Feature Value Monitor and the goal dependency network associated with the EBL
modifies the target feature values in the classification tree and SCC learning components, respectively. The second
based on the features which are used to identify the target learning cycle within TRIPLE is the target feature value
during the recognition cycle, refinement process. This operation utilizes the knowledge-

The processing elements make use of several collections based matching and feature value monitor components. The
of target-specific data and knowledge databases within TRI- feature value monitor modifies the relevant target feature
PLE, as shown in Figure 1. The image data is assumed to values that were used by the knowledge-based matching com-
contain targets of interest and may include targets that are not ponent to recognize the target and which are present in the
currently in the target model database. The Symbolic Feature target classification tree
Definitions are used during the symbolic feature extraction The various processing components of the TRIPLE sys-
process to identify important target features which are used to tem and the manner in which they interact will now be
recognize the target. The Background Knowledge is described in the following subsections.
accessed by the EBL component to select relevant target
features during the model acquisition or model refinement 2.1 Segmentation and Symbolic Feature Extraction
operations. The Target Model Database stores the complete
schema of each target encountered by the recognition system, The first step in the target recognition process is to
including every feature (relevant or not) defined on each tar- extract sufficient information from an image so that targets
get. Relevant target features, which are determined by the present in the image can be correctly identified. This process
EBL component, are tagged for future reference in the target is handled by the Segmentation and Symbolic Feature Extrac-
model. SCC makes use of the Goal Dependency Network tion component. First, the image is segmented using a set of
while constructing or modifying the classification tree in selected parameters for a given segmentation algorithm.
order to compute the optimal clustering of the targets at the From the segmentation results, the target-related regions are
current level in the target hierarchy. The Target identified and approximated using piecewise linear segments.
Classification Tree represents a structured hierarchy of all tar- Based on the size, shape, and relationships with neighboring
gets known by the TRIPLE system and is used by the match- regions of the border approximation, a region label is
ing component to identify various types of target recognition assigned to each target segment. A hypothesize-and-test
results such as complete recognition, partial recognition, approach is used to identify the rough orientation of the tar-
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get during the region labeling operation. has been correctly recognized as the target model present at
For example, in the aircraft recognition scenario, the the leaf node,

feature extraction process may first hypothesize a region in If the knowledge-based matching component is unable
the image that corresponds to an aircraft fuselage based on its to parse the tree using the available symbolic feature data,
shape properties (narrow, elongated region). This hypothesis the feature set is passed to the EBL component. In these
can then be verified by finding a symmetric pair of regions situations, the failure of the matching process is due to one
adjacent to the fuselage with wing-like properties. Similarly, of two conditions. First, the feature information may
the tail regions of the aircraft can also be labeled and used to represent a new target model that is not currently represented
support the current hypothesis. in the classification tree and which can potentially be

When a hypothesis has been verified using surrounding acquired by the EBL component. Alternatively, the feature
regions as additional evidence, all contributing regions a data may be faulty, incomplete, or inconsistent with the
tagged and used in the symbolic feature extraction operation. system's current target recognition domain, in which case
TRIPLE computes symbolic feature information from the EBL will not be able to acquire a new model. However, the
region borders using a knowledge-based approach. Symbolic matching process does not distinguish between these two
features represent conceptual descriptions of a target's pro- cases. It merely passes the feature information to the EBL
perties that would be used by a human in characterizing the component for further investigation.
target's appearance. Each symbolic feature is represented by In addition, the matching component also sends the
a set of production rules that are stored in the Symbolic feature information to the EBL component when it detects
Feature Definitions database in Figure 1. The conditions of the presence of a new feature in a correctly recognized target.
the rule analyze the properties of the target regions and the By consulting the information stored in the Target Model
acdons define the appropriate symbolic feature when the con- Database, the matching component can detect when a new
ditions are satisfied. The rules use distances and orientations feature is present. It adds the new feature to the current tar-
of line segments on the region borders to compute the vari- get model and passes the revised model to the EBL com-
ous target features. For instance, in the aircraft recognition ponent in order to determine the relevance of the new
example, symbolic features such as fuselage length, wing feature.
span, and wing sweep angles can be obtained by examining
the fuselage and wing regions of the target. 2.3 Explanation-Based Learning

Whenever the knowledge-base matching component is2.2 Knowledge-Based Matching unable to process the symbolic feature information for an
The knowledge-based matching component receives a unknown target, the Explanation-Based Learning (EBL) corn-

target schema from the segmentation and symbolic feature ponent is invoked to understand the feature data. Since it
extraction component, which represents the feature informa- makes use of a collection of domain-specific Background
tion obtained for the unknown target. This schema is utilized Knowledge (Figure 1), EBL is able to draw inferences from
by the matching element to traverse the classification tree in the symbolic feature data that are not possible for the match-
an attempt to reach a leaf node of the tree. If successful, the ing process using the classification tree alone. But, because
target has been correctly identified. The classification tree EBL and its associated knowledge base are only used in
represen:s a structured hierarchy of the target models situations where the classification tree fails, the TRIPLE sys-
currently known by the recognition system. The tree is con- tem remains highly efficient by accessing the information in
structed and maintained by the SCC component (Section 2.4). the knowledge base only when necessary. Complete details
The use of the classification tree makes the target recognition of the EBL process are provided by Bhanu and Ming.2

process much more efficient and effectively solves the The EBL component is responsible for four separate
"indexing" problem encountered in target recognition applica- tasks within the TRIPLE target recognition system:
tions. And, as we shall see later, the classification tree
makes it possible to identify situations such as target occlu- (1) Processing the training examples during system initiali-
sion or incomplete target recognition that would not other- zation. The TRIPLE system uses EBL to simplify the
wise be possible. target modeling process, which has traditionally been

Ile matching process begins at the root of the very difficult due to the amount of work necessary togenerate a correct model. EBL applies the background
classification tree, matching the feature values specified in knowledge base (Figure 1) to each target schema using
each tree branch with those in the unknown target schema. kwge ase (re to each tae e ainga generic target prototype to guide the explanation pro-
Finally, when a leaf node is reached, the matching operation cess. Once the explanation has been created, it is gen-
terminates by matching any remaining feature values. If at eralized to create a target model that contains the
any point in the tree traversal, a feature is missing from the relevant target features. This model can then be used to
unknown target schema, the system spawns a set of multiple recognize subsequent instances of the target. All target
viewpoints. A separate viewpoint is created for each feasible models created during system initialization are sent tobranch at the current level in the classification tree. This the SCC component, which generates the target
action allows the tree parsing process to evaluate many classification tree.
hypothetical alternatives. The survival of any given
viewpoint is governed by the matching success that is (2) Acquiring new target models. When the target
achieved during the processing of successive tree nodes in classification tree is unable to process an unknown tar-
that viewpoint. At a later time in a particular viewpoint, the get schema, the EBL component is given the feature
tree parsing process may terminate due to feature incompati- data in order to determine if a new target model can be
bility. This condition results in the removal of the constructed from the available features. The new model
corresponding viewpoint from further consideration. acquisition process is identical to the system training
Viewpoint removal allows the search process to prune process described above. If a new model can be suc-
branches from the classification tree when it becomes clear cessfully derived, it is added to the target model data-
further search will be useless. If a path through the entire base and is passed on to SCC for addition into the
tree to a single leaf node can be located, the unknown target current target classification tree.
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(3) Refining existing target models. EBL is also invoked to and the current branch of the tree is defined accordingly.
determine the relevance of new feature information that The SCC component continues to cluster the targets at each
is present for an existing, correctly recognized target branch in the tree until every single target has been placed
model. The presence of a new feature ean be detected into a separate leaf node in the tree.
since EBL maintains a list of all previous symbolic SCC provides an adaptive capability to the TRIPLE sys-
features defined on each target in the target model data- tem since it never relies on predefied measures of class
base (Figure ). EBL adds the new feature to the similarity, but rather, it computes the feature that best distin-
current target model feature set and reprocesses te guishes a set of targets at any given level in the classification
ieture s tad I the taret mdea n is en to he , tree. Over time, the choice of the distinguishing feature at a
it is tagged in the target model and is sent to the SCC particular level may dyna.nically change as a result of the
component for addition into the target classification tree. new targets and revised targets which are continually being
Otherwise, the feature is simply left in the target model placed in the classification tree. An analysis of the tree
database as non-relevant. structure across many successive recognition cycles of the

(4) Identifying recognition failures in the TRIPLE system. TRIPLE system shows that it dynamically responds to the
EBL is responsible for determining cases of recognition targets which are added or modified by automatically restruc-
failure. When the knowledge-based matching coi- turing the appropriate tree branches to obtain an optimal tar-
ponent is unable to process a set of feature data, EBL is get categorization.
given the chance to acquire a new model using the The SCC component performs three different jobs
available features. However, if EBL can not construct within the TRIPLE target recognition system:
an appropriate model from the feature information, the
feature set is incomplete or the background knowledge (1) Construction of the initial target classification tree dur-
is insufficient to understand the feature data. In either ing system training. SCC takes all the target models
case, the situation is reported as a recognition failure, created by the EBL component and constructs the

classification tree. At each branch ii the tree, the GDN

2.4 Structured Conceptual Clustering is used to suggest a set of appropriate target features
from which one is selected by measuring the conceptual

The Structured Conceptual Clustering (SCC) component simplicity.
of the TRIPLE system constructs the Target Classification
Tree from the relevant feature data generated by EBL (see (2) Addition of a new target model into the target
Figure 1). The classification tree represents a structured classification tree during the target model acquisition
hierarchy of the targets currently stored in the recognition process. SCC attempts to retain as much of the original
system. As described earlier, traversal of the classification structure of the tree as possible. SCC traverses the tree
tree allows the matching component to understand and corn- using the new target model until a branch is encountered
pensate for missing information in unknown target schemata that is not compatible with the new target's features.
during the recognition process. The classification tree also The tree is then reclustered at that location. If a leaf
provides efficiency in the target recognition task since the node is encountered, a new branch is created to distin-
matching process does not have to compare the unknon tar- guish the target model urrently stored in the leaf node
get schema with every target model currently in the target from the new target model.
model database (i.e., the indexing problem is effectively han- (3) Modification of the current OCT structure during the
died). Thus, the SCC component plays a vital role in the target model refinement process. This process is similar
TRIPLE system since it generates and maintains the structure to the new target model situation since SCC minimizes
of the classification tree. the required changes to the tree. At each node in the

During the construction or modification of the target tree, SCC determines if the new feature produces a
classification tree, SCC accesses the information present in better clustering quality than the distinguishing feature
the Goal Dependency Network (GDN) in order to select use- used at the current branch. If the new feature is better,
ful target features. Global target characteristics are specified the tree is reclustered at the current location. Otherwise,
by the GDN at high levels (near the root) in the tree because the appropriate branch is selected and the process con-
they usually categorize coarse target classes. Within these tinues. If a leaf node is reached, the new target model
classes, the GDN suggests more specialized target features feature is simply inserted at the leaf node.
that are used to determine subclass assignments. This
approach to tree construction also allows the matching corn- 2.5 Feature Value Monitor
ponent to make appropriate decisions (complete recognition, The Feature Value Monitor updates the quantitative
incomplete recognition, target occlusion, etc) during the tar- feature values of a target model, if and when that model is
get recognition process. used to recognize an unknown target. This process allows

Although the GDN suggests several features to use at a the TRIPLE system to gradually modify the feature values of
particular position in the tree, the SCC process must still a target in order to overcome any initial bias that may have
select the best feature for the specific situation. To perform been acquired during the initial construction of the target
this task, each suggested feature is used to generate a cluster- model. Changes in target models made by the feature value
ing of the targets. The quality of each clustering is based on monitor will bz vcry gradual compared with the Otanges
the conceptual simplicity of the clustering results. TRIPLE which resuh from activating the EBL-SCC target model
uses several factors in determining the conceptual simplicity refinement process described earlier. In the latter case, sym-
of a proposed clustering including: the number of clusters bolic features are added or removed from the relevant feature
into which the targets have been placed; the inter-cluster and list of the target model. The feature value monitor simply
intra-cluster distances of the clustering results; and the modifies the relevant quantitative feature values of the target.
GDN's ranking of the selected feature at the current level in Further, the feature value monitor does not modify any quali-
the tree. These measures of clustering quality are combined tative target features present in the model.
to evaluate the clustering results of each feature. The feature The feature values are changed by shifting the range of
that provides the highest clustering quality value is selected
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numeric values produced during the EBL generalization pro- START

cess in the direction of the new target feature value. Each
range is characterized by a central feature value with end-
points a prescribed distance away from this value. For exam-
ple, the central feature value for the range (100'-196') is Y"_f_.e N

103'. The feature value monitor moves the entire feature
value range in the direction that more closely aligns the cen-
tral value of range with the new target feature value. The Y" Troc Low 10

width of the feature value range remains the same. To avoid
wild fluctuations in the feature values ranges, the range is

moved only one unit (one foot, one degree, etc) during any Re -
given recognition cycle, regardless of the discrepancy size.
This approach is preferable to the alternative method of
aligning the numeric range on the current target's feature
value because it prevents potential misclassification results
from adversely affecting the actual location of the feature MATCHING OCCLUSION
value range. The approach is also more in tune with the
notion that adaptation should be a gradual, rather than abrupt,
process. . .

2.6 Recognition and Learning in TRIPLE
During every recognition cycle, the TRIPLE system IiceE1L LivokoFatum Io ook S RotAddalm

identifies one of the following recognition states: N Fut=W To Lte t To

(1) Complete Recognition - The unknown target schema is
correctly classified with a high degree of confidence
using the classification tree. The knowledge-based r MCOGNITET ARGET FLURE
matching component and the feature value monitor are
involved in the complete recognition operation. Figure 2: Decision diagram specifying the conditions

(2) Incomplete Matching - The unknown target schema is through which the six different recognition states of the TRI-
partially classified using the classification tree. The PLE system are identified.
matching component identifies multiple target models in
the classification tree which meet the limited constraints
imposed by the available unknown target features. A 3. EXPERIMENTAL RESULTS
recognition confidence is produced for each matched tar-
get model. Only the knowledge-based matching con- We have conducted a series of experiments to test the
ponent is used in this operation. target recognition and learning capabilities of the TRIPLE

system for the recognition of 2D aircraft. The imagery used
(3) Target Occlusion - Although occluded, the identity of for these experiments was generated by digitizing technical

the unknown target schema is predicted with some diagrams of various commercial aircraft ranging in size from
confidence level using the classification tree. This small single engine private aircraft (Cessna Caravan) to large
operation involves only the knowledge-based matching passenger airliners (Boeing 747). Eleven aircraft were
component selected for tho initial set of experiments on the TRIPLE sys-

(4) Target Model Acquisition - The unknown target schema ten.
can not be classified using the current classification tree, Since the technical diagrams for the aircraft are
so the target model is acquired by the EBL-SCC learn- extremely precise, they do not represent the actual appear-
ing cycle and added to the classification tree. The ance of aircraft seen in real imagery. In order to simulate the
model acquisition process involves the knowledge-based degraded appearance of the aircraft for our experiments, we
matching, EBL. and SCC components of the TRIPLE introduced noise and distortion into the border approxima-
system. tions for the aircraft. Gaussian noise (mean = 0, variance =

(5) Target Model Refinement - After correctly classifying 1-20) was added to each of the border points and the result-
the unknown target schema using the classification tree, ing image was then distorted using two morphological opera-
a new feature is identified in the unknown target tors (erosion and dilation). Once the aircraft image was dis-
schema. The target model and the classification tree ar: toned, a border following routine was invoked to generate
updated to indicate the relevance of this new target the list of pixels that comprise the outline of the aircraft.
feature. The model acquisition process involves the The aircraft border was then represented with a piecewise
knowledge-based matching, EBL, and SCC components polygonal approximation using a split-merge approximation
of the TRIPLE system. algorithm. Figure 3 provides an example of the border dis-

tortion process and the corresponding polygonal approxima-
(6) Recognition Failure - The unknown target schema can tion results for a typical aircraft.

not be classified using the information in the
classificaion tree or by EBL with the use of the back- The polygonal approximation for an aircraft is processed
ground knowledge database. by a knowledge-based algorithm to create the list of symbolic

target features needed by the TRIPLE system. Given the
Figure 2 summarizes, in a decision diagram format, the con- orientation of aircraft, the knowledge-based pro:ess analyzes
ditions which lead to each of the six recognition states. the line segments in .ie polygonal approximation to derive

various symbolic features. This operation makes use of the
symmetry properties of the aircraft's shape in determining
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(a) (b) (f)

Figure 3: Various levels of noise and distortion added to an aircraft. (a) Noise level = 3. (b) Noise level = 11.
(c) Noise level = 17. (d) Polygonal approximation for (a). (e) Polygonal approximation for (b). (f) Polygonal
approximation for (c).

many of the symbolic features. When feature values symbolic target features obtained for each of the aircraft in
obtained for a specific feature (e.g., wing span or leading Figure 4. Missing features are due to inconsistencies in
wing angle) vary significantly on opposite sides of an aircraft feature values or other aircraft anomalies.
(usually due to distortion in the aircraft image), the feature is Once the symbolic feature information for all training
not extracted due to the ambiguity of the situation. This One the b Ic featur mtonru trnappoac inure tht trge miclasifcaton oesnotreslt examples is available, the TRIPLE system must construct the
approach insures that target misclassification does not result target classification tree. To do so, the EBL component isfrom the presence of uncertain feature 'nformation. Once all invoked on each of the aircraft models to select the set of
possible features have been extractea from the polygonal relevant target model features. EBL sequentially processes
approximation, the symbolic feature set is ready for process- each of the symbolic features lists shown in Figure 5 using
ing by the TRIPLE system. the information in the background knowledge base. The

In the examples described below, the image distortion, knowledge base for these examples consists of a generic air-
border following, and polygonal approximatic algorithms craft prototype that specifies the presence of wing, fuselage,
have all been implemented and executed on a SUN 3/60 engine, and tail features in order to generate an aircraft target
workstation. The polygonal approximation data is transferred model. The knowledge base contains 23 different rules that
to a Symbolics 3670 workstation, which performs the sym- are utilized to establish allowable combinations of the
bolic feature extraction operation and hosts the TRIPLE tar- features to satisfy the wing, fuselage, engine, and tail require-
get recognition system. ments. Figure 6 illustrates the resulting target models created

by the EBL component for the system initialization phase.

3.1 System Training Notice that the specific feature values have been generalized
into ranges of values and that EBL has generated a weight

The first step in the target recognition process is to con- associated with each feature in the target model. The
struct an initial collection of target models. As described in weights are used during matching to compute target recogni-
Section 2, this operation is automated in the TRIPLE system. tion confidence.
The user merely supplies a set of training images, which are Following the selection of relevant target features by the
processed by the TRIPLE system to generate a set of target EBL component, the TRIPLE system invokes the SCC pro-
models. Figure 4 shows the initial set of aircraft used to cess to construct the initial target classification tree. All
initialize the TRIPLE system. These aircraft have not been seven target models are given to SCC, which builds the
distorted since most training operations utilize high quality classification tree shown in Figure 7. The nodes in the tree
training data to insure accuracy. Figure 5 provirc- the set of
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(a) (b) c)

(d) (e) (M (g)

Figure 4: Aircraft used during the initialization phase of the TRIPLE system. (a) Boeing 747 (B-747). (b) Boeing
757 (B-757). (c) McDonnell Douglas MD-87 (MD-87). (d) Gulfstream Aerospace (Aerospace). (e) Cessna Cita-
tion (Citation). (t) Cessna Caravan (Caravan). (g) Piper Malibu (Malibu).

Feature B.747 B-757 MD47 Aerospace Citation Caravan Malibu

Wingspan 2457 160' 10 13' -9' 67" 53W
Wing Sweep, Leading 1290 1140 1150 1190 1160 950 970
Wing Sweep, Trailing 1120 970 990 1020 1010 880 860
Wing Base Chord 53' 28' 22' 22' 10' 7' 6'
Wing Tip Chord 12' 6' 4' --- 3' --- 3'
Wing Taper, Base/Tip 4.37 4.86 6.00 --- 3.33 .-- 2.26
Fuselage Length 222' 155' 130' 88' 55' 38' 32'
Fuselage Width 27' 18' 16' 11' 8' 8' 7'
Length, Wing-to-Nose 62' 60' 58' 32' 20' 12' 11'
Length, Wing-to-Tail 75' 47' --- .... 14' 10'
Nose Shape ROUND ... ROUND ROUND ... ... POINTED
Position of Engines ON-WING ON-WING FUSELAGE FUSELAGE FUSELAGE NOSE NOSE
Number of Engines 4 2 2 2 2 1 1
Tailspan 89' 62' 52' 42' 24' 26' 24'
Tail Sweep, Leading 1260 1180 1200 1200 1200 960 970
Tail Sweep, Trailing 990 990 1020 1020 1010 870 870
Tail Base Chord 28' 15' 12' 10' 6' 5' 4'
Tail Tip Chord 8' 6' 4' 4' 2' 3' 2'
Tail Taper, br.e/rip 4.03 2.40 2.92 2.73 3.17 1.88 2.40
Wingspandlailspan 2.76 2.59 2.68 2.45 2.91 2.53 2.22

Figure 5: Symbolic features extracted from the aircraft in Figure 4.
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Feature Value Weight Feature Value Weight Feature value Weight

Wingspan (Range 239'-251') 01 Wingspan (Rnet5't5' 1 Wingspan (Range tr'-t4) =11i
Wing Sweep, Leading (Range 127*'13I1 008 Wing Sweep, Leadig (Range lI2*-It6*) 009 Wing Sweep, Leading (Range 1130.1170o) 0.09
Wing Sweep, Trailing (Range 1100.-114*) 007 Wing Sweep, Trailing (Range 95-99*) 009 Wing Sweep, Triling (Range 97 V0') 009
Wing Base Chord (Range 50'-56') 006 Wing Base Chord (Range 26'-30') 006 Wing Base Chord I(Range 21'-23') 006
-Wing'ip Chord (Range 11'-13') 004 Fuselage Lengths (Range 150'-060') 012 Fuselage Length (Range 126'-134') 014
Fuselage Length (Range 216'-228') 0.12 Fuselage Width f (Ritge 17'-19') 0.04 Fuselage Width (Range 15'-17') 006
Fuselage Width (Range 25*-29') 0.04 Length, Wing-to-Nose (Range 57'-63') 006 Length. Wing-to-Nose (Rpnge 55'-6l') 0 10
Length. Wing-to-Nour (Range 59'-65') 006 Length, Wing-to-Tail (Range 45'-49') 008 Position of Engines FUSELAGE 010
Length, Wing-to-Tail (Range 72'-78') 08 isoo of Engitnes ON-WING 0.10 Number of Engines 2 005
Position of Enigines ON-WING U00 Numbster of Engines 2 005 Totlspin (Range 49'-55') 008
Nuinber of Eo&ises 4 005 Tailspin (Range 59'-65') 0.08 Tail Sweep, Leading (Range 1180.-122?) 006[ Tail'span (Range 86'-92') U08 Tail Sweep, Leadng (Range 116*120*) 006 Tail Sweep, Trailing (Range 1000104) 0.04
Tail Sweep. Leadi.g (age 124--128-) TO 6 Tail Sweep. Traals (Range9V- 10 2 .04 1Ti aeCod (ngI -3) 0.02
Tail Sweep. Tr.in (Range 970-1010) 1ai Ban Os Rne116) 0.02
Tail Base Chord (Range 26*.30') 0.02

(a) (b) (C)

Feature Value Weight Feature Value Weight Feature Value Weight

_________ (ag 9.0' 0.1Wingspan 1I M -.- _(Range 0 _72') O1I Wingspan -(Range 64-70) 0.17
Wing Sween.Leading (Range 1170.-121*) 009 Wing So.ep, Leading (Range 114*.1180) 009 Wing Sweep, Leading (Rnnge 93'-97*) 010
Wing Sweep. Trailing (Range 1000.104*) 009 Wing Sweep, Trailing (Range 99*-.1031) 009 Wing Sweep, Trailing (Range 861.90*) 008
Wing Base Chord (Range 21*-23') 006 Wing Base Chord (Range 9'-11') 006 Fuselage Length (Rainge 36'-40') 012
Fuselage Length (Range 8S*91') 014 Fuselage Length -(Range 52'-58') 018 Length. Wing-to-Nose (Range I'V-13) 008
Fuselage Width (Range 10'-12') 1006 Length, Wing-to-Nour (Range 19'-21 ) 1012 1Length. Wingj-to-Tail (Range 13'-15') 010
Leasgth, Wing-to-Nose (Ranige *A'-34') 0.10 Position of Engines FUSELAGE 0.10 Position of Engines NOSE 010
Posuition or Engines FUSELAGE 0.10O Number of Engines 2 0.05 Number of Engines 1 005
Numbier ofEngines 2 005 Tailsin (Range 23'-25') 008 Taispan (Range 24'-28') 008
Tailiian (Range 40'-44') 0508 Tail Sweep, Leading (Range 118*41220) 006 Tail Sweep Leading (Range 940.-980) -006
Tadl Sweep. Leading (11rage 1181422*) 0.06 Ttil Sweep, Trailn (Range 990.1030) 00-6 Tail Sweep. Trailing (Range 850.g90) 006
Tail Sweep, Trailing (Range 1001.104*) 004-_ _ _ _ _ _ _ _

TalBase Chord (Ringe 9'.I') 002 (e) Mf
(d) Feature Value Iweight

Wingspan (Rsnge _5'56') -U.3'7
Wing Sweep. Leading (Range 950.-990) 010
Wing Sweep. Trailing (Range 840.8) 0)08
Fuselage Length (Range 30-334') 0.12
Length, Wing-to-Nose (Range 10-12') 008
Length, Wing-to-Tail (Range 9'-.11) 0.10
Position of Engines NOSE 0.10
Number of Engines 1 005
Tailspin (Range 23'-25') 008
Tail Sweep. Leading (Range 950.-990) 006
Tail Sweep, Trailing (Range 5"090) GG06

(g)
Figure 6: EBL-generated target models for each of the symbolic feature lists showl, in Figure 5. (a) B-747. (b)
B-757. (c) MD-87. (d) Aerospace. (e) Citation. (f) Caravan. (g) Malibu.

5(Y-72' 97-65'237251

TN3 N.4T. N1

MalbuCravas II 757

Figure 7: SCC-generated target classification tree.
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are labeled TN.*, which stands for TREE-NODE-*. Note that Feature Value
the aircraft have been effectively segmented into intuitively,_
obvious groups by the SCC component. Wingspan 54

Wing Sweep, Leading 97o
Wing Sweep, Trailing 870

3.2 Complete Recognition Wing Base Chord 5'

The classification tree shown in Figure 7 is utd by the wing ip Chord 3'

TRIPLE system to recognize subsequent instances of ti;. air- (a)wing Taper, Buip 135
craft which have been modeled during training. Figure ( Fucnke Width 30'
shows an example of an "unknown" aircraft (Malibu) that Fuegge Width 7'
must be recognized by the target recognition system. The PontiongofEnines NOSE
aircraft image (Figure 8(a)) is moderately distorted and thus, A rbertofEngines N
in the polygonal approximation (Figure 8(b)), it is more -T "mTan 23'
irregular than the training example. The distortion of the air- Tail Sweep. Trailing 87'
craft becomes apparent by analyzing the list of extracted Tail Tip aCod 2'
symbolic features, shown in Figure 8(c), and comparing this Wingsp'ailspan 235
list with the previous collection of features shown in Figure
6(g). Only a few of the tail features are available due to the (b) (c)
aircraft distortion.

The model matching component uses the list of features Feature Value Weight

in Figure 8(c) to parse the classification tree in Figure 7. At Wingspan (Range 51'-57') 0.17
the ROOT-NODE, the unknown aircraft is compatible with Wing Sweep, Leading (Range 950.99*) 0.10
the leftmost branch, so the matching component traverses the Wing Sweep, Trailing (Range 850-89*) 0.08
tree to node TN-1. At this location, the unknown object Fuselage Length (Range 29'-33') 0.12
matches the leftmost branch again, so the matching process Length, Wing.to.Nose (Range 9'-ll') 0.08
moves to node TN-2. Here, the matching process must con- Length, Wing-to-Tail (Range 9'-l1) 0.10
sider two possible alternatives due to the fact that the wing- Position of Engines NOSE 0.10
to-tail feature is missing from the unknown aircraft. Both Number of Engines 1 0.05
branches are investigated by the matching process to deter- Tailspan (Range 22'.24') 0.08

mine whether either of them (or possibly both) are compati- Tai Sweep. LeUang (Range 950-99) 0.06
ble with the unknown target. The right branch of 7N-2 is Tall Sweep. Trailing a(Range 55-.90) 0.06
discounted due to differences in wing span, fuselage length, (d)
wing-to-nose, tail span, and tail leading angle. However, the
left branch, TN-3, which contains the Malibu aircraft model, Figure 8: Aircraft (Malibu) which illustrates the complete
is found to be compatible with the unknown aircraft. The recognition state of the TRIPLE system. (a) Distorted air-
matching confidence of this target model is computed to be craft image. (b) Polygonal approximation of the aircraft. (c)
74.6%. The confidence is derived using the weights assigned Symbolic target features extracted from the aircraft. (d)
to each target model feature and the error between the feature Revised Malibu aircraft model after complete recognition
values in the target model and the unknown aircraft. Even cycle.
though the aircraft feature set was missing two features
specified in the Malibu target model (wing-to-tail and tail
leading angle), the TRIPLE system was able to correctly
recognize the aircraft.

Additionally, since the recognition confidence of the air-
craft is greater than the complete recognition threshold (70% u
for these experiments), the feature value monitor is invoked
to update the values in the Malibu aircraft model. The
revised Malibu model is shown in Figure 8(d).

a
3.3 Incomplete Recognition

The TRIPLE system is capable of partially identifying
an unknown aircraft when very few symbolic features are
available to describe the target. Figure 9 provides an exam- (a) (b)
ple of an aircraft that causes the system to produce an incom-
plete recognition result. In this image (Figure 9(a)), the tail Feature Value
of the aircraft and the engine regions have been separated
from the main portion of the target. This situation commonly Wing Sweep. Leading !14
occurs in cases where there is low contrast between the air- Win. Sweep. Trailing 97*
craft and the background or in cases where shadows or sur- Wing Tip Chord 4'

faces markings on the target blend in with the background. Fuselage Width 17'

Since the border following algorithm is designed to locate Length. Wing.to-Nose 60'

only the largest target region, the system creates the polygo- Nose Shape ROmND
nal approximation shown in Figure 9(b). The set of symbolic (c)
aircraft features which can be extracted from this result are Figure 9: Aircraft (B-757) which illustrates the incomplete
indicated in Figure 9(c). Due to the lack of any tail informa- ognition state of the TRIPLE system. (a) Distorted air-
don and discrepancies in the wing representation, very few craft image. (b) Polygonal approximation of the aircraft. (c)
reliable features have been obtained for this target. Symbolic target features extracted from the aircraft.
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The matching component begins at the ROOT-NODE of _ _

the classification tree (Figure 7) by inspecting the wing span Feature Value
value of the unknown aircraft. Because the wing span is -
missing, the matching component hypothesizes all three Wingspan 140'
branches of the tree (Nodes TN-1, TN-6, and TN-11) as possi- wing Sweep, Leading 1170
ble alternatives. TN-11, which contains the B-747 aircraft Wing Sweep, Triling 99'
model, is rejected due to differences in every single target Wing Base Chord 22'
model feature except wing-to-nose. At TN-1, the unknown position of Engines FUSELAGE
aircraft's leading wing angle is compatible with the right (a) Number of Engine; 2
branch of the node, so parsing continues down to TN-5. Tailspan 50'

However, the Citation aircraft model contained in TN-5 Tail Sweep. Leading 120"
conflicts with the unknown aircraft in every feature except Tail Sweep. Triling 102'
the leading wing angle. Thus, this hypothesis is also Tail Ban Chod II'
rejected. .rA Tip Chord 3'

Tail Taper, Bas/Tip 3.47Looking at TN-6, the matching process selects the right win1raspn 2.65
branch and moves to the 7N-8 tree node. Since the engine
position feature is missing, the matching process once again
considers both branches as possible alternatives. Inspecting (b) (c)
TN-9, the matching process finds that the B-757 aircraft Figure 10: Aircraft (MD-87) which illustrates the occluded
model is compatible with the unknown target (matching recognition state of the TRIPLE system. (a) Distorted air-
confidence = 25.9%). At TN-O, the unknown aircraft is also craft image. (b) Polygonal approximation of the aircraft. (c)
correctly matched to the MD-87 aircraft model (matching Symbolic target features extracted from the aircraft.
confidence = 27.5%). Since no additional feature information
is available to select between these two alternatives, the TRI-
PLE system reports both aircraft models as possible matches. I Feature Value

Wngspan 51'
3.4 Occluded Recognition wing Sweep, Leading 930Wing Sweep. Trailing 841

Target occlusion can be effectively handked by the + Wing BupChora '
model matching process performed in the TRIP-LE system. Wing Bap Chord 3'
Occluded recognition performance in TRIPLE system is very (a) Wing Taper, Bte'ip 1.87
similar in nature to incomplete recognition. The difference Fuselage Le, 2a7
between the two cases is that the missing target features tend Learth, Wing-to-Nose 10'
to be the global features in the case of occlusion whereas, in Length, Wing-to-Tail 9'the case of incomplete recognition, the missing features are lit osiinof Enees NOSE
usually the local target features. I Number of Engines 1

Figure 10(a) provides an example of an aircraft image Tail Sp 13'
that illustrates the occluded recognition scenario. In this Tal Sweep, Tiling 88*
example, the nose and the port wing of the aircraft, which is (b) ( )
an instance of the MD-87 target model, have been occluded. W
The polygonal approximation of this target is shown in Fig- -
ure 10(b). The symbolic feature extraction process is still Feature Value Weight
able to derive a useful set of features from the aircraft, as Wingspan (Range 48'-54') 0.17
indicated in Figure 10(c). Wing Sweep, Leading (Range 91*-95") 0.10

Wing Sweep, Tailing (Range 82"-86') 0.08The model matching component uses the list of sym- Fuselage Length (Range 25'-29') 0.12
bolic feature information to parse the classification tree Lgth, Wing-to-Nose (Range 9'-11') 0.08
shown in Figure 7. At the ROOT-NODE, the wing span Length, Wing-to-Tail (Range 8'-10') 0.10
value of the unknown aircraft is compatible with the center Position of Engines NOSE 0.10
branch, so the matching component proceeds down to node Number of Engines 1 0.05
TN-6. The wing-to-nose feature is missing in the feature list, Tailspan (Range 12'-14') 0.20
so both branches (TN-7 and TN-8) are hypothesized. Exa-
mining TN-7, the model matching process finds that the wing (d)
span and tail span feature values contradict those of the Figure 1): Aircraft (Renegade) which illustrates the target
Aerospace target model stored in the node, although all other model acquisition capabilities of the TRIPLE system. (a)
features are compatible. Thus, TN-7 is discarded. At TN-8, Distorted aircraft image. (b) Polygonal approximation of the
the right branch of the node is compatible with the engine aircraft. (c) Symbolic target features extracted from the air-
position feature in the feature list. Finally, at node TN-IO, craft. (d) EBL-generated target model for the aircraft.
the matching process discovers that the MD-87 target model
is compatible with the feature list. The recognition demonstrates several examples of the automated target model
confidence in this example is 65.9%. No changes are made acquisition scenario.
to the target model since the recognition confidence is below
the complete recognition confidence threshold. Figure 11 (a) shows an image of an unknown aircraft. In

this case, the aircraft is a Lake Renegade (Renegade) which
has never been seen by the target recognition system. Figure3.5 Target Model Acquisition 11(b) illustrates the polygonal approximation of the aircraft

The machine learning capabilities of the TRIPLE system image and Figure 1 I c) provides the list of symbolic target
are evident in the target model acquisition and model features extracted from the polygonal representation. As with
refinement operations performed by the system. This section any other unknown object, the TRIPLE system begins by
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parsing the classification tree (Figure 7) using the set of sym-
bolic target features. Traversing the tree in standard fshion,
the knowledge-based matching component arrives at node
TN-3 and compares the symbolic feature list with the Malibu
target model. However, differences in leading wing angle,
trailing wing angle, fuselage length, and tail span cause the
Malibu target model to be discarded. Since no other
branches in the tree were hypothesized during parsing, the
current classification tree contains insufficient information to
identify this aircraft.

The EBL process is subsequently invoked in an attempt
to acquire the unknown aircraft as a new target model. Fig-
ure 1 (d) illustrates the EBL-generated target model produced
from the symbolic feature list in Figure 11(c). The new tar-
get model is then handed to the SCC component so that it (a)
can be incorporated in the classification tree structure. SCC
parses the tree using the new target model in an attempt to
leave as- much of the tree intact as possible. SCC success-
fully traverses the tree until it encounters the 7N-3 leaf node.
The tree is reclustered at this point to distinguish between the
current Malibu target model and the new Renegade target
model. Tail span is found to be the best symbolic feature:
that separates the two target models. The revised
classification tree, after insertion of the Renegade target
model, is shown in Figure 12.

Figure 13 presents a second, more complex example of
the target model acquisition process. Figu.-s 13(a) and 13(b)
show an image of an unknown aircraft and the corresponding (b)
polygonal approximation of this image. The aircraft in this
case is a McDonnell Douglas MD-11 (MD-11). The
extracted list of symbolic target features is shown in Figure Feature Value
13(c). As before, the process begins by parsing the current
classification tree (Figure 12). The parsing process immedi- Wingsp"a g 27'
ately terminates since the wing span value of the unknown ving Sweep, raiing 106"
target is not compatible with any of the branches at the W ap, Tilin 37'
ROOT-NODE. Wing Le Ctrd 37'

Fu*UpsS 1- 199'
EBL is called upon to acquire the aircraft as a new tar- Fela Width 27'

get model. In this case, the acquisition process succeeds, as 1eapk Wng s.-Nme 84'
indicated by the new target model shown in Figure 13(d). Noe Sha ROUND

Position of Paginc ON-WINO
ROOFTNODE Numaer of Engines 2

Wn-pnTallowa 68'
Tail Sweep, Trailing I00'
Tail But Coord 20'

Tal Tip C d 8'
Tail Taper, Bualfp 2.17

W 'ing-L --- 
i ng T o N

o
s
e B-747 (C)

TNI-' . Z~lWngspntrailpaz 3.01

1*-W 101V 913 5Y-6Y

Feature Value Weight

Wings (Rangei 202'-214') 0.11
I[ TN-5 TN.7 TN. Wing Sweep. Leafing (Range 125'4!290) 0.09

W TWing Sweep. Trailing (Range 104-108) 0.09

Orer 15- O Wing Ban Chord (Range 35'-39') 0.06
FueaeLength (Range 194'-204') 0.14

Fuselage Width (Range 25'-29') 0.06
Le.gth. Wingto-No- (Range I',87') .10

TN.3 TN4 .Position of Engines ON-WING 0.10
TNb-Span Caravan erNb of Engines 2 0.05

I P.1V 2'-2 Tlpn (Range 6S'-71') 0.20

(d)

TM. 12 N.3Figure 13: Aircraft (MD-Il) which illustrates the target
I -en g e-e g model acquisition capabilities of the TRIPLE system. (a)

Distorted aircraft image. (b) Polygonal approximation of the
Figure 12: Revised target classification tree, after insertion aircraft. (c) Symbolic target features extracted from the air-
of the Renegade aircraft model, craft. (d) EBL-generated target model for the aircraft.
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This model is then passed to SCC so that it can be added to caused by image distortion.
the classification tree. Since none of the branches at the Since new features are present in the correctly identified
ROOT-NODE are compatible with the wing span of the new
model, SCC is forced to recluster the tree at the root level, aircraft, the EBL-SCC learning cycle is entered to ascertainthe relevance of the features. The two new features are
In doing so, the SCC process discovers that fuselage length is addeed to the current MD-11 target model and the entire list
now a better distinguishing feature than wing span at the root

node in the tree. The resulting target classification tree, after of features is reprocessed by the EBL component. In this
reclustering has been completed, is shown in Figure 14. The example, EBL does create a new target model (Figure 16(d))
new MD-11 target model has been included in the same since wing-to-tail and leading tail angle were found to be
branch as the B-747, with wing-to-nose used as the distin- significant. Further, the EBL process has selected trailing tail
guishing feature. angle and tail-base as additional relevant features in conjunc-

tion with the presence of the leading tail angle feature.

3.6 Target Model Refinement The revised MD-11 target model is sent to the SCC
component in order to update the classification tree. At the

The second machine learning capability of the TRIPLE ROOT-NODE, the four new target features are compared
system is present in the automated target model refinement with the fuselage length feature to see if they produce a
process described in this section. Target model refinement better conceptual clustering of the target models at that posi-
occurs when the presence of a new symbolic feature is tion in the tree. None of them do, so the process repeats at
detected in an aircraft that can be correctly recognized by the TN-26 by comparing the clustering quality of the wing-to-
target recognition system. The EBL-SCC learning cycle is nose feature with the new relevant features. Once again, the
invoked in these instances to determine if the new feature is tree node is left intact and finally, the new target features are
relevant in recognizing the aircraft and, if so, where it should simply added to the list of relevant features at the TN-28 leaf
be placed in the target classification tree. Several examples node.
of target model refinement are now presented. The
classification tree used in these experiments is shown in Fig- Figure 17 provides another example of the modelure 15. This tree was obtained from the tree in Figure 14 refinement process. The image of a Renegade aircraft is
ure 1shown in Figure 17(a) and the corresponding polygonalafter two more aircraft models (Metro and Learjet) were approximation is indicated in Figure 17(b). The list of sym-
acquired. bolic target features obtained from this aircraft are presented

The first aircraft to be refined by the TRIPLE system is in Figure 17(c). The tree is parsed using this feature infor-
shown in Figure 16(a). This aircraft is an instance of the mation and, although the matching process must hypothesize
MD-11 target model that was acquired in Section 3.5. The nodes TN-36 and TN-39 during the tree traversal, the aircraft
polygonal approximation and the list of symbolic target is finally identified as an instance of the Renegade target
features are shown in Figures 16(b) and 16(c), respectively, model. The recognition confidence in this case is 86.1%.
The model matching process uses the symbolic features to The nose shape, leading tail angle, and tail base features in
parse the classification tree in Figure 15. The unknown air- Figure 17(c) are discovered to be new model features and
craft is correctly identified as an MD-11 aircraft with a recog- thus, the target model refinement operation is invoked.
nition confidence of 94.3%. In addition, the model matching EBL processes the Renegade aircraft model using the
process detects the presence of two new features in the unk- three new target features. In this case, the leading tail angle
nown aircraft, wing-to-tail and leading tail angle. Both of is found to be relevant along with the trailing tail angle that
these features were missing from the feature list in Figure 13 was present, but not relevant, in the initial Renegade sym-
due to errors in the polygonal approximation of the aircraft

Fuselige-4=egth

WingLe~ig Wig.ToNo Wing-To-Nose

TN-15 TN2 TN-22 TN-23TN2 TN-28
WF gTo-Tarl cesnpace EngmPositon

TN-17 I TN518
Renegasde Mat

Figure 14: Revised target classification tree, after insertion of the MD- II aircraft model.
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ROOT.NODE

Wing-To-Nose Wuig-To-Nose Wing-To-Nose Feature Value

911, 72y2r-T5S6 51a ,Wingspan 208'
Wing Sweep, Lejding 1250
Wing Sweep, Trailing 1070

TN-35 TN.40 T2 TN-23 W-7 T-8Wing Bane Chord 37'
wingro-Tri I ne-Psition Aerospace gine.Po,,,ion B.747 MDI Fuage Lnt 198'
S'"t 'v-I- SIA++.oE l5.wNOl ,oN.+ FUSEIAO Fu5CDgeWidth 28'

FUE ELength. Wing-toNs 85'
Length, Wing-to-Tai 45'
Nose Shape ROUND

TN-36 TN.39 TN-41 TN-44 TN.24 T25Position of Engine ON-WING
Tail-Span Cv Tail-Span Mono B.757 MD.8S Number of Engines 2

1 ,14! 2!-2 TAlspan 68'
Tail Sweep, Leading 123c

a Sweep, Trailing 1010
Tail Ban Chord 21'

TN-37 TN-S TN-42 TN-43 Wnp ails 3.01
RenegadeH Malibu Let Citatio(c)

Figure 15: Target classification tree for the ta:gct model refinement experiments.

Feature Value Weight

Wingspan (Range 2020-214 1 0.1
Wing Sweep, Leading (Range 1240-1280) 0.09

Wing Sweep, Trailing (Range 105°-!091) 0.09

Wing Base Chord (Range 35'-39') 0.06
Fuselage Length (Range 193'-203') 0.12

Fuselage Width (Range 26'-30') 0.04
Length, Wing-to-Nose (Range 82'-88') 0.06
Length, Wing-to-Tail (Range 43'-47') 0.08
Positioc of Engines ON-WING 0.10

Number of Engines 2 0.05
T1114a (Range 65'-7 V ) 0.08
Tail Sweep, Leading (Range 1210-125) 0.06
Tail Sweep, Trailing (Range 98%.1020) 0.04

Tail Base Chord (Range 19'-21') 0.02

(b) (d)
Figure 16: Aircraft (MD-11) which illustrates the target model refinement capabilities of the TRIPLE system. (a)
Distorted aircraft image. (b) Polygonal approximation of the aircraft. (c) Symbolic target features extracted from
the aircraft. (d) EBL-generated target model for the aircraft.

Feature Value

Wingspan 50'
Wing Sweep, Leading 930
Wing Sweep, Trailing 850 F V
Wing Base Chord 5, Wingspan (Range 48'-52') 0.17
Wing Tip Chotd Y Wing Sweep, Leading (Range 910-95) 0.10
Wing Tapex, BasTip 20 Wing Sweep, Trailing (Range 830.870) .0o8
Fuselage Length 28' Fuselage Length (Range 26'-30') 0.12

n Length, Wing-to-Nose 10' Length, Wing-to-Nose (Range 9'-11') 0.08
[ Nose Shape ROUND Length, Wing-to-Tai (Range 8'-10') 0.10

Position of Engines NOSE Position of Engines NOSE 0.10

Number of Engines I Number of Engines 1 0.05
Tallspan 13' Tilspan (Range 12'-14') 0.08

(a) (b) Tail Sweep, Leading 89" Tail Sweep, Leading (Range 870-91) 0.06
Tail Sweep, Trailing 89* Tail Sweep, Trailing (Range 86

0*-"0) 0.06

(c) Tail Base Chod 4'
Wingspazralspan 3.68 (d)

Figure 17: Aircraft (Renegade) which illustrates the target model refinement capabilities of the TRIPLE system.
(a) Distorted aircraft image. (b) Polygonal approximation of the aircraft. (c) Symbolic target features extracted
from the aircraft. (d) EBL-generated target model for the aircraft.
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boic feature list. The revised target model is shown-in Fig- 4. CURRENTRESEARCH
ure 17(d). As- in the previous model refinement example,
SCC is given the revised model for insertion into the The experiments performed using the TRIPLE system to
classification tree. SCC finds that at TN-36, the new leading date have served as a proof of concept for the integrated tar-
tail angle is a better distinguishing feature than the current get recognition/machine learning approach. We are now
tail span feature (Figure 15), so the classification tree is involved in extending the capabilities of the TRIPLE system
reclustered at TN-36. The final structure of the classification to handle complex 3D object descriptions. These changes
tree, after the target model refineme-it process, is shown in involve modifications to the segmentation and symbolic
Figure 18. feature extraction component to obtain valid symbolic
3.7 Recogition Failure features for 3D objects seen at arbitrary angles.

.7 Reogiion F uFigure 20(a) presents a typical example of an image

This section presents a brief example of recognition containing an aircraft and Figure 20(b) indicates a segmented
failure in the TRIPLE system. As with any target recogni- view of this image in which the aircraft regions are prom-
tion system, there will always be instances where the infor- inent. Due to the oblique angle imagery, the aircraft can not
mation processed by the system or the knowledge used to be matched using a 2D target model. Instead, the symbolic
process the information is insufficient to perform the recogni- feature extraction component now utilizes a generic aircraft
tion task. This example demonstrates how incomplete feature description similar to the one shown in Figure 21. By
information leads to recognition failure in the TRIPLE sys- hypothesizing various orientations of the 3D aircraft proto-
tem. type and predicting the appearance of specific target features,

Figure 19(a) provides an aircraft image (a Fairchild the necessary target features can be derived from the segmen-
Merlin aircraft which has not previously been modeled) that tation results shown in Figure 20(b).
must be identified by- the recognition system. The polygonal Once the 3D symbolic features have been obtained
approximation of the aircraft (Figure 19(b)) contains only the using this process, the TRIPLE system can process the data
front part of the aircraft due to the separation in the fuselage and recognize the unknown aircraft in a similar fashion to the
portion of the image. The symbolic feature list obtained acon the cr ft in a sar fashing thefrom this approximation is shown in Figure 19(c). The matching approach described in this paper. By extending the
knowldg-se ppromatcing cointuss the inFure d Ibackground knowledge base to handle the additional 3D tar-knowledge-based matching component uses the feature data get features the TRIPLE system can reco onze, acquire, and
to parse the classification tree in Figure 18. At the ROOT- retne comptex, 3D target models Work is currently unac r-
NODE, the wing-span value is missing, so nodes TN-14, TN- way to re fine and implement these concepts.
21, and TN.26 are hypothesized. However, at each of these
nodes, none of the available branches are compatible with the
aircraft's feature data, so the model matching process ter-
minates. EBL is invoked to acquire the new aircraft, but is
unable to generate an acceptable target model due to the
absence of any tail features. Since EBL can not process the
available feature data, the aircraft is reported as a recognition
failure.

ROOTNODE

Wing-To-Nose Wing-To-Nose WigT]Ns

(a) (b)

-3 TN.40 TN-22 TN-23 TN-27 T
Wing ail gine-PosItIon I Aero ace Engine-Position [ 3-747 MD-i Feature Value

Vi'1 IV- FUSI1 ONg WId ON-I.NG FUSEIL& wingsWpn 63_

Wing Sweep, Leading 98*
Wag Sweep, Thilng 82,

Ting Bae Chord 9'

Tail-Leadng Carava Tail-Spa Meo .77 M87 Fege Wid '

Position of Engines ON-WINO
Number of Engines 2

(c)

Rai~de MlibuFigure 19: Aircraft (Merlin) which illustrates the recognitionI.d Malibu Ld Ofailure scenario in the TRIPLE system. (a) Distorted aircraft
Figure le Revised target classification tree, after refinement image. (b) Polygonal approximation of the aircraft. (c)
of the Rentgade aircraft model. Symbolic target features extracted from the aircraft.
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5. CONCLUSIONS

We have presented the experimental results of a new
target recogaition system that exhibits the standard target
recognition system functionalities (complete recognition, par-
tial recognition, occluded recognition) as well as providing
several new capabilities (target model acquisition and target
model refinement). The machine learning components built
into the TRIPLE system allow it to adapt its representation of
the individual target models in order to operate effectively in
an unconstrained, dynamic environment. The TRIPLE sys-
tem is part of a complete multilevel machine learning system
for target recognition that we are developing.1
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Abrtract 1 Introduction
In this paper we formalize and implement a In this paper, we define a model and describe an imple-
model of topological visual navigation in two- mentation for characterizing a class of visual navigation
dimensional spaces. Unlike much of traditional problems in-the-large. Although both model and imple-
quantitative visual navigation, the emphasis mentation are extendible, this paper focuses on visual
throughout is on the methods and the efficiency landmark selection and topological navigation within
of qualitative visual description s an heefand (actually, above) a two-dimensional environment, with-
environments, and on the methods and the ef- out the use of metric distance information, and without
ficiency of direction-giving by means of visual the use of "graphic" information such as street signs.
landmarks. We formalize three domains-the The domain we explor is a formalized variant of the
world itself, the map-maker's view of it, and the visual world seen by a level-flying helicopter whose per-
navigator's experience of it-and the concepts of ception is limited to a narrow field of view, and whose
custom maps and landmarks. We specify, for visual axis is normal to the world below it. Thus, oc-
a simplified navigator (the "level helicopter") clusions are not yet an issue, but object identity and
the several ways in which visual landmarks can confusability are, and so are issues of communicative,
be chosen, depending on which of several costs perceptive, and motive economy.
(sensor, distance, or communication) sl-ld be This work is ultimately motivated by the questions of
minimized. We show that paths minimizing one what is a good map, what is a good landmark, and what
measure can make others arbitrarily complex; is a good visual environment. It addresses the abstract
the algorithm for selecting the path is based problem of how to optimally choose visual landmarks
on a form of Dijkstra's algorithm, and there- and their sensory features in order to describe and dis-
fore automatically generates intelligent naviga- criminate objects, and how to create short or efficient
tor overshooting and backtracking. We imple- sequences of such descriptions for low cost (however de-
ment, using an arm-held camera, such a navi- fined) qualitative navigation from a given place to an-
gator, and detail its basic seek-and-adjust be- other.
haviors as it follows visual highways (or departs
from them) to reach a goal. Seeking is based 2 Formal Definitions
on topology, and adjusting is based on symme.
try; there are essentially no quantitative mea- 2.1 The World, The Map-Maker, and The
sures. We describe under what circumstances Navigator
its environment is visually difficult and per- The world we model is two-dimensional in the sense that
ceptively shadowed, and describe how errors objects are considered to be equivalent to their appear-
in path-following impact landmark selection. ance, from a fixed vertical angle, and within a narrow,
Since visual landmark selection and direction- and therefore orthographic, field of view. In that sense,
giving are in general NP-complete, and rely on it is very s;milar to the world as it would be displayed
the nearly intractable concept of characteristic in an aeri )hotograph, if that photograph has no sym-
views, we suggest some heuristics; one is that bolic information superimposed upon it. Since the pho-
the landmark object "itself", rather than its tograph has not been taken at an oblique angle to tlh..
views, may be its most compact encoding. We ground plane, there are no significant occlusions. We
conclude with speculations about the feasibil- further restrict the navigator's movement to be in a con-
ity of intelligent navigation in very large self- stant plane above and parallel to the ground plane, and
occluding visual worlds. the navigator's vision to be normal to it.

Relaxing the restriction of a constant plane would
complicate the giving of directions, since viewing height
would be variable, would have to be specified by the
direction-giver, and introduces an additional degree of
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freedom over which the choice of landmarks would have terms, the world model is itself usually called a "map",
to be optimized since most landmarks are only land- particularly if it is not drawn to scale, and the custom
marks relative to their visible surround. Relaxing the map would probably be called "the list of directions."
restriction of normal view would be more critical, since However, in some instances, particularly at car rental
it introduces two degrees of freedom and introduces vi- agencies equipped with electronic custom map-makers,
sual occlusions. In principle, the possibility of occlu- the layman can be given exactly what we call a map, if
sion deeply impacts the definition and detection of land- he has a unique destination in mind. Surprisingly, recent
marks, since at least part of a landmark's effectiveness research shows that maps as we define them are preferred
comes from its visibility over long ranges. We restrict by human beings over the Exxon-variety world models
ourselves now, however, to visual navigation with two [Streeter et al., 1985].
degrees of freedom over a two-dimensional world.

We find it critical to distinguish three similar but sub- 2.2 Landmarks and Custom Maps
tly different perceptions of "the world". To consider objects as point-like requires enough process-

The two-dimensional world as it exists and is experi- ing intelligence in the navigator to recognize an object
enced by both map-maker and navigator is mathemati- as a single object, and to capture, hold, and dismiss the
cally rich: it is continuous, it has a distance measure, and single object from its sensory array; in effect, the naviga-
objects "embedded" in it can have finite extent. Much tor can "debounce". This is an important consideration,
of this appears to be extraneous: many such worlds con- since the "experience" of an object must be a unified
sist largely of the essentially empty space between ob- whole, even if the prior and succeeding experiences are
jects, much navigation can be done by simple object or- identical. Practically speaking, this limits the amount of
der rather than object distance, and objects can often blind travel between objects; further, it defines what is
be considered to be point-like, meant by a single object from the point of view of the

We therefore postulate that the map-maker, omni- navigator. Three identical trees as seen from above must
scient and error-free, has abstracted the world into some- give rise to the experience of "tree" exactly three times,
thing more akin to a planar graph. That is, the world even though the trees are sensed at some distance, have
is conceived as a collection of nodes which represent sig- spatial extent, and may overlap, and are still sensible af-
nificant objects, connected by arcs which represent navi- ter some distance, often even when the next tree is also
gable regions without intervening objects. Empty space, sensible.
distance, and object extent are ignored. The omniscience Given the model of unified, immediate perception,
of the map-maker ignores the very difficult issues of map whici. implies that interframe time is small, objects can
induction (see (Dean, 1987]), and the infallibility dodges now be modeled by the map-maker by some symboli
the issues of partial or errorful information, deliberate abstraction. This object model must be communicable
camouflage, unexpected events, or even the proper navi- to the navigator, and the navigator much be capable of
gator strategies for "believing" a map and for recovering modeling its own perception in these terms. It is clear
from any errors. However, to our map-maker, a plane that the grammars for describing objects are many, but
flight would be simply the graph (or subgraph), (New they are assumed here; this paper is more concerned with
York)-(London)-(Paris)-(Rome). inter-object distinctions and relationships. The defini-

The map-maker communicates even less of this sub- tion of a landmark ultimately invokes the ability of a
graph to the navigator in the form of a sequence: this is, navigator to distinguish a landmark from any other ob-
the best, by some criterion, "custom map"of visual land- ject in its graph neighborhood; a landmark is an ob-
marks, ordered by sequence of traversal but not ordered ject that can be recognized by a navigator along a path
by space, or even by actual time of encounter. In fact, through the world graph, regardless of the intervening
the actual navigation path can be self-intersecting; in object nodes. Thus a tree in a desert is landmark, but
some cases, in order to be optimal, it must be. It is this a tree in a forest is not. Landmarks can be relative, or
second level of abstraction and the process of its creation even "one-sided" - that is, path-dependent; for example,
are the foci of the paper. Throughout we assume that a tree on a forest's edge is a landmark only on the way
there is only one navigator, and that the map-maker's in. We will make the definition of landmark more precise
omniscience extends to a perfect model of the navigator's shortly, at least for our level helicopter world.
sensory endowment. A custom map is a sequence of directions; each direc-

The navigator perceives the world in the most lim- .ion is a pair consisting of a heading and a landmark
ited way. Sensory range is limited, perhaps only to the description. The navigational goal is simply the last
current object being experienced, and there is virtually landmark description. The first item of the pair, the
no memory. However, his is an actual advantage, usu- heading, can be quite general, as it can specify a strategy
ally the less that needs to be sensed or remembered (wander northward, spiral outward), as well as an abso.
the better, since the cognitive load of the navigator is lute heading (east) or relative heading (turn left). In
minimized. Although more intelligent navigators can be extreme cases, the navigable regions between landmarks
modeled, this one chooses to ignore most of the world are capable of being continuously sensed as a series of
and its features for the sake of efficient traversal, landmarks, e.g., a road and its sides, and the heading

For consistency, we will refer to the abstraction of the can be specified in terms not addressed in this paper ,
world as the "world model" or the "planar graph", and e.g., follow the road. The second item of the pair, the
the custom map as, simply, the "map". In layman's landmark description, can be arbitrarily complex, not
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only with reqpect to the need to eflciently transmit an that minimizes distance, but enumerates all objects be-
obj-ct model, but also with rebpect to any spatial grant- tween the start and the goal. Depending on the way in
mar superimposed on object primitives, e.g., "three oc- which sensory costs are tallied, the third or fourth may
curtences of big houses next to things other than a big minimize sensing. Even in one-dimension, there is great
tree or a small pole". The theory of LR(k) parsers ad- variety possible.
dresses some of these icaucs, since basically a direction In two dimensions, given a vocabulary of headings,
based on a compound object isasimple sensory program. and a vocabulary of object models and their allowable

We note as a side issue that our world ignores those partial models, the number of potential custom maps
"reassurance" directives that are common in human grows exponentially. Thus, we would like to make the
map-making, e.g.. "along the way you will pass a W", or, idea of "efficient" and "best" map precise. Unfortu-
"if you see an X you have gone too far, turn around and nately, we first need some additional definitions and
look for the Y." Their purpose seems to be twofold, and representations to investigate how difficult these ques-
both are ignored in our world. The first purpose is, they tions are; we present them in the context of the one-
calibrate the navigator during an interactive direction- dimensional world example. Their extension to two-
giving (for instance, the navigator can ask "What's a dimensional space is conceptually straightforward, but
W ?) but our direction-giving is not interactive. Sec- computationally daunting.
ondly, they serve as a warning that a neighborhood is be-
coming visually confusing, and that more precise sensing 2.4 Transition and Cost Graphs
is called for, (effectively, Scan for X-confusable objects); We introduce two abstract data types, the transition
our navigator has no sensory choices. graph and the cost graph. They are abstract data types

because, depending on the vocabularies for headings and
2.3 Navigating with a Custom Map object models, the map criteria being optimized and, in
Having defined what a custom map is, we now examine some cases, the contents of the world model itself, they
its use. Then we will address its creation, which is one are realized as various data structures. Thus, in some
of the central concerns of this paper. cases they are best implementtd as arrays, in others as

The most primitive decision a navigator must make is lists or trees. In some cases they are best established
whether or not its observation of the world is compatible before the optimizing map-making algorithm, in others
with some object description given by the map-maker. they are incrementahy established cooperatively with it,
We model such an ope:ation by a boolean-valued func- and in still others they are never established at all, but
tion "match", which t.kes as input a description, and are directly incorporated into the algorithm itself.
uses the descript;on to schedule the appropriate sensory Intuitively, the graphs record information about the
and cognitive information to make the judgment. most efficient direction (heading plus object description),

To illustrate navigation, consider the following world if any, that takes a navigator from any given node in the
model, which is impoverished to the point of being linear. world model graph to any other node. If there is such
Objects are described by two point-like features, color a unit direction, the transition graph reords it, and the

and ize taen rom he omans ed, ree an smllcost graph records its cost. This cost can be definedand size, taken from the domains rod, green and small, i utpewy:i a etedsac rvko
large, respectively. There is no spatial relations in the in multiple ways: it can be the distance traveled, or
wrlarge rosectivl.her e i f d no atareats ind the amount of sensing necessary to tell that interveningworld other than forward and backward ("+"/"-"), andobetarntthgalorsmythcmpeiyfth
there is no intra-object spatial relations at all. The world objects are not the goal, or simply the complexity of the
is given by the graph (gs)-(rs)-(gI)-(rl)-(gs)-(rl)-(r-)- heading strategy. Both graphs conceptually contain a
(rs)-(gl), which is a straightforward syntactic simplifica- special sentinel wherever a unit transition is impossible,
tion of the full definition of (green, srali)-(red, small)-. which is usually the case; in particular, there is no unitirection s of ch the fulldei o (green, or en+1tel thedirection that can cause the navigator to remain in the•.Directions such as +m-l, or -gs, or even +1 tell thesaepc.
navigator to move forward until the red large object is same place.
sensed, or backward to the green small one, or forward The p~oblem of obtaining an efficient custom map
sn ,okrto the grrge respective.e sll dione o f a from a start to a goal can then be broken down - concep-to the large ojne, respectively. The last direction is atulyatest-iothetbihmnofeicntnt
partial object description, and the ability to partially tualiy, at least - into the establishment of efficient unit
describe landmarks greatly complicates the selection of directions, followed by the traversal of the unit direction
landmarks and their descriptions, although it likewise graph from start to goal. There are times, of course,
greatly simplifies navigation itself. when this is grossly inefficient, such as when the naviga-gely simpifig eqsnaigatio ef totor is traveling a very short distance and a type of search

The navigator requests a custom map to traverse from is more appropriate; we do not thoroughly analyze such
the first object to the next to last one. The epistemo- tradeoffs here.
logical issues of how a navigator knows and/or commu- Intuitively, the graphs are filled in in two stages.
nicates both present and desired positions to the map.
maker are side-stepped here. The custom map maker First Stage; Formal Definition of "Landmark"
can reply with over 300 custom maps; among them are In the first stage the transition graph is filled with
+s + a + s + s, +9 + gl- r, +gs + s + r, +lr + sr + r, +g+ tentative unit directions of the most inefficient kind,
r + g + r + g + r + r + r. The first map uses only one namely the full object description of the unit direc-
object model. The second causes overshooting of the tion's goal. For example, in the example one-dimensional
goal, but has only three directions, and therefore mini- world model (gs)--s)-(gl)-..., the unit transition con-
mizes communication time. The last map is one of many necting nodes 1 and 3 would initially be given as +gl,
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even though either +9 or +1 would suffice. In the most there may be more than one optimal partial object model
general case in two dimensions, creating the world pla- that attains the optimal cost: in the example, the unit

nar graph. and labeling the arca between two reachable direction from 1 to 3 can be +9, or +1. Depending on

nodes is a complex procedure, highly dependent on the the overall model of map gocdness they may all have to

vocabulary of headings and objects, and it may be non- be recorded. Secondly, depending on regularities in the

trivial to select tile unit directions between nodes in world, or the vocabularies of the navigator directions, tie
an efficient manner. In special cas-_, such as the one- optimization of the entire graph may probably be done

dimensional world given above, or in the cartesian two- in a more efficient way than by optimizing each entry

dimensional world actual implemented, clever encodings separately. But third and most importantly, the opti-

do yield good efficiencies of both processing and storage. mization of even a single unit transition is NP-complete
For the example, the full first stage transition graph in the number of partial models. Selecting the optimal

is shown is Table 1, where empty entries are considered partial model can be obtained by heuristic search, with

to be filled with sentinel values, the most effective heuristic appearing to be the one that
says "select the partial model that conflicts most with all

-, i- ... ,the other objects along the path to node j"[Kender and

4| pl m +r +p-+r. Left, 1989]. In short, the topological visual navigation
- +, 4,o +,4 +9 I problem subsumes the problem of minimal object de-

' |---if , -o - -. +,i 4,, +,i scription, except that it provides a well-defined context:
S .... 9 - -d 4 the context of the path to the object.

-A# -,l + 1 Applying optimization to the example, we find the fol-
- .-- .' lowing full second stage transition and cost graphs, in

Table 2 and Table 3, where cost is given as sensing cost
Table 1: First stage transition matrix over the intervening objects.

In tile mot general case, the transition graph will be 2.5 Custom Map Creation

indexed by node number, and the entry for a unit tran- At this point, the problem is no longer a vision or a

sition between node i and node j will record the heading robotics one; standard graph search algorithms such as

in its vocabulary and the full object description of j. Dijkstra or A* over the transition and cost graph can be

However, what is most siiiticant is that in general, if used to find the least costly path from a given node to

navigation is in-the-large, by definition there will be a another. The resulting sequence of unit directions is the

large number of objects with the same object descrip- custom map.
tions; since only the first (that is, the nearest) object is
attainable by a given unit direction, the transition graph 3 Application to the Level Helicopter
will always be sparse, and it mrny be compressible by the World
usual techniques.

We now note that one definition of a "landmark" 3.1 Thi World Model

would be an object whose coloinn in the transition graph The initial application of these ideas is to an highly
is very nearly filled, that is, an object that can be ob- idealized two-dimensional world. Nevertheless, it serves
taned under a unit direction from very nearly every- as an arena for the exploration of significant compu-
where. In the above example, the g1 object is an opti- tational and representational problems. The world is
real landmark. One can easily define a concept such as divided into M rows and N columns, and the naviga-
the "Jandinvrk radius" of an object in the obvious way. tor's vocabulary of headings is is restricted to traveling
Because landmarks can be used to navigate over great in one of the four directions: north, east, south, and
nnmbers of objects. they will tead to appear regularly west. Although severely restricted, this world still ad-
in custom maps. Hlowever, landmarks riced not be "re- equately models much navigation in urban areas, like
versible"; for example, the fourth object in the above ex- taxi-cabs in New York, or within man-made structures,
ample is the first of two such objects close together, and like mail delivery in offices. Restricting the world to rows
is only valuable as a landmark while navigating to the and columns still leaves room for a larger vocubulary of
right, it is perceptually "shadowed" by the sixth object heading strategies: various space-filling searches, for ex-
when navigating to the left. In other words, traveling ample.
left from most places it is impossible to reach it in one An object, or interchangeably a landmark, can be
step. placed in any cell of this grid. Given current limits

Second Stage In the second stage of transition and on processing speed, we define as our object model a
cost graph construction, the transition graph is opti. 3 x 3 matrix of dots; this allowe 511 possible objects,
mized by selecting the minimal object description that but far fewer if rotation of objects are not considered dis-
maintains object uniqucness. The cost of this optimal tinct. There are no object symmetries due to rotations in
unit direction is recorded in the cost graph, sentinel val- this world, since the camera is room-oriented, not path-
ues in the transition graph giving rise to infinities in the oriented: that is, as our robot arn, changes direction,
cost graph. the camera does not rotate. (This is roughly equivalent

In general, the second stage is more complex, concep- to a human being's navigating by turning his road map
tually and computationally, for several reasons. First, on his lap as his car turns.) However, all objects must
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with no map at all: everything depends on the inrelli-
gence of the navigator's search.) Navigation succeeds if
the navigator attains the final object description.

* :.: 3.3 Map-maker model
In the level helicopter world, each direction in the cus-

tom map has the format (heading, descriplion), lead-
ings are the four compass points, and the partial object

V: description is simply the leading edge of the 3-by-3 ma-
.... ... trix of dots, in the direction of travel. For example,

(north, '...'), (west, ' .') is interpreted as travel north

until you see three dots in a row, then move travel west

until you see a single dot on the right (i.e., the north).
There does not appear to be any advantage in encod-

Figure 1: Sample dots world ing the description further, either in the custom map, or

in any of the intermediate data structures used by the
map-maker. The object itself, though impoverished, has

have at least one dot on each of the four edges of the ma- four different views of three tokens each, and they are

trix. This simplifies the adjust phase of the navigation, trivial to obtain; the object itself has much less. Do-

and avoids the epistemological issues such as how many pending on the ease with which characteristic view's can

objects there are that have a single matrix dot (one or be obtained from objects in general, it may happen that

nine?). Figure 1 shows an example of the map-maker's the best description of an object is the object itself. The

view of our experimental world of size 7 x 5. The land- computational cost of obtaining and storing all views,

mark enclosed by the square is the start point and the moot of which by definition will not be visible or useful

landmark enclosed by the circle is the goal. in navigation-in-the-large would be even more excossive

Because there are no occlusions, objects appear the than in the special case here.

same from all viewing directions; this simplies custom 3.4 Definitions of custom map quality
map creation. In general, however, object models must
address the characteristic view problem, the occlusion Since there are typically multiple custom maps to

problem, and simultaneously be flexible enough to ac- travel between any two landmarks in the grid wcrld, it

commodate multiple kinds of descriptive features that is necessary to define a quantitative model for evaluat-

the sensors of the navigator can identify: size, color, tex- ing the quality of a custom map. There are a number

ture, shape, number of components, topological relations of metrics to measure the cost of a path. Each metric

between eorponents, etc. may lead to a distinct path, so each metric miay lead to

its own heuristics. The choice of metrics depends on the

3.2 Navigator model goals of the map-maker and the navigator, and on the

We used a CCD array camera mounted vertically on characteristics of the grid world. Two possible goals are

a robot arm as the navigator's means of observing its minimizing travel time and maximizing the probability

environment. The height of camera was fixed above the of reaching the goal.

world model and it could only move in a plane parallel to One obvious cost metric is distance, measured by the

it. This obviated collision detection algorithms. Because Manhattan metric. A second is sensor cost, In our

viewing was normal to the ground plane and fixed, there model this is the number of times along the lath that

were no occlusions nor eve" choices of field of view. Field a dot is detected, which reflects the number of times the

of view was a fixed window, and very small relative to the navigator needs to stop and check if it has reachd the

navigational environmen t a most two landmarks were next specified object in its set of instructions. Vn general,
visible to the navigator at any instant; nearly always the robot may have different sensors with different costs,
there was a fraction of one or less, or the cost to verify an object may vary depending on

The navigator is capable of operating in two different the landmark.

phases: seek phase, and adjust phase. It is assumed to Time of travel is a third possible metric. Relevant

have no mel ric capabilities outside its view window, and data would include speed limits, obstructions, and sens-

within its view window it perceives by a type of sym- ing times for the available landmarks. Speed limits are

metry calculation. During seeking, the navigator con- generally dictated by law or by roughness of tlie ter-

tinuously looks for any object coming into its viewing rain. The average waiting time for certain obstructions,

window. When an object is spotted on the boundary of like traffic lights, may vary depending or. the direction

the window, the navigator adjusts its position so that the of travel. A fourth metric is map length. which is the

object is centered in the view window. Adjustment not number of directions that the map-maker gives to the

only counteracts errorful drift; it roay be strictly neces- navigator to get from one point to another. This metric

sary on turns to properly align the next heading. Other measures map transmission costs and rmemory rquire-

than seeking and adjusting, the navigator is not intelli- ments. A fifth gives preference to straight paths; Elliott

gent and makes no decisions; the map-maker has made and Lesk [Elliott and Lesk, 1982) noted that the number

them all. (The opposite extreme is that of a navigator of turns and the direction of the turn also r.!1ect the time
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movement was not fast enough to "lose" a dot.
The third component, the map-maker, is the most

complex. Much of its efficiency came from the exploita-
tion of the observation that unit directions could only
travel within rows or within columns of the world. Being
in the same row/column is a necessary but not sufficient
condition for an object to be reachable; it also could not
be "shadowed" by an object that had an identical leading
edge. Note, however, that reachability is not symmetric.

When every pair of landmarks has been examined for
reachability, we can produce sets of connected compo-
nents. We define such a set as highway. For a given
world, multiple highways can exist. Thus, the navigator
can travel from one landmark to another only if these

Figure 2: Configuration of the experimental eqw:praent two landmarks are on the same highway. Computing
highways can be done in O(M + N + K), where M and

of travel, and therefore counted right turns as 1/8 mileN are the row, column sizes of the grid world and K
ofd traelit turns as 1/4 m. is the number of landmarks populated. In O(M + N)
and left turns as 1/4 mile. we bucket sort the cells, once as (i, j) and once as (j, i).

All of these metrics tradeoff with reliability, which gen- Then we have only to find the edges between adjacent
erally decreases with distance traveled. This suggests a points in rows and columns. Since we have K landmarks,
class of non-monotonic reliability metrics, which would the result is a graph with K vcr:es and O(K) edges;
penalize both very short and very long unit direction dis- in O(K) time we find its c.jnn! .' co,.oonei:ts. This
tances. A second class counts as its cost some function of implies that it takes O(M + N - K) to fiid out whether
the confusability uF the objects along or nearby the speci- the goal is a place that "yoj t'in't get 4 0'.

ficed path: some objects are not only unique, they are There are two main datt. trt'.'re- 4 h / the nap-
unique in robust ways. A third class gives preference to maer mde the ma in x. Str.nd he .a-
(rear view mirror" navigation, that is, prefers landmarks maker module, the tr s i i,ation mtiitr x s a-

that are distinctive on both sides, so that landmarks can trix. The entry (i,j) in 0rb e s,,nasition instfi-a is ii.?d

be verified once obtained. withadirection -nor, a ; &t.h ark. t -are:h l,3-

Of course, all of these metrics can be combined in nu- scriptle feature value o tic .r,nark , is i iSreahole

merous ways. And some or all of these metrics may cause from landmark I. For exdg p".;, f , ist .,elative orth

the navigator to back up. For example, suppose the nav- from i and its south edgt ha-i vat, 7, i.c., thiee dots

igator is due west of the destination, all landmarks be. in a row, then the transition n.firix 1tr: ,i,3) would

tween the navigator and the destination, including the be (north, 7). The cost matrix contin. ec cost of such

destination landmark, are red, and a green landmark is a transition. In our model, we computed three different

found due east of the destination. It is easier to spec- cptimality criteria: sensing cost (8), distance traveled

ify the instruction,, to the destination as "go east until (d), and the map length (m). Distance traveled is de-
you reach the grecn landmark, then go west to the red fined as the number of cells the navigator travels over.
landmark." Sensing cost is the number of landmarks encountered on

the way. Map length is the number of instructions given

4 Implementation to the navigator.
The map-maker computes the optimal route, based

The world, map-maker, and navigator were imple- on the optimality criteria, by Dijkstra's shortest path
mented. A Masscomp [Mssscomp, 1986] (Masscomp, algorithm. The time complexity for Dijkstra's algorithm
1988] hosted the map-maker, and the high level control is 0(n2 ) if no fancy data structure is used (Aho et al.,
of the navigator. Basic image processing was performed 1974], but if a Fibonacci heap is used as a priority queue,
using a PIPE (Pipelined Image Processing Engine) sys- Dijkstra's algorithm takes O(e + logn), where e is the
tern Aspex, 1987]. The navigator was a camera with a number of edges and n. is the number of vertices.
12.5mm lens mounted or. an IBM 7575 robot arm [IBMa, Another way of finding the optimal path is to use a
1986], programmed using IBM's AML/2 [IBMb, 1986] heuristic search algorithm such as branch-and-bound or
(Figure 2). the A* algorithm (Rich, 1983]. These algorithms are

The logical components of our system consists of three more costly than Dijkstra's algorithm in the worst case,
main modules. The first, an environment creator, has but if the heuristic function is "good", they can be very
a user-friendly interface for entering object descriptions effective. We found that in the case of sensing cost (s)
and object positions. The second, the navigator module, estimation or map length (m) estimation, the underes-
reads the set of commands generated by the map-maker timating heuristic that assigns a cost of I to objects in
program and perform the navigation. During the seek the same row/column, and 2 elsewhere occasionally gives
phase, the leading edge of the image is monitored by dramatic improvement. Also in the case of distance cost
the PIPE. Upon detection, it adjusts and attempts to (d) estimation, using the Manhattan distance metric be-
verify object identity by its dot signature. Some calibra- tween current position and the goal as underestimating
tion was necessary to ensure that during the monitoring heuristic gave us good results. We are attempting to
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quantify under what circumstances heuristic A* outper-
forms Dijkstra. I go , . a ,1 0. R s ,

Note that optimal paths can be computed only if the - +r It In tgs

start and goal landmarks are on the same highway. Inter- S - -r + : o +r7 +
highway jumping methods are possible, but costly and rt -08 -r -g +9 +r +r7 +01
possibly inaccurate. We have defined several wander- I' - " - r -g +r +g

ing strategies, which are basically a space-filling zig-zag rs -r -I -7 +V +9
r7 -1 -D -+ g9movement of the navigator towards a certain direction. M1 -91 -9 --

The space that is filled can be rectangular with a spec-
ified width (a width of 1 gives standard navigational Table 2: Second stage transition matrix
seeking), or triangular, which eventually fills a specified
quarter of the plane, or semi-triangular, which fills an
eighth.

Although it is difficult to analytically determine the
expected number of highways given a specified object * 7* of 1 7. " ... 7 7

density, a series of experiments suggested that the num- 1 2 S
ber of highways is at a maximum when object density #1 2 1 1 2is about .03. Below .03, objects tend to be completely go s 3 2 1 1 2 4
isolated; above .03, highways start to link up into one ri 6 S 2 1 1 3

7o 6 2 1 1 2world-wide highway. An analytic proof would have some 3a 7 2 2 1 1

of the flavor of the proof of the birthday paradox: to s 1

start a new highway, each additional object would have
to avoid all existing highways, which becomes increas- Table 3: Cost matrix
ingly difficult.

5 Experimental results
For our experiments, we have allowed one pri-

mary cost optimality criteria and one secondary crite-
ria. Six different paths were possible: sensor-distance,
sensor-maplength, distance-sensor, distance-maplength,
maplength-sensor, and mapength-distance. The diffi- 4
cult part was coming up with a set of landmark place-
ments so that the paths generated by the map-maker are ( 6 1
as distinct as possible. There seemed to be no apparent
heuristic to do so, although it is clear that m < s < d.
Using the landmark layout in Figure 3, we have'the-fol- 2 5 7 9 12
lowing paths:
d-a 11 8 9 10 6 3 (d-6, a.5, u-5) 0 s
d-" 11 12 2 3 (d-6, 8-6, a-3) _--2_ _

s-d : 11 12 13 4 3 (a.4, d"8, rn-4)
a-d 11 0 1 3 (a-4, d-80, a3) Figure 3: Labeled sample dots world

a-d 11 12 2 3 (a-3, d-6, a-6)
a-& : 11 0 1 3 (a3. d-10. a-4)

Figure 4 shows two of the optimal paths (s-m and a-d)
generated by the map-maker. The numbers on the arcs
indicate costs d/s/m.

The algorithm to derive optimal paths that satisfies 4/11 13
the primary and the secondary criteria had to be care- -,1,11
fully designed in order to prune the exponentially large 1 [21
number of paths created. There are several ways to solve11
this problem. The first is a n-stage search method, wlere
n is the number of optimality criteria being used. Using 2/11 12
the primary criteria, the algorithm creates a tree of pri- -I I
mary optimal paths, then in the next round of search, I I I
considers only the edges that appeared on the primary __

paths. If we have n optimality criteria, we apply this
n times. The second method uses n cost matrices, but Figure 4: Paths generated by map-maker
computes the optimal paths in a single pass. The search
is done using the primary cost matrix and v'hen thcrc is
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a tie, the secondary cost matrices are considered. This [IBMa, 19861 IBM. IBM 7575 and 7576 Manufacturing
second method increases matrix computation tim. and Systems Hardware Library Site Preparation, Installa-
space to save search time. A third method uses a single tion, and Specifications, Part Number 70X8867, 1st
compressed cost matrix and a single-pass. Each entry in edition, August 1986.
the cost matrix is an algebraic combination of primary [IBMb, 1986] IBM. IBM 7575 and 7576 Manufactur-
and secondary costs, encoded in odometric fashion. A in# Systems Software Library AML/2 Manufacturing
single pass of search would suffice. However, one draw- Control System User's Guide, Part Number 67XIS70,
back of this method is that if the number of optimality 1st edition, August 1986.
criteria is very large, we would have to use a very large
number of bytes (or words) to hold each cost matrix [Karp, 1972] Richard C. Karp. Reducibility Among
entry; further, the computation involving the numbers Combinalorial Problems, pages 85-103. Plenum Press,

would also be costly. N iv Yotio, NY, 1972.
[KeT ler and Leff, 1989] John R. Kender and Avraham

6 Conclusion and future work Leff. Why direction-giving is hard: The complexity
of linear navigation by landmarks in one-dimensional

Navigation-in-the-large addresses some of the fundamen- navigation. IEEE Transactions on Systems, Man, and
tal issues of Al in computer vision. Representations Cybernetics, 19(6):1656-1658, November/December
of objects with an premium on uniqueness, heuristics 1989.
for finding good visual landmarks quickly, and the de- [Kuipers, 1978] Benjamin Kuipers. Modeling spatial
sign of fall-back wandering scans of an environment all knowledge. Cognitive Science, 12:129-153, 1978.
appear necessary. With the need to handle object oc-
clusions or navigator oblique views, rules of thumb be- [Masscomp, 1986) Massachusetts Computer Corpora-
come paramount. We hope the end result of these in- tion. MC5600/5700 Installation Guide, Part Number
vestigations would be a greater understanding of how 075-04007-00-0 (Revision A), April 1986.
to quantify the visual difficulty of a world, and how to [Mascomp, 1988 Massachusetts Computer Corpora-
quickly determine what visual features or viewing strate- tion. UNIX Programmer's Manual, Part Number 075-
gies would provide effective custom maps for navigation. 01012-00-0 (Revision K), February 1988.

[Rich, 1983] Elaine Rich. Artificial Intelligence.
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Annotated Maps for Autonomous Land Vehicles

Charles Thorpe Jay Gowdy
Robotics Institute Robotics Institute

Carnegie Mellon University Carnegie Mellon University

Abstract 1 Introduction
Autonomous land vehicles need more information 1.1 Motivation
than is contained in standard maps. We have de-
signed and built a new structure, the annotated Much of the information that mobile robots need is tied di-
map, to manage additional information. Annota- rectly to particular objects or locations. Maps, object models,tions hold a wide variety of knowledge, both proe- and other data structures store useful informatioi, but do not
dural (actions and methods) and declarative (data), organize it in efficient and useful ways. We have built a newtied to particular map locations and objects. An- map-based knowledge representation, the "annotated map",notations can range from high-level ("circular ob- to index information to the relevant object and locations. Theject") to geometric ("position 10,15, radius 0.5") to annotations can be used for a wide variety of purposes: de-sensor-specific ("possible position error .2") to scribing objects, providing hints for perception or control, ordata ("color Ri Gi B 1"). The knowledge in an an- specifying particular actions to be taken. We have provided anotation can come from a wide variety of sources, query mechanism to retrieve annotations based on their mapsuch as human experts, mission planning software, locations. We have also built "triggers", which cause a speci-suhan even theees, ion srainswae- fied message to be delivered to a particular process when theand even the vehicle's own observations and expe- v h cer a h sag v nl c to nt e m priences on previous missions. vehicle reaches a given location in the map.
Aience map erioule iontrls. tThese annotated maps serve a crucial role in enabling mis-
A map manager module controls the annotated map. sions that are otherwise beyond the reach of autonomous sys-Two forms of access are provided, queries and trig- tems. Control descriptors allow mission planners to specify
gers. Queries allow a module to fetch informa- what the vehicle is to do at particular locations, reducing the
tion on demand. They return all annotations of the need for onboard planning. Object descriptors contain de-
requested type within a specified polygon. Trig- tailed instructions of how to recognize a particular object, or
gers are a special form of annotations, monitored contain the appearance of this object as seen by a particularby the map manager. When the vehicle reaches
the trigger's location, the map manager automati- sensor on a previous vehicle run. Such information greatlycae srigeds lcatspeciie msae tmanaged am , simplifies the problem of seeing and recognizing objects. Ge-
cally sends a specified message to a named module. ometric queries enable the vehicle to focus its attention onare used to wake up sleeping processes at specified objects in its vicinity, reducing database access and match-loatioseo to aert ap runing mrode a spce ing time. The trigger mechanism frees individual modules
locations or to alert a running module to a change from having to track vehicle position, allowing them to de-
in conditions. vote their processing to the task at hand or to lie dormant until
Annotated maps are not designed to be a master con- they receive their trigger message.
trol, but rather to serve as a scratchpad (for queries) Annotated maps do not by themselves solve difficult prob-
and alarm clock (for triggers). Annotations have lems of sensing, thinking, orcontrol for autonomous vehicles.
a standard format for header information, such as Their contribution is to providea framework that makes iteasy
type and location. The format for the rest of the for other modules to cooperate in planning and executing a
annotation is defined by the modules that post and mission. Annotated maps thus fill a need that is common to
retrieve the annotations, and does not need to be many different vehicles, missions, and architectures.
interpreted by the map manager. Many analogous annotated maps exist for human use.
Annotated maps provide a convenient framework Aeronautical navigation charts contain symbolic descriptions
for organizing knowledge. Ting the knowledge in of routes (airways) and landmarks, and include annotations
annotations to particular locations in the map makes such as t' -,' ' ccde call letters of radio navigation bea-
it possible to pre-plan difficult mission segments, cons. Th. oduces "Triptiks"', which include anno-
and to retrieve that information efficiently during tations for ,. .. , .urrent conditions ("construction", "speed
execution. This framework enables missions that check"), .oad type (interstate, two lane, etc.), general condi-
would not otherwise be possible, due to real-time
constraints and limits in processing and algorithmic 'Triptik is a registered trademark of the American Automobile
power. Association
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" geometric: intersection angle 45 degrees control from a neural network vision program to a module that

• vehicle-specific: turn with'a circular arc of radius 15m used knowledge from the map of the interscction structureand
dead reckoning to traverse the intersection. Finally, there was

" raw data: steering wheel position left 1200 clicks an annotation at the end of the route that caused the vehicle

Knowledge must be carefully organized if it is to be useful. to stop at the appropriate object. The route was successfully

If the vehicle has to sort through all bits of information it has traversed autonomously.

about every possible object, it will overshoot the intersection In this run, and a variety of other runs, we have successfully
long before it has figured out how to recognize it or deduced used nine different types of trigger annotations:

that it was supposed to turn. Itis farbetter to have information * set speed
tied directly to the map, or automatically retrieved as needed.
The landmark recognition module, for instance, is able to ask * dead reckon through intersection
for a description of objects within its field of view, and retrieve * resume vision after intersection
the knowledge it needs to recognize them. * start landmark matching

Organizing knowledge by tying it toa map is the heart of our
"annotated maps". The annotations contain knowledge about * stop landmark matching
particular objects, locations, or actions. Annotations come in o stop at objects
one of two classes: descriptors and triggers. Descriptors are
passive, and are retrieved by queries based on geometry and * stop and start fast obstacle detection
object type. A query for "all objects of type 'intersection' in o use vision through intersection
this polygon" would return the annotation for the requested
intersection, if it were in range. Triggers are active, firing * switch perception modules
when the vehicle reaches a particular location or crosses a
certain line. A trigger will send a message to a particular
module, such as "controller: start turning hard left in five
more feet".

The knowledge in these annotations comes from many
sources, including human experts, mission planning software,
and even the vehicle's own observations and experiences on
previous missions. It is both declarative (data) and procedu-
ral (methods and procedures). The level of the annotations
depends partly on the vehicle's computational capabilities.
Simple vehicles, in known environments, are able to exe-
cute simple pre-planned missions by having every object and
action completely annotated at low levels. A more challeng-
ing environment, with more variation over time, may require
higher-level symbolic descriptors in the map and more rea-
soning at run time. Practical missions will probably require a
mix of levels of detail. Even a sophisticated vehicle may, for
instance, decide to record the locations of specular reflections
from a mailbox, and use those specularities as recognition
cues. It may be much more difficult to reconstruct a 3-D
model from the observed data, and to later predict the appear-
ance from the model.

Figures 1 and 2 show a typical annotated map. Figure 1
shows a map of a suburban area, including about 0.7 km of
road with two T intersections, and a variety of 3-D objects.
Object information was collected using the ERIM laser range
finder, and the road information was collected by using the in- ----------
ertial navigation system to provide accurate vehicle positions
while we traversed the route. Figure 2 shows a detail of the Figure 1: Map built of suburban streets and 3-D objects
first intersection, including the Navlab's position during a run
and several triggers.

The goal of this run was to drive from a house near the 3 Tenets of Map Construction and Use
beginning of the map to a specified house near the end. An-
notations were added to the map to enable the Navlab to carry Several key ideas underly our design for annotated maps, re-
out this mission. There were annototions to set the speed ap- fleeting our experience in building perception and navigation
propriately: up to 3.0 m/s in straig;p:taways and down to 0.5 systems for a variety of robots.
m/s in intersections. Other annotations activated and deac- Minimize semantic interpretation. No-one can predict
tivated the module that uses the laser range finder to correct all the kinds of knowledge that will be placed in annotations.
vehicle position based on detected landmarks. Before ev- Moreover, the map module need not understand the annota-
ery intersection there was an annotation that switched driving tions. The only common knowledge in annotations should be
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tions ("winds through rolling hills"), points of interest (rest We disagree with Brooks' contention that this is the only sort
areas, gas, food, and lodging) etc. An intelligent human can of information that a robot should remember. Robots of-
usually drive a route without such aids; but they do provide ten work in open, featureless environments, and need precise
a convenient framework for preplanning, and make "mis- maps and accurate navigation even where no landmarks may
sion execution" easier. Furthermore, as we drive a route, we be nearby. Annotated maps are designed to keep precise met-
build our own mental representations of landmark appearance, ric information in the geometric levels of annotations, as well
curves in the road, and so forth, which we use to follow the as the lower-level cues advocated by Brooks.
same route more easily at a later time. Our annotated maps Kender gives a much more abstract view of planning for
provide the same kind of functionality for autonomous mobile sensor-based navigation[Kender and Leff, 1989]. He de-
vehicles, scribes the combinatorial problem of deciding which sensors

to use, and which landmarks should be recognized, in order to
1.2 Related Work reach a given goal. The results of analyses such as Kender's

At CMU, we have developed a family of autonomous mobile should be entered into triggers, to tell the vehicle what to look

robots over the past ten years. Vehicles have included Nzp- for, and into object descriptors, to say how to look for those

tune, a testbed for stereo vision and path planning [Thorpe, objects.

1984]; the Terregator, our first outdoor mobile robot [Wallace Blidberg and his associates at the University of New Hamp-

et al., 1985]; the AMBLER, a walking machine for planetary shire's Marine Systems Engineering Laboratory have imple-

exploration [Bares et al., 1989]; and, principally, the CMU mented world models for underwater mobile robots[Chap-

Navlab [Thorpe, 1990, Thorpe et al., 1988]. Our experi- pell, 1989]. Most of their work has concentrated on efficient

ence, especially with the Navlab, has driven the design of descriptions of space, such as quadtrees. These spatial de-

the annotated maps. We already have perception and control scriptions are important, but do not include many of the other

modules that can use information from annotated maps, in- forms of knowledge (actions, descriptions) for which anno-

cluding color vision[Crisman and Thorpe, 1990, Kluge and tated maps are useful.

Thorpe, 1990], neural networks[Pomerleau, 1990], 3-D ob-
ject recognition[Hebert et al., 1990], and planning[Stentz, 2 Scenario
1990]. We have also built the EDDIE architecture, which A typical hypothetical mission for an autonomous land vehicle
provides inter-module communications, control, and sys- is mail delivery, which includes traversing a network of roads,
tern structure for mobile robots [Stentz and Thorpe, 1989, and picking up and dropping off mail at various points. This
Thorpe, 1989]. The tools provided by EDDIE will be used mission involves following roads, recognizing and dealing
for the messages that underly queries and triggers in the an- with intersections, self-locating by finding given landmarks,
notated map. and performing the correct actions at the correct places. As

Many other groups are working on related problems of the vehicle approaches an intersection, it updates its position.
mobile robots and knowledge representation. Rather than Then it switches control modes from road-following to dead-
competing with the ideas of annotated maps, most of this reckoning through known intersection geometry. Tracking
research is providing useful tools and ideas that could use or the roads requires using different strategies in different loca-
help generate the annotated maps. tions. The vehicle tracks an unmarked suburban road using

Fennema, Hanson, and Riseman at the University of Mas- a neural net road following[Pomerleau, 1990] or a road color
sachusetts are building world models and maps for their mo- classification algorithm[Crisman and Thorpe, 1990]. When
bile robot, Harvey[Fennema et al., 1989]. They have defined it switches to a road with lane markers and stripes, it uses
the concepts of "neighborhoods" and "locales". Neighbor- a feature tracking algorithms[Kluge and Thorpe, 1990]. As
hoods divide space (and their map) hierarchically and topo- the vehicle approaches landmarks, the laser range finder mod-
logically. Locales provide information for each neighborhood ule takes images and matches the observed landmarks to the
for the robot to determine whether or not the robot is inside known landmarks to update the vehicle position[Hebert et al.,
that neighborhood. During planning, they generate a series 1990]. The vehicle can stop at a mailbox, and another module
of "milestones" and actions. Milestones are perceptual tests, can perform an action.
performed to verify that a particular action has been accom- Planning and executing this mission requires several types
plished. The UMass map and plan representations are similar of knowledge: what to look for, and how to see it; what to do,
to some of the uses of annotations, but have simple, fixed and how to accomplish it; where to go, and how to get there.
formats, are focused on declarative representations of 3-D The knowledge may range from high-level symbols, to low-
object models, and do not provide map-based triggers. Also, level raw data. Approaching the intersection, for instance, the
the milestones and actions are generated for a particular plan, perceptual knowledge would include:
whereas annotated map triggers may include other kinds of * symbolic: intersection
actions that are not part of any planned mission, such as "if
you ever enter this area, turn around immediately". * geometric: size and shapes of roads intersecting here

Rod Brooks at MIT has long argued for simple robots * sensor-specific: use laser range finder to pinpoint the
with simple control schemes and simple world maps[Brooks, position
1986]. We concur that simple, sensor-based maps of par- * rawdata: Object 2 meters tall,0.4 meters wideatposition
ticular locations are often useful. The lowest levels of our (x,y)
descriptor annotations are designed to contain precisely the
sort of information that Brooks' robots use to calculate their Control knowledge can also span a range of levels:
position, or to cause a particular action, in a small local area. * symbolic: turn left at intersection
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transform, then apply that to the running position reports of
the controller. In practice, acquiring the Navlab's current
transform is done in one of two ways, specified at start-up:

* The Navigator can send its transform every time it is up-
dated. This is used by fast-running modules that always
need the latest update.

* Slower modules, that have a longer cycle time, may not
niced every updated transform. Worse, receiving too
many updates before the module is ready to read them
may cause the input queue to overflow. Instead, these
modules are notified that a new transform is ready, but
do not receive the update until they request it. The
Navigator stores which modules have been notified and
have not yet requested updates, to avoid sending repeated
notifications.

Centralize position tracking. Modules often want to per-
form specific actions when the vehicle arrives at particular
locations in the map. If each module were to continuously
poll the Navigator and controller for current position, the con-
troller could become overloaded. Active polling also means
that those modules are using computer cycles. Moreover, a
Navigator position update may skip the vehicle position esti-
mate past the point for which a module is waiting, For each
update, each module would have to figure out if any of its
target positions had been passed. We prefer to have a sin-
gle module, the map manager, doing position tracking for all

Figure 2: Trigger annotations for sensing and vehicle control modules. On reaching the points of interest, it awakens or sig-
nals the appropriate module. This is the function of "trigger"
annotations.

enough header information to store and retrieve the annota- No master control. The map module is best thought of as
tion. All the rest of the annotation belongs to the modules that an alarm clock (for the triggers) and a scratchpad (for descrip-
create it and interpret it, to be decided upon by their creators. tors and trigger messages). It is not some "master" module that
The annotated map serves only as a scratchpad. controls all thinking, and that therefore can become a major
No specialized query language is needed. 'Me standard bottleneck. We prefer point-to-pointcommunication between

queries ask for all objects of type X within polygon Y. Any modules, with flow of data and control decided on module by
query more ambitious than that need not be supported. If, for module, rather than forcing all information through a single

efficiency, it is desired to have a more powerful query, it is controller.
best programmed in C in the map module, rather than invent- Plan incrementally. The map module is designed to be
ing some other query language, translating queries into that used by many programs, for many purposes, at many times.
language, and interpreting those queries in the map module. Some information may be permanent; other annotations may
Answering queries for objects of type "landmark" and size be added to provide directions for only a single mission. It is
"greater than 100", for instance, requires internal knowledge an advantage to be able to update, add, and delete at various
of the "landmark" annotations. This query should therefore times. In particular, display and user interface modules may
be treated as a special case, only to be implemented jointly by read the annotated map from a file, look at it, display the
the "landmark" annotation creator and the map module main- annotations, change things, and write it back out.
taminer, and only to meet extreme efficiency requirements.

Separate global position tracking from local servoing. 4 Implementation of Annotations
Maintaining the current position estimate in local coordinates The annotated map needs to provide efficient access, indexed
is a real-time job, and is best done by the low level real-time by position. The annotations themselves need to contain an
controller. The controller's local coordinates should never be arbitrary amount of data, with a minimum of externally im-
updated, so locations stored in local coordinates are always posed organization on the contents. We have designed and
consistent. Commanded arcs, current positions of obstacles implemented a two-part representation, consisting of a map
to be avoided, and other phenomena that are used once and grid and an annotation database. Each square of the grid con-
then discarded, should be kept in local coordinates and never tains a list of any annotations that are included in that square's
entered into the map. Map-based reasoning, such as matching area.
landmarks against a map, or interpreting a position fix, are Adding an annotation to the map is a two-step process.
aperiodic events best done by a separate Navigator module. First, the actual annotation is added to the annotation database.
The Navigator maintains the transform from local to world Secondly, the map grid must be updated. The location of the
coordinates. Any module that needs to know current vehicle annotation is either a point, a line, or a polygon. This location
position in world coordinates must acquire the Navigator's can either be specified directly, for those annotations tied to
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a location, or retrieved from an object description, for those give faster lookups, but are no longer selective enough to
annotations that describe an object. The location is then scan- answer queries on their own. Instead, objects within grid
converted (converted to a list of cells) into the grid, and a cells must still be checked to make sure they are within the
pointer to the appropriate entry in the database is written into query polygon. For autonomous land vehicles with sensor
the corresponding grid cells, ranges of two to thirty meters, a grid with 0.5 to 1.0 meter

Retrieval of annotations in response to a query is also a two- cell spacing probably provides the right tradeoff; our current
step process. Queries can specify a polygon and an annotation implementation uses 0.5 meter cells.
type. The query polygon is scan-converted intogridcells. The Handling large maps. For a grid with 1.0 m cells, each
annotations pointed to by each of those cells are collected, square kilometer will contain a million cells. Each cell can
checked to see if they match the specified type, and returned, be represented with at most a few bytes of data, depending

Triggers work similarly. At each cycle, the map module on annotation density. The amount of memory required by a
calculates the current vehicle position. It calculates the line grid this size is easily within the capability of today's com-
on which the vehicle has moved since the last cycle, and scan puter systems, but for missions spanning several kilometers,
converts that line into the grid. Ech cell through which the we will not be able to keep the whole grid in main memory
vehicle has moved is checked for trigger annotations. If any at once. One possible solution is implementing quad-trees to
are found that have not already been fired, their messages take advantage of sparse data requirements over most of the
are sent to their destination modules. Since the location of a grid. A more likely strategy is to keep the grid on secondary
trigger can be a point, line, or set of lines, a trigger can be storage, and only keep a window around the current vehicle
fired when the vehicle reaches a certain location or when it position in main memory. The annotation databases them-
enters a given polygon. selves may also need to be kept on backing store, and only

read in as needed.
4.1 Representing Annotations Distributed databases. Object descriptions might be most
Annotations are represented with a uniform header format, easily implemented in separate databases, internal to the mod-
plus a free-format data field. Typical header fields include: ules that use them. Then the annotations need only return the

header: type, destination module, used flag, text descrip- index of the database entry. The problem with this method is
tion, location, next object, previous object, data size ensuring consistency between databases in the modules, and

data: pointer to data indices in the grid. At the opposite extreme, the map anno-
The header portion contains all the information that the tations could contain all the data. The disadvantage of this

map module needs to understand. "Type" and "location" are approach is requiring more traffic between maps and objects.
sufficient for answering queries; "destination" is required for An intermediate approach is to start with all the knowledge
sending trigger messages. The "used" flag is set when a trigger in the map annotations, but have it automatically replicated
is fired, to avoid firing the same trigger repeatedly if the vehi- in the appropriate modules at system initialization time. This
cle stays in the area covered by the trigger for more than one ensures consistency while reducing runtime overhead, at the
cycle. "Text description" is used by graphics display modules. expense of startup costs. The design of distributed databases
This information is also sent as part of messages, to make it interacts with the design for handling large maps. Keeping an-
easier to debug receiving modules. The "location" of the an- notations in individual modules would decrease the amount
notation is used both in initially setting up the grid pointers, of information needed by the map module, and thus make
and for the use of the receiving module. "Next object" and building large maps somewhat easier.
"previous object" are used to describe extended linear objects. In the current implementation, the annotation database is
Extended objects may also have branches, which meet at inter- static during a run. When the system is initialized, the user
sections. Intersections have a center point, and any number of adds stop points, turn points, or other triggers to specify the
vertices, each of which points to the beginning of an extended current mission. When the user is ready, the interface module
object. The most common extended objects are roads, which saves the current annotation database and sends the name of
are represented as short segments pointing to their preceding the file to the map module. At start up, each module that
or following segments, or pointing to intersections, needs a copy of the annotation database requests the name of

The data portion of the annotation is, in the view of the the file from the map module. So modules contain a complete,
map, an undifferentiated field of bytes. Any internal structure consistent copy of the annotation database. The map module
need only be understood by the modules that create and read builds the grid, so it can handle geometric queries. It com-
the annotation. Since the headers have a known, fixed size, municates with the other modules by specifying the index in
they can be stored in a random-access file. The data may be the annotation database of the objects that match the current
stored as a stream of bytes, with the header containing only a query. The map module also watches the grid for triggers.
pointer to the beginning of the data and the number of bytes. Map update. Changing an annotation during a run would

be no problem. Moving objects and annotations is more
4.2 Implementation Details difficult. If a single object moves, it is easy to erase it from
Our prototype implementation has tested some of our design one part of the map and write it into another location. But
decisions, whileotherdetailswillbedecidedafter furtherdata if an entire portion of themap moves, such as discovering
collection and analysis. that a portion of the road is really longer than previously

Grid cell size. If grid cells are too small, queries will have thought, the changes can be very hard to handle. Many objects
to look at large numbers of cells, and map storage will become would have to move: the road, all objects attached to it, all
a problem. But the querying becomes simpler, because any landmarks that were seen on previous inaccurate runs and
object found in any of the cells can be returned. Larger cells indexed to the road, planned mission steps based on following
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the road or on seeing those landmarks, etc. It is probably
better to note the new information, keep running with the
flawed map, and build a new map at the end of this run, rather
than try to do updates on the fly. Map update strategy is also n
influenced by the "large maps" and "distributed databases" afterdesign issues. If an individual module updates its copy of updat

an object description annotation, it will need to make sure / \Poiton Trigger
any permanent information is written out wben the run is before position
terminated or when that portion of the map is overwritten by update
a new data window.

Since in the current implementation, each module keeps its
own internal copy of the annotation database, map updates Case 1: position update skips over trigger
must be specially handled while building a new map. Under
most circumstances, the map updates refer to objects that the
vehicle will not see again on this run, and therefore the up- defore
dates need not be propagated to all the modules. At the end update
of a run, all the new objects can be written to a new map file,
to be used on succeeding runs. The exception is for build-
ing maps of intersections. Our procedure is to drive through
the intersection, following one branch, and building a map;
then to reposition the vehicle before the intersection, and fol- A
low the second branch. In order to register the two branches ater igger
correctly, the perception and matching systems need to find position
newly-mapped landmarks. The map manager writes the an-
notation database to a file and notifies the relevant modules, Case 2: position update causes retraversal of trigger
which read in the updated database.

Interfaces. Conceptually, it is easy to add annotations
to the map. A program reads in the anAnotation database, Figure 3: Problems with refiring or mission triggers
adds new annotations, and writes the updated files. Machine-
generated annotations, such as object descriptions, use inter-
face routines to read and write the map, and to insert anno- large, it may no longer make sense to fire triggers that should
tations into the annotation database. Annotations added by have been fired long ago; and it may make sense to refire
hand require, besides the basic map interface routines, a user triggers that were fired very prematurely. Details of these
interface to point to locations or objects on the map, type or design decisions are yet to be worked out.
read the annotation data, display the resulting map, and ask The mechanism of notifying a module of a trigger is by
for verification. While the format and contents of the annota- sending a message over a port. In the Unix 2 operating system,
tions will vary, there is still a large body of common functions ports can be set up by broadcasting their address and listening
that use standard modules. We have built an interface, using to the net to find out who would like to to talk to them. Once
X windows, that allows a user to add new objects and tiggers connected, ports appear as files, and can be read and written
to the map. The same interface is also used to display the easily. A module can easily check if there are any bytes
vehicle and map during a run. waiting on its trigger port. If not, ithas not received a message,

and can continue running. If so, it can read the message
4.3 Trigger Details header, allocate the memory structure for the message, and

read the appropriate number of bytes into its memory. A
In order for the map module to track vehicle position, it must running module can periodically check to see if a message is
know both the controller's current local position estimate, and waiting. A sleeping module can simply block on read, which
the navigator's transform that relates local to global coordi- will cause it to pause until data arrives. It is possible to set
nates. Pozition queries to our vehicle controllers are efficient, timers, so a module can wait until either a timer expires or
returning in less than 10 milliseconds. Our current implemen- a message arrives, whichever occurs first. It is also possible
tation uses an efficient process for getting transforms from the to have an incoming message generate an interrupt, so the
navigator, by having the navigator send the transform each module can be notified while running even without checking
time it is updated. Since landmark sightings or position fixes for incoming data.
are relatively infrequent, an event-driven transform update is
much more efficient than polling. 5 Conclusion

When the navigator updates position, the map mo'lule has
to pay special attention to triggers. It may be that the vehicle Annotated maps provide a framework to organite knowledge
position estimate will jump forward, skipping some triggers; storage and retrieval for autonomous mobile robots. The
oritmaybethatitwillmovebackwards, creating the potential Navlab group at CMU, and other groups around the world,
for firing triggers that have already been fired (see Figure 3). have many of the individual pieces of a complete system:
If the position update is relatively small, it makes sense to use sensing, sensor understanding, local trajector) planning, con-
the line of vehicle travel, plus the "used" flag, to make sure
that all appropriate triggers get fired once. If the update is 2Unix is a trademark of Bel Labs
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Abstract' should result from the execution of those actions. Actions
are based entirely upon the system's internal model, which

The University of Massachusetts mobile robot project is includes a geometrically specified environmental model as
investigating the problem of goal-oriented navigation of an well as the robot's spatial relationship to this environment
autonomous robot vehicle through a partially modeled, When an action decision is made, sensor data is compared
unchanging environment which contains no unmodelled with expected perceptions as the action takes place.
obstacles. This simplified environment provides a Differences from expectations may modify the execution
foundation for research in more complicated domains, of the action, and possibly short range or long range goals.

Perception, planning, and execution of actions are
integrated into a reactive system which reasons about (MO(ptran a )M)
landmarks that should be perceived at various stages of
task execution. Perceptual servoing uses correspondences
between image features and expected landmark locations (MO (ptrans a e) Me(ptrans e f) Mf
to ensure proper plan execution and to maintain the (ptrans f g)Mg)
relationship between the system's internal model and the M)
environment. This paper briefly describes this system and (MO (ptrans a C) Mc
presents experimental results which demonstrate the (ptrons c d) Md

efficacy of perceptual servoing. (ptrans 4 t) Me)

1(MO (ptrans a b) Mb
1. Introduction (ptrans b e) Me)

The UMass Mobile Robot project [FEN90] is investigating
the problem of enabling a mobile automaton to navigate Figure 1. Goals are decomposed in a depth first fashion
intelligently through indoor and outdoor environments, into less abstract subgoals, forming a tree. Each level of
The experimental platform, called "Harvey", is a Denning the tree corresponds to a plan sketch which details a
Mobile Robotics vehicle ultimately intended to navigate subgoal in the level above it. The leaves of the tree
through offices, hallways, and university grounds as it correspond to a plan sketch of the complete task, one
carries out commands such as "Fetch the book" or "Take which is quite detailed at the beginning but becomes
this to Claude". The initial system development efforts quite abstract towards the end.
and experiments focus on robust goal-oriented visually
guided navigation through a partially-modeled, unchanging Planning in this system is reactive. Harvey does not
environment that does not contain any unmodelled generate detailed plans. Plans are "sketched" and modified
obstacles. If robust autonomous navigation can be in response to what is perceived as a result of each action.
achieved in this restricted domain, then a variety of To begin with each task given to the robot is decomposed
challenging problems can be copsidered as the constraints depth first into a tree of less abstract subgoals as shown in
on the assumed knowledge about the environment are Figure 1. The leaves of this tree form a sequence of
relaxed, subgoals which accomplish the task. This sequence is

called a plan sketch because it is only partially developed
2. System Overview and generally will change as execution proceeds. This plan

The philosophy underlying the system is the use of sensory sketch is detailed at its beginning and becomes
data in a 'verification mode. The system reasons increasingly abstract towards its end. Figure 2 shows
dacreentan abot veriction moecesytomp os pictorially what a tree such as in Figure I corresponds to
incrementally about the actions necessary to accomplish its for a typical goal Harvey may encounter. Action begins as
long arnd short range goals and about what perceptions soon as the first subgoal in the plan sketch is a primitive.

iThis research has been supported by the Defense Ad- All action is directed by the dynamic planning and
vanced Research Projects Agency under RADC contract F30602- execution monitor, "plan-and-monitor" [FEN 88, FEN 89]
87-C-0140 and Army ETL contract DACA76-89-C-0017, and by which orchestrates planning, action and perception in a
the National Science Foundation under grant DCR 3500332. fine grained, inter~voven architecture.
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milestones, milestone recognition, determination of
location, and execution of primitive motor actions.
Interweaving of perception, planning and action makes
specific what task is expected of perception, and provides a
means for focusing the knowledge available for that
purpose. The result is a distribution of perception and
perceptual reasoning into all aspects of navigation, Route
planning uses perceptual reasoning to select appropriate
perceptual milestones; plan progress is measured using
perception; perception Is used to relocate the robot when a
milestone is not recognized: and during the execution of
primitive actions, low-level perceptual feedback is used to

(,) keep the robot on the expected trajectory. The different
levels of control all use model-directed vision and compare
what is sensed to what is expected, issuing corrective

commands to minimize any difference.
The navigation system described here differs from existing

______ .,,systems (THO 86, LOW 85, DIC 88ab, BRO 86, TOS 86,
HER 88a,b] in its reliance on an environmental model,
high level goals, the use of sensor data in a 'verification'
mode, and the close coupling of planning, action, and
perception. Many of the techniques utilized by these

(b) systems (for road following, for example) could be
embedded in Harvey's perceptual servoing mechanisms.
Since Harvey assumes ther. are no unmodelled obstacles in

~M.. Its environment, the obstacle detection and avoidance
L.b, methods developed for these systems could also be used.

3. The System Model
AN...'. 00I,, Co* m,4.. M,,nl

The system model contairs environmental information
relevant to the navigation task, including models of the

() system sensors and actuators, the environment, and the
____________________________ navigation task itself (the plan). The first two components

n c of the system model are discussed briefly below; the task
model is described in more detil in Section 4.

3.1 The actuator and sensor model

The actuator and sesor model contains information about
the primitive actions the robot is capable of executing_ _F directly and parameters of the sensor. The suite of
primitive motor actions includes only two types of
intended motion: straight line forward motion and rotation

(d) about the robot's axis. All motion is ultimately

decomposed into a series of such motions, This model is
Figure 2. Accomplishing the goal (ptran robot-lab discussed in more detail in Section 4. The sensor model is
teds-office) would begin by bilding a tree such as i more complex and is an ongoing research topic. Currently
shown in figure 1. Here the decompotion is shown the model consists of: a set ot camera parameters including
pictorially from the most abstract plan sketch (a) to the focal length, aspect ratio, image center, and image size; a
most specific (d). set mathematical transforms including projection and

The plan-and-monitor executive directs planning, clipping; and a set of low-level vision modules capable of

perception, and execution in such a way as to dynamically extracting straight lines, performing simple correlation, and

modify and refine the plan-sketch hierarchy to fit the actual the like.

results of each action and the details of the perceived 3.2 The environmental model
environment. The principal activities involved in this
process are: creating plan sketches, determining The environmental model specifies the geometric and
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perceptual structure of the robot's world. Portions of the elements of this representation are goals and milestones.
interior of the University of Massachusetts Graduate Goals are represented using conceptual dependency
Research Center, as well as a portion of the surrounding notation [SCH 76]. The goal to move from one location to
campus, were modelled as volumes using planar surface another is represented as: (ptrans location-I location-2)
patches, and embedded in the locale hierarchy described
below. Figure 3 is a projection of a portion of a hallway Milestones anr typically specifications of one or more 3Dused in the experiments described in Section 5. landmarks and their expected location with respect to the

used I inheexermetsdecrbeiSctrobot at the completion of the preceding phase of the plan
sketch. Goals and milestones are collected into plan
sketches represented as a list of the form:

(MO (ptrans a b) MI (ptrans b c).. (ptrans fg) Mg)

Locale-Frame

Nmen n Allen's Office, I
Surface a EW n

N-tt.W.U

Propertli-e Volume, Weight, Local
Coordlnate Sytem,

Parent _ Second Floor (the locale)

Figure 3. The model of the environment is incomplete,
but positionally accurate. All obstacles are modeled but
many visual details may be absent. Fr pce

The environment is represented as a graph structure which
captures the key topological, geometric, and physical Offpring
properties of the spatial entities making up the robot's
world [FEN 90]. This network describes space in terms of
a hierarchical collection of "locales": spatial entities
representing objects, buildings, parking lots, free space,
etc. A locale is a parcel of space which has semantic ___n_______

significance to the iuavigation problem. Each locale is
represented as a node in the network; arcs relate locales by
means of part/subpart relations as well as by the allowable
trn sitions between the locales (Figure 4). Figure 4. All 3D space entities are represented as

locales. These locales are implemented as frames whose
The geometric properties of each face are represented in slots organize its topological, geometric, and physical
terms of lines and points, which are similarly represented. properties. Shape and spatial extent are represented by
Global physical properties of a face, such as area, are kept a description of the locale's surfaces in terms of faces
on its property list. Visual properties, which may vary over (Figure 5).
the surface of the face, = described in term- of regiors
(Figure 6). Faces may have two sets of regions, MO is a precondition milestone which must be satisfied
corresponding to the two sides of the face. The two sets of before the plan sketch can be considered meaningful. As

regions account for the possible differences in appearance motor actions take place, milestones are verified (usually
between two sides of a wall, for example. visually) before the next goal of the plan can be

undertaken. This ensures that the robot's actual location in
4. Representing Goals and Actions the world agrees with its intended location with respect to

its world model; this in turn ensures that the next goal in
The task model represents the navigational goal(s) and how the plan-sketch hierarchy is applicable.
progress toward this goal is to be measured. Tie basic
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As the plan sketch hierarchy is developed, goals are refined
in a depth first fashion to more and more detailed levels Face-Frame
until the leading subgoal is a primitive subgoal. A
primitive subgoal by definition is one which can be Name VIA Wall Partition

directly executed without further subgoal refineaient. For
the Denning Robot, the primitive actions are TURN(angle)
and MOVE(distance); all primitive subgoals are
decomposed into a TURN followed by a MOVE. For 8ounderv -
example, if the primitive subgoal were

(ptrans location-I location-2)

Proprte -1b. Area. Longot Lltne. Localand the path from location-I to location-2 were CordA,.oe System,

unobstructed, then this subgoal could ideally be satisfied typt-connected-locale...

by executing the script:
Parent 4 E~at Wail (Afla's Office)

(script-ptrans-clearpath (location-I location-2)

(turn (- (angle location-I location-2)) heading) oH) in .-. nil, .In thisca.
(move (distance location-I location-2)))

Locale . Allmn' Office

Face-Frame
Reios -4 EMW~I

Name*- Reat Wall (Allen's Office)

~ + Figure 6. The appearance of each face is described as a

collection of regions, each representing an area 9f the
face which has uniform appearance properties (color,rop~rlle _4 Am. Longee Lime. Local texue, etc.)

Coordinate System,t

Type-Neighboring-Locah ... This script specifies that to get from location-I to location-

Parent nll (in th cn) 2 it is only necessary to perform two actions: first turn the
difference between the angle of the line from location-I to
location-2 and the current robot heading, then move the
distance between these two locations.

5.0 Perceptual Servoing
Offterlng The script illustrated in section 4 will not satisfy the

subgoal unless the individual actions "turn" and "move" are
[or-a properly executed. In practice, this is unlikely without

SDoor-Way sensory feedback because the realities of the environment
and the actuators of the agent make the execution of open

Locale Allen's Offi* loop actions unreliable. As the robot performs "turn", for
example, its rubber tires introduce a translational motion or
"skittering". Whenever the robot moves forward along an

Regic x re,ceepual attribute environmental surface, a slippery spot, a unevenness of the
...None, In this case. surface, or even a bulge in its tire may throw it off course,

causing inaccurate execution. To reduce this error the
execution of each action is controlled by servoing on

Figure 5. Locale surfaces are currently described in prominent visual features in the environment. This
terms of planar faces which, like locales, are servoing using perceptual features is called "action-level
represented as frames. Values in the slots organize perceptual servoing".
information such as its type (door-way or barrier) and,
if it is a door-way, the name of the locale which shares Action-level perceptual servoing increases the accuracy of
the doorway. each action, but does not relate the result to progress
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toward the goal, nor does it prevent the accumulation of about the appearance the objects in its environment. A
inaccuracies over a number of such actions. It may be perceptual servoing cycle begins by analyzing what is
determined, for example, that three steps of distance 1.23 known about the environment and what should be
miles are required to accomplish a subgoal. Action level perceived from the current locAtion of the agent. 3D
perceptual servoing might execute these actions fairly entities, called landmarks, are selected from the model on
accurately to, say, 1.2 miles (a 2.4% error). But, after the basis of how distinctive they are, and what kind of
executing these three actions the agent will be .1 mile short information they offer the servoing procedure. Once these
of its goal and will very likely not even be able to see the landmarks are selected their appearance is projected onto
goal from that position, so the subgoal has not been the image plane and are matched to data in the image.
achieved. It is for this reason that milestone were These matches, along with the knowledge of the 3D
introduced. A better script might be: locations of the landmarks, are used to compute and make

the appropriate corrections to the action or to the plan(script-ptrans-clearpath(location- location-2) sketch hierarchy. Both action-level, and plan-level
(tur (-(angle location-I location-2))headng) servoing use the same landmark selection and matching
(if (not(recognize-milestone milestone-t)) procedure; they differ only in what they do with the(return (list failure last-known-location))) resulting information.

(move (distance location- I location-2))

(if (not (recognize-milestone milestone-t)) 5.2 Selecting Landmarks
(return (list failure last-known-location))
(return (success location-2)))) In principle a landmark can be any 3D entity: an object, a

group of objects, a group of lines [FEN 90. BEV 89, BEVIn this script each action is followed by a milestone check. 90], or cluster of surface patches, as described here.
As long as the results of these checks are positive, Surface patches were chosen because their reflectance
processing the script continues, otherwise failure is fcpahewrehonbcusteirfltnepatterns can be quite distinctive, making it likely that they
reported. In any case the last known location is returned can be isolated from other 3D entities in an image with
along with the success/failure report. If the result of rather simple means, such as correlation. Correlation,
processing the script is (success location-2) the subgoal has properly used, is a strong method for matching such
been achieved. If, however, the result is (failure last- reflectance patterns; it is known to be noise tolerant, and it
known-location) then the plan sketch hierarchy must be can be computed quickly on special purpose machinery
adjusted or redeveloped. If the location last-known- [DIC 88a,b]. Landmarks are selected on the basis that they
location is sufficiently near location-2, it may be enough to will be easy to find using correlation.
replace the next subgoal to be satisfied, namely (ptrans
location-2 location-3), with the new subgoal (ptrans last- Distinctive reflectance patterns occur where regions of
known-location location-3) and continue. This procedure differing reflectances meet, namely at boundary segments
is called "plan-level perceptual servoing". and vertices. In the following description surface patches

defined by vertices are used, but the same principles applyWhen the distance between the last known location and t ufc ace eie yln emnso uvs
loctio-3 s lrge hoeve, i wil b neessry or he to surface patches defined by line segments or curves.

location-3 is large, however, it will be neessary for of Selecting landmarks from the model, then, corresponds to
agent to relocate itself and redevelop a major portion of searching the locale structure for vertices (equivalently
the plan sketch hierarchy. This relocation-redevelopment lines or curves) which are surrounded by distinctive
cycle forms a third level of servoing called "goal-level patterns. The structure of the locale network makes this
perceptual servoing". computation relatively straightforward and efficient. The

location of the agent is expressed in terms of a locale and
Navigational tasks are thus accomplished using three its coordinate system
nested levels of perceptual servoing: action-level, plan- agent-location = (locale pose)
level and goal-level. The details of goal-level perceptual
servoing are outside the scope of this paper. The following so it is known what locale the agent is inside. This locale,
discussion describes plan-level and action-level servoing. together with its offspring (freespace and the objccts

contained in the locale) , define the scope of what can be
5.1 Action-Level and Plan-Level Servoing seen by the agent: the agent can see the inside of the locale

and the outside of the offspring. The search for landmarks
Both action-level and plan-level servoing are based on consists of collecting the vertices (and/or lines) which
knowledge directed, top down vision. In this project it is make up these surfaces and selecting those which are
assumed the agent has partial knowledge of all obstacles in surrounded by distinctive patterns. The surface patches
the environment. In particular it is assumed that the agent used as landmarks are the vertices (lines) together with a
has accurate, but not necessarily complete knowledge some surrounding area.
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More precisely, the procedure for selecting landmarks from collected in (1).

the model is as follows: If the ray does not intersect any of the regions either the
patterns associated with the landmark are too detailed

1. From the locale corresponding to the agent's current and may be subject to aliasing or the vertex is on an
location collect all the vertices associated with the occluding edge of an object and certain pixels will be
regions on the inside surface of the locale and the unpredictable. The use of the landmark will be error
outside surface of each offspring locale. This is prone so it should not be used. In this case a null
accomplished by looking at the surface description for template is returned.
each locale:

locale --> surface -> faces --> regios --> l -> v s Otherwise assign to the pixel the value 255*R, where R
is the reflectance of the region whose point of

2. Delete vertices which are not expected to be visible intersection with the ray is closest to the camera lens
to the agent from its current location. This is done by focal point.
first clipping the projection to the image plane 3. The resulting array is the appearance template.
(ignoring occlusion) and then deleting occluded
vertices from what remains. The resulting template is used match the landmarks with

3. Discard vertices which do not touch two regions their projections in an image. This matching is done using

which differ in reflectivity by some threshold. These correlation in a way which matches reflectance values,

reflectivities can be found by following pointers to the rather than intensities, to remove the ever present effects of

associated regions: uneven illumination.

vertices --> lines --> regions -.> renectivity 5.4 Matching Templates to the Data

4. Return the remaining vertices. Correlation is a well understood mathematical tool which
has been widely used in signal processing and in 2D image

Landmarks correspond to the vertices resulting from this processing, but it has not been used as much in 3D scene
procedure. These are the landmarks used in action-level processing because there are several severe problems
and plan-level perceptual servoing. In both types of which arise. It is easy to describe these problems if we
servoing, knowledge of the reflectances of these landmarks think of an image as a function f(x,y) on the x-y plane.
is used to construct the appearance templates used to Correlation is a measure of how similar two such functions
identify the landmarks in the image data. are. Images of 3D scenes are, however, strongly effected

by several factors, all significant in the kinds of scenes our
5.3 Constructing Appearance Templates agent will encounter.

Appearance templates are image arrays which specify how 1. The shape of the image of an object varies as the
a landmark should appear in the image. For the vertex viewpoint is changed, due to projection effects.
landmarks described in the previous section, these are n x
n image arrays centered on the image of the vertex with 2. Changes in viewpoint alter what can be seen in the
pixel values determined by the geometry, reflectance image of a scene, due to occlusion effects.
values and the agent's location as represented in the model.
Constructing these arrays is a localized rendering process. 3 age i lighting odifytimage, either locally or globally.

Templates are constructed by ray tracing, considering only
those surfaces and regions whose boundaries pass through 4. Specularities vary, sometimes strongly, with lighting
the vertex. The pixel values in the template array are and viewpoint
assigned to be proportional to the reflectance value of that All four problems affect the nature of the image function
region which the ray strikes first. A more precise f(x,y) corresponding to a scene in such a way that its

statement of this procedure is: "shape" and "height" may vary considerably. This makes
correlation useless for global scene matching and makes

1. Collect the regions which form the vertex. This is local scene matching difficult, at best. Knowledge of the
accomplished by following pointers in the locale agent's approximate location, together with knowledge of
network, beginning with the vertex frame: how these problems affect the image function makes it

vertex --> lines --> regions possible to cope with these problems. Problems 1 and 2

2. For each pixel in the appearance template there is a are managed by the way the appearance templates are

ray which starts at the focal point of the camera lens constructed. The perspective distortions of 1. and the

and passes through the center of the pixel. Find the 3D occlusion effects of 2. are kept to a minimum by the ray

intersection of this ray with each of the regions tracing procedure and the rejection test in step 2 of the
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construction method described above. servoing, so we describe them separately.

The third problem is managed by correlating reflectance 5.5 Action-Level Perceptual Servoing
vv'ues, rather than intensity values. For sufficiently small
patches in the environment it is assumed that the light Actions are ed out incrementally, using the location of
intensity is constant. This is not an unreasonable landmark images to compute necessary corrections Each
assumption for an environment which is not highly increment begins by selecting landmarks and matching

textured by shadows. The values of the pixels P(ij) their projections with data in the image. By measuring the

corresponding to such a patch can be expressed as: discrepancy between where the features should be and
where they are determined to be in the image, it is possible

P(i,j)= I*R(ij) to compute the corrective action required to bring the

positions into agreement (Figure 7). This perceptual
where I is the (constant) light intensity over the surface servoing has the effect of locking the robot onto a
patch and R(ij) is the average reflectance over the surface trajectory which improves the accuracy of the actions over
which contributes to the pixel value P(ij). Under these that which would be obtained without servoing.
circumstances the effects of the illumination can be
removed by dividing each pixel in the image by the sum of The "move" action illustrates the action-level perceptual
the pixel values over the patch. The new array RP(ij) servoing principle well. Experiments have shown that

during an open loop execution of an intended straight line
RP(ij) ffi ,P(i) = I*R(i,) forward motion the robot vehicle moves in a curved path.R- P(ij) n, I*R(ij) Sufficiently small incremental paths can be approximated

bo _by a straight line at some angle with respect to the

l"'R(ij) R(i~j) intended line. Figure 8 depicts the geometry of the

i*1n R(ij) In R(ij) situation.
k,1-0 k.1-0 If we let

consists of values which are independent of the m = incremental distance moved

illumination incident on the surface and depends only on e - distance "off desired line" after an incremental

the reflectance properties of the surface itself. move of distance m
q = shortfall in distance covered along intended line.

Management of the fourth problem, specularities, is still a x = x coordinate of the landmark image (in camera
matter for future research. Currently it is assumed that the coordinates)
number of landmarks unrecognized due to specularities f = focal length of camera lens
will be minimal. This assumption seems to be well X = x-coordinate of landmark in robot coordinates
justified in our experiments to date. (expected)

Y = y-coordinate of landmark in robot coordinates
Matching itself is done using normalized correlation. (expected)
Normalized image patches RP(ij) are matched against h = heading error after the incremental move.
normalized appearance templates RT(ij) using what is b = measured landmark bearing
known as normalized correlation:

Then
2* f= RP(k-i,l.j)*RT(k-i,j-l) hel r Yan

NC 00 n YZ~noh+ b =tan"l [3E";7J

NC :,j = RP(k-il-j) 2 + " RT(k-i'j.l) 2  so
k,i.o k,1-O s

_ f Y-e) lf

The implemented computation differs somewhat from this h = tan "l I-'J + tan
for efficiency reasons, but only in the order in which the
elements are computed. This correlation method has Thus from the observed x-coordinate of the landmark
proven to be very reliable for locating landmark images in image we can estimate the heading enor, provided the
the indoor environments used for the experiments values of e and q do not distort the value of
described below. Outdoor experiments are planned for the Y-e)
near future. X' •

Once the selected landmarks have been located in the This is typically the case for small incremental
image we have matched the image data to the 3D landmark motions. In our configuration e is on the order of .02 ft
models. Next appropriate corrective actions are taken. and q is on the order of .05 ft. Hence for landmarks
These actions are different for action-level and plan-level more distant than 3 ft this ratio can be well
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approximated by (X/Y) Figure 9. The quantities e and q are given by the
equations:

e = m*sin(h)

q = e*tan(h)

v.Perceptiont

q

Figure 8 Experiments have verified that the motion of
the robot can be approximated to be a straight fine for
very small distances. Under these assumptions the

U1 [l geometry of an incorrect motion allows us to compute

the heading error from the position of a landmark in
the image.

If the agent motion is corrected by steering to a point on
the intended line a distance D away from the expected

- location we can correct as follows:

correction -h + tan e
(b)B%

S(h +m1n(h) )

The results of a simulation using this method are shown in
Figure 10, both for a camera which is perfectly aligned
with the robot motion, as was assumed in the above
description, and for a misaligned camera. Aligning the
camera to the robot motion can be a tricky operation, but it
is only a modest effort to align within 0.005 radians, so the

.. simulation predicts fairly accurate control.

d 7(c) d

heedin error
Figure 7. Before each action begins, landmarks are correction
selected (a) using knowledge of the environment and the -
task. An incremental action is taken and the motion of -. ,
the landmark is predicted (b). Any difference between m K X

this projection and the actual location of the landmark D
image (c) is used to determine what corrections to
make. Figure 9 Once the heading error has been determined,

the robot is turned toward a distant point on its original
Given an approximation to the heading error the corrective intended path.
action is determined according to the geometry indicated in
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Perceptually Servoed Robot Path With Misaligned Camera the milestone has been satisfied and there is no need to
0.01 modify any subgoals.
O.O -- - - -

•A.0 If pose refinement and expectations differ by a small
-0ft , amount, then the first location in the next subgoal is
A3 o.m adjusted to reflect this difference. Currently the next

-u)od, subgoal is changed from (ptrans location-I location-2) to(10) Aw*o~t.0 , (ptrans pose-determined-location location-2). Plan-and-

•4.07 monitor automatically takes care of any detailed plan

4"o refinement if this change makes it necessary. Should the
40.1 0 pose-determined location differ greatly from expectations,

o 2 4 6 3 IOU 1 414, 0 2 u 32MM or if it should fail to determine a location, control is passed
Y (feet) on to goal-level perceptual servoing.

Figure 10. A simulation of the action-level perceptual A Comparbon o Unoryoed and Servoed Action Execution

servoing concept shows the effects of camera o'
misalignment on motion control for 0.000, 0.001 and
0.010 radians of misalignment. -

To verify this prediction several experiments, both with I4r - tvoI
and without action-level perceptual servoing, have been Error .1 ,
run. In the experiments Harvey was to roll along a straight (I..
line 40 feet long, marked on the floor of a Graduate I

Research Center hallway. The vehicle was stopped every
two feet and its deviation from the marked line was . 6a10 114 161i20 40

measured. This experiment was run a number of times; the Intended Distance Covred (feet)
results shown in the graph of Figure 11 represent the best
unservoed result compared with a typical servoed result. Figure 11 Experimental results have shown the ability
Even after a rather painstaking setup procedure the to keep the robot within .3 inches of its intended course
unservoed vehicle wandered over two inches from the line by using action-level perceptual servoing. Without
within the first 20 feet. Other runs resulted in as much as a servoing the robot wanders two inches from the path by
foot deviation in unservoed mode. Unservoed trials were the time it has traveled 18 feet.
stopped at around 20 feet because the vehicle was
significantly off course and the total deviation was To use position information in this way, how accurate must
increasing. In contrast, in servoing mode the vehicle the pose returned by the pose refinement step be? Since
stayed within .3 inch of the line for the full 40 feet. the robot has been servoing on image features over the

previous navigation leg, it is likely that it will be fairly
These experiments have only been performed indoors, but close to its expected position, say within 6-12 inches.
the results of these experiments are encouraging and Within this area of uncertainty, pose refinement should
support the use of perceptual servoing to control motion return an accurate value, say within an inch or two.
over reasonable navigation segments. It seems possible Outside of this area, it is likely that significant subgoal
that each motion can be carried out accurately enough to redevelopment will be necessary, so it is appropriate for
support the assumptions made in the next section. plan level servoing to pass control up to goal-level

5.6 Plan-Level-Perceptual Servoing servoing. Determining the robustness of combined action-
level, plan-level and goal-level servoing over a wide

Plan-level perceptual servoing uses the same landmark variety of environmental conditions is the subject of
selection and matching procedures as action level ongoing experiments.
perceptual servoing. Consequently, since the agent has
been tracking the landmarks for steering purposes, it is Experimental results in support of using correlation
likely that the matching effort during milestone recognition matching and pose refinement for this purpose have been
will be small, since the images of the landmarks at promising. Table 1 shows results from an experiment to
milestone recognition time will be known. The resulting determine the accuracy of this approach. Using a singlematches and the 3D model information are used to image taken in a hallway, the expected location of the
determine the robot's location using a 3D pose refinement robot was varied to create tue effect of being off target.
algorithm [KUM 89]. If the robot location as determined The table shows the measured pose for different expected
by the pose refinement agrees with what is expected then locations, corresponding to the actual location of the robot(yO) when the image was taken and three incorrect
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expected locations: to the left 3 inches (yO-3), to the left 6 References
inches (yO-6) and to the right 3 inches (yO+6). [BEV 891 J. R. Beveridge, R. Weiss and L. Riseman, "Optimization of 2-

Dimensional Model Matching Under Rotation, Translation and Scale,"
_)-_.6 y0-3 4) y043 Dept. of Computer and Information Science, University of Massachusetts

Expected (Amherst), TR 89.57, June, 1989.

x 40.00 40.00 40.00 40.00 (BEV 90) J.R. Beveridge, R. Weiss, and E.M. Riseman, "Combinatorial
y 3.50 3.75 4.00 425 Optimization Applied to Variable Scale 2D Model Matching," 10th

. - International Conference on Pattern Recognition, Atlantic City, NJ, June
___.....0.00 0.00 0.00 0.00 1990, to appear.
theta.x .00E+00 0.00E+00 0.001+00 0.00E+00 [BRO 861 R. Brooks, "A Robust Layered Control System for a Mobile

tl. . O.OOE+00 O.OOE+00 O.OE+00 O.OOE+00 Robot," IEEE Journal of Robots and Automation, Vol. RA-2(l), pp. 14.23,
1986.

theta.z 3.141+00 3.141+00 3.141+00 3.14B+00

Measured [DIC 88al E. Dickmans and V. Grafe, "Applications of Dynamic
Monocular Machine Vision," Machine Vision and Applications, Vol. 1, pp.

x 39.93 39.93 40,11 39.85 241 and following. 1988.

4.01 4.01 4.08 4.17 [DIC 88b] E. Dickmans and V. Grafe, "Dynamic Monocular Machine

z -0.22 -0.22 0.20 0.00 Vision," Machine Vision and Applications, Vol. 1, pp. 223-240,1988.

theta.x -4.69E-03 4.692-03 -9.00103 -4.952-03 [FEN 88] C. ennema, E. Riseman and A. Hanson, "Planning With
Perceptual Milestones to Control Uncertainty in Robot Navigation," Proc.t..ta 1 -. 51202 -1.511-02 -5.002.03 -9.25E-03 of SPIE -- International Society for Photographic and Industrial

teta.z 3.14E+00 3.142+00 3.142+00 3.142+00 Engineering, Mobile Robots I1, Cambridge, MA, pp 2.18, 1988.

Table 1 Using correlation for landmark matching, [FEN 89] C. Fennema, A. Hanson, E. Riseman. (1989b). "Towards
Autonomous Mobile Robot Navigation," Dept. of Computer andtogether with 3D pose refinement experiments have Information Science, University of Massachusetts (Amherst), TR 89-104,

shown the ability to determine the robot's location to October 1989. Also appeared in Proc. DARPA Image Understanding
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The experimental results discussed in sections 5.5 and 5.6 [HER 88a] M. Herman and J. Albus, "Overview of the Multiple
of the perceptual servoing Autonomous Underwater Vehicles (MAUV) Project," Proc. IEEEare quite encouraging. Each oInternational Conference on Robotics and Automation, Philadelphia, PA,

algorithms seems to have significant potential for pp. 618-620, April 1988.
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Abstract explore the environment itself in order to extract infor-

Mobile robot navigation has proved to be a difficult task, mation sufficient for effective navigation (e.g., Davis [4]
or Yeap [14]). There are many possible ways this might

even when a robot is given a three-dimensional model of be done, but if the goal is navigation - instead of full
its environment. When the robot must also be capable three-dimensional surface reconstruction - then the en-
of acquiring a model of its environment, the construc- vironmental features that are most prominent and visi-
tion of a robot navigation system becomes even harder, ble (i.e., landmarks) will provide the key information for
Our system solves the model acquisition problem by rep- locating the robot vehicle and determining an appropri-
resenting the environment as a set of snapshots of the ate path to the goal. Recent efforts involving navigation
world taken at target locations. The robot navigates by with landmarks include Fennema et al [6], Kumar and
using an image-based local homing algorithm to move Hanson [10], and Zheng and Tsuji [15].
between neighboring target locations. This paper de- In this paper we develop a navigation strategy built
scribes an approach that divides large-scale navigation on the technique of image-based local homing. Homing
tasks into a sequence of small-scale navigation tasks that is a navigation task in which the goal is one of a fixed
are solved by local homing. Some interesting and novel set of target locations known to the robot. The robot is
features of our approach are an imaging system that ac- capable of finding its way only to these target locations,
quires a compact, 3600 representation of the environ- but not to any arbitrary place in its environment. In
ment and an image-based, qualitative homing algorithm contrast, such tasks as "Go down Elm St. until you
that allows the robot to navigate without explicitly in- come to a big white house with a poplar tree in front" or
ferring three-dimensional structure from the image. We "Move three meters north" are not homing tasks: they
describe the results of an experiment in a typical in- require the robot to move to unfamiliar locations.
door environment and argue that image-based naviga- We use a novel and powerful imaging system to project
tion is a feasible alternative to approaches using three- a full 3600 view of the world into a single image and then
dimensional models. condense this view into a compact, one-dimensional lo-
1 Introduction cation signature. A location signature retains enough

information about the landmarks seen from its target
Mobile robot navigation has proved to be a complex task, location to allow homing. In image-based local homing,
even in a task domain where the robot is given a de- the differences between the signature of a robot's current
tailed three-dimensional model of its environment (Fen- location and the signature of a target location are used
nema et al (6]). Providing a robot with such a model to compute incremental movements that take the robot
is itself a significant, time-comsuming task: a survey of closer to the target location. We call our technique "lo-
many of the natural and cultural objects in the robot's cal" homing because the robot's current location must
environment and their spatial relationships to each other be close enough to the target location that it falls within
is required. If done sparsely this might amount to the ex- its "capture region" for homing. If the robot's current
traction of key landmarks that would allow proper nay- location is too far from the target location, the homing
igation relative to the prominent features of the visible algorithm will fail because there will be too much dis-
environment. In the limit, this would involvc dctcrmin- tortion in images of the prominent landmarks common
ing countour maps and full three-dimensional solid mod- to both location signatures.
els of all prominent objects. In either case, acquiring ac- We acquire a model of the world by running the robot
curate geometric information is difficult and expensive, along a desired route and having the system extract lo-

Because it is difficult to acquire world models for navi- cation signatures for a sequence of target locations on
gation, it becomes an obvious goal to have a mobile robot the route. After acquiring this model, the robot can

navigate the route by successively homing to each of its
*This research has been supported by the Defense Ad. target points. Thus we have reduced the problem of

vanced Research Projects Agency under RADC contract navigating a large-scale space to a problem of navigat-
F30602-87-C-0140 and Army ETL contract DACA76-89-C. ing a sequence of small-scale spaces. Figure la shows
0017.
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schematically how a route would be segmented so that description of the world (e.g., Ayache and Faugeras [2]).
each target location falls within the capture region of Nelson [11] and Zipser [161 have explored qualitative,
the following target location. It would also be possible image-based approaches to associative homing. In asso-
to establish a two-dimensional spatial sampling of target ciative homing, snapshots are taken at many reference
locations. Figure lb schematically shows the capture re- locations in the environment. Stored with each snap-
gion for a single target location (the black dot) in a small shot is the movement vector that will take the robot
portion of such a sampling. (Capture regions for other from that reference location towards the target loca-
locations - denoted by white dots - are not shown.) tion. Nelson's system compares the current image to all
Note that the capture region of the target location in- stored snapshots and has the robot make the movement
cludes many of its neighbors. A robot could navigate associated with snapshot that best matches its current
between any two points in a sampled region by homing view. Zipser's system also compares the robot's cur-
along a sequence of such neighboring target locations, rent store to all stored snapshots. Instead of picking

the best match, however, it averages all movements vec-
tors, weighting each by the degree-of-match of its snap-
shot. The difference between associative homing and
local homing is that associative homing algorithms work
by retrieving stored homing vectors, but local homing

-J algorithms work by computing homing vectors on the
fly.

0 , 0 0 0 Zheng and Tsuji [15] are exploring an approach tolandmark-based navigation that is similar in many way

0 o, o1 0 ,o 0 to ours. It uses a rotating slit scanner to produce a 3600
o- 0- 0 -0 -0 panoramic view. Like us, they store a sequence of images
o o" 6 'o 0 along a path and use a relatively simple feature-matching

. o ' o ostrategy. Unlike us, they do not compress their images,
so the amount of storage they need to store a path can
grow quickly with the length.

Others, while using three-dimensional models to do
landmark-based navigation, are investigating ways to

Figure 1: Segmenting the world into capture regions, a) avoid some of the costs of model-based techniques. Dick-
Navigation of a route via a sequence of sampled target manns and Graefe [5] use Kalman filtering of the image
locatations along the route. b) Navigation in general to directly update changes to a three-dimensional model
two-dimensional space by locally homing across a two- of the world rather than computing the inverse perspec-
dimensional region of sampled target locations. tive transformation; they also track image features to

avoid computing the forward perspective transforma-
tion. Fennema et al [6] use three-dimensional models to

2 Related Research generate the image the robot would see at the target lo-
cation; the robot then servoes directly on the image fea-

This work is related to three general areas of research: tures, tracking them via correlation. This frees the robot
motion analysis, associative homing, and landmark- from doing pose refinement (i.e., updating the location
based navigation. Image-based local homing is simi- and orientation of the robot) at every step. Breuel [3]
lar to such computer vision tasks as "relative orienta- uses image-derived features rather than partial three-
tion" (Horn [8]) and "structure from motion" (e.g., Ull- dimensional descriptions of objects to index into a three-
man (13] and Adiv [1]). Like these tasks, it uses two- dimensional model base.
dimensional images to make decisions about the three- The remainder of this paper will provide the details of
dimensional structure of the world. It differs from these matching landmark features and computing local hom-
tasks, however, in two ways that make the techniques we ing movements for navigation. We will also present re-
present practical, efficient and robust. First, it does not sults of indoor experiments that acquire environmental
compute the exact direction or distance to the target lo- information in a training phase and then use this infor-
cation, but computes instead an approximately correct mation for successful navigation.
movement that will take the robot closer to a target lo-
cation. Second, it does not build a three-dimensional 3 Acquiring and Processing Images
model of the world (such as a depth inap) and then rea-
son with that model. Instead, it reasons directly from 3.1 The Robot and its Imaging System
the images. Thus it has the advantages of being a quali- We have implemented the homing algorithm on a Den-
tative, image-based approach rather than a quantitative, ning DRV-1 mobile robot. Although the three wheels
model-based approach. Qualitative approaches have the of the DRV-1 can be steered, the body of the robot
potential to be robust, since measurement noise is un- maintains a fixed orientation. Thus the robot cannot in-
likely to change a qualitative description of the world. tentionally change the orientation of its body although
Image-based approaches are fast, since they avoid the this orientation may be accidentally changed (e.g., when
extra time spent in computing three-dimensional models the robot travels over rough ground). In our applica-
from images and merging them into a three-dimensional

783



tion the imaging system is attached to the robot's body. tion inside the circle; landmarks that project to points
The homing algorithm takes advantage of this fact and outside the circle can potentially move to any location
assumes that the robot's perceptual frame of reference outside the circle. Landmarks that project to points on
rotates very little as the robot moves through the world. the horizon circle, however, remain on this circle as the

The imaging system (Figure 2), which is mounted to robot moves. By sampling the image on the horizon
the front of the robot's body, comprises a spherical mir- line, we not only take advantage of a geometric invari-
ror mounted above a video camera. The video camera ance, but we reduce the dimensionality of the landmark
points up at the bottom of the spherical mirror and sees matching problem.
a 3600 "hemispherical" image of the world (e.g., Fig- The robot extracts a one-dimensional, circular lo-
ure 3). This imaging technique is similar in principle to cation signature by sampling the hemispherical image
the conical mirror and laser striping system of Jarvis and along the horizon circle at angular intervals A0; in our
Byrne [9], but different from other methods that rotate experiments, we sampled at 10 intervals. Each sam-
a horizontal camera to acquire a panoramic view (e.g, pie is a radial average of the image near the horizon
Zheng and Tsuji [15] and Suzuki and Arimoto (12]). circle; in our experiments, we average over 5 radial

pixels. We can formally express the relation between
the one-dimensional location signature V and the two-

S. . dimensional image I as

2

Vi I(iAO, rph + jAr),

where Vi is the ith intensity value of a one-dimensional
location signature V, 1(0, r) is the intensity of the hemi-
spherical image at polar coordinates (0, r), AO is the

a angular sampling interval, Ar is the radial sampling in-
C PjJRA - terval and rh is the radius of the horizon circle. Thus

we compress a 512 by 512-byte image into a 360-byte
location signature. This efficient representation of im-

Soages is of major importance in the simple yet effective
- ' .-- development of the homing algorithm presented in later

: ,- "sections.
Figure 3 shows the annulus of pixels our robot sam-

ples in the hemispherical image to get a one-dimensional
location signature. The short tick marks show location
of the actual samples. Note that we have extended every
tenth tick mark and added cross-hairs. These serve as
visual aids and do not represent locations of image sam-
ples. Figure 4 shows a graph of a typical location sig-
nature. The graph represents the intensity profile along
the horizon circle in Figure 10; the circle is sampled in a
counter-clockwise direction starting from the left side of
the horizontal axis.

3.3 Finding Characteristic Points in the
Location Signature

( Let us now examine how prominent world features, i.e.,
landmarks, are selected from the location signature. We
call these features characteristic points. In the remain-

Figure 2: Robot with imaging system. der of the paper we will sometimes use the terms "char-
acteristic points" and "projections of landmarks" inter-
changeably. Characteristic points of V are found in three

3.2 Extracting Location Signatures from the steps. On the first step the location signature gets sege-
Hemispherical Image mented into regions of monotonically increasing or de-

The spherical imaging system so greatly distorts the creasing intensity. On the second step the point of max-

scene during projection that the image changes dramati- imum instantaneous intensity change in each segment is

cally as the robot moves. There is, however, a projective found. Such a point is accepted as a potential character-

invariant on the horizon line. The robot's horizon lies in istic point if it represents a large enough instantaneous

a circle in the hemispherical image shown by the annulus intensity change or if the total intensity change across
of tick marks in Figure 3. As the robot moves horizon- its segment is large enough. On the third step these po-tally across the ground plane, landmarks that project to tential characteristic points are ranked, and the top fif-
points inside the circle can potentially move to any loca- teen are selected as those image features that represent
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the most prominent landmarks. The rank of a potential
characteristic point i is given by SiAi, where Ai is the

.1 total intensity change across its segment and .S is its
sparseness. The sparseness of a characteristic point is

X4 ,the distance between the potential characteristic points
..... on its immediate right and left.

Figure 5 schematically shows how a location signature
is segmented and how characteristic points are found.
Point D has been rejected because its A was too small;
the A and S for point B are also shown.

4 Matching the Current Location

Signature to the Target Location
Signature

The goal of the matching step is to find a set of corre-
spondences between the characteristic points in the sig-
nature V of the current location and the points in the
signature VP of the target location. Since our correla-
tion function computes the difference between two sig-
natures, the best set of correspondences is the one that
minimizes the sum of a set of correlation v ues pij. In

Figure 3: Hemispherical view of corridor. The superim- matching a point i in V against a point j in VT, we
Foeiure Hemispric al viwsthe portion of the image are actually matching the values in windows centeredposed circle of tick marks shows th p on the imn around those points. Matching is performed with a nor-
sampled to create a location signature. The horizon cir- malized correlation function that uses the mean 1A of the
c of robot lies within this annulus. intensity in a window and an approximation a to the

.... "standard deviation of the intensity in a window to nor-

.,.SW I malize the matching. The normalization compensates
for illumination changes that might occur between the

II" time a location signature is acquired and the time it is
...... used as a target. We assume that the difference between
-UX) 00 a stored signature VTr for a location and a current signa-ture V for the same location can be expressed as some

affine transformation of the brightness profile, i.e.,

~i ~i; VT =-S(V-)
for some constant bias k and scale factor s. In other

INXI words, the current signature for a location can be trans-
formed into the stored signature for the same location by

,w fremoving some constant bias and then multiplying every
intensity value by some scale factor.

,,, 'We find it more convenient to express the affine trans-
Bearng form as

.ST(VT - T) = s(V - k).

Figure 4: A typical location signature This is equivalent to the previous expression for an affine
transform, except that two scale factors, sT and a, and
two biases, kT and km, must be determined. We esti-
mate the constant biases to be the average intensity in

"a window and the scale factors to be reciprocals of thei\ I , window. ~~(approximate) standard deviation of the intensity in ak= htik' ''

D window. That is,

where V + is the image intensity of the current location
Figure 5: Finding characteristic points in the location signature at index i +- * (i.e., in the window centered

at index i in 1'), e is an index into a fixed-size win-signature dow, and uu is a harmonic weighting function, defined
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as t t = 1/ 12 + I, that gives more weight to the cen-
ter of the window than to the edges. In our system, the
window into the location signature is 13 pixels wide. We
say that a is an approximation to the standard deviation B
because it computes it with the L, norm (i.e., absolute
value) instead of the L 2 norm (i.e., squared value). Note
that this transformation compensates only for variations A
in brightness; it does not compensate for spherical dis-
tortions induced in the images of landmarks as the robot
moves.

We match the characteristic points in the current sig-
nature V against the image points (not necessarily char- T
acteristic points) in the target signature VT. The actual
matching function we use is C

Pidj =jWt I (V+t - 4) - -Y(Vts T 0

a Figure 6: Homing problem with three landmarks.

where Pij is the match value at current location signa-
ture index i and target location signature index j.

5 Determining the Homing Movement A

The difference between the bearing of a characteristic
point in the signature for the robot's current location
and bearing of the point it matches in the target signa-
ture is the offset 4 of the characteristic point. The offsets
for the characteristic points allow the algorithm to com-
pute an incremental local homing movement. Suppose
the robot is at some current position 0 and its goal is
target position M, as shown in Figure 6. What would
the robot see if it were to move directly towards target
location M? The spherical mirror induces very simple
image displacements of landmarks that project onto the
horizon line. Every characteristic point on the invari- Figure 7: Landmarks slide around horizon circle as the
ant horizon circle slides along the horison circle away robot moves.
from the robot's direction of motion, as shown in Fig-
ure 7. Thus the robot should move in a direction that
will cause the characteristic points to slide to the bearing
they have at the target location. T

Let us consider landmark A in Figure 8. The offset be- A
tween A in the current location signature and its match- 0)BC B
ing point A7' in the target location signature is OA. If T
the robot were at the target location, this offset would A
be 0. Our strategy is to move the robot in in a way that
most quickly decreases this offset - a direction WA per-
pendicular to the bearing OA of characteristic point A in
the current location signature (Figure 8). By similar rea-
soning, the fastest way to reduce the offsets 0.B and 0c
of characteristic points B and C is to move in directions .............. .
wD and wC, respectively. Figure 8 shows how the hom-
ing vectors w1 and wC (shown as thin dotted lines) add
to the homing vector WA (shown as a thick solid line) to
form the final homing vector w (shown as a thick dotted f C
line). The final direction vector w, a sum of individual A " "
homing vectors, points in the approximate direction of (

the target location T; the true direction towards T is w' B %
(shown as a thick dotted line).

This final direction is computed by

o = arctan -sgn(o,) sin(Ir/2 + i) Figure 8: How a robot uses landmarks to estimate hom-
\Et -sgn(Oi) cos(Ir/2 + -.) ' ing direction.
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the characteristic point was extracted. Since the algo-
where O, is the offset of the ith characteristic point and rithm picks out different sets of characteristic points at
Oi is its bearing, each step, it is important to realise that an alphabetic Ia-

As well as determining a direction to move, the algo- bel may indicate different structural features in different
rithm must also choose the distance to move. For each steps. For example, the edge of a door is labeled H1 in
target signature, the robot is moved 0.6 feet on the first Figure 10, but the same edge is labeled J2 in Figure 11.
incremental homing step, 0.4 feet on the second incre- Figure 9 shows what the characteristic points from all
mental homing step and 0.3 feet on subsequent incre- five steps matched in the target signature. For example,
mental homing steps. We choose initial large values so landmark C in step 2, A in step 3, A in step 4, and B
that the robot makes greater progress on the first two in step 5 all matched to the edge of a door at bearing
steps; the final small values ensure that the robot does 6 = 320 in the target image.
not overshoot the target location by much. The homing The performance of the algorithm at each step is
process for a given target location signature stops when shown in Tables 1 through 5. Each row in these ta-
the current direction the robot moves, w,(r), differs suf- bles shows the label of the characteristic point (C.P.),
ficently from the previous direction it moved, w(r - 1). its bearing (0), the angular offset to the matching point
When this happens, it is assumed that the robot has in the target image (qS), and the correlation between the
overshot the target location. In our system the stopping characteristic point and its matching feature (p, where
criterion is I w(r) - w(r - 1) J> 40'. Of course, many the lower the value, the better the match).
other stopping criteria ate possible, such as a threshold The tables also show whether the characteristic point
on the degree-of-match between current and target loca- was judged to be a good characteristic point (C.P. OK?)
tion signatures. and whether the algorithm matched the characteristic

As part of the matching process, we estimate any point to the correct feature in home image (Match OK?).
(unintentional) rotation of the robot's body that may We judged a characteristic point to be good if it was
have occurred since the time the target signature was within one pixel of an obvious structural feature such as
acquired. We call this rotation the deviation. Unless the the edge of a door or a sudden reflectance change. If no
estimated deviation is subtracted from the offsets of the such feature was apparent, we judged the characteristic
characteristic points, the robot's homing movement will point to be bad. Thus, characteristic point 0, in Figure
be biased in the direction of the deviation. In practice, 10 was judged to be good because we can readily see
the deviation is small - less than 3, A forthcoming the feature that caused it: a large area of dark bulletin
technical report will give details of how we estimate de- board next to an area of white paper. Characteristic
viation [7]. point As, however, was judged to be bad because there

is no obvious structural feature associated with it. We
6 Demonstration of the Homing judged a match to be good if the characteristic point

Algorithm matched to a point within one pixel of the correct point
in the home image.

We tested the algorithm by taking a sequence of hemi- In general, the algorithm picked out good characteris-
spherical images in a hallway. There were 17 images in tic points. In steps 1 through 4, 13 out of 15 character-
all, taken at target locations spaced about 1 foot apart. istic points were good; in step 5, 9 out of 15 were good.
We placed the robot 1 foot from the first target location; In matching, however, the algorithm was less success-
its goal was to home to each target location in sequence. ful. Table 6 summarizes the algorithm's performance in
The robot was able to traverse this path successfully and matching characteristic points. On the average, the al-
reach the final target location. gorithm matched characteristic points to correct points

Figure 9 shows the hemispherical image of the world in the location signature only two-thirds of the time.
as seen from the first target location. Figure 10 shows Nevertheless, this was sufficient for homing.
the view at the first incremental homing step towards the Looking more closely at Table 6, we see that the al-
first target location. We have superimposed a circular gorithm made niore good matches than bad in steps 2
coordinate system over each image, with the origin of the through 5, but in step I it made fewcr good matches than
coordinate system at the center of the cross-hairs. Abso- bad. The robot moved in the correct direction in steps 2
lute angles are measured in the standard mathematical through 5 because the effects of the good matches out-
convention: 0 = 00 is the x-axis, and angles increase weighed the effects of the bad. How, then, did the robot
in a counter-clockwise direction. Each tick-mark in the manage to move correctly in step 1, where there were
annulus marks the part of the image that was radially more bad matches than good?
sampled to produce one intensity componcnt of a loca li geiteral, the offsets and bearings of of bad matches
tion signature. should be randomly and uniformly distributed in the in-

We show the target image and the images from each terval 00 to 3600. If this is true, the expected value of
homing step to show the features the algorithm picked the vector sum of those hom'ng vectors derived from bad
out as characteristic points and the matches it made. matches will be the zero vector. Since the bad matches
The fifteen characteristic points extracted from the lo- can be expected to contribute little to the final homing
cation signature at each of the five increnental steps are vector, the direction of the final homing vector should
labeled in Figures 8 through 12 as A through 0; the sub- be determined by the vectors from the good matches.
script on each label is the number of the step in which This intuition is supported by the results in Table 7.
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For each step, we sum the homing vectors contributed 7 Summary and Discussion
by the good matches into a resultant vector; we do the
same for the bad matches. The resultants are decom- We have argued that image-based landmark navigation
posed into their x and y components, where the postive is a feasible alternative to navigation approaches that
y direction lies up the corridor towards the target loca- maintain three-dimensional models of the world. This
tion and the postive w direction is 900 clockwise from paper describes an approach that divides large-scale
the positive y direction. We can see that in the first step navigation tasks into a sequence of small-scale naviga-
the bad matches conspire to drive the robot away from tion tasks that are solved by local, image-based horn-the target location (in the negative direction) while the ing. Our homing algorithm uses compact location sig-good matches drive the robot towards the target. Even natures acquired by a novel 360* imaging system. Inthough there are more bad matches than good in step addition, landmark information is acquired in a natural1, their a-component is smaller than the g-component and straightforward way that doec not involve acquiring

1, teiry-coponnt i smlle tha th y-cmpoent three-dimensional information. We have described ourof the good matches because they tend not to be corre-
lated. Thus, the vectors from the bad matches partially image-based homing algorithm and have demonstrated
cancel each other out, as expected. it on a mobile robot for a typical short-range navigation

For steps 2 through 4 there are more good matches task.
than bad, so it is not surprising that their y-component In future work we will be trying to improve the robust-
is larger. The very small, negative -component for the ness of the homing algorithm and to extend its range.
good matches in the step 5 is because the robot has just Our experiment showed that the homing algorithm cor-
overshot its target location slightly, causing step 5 to be rectly picked out characteristic points, but mismatched
the last step in homing to this target location, many points. Clearly we need to improve the match-

The homing problem can be decomposed into two ing part of the algorithm. Whatever the shortcomings
parts: the "correspondence problem" and using the cor- of the current implementation of the homing algorithm,
respondences to compute the homing vector. We believe it was still able to successfully navigate using real-woild
the performance of the matching algorithm in solving the images. Ultimately, image-based local homing might b
correspondence problem can be improved in future work. used to create a full-blown navigation system that can
The main contribution of this paper, however, is the autonomously acquire a qualitative spatial map of its
novel way that the system uses the correspondences to environment for robust, goal-oriented navigation.
navigate. The apparent robustness of the system is im-
pressive: not only did it manage to home correctly when 8 Acknowledgements
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Figure 11: Hemispherical image of hallway as seen at the Figu- 13: Hemispherical image of hallway as seen at the
start of the second incremental step. Labels indicate the start of the fourth incremental step. Labels indicate the
characteristic points found on this step. characteristic points found on this step.

n

Figure 12: Hemispherical image of hallway as seen at the Figure 14: Hemispherical image of hallway as seen at the
start of the third incremental step. Labels indicate the start of the fifth incremental step. Labels indicate the
characteristic points found on this step. characteristic points found on this step.
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INCREMENTAL HOMING STEP 1 INCREMENTAL HOMING STEP 4
C.P. Bearing Offset Correl. C.P. Match C.P Bearing [Ufset Correl. C.P. Match

0 - P OK? OK? e OK? OK?
A 1 4U n f n__

B1 38 13 20 y n I4 32 0 18 y y
C1  45 -3 29 y y B4 39 1 45 y y
DI 52 -1 10 y y C4  41 1 28 y y
El 63 1 60 y y D4 49 2 38 y y
F1  75 1 62 y y E4 51 2 82 y y
G1 148 16 197 y n F4  62 1 39 y y
H1  194 15 58 y y G4 74 15 80 y n
1h 220 -2 51 y n H4  166 10 91 y y

279 15 83 y n 14 207 1 83 y y
292 -10 36 y y J4 213 1 17 n it

Li 315 14 51 n n 4  280 16 100 y n
M, 338 14 52 y n L4 303 -10 20 y y
N1  350 16 63 y n M4 306 -10 35 y y
01 355 -8 56 y n N4  340 7 49 y n

Table 1: Characteristic points and their matching fe- 354 -9 51 n n
tures seen at step 1. Table 4: Characteristic points and their matching fea-

tures seen at step 4.

INCREMENTAL HOMING STEP 2Bearin Offset INCREMENTAL HOMING STEP5C.P. Baring ffsetCorrel. C .P. Match [[B ea0n OK? OK? .P. Bearing Ofifet Correl. U.P. Match

AP OK? OK?A2 3 7 6 n A5 1-5 36 y y
B 2  11 -15 11 y y B 31 1 12 y y,22 35 -3 27 y y Cs 41 1 76 y y

-1 78y D 49 2 46 y y
F2  3 -1 80E 51 2 92 y y63 0 4 Y Y F5  62 1 36 y yG2 63 1 70 y y G5 76 1 41H2  76 15 59 y n H5  171 6 43 y y
12 156 8 195 H 17n64 y y
2 01 8 58 15 210 -2 100 n y, 208 58 y y Js 231 -13 7 n n

K2  208 9 10 23 -1n
L2  279 15 88 n K5  280 16 110 y n
M2  291 -9 26 L5  302 -9 19 n n
M 2  291 - 26 y y Mr 305 -9 32 n n,,2 308 -15 42 y y N5  322 -10 27 n n02 311 -15 50 y y 05 353 -6 15 n n

Table 2: Characteristic points and their matching fea- Table 5: Characteristic points and their matching fea-
tures seen at step 2. tures seen at step 5.

NCREMENTAL HOMING STEP 3
C.P. Bear Offset Correr. TC.P. Match I Correct Matches 1 Incorrect Matches

____ 0 1_ P I OK? OK? Step Number (%) Number (%)
A3 33 -1 17 y 1 6 (40) 9 (60)
B3 42 0 25 y y 2 10 (66.67) 5 (33.33)
C3  50 1 22 y y 3 12 (80) 3 (20)
D3 62 1 44 y y 4 10 (66.67) 5 (33.33)
E3 76 3 52 y y 5 0 60) 6 (40)
F3  162 15 30 y y Total 47 (62.67) 28 (33.33)G3 204 4 20 y y
H 3  211 4 11 n n Table 6: Comparison of correct matches to incorrect
13 280 16 82 y n matches at each step and over all steps.
J3 290 -8 25 y y
K 3  305 -12 23 y y

L3 308 -12 43 y y
3 339 Step Correct Matches Incorrect Matches

3351 1 24 n n 0.2385 2.2048 0.0752 -1.5849
Table 3: Characteristic points and their matching ea- -0.2326 5.0352 -1.0207 2.1726

T 3.9096 5.9229 -1.4217 -0.9025
tures seen at step 3. 4 5.6806 1.0645 -0.9134 0.1101

5 5.7486 -0.3599 1.2575 2.7526
Table 7: Comparison of components of homing vector
contributed by correct matches to those contributed by
incorrect matches at each step and over all steps.
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Reactive and Preplanned Control in a Mobile Robot

Monnett Hanvey Soldo

Department of Computer Science
Columbia University

New York, NY 10027

Abstract
We describe a novel organization for robot

navigation that combines reactive, stimulus-response
control with cognitive, planned behavior government.
The result is robust, flexible, autonomous, real-time
robot control; this result has been demonstrated on a differentially driven, while the third (front) is a castor. All
mobile robot that explores the peopled hallways of a power and processing are onboard, to speed response time
large office building. and to allow the robot to roam long distances untethered.

Robot trajectories are specified in terms of desired

1. Introduction forward motion and desired change in orientation: We use
quintic (fifth-order) polynomials, after Anderssonlo1 , to

The 1989 AAAI Spring Symposium on Robot Navigation specify robot trajectories for forward motion and turn, and
was the scene of a heated debate - or panel discussion - then integrate the two trajectories and translate them to
between the reactivists and the planners. On the one side, wheel velocities in each servo cycle. Top speed for the robot
the reactivists citing demonstrated successes in robot is five feet per second, but we prefer running it at about 1.5
mobility,[1 121] (31 141 advertised independence from specific fps.
world models: behavior should be defined in terms of The robot carries eight ultrasonic sensors, three along
response to significant stimuli. (If memory serves, the battle he rob o in e fron sen o bstales.cry as we on'tnee nostiningmapl") n te oher each side and two in the front, for detecting obstacles.cry was "we don't need no stinking maps!") On the other,' (These sensors are mounted about three feet off the ground.)
the planners protested that there's no way to achieve (thes ser oned ot thre f heegrond.)intelligent, autonomous behavior without representation and It has odometry on each of the two driven wheels. And it
planning. They're both right, of course, has a single camera, mounted in front and facing forward, atthe level of the sonar sensors; images are processed through

Among mobile roboticists, most of the interest in reactive special-purpose hardware for speed. The transparent
control seems to have grown out of Brooks' subsumption cylinder between the battery layer and the processing layer
architecturell. It is an approach strongly supported by is reserved for a laser rangefinder to be installed in the
psychology[51 and biologylSl, and one which has been future.
successfully applied by control theorists for years. (Witness
the autopilot.) Path planning is a more traditional Al
approach to navigation. The robot is given a symbolic map
of its environment that can be searched for a desirable path. 3. Control Structure
Often these planners are hiearchical: a rough, high-level plan
is constructed to guide the robot, and the details of eech Control of the robot is distributed among a set of
path segment are filled in depending on local conditions1Il. behavior experts that tightly couple sensing and action. (See

figure 1.) The interesting problems here are to select a small
Reactive control has the advantage of timely response, but useful set of parameters to describe the world -

and is essential in some domains. (The greatest enemy to an parameters that can directly affect robot behavior - and to
athlete is conscious intervention(I.) But the mechanisms of devise strategies for sensing them quickly The choice of
reactive control are highly specialized, and more general parameters is less obvious for a mobile robot than for an
world knowledge and reasoning ability is required to address autopilot, given a more complicated world (Note that it
a variety of situations. In this paper we present an depends on behavior goals: front clearance is only important
architecture for navigation that combines reactive and if the robot isn't supposed to run into anything) Sensing
planned control. This architecture has been implemented strategies may ivolhe discarding most of the sensed dqta to
and demonstrated on a mobile robot that explores the extract only what's needed.
hallways of an office building.

The resulting behavior experts incorporate specialized
2. The Robot processing to sense and to act; they can be viewed as

sophisticated servo-controllers. The distribution of control,
Ours is a three-wheeled, indoor robot, about two feet together with fast sensor processing, allows real-time

wide and four feet tall. Two of its three wheels are response as the robot navigates in a changing environment.
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populated by people who wander past, largely ignoring the
robot as it rolls along. (This is interesting: one would think
that an untethered robot roaming the halls would be

sensor robot state robot exciting, an attention-getter, something you don't see every
input -vs world actionday.) Collisions are bad for public relations and bad for the

robot, so the robot has to be prepared to stop if necessary to

speclal,-ea specialized avoid them.
processing processing In a dynamic world it is pointless to specify trajectories

that take the robot very far, and equally pointless to specifyFigure 1. Form for a behavior expert. trajectories long before they are executed. Our robot
If a group of behavior experts are all active at the same generates trajectories on the fly, based on its current

time, setting variot's behavior parameters, together they will situation, roughly three times per second. A new trajectory
produce a global behavior for the robot. To introduce some will interrupt the one that's already executing, so that the
order into this scheme, we collect behavior experts to define repeated trajectory generation produces continuous robot
robot behaviors. (Figure 2.) A specific set of behavior experts motion.
can be activated by selecting the appropriate (global) robot
behavior. Trajectories are at most a few feet in length; shorter if an

obstacle is detected ahead. (Down to a minimum length of
zero, a full stop, when an obstacle is detected less than one

Expert: Eper Epor. Beho foot away.) To find obstacles we use two forward-pointedultrasonic sensors.1  In these sensors the shorter
S 0 S S 5 measurements are generally the accurate ones - most of the

It ac: errors we see are due to reflections - so the shorter of the

BEHAVIOR two measures is used.

Figure 2. Form for a robot behavior.

Some of the behavior experts within a behavior may in data c
fact be boundary experts (daemons), whose function is to
trigger a change in behavior under specific conditions. These
boundary experts define relationships among the various who to believe vsreQuiredclearance for
robot behaviors (figure 3), and those relationships can be forward move
used in assembling the behaviors into an Al plan to direct
the robot. Figure 4. Forward motion expert.

condition This behavior expert, drawn in figure 4, links data from
BEHAVIOR BEHAVIOR the forward-looking ultrasonics to robot motion. The robot

moves forward if the area ahead is clear, but stops if its path
is blocked.

Figure 3. Behavior relationships. 4.2 Staying Straight

In the sections that follow we describe the specific behavior As it rolls down the hall, the robot should stay straight
experts, behaviors, and plans that control our robot. (aligned with the length of the hall), not only for efficiency

but also to insure that it can sense the walls on either side.
4. (Side-mounted ultrasonic sensors are the robot's only meansSensing for Action of sensing obstacles to its sides; if it is not oriented roughly

Our robot navigates indoors, in a hallway environment, straight, reflections may prevent it from detecting the walls.)
It has no prestored map of the world, and it is not directed To be safe it should also stay near the center of the corridor.
to follow any predetermined trajectory. The robot's mission (The robot is two feet wide, and it cannot sense obstacles to
is to roam the hallways - to "explore" - without running its sides closer than about nine inches, this means that only
into anything This mission suggests a few basic behaviors, a couple of feet in the center of a six-foot hall are reasonably
the robot is supposed to (and does) travel along corridors, safe.)
turn at intersections, and retreat from dead ends.

Here we look at one of these behaviors: travelling along a
single corridor. We identify two of the behavior experts that
control the robot within a hall. I We should note that the resolution of these sensors is so poor that we

use them to find (hopefully) the distance to the nearest obstacle4.1 Moving Forward practically anywhere across the width of the hallway Consequently we
do not (cannot) attempt obstacle avoidance, but instead we just stopWe want the robot to roll from one end of the hallway to the robot if the obstacle is too close Also note that one can never

the other In a .jtatic environment, we could generate one guarantee collision avoidance in a dynamic environment, for the same
long trajectory to take the robot all the way down the hall, reason that most of us can't avoid speeding bullets The best we can

do is insure that we can avoid objects moving within specified velocity
and then worry only about getting the robot to execute it constraints (depending on the robot's sense/react time) if the sensors
accurately. But our robot's world is not static; it is and motor control work properly

793



We associate with each hallway its own local coordinate
system: z is oricnted with the hail, and x across it, with omtpsiinraeor
x = 0 down the middle of the hall. Robot position is
specified by the triple (x,z,0), where 0 represents orientation.
Our desire that the robot stay straight is expressed as a edge detectIon vs desired
preference for 0 = 0; staying near the hallway center implies and • position
keeping x near 0. positioning

As the robot moves forward, errors in both x and 0 can Figure 5. Orientation expert.

be corrected by changing robot orientation. For each This behavior expert (figure 5) discards most of the data
trajectory generated - at least three per second - the from each image, extracting only what it needs and can
robot needs an accurate estimate of its position, especially z process quickly. Again, there is a direct link between sensor
and 0. The robot has odometry on each of two differentially data and robot motion: as it moves forward the robot
driven, load bearing wheels. (Roughly 24000 ticks per foot.) corrects for any deviation from straight and level.
The encoder counts are checked frequently - almost two 4.3 Commentary
hundred times per second - and they can be integrated to
provide an updated estimate of robot position. It is well At this point some comments are in order regarding
known, however, that errors introduced by wheel slippage, reactive behavior. Behavior experts are highly specialized
uneven terrain, imperfect wheels, etc. will accumulate, in devices, tailored to a particular type of environment, specific
time making the odometry-based estimate useless. In fact, robot sensors and mobility, and specific behavior goals
there are errors built into the estimate itself. encoder values Change one of these parameters and we'll have to define new
are only read at discrete intervals, and there's no way to experts. Change the environment and the experts can be
know what went on between readings. 2  fooled; change the robot or its sensors and they're obviously

The robot cannot zero out the odometry errors no longer valid. (More on changing behavior goals in a

occasionally by recognizing known landmarks: accurate minute.) This specialization is also evident in biological
position information has to be available more often than matched filters, but Wehner [ l has commented that it is notpoccsionainformatn aswa t is baille moreoften than necessarily bad: "to us, [the filtersi might cover only some
"occasionally," and anyway this implies a prestored map,

something our robot doesn't have. Instead, our robot selects partial aspects of the more comprehensive geometrical
its own "landmarks" on the fly. The robot's two- problems we would like to envisage; but to the animals they

dimensional world is punctuated by vertical edges produced are always the full solutions to the very problems with which

where the walls are broken for doorways, corners, etc.; these they must contend."

edges make great position cues, and they are used as We claim that in fact behavior experts can be quite
landmarks by the robot. general. There is a reasonable argument that the shortest

The robot is equipped with a camera facing forward and description of a set of data is the most general, in that it

hardware to extract strong vertical edges from the raw captures the structure - rather than the specific details -
image data. (The robot does not have any prestored map in the data. There is a structure inherent in our robot's

suggesting where to find edges; it just uses whatever edges it environment, essentially a network of one-dimensional
sees.) Using a filter-based mechanism that combines vision spaces. That structure, with consideration of the robot's
and odometry - to be described in a future report 3 - the abilities and task, was the source of our behavior experts. In
robot tracks the positions of these edges over time, and uses a handful of behavior parameters these devices capture what
their apparent motion to track its own position. The is common to navigation/exploration behaviors in hallway
estimator runs at 60 Hz, to provide accurate an position environments.' (In some sense our experts procedurally
estimate at (practically) any time. encode the generic environment information described by

Kriegmanlll.) The robot who uses these experts could be
For each forward trajectory generated (above), the robot started anywhere in any hallway world, without any

generates a trajectory to achieve a correction of AO in predefined map, and it would go happily about its business
orientation. The AO is a combination of the corrections
suggested by x and 0: 0 suggests a correction of -0, and x
suggests a correction that takes it toward the center. (The 5. Behaviors and Planning
combination is a weighted average; we use equal weights of Control of the robot is distributed among a set of
0.5. Changing the weights can produce some interesting Cor exper but mo a gt of
results, with large enough changes affecting the robot's behavior experts, but together a group of behavior experts
"personality.") produces a global behavior for the robot, simply by virtue cf

their coexistence. We organize this potential chaos by
grouping the experts into robot behaviors, e.g., going down a
hall. The activation of experts is thus governed at a higher
level by the activation of robot behaviors. (Going down the
hall requires the experts for collision-free forward motion, for
staying centered, and others; see figure 6.)

2. Another way to see the problem- from the two measures provided by
the encoders - forward motion and spin - we ,,eed three Ax, A., 4 We make no claim that the parameters we have used are by any
and AO means the ideal ones, for our application or for anyone else's They

3 The technique is similar to that of Crowleyl' °1 in that the same data is were arrived at through experimentation, and are presented here to
used to update the model and to correct position demonstrate the feasibility of the approach
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Figure 8 shows a trace of the robot's movements in a
single hallway. The positions recorded (arrow represents 0)

Forwad Olna are its own estimates; these estimates are very accurate.
Mtion:~ torna (Note the scale/path length.) A future report will present a

new technique for recording ground truth in such
s•s sinexperiments. Hallway walls are at x=3 feet and x=-3 feet.

GOING DOWN A HALL

Figure 8. Behavior: Going down a hall (partial description).

Those high-level behaviors can be assembled into an Al |
"plan" to direct the robot. Currently our robot has one such
plan, prescribed by us, that directs it to travel along
corridors, turn at intersections, and retreat from dead ends.
(We have not discussed turning and retreating here.) This
plan takes the form of a finite state machine; a subset of
that machine appears in figure 7. (We have left out states
that are only interrupt handlers - for example, what to do 4C
if someone blocks your path while you are turning - in the
interest of making the diagram legible.)

itretoA HALL frn lced

HALL TRUNAROUND .4 . .0 a 4

Figure 7. Finite state machine for behavior control. Figure 8. One robot path. Positions are as estimated by

The robot does not now construct plans on its own; given the robot.
a representation and a goal, however, planning should be a
straightforward extension. In any plan, behavior experts not
only direct activities within a behavior but also trigger 7. Conclusiontransitions from one state to the next. We have presented an organization for robot navigation
5.1 Commentary that combines reactive and preplanned control, and has been

Goal-directed behavior requires a map. Nobody builds a demonstrated on our robot. The system shares features of
map by storing a whole sequence of raw image data. The reactive control with othersill4 113ll2, but it is unique in its
real reason that this doesn't happen is not memory integration of planning with reactive control. (A similar
limitation but rather utility: the aim is to store information approach, however, was recently suggested by ArkinlSl.) We
so that it will be useful (without excessive processing) in the believe that the organization could be effective for non-
future, so that at a moment's notice it can be retrieved and mobile robots as well.
applied. But if the abstraction is not done carefully, it may Our current interest is in the implications of this
obscure whatever was interesting in the data, again making organization for robot representation. Given the emphasis
the representation less valuable. We propose that robots on behavior experts, it is likely that a behavior-based
ought not represent the complete spatial configuration of the representation - what sensor input should instantiate the
world, but instead should know where they can go and what end-of-hall behavior? - will be more useful than a
they can do therein. We are now experimenting with straightforward spatial representation. The representation
representing the world in terms of robot behaviors should be designed to steer the robot's actions within the

world, not necessarily to represent the spatial layout of that
world as completely as possible.6. Demonstration of Success

Our robot has explored its hallway environment many
times, using the control architecture described here. The
system has proved robust, even in busy corridors. And it is Acknowledgements
flexible. the robot can explore from any position in any My thanks to John Kender, John Jarvis, Russ Andersson,
hallway environment. The longest of its journeys covered Peter Allen, Terry Boult, and Bob Lyons. (They know why )
more than 500 feet on two different floors (We helped it The robot described exists at AT&T Bell Laboratories in
into and out of the elevator.) lolmdel, NJ.
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Abstract pattern is sparse and/or cannot easily be described in
terms of nearest neighbor moves.

SIMD mesh connected computers have been found to be very In this paper we present the ROUTE primitive, a
useful in many applications, such as those often found in image collection of routing algorithms for the Content Address-
processing and matrix arithmetic, where the communication able Array Parallel Processor (CAAPP)[151, which allow
among PEs is local, regular, or both. Low efficiency results, many more classes of interprocessor communication to
however, when the communication patterns are irregular or be executed efficiently than could otherwise on machines
sparse, a situation we have found to exist in many computer with conventional mesh connected topologies. These al-
vision applications. This paper describes a routing primitive gorithms use the coterie network to emulate wormhole
which makes significant progress towards solving that prob- routing [6,4] in that packets are not queued at interme-
lem for the CAAPP, a SIMD mesh connected computer en- diate nodes when progress is not possible, rather they are
hanced with the broadcast capability of the coterie network. left in place on their current PE. One of the algorithms,
We show that general routing on the CAAPP can be executed at the cost of extra overhead, also emulates cut-through
with simplicity to the user and performance similar to that of routing in that it sends packets not just to the next PE
a dedicated network. We present experimental results from each time step, but rather to the next free PE, no matter
several classes of permutations as well as from some common how far away that may be. ROUTE uses the global feed-
machine vision applications. back capability between controller and array to dynami-

cally select between routing algorithms, thus presenting
the programmer or language designer with a transparent

1 Introduction mechanism for interprocessor communication.

One class of architectures that has proven popular for use
in image processing and other domains that map readily 2 The CAAPP
onto fine-grained parallel computation is the SIMD mesh
connected computer (SMCC). Some of the advantages The CAAPP is the low-level processing array of the
of mesh connected topology are that it is regular and three-level architecture called the Image Understanding
easy to lay out on a chip, has high bandwidth for data Architecture (IUA) being developed at the University of
movement along its dimensions and low latency for local Massachusetts and Iughes Research Laboratories. The
transfers; some disadvantages are its large diameter and IUA is designed to perform real-time machine vision by
limited bandwidth when the data movement is not reg- combining pixel level, token level, and symbolic compu-
ular. It is therefore apparent why SMCC architectures tation in one machine. The pixel level processor (the
have found their greatest success in two areas: the first is CAAPP) consists of a 512 x 512 content addressable ar-
in modeling certain physical phenomena, such as images, ray of one-bit processing elements (PEs). Each process-
which map naturally onto a mesh and for which many ing element has several general purpose registers, 320
relationships are local; the second is in executing regular bits of on-chip cache memoiy, 32K bits of main memory,
mathematical computations, such as matrix operations. and an "Activity Register" which is used for branching
Conversely, mesh connected topologies are least efficient control. The PEs form a single instruction stream, mul-
when confronted with computations, many of which oc- tiple data stream (SIMD) array, with control provided by
cur in computer vision, that require communication be- the Array Control Unit (ACU) which broadcasts instruc-
tween distant PEs, especially when the communication tions, data addresses, and global data. The controller
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can also extract information from the array by associa- the former no queues are used; in the latter queue size
tive polling, as hardware support is provided for Get- becomes a variable to be minimized. In the following
Some/None and Get-ResponderCount operations. The discussion, square meshes are assumed and N refers to
Get-Some/None operation is especially useful in deter- the total number of PEs, while n = N is the number
mining whether a data dependent algorithm has com- of processors in a row or column. The lower bound on
pleted, while Get-ResponderCount can be used for adap- mesh routing is 2n - 2 on the MIMD model and 4n - 4
tive algorithms. on the SIMD model; this is the minimum number of

Communication between PEs themselves can take routing steps required for processors in opposite corners
place in two different ways: by using the nearest neigh- to exchange packets. The difference occurs because, in
bor mesh interconnection network, and via broadcast, the MIMD model, different sets of processors can send
In the second method, broadcasting PEs transmit in- packets in different directions on the same time step,
formation by writing to a specified register connected while in the SIMD model, the direction must be the same
to the Some/None circuit. Receiving PEs then read a for every packet. When there is wrap-around, the lower
register which will have been set to the OR of the broad- bounds are halved.
cast signals. Nearest-neighbor moves and broadcast are One way to route using the MIMD model is to use a
extremely efficient on the CAAPP: a 32-bit move takes simple greedy algorithm: First route each packet along
around 3ps while broadcast from any set of PEs to the the column to the correct row, then along the row to the
entire 512 x 512 array takes 351u.. correct column. Packets arriving at the correct rows are

One powerful addition that the CAAPP has over ordered in queues so that the ones that need to travel the
conventional associative processors is the coterie net- furthest are given priority. This algorithm takes 2n - 2
work, used to isolate the propagation of broadcast to steps, but requires queues of size 0(n). A randomized
specified regions. Each PE in the CAAPP controls a set routing algorithm due to (141 is an extension of greedy
of switches in four different directions (north, south, east, routing. The algorithm consists of three phases; random-
west) that enable the creation of electrically isolated ize packets within the columns, send packets to correct
groups of PEs sharing a local associative Some/None column along the row, and send packets to correct row
feedback circuit. These switches are set by loading the along the column. This algorithm will result in routing
corresponding bits of the mesh control register in each in - 3n steps with a queue size of O(log N) with over-
PE with the appropriate mask. Because each PE views whelming probability. [7] has developed a more complex
the mesh control register as local storage, coterie config- algorithm that is both optimal and uses constant size
urations can be loaded from masks stored in memory, or queues, although "it does not appear that the constant
can be based on data dependent calculations. Isolated bound on the resulting queue size will be practical for
groups, or coteries, of processors can then respond to moderate values of n (say, n < 100)."
globally broadcast instructions in a locally data depen- Permutation routing can always be accomplished by
dent fashion. For example, when a set of PEs executes sorting destination keys; currently this may be the best
a broadcast instruction, the receiving PEs will read the general-purpose on-line method for routing on the SIMD
OR of precisely those PEs within the same coterie, model. [13,11] use variations of bitonic sorting to sort a

One way the switches of the coterie network can be mesh into various stanidard orderings in 14n + o(n) rout-
set is so the columns or rows are isolated. Once this ing steps, which turns out to be a factor of 4.5 from
is done, the row or column "buses" can be arbitrarily optimal for any n. When off-line calculation is allowed,
segmented still further. The coterie network can thus better results can be achieved. [12] presents an algo-
emulate the mesh with reconfigurable buses [10], and rithm, that with O(log 2 N) preprocessing time, can route
the polymorphic-torus [8]. Another obvious use for the optimally the class of permutations that can be specified
coterie network is in finding and labeling connected corn- by permuting and complementing the bits in the PE ID.
ponents. Each PE tests its four neighbors and compares [1] presents an algorithm that with preprocessing can
the value with its own: if the values are equal, the PE route any permutation in 3n routing steps on a mesh
closes its coterie switch in that direction; if not equal, with wrap-around.
the switch is opened. Using a stindard leader election To determine the applicability of these routing al-
algorithm, a "inaster" PE from the newly formed corn- gorithms in terms of forming the basis for a general
punut it bdtwltL.d. Thc lcadcr broadcasts its unique ID LUIvbLmu..t, i uibt fklbt examine more closely exactly
to label the rest of the P~s in the component. what we are trying to accomplish. The routing primi-

tive should:

3 Routing on a Mesh * require minimal preprocessing;

Much work has been done on the problem of routing on a * be able to route permutations, as well as support
mesh. Both SIMD and MIMD models have been used: In intermediate combining of results in many-to-one
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routing; number of blocked packets in a channel, and would yield
* route sparse as well as dense patterns efficiently; a 6(N) algorithm. But by using the broadcast buses of

the coterie network communication can be accomplished

* be able to take advantage of regularities, but not be in n/50 machine cycles (the time it takes a broadcast

too susceptible to congestion; and signal to traverse the longest possible row bus), or on
the order of a microsecond for a 512 x 512 array. The

* perform close to optimally. details of the notification step are as follows: all con-

The MIMD algorithms can be eliminated immediately tiguous packets in X-channels form coteries or electri-

because of their need for queues or heaps; simulating dy- cally isolated islands. The blocked packets open their

namic structures on a SIMD processor with no indirect left switches so that only packets behind them will re-

addressing or index capability increases the routing com- ceive the message, and then broadcast "blocked bits" to
these coteries.

plexity by a factor on the ordei of the maximum queue

length or index offset. Since the MIMD algorithms all In the second algorithm, the four channel MORA,

require queues of length greater than 4.5, the SIMD sort- two more simulated channels, X2 and Y2, are added to

ing methods would be preferable. But SIMD sorting and route packets in the opposite direction of Xl and Y1

off-line routiTig also do not fulfill the need: they do not respectively. The advantage is that packets can now

extend well to combining, nor do they take advantage be routed by a shortest path, minimizing the distance

of sparse routing. More comparisons will be made later, packets must travel. The number of iterations should be

but first we will present a primitive that meets all of the cut roughly in half. The disadvantage of the four chan-

criteria stated above. nel MORA is that the overhead is slightly more than
doubled as there are now four ways that the X- and Y-
channels ::an interact, instead of one. In the rest of the

4 The ROUTE Primitive paper, the two channel version will be the default unless
the number of channels is explicitly mentioned.

The ROUTE primitive consists of three similar, but dis- The third algorithm, tile Coterie Greedy Routing Al-
tinct, algorithms which are selected dynamically through gorithm (CORA), again uses two channels. The CORA
the use of the ACU get-count command. Tihe basic idea differs from the MGRAs in that the cote.:e network will
of all three algorithms is to route greedily %,ithout file use be ust.d to transfer packets, rather than just status bits.
of queues. Taking wormhole routing for inspiration [6,3], The key difference is that here, rather than moving pack-
every PE simulates two channels, X and Y, that are cho- ets just one PE at a time, all of tile open space between
sen arbitrarily to run in directions parallel to the rows occupied PEs is traversed in a single iteration of the al-
and columns respectively. We will first present three goritl-m. The mechanism is to create coteries which have
routing algorithms, then the nethod they are selected, the property that the rightnost PE (bottommost if these
followed by a description of howv they havw been modified are Y-channeiks) contains a packet, while all other PEs in
to create a combine operation, and end the section with the coterie do not. The occupie, PE then broadcasts its
a randomized version of one of the algorithms, packet to the coterie, where it is read either by the desti-

The mesh greedy routing algorithm (MGRA) runs as nation or the furthest PE. Clearly the overhead per iter-
follows: A PE uses the nearet neighbot connections to ation is much higher for the CGRA than for the MGRA;
send a packet along the X-channel a di.tance of one PE exactly ho%% much will be discussed below.
per routing step, until the corekt X coordinate (column) Selection among the three algorithms to create the
is reached. At this point the P'E, moves the packet from unified ROUTE primitive it, effected through use of tihe
its X-charnel to its Y-channel. The packet then contin- get-count directive of the ACU. The CORA has much
ucs along the Y-channel until the destination is reached. higher overhead than the MGRAs, but is very effective
The X- and Y-moves are interleaved so that each oc if the route is sparse and packets can be sent long dis-
curs on every iteration of the algorithm. Packets travel tances during most iterations; therefore the CGRA will
in only one direction in each channel and wraparounid is be called if the density of PEs set,ding packets is low.
used, as in 14], so there will be no deadlock. If tile packet Similarly, the four-channel MORA is used when the max-
has reached the correc X coordinate but the Y-channel imum distance that any packet must travel is somewhat
at that PE is occupied, then the packet is "blocked", as less than the half the diameter of the torus. The den-
are all the other packets contiguously beiiind that packet sity and the maximum distance can both be calculated
in the X channel. Y-channels are never blocked, so over- in under 20 uicroseconds, or about one iteration of tihe
all progress is assured. The critical question in running MORA. ROUTE is tuned so dat the MGRA is the de-
this algorithm without queues is how to inform those fault; the more data depen.dent CORA and four channel
packets which are contiguously behind a blocked packet, MGRA are only selected if it is virtually certain there
that they too are blocked. In normal meshes, this notifi- will be a speed-up.
cation step would require n steps, the maximum possible
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A combine operation has been created by augment- would be possible using the full simulator, thereby re-
ing the routing algorithms as follows: Instead of simply ducing the standard deviation in the averages. Some of
moving the packets that have arrived at their destina- these experiments are now described.
tions from the Y-channel(s) to the output buffer, a bi-
nary operator is interposed. For example sum-combine How many iterations do the various algorithms need
adds the value in the packet to the value already in the to complete the route on random permutations, and
output buffer. Many-to-one routing is implicit in the how does this relate to the width of the torus?
combine operation; more congestion is therefore likely to
occur than in permutation routing. To deal with this sit- The MGeuA needed a number of iterations approx-
uation, intermediate combining at the point of collision imately equal to the diameter of the tors (2n); e.g
may optionally be executed. The cost is an increase in when n = 64 the average number of iterations was
overhead of an extra compare and arithmetic operation 134, when n = 256, the average number of iterations
for each cycle, but there are certainly situations where was 523. The four-channel M RA needcd slightly
intermediate combining is worthwhile. One example is more than half that many iterations. I all cases,
the degenerate case where the entire array is combined the standard deviation was less than 3. The per-forniance of the two channel CGRA was sublinear:
at one destination: the complexity of hc combine oper- the relation iter. = n" fits the curve well, but no
ation is reduced from O(N) to 0(n). therlyin i te as  fo und.

Some results from later in this paper are that the underlying structure was found.
MGRA routes random permutations in slightly more * How much speed-up does each algorithm achieve
than 2n iterations with very small standard deviation, when the number of packets to be routed in ran-
while on non-trivial permutations arising from specific dom permutations is reduced?
applications the number of iterations ranges from 2n to
3n iterations. It may be possible, however, that an ap- The performance of the MORAs remains roughly
plication exists where the worst case takes longer than the same as the density is decreased: there is still
3n, and for which a highly predictable completion time a high probability that some packet will need to
is required. In this case we can take advantage of the travel close to the maximum distance. The CORA
small variance of the MGRA on random permutations by achieves a significant speed-up because it takes ad-
first randomizing the input packets along one dimension vantage of the empty space between PEs. The nuin-
(as in [14]), and then routing to the destination. Since ber of iterations needed decreases very rapidly when
randomizing in one dimension takes n and random per- the density is less than 20%; the break-even point
mutations take about 2n routing steps with very small between the CGRA and the MORA occurs when
variance, this algorithm routes all permutations in 3n the density is around 10%. For a 512 x 512 array,
data moves with extremely high probability, fewer than 60 iterntions are required by the CORA,

whereas over 1000 are needed by the MORA.

5 Performance 9 How often is the most-blocked packet blocked during
random permutations? What is the average number

In order to predict the performance of the MGRA and of times that a packet is blocked?

CORA, variations of these algorithms were simulated at The average maximum number of times that any
two levels of granularity. The first is a coarse simula- packet is blocked during the running of the MORA
tion which disregards the number of time-steps needed is asymptotic to about 30. The average number of
to perform each iteration. The second is a complete as- total blocks for all packets is roughly linear with
sembly language implementation that was run on the the total number of packets; the average number of
IUA simulator [16]. blocks per packet stays under 1 for the range tested,

i.e. n < 512.

5.1 Coarse Simulation How does the MORA perform on particular permu-

The coarse simulation was used to discover relationships Iitions?
among the following parameters: the algorithm used, the The MORA was tested on numerous particular
number of iterations needed for completion, the width of permutations and some ba-;ic results are presented
a side of the torus (n), the number of channels, the den- above. The first table contains permutations of the
sity of the route (that is, the percent of the N PEs which type described in [12], that is, permutations "that
send a packet), and the number of times that individual can be specified by the permutation and comple-
packets were blocked. By disregarding the details of how menting of bits in a PE address." The same nota-
the PEs actually carry out the bit-serial operations, it tion is also used. Tie second table contains some
was possible to generate a larger number of trials than permutations that cannot be thus specified.
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Some PE ID "Bit" 1'ermatttionh The execution time of the broadcast instruction is
Name [ Formulation 'iters linear with respect to the diameter of the region in
Bit Reverse [0, 1,...,p< 2n which the message is being sent. On the CAAPP,
Unshuffle [p-2,p-3,...,O,p-1J < 2n each bit propagates 50 PEs per instruction cycle.
Shuffle [0,p-1,...,1] < 2n[ Therefore, while the broadcast instruction is techni-
Transpose [p/2-1,...,0,p-1,...,p/21 < 2a? cally O(v/n), in practice it requires at most 6 cycles
Shuffled Row-Major [p-1,p/2-1,...,p/2,0] < 3n per bit on a 256 x 256 array. To simplify timing
Bit Shuffle [p-lp-13,...,1,p-2,...] I0 < 3n comparisons between simulations on different sized
Vector Reverse [-(p-1),-(p-2),...,-0] < 2n arrays, it is assumed that all broadcast instructions
Random Bit [arbitrary orderings] < 3n require the worst case of 6 cycles per bit, regardless

with flipping [and arbitrary flippings] < 3n of the diameter.

S Global feedback between ACU and array is used toSme Otm tos determine whether the algorithms have completed
Name Iters. and to increase performance. At the end of every
Random 2n iteration, the ACU executes get-SOME/NONE op-
Reflection in X < 2n erations on the X- and Y-channels (each taking 2
Reflet'on in Y < 2n microseconds); if the X-channels are empty, then
S-akelike Rnw-Major Ordering = n they need no longer be simulated; if the Y-channels
Snekeiike Columu-M.jor Ordering < 2n are also empty, then the algorithm has finished.
90* * k rotatio:yi < 2n
450 + 900 * k < 3n Presented are average times in milliseconds for ran-
P.ord-red vectors = 2n dom permutation routes.

Trials were run for n = 4,8,16,...,256 on all partic- 2-channel MGRA
ular pr.rmutations. For the random permutations, number of bits width of torus time
from iOO (n = 256) permutations to many thou- 1 64 1.31
sands were run for each n value. 1 256 4.65

Whenever the value in the "Iters" column states 8 64 1.74
that less thpn 2n iterations are required to com- 8 256 6.29
plete the MORA, this indicates that no packets are 16 64 2.31
hlocked for any n test ed. For v-lues of = 2n itera- 16 256 8.42
tions, a small constant more than 2n was required,
as with Lihe random permutations mentioned above. The 4-channel MRA yielded results similar to the2-channel MGRA, but has the advantage that the times
The 450 rotation route was calculated by using the are proportional to the maximum distance that any
standard rotation matrix and is a special case as it is packet must travel, rather than to the diameter.
not a ppcimutation. The factors of 450 are the worst
cases of all rotations tes' --d (00 ... 3600 in in'zrements 4-channel MGRA
r 5e). number of bits maximum distance time

16 10 .50
5.2 Implementation and Timing 16 15 .72

Three varip!:ons of the greedy a!,orithm were imple- The CGRA is dependent both on the width of the
mented on the full CAAPP simuiator 1161, the ?AGRA, torus and the density, so results are given with respect to
the 4-channel MGR A, and the CGRA. Some implemen- both of these quantities. The last entry indicates that for
tation details are worth mentioning before timing is dis- very low densities, however, the expected time is roughly
cussed. independent of the torus width.

* The CAAPP is a hit-serial processor with a mem-
ory hierarchy: Each PE contains 320 bits of on- CGRA
chip memory, any of which can be transferred to a number of bits width of torus density time
nearest-neighbor PE in a single cycle, and 32K bits 16 64 10% 1.95
of off-ch;p memory. Therefore, execution times for 16 64 4% 1.41
the algorithm are linear in the number of bits in 16 256 10% 4.83
th message U? to 12U; for longer messages, the ex- 16 256 4% 2.81
ecution time per message length increases slightly. 16 < 300 < 5* 1 .74
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We compare these results to a machine with a ded- basic results obtained. First, for small rotations, the 4
icated routing network: The 256 x 256 version of the channel MORA was used and the number of iterations
Connection Machine II has running times of 500 micro- was small !or a 64 x 64 mesh the number of iterations
seconds for 32-bit permutations, and 80 micro-seconds requires f. 5, 10, 15, and 20 degrees is 10, 16, 20, and
for nearest neighbor permutations [9]. Therefore, the 27 respectively. Second, for rotations of 90, 180, and 270
CAAPP running the greedy routing algorithms on ran- degrees, the MORA does not block, and therefore less
dom permutations has running times from roughly equiv- than 2n iterations are required. Third, the worst case
alent to an order of magnitude slower than the CM-2. for the MGRA occurrs for angles of 45, 135, 225, and
When the CAAPP executes nearest neighbor permuta- 315, where tip to 3n iterations are needed.
tions, the running time is less than 2 microseconds for Ray Tracing. In lens design evaluation the problem
16 bits, or more than an order of magnitude faster than arises of determining the distribution in the focal plane
the CM-2. of rays passing through the lens from a point source. The

PEs represents a point both on the lens and in the image
plane. Each PE computes the path that a ray will take

6 Applications through "its" point on the lens and determines the ad-
dress in the image plane where that ray will strike. The
OAAPP then uses a sumn-conibine to route this informa-

In this section we will present some applications on the tion t in he rsu lt. n t c oe of ia ide a
CAAP fo whch iterrocssorcomuniatio plys ion and obtain tihe result. In the case of an ideal lens,

CAAPP for which interprocessor communication plays where all rays converge on one point, ROUTE, takes 2n

a significant role. This will give an idea of where the iterations hnermediate oinig Rn raesgn

ROUTE primitive is useful, where the nearest neighbor 140 to 150 iteratiois were needed on a 64 x 64 image.

moves are sufficient, and which algorithm of ROUTE was

used. One result of this presentation is that tihe results Hough Transform. One algorithm for performing the

from the previous section on random permutations ex- Hough transform on the CAAPP runs as follows: The

tend to particular cases; in all applications tried so far, input consisting of an image plane (X,Y), usually a bit

ROUTE terminates after at most 3n iterations. plane of thresholded edge pixels, and the iough plane

Window operations. Local thinning and the convolu- (p,O) are both mapped to the rows and columns, re-

tions used in differential edge detection are some of the spectively, of the mesh of PEs. For every 0 front 0

many applications that use communication between PEs to 180 degrees for I increments dO, cos(0) and sin(0)manyappicatonsthatusecomunictio beteenP~s are broadcast by the controller. Each PE which is oc-
and a well specified neighborhood or 'window'. It is these ced in the cotrolle m acu th p vau

sorts of operations that SMCCs perform extremely effi-

ciently using nearest neighbor moves, and that is also the p = X cos(O) + Y sin(0j) and then send a bit to the PE

best way to execute window operations on the CAAPI'. at (p,Oi), which adds it to the total already there. The
Hough transform can be viewed as a series of I column-

For example, a 3 x 3 Sobel operator can be executed, us- histogram operations, one for every 6j. Each column-
ing a standard optimization, in 6 nearest neighbor moves, histogram is executed in two steps; first a sum-combine
each taking only a few micro-seconds, operation is executed to get values from (X,Y) along the

FFT. The FFT actually has two distinct sections, the X axis to the correct p value, that is, to (p,Y). Then,
initial phase where data is combined, and the final phase since all values in the various (p,Y) will be going to the
where the results are routed back, or unscrambled. The same column, that is, the same 0, a row parallel prefix
first phase requires very dense long-distance communi- is executed in log n routing steps.
cation, as every PE in the array sends data 1, then 2, Region Characterization. (This example and those
then 4, ... up to n/2 PEs away in both dimensions. This from the next few sections do not indicate the way that
phase requires a total of 4n nearest neighbor moves. The these algorithms arc imhlemented on the IUA, but rather
unscramble phase uses the MORA. Packets are never show how ROUTE could be used on a processor with re-
blocked for diameters tested (n < 512) so the number of configurable buses but not coteries.) In order to decide
iterations is always less than 2ni. whether to merge regions it is necessary to collect, in a
Some Matrix Operations. Matrix transpose, and re- "master" PE of that region, information such as number
flection in the X and Y axes all used the MORA part of of points, number of border points, average and extremal
ROUTE. As in the FFT unscramble, these permutations spectral values, and other quantities. Characterization
are non-biocking and so require less thian 2n iterations. can be implemented using a simple leader election al-
Image Rotation. Although rotating an image is not gorithm (log n steps) to select a region master, and the
trivial because of aliasing problems, effective methods four channel MGRA with sum-combining. The number
can be constructed where most of the complexity con of iterations is very close to the maximum distance from
sists of moving packets to locations generated by the any point of a region to its master PE as most collisions
rotation matrix. Rotations about the center were tested are handled with intermediate combining.
in increments of 5 degrees on several diameters and three
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Region Merging. Assume a region merging algorithm, MORA iterations, although its use has not yet proved
with preliminary regions already selected. Assume fur- necessary. Perhaps just as important as performance,
ther that each region has elected a master PE which has ROUTE gives the programmer and language designer a
gathered information about its own region and has deter- unified construct to handle all interprocessor communi-
mined the leaders of the neighboring regions. It is then cation that cannot easily be coded with nearest-neighbor
necessary for the master PEs to communicate with all of moves.
the surrounding masters in order to determine whether A research problem that remains is a formal method
or not to merge. If a few thousand initial regions are for determining when to use nearest neighbor moves and
selected in a 256 x 256 image, then the density of coin- when to use ROUTE. This issue is tied to a basic ques-
municating PEs will be small and the CGRA efficient. tion of SIMD parallel processing, whether or not the
As merging progresses, the density will become smaller mapping of data to PEs should be transparent to the
and smaller and only a few iterations of the CGRA will programmer. In the primary CAAPP application of low-
be needed for communication, level machine vision, where the data often consist of pix-
Local Histogramming. Obviously global histogram- els corresponding directly with PEs, we much prefer to
ming can be implemented using sum-combine of the know how our data are mapped. Corollaries of knowing
MGRA. But in one segmentation algorithm [21, local the mapping are that nearest neighbor moves are easy to
histogramming is used to extract information about sub- conceptualize and implement, and that is a'cnost always
grids of an image, typically 32 x 32, and create regions always obvious when the nearest neighbor connections
on the basis of that information. Sum combine with the and when general routing should be used. Needless to
four channel MGRA can also be used for this procedure. say, we view this flexibility as a great advantage.
Convex Hull. On the CAAPP it is possible to find the One overall conclusion that can be drawn from this
convex hull of any number of sets of points simultane- work is that the coterie network extends the applications
ously, as long as they are all members of the same region. the CAAPP can handle efficiently beyond SMCCs and
A variation on the Graham scan [51 can be implemented into the range of SIMD machines with dedicated general
which requires communication between a master PE and routing networks. Obviously a dedicated routing net-
hull elements. In most cases, the density of hull points to work will bettzr handle some classes of communication,
total points is small, so that the CGRA will be efficient. the CM 11 routes random dense permutations more than

The applications just presented represent only a ten times faster than ROUTE on the CAAPP does. But
small fraction of the possible uses for the ROUTE primi- conversely, sparse and nearby permutations are handled
tLive, but we emphasize three points. First, in dense, long with similar speed, and most importantly, no sacrifice
distance, permutations the MORA usually terminates in is made in the areas where the CAAPP excels: near-
2n iterations. Second, in no case (lid the MGRA take est neighbor and broadcast communication. Therefore,
more than 3n iterations. And third, many applications in applications domains such as low-level machine vision
have been found which use sparse or dense, nearby coin- where most of the inter-PE communication is sparse or
munication, and for which therefore the CGRA and four involves neighborhoods, the cost of a dedicated routing
channel MGRA are preferable. Times for these algo- network may not be justified if you have coteries.
rithms are highly data dependent, but will always be Acknowledgments
less than those for the MGRA on the same application;
often the times are substantially better. We would like to thank Amy Rosenberg, Jim Burrill,
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A Parallel Algorithm for List Ranking Image Curves
in O(log N) Time*

Ling Tony Chen and Larry S. Davis
Computer Vision Laboratory, Center for Automation Research

University of Maryland, College Park, MD 20742-3411

Abstract vertices (i.e., edge pixels having more than two edge pixel
neighbors) to obtain a set of simply connected contours

This paper describes an algorithm for ranking (some open and some closed). Alternatively, an image
the pixels on a curve in O(log N) time using a may be segmented based on pixel spectral properties (the
GROW PRAM model. The algorithm accom- simplest example is segmentation by thresholding) and

plishes this with N 2 processors for an N x N im- the boundaries of the components of the segmentation
age. After applying such an algorithm to an im- tebudre ftecmoet ftesgetto
age. Afeare aplyin such anve athepixelm tan ime may be subsequently analyzed. In any event, we would
age, we are able to move the pixels from a curve like to design practical algorithms for computing repre-
into processors having consecutive addresses. sentations for such contours that are useful for a variety

chines like the Connection Machine because we of matching procedures (stereo, object recognition, etc.).
can subsequently apply many algorithms to the Our target machine for implementation is a 16K pro-
curve (such as piecewise linear approximation cessor Connection Machine II [Hillis, 1985]. The Con-
algorithms) using powerful segmented scan op- nection Machine is a hypercube connected massively
erations (i.e. parallel prefix operations). The parallel SIMD machine; an important advantage of the
algorithm was implemented on the Connection hypercube over the more common mesh network (e.g.,
Machine, and various performance tests were MPP [Batcher, 1980], DAP [Reddaway, 1973]) is that
conducted. one can efficiently compute parallel prefix, or scan, op-

erations using the hypercube network. In Section 4, we
describe scan operations and explain how they can be

I Introduction used to efficiently compute a piecewise approximation of
This paper considers problems associated with the effi- a contour.
cient processing of image contours using hypercube con- However, such scan operations can only be applied to
nected massively parallel computers. While a signifi- a monotonic sequence of processor addre;ses. Since a
cant amount of research has been devoted to the direct contour can wind freely through an image, it is not gen-
processing of images (e.g., convolutions, histograming erally the case that the sequence of processor addresses
and more general parameter space clustering algorithms, associated with the pixels on a contour will change mono-
stereo matching, time varying image analysis, etc.), com- tonically as the coatour is traversed. In Section 2 of this
paratively little attention has been paid to the design and paper we present an efficient algorithm for ranking the
development of algorithms for processing contours. Al- pixels on a contour. Once the pixels are ranked, the
though parallel algorithms have been developed for rela- contour can be movp i to a new set of processors who
tively simple tasks such as feature extraction (jerimeter addresses will form .onotonic sequence (by simply
or area enclosed by a closed contour), there lid been moving the ith contour element to processor i). The al-
little practical experience with such algorithmb and, fur- gorithm that we present requires log N steps (where N is
thermore, massively parallel algorithms have not been the length of the contour) on a CRCW PRAM. Note that
developed for more complicated tasks such as piecewise unlike the list ranking algorithm originally presented in
approximation or the determination of geometric rela- Wyllie [Wyllie, 1979]. in which each element, in the list
tions between different contours extracted from an image to be ranked has only a single pointer, we must rank
or image sequence. lists with two pointers (one to each neighbor on the con-

Contours might be marked in an image in a variety of tour except for the end points of open contours) and
ways. For example, one may apply an edge detection op- no preferred direction. (If the contours are detected by
erator to an image, and then postprocess the binary edge a sequential border following algorithm, or if the "in-
map by a combination of thinning and segmentation at side" of a contour can be determined based on contrast,

*The support of the Defense Advanced Research Projects then a unique direction, say clockwise, can be assigned
Agency (ARPA Order No. 6350) and the U.S. Army Engi- to contour elements. The algorithms described by Hung
neer Topographic Laboratories under Contract DAOA76-88- [Hung, 1988] and Wu [Wu et al., 1989] depend on hav-
C-0008 is gratefully acknowledged. ing such information available. Generally, however, this
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S 3 4 a c e g j k m o3, 4 a b c d e f g h i i k I m n o p

D(c) = 0 D(b) = 3 D(a)= 4
P(C) = C P(b) = c P(a) = b1Figure 2: Example of ptr map after initial assignment

a b c d e f g h i j k Imn o p

Figure 3: Figure 2 after doubling and adjustments
C b a

D(c)= D(c)+ D(c) 0 D(b)= D(b)+ D(c)= 3 D(a)= D(a)+ D(b)= 7
P(C) = P(P(C)) = C P(b) = P(P(b)) = c P(a) = P(P(a)) = C P(i) to j and setting D(i) to the distance between pixels

i and j. There will always be a straightforward method
Figure 1: Distance doubling of calculating this distance at the time of hooking.

2.2 Algorithm Outline

is not the case, and some way must be found to break Initially, each curve pixel will store the addresses of the
the symmetry without paying a severe computational two pixels adjacent to it along the curve. Each pixel arbi-
penalty.). The proof of the asymptotic properties of the trarily choses one of its neighbors and places its address
algorithm is provided in Section 3. In Section 4 we give in P. We force endpoints to point to themselves, and
a few examples of using the scan operation on the new we also force all pixels adjacent to endpoints to point to
mapping. Section 5 discusses the actual implementation that endpoint. An example of what the pointers P on a
and compares the speed of the algorithm with respect to curve might look like at this stage is shown in Figure 2.
a linear time algorithm. We can now regard each curve as consisting of several

segments by breaking the curve at gaps between pixels.
2 The Algorithm Gaps occur between pixels where the pixel on the left

of the gap is pointing left and the pixel on the right is
In this section, an O(log N) CRCW PRAM algorithm for pointing right.
ranking pixels on a thinned curve is given. In Section In each segment (except for the segments containing
2.1 we discuss some basic terminology and operations. endpoints) the leftmost pixel will always point right, and
Section 2.2 contains an outline of the algorithm, while the rightmost pixel will always point left. In fact, exam-
Section 2.3 describes the algorithm in detail. Finally, ining the pixels from left to right, we encounter a single
in Section 2.4 we describe the modifications needed to subsequence of pixels pointing right, followed by a sin-
apply the algorithm to closed curves. gle subsequence of pixels pointing left. A two-pixel loop

occurs where these two subsequences meet.
2.1 Basics Our goal is to convert each segment into either one or
In the following discussion, we will use the term pixel two segments, such that all pointers in a segment point in
and pixel address to represent the processor and proces- the same direction, and the last pixel along this direction
sor address (whether virtual or physical) that holds that forms a self-loop (i.e. points to itself). The two segments
pixel. The algorithm utilizes two variables for each pixel. containing the endpoints are examples of segments that
One is the variable P which is a pointer to another pixel need no modification.
on the curve, and the other, D, stores the distance be- We accomplish this by first doubling each segment,
tween pixel i and pixel P(i) along the curve. We shall followed by some local pointer adjustments. The result
use the notation X(i) to represent the variable X in pixel of applying the doubling and adjustments to Figure 2 is
i. shown in Figure 3. The segment originally containing

The algorithm can be applied to either 4- or 8- pixels c through g has been broken into two segments,
connected curves. Throughout the description of the one containing pixels c and d, and the other contain-
algorithm we will discuss and display curves as if they ing pixels e, f and g. All other segments in Figure 2
were straight horizontal lines, in order to refer unam- correspond to single segments in Figure 3.
biguously to the left or right neighbors of a pixel. The Call the end of the segment with tile self-loop the head
image curves can be arbitrarily complicated, although of the segment and the other end the tail Furthermore,
they may not self-intersect, call the pixel at the head of the segment the head pixel,

In our algorithm we will frequently use the term dis- and the pixel at the tail end the tail pixel All segments
tance doubling or simply doubling. Doubling is accom- with the head on the left are called left segments, and
plished by performing D(i) - D(i) + D(P(i)) followed those with the head on the right are called right seg-
by P(i) ,- P(P(i)). The effects of a doubling operation mcnts. So for example, starting from the left, the curve
are shown in Figure 1. in Figure 3 would contain segments in the following or-

Throughout the algorithm we will also talk about der: left, right, right, left, right, left, right.
hooking pixel i to pixel j. This involves simply changing A segment is called fully collapsed (or simply collapsed)
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Figure 5: A tail-tail merge

if all the pixels in the segment point directly to its head After Step 2: -

pixel. A segment can be easily collapsed by repeatedly
doubling it. Our goal is to merge the segments together,
such that at tle end of the algorithm we have only one
segment. At that point, we simply collapse that segment After Step 3:
by doubling. f -

Two types of merging are needed to guarantee that
the segments are all merged in O(log N) time. The two
types are head-tail merge and tail-tail merge. Head-tail Figure 7: The scenarios of pointer adjustment
merging, as shown in Figure 4, merges left segments with
left segments and right segments with right segments. This initial doubling transforms all two-pixel loops (in
Figure 4 shows an example of two left segments being the middle of the original segments) into a pair of self-
merged together. Tail-tail merging, (restricted to fully looping pixels. The result of this doubling on the point-
collapsed segments) on the other hand, merges left seg- ers in Figure 2 is shown in Figure 6.
merts with right segments, provided that the left seg- This initial doubling can result in three types of degen-
ment is to the left of the right segment. This is illus- erate segments, depending on whether there were point-trated in Figure 5.

Basaely, both types of merging simply hook the head ers to the two-pixel loop of each segment from two, oneoonsegment bot tehed of herg s o s e e. f or neither side of the loop. These three scenarios andof one segment to the head of the other segment. If the effects of the initial doubling on them is illustratedthis merging process is followed by a doubling, the two in Figure 7. In scenario 1, the doubling of Step 2 pro-
segments will become one and all pixels in the merged duces two segments that overlap with each other at the
segment will point in the same direction. head pixels. In scenario 2, an extra self-loop occurs di-

2.3 Detailed Algorithm rectly before the head pixel of the segment. In scenario 3,
the result of doubling is two isolated self-loops. TheseThe algorithm contains six steps, described below for two self-loops are unacceptable because for the merging

pixel i. The code is executed in parallel by all active process to work correctly each segment must have both
processors. The algorithm begins by initializing the van- distinct head and and tail pixels.
ables P and D. The third step of the algorithm involves manipulating
Step 1 pointers of self-loops and their neighbors to realize the

P(i) d= Maximum address of local structurdl transformations illustrated in Figure 7.
the two neighbors of i Details of how these transforms are accomplished are

if (one of the neighbors of i is an endpoint) described in Appendix A.
P(i) 4= address of that endpoint Step 3

D(i) 4-- 1 Pointer adjustment to transform each
if (i is an endpoint) P(i) 4 i; D(i) 4- 0 curve into a sequence of non-overlapping,
After Step 1, the pointer map will be similar to the non-degenerate unidirectional segments.

one shown in Figure 2. Step 3 transforms each curve into a list of segments
Step 2 with each segment having a self-loop at one end, and

Perform a distance doubling all pixels in the segment pointing in the direction of the
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self-loop. Steps 4 through 6 repeatedly apply merging
and doubling to this list, finally transforming it into a
single fully collapsed segment.

Note that after Step 3 not all segments are fully col-
lapsed. Throughout the algorithm we will always have
a combination of collapsed and non-collapsed segments.
The non-collapsed segments benefit from the doubling Before merging
in each iteration, while the collapsed segments benefit
from the merging. A segment is guaranteed to be fully
collapsed once its tail pixel points to its head pixel.

A tail-tail merge can only be performed on two fully 2+2 +1 = 5
collapsed segments. The result of this type of merge fol- 2

lowed by a doubling results in a single collapsed segment
that could be either a left or right segment. On the
other hand, a head-tail merge can occur as long as the
tail segment (the segment whose tail is adjacent to the 2

head of the other) is fully collapsed, The head segment,
on the other hand, need not be collapsed. Unlike the After merging
tail-tail merge, the head-tail merge could merge several
segments simultaneously in one iteration. For example, a I
sequence of N collapsed left segments will be merged into
a single non-collapsed left segment. While one might be 5

tempted to collapse this segment at this point by repeat- 5

edly doubling log N times, this would lead to a worst- 5 -1 = 4

case O(log2 N) algorithm. It is sufficient to perform a 5-2=3
single doubling at this point. The alternation of merging 52=

and doubling guarantees that overall a sufficient number 2

of doublings is performed to collapse the entire curve.
We next describe the tail-tail merge and head-tail "

merge in more detail. Step 4 performs a tail-tail merge,
while Step 5 performs a head-tail merge. Finally, Step 6
is a single doubling. Since the tail-tail merge in Step 4 After doubling
reverses the direction of one segment, the doubling algo-
rithm in Step 6 must be suitably modified for this case.
This is explained below. Figure 8: Tail-tail merge with distance doubling

repeat
Step 4 /* Tail-tail merge */ the processor address is used to break the symmetry and

if ((i is the tail pixel of decide which segment reverses its direction. The segment
a fully collapsed segment si) and whose head has the smallest address reverses its direction

(one of i's neighbor j is a tail pixel and points to the head of the other segment. When per-
of a second collapsed segment S2) and forming this address comparison, there is one exception

(the head pixel address of S2 is larger to consider. If the head of one of the segments (say S2) is
than the head pixel address sl)) an endpoint, while the head of the other (say sl) is not,
hook the head pixel of sl we must reverse sl. This guarantees that throughout

Step 5 /* Head-tail merge */ the algorithm the two endpoints will remain head pixels,
if ((i is the pixel address of and that each curve will always have a left segment as its

a head pixel of segment sl) and leftmost segment, and a right segment as its rightmost
(s, did not participate in segment. At the very last iteration the algorithm will

the tail-tail merge of Step 4) and perform a final tail-tail merge. At the beginning of this
(one of i's neighbor is a tail pixel iteration, the curve will only contain one left segment

of a different collapsed segment S2)) (on the left) and one right segment (on the right). The
hook i onto the head pixel of S2 merge will transform these two segments into either one

Step 6 left or one right segment, depending upon whether the
Perform one doubling left or right endpoint has the larger pixel address.

until (no P(i) changes in the iteration); Another point to note is that throughout the algo-

Note, that in Step 4, since s, is collapsed P(i) points rithm we always modify the distance variable D when-
directly to the head of sl. Similarly, P(j) points directly ever we modify the pointer variable P. During a tail-
to the head of 82. It therefore requires no traversal of tail merge however, the direction of one of the segments
either sl or S2 to hook the head of si to the head of is reversed and the distance doubling must be modified
s2. Appendix A contains a more complete description of to yield the correct distance in the reversed segment.
Steps 4 and 5. Also, note that during the tail-tail merge, Specifically, if k is the head of sl (the reversed segment)
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then we first set D(k) to 11 + 12 + 1 (where l4 is the length Since we process all curves in an image in parallel, the
of si) during the merge, and then the distance doubling number of iterations needed to process an image will be
involves simply computing D(k) - D(r) for each pixel r proportional to the logarithm of the longest curve. For
in Sl. This is illustrated in Figure 8. an N x N image the longest possible curve has O(N 2)

One final point is that the repeat loop of Step 4, 5, pixels; thus this theorem proves that our algorithm takes
and 6 terminates when all P(i)'s don't change during the O(log N) time.
iteration. Since this test must be carried out in constant We must first establish some definitions and lemmas
time, a concurrent write in needed at this point. This is before we can prove the theorem.
the only place in the algorithm that a concurrent write
is needed. DEFINITION: The length of a segment is the maximum

number of pointer jumps required to get from any pixel
2.4 Closed Curves in the segment to the head pixel.

The algorithm described above must be modified to op-
erate on closed curves. The modification is simple, and LEMMA 3.1 Distance doubling transforms a segment of
involves adding the following step between Steps 4 and length n to a segment of length [1l.
5.

PROOF: The proof is trivial; just separately consider the
Step 4.5 /* Extra head-tail merge */ cases where the length of the segment is odd or even. 3

if ((i is the pixel address of
a head pixel of segment sl) and

(s, did not participate in DEFINITION: A segment has the Tail Pixel Farthest
the tail-tail merge of Step 4) and (TPF) property (or is a TPF segment) if the number of

(one of i's neighbors is a tail pixel jumps from the tail pixel to the head pixel is equal to
of a different collapsed segment s2) and the length of the segment.

(the head pixel address of S2

is larger than i)) It should be clear that a fully collapsed segment is aTPF segment, since the length of the segment is one,
Basically, this extra step is just a head-tail merge in which is equal to the number of pointer jumps from the

which hooking occurs only if s2's head pixel address is tail pixel to the head pixel.
larger than i (i.e. we only hook smaller heads onto larger LEMMA 3.2 Throughout the repeat loop of Steps 4, 5,
heads). and 6, all segments are TPF segments at all times, ex-

The difficulty with closed curves is that once a cy- cept that segments involved in a tail-tail merge temporar-
cle is introduced into the curve, doubling will never re- ily are not TPF between Steps 4 and 6 of the iteration
solve it, and the repeat loop of Steps 4 through 6 will during which they are merged.
never terminate. Note that in the initial pointer assign-
ment of Step 1, we do not arbitrarily choose a neighbor. PROOF: The fact that the TPF property is initially true
We choose the neighbor with maximum address. This after Step 3 for all segments is trivial.
guarantees that we don't create a cycle to begin with. Assume that in Step 4 a tail-tail merge occurs between
Throughout the algorithm, no cycles can be introduced two segments sl and S2, and that the head of sl was mod-
anywhere except for the head-tail merge in Step 5. Con- ified to point to the head of s 2 ; call the merged segment
sider a closed curve containing two or more segments. s'. Now s' is not a TPF segment because the pixels in s,
If all the heads in the curve are pointing in the same now need two pointer jumps (one to the head of sl, the
direction, a head-tail merge would occur between every second from the head of sI to the head of s2) to reach the
adjacent pair of segments, and a cycle will be introduced head of the combined segment s', while the tail pixel of
after the merge. By adding Step 4.5, the above condi- s' (originally the head pixel of sl) needs only one jump
tion will no longer occur. This is because in Step 4.5 to reach the head. Because all segments involved in a
at least one pair of segments in the ring (say s, and s2 ) tail-tail merge do not participate in a head-tail merge,
will be merged together, and hence in Step 5 the seg- none of these segments are further modified in Step 5.
ment right before si will no longer be able to hook onto Note that before Step 4, both s, and s 2 were TPF seg-
si because s, has merged with S2 and is non-collapsed ments and hence both are of length one (since their tail
at this moment. The final result is that no cycle is in- pixels point to there head pixels), thus making the com-
troduced in either Steps 4.5 or 5, and hence no cycle will bined segment after Step 4 have length two. Hence after
be introduced throughout the algorithm. Step 6 the length of the combined segment must be one,

which means that s' is a TPF segment.
3 CIn Step 5 (head-tail merge), we only hook the head of

Complexity Analysis sl onto the head of S2 if s2's tail pixel points to its head
The main result of this section is: pixel. The only way that the resulting segment could fail

to be a TPF segment after this merge is that the number
THEOREM 3.1 For a curve containing N pixels, the of pointer jumps from a pixel in segment S2 to the head of
number of :terations of Step 4, 5, and 6 needed by the S2 is greater than the length of s, plus 1. However, since
algorithm will be at most logi Ni + 1 both s, and 52 were originally TPF segments, S2 must
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have been fully collapsed, thus making it impossible for both fully collapsed, these two segments will be merged
the above case to occur. in Step 5, and the property that all segments after Step 5

It is clear that Step 6 (doubling) will not change a have length at least 2 will hold. The proof from the pre-
TPF segment into a non-TPF one; thus it should be vious lemma can then be employed, thus making the
clear that the TPF condition will be always true for all upper limit on the final length LLJ. If on the other
segments, except for the case of the tail-tail merge men- hand, the rightmost (leftmost) segment is fully collapsed,
tioned above. 0 but the second from the right (left) is not, then we can

apply the previous lemma to all the segments in the se-
quence except for the rightmost one, thus making the

DEFINITION: The length of a list of segments, or a com- upper bound on the final length LZ(L - 1)J + 1. Since
plete curve, is the sum of the lengths of its constituent L(L - 1)J -- 1 is always larger than L[LJ, it is the final
segments. upper bound. 3

LEMMA 3.3 When a head-tail merge merges a sequence If we break each list of segments into several sequences
of left (right) segments into one left (right) segment, the at points where two heads meet (i.e. where a right seg-
length of the new segment is the sum of the lengths of ment meets a left segment and the left segment is on
the individual segments. the right), each sequence, starting from left to right, will

contain a series of left segments followed by a series of
PROOF: If a head-tail merge of two segments s, and right segments.
S2 occurs, and the head of si is hooked onto the head
of S2, then because of the TPF requirements, S2 must DEFINITION: A maximal sequence (from left to right)
have been fully collapsed and hence had length 1. The of left segments followed by a maximal sequence of right
length of the combined segment is now length(si) plus segments is called a left-right sequence.
one additional pointer jump from the head of s, to the
head of s2, which is length(s 1 ) + 1. This is clearly equal
to length(si) + length(s 2). By induction, we can easily LEMMA 3.6 If the length of a left-right sequence is L be-
show that the Lemma holds when a string of head-tail fore Step 4, then its length after Step 6 is at most [4LJ.
merges occur. 0 PROOF: First consider the case in which no tail-tail

merge occurred in Step 4 for this left-right sequence.
LEMMA 3.4 If the length of a sequence of adjacent left This could happen if either the rightmost left segment or
(right) segments is L before Step 5, and the rightmost the leftmost right segment is not fully collapsed. With-
(leftmost) segment of the sequence is not fully collapsed, out loss of generality, let us assume that the rightmost
then the length of the sequence after Step 6 is at most left segment is not fully collapsed. Let the length of the

L[LJ. sequence of left segments be 1, and the length of the se-

PROOF: Because every segment of length 1 (i.e. a col- quence of right segments be r, thus making L = I + r.

lapsed segment) has a neighboring segment to its right By applying Lemma 3.4 to the sequence of left segments
laeft) theygmiben m d a into larger segments in Step 5. and Lemma 3.5 to the sequence of right segments, the
(left), they will be merged ant ll segments in te 5. upper bound on the length of this left-right sequence
Because of this, and Lemma 3.3, all segments in the se-1). By comparing
quence will have length at least 2 after Step 5. After a L2J+(Z( ) 1) with I + r, wecnsee that the
the doubling of Step 6, each segment of length n will be [3lJ + ([ (r - 1)J + we can
shortened into a segment of length [21. Since t, > 2, highest ratio is 2 and it occurs when I = 3 and r = 1.
the worst case occurs when n = 3 and the resulting seg- Furthermore, we can check that L2LJ is the upper bound
ment has length 2. If all the segments after Step 5 were for all cases of I and r by considering the nine cases were
of length 3, and the total number of segments were m, 1 is 3m, 3m + 1, and 3m + 2, and r is 3n, 3n + 1, and
then L = 3m and the final length of the sequence would 3n + 2.
be 2m, which is equal to 1ZLJ. It is tedious but easy to Now consider the case in which a tail-tail merge did
prove that for all other cases, LRLJ is an upper bound occur between the rightmost left segment and the left-
on the final length of the sequence. 0 most right segment. Because of the TPF property, these

two segments were originally fully collapsed, and hence
after Step 6 the final combined segment will be of length

LEMMA 3.5 If the length of a sequence of adjacent left 1. Excluding the two segments involved in the tail-tail
(right) segments is L before Step 5, and the rightmost merge, assume the length of all the other left segments
(leftmost) segment of the sequence is fully collapsed then is 1, and the length of all the nther right segments is r,
the length of the sequence after Step 6 is at most [}(L - hence making L = 1 + 2 + r. By applying Lemma 3.5
1)J + 1. on both sequences of left and right segments, the up-

PROOF: Because we no longer can assume that all seg- per bound on the length of this left-right sequence after

ments of length 1 will have an adjacent segment to the Step 6 is (L(l - 1)J + 1) + 1 + (Z(r - 1)] + 1). By

right (left) (because the rightmost (leftmost) segment comparing ([Z(l - 1)J + 1) + 1 + ([Z(r - 1)J + 1) with

now has length 1), we cannot use the previous proof. l+2+r, we can see that the highest ratio is also a2 and it
However, if the two rightmost (leftmost) segments are occurs when I = 1 and r = 1. Furthermore, by checking
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the same nine cases we can again see that 1QLJ is also 4. I now contains a unique index number for each ac-
the upper bound for all cases of I and r. 4 0 tive pixel. Now all pixels can write information

about themselves (such as x, y coordinates) to a
unique processor, and all pixels of the same curve

LEMMA 3.7 If the length of a curve is L before Step 4, are guaranteed to be stored in monotone contiguous
then its length after Step 6 is at most L244 processors.

PROOF: Since each curve is just a list of left- After packing all curve pixels into contiguous pro-
right sequences, Lemma 3.6 immediately implies this cessors, we can more easily manipulate them by using
Lemma. 0 segmented-scan operations. In Section 4.1 we briefly de-

scribe the scan and segmented-scan operations, while in
The proof of Theorem 3.1 is quite straightforward at Section 4.2 and 4.3 we show two examples of operating

this point: on curves using scan operations.

THEOREM 3.1 For a curve containing N pixels, the 4.1 The Scan Operation
number of iterations of Step 4, 5, and 6 needed by the The scan operation [Kruskal et al., 1985, Ladner and Fis-
algorithm will be at most [logj NJ + 1 cher, 1980, Little et al., 1989, Blelloch, 19881 takes a bi-

PROOF: A curve with N pixels will result in a list of seg- nary associative operator ED, and a list [ao, al,..., an-,]
ments with length less than or equal to N after Steps 1, of n elements, and returns the list [ao, (aoe9ai),... (ao E)
2, and 3. By Lemma 3.7, after k iterations of Step 4, 5, al (D ... ( a.-l)]. Examples of binary associative oper-

and 6, a curve of original length N should have length ators frequently used are +, maximum, minimum, and,
k or, and first (first returns the first of its two arguments).

at most ( )N. Hence after at most 'log, NJ iterations We will henceforth call these scan operations +-scan,
the length of the curve will be reduced to 1 (which means max-scan, min-scan, and-scan, or-scan, and first-scan.
that the entire list has been fully merged and collapsed). Some examples are shown below:

One more iteration in which nothing is changed is needed A - [ 4 3 6 2 6 8 1 9 ]
so that the repeat loop terminates. Hence the maximal +-scan(A) = [ 4 7 13 15 21 29 30 39 ]
number of iterations needed is [logj NJ + 1. o max-scan(A) - E 4 4 6 6 6 8 8 9 )

first-scan(A) - [ 4 4 4 4 4 4 4 4 )

The above illustrations are inclusive scans. For each
4 Advantages of Remapping type of scan, there will also be exclusive scans, where the

element at position i is not included in the scan result

Once a curve has been list ranked, we can efficiently at position i. And there will also be reversed versions of
compute many properties of the curve. The most simple all the scan operations, where the scan starts from the
example is the length of the curve. Prior to list rank- end of the list. Below are some examples of +-scan:

ing, it is not clear that the length can be determined in A - 4 3 6 2 6 8 1 9 J
logarithmic time. A curve's length is a byproduct of our inc +-scan(A) - [ 4 7 13 15 21 29 30 39 J

list ranking algorithm, because this length is simply the exc +-scan(A) - [ 0 4 7 13 15 21 29 30 ]

value of D+ 1 in the curve's tail pixel at the termination inc,rev +s(A) - [39 35 32 26 24 18 10 9 3

of the algorithm. A pixel can simply test if it is a tail exc,rev +s(A) - [ 35 32 26 24 18 10 9 0 1

pixel by checking that it is an endpoint and that it is not Finally there are segmented versions of all the above

a self-loop (tests on closed curves are more complicated), scans. In segmented scans, the list is partitioned into

However, the principal advantage of the list ranking several segments based on a segment-flag. In forward

algorithm is that we can now pack the curve pixels into a scans, a True segment-flag marks the beginning of a new
stream of monotone contiguous processors. This packing segment, while in a reverse scan, a True segment-flag

can be easily achieved simultaneously by all image curves marks the end of segment. Examples of segmented scans

as follows: are shown below:

1. Each tail pixel writes D + 1 into the head pixel of Segment-flags , [ T F T F F T F I

its curve. The tail pixel locates this head pixel by A , C 4 3 6 2 8 1 9 1
pointer P. Assume that this value D + 1 (which is inc +-scan(A) = E 4 7 1 [ 6 8 16 J[ 1 10 1exc +-scan(A) = 0 4)] 0 6 8J] 0 1)]
the length of the curve) is stored in the variable L inc rev +s(A) 0 7 3 0 6 8 1[ 0 9 J

inc,rev +s(A) ,,[7 3 ][ 16 10 8 1[ 10 9 ]

in the head pixel. exc,rev +s(A) , C 3 0 J[ 10 8 0 J[ 9 0 J

2. The head pixels of all the curves participate in a Scan operations are efficiently implemented on hyper-
scan operation that calculates the prefix sum of cube connected machines. By letting the head of each
the variable L. An exclusive scan operation is per- transformed curve set its Segment-flag to True, we can
formed such that the sum in head pixel i does not use segmented scan operations to efficiently compute
include L(i) itself. Assume the prefix sum is stored many useful properties and representations of the curves.
in variable S. We provide two examples in the following subsections.

3. All pixels now perform a concurrent read from their
head pixels, to obtain the value of S, and add it to 4.2 Calculating Least Square Fit Lines

there own local D value. Assume the result is stored Calculating a least square fit line for curves is a
in I. very common task, and can be very easily carried
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out in our new mapping. For a sequence of points Curve OlogN ) algI O(N) at$
(o, yo), (xi, Yi),... (x, y), the least square fit line is Length t(ms) I iterI t(ms) iter
simply 64 193 5 605 64

n n n n 128 201 5 1219 128
(Z E XiYi - X Ziy i2)z+ 256 244 6 2430 256
i=o i=o i=0 i=O 512 262 6 4859 512
n n n n 1024 334 7 9696 1024

(E i x iYi - Eyi F zi 2)Y+ 2048 487 8 19410 2048
i=o i=o i=o i=o 4096 715 8 38827 4096

n n n 2

( Xi2E Yi 2 
-(E XiYi) ) = 0 Table 1: Our algorithm verses linear time algorithm

i=0 i=0 i=0

The coefficients of the line can be easily computed by
the first processor of each segment once this processor 8. Processor m1 sets its segment-flag to True, thushas collected the values of o, oYi, ? 2 splitting curve segment i for the next iteration.has collected th vaue ofF~ i i 10 Xi

i=0 yi 2 , and E'=o xiyi. These values can be easily ob- 9. Steps 1 through 9 are repeated.
tained by doing a reverse inclusive +-scan on the values
X, y, X2, y2, and xy respectively. 5 Implementation and Results

4.3 Piecewise Linear Approximations of All of the above algorithms were implemented on the
Curves Connection Machine [Hillis, 1985]. The CM is a hyper-

Ramer [Ramer, 1975] devised a method of finding piece- cube connected massively parallel SIMD computer, with
wise linear approximations of curves, by breaking curves between 16k and 64k 1-bit processors. Our system has
at points that are farthest away from the line that 16k processors. Each processor has 64k bits of local
connects the two endpoints of the curve. By repeat- memory. The CM system provides two forms of com-
edly applying this curve breaking method until all pix- munication between processing units. The router, which
els of each curve are within a threshold distance from provides the more general communication mechanism,
the line connecting the endpoints, we can obtain a allows any processor to communicate with any other pro-
good piecewise linear approximation. Many more piece- cessor, through the hypercube network, making the CM
wise approximation algorithms are described by Pavlidis simulate a CRCW PRAM machine. The NEWS grid
[Pavlidis, 1977]. provides 2-D mesh communication, in which each pro-

Ramer's algorithm can be easily implemented on our cessor can communicate with its 4-connected neighbors.
monotone contiguous mapping between pixels and pro- NEWS communication is much faster than the general
cessors. The algorithm involves the following steps: router.

Instead of forcing data to fit the machine size, the CM
1. Perform a reverse first-scan on the x and y coordi- software supports the definition of virtual processors. For

nates, so that the first processor of each curve seg- example, when processing a 64k pixel image, with only
ment has the x, y coordinates of the two endpoints 16k processors on the CM, one can regard the machine
of the segment. as containing 64k virtual processors, with each physical

2. The first processor of each curve calculates the coef- processor simulating the work of four virtual processors.
ficients of the line that passes through its endpoints. The term VP ratio denotes the ratio o' the number of

virtual processors to the number of physical processors.3. A forward first-scan is performed to broadcast the Tal litthreusobindyrnigte

coefficients of this line to all pixels in this curve. Ol N list rg lth one CM r dfe
O(logN) list ranking algorithm on the CM for differ-

4. All pixels calculate the distance between themselves ent curve lengths. The VP ratio was 8 for all these
and the line joining the endpoints, tests. As a comparison, we also implemented a linear

5. A reverse max-scan is performed on this distance time algorithm that simply propagates the ranking in-
concatenated with the processor ID number of each formation along the curve using only the NEWS grid.

pixel. After this is done, the first processor in each The list ranking algorithm is much faster than the linear
scgment will know the processor ID number of the time algorithm, though each iteration is actually much
largest address processor having maximal distance slower (due to using the general router for communica-
from the line. Let mi be the address of the processor tion). One can also observe the logarithmic nature of
having maximal distance in curve segment i. the algorithm by examining how the number of itera-

tions changes as a function of the curve length.
6. If this maximum distance is smaller than a thresh- There are a few modifications that can be employed

old, the segment de-selects itself and is idle through to improve the running time of the algorithm. One is to
Steps 7 and 8. If all segments in the image de-select, perform more than one doubling in Step 6. There is a
the algorithm terminates, tradeoff here: performing more doublings in Step 6 will

7. A forward first-scan is used to broadcast m, to all cause each iteration to run longer, but the number of it-
processors in curve segment i. erations will be decreased. For different images on differ-
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[Hung, 1988] Yubin Hung. Parallel Processing of Ge-

Total PE & pixels ILSF algorithm ometric Representaiions on SIMD Computers. PhD
[TotalPE pixels uv F a tm thesis, University Of Maryland, College Park, 1988.

[ PEEGpxel [ crve .[ (5[Kruskal et al., 1985] Clyde P. Kruskal, Larry Rudolph,
8192 7706 800 30 and Marc Snir. The power of paralle! prefix. IEEE

8192 6735 700 30 Transactions on Computers, 34:965-968, 1985.
8192 79431 877 30 (Ladner and Fischer, 1980] R. E. Ladner and M. J. Fis-

cher. Parallel prefix computation. JACM, 27:831-838,
Table 3: Result of applying LSF algorithm 1980.

[Little et al., 1989] James J. Little, Guy E. Blelloch, and

ent size machines, the optimal number will vary, but our Todd A. Cass. Algorithmic techniques for computer

experiments indicate it is generally around two or three vision on a fine-grained parallel machine. IEEE Trans.

doublings. The times and iterations in Table 1 were gen- actions on Pattern Analysis end Machine Tntelligence,
erated using two doublings in Step 6. Had we used one 11:244-256, 1989.
doubling, the algorithm would have taken roughly 50% [Pavlidis, 1977] T. Pa ]idis. Structural Pattern Recogni-
more iterations. Another way to improve running time tion. Springer-Verlag, New York, 1977.
is to perform a few doublings right after Step 3, but be- [Ramer, 1975] U. Ramer. Extraction of line structures
fore the repeat loop of Steps 4 through 6. This usually from photographs of curved objecas. Computer Graph-
decreases the number of iterations by one or two. We ics and Image Processing, 4.81-103, 1975.
did not do this for our test in Table 1.

We also applied Ramer's piecewise linear approxima- (Reddaway, 1973] s. F. Reddaway. DAP- a distributed
tion algorithm and the least square fit algorithm to three array processor. In First Annual Symposium 17n Cor
different 512 x 512 test images using the scan instructions puter Architecture, pages 61-65, 1973.
available on the CM. The results are tabulated in Table 2 [Wu et al., 1989] Angela Y. Wu, S. K. Bhaskar, and
and Table 3. Edge detection and the list ranking algo- Azriel Rosenfeld. Parallel processing of region bound-
rithm were applied to three images and the remaining aries. Pattern ilecognition, 22:165-172, 1989.
pixels were packed into monotone contiguous proct.ssors. [Wyllie, 1979] J. C. Wyllie. The Complexity of Parallel
At this point each image contained Cotart curves, and af- Computatiun. PhD thesis, Cornell Univo, sity, 1979.
ter applying Ramer's algorithm contained Cmnd curves.
A least square fit algorithm was then applied to these Appendix A: Detailed Algorithm Code
Cmnd curves to estimate there positions. Since 8K phys-
ical processors were used, the VP ratio was one for rll The following is a detailed listing of the tode for our list
three experiments because the number of edge pixels left ranking algorithm. In our algorithm, we often need to
was always less than the number of processors we had. compare pixel addresses in ordei to break the symmetry
Note that the least square fit algorithm takes roughly between pixels. In all these comparisons we always want
the same amount of time as four iterations of Ramer's the address of an endpoint to be larger than the address
algorithm. This is because the least square fit algorithm of a pixel in the middle of the curve. We accomplish this
involves floating point calculations, whereas Ramer's al- by augmenting each pixel address with an extra bit at
gorithm does not. the most significant bit position. This extra bit is 1 if

the pixel is an endpoint, and 0 otherwise.

6 Conclusion In the following code, i is used to represent both the
pixel i and the processor address of the processor holding

We have described an algorithm that can produce a list pixel i. rhe code is executi.d in parallel by all pixels i
ranking of pixels on a thinned curve. The algorithm runs on all curves.
in O(log N) time on a CRCW PRAM model of compu- 01 P(i) -# Maximum of all j
tation. This list ranking makes it possible to move the such that j is a neighbor of i
thinned edge pixels of an image into monotone contigu- 02 D(i) - 1
ous processors, such that further processing of curves can 03 if (endpoint(i))
be done both more easily and more efficiently. begin P(i) # i ; D(i) # 0 end

References Note that because we are using augmented addresses,
P(i) is guaranteed to point to an endpoint if i is right be-

[Batcher, 1980] Kenneth E. Batcher. The design of a side an endpoint. These 3 lines are equivalent to Step 1.
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The next operation to perform is to double the pointers Scenario: 1 2 3
and adjust the pointers such that the pointer map looks
like Fig. 3.

04 OLDP(i) 4=: P(i)
05 P(i) 4= OLDP(OLDP(i)) After line 3: 0 J A
06 D(i) 4-- D(i) + D(OLDP(i))
07 LOOP(i) 4= false
08 if (i = P(i)) LOOP(i) 4= true ,

09 POINTEDTO(i) 4= false
10 if (not LOOP(i))

POINTEDTO(OLDP(i)) €= true After line 6: LT W}
11 if (LOOP(i) and

(not POINTEDTO(OLDP(i))) and
12 (POINTEDTO(i) or I

((not POINTEDTO(i)) and
(i < OLDP(i))))) begin

13 P(i) = OLDP(i) After line 16:
14 D(i) 4 1
15 LOOP(i) -# false
16 end
17 if ((not LOOP(i)) and LOOP(OLDP(i)))18 begin , OLDP(i) After line 20: -4 [ J

19 D(i) 4= 1
20 end Figure 9: The two steps of pointer adjustment

Lines 4 through 6 correspond to Step 2 and do an ini-
tial doubling. Lines 7 through 20 accomplish the pointer
adjustments in Step 3. Lines 7 and 8 set up the Boolean 30 if ((PN(i) # P(i)) and
variable LOOP such that LOOP(i) is true if and only if (not LOOP(N(i))) and
P(i) points to i itself. LOOP will be updated through- LOOP(PN(i))) begin
out the algorithm such that it always reflects whether 31 if ((not LOOP(i)) and LOOP(P(i))) begin
P(i) points to itself. Lines 9 and 10 set up the Boolean 32 P(P(i)) = PN(i)
variable POINTEDTO such that POINTEDTO(i) is 33 D(P(i)) = D(i) + D(N(i)) + 1
true if and only if there is some other non-self-looping 34 REVERSE(P(i)) -# true
pixel j that originally pointed to i before the doubling. 35 BUSY(PN(i)) 4= true
The pointer adjustments for the three scenarios are done 36 LOOP(P(i)) -4= false
in two steps. First, lines 11 through 16 adjust self- 37 end
loop pointers to point at the correct pixels, then lines 38 if (LOOP(i) and (not BUSY(i)) and
17 through 20 adjust the pointers that jump over loops. (i < PN(i))) begin
A look at Fig. 7 will help you understand how this code 39 P(i) €= PN(i)
works. Lines 11 and 12 perform a complicated test to 40 D(i) = D(N(i)) + 1
determine if the conditions of scenario 2 and 3 have oc- 41 LOOP(i) # false
curred. If so, lines 13, 14, and 15 adjust the pointers such 42 end
that the self-loop that needs adjustment is rehooked to 43 if (LOOP(i) and (not BUSY(i)) and
the self-loop right beside it. Line 17 tests for the case LOOP(PN(i))) begin
of a pointer jumping over a self-loop (as in scenario 1) 44 P(i) -# PN(i)
and lines 18 and 19 rehook this pointer to point to the 45 D(i) # D(N(i)) + 1
self-loop, instead of jumping over it. 46 LOOP(i) # false

What follows is the code that performs the repeated 47 end
iterations of merging and doubling. 48 end

21 LOOP(i) - false 49 OLDP(i) 4= P(i)

22 if (i = P(i)) LOOP(i) # true 50 P(i) 4 OLDP(OLDP(i))

23 repeat 51 if (REVERSE(OLDP(i)))
24 SAVEP(i) = P(i) 52 D(i) i D(OLDP(i)) - D(i)

25 Ni) # Adres of eigbor 52 else D(i) 4- D(i) + D(OLDP(i))
25 N(i) 6 i Address of neighbor 53 until (Vi we have (SAVEP(i) = P(i)))

such that P(j) P(i), if no

26 such neighbor exists, let N(i) i: Line 30 tests for the conditions common to both the
27 PN(i) = P(N(i)) tail-tail merge and head-tail merge. Lines 31 through 37
28 BUSY(i) .4- false do the tail-tail merge that corresponds to Step 4. Lines
29 REVERSE(i) -# false 38 through 42 do the first head-tail merge corresponding
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t Step 4.5. Lines 43 through 47 do the second head-tail
merge corresponding to Step 5. If no closed curves are
in the image, we can Gmit lines 38 through 42, and the
if statement in line 43 can ba changed to just checking if
(LOOP(i) and (not BUSY(i))) is true, since the condi-
tion of LOOP(PN(i.)) has already been checked in line
30. The reason we rechecked whether LOOP(PN(i)) is
true or not is because Step 4.5 (in particular line 41)
might have changed this condition. Note how the vari-
able BUSY is used to mark the head of a segment partic-
ipating in a tail-tail merge, so that the head-tail merges
6f the same iteration do not merge these segments. Fi-
nally, in lines 49 through 52 we perform the distance
doubling for each iteration. Note how the Boolean vari-
able REVERSE is used as a flag to mark the presence
of a tail-tail merge (in line 34) so that the distance D
can be computed correctly in lines 51 and 52.
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Purposive and Qualitative Active Vision

John (Yiannis) Aloimonos
Computer Vision Laboratory, Center for Automation Research,

University of Maryland, College Park, MD 20742-3411

ABSTRACT which formulates questions for which qualitative solu.
dons are possible.

A fundamentally new way of examining problems of To demonstrate the usefulness of the approach we

visual perception is described in this paper. Up to consider visual motion (or navigation) problems, and
now, vision was regarded as a recovery problem, i.e., assume that the observer is active. We describe the
as the problem of reconstructing an accurate represen- preliminary design of Medusa, a purposive and quli-
tation of the 3-D scene and its properties from image tative visual motion machine that can robustly solve
cues such as shading, contours, motion, stereo, color, many navigational problems without reconstructing

etc. This approach has contributed many theoretical the scene.
results and has led to new mathematical techniques,
e.g. related to regularization and discontinuities. But
what is vision for? Why do animals have it and why 1 Introduction
do we want to understand it? The answer is, of
course, that we need vision in order to accomplish The visual sense is potentially as important to machines
visual tasks. In the biological world, organisms need as it is to humans. Much progress has been made in the
vision in order to recognize their friends and enemies, past 35 years in developing visual capabilities for comput-
avoid danger, find food and in general survive. In the ers, but machines still fall far short of humans and
world of robots, vision is needed to make them capa- animals in their visual performance. This may seem
ble of performing various tasks while interacting with surprising to a lay person or to one who hasn't thought
their environment. However, recovering the scene about vision, since vision is so easy for us. On the other
and its attributes is not a necessary condition for the hand, it is not surprising to specialists in the fields of
accomplishment of visual tasks. Many such tasks can computer vision or image understanding, who know how
be achieved visually without reconstruction but hard the technical problems are. We understand, for
through the recognition of patterns, objects or situa- example, that solving the problem of structure from
tions.

What to recognize is concerned with the questions motion (or relative orientation, or passive navigation, or
we pose. The purposive paradigm calls for formulat- kinetic depth) using two frames (two views) is very hard
ing questions that are directly related to visual tasks, in the presence of noise [Spetsakis and Aloimonos, 1988].
i.e. that have a purpose. Knowledge of 3-D motion is We also understand, to take another example, that the
much more than we need to answer the purposive problem of finding depth discontinuities is also very hard,
question: Is this moving object coming closer to the as its solution will probably come from some complex
observer? Purposive thinking leads us to pose ques- minimization procedure [Shulman and Aloimonos, 1988].
tions whose answers will only help to solve the par- The field of computer vision has become quite a
ticular task at hand, and will not be of general use. sophisticated discipline, and it is becoming a well defined
This level of the paradigm is parallel to Marr's com- science. Most of the analyses presented in recent publica-
putational theory and makes sure (or rather, tries to dons begin with a mathematically precise description of
insure) that the resulting algorithms will be of the representations operated on and produced by the
minimal complexity. visual process under consideration. The technical content

flow to recognize (patterns, objects or situations) of image understanding is becoming more sophisticated.
is related to the algorithmic level of Mart's paradigm. Observations of and assumptions about the world are
Qualitative vision calls for the development of algo- beginning to be expressed in sophisticated mathematical
rithms that are simple, robust and based on qualitative ways. Relationships between smoothly varying quantities
tehniques, such as comparisons of quantities or give rise to differential equations. Boundary finding is
discret has been wtonly Qalitaled ion , whh iense attempted through Monte Carlo techniques [Marr, 1982]
the past has been wrongly called inexact, makes sense which find the most probable value of the real world vari-
here because it is coupled with purposive vision, able under consideration, or thi-ough advanced machinery

The support of the Defense Advanced Research Projects Agency of functional analysis [Aloimonos and Shulman, 1989a].
(ARPA Order. No. 6989) and the U.S. Army Engineer Topographic La- After making the image formation process explicit [Horn,
boratories under Contract DACA76-89-C-0019 is gratefully ack- 1986]-the first step in making computer vision a
nowledged. scientific discipline-researchers became concerned with

geometry (gradient space, perspective invariance). Com-
bining geometry with properties of physical surfaces leads
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to multivariate real analysis, differential and algebraic drive vehicles, we walk or run avoiding obstacles, and we
geometry. Fields such as functional analysis, stochastic pick up things with our hands.
approximation, non-standard analysis and more advanced But what is the information in images that is relevant
topics are actively used today in research on image under- and necessary for accomplishing such tasks? And how is
standing. In addition, mathematics that were very this information extracted? Answers to such questions
recently discovered-such as minimum description length will constitute the basis for our study of vision.
estimation [LeClerc and Fua, 1987] and the regularization If more than half of the neurons in our brain are
paradigm [Poggio et al., 1985]-are actively used in com- devoted to solving vision problems, it is not surprising
puter vision today, and books examining methodological that understanding our visual system is not an easy prob-
issues have been published [Aloimonos and Shulman, lem. Equivalently, designing a machine that can "see" is
1989b]. a very difficult task.

But the lack of practical systems capable of perform- There exist two general goals for a successful vision
ing non-trivial visual tasks has led to some confusion in system: navigation in a complex environment using
our scientific community. This is partly expressed by the vision, and recognition of classes of objects (such as peo-
number of panels at recent meetings, workshops and pie or trees) in a complex scene. A large proportion of
conferences, asking questions such as: Are we doing the the research on computer vision addresses, explicitly or
right things? How important is this or that? Different implicitly, one of these two goEls. But achieving these
schools of thought have groups of researchers who have goals presents great difficulties.
similar ideas about how one should proceed in order to These difficulties were realized during the 1960s and
understand vision. We discussed this in a previous publi- '70s after the failure of earlier attempts to build complete
cation [Aloimonos and Shulman, 1989b]. Recent research vision systems, i.e. systems that used knowledge at all
obliges us to maintain that, while it is beneficial to con- levels including domain-specific information. "In order
tinue developing visual mathematics because this develop- to complete the construction of such systems it s almost
ment will uncover various secrets of perception, we inevitable that corners be cut and overly simplified
already know enough about the visual process that we can assumptions be made" [Brady, 1982]. Doing this results
start developing robust machines possessing visual capa- in a system capable of performing a limited se of tasks,
bilities. But in order to accomplish this, we must change but not enhancing our general undc.rstanding of vision.
the way we think about vision problems; we have to take At about that time it was proposed [Marr, 1982] that
a fresh point of view. many visual tasks depended on solving the following

In Section 2 we give a short description and criticism problem: From one or more images of a scene, derive an
of the current state of affairs. In Section 3 we introduce accurate three-dimensional geometric description of the
our new paradigm. scene and quantitatively recover the properties of the

objects in the scene that are relevant to the given task. If
2 Status quo: Recovery we can recover an accurate description of our environ-

ment, we can navigate and avoid obstacles, and if we can
Perhaps the most important discovery (or observation) in accurately recover the properties of an object (shape,
our field was the reduction of vision to a recovery prob- reflectance, color, etc.) we can use them to recognize it.
lem [Hom, 1986]. Indeed, neither objects nor properties How can recovery be accomplished in a complex
of objects (such as shape, color, lightness, etc.) exist visual environment? By following the general principles
inside our brains as such. We only find brain cells there, for the design of complex systems [Feldman, 19851. We
but these cells must be performing a symbolic descriptive divide the system into functional components which break
function. In other words, when we see, symbols are the overall task into autonomous parts, and analyze these
somehow computed inside our heads, and these symbols components individually. We then choose the representa-
represent things in the outside world. tons of information used by the components and the

Each of our eyes works like a camera. Both eyes and language of communication among them. The com-
cameras have lenses, and where the camera has light- ponents are then tested individually, in pairs, and all
sensitive film, the eye has a light-sensitive retina. The together.
lens focuses an image of the world onto the retina, which In a visual system, the compnents are subsystems
then sends messages about brightness values in the image that recover specific properties of the scene from images.
along the optic nerve fibers to the brain. Sets of special- We call these subsystems nodules. The majority of com-
ized neurons in the brain can then represent the imaged puter vision research has been devoted to the study of
scene. For example, the level of activity of one of these such modules [Horn, 1906] and their integratiun
neurons might correspond to the brightness of the [Aloimonos and Shulman, 1989b]. The study of human
corresponding point in the retina, and hence of the associ- and animal perception provides evidence as to the nature
ated point in the scene. of the modules. For example, one source of evidence for

Once a representation of the imaged scene is transmit- the existence of modules in the human visual system is
ted to the brain, algorithms running on the neural the study of patients with disabilities that come from
hardware can extract useful information from the brain lesions. On the other hand, psychophysicists per-
representation. This information is very important for our form experiments in which a particular module of the
everyday activities and may be. essential for survival, human visual system is "isolated", such as Julesz's
Using visual information we recognize our mates, friends [1982] experiment on stereoscopic fusion without
and enemies and we find food. We recognize objects, we
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monocular cues, Land's [Land and McCann, 19711 probably necessary to carry out whatever cortical image
demonstration of the computation of lightness, Gibson's processing occurs.
[1950] experiments on the perception of shape from tex- A somewhat related reason is the perception that prac-
ture, etc. These studies suggest that cues such as shading tical results will eventually flow from a successful theory
(image intensity variation), texture (distribution of surface rather than vice versa.2 This probably has more to do with
markings), contours and outlines (image discontinuities), the lack of any practical systems to work with than with
color, motion and stereo are very helpful in recovering philosophical conviction, since historically, empirical
properties of the scene from images. In computational engir xring applications or unexplained observations have
vision, names have been given to many of these modules: pr-eringtapplicationseomunexplainedsobservationsthave
Shape from shading, shape from texture, shape from con- preceded theoretical developments at least as frequently as
tour, shape and depth from stereo, structure from motion, the reverse. If there were suddenly to appear a number of
direction of light source from intensity, physical discon- machine vision systems working robustly in different
tinuities from intensity discontinuities, motion from image real-world domains, it is quite probable that theories
intensity derivatives, etc. Analyzing vision is then explaining their commonality would soon appear.
reduced to analyzing how the individual modules work There is a third reason that may explain the dearth of
and how they interact, examples of working vision systems, which is that the

In [Marr, 19821 a methodology was developed for generally accepted goals for such systems may be mis-
analyzing visual modules. According to the Marr para- placed, or at least over-ambitious. The two commonly
digm, in order to understand a visual process we must held touchstones for practical vision systems, recognition
consider three levels: and navigation, are high-level objectives. If both were
(a) The level of computational theory. We should achieved, automatic systems would have many of the

develop, through rigorous mathematical treatment, the capabilities of the human visual system.
relationship between the quantity to be computed and Given the lack of success in developing systems
the observations (image(s)). After this computational which realize either of these goals in a robust manner, it

theory is developed, we will understand whether or would appear reasonable to consider simpler problems;
not the problem has a unique solution, many researchers have followed this avenue by working

on a very specific problem such as an industrial applica-
(b) The level of algorithms and data structures. After the tion. However, these approaches do not enhance our

computational theory has been developed, ' e should t an d o f vise appral.
desin aproriat alorihms nd atastruturs tat, understanding of vision in general.

design appropriate algorithms and data structures that, Another problematic aspect of the recovery (or recon-
when applied to the input (image(s)), wili output the struction) school of thought is the fact that visual compu-
desired quantity. If the problem has a solution, there tations are reduced to finding the value of some real
are probably many ways to find it. This level is con- quantity and usually the success of the visual task relies
cerned with choosing ways that are efficient, robust, on the accuracy of the first or second decimal digit of that
etc. 1  quantity. As a result, most machine visual tasks are

(c) The level of implementation. After the two previous unstable. A slight error in the input is enough to destroy
levels have been developed, we must implement the some computations. 3 How can we then achieve robust
algorithm on a machine (serial or parallel) in order to visual computations that can be reliably used for accom-
obwjn a working system. plishing various tasks?
Subsequent important research along the lines of the There is, luckily, another way to view visual computa-

Marr paradigm continued to consider vision as a recovery tions. We can consider simpler problems! Although if
problem. During the past 15 years a plethora of elegant we can recover the world we will be able to achieve
mathematical theories describing various modules has many tasks, it is not always necessary to perform this
appeared. Unfortunately, there is a disconcerting lack of recovery. Rather, we should ask ourselves the question:
visual systems which perform well in real-world environ- What is vision for? [Ballard, 1989] We will then immedi-
ments, particularly when compared to the amount of ately realize that we need vision in order to accomplish
mathematical theory published on the subject. There tasks that are essential for our survival, as already
seem to be several reasons for this. described. But to carry out the task, it is not clear that

One reason is that extracting useful visual information we need to recover the world and its properties. To give
from images probably inolvcs a vcry large amount of examples from biological vision, a housefly can maneuver
computation. The visual cortexes of animals that perform visually in three dimensions in a complex environment
complex visually moderated behaviors contain millions of without striking obstacles; a bee can recognize and return
neurons, each of which performs computations which to a particular location in its environment from an arbi-
require thousands of computer steps per second to simu- trary (nearby) starting point, .a ability referred to as
late, and possibly many more. Much of this capacity is

2'This point of view was suggested by Nelson [19881.

'Research on visual motion has slowly started entering this level, as 3W analyze the case of structure from motion later.
explained later.
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homing [Nelson, 1988]. it seems to be consistent with evolution. It appears that
When we study visual abilities, we should study them some organisms developed light sensitive skins at some

in a purposive manner. We need to keep in mind the places on their bodies and learned to respond to light and
question: What am I going to use this visual ability for? dark. Other visual capabilities evolved because of
What are the tasks that can be performed using it? specific needs. Accepting that the ultimate goal of an
Thinking in a purposive manner will convince us that organism is survival, visual abilities should have evolved
when we want to go from place A to place B in a room in such a way that they served survival purposes. Thus,
with many people moving around, we just need to avoid visual abilities for avoiding danger, recognizing food,

obstacles; it is not necessary to reconstruct our extraper- recognizing mates, friends and enemies developed . But
sonal space and thus know that the person in the comer is although some of these abilities were based on common
smiling! Clearly, if we could reconstruct the room and principles (for example the ability to intercept a movingthe ovig popl, ou tak o gong fom toB wuld object and the ability to avoid a moving object are both
the moving people, our task of going from A to B would based on the structure from motion module), they were
be very simple. But it is obvious that reconstruction is possibly developed at different times and it is probable
not necessary. that they are implemented by separate hardware. From

If we study vision in a purposive, or utilitarian manner this point of view we may expect that the machinery of
[Ramachandran, 1989J, or an animate manner [Ballard, the brain devoted to vision consists of various indepen-
1989], the problems that we formulate are much simpler, dent processes (which of course communicate) that are
since they are relevant to the task at hand, and since they devoted to the solution of specific visual tasks. This also
are simpler they can be solved by qualitative techniques seems to be the view of leading neuroscientists [Regan]
that exhibit robustness properties, as we shall see in the and connectionists [Ballard, 1989].
next section.4  Let us now restrict our attention to problems related to

visual motion analysis, in order to make things simpler to
3 Purposive and qualitative vision: understand. Consider a robust vision system (of theA new paradigm future) that "understands" (can handle) visual motion.

According to the "state of the art" in the recovery

Although the foundations of purposive and qualitative school, such a system is currently envisioned to work in
vision lie in mathematical and engineering considerations, two stages, as follows:

(a) First, from successive dynamic images, retinal motion
4Some historical comments are in order here The recovery school (or correspondence or optic flow) is computed. Then

of thought was created by Mart and his colleagues at MIT (Poggio, a segmentation of the various independently moving
Horn, Binford, Ullman, Brady). and it was the first serious attempt to
transform image understanding into a scientific field. Some researchers objects in view is performed, based on the estimated
have always questioned this approach. Some people have devoted their optic flow.
research to building specific systems, but they were so preoccupied with (b) Second, algorithms are applied to the various parts of
this that they forgot to worry about general principles. But during all
this time, many workers in the field (Feldman, for example) have felt that the image-motion field, in order to estimate the 3-D
vision should be goal based, goal driven. However, the goal driven con- motion and the shape of the various parts of the scene.
cept has been misused as a vehicle for expensive experimentation, whose Such algorithms comprise the so-called "structure
only fruits have been the realization that vision is a very hard problem. from motion" module.
Since the middle of the 1980s, and sporadically before then, researchers It is clear then that if the vision system under con-
have been interested in qualitative vision. They felt that techniques and
algorithms whose success depended on the decimal digits of a quantity sideration can robustly and in real time perform the above
had to be replaced by new methods, qualitative in nature, that had the po- two stages, then it will be able to perform many visual
tential for robustness. However, qualitative techniques were tried for tasks, such as passive navigation, obstacle avoidance,
some time without much success, primarily because the researchers who tracking, prey catching, and many others. But, although
applied them were thinking in a reconstructionist paradigm. In 1989,
Ballard wrote a paper on "Animate vision" [Ballard, 19891, where he the above two problems have attracted a lot of attention
claimed that vision should be active (as we had suggested in 1987 in the past ten years and we have seen a large number of
[Aloimonos et al., 19881), and that it should have a goal. The view of impressive and mathematically elegant results, both prob-
V.S. Ramachandran [19891 on a utilitarian theory of percepti')n, and the lems are far from being solved.
views of D. Regan (Regan], suggest that the human visual system may The first problem amounts to recovering a two-
consist of a large number of simple processes, each devoted to solving a
particular task. (This is also supported by recent work on visual illusions dimensional function (the flow field over the image) from
[Aloimonos and Huang, 19901.) Consequ.ntly, it makes sense to study a small number of constraints. Thus the problem is ill-
cxmputer vision in a purposive ard quaitativc niajli .. Purpive, in posed, as is tie case with most visual reconstruction prob-
order to formulate the right (simple) problems; and qualitative, in order lems. The difficulty of the problem is amplif. ;,y the
to obtain robust solutions. In any case, the problems are formulated in fact that the function we need to recover is no,
such a manner that it makes sense to solve them qualitatively. All t fas t hf t w e red t re not c '
gave rise to the theory of purposive and qualitative vision described i i.e. it contains comers-its derivatives are not cc
this paper. Research of this flavor has also appeared lately in the work Only in the past few years have we stm
of the Genoa vision group [liEE, 19891 and the work of Nelson INel- development of mathematics for the recover-,
son, 19881, Weinshall [Weinshaill, Poggio and Edelman [Poggio and containing discontinuities in the case of under
Edelman, 19891, and Zucker [19891. problems. We described them in a previous , Lon

[Aloimonos and Shulman, 1989b]. Howe, both
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probabilistic [Geman and Geman, 1984; Marroquin, 1985; outside? If the FOE is in a given area, does this mean
Mumford and Shah, 1985; Blake and Zisserman, 1987] that the moving object will hit me? If it is going to hit
and deterministic [Shulman and Aloimonos, 1989b] me, how long will it take with respect to my reaction
approaches are handicapped by the presence of various time? Can we solve such a collection of problems in a
difficulties. robust manner?

For example, in the probabilistic formulation we face If we can solve such problems directly, the structure
the difficulty of computing priors. Other approaches that from motion module is no longer needed.8 Morever,
require the minimization of a complex functional take a because we now ask simple questions that have a small
long time to converge, and it is very difficult to estimate numbers of possible answers, the potential exists that we
the various parameters involved in the model [Aloimonos will be able to achieve robust solutions, since our
and Shulman, 1989b].5 It has also become apparent that approach is qualitative.
such reconstruction techniques, if they are to be of use in We thus see a new paradigm emerging: that of purpo-
general situations, must be coupled with learning pro- sive and qualitative vision (which should of course be
cedures, and although some research along these lines has active). In this framework, one does not look at a vision
appeared [Aloimonos and Shulman, 1989a], the problem system as a collection of modules whose purpose is to
is far from solved. reconstruct the world and its properties and thus provide

The second problem has to do with the computation of information for accomplishing various tasks. Instead, one
structure and 3-D motion using the results of the first step. looks at a vision system as a collection of processes, each
Although this problem has seen a lot of theoretical (or a group) of which solves a particular visual task. If
development, it is far from being solved in the presence we look at the computer vision field in this way, in effect
of noise [Aloimonos, 1990].6 we are considering vision, not in isolation, as the recovery

We are facing two alternatives, school of thought does, but as a part of a bigger process
The first alternative is to continue our research on in which vision is used as a front end.

recovery, to improve our mathematics, to try to under- How can we, in this paradigm, generate new research
stand why existing approaches are unstable and bring in problems?
our knowledge of statistics and engineering, in order to The answer to this question comes directly from pur-
develop provably optimal estimators of structure from posive (or utilitarian) thinking. In this new framework we
motion and in order to introduce noise remedy concepts, think of vision not as an end in itself, but as part of a
such as redundancy for example. Of course, the hope bigger process that performs tasks. If the tasks are corn-
here is that our work will converge to the best possible plicated, we decompose them into simpler tasks, and
structure from motion module and that this module will solve the simpler ones. In other words, it is the task itself
be good enough (i.e. robust), or we might be surprised to that suggests what problems need to be solved. If, for
find that the best is not good enough for some tasks. example, we need to construct a machine that can guard

The second alternative is to reconsider our viewpoint an area, the machine must be able to identify anything
about the recovery paradigm, and work "around" the moving, track it, and intercept it (and possibly also recog-
problem. In simple words, this alternative suggests not nize it). These are three different tasks, according to the
solving the abstract structure from motion problem, not paradigm of purposive vision. But according to the
developing the structure from motion module. Instead, it reconstruction paradigm, these tasks are applications of
suggests that we must ask the question: What tasks will I the structure from motion module.
perform, if I have a structure from motion module? After We cannot study the general problem of vision, not
the tasks have been identified, this alternative suggests tied to any applications. The reason this is not possible is
that we should solve them directly and not as an applica- that we regard vision as a part of a bigger process. If we
tion of a general principle. We should solve directly, for wish to study vision in general, we should study the tasks
example, the problem of avoiding obstacles. We should that organisms possessing vision can accomplish. This is
ask: Is this moving object coming closer to me or not? If what we do in this paper. We study vision problems in
it is coming closer, where is the focus of expansion the paradigm of purposive (and qualitative) vision.
(FOE)?7 Is it inside the boundaries of the image or In the rest of this paper we describe how one can

study navigational problems in the framework of purpo-
5In a recent AFOSR Workshop on the "Encounter of Mathematics sive vision. We do this through the description of a

and Computer Vision", organized by Prufs. R. Bajcsy and P. Lax,
University of Pennsylvania, May 21-23, 1990, many more difficulties 8We do not mean that this module and its supporting theoretical
were pointed out. research become obsolete. On the contrary, such research, which has be-

6That also seemed to be also the consensus in the special panel on come highly sophisticated nowadays (see Section 4). will contribute an

"Visual motion: Current and future problems" that took place during tmmense amount to photogrammetry. cartography and other visual recon-

the 10 h ICPR, Atlantic City, NJ, June, 1990. struction problems, such as teleconferencing, for example. What we
mean is that if we can solve all the above-mentioned problems, then the7The FOE is basically the point where the moving object will hit the structure from motion module won't be needed for an autonomous "see-

image plane of the observer. ing" machine that can perform a variety of navigational tasks.
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machine that we are building using results from our spatiotemporal derivatives of the image intensity function.
recent research. This machine, through simple processing The small circles represent the following visual processes:
of images, very robustly--because of the qualitative form @From the seies of images, computes a series of nor-
of the solutions---performs a nontrivial number of difficult m the sieso
navigational tasks, without knowing anything about mal flow fields.
"structure from motion", and without reconstructing the (Answers the following question: Is anything moving
world; everything happens through simple processing of a independently of me? If so, where is it on the image?
large amount of data. ()Answers the following question: Is this moving object
4 Medusa: A purposive and qualitative getting closer to me? Or, which parts of the image

active visual motion machine correspond to parts of the scene which I am getting
closer to?

While we continue our visual motion research in the
reconstruction school of thought by concentrating on (@Performs the task of keeping a moving object in the
robustness issues, we have started developing a set of center of the visual field (tracking) by appropriately
processes that are capable of accomplishing various visual rotating Medusa's eye.
tasks. At the same time, we are designing Medusa, a
simple active vision machine, that contains all the qualita- If the moving object is getting closer, finds out if the
tive visual processes which we are developing. Medusa is focus of expansion lies inside the image. If so, deter-
so simple that every new ability we are developing can mines an area in which the FOE lies. Using @ and
easily be added to her. some crude information about depth, finds if the mov-

Medusa has an active camera system, inertial sensors, ing object will hit Medusa.
and a hand which is visible from the eye (camera), and
she can move around in the environment. As Medusa @)Tells Medusa's motors how to move in order to inter-
moves (she collects images at video rate), she is capable cept a moving object (prey catching), using all the
of accumulating many dynamic frames (views). For the previous processes.
purposes of this paper, we assume that Medusa has avail-
able a set of successive image frames. Figure 1 contains @ Performs kinetic stabilization for Medusa (passive
a schematic description of Medusa's "brain". Some of navigation).
her parts will be explained subsequently.

Finally, (D is what we call the homunculus of
Medusa, i.e. its central controller. @ is the master con-
trol unit that communicates with all the other processes,
knows the tasks that Medusa intends to execute, knows
which processes, in what order, are needed for every task,
and synchronizes processes (D - 0 Clearly, () is a
primitive control, as is Medusa herself. While it is true
that the control of the processes can be distributed, this is
of no concern to us yet.9 Also, Medusa has a set of motor
units that control the motors of her parts and communi-
cate with the central control, but they are of no concern
to us here. She also has inertial sensors for measuring her
angular acceleration, from which her rotational motion
can be drived. Medusa can be easily augmented and
made more powerful, especially if she acquires a second
eye.

Active Medusa demonstrates t.iat one may construct powerful
Camera ,machines that solve a series of simple problems, and

establishes an alternative way of thinking about image

Inertial understanding in general. Medusa cannot compute exact
Sensor 9To fully understand tne control problem, we need to know the

Figure 1. A schematic description of Medusa mathematics of cooperating agents [Minsky, 1988). But to accomplish

The input to Medusa is the series of images I (x,y , t), some nontrivial tasks we don't need complicated control; simple methods
on the left. The central data structure, shown on the are enough.
right, consists of an evolving normal flow field-i.e., the
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3-D motion. As a matter of fact, she has no concept of it. problem is much easier; she just detects normal flow and
But she doesn't need it to carry out any of her tasks.1°  that is enough to detect the presence of something mov-

We now proceed with a short explanation of some of ing, as well as its position on the image). If Medusa
the processes. In the course of the analysis the reader moves, then the flow field that she gets is due to rigid
will understand some of the tools of qualitative vision, motion if the scene is static. If, however, there is some-Medusa doesn't use flow or correspondence. She use thing in the scene moving independently, then the result-M s ding flow field will be due to nonrigid motion. The ques-
image gradients only." tion then becomes: can we find out if the changing image

is due to nonrigid motion, using just the normal flow?
4.1 The input: Finding normal flow Medusa has an approximate idea of how she is mov-
The normal flow is the only representation of image ing. Her inertial sensors provide her with bounds on her
motion that can be robustly computed. If f(x,y,t) is the rotation (A,B,C). Let us assume that AG [Arin,Amax],
image intensity function as it changes through time, and B e [Bm, Bmx] and C e [Cmin,CmJ]. There are also
(u, v) is the motion field (the image velocity as a projec- bounds on her translation (U,V,W), U e [Umin,Umax],
tion of the 3-D motion), then etc; these bounds come from the motor units and could

f, u +fy v +f, = 0 or also come from process Q
Consider now an image point (x,y), where the normal

Vffy)'- (U I v)=-f, flow (un, 0) has been measured. Also consider the flow
space (u, v) in Figure 2. The actual flow at (x,y) is

where the subscripts denote partial differentiation and "" (U,V)=(UR,VR) + (Ur,VT). The rotational parts uR, vR
denotes the inner product of vectors, are polynomials in x,y and linear in A, B, C [Horn,

From the above equation, it follows that we can com- 1986]. On the other hand, the translational flow (UT, VT)
pute the projection of the optic flow (u, v) on the image is
gradient direction (f, ,fy) at every image point. The
details of the implementation are not given here. The UT = z xW +
series of images is first appropriately smoothed before the Z T
derivatives are computed. For the purposes of this paper where Z is the depth of the point whose image is (x,y).
we assume tat Medusa has availlble a series of normal Assume further that Medusa has a constraint on depth
flow fields, 1uz(x,y, y,t)J. It may happen that (a<Z,.y)<13,'x,y)e image). 4 If we consider U, V, W
there is not enough information at a given image point to as fixed, then the translational flow will lie somewhere in
compute the gradients, because the values are very small. an interval CD (Figure 2), and consequently the actual
We do not compute the normal flow at such a point, flow will lie somewhere on a line segment BE. So if

Medusa knows her motion exactly, then she knows that
the actual flow at a point must lie on a line segment in

4.2 ®) Detecting independent motion flow space, due to the depth constraint.
Medusa has the capacity to move around in her environ- Now consider Figure 3. If the actual flow lies on a
ment. But regardless of whether she is static or she segment AB, where could its corresponding normal flow
moves, she needs to be able to detect anything moving be? Clearly, if the actual flow is at point A, the normal
independently around her. This problem has been studied flow there could be anywhere on the circumference of the
in the literature and various solutions have been proposed
(see [Nelson] for a survey). 12 There is, however, a very
strong geometric constraint, first exploited by Nelson
[Nelson], that makes the problem easy.' 3 We consider it
for the case where Medusa is moving (if she is static, the (U v) E

t°Our approach is not to be confused with Brooks' paradigm of ZA' D
achieving A through building robots. Brooks' program is very expen- C
sive [Brooks, 1986]. In addition, he studies specific problems, while we
study problems of environmental invariance; we study visual abilities. (U VU)

tBecause our algorithms hre based on image derivatives they have 0 U
some similarities, but only in spirit, with direct motion algorithms
[Aloimonos and Brown, 1984; Negahdaripour, 1986; Horn and Weldon,
19891.

12The solutions are generally quite complicated; they depend on
clustering of flow fields and they don't work for multiple moving objects. Figure 2.
The most robust algorithm for detecting an independently moving object
in a series of images taken by a moving observer is probably that
described in [Burt et al., 1989).

BActually it was first mentioned by Marr (Marr, 1982]. 14This comes from another process which we don't describe here.
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circle with diameter OA. As point A moves, circle (O1)
moves towards circle (02). The union of all those circles
(the circles with diameter Ox where x e AB) defines an
area Q (the forbidden area). If the normal flow at point
(x,y) does not lie inside 02, then Medusa knows that
along the ray connecting the nodal point of her eye with
the image point (x,y), there is something moving
independently.

In actuality, the area f0 is slightly more complicated, 1b, P, t2
because Medusa doesn't know her motion exactly. This Figure 4.
means that the rotational flow (point A) lies inside a rec-
tangle. Similarly, the translational flow part (point C)
lies inside another area. As a consequence, the actual of the image derivatives was not optimized.
flow lies inside a parallelogram whose points are the sums
of vectors O"4 and O. The area Q is again defined 4.3 @ Is the object getting closer?
analogously. A robust method of deciding whether an object is getting

Thus every point (x,y) in the image has an area Qy closer was described in [Nelson and Aloimonos, 1989].
associated with it. If the normal flow at a point does not This method is based on the following proposition: If the
fall inside Q, Medusa knows that it is due to an indepen- distance between the sensor and an object projecting to
dently moving object. If it falls inside, Medusa doesn't point p on the image is decreasing, that is, the perpendic-
know. But luckily, Medusa is an active observer, and the ular component of the relative translation is positive at p,
forbidden area depends on her own motion. If her motion then there exists a direction 0 for which the directional
changes, so does the forbidden area at every point. Thus, divergence D~f(p) is positive, where f is the flow at p
if the normal flow at (x,y) falls inside Q,.Y at time t (see and D, is the directional divergence operator.
Figure 4)-and this means that no inference about In [Nelson and Aloimonos, 1989] a system was con-
independent movement is possible-at the next time structed that, based on the divergence of the flow field
instant, Medusa can totally change the forbidden area by along the image gradients (f,, fy), was able to detect
making a controlled saccade. If the normal flow (point A objects whose distances from the sensor were decreasing.
in Figure 4) still remains inside, Medusa infers that no The technique works well because divergence is a per-
independent movement is taking place. But if A falls sistent feature, and its sign is enough to determine
outside after a saccade, then independent movement is whether a given part of the scene is getting closer.
signaled. Using this technique, Medusa can always detect if she

The details of the implementation and a control stra- is on a collision course with an obstacle, but sometimes
tegy that guarantees correctness are still research issues. she thinks she is on a collision course when she isn't.
It is important to point out that this technique is qualita-
tive (checking if a point lies inside or outside t tegiuii) Her dilemma can resolved by using process (, but in
and it can be achieved through simple inequality t any case, at worst Medusa might do some unnecessary(checking if one quantity is larger than another one). maneuvering to avoid something that she wrongly thinksFigure 5 shows some experimental results. Figure 5a is coming closer, but she will never collide with an obsta-shows a scene containing moving cars on a (model) road. cle.The white dots in Figure 5b are points where Medusa Figure 6a shows a test of this technique in which thedetected independent motion. The scattered points that do camera moved toward an obstacle (a piece of tree bark)not lie on the cars were detected because the computation seen against a distant textured background (a Paisleyprint). Figure 6b shows the corresponding hazard map
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(white denotes points of high flow field divergence). Evi-
dently, such a hazard map should be quite adequate for
Medusa's purposes 15

Figure 5b.

Figure 5a.

4.4 @ Keeping the object in view 1

Tracking an object (smooth pursuit) has been studied from 'a reconstructionist standpoint and various algorithms have *,been developed that worked reasonably well for scenes4
that fitted their assumptions IlAloimopos and Tsakiris,
1988]. It is, however, hard to implement a general con-
trol regime that smoothly rotates the camera in order to
track an object. But, since Medusa is an active observer, 4
she can keep an object visible through a sequence of sac- ,41-
cades. Her control regime rotates the camera so as to
minimize the vector defined by the origin of the image
plane and the center of mass of the points in the image

that process (® detected as moving independently. Thus,
she can use saccades to keep a moving object always in Figure 6a.
view.

4.5 @Finding the focus of expansion
r acinIf Medusa is only translating, it is easy to find the FOESecnro tandoint an al (focus of expansion) if it lies inside the image; and if itthen we can show, under certain assumptions about the angle of the lens,that if P is a point on the image and the sensor is translating along the les outside, it is easy to find in which direction it is (wefine OP with velocity v towards a surface at distance Z, then can bound it).

i.Indeed, consider Figure 7, where we examine the nor-Dinimi- z on mal flow at a point. Since there is only translation, it is
where Dois the directional flow divergence operator, and 4,., is the certain that the actual flow vector at point (x,y) will liepart of the translational flow due to the velocity , at P. Sncc- on the side of linc which contains and it is also

vPtP certain that the FOE lies on the other side of e. We canis related to "time to collision", this gives us another qualitative tech- thus vote for every point on the side of e opposite (uy,)nique for finding if time to collision is smaller or larger than ome threste FO epa sohold. Medusa has this ability. Although the translational flow is also sa i at t is a oin tdue to the component of translation parallel to the image, we can make which we have measurements of the normal flow; this canuse of the above relation [Nelson and Aloimonos, 1989]. be done in parallel. The area with the highest number of
votes (the intersection of all the half-planes) contains the
FOE. In our experiments with real scenes, this area was
generally very small (a few pixels). In any case, because
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As time changes, uR and vR remain the same. The quan-
tities (U -xW) and (V -yW) remain the same too. Only
Z changes in an unpredictable way (most points come
closer but not necessarily). If at a particular point (x,y),
the flow does not change its x -coordinate, then x =
Similarly, if the flow's y-coordinate does not change,
y=-K-. Thus if the flow at (x,y) remains constant
throughout the period [t ,t], excluding degenerate cases
such as a planar surface translating parallel to the image
plane, an object only rotating, and the like, then (x,y) is
the FOE.

r -2Figure 8 shows that such a point can be found using
only normal flow measurements. If the optic flow at
(x,y) remains constant, lines 61, e2,e3 .... should pass
through the same point, and this can easily be checked
with a robust technique. In a similar way, one can bound
the FOE if it falls outside the image. Once the FOE has
been bounded, the translational flow becomes constrained,

Figure 6b. which in turn constrains the rotational flow and thus the
the area is convex, even if it lies partly outside the field rotation.
of view we know that the FOE must lie in an angular sec- It must be emphasized that in the calculations used
tor bounded by the tangents to the area. above in all three techniques, the measurements are done

If Medusa is both translating and rotating, since she is only in the areas that do not belong to independently
equipped with inertial sensors, she can detect her rotation, moving objects (ability ). Figures 9a and 10a show
or at least find bounds on it. This means that the com- two complex laboratory scenes to which these techniques
ponent of the flow due to rotation is constrained. Since were applied. In Figure 9 the motion was translation
the rotational flow is constrained, the translational flow along the optical axis; Figure 9b shows the top part of the
becomes constrained too, and, we can again locate the scene in two successive frames (note that the edges have
FOE. shifted). Figure 9c shows the FOE area computed using

We now describe a qualitative technique that solves only 50 halplane constraints, and Figure 9d shows it
the problem visually. Consider an_ point (x,y) on theimage plane, and let f _+, f 2' ..... f, be the normal flow using all the constraints in the image; this locates thevectors at (x,y) at times t1 , 2 ... . , b. The underlying FOE very accurately. In Figure 10 the motion was along
assumption is that the motion of the object remains con- a curve in the horizontal (x,z) plane, starting out to the
stant during the time interval [tl,t]. Medusa would like left (-x) and curving back toward the z axis. Figure 10b
to check whether (x,y) is the FOE. Consider the actual shows the top part of the scene in two frames; note that
flow (u,v) at (x,y). Then the edges are both shifted and rotated. Figures 10c and

10d show the FOE area using all the constraints in the
u =(U-XW)+uR image as estimated at early and late stages in the image

v = (V-YW)+vR

fl, f 2 ,f3 : normal flow

vectors
(u ., v,.)

S~y)E  . f2 l

(X, y)

63

Figure 7. Figure 8.
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Figure 9a. Figure 10a.

E r

f

Figure 9b. Figure 10b.

A. . .
Figures 9c and 9d. Figures 10c and 10d.

sequence; both estimates tightly constrain the position of distance between Medusa and an object is decreasing, that
the FOE. might result in an alarm, but the object and Medusa may

be not on a collision course.
4.6 @ Is the object going to hit me? To answer question . Medusa fixates the moving

This is an important question, because a correct answer object (so that the optical axis of her camera passes

will eliminate false alarms. If process @ decides that the through it) after she detects it using ability . Using
techniques similar to those described in Section 4.5,
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Medusa computes the direction of the object's translation Medusa needs to acquire knoledge about the world,
(ignoring its rotation around itself). Then, using bounds as well as intentions. When she has both, she will exhibit
on the object's distance (which can be obtained from very intelligent behavior. We may also want to couple
other sources), she can determine whether or not she is on vision with other sensory modalities (vestibular, for exam-
a collision course with the object. (Collision is impossi- pie) in order to increase robustness.
ble if the object is sufficiently for away, and it is unavoid- The paradigm (introduced by Brooks) of achieving
able if the object is sufficiently close.) artificial intelligence through building robots is diametri-

cally opposite the recovery school of thought; they are at
5 The rest of Medusa the ends of a spectrum along which all research in the

field falls. Purposive and qnalitative vision falls in the
It is impossible to completely describe Medusa within the middle. It draws from both paradigms, while avoiding
bounds of this paper. We only hope that the reader some of their problems.
understands her basic structure. It consists of a set of Suppose we ask a human to identify an object (or per-
processes, all operating on the spatiotemporal gradients of form a visual task), and we measure the time T between
a sequence of images. These processes perform basic the instant that the object is displayed (or the task started)
tasks. She has control units that allow communication of and the instant at which it is identified (or the task
the results of the processes, and also wake them up or ended). Let the average time for a neuronal firing, i.e.
suspend them. Medusa's method of qualitative hand/eye the time that it takes a neuron to perform a computation
coordination is described in the paper by Hervd et al. in and pass the result to its neighbors, be t. The quotient
these Proceedings. T / t is essentially the number of computational steps per-

formed by the brain in order to identify the object.
6 Conclusion Amazingly, we find that this number is only a few hun-

We have presented a paradigm for studying vision p dred! Existing computer vision systems that perform
es, namlytha td o prpoive and qtuitatv visionb non-trivial tasks require millions or billions of steps on a

lems, namely that of purposive and qualitative vision serial computer. There exist "massively parallel" com-Purposive means that we study vision in conjunction with ptr;freape h oncinMciehs6,0
a purpose, a goal, a task. We do not consider vision puters; for example, the Connection Machine has 64,000

alone, but rather as a part of a bigger system that does processors. But we don't yet know how to design parallel

something. If we do this, we discover that we can solve programs that can solve complex visual problems in a few

many problems without reconstructing the world and its hundred steps.
properties. Many of the tasks that machines need to per- What will happen as our technology improves? It is
frorte bas of viesi ta equences need s to ps- possible that faster machines, along with improvements in
form on the basis of vision are sequences of subtasks pos- algorithms (for example, integration of visual modules),
sessing environmental invariance, like the subtasks per- will lead to high performance visual systems. However, it
formed by Medusa (Q , , , ... ). Solving is also possible that humans (and animals) have fast
such problems is the subject of purposive (or utilitarian) vision systems not only because they process images in
vision. Qualitative means that we pose the questions in parallel, but also because they use different algorithms,
such a manner that the answer is either yes/no, or a which are more simple and qualitative, and (perhaps) do
discrete classification. This often allows us to exploit the not perform reconstruction of the scene as a preliminary
geometric nature of the problem and usually find a simple to carrying out all visual tasks.
answer. Medusa's successful operation demonstrates the This makes the paradigm of purposive vision very
usefulness of purposive and qualitative thinking, appealing, in the sense that it can bring faster progress to

We emphasize that purposive and qualitative vision is the field of image understanding. It can allow us to con-
not just a bunch of hacks! Understanding what the indivi- struct smart machines that will meet the demands of the
dual subtasks should be (Medusa's 0), aj (D... ), is market, something absolutely necessary for transforming
not easy. The final product, a nontrivial working vision computer vision into a well founded, mature engineering
machine, consists of a set of interconnected processes, discipline.
each of which is dedicated to solving an easy problem;
but all of them, when coordinated, can solve very hard Acknowledgement
problems. Achieving such a system will come, not from Thanks to Azriel Rosenfeld for his advice and construc-
ad hoc research, but from a systematic study, following tive criticism.
the principles of the Marr paradigm. The difference is
that instead of the reconstructionist modules (shape from References
x, structure from motion, etc.), we have purposive and
qualitative recognitionist modules, i.e. abilities that recog-
nize patterns, situations or objects, well enough to per- [Aloimonos, 19891 J. Aloimonos, "Unification and
form appropriate actions. We emphasize again that our integration of visual modules", Proc. Image Under-
guiding principle is: What are the tasks that the vision standing Workshop, 1989.
system must carry out? We must define the tasks in such [Aloimonos and Brown, 1984] J. Aloimonos and C.M.
a way that they are simple. Medusa demonstrates that it Brown, "Tle relationship between optical flow and
is possible to achieve sophisticated visual abilities using surface orientation", Proc. ICPR, 1984.
simple, qualitative techniques.

827



[Aloimonos and Huang, 1990] J. Aloimonos and L. [Land and McCann, 1971] E.H. Land and McCann, J.J.
Huang, "Motion-boundary illusions and their regulari- "Lightness and retinex theory", J. Opt. Soc. Am. 61,
zation", Technical Report CAR-TR-495, Computer 1-11, 1971.
Vision Laboratory, Center for Automation Research, [LeClerc and Fua, 1987) Y. LeClere and P, Fua, "Finding
University of Maryland, College Park, 1990. object boundaries using guided gradient ascent", in

[Aloimonos and Shulman, 1989] J. Aloimonos and D. Proc. Image Understanding Workshop, 888-889,
Shulman, "Learping early vision computations", J. 1987.
Opt. Soc. Am., A6(6), 1989a. [Marroquin, 1985] J. Marroquin, "Probabilistic solution of

[Aloimonos and Shulman, 1989b] J. Aloimonos and D. inverse problems", Ph.D. Thesis, M.I.T., 1985.
Shulman, Integration of Visual Modules: An Exten- [Marr, 1982] D. Marr, Vision, W.H. Freeman: San Fran-
sion of the Marr Paradigm, Academic Press, Boston, cisco, 1982.
1989.

[Aloimonos and Tsakiris, 19881 J. Aloimonos and D. LMinsky, 1988] M. Minsky, The Society of Mind, 1988.

Tsakiris, Technical Report CAR-TR-390, Computer [Mumford and Shah, 1985] D. Mumford and J. Shah,
Vision Laboratory, Center for Automation Research, "Boundary detection by minimizing functionals",
University of Maryland, College Park, 1988. Proc. IEEE CVPR, 22-25, 1985.

[Aloimonos et al., 1988] J. Aloimonos, I. Weiss, and A. [Negahdatipcur, 1986] S. Negahdaripour, Ph.D. Thesis,
Bandopadhay, "Active vision", Int'l. J. Comp. Vision M.I.T., 1986.
1, 333-356, 1988. [Nelson] R. Nelson, "Detecting moving objects", per-

[Ballard, 1989] D.H. Ballard, "Animate vision", Proc. sonal communication (Technical Report, Dept. of
11CM, 1989. Computer Science, University of Rochester).

[Blake and Zisserman, 1987] A. Blake and A. Zisserman, [Nelson, 1988] R. Nelsoki, "Visual homing using an asso-
Visual Reconstruction, M.I.T. Press, Cambridge, MA, ciative memory", Ph.D. Thesis, University of Mary-
1987. land, 1988.

[Brady, 1982] M. Brady, "Computational approaches to [Nelson and Aloimonos, 1989] R. Nelson and J.
image understanding", ACM Computing Surveys 14, Aloimonos, "Using flow field divergence for obstacle
1982. avoidance in visual navigation", IEEE Trans. PAMI-

[Brooks, 1986] R.A. Brooks, "Achieving artificial intelli- 11, 1102-1106,1989.
gence through building robots". MIT Al Memo 899, [Poggio and Edelman, 1989] T. Poggio and S. Edelman,
1986. Proc. Image Understanding Workshop, 1989.

[Burt et al., 19891 P. Burt et al., Proc. IEEE Workshop on [Poggio et al., 1985] T. Poggio, V. Torre and C. Koch,
Visual Motion, 1989. "Computational vision and regularization theory",

[Feldman, 19851 J.A. Feldman, "Four frames suffice: A Nature 317, 214-319, 1985.

provisional model of vision and space", Behavioral [Regan] D. Regan, personal communication.
and Brain Sciences, 1985. [Ramachandran, 1989] V.S. Ramachandran, Invited talk,

[Geman and Geman, 1984] S. Geman and D. Geman, IEEE Workshop on Visual Motion, Irvine, CA, 1989.
"Stochastic relaxation, Gibbs distribution, and the [Shulman and Aloimonos, 1988] D. Shulman and J.
Bayesian restoration of images", IEEE Trans. PAMI Aloimonos, "Boundary Preserving Regularization:
6, 721-741, 1984. Theory Part I", CAR-TR-356, Computer Vision

[Gibson, 1950] J.J. Gibson, The Perception of the Visual Laboratory, Center for Automation Research, Univer-
World, Houghton-Mifflin, Boston, 1950. sity of Maryland, College Park, 1988.

[Horn, 1986] B.K.P. Horn, Robot Vision, M.I.T. Press, [Spetsakis and Aloimonos, 1988] M.E. Spetsakis and J.
Cambridge, MA, 1986. Aloimonos, "Optimal computing of structure from

motion using point correspondences in two frames",[Horn and Weldon, 1988] B.K.P. Horn and E.J. Weldon, Proc. ICCV, 1988.
Jr., "Direct methods for recovering motion", Int'l J.
Comp. Vision 2, 1988, 51-76. [Weinshall] D. Weinshall, personal communication.

[IEEE, 1989] See for example the papers by V. Torre, A. [Zucker, 1988] S. Zucker, "The emerging paradigm of
Verri and F. Girosi in Proc. IEEE Workshop on Visual computational vision", Ann. Rev. Comput. Sci. 2,
Motion, Irvine, CA, 1989. 69.-89, 1987.

[Julesz, 1982] B. Julesz, "Visual pattern discrimination",
IRE Transactions on Information Theory 8, 1962,
84-92.

828



Efficient Parallel Processing in High Level Vision

Craig Reinhart *and Ramakant Nevatia t
Institute for Robotics and Intelligent Systems

Departments of Electrical Engineering and Computer Science
University of Southern California

Los Angeles, California 90089-0273

Abstract by a von Neumann machine but the amount of pro-
cessing and the complex control structures required to

We describe a methodology for developing effi- search through a solution space containing permuta-
cient parallel implementations of high level vi- tions of the data soon exceed the capabilities of the
sion algorithms. Efficiency is defined in terms machine. To summarize, computer vision systems chal-
of algorithm speedup, processor efficiency, sys- lenge serial machines through both data intensive and
tern complexity, and programmer burden. Al- compute intensive operations. These challenges have
goritlim speedup and processor efficiency are made parallel implementation of computer vision sys-
critical issues in the parallel implementation tems an important topic within the computer vision re-
of high level vision tasks as the required algo- search community (Ahuja and Swamy, 1984, Weems and
rithms often utilize computationally intensive Levitan, 1987, Kuehn et al., 1985, Little et al., 1987,
techniques. Furthermore, due to their usage Rosenfeld et al., 1986, Hamey et al., 1988, Stout, 1988,
of complex code and data structures, system Sunwoo and Aggarwal, 1989].
complexity and maintenance costs can become We are interested in investigating the inherent com-
excessive if care is not taken in the design of plexities of computer vision systems and how those corn-
the implementation. Most researchers empha- plexities can be tolerated via efficient use of a parallel
size speedup and efficiency with little regard processor architecture. We define efficient in terms of
to system complexity and programmer burden. four measures.
We show that through our design procedure, all Algorithm Speedup is a measure of the reduction in ex-
four issues can be sufficiently addressed. ecution time when moving from a sequential to a parallel

algorithm implementation. This is a standard measure
1 Introduction in the study of parallel processing.

Processor Efficiency, also referred to as load balanc-
Computer vision systems are comprised of tasks that ing, is a measure of the amount of inherent parallelism,
can be categorized into three levels, low, mid, and or conversely, the amount of inherent serialism, within
high. Across the levels, a wide variety of algorithmic an algorithm as well as how well suited the target par-
techniques are utilized ranging in complexity from sim- allel processor architectuie is to the algorithmic require-
ple repetitive processing to elaborate rule-based control ments. This too is a standard measure in the study of
structures. Also, the amount of active data at any given parallel processing.
point in the system execution can range from tens of System Complexity is a measure of how closely the par-
thousands of individual scalar values to a few multi-field allel implementation of the algorithm resembles the serial
record structures. Each diverse algorithm utilized in a implementation, or conversely, how closely it resembles
computer vision system taxes a classical von Neumann the parallel processor architecture. This is a measure
(serial) architecture in one way or another. that we are introducing as it plays an important role in

In low-level vision, the multiplications and additions the life cycle of a computer system, both software and
required by convolutional processing are easily executed hardware.
on a serial machine hut the amount of data on which Programmer Burden is a measure of the degree of dif-
they must operate (the image plane) overwhelm it. ficulty in developing and maintaining the parallel algo-
Conversely, the small number of abstract data struc- rithin implementation. This is also a measure that we
tures utilized in high-level vision are easily maintained are introducing as it too plays an important role in the

*Supported by the Hughes Aircraft Company Fellowship life cycle of a computer system.
Piogram An abundance of research into the parallel implemen-

tThis research was supported by the Defense Advanced tation of low and mid-level vision tasks on a variety of
Research Projects Agency, monitored by the Air Force machines has been performed [Rice and Jamieson, 1985,
Wright Aeronautical Laboratories under contract F33615-87- Little et al., 1987, Kuehn ct al., 1985, Stout, 1988,
C-1436 Levitan, 1984, Weems, 1988, Hamey et al., 1988] but lit-
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tie has been done with respect to high-level vision. Fur- Once a parallel processor architecture has been de-
thermore, researchers have placed dramatic emphasis on signed and an algorithm selected, one then proceeds to
the issues of algorithm speedup and processor efficienc), implement the algorithm on the architecture. This is
especially speedup, with little or no regard to system a two step process. The first step is called the mapping
complexity and programmer burden. Typically, the de- problem [Bokhari, 1981] and involves two steps of its own.
rived parallel implementations provide good measures of The second step is development of the actual code. We
speedup and efficiency at the cost of obscure software will not discuss the coding step as it involves the same
and costly, custom built hardware, effort as for a serial algorithm once the mapping problem

In our approach, rather than select a parallel architec- has been solved.
ture then map an algorithm onto it, as is usually done, The mapping problem is solved in two steps, the first
we perform some basic analysis steps in order to identify involves partitioning the algorithm into independent pro-
the inherent parallelism contained within the algorithm. cesses and the second, assigning the processes to indi-
We then specify the components of a parallel processor vidual processing elements. A formal statement of the
architecture that is well suited to the requirements of problem is: the search for a correspondence between the
the algorithm. For a complete computer vision system interaction pattern of the algorithm processes and the
comprised of a variety of algorithms, we specify an ar- communication network topology of the architecture. A
chitecture for each algorithm that is well suited to that good solution, or mapping, is one that minimizes the
algorithm. These architectures can then be reali:.ed by communication overhead and thus maximizes the effi-
either a single heterogeneous or reconfigurable parallel ciency and the speedup.
processor architecture. Through this approach we are With this approach, if an algorithm is not well suited
able to address the issues .f system complexity and pro- to the given architecture, the designer is forced into de-
grammer burden as well as algorithm speedv!2p and pro- veloping an obscure algorithm implementation which re-
cessor efficiency. sembles the architecture more so than the original algo-

Due to the need for increased through-put in high-level rithm specification.
vision algorithms and the lack of research towards this In our methodology we approach the problem from
end as well as the abundance of results available in the the opposite direction. That is, we begin by analyzing
parallel implementation of low and mid-level vision algc- the algorithm to determine its processing requirements
rithms, our studies are centered aiound high-level vision, then, using these findings, we specify a parallel processor
In applying our approach to the parallel implementation organization that is well suited to the requirements. We
of a relaxation based image matching algorithm [Medioni proceed in four basic steps:
and Nevatia, 19841 we were able to:

" Achieve significant algorithm speedup. I trol strutue Analysi
In this step we identify the independent processes* Achieve sig nificant processor etficiency, that constitute the algorithm through inspection of

a Design a parallel processor architecture consisting the processing constructs. Of primary interest are
of commercially available components. iterative constructs (loops) that determine the over-

* Utilize software that is nearly identical to that used all complexity of the algorithm and offer potential
for parallelization. This step results in the identifi-in the serial implementation. cation of the inherent parallelism contained within

In the following sections we present our methodology the algorithm.
for developing parallel implementations of computer vi-
sion algorithms and the application of the methodology 9 Data Structure Analysis
to the relaxation based image matching algorithm. In this step we determine the data requirements of

each process identified above. The result of this step
2 The Methodology is the specification of which data structures to par-

tition and how to partition them (distribute themResearch into the parallel implementation of computer among processes.)
vision systems classically begins with the specification
of a parallel processor architecture [Little et al., 1987, Communication Analysis
Stout, 1988, Reisis and Prasanna-Kurnar, 1987). This Identification of the independent processes and the
includes the specification of various organizational pa- data structure partitioning scheme will determine
rameters such as: Programming model, SINID, MIMD, or the communication requirements between the pro-
MISD [Flyim, 1972], P1uL o .,ag lJ, cs (PEs), simple cesses. That is, a data structure may be distributed
or complex instruction set; Processing element coupling, among processes such that one process is assigned
tightly (shared niemory) or loosely (message passing); a data item required by another process to com-
Processor homogeneity, homogeneous (identical process- plete its task. In this step such requirements are
ing elements) or heterogeneous (two or more different determined as well as the appropriate communi-
types of processing elements), Proussor sgnchroniza- cation protocols for their implementation, such as
tion, synchronous, asynchronous, or loosely synchronous, synchronous message passing among all processes,
and Communication network topolug.,, cube, mesh, pyra- asynchronous message exchanges between two pro-
mid, ... Details on these and othei organizational pa- cesses, message broadcasting and reduction. The
rameters can be found in Hwang and Briggs, 19841. result of this process will lead to the specification of
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the communication network topology of the archi-

tecture. MOOL SCENE

* Architecture Specification P, =^ SO!

Given the results of the previous steps, this step r, a, .
is where we specify the architecture in terms of its
organizational parameters. The result is the specifi-
cation of a parallel processor architecture well suited Figure 1: Window construction.
to the requirements of the specified algorithm in
terms of speedup, efficiency, system complexity, and
programmer burden. 3.2 Algorithm Description

This image matching algorithm [Medioni and Neva-
We have found that this approach produces high de- tia, 1984] receives input images from two independent

grees of speedup and efficiency via software that resem- sources and then attempts to construct a list of corre-
bles the serial implementation of the algorithm and is spondences between them using a relaxation based ap-
therefore no more difficult to develop and maintain. Fur- proach. We provide an overview of the algorithm with
thermore, this approach lends itself to the design of par- enough detail to discuss our algorithm mapping method-
allel implementations of complete computer vision sys- ology. For details and explanations beyond the scope of
tems (heterogeneous algorithm suites) which can be im- our discussion, the reader should see the referenced work.
plemented via a reconfigurable or a heterogeneous par- The primitives used by the image matching algorithm
allel processor architecture. are linear segments, represented symbolically by their

end point coordinates, orientation, and average contrast.
3 Image Matching - An Application Given two sets of linear segments extracted from two im-

ages (or an image and a map), the object is to find cor-
3.1 Overview respondences between the segments of each set based on

their symbolic descriptions (local constraints) and on the
Matching of two images (or a map and an image) is a geometri- relationships between segments of the same
fundamental operation in computer vision. Various so- image (global constraints.) The assumptions made prior
lutions to the problem of finding correspondences be- to matching are that: 1) the orientations of the two im-
tween images have been proposed ranging from correla, ages are nearly the same; and 2) the scaling factor from
tion (Rosenfeld and Kak, 1976) to graph isomorphism one image to the other is approximately known.
[Ghahraman et at., 1980]. One primary distinction The set of primitives, A = {a,11 < i < n}, from one
among the proposed solutions is the level of description image is called the SCENE and the primitives, a,, are
at which the matching is performed. Correlation based called OBJECTS. The set of primitives, L = {I1 < j <
techniques typically operate directly on sensor data (pix- m}, from the other image is called the MODEL and the
els) whereas graph based approaches often utilize scman- primitives, 1,, are called LABELS. The algorithm pro-
tic structures such as roads and buildings. ceeds to compute the quantity p(i,j) in {0, 1}, which is

The image matching algorithm used in our study uti- the POSSIBILITY that object a, corresponds to label
lizes a discrete relaxation based approach to matching. l. It is possible that an object has no corresponding
It determines correspondences between line segments de- label due to occlusion or scene change, that several ob-
tected in Lach image based on symbolic descriptions of jects conrespond to the same label due to fragmentation,
the segments as well as geometrical relationships be- or that an object corresponds to several labels due to
tween segments. The algorithm iterates over the solution merging. The method for computing p(i, j) relies on geo-
space until a stable state is converged upon. metrica! constraints, that is, when a label, ij, is assigned

This algorithm was selected for study due, primarily, to an object, a,, we expect to find an object, ah, with a
to its applicability to high-level vision. But, the basic label, lk, in an area defined by i, j, and k. The area is
approach utilized in the algorithm, relaxation, has been called a WINDOW and is denoted w(i,j, k).
used in other applications as well [Waltz, 1972, Rosenfeld The method for computing w(i, j, k) is as follows. The
et at., 1976, Faugeras and Price, 1981, Rosenfeld and object, a,, is represented by the two dimensional vector
Smith, 1981, Terzopoulos, 1986, Rutkowski et al., 1981]. AB, and the label, 1,, by PQ,. By "sliding" 1j over
Therefore, the results of this study can be generalized a, an area is described by the corresponding motion of
to various other applications in low, mid, and high-level label Ik, Pk Qk (figure 1.) This parallelogram shaped area
vision, is the window w(i, j, k).

In the following sections we present details of the ap- Two object/label assignments, (i,j) and (h, k), are
plication of our methodology to the relaxation based iua- COMPATIBLE, (i, j)C(h, k), if and only if object ah lies
age matching algorithm. We present a brief desciption within window w(i, j, k) and object a, lies within window
of the algorithm, application of the four steps that con- w(h, k, j).
stitute our methodology, and a discussion of the results Using these definitions, the algorithm searches for ob-
of tbe application in terms of our four measures, algo- ject/label correspondences by first identifying all possi-
rithm speedup, processor efficiency, system complexity, ble correspondences based on the symbolic descriptions
and programmer burden. of the objects and labels. This set of correspondences
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Figure 2: Image matching algorithm primary flow. Figure 4: Image matching primary control loops.

flag = 1;
while (ag) { 3.3 Control Structure Analysis

flag = 0;
/* Iteration of possibiitises/compatibilities. *1 In analyzing the control structure of an algorithm our

for (j = 0; < numer.of..objel; ++i) objective is to determine its overall time complexity andfor (j = 0; 3 <unumber.ofjabels; ++j)betv cmlxt
if (plIAiJ) f P if P(t)(ij) == 1 "/ to identify the specific structures that dictate that time

card.- = 0; complexity, typically loop constructs. We call these con-
P* Compute the degree of support for I structs primary control structures. Identification of the
/* Ike object/lobel assignment. I/ tutprmrcotosrcue.Idnicaonfth
fo (h =0;ktlbeflaes k for&11labelsprimary control structures will help us to identify inde-
for ( wi = o; w nmber.ot.iabel,; ++lr) { /, orelhbel, '/ pendent processes and thus, identify areas where par-

make..window(objects[i], habehslj] labele [k], win.ijk); allsn b
= 0; found = 0; allelisi can be applied providing significant algorithm

while ((h < number.of.objects) && (!found)) {
if (pik][h] &k in.window(objects(h], win.ijk) speedup.

found + +b ptble(object,[il, lbelUh objccth), hbelk1); The time complexity of the image matching algorithm

) P* while ((h < number.... fobjects) ... I/ is determined as follows. Given a scene containing n
if (found)

++card(o; objects and a model containing m labels, the maximum
}/" for (k =... -/ number of possible object/label pairs is nm, which oc-

if (card. < q) curs when every object is similar to every label. At
flag = i; each iteration at most one object/label pair is discarded,
plj][i] = 0;
)/- if (Card- ... that is, its possibility is set to 0, therefore, the process

}/P if WIN... ir}/" while (lag)... - converges in at most nm iterations. During each iter-
ation the algorithm computes the possibility of the ob-
ject/label pair which is a measure of how well it 'fits' with

Figure 3: Serial code for image matching algorithm, the remaining object/label pairs. In the worst case, this
requires investigating rnm pairs. Therefore, the complex-
ity of the algorithm is 0(n2m 2). If we assume an equal
number of objects and labels, m, the algorithm timeconstitutes the possibilities at iteration step 0, p°(i, j). coplexity can be expressed as 0(m 4). Figure 4 shows,

Subsequent values of p(i, j) are computed by the itera- com ty ane epresed as 0(mc) iguren shs
tion formula: pictorially, the four nested loops which implement this

time complexity. These constitute the primary control
structures.

V(i,j),p'+'(ij) = 1 ifpt(i,j) 1 AND Nested within the four loops is the possibility computa-
3 subset S of [1, mI (labels) with q elements such that tion. As described above, it consists of checking whether

Vs in S, 3k in [1,n] (objects) such that p'(k,s) = 1 and or not a gien object/label pair has any compatible ob-
(i, j)C(k, s). ject/label pairs. This, in turn, requires the computation

of a window and the search for an object within it. Once
The algorithm halts when V(i, j),p'+' (i, j) = pl (i, j). a candidate object/label pair, (as, I.,), has been queued,
The value q is the fit parameter. If a perfect match the possibility computation, p(i,j), can proceed as m2

is desired then its value should be set to in, the number independent computations. Each computation is struc-
of labels. Otherwise it should be set to a value deter- tured so that it operates on an isolated data set, that is,
mined by the devired degree of match between the two successive passes through the inner loops (the possibility
images. A flow diagram of the image matching algorithm computation) are independent of one another. Thus, the
is provided in figure 2 at.,' a code sel,lnent from the serial possibility computation can proceed as multiple parallel
implementation in figure 3. processes and has the potential to provide significant al-
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Figure 7: Image matching horizontal swath partitions.

the same (ai, 1j) pair, the object/lItbel assignment under

........... Servers consideration, and each receives a unique (ah, 1k) pair,

Client an object/label assignment that determines the global
consistency of the pair under consideration. From these
inputs the windows, w(i, j, k) and w(h, k, j), are formed.

Figure 5: Client/Server algorithm partitioning. The relation (i, j)C(h, k) is then computed by cdetermin-
ing whether or not ah lies within w(i, j, k) and a, lies
within w(h, k, j). A value of 1 is returned if the relation
holds, otherwise a value of 0 is returned. The value of
pt+1 (i, j) is determined by summing the results from all
of the individual processes and comparing that sum to
the fit parameter, q.

If we assume the availability of N = m2 processing
elements, the obvious way of partitioning the data struc-
tures is to assign each PE, 0 < p _5 N- 1, an object/label
pair, (ah, lk) E AxL. If the number of processing ele-

Figure 6: Image matching primary data structures. ments available is less than m2 , that is, N < M2 , then
the most intuitive way, from a programmer's viewpoint,
to partition the data structures is to assign each PE,

gorithm speedup. For these reasons, it constitutes our 0 < p _5 N - 1, to a 1/N sized portion of the Ia-
process partitioning scheme. bel array and the entire object array thus giving each

Having selected the possibility computation as the a set Sp = {(ah,,lk)I < h < rn, p * (m/N) :_ k <
process with which to partition the algorithm, we have p * (m/N) + m/N - 1}Vp : 0 < p _5 N - 1 of objects
produced a client/server model. That is, one process and labels. This creates N horizontal swathes through
will queue possible object/label pairings via the outer the possibility matrix as depicted in figure 7. These hor-
two primary control loops, constituting the client, and a izontal swathes constitute our data partitioning scheme.
set of independent processes will determine the possibil-
ity of that pairing via execution of the inner two control 3.5 Communication Analysis
loops and their encompassed procedures in a distributed Having designed our process and data partitions, we
fashion, constituting the servers. Figure 5 shows the must now identify the inter-process communicatior re-
client/server algorithm partitioning. quired to complete the parallel implementation.

As described previously, a possibility computation re-
3.4 Data Structure Analysis quires access to the object/label pair under consider-

Having identified the possibility computation as the task ation, (a,, l4), provided by the client process, and the
on which to partition the algorithm into processes, we set of possible object/label pairs from which the server
must now determine the data requirements of each coin- processes compute a degree of support. The set cf pos-
putation. In doing so we will identify the primary data sible pairs are statically distributed amorg the server
structures and determine an appropriate partitioning of processes once, upon algorit' ,n initiation, as described
these structures. above. Conversely: the pair (ailj) must be proiided

For the image matching algorithm, three primary data to each server, dynamically, by the client process. This
structures can be identified. The first two are linear ar- is achieved via a broadcast operation from .me client to
rays of size rm of symbolic records, one array each for every server.
storage of the set of objects and the set of labels. The Having received (a,, 1), each server process computes
third data structure is an rnxrn matrix of logical val- a degree of support for the pair based on its set of pos-
ues that store the results of the possibility computation, sible object/label pairs (its data partition.) Upon com-
pt(i,j), for each iteration, t. Figure 6 shows the primary pletion, each server rt.ports its degree of support to the
data structures, pictorially, client where the individual degrees of support are com-

Each possibility computation (process) requires two bined into a single result and the possibility computa-
entries from the object array, a, and a,, and two entries tion, pt(z,j), is completed. This is achieved via a reduc-
from the label array, 14 and k.. All processes rereive 6ion operation from every server to the cent.
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Finally, the client must report pt(i,j) to the server specification of the primary data structures in a natu-
process whose data partition includes the pair (a,, 1.) so ral way, that is, via multi-field records. Processors best
that it can update its possibility value. This is achieved suited to these constraints are of the complex instruction
via a point-to-point send/receive operation from the set variety such as a general purpose microprocessor.
client to the particular server. Processing Element Coupling. As the communication

In summary, our process/data partitioning scheme re- between processes is in bursts, that is, at the beginning
quires three types of communication: 1) broadcast; 2) of each possibility computation (the broadcast) and at
reduction; and 3) point-to-point send/receive, the end of each possibility computation (the reduction),

This concludes the analysis steps of our methodology a tightly coupled or shared memory system would not
as applied to the image matching algorithm. We have suffice because of memory access conflicts. Without spe-
described the algorithm, identified its primary control cial protocols to allow concurrent reading and writing of
structures, identified its pri.nary data structures, parti- memory, a communication bottle neck would exist. Bet-
tioned it into independent processes, and identified all ter suited to the algorithm is a loosely coupled or mes-
required inter-process communication. Our remaining sage passing architecture. These systems facilitate high
te.sk is to specify a parallel architecture well suited to bandwidth communication without the requirement of
the requirements identified by our analysis. This is pre- special purpose hardware.
sented in the following section. We then present an eval- Processor Homogeneity. Our partitioning scheme pro-
uation of the system design arrived at via our method- vides each server process with identical tasks. The client
ology through architecture simulation and actual imple- process is computationally similar to the server processes
mentation. in that it utilizes the same data structures as well as

similar logic. Therefore, the parallel architecture should
3.6 Architecture Specification be homogeneous, that is, comprised of a set of identi-
In specifying a parallel processor architecture we must cal processing elements. This facilitates programming
address various organizational parameters: Program- (reduction of programmer burden) as well as hardware
ming model; Processing element type; Processing element interfacing of processing elements (reduction of system
coupling; Processor homogeneity; Processor synchroniza- complexity.)
tion; and Communication network topology. Whereas Processor Synchronization. In light of the fact that
in the classical approach this is done prior to the algo- therL is computational similarity between all of the iden-
rithm analysis, that is, the parallel implementation of tified processes as well as data dependent processing,
the algorithm is specified for a particular parallel archi- the parallel architecture should operate in loosely syn-
tecture, we base our specification of these parameters on chronous mode. That is, all processes incorporate iden-
the results of our algorithm analysis. In the following tical copies of the program, with the exception of the
paragraphs we address each of these organizational pa- client process, and execute under control of their own
rameters and discuss how they are influenced by the pro- program counter. Synchronization occurs only at points
cessing requirements of the image matching algorithm, of communication. As we shall see, this also facilitates

Programming Model. The image matching algorithm programmability of the implementation which reduces
(more specifically, the possibility computation) con- system complexity and programmer burden.
tains various processing steps that are data dependent, Communication Network Topology. Perhaps the most
that is, all data items are not processed identically. interesting aspect of a parallel processor architecture
The Multiple Instruction Multiple Data programming is its communication network topology, the processing
model is best suited to this situation. In this model element interconnect pattern. As we showed via the
each processing element can execute code dictated by its communication analysis, the imiage matching algorithm
particular data items. Conversely, the algorithm could places three constraints on the communication network
be implemented under the Single Instruction Multiple topology. The first is that it must facilitate an efficient
Data programming model, as demonstrated in [Reisis broadcast operation, the second is that is must facilitate
and Prasanna-Kumar, 19871, but processing elements an efficient reduction opf .ation, and the third is that
would spend a great deal of time "idling" through code it must facilitate an efficient point-to-point send/receive
which is not applicable to their data items and thus, operation. In the following paragraphs we consider each
reduce the processor efficiency. of these constraints.

Processing Element Type. Computation of the com- With regard to the broadcast operation, the ideal mes-
patibility relationship, (ij)C(h,k), between to pairs sage passing architecture is one containing a single com-
of ooject/label correspondences, (a,,I,) and (ah,lk), mon bus to which all processing elements are connected.
requires computation of two windows, w(i,j,k) and In this topUUgy bdLust opeLatiumi ib coipl,ted in
w(h,k,j), as well as whether or not the objects ai and 0(1) time.
ah lie within the respective windows. These compu- With regard to the reductitn operation, thie ideal algo-
tations require the use of transcendental functions as rithm requires fl(log n) Lime, that is, "order no less than
well as floating point arithmetic (unless integcrization is log n time", assuming concurrent read and write c .ra-
performed.) Therefore, the proccs.or utilized mnu. - sup- tions are forbidden [Cole and Vishkin, 19861. This ideal
port these computations. Furthermore, to reduce systemi time is achieved by an algorithm that utilizes a divide
complexity and programmer burden, the processor must and conquer approach. The result is obtained by divid-
be programmable in a hghi-level language that allows ing the data set into two halves, finding the two partia'
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results, and combining the partial results to get the final That is, for N processing elements, algorithm speedup
result. The dividing is done recursively until the data is defined as
sets are indivisible. Such a divide and conquer scheme SN -TL
yields a binary tree with n2 nodes with the data items TN
starting at the leaves. For the image matching algorithm where T and TN are the elapsed times for 1 and N
the data items, the objects and labels used to determine processing elements, respectively.
the global validity of a queued object/label correspon- Processor efficiency is defined as the average utiliza-
dence, can be distributed among all nodes of the tree, tion of the available processing elements and can be spec-
not just the leaves. ified in terms of algorithm speedup, SNV. For N process-

With regard to the point-to-point send/receive opera- ing elements, processor efficiency is defined as
tion, the ideal message passing architecture is, again, one EN = -N.
containing a single common bus to which all processing If the efficiency, EN, of a parallel implementation re-
elements are connected. In this topology a send/receive mains constant (ideally 1) as the number of processing
operation is completed in 0(1) time. elements, N, is increased, the parallel implementation of

The reduction operation produces the most stringent the algorithm is said to have achieved linear speedup.
constraint dictated by the image matching algorithm.
A communication network topology that facilitates this 3.7.1 Complexity Analysis
operation will also facilitate the other two as they are Previously we determined the complexity of the im-
of lower order complexity. Therefore, for parallel im- age matching algorithm to be O(m 4 ), assuming an equal
plementation of the image matching algorithm, the pro- number of objects and labels, m. This is due to the
cessing elements should be connected via a binary tree nested loop structure of the algorithm where every ob-
topology. ject/label pair, (ai,lj), is checked against every other

To summarize, the organizational parameters of a par- object/label pair, (ah, lk) for compatibility.
allel processor architecture that is well suited to the im- In our partitioning strategy, we distribute the m 2 com-
age matching algorithm should be specified as follows: patibility computations for each object/label pair possi-

" Programming model - MIMD bility computation evenly among the N processing el-
ements. Therefore, barring the existence of any data

" Processing elements - Complex Instruction Set dependencies or overhead, we expect to achieve O(N)
Computers speedup and complete processor utilization, that is, an

" Processor coupling - Loosely Coupled efficiency of 1. Unfortunately, both data dependencies
and overhead exist." Processor homogeneity - Homogeneous The data dependencies contained within the image

* Processor synchronization - Loosely Synchronous matching algorithm can be expressed in terms of the pos-
sible correspondences between objects anu labels. Let us" Communication network topology - Binary Tree define the value P. to be the set of possible object cor-

This completes the application of our methodology to respondences for each label 1j, 1 < j !_ m. We can then
the image matching algorithm. In the next section we define
present an evaluation of the system design in terms of P = max, 1 P 1,
our measures; algorithm speedup, processor efficiency, -

system complexity, and programmer burden. P l= ' ,and

k =
3.7 System Evaluation A.

The value k is an indication of how evenly the ob-Having completed our parallel implementation of the im- ject/label correspondences are distributed. For instance,
age matching algorithm, we now present an evaluation if every label forms possible correspondences with the
of the implementation in terms of our four measures. same number of objects, k will be 1. Conversely, if one
The evaluation is performed on the basis of three "data label forms possible correspondences with a large num-
points." First, we use a serial implementation of the al- ber of objects and the remaining labels form possible
gorithm as a baseline with which comparisons can be correspondences with a small number of objects, then k
performed. Second, we use a simulation developed to will be large.
analyze the implementation relative to any number of Using these definitions, the expected values for algo-
processing elements. Third, we use an actual system im- rithm speedup and processor efficiency for our imple-
plementation utilizing INMOS Transputers [INM, 19891 mentation of the image matching algorithm (barring any
to bring validity and feasibility to the entire study. overhead) are

As we stated earlier, most research in the field of par- - and
allel processing of computer vision algorithms is primar- N - n
ily concerned with algorithm speedup and processor ef- E = i.
ficiency. For this reason we begin our evaluation and As an appeal to one's intuition, consider the following
discussion with these two measures. cases. Recall that our data partitioning scheme calls

Algorithm speedup is defined as the ratio of elap:.ed for the assignment of a set of object/label pair to each
time when executing a program on a single processor processitg element. If all sets contain an equal numbcr
to the elapsed time when N processors are available, of possible correspondences, then
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/3-/3 k--1 Problem T3 T T4 15s T,-~~1T T F TT 5$= N and Ek = 1. 12 10.53 5.22 3.73 3.13 - 1.01
This implies that each processing element is assigned the 24 167.57 97.08 63.23 53.43 18.83 9.3(
same amount of work. If one set contains more possible 36 870.90 473.82 342.62 271.02 90.52 31.11
correspondences than all of the rest, 3j :P, I> I P,]Vi 3 48 2743.32 1487.00 1057.93 792.52 283.43 72.7:
j, 1 < i < m, then 50 11 6.431 3.451 2.371 1.781 0.581 0.2:

100 33.60 18.10 12.13 9.15 2.75 0.5'
P > P = k > 1 =€ 200 271.80 140.72 95.78 68.75 19.15 N1.8

S < N and E < 1. 51 75.07 39.37 28.67 21.78 6.82 2.1'
This implies that the processing element assigned the set 102 1091.93 552.42 375.27 300.35 83.28 18.3!
P must do more work than any of the other processing 153 6620.68 1 3396.95 2267.65 1 1700.68 547.67 78.0:
elements.

These expected values are to be considered estimates Table 1: Execution times from simulation.
of the overhead incurred by the implementation due to
data dependencies. One must remember that the actual Problem St S2 S3 S4 - S115 ,
distribution of possible object/label correspondences is 12 1.00 2.02 2.82 3.36 - 9.75
dynamic as it is the goal of the algorithm to reduce this 24 1.00 1.73 2.65 3.14 8.90 18.02
to a canonical set of correspondences via the relaxation 36 1.00 1.84 2.54 3.21 9.62 27.96
operation. Furthermore, the algorithm contains some 48 1.00 1.84 2.59 3.46 9.68 37.73
inherently serial operations, those of the client process, 50 1.00 1.86 12.711 3.61 111.09 27.96
that must be taken into consideration in light of the 100 1.00 1.86 2.77 3.67 12.22 58.95
overall performance analysis. Actual values of algorithm 200 1.00 1.93 2.84 3.95 14.19 145.35
speedup and processor efficiency will vary due to this dy- 51 1.00 1.91 2.62 3.45 11.01 134.59
namic behavior and serialism. The goal is to minimize 102 1.00 1.98 2.91 3.64 13.11 59.67
the effects of these on the performance of the parallel 153 1.00 1.95 2.92 3.8 12.09 84.86
implementation.

3.7.2 Measured Performance Table 2: Speedup from simulation.
To measure the actual values of algorithm speedup and

processor efficiency we devised three test cases. The first
is comprised of two identical images containing multiple The system is comprised of one to four INMOS Trans-
vertical lines. In this scenario k = 1. The second is com- puters but is expandable to incorporate any number of
prised of an image containing one vertical line and mul- processing elements without any system redesign.
tiple horizontal lines and an image containing one hor- Tables 4, 5, and 6 show the measured execution times,
izontal line and multiple vertical lines. In this scenario algorithm speedup, and processor efficiency, respectively,
k = m/2 where m is the number of labels. The third for the various test cases and problem sizes.
is comprised of two identical images containing lines ex- Although our data points are sparse, the tables do in-
tracted from an airfield image. In this scenario k = 1.67. dicate the following trends in terms of algorithm speedup

Table 1 shows the execution times for the three scenar- and processor efficiency for our parallel implementation
ios when instantiated with various problem sizes. The of the image matching algorithm:
first four rows are for the first scenario with the number * The implementation is most effective when the
of labels, m, being 12, 24, 36, and 48. The next three problem size is large, that is, when the number of
rows are for the second scenario with the number of la- possible object/label correspondences is large.
bels being 50, 100, and 200. The last three rows are for implementation is most effective when the num-
the third scenario with the number of labels being 51, ber of processing elements is less than or equal to
102, and 153. Simulation runs were done with the num-
ber of processing elements being !, 2, 3, 4, 15, and m,
the number of labels. These are represented by the six
columns. Problem El E2  ES E 4  Ells E,,

Table 2 shows the measured speedup fo± each of the 12 1.00 1.00 0.94 0.84 - 0.81
test cases and table 3 shows the cfliciency. Oi,e should 24 1.00 0.86 0.88 0.78 0.59 0.75

36 1.00 0.92 0.86. 0.80 0.65 0.78note that these measurcd values do not ndcud. over-48j -9-
bead for inter-processor cummunication. They strictly 50 1.00 0.93ol 0.90 0.90 0.74 0.55
reflect the algorithm speedup and processor efficiency as 100 1.00 0.93 0.92 092 0 0.58
affected by our process and data pa;titioning schemes 1 9 0 .92 0.58
and the data dependencies. 200 1.00 0.97 0.95 0.99 0.95 0.73

To obzerve the eflects of iiter-processor communica- 51 11.00 1 0.95 0.871 0.86 0.73 J10.68
tion on the overall performance (as well s to demon- 102 1.00 1 0.99 0.97 0.91 0.87 1 0.58
strate a complete application of our methodology) we - -

also developed an actual parallel processor system based
on our implementation of the image matching algorithm. Table 3: Efficiency from simulation.
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Problem Ti7'i IT T4 Rag = 1;
while (flag)

12 8 5 4 3 fag = o;
24 119 T1 50 40 /* Itexation of possibillties/compatibilities. /24 -19 1- 5 - for (i = 0; i < number.of.objects; ++i)
36 581 338 238 185 for (j = 0, j < number..ofiabols; ++j)
48 1815 1060 747 582 if (pulp]) I/ PIf e(t)(i~j) == I "

card.s = 0;

50 7 - 4 4 -SEND OBJECT/LABEL ASSIGNMENT PAIR TO CHILDREN100 31 23 19 18 (BROADCAST).
200 1591 1061 831 78200 5 16 8 78/* Compute the diltree of support fovr the object/label *1/

51 60 34 23 21 /" assignment provided by this PEs I/uth of the label table. /102 839 439 303 233 for (k = 0; k < myshare; ++k) { for my share of labels
make.window(objectsfi), labelU], labelalkl, win..ijk);

153 4063 2112 1373 1080 h = 0; found = 0;
while ((h < number..of.objects) && (!found)) f

if (p[kil[h k in.window(objectolh, winijk)

Table 4: Execution times from Transputer implementa- found = compatible(objects(i), labelhj], objectsih), labelslk]);
++h;

tion. I /- while ((h < number.of.objects) ...
if (found)

++cards;
Problem_ S, S2 S3 $4 } * for (k .... "I

12 1.00 1.60 2.00 2.67 RECEIVE CONTRIBUTIONS PROM CHILDREN (REDUCTION).
24 1.00 1.68 2.38 2.98 card.- += left.c hild.contribution;
36 1.00 1.72 2.44 3.14 card.,s += right.child.contributiou;

48 1.00 1.71 2.43 3.19 if(carda < q){

50 1.00 1 1.26 1 1.52-T 1.54 1 lag = 1;
pUlP-] = 0;

100 1.00 1.36 1.63 1.73 }/- if (eard.i ...

200_1_1.00 1[ 1.50 11.91 1 2.05 SEND CHANGES TO THE PB WITH PAIR (ii).

51 11.00 1.76 2.40 2.86
102 1.00 1.91 2.77 3.60 P if)(pulii)...

153 11.00 1.92 2.96 3.76

Table 5: Speedup from Transputer implementation. Figure 8: Client code for parallel image matching algo-
rithm.

the number of labels (when data dependencies aretaken into account.) implemented on a serial machine. The programming lan-
tIn ihto t iou it e, iguage was 'C'[Kernigan and Ritchie, 1978]. In figures 8mnication des nos diatems, iterpleson, and 9 we show program segments for the client and server

processes, respectively, also written in 'C'. Note that the
We now focus our attention on our two new measures, algorithm-specific constructs are identical in the serial

system complexity and programmer burden. and parallel programs. The only differences are the in-
3.7.3 System Development and Maintenance clusion of the subroutine calls to perform inter-processor

satem Dieveom e t y communication. Therefore, one can conclude that the
As stated earlier, system complexity is a measure of complexity of the parallel software is no greater than

how closely the parallel imuplementation of the algorithm that of the serial implementation. This is attributable

resembles the serial implementation. It can also be to the fact that the parallel implementation was designed

viewed as the amount of effort (cost) required to real- based on the structure of the algorithm, and not on the

ize the parallel implementation of the algorithm, structure of the parallel processor architecture.

Previously, we showed a program segment for the im- rob sure of the eree
Programmer burden is a mefzure of the degree of dif-

age matching algorithm's primary control structures as ficulty in developing and maintaining the parallel algo-

rithm implementation. It can also be viewed as the

Problem l 1  E2 E3 Eamount of effort (cost) required to modify and debug

12 -.00 -8 E 6 0.67 the parallel software in light of algorithm modifications.
24 1.00 0.84 0.7 0.76 In computer vision, this measure is critical due to the
36 100 08 01 09 fact that the vision problem is far from being solved and36____I 1.00 0.86 0.81 0.79

48 1.00 0.86 10.8 0.86 algorithm refinements arrive at a high rate.

1 0 0 .51 0 As discussed above, the software for the parallel imple-

50 1.00 0.68 0.54 0.43 mentation of the image matching algorithm is identical
S 00 1.00 0.75 0.64 0.51 to that of the serial implementation as far as algorithm
5 10 "0specific constructs are concerned. Therefore, algorithm

102 1.00 0.96 0.92 0.90 debugging and modification can take place in the serial
13 1.00 0.96 0.92 0.9- environment where advanced tools are readily available

3 1 ± 06 09 04 and then ported directly to the parallel environment. Us-
ing this technique, once we achieved a "bug free" version

'fable 6: Efficiency from Transputer implementation. of the algorithm on a serial computer, we were able to
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done = 0; the SIMD machine. Finally, any modification of the im-
while (!done) {plementation (algorithm) would require intimate knowI-

RECEIVE OBJECT/LABEL PAIR PROM PARENT (BROADCAST). edge of the algorithm, the architecture, and the imple-

SEND OBJECTI/LABEL PAIR TO CHILDREN (BROADCAST). mentation as is the case with most "classical" parallel

/* Compute the degree of support for the object/l4el *! algorithm implementations.
/- assignment provided by this PEs 1/nth of the I.bel table. */ We have shown that these situations can be overcome
contribution = 0; by design (or selection) of a parallel processor architec-
for (k = 0; k < my.hare,; ++h) f for my share of label / ture based on the processing and data requirements of

make.window(objectsi, liabels.j, labelskhl, win.jk);
h = 0; found = 0; the algorithm rather than specifying the algorithm im-
while ((h < numberof.objects) && (!found)) { plementation to meet the specifications of the parallel

if (pik](h) &k io.window(objectsth), win-ijk)
found = compatible(objectslil, labelsbl, objects[h), labels[lk); processor architecture.

+-+h;
} /* while (oh < number.of.objects) ...

if (found)4
++ca d; 4 Summary
} I"for (h.... 0/R V CN PM C E (We have described a methodology for mapping algo-RECEIVE CONTRIBUTIONS PROM CHILDREN (REDUCTION). rithms onto parallel processor architectures. Utilizingcard, s += left-child-contribution;

card.j += rih..child..contribution; our methodology to analyze, simulate, and implement a
REPORT THE CONTRIBUTION TOTHEPARENT(REcommonly used algorithmic technique, relaxation, we ex-

REPORT THE CONTRIBUTION TO THE PARENT (REDUCTION). posed various characteristics common among high-level
RECEIVE CHANGES WHEN APPLICABLE. vision algorithms that must be considered when design-
SEND CHANGES TO CHILDREN WHEN APPLICABLE. ing a parallel implementation if the goals of maximized

/- while (flag) ... / algorithm speedup, maximized processor efficiency, min-
imized system complexity, and minimized programmer
burden are to be achieved. These characteristics include:

Figure 9: Server code for parallel image matching algo- 1) the use of complex program logic; 2) the existence of
rithm. subtle data dependencies; 3) the use of heterogeneous

data structures; and 4) the dynamic nature of the data.
As shown in [Reisis and Prasanna-Kumar, 1987], when

get it running in parallel in approximately twelve hours. designing an implementation targeted for a specific par-
The primary effort was in validating the inter-process allel processor architecture these issues either cannot be
communication. But, once validated, the code that im- sufficiently addressed or require extremely convoluted,
plements the communication is functionally portable to unintuitive solutions which lead to an i, iplementation
other algorithms that utilize the same communication which is difficult to develop and maintain. In applying
network topology and need not be validated again, our methodology we have shown that all of these issues

rlherefore, we can conclude that we have minimized can be addressed without sacrificing any of the goals.
the measure of programmer burden in that the devel- We are currently applying the methodology to other
opment and maintenance efforts for the parallel imple- stand-alone computer vision algorithms as well as to
mentation were performed, predominately, in the serial complete computer vision systems to determine its util-
environment. ity in specifying a reconfigurable or heterogeneous paral-

This image matching algorithm was previously lel processor architecture for implementation of such an
mapped onto a parallel processor architecture via the algorithm suite. We are also investigating the usefulnes,
classical approach of specifying an architecture then (cost versus payoff) of dynamic data partitioning (load
mapping the algorithm onto it [Reisis and Prasanna- balancing) schemes in there application to high-level vi-
Kumar, 19871. In that study the specified architecture sion algorithm implementations.
was a 2D mesh connected SIMD architecture consist-
ing of relatively simple processing elements, a parallel References
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Abstract just which resources are being managed. Here we in-
vestigate the allocation of a spatially variant sensor such

Visual attention is an important problem in as one with a peripheral visual field of low resolution but
computer vision that has received little direct wide angle, and a high-resolution fovea centered in the vi-
attention in computer vision research. We are sual field. We present a novel approach to learning, rep-
pursuing a long-range program of research into resenting, and generating explicit attentional sequences
the visual attention prblem. This paper de- that direct such a sensor to view specific areas of a scene.
scribes our first thrut in this program, the se- The capability we describe is like a visual-motor skill -
quential aspect of attentive vision systems. We it emphasizes the efficient acquisition and use of relevant
assume a spatially variant sensor with a fovea behavior for a repetitively-occurring situation, with the
and periphery, and study foveal sequencing, or capability of adapting both to individual variations be-
the problem of where next to concentrate high- tween problem instances and to slow variations in the
resolution vision. We present a new explicit expected situation. In a usual data-driven foveation (or
represnaent o ional sequencing, called region of interest) system, a sequence of eye movements
an augmented hidden Markov model (AHMM). emerges from a program reacting to the image data (of-
An AIMM can model a sequence of where to ten using low-level saliency, or "interest", operators).
place the fovea, or a sequence of what objects Our explicit model for such sequences can, for example,
to look at. A dual-AHMM, combining a what be trained on emergent sequences generated by other
and a whre model with symmetric feedback, is algorithms and be made to generate these sequences ex-
also presented. Our model allows behavior to plicitly, whether they are continuous attentional paths or
be learned and to be responsive to individual discontinuous, saccadic fixations. In other words the se-
scene variations. quential attentional behavior can become automatic, or

"compiled" into a lower-level, pre-attentive visual skill.

1 Overview Our model is based on the hidden Markov model

A system using real-world visual input for decision mak- (HMM), which is roughly a generalization of a teach-

ing must ignore the irrelevant, attend to the salient, and able, probabilistic finite state automaton. The IIMM

place reliable priorities on tasks and resources. Complex- camera control model operates in a mode oblivious to

ity analysis of the problem of matching visual images the visual data. We introduce a modified model, called

to models reveals that pure parallelsm is not enough an augmented HMM (AHMM), for the more typical case
to overcome the visual computational burden, but that i which the movements should be responsive to (i.e. be

structure, in the form of a hierarchy of spatial resolutions modified by) visual cues.

and of abstractions, can render this visual task tractable Three models are described below. The first uses ex-
[Tsotsos, 1987]. tcrnal feedback to affect the AttMM outputs (only). The

One way human systems overcome the visual compu- second uses internal feedback to modify the internal pa-
tational burden is by the mechanism of attention, a topic rameters (probabilities) of the AHMM, thus affecting the
cxt!nsively studied in the areas of psychology and neu- generation likelihoods directly. These models can be ap-
roscienre. We are pursuing a long-range program of re- plied for the purpose of generating a sequence of where
search into the selective attention problem in computer to point the camera. The model can also be applied to
vision. generate a sequence of what to look at. The final model

We are currently exploring th9 thesis that attention combines both a what and a where part. and a symmetri-
provides mechanisms that control the allocatio ofvizual cal scheme in wYhich the two parts dynamicall) feed back
pr(oceasing preferentially within a scene, leaving open to and support eadi other.

*This material is bazed on work supported by the NSF This paper is organized as follows. Section 2 discusses
under grant CDA-8.,22724, and by DARPAAFOSR research why attention, spatially-var.ant sen:'ors, ,:.nd attentionai
contract no. AFOSP-89-0222. The government has certain sequencing are important topics in computer vision. Sec-
rights in this material, tion 3 dscribes in detail the AHMM models we have
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developed, and presents experiments applying the mod- research on visual attention can be applied to computer
els. Conclusions and plans for future work are given in vision, and it enunciates several interesting ideas that
Section 4. have inspired our work. Ullman proposes five primi-

tive visual routines: attention shift (i.e. controlling and
2 Motivation moving the location of attention), indexing (i.e. selecting

specific locations for further processing), bounded acti-
Recently the advent of sophisticated controllable visual vation, boundary tracing, and marking. Attention shift
hardware has emphasized sensor control, or the "ac- and indexing are the primitive routines that mainly con-
tive vision" paradigm (e.g. [Bajcsy, 1988, Ballard, 1989, cern us.
Brown, 1988, Burt, 1988]). Besides advocating the idea
that vision and action modules should be designed to co- 2.3 Attention ks sequential behavior: Foveal or
operate and support each other, active vision promotes attentional sequencing
a general re-examination of certain aspects of the hu-
man visual systerr, [Ballard, 1989] for ideas on how to The psychological literature contains much work on eye

build computer vision systems. This section discusses movements, the most direct evidence for visual attention

two topics in this vein, anthropomorphic visual sensorb (though usually for two-dimensional stimulii). Yarbus'

and visual attention. Then the ideas of attentional se- book [Yarbus, 1967] documents graphic traces of eye

quencing and visual skills are presented. movements as humans examine scenes for relatively long
times (three minutes). Some intriguing observations are:

2.1 Foveal and peripheral sensors Subjects always foveate only select areas in the scene,

The fovea-periphery distinction is quite dramatic in the those containing "relevant objects". For a single task, a

human visual system, but usually humans are not con- given subject repeatedly uses a foveation sequence with

sciously aware of it. All of our high-resolution vision is only minor variations. For different tasks, the general se-

performed by a fovea whose field is only 0.5 degrees of quence that all subjects use is highly dependent on the

visual arc (about the extent of a quarter coin held at task.

arms' length). The remaining large peripheral field only Yarbus's work led to the idea that an object is rep-

provides low-resolution vision, resented for visual recognition as a scanpath - a time-

A fovea, accompanied with attentional algorithms and ordered sequence of features perceived at each fixation,

control machinery for directing it, becomes a viable engi- along with motor commands that link the fixations [No-

neering solution when imaging, transmission,, and com- ton and Stark, 1971]. Subsequent work [Stark and Ellis,

puting bandwidth are limited. Several visual computa- 1981] presented a simple probabilistic model for fixation

tions may also become easier in the context of a foveal sequences. Didday and Arbib [Didday and Arbib, 1975]

sensory system. For example, various uses of stereo dis- describe how similar behavior can emerge from paral-

p arity become easier when coupled to camera vergence lel operations on foveal and peripheral image data. A

(Coombs, 1989], as do kinetic depth computations when modern piece of work with a fovea-periphery distinction,
coupled with fixation [Ballard and Ozcandarli, 1988]. controllers to determine the location of the next fixation,

A spatially variant sensory device can be created in and experiments is that of [Bolle et al., 1989]. Three

several ways. Anthropomorphic VLSI sensors are being controllers are reported: A simple scanning process to

constructed (e.g. [Tistarelli and Sandini, 1990]). Soft- move the fovea in a task- and data-independent way;

ware and hardware resolution pyramids are a classic one whose candidate is the largest so-far unexplained re-

technique (e.g. [Burt, 1988]). Another choice is simply gion; and one that tries to resolve conflicts between the

to use two cameras with two different focal lengths. Fi- interpretation so far and the model database. Similar

nally, a simple electronic window could be used. objectives were accomplished with resolution pyramid
hardware [Burt, 1988], where foveation was implemented

2.2 Attention as coarse to fine search through the pyramid.

The topic of visual attention has been identified and ex- Control of a fovea and blending its output over fix-

tensively studied by researchers in psychology and the ations is an increasingly common topic [Abbott and

neurosciences ([Poggio and Hurlbert, 1985, Posner and Ahuja, 1989, Browse and Rodrigues, 1988, Yeshurun and
Presti, 1987, Humphreys and Bruce, 1989]). Attention Schwartz, 1989]. The control algorithms are typically
is usually identified with the limited availability of re- just to examine next the area of highest interest (using

sources. In the spotlight model of attention a fixed size some bottom-up measure), using memory or a salience-

"spotlight" can be shifted around to enhance visual pro- reduction method to avoid re-examining an area, and
cessing in the area it covers. Covert attention is shifted perhaps an exploratory urge. Clark and Ferrier [Clark
within the visual field, but is not associated with eye and Ferrier, 1988] report expeiiments using a similar

movements, whereas shifts in overt attention are directly scheme for controlling a binocular robot.
linked with eye movements. "Popout" phenomena,
studied by Treisrnan (e.g. [Treisman and Gelade, 1980, 2.4 Visual skills
Ireisnan, 1985]) and others, examine the relation be- Two aspects of the previous work stand out. First, previ-
tween prcattentive immediate vision and serial attentive ous systems have generally produced sequences of fovea
vision, movements. Given limited resources, sequential alloca-

Ulinan's "Visual Routines" paper [Ullman, 1984] ex- tion is obviously a reasonable strategy. Secondly, almost.
ps, reb how ideas from the psychological and neuto,ience all previous work has studied emergent sequencCs. Se-
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quence steps are produced as the output of processes 0.2 0.8 10

operating on the image data. They are not represented,
remembered, or available in advance. str 0.8 0.2

The alternative is explicit sequences: Sequence rep- 0 q )

resentations are maintained at some level, and can be
modified, retrieved, and generally appear in computa- 2

tions. Explicit representations of foveat:on sequences are left)
rarely proposed, and seldom implemented. The main ex- vi ( 0.5 0.7 0.0
ception is the experiments of [Stark and Ellis, 1981], and v2(up) 0.5 0.3 1.0
perhaps the idea of motor programs (e.g. [Wright, 1990]).
Indeed, foveation sequences are not a convincing way to
represent objects for recognition. Figure 1: Example of a simple 11MM.

Iowever, explicit sequences may well be a good way to
represent a strategy for certain types of skilled observa- 3 An augmented hidden Markov model

tion of a structured environment. Emergent sequences, for explicit sequences with visual
computed a step at a time, are analogous to motor be- feedback
havior, mediated primarily by general perception and by
more or less cognitive involvement. Emergent foveation This section presents an explicit representation - an
sequences must be rederived each time, but should be augmented version of a hidden Markov model - for at-
the same for the same situations. Remembering such a tentional sequences modified by visual feedback.
sequence efficiently captures the effects of the cognition
applied to the task domain. A remembered sequence can 3.1 Hidden Markov models
be regenerated while also being fine-tuned using current We need the ability to learih, represent, generate and
visual feedback data. Thus, a remembered (explicit) se- even classify sequences of (2-D or 3-D) spatial loca-
quence is analogous to skilled motor behavior. tions for foveations or attention. The hidden Markov

model (11MM) has been widely used to classify sig-
For example, when entering into your new office for nals in speech recognition systems, but in fact it has

the very first time, you look around in an undirected all the abilities we desire. Although it is a very gen-
way. You tend to look at "interesting" objects, but also eral model for sequences it has not been used much
at areas and objects that in retrospect are not of any in other fields, such as computer vision. The key
significance or never change. Over time, you develop points about HMMs are summarized here. For details
a pattern of where you look upon entering your office. see the excellent tutorial by Rabiner [Rabiner, 1989,
Perhaps you first look towards the terminal in the near Rabiner and Juang, 1986]. Methods to incorporate feed-
corner, expecting to see an office mate there, and then back into an HMM, the final ability we need, are pre-
across to your desk in another corner, scanning another sented in following sections.
office mate's desk along the way. (The emergent be- An HMM is somewhat like a probabilistic finite state
havior developed a pattern that has now been learned machine. It is formally defined as A = (A, 7r, B) with
as an explicit behavior, cr habit.) While executing the states Q = {ql, ...,qN} and symbols V = {vl,...,VM}.
habitual eye movement behavior you often modify it ac- The probability of transitioning at time step t from state
cording to visual cues along the way. For example, you qi to state q. is given by A = {a.;} where aq = P(qj
can tell that no one is at the terminal using your periph- at t + 1 1 q, at t). The initial state is determined by
eral vision, and if not, your eyes begin moving towards w = {ir,) where ir = P(q, at t = 1). If the 11MM

your desk sooner. If there is some interesting new ob- is in state q. it produces symbol vk according to the
ject on the office mate's desk or your own, your eyes probability B = {b,(k)) where b,(k) = P(vk at t I qj
are attracted to it before continuing along the-r typical at t). Note that the symbol sequence is observable, but
path. (The habitual behavior is modified by cues in vi- that the state sequenme is "hidden" (not observable).
sual feedback.) Figure 1 shows an example 1IMM. The state sequence

it models will tend to contain a short subsequence of ql
Other examples abrund, for example, in industrial vi- states, a larger subsequence of q2 states, and q3 states

sual inspection or driving skiils. until the end of the sequence. Assuming that symbols v1
and v2 were associated with "left" and "up"-ward (in-

In suimmary, the skill or habit analogy is appealing. A cremental) eye ,movements, and that the HMM remained
method to model a visual skill, so it could be learned and in state qI for several steps, then it would tend to move
executed with visual feedback, would be useful. Since the eyes to the upper left during that time.
knowledge is "compiled" into a visual skill, simpler vision The graph structure of an 11MM may be arbitrary.
processing would be sufficient, thus reducing computa- Graphs with a left-to-right flow, such as in Figures 1,
tional dcmands. The niodel could also specialize itself 5 and 6, are often appropriate for non-cyclic sequences.
and adapt to its environment, compensating for single- In practice the pa.ticular graph structure is crucial to
instance and slowly trending variations in the world. performance and its selection requires experimentation.
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HMMs have three associated capabilities, at least one The external feedback AHMM. Let the oblivious
of which is used in any application. They can classify sequence of symbols normally generated by an HMM be
sequences, they can be learned from examples, and they 0 = O1, .. ,OT, and let the feedback sequence be S =
can generate sequences. Each of these capabilities is well S, ..., ST. Si is a symbol representing the feedback cue
known: detailed algorithms for implementing them may at index i in the sequence. We assume that feedback
be found in [Rabiner, 1989, Rabiner and Juang, 1986] symbols and output symbols are both of the same type.
and will not be repeated here. The AHMM simply outputs the feedback modified path,

A single HMM Ai is associated with each possible class M = M1 , ..., MT, according to the following equation.
wi. An observed sequence 0 is classified as the most
likely class, according to P(O I Ai). The parameters A i = Si with probability a (1)
for each HMM are estimated separately using a "training t Oi otherwise
set" of examples and an algorithm to maximize P(O I Ai) a is a parameter from 0.0 to 1.0 that regulates the
over the set. a u of inflee from th at seunce th

Sequences are generated using random numbers cho- amount of influence from the feedback sequence. With
sen from the appropriate probability distributions in Ai. a = 0.0 the feedback data is completely ignored. Wi h
The length of a sequence is determined by a bound on 1s tracked exactly.
P(O I Ai) or by using a fixed length. The random Comtracked exactly.
method, when visual feedback is added, gives robustness Computation of visual cues. In our experimentsto local and long-term variations in the world. we have used feedback cues based on local maxima of

a saliency image. Si is simply the direction (actually a
3.2 Using HMMs for oblivious eye movements chain code symbol) towards the local maximum of the

saliency data. Generally, of course, any other kind of
To apply HMMs to attentional sequences, the symbols feedback cue can be used. A saliency image is computed
must be related to spatial locations or movements. Fol- as a weighted sum of several feature images, which are
lowing are a few choices. themselves computed from the original intensity image.

" Incremental-position movement. The symbols are A Gaussian neighborhood function can be used to
vi E [0, 7], the eight chain code ("compass point") compute the local maximum. However, this would
directions. The eye rotates a fixed increment so that cause problems when generating incremental-position
the image shifts by an increment in the given direc- ("smooth path") eye movements, since there would be
tion. Here, the attentional sequence is a relativey a tendency for the path to turn around towards a maxi-
smooth path, of the sort arising in contour follow- mum behind it and not depart from a maximum it had
ing, doing vision through a reduction tube, or in reached. We handle the problem by using a neighbor-
some other situations [Ullman, 1984]. hood function that emphasizes saliency points in the di-

rection of the path, and saliency points away from the
" Large-position movement. The symbols are vi = current location.

(0, R) where 0 and R are quantized direction and The above method is applied separately to the foveal
distance. Each movement is relative to the current and peripheral images to compute a peripheral feedback
eye location. Alternatively, the symbols can be vi = ce p) and a foveal cueS(P)
(x, y) where each movement is in a fixed coordinate cueModf ieal psi m e
system. Here, an eye movement sequence is similar Modifying incremental- position movement.
to a series of saccades. Recall that in an incremental-position movement appli-

cation each Oi is a chain code symbol. Before the eye

" Object sequencing. The symbols are feature vectors moves, this sequence defines a path through the periph-
describing objects. If image analysis produces such eral image. First, a periphery modified path, with ele-
feature vectors throughout the image, the sequence ments M p) , is generated according to
defines a series of locations (possibly ambiguous, see

Section 3.5) in the image. M() f S p) with probability a (2)

In all cases a training set of example sequences can be t Oi otherwise.
created from the emergent movement decisions output
by some other algorithm, or a human using a pointer Then, foveal modification is performed according to
on several example images. Alternatively, if technical
considerations permit, recordings of human eye fixations M()= S() with probability P
generated during the task can be used. &M otherwise

3.3 Augmented hidden Markov models: resulting in the final sequence AIM() = M MT( .

external feedback modification of oblivious Note that the eyes must actually be moved to make the
eye movements appropriate foveal data available to compute S f) .

This section presents a trivially augmented AHMM, Modifying large- position movement. Large-
which will serve as an example to explain feedback mod- position movement might, for example, use symbols of
ified eye movements and saliency-ba.-d feedback cues. the form 0, = (x, y), which denote absolute positions
The f3llowing sections present more s6khisticated AH- ("targets") in the periphery. Feedback is determined
MMs. from the maximum of the peripheral saliency image in
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the neighborhood of the target. The maximum is com- where r; (0 < rI :_ 1) is a modification gain. Larger
puted using a Gaussian neighborhood function centered gain values emphasize the feedback modified transition
on the target. Unfortunately equation (1) does not pro- probability over the original probability.
vide a satisfactory form of modification. The AHMM Modification of bt (1). The emission probabilities in
presented in the next section addresses this problem. the AHMM must be updated for each state qj that can
(Modifications using foveal data before a large-position be reached in one time step from the current state qi.
movement is performed are not appropriate since the The equations for the updated emission probabilities, de-
target is usually outside the fovea. However, once the noted bI+'(j), and already incorporating a mixing gain,
target is reached, the foveal data can be used to perform are as follows.
a small adjustment movement.)

3.4 An augmented hidden Markov model with bI+'(l) = =elj) 1 j _ N, 1 <1 5 M (6)
internal feedback

The internal feedback AHMM has parameters that vary eJ(l) syw~d5Q) + (1 - sj)b (1) (7)
as a function of time, denoted as A'+ 1 = (At+I ,r, Bt+). d 1.0 if 1 = k
The AHMM operates as follows. Assume that the d,(1) 0.0 otherwise. (8)
AHMM is at time step t, that it has already output
a sequence of symbols 01, ..., O, and that the current The denominator in equation (6) ensures that b+l(1)
state is qi. The feedback symbol St is available, where is a valid probability. The modification gain is s/
the value of St is vk. St is used to modify At into At+I,  (0 < sf 5 1), where small gain values emphasize the
then the AHMM uses At+ ' to generate the next symbol, original emission probability over the feedback modified
Ot+1. Obviously the choice of the next generated symbol ones. The key term in these equations, the )ne con-
depends partially on what the few most recent feedback tributed by the feedback, is wdjt (1).
symbols have been. The At parameters also slowly decay Time decay. Equations (5) and (6) are the basis for
over time to their original values. So as long as consis- modification at any instant in time. Since these modi-
tent feedback symbols are available, their effect on the fications should only be maintained as long as they are
AHMM parameters will endure, but eventually the pa- justified by feedback information, the modifications are
rameters return to their original values. The initial state made to decay in time as follows
probabilities ir do not vary in time since a feedback sym- t+1
bol is not available at time t = 0. The equations for Gjj = rdai. + (1 - rd)aij 1 <j < N (9)
computing At+' are summarized below. See [Rimey and
Brown, 1990] for their derivation and a more complete b+'(1) = 8dbR+'(l) + (1 - sd)b(l)
explanation. '

A weighting factor. The equations for modifying 1 j < N, 1 < 1 < M (10)
the AHMM parameters use three key values: i, k, and
wt The value i is determined from the state qi of the where aij and bj(1) are the original values, which do not
AfIMM at the current time step, t. The value k is de- change over time. The decay gains are rd and sd (0 <
termined from the value of the current feedback symbol, rd, Sd 5 1). Small decay gains cause the probabilities to

St = vk. The values for i and k are known and will be decay quickly to their original values. These equations
assumed in all the equations below, give the final values for and

The final key value is wi, a probabilistic weight com- Multiple feedback signals. The above AHMM
puted from i and k: w5t is the probability of being in can easily be extended to the case that several differ-
state qj at time t + 1, given the information that the ent feedback symbols are available from different feed-
AHMM is in state qi at time t and will output symbol back sources. The feedback symbols at time t are de-
Vk at time t + 1. The equation for computing WJ is noted by a set St. For example, this set could contain

either simultaneous peripheral and foveal feedback sym-
Wit 1 <j < N. (4) bols, or multiple peripheral feedback symbols. The up-
= ab((k) - dating equations are similar to those above, and can be

The current feedback symbol (St) is assumed to be a pre- found in [Rimey and Brown, 1990].
diction of the next output symbol (O,+i), so w provides Modifying incremental- position movement.
an indication of how consistent the immediately possible The above AHMM can be used in a straight-forward
state transitions are with the current feedback, and it manner to generate incremental-position movements.
can be used to biam the state transition probabilities. Multiple feedback symbols, for simultaneous peripheral

Modification of a!.. New values for the transition and foveal feedback, are used.
probabilities, denoted by a for the time being that Modifying large- position movement. The above

aremostcon t it the e bn tt AHMM can be more easily applied to large-position
are most consistent with the feedback are a!+' = W. movements than could the first AHMM we presented.
Generally it seems desirable to modify a'. slowly rather The AHMM operates in two stages during each time
than completely replace it. Therefore only a fraction, step. First it generates a preliminary output symbol
rf w,, is mixed with the current value. The new equation (target location). Then a Gaussian neighborhood func-
Is tion is centered ou the target location. Local maxima

= riw' + (1 - rj)a!, 1 <j < N (5) are detected and used as multiple feedback to modify
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Figure 2: The "what" version of the AHMM. k Darker
signal path denotes a set rather than a single signal
value.0P

the AHMM parameters. Lastly, the AHMM generates
the final version of the output symbol for the time step.
The internal feedback modifications in the AHMM result Figure 3: The "what-where" version of the AHMM. A
in a form of (application independent) averaging of the Darker signal path denotes a set rather than a single
feedback symbols and the "oblivious" output symbol, es- signal value.
sentially because the internal probabilities are averaged
over time. Multiple feedback paths can also be used, for
example, by using several of the largest local peripheral- G t does not generaly contain exactly one element, so
saliency maxima (rather than just one). Large-pcsition some method must be developed to select among the
movements using foveal feedback are still not possible choices. One option is to use a where-AHMM to help
because the fovea does not view the target area. pick among the choices. In fact, the what-AHMM can
Adding new states. The above AHMM does not be made to help the where-AHMM with its own choices.

permit an existing state to add a new non-zero emis- A what-where-AHMM. The what-where-AHMM
sion probability, or to add a new link, or for the graph shown in Figure 3 contains three distinct parts: a what-
to add a new state. The modification equations above part and a where-part which both feed back to each
were derived assuming that the feedback sequence re- other, and an output combiner. The what-part is like
flects variations that are generally still consistent with the what-AIIMM described above. It uses feedback, but
the underlying modeled sequence. If the underlying se- the feedback is a sequence of sets of what-symbols Pt,
quence (in the real world) has changed in a fundamental the output of the where-part at time step t.
but local way it may be necessary to insert a new state The where-part contains two sections, similar to those
into the AHMM graph. This situation may be detected in the what-part. First it has an internal feedback
by a small value of AHMM, which outputs a sequence of where-symbols

max ab(k) (11) Ot. In this model the where-symbols are intended to
1:5_<N ... be large-position movemeut symbols. Secondly it has

in which case a slow semi-permanent modification may a "Nwhere-to-what" mapping which determines for each
be initiated in which a new state is added. where-symbol Ot the location in the current image it cor-

responds to, and outputs the set of feature vectors Pt in
3.5 A mutually supporting what-where that local area of the image. The AHMM in the where-

feedback model constructed from two part uses as feedback a sequence of sets of where-symbols
internal feedback AHMMs Gt, which is the output of the what-part.

This section describes a hybrid AHMM that elegantly Finally, the output comLiner determines the overall
incorporates both "what" and "where" sequence models output of the what-where-AHMM. The overall output at
and uses them to play off and mutually support each time step t is Zt, a where-symbol (i.e. an eye movement
other. command), selected as the element of the set Gt that

A what-AHMM. The "what" version of the AHMM, has the smalest distance to the symbol Ot.
called a what-AttMM and shown in Figurm 2, contains Operation of the what-where-AHMM is as follows. At
two sections. The first section is an internal feedback each time step, each of the two parts produces a set
AHMM whose output symbols F,, called what-symbols, of feedback symbols that reflects its own preference for
are feature vectors intended to describe an object or action. Each then updates its own preferences taking
characteristics of objects. Such feature vectors are as- the other's into account, and then generates its own final
sumed to have been computed for each pixel in the pe- preference for action at that time step. The set of final
ripheral image. The second section of the what AHMM prcfcrcnccs is reduced tu a tiiilu uutput byinbol by the
performs a "what-to-where" mapping, meaning that it output combiner.
maps a fe turc vector into the set of image coordinates Incorporating high-resolution (foveal) feature
G t in the current image where instances of those fea- vectors. So far, he what-where-AHMM has used
ture vectors (or similar ones) exist. Actually it maps to only peripheral image data so its feature vectors (what-
the :'ye ino-enient commands, called where-symbols, that symbols) should be considered to be low-resolution fea-
would cause those locations in the image to be centered ture vectors. After each eye movement, new fovea data is
on the fovea. available to compute a high-resolution feature vector, es-

If each G t contains exactly one element, the output se- sentially a verification of what the low-resolution feature
quence will fixate the desired objects in the scene. Each vector suggested might be at that location. A negative
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verification might be used to modify further the AHMM,
for example, to move to a new location containing one
of the other instances of the same feature vector.

3.6 Experiments

The AHMM eye movement models have been imple-
mented using the Rochester Head and its associated im-
age processing hardware [Brown, 1988]. Computer con-
trol of the two cameras on the Head permits individual
camera pans, a shared tilt, and either smooth path or
saccadic movements. See [Rimey and Brown, 1990] for
a complete description of our experiments.

Figure 4 shows a Lab scene typical of those used in
the experiments - a table top with a variety of objects.
All figures here contain both peripheral and foveal com-
ponents: The majority of a figure is a low resolution pe-
ripheral image (128x128, zoomed 4x), while the center
contains the high resolution foveal image (also 128x128).
For visual cues in these experiments we used a simple
saliency image that was easy to implement, the equally
weighted sum of five features derived from the Sobel
edge operator and the grayscale variance. The graphics
superimposed on all figures illustrate the points which
would be fixated if the cameras were to execute a move-
ment sequence. Generation of an oblivious or peripheral
modified sequence does not require camera movement,
whereas a foveal modified sequence does require it. Figure ': Incremental-position movement sequence. Pa-

External feedback AHMM, incremental- posi- rameters: a = 0.3 and P = 0.4. Oblivious path (white),
tion movement. Figure 5 shows the graph structure of peripheral (gray) and foveal (black) modified paths.
the AHMM used. A mouse was used to create a training
set containing 30 sequences. An AHMM was trained on
that set and used to generate the oblivious path shown
in white in Figure 4. Such a path might correspond
to knowing the desired object is normally kept on the
left side of the desk. Peripheral image data modified
the oblivious path, resulting in the path shown in gray.
Here the peripheral data keeps the path from overshoot-
ing the stuffed animals. However, later it does not ef-
fectively pull the path closer to either the soda cans or
the pile of small parts, as would be preferred. Finally,
the AHMM was run also using foveal data modification,
obtaining the path shown in black. The foveal saliency Figure 5: AHMM graph for incremental-position move-
data attracts the latter half of the path to the small ment experiment.
pile of parts. The two modified paths in these results
were produced with the peripheral gain a = 0.3 and the
foveal gain 83 = 0.4 (equations (2)-(3)). Experiments
with larger and smaller values for ot and P3 have verified
that the model can provide more and less aggressive path
mcdification.

External feedback AHMM, large- position
movement. The large-position movement experiments
use AHMM symbols that are (coarsely quantized) abso-
lute retina positions, (x, y). Figure 6 shows the AHMM
graph structure used. An algorithm similar to that in
[Clark and Ferrier, 1988] was used to generate 20 training
examples, thus showing how the AHMM can learn the Figure 6: AHMM graph for large-position movement ex-
emergent behavior generated by some other algorithm. periment.
In this ease, the other algorithm iteratively fixated the
point in the image with a maximum saliency value, ze-
roed out the local saliency around that maximum, and
then went to the next largest maximum, until 5 fixa-
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Figure 7: Large-position movement sequence generated Figure 8: Incremental-position movement sequence,
using AHMM which was trained on examples produced small foveal feedback gain. Gains are: rj,(p) = sf,(p) = 0,
by "other" algorithm. Oblivious path (white) and pe- r,(f) = sfy ) = 0.2, rd = Sd = 0.9.
riphery modified path (gray).

cations, producing a path that is immediately drawn to
tions were made. Figure 7 shows an oblivious sequence the detergent boxes, however the effect of the AHMM's
(white) generated by the trained AIIMM, and the se- trained behavior eventually gains control and the path
quence modified using peripheral salience (gray). Note resumes its course to the lower left towards the stuffed
how the modified sequence has been drawn to the locally animals.
more interesting areas of the image.

Internal feedback AHMM, incremental- po- 4 Conclusions
sition movement. The internal feedback AHMM
has been investigated with experiments parallel to the Summary We are pursuing a long-range research pro-
incremental-position experiments for the external feed- gram with the goal of isolating, clearly defining, and
back AHMM. 1 The same AIIMM graph structure (Fig- studying selective attention as a problem area in its own
ure 5) was used. The same trained At1MM :"xrameters right. In this paper we assume a spatially variant sensor,
were also used, except that any zero valued probabili- such as a fovea and periphery, and study some aspects
ties were changed to have very small non-zero values, of attentional sequences. An augmented hidden Markov
These AtIMM parameters served as the initial (fixed in model (AHMM) is presented as a way to model explicit
time) version of the model. The saliency image used in eye movement sequences while incorporating feedback
these experiments was simply the Sobel edge magnitude from visual cues. AtHMMs can deal with sequences of
image. locations (where) or of object characteristics (what) or

Figures 8-10 show the result of introducing varying even both (dual what/where). A more detailed presenta-
amounts of foveal feedback into the model. 2 In these ex- tion of the theoretical and experimental results reported
periments the gain value of rf,(u) was set equal to sf,(f) here can be found in [Rimey and Brown, 1990].
and varied over the values 0.2, 0.5 and 0.8. The 0.2 value We conclude that AHMMs indeed are a promising way
results in a path almost identical to the original, while to acquire, represent, generate, and use probabilistic se-
the 0.5 value results in a path that begins to be drawn quences for computer recognition. The AHMM is not a
more towards the nearby objects in the scene (the soda replacement for high- or low- level approaches to com-
cans) - a reasonable behavior, although perhaps not the puting where or what to look at next. It provides a
best one. A value of 0.8 results in even stronger modifi- mechanism like a visual skill, for remembering how to

allocate the visual sensor, but it is only one of several

'These sequences are different than Figure 4 only because mechanisms (each with limited uses) that an attentive
a different random number sequence and a slightly different vision system might contain.
scene was used when each set of these experiments was per- HMMs in computer vision. The 11MM is a fairly
formed. The same random number sequence was used for general yet quite simple model and as such deserves con-
each of the experiments shown in Figures 8-10. sideration and investigation in areas other than speech
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understanding. To help illustrate the HMM's usefulness
this section briefly mentions a few other problems to
which it can be applied.

Classification of certain time-varying patterns is an-
other application, e.g. recognizing non-rigid objects
through their motion or temporal-texture characteris-
tics. Another capability is object classification from view
sequences. Here a view is characterized by a feature
vector, the viewpoint can be rotated around the object,
and the HMM can essentially (and compactly) learn the
topology of features over a subset of the sphere of view-
points (i.e. the object's feature-aspect graph). Fin:'lly,
the HMM can be viewed as a trainable finite sta ma-
chine, which may be a useful characterization for those
Al researchers who are hand-crafting finite state machine
variants.

Directions for future work. Our work on the
AHMM has helped us to concentrate on the concept of
attentional sequences. Our intention is to pursue simi-
lar efforts to learn more about other concepts important
to an attentive computer vision system. Some related
concepts we are considering are: visual masking, per-
ceptual grouping, figure-ground separation, and the role
of structure in vision. We are also interested in study-
ing: Bayesian, decision theoretic frameworks, incremen-

Figure 9: Incremental-position movement sequence, tal and deictic representations, and real-time scheduling
medium foveal feedback gain. Gains are: r =,(p) of tasks that can only compute partial results. Our cur-
Sf,(p) = 0, rf,(f) ,() = 0.5, rd - Sd - 0.9. rent plan is (1) to continue developing and experiment-

ing with the what-where-AHMM, and (2) to start a new
thrust, studying attention as allocation and scheduling.
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Abstract

In this paper we present techniques to analyt- settings. We present techniques to determine
ically determine the complete locus of the latter two, namely, admissible camera
camera poses and optical settings that satisfy poses and settings, using a synthesis
the resolution requirements of a machine approach to the problem. This approach
vision task for given features of interest. This improves on the generate-and-test techniques
work is part of more extensive research that currently employed in which sensor config-
we are pursuing, as part of our "MVP" urations are generated and then tested for
(Machine Vision Planning) system, on the satisfaction of the task criteria. In this work,
problem of sensor planning for satisfaction of all five degrees of freedom of camera place-
several generic machine vision requirements, ment are considered and thus the results are
one of which is resolution. It is therefore applicable to a general thrde-dimensional
important to determine the entire admissible viewing configuration. Camera placement
domain of sensor locations and settings for experiments are shown that demonstrate the
each task constraint, so that these component method in an actual robotic setup. A camera
results can be combined in order to find mounted on a robotic arm is placed and
globally admissible sensor parameter values, focused according to the results of the new
Resolution is considered a key factor for technique and camera views are taken to
machine vision tasks as it determines the verify that the feature of interest is visible,
accuracy of the reported measurements, within the camera field of view and resolvable
Therefore, when designing a vision system to the given specification. Results of this
that will satisfy the resolution requirements of research will help automate the vision system
the machine vision task at hand, it is neces- design process, assist in programming the
sary to properly select the image sensor (e.g. vision system itself and lead to intelligent
pixel size), as well as decide its placement and automated robot imaging systems.

1 PROBLEM

Automation in manufacturing is presently dormnated itself remain as very human-intensive operations that con-
by special-purpose machines that perform predetermined siderably increase the development time, cost and com-
functions in prespecified and tightly controlled environ- plexity of such flexible manufacturing systems. It is
ments. Since these systems are clearly inflexible and gener- functions such as these that this research attempts to auto-

ally cost a great deal, considerable interest has been drawn mate, generating as a result more flexible and autonomous
to flexible sensor-based automation systems that are able to sensor-based systems.

carry out a variety of functions on the manufacturing floor In particular, we are investigating the problem of
in a more flexible working environment and at lower cost. model-based and task-driven sensor planning (Figure 1).
Such systems are equipped with various types of sensors in That is, by making use of models of the sensors and the
order to interact in an intelligent and flexible manner with objects in the environment, sensor parameters are automat-
the environment. I lowever, despite this added intelligence ically determined that satisfy generic requirements of sensor-
many functions still require substantial human involvement, based tasks. More specifically, this problem involves
For instance, determining the appropriate configuration of developing planning algorithms that will automatically gen-
the sensors as well as programming the sensor-based system crate admissible parameter values, such as sensor locations
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Figure 1. Model-based and task-driven sensor planning.

and sensor settings, when given as input: * the development cycle and cost of a sensor-based
" models of the environment (e.g. CAD models of parts, system is reduced as the parameters can be automat-

calibration models of the sensors) and ically determined (e.g. sensor emulation tool).
" the task requirements (e.g. feature resolution of 3 rmls). , sensor parameter values can be found that are robust,

that is, satisfying the task requirements at hand even in
In currently employed sensor-based systems, such the presence of uncertainty.

parameters are determined by a laborious and time- 0 sensor parameter values can be determined that opti-
consuning trial and error approach, in which, sensor mize the sensor output with respect to a given task cri-
locations and settings are chosen and then tested to verify tenon. For instance in the case of vision sensing,
whether they meet the requirements of the task at hand. camera and illuminator poses can be found that
lhis procedure results in values that are valid for only a enhance the contrast between task relevant features and
specific setup and that can potentially become unsatisfac- the background.
tory when errors (e.g. robot inaccuracy) alter the environ- * the sensor-based system can become adaptive, automat-
ment. ically reconfiguring itself to accommodate variations in

the workplace.
Consequently, these applications have limited intelli- In general, this can lead to more intelligent sensor-based

gence and flexibility. This is the case despite the fact that systems that would operate more flexibly and more
there is information available that can be used to generate autonomously as various processes can be planned and per-
strategies to plan rather than search for many task parame. formed automatically and reliably.
ters. For instance, the geometric information needed to

automatically generate camera placement strategies in a part
visual inspection and gaging application can be derived from 2 APPROACH
the CAD/CAM models of these parts, that are often avail-
able today in manufacturing. In addition, the physical attri. We are developing a model-based and task-driven vision
butes needed for planning illumination, such as color and ystem MVP, (Machine Vision Planning), that automatically
reflectivity of the part under inspection, could be included in plans vision sensor parameters so that task requirements,

the CAD database as well, so that the interaction between .ommon to most industrial machine vision applications, are
the light and the object surface can be properly modelled, satisfied.
On the other hand, camera and illuminator models
embodying their physical properties (e.g. lens focal length. More specifically, methods have been developed to
spatial distribution of light source irradiance) and geomet- determine camera poses and settings so that features of
rical properties (e.g. illumination angle of the light pro- interest of polyhedral objects are:
jector) can provide the planning system with the required * visible (occlusion-free positions of the sensor) [9, 12],
sensor and illuminator characteristics. •contained entirely in the sensor field of view [11],

The importance of the problem can be illustrated by * in fbcus [7),
tli many advantages that will result if it is solved- * resolvable by the sensor to a given specification [II].
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established definition as will be seen in this paper (see
Each task requirement generates an equivalent section 4).

geometric constraint, which in turn is satisfied in a domain
of admissible values in the space of parameters to be The vie (Vision Illumination Object) system devel-
planned. These component admiissible domains obtained for oped by R. Niepold and S. Sakane [4] planned the set-up of
each task requirement are then intersected in order to deter- both a camera and a point light-source, given information
mine parameter values that satisfy all constraints simultane- regarding the environment as well as specifications of the
ously. task. The camera and illuminator positions however were

both constrained to lie on the tesselated surface of a sphere
In this paper we will describe the planning techniques centered at an object reference point and ofa chosen radius.

developed for the task constraint of feature re.solution and In addition, the camera optical axis was assumed to always
will briefly liscuss how this constraint relates to the other point at this object reference point. The VIO system thus
feature dete-tability constraints mentioned above, considered only two of the five (three positional and two

rotational) degrees of freedom for camera placement. On the
whole, VIO takes a generate-and-test approach to the

3 PAST WORK problem. That is, sensor configurations are generated and
then evaluated according to the taik criteria. It is impor-

The general sensor planning problem has received consider- tant to contrast this approach to the synthesis approach of
able interest recently and in this section we will briefly SRI and MVP, where locations that satisfy the task are
discuss and contrast related approaches to the problem. In directly determined. VIO on the other hand first considers
particular, this review of past work will center mostly the combinatorial pairs of camera and illuminator locations,
around the feature resolution constraint in particular. A calculates an image representation of the expected scene for
more complete review can be found in [7]. each pair, and then evaluates certain image feature attri-

butes to assess the goodness of each such sensor configura-
Cowan and Kovesi [1, 2] considered the feature resol- tion. Among the image feature attributes conside. d was

ution constraint in their sensor planning work. They defined the length of the feature edge in the image. That is, the VIO
resolution to be the minimum angle (revolution angle) sub- system essentially computed feature magnification for
tended by a given incremental surface length at the perspec- various camera viewpoints in a limited space of camera
tive center of the lens, rather than the minimum number of placement, rather than directly determining camera poses
pixels per surface length which is commonly used. With this that satisfy a given resolution specification. HEA VEN is
definition of resolution they determined the locus of the per. the precursor to the VIO system and incorporat;d earlier
spective center of the lens, when the given surface length is work by Sakane et al. [5, 6] in sensor planning in which
barely resolvable, to be the circular arc of points at which feature rcsolution was not considered.
this su,-face length subtends a constant angle equal to the
resolution angle. When placing the camera at viewpoints The ICE system was developed at the University
inside this circular arc locus, the incremental line-segment hg I13 14]to ahievelaptomat sno Unies-
feature is resolvable, since it subtends an angle at the lens Washington (13, 14] to achieve automatic sensor and illu-
perspective center that is larger than the resolution angle. mination planning for machine vision tasks. Similar to both
The viewhng direction of the camera can be arbitrary given VIO and HEAVEN, ICE takes a generate-and-test
that, for any viewpoint inside this circular arc locus, the approach in a restricted space for sensor placement. For
minimum resolution angle requiretent is satisfied irrespec- the most part the sensor planning problem is given little
tive of the '.iewing direction This circular arc locus was attention in the ICE system. The only sensor related task
,.onstructed by Cowan and Kovesi using an ,terative proce- constraint considered in the sensor placement planning
dure, since the resolution angle depends on the perspective problem is edge visibility, That is, neither resolution nor
center to image plane distance which is not known a priori, magnification of the edges in the image wzs taken into
A direct method to obtain this resolution satisfying locus in account.
closed-form has been developed in the MVP system as
described in [11]. In addition, Cowan and Kovesi obtained
the resolution satisfying domain for a planar facet feature as 4 SENSOR PLANNING FOR THE FEATURE
the intersection of the individual admissible domains for RESOLUTION CONSTRAINT
incremental circle features computed at points of the facet.
The resolution satisfying iocus for an incremental circle Customarily pixel resoluton is used to indicate the
feature is the spherical arc generated by rotating the circular approximar ixe llest scne 1eature which can be
arc locus of an incremental line segment about the vertical sen by the vision system. In many machine vision tasks it
axis through the midpoint of the line segznent. Although se ytevso ytm nmn ahn iintssiis required that a particular unit feature size on an objectthe resolution definition that was employed can be shown to appear as a mnimum number of picture elements on a
be more conservative than the one used customarily and, as aear as a um numbeutof ctreeleen o adescibe , r duc s th se sor pla eme t de ree of fre do m sensor. This feature resolution constraint can be satisfied
described, redeos the sensor placement degrees of freedom by properly selecting the image sensor, as well as by care-
from five (three positional and two rotational) to only tie fully planning its placement and settings. The objective of
three positional, however, it is not the one used in practice sensor planning for the featute resolution constraint is to
for machine vision task specifications. In the MVP system determine the sensor parameters that achieve this resolution.
the resolution constraint is formulated in terms of this more
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In this section, we shall present a method to plan the
camera pose and the optical settings of a lens, so that 4.1 The resolution constraint for orthogonal
chosen features can be resolved to meet a given specifica- viewing
tion.

In Figure 3, when the feature AB is viewed
Consider the minimum feature AB, of length 1, shown orthogonally, then for every minimum feature AB, of length

in Figure 2, as well as its image cf length w. The goal is to I on AB that must satisfy the resolution specification, the
determine the locus of the perspective center 0 of the lens following relationships hold:
(or in general of the front nodal point, in the case of a thick
lens) as described by r =f(w,lf, y, 0, 4, ...), as well as the 1a I (la)
perspective center to image plane distance D d 
d =f 2(w,lf, y, 0, ,,...) that satisfy the resolution specification
wl. where r, 0 are the polar coordinates of the perspective d w
center of the lens with respect to the coordinate system at (lb)
A,' , 41 is the angle betweea the opticai axis Oz' and the
plane defined by AB and 0, y is the angle between AB, and Equation (la) is the Gaussian lens law applied to a general
the projection Oz" of the optical axis onto the plane defined coaxial optical system with the object and image distances,
by A,B and 0, d is the effective focal length, namely the dis- D and d, measured from the principal planes in the object
tance of the perspective center of the lens to the image and image spaces respectively. On the other hand, equation
plane, f is the intrinsic focal length of the lens, that is, the (lb) expresses the linear magnification of the minimum
focal length of the lens for an object at infinity, I is the feature 1. By combining (1a) and (lb), the object and image
minimum feature to be resolved, w is the length of A',B',, distances can be directly computed from the following
the image of AIB, and fi, f are the functional relationships relationships:
to be determined.

D = (I +1-L (2a)
As discussed in section 3, the existing approach to this

problem [1, 2] involves an iterative procedure to estimate
the object and image distances, D and d, that satisfy the d= (I +--f' (2b)
resolution constraint. In [11] we presented a direct method I

to compute these distances, meeting the resolution require-
ment when the feature of interest is viewed orthogonally. In Consequently, given the resolution requirement wil and the
this paper w- extend this work to determine the locus of intrinsic focal length f of the lens, values for the object and

camera poses and lens settings that satisfy the resolution image distances that satisfy the resolution constraint in the

constraint in a general viewing configuration, limit can be determined from (2a) and (2b) respectivi'ly. For

Simap plans

0 0
Iaxis

Ok I
rr

AB

I ..:1[.. Figure 3. The resolution constraint for orthogonal

y~ilA4 X , 86viewing.
object distances smaller than the valkie of D computed from
(2a) and their respective conjugate image distances, it is true

Figure 2. Perspective projection in 3D for a viewing ori- tha dID> wi and thcrefore the resolution requirement is
entatlon Oz'. eyceeded. In Figure 4, the resolutien satisfying region for

camera placement is shown shaded for an intrinsic focal
length of f= 4.4275 in and the resolution specification of

the axis is along 4,8, and they axis lies in tho plane ofO and AIB, w/1r, 3 frame buffer pixels per 0.01 in.
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the line-segment feature AB, and the, perspeetive ceniter 0
and makes an angle y with AlB, (for simplicity the lens per-

|O] spective center has been used rather than the front and back

nodal points of the lens, however all relationships hold for
the case of a thick lens as well). The coordinate system is
taken at A, with the x-axis along A,B1, while points are

f -6 Ini expressed in polar coordinates. The problem then involves
determining the locus of the perspective center 0, such that

f - 4.4275 In the projection A',B', of the feature A,B onto the image plane
............. has length w.

........ I ..................
. Initially let us assume that the distance d from the

image plane to the perspective center is known a priori.
The case where d varies, as the lens is focused at different

4 9 settings depending on the object distance, will be addressed
later. It can be shown that for the case of a constant d, the
locus of the perspective center, such that the image feature

Figure 4. The resolution satisfyiAg domain for orthogonal has length w, is described in polar coordinates by the fol-
viewing, lowing relationship:

It should be noted that in all the previous relation- r dl sin 0 + I cos V
ships, the length w of the image of the minimum feature is w cos2(0 - y) cos(O - y) (3)
expressed in the scnsor plane. However, when the limiting
resolution is specified as the minimum number of picture where (rO) are the polar coordinates of the perspective
elements in the frame buffer required to resolve , then the center 0, OO<t, I is the length of the feature line-segment,
scaie factor [3] that relates the sensor element spacing of w is the length of the feature line-segment in the image and
the CCD array to the pixel element spacing of the frame y is the angle between the optical axis and the line-segment.
buffer must be known in order to compute w. This angle , is taken in the range [0, 7r/2], since the case

Previously for a constant intrinsic focal length lens, f is where nJ2 vS is symmetrical with the axis of symmetry

fixed and thus the object and image distances computed
from (2a) and (2b) respectively, are unique. For a variable
focal length lens (i.e. zoom lens), f varies and can be set as t M
desired. In this case, D and d can assurne a range of values
from (2a) and (2b) limited only by the working range of the
specific lens [11]. In Figure 4, the admissible domain for
camera placement is shown to increase as the intrinsic focal "
length increases (i.e. ihe lens is "zoomed-in"). '

4.2 The resolution c s for a general viewing
dirgtion in 2D i f a g

In the previous section the resolution constraint was '.

discussed in the case of orthogonal viewing. In other words,
camera locations were determined for which, a given A,; ).. 4

minimum feature size in object space is projected to a
certain number of pixels in the image, when the optical axis Figure 5. Perspective projection in 2D for a viewing onri-
is perpendicular to the feature, However in a general entation Oz'.
viewing situation the angle between the optical axis and a
line-segment feature may take on values other than 7/2 in being the perpendicular bisector of A,B,. A polar plot of
which case perspective foreshortening is nonuniform. As a this relationship, when y= n,14, 1=O./ in. w=6 pixels, is
result, in order to control the image size of' a minimum shown in Figure 6. Thus, when viewing at a given angle y,
feature dimension ii oblect space, when in generai the the locus of viewpoints, for which the lenrigth of the !Air.e
feature is viewed at angle, it is important to understand how segment in the image is at least w, is the region shown
the perspective transformation ol a given length changes as shaded in Figure 6 This legion is bounded by the curve
the location of the perspective center dnd the direction of described by (3) and the line which is perpendicular to the
the optical axis vary. optical axis direction and passes through the point of A,B,

that is closest tc the perspective center in the optical axis
Let us consider the two-dimensional rase shown il direction. (i.e. B. in this case). The latter line ensures that,

Figurc 5, where (fhe optical axis lies on the plane defined by for this viewing direction y, all points of A,BT can be imaged.
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Similarly, the locus of' viewpoints that satisfy this resol- object distance DA and the lens focal-length f using the
ution specification, when viewing the line-segment feature at Gaussian lens law:
any angle in the range (y:, y,), is the region bounded by theDf
envelope,2 E,22, of the family of' curves described by (3), d = D4)
where y,2<y<y,, and the line which is perpendicular to the DA +f()
optical axis direction for the smallest viewing angle y, (i.e.
yj), and which passes through the point of' AB, closest to where
the perspective center in the optical axis direction (i.e. B, in
this case). The envelope E,,a, for rr/4<yi<n/3, and the asso- DA4 r cos(0 - v) (5)
cdated admissible region are shown in Figure 7 for a partic-
ular resolution specification. It can be observed that the The above relationships can be combined with (3) to arrive
envelope E,, consists oera segment of'the curve given by (3) at a second-order polynomial in DA , which can be solved
for v = yh, a similar segment for y =y ', and a segment and hence r and d can be determined by using (4) and (5):
joining the previous two, which is a circular arc, as will be
explained in the next paragraph. With this information it is wfcos(0 - y) + 1w cos v, cos(0 - v,) + if'sin 0 + "
possible to construct this envelope analytically. r = 2w cos(0 - V,) (6)

It is interesting to note that the admissible region for
all possible angles v is bounded by a circular arc, as illus- A =[wfcos(0 - v) + 1w cos v cos(0- V) +/fasin 0)2
trated in Figure 8. This circular arc can be determined ana-
lytically, since, it can be shownl to be the locus of' points at - 4w~tfcos V cos 2(0 - v) (7)
which the line-segment feature subtends a constant an."

=2 tan-'(w/2d), where d is given by (2b). The radius of' __________________________

this circular arc is R = 1](2 sin £5). This locus was used by
Cowan in f23 and was determined using an iterative tech- I -ol ,,,.0 d -a13rsnique (seesection 3). It is clear that this circular arc is in !

general a conservative estimate of' the admissible domain of
camera viewpoints.

Let us now turn to the case where the image distance d " 7varies, so that the feature linesegment is in focus at all.

times. In the following analysis, the lens will be focused at "
the point of the line-scgment feature that is farthest in die-
tance along the direction of the optical axis, that is, point A,
when O< n/2. A similar procedure can be applied when . .
the lens is focused at any other chosen point. In this situ-...

ation, the image distance d can be exoressed in terms of the

2 an envelope or a ramily or cturves is a curve that is tangent at each Figure 8. The resolution constraint when viewing at any
or its points to somc curve of'thc ramily, angle between 0 and 90 degrees.
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Figure 9. The resolution constraint for a variable image Figure 10. The resolution constraint in 3D.
distance d when viewing at a 45 degree angle, d DAf

Thus, for the case where the image distance varies to

achieve proper focusing, the above formulas give a closed- where DA cos(0 - cos e,

form solution for the polar distance r of the perspective
center 0, as well as the image distance d, so that the image
of the line-segment feature has a specified length. In
Figure 9, it polar plot of this relationship, when y = ,/4, 4±4Roution "vs." Magnirication
1=0.] in, w 6 pixels f= 0.7 in , is shown overlapped with
the plot of(3) for d=0.7 in and d=0.735 in, and the same In effect, all previous analyses considered how to
input otherwise. It can be seen that the approximation d=f achieve a particular level of feature magnification. However,
is conservative and it may be considered acceptable in cases these results, when applied locally, can be used to ensure
where the working range of the image distance d is small, that each minimum feature length can be resolved (i.e.

covered by distinct pixels). For instance, let AB in Figure 11
be the feature that must be resolved to 15 mils. The admis-

4.3 The resolution - for g sible region for camera placement, that satisfies this resol-
Th s o c. fution constraint for AB as a whole, is determined by the

direction in 3D corresponding region for a 15 mil mini-feature on AB that is
farthest from the perspective center along the optical axis.

Let us now consider the three-dimensional viewing sit- For instance, when O<y<n]2 this mini-feature is 1A, since, as
uation shown in Figure 2, where the optical axis makes an shown in Figure 11, all other mini-features of this size, such
angle 0 with the plane defined by 4,B, and 0, while the as 1,, are redundant. Similarly, when n/2<y5n, it is 'A that
projection of the optital axis onto this plane makes an angle dictates the resolution constraint for AlB as a whole On the
y with A,B,. With a similar analysis it can be shown that, other hand, the locus of camera viewpoints for which the
for the 3D case and a known image distance d, the locus of entire feature satisfies an equivalent magnification (i.e.
the perspective center, such that the image feature has 1/0.015 pixels per inch) is shown in Figure I1 to lie, as
length w, is described in polar coordinates by the following expected, between the two rmni-feature resolution loci.
relationship:

dl sin 0 I Cos V w- 0.015 In/1 pixel d- 0.73 In /-4e+ =o~ + (6)\\
w cos 0, cos'(8 - ,) cos(0 - ,)(

2- L
The above equation is identical to (3) except for the extra A-L-1 In-b
cos 4 in the denominator of the first term. As a result, the A - .
admissible region increases with 4, since the feature draws S

closer in the direction or the optical axis (see Figure 10).

When the image distance varies to achieve proper
focusing, the polar distance r of the lens perspective center
and the image distance d can be found, in a manner similar ,*
to the 2D case by combining (6) and the following relation- X N
ships:

Figure 11. Resolution vs. magnification.
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5 EXPERIMENTS

'As part of our MVP system, we have developed and
implemented machine vision planning algorithms for the
feature detectability constraints of visibility, resolution and
field of view. In the experiments, we demonstrate the effec-
tiveness of this approach using a robot vision system that
plans its pose and the lens settings of its camera according
to these techniques. In this section, we present test results
demonstrating satisfaction of all three feature detectability
constraints and we discuss the resolution planning technique
in detail.

5.1 Setup Description Figure 13 The object.

The experimental setup is shown in Figure 12. A
Javelin CCD 480 x 384 camera is fastened to the last joint Ftp
of an IBM Clean Room Robot (CRR). The CRR has two
manipulators, each with seven joints, which consist of three H
linear joints (x,y,z), three rotary joints (roll, pitch and yaw) - LH
and the gripper joint.

A Vicon zoom lens with two close-up lenses or
diopters (4-diopter and 2-diopter, making it a 6-diopter) is o
mounted on the CCD camera. The zoom lens has three
motorized functions: zoom, focus and :ris. For zoom and
focus, potentiometers provide feedback of the lens element
position. The zoom ratio of the tias is 6X with a focal
length range of 12.5-75 mm (without the 6 diopter close.up
lenses). Figure 14. CAD model of the object.

The object used in the camera placement experiments
is shown in Figure 13 and a CAD model of it is shown in R s
Figure 14. The feature to be viewed is the top face T of the
enclosed cube. This object is assembled from smaller primi- The domain of feasible camera locations is initially
tive objects (i.e. cubes, parallelpipeds etc.) so that it can be limited to the region in three-dimensional space from where

reconfigured to test a variety of occlusion arrangements. the feature to be observed is visible. This region is gener-
ated by the visibility algorithm that we have developed
19, 12]. For the object and target shown in Figure 14, the
visibility region was determined and, as shown in Figure 15,
it consists of two disjoint visibility volumes that correspond
to viewing the target through the small hole SH and the
large hole LH of the object (Figure 14).

Viewpoints chosen from the visibility region must also
satisfy the field of view constraint, that is, the target must

not be truncated in the image as a result of the finite size of
the sensor plane. As a result, given the target and the
dimensions of the sensor plane, this constraint generates its
own admissible region [l1l. When placing the lens center

inside this region, there exist orientations of the optical axis
(e.g. range of values for the angles y and 4k) that maintain

_the target within the field of view.
Figure 12. The experimental setup.
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5 EXPERIMENTS

As part of our MVP system, we have developed and
implemented machine vision planning algorithms for the
feature detectability constraints of visibility, resolution and
field of view. In the experiments, we demonstrate the effec-
tiveness of this approach using a robot vision system that
plans its pose and the lens settings of its camera according
to these techniques. In this section, we present test results
demonstrating satisfaction of all three feature detectability
constraints and we discuss the resolution planning technique
in detail.

5.1 Setup Description Figure 13. The object.

The experimental setup is shown in Figure 12. A
Javelin CCD 480 x 384 camera is fastened to the last joint
of an IBM Clean Room Robot (CRR). The CRR has two
manipulators, each with seven joints, which consist of three
linear joints (x,y,z), three rotary joints (roll, pitch and yaw) LH
and the gripper joint.

A Vicon zoom lens with two close-up lenses or
diopters (4-diopter and 2-diopter, making it a 6-diopter) is ,,
mounted on the CCD camera. The zoom lens has three
motorized functions: zoom, focus and iris. For zoom and
focus, potentiometers provide feedback of the lens element
position. The zoom ratio of the luus is 6X with a focal
length range of 12.5-75 mm (without the 6 diopter close.up
lenses). Figure 14. CAD model of the object.

The object used in the camera placement experiments
is shown in Figure 13 and a CAD model of it is shown in 5.2 Results
Figure 14. The feature to be viewed is the top face T of the
enclosed cube. This object is assembled from smaller primi- The domain of feasible camera locations is initially
tive objects (i.e. cubes, parallelpipeds etc.) so that it can be limited to the region in three-dimensional space from where

reconfigured to test a variety of occlusion arrangements. the feature to be observed is visible. This region is gener-
ated by the visibility algorithm that we have developed
[9, 12]. For the object and target shown in Figure 14, the

visibility region was determined and, as shown in Figure 15,
it consists of two disjoint visibility volumes that correspond
to viewing the target through the small hole SH and the
large hole LH of the object (Figure 14).

Viewpoints chosen from the visibility region must also

satisfy the field of view constraint, that is, the target must

not be truncated in the image as a result of the finite size of
the sensor plane. As a result, given the target and the
dimensions of the sensor plane, this constraint generates its
own admissible region [I]. When placing the lens center
inside this region, there exist orientations of the optical axis
(e.g. range of values for the angles y and 4) that maintain

_ _ _ _ _ _ _ _ _ _the target within the field of view.
Figure 12. The experimental setup.
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Figure 15. The visibility regions.

5.2.1 Resolution planning results for
orthogonal viewjng

The feature of interest that is chosen to satisfy the
resolution constraint, for the case of orthogonal viewing, is-
the width of the target T, shown as L. in Figure 14, where
L = I in. The resolution hmit is taken to be 3 frame buffer
pixels per 0.01 inches. For this resolution limit and for the
case of viewing this feature orthogonally, a viewpoint is
foun4 that just barely satisfies this resolution. That is, each
image pixel spacing corresponds to 1/300 inches in object
space, and thus the whole 1 inch width of the target projects
to 300 pixels. Figure 16. The vletv ef tit tatg:t M,'r the ,ase of

o~rth:0g ,ii viemtng.

For the case of orthogonal viewing, object and image
distances can be found from (2a) and (2b) for different ution specification, a 'i,-ao nt is _,r d that again just
intnnsic focal lengths of the zoom lens. As shown in barely satisfies this resovitio-. Trat Is ihe iewpoint lies on
Figure 4, for an intrinsic focal length off 4.4275 in: the locus described by (6) a!,i' (7) an : inside the visibility

and field of view satisfying regions. I he viewpoint chosen is
D -(1 + W = (1 + 1/0.192) x 4.4275 26.74 in shown in Figure 9 as VA, for which y = 45° , 0 = 50, 1=0.1

in. w =6 pixels and f= 0.7 in . For this viewpoint, r and d
are found from (4),(5),(6) and (7) to be:

d I + ( .2r 14.75 in, d= 0.735 in.

where Knowing the image distance, the lens can be focused
M 3 x 23 x 0.70642 accordingly, and having determined the polar distance and

"1"  0.01 x 25.4 1000 0.192 angle of the lens center, as well as the optical axis orien-
tation, the camera can also be placed.

w = 3 pixels, I = 0.01 inches, 23 microns is the sensor
element soacing in the horizontal direction and 0.70642 is 5.2.3 Came ia placement, lens setting and
the horizontal scale factor relating the sensor element verification of the-sensor planning results.
spacing to the pixel spacing in the frame buffer.

These two camera locations are shown in Figure 15 as
Having deterrmned the image distance, the lens can be viewpoints V for the case of non-orthogonal viewing and

focused accordingly. In addition, i.nowing that the optical V8 for the orthogonal viewing case. The manipulator with
axis orientation is perpendicular tu the feature and having the mounted camera is used to place the camera at the
determined the object distance, the camera is then placed chosen viewing positions with respect to the occluding
inside both the visibility and field of view satisfying regions. object and target. Each camera position chosen is known

only with respect to an object coordinate system. What
needs to be determined is the manipulator location that

5.2. 2  Resolution planning results for places the camera at the chosen position. This manipulator
non-orthogonal viewing location can be computed from the hand-eye relationship

[10] and the pose of the object in the robot world coordi-
In this case, the feature of" interest is chosen to be the nate system 18]. Figure 12 shows the manipulator placed

length of the target T, shown as L, in Figure 14, where at viewpoint V, and oriented orthogonally to the feature.
L, = I in. The resolution limit is taken to be 6 pixels per 0.1
inches specified in the image frame buffer. For this resol. The associated scenes of the target from these view-

points are shown in Figure 16 and Figure 17. These figures
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Figure 17. The view of the target for the case of non- Figure 18. Measuring the resolution.
orthogonal viewing.
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Statistical Decision Theory for Sensor Fusion

Raymond McKendall
GRASP Laboratory

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389

Abstract Z A(0, 1); in this case F -, X(0, 1). (The nota-
tion A(p, 2) indicates a normal or Gaussian distribu-

This article is a brief introduction to statistical tion with location p and scale o.) In a robust-estimation
decision theory. It provides background for un- problem, the distribution F is uncertain: It is an un-
derstanding the research problems in decision known member of a given class F of distribution func-
theory motivated by the sensor-fusion problem. tions, an uncertainty class. An example is to estimate

the mean 0 of Z -, N(O, a2) when o E (0,1] is un-
1 Introduction known; in this case F E Y where ." is the set of N(0, o2)

distribution functions with o1 E (0,1]. Robust estima-
This article is a brief introduction to statistical decision tion accounts for inexact characterizations of the noise.
theory. It provides background for understanding the Many problems in robust estimation reduce to problems
research problems in decision theory motivated by the in standard estimation.
sensor fusion problem. In particular, this article is an in- The statement of the problem in terms of mathemati-
troduction for the articles Robust Multi-Sensor Fusion: cal statistics is to estimate the location parameter 0 E E
A Decision Theoretic Approach [Kamberova and Mintz, of the random variable Z, where
1990] and Non-Monotonic Decision Rules for Sensor Fu-
sion [McKendall and Mintz, 1990] of these Proceedings. Z - Fz(.I0)
The principal references for this review are [Ferguson,
1967], [Berger, 1985], and [DeGroot, 1970]. The appen- and
dices of [McKendall, 1990] give an expanded discussion Fz(zlO) = F(z - 0), Vz E R.
of sensor fusion and an expanded introduction to deci- The distribution Fz(.10) of Z is the sampling distribu-
sion theory. tion, and the distribution F of V is the nominal distribu-

Section 2 states the general research problem in sta- tion. Similarly, the density of Z, fz( 10), is the sampling
tistical estimation. Section 3 describe,; the sensor fusion density, and the density f of V is the nominal density.
problem. Section 4 introduces statistical decision the- The density functions are related by the equation
ory and formulates the research problem as a decision
problem. Section 5 gives some examples of the research fz(zl O) = f(z - 0), Vz E R.
problems studied. 3 Motivation
2 Research Problem The location-estimation model of this research is fun-

The problem of this research to estimate the location damental to research in robust fusion of location data.
parameter 0 E 0 of a single observation Z in the model Location data are sensors' measurements of the position

of an object. Fusion is the combination of location data
Z = 0 + V. from different sensors. Robust fusion accounts for uncer-

Thus, the random variable Z is a measurement of the tainty in the description of the underlying system. The
location parameter 0 in continuous, additive noise V. goals of the research in sensor fusion are to model sensor
The goal of this research is to estimate 0. The tool for fusion as a statistical problem, to analyze the model with
analysis is statistical decision theory. statistical decision theory, and to develop mathematical

There are two versions of this problem, standard esti- statistics for the analysis.
mation and robust estimation. In a standard-estimation Exampi *e 1 illustrates a sensor-fusion problem
problem, the distribution function F of the additive noise with three s. The sensors S1, S2, and S3 may be
V is known. An example is to estimate the mean 0 of differen' kinds of sensors. For example, S1 may be a

*Acknowledgement: Navy Contract N0014-88-K-0630; laser sensor, S2 may be a sonar sensor, and S3 may be a
AFOSR Grants 88-0244, 88-0296; Army/DAAL 03-89-C- camera. The output of each sensor Si is a measurement
0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89-06770; Z, of the distance 0 of the object T from the horizon-
and the Dupont Corporation. tal axis. The dashed box around each sensor represents
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Figure 1: Sensor-fusion paradigm

the noise associated with the sensor's measurement. For this theory and formulates the location-estimation model
example, there may be uncertainty in the exact position as a decision problem.
of each sensor. The box around the object T represents
the prior information about the location of the object. The Decision Problem
For example, the object may be in a room with known Figure 2 illustrates the structure of a statistical decision
dimensions. problem. The task is to make a decision or perform some

The fusion problem is to combine the three measure- action a from a set A of allowable actions. The parame-
ments Z 1 , Z2 , and Z3 of the distance 0 into a single ter w determines the correct action to take, but the value
estimate. Fusion of the data requires that the data are of this parameter is not known. There are, however, two
consistent: The consistency problem is to verify that Z 1 , types of information about w. First, the possible values
Z 2, and Z 3 are measurements of the same parameter. 0 are known. These are the elements of the set 9. Second,

there is an observable random variable Z whose distri-
The location-data paradigm consists of a measurement bution depends on w and thus contains statistical infor-

Z of an unknown parameter 0 in statistical uncertainty, mation about w. The goal of a decision problem is to
noise due to the environment or to the sensor itself. A choose an action from A by using the observable to gain
location model of a measurement assumes that the pa- information about the unknown parameter. The objec-
rameter governs only the location of the noise but not tive is to find a decision rule 6 that maps the sample
its shape; the model assumes that the shape of the noise space Z of the observable Z to the action space A: The
is independent of the parameter. (Such noise is called decision or action for an observation Z = z is 6(z) E A.
additive.) For example, a measurement Z of a parame- Because the action taken is based on a random variable,
ter 0 may be modeled as a normally distributed random the decision process has error. The loss function L gives
variable with mean 0: Z - NV(0, a2 ). Then the shape of the penalty for this error: The loss incurred by action a
the noise is N(O, .2) regardless of the location 0 of the for the parameter w is L(w, a).
mean. In summary, a decision problem is a quadruple

The sensor-fusion problem has multiple measurements (f0, A, L, Z) consisting of a parameter space 11, an action
Z1, ..., Z of the location 0 in additive noise. These space A, a loss function L, and an observable Z. The
measurements originate from different sensors. The fu- parameter space is the set of possible values for the un-
sion problem is to combine these data into a single value known statistical parameters. For standard estimation,
for the location 0. The model assumes a tolerance e for the parameter space is 2 0. For robust estimation,
error: An estimate 0 for 0 is acceptable if the absolute the parameter space is 0 = Ox.F. The action space is
error of estimation 1 - 01 is at most e; otherwise, the the set of available decisions. The action space of the
error is unacceptable. The goal of fusion is to find an es- location-estimation problem is A = 0; an action a E A
timator that minimizes the probability of unacceptable is an estimate of 0. The loss function is a scalar function
error. The fusion problem subsumes the problem of con- on Q x A. The loss L(w, a) for w E f2 is the cost of the
sistency, which is to verify that the data Z 1, ... , Z,, are estimate a of 0. This research uses the zero-one (e) loss
in fact measurements of the same location, function, L,: r 0 if 19- aJ_ e
4 Decision Theory (wa) 1 if 0-aI:e1 if ]0-ai>e

The tool for the analysis of the location-estimation prob- The observable is a random variable whose distribution
lem is statistical decision theory. This section introduces depends on the unknown parameters and thus contains
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Figure 2: A statistical decision problem

information about them. For the location-estimation Comparison of risk gives a weak optimality criterion.
,roblem, the observable is Z = 0 + V. A decision rule 61 is preferable to a decision rule 62 if

A decision rule 6(Z) in an estimation problem is an the risk of 61 is smaller than the risk of 62 uniformly
estimator of 0. The decision rule is chosen according to in w. A decision rule is admissible if there is no other
an optimality criterion. This research constructs mini- rule preferable to it. Comparison of risk, however, is an
max decision rules: Under zero-one (e) loss, an estimator incomplete criterion since the risk varies in the unknown
6b(Z) of the location parameter 0 is minimax if parameter w. (See figure 3.) Thus, the second step in
sup P,,{j6*(Z) - 01 > e} = inf sup P,{16(Z) - 01 > e}. finding a decision rule is to remove the dependence of
W 6 , a choice on the unknown parameter. This step leads

Thus, a minimax estimator based on zero-one (e) loss to three types of decision rules: minimax, Bayes, and
minimizes the maximum probability that the absolute equalizer.
error of estimation is greater than e. Equivalently, this The minimax approach eliminates the unknown pa-
estimator minimizes the maximum probability of unac- rameter w from the risk by comparing the maximum
ceptable error. risks of two decision rules. A decision rule 6" is a min-

imax rule if its maximum risk is the smallest possible
Optimal Decision Rules maximum risk:
A decision rule 61 is preferable to a decision rule 62 if the sup R(w, 6*) = inf sup R(w, 6)
loss under 61 is smaller than the loss under 62. The loss w 6 ,
function alone, however, is not enough to choose between Thus, a minimax rule guards against the worst-possible
two decision rules since L(w, 6(Z)) is a random variable, risk.
Thus, the first step in evaluating the performance of a The Bayes approach eliminates w by comparing the
decision rule 6 is to find its average loss or risk 1(w,6): weighted-average risks of two decision rules. This ap-

R(w, 6) := E[L(w, 6(Z)] proach assumes that there is a known probability distri-
bution 7r on the parameter space fS through which the

= L(w, 6(z)) dFz(zO) risks are averaged. This distribution is the prior distri-
bution on P . A decision rule 6 is Bayes against 7r if its

The risk R(w, 6) is the weighted-average loss of 6, where weighted-average risk under 7r is the smallest possible
the weight is given by the distribution Fz(.10). weighted-average risk:
Example When the loss is zero-one (e), the risk of a E[R(w, 6*)] = inf E[R(w, 6)]
rule 6 is the probability under w that the absolute error 6
exceeds e: Thus, a Bayes rule guards against the worst-possible

R(w,6) = fLo6(z))dFz(zlO)  weighted-average risk.
z The equalizer approach eliminate w by choosing a de-

cision rule with constant risk. A decision rule 6 is an
= dFz(zO) equalizer rule if for all w E f1,

= P.{16(Z)-01>e} R(w,6) = constant.
Thus, small risk implies small probability of unaccept- The goal of this research is to find a minimax rule for
able error of estimation. 13 the location parameter 0 of the measurement Z = 0+ V,
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Figure 3: Incomplete comparison of decision rules through risk

but direct computation of a minimax rule from the def- Theorem 3 Let 7r be a distribution on 0, and let r(.Iz)
inition is usually not possible. Instead, the Bayes and be the conditional distribution on 11 given the observation
equalizer approaches provide an indirect strategy for Z = z. If for all z,
finding minimax rules. A standard result from statis-
tical decision theory states that a Bayes equalizer rule is Er('Iz)[L(w, 6(z))] = inf E(O'z)[L(w, a)],
minimax: 

a
then 6 is Bayes against ir.

Theorem 1 Let ir be a distribution on 1, and suppose Proof See (Ferguson, 1967, pp. 43-45].
that the decision rule 6 is Bayes against 7r. If 6 is an
equalizer rule, then 6 is minimax. The conditional distribution 7r(.Iz) on 11 is the posterior

Proof See [Ferguson, 1967, p. 90] or [McKendall, distribution on Q. The expected value under 7r(.Iz) of

1990, p. 271]. the loss L(w, a) is the posterior expected loss of an action
a. Thus, a strategy for finding a Bayes rule against a

Thus, the strategy for finding a minimax rule is first prior distribution is to minimize the posterior expected
to construct an equalizer rule and second to show that loss under the corresponding posterior distribution.
it is Bayes against some probability distribution on 9. Utility of Decision Theory
Theorem 2 gives an extension of this strategy: This decision-theoretic formulation of the location prob-

Theorem 2 Lct r be a distribution on Q2, and suppose lem has several features. First, standard estimation and
that the decision rule 6 is Bayes against 7r. Suppose that robust estimation coincide within the framework of sta-
there is a constant C such that the following two condi- tistical decision theory. The only difference is the spec-
tions are met: ification of the parameter space: Q2 = 0 or 11 = E) x F.

1. R(w, 6) < C for all w E Q. The tools of statistical decision theory, however, apply
to either specification. Second, decision theory incorpo-

2. P{w : R(w, 6) = C) = 1. rates prior information about the unknown parameters
Then 6 is minimax. through the minimax criterion by optimizing over w E Q.

Third, a decision problem accounts for the consequences
Proof See (Ferguson, 1967, p. 90] or [McKendall, of the estimate through the loss function. Zero-one (e)

1990, p. 272]. loss, in particular, models error tolerance: An estimate
within e of 0 is sufficiently close and so incurs no penalty,

The probability distribution of these theorems is a and an estimate greater than e from 0 is too far and thus
mathematical tool; it has no interpretation for applica- incurs full penalty. Also, zero-one loss is independent of
tion. It is a least-favorable distribution. A distribution F. Finally, a minimax estimator 6* (Z) based on zero-one
ir0 on 02 is least favorable if (e) loss induces an optimal fixed-size (2e) confidence pro-

cedure that maximizes the confidence coefficient among
inf E JR(w, 6)] = sup inf EW[R(w, 6)]. all fixed-size (2e) confidence procedures. This fixed-size

6, 6 confidence procedure induced by an estimator 6 of 0 is
(The superscripts indicates the distribution on 11.) C6(Z) := [b(Z) - e, b(Z) + e]

Computation of a Bayes rule is usually easier than
computation of a minimax rule from the definition. The- The confidence coefficient is inf,, P,,{C6(Z) 9 0), where
orem 3 outlines a strategy for finding a Bayes rule: P {C 6(Z) D 0) is the probability under w that the con-
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fidence interval covers 0. If 6 is a minimax rule, then Here a = 0.3992. (See figure 4.) This rule has 16"(z)j _<
inf PfC6,(Z) 9 0} = sup inf PfC6(Z) B 0}. 0.2 since the error tolerance is 0.1.n 6 W The risk function of 6 is this:

This confidence procedure provides a test of hypothesis ( R(-0, b6) if 0 < 0
that two measurements Z1 and Z2 are consistent. R(0,5") 2F(-a - 0.1) if 0 < 0 < 0.1F(-a -0.1) if 0 = 0.1
5 Examples F(a- 0.1) if 0.1 < 0 < 0.3
Example This example gives a minimax rule for the This decision rule has constant risk (0.6176) except for
location or mean 0 of a measurement Z - A(O, 1) with the points 0 = ±0.1, which have smaller risk. Since these
0 E {-1, 0, 11 when the error tolerance e is 0. points together have zero probability under any continu-

The random variable Z has the structure Z = 0 + V ous distribution, this rule is essentially an equalizer rule.
where F - X(0, 1). The possible values of 9 are the In particular, theorem 2 applies to this rule.
elements of E = {-1, 0, 1}. Th:i example is a standard- The rule 6* is Bayes against the distribution on 9 that
estimation problem since the nomninal distribution F is has this density function:
known. Thus Q = E or w = 0. Also, the action space A
is E. The loss function is the zero-one (0) loss function: (1.62 if -0.3 < 0 < -0.1

p(O)= 1.76 if -. 01< 0<0.1
Lo(,a) a= 1.62 if 0.1 < 0 < 0.3

(See [Zeytinoglu and Mintz, 1984] for the analysis un-The minimax decision rule 6* is this: derlying this example.) 0
() if z < -0.803 Example This example gives a minimax rule for the

6*(Z) 0 if -0.803 < <0.803 
21 if 0.803 < z location 0 of a measurement Z - N(0, 2) with 0 E

[-0.3,0.3] and some o- < 0.25 when the error tolerance
This rule implies, for example, that the estimate corre- is 0.1.
sponding to the observation Z = 0.5 is 0 = 0. Similarly, This example is a robust-estimation problem since the
the estimate corresponding to any observation Z > 0.803 scale and hence the nominal distribution F - Y(0, .2)
is 0 = 1. are uncertain. The uncertainty class is

The risk function of 6" is this: T - {At(0, a 2), o < 0.25}.
R(-1, 6) = 1-F(-0.803+1) The parameter space 11 is 9 x Y or, equivalently,

R(0,6*) = 2F(-0.803) [-0.3,0.3] x (0,0.25]. The action space and loss function
R(1,6) = F(0.803 - 1) are the same as those of the previous example.

This decision rule is an equalizer rule with risk 0.422. This problem reduces to a standard-estimation prob-
Furthermore, the rule 6* is Bayes against the distri- lem since the largest possible scale is sufficiently small

bution on ) that assigns these probabilities: relative to the error tolerance. The minimax rule for this
example is the minimax rule for the standard-estimation

p(-1) = 0.2982 problem of the last example with the nominal distribu-
p(O) = 0.4036 tion replaced by X1(0, 0.25 2). In particular, the minimax
p(l) = 0.2982 rule is given by definition 1 with a = 0.0808.

(See [Zeytinoglu and Mintz, 1988] for the analysis un-
(See [McKendall, 1990] for the analysis underlying derlying this example. See [Martin, 1987] and [McK-

this example and for similar problems in standard endall, 1990] for other problems in robust estimation.) 3
estimation.) 13
Example This example gives a minimax rule for the References
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Abstract components, it is impractical if not impossible to elim-
Many tasks in active perception require that we inate them completely. Thus, all sensor measurements
beMable toks bin diferentiforquiat fm are uncertain. However, sensor errors can be modeledbe able to combine different information from statistically, using both physical theory and empirical
a fariety of sensors that relate to one or more data. In developing these models, one recognizes that a
features of the environment. Prior to combin- single distribution is usually an inadequate description of
ing these data, we must test our observations sensor noise behavior. It is much more realistic and much
for consistency. The purpose of this paper is to safer to identify an envelope or class of distributions, oneexamine sensor fusion problems for linear loca- of whose members could represent the actual statistical

tion data models using statistical decision the- of he ven sen the oftal staity
ory (SDT). The contribution of this paper is behavior of the given sensor. This use of an uncertainty
the application of SDT to obtain: (i) a robust class (or equivalently: an envelope, set, or neighbor-
test of the hypothesis that data from different hood) in distribution space, protects the system designer
sensors are consistent; and (ii) a robust pro- against the inevitable unpredictable changes that occur
cedure for combining the data that pass this in sensor behavior. Reasons for unce tainty in statistical
preliminary consistency test. Here, robustness sensor models include: sporadic interference, drift due
refers to the statistical effectiveness of the de- to aging, temperature variations, miscalibration, quan-
cision rules when the probability distributions tization, and other significant nonlinearities over the dy-

namic range of the sensor. The purpose of this paperof the observation noise and the a priori po- is to examine a sensor fusion problem for linear location
sition information associated with the individ- data models using statistical decision theory (SDT). The
ual sensors are uncertain. The standard linear contribution of this paper is the application of SDT to
location data model refers to observations of obtain: (i) a robust test of the hypothesis that data from
the form: Z = 0 + V, where V represents ad- different sensors are consistent; and (ii) a robust proce-
ditive sensor noise and 0 denotes the "sensed" dure for combining the data that pass this preliminary
parameter of interest to the obsver. While consistency test. Here, robustness refers to the statisti-the theory addressed in this paper applies to cal effectiveness of the decision rules when the probabil-many uncertainty classes, the primary focus of ity distributions of the observation noise and the a priori
this paper is on asymmetric and/or multimodal position information associated with the individual sen-
models, that allow one to account for very gen- sors are uncertain. The standard linear location dataeral deviations from nominal sampling distribu- model refers to observations of the form: Z = 0 + V,tions. This paper extends earlier results in SDT where V represents additive sensor noise and 0 denotes
and multi-sensor fusion obtained by [Zeytinoglu the "sensed" parameter of interest to the observer. The
and Mintz, 1984), fZeytinoglu and Mintz, 1988, parameter 0 is called a location parameter, since the dis-
and [McKendall and Mintz, 1988]. tribution of Z is obtained from the distribution of V

by a translation. While the location parameter fusion1 Introduction problem is only one of many possible fusion paradigms,
Our research in active sensing is based on the theory and it does provide a useful starting point for consideringapplication of multiple sensors in the exploration of cn- more complicated problems, e.g., nonlinear location sen-
apir tion ofultiplae sreorsie by plorificatprio ri sor models of the form: Z = h(O) + V, where h denotes
vironments that are characterized by significant a priori a given (nonlinear) function. It also provides a useful
uncertainties. In addition to uncertainty in the envi- starting point for considering important generalizations
ronment, the sensors themselves exhibit noisy behavior. of the location sensor model such as: Z = h(O + V).
While good engineering practice can reduce certain noise

*Acknowledgement: Navy Contract N0014-88-K-0630; While the theory addressed in this paper applies to
AFOSR Grants 88-0244, 88-0296; Army/DAAL 03-89-C- many uncertainty classes, the primary focus of this pa-
0031PRI, NSF Grants CISE/CDA 88-22719, I1I 89-06770, per is on asymmetric and/or multimodal models, that
and the Dupont Corporation. allow one to account for very general deviations from
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nominal sampling distributions. This paper extends ear- no a priori probabilistic description; or (ii) the po-
lier results in SDT and multi-sensor fusion obtained by sition uncertainty of Si can be expressed by an un-
(Zeytinoglu and Mintz, 1984], [Zeytinoglu and Mintz, known probability distribution from a given uncer-
1988], and [McKendall and Mintz, 1988]. tainty class *Pi. In each case, we assume that the

In the sequel we: (i) delineate several paradigms for position uncertainty of Si is independent of the ob-
robust fusion of multi-sensor linear location data; (ii) servation noise {Vk :1 < k < Ni), and independent
introduce some essential nomenclature and definitions of the observation noise and position uncertainty of
from SDT; (iii) state the decision-theoretic results that the other sensors.
this paper is based on; and (iv) present and discuss a Remark 2.1 Without loss of generality, we can assume
methodology for robust fusion of multi-sensor linear lo- that the known offsets {p, : 1 < i < r} are each zero,
cation data. since nonzero values can be subtracted from the obser-

Our presentation emphasizes the statement and ap- vations {Zik : 1 < k < Ni). Further, if the known,
plication of the relevant theory. Proofs of theorems are generally asymmetric, interval of uncertainty [ai, bi] in
omitted. The reader is referred to journal articles and 0i is finite, then the observations {Zik : 1 < k < Ni) can
reports for these details. be shifted and the interval of uncertainty [at, b1] can be

replaced by [-di, di], where di = (b - ai)/2. Similarly,
2 Paradigms for Sensor Fusion of we can assume the interval of sensor position uncertainty

Location Data (where applicable) is also symmetric. Thus, (2.1) can be

In this section we delineate several paradigms for robust replaced by:
fusion of location data. We restrict our attention to ob- whe e 1I + k +- V1i,, (2.2)
servations of one-dimensional location parameters. The where: 1 <k _ Pi, I 0i [ _ dh and (where applicable)
results of this one-dimensional analysis can be applied i W I - , 1 < i < r.
to the multi-dimensional case by doing a component by The uncertainty classes ', and (where applicable) Pi,
component analysis. Alternatively, one can pursue a for- 1 < i < r, denote subsets in the space of probability
mal multi-dimensional extension of the methodology pre- distributions that are deemed to characterize the uncer-
sented in this paper. This extension is pat t of our current tainty in the specifications of the sampling distributions.
research in sensor fusion. Models for several uncertainty classes are described in

The general one-dimensional paradigm is delineated Sections 4 and 6.
as follows. We assume that we are given the sampled As stated in the introduction, the purpose of this pa-
outputs of r sensor systems {Si : 1 < i < r}. We denote per is to examine a sensor fusion problem for location
the kth sampled output of Si, 1 < C< Ni by: information using SDT. The contribution of this paper

is the application of SDT to obtain: (i) a robust test of
Zik = Pi + Wi + Oi + Vk, (2.1) the hypothesis that data from different sensors are con-

where: sistent, i.e., testing the hypothesis that Oi = Oj, 1 < i
< j _< r; and (ii) a robust procedure for combining the

* ai _<0i <hii, denotes an unknown location param- data that pass this preliminary consistency test. Again,
eter with known bounds ai and bi. [The bounds a, robustness refers to the statistical effectiveness of the
and bi may assume infinite values.] In many appli- decision rules when the probability distributions of the
cations there is a common interval of location pa- observation noise and the a priori position information
rameter uncertainty for all sensors. However, there of the individual sensors are uncertain.
is no need to make this assumption in the following In the following section, we introduce the notions of
mathematical developments, robust minimax decision rules and robust confidence pro-

* pi, denotes a known constant (offset) associated cedures. These concepts provide the basis for the devel-
with the position of sensor Si with respect to a com- opments in the remainder of this paper.
mon origin.

* V4k, denotes the additive observation noise associ- 3 Nomenclature and Definitions from
ated with the k~h observation (sample) from Si. The SDT
random variables {JVk : 1 < k < Ni) are assumed to The standard statement of a minimax location param-
be independent and identically distributed (i.i.d.). eter estimation problem includes as given: a parameter
We further assume that the noise process associ- space il; a space of actions A; a loss function L defined
ated with Si is independent of the noise process as- on A x Q; and a CDF F. If the underlying CDP is
sociated with 8j, when i $ j. Finally, we assume imprecisely known, then this standard minimax decision
that the probability distribution of Vik belongs to a model must be reformulated to account for this addi-
given uncertainty class of distributions, Fi. We do tional uncertainty. Statistical decision rules that are ap-
not assume that the noise processes associated with plicable in this more general problem setting are called
different sensors are identically distributed, robust procedures.

I V,, denotes the uncertainty in the position of sen- This paper considers robust fixed size confidence pro-
sor Si with respect to a common origin. We con- cedures for a restricted parameter space. These robust
sider two cases: (i) the position uncertainty of S, confidence procedures are based, in turn, on the solution
can be expressed by a known interval [1, u,] - with of a related robust minimax decision problem:
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Basic Minimax Decision Problem (MDP): Let Z Observation 4.1 Let L denote the zero-onr !ass func-
denote a vector of N i.i.d. observations of a scalar ran- tion (3.1). If the CDF F is continuous, then for each
dom variable with CDF F(z - 0), where F E .P, a given 6 E A., the risk function R(6, 0, F) is (4.2), where
uncertainty class. Let fQ =A = [-d, d], and define a i = 1,2,...,n - 1. For each 6 E A., R(6, 0, F) is a
zero-one loss function L on A x fn: piecewise constant function of 0 over the sets of a finite

_0, la-01< e partition of Q, and the maximum of R(6. 0, F) occurs at
L(a, 0) 1, a - 0 I> e; (3.1) one or more of the nondegenerate intervals. The risk ex-

pression (4.2) can be readily modified to include CDF's
where e > 0, is given Further, let R(b, 0, F) = F that are discontinuous. The generalized risk functionE[L(6, 0) I 0, F] denote the risk function of the decision R(6, 0, F) is again a piecewise constant function of 0
rule 6 given 0 E 11 and F E Y. over the sets of a finite partition of fQ expressed in (4.2).
Definition 3.1 An estimator 6* is said to be a robust Theorem 4.1 Let L denote the zero-one loss function
minimax estimator for 0, if for all 6: (3.1), and T be a scalar random variable with given CDF

sup R(6', 0, F) S sup R(6, 0, F). F(t - 0). If F is absolutely continuous with respect to
0en een Lebesgue measure, has convex support, and possesses aBEF i pe p (strictly) monotone likelihood ratio, then there exists aBased on these definitions and assumptions, we seek a globally minimax (admissible) Bayes rule 6" E A. and arobust minimax estimator V for 0. For brevity, we re- least favorable prior distribution A*.

strict our consideration to the case when dle is an integer Proof: See [Kamberova and Mintz, 1990].
>2.
Observation 3.1 The connection between the robust Remark 4.1 R(itc 0, F) and V have the following
minimax rule 6*(Z) and a robust fixed size confidence characteristics:
procedure is obtained by noting that: * The minimax rule 6' is an "almost" equalizer rule, in

C*(Z) = [6(Z) - e, b*(Z) + e] the cense that the nondegenerate piecewise constant
segments of the risk function are equalized to the

can be interpreted as a robust confidence procedure of minimax risk by a suitable choice of the parameter
size 2e that has the highest confidence coefficient vector a = (a-,..., a,) T .

infe,r PO,F[O E C*(Z)]. * The least favorable prior distribution A* is defined
Sections 4, 5, and 6 of this paper are organized as follows: by a density function that is piecewise constant.

Section 4 presents solutions of two related single- Remark 4.2 Theorem 4.1 extends the basic minimax
sample minimax estimation problems where F is given, results of [Zeytinoglu and Mintz, 1984] by allowing the
These results provide the basis for the solutions to the inclusion of CDF's F that are asymmetric.
robust minimax estimation problems where F E Y. Definition 4.2 A rule is (robust) V-mininax if it is (ro-

Section 5 extends the results of Section 4 to the D . A
multi-sample case. bust) minimax within the clss ). A rule is D-Bayes if

Section 6 develops a theory and methodology for ro- it is Bayes within the class V. A rule is P-admissible if
bust sensor fusion of location information based on the it is admissible within the class V.
theory presented in Sections 4 and 5. In the following theorem we weaken the hypothesis of

Theorem 4.1 by dropping the monotone likelihood ratio
4 Minimax and Robust Minimax Rules condition, and obtain a C-minimax result.
Throughout Section 4 we consider the single-sample de- Theorem 4.2 Let L denote the zero-one loss functioncision problem MDP (N = 1). (3.1), and T be a scalar random variable with given CDF

F(t - 0). If F is absolutely continuous with respect to

4.1 Minimax Rules Lebesgue measure and has convex support, then there
Minimax problems are special cases of robust minimax exists a Ca-minimax rule 6 E A.
problems in the sense that T- contains a single CDF F. Proof: See [Kamberova and Mintz, 1990].
We begin with two minimax estimation problems that Remark 4.3 R(6* 0, F) has the following characteris-
are defined by the zero-one loss function L (3.1). The tic:
solutions to these single-sample estimation problems pro- * The Ca-minirnax rule 6* is an "almost" equalizer rule
vide the basis for solutions to both the single-sample in the sense of Remark 4.1.
and multi-sample robust minimax estimation problems. Remark 4.4 Theorem 4.2 extends the basic C-minimax
These preliminary results require Definitions 4.1-4.2 and remilts, of [Zeytinoght and Mintz, 1984) by allowing the
are summarized by Theorems 4.1-4.2. inclusion of CDF's F that are asymmetric and/or mul-
Definition 4.1 Let C, denote the class of nonrandom- timodal.
ized, monotone nondecreasing decision rules 6: E l - A,
where: A = [-d, d]. Let Aa C C, denote the set of 4.2 Robust Minimax Rules
rules 6(t), defined for t E (-oo, o) by (4.1), where: In this section we define two uncertainty classes Y, and
i = 1,2,...,n and -oo < a-, < ... < a-2 < a- 1 < delineate t e solutions to the corresponding robust mini-
ao < al < a2 < ... < an <o, d = (2n + 1)e + c, and c max and robust VC-minimax estimation problems. These
equals zero (e) if d is an odd (even) multiple of e. Note results require Definitions 4.3-4.4 and are summarized by
that the parameter ao is relevant only when c equals e. Theorems 4.3-4.6.
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d-e, c+a,, +2ne< t- ac + ai + 2(i - l)e < t < c-+ ai + 2ie;
2(i-Il)e + c, c++2(i-1)e+ai- .  <c+ai+2(i-1)e;

6(t)= t-ao, -c+ao< t <C+ao; (4.1)
-2(i- 1)e -c, -c+ai-2(i-1)e < t < -c+ai+1 -2(i- 1)e;
t - a-i, -c + a-i-2ie < t < -c + a-i-2(i - 1)e;
-d + e, t <-c + a-n - 2ne;

F(an - e), d-2e< 0 <d;
F(an- - e), 0 = d- 2e;
F(ai - e) + 1 - F(ai+l + e), c + (2i - 1)e < 0 < c +(2i + 1)e;

F(a-+/e, - e) + 1- F(al +e), 0 = c + e;
F(ao-e)+ l- F(al +e), -c+e < 0 < c+e;
F(a. 1 - e) + 1 - F(al " e), 0 = -c + e;

R(6,0, F)= F(a_.I -e)-+1-F(ai +e), c-e< 0 <-c+e; (4.2)
F(a-2+,/e - e)+ 1 - F(a. +, , +e). 0 = c- e;
F(a_ -e)+l-F(ao+e), -c-e< 0 <c-e;
F(a_2 - e) + 1 -F(a-l + e), 0 = -c - e;
F(a.i(+l) - e) + 1 - F(a_. + e), -c - (2i + 1)e < 0 < -c - (2i - 1)e;
1- F(a-.+l + e), 0 = -d + 2e;
1- F(a-,n + e), -d < 0 <-d+2e;

Definition 4.3 Let F denote an uncertainty class with where: q > 0 and au > 0 denote given bounds, and F0

upper-envelope F,,: denotes a given CDF that is symmetric about zero, and

= {F: F(-) < F,,(a), x < s; F(x) > F,,(x), x > s}, absolutely continuous with respect to Lebesgue measure.

(4.3) Remark 4.6 The uncertainty class .F (4.4) models un-
where F,, is absolutely continuous with respect to derlying uncertainty in both location and scale for a sym-
Lebesgue measure and has convex support. metric distribution F0. Without loss of generality, we

Remark 4.5 The CDF Fu defines the upper-envelope can assume tr. = 1.

of.F (4.3) in the sense that: F(x) < F,,(x) for all F E .Y, Remark 4.7 The delineation of robust minimax rules
and x < s. The upper-envelope CDF F,, is permitted to and robust Ca-minimax rules for the estimation problem
be substochastic, i.e., F,, can have less than unit prob- defined by the zero-one loss function L (3.1), and the
ability mass. Thus, all c-contamination models can be uncertainty class .Y (4.4) is obtained by determining the
represented by a simple generalization of Y (4.3). joint worst-case behavior of the parameters: 0, r, and or.

The following theorem extends the results of Theorem By worst case, we mean those combinations of parameter

4.1 to the single-sample robust minimax estimation prob- values that lead to maximum risk. In carrying out this

lem. worst-case analysis, it is necessary to consider two cases:
d/e is odd, and d/e is even. For brevity, we restrict our

Theorem 4.3 Let Y denote the uncertainty class (4.3) analysis to the even case. The complete analysis appears
with upper-envelope F,,. Assume F,, possesses a in [Kamberova and Mintz, 1990].
(strictly) monotone Lkelihood ratio. Let 6* denote the Observation 4.2 Let d = (2n+2)e n > 0 There exist
minimax rule obtained through Theorem 4.1 based on
CDF F,,. There exists a bound B(d/e, Ft,), such that if bounds Bi(d/e,u,,, Fo) and B2 (d/e, o',, Fo) such that if

e > B, then 6* is a robust rninimax (admissible) Bayes q < B1 and e > B2 , then the joint worst-case behavior
rule. of 0,,r, and a is: r = -7 when 0 > 0; r = r/when 0 < 0;

Proof: See [Kamberova and Mintz, 1990]. and o = u for all 0.

The following theorem extends the results of Theorem Observation 4.3 As a consequence of the underlying

4.2 to the single-sample robust Ca-minimax estimation even and odd symmetry in this decision problem, which

problem. is reflected by the worst-case analysis, we can restrict our

Theorem 4.4 Let Y denote tile uncertainty class (4,3) attention to rules 6 E A, that possess odd symmetry
wThupeorenvelop.4 e F.Le" 6 denote the crtaint a about zero (ao = 0 and a-i = -ai). Ve denote this
with upper-envelope F,,. Let b" denote the C.-minimax subset of Aa by A.
rule obtained through Theorem 4.2 based on CDF F,.
There exists a bound B(d/e, F,), such that if e > B, Observation 4.4 If the relation between the parame-
then 6* is a robust Ca-minimax rule. ters 0, r, and o is defined by the worst-case analysis of

Proof: See [Kamberova and Mintz, 1990]. Observation 4.2, then for any 6 E A, the worst-case risk

Definition 4.4 Let Y denote the uncertainty class: (for 0 > 0) is (4.5), where: ou, = 1, and d = (2n + 2)e,
n > 0. We can restrict our attention to the domain
0 > 0 due to the even and odd symmetry in this decision

.7 = {F(.) = Fo((. - r)/a): I r 1< q]; ci < o-.), (4.4) problem.
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Fo(a. + rl - e), d-2e< 0 <d;
Fo(a.-i + q - e), 0 = d- 2e;
Fo(-an-t1-e)+Fo(a.-i+q-e), d-4e< 0 <d-2e;

R(6, 0, Fo) = (4.5)

0(-a2 - - e) + f0(al -- - e), 2e < 0 < 4e;
Fo(-a 2 - r?- e) + Fo(r - e), 0 = 2e;
Fo(-al - rq- e) + Fo(r - e), 0 < 0 < 2e;

Lemma 4.1 If F0 is absolutely continuous with respect The median statistic T(Z) = ZM possesses several prop-
to Lebesgue measure and has convex support, then there erties that are used in obtaining Theorems 5.1-5.4. These
exists a choice of parameters {ai : 1 < i < n} that equal- properties are stated in Observations 5.1-5.2.
ize the nondegenerate piecewise constant segments of the Observation 5.1 The centered median statistic ZM -0
risk function (4.5). The corresponding rule b* is an "al- preserves the upper-envelope of the uncertainty class F
most" equalizer rule. (4.3). Further, the CDF of ZM - 0 preserves absolute

The following theorem delineates the existence and continuity with respect to Lebesgue measure and convex
structure for single-sample robust minimax rules in the support.
case of the joint location-scale uncertainty class Y (4.4). Observation 5.2 The median statistic ZM preserves

Theorem 4.5 Let Y denote the location-scale uncer- location ordering for fixed scale, and scale ordering for
tainty class (4.4) based on the symmetric CDF F0 . As- fixed location in the uncertainty class Y (4.4). Further,
sume F0 possesses a (strictly) monotone likelihood ra- the CDF of ZM1 preserves absolute continuity with re-
tio and has convex support. Let 6* denote the rule spect to Lebesgue measure and convex support.
obtained through Lemma 4.1. There exists bounds The following theorem extends the results of Theorem
Bi(d/e, a., Fo), and B2(d/e, u, Fo) such that if : < B1, 4.3 to the multi-sample robust rinimax estimation prob-
and e > B2 , then b* is a robust minimax (admissible) l em t
Bayes rule.

Proof: See [Kamberova and Mintz, 1990]. Theorem 5.1 Let N > 1 and Y denote the uncertainty

In the following theorem we weaken the hypothesis of class (4.3) with upper-envelope F. Let FUM denote the

Theorem 4.5 by dropping the monotone likelihood ratio CDF of the centered sample median ZM - 0, where the

condition, and obtain a robust Ca-minimax result. underlying common CDF is F,. Assume FuM possesses
a (strictly) monotone likelihood ratio. Let 6* denote the

Theorem 4.6 Let Y denote the location-scale uncer- minimax rule obtained through Theorem 4.1 based on
tainty class (4.4) based on the CDF F0 . Assume F0 has CDF FuM. There exists a bound B(d/e,N,F.), such
convex support. Let 6* denote the rule obtained through that if e > B, then 6* is a robust median-minimax
Lemma 4.1. There exists a bound B(d/e, au, Fo) such (median-admissible) median-Bayes rule.
that if e > B, then 6* is a robust Ca-minimax rule. Proof: See [Kamberova and Mintz, 1990].

Proof: See [Kamberova and Mintz, 1990]. The following theorem extends the results of Theorem

5 The Multi-Sample Case 4.4 to the multi-sample robust Ca-minimax estimation

This section extends the robust minimax results of The- problem.

orems 4.3-4.6 to the multi-sample problem (N > 1) by Theorem 5.2 Let N > 1 and F denote the uncertainty

rescricting the class of estimators to rules of the form class (4.3) with upper-envelope F,. Let FM denote the

6(T(Z)), where: 6 E C., T is a real-valued function of Z, CDF of the centered sample median ZM - 0, where the

and T(Z) possesses a CDF that depends on 0 as a loca- underlying common CDF is F. Let 6* denote the Ca-

tion parameter, is absolutely continuous with respect to minimax rule obtained through Theorem 4.2 based on

Lebesgue measure, and has convex support. Examples CDF FM. There exists a bound B(d/e, N, Ft), such

of candidate T statistics include: the sample mean, the that if e > B, then 6* is a robust Ca-median-ininimax
sample median, and other linear combinations of order rule.

statistics. It, the rerr ti ider of this section we consider Proof: See [Kamberova and Mintz, 1990].

the sample median. The following theorem extends the results of Theorem

Definition 5.1 Let ZM denote the median of the N ob- 4.5 to the multi-sample robust minimax estimation prob-
servations Z. [If N is even, ZM = (Z[N/2]+Z((N/2)+1])/2.] lem.

The decision rule 6*(ZM), defined by the composition Theorem 5.3 Let N > 1 and Y denote the location-
S*o ZM, is said to be a median-minimax estimator for 0, scale uncertainty class (4.4) based on the symmetric
if 6* is a minimax rule in the usual sense. The respective CDF F0 . Assume Fo has convex support. Let FOM
definitions of robust median-minimax rules, C,-median- denote the CDF of the sample median, where the un-
minimax rules, and robust Ca-median-minimax rules are derlying common CDF is F0 . Assume FOM possesses
obtained as before. a (strictly) monotone likelihood ratio. Let 6* denote
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the rule obtained through Lemma 4.1 based on the multi-sensor location information. Since, at the min-
CDF FOM. There exists bounds Bi(d/e, N, ou, Fo), and imum, we seek to account for the occurrence of noise
B 2(d/e,N, o,,,Fo) such that if j? < B1 , and e > B2, distributions with heavy tails, it is appropriate to con-
then 6" is a robust median-minimax (median admissible) sider both c-contamination uncertainty classes as well as
median-Bayes rule. joint location-scale uncertainty classes. We consider two

Proof: See [Kamberova and Mintz, 1990]. cases:

The following theorem extends the results of Theorem Case 1: We adopt an c-contamination model r~ for
4.6 to the multi-sample robust Ca-minimax estimation each sensor Si, 1 < i < ); in particular, the ci-
problem. contaminated non-Gaussian model for sensor Si that is

Theorem 5.4 Let N > 1 and .F denote the location- defined by:

scale uncertainty class (4.4) based on the symmetric .F', = {F: F = (1 - ci)lk + ciH}, (6.1)
CDF F0. Assume F has convex support. Let FOM de- where: (i) V denotes a given asymmetric, (possibly)
note the CDF of the sample median, where the underly- multi-modal CDF that is absolutely continuous with re-ing common ODF is F0. Let 6* denote the rule obtained mlimdlCFta sasltl otnoswt e
throgh emm a. CDF isM F.Let denote the re tanex- spect to Lebesgue measure, and has convex support, and
through Lemma 4.1 based on the CDF FOM. There ex- (ii) the CDF H is arbitrary, and 0 < ci < 1. This uncer-
6" is a robust Ca-median-minimax rule. tainty class is a simple generalization of the uncertainty

Proof: See [Kamberova and Mintz, 1990]. class (4.3).
Case 2: We adopt a joint location-scale uncertainty

6 Robust Fusion of Location class for each sensor Si, 1 < i < r; in particular, the joint

Information location-scale uncertainty class defined by (4.4), where
F0 is the N(0, 1) CDF, and the location-scale bounds are

6.1 Preliminary Remarks ,i~ and o,,.
In this section we develop a theory and methodology for 6.3 Phase I - Robust Consistency Tests
robust fusion of multi-sensor location information based
on Sections 4 and 5. Our approach contains two distinct Analysis of Case 1: The following procedure provides
phases: a robust test of the hypothesis that O = Oj, i < j.

Let Mi denote the class of CDF's defined by the cen-
SPhase I provides a test of the hypothesis 0, --" 0, tered sample median ZMi of Ni i.i.d. samples with CDF
that the location data (2.2) from sensor Si are con- F E P', (6.1), 1 < i < r. Let Mij denote the class of
sistent with the location data from sensor Sj, where CDF's defined by the difference of the centered sample
i < j. medians (ZM, - Oi) - (ZM, - Oj), where the CDF's of

* Phase II provides a means of combining the loca- the centered sample medians (ZM, - 0,) and (ZM, - Oj)
tion data from the individual data sets that "pass" belong, respectively, to Mi and Mj, 1 < i < j < r. It
the Phase I test, i.e., those deemed to be consistent. follows from these definitions that the class Mij is a set

In both phases of this process, we seek procedures of distributions of the form (4.3). Further,

that are robust to heavy-tailed deviations from the ZM, - ZMi = 0i- 0i + Vij, (6.2)
nominal sampling distribution, such as exhibited in c-
contamination uncertainty classes. Our usage of "ro- where: the CDF of ij belongs to ij; and the a priori

bust" is also intended to imply that the procedures have uncertainty in Oi - 0j is given by the interval [-dij, dij],

satisfactory behavior when the actual sampling distribu- where dij = di + dj.

tion coincides with the nominal, e.g., a given Gaussian Hence, we can construct a robust fixed size (2e) confi-

distribution, dence procedure for Oi - Oj. The parameter e is selected
by the decision maker: (i) it defines the decision maker's

6.2 Sample Sizes and Uncertainty Classes tolerance to small errors between O and 0j; and (ii) it is
used to select the size of the statistical test. The desired

In developing suitable consistency tests, there are three procedure [6* - e, 6* + e] is obtained via Theorem 5.2.
domains of sample sizes to address: (i) the single sample Finally, the test of the hypothesis 0, 0j is obtained as
case, N = 1; (ii) the small sample case, 1 < N < 20; follows: we reject O = 0j if 0 [6* - e, 6* + e]. From
and (iii) the large sample case, N > 20. In defining this test we also obtain the minimum probability that
these classes, it is important to observe that the tran- i - Oj E [6* - C, 6* + e]. Examples of applications of
sition (N = 20) between the small sample and large this class of robust consistency tests app'ears in [Kam-

sample cases is not a precise threshold value - the ap- berova et al, 1990].

propriate selection of this threshold is dependent on the

uncertainty classes that define the given decision prob- Analysis of Case 2: We follow the basic approach
lem. The sample size for each sensor Si is denoted by described in the analysis of case 1, but we replace the
Ni, 1 < i < r. The sample sizes N, and Nj can belong sample median statistics by the sample means. Here, the
to different sample size domains, sample mean is useful, since the underlying uncertainty

The selection of appropriate sensor noise uncertainty classes contain only Gaussian distributions. The robust
classes {F' : 1 < i < r} is an important issue in consistency test is obtained via Theorem 5.3. The details
the development of a methodology for robust fusion of appear in [Kamberova et al., 1990].
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6.4 Phase 11 - Robust Fusion of Consistent [Zeytinoglu andMintz, 1988] Mehmet Zeytinoglu and
Multi-Sensor Location Information Max Mintz. Robust fixed size confidence procedures

The following procedure provides a robust estimate of for a restricted parameter space. Ann. Statist.,

the common location parameter 0 of r sensor data sets, 16(3):1241-1253, September 1988.

r _ 3. We observe at the outset that, when V and V2
possess very heavy tails, in general, it is not useful to
attempt to combine two observations of the form:

Z1 =0+V1

Z2 =0+V 2

by convex combination. For example, if V and V2 are
independent Cauchy C(0, 1) random variables, then any
convex combination of Z1 and Z2 will be a C(0, 1) ran-
dom variable. Further, there are random variables with
continuous unimodal symmetric density functions whose
sample mean, for any sample size N > 1, has greater
variability then any of its N i.i.d. components.

Analysis of Case 1: Let {ZMj : 1 < i < r} denote the
sample medians of r consistent data sets with common
location parameter 0. To simplify the exposition, we
further assume that the r sample medians are identically
distributed. Let ZMA denote the median of the {ZM, :
1 < i < r}. Let MA denote the uncertainty class of the
centered sample median ZMA - 0. The uncertainty class
MA is of the form (4.3). Thus, we can apply Theorem
5.2 to obtain a robust fixed size confidence procedure
[6* - e, 6* + e] for 0. Examples of applications of this
class of confidence procedures for the robust fusion of
consistent multi-sensor location information appears in
[Kamberova et al., 1990].

Analysis of Case 2: We follow the basic approach
described in the analysis of case 1, but we replace the
sample median statistics by the sample means. Here, the
sample mean is useful, since the underlying uncertainty
classes contain only Gaussian distributions. A robust
estimate of location is obtained via Theorem 5.3. The
details appear in [Kamberova et at., 1990].
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Non-Monotonic Decision Rules for Sensor Fusion

Raymond McKendall and Max Mintz*
GRASP Laboratory

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389

Abstract to a noise distribution with a monotone likelihood ratio

This article describes non-monotonic estima- are monotonic functions.
Tos ofalcation pascraete r n romo nicesy- iThe second problem is a robust-estimation problemtors of a location parameter 0 from a noisy in which 0 E {-1,O0, 1) and the noise V has either the
measurement Z = 0 + V when the possible val- A(, B) 0 a the no(i, a ether the
ues of 0 have the form {0, ±.1, ±2,. . .,-Inl. If a ) or the is nt) distribution. If the maximum
the noise V is Cauchy, then the estimator is allowable scale is not too large, the robust-estimation
a non-monotonic step function. The shape of problems of [Zeytinoglu and Mintz, 1988] and [McK-
this rule reflects the non-monotonic shape of endall, 1990a] reduce to standard-estimation problems.
the likelihood ratio of a Cauchy random vani- The underlying distributions in these problems have a
able. If the noise V is Gaussian with one of two monotone likelihood ratio (in the location parameter),
possible scales, then the estimator is also a non- and so their minimax rules are monotonic. In contrast,
monotonic step function. The shape this rule this problem has a non-monotonic minimax rule because
reflects the non-monotonic shape of the like- the maximum scale is too large. (A similar problem in
lihood ratio of the marginal distribution of Z which the possible locations are an interval has a ran-
given 0 under a least-favorable prior distribu- domized minimax rule. [Martin, 1987].)
tion. Section 2 discusses the standard-estimation problem

with the Cauchy noise distribution. Section 3 discusses
the robust-estimation problem with uncertain noise dis-1 Introduction tribution. The results listed here are a synopsis of results

This article describes non-monotonic estimators in deci- in [McKendall, 1990a], which gives the underlying anal-
sion problems motivated by sensor fusion. It finds mini- ysis and the proofs.
max rules under zero-one (0) loss for the location param-
eter 0 in two problems of the fusion paradigm Z = O+V. 2 Cauchy Noise Distribution
The statistical background for this research is reviewed
in the article Statistical Decision Theory for Sensor Fu- This section constructs a ziggurat minimax rule 6 m for
sion [McKendall, 1990b] of these Proceedings, which also the location parameter ih a standard-estimation problem
defines notation and terminology. (zggua, L, Z) in which Z has a Cauchy distribution. A

The first problem is a standard-estimation problem in ziggurat decision rule is a non-monotonic step function
which 0 E {0, ±1, ±2,... , n}, for a given integer n, and with range G,,. The non-monotonicity of reflects the
in which the noise V has the standard Cauchy distribu- non-mton.oicity of the likelihood ratio of a Cauchy dis-
tion. A motivation for these assumptions is extension of tribution. The range of 6 reflects the structure of the
the results of [Zeytinoglu and Mintz, 1984] and [McK- zero-one (e) loss function.
endall, 1990a] that assume the distribution of V has a Section 2.1 reviews the Cauchy distribution. Sec-
monotone likelihood ratio.1 The noise distributions in tion 2.2 summarizes the main results. The remaining sec-
most practical applications do not have monotone like- tions develop these results in more detail. Their organi-
lihood ratios; the Cauchy distribution is a simple distri- zation follows the strategy for finding a minimax decision
bution that does not have a monotone likelihood ratio. rule by finding a Baycs equalizer rule. Section 2.3 defines
The minimax rule for this problem is a non-monotonic ziggurat decision rules. Section 2.4 discusses Bayes anal-
function. In contrast, the decision rules corresponding ysis of a ziggurat decision rule. Sections 2.5, 2.6, and 2.7give the risk analysis of a ziggurat decision rule. Sec-

*Acknowledgement. Navy Contract N0014-88-K-0630, tion 2.8 combines the conclusions of this chapter to find
AFOSR Grants 88-0244, 88-0296; Army/DAAL 03-89-C- an admissible minimax estimator.
0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89-06770;
and the Dupont Corporation. 2.1 Cauchy Distribution

'A random variable Z with a density function fz('I0),
for 6 E 0, has a monotont; likelihood ratio if the ratio A continuous random variable V has the Cauchy distri-
fz(.Il)/fz(.02) is non-decreasing for all 01 > 02. bution with location parameter p and unit scale, written
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(-9. 2 ) /2

Figure 1: A likelihood ratio f('1Pl)/f('[P2) of a Cauchy distribution

V C(p, 1), if its density function f is The function pi is this:

1 ( i-I if z=i- 1
f(v1) = r (1 + (V - 2)2)f

The distribution function of a C(p, 1) random variable is i: (if-)z - (i - )2 + v?... .. if a#i- 1

F(vlp) = 7! arctan(Y ". ' ) + 1.

1 2 vThe C(0, 1) distribution is the standard Cauchy distribu- These equations have unique solution yl, y2 such that
tion. An important property of a Cauchy disrtibution is
that it does not have a monotone likelihood ratio. Fig- Yl E (1, . + vi) and Y2 E (2, 2 + vi).
ure 1 illustrates the shape of these ratios.

Furthermore, Yi < Y2. (The solution may be computed
2.2 Introduction numerically by the Newton-Raphson method.) The par-tition {xl} is defined in terms of this solution:
This section introduces and summarizes the results
through an example. In particular, it shows how to con- X := 0
struct a minimax rule P" and a least-favorable probabil- X := Yl
ity function 7r* on E, for the standard-estimation prob- X2 2
lem (E,,, 0,Lo, Z) in which n = 2 and F is the C(0,1)
distribution. The general results have arbitrary n. X3:= P2(Y2)

The decision rule 6 defined by figure 2, is the ziggurat X4 := 1(Y)
decision rule over a partition {xi of R+ onto 02: It is 5 00
an even, non-monotonic step function with range 02 and
with steps of unit height occurring at points of {xi}. The This partition is a pi-constrained partition of R+.
points x, and X2 are chosen so that 6* is an equalizer The probability function 7r* is this:
rule. The points 3 and X4 and the positive probability r*(4-1) = 7r*(0)/p(1)
function lr* are constructed from xj and X2 so that P* is *(±) =
Bayes against 7r! Consequently, the rule 6* is admissible '(2) = lr*(O)/(p(1)p(2))
and minimax, and the probability function 7r* is least The factors p(:l) connect 7r* to {zi} and thus to *:
favorable.

The partition {x} requires solution of the ziggurat- fz(xIl)
equalizer equations: pi) fz(Xzll - 1) -1)

2h 0(yi) = gl(Yi) + hi(y2 ) = g(Y3) The probability function 7r* is positive and unique.

The functions gi and hi are these: 2.3 Ziggurat Decision Rule
This section defines and illustrates ziggurat decisiongi(x) := F(x - i) + F(i - pi(x)), i = 1,2 rules. A ziggurat rule is specified in terms of a parti-

hi(x) := F(pIi+(x)-i)+F(z-i), i=0,1 tion of R+ .
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Figure 2: Ziggurat decision rule 6

Notation: Z2y For integers p < q, the notation X7 2.4 Bayes Rule
means the integers from p to q. For example, Io = Notation
{0,l,...,p). Bayes analysis of a ziggurat rule for a decision problem

Definition: partition of R+ A partition 2 of V is a (en, (n, L0 , Z) in which Z has a Cauchy distribution

set of points {xzj}P + 1 such that xo = 0, zp+l = oo, and requires pi-constrained partitions of R+.

xj+1 > xi for i E TP . Such a partition is abbreviated as Notation 4j := (i - 1, i - I + v)
{xil.2 

2
Definition: pi-constrained partition of R+ A pi-

Example 2.1 A partition of R+ with p = 4 is constrained partition of f is a partition { o+l of §+

{xj}5 = {0,0.617, 1.912,4.536, 11.209,oo}. 0 such that for all i E In,

Remark A particular partition of R+ is specified by and

the points x, i E Z. The specification of xo and xp+1 2n+,-i = i(Z).
is implicit. Example 2.3 A pi-constrained partition of R+ has the

Definition: ziggurat decision rule Let {rj}O 1 be following structure:
a partition of R . The ziggurat decision rule 6 over {} {0,Xl,X2,... xn-1,Xn,pn(Xn),Pn-1(Tn-1),
o n t o 0 .is t h is : * - 1 2 ( 2 ) ,P ( X ) ,o 0 }

i if Xi z < xi+,, i= 0,...,n Furthermore, xi E.4iE
(z) - i if X ,+ i ! z < X n . , 0 "n E xam ple 2.4 Let n = 2. D efine x , X2, X3, X4:

i0 := 0.617, X2 := 1.912, :% := 4.536, X4 := 11.209.
Example 2.2 Let n = 2. Define 6: Note that xi E 4i and Z2 E 42:

0 if 0<z<x, 1 . < X, < + 1,/5 = 1.618
u if Xj <<1 Z < X2 2 2 =2

2u if X2 Z < X3 a < X2 < "+ 1V5 = 2.618
u if X3 z < X4 Verify that X3 = /12(z2) and X4 = pl(x). There-
0 if X4 < z fore. {0,X,02,z3,X4,o} is a pi-constrained partition

-6(-z) if z < 0 of .

Then 6 is the ziggurat decision rule over the partition Remark Let {x}'0 be a pi-constrained partition of
{0, x1, x2, x3, X4 , oo} onto 02. R+. The ziggurat rule over {xi} steps between i - 1 and

i at xi and between i and i - 1 at pi(xi), i E In.
Remark The ziggurat rule over { steps be-C(i, 1), where i is an integer.
tween i-l and i at xi and between i and i-1 at 2f+1.., The m func tion stii th id we i
i E In r .  The function pi satisfies the identity

Remark 'he term ziggurat loosely describes the shape fz(i( )i + e) fz(xli + e) Vx E.
of the rule over R+ A ziggurat is a terraced pyramid. fz(i (z)Ii - e - 1) fz(xli - e -

This is the functional definition of pi. Bayes analysis
2This definition differs from the set-theoretic definition of motivates this definition. The algebraic definition of pi

some contexts, is derived from the functional definition.
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Main Result Remark In proposition 1, the restriction to a pi-
Proposition 1 shows that to any ziggurat decision rule 6 constrained partition of R+ and the conditions on the

over a pi-constrained partition of R+, there corresponds probability function are necessary for the decision rule
a positive probability function r on E, such that 6 is to minimize the posterior expected loss.
Bayes against r.} 2.5 Risk Function

Proposition 1 Assume F - C(O, 1). Let {ie be Proposition 2 gives the risk function of a ziggurat deci-
a pi-constrained partition of R+. Let 7r be the even, pos. sion rule over a pi-constrained partition of IT
itive probability function on en such that for all I Proposition 2 Let {a,}2nEl be a p-constrained par-

r(l - 1)- p(l) r(l), tition ofR+, and let 6 be the ziggurat decision rule over

The ziggurat decision rule over {xi} onto (, is Bayes {x} onto (n.

against r. R(0,6) = 2ho(x1 )
Example 2.5 Let n = 2. Let {xi}o be the ui- R(.ni,6) = g-()+hi(Z+l), iEZj -

constrained partition of S+ given in example 2.4:

{xj} = {C .617, 1.912, 4.536,11.209, oo} R(ln, 6) = gn(xn)

Let 6 be the ziggurat decision rule over {x} onto ( 2: Example 2.8 Let n = 3. Let {i}07 be a pi-constrained

0 if 0 < z < 0.616 partition of R+, and let 6 be the ziggurat decision rule
S if 0 < z < 1.912 over {zi} onto ( 3.1 if 0.616< z < 1.912

6(z) = 2 if 1.912 < z < 4.536 R(0,6) = 2ho(xi)1 if 4.536 z <11.209 R(±u,b) = gi(zl)+h(X2 )0 if 11.209 < z R(±2u, 6) = g2(X2 ) + h2(x3)-6(-z) if z < 0
Then 6 is Bayes against some positive probability func- R(=3u, 6) = g3(zS) 0
tion on E2. [] 2.6 Ziggurat-Equalizer Equations
Example 2.6 Consider example 2.5. The conditions Equating the expressions R(O,6) over 0 E EN to find
of proposition 1 for a probability function 7r on 0 2 are a ziggurat equalizer rule leads to the ziggurat-equalizer
these: equations. These are n equations in n unknowns yi,.

7(0) = p(l) 7r(1) yn. For n = 1, the ziggurat-equalizer equation is

fz(x Il) f (0.617 - 1) 1.204 2ho(yi) = gi(yi).
fz(xlO) - 1(0.617) -

7r(1) = p(2) 7r(2) For n > 2, the ziggurat-equalizer equations are

( fz(X2 2 ) f(1.912 - 2) - 1818 2ho(yi) = g(y) + hj(yj+ 1) = g.(yn), I E I4.

fz(21 1) - 1(1.912 - 1) Example 2.9 The ziggurat-equalizer equations for n =
Also, ir(-1) = r(1) and 7r(-2) = 7r(2). Hence: 2 are these:

Zlr(0) = lr(0) (1 + -hi+ p(1)P(2) 2ho(yi) = gj(yj) + hj(Y2 ) = 92(Y2)-
0 = 3.575r(O) The ziggurat-equalizer equations for n = 3 are these:

Thus ir assigns these probabilities: 2h 0(yi) = gi(yi) + hi(y 2 ) = g2(Y2) + h 2(y3) = g3(Y3). [

ir(0) = 0.280 Proposition 3 states that the ziggurat-equalizer equa-
7r(==) = 0.232 tions have a unique solution yl, ... , y, that has certain

= 0.128 properties. Proposition 4 uses this solution to construct
r(2) =0.an equalizer rule.

Therefore, the ziggurat decision rule over {xd}5 onto 02 Proposition 3 Assume F - C(0, 1). The ziggurat-
is Bayes against the probability function 7r on 02. [] equalizer equations have unique, increasing solution yi,
Example 2.7 The probability function r of proposi- ... , y,. with Y., E t. Furthermore yt - Y1_1 > 1 for
tion 1 is given by the following equations: For all I E I, l E 12n.

(1 I fz(xklk) )- Example 2.10 Let F - C(0, 1). The ziggurat-equalizer
Ir(U-1) = 'r(0), equations for n = 3 and u = 1 have the following solu-tj z~~kl ) tion:

where yj = 0.570743
Y2 = 1.731856

-3 
= 2.979961

7r(0)= f1+2Z h 1 (-k1) 0 0 Here, yi E (0.5,0.5+vi), y2 E (1.5, 1.5+vi), and y3 E
= I =] J(2.5,2.5 + vl). Also Y2 - Y1 > 1 and y3 - y2 > 1.0
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2.7 Equalizer Rule Also, define zo 0 and X2n+1 oo. Suppose that

Proposition 4 gives a ziggurat equalizer rule. {z} 2n+  is a partition of R+ and let 6" be the ziggurat
decision rule over {xi} onto en.

Proposition 4 Assume F - C(0,1). Let yl, Yn Let lr* be the positive probability function on en de-
with Yj E 4i satisfy the ziggurat-equalizer equations. For fined by the following conditions: For i E IT,
i E I, define )I

xi := yi and X2n+l-i := Pi(Yi). 7r(-i) - p(k) 7r*(0),
¢ 2n -k=

Also, define xo := 0 and X2n+1 := 00. If {Xdo is \
a partition of R+, then the ziggurat decision rule 6 over where
{xi) onto On is an equalizer rule. Furthermore, if {i}
is a partition of R+, then the common risk of 6 is R6=
gn(zn) and F(- ) < R6 < 2F(- ). 7r*(0) = 1 + 2 P(k)

Example 2.11 Let n = 3. The solution yl, 12, y3 to the =1
ziggurat-equalizer equations specified by the proposition Then 6* and 7r have the following properties:
is

y, = 0.571, y2 = 1.732, y3 = 2.980. 1. 6* is Bayes against ir*

Let xi := Y1, X2 := Y2, and Z3 := y3. Also, define X4, 2. 6* is an equalizer rule.
x5, and X6 as follows: 3. 6* is minimax.

X4 13(zX3) = 5.104 4. 6* is admissible.
X5 p2(X2) = 6.891 5. ir is least favorable.
6 : p1(xi) = 18.170 Example 2.13 Refer to example 2.11: The ziggurat de-

Note that {fx} is a partition of 9+: cision rule over {xi} onto 0 3 is an admissible minimax
rule. 13

{i} = {0,0.571,1.732,2.980,5.104,6.891,18.170,oo}. Example 2.14 Refer to examples 2.5 and 2.6: Verify

Thus, the ziggurat decision rule over {x} onto E)3 is an that yj := 0.617 and Y2 1.912 satisfy the ziggurat-
equalizer. Its risk is R 6 = g3(X3): equalizer equations for n = 2, and note that {xi} is a

pi-constrained constrained partition of . Thus 6 is
g3(X3) = F(x3 - 3) + F(3 - P3(X3)) minimax and r is least favorable. 13

= F(X3 - 3) + F(3 - X4) Corollary 2 In theorem 1, define

= 0.635

Here, 0.352 = F(- ) < R6 < 2F(- ). e n :=)
2 2 Then

Example 2.12 Refer to example 2.5: Verify that Yi :=
0.617 and Y2 := 1.912 satisfy the ziggurat-equalizer equa- -_rN Y
tions for n = 2. Thus, since {xi} is a pi-constrained F(- ) < R6. < 1 - 1 + 2r 1 -) -

constrained partition of V, the ziggurat rule over {x} - 1-

is an equalizer rule. 0 Remark The upper bound of this corollary is better
than the upper bound 2F(- ) of proposition 4:

Remark Proposition 3 asserts that xi, ... , Xn exist 2
and that xi > zi-1, i E 12. There is no guarantee, how- N-l
ever, that {1)I}'o0 4 is a partition of R+; it is necessary 1-(1+2rl---N T2F(- u) as Nloc0
to verify that pi-i(xi-1) > pi(xi), i E 2n. If {x} is\ r

a partition of R+, then it is a pi-constrained partition
by construction. Numerical computations suggest that 3 Uncertain Noise Distribution
{xi) is in fact a partition of R+, but there is no proof of This section constructs a minimax rule for the
this conjecture. location parameter in a robust-estimation problem

2.8 Minimax Rule (01 x {o, 92}, E 1, Lo, Z) in which the uncertainty class
is {(Co'2), K(0,o)v . The largcr scale a2 is large

Theorem 1 combines the conclusions of this chapter to enough that the problem does not reduce to standard-
find an admissible minimax estimator of the location pa- estimation. Examples 3.1 and 3.2 give minimax rules
rameter 0 for a decision problem (Gn,On, Lo, Z) in which for specific values of the scales. Example 3.3 considers
Z has a Cauchy distribution, a similar problem in which the scale set has more than

Theorem 1 Assume F - C(O, 1). Let yl, ... , y, with two points. The minimax rules of these examples are not

Yi E i satisfy the ziggurat-equalizer equations. For i E monotonic even though the nominal distribution has a

I", define monotone likelihood ratio in its location parameter. Ex-
amples 3.4 - 3.7 discuss the analysis underlying these

xi := yi and X2n+l-i := pi(Y1). results.

878



6(z)
1

0l X2  X3

Figure 3: A minimax rule for (01 x {0.,0 2 }, 01, Lo, Z) (z > 0)

Example 3.1 Let 0., := 1 and 0"2 := 2.5. Define the this:

decision rule 6 as follows: ir*(0,o") := 0

x, 1.09833 Vr*(0, 02) : 0.43414873

X2 := 2.59355 r*(±1, a1) := 0.09183446
X3 3.095 7r*(± 1,02) :- 0.19109118

0 if 0 < <XI The risk function is this:

1 if X1 Z < ZX R((0, a1),6") = 0.271514

b*() 0 ifz2) <0.3 (1
1 if X3 z R((0," 2),6*) = R(('1,"1),b6) = R((-l,"2),6*)

-Z*(-z) if z < 0. = 0.550656

(See figure 3.) This rule is a minimax rule for In this example, too, the risk for the parameter (0, o"1)
(E1 x {ji, a2}, 91, Lo, Z). is less than the equalized risk for the other parameters,

Let ir* be the following probability function on E1 x and the probability mass for (0, . 1) is zero. 03
{f.,0 2 }: Example 3.3 This example extends example 3.2 by al-

lr*(O,c.) := 0 lowing the scale set to have more than two points.
ir*(0,02) 0.40587187 Define ao = 0.9073846. Let E be a scale set that

7r*(-1) 0.048166 includes a,, 02, and any finite number of points between
"o and a,. Then 6 is robust minimax for the decision

r*(-±-1,a2) := 0.24890241 problem (O1 xE, E1, L0 , Z). The probability function of

Then 6* is a Bayes rule against 7rT and 7r* is a least- example 3.2 is extended as follows: If a. a l" or a" # "2,
favorable probability function. then wr*(0, a) := 0 for all 0. Here, too, 6* is Bayes against

The rule 6 is almost an equalizer rule over E1 x ir, and 7r* is least favorable. 0
{a1, a2 }: Example 3.4 In the standard-estimation problems

R((0, al), 6*) = 0.26453 of [McKendall, 1990a], the likelihood ratio of the sam-

R((0, o"2), P) = R((±1, a,), 6*) = R((±1,02),6*) pling density fz('lO) is important to Bayes analysis. If
Z has a monotone likelihood ratio, for example, the cor-

- 0.576597 responding Bayes rule is monotonic. Alternatively, if Z
The risk for the parameter (0, a'1) is less than the equal- has a Cauchy distribution, the non-monotonic shape of a
ized risk for the other pairs, and the probability mass for Bayes rule mimics the non-monotonic shape of a Cauchy
(0, al) is zero. 0 likelihood ratio. In this robust-estimation problem, how-

ever, it is the likelihood ratio of the marginal deisity of
Example 3.2 Let or, := 1 and 172 := 2. The corre- Z given 0 under the least-favorable distribution 7r*, de-
sponding points x1, z2, X3 are these: noted 6z(.1O), that is important to Bayes analysis:

xi := 1.09504 flZ(ZIO) fz(z(0,))r(,o), z E R
X2 : 2.93635
X3 : 3.20822 Figure 4 plots a likelihood ratio of /z(.[0) for the robust-

Define 6* by definition (1). Then 6* is minimax. The estimation problem of example 3.1. The non-monotonic
corresponding least-favorable probability function 7* is shape of 6 mimics the shape of this ratio. 0
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Figure 4: A likelihood ratio of 13z(.10)

Example 3.5 The probability function r* of exam- Example 3.7 This example lists the risk function of a
ple 3.1 or 3.2 satisfies the following linear system of equa- decision rule 6 of definition (1).
tions: t Z(Xii) = 0Z (a,10), i =1,2,3 R((0,o),6*) = -2F(xi/a)+2F(X2 /a)

+ 2F(-X3/u)
XI Zr"(O,00) = 1 R((1,o),6*) = F((xi - 1)/u) - F((x 2 - 1)/u)

s + F((--3- 1)/0 °)

Define YO, Yi, Y2, and y3: R((-1,0o),6") = R((1,00),6*)

Yo := 7r*(0, 01) References
y : 7r* (0, 0 2) [Martin, 1987] K.E. Martin. Randomized Robust Confi-

Y2 7r*(1, 0,) dence Procedures. PhD thesis, Department of Sys-
Y3 : r*(2, o-2) tens Engineering, University of Pennsylvania, De-

cember 1987.
The equations are these (i = 1, 2,3): [Martin and Mintz, 1984] K.E. Martin and M. Mintz.

Xf.;. 1 f x) Randomized robust confidence procedures. In Pro-
f (Z--) YO+-_f (=-. )y Yceedings of the Twenty-Second Annual Allerton

oul 0 1 0 2 0 2  Conference on Communication, Control, and Com-
1 xI - 1 1 Xi - 1 puting, pages 309-317, University of Illinois, Octo-
- f(-T--) Y2 -0 (- 7 ) 3= ber 1984.

yo + yj + 2 y2 + 2y3 = 1 [McKendall, 1990a] R. McKendall. Minimax Estima-
tion of a Discrete Location Parameter for a Con-

When x1 , X2, and X3 are known, these are four equations tinuous Distribution. PhD dissertation. GRASP
in four variables. Lab technical report MIS-CS-90-28, Department of

These constraints on the probability function are anal- Computer and Information Science, University of
ogous to those of proposition 1. 0 Pennsylvania, May 1990.

Example 3.6 The results of examples 3.1, and 3.2 are [McKendall, 1990b] R. McKendall. Statistical decision
computed from the following nonlinear system of equa- theory for sensor fusion. In these Proceedings, Oc-
tions with the assumption that 7r*(0, o1) = 0 (or yo = 0): tober 1990.

yj + 2y2 + 2 y/ = 1 [Zeytinoglu and Mintz, 1984] M. Zeytinoglu and M.
91(Xil) = 2 / = 1 ,2,3 Mintz. Optimal fixed sized confidence procedures
1z(xiRl) = f az(iO), j = 1,2,3 for a restricted parameter space. The Annals of
R((1,u),6") = R(0,u 2 ),6"), j = 1,2 Statistics, 12(3):945-957, September 1984.

These are six equations in the six unknowns xi, x2, X3, [Zeytinoglu and Mintz, 1988] M. Zeytinoglu and M.
Y1, Y2, Y3. It must be verified for any solution that Mintz. Robust optimal fixed sized confidence proce-
Xi < X2 < x3 , that yg, y2, and Y3 are non-negative, dures for a restricted parameter space. The Annals
that 6" is Bayes against 7r and that R((0,o-),6*) < of Statistics, 16(3):1241-1253, September 1988.
R((0, 0 2),6). 0
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Abstract cameras which can be moved together in altitude (pitch)
and independently in azimuth (yaw). The head, arm and

In binocular systems, vergence is the process of cameras are connected to a pipelined image processor, a
adjusting the angle between the eyes (or cam- workstation and a set of large-scale parallel processors.
eras) so that both eyes are directed at the same A major goal of our research is the development of
world point. Its utility is most obvious for a real-time gaze control system. We believe that the
foveate systems such as the human visual sys- robot must be able to maintain fixation on w. rld points
tem, but it is a useful strategy for non-foveate or change fixation from one world point to another with
binocular robots as well. This paper discusses only minimal direction from high level "cognitive" facul-
the vergence problem and outlines a general ap- ties. To this end, we are developing quasi-reflexive gaze
proach to vergence control, consisting of a con- control mechanisms that maintain fixation on smoothly
trol loop driven by an algorithm that estimates moving targets while compensating for egomotion, and
the vergence error. As a case study, this ap- make saccadic movements to targets selected by higher
proach is used toverge the eyes of the Rochester level processes. We envision the gaze control mecha-
Robot in real time. Vergence error is estimated nisms forming a layered, modular control structure along
with the cepstral disparity filter. The demon- the lines described by Brooks [Brooks, 1986], although
stration system uses a PD controller in cascade we suspect that more sensor fusion may be required
with the error estimator. Empirical measure- than has been employed in systems of this type in the
ments of the performance of both the disparity past. The details of the control structure and module
estimator and the overall system are presented. interactions are a current research topic [Brown, 1989,

Coombs, 1989], but preliminary work has identified some
1 Introduction promising approaches to the various subproblems [Brown

ei al., 1988].
Recently a significant amount of work in computer vi- This paper describes the design, implementation and
sion has focused on the problems of acting, behaving performance of a module responsible for controlling the
systems, and in particular on how "active vision" dif- vergence angle of the cameras. The next section dis-
fers from analysis of static scenes or vision with fixed cusses vergence in the abstract, presenting reasons for
cameras [Bajcsy, 1986, Aloimonos et al., June 1987, verging and issues that any vergence control system must
Ballard, 1989]. In many cases, giving a vision system address. This discussion leads to a general strategy for
the ability to move around in its environment simplifies vergence control, described in Section 3. Sections 4, 5
many previously intractable problems. Since the sum- and 6 describe the application of this vergence control
mer of 1988 the Rochester vision group has been working strategy to the problem of controlling vergence on the
to develop an integrated facility for the study of vision, Rochester Robot, and present empirical results on the
Al and systems issues related to active vision. Briefly, performance of the error estimator and the overall ver-
the facility consists of an industrial robot arm bearing a gence system.
custom-built "head". The head has two CCD television

*This material is based on work supported by the U.S. 2 The Vergence Problem
Army Engineering Topographic Laboratories under research The vergence angle of a binocular system is the angle
contract no. DACA76-85-C-0001, by NSF research grants between the optic axes of its eyes or cameras. The ver-
nos. DCR-8602958 and IRI-8903582, by NIH Public Health
Service research grant no. I R01 NS22407-01, and by ONR gence angle, baseline (or inter-ocular distance) and gaze
research contract no. N00014-82-K-0193. In addition, this direction of a binocular system determine a particular
work was supported by the NSF under Institutional Infras- fixation point, as shown in figure 1. Narrowly speaking,
tructure grant CDA-8822724, and by a Dean's Research Ini- the function of the vergence system is to control the dis-
tiation grant from the School of Engineering and Applied tance from the cameras to the fixation point along some
Science of the University of Virginia. The government has specified gaze direction. In most cases the motivation
certain rights in this material, for vergence is to keep the fixation point near some tar-
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white and black blobs using the first few moments and
Hwq c intensity value of each object. The mechanical design

Put" of their head decouples the control of the gaze and ver-
gence angles. The gaze angle is controlled by rotating
the head about its neck, and the cameras are verged
symmetrically by a mechanical linkage. Vergence has re-

itonpoint . cently been used cooperatively with focus and stereopsis
for surface reconstruction [Abbott and Ahuja, 1988] and
active exploration of the environment (Krotkov, 1989].

rpnoe 0 It has demonstrated advantages in both robustness of
results and increased speed in stereoscopic processing.

2.2 Why Verge?
Vergence control is clearly necessary for systems whose
sensors have non-uniform resolution, such as the human
visual system. Vergence movements allow humans to

oaz., register objects of interest in the high-resolution central
regions of both eyes, so that the greatest possible amount
of information can be extracted. An argument can be
made that non-uniform resolution is ultimately neces-

Figure 1: The goal of vergence is to keep the eyes or sary in order to provide both high resolution and a wide
cameras fixed on a common world point or visual target, field of view (Tsotsos, 1987], but most current robot vi-
independent of changes in gaze angle and target distance. sion systems do not have foveas. However, vergence has
The result of fixating a target is that the object lies near many advantages even for systems without foveas.
the horopier, which is the set of world points whose dis- Mathematical Simplification: Fixating an object of
parity is zero. interest puts points on the object near the optic axis

in both eyes. In some cases this permits the use
of simplifying assumptions (e.g. replacing perspec-get object. Thus, the vergence problem can be defined as tive projection with orthography) that make analy-that of controlling the vergence angle to keep the fixation sis significantly easier (e.g. [Ballard and Ozcandarli,

depth appropriate for the current gaze target. Since the 19881).

target vergence angle is directly related to target depth,
any sensory cue to depth or depth changes may be useful Facilitating Stereo Fusion: By definition, the fixa-
to the vergence system. The most commonly used cues tion point has a stereoscopic disparity of zero, and
are disparity and focus error, but other depth cues (such points nearby tend to have small disparities. This
as motion, texture, shading, etc.) can also be used, as makes it possible to use stereo algorithms that ac-
can information about depth changes (measured or pre- cept only a limited range of disparities. Such sys-
dicted self motions, dilations or contractions of the visual tems can be very fast., and are amenable to hardware
field, and so on). implementation [Mead and Mahowald, 1988].

Vergence is one aspect of the larger problem of gaze Useful Coordinate Systems: As Ballard (1989] ar-
control, which involves control of the gaze angle and fo- gues, having a unique fixation point at the intersec-
cal depth as well. The larger problem can be broken tion of the visual axes defines a coordinate system
down functionally into the subproblems of gaze stabiliza- that is related as much to the object being observed
lion and gaze shift. Stabilization involves maintaining as it is to the observer. It is thus a step in the
fixation on a possibly moving visual target from a pos- direction of an object-centered coordinate system.
sibly moving gaze platform. Gaze shifts, usually called Disparity-based Segmentation: On the assumption
saccades, transfer fixation from one visual target to an- that gaze will normally be directed toward objects of
other. Vergence control must meet different demands in teat il may be dirte owar obetsinterest, it may be appropriate for binocular agents
each of these activities. During stabilization, a change to ignore features at large disparities. That is, dis-
in the target position relative to the observer produces a parity may be used to filter objects that are not cur-
smooth change in the desired vergence angle. A saccade rity of ilter ojects Figre nows
transfers the fixation point almost instantaneously from two examples of this sort of filtering.
one visual target to another, producing a step change in
the desired vergence angle. 3 A General Strategy for Vergence

2.1 Related Work Control
The recent surge of interest in active vision has produced At the most abstract level, any solution to the vergence
a growing body of literature on vergence and gaze con- problem will have three major components- a sensory
trol for robotic vision systems. Clark and Ferrier [1988] system that determines how the current vergence angle
built a gaze control system based on the model described differs from the ideal, a controller that generates a re-
in [Robinson, 1987]. The system acquires and tracks sponse to the errors, and a motor system that executes
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(a) (b) (c) (d)

Figure 2: Using disparity to filter a scene. Images (a) and (b) above show left and right camera views of a scene
containing objects at several disparities. Two simple filters can be used to pass more spatial detail in regions of
the scene that have smaller disparities. Image (c) is the result of "ANDING" the vertical edge images to suppress
edges that have non-zero disparity, leaving an edge image that is dominated by objects at the horopter. Image (d)
is produced by "ANDING" bandpass images (laplacian pyramids [Burt and Adelson, April 1983]) instead of edge
images, which has the effect of suppressing high frequency information associated with objects at high disparities.

the controller's commands. This section discusses gen- of control. The normal operating mode should be opti-
eral considerations in the design and use of these com- mized for the smooth, continuous changes expected dur-
ponents. ing pursuit and fixation. Saccadic movements should re-

place the smooth movements of the normal control loop
3.1 Motor System with open-loop moves at maximum speed to the new
The quality of the motor system or plant is determined desired vergence angle.
by how quickly and faithfully it translates control signals
into changes in vergence angle. Current generation CCD 3.3 Error Estimator
cameras and motor controllers make it relatively easy to In order to keep the eyes verged on a target, the vergence
move the cameras quickly. Care is required, however, to system must measure the current vergence error (and,
insure that the camera mounting is able to tolerate the perhaps, its derivatives.) The most important source of
stresses generated by rapid eye movements. The large this information is the visual system, but other sources
accelerations required for saccadic movements can cause may also be useful. We have already noted the pos-
"ringing", i.e. vibrations that persist after the motors sibility of predicting the error that will result from a
have come to a stop. Avoiding these problems involves saccade to a target of known depth. Vergence changes
mechanical engineering considerations that are beyond due to self motion can also be taken into account, ei-
the scope of this paper, so we will not discuss them fur- ther by making predictions based on planned, voluntary
ther. head movements, or by sensing head accelerations via

the vestibular system (as in the human vestibulo-ocular
3.2 Controller reflex.) However, vision is the only source of information
A critical parameter in the design of a vergence control for target motion, and visual cues also provide the ulti-
system is the nature of the input signal - how the tar- mate measure of vergence performance. The rest of this
get angle Ot changes with time. Our expectations are section, therefore, is restricted to consideration of visual
based on the known characteristics of human eye move- error estimators.
ments [Yarbus, 1967], and on the general view of gaze A number of different types of visual information are
control described in Section 2. That is, we expect eye available for estimating vergence error. One feature that
movements to consist of intervals of smooth pursuit or is correlated hith desired vergence angle under ordinary
fixation punctuated by discontinuous jumps (saccades). conditions is blur, which has been used cooperatively

The two types of expected changes in target angle dif- with vergence and stereo to construct depth maps [Ab-
fer in fundamental ways. During pursuit and fixation, bott and Ahuja, 1988, Krotkov, 1989]. Any depth cue
changes in target angle are determined by the dynam- can be used if the absolute vergence angle of the system
ics of observer and object motion. The input to the is knu t, btkuu de.bired vergence angle is a function of
control loop during pursuit and fixation will be smooth, target distance.
with finite second derivatives and small first derivatives. The most useful visual cue to vergence error, how-
During a saccade the input signal will behave quite dif- e~er, is binocular disparity. The mapping from dispar-
ferently. A saccade can produce a step change in the ity to vergence error is particularly simple, and (unlike
desired vergence angle, as well as a discontinuity in its monocular depth cues) does not require knowledge of the
temporal derivative. absolute vergence angle of the system. Reliable dispar-

The fact that there are two distinct t3 pes of changes ity estimates can be computed more easily and quickly
in desired vergence angle suggests a need for two modes than depth estimates, permitting shorter processing de-
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Figure 4: Mechanical design of the rochester robot head.

Figure 3: Hardware configuration used for vergence con-
trol experiments on the Rochester Robot. was used for estimating disparity. The EUCLID com-

puter is based on the ADSP-2100 digital signal proces-
sor, which is optimized for operations such as convolu-

lays and simpler control strategies. tion, finite impulse response filtering and Fast Fourier
The types of disparity estimators that have been used Transforms.

for estimating stereoscopic depth are poorly suited to
controlling vergence. For real-time vergence what is 5 Error Estimation
needed is a simple algorithm that estimates a single dis-
parity in a fixed amount of time. This narrows the field The vergence error estimator is based on disparity, since
to image processing methods such as various forms of (as argued in Section 3) disparity is the most direct
cross-correlation. and reliable measure of vergence error. One approach

to disparity estimation would have been to use the
4 Vergence on the Rochester Robot MaxVideoTMeonvolution/correlation hardware to com-

pare central patches of one image to the other image.
The general considerations discussed in the preceding However, previous attempts in our lab to use that ap-
sections formed the basis for the vergence system used on proach for tracking had encountered many difficulties.
the Rochester Robot. This section and the two that fol- Instead the disparity estimator, previously described
low describe the motor, sensory and control components in [Olson and Potter, 1989], is based on the cepstral fil-
of the system, and discuss its performance as measured ter [Yeshurun and Schwartz, 1989]. The cepstrum can
in the laboratory. be viewed as correlation with an adaptive pre-filter, and

We begin by summarizing those aspects of the is thus related to phase correlation [Kuglin and Hines,
Rochester Robot's cameras, motor system, and comput- 1975]. This section describes the basic operation and
ing resources that affected the design of the vergence performance of the cepstral disparity estimator.
system. A more detailed description of the robot and
laboratory resources is given in [Brown et al., 1988]. Fig- 5.1 Measuring Disparity with the Cepstral
ure 3 shows a block diagram of those parts of the system
that are involved in vergence control. The cepstrum of a signal is the Fourier transform of the

As illustrated in Figure 4, each of the robot's two cam- log of its power spectrum. It was developed by Bogert
eras is panned from side to side by its own motor. A et al. [Bogert et al., 1963] as a tool for analyzing signals
third motor serves to pitch the cameras up and down, containing echoes. Such signals can be modeled as an
i.e., to rotate them about their baseline. These three original signal S(t) convolved with a train of impulses,
motors can generate saccades with peak speeds of more i.e.,
than 400 degrees per second. Reduction gearing gives the R(t) = S(t) * (6(t) + ao6(t - to) + a16(t - t) +...)
cameras theoretical angular resolutions of 1/278 degree
in yaw and 1/2500 degree in pitch. Gear lash reduces where * denotes convolution. Taking the log of the power
the resolution to an unknown degree, but camera posi- spectrum transforms the received signal into a sum of
tioning is still accurate to substantially better than the two terms, one of which depends only on S(t) and the
angle subtended by one pixel with the 16mm lenses that other of which is a combination of distorted sinusoids
are normally used. with frequencies related to to, tj, etc. If the cepstrum of

The host computer for the robot coniiiands the mu- S(1) duc: ut uvvilp t1 frequencics of thc ccho terms,
tors via intelligent stepping motor controllers that al- conventional linear filtering techniques can be used to
low the control program to issue commands in terms of extract the values of the echo delays.
absolute position, relative position, velocity or velocity Recently Yeshurun and Schwartz [Yeshurun and
profile. The ability to issue buffered velocity commands Schwartz, 1989] developed a way of using the two-
enables the control program to generate smooth move- dimensional cepstrum as a disparity estimator. Sample
ments without paying constant attention to the motors. windows of size h x w are extracted from each image

The EUCLID digital signal processing microcomputer and spliced together along one edge to produce an im-
included in the MaxVideoT image processing system age of size h x 2w. Assuming that the right and left
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quate for some purposes, its accuracy is limited to about

4-±15 minutes of arc by the coarse quantization of the sam-
'.'pie windows. The current implementation obtains sub-

pixel resolution by first finding the peak pixel value in
i'l the cepstral output region and then interpolating to bet-

. ter localize the disparity peak. The interpolated value
is a weighted centroid of the peak pixel and its left and
right neighbors, the weights being chosen adaptively to

, , ,, discount the contribution of the neighbors when their
values are comparable to background noise.

5.3 Performance of the cepstral disparity
estimator

The implementation of the cepstral estimator described
above was tested in the laboratory on several scenes. For
each test, the robot was directed to face the scene and
the cameras were manually adjusted to the correct ver-
gence angle for the scene. Taking that angle as the home
or zero-disparity position, the test program then swept

Figure 5: Cepstral disparity estimator sample input and the cameras over a range of vergence angles. At each
outputs. At top are two 32 x 32 subsampled images position it recorded the actual disparity (represented by
taken by the left and right cameras of the Rochester the difference between the commanded position and the
Robot. Below is a surface plot of the power spectrum of home positio ., and the disparity reported by the cep-
the cepstral filter implementation. The small peaks at stral estimator running on the EUCLID DSP computer.
left front and right rear give the disparity. Figure 6 shows results from a typical laboratory scene.

The estimator fails badly at one end of its range because
at that point the target object is no longer visible in both

images differ only by a shift, the spliced image may be sample windows. Within a -7 degree range, however,
thought of as an original image at (0, 0) plus an echo at performance is good. The RMS error over that range is
(w+dh, d), where dh and d, are the horizontal and ver- 1.31 image pixels (4.44 arc minutes). Most of this er-
tical disparities. The periodic term in the cepstrum of ror is due to a problem with the empirically determined
such a signal will have fundamental frequencies of w + 4h constant multiplier used to convert disparity in pixels
horizontally and d, vertically. These are high frequencies to 4isparity in degrees. Because the axes of rotation of
relative to the window size. The image-dependent term, the cameras do not pass through their nodal points, the
by contrast, will be composed of much lower frequen- nodal points undergo some translation when the cameras
cies, barring pathological images. Thus the cepstrum rotate. This means that the conversion constant has a
of the signal will usually have clear, isolated peaks at small dependence on the depth of the target. The tar-
(-(w + dh), ±d,). get used in this example is not at the optimal distance

for the constant being used, leading to a small system-
5.2 Implementation atic error in disparity estimates. This systematic error
In order to obtain an acceptable temporal sampling could be removed by taking target depth (inferred from
rate, the cepstral error estimate is computed using the current eye position and approximate disparity) into ac-
MaxVideo image processing system. The images are count when converting from pixels to degrees. This has
formed by the robot's CCD cameras, which are synchro- not been necessary to date, because small errors at large
nized so that right and left images reflect the state of disparities have a negligible effect on the performance
the world at the same point in time and become avail- of the control loop. High accuracy is important only at
able simultaneously. The video signals are digitized and disparities near zero, where errors or discontinuities can
convolved with anti-aliasing filers (Gaussian, a = 2.5 cause the target angle to overshoot or oscillate around
pixels) before being stored in fiame buffer memory. The the desired value.
EUCLID DSP microprocessor then extracts 32 x 32 sam- The limiting performance of the cepstral e6timator can
pie windows from the central 256 g256 regions of each im be deteriied by Lunparilg the measured disparity val-
age, and computes the cepstral disparity estimate. The ues to a best-fit straight line. For the data set shown
final implementation computes the cepstral disparity es- here, this yields an RMS error of 0.64 pixels (2.24 arc
timate for 32 x 32 windows in approximately 51 millisec- minutes). In other words, the estimate is potentially ac-
onds, not including digitization time or the 8 ms required curate to two thirds the width of an image pixel. This
to acquire the VME bus and read the sample arrays from is quite good, particularly in view of the fact that the
the frame buffer. Figure 5 shows a sample input and a cepstral implementation subsamples by a factor of eight.
plot of the cepstral output. Relative to its sample window resolution, the cepstral

Although the implementation described above is ade- RMS error is on the order of one twelfth of a pixel.

885



.........

.. M1 
...

g % -e -------- ---------

% Cn

The goal of the vergence system is to generate smooth 21[ -'

eye movements that correct the vergence error. The ver- "oI ... . .. .

gence control loop consists of three stages: digitization, 21\Z (d"pa

error estimation, and error correction. Digitization is1
done under control of the SunTMhost and takes between I_ _ _ _ _ _ _ _

one and two RS-170 frame times. Once the images are 4 1 2

available in the frame store, the Sun signals EUCLID .a
to extract the images from the frame buffers and esti- ,,. ,.i. ,x..,mate the disparity. This process takes approximately 59
milliseconds, after which EUCLID places the disparity

estimate in a known location in shared memory and is- Figure 7: Response to a step in disparity: The conver-sues an interrupt to signal completion. The Sun converts gence angle is drawn solid, and the disparity estimate is

the pixel disparity to angular coordinates by multiplying plotted in circles. Rise time is the earliest time the re-
it by an empirically determined constant, and executes sponse reaches 90%£ of its final (steady-state) value, andthe control law to issue the appropriate velocity cor- settling time is the earliest time the response stays within
mand to the eye motors. The loop consistently takes 3 5% of its final value. Note that the sample interval is 0.1
frame times to complete. Thus, the system achieves a seconds.

servo rate of 10 Hz.
6.1 The Controller camera angle traces of step and sinusoidal responses are
The vergence system uses a proportional-derivative (PD) shown in Figures 7 and 8. Figure 9 summarizes the sys-
controller (e.g., see [Dorf, 1980]) in cascade with the eye ter's response to sinusoidal stimuli of frequencies up to 2
motor in a feedback loop. (Although the target and ac- Hz. For ease of measurement, the system was not run in

tual vergence angle are continuous variables, since the the normal mode of compensating for half the error withentire system under our control is digital or presents digi- each camera, but rather one camera alone was moved to
tal interfaces we model the system discretely.) The sum- correct the entire error and the angle of this camera was
mation node that produces the error signal represents recorded.
the process of estimating vergence angle error from the The step stimulus was produced by manually miscon-
disparity of binocular images acquired from the cm- verg in the Rings camera prior to starting the sys-
eras. The controller gains were chosen empirically to tern. The same effect could be achieved by misconverging
obtain slightly suderdamped response, resulting i.l a the camera in the dark and then switching on the lights
small overshoot in the step response. The system con- suddenly at time 0. In the response (Figure 7), observe
tros the velocities of the motors to achieve s scoth re- the single time step (0.1 second) latency in detecting the
sponses to smoothly varying stimuli, controlling the ac- disparity. As a consequence of this delay, the estimated
celerations explicitly would rcquire more computational disparity is seen to lag behind the camera's convergence
expense and constant attention of the Sun host. angle, even though this disparity estimate provides the

error signal that drives the vergence system. The srnall
6.2 Performance overshoot results from slight underdamping.

The demonstration system's responses to step and sinu- Analogous to the step stimulus, the sinusoidal stim-
soidal stimuli were measured in the lab. Representative uli were generated by rotating the non-verging camera
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Figure 8: Response to sinusoidal disparity stimulus: The
target convergence angle is shown dotted and the mea-
sured response is drawn solid. The midline of the target L9 • . : . .

signal is shown dotted for reference. The disparity esti- (1..03S ....... .--..

m ate is plotted in circles. .180 .......... . . ... ....... ......
.22 ........ ......... ... ......... .............. ..... ..

116 I/ 1 /4 1 1 2
sinusoidally. If the verging camera is held still, this gen- Fn7 ,)
erates a sinusoidally oscillating disparity signal. Thus,
the target vergence angle was defined by the angle of the
non-verging (stimulating) camera. The system's reponse
to a 0.1 Hz stimulus is plotted in Figure 8. Figure 9: Bode plot: The gain (dB) and phase shift

The vergence responses to sinusoidal stimuli were mea- (degrees) of the vergence responses are shown for si-
sured for frequencies ranging from 0.05 to 2 Hz. The gain nusoidal stimuli of frequencies ranging from 0.05 to 2
and the phase shift of the system's responses are summa- Hz. Gain (dB) = 20 * rSmus amplitude) and
rized in the Bode plot of Figure 9. The system's behavior the phase shift is the difference in the phase angle of the

suggests that it may be a second order system. However,
the constant time delay seems to produce a linear phase two signals.
shift, since a constant time delay contributes proportion-
ately more to phase shift at higher frequencies. controls are primitive, what cues serve them best, and

how do visually-mediated controls interact? Interac-
7 Conclusion tion of controls can be simple (say by preemption), or
We have argued that vergence is important for active vi- more complex (with controls aware of and cooperat-
sion systems, and have discussed general issues in the de- ing with the actions of other controls [Brown, 1989,
sign of vergence control systems. We have also described Coombs, 1989]). The former approach requires breaking
in detail the application of these ideas to develop a real- down the controls into either orthogonal, non-interacting
time vergence control system for the Rochester Robot. primitives or being content to have one control acting at

The error estimator for the vergence system is a vari- a time. The latter approach requires more sophisticated
ant of the cepstral disparity estimator of Yeshurun and modeling of the effects of interaction.
Schwartz [1989]. The estimator has been shown to be ca- Another area for future exploration concerns the useSchartz [9] Thmark e ea ory, ih bensht b e ca-n of camera systems that offer vergence and fixation as re-
pable of remarkable accuracy, in the best case achieving liable primitives. One obvious application is the supportan RMS error of a small fraction of a pixel. It is simple of stereo systems with limited fusional ranges [Olson,

enough that with a small investment in special hardware 1990]. More generally, systems that fixate must choose
it can be computed at speeds comparable to the video
frame rate. The cepstral method of disparity estima- appropriate targets for the task they are performing.
tior can be shown to be equivalent to autocorrelation of Thus gaze control at the highest level can be viewed as a
iona e hown hav be adapivlenhae to r pe n o resource management problem, in which limited sensoryimages that have been adaptively enhanced to sharpen and computing hardware must be allocated so as to max-
their autocorrelation functions. It is thus closely related imize the usefulness of the recovered information [Rimey
to phase correlation. and Brown, 1990).

The demonstration system uses a position controller
that generates smooth vcrgence camera movements in Acknowledgments
response to smooth changes in the desired vergence an-
gle. This system also responds reasonably (but subopti- Robert Potter wrote an early version of the vergence
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Vergence responses have yet to be integrated with pertise in biological eye movement systems and control
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Sequential Decision Making for Active Perception

Thomas Dean* Theodore Camus Jak Kirman
Department of Computer Science

Brown University, Box 1910, Providence, RI 02912

Abstract alternative sequences of actions in terms of their pre-
There are many perceptual tasks in robotics that can dicted consequences so as to choose among them.
be facilitated by planning sequences of perceptual ac- In this paper, we provide a probabilistic approach to
tions. We present an approach to sequential decision sequential decision making for active perceptual tasks.
making well suited to handling the sort of planning re- Our approach relies on an existing model for reason-
quired to direct movement for active perceptual tasks ing about time and action [Dean and Kanazawa, 1989,
such as object recognition or target tracking. The ap- Kanazawa and Dean, 19891. The model for time and
proach is based on Bayesian decision theory, and relies action is a special case of Pearl's [1988] Bayes networks
on encoding the underlying sequential decision prob- and Howard and Matheson's [1984] influence diagrams.
lem in terms of a compact network model (the so-called We evaluate our model using a variant of an algorithm
Bayes network or influence diagram model) for which due to Lauritzen and Spiegelhalter [1988].
the evaluation problem is well understood. We illus- Planning and its associated temporal reasoning re-
trate our approach using a specific problem, involving quirements provide ample opportunities for combinato-
a mobile robot tracking a moving target and continu- rial explosion [Chapman, 1987, Dean and Boddy, 1988].
ously reporting on the target's position with respect to To be of practical use, a planning solution must con-
a global map. trol the potential for combinatorial explosion through

the use of carefully designed representations. By con-
Introduction structing our decision model in terms of the agent's

Recently, researchers have become interested in percep- perceptual capabilities and not in terms of some ex-tual tasks that allow an aent to actively select a set of isting abstraction that bears little resemblance to how
sensors and sensor views :Bajcsy, 1988, Ballard, 1989]. the agent perceives its world, we are able to keep the
Cenrand robles thats arcillpsed or8, c allyrd, 1989 combinatorics to a manageable level.
Certain problems that are ill posed or computationally As a methodological aside, problems of the sort thatdifficult given a single data set are well posed and com- arise in active perception provide an excellent oppor-
putationally straightforward given an opportunity to tunity for planning researchers to test current methodsselect multiple data sets [Aloimonos et a!., 1987]. In tuiyfrpangreachstoetcretmtod

and explore new ones. In general, robotics applications
this paper, we are concerned with the decision making impose interesting constraints involving time pressure
required for guiding this selection process. and uncertainty, and they force researchers to be more

A simple image understanding problem might require careful in terms of representational commitments. Ac-
an agent to select from among several possible views, tive perception requires that we address the problem
taking into account the cost of obtaining those views of extracting and interpreting sensor data to supportand the benefits to be gained from the resulting in- whatever representatronal commitments we have made.formation in terms of the agent's ability to discrimi- In the next section, we consider a particular applica-
nate among a set of models in a library of such models
[Hager, 1988]. In more complicated problems, it may tion for active perception that will be used to illustrate
be useful for an agent to consider scquenccs of actions. our approach to sequential decision making.
Planning is the process of generating and evaluating Mobile Target Localization

'This work was supported in part by a National Sci-
ence Foundation Presidential Young Investigator Award The application that we have chosen to demonstrate our
IRI-8957601 with matching funds from IBM, and by the approach involves a mobile robot navigating and track-
Advanced Research Projects Agency of the Department of ing moving targets in a cluttered environment. The
Defense and was monitored by the Air Force Office of Sci- robot is provided with sonar and rudimentary vision.
entific Research under Contract No. F49620-88.C-0132. The moving target could be a person or another mobile
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one another. A particular localization strategy may re-
B duce position errors while making tracking impossible,

or improve tracking while losing registration with the
global map. The robot shown in Figure 1 should move
more toward the obstacle marked B than toward the
obstacle marked A in order to anticipate the target be-
ing occluded by A, despite the fact that moving toward
A would probably improve localization. The trick is
to balance the demands of localization against the de-
mands of tracking.

0" Z Planning and Perception
A IFor the mobile target localization (MTL) problem de-

scribed above, we assume two basic sensory capabilities:
sonar for rudimentary feature extraction and depth esti-
mation, and vision for optical flow calculation to detect
and track moving objects.

The independently controlled sonar arrays-each
array consisting of a pair of Polaroid ultrasonic

Figure 1: Tracking in a cluttered environment transducers-are aligned with flat surfaces to obtain
accurate estimates of the robot's distance from such
surfaces. Alignment is achieved by using feedback to

robot. The mobile base consists of a holonomic (turn- minimize the difference between the readings from two
in-place) synchro-drive robot equipped with a CCD sonars in a given array. This simple method allows us to
camera mounted on a pan-and-tilt head, and two sonar deal with the sort of specular surfaces commonly found
arrays, each of which is mounted on a separate rotat- in office environments. Flat walls, convex and concave
ing platform. The two sonar arrays and the camera corners, and other geometric features can be detected
are independently controlled, with a separate process and distinguished reliably by continuously tracking the
responsible for each of the motor controllers (one for sonar signals returned from these features [Leonard
each rotating platform and one for the two motors driv- and Durrant-Whyte, 19891. The methods are accu-
ing the pan-and-tilt head). rate enough to reliably detect doorframes around closed

The robot's task is to detect and track moving ob- doors. Speed in sequencing the transducers and inter-
jects, reporting their location in the coordinate system preting the results is still a major problem in making
of a global map. Initially, the robot systematically ex- these techniques practical.
plores its surroundings scanning for moving objects. The primary sensory capability used for tracking will
Once it detects such an object, it is required to track be optical flow, the point-wise description of motion in
the object and report on its location. The environment a 3-D world as projected in a 2-D image. We assume
consists of one floor of an office building. The robot is that we are concerned with rigid objects, and that in
supplied with a floor plan of the office showing the po- general the motion of one point in an image is the same
sition of permanent walls and major pieces of furniture as that of adjacent points in the image, excepting dis-
such as desks and tables. Smaller pieces of furniture, continuities such as edges. A recent parallel optical-flow
potted plants and other assorted clutter constitute ob- algorithm implements this assumption by tracking the
stacles that the robot has to detect and avoid, motion of a template window of pixels centered at the

We assume that there is error in the robot's move- pixel in question, rather than the single pixel alone, for
ment requiring it to continually estimate its posi- every pixel in the image [Bfilthoff et al., 1989]. The
tion with respect to the floor plan so as not to be- motion of this template window is determi-o.d hy the
come lost. Position estimation (localization) is per- best match between its original position in the first irn-
formed by having the robot track beacons correspond- age and all possible positions of the pixel in the second
ing to walls and corners and then use these beacons image, typically limited to a maximum displacement
to reduce error in its position estimate. By keep- of plus or minus some small number of pixels. The
ing track of several beacons and ensuring that the best match is taken to be the displacement whose un-
set of beacons at one point in time overlaps signifi- weighted sum of the absolute differences of the intensity
cantly with those at nearby points in time, the robot values between the corresponding pixels in the respec-
can essentially "triangulate" itself through the world tive templates is a minimum. This best match repre-
with very little accumulated error [Levitt et al., 1987, sents the optical flow of the given pixel, and is repeated
Leonard and Durrant-Whyte, 19891. for each point to yield the optical-flow field. Despite

Localization and tracking are frequently at odds with robust performance on natural images, this algorithm
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is unsuitable for practical real-time operation due to its
extensive hardware requirements, such as a massively
parallel supercomputer. We employ a fast serial imple-
mentation of the algorithm using pyramid techniques
which is practical [Camus, 1990]. B

Once we have our low-level output in the form of an A ..... "2 "1

optical-flow field, we must somehow extract the motion
of our moving target. Although there will be noise in / c
the flow field (manifested as spurious velocities for sta-
tionary points), we assume that our moving object is
represented in the field as a relatively large cohesive
entity of coherent motion, whereas any noise present
is randomly distributed. To transform the optical-flow
field (which contains thousands of velocity vectors, one Figure 2: Tessellation of a T-junction
per pixel) into a tractable representation, we simply
subsample the optical-flow field, resulting in a coarser
representation of the optical flow (simple averaging can be appropriate. This spatial representation scheme har
be used). Vectors corresponding to the moving object two important properties. First, the mapping between
are coalesced into larger, more manageable areas, while the information returned by the sensors and the spatial
random noise cancels itself out. The final result is a representation is straightforward, thereby simplifying
very coarse (4 x 4) optical-flow field, with each large the process of quantifying the probabilistic model. Sec-
block representing a large area of homogeneous motion, ond, the sizes of SR and ST are kept to a minimum
presumably corresponding to our target. This gives us by taking into account the robot's sensory limitations,
both the two-dimensional position of the object as well thereby reducing the amount of computation required
as its velocity in the image plane, which is sufficient to to evaluate the decision model.
center the target in the camera's field of view. For any particular instance of the MTL problem, we

Once the tracked object is centered in the field of assume that a geometric description of the environment
view, a sonar array is pointed in the direction of the is provided in the form of a CAD model. Given this ge-
target to recover the distance to the target. From the ometric description and a model for the robot's sensors,
distance and angular information, we can compute the we generate L, SR, and ST. Figure 2 shows how a T
position of the target relative to the robot. Human tar- junction might be tessellated given the beacon tracking
gets present diffuse surfaces for sonar imaging, allowing system. Notice that the hallways leading into the junc-
for reasonably accurate distance estimates. tion are composed of pieces of space, H 1, H2, H3 , and

H4. In all but H 2, the only beacons visible are the two
A Model for Action and Perception opposite walls of the hallway. In H2, the leftmost wall

In this section, we provide a decision model for the MTL provides a third beacon. The junction itself is divided
problem described earlier. To specify this model, it will into three regions. Region A is distinguished by three
be convenient to quantize the space in which the robot beacons: the leftmost wall and the two convex corners.
and its target are embedded. A natural quantization The other two regions of the junction have a wall and
can be derived from the robot's sensory capabilities, one corner; in each case the furthest corner beacon may

The robot's sonar sensors enable it to recognize spe- not be stable due to irregular sonar reflections.
cific classes of beacons (e.g., walls, concave and convex A Bayies network is a directed graph G = (V, E). The
corners) as well as the distance and orientation of the vertices in V correspond to random variables and are
beacons relative to the robot. It is possible to tessel- often referred to as chance nodes. The edges in E define
late the world into regions such that the same beacons the causal and informational dependencies between the
are detectable anywhere within a given region. This random variables. In the model described in this paper,
tessellation of the world provides a set of locations £ chance nodes are discrete valued variables that encode
corresponding to the regions that are used to encode states of knowledge about the world. Let PZc be the
the location of both the robot and its target. Our deci- set of discrete values of a chance node C. There is a
sion model includes two variables S1 and Sri, whcre S probability distribution Pr(C - u, w E 11c) for each
represents the location of the target and ranges over £, node. If the chance node has no predecessors then this
and SR represents the location and orientation of the is its marginal probability distribution; otherwise, it is
robot and ranges over an extension of £ including orien- a conditional probability distribution dependent on the
tation information specific to each type of location. For states of the immediate predecessors of C in G.
example, in a hallway, the orientation might be speci- The model described here involves a specialization of
fied as one of only two values, while in a T junction or Bayes ntworks called temporal belief networks [Dean
in open space a wider range of orientations will likely and Kanazawa, 1989]. Given a set of discrete variables,
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ARX

SRX

OR

Figure 4: Evidence and action sequences

target, AT, may be difficult to obtain, but we expect
Sr that a fairly simple model for the behavior of mobile

targets in spatially restricted environments will suffice
for reasonable performance.

In a practical model consisting of more than just the
A rfour time points shown in Figure 3, some points will re-

fer to the past and some to the future. One particular
point is designated the current time or Now. Represent-

Figure 3: Probabilistic model for the MTL problem ing the past and present will allow us to incorporate ev-
idence into the model. By convention, the nodes corre-
sponding to observations are meant to indicate observa-

X, and a finite ordered set of time points, T, we con- tions completed at the associated time point, and nodes
struct a set of chance nodes, C = X x T, where each corresponding to actions are meant to indicate actions
element of C corresponds to the value of some particular initiated at the associated time point. The actions of
z E X' at some t E T. Let Ct correspond to the subset the robot at past time points and the observations of
of C restricted to t. The temporal belief networks dis- the robot at past and present time points serve as ev-
cussed in this paper are distinguished by the following idence to provide conditioning events for computing a
Markov property: posterior distribution. For instance, having observed a

Pr(CtICt-,, -2,....) Pr(CtICt-1). at T, denoted (OR=or,T), and initiated a at T- 1,

Let SR and ST be variables ranging over the possi- denoted (AR= ,T- 1), we will want to compute the

ble locations of the robot and the target respectively, posterior distribution for SR at T given the evidence:

Similarly, let AR and AT be variables ranging over the Pr((SR =w, T), w E QisR I(OR = o,, T), (AR = a, T - 1)).
actions available to the robot and target. At any given
point in time, the robot can make certain observations To update te te model as time passes, all of the ev-

m idence nodes are shifted into the past, discarding theregarding its oldest evidence in the process. Figure 4 shows a net-
and the target's position with respect to the robot; OR
is a variable ranging over sets of such observations. In a work with nine time points. The lighter shaded nodes
more complete description, we would have separate ob- correspond to evidence. As new actions are initiated
servation variables for each distinct sensory modality, and observations are made, the appropriate nodes are

Figure 3 shows a temporal belief network for X -= instantiated as conditioning nodes, and all of the evi-{SR,ST,AR,AT, OR} and T = {T 1 ,T2 ,T2 ,T4 }. To~ dence is shifted to the left by one time point.
fSRTAzATOjz andT =JT1,2,TT4J To The darker shaded nodes shown in Figure 4 indicate

quantify the model shown in Figure 3, we have to pro- Te dare sa ed n in re 4 in
vide distributions for each of the variables in X x T. nodes that are instantiated in the process of evaluating
We assume that the model does not depend on time, possible sequences of actions. For evaluation purposes,
and, hence, we need only provide one probability dis- we epal e, s m e t ha- epal value ys p pp-ytribution for each a E X. For instance, the conditional time separable, we mean that the total value is a (per-
probability distribution for ST, lhaps weighted) sum of the value at the different timepoints. If 14 is the value function at time t, then the

Pr((ST,t)I(AT,t- 1), (ST,t- 1), (SR,t)), total value, V, is defined as

is the same for any t E T. The numbers for the proba- V = 1" 7(t) ,
bility distributions can be obtained by experimentation
without regard to any particular global map. A use-
ful marginal distribution describing the actions of the where y : T -- {z O < z < 1} is a decreasing function
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O InST 12, and IinS.1 2 . We could reduce f2s, and f2st to a
size that would allow for reasonably quick evaluation by
using a very coarse tessellation of the geometric model
of the environment. However, this coarse tessellation
would provide little useful guidance for tracking. As an
alternative to using a coarse tessellation, we are explor-o ing a method for modifying Q2s, and f~s, on the fly
by restricting the range of SR and ST on the basis of

Figure 5: Chordal graph showing example cliques evidence not accounted for in the decision model (e.g.,
odometry and compass information). It is our expec-
tation that this hybrid model will retain many of theof time used to discount the impact of future conse- desirable theoretical properties of the temporal Bayes

quences. Since our model assumes a finite T, we al- netwrk formulation, while providing practical perfor-

ready discount some future consequences by ignoring mance in realistic environments.

them altogether; y just gives us a little more control

over the immediate future. For V, we use the following Emergent Behavior
function

Vt = - Pr((ST =wi, t)) Pr((ST =w , t))Dist(w, wj) Different tracking behaviors will manifest themselves
depending on the specifics of the model. For instance,

wC E f2st under certain circumstances, the robot will tend to lo-
wJ E 11sT calize itself if it has lost the target. This tendency will

where Dist : f2st x fLsT --+ R determines the relative be mediated by the preferences specified in the target

Euclidean distance between pairs of locations. The Vt model. For instance, if the target spends much of its

function reflects how much uncertainty there is in the time in offices with southern exposures, the robot will

expected location for the target. For instance, if the tend to gravitate toward such sunny locations regard-

distribution for (ST, t) is strongly weighted toward one less of whether offices with southern exposures are easy

possible location in ilsT, then Vt will be close to zero. to distinguish from one another.
The more places the target could be and the further As another example of emergent behavior, if the

their relative distance, the more negative Vt. robot somehow always knows the location of the tar-

The actions in LIAR consist of tracking and localiza- get relative to itself, then it will tend to localize itself
tion routines (e.g., move along the wall on your left with respect to the map. If there is some special van-
until you reach a corner). Each action has its own ter- tage point that would provide a global perspective, then

mination criteria (e.g., reaching a corner). We assume the robot will try to obtain that vantage if it is also is
that the robot has a set of strategies, S, consisting of a landmark.
sequences of such actions, where the length of sequences The above sort of emergent behaviors (i.e., behav-
in S is limited by the number of present and future time iors that are not explicitly programmed into the robot,
points. For the network shown in Figure 4, we have but that emerge as a consequence of the model) are

typical of what is to be expected from systems con-
, C IA, X A X IAR X fLAR. trolled by decision theoretic criteria. In a decision the-

The expectation is that S is actually quite small, since oretic approach to control, the designer provides the
we propose evaluating the network ISI times at ev- necessary expectations, actions, and utilities, and the
ery decision point. The strategy with the highest emergent behavior of the resulting system is just that
expected value is that strategy, 9o = ao, of1, a2 , a3, which maximizes utility given the evidence. There is a
for which V is a maximum, conditioning on price to pay for this generally desirable, but more-or-
(A = aO, Now), (A, =a1 , Now+ 1), (A, =a2, Now+2), less effortlessly emerging behavior in terms of the com-
and (A, =a3, Now+ 3). The best strategy to pursue is putational cost of evaluating the decision model. For
reevaluated every time that an action terminates, practical applications, the system designer has to exer-

We use Jensen's [19891 variation on Lauritzen and cise critical judgement in deciding what to put into the
Spiegelhalter's [1988] algorithm to evaluate the deci- decision model and what to leave out. In some cases,
sion network. The cost of evaluating a Bayes network the tradeoffs made by the designer in coping with com-
using this algorithm is largely determined by the prod- putational complexity can themselves be quantified by
uct of the sizes of the sample spaces for the nodes in decision theoretic criteria [Dean, 1990].
the largest clique of the chordal graph formed by first Note that the finite horizon of the model will tend
moralizing and then triangulating the underlying graph to restrict behavior. For example, if the robot is at a
[Jensen, 1989]. Figure 5 shows representative cliques for distinctive place and the target is moving into an area
networks of the sort shown in Figure 4. that will confound localization, the robot will tend to

For our network model, the computational cost of remain in place, relying on its ability to track the target.
evaluation is roughly proportional to the product of ITI, If in some n additional steps the target is likely to be
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occluded (e.g., rounding a corner or entering a room), [Dean and Boddy, 1988 Thomas Dean and Mark
the robot will wait to make its move to follow until the Boddy. Reasoning about partially ordered events.
n is small enough to be accounted for in the decision Artificial Intelligence, 36(3):375-399, 1988.
model. The finite horizon also limits the extent to which [Dean and Kanazawa, 1989 Thomas Dean and Keiji
the robot could be made to perform a systematic search. Kanazawa. A model for reasoning about persistence

and causation. Computational Intelligence, 5(3):142-
Related Work 150, 1989.

[Dean et al., 1990] Thomas Dean, Kenneth Basye,
Bayes networks and influence diagrams are just begin- Robert Chekaluk, Seungseok Hyun, Moises Lejter,
ning to see use in robotics and image understanding. and Margaret Randazza. Coping with uncertainty in
Agogino and Ramamurthi [1988] describe the use of in- a control system for navigation and exploration. In
fluence diagrams for controlling machine tools. In their Proceedings AAAI-90. AAAI, 1990.
application, the ability to represent the uncertain effects [Dean, 1990 Thomas Dean. Decision-theoretic control
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Qualitative Visual Control of a Robot Manipulator *

Jean-Yves Herv6, Peter Cucka and Rajeev Sharma
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University of Maryland, College Park, MD 20742

Abstract a distance sensor that is able to provide information on
the relationship between the manipulator and its workVisual input to a robot hand/eye system has space. Sonars and ultrasonic sensors are being used for

traditionally beeneusedsonlypincthe cibvera- mobile robots, generally to determine maps of the robot's
tion step of the expensive process of invert- environment ([Crowl85], [Elfes87]). However, they are
ing the robot's kinematic map. We propose a still too inaccurate to be used in grasping tasks. Laser

in which visual feedback is closely integrated (short) range finders can provide very reliable informa-
nwih viobustualiaciv cnrosly s tegyat tion (although black, transparent or very specular ob-with a robust, qualitative control strategy that jects are known to pose problems) but require complex
ote noot ents requi e m ysc tin anye settings, which restrict their use outside the laboratory

of the components of the system. We analyze ([Klaft89]). The distance sensors which seem the most
the topology of the perceptual kinemanic map promising at this time are visual sensors such as CCD
between the joint coordinates of the manip- cameras. We address the problem of this initial stage of
ulator and a set of image parameters and ex- sensor-mediated grasping: positioning of the robot's end
ploit properties of this map in the design of our effector based on visual information, a problem knowncontrol strategy. Thus, relying only on visualasla/eecorntin

knowledge of its configuration, the manipula-
tor is able to successfully maneuver in its work
space while avoiding costly and complex calcu-
lations. We present preliminary experimental
results and outline possible generalizations of to o
this approach. (Han)

1 Introduction
As industrial robot manipulators become more piecise
the inadequacy of their control systems for tasks involv- CCO Camera
ing uncertainty becomes more apparent. These systems
require complete information about the manipulator's
state and the work space geometry--in other words, they
require perfect calibration of the robot relative to its en-
vironment, a condition that is unlikely to be fulfilled in
the real world. Attempts have been made to handle un-
certainty by integrating sensors into the control of robot
systems. Although most initial attempts have been di-
rected towards mobile robots, sensor-mediated control
of manipulators has now become an important research
topic, both from theoretical and practical viewpoints.

A robot gripper acting in a 3D work space to grasp
a simple, known object requires tactile sensors in order Figure 1: A typical hand/eye system
to perform the fine motion of the fingers that will giv
it a good grip on the object. Correct positioning of the We have stated that sensors-visual sensors, in our
end effector for a grasping task, however, also requires case-are essential to robot systems; however the pre-

'The support of the Defense Advanced Resarch Projects vailing opinion (judging from the existing literature, for
Agency (ARPA Order. No. 6989) and the U.S. Army Engi- example [11olle89]) seems to be that they lead to more
neer Topographic Laboratories under Contract DACA76-89- complications and that they should be used only in a lim-
C-0019 is gratefully acknowledged. ited way. For example, cameras are typically used only
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in recognition and detection tasks ([Nitza88], [Sengu87])
or as calibration tools. Calibration techniques for ac-
curate estimation of the configurations of the camera
and hand are the subject of much research ([TsaiL89],
[Wang87]) but suffer from a number of critical flaws.
They require complex calculations, they are sensitive to
perturbations of the system, and their use of visual in-
formation is minimal. In fact, if inverse kinematics al-
gorithms were sufficiently accurate, visual information
would be needed only for the initial calibration of the
system, after which the manipulator would proceed to its
goal blindly. Unfortunately-as we will show later-this
is not possible, and several recalibrations will generally
be needed in the realization of a grasping task.

A new approach is emerging in which visual feedback
is closely integrated with the control of robot manipula-
tors ([Skaar87, (Weiss87] and [Fedde89]) as well as mo-
bile robots (see [Dickm88] for a good example in which Figure 2: A grasping task: initial position
control is simplified through increased visual feedback).
Still, a simple grasping action requires good initial cal-
ibration of the system and complex inverse kinematics
computations.

Because the environments of the robotic systems we
have in mind do not offer the laboratory conditions called
for by calibration techniques, we propose a control strat-
egy that does not require any calibration of the system.
Through a qualitative formulation relying only on vi-
sual knowledge of the robot's configuration we can avoid
costly and complex calculations, and with the applica-
tion of a well-constrained and well-understood learning
strategy, adaptively interact with the environment as
well.

This paper is organized as follows: In Section 2, we
motivate our vision-based approach to control. In Sec-
tion 3, we model the components (robot manipulator
and camera) and derive the forward kinematic map of
the system. In Section 4, we introduce the concepts of
perceptual kinematic map and control surface. In Sec- Figure 3: A grasping task: the hand has moved
tion 5, the control strategy and algorithms are presented.
We conclude with a short description of the current im-
plementation and extensions of this work that we are when the position is "right." This principle should re-
considering for the near future. main valid when the observer is a robot and the hand

the end effector of a manipulator.
2 Motivation for the Method Since we are not concerned here with fine motion of

the hand and fingers, our three-dimensional positioning
Although humans are quite inefficient at estimating dis- task corresponds to the two-dimensional problem of po-
tances or angles with the precision needed by a robot sitioning image features.
manipulator, we are able to perform very complex grasp-
ing and fine manipulation tasks. Using mainly visual 3 Vision-based Kinematics
information-the position, size and orientation of the
hand as projected on the retina-we can quickly and ac- We first present a quick overview of the forward kzne-
curately position our hands near the objects we want to matics problem. The controls sent to a robot manipu-
grasp (Figures 2 and 3). lator affect the configuration of its (step) motors, and

If an observer knows the sizes of objects in the envi- thus the position and orientation of its end effector in
ronment (a very reasonable assumption since the sizes of the work space. The forward kmematcs of the robot
objects one tries to grasp are virtually always known), is then modelled by the mapping between the space of
the ratio of their sizes on the retina to the size of the all joint (motor) configurations q = (ql, q2,. . ., qn )T, i.e.
observer's hand on the retina provides an estimate of the joint space J of the manipulator, and the task space
the objects' distances. As the hand moves toward the K of possible positions and orientations of the end ef-
object, the ratio of sizes gives the observer an indication fector, i.e. the set of all pairs (p,w) E IW1 x SO(3),
of the distance remaining and of the time to colision, where SO(3) is the Special Orthogonal Group of three-
allowing regulation of the hand's velocity and stopping dimensional rotations.
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suffices to determine the location of these singularities
and to try to avoid them. The general study of singu-
larities of the kinematic map is quite complex, and most
articles on the subject concentrate on one particular type
of manipulator, e.g. [PaiLe89], [Litvi86] or [Borre86].

3.1 The Denavit-Hartenberg representation
We have chosen to describe the parameters of the robot
manipulator using the Denavit-Hartenberg representa-
tion ([Denav55] and [Piepe68]), which we now introduce
briefly (and denote by D-H from now on). The manipula-
tor is treated as an open linkage, i.e. a sequence of rigid
bodies connected by joints that are assumed to be either
prismatic (sliding) or revolute (turning). The solids are
labeled Si, in increasing order along the kinematic chain,
So being the ground, and S, the end effector. The joint
between Sj..I and Si is denoted JT. Two reference frames

Figure 4: A grasping task: initial position are associated with each solid Si:

= i

and
= X

The Zi axis coincides with the axis of joint Ji, while Yi
coincides with the common normal to Zi and Zi+i (or
to 00'). Also Yi coincides with Yi' and Zi with Zi+,.
Whenever the above convention leads to ambiguities in
the determination of an axis (such as when Z is parallel
to Zi+I), a direction is chosen so as to maximize the
number of D-H parameters set to zero.

Figure 5: A grasping task: the hand has moved

The (forward) kinematic map is then the following/11

mapping:
Kc:J-4 K

q - (p,w). z -.

The first stage in the classical approach to robot con- z 4 01

trol is the establishment of the kinematic map for the
robot manipulator. This problem has been studied ex- Y1.1 ..
tensively, and numerous models and methods have been
pro osed for its resolution (good reviews can be found 0
in [Paul8l] and [Holle89]). Moving the hand to a given
position and orientation involves the solution of an in-
verse kinematic.- problem. When the Jacobian of the
kinematic map is nonzero, the Inverse Function Theo-
rem guarantees locally the existence of a smooth inverse Figure 6: D-H parameters for the general linkage of a
mapping (see Appendix A), but because this mapping robot manipulator
is prohibitively difficult to compute, inverse kinematics
algorithms generally provide only a fast approximation The transformation from one coordinate system
to the solution. When the Jacobian is zero (i.e. q is to another is described in terms of the parameters
a singular point of the kinematic map), the inversion is {&j, d,, 4i, c}, where P9, is the angle between Y_ 1 and
even more complex, if not impossible, but it generally 11, di is the length of Q,_10, projected onto Z,, 1i is
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the length of 0j0 projected onto Yi, and ail is the angle where [Ri+i] = [R.,,i,][Ri,,i+i], and the position of the
between Zi and Zj+1 (or Z'). hand is given in terms of the base reference system as
The joint parameter qi can thus be represented as

qi = i di +Wi /3 , (M,, = [Ro', 2] r + [Rs 13

where ao is a Boolean parameter equal to 1 when the L0 1 L0
joint Ji is prismatic and 0 when Ji is revolute. 10

This model is very appealing because of its great gen- + -R,,5] (2)
erality and simplicity. These qualities, however have ds
their drawbacks. The Denavit-Hartenberg representa-

tion cannot, for example, handle the inevitable errors in
the orientations of the joint axes ([Holle89]). More com-
plex models exist, which require five, six, or even nine
parameters ([Vaish87]) for the description of each joint
of the robot, but the cost of the inverse kinematics com-
putations then becomes too formidable for most (real
time) applications. 3

The homogeneous transformation between the various
coordinate systems is given in terms of the D-H param-
eters as follows: the translation vector, with respect to Z3

the reference frame at O, is given by

0i0i+1= [i di

and the rotation matrices are defined as
[cos/3, -sin/f, 0

[Ri-l,,i] sinfli cosfli 0
0 0 1i-i,

and Figure 7: The schematic diagram of a five de-[ COS a, 0 sin a gree-of-freedom robot manipulator
[Ri] 0 1 0

- sin cei 0 cos ot i 3.3 Mapping to the Image

The coordinates of a point on the end effector (the Finally, we have to establish the relation between the
hand) with respect to the base coordinate system can actions on the robot and what is seen in the image. In
be obtained using a series of transformations along the order to do this, we adopt a classical pinhole model for
kinematic chain So, S1,... as is demonstrated in the five the camera
degrees-of-freedom (DOF) manipulator that we used in The 3D world is mapped onto a viewer-based coordi-
our experiments. nate system defined as follows:

3.2 D-H Parameters for a 9 The origin is the optical center of the camera, 0.
five-degree-of-freedom robot 9 OZ is the optical axis of the camera; it intersects

A schematic diagram of the 5 DOF robot manipulator is with the image plane orthogonally at o such that
given in Figure 7. Following the convention introduced ii o*JJ = f, the focal length of t.he camera.
earlier, the D-tI parameters for joints J, (the waist) 9 OX and OY are defined so as to be parallel to the
through Jr, (the wrist) are summarized in Table 1. axes of the image plane ox and oy (and (X, Y, Z) is

direct).
1 To each of the axes OX, OY,OZ, we associate a unit

i 0 0 0 0 ds direction vector, i, j, k respectively. All coordinates will
Pl q1 q2 q3 q4 q5 be expressed in the (0, i,j, k) system. Let M be a point
1i 0 12 13 0 0 of the 3D world and M = (X, Y, Z)T its coordinate vec-

ai " 0 0 -'- 0
0 0tor. M projects on the image plane as m of coordinate

vector m = (x, y, f)T. Slightly abusing the notation,
Table 1: The D-H parameters for the five DOF robot. we will identify the coordinate vector M (m) with the

The orientation of the hand with respect to the base position vector M (O'm). The following relation then
is specified as holds between M and m :

[R]o, = [Ro',I][RI,2 [R2 ,3][R3,4][R 4,5], (1) m - M f M. (3)Z km
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experiments in which we have tracked the five image fea-
V Atures, we have found that their trajectories agree closely

with the predicted ones (Figure 10).

0 21

M(X.Y.Z)

-9.5-9.25 9- -8.5-8.25 -8

Figure 8: Perspective projection of a world point onto Figure 9: Predicted trajectory of an image point with
the image plane respect to a single joint

In equations (1) and (2) we expressed the kinematic
map of the manipulator relative to the coordinate sys-
tem R'o = {O'o,X'o,Y'o,Zo}. We can now determine
the position and orientation of the hand relative to the
camera system 0, X, Y, Z by the rotation matrix [Roo,] 345

and the translation O = 0o. Thus the position in the
camera system is 340

(M)o = (00o)o + [Roo]. (M)o,, (4)
335

and the orientation is

[R]o = [Roo ]. [R]o,. (5) 330

4 The Perceptual Kinematic Map
325

Having studied the kinematic map r. 3 -I II
we now turn our attention to the movement of the 0 5 10 15

hand and the corresponding changes in the image plane.
We consider an array of measurable image parameters
s = (SI, S2, ... , s,) T as a function of the joint parame- Figure 10: Observed trajectory of one coordinate of an
ters. If S is the set of such image parameter arrays, then image point
we can consider s as a point of 8 and define a mapping
7r : J .- S, which we call the perceptual kinematic map At tnis stage of our project, we do not deal with the
(PKM). For example, if a robot rotates joint Ji, say its problem of fine motion, so the goal of a grasping task is
waist, while holding its other joints stationary, we expect to superimpose the hand on an object (Figure 5). Both
that a given point on its hand will trace an arc of an el- initial and final (exoected) positions of the hand corre-
lipse in the image plane. The coordinates of this point, spond to points in S that lie on the control surface. The
plotted parametrkally against q,, describe an elliptical grasping task is then reduced to a problem of constrained
cross-section in the x-y plane of the PKM (Figure 9). path planning on the control surface. An obvious gener-

For our five-degree-of-freedom robot manipulator we alization of the current system, which we arc currently
have identified five independent features that can be studying, would allow the final position to belong to a
readily extracted from any image of the robot: the im- goal set rather than be an isolated point (there is clearly
age coordinates of two points on the hand and the area more than one correct position for grasping). Also of
of a rectangle inscribed on the hand. The PKM for this great practical interest is the determination of this set
manipulator gives rise in S to a five-dimensional para- from the visual input and a prtori knowledge about the
metric hypersurface, which we call the control surface, object (its shape, for example).
(although the term "hypersurface" may be technically There is little point in attempting to invert the PKM,
a bit inappropriate here, it conveys the image of con- since the computations are even more complex than
strained planning that we want to emphasize.) Through those for the original kinematic map, and small dis-
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cretization and detection errors would invalidate the re-
sults ([Spets89]). Qualitative decisions, however, such
as whether or not the current configuration is close to a
singularity of the control surface, are unaffected by small
errors. For example, if the trajectory of feature si with
respect to joint parameter qj follows an arc of an ellipse
then we can expect to encounter singularities at the two
points of intersection of the ellipse with its major axis.
The results in Figure 10 confirm that the robust detec-
tion of these singularities through image measurements Z 

is feasible.
The study of the perceptual kinematic map tells us

what the control surface can look like and what kinds of
singularities can be expected. For example, in Figure 11
one coordinate of an image point is plotted as a func- Figure 12: A two-degree-of-freedom robot manipulator
tion of the motion of two joints. The ability to predict
events in the image, and thereby the nature of the con-
trol surface, allows us to devise a control strategy that
is easy to describe algorithmically. At the same time,
we can avoid undue stress on the manipulator and the
unnecessary movement that is incurred when it is made
to maneuver blindly across a singularity of its control
surface.

-2 .5

.5

4Figure 13: Parametric surface for x,y and q2 against qi
0

attempts to reduce a distance, defined on S, between itscurrent configuration and the goal point in S9. For each
Figure 11: A representative portion of a control surface n grasig ask the r o pores it negor-new grasping task the robot first explores its neighbor-

hood on the control surface. If the neighborhood is regu-To illustrate these concepts, we can consider a two- lar, a simple steepest gradient method can be employed
degree-of-freedom manipulator (and therefore a two di- to reduce the distance to the goal. As the robot moves, it
mensional joint space J 2 ) such as the one displayed in updates its estimates of the local directional derivatives
Figure 12, and a two-dimensional space of image param- of the control surface. In the neighborhood of a singular
eters S2 consisting of the possible image coordinates of point, the control surface can have a complex topolog-
the robot's endpoint. The PKM in this case is fairly sim- ical structure. If the robot encounters a singularity of
pie, reduced to an R2 -- + R2 mapping. From [Wbitn55] the control surface, it must reexplore its neighborhood
we know that its generic singularities are smooth lines in order to identify the type of the singularity. Ideally,
called fold lines, and this is quite apparent in Figure 13, singularities are identified by zeros of the Jacobian, but
which represents a parametric plot of x, y and q2 as since we are dealing with discrete images and manipula-
functions of q, and q2. tor displacements, we can only expect to detect changes
5 Hand/Eye Control in its sign. In its regular control mode, the robot moni-

S / e Ctors the sign of the Jacobian and can thus detect Lhat it
The control surface can be divided into regular points, has crossed a singularity.
where the control surface can be locally approximated by
its tangent hyperplane, facilitating a particularly simple 5.1 Exploration of the control surface
control strategy, and singular points, where the Jacobian At the beginning of a new grasping task, or when a sin-
of ?r is zero. Determining whether the present configu- gularity is encountered, the robot needs to explore its
ration falls at a regular point or a singularity is one of neighborhood, meaning that it computes the Jacobian
the most important functions of the system. The robot matrix of the PKM.
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The exploration of a configuration's neighborhood
proceeds as follows. Let the current configuration be
denoted by q = (q1 ,q2,q3,q4, q5)T, and let the corre- degenerate direction
sponding point on the control surface be denoted by
s = ('5, 8 2 , ,8 4 , S)T. In the neighborhood of q we
make a series of measurements s(q + Aq), where Aq
is a discrete displacement in the joint space: Aq =

((il6ql, i26q2, • •.,i6q5) T ) , with each ij = -k,..., k (in
practice, k = 1 or 2), and the 6qj are fixed steps for the
joint variables. As an example, we show for k = 1 how
these measurements are made in the neighborhood of a
regular point (Figure 14) and in the neighborhood of a
singular point (Figure 15).

s(q), a regular point of the s (q +Aq)

control surface

s(q+Aq), a measurement 
(q)

made in the neighborhood
of q Figure 15: Exploration of the control surface in the

neighborhood of a singular point

The state vector at time k, x(k), is a 25 x 1 column
vector composed of the elements of the Jacobian
matrix L(k):

x'k = [(Ls, (s2, (Ls3), (8s4), (ss] T (6

It verifies the state equation

x(k + 1) = A(k) x(k) + v(k) (7)

where A(k) is the 25 x 25 state matrix and v(k) is
the 25 x 1 disturbance vector.
Its initial mean and covariance are known

Figure 14: Exploration of the control surface in the
neighborhood of a regular point E[x(ko)] = x0 and Cov[x(k)] = P0.

The list of possible types of ingularities of a generic The state vector cannot be directly determined atTe lt o mpoibe ts w of s ingular each time t = kT, but the derivatives of 7r along
mapping is well known ([Golub73]). Singular- the direction of displacement u can be measured

ities of the control surface will typically be folds, which (see Appendix B for details and a sketch of the algo-
are degenerate along one direction of the control surface rithms involved). They form the 5 x 1 measurement
and locally look like five-dimensional cylinders. The di- vector
rection of a fold, which is defined by the kernel of the
Jacobian matrix, can be directly determined from the [, ( 81 (82) ,053) Os4 " (OS5 IT
measurements made, and it qualitatively identifies the y(k) =L ) '-Ou 'u' j (8)
singularity. After deciding on which side of the singular-
ity the goal lies, the robot resumes its course, returning The measurement vector can be expressed as a func-
to the regular control mode. tion of the state vector (see Appendix B for thc

complete equation)
5.2 Regular control y(k) = C(k)x(k) + w(k), (9)

As long as the robot does not cross any singularity, it
must update its estimate of the tangent hyperplane us- where C(k) is the 5 x 25 measurement matrix and
ing only its measurements of the directional derivatives w(k) is the 5 x 1 measurement error.
along u, the direction of displacement. This is realized
by a Kalman filter defined as follows:

901



9 The following assumptions are made about the * Initial conditions:
noise in the system: x*(ko) = xo
Both v(k) and w(k) are white Gaussian noise pro- *(k) = Po.
cesses:

E[v(k)] = 0 and E[v(k)v'(l)] = Q(k)6kl It should be pointed out that, although the state vec-
tor is composed of 25 rows, our measurement vector is

E[w(k)] = 0 and E[w(k)w'()] = R(k)6ki. only 5 x 1, which means the square matrix we have to
invert in (10) at each iteration is only 5 x 5.

They are uncorrelated with the intial state and with Some comments have to be made on the choice of A(k)
each other: in (7). The determination of a "good" A(k) would ne-

E[x(ko)v(k)] = 0 cessitate an exact (read quantitative) knowledge of map-
ping 7r which, as we previouly explained, is exactly what

E[x(ko)w(k)] = 0 we want to avoid. What we would need is a qualita-
E[v(k)w(l)] = 0. tive Kalman Filter, which would allow us to exploit our

knowledege of the topology of the control surface (for ex-
We seek, on the basis of the measurements and of an ample, we know that (s1, s2) describes an arc of an ellipse
initial value of x0, an unbiased linear estimate of x(k), when one joint is moved, the others being fixed). Unfor-
which we will call *(k), and which minimizes the vari- tunately, such a mathematical tool does not exist yet. At
ance estimate this point in our project, we use A(k) = I (the 25 x 25

identity matrix). This choice may seem surprising, as
p(k) = E[(x(k) - R(k))(x(k) -*(k))']. it provides minimum information to the Kalman filter,

The solution to this problem is given by the Kalman- indicating only that if the displacement steps are small
Bucy algorithm ([Bramm89]) for which a block diagram enough, the partial derivatives on the PKM vary slowly.is given in Figure 16. However, experimental data (Figures 17, 18 and 19)

show that this hypothesis is in fact quite close to reality.

450.0

" Modelled System (PKM) 450.0

w ~ k ) IS 
fti d0 , 8 0 0

v(k)(k) C. ) y(k) 400.0 SOlde 400

.C 
400.040

-- " .°°* y.k Shokke 200
+350.0 - . "" . '

S .. - , Shoiet 400

Observer -300 .200 .100 - -00 200 300

Figure 17: Experimental result: x coordinate vs wvrist

Figure 16: Block diagram of the Kalman-Bucy filter 63 Q tt I othenrnm t

In its initial ignorance of their locations, the robot can
* Prediction phase: be expected to encounter one or more singularities on

x* (k + 1) = A(k)*(k) its path to the goal, but by monitoring changes in the
X signs of curvatures along the path, the robot can recog-p*(k + 1) = A(k)P*(k)A/(k) nize and record these singularities. In doing so over the

course of a niumober of graspinog tasks, the robot learns
* Update phase: the topology of the control surface. Indeed, knowledge

of the type and location of its singularities uniquely de-
(k + 1) = x'(k) + K(k){y(k) - C(k)x*(k)} fines a control surface in a qualitative way. This means

K(k) = p*(k)C'(k){C(k)p*(k)O'(k) that when all the singularities of the control surface are
+ R(k)} -1  (10) localized and identified, the robot would have achievedP*(k) = p*(k) - K(k)C(k)p(k) qualitative control over its environment.
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Figure 18: Experimental result: y coordinate vs wrist
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50.00 .hulo ..- . ~ 140
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40.0 .. X- S'o" t-00Figure 20: The raw image of the hand.

X.. .80
30.00 S". e."8"0

20.00 "7 Conclusion and further research

We have presented the concepts of the perceptual kine-
10.00 matic map and control surface of a hand/eye system and

shown that complex tasks can be simply modelled and
0.000 I solved in terms of these concepts. The close integration

300 -200 -100 0 100 200 300 of the visual information to the decision (control) process
and our relying on qualitative (topological) information
rather than on the exact values of the maps allow us

Figure 19: Experimental result: orientation vs wrist tahievehrobusttisualacontrl of arb maplor
to achieve robust visual control of a robot manipulator

without preliminary calibration of any of the components
of the system. The principles of our approach are gen-

6 Implementation eral, and the algorithm and system presented here are
only one of the many possible ways to implement and

Our experimental system consists of an observer, a robot test them. Although they proved to be successful, they

manipulator and an object to be grasped (Figure 4). are in no way indicative of what future systems based on
Both the camera and the manipulator are uncalibrated- the same principles may look like.

their relative position and orientation are unknown. A number of questions still remain to be addressed,
among them: how can the robot generalize its knowl-

The observer is a CCD camera (Sony, Model XC- edge of the control surface for one fixed camera position
38, genlock unit CBK-38 GL, lens system Switar, fo- to another, and how can it best exploit a mobile camera?
cal length 10mm) mounted on a six-degree-of-freedom The concept of an observer acting on its environment, or
American Robot robot arm. The gripper is a five-degree- at least on the parameters that control the images it re-
of-freedom Mitsubishi MoveMaster II robot arm. Image ceives, ...as on!y recently introduced ([Bajcs86]). More
processsing and robot control are performed by a Mac- recently, [Aloim87] showed that most "shape from x"
intosh IIcx. problems can be made simpler and their solutions more

At this stage of the project, the image processing is robust when an active observer is involved. The deter-
purposely kept simple. A white rectangle is inscribed on mination of a "best" activity was shown to be possible,
the hand in order to facilitate the tracking of the image but the resulting optimization problem is qu;te involved
parameters- its position and area in the image giving ([tlervg0d]). In the context of our qualitative approach
the five parameters needed for the control (Figures 20 to computer vision, the active observer is concerned not
and 21). with the effect of its actions on the solution to a "shape
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case of a final goal set rather than an isolated point, and
to the determination of this goal set from visual and a
priori clues on the object to be grasped.

Finally, we intend to realize very soon a real-time im-
plementation of our system (within the limits allowed by
our current hardware).
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A Local inversion of the PKM

We present here a justification for our linear approx-
imation of the PKM and, more generally, our choice of
control strategy in Section 5. Although we have tried
to give only an overview of the problem (more rigor-
ous and complete treatments can be found in [Arnol73],
[Gibso79] and [Chi1176]), the reader's understanding and
intuition may benefit from the following exposition. We
begin with an informal description of the result:

Inversion Problem
Figure 21: The observed image parameters. We prove that, whenever the Jacobian of the PKM is

nonzero, successful control can be achieved by following
the inverse image of a path in the image parameter space

from x" problem but rather with their effect on the topo- S. Furthermore, the linear approximation of the PKM
logical structure of the control surface that is, on the is locally acceptable, so that the manipulator's control is
singularities of the PKM (or equivalently, on the zero uniquely determined by simple local inversion of a linear
set of the PKM's Jacobian). The effects of classes of mapping.
perturbations on the solutions of an equation have been Let E and F be Banach spaces, U be an open subset
thoroughly studied, at least in the case of low (< 5) of E and f : U -* F be a mapping from U to F. (We
codimension (see [Golub88] and [Golub85]). The inverse will reserve the use of the word function for the case of
problem, however, of determining a motion (perturba- a mapping r U - R.)
tion) that achieves a particular effect on the control sur-
face remains complex. Definition' A mapping f is called a homeomorphism if

Given the qualitative nature of the control strategy,
we are also interested in determining if the robot can
achieve the fine control necessary for the final stages of a e f is a bijection,
grasping task. We see two mutually compatible solutions * f is continuous, and
to this problem. The first solution is to increase the res-
olution of the image so that the same control techniques • its inverse mapping f-I is continuous.
can be applied to each of the fingers. We consider this
action to be a subcase of the active observer, since in- Definition A mapping f is differentiable at xo E U if
creased resolution can be obtained by bringing the cam- there exists a linear map Df(xo) : E -- F such that
era closer to the scene. The second solution is to add
additional (tactile) sensors to the system. Vh E E, f(xo + h) = f(xo) + Df(xo) . h + IlhilE v(h),

Another direction of improvement of the current sys- where v(h) E F and IIv(h)IlF --+ 0 as Ilh1lE - 0. We call
tem was discussed in Section 5.2 and concerns the tran- Df
sition matrix of the Kalman filter. In order to reduce (XO) the derivative of f at x0.
the burden on the filter's mechanism, we need to define When E ;R-W and F = R!, which is the case of the
a better A(k) as compared to the identity matrix we are PKM 7r, f can be written as an n-tuple of functions E
currently using. We are studying the idea of a Kalman IR: f(x) = (fi(x),f 2 (x),...,fm(x)), and Df(xo)T is
filter that is able to handle qualitative information, for

example the sign of the surface's curvature. 'The structures of Banach spaces are not necessary for
As pointed out earlier in this paper, we are currently the definition of a homeomorphism. Structures of lIausdorff

working on an extension of the control strategy to thc topological spaces for the domain and range of f suffice.
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represented in the standard bases of E and F by the the derivative Df(q) is completely characterized by the
Jacobian matrix of f: effect of f on smooth paths in U based at q. This in-

all ~ ... 1 tuitive observation will now be formalized to help define
O(fi,,2,.. Ox,) Ox2  O. the tangent map of f, the last step in the solution of our

... , - ... problem.
OIl f: .. I m x X x
19(Xl, X2,....,. )

LOx, 852 Ox,.

If n = m then the determinant of the Jacobian matrix
at xo exists. We call it the Jacobian of f at xo and i b
denote it by Jf(xo), or simply J when the context is I P'(0)
unambiguous. q

Definition A mapping f is called a diffeomorphism (Cr

diffeomorphism) if -E E

" f is a bijection,

" f is differentiable (C' differentiable), and

" its inverse mapping f-I is differentiable (Cr differ-

entiable).

Inverse Function Theorem 2

Let f: U -- F be a or map (1 < r < oo or r = w).(
Supppose xo is a point in U for which DI(xo) : E --+ F
is an isomorphism. Then there is a neighborhood V C U
of xo such that f1y : V -+ f(V), the restriction off to inage of f.p
V, is a Cr diffeomorphism. J

The intuitive meaning of this theorem, for E = W and F
F = Rm, is that we can change coordinates locally in E
to convert f into its own linear approximation at xo.

Id F=W, then Df(xo) is bijective if and Figure 22: Tangent to a smooth path (redrawn fromIf E =ll" and F = (0hnD~0 s ietv fad [hill76]).

only if Jf(xo) 0 0.

In the case of the PKM 7r: 3' -8 5, where " C W Definition Two smooth paths P, and P2 based at q are

and S C R5, we would like to determine a sequence of tangent (or contact equivalent) if

joint coordinates, i.e. a path, that achieves a given effect 1
on the image parameter space S. The Inverse Function lim -(PI(t) - p2 (t)) = 0 in E.
Theorem tells us that whenever the Jacobian Jr(q) is

nonzero, the map can be inverted on a neighborhood of
q. We are interested in the images of paths in 3', i.e. Tangency is obviously an equivalence relation on the
the effect of the controls we can apply, and the images set of all paths in U based at q. We denote the tangency
through 7r- 1 of paths in S (that can produce the effects class of a path p by [p] and call TqU, the set of tangency
we want to achieve), classes in U based at q, the tangent space to U at the

point q. This space is isomorphic to E, which means
Definition A smooth path in U based at q is a smooth that we can transform the linear map Df(q) : E --+ F
map p : I --+ U, where I is some open interval of R (a, b), into the linear map

with a <0< b, U CE and p(0) = q. Tqf : TqU -- Tf(q)V,

If a map f : U -- + F is smooth then which takes each [p] in TqU to [f o p] in Tf(q)V

D(fop)(0) = Df(p(O))oDp(O)
= D(q) • p'(0). We have explained that the grasping task is a problem

This means that the derivative of f at q takes the tan- of trajectory planning on the control surface; in order
gent to the path p to the tangent into the path f o p at to solve it, we need to determine the joint control such
f(q) (Figure 22). A consequence of this result is that that the point of S defined by the hand parameters fol-

2 _ lows a given path. Let q be the current configuration of
2This theorem is equivalent to the Implicit Function The- the joints (motors) of the robot and s the corresponding

orem, which is more frequently presented in textbooks. point in the image space S. If Jr(q) $ 0 (away from
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singularities), 7r diffeomorphically maps a neighborhood It follows that, in order to maximize the change in 9,
U of q onto a neighborhood V of s. The tangent map at we have to choose u = -g, so that the iterative step
q Tr(q) is thus a local diffeomorphism TqU -+ Tf(q)V. followed is

Let g be a smooth path based in V at s we want the q(k + 1) =q(k) - 7 q
robot to follow. Then there exists a unique [p] E TqU
such that its image through Tir(q) is [g]. Furthermore, where 7 is an arbitrary gain. We can now replace C by
we know by the Inverse Function Theorem that we can
replace ir on U by by its linear approximation, so that C o It:
the direction of the control p achieving [g] at q is given(Co r) =r
(with considerable abuse of notation) by 1q q (s *q

so that the final expression of the iteration step is

(ql,q2,. .. , X) q(k + 1) = q(k) - 7 L9 7r]

which uniquely defines [p] since, by hypothesis, the Ja- (8q)

cobian matrix is invertible.
Appendix B will show that the solution of this linear The last, problem remaining concerns the numerical
equation is in fact not necessary for the determination computation of the partial derivatives. As explained in
of the inverse mapping q = 7r-'(s). Section 4, although we need an estimate of the Jaco-

bian matrix q that defines the state vector of our

B Cost function, steepest descent, and Kalman-Bucy filter, we can only obtain the directional

numerical differentiation derivative of the PKM along the direction of motion,
say u: (u) = ()'u (the measurement vector of the

To reiterate, our goal is to reach a final position sj E 8 filter).

from a starting position so E S, that is, to define a We can now express the measurement matrix 0(k)
smooth path lying on the control surface that joins these of cn t of erete me a ement
two points. In Appendix A we showed that, given such of (9) in terms of the direction of displacement
a path, the PKM can be locally inverted to determine UT

0 T
an adequate control sequence for the joint parameters. u

A simple way to obtain a path between so and sj is to y(k) u •x(k)

define a cost function C(s) = d(s, s!) on S that measures U uT
some "distance" to the goal sf. For example, we can JT uT J
choose the mean squared error C(s) = I (S, -s1 ,)2.
This choice of C helps define the "global" cost function = C(k). x(k).
9 = C o 7r which estimates distances on the joint space
3. From Appendix A, we know we can represeiit the
derivative of 9 at q, Dg(q), by the Laplacian (row) ma- Since the PKM is well-behaved, an accurate estimate
trix N and obtain the following matrix equation in a of the directional derivative y(k) is given by the deriva-

tive of the quadratic interpolant of the measurementsneighborhood U of q: s(k), s(k - 1), s(k - 2).

(q + cu) = 9(q) + (q )eu + kI[(eu). (11)

where v(eu) E 8 and Iv(h)JIs -+ 0 as JJhJB - 0. References
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REAL-TIME VISUAL SERVOING

Peter Allen

Billibon Yoshimi
Aleksandar Timcenko

Department of Computer Science
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New York, NY 10027

ABSTRACT hand-eye coordination for dynamic grasping tasks such as
This paper describes a new real-time tracking grasping of parts on a moving conveyor system. How-
algorithm in conjunction with a predictive ever, the algorithms we have developed are applicable to
filter to allow real-time visual servoing of a a wider range of domains including the ones described
robotic ann. The system consists of two cali- above.
brated cameras that provide images to a real- Previous efforts in the areas of motion tracking and
time, pipelined-parallel optic-flow algorithm real-time control are too numerous to exhaustively list
that can robustly compute optic-flow and cal- here. We instead list some notable efforts that have
culate the 3-D position of a moving object at inspired us or use similar approaches. Burt et al. [7] has
approximately 5 Hz rates. These 3-D posi- focused on high speed feature detection and hierarchical
tions serve as input to a predictive kinematic scaling of images in order to meet the real-time demands
control algorithm that uses an a - 13 - y filter of surveillanre and other robotic applications. Related
to update the position of a robotic arm track- work has been reported by Lee and Wohn [18] and Wik-
ing the moving object. Experimental results lund and Granlund [28] who use image differencing
are presented for the tracking of a moving methods to track motion. Corke, Paul and Wohn [10]
model train in a variety of different trajec- report a feature based tracking method that uses special
tories. purpose hardware to drive a servo-controller of an arm-

mounted camera. Goldenberg et al [11] have developed a
1. INTRODUCTION method that uses temporal filtering with similar hardware

Tracking of objects by a vision system in real-time to our own. Luo, Mullen and Wessel [19] report a real-
is an important problem. It has been addressed by time implementation of motion tracking in 1-D based on
researchers in a number of different fields including target Horn and Schunk's method. Verghese et al. [27] report
tracking, surveillance, automated guidance systems, real-time, short-range visual tracking of objects using a
inspection, and monitoring. The focus of our work is to pipelined system similar to our own. Safadi 1231 uses a
achieve a high level of interaction between a real-time tracking filter similar to our own and a pyramid based
vision system that is capable of tracking moving objects in vision system, but few results are reported with this sys-
3-D and a robot arm that contains a dexterous hand that tem. Rao and Durrant-Whyte [22] have implemented a
can be used to intercept, grasp and pick up a moving Kalman filter based de-centralized tracking system that
object. We are interested in exploring the interplay of tracks moving objects with multiple cameras. An earlier

work of ours [2], explored hand-eye interaction with a
This work was supported in part by DARPA contract simple vision algorithm and a SCARA robot that per-
N00039-84-C-0165, NSF grants DMC-86-05065, formed tracking in the X-Y plane using a single calibrated
DCI8608845, CCR-86 12709, IR18657151, IRL camera that was mounted on the arm. The performance of
88-1319, North American Philips Laboratories, Sic- this system was inherently limited by the vision algorithm

and the lack of a predictive component in the tracking
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filter to allow the arm control to compensate for vision I (x+8x, y+8y, t+8) = I (x, y, I). (1)
processing delays. It also was unable to track in three
dimensions. If we expand this constraint via a Taylor series

expansion, and drop second and higher order terms, we
Thiswor is otale or te flloing casns: obtain the form of the constraint we need to compute nor-

First, the vision algorithm is robust since it is based upon ma velocity

detecting optic-flow in real-time as opposed to simple dif-

ferencing or thresholding methods. Second, the system is Ix u + lyv + , = 0 (2)

capable of tracking objects in three dimensions in real- where u and v are the velocities in image-space, and 4, ly
time using unregistered (but calibrated) cameras. Third, and I, are the spatial and temporal derivatives in the
the robotic control system is able to accurately predict image. This constraint limits the velocity field in an
kinematic parameters for trajectory following of moving image to lie on a straight line in velocity space. The
objects in real-time. actual velocity cannot be determined directly from this

constraint due to the aperture problem, but one can
2. COMPUTING OPTIC-FLOW recover the component of velocity normal to this con-

One of the goals of this work has been to determine straint line as:
optical flow fields that measure image velocity at each
pixel in the image. A variety of techniques for computing V= (3)
optic-flow fields have been used with varying results
including matching based techniques [3,8,24], gradient While computationally appealing, this method of
based techniques [9, 15,20] and spatio-temporal energy determining optic-flow has some inherent problems. First,
meetods [1, 13]. Optic-flow was chosen as the primitive the computation is done on a pixel by pixel basis, creating
upon which to base the tracking algorithm for the follow- a large computational demand. Second, the information
ing reasons: on optic flow is only available in areas where the gra-

0 The ability to track an object in three dimensions dients defined above exist. A second, iterative process is
implies that there will be motion across the retinas usually employed to propagate velocities in image neigh-
(image planes) that are imaging the scene. By iden- borhoods, based upon a variety of smoothness and heuris-
tifying this motion in each camera, we can begin to tic constraints.
find the actual 3-D motion. We have overcome the first of these problems by

* The principal constraint in the imaging process is using the PIPE image processor [4, 17]. The PIPE is a
high computational speed to satisfy the update pro- pipe-lined computer capable of processing 256x256x8 bit
cess for the robotic arm parameters. Hence, we images at frame rate speeds, and it supports the operations
needed to be able to compute image motion quickly necessary for optic-flow computation in a pixel-parallel
and robustly. The Horn-Schunck optic flow algo- method (a typical image operation such as convolution,
rithm (described below) is well suited for rcal-tlme warping, addition/subtraction of images can be done in
computation on our PIPE image processing engine, one cycle - 1/60 second). The second problem is allevi-

* We have developed a new framework for comput- ated by our not needing to know the actual velocities in

ing optic-flow robustly using an estimation- the image. What we need is the ability to locate and

theoretic framework [25). While this work does not quantify gross image motion robustly. This rules out sim-

specifically use these ideas, we have future plans to pie differencing methods which are too prone to noise and

try to adapt this algorithm to such a framework. will make location of image movement difficult. Hence, a

Our method begins with an implementation of the set of normal velocities at strog gradients is adequate for

Horn-Schunek method of computing optic-flow [14]. The our task, precluding the smoothing step of the algorithm.

underlying assumption of this method is the optic-flow
constraint equation, which assumes image irradiance at
time i and i+8t will be the same:
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3. A REAL-TIME OPTIC-FLOW ALGORITHM
To implement our algorithm in the PIPE, we used 4

processors on the PIPE. The processors are assigned as 2
per camera - one each for the calculation of X and Y
motion energy centroids in each image. We also use a

0 special processor board (ISMAP) to perform real-time
histogramming. The steps below correspond to the
numbers in Figure 1 (single camera):

Gaussian 1. The camera images the scene and the image is sent
Mask(%d;3. to processing stages in the PIPE.

3x 2. The image is smoothed by convolution with a
Gaussian mask. The convolution operator is a
built in operation in the PIPE and it can be per-
formed in one frame cycle.

3-4. In the next 2 cycles, two more images are read in,
uer smoothed and buffered, yielding smoothed images

10 and I and 12. The ability to buffer and pipe-
line images allows temporal operations on images,

1albeit at the cost of processing delays (lags) on
output. There are now 3 smoothed images in the
PIPE, with the oldest image lagging by 3/60

d1 di second.
dt d 5. Images Io and 12 are subtracted yielding the tem-

poral derivative I,.
6. In parallel with step 5, Image II is convolved with

ufer Buffer a 3x3 horizontal spatial gradient operator, return-
a b ing the discrete form of I,. In parallel, the vertical

spatial gradient is calculated yielding ly (not
., ,d!i - di shown).

S dt dx Ram 7-8. The results from steps 5 and 6 are held in buffers

and then are input to a look-up table that divides
the temporal gradient at each pixel by the absolute
value of the summed horizontal and vertical spatial

a ,nd gradients.
9-10. In order to get the centroid of the motion informa-

tion, we need the X and Y coordinates of the
motion energy. For simplicity sake we show only

0 the situation for the X coordinate. The gray-value
ramp in Figure 1 encodes the horizontal coordinate
value (0-255) for each point in the image. If we
threshold the computed normal velocities, and then
AND the above threshold velocities with the posi-

Figure 1: PIPE Motion Tracking Algorithm. tional ramp, we have an image which encodes
high velocity with its positional coordinates in tie
image. In our experiments, we thresholded all
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velocities below 10 pixels per 60 msec. to zero
velocity.

11. By taking this result and histogramming it, via a
special stage of the PIPE which performs histo- T6 Tool Drive
grams at frame rate speeds, we can find the cen- M T
troid of the moving object by finding the mean of I
the resulting histogram. Histogramming the high S G
velocity position encoded images yields 256 16-bit O
values (a result for each intensity in the image).[ Bas Obj 0 Grasp
These 256 values can be read off the PIPE via a
parallel interface in about 10 ms. This operation is
performed in parallel to find the moving objects Y
centroid (and in parallel for X and Y centroids for
camera 2). The total associated delay time for
finding the centroid of a moving object becomes S is robot shoulder coordinate frame
15 cycles or 0.25 seconds. M is 6th joint coordinate frame

The same algorithm is run in parallel on the PIPE T is tool (gripper) coordinate frame
for the second camera. Once the motion centroids are G is grasping position coordinate frame
known for each camera, they are back-projected into the
scene using the camera calibration matrices and triangu-
lated to find the actual 3-D location of the movement. Base is constant transform between W and S
Because of the pipelined nature of the PIPE, a new X or Y T6 is variable transform computed by RCCL in
coordinate is produced every 1/60 second with this delay, each sampling interval

The system exhibits an interesting mix of local and Tool is variable transform defined by Utah-MIT
global computations, separated by processors and update hand kinematics
rates. The PIPE is able to perform the local optic-flow Drive is the transform introduced internally by
computation at video rates (but with delay), the ISMAP RCCL to obtain straight-line motion in Cartesian
board gathers global histogram statistics, and these are coordinates
then shipped via a high-speed interface to a host where the
stereo triangulation and kinematic control algorithms Grasp is constant transform which defines grasping
reside, updating the arm parameters every 30 msec.

Obj is variable transform defined by vision subsys-
4. ROBOTIC ARM CONTROL tem outputs - it defines the position of the moving

The updated information from the cameras is used object in the world coordinate frame

to predict the next set point for the robotic arm that is Figure 2: Transform Equation. Graph nodes
tracking the moving object. We are using RCCL [12] to represent coordinate frames and graph edges
control the robotic arm (a PUMA 560). RCCL (Robot represent 4x 4 coordinate transforms.
Control C Lan;?.,age) allows the use of C programming
constructs to coni-, the robot as well as defining transfor-
mation equations (as described in [21]). The transforma- 5. PREDICTIVE FILTERING

tion equations permit dynamic updating of arm position The 3-D values of the moving object's position
by generating the 4x4 transform of the moving object's determined by the vision system are both noisy and out of
position from the vision system and sending this informa- date due to the processing delays. To alleviate this, the
tion to the arm control algorithm (see Figure 2). system has been modeled as a standard second order sys-

tem, and the input to the system is a series of filtered pred-
ictions. In choosing a predictive filter for tracking, the
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major constraints are knowledge of the nature of the Yk is the acceleration tracking parameter at k
motion to be tracked, knowledge of the noise characteris- T is the sampling period
tics of the sensor, and computational cost of the filter.
Kalman filtering generates time-variable tracking
coefficients that are determined by a priori models for the The gains for the fixed coefficient filters represent a

statistics of measurement noise and target dynamics. compromise between noise reduction and maneuver-

Because of its dynamic nature, it imposes a computational following capability in the steady-state. Kalata [16] has

cost which can be difficult to incur in certain real-time shown that the optimal steady-state gains for a o - 3
applications. Fixed-coefficient filters have the advantage filter are given by:

of simple implementation using fixed parameters for the ?r = 2  (10)
filter gains[61. In a few particularly simple target tracking 4 ( 1 - a )
problems, it is possible to derive closed-form steady-state 1
solutions for the associated Kalman filter cova.,iance- -=2(2_a)_4./-a oa= 3- (11)
matrix and the corresponding filter gains. Such solutions
can be used to avoid real-time computation of the com- cc
plete filter equations [16], and can approach the Kalman T2a
filter in steady-state performance. X a (13)

We have implemented an a - filter [5,23]
which includes an acceleration estimate as well as a posi- where T is the sample period, a. is the position uncer-

tion and velocity estimate. Below are the prediction cqua- tainty due to variance of the acceleration, and an, is meas-

tions for the system (4-6) and the correction equations (7- urement noise variance. In practice, it is very difficult to

9) using the filter parameters a- f3 - y: accurately estimate the variances above. We treat this
ratio of variances as a free parameter in calculating the

Xk+11k = Xk 1k + T V k + T2akik (4) filter gains, and have found a suitable value empirically.

Vk+1 k = Vklk + Taklk (5) 6. EXPERIMENTAL RESULTS

The system shown in Figure 3 was used to test the
algorithm. Two CCD cameras with 25mm lenses were

mounted approximately 1.5 meters apart, with the moving

Xk+I 1k+1 = xk+1 Ik + ak+1 Zk+ -- Xk++ 1, (7) object's full trajectory in the field of view. The cameras
I~ were calibrated by placing an LED in a number of known

Vk+ 1k+1 = Vk+Ik + -Lk+1] (8) positions along the trajectory determined by the world
T L -+ coordinate system of the robot ann. Each camera imaged

11 the LED and computed its centroid, from which a least-
k+-I+k + 2 Yk+( 4) X*+1I squares calibration matrir was calculated [26]. The best

calibration results are obtained with the cameras orthogo-
nal to each other. In calibration situations like this we

Xkgk is the position estimate at time interval k were able to determine the three-dimensional position of
x..,, . is the position estimate at time interval k+1 an LED to within 10 millimeters in X, Y and Z coordi-
given k samples nates. The experimental results were obtained with the

vk1k is the velocity estimate at time interval k cameras mounted approximately 15 cm above the plane of

aklk is the acceleration estimate at time interval k the table pointing down at an angle of about 10 degrees
from horizontal.

ak is the position tracking parameter at k In the experiments, a model train was tracked by
P~k is the velocity tracking parameter at k vision as it moved around a circular track and an oval

track and the arm was commanded to follow each trajec-
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Figure 3. Experimental Hardware.
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Figure 5. Motion Energy derived from Optic-Flow

(left and right cameras).
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Force/Torque Sensing for Object Recognition

William A. Wolovich
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Abstract along an unknown suiface). Future research plans will

Our primary objective, wvith respect to fully exploit this potential in the case of mobile robots.

force/torque sensing, is to determine how touch 2 Prior Results
can be used for object recognition via force-
contact motion control along the surface of an Dual-drive control already had been developed and suc-
unknown object. Since force information em- cessfully tested for robot crank-turning experiments, as
ploys only "local" information, in that it in- well as smooth surface tracking, prior to the initiation
volves only the contacted object, and not the of this grant 1. [Kazanzides, et al., 1989, Bradley and
environment, far less information need be pro- Wolovich, 1990]. Furthermore, a considerable amount of
cessed (when compared to vision) in order to time and energy has been expended to develop SIERA,
identify a contacted object. We will present a System for Implementing and Evaluating Robotic Algo-
new technique for moving the end-effector of a rithms, a hybrid multiprocessor system which repre-
robot along a surface, without explicit knowl- sents a key component in the physical implementation
edge of the surface, in order to obtain trajectory of dual-drive control [Kazanzides, et al., 1988]. SIERA
information which can subsequently be used to also has been used to study and evaluate the conse-
identify the object. quences of automatically changing control laws as re-

quired; e.g. when surface contact is made or lost, or
Overall Approach when additional sensory information becomes available.

The IBM 7565 robot in our Laboratory for Engineer-

The approach that has been taken to achieve this ing Man/Machine Systems (LEMS) at Brown University
objective might be classified as continuous contact (controlled by STERA) will continue to represent the pri-
force/lorque sensing. Unlike isolated point sensing, mary "test-bed" for virtually all of our non-mobile robot
which is slow and provides only sparse data, this sensing experiments.
is relatively fast (assuming that surface contact is main-
tained). Moreover, this approach provides tL continuum 3 Current Status
of data points which correspond to an entire trajectory Our most recent work has focused on developing pro-
along the surface. cedures for storing and interpreting trajectory informa-

The key to much of our work is a modified application tion obtained via the strain gauge (force/torque) sensors
of a relatively new form of robot control, termed dual- mounted on the end-effector of the IBM 7565 robot, as
drive, which enables a robot to track along an upknown it moves along and around a variety of different 2-D sur-
surface at a specified speed and direction using only po- faces using the dual-drive algorithm. Before any trajec-
sitional and force/torque feedback. Dual-drive control tory information can be gathered, an object must first
represents a new form of robotic "hybrid" control. The be found. In [Bradley, 1990), a technique termed "struc-
basic idea behind this form of control is to directiy drive tured wandering" is employed to achieve this initial ob-
each link axis by an "appropriate combination" of two jective. More specifically, the search space is assumed
different Cartesian error signals, one a velocity and the to be known in size, thereby limiting the prescribed en-
other a force. The velocity error signal acts to increase vironmeat. We also assume that there are one or more
(decrease) each link rate whenever tie Cartesian velocity unknown objects in this space. This space is then parti-
is too low (high). The force error signal acts to increase tioned into N rows, which subsequently define the search
(decrease) the torque applied by each link actuator to the path, as depicted in Figure 1. Each row, and the two
end effector whenever the Cartesian force experienced by columns, are followed by force complying in the desired
the end effector is too low (high). It is of interest to note direction. In this way, the robot moves along the search
that this form of control can also be used in the case of path using a rather simple, positionst control strategy,
mobile robots, where the task can be stated as that of
moving the entire robot in a direction which is tangen- 'Future investigations will be supported, in part, by the
tial to a sensed surface (similar to end-effecior n1otion NSF and DARPA under Grant No. IRI-8905436
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Figure 2: Tracing an Object

Figure 4: Object Searching
until an object is detected. Once an object is encoun-
tered (by force detection), control is "switched" from
positional to dual-drive and the robot begins to trace time control mode between the dual-drive mode (which
the 2-D surface of the object. is used when contact has been established) and the Jcom-

Once surface contact has been established, any one of ply mode (which is used to search for the surface once
the following can occur (depending on when the desired contact is lost). If the dual-drive mode is operative and
path, robot joint limits and the object intersect). Figure contact is lost during surface following, control is au-
2 illustrates each possibility. tomatically "switched" to the fcomply mode while the

(i) If the object lies completely inside the work space, robot searches for the surface. Figure 4 depicts the gen-
the object's surface will be followed one complete time, eral path of such a search when the robot has been fol-
plus the fraction of time necessary to iitersect the oppo- lowing an object in a counter-clockwise direction. In the
site side of the object where the unblocked path would clockwise case, the mirror image of the depicted search
intersect the surface. The robot then continues along the path is implemented.
N row path. Figure 5 illustrates three situations when the robot

(ii) If the object lies partly outside of the robot's lim- might lose contact with a surface. In case (a), con-
its, then the robot can follow only part of the surface tact may be lost because either a force error is over-
without reaching a limit. The rest of the surface either compensated for, or the specified velocity is too large
must be estimated or ignored. relative to the force being used to maintain surface con-

(iii) When the robot reaches a corner of the workspace, tact. Case (b) illustrates a more likely situation where
the least amount of data is available since most of the contact might be lost as the result of an abrupt angular
object is beyond the robot's limits. Again, the rcmainder change (< 900), while surface contact will almost surely
of the surface must be estimated or ignored, especially if be lost in case (c). Once surface contact has been re-
only the immediate environment is of interest, established, control is then automatically switched back

(iv) The most complicated situation occurs when the to the dual-drive mode.
desired path splits the object in such a way that it Once the complete surface of an object has been
must be followed multiple times to obtain the n,,..imum traced, and the data collected, the object can be identi-
amount of data possible. Another possibility is Lo follow fled. The complexity of this task will, of course, depend
the object as if it were at a corner of the worksr, cc and cn our knowledge of the environment, including the as-
to then estimate the remainder. Figure 3 illustrates how sunrptiors made relative to the number, shape and type
all four possibilities could occur in a single search, of objects that might be encountered. The experiments

In certain situations, surface contact may be lost. One conducted thus far have assumed the presence of only
of the most important operations that must occur, in or- simple polygons and ellipses, thus simplifying their iden-
der to re-establish contact, is a continuous change in real- tification from surface tracking data.
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Figure 5: Losing Surface Contact (b)

One such experiment employed three simple objects -
(a four sided polygon, an ellipse and a triangle) placed
arbitrarily, but completely, within the workspace of the
robot. Figure 6 shows the actual path that the robot .20 .15 .10 .5 Is 20 2S

followed during the experiment. The contours of the
objects are easily distinguishable from the overall path.
The "glitches" that appear at certain of the vertices of (c)
the objects are, in fact, the path followed (via the fcom-
ply control mode) when surface contact was temporarily Figure 6: Experimental Data
lost. Although the ellipse is followed twice, as is evi-
dent from the actual path obtained in the experiment,
only data from the the initial tracking is depicted in play an important role in our investigations. We also
(b) and (c) of the figure. Figure 6(b) shows the actual plan to integrate vision information in the very near fu-
data collected for each of the objects. The short "gaps" ture, first to enhance object acquisition, and later to
which appear in the data are due to the fact that the complement the object recognition task via sensor fu-
data collecting frequency was only 2 IIz. As a conse- sion; i.e. simultaneously utilizing both vision and touch
quence, the gaps correspond to the "distance" between information in order to obtain an "optimal" identifier.
two consecutive pieces of data. Since the object identi-
fication scheme employed assumes a connection between 5 References
consecutive data points, this does not represent a prob-
lem from the point of view of object, recognition. Finally, [Kazanzides, et at., 1989] P. Kazanzides, N. S. Bradley
Figure 6(c) displays the actual data of each object with and W. A. Wolovich, Dual-Drive Force/Velocity Con-
the identifier estimates superimposed. Note that the two trol: Implementation and Erperimental Results, 1989
are virtually indistinguishable. More detailed informa- IEEE Conference on Robotics and Automation, Scotts-
tion about this experiment is contained in [Kawamura, dale, Arizona, Mayl4-19, 1989.
1990]. [Kazanzides, et al., 1988] P. Kazanzides, I. Wasti and

W. A. Wolovich, SIERA: A Multiprocessor System for

4 Conclusions and Future Plans Real-Time Robotic Control, Journal of Information Sci-
ences, Vol. 44 (3), pp 225-247, April, 1988.
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