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Abstract

The CMU Image Understanding Program covers a
wide range of activitics ranging from the study of
basic computer vision science, to the development
of visual sensors, to the demonstration of vision
application systems. Highlights of the progress in
this reporting period includes:
¢ Physics-based Vision
— Color and Reflection
* Color Understanding
* Unified Keflection Model
* Interreflection
- Shape, Motion, and Texture
* Robust Recovery of Shape and Motion
from Image Sequence
* Sterco by Adaptive Window
* Texture Analysis by Image Spectrogram
- High Quality Imaging
¢ Sensor Development
- Fast Analog VLSI-based Range Finder
- Photometric Sampler
¢ Vision for Object Recognition and Manipula-
tion
— Vision Algorithm Compiler
- Rock Sampling
¢ Vision for Navigation
~ Navlab Progress
* Map Building
* SCARF
* YARF
* Architecture
* Integrated System Demonstration
~ Vision for Planctary Exploration
~ Terrain Modeling for Underwater Naviga-
tion
o Parallel Vision

1 PHYSICS-BASED VISION

Over the years, CMU vision rescarchers have been working
on physics-based methods for computer vision that address
modeling physical phenomena for robust and reliable low-
level vision (Kanade, 1990]. The recent body of rescarch

in this area has begun to conclusively demonstrate that al-
gorithms derived from models of physical processes are far
more accurate and reliable than heuristically derived algo-
rithms, We have continued to make progress in this area for
color understanding, unified reflection model, interreflection,
texture analysis, and robust recovery of shape and motion
from an image sequence

1.1 Color and Reflection
Color Understanding

For color understanding, CMU rescarchers have previously
demonstrated separation of highlights from a color image
[Klinker et al., 1988] and color image segmentation by in-
trinsic object color [Klinker et al., 1990]. Both of thesc are
based on a dichromatic color reflection model [Shafer, 1985b]
that Shafer developed, and their superior results have demon-
strated clear advantage of the physics-based approach to color
understanding which relics on coherence of the physical model
rather than coherence of image color that traditional methods
have relied upon.

One of our new developments is in the arca of color con-
stancy, which is predicting and matching object colors that are
changed by variations in the color of illumination. We (No-
vak and Shafer) developed a new method we call "Supervised
ColorConstancy" in which areference image of aknown color
chart is used to make an estimate of the spectral composition
of the illumination to improve the accuracy of estimation of
color changes [Novak and Shafer, 1990]. Previous methods
for color constancy, which do not usc a reference target, ob-
tain a three-parameter description of the illuminant, and are
subject to reliability problems if their heuristic assumptions
arc not met.  With Supervised Color Constancy, we obtain
typically 8 or more parameters to describe the iflumination,
and are free from heuristic assumptions.

In addition to the estimation of the illuminant, we devel-
oped a similar computation to actuaily predict color shifts
of object colors; however, we haven’t yet performed similar
experiments with this algorithm. Finally, we propose a new
paradigm we call "Incremental Color Constancy” suitable,
for example, for a mobile robot traveliing outdoors. In this
paradigm, the color chart is not used; instead, the object colors
estimated from previous frames are used as reference colors
to estimate the illuminant in the next frame, which in tumn is
used to estimate the object colors of newly visible objects, and
soon. We have not yet implemented this proposed technique.
We are also continuing to study physics-based color reflec-




tion analysis, and are now developing quantitative models of
interreflection and surface propertics [Novak et al., 1990].

Unified Reflectance Model

Brightness of a pixcl in an image results from the reflec-
tion of lights. Thus interpretation of images requires a sound
understanding of the various mechanisms involved in the re-
flection process. Various reflectance models have been used
in computer vision and graphics to deal with various types cf
surfaces. We (Nayar, Ikeuchi and Kanade) have been working
toward a unified reflection model to describe refiection from
surfaces that may vary from smooth to rough [Nayar et al.,
1990b] (in these proceedings).

There are two approaches to the study of reflection: physi-
cal and gcometrical optics. While geometrical models may be
construed as mere approximations to physical models, they
possess simpler mathematical forms that often render them
more usable than physical models. However, geometrical
models are applicable only when the wavelength of incident
light is small compared to the dimensions of surface imper-
fections. Therefore, it is incorrect to use these models to
interpret or predict reflections from smooth surfaces. Only
physical models are capable of describing the underlying re-
flection mechanism of such surfaces.

Nayar, Ikeuchi, and Kanade first consider the Beckmann-
Spizzichino (physical optics) model and the Torrance-
Sparrow (geometrical optics) model. They were chosen in
particular as they have been reported to fit experimental data
very well. The conditions that determine the validity of each
model are carefully studied. From studying the behavior of
both models, we propose a model comprising three reflection
components: the diffuse lobe, the specular lobe, and the spec-
ular spike. The dependencies of the three components on the
surface roughness and the angles of incidence and reflection
arc analyzed in detail. This general model is capable of de-
scribing reflection from surfaces that may vary from smooth
to rough.

Shape from Interreflection

Since Horn [Hom, 1977], various techniques to extract
shape from intensities based on photometric propertics have
been developed, such as shape-from-shading and photometric
sterco. These methods, however, suffer when interrefiections,
also referred to as mutual reflections, occur.  With concave
surfaces, light rays will have multiple bounces, and points in
the scene are illuminated multiple ways. In the presence of
such interreflections existing shape-from-intensity methods
produce erroncous results,

Interreflection has been studicd extensively in computer
graphics as a forward problem, that is, prediction of light
brightness given the shape, reflectance and illumination.
However, it has been almost untouched in computer vision
as an inverse problem, We (Nayar, Ikeuchi and Kanade) have
developed a technique called shape from interreflections that
can recover the shape and reflectance of the scene in the pres-
ence of interreflections [Nayar et al., 1990al.

The method presents a solution to the inverse problem
for Lambertian surfaces of arbitrary (but continuous) shape,
with possibly varying and unknown refiectance (albedo). The
shape and reflectance recovery algorithm works as follows.
First, a local shape-from-intensity method is applied to the
concave surface to obtain "pscudo” (crroncous) estimates of

shape and reflectance. Our solution is based on the observa-
tion that the pseudo shape and reflectance, though erroncous,
carry information about the actual shape and reflectance of the
surface. The pseudo shape and reflectance are used to model
the interreflection effects. 'We show that the pseudo shape
is generally "shallower” than the actual shape and hence ex-
hibits weaker interreflections, These interrefiections are used
to compensate the pseudo shape and reflectance estimates to
obtain better estimates of shape and reflectance. This shape
and reflectance is again used to model interreflections to ob-
tain even more accurate estimates. Shape and reflectance esti-
mates are iteratively refined to finally converge to the correct
shape and reflectance. A detailed analysis of convergence is
given for the simple case of two planar surface elements. Con-
vergence for the more general case is discussed and demon-
strated by numerous simulation results. Several experimental
results of real objects demonstrate the robustness, accuracy,
and practical feasibility of the proposed algorithm.

1.2 Shape, Motion, and Texture

Robust Extraction of Shape and Motion from Image
Sequence

In principle, the shape of an object can be computed from
a sequence of images by first estimating camera motion and
depth, and then inferring shape from the depth values. In
practice, however, when objects are distant from the camera,
relative to their size, this computation is ill-conditioned. First,
the translation component along the optical axis is difficult to
determine, becausc the image changes that it produces are
small. Second, shape values are very sensitive to noise if they
are computed as the small differences between large depth
values.

We (Tomasi and Kanade) have developed a theory [Tomasi
and Kanade, 1990] (in these proceedings) that circumvents
those difficulty by inferring shape directly from variations
in the relative position of image features, without computing
depthaas an intermediate step. We show that shape and camera
rotation can be inferred precisely from many features and
frames, without assuming any model for the motion.

Our theory is based on the observation that the geometrical
constraints due to incidence relations among projection rays
can be expressed as the degeneracy of a matrix that gathers all
the image measurements. To our knowledge, this observation
has not previously appeared in the literature. We have shown
that if noise were not included in the measurcment, the matrix
has rank 3. With noise, as is always the case in practical
situations, the constriaints can be precisely expressed by the
concept of approximate rank [Forsythe et al., 1977). This
theory reduces computation of shape and motion from an
image sequence to decomposition of the measurement matrix.

The resulting algorithm, tested for the case of camera mo-
tion in 2D, gives very precise motion and shape estimates,
without using any smoothing or relying on any motion con-
straints.

As an illustration of our theory, we used our algorithm to
recover the shape of a one-dollar silver coin (about 4 cm in
diameter) placed at 3.5 meters from areal moving camera with
along lens. The total rotation of the camera was 30 degrees
around the coin (and in the midplane of the coin). The error in
the computed angle of camera rotation was always less than
a tenth of onc degree, and usually substantially smaller. The




error in the shape of the coin was always less than 1.5 percent
of its diameter, and typically considerably smaller.

Stereo by Adaptive Window

A central problem in stereo matching by computing corre-
lation or sum of squared differences (SSD) lies in selecting an
appropriate window size. If the window is too small and docs
not cover enough intensity variation, it gives a poor disparity
estimate, because the signal (intensity variation) to noise ratio
is low. If, on the other hand, the window is too large and
covers arcgion in which the depth of scene points varies, then
the disparity within the window is not constant. As a result,
the position of maximum correlation or minimum SSD may
not represent a correct estimate of disparity. For this reason,
an appropriate window size must be selected locally. There
has been, however, littlerescarch directed toward the adaptive
sclection of matching windows.

The stereo algorithm we (Kanade and Okutomi) propose
selects a window adaptively by evaluating the local variation
of the intensity and the disparity [Kanade and Okutomi, 1990}
(in these proceedings). We employ a statistical model that
represents uncertainty of disparity of points over the window:
the uncertainty is assumed to increase with the distance of the
point from the center point, This modeling enables us to assess
how disparity variation within a window affects the estimation
of disparity. As a result, we can compute the uncertainty of
the disparity estimate which takes into account both intensity
and disparity variances. So, the algorithm can search for
a window that produces the estimate of disparity with the
least uncertainty for cach pixel of an image. The method
controls not only the size but also the shape (rectangle) of the
window. The algorithm has been tested on both synthetic and
real images, and the quality of the disparity maps obtained
demonstrates the effectivencss of the algorithm,

Texture Analysis

We have started a new effort in the area of texture analysis,
and arc now examining "space/frequency distributions” for
vision. In particular, we (Krumm and Shafer) introduce the
image spectrogram for machine vision [Krumm and Shafer,
1990] (also in these proceedings). The image spectrogram
is a function that tells, for cvery point in the image, how
much energy is present at each spatial frequency within the
neighborhood of that point. The use of such space/frequency
distributions is not completely new for machine vision — they
have been used for 2D texture segmentation in the past. How-
ever, we are showing now how they can be used for 3D vision
as well, to unify the analysis of various phenomena that have
in the past always been studied independently. We begin
with a re-formulation of shape-from-texture-gradients in the
Fourier domain, which amounts to fitting a cubic function
to the formants in the image spectrogram. Interestingly, this
analysis docs not require any traditional feature-finding such
as edge detection before the 3D analysis. Next, we show
how aliasing is caused by pixel resolution, and tie that in
with the shape-from-texture theory to show the limits of 3D
reconstruction, Aliasing causes artifacts in the image such
as Moire patterns, which are very confusing to most vision
methods, However, we show that with a computer-controtled
zoom lens, the Moire patterns can actually be analyzed to yield
a super-high-resolution image that shows spatial frequencies
far above (i.c. fincr than) the pixel resolution. This allows

much more accurate estimation of 3D surface shape. Finally,
we cxaminc the image properties that are related t0 precision
(i.e. resolution) and accuracy (i.¢. false matches) instereo and
motion analysis. We show that the image spectrogram, and
the "repeatogram” derived from it, appear to capture much
of the relevant information and might be used to cvaluate
the reliability of feature points for image-to-image matching,
The general conclusion is that the space/frequency distribu-
tion makes it possible to unify very disparatc phenomena in
spatial vision, in particular showing how geometry-domain
and Fouricr-domain factors are interrclated and can be jointly
analyzed.

1.3 High Quality Imaging for Computer Vision

Endemic to all quantitative vision analysis is the nced for
very high quality images. We have addressed this in two
ways: by improving our hardware facilities, and by improving
image quality using active camera control. Our hardware for
physics-based vision is the Calibrated Imaging Laboratory
(CIL), a unique facility for acquiring images in a controlied
environment using an optical studio with specialized lighting,
high-precision imaging equipment and motion platforms, and
calibration instruments and targets. One of the distinguishing
features of CMU vision activities is that we back up our theory
by precise and quantitative experiments. The CIL has been
the major instrument for this approach.

Since its founding in 1985 [Shafer, 1985a), the CIL has been
one of the most comprehensive facilities for controlled exper-
iments in machine vision. In the last year, we have moved tca
much larger room, built high-precision automated lenses and
motion platforms, and acquired a new high-precision CCD
camera, We are currently building a "software control panel”
to run all the equipment from a SUN workstation. As always,
the CIL is available to interested rescarchers to come and
collect data, by making arrangements with us (Shafer).

We (Willson and Shafer) also are investigating how to im-
prove image quality by active camera control, using active
control of lens parameters and camera motion to correct for
undesirable optical artifacts [Novak et al., 1990]. We have ob-
served that for a wide varicty of 35mm and video Ienses, chro-
matic aberration causes noticeable mis-registration of images
from one color band to the next. Using our high-precision,
stepping-motor lens, we can now compensate for this by ad-
justing the zoom and focus cach time we change color fil-
ters. In this way, we have reduced chromatic aberration in
our automated lens from about a 3-pixel mis-registration to
about 0.2 pixels, resulting in very noticeable improvements in
such computations as color histograms. We arc now studying
"constant-magnification focusing", in which the magnifica-
tion change induced by focusing is neutralized through active
zoom control, Thus, as we focus the lens, we also zoom it
minutely to keep the image at a constant magnification.

2 Sensor Development

A Very Fast Analog VLSI-based Range finder

Rangefinding, the measurement of the three dimensional
profile of an object or scene, is a critical component for many
robotic applications. We (Kanade, Gruss and Carley) have
been developing a range finder (see figure 1), which can pro-
duce 100 to 1000 frames of range images per second by using




VLSI technology integrating photosensing and analog signal
processing [Kanade et al., 19891,

Among many different rangefinding techniques, light-stripe
rangefinding is one of the most common and reliable methods.
A conventional light-striperangefinder operates in a step-and-
repeat manner — a stripe source is projected on an object, a
video image is acquired, the position of the projected light
stripe is extracted from the image, the stripe is stepped, and
the process repeats. Though practical, range acquisition rates
achicvable using this method are severely limited; typically,
on the order of onc second is required to acquire a complete
range image.

Geometrically, our range finder is based on the lightstripe
range scnsing method, but operationally it is different and
time-based. Qur rangefinder uses a specialized VLSI sensor
which gathers range data as a scene is swept continuously by
a moving stripe. The sensor consists of a two-dimensional
array of smart photoscnsitive cclls. Each cetl has circuitry
that detects and remembers the time at which it observed the
peak incident light intensity during a sweep of the stripe. A
given cell predefines a unique line of sight, and the recorded
time determines a particular orientation of the plane. Thus,
in a single pass of the light stripe over the scene, sufficient
information is gathered to extract the ranges at all the pixels.
Thus an entire range map is acquired in paratlcl, and the total
time of acquisition is independent of the range map resolution,
typically 1 to 10 msec.

The novelty of this approach is the use of integrated smart
sensors, sensors which provide processing at the pointof sens-
ing by the use of VLSI technology — the ability to integrate
photoreceptors, analog circuitry, and digital logic on a single
CMOS die. After testing a few basic cell designs, we have
fabricated several small arrays of smart cells (6 x 10,4 x 4,
and 5 x 5): sce figure 2, The cell size is approximately 200
pm x 200 pm. The operation of those arrays has been con-
firmed in a rangefinder testbed with a laser and optics, and
we could obtain signals from the chip that corsespond to the
sensing speed up to 800 frames per second. Currently we are
fabricating a larger array (28x30).

Photometric Sampler

By making surface smoothness assumptions, the unificd
reflectance model described above is reduced to the hybrid
model; a lincar combination of Lambertian and specular
components. Using the hybrid model, we (Nayar, Ikeuchi,
Kanade) have developed a device called photometric sampler.
The object surface is illuminated using multiple extended light
sources, and a set of images, one for cach illumination, is taken
from a single dircction. An extraction algorithm uses the sct
of image intensity values measured at each surface point to
compute oricntation as well as the relative strengths of the
Lambertian and specular reflection components. At the last
workshop we have reported a 2D version of the device [Mayar
et al., 1989]. The results have shown high accuracy in mea-
sured oricntations and estimated reflectance parameters for
Lambertian surfaces, specular surfaces, and hybrid surfaces
whose reflectance model is composed of both Lambertian
and specular components. In this period, we (Sato, Nayar,
and Ikeuchi) have built a 3D version of the device (see figure
3),which is being tested for the use of surface inspection, such
as IC wafers.
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Figure 1: VLSI range sensor chip layoutof a 5 x 5 array

Figure 2: A range finder testbed. It consists of a laser scanner
(on the right) and a camera optics (on the left). A VLSI sensor
chip is mounted at the film plane of the camera.




Figure 3: Photo of the 3D Photometric Sampler

3 Vision for Recognition and Manipulation

3.1 Vision Algorithm Compiler

A Vision Algorithm Compiler (VAC) is a technigue that we
have been developing over the years as an alternative o the
traditional method of "hand-coding” model based vision sys-
tems {Ikcuchi and Kanade, 1988a). Rather than requiring
extensive time from highly skilled implementors, a VAC gen-
crates a strategy for a well-defined vision task automatically,
given adequate models of objects, sensors, and processing
techniques. Working off-linc, a VAC analyzes models and de-
termines a vision strategy. Later, an application system uses
the strategy on-line to perform the specified task. We have
worked on modeling scnsors [Ikeuchi and Kanade, 1988b],
a frame-based geometric modeling system [Kanade et al.,
1988], and an example system for bin-picking task [Ikcuchi
and Kanade, 1988a).

We (Tkeuchi, Gremban, Wheeler, Hong) have been working
on a compiler for the task of object localization (hence, we
refer to our compiler as a VACL - Vision Algorithm Compiler
for Localization). In an object localization task, the object
is known, but its position and oricniation ar¢ unknown, The
VACL uses CAD models of objects, sensor models, and a
predefined sct of processing algorithms to generate a strategy.

We decompose the task of object localization into two dis-
tinct subtasks:

¢ aspect classification — An image of an object is ciassificd
into onc of a small number of topologically distinct ap-
pearance groups called aspects, Each aspect represents a
collection of viewpoints within which the object "looks
roughly the same.”

¢ lincar shape change - Aspect classification yiclds only
a rough cstimate of the position and oricntation of an
object. However, this rough estimate can be used to ini-

tialize a more accurate procedure which matches model
features to observed image featurcs,

For aspect classification, we have previously developed a
method to gencrate a classification strategy by performing
recursive sub-divisions of possible aspects. However, such
method docs not generate an optimal strategy; it only gener-
ales a strategy among several possible strategies,

This year, we have developed a module that generates a
minimum cost strategy for aspect classification {Hong et al.,
1990]. We can define a space of all possible classification
strategics. Each cntry in the space represents one strategy
having a particular order of applying fcatures for aspect clas-
sification. Given costs obtaining fcatures and probabilitics of
occurrences of aspects, we can assign a computational cost
to cach cntry (a strategy) in the space. The module searches
through the space using a branch-and-bound method and se-
lects the one that minimizes the expected computational cost
of aspect classification,

For determining lincar shape change, we have developed a
module that precomputes the procedures needed to determine
accuraic position and orientation, given the initial estimate
from aspect classification {Ikeuchi and Hong, 1989]. The
module repeats the foliowing process at each aspect. First, the
module examines visible faces at cach aspect and determines
the most reliable face among them, Using the characteristics
of the face, it determines a strategy 1o sct up a local coordi-
nate on the face; then, it embodies the procedures necessary
to exccute the strategy as well as the transformation between
the local coordinate system and the body coordinate system
of the object. Third, it cmbodics a procedure to match visible
cdges to visible model edges. Finally, it embodics a proce-
dure to determine the position and oricntation precisely, by
solving edge-maiching equation iteratively given edge corre-
spondences by the previous procedure,

In the next vear, for examining the VACL's applicability,
we plan to apply VACL and its environment to several vision
tasks such as SAR image recognition, gencration of optimal
sepsor strategies and robot assembly task recognition system,

3.1.1  Sampling of Rocks

We (Hcbert, tkeuchi, Delingeticr) have developed a vi-
sion and manipulation system to coliect small rocks [Choi et
al., 1990) as an example of task-oricnted vision [Tkeuchi and
Hebert, 1990] (in these proceedings) for dealing with natural
objects with Iess weli-defined shapes. Our goal is to eventu-
ally integrate the system into the CMU Ambler, a six-legged
autonomous robot for planctary exploration.

The rock sampling system we developed includes: a robot
arm, a range finder, and a small terrain mock-up that contains
sand and small rocks. The goal of the rock sampling system
is 10 identify, locate, and pickup rocks from the terrain,

The perception subsystem uses a 240x256 range image of
the scene as input. Three typas of features are extracted from
therange image: shadows, edges, and surface discontinuitics.
The features give an indication of where the boundaries of
the objects may be located in the scene. The algorithm con-
trols the growing of the boundary by modeling each feature
as a generator of forces that attracts the boundary, Following
the force ficld, the boundary moves towards the surrounding
features, This approach allows us to locate objects in the
scene even when only a very small number of visual features




are extracted from the image. This departs from other vi-
sion systems that implicitly assume that strong and reliable
features can always be extracted, and therefore would not per-
form well in the type of unstructured environment that we are
considering.

For representation of extracted objects, we approximate the
set of 3-D points by a superquadric surface. The superquadric
fitting algorithm is a gradient descent on the parameters of the
surface.

We currently use a vertical manipulator that can translate in
a X-Y plane, translate along the Z-axis (that is orthogonal to
the scene), and rotate about the Z-axis. This configuration is
suitable because the target vehicle, the Ambier, will provide
the X-Y motion thus allowing for positioning of the effector
precisely above the target sample. The current design of the
gripper is a scaled down version of an excavation tool. This
design allows for penctration of soft terrain, and it allows for
other sampling operations such as scooping.

We have demonstrated the cycle of perception, representa-
tion, and manipulation on a varicty of terrains. The experi-
ments have shown that the system performs well even in the
presence of difficult, unstructured terrain.

4 Vision for Navigation

4.1 Navlab Vision Progress

We (Thorpe, Hebert, and Kanade) have been working on the
CMU Navlab, an integrated visual navigation system [Thorpe
and Kanade, 1989] (Thorpe, 1990]. In this period we con-
tinue to make progress in advancing componcnt capabilities,
architecture, and system demonstration.

Map Building by Active Sensor

Use of active rangefinder (ERIM) images has been one of
the major Naviab vision activitics [Hebert and Kanade, 1988].
We (Hebert) have continued the development of a robust map
building system using the ERIM range finder images for the
Navlab [Hebert, 1989al. The map building procedure is made
robust by fusing information from multiple sources: 1) using
the position information from the INS; matching well-defined
discrete objects between frames before altempting to match
terrain descriptions; and representing explicitly uncertainty
and confidence to produce an accuratc map and to remove
spurious itcms from the map.

Matching objects is not very expensive in our case because
we have only a few objects to match in cach frame and because
we can assume that we have a reasonable cstimate of the dis-
placement between frames from INS or dead-reckoning. One
of the most difficult issucs is to detect and remove spurious
objects. Spurious objects appear in two cases: 1) noise in the
range image causes the object detection program to halluci-
nate, and 2) moving objects (e.g. peopic) crossing the field
of view are detected as objects. The problem of spurious ob-
jects is solved by calculating a confidence measure for cach
objcct, based on a sensor model and repeated observations of
the object in its expected location,

The map building and matching is now integrated in the

Navlab system and has been demonstrated in complex navi-
gation scenarios.

SCARF

We (Crisman) have completed the work for SCARF, Su-
pervised Classification Applied to Road Following, which
tracks roads by adaptive color classification [Crisman, 1990],
SCARF runs in a loop of: classify image pixels, find the road
model that best matches the classified data, and update the
color models for classification. The models of road color and
geometry used by SCARF make very few assumptions about
the road, and make SCARF run robustly even when following
unstructured roads.

SCARF represents multiple color classcs, as Gaussian dis-
tributions in full RGB color, and calculates probabilities.
SCAREF typically uses four color classes to describe road
appearance, and four for off-road objects. Pixels are com-
pared to each of the cight classes, and are given both a label
and a probability. In our experiments, any simplification of
the system (using monochrome or color combinations, or us-
ing binary thresholds instead of probabilities, or assuming
uniform variances for all classes) reduced the ability of the
system to handle difficult situations, such as dirt roads, leaves
on the road, and dark shadows.

SCAREF uscs a very simplc model of road geometry, Roads
are considered to be locally straight and flat. The only free
parameters are the road’s angle and horizontal offsct relative
to the vehicle. While this representation will not accurately
represent curves or hills, it is relatively insensitive to minor
misclassifications and local road imperfections. Our simple
model allows rapid cvaluation, and thus lets us tuild new
road models as we drive, and compensate for curves or hills.
The various versions of SCARF, some of which have been
implemented on the Warp parallel supercomputer, have driven
the Navlab along bicycle paths, dirt roads, gravel roads, and
suburban streets, as well checking intersections.

YARF

Currently we (Kluge, Aubert, and Thorpe) are developing
the YARF (Yet Another Road Follower) system. It explic-
itly models as many aspects of road following as possible,
for driving on structured roads [Kluge and Thorpe, 1990]
[Aubert and Thorpe, 1990). Highways, freeways, rural roads,
cven suburban strects have strong constraints. Modeling these
explicitly makes rcasoning casier and more reliable. When
a line tracker fails, for instance, an explicit model of road
and shoulder colors adjacent to the line helps in deciding
whether the line disappeared, became occluded, tumned at an
intersection, or entered a shadow. This kind of gcometric
and photometric reasoning is vital for building reliable and
general road trackers.

YAREF has individual knowledge sources that know how to
model and track specific features, such as road edge mark-
ings (white stripes); road center lines (yellow stripes); and
shoulders. YARF also uses an cxplisit gcometry model of the
road, consisting of location of vehicle on road; location of
stripes; type of stripes (¢.g. broken or solid); and maximum
and current road curvature. Figure 4 shows tracking yellow
and white lincs through dappled shadows.

YARF is designed for higher speeds than SCARF, and runs
in a more predictable environment. The combination of mul-
tiple trackers controlled by explicit models of road geometry,
vehicle motion, and tracker performance, has allowed YARF
to run the Navlab up to 15 kph using a single Sun 4. Future



Figurc 4: YAREF tracking yellow and white lines in complex
shadows

work will expand YAREF to run on a multiprocessor, and will
begin automatically interpreting tracker failures, to recognize
and negotiate intersections and other scene phenomena,

EDDIE — Architectural Toolkit

Robots are physical problem-solving systems, and thus oc-
cupy a unique scientific and design niche and require unique
processing and models. Robots are certainly physical sys-
tems, and robot designers can certainly borrow technology
from physical systems such as signal processing and control
theory. Many robots are also problem-solvers, and use idcas
from symbolic systems, particularly Artificial Intelligence and
high-level Image Understanding. But there remains an in-
termediate "robotics” level which is the peculiar domain of
robotics research,

Our new EDDIE system (Efficient Decentralized Database
and Interface Experiment) provides an architectural toolkit
that supports this view of mobilc robots. Rather than forc-
ing an artificial standard for flow of control or daia, EDDIE
enables building specialized architectures for individual ve-
hicles and applications. EDDIE begins with a new low-l¢vel
controller [Amidi, 1990), which provides fast dead-reckoned
position e<*'r \ation and real-time trajectory tracking, Com-
munications between modules, and to the controller, are fast,
simple, point-to-point links with no central module bottle-
neck. Map issues are effectively divided into local and global
representations.

EDDIE has been used to build several different architec-
tures. The simplest systems use only a single perception mod-
ule and the controlier to do road following. The most complex
systems we have built with EDDIE us : scveral different road
following modules, plus landmark detection, emergency stop,

and map position update, along with Annotated Maps for mis-
sion planning and execution.

In EDDIE, global, permanent, maps are handled by the scp-
arate mechanism of "annotated maps". Annotated maps start
with a gecometric representation of objccts, such as roads, in-
tersections, and landmarks. Annotations hold a wide variety
of knowledge, both procedurat and declarative, tied to a par-
ticular map location or object. Triggers are a special form of
annotations, monitored by the EDDIE map manager. When
the vehicle reaches the trigger’s location, the map manager
automatically sends a specified message to a named module.

Integrated System Demonstration

The most ambitious mission we have performed to date is
a 0.4 mile run on unmodified suburban streets in Pittsburgh’s
North Hills. This run involved driving on curving streets;
turning through intersections; stopping for unexpected obsta-
cles; finding landmarks and updating vehicle position,

We built a map of the route, driving the Naviab by hand
and using the laser scanner to record the location of 3-D
objects. During the run, the vehicle started moving slowly,
while it found landmarks to initialize its position. A trigger
then caused the vehicle to speed up until itapproached the first
turn. At that point, triggers caused various modules to slow
the Navlab, find 3-D objects, match them against the map,
and update the vehicle's position estimate. Through the turm,
vision was not able to see the road, so another trigger caused
dead reckoning to take control until the vehicle was lined up
with the next road, when the road was again in the ficld of
view and vision could resume control. The run proceeded in
this fashion until the final triggers, which matched the mailbox
at the destination with the map, and brought the vehicle to a
stop.

Others

Other progress includes: anew trajectory planner for cross-
country navigation in rough terrain [Stentz, 1990}; rule-based
road scene analysis [Fujimore and Kanade, 1990); and recog-
nition of cars in outdoor scenes [Kluge et al., 1990]

4.2 Rugged Terrain Perception for Planetary
Exploration

Under the sponsorship of NASA we have been developing a
six-legged autonomous walker (Ambler) for planetary explo-
ration [Bares et al., 1989]. Research on its perception system
has strong relationships to the Image Understanding Program,
so it is briefly reviewed here.,

There arc two complementary aspects of the terrain that are
important for locomotion: shape and material. Our resea.ch
has concentrated on shape, with a smaller effort to identify
material properties.

We describe terrain shape as an ¢levation map. We have im-
plemented a mapping system that builds and maintains a com-
positeelevation map, given (a) a sequence of laser rangefinder
images and (b) the motion between images. In addition to the
clevation, the system computes the elevation uncertainty, lo-
cal slope, visibility, and foothold goodness (measure of terrain
flatness in a foot-size neighborhood) [Caillas ef al., 1989],

Material properties of interest for locomotion include soit
density, soil grain size, soil cohesion, and internal angle of
friction. Using thermal imagery acquired by an infrared cam-
cra we have successfully demonstrated techniques to classify




Figure 5. A composite terrain map

outdoor terrain regions as "sand" or "rock,” based on a model
that relates observed temperature to thermal inertia, and ther-
mal inertia to soil density and grain size [Caillas, 1990]. Us-
ing force/torque sensing we have developed the capability to
determine the stiffness and friction characteristics of terrain
[Krotkov, 1990].

We have successfully demonstrated a pixel-based terrain
matching algorithm to estimate the vehicle motion from a
sequence of hundreds of range images. The matching proce-
dure requires an initial estimate of the displacement, typically
from an INS, and then uses that estimate to seed an itera-
tive minimization procedure. Using the computed vehicle
motion, we merge the range images into a composite map
using maximum likclihood estimation. Figure 5 is the result
of merging 125 images from the Martin Marictta ALV test
site. 'We havc also shown how to improve the accuracy of
the composite map by incorporating prior information in the
form of a coarse-resolution clevation map [Hebert et al., 1989,
Kweon and Kanade, 1990].

4.3 Terrain Modeling for Underwater Navigation

As the third application domain of autonomous navigation,
we (Hebert and Langer) are also working on underwater ter-
rain modcling for autonomous underwater vehicles (AUV) in
collaboration with Florida Atiantic University. The rescarch
involves building maps from sonar images that can be used in
the control of an AUV,

Our current work is divided into four parts [Hebert, 1989b):

¢ Image processing: Sonar images require a significant
amount of image processing in order to reduce the ef-
fects of medium attenuation, speckle noise, background
noise, ctc. We have developea techniques that enhance
the image so that objects, shadows, and major terrain
features can be detected.

o Object detection: We have developed a technique to
extract objects from sonar images using the gcometry of
the acoustic shadows.

¢ Qualitative terrain modeling: In sonar images, it is more
difficult to build a precise quantitative terrain representa-
tion due to the poor resolution and accuracy of the sensor.
We are investigating a more qualitative representation of
the terrain in which terrain regions are represented by
bounds on their elevation and slope.

¢ Map building: Building maps from sonar images in-
volves merging the qualitative maps generated from in-
dividual images.

The goal is to integrate map building system into an anno-
tated map system and to demonstrate it on a vehicle currently
being built by FAU.

5 Parallel Vision

We (Wcbb) are developing an architecture-independent
mcthod for programming both local and global image process-
ing functions on parallel architectures. We have developed
the split and merge programming model for these operations,
and realized this model in the Adapt programming language.

In Adapt, the programmer breaks the algorithm down into
four parts: First, a function that is executed before anything
clsc; Next, a function that is executed once per pixel; Combine,
a function that combines the results of two adjacent regions of
rows of the image; and Last, a function that is executed after
everythingelse. It can be shown that this programming model
allows the implementation of any local or global operation that
can be computed in forward or reverse order over the image.

We have implemented Adapt on a number of architectures:
Warp (in two separate implementation, partitioning the image
cither by rows or by columns) and on Nectar, as well as on
the Sun,

We have also implemented a number of different global im-
age processing operations in Adapt, including histogram, con-
nected components, minimum bounding rectangle, run-Iength
encoding, quadtree generation, and so on. These operations
allow us to compare the performance of Adapt with previous
work; our results show remarkably good performance. For
example, both histogram and connected components perform
better in Adapt than in the original hand-coded Warp W2
programs, which were carefully optimized when they were
originally written.
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0 Introduction

This report covers the research investigations of the
Vision/Robotics Laboratory at Columbia University from April, 1989,
to June, 1990. Three faculty members and 19 Ph.D. students are
working on about a dozen projects in computer vision, with several of
the projects involving other researchers in the department, in the
university, or in the ccrporate research centers of AT&T, IBM,
Phitips, or Seimens.

The main body of this report details the goals, signiticance,
and accomplishments of these projects, and follows this introduction.
This introduction itself is an executive summary in two parts. The
first part reviews some of the notable achievements of our graduate
sludents over the past 14 months. The second part is a capsule
outline of the rest of the report, summarizing our interests and
results, together with the principal researchers associated with them,
It includes not only "pure” image understanding work, but aiso our
work on the wvision-related aspects of assembly and navigation
robotics.

0.0 Notable Graduate Student Achievements

At the 1989 |EEE Computer Society Conference on Computer
Vision and Pattern Recognition, Larry Wolff published four papers
(56, 57, 58, 59), placing Columbra second in the number of papers
accepted.

At the 1990 IEEE International Conference on Robotics and
Automation, Monnett Soldo's paper on wvisual robot navigation,
“Reactive and Preplanned Control in a Mobile Robot" [42], was a
finalist in the Best Student Paper competition.

In its nine years, the Vision/Robotics Laboratory has produced
nine PhD students; the past year we are pleased to have graduated
four. In alphabetical order, they are. Michalis Hatzitheodorou,
"Shape from Shadows. Theoretical and Computational Aspects” [23],
Mark Moerdler “"Shape from Textures. A Paradigm for Fusing Middle-
Level Visual Cues"{34}; Ajit Singh "Image-Flow Computation:
Estimation-Theoretic Framework, Unilication and Integration” [38);
and George Wolberg "Separable Image Warping: Implications and
Techniques” [53).

0.1 Low-level Vision

0.1.1 Image Flow

A new framework classifies image-flow information into
conservation and neighborhood informaiion, and fuses them using
estimation-theoretic techniques, allowing estimation of discontinuous
{low-fields without blurring at motion discontinuities. It unifies and
integrates the three prior approaches. gradient based, correialion-
based, spatiotemporal energy-based, it produces the least mean
squared error. (Ajit Singh [37, 38, 39, 40)).

This work was supported in part by the Defonse Advanced Research Projects
Agency under contract N00039-84.C.0165

0.1.2 Image Warping

A survey and analysis of different aspects of digital image
warping, containing considerable amounts of C code, has been
published. A nove! data structure and algonthm does warping to and
from amitrary shapes. A new, highly efficient, general method
(patent applied for) achieves 2-D image warps by separating into two
successive 1-D warmps; soon to be available in X-windows. Novel,
sensor-based image restoration algonthms that are local and
inexpensive have been designed and tesled, exceeding existing
ones. (George Wolberg, and Terry Boult [51, 52, 53, 54, 55}).

0.1.3 Polarization and Physics-Based Vision

The POLARIS system uses polarization information to classify
surface material, separate highlight'diffuse components of an scene,
and compute local surface orientation  Polarization computations
detect occluding contours on diffusely reflecting dieleclrics. An
approximation resulls in a near real-time system for material surface
classification on the PIPE. The methodology applied to graphics
yields more realistic imagery of reflecling surfaces. Additionally,
photometric flow fields determine local surface orientation from a
continuous vanation of photometric stereo. Also, a new invanant in
two-camera stereo allows the determination of the orientation of lines
and surlaces, insensitive to baseline measurement error. Most
recently, the photometric invariant of isophotes at parabolic points is
shown to be the projection of a principal direction of zero curvature,
enabling qualtiative surface onientation analysis. (Larry Wolif, Dave
Kurlander, and Terry Boult [56, 57, 58, 59, 60, 61, 62, 63, 64)).

0.1.4 Color Contrast

Experiments in simultaneous color contrast contradict the
predictions of traditional models, and specify constraints for neural
network models  (Billibon Yoshimi, and Qasim Zaidh of the
Psychology Department [65}).

0.1.5 Replication Lab
Several algorithms not nvented here
reimplemented for study. (Terry Boult ).

have been

0.1.6 Languages for Sensors
"Sensor-C” is under development. (Terry Boult ).

0.2 Middle-Level Vision

0.2.1 Multiprocessor Surface Interpolation

Analysis and novel SIMD encoding of several existing
algorithms for depth interpolation leads to two novel, uptimal
techniques that mimmize interprocessor commuricatiori.  {(Dong
Choi, and John Kender {17, 50)).




0.2.2 Shape from Texture Autocorrelation

Distortions in image autocorrelation provide a method for
shape-from-texture, it runs in parallel on the Connection Machine.
(Lisa Brown, and Haim Shvaytser of SRI Sarnoff Research Center
[15, 16)).

0.2.3 Fuslon of Shape from Textures

Based on the "augmented texel” data structure, a new method
segments and classifies textures according to the relative
contributions of independent texture methods to a fused texture
percept. (Mark Moerdler [34)).

0.2.4 Shape from Shadows

An optimal algorithm for shape from continuous shadows runs
in parallel, with provably minimal error. Regularization methods
allow it to approximate as well as interpolate efficiently. Applied to
laser hght beams, the method puts a theoretic optimal foundation
under light stnping, better, it exploits shadow information. (Michalis
Hatzitheodorou (23, 24, 25, 26)).

0.2.5 Dynamic Digital Distance Maps

The complexity of efficiently updating digital distance maps in
dynamic, high-dimension, environments is analyzed, and the method
is implemented. (Terry Boult {10)).

0.2.6 Generalized Cylinders

The contour image of a straight homogeneous generalized
cylinder is shown to leave two, and only two, parameters
unconstrained. A method for ruling the contour image allows the
recovery of object tlt and axis location, given the additional
intormation of intensity values along extremal cross-section curves.
(Ari Gross, and Terry Boult [18, 19, 20, 21, 22)).

0.2.7 Energy-Based Surface Segmentation

A sequential energy-based segmentation system allows
testing of different grouping heuristics, implementation on a
Connection Machine is nearly complete. The energy computation is
novel. based on reproducing kernel splines, and us.ng more robust
(L-1 and L-infinity) error measures, it is especially efficient for sparse
data. (Terry Boull, and Mark Lerner {11, 12, 13, 14]).

0.2.8 Flexible Extruded Objects

A non-iterative transform applied to range data derives the
radius of flexible extruded objects, such as wires and tubes. The
other six degrees of freedom (position, orientation, curvature) are
derived by the system from novel Hough-like parameter spaces: a
total of seven dimensions, but efficient and seli-limiting to noise.
(John Kender, and Rick Kjeldsen of IBM T.J. Watson Research
Center [29)).

0.3 High-Level Vision and Systems

0.3.1 Robust Visual Robot Navigation

Algonthms for the representation of space and free-space path
planning have been surveyed. Preplanned and reactive control are
integrated 1n an architecture that achieves robust autonomous
navigation in an AT&T mobile robot, in over 100 runs. Its edge-
tracking filter. and its mechamism for recording ground truth are also
novel. (Monnett Soldo (41, 42, 43, 44)).

0.3.2 Model-Based Active Sensing

Haptic recoy aon via active exploration with a instrumented
robot hand is achieved by combining geometrnic constraints,
interpretation tree methods, and exploratory moves. Applicable to
visior,, constraints from paired ine segments drive cost functions to
determine the next sensor move. Oplimal rotational parameters are
developed using quaternions. {Ken Roberts [35, 36)).

0.3.3 Vislon Planning

The complete locus of camera poses and optical settings that
satisfy visibility, field-of-view, resolution, and focus requirements for
a given object have been analytically determined and implemented,
coverage and efticiency greally exceed existing generate and test
methods. (Dino Tarabanis, Peter Allen, and Roger Tsai of IBM T.J.
Watson Research Center (45, 46, 47, 48, 49)).

0.3.4 Topological Navigation by Landmarks

Topological visual navigation in two-dimensional spaces by
following directions to landmarks has been formalized and
implemented with a bhand-held camera. Navigators seek on
topology, and adjust on symmetry. (John Kender, Avraham Leff, II-
Pyung Park, and David Yang [27, 30, 31, 32)).

0.3.5 Visual Servoing

Objects moving with arbitrary trajectories are tracked by the
PUMA arm in real-time, using PIPE visual input, a video is available
Real-time grasping of moving objects by the Utah hand is under
development, (Peter Allen, Aleksandar Timcenko, and Billibon
Yoshimi [5}).

0.3.6 integrated Hand-Eye Systems

A hand-arm system controlled by a task description language
grasps and manipulates objects based on a robust line-based stereo
system that recovers 3-D axes of surfaces of revolution. (Peter Allen,
Paul Michelman, and Ken Roberts [1, 2, 3, 4, 6, 7, 8, 33)).

0.3.7 Sensor-based Volume Reglstration and Recovery

In an initial implementation, the PROVER system numerically
recovers the parametric representations of volumes from many types
of sensor data. The causes of misregistration in rnedical volume
date has been surveyed. (Lisa Brown, and Terry Boult).

0.3.8 Bayesian Analyses for Image Interpretation Systems

A novel bayesian network strategy is under development
(Michelle Eaker, and Terry Boult [9]).

We now detail these efforts, many of which are documented
by full papers in these proceedings In each of three major
groupings, the research is presented in order of relative maturity’
from dissertations and full papers, through work in progress, to
nascent investigations.

1 Low-level Vision

1.1 Image Flow

Visual motion is a majr source of three-dimensional
information. It is commonly recovered from time-varying imagery in
the form of a two-dimensional image flow field.

A new framework classifies the image flow information
avaifable in time-varying imagery into two categories-- conservation
information and neighborhood information. Each type of information
is recovered in the form of an estimate accompanied by a covariance
matrix. Image flow is then computed by fusing the two estimates
using estimation-theoretic techniques This framework is shown to
allow estimation of cerain types of discontinuous flow fields without
any a-priori knowledge about the location of discontinuities; flow
fields estimated using this framework are not blurred at motion-
discontinuities. Two algorithms based on this framework have been
analyzed and implemented, and the results of applying these
algorithms to a variety of image sequences have been evaluated and
discussed. In order to put the framework in context of an application,
the 1mage flow fields recovered by these algorithms are used in a
Kalmam filtering approach to incrementally estimate the scene
depth.
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The new framework is shown to be applicable identically to
each one of the three major approaches for recovering conservation
information, le., gradient-based approach, correlation-based
approach and spatiotemporal enerqy-based approach. The
formulation of neighborhood informatnn used in this framework is
also shown to reduce to some ¢, e existing smoothing-based
formutations under various simplifying assumptions Thus, the
framework described unifies various existing approaches for image
flow computation Such unification is useful in analyzing various
existing frameworks as well as in generating new frameworks.

This new framework is also shown {0 serve as a platform to
integrate the three approaches mentioned above. The
measurements obtained by the three approaches have different error
characteristics This situation is analogous to the multi-sensor fusion
problem, where the algorithms based on the three approaches
behave as multiple sensors measuring image flow. An integrated
framework applies the principles of statistical estimation theory to
fuse the measurements obtained from different approaches. The
resulting estimate of image-flow has the minimum mean-squared
error  "ther novel algorithms based on this framework have also
beer  scribed.

(Ajit Singh [37, 38, 39, 40})).

1.2 Image Warping

The existing technology for image warping is extensive, but
relatively slow, constrained by numerous side conditions and subject
to many errors and abberations A search for better algonthms
resulted first in a comprehensive survey of digital image warping
techniques, containing considerable amounts of C code; it has been
published as a monograph.

The literature is largely silent on the problem of efficiently and
smoothly mapping between two image regions which are delimited
by arbitrary closed curves; such regions do not have the universally
assumed four corners A second result was the specification and
verification of an algorithm that instead treatls an image region as a
collection of interior layers around a skeleton These layers impose
a type of local polar coordinate system which allows each shape to
be "unwrapped” into a tree-lke representation Region-{o-region
warping is then defined by a natural mapping between the two
resulting trees  Although there is no a priori way of defining quality of
mapping, the results are esthetically pleasing.

A third product is a new, highly efficient, general method for
achieving 2-D image warps by separating the 2-D transform into two
successive 1-D warps It therefore extends the power of existing
hardware systems that perform more limited classes of
transformations by similar decompositions However, this method
shows that off-the-shelf hardware, in the form of digital fillers with
only minor modification for 1-D image resampling, can be used to
realize arbitrary mapping functions cheaply and at video rates. The
first release of the software embodiment of such an image warping
system has been completed, and is now being ported to the X-
Window environment In addition, an interactive interface has been
developed to allow for easier user definition of the warping functions.
A patent on the system is pending.

Lastly, in analyzing the errors of the system, it was discovered
that a major problem was in 1mage reconstruction. the warping
accesses the onginal image at spatial resolutions that differ
significantly from the original sampling rate In seeking better
reconstruction fillers, two new constraints on image reconstruction
were discovered’ the identity imaging constraint, and the idea o
imaging-consistent reconstruction. N

The identity imaging constraint requires that the
magnification/minification filters used in a warping system should
form a transform pair, such that magnification folliowed my
minification back to the original size should not introduce errors.
Surprisingly, this constraint is not salisfied by most image
reconstruction filters, with the exception of sinc and box filters. The
novel restoration/reconstruction fillers invented in this effort do
satisty this crileria, however,

The idea of imaging-consistent reconstruction is a bit more
complex. It stems from the need to incorporate a mode! of the
imaging sensor into the reconstruction process; this requires
functional forms for the reconstruction, rather than discrete
convolutions commonly used. To develop such low error, local,
functional filters, it is necessary to model the blurring function of the
sensor, for example, the cell blurnng in a CCD. Given this model, an
analysis derived from the resuilts of information-based complexity
creates a local and efficient approximate image restoration resuling
in a functional form blurred according to the camera model. The
analysis first choses one of the infinitely many scenes which could
have generated the original image, and then defines the
reconstruction as the blurry form of that one possible scene. Thus,
restoration results are exact for a scene which could not be
distinguished from the original scene given the digtal mage.
Reminiscent of backwards error analysis, this 1s the idea of imaging-
consistent reconstruction.

It is not hard to show that the error of these reconstruction
algorithms are within a factor of 2 of the optimal algorthm. Further,
assuming that the camera model is the filter for image minification,
then the local restoration algonthms exactly salisfy the image identity
constraint. In general, however, the reconstructions have been
blurred, hence they do not satisfy the constraint exactly, but for many
camera models they satisty it approximately, except near very strong
edges.

Assessing the quality of our new filters using tradiional
measures of the quality of image reconstiuction filters, such as
spectral analysis, these new filters prove super:or to previous local
methods of similar support, and nval or surpass the global method of
cubic-spline interpolation.

{George Wolberg, and Terry Boult [51, 52, 53, 54, 55)).

1.3 Polarization and Physlics-Based Vision

Research on the polarization of hight by surfaces has resulted
in the demonstralion of POLARIS, an integrated system that uses
polarization information to classify surface matenal, separate
highlight/diffuse components of an scene, and compute local surface
orientation. Denved from the Torrance-Sparrow theory of reflection
and the Wolf polanization theory of "quast-monochromatic™ ight, the
new methods classify material surfaces into conductors or dielectrics
by computing an empinical determination of the polanzation Fresnel
ratio. Specular regions have been identified on both metals and
dielectrics on a per-pixel basis without the use of a segmentation
procedure, the method only requires a controllable polanzing filter
placed between the camera and the object. Further relationships
implicit in the equations have been exploited in order to determine
local surface onentation properties. Lighting need not be restricted
to point sources, the methods have been extended to more typical
extended sources, such as fluorescent tubes. Expenimental testing
of these initial components have given strong results, supporting the
claims for the approach’s utility.

The system has been extended both in theory and in practice.
In theory, the Fresnel reflectance model now ncorporates the
polarization properties of diffuse reflecting bodies, which were
originally assumed to be non-polanzing. The result is the prediction
of the ability to use percent polanization computations to detect
occluding contours on diffusely reflecting dielectrics. Together with
prior observations that many albedo edges do not cause significant
polarization edges, this indicates that polarization nformation 1s a
powerful filter for finding edges due to occlusion, while eiminating
edges due to albedo.

In practice, a near real-lime approximation for matenal surface
classification has been demonstrated on the PIPE image processing
engine, requiring 6-30 frames (depending on the desired accuracy).
The algorithm is simple enough that 1t should run on almost any
frame rate pixel processor. A related approximate algonthm can do
near real-time detection of occluding contours on diffusely reflecting
dielectrics.

This understanding of polarization has been also been applied
to graphics, resulting in more realistic imagery of multually refiecting
surfaces, such as building windows seen reflected in a lake, or
convoluted objects like vases.

13




Separate in scope, but also derived from a detailed
examination of the physics underlying the image-forming process,
are two resulls in stereo. Local surface orientation and curvature
can be derived from the “photometric flow field", which is the rate of
change in the image irradiance of the image with a stationary object,
a stalionary camera, but a moving light source. The method is a
generalization of (discrete) photometric stereo; instead of three light
positions, the illumination geomelry is allowed 10 move smoothly in
three-space. Suriace orientation has also been demonstrated from
the stereo correspondence of linear fealures; the method computes
the orientation of a plane from the orientations of two or more
coplanar lines. Compared to point-based stereo, errors with respect
to camera baseline transtation or with respect to object distance from
baseline grow much more slowly, as shown by both analysis and
Monte Carlo simulation.

Most racently, differential geometry, in the form of the
differential of the Gauss map (the "surface centered curvature
matrix”), has yielded a new shape-from-shading invariant, The
isopholes, that is, the image curves of equal reflected radiance,
corresponding to the parabolic points of a surface are shown to be
the projection of a principal direction of zero curvature. Under
general conditions, the result i1s invariant to both reflectance function
and viewer position, thus providing a powerlu! cue for qualitative
surface orientation analysis.

(Larry Wollf, Dave Kurlander,
|56, 57, 58, 59, 60, 61, 62, 63, 64]).

and Terry Boult

1.4 Color Contrast

In conjunction with the Department of Psychology, color
contrast phenomena have been investigated, with challenging
results.

It a colored patch is surrounded by a larger patch of another
color, the appearance of the enclosed patch can change markediy.
Two types of mechamisms are though to mediate this phenomenon:
mechanisms that enhance contrast across contours, and
mechanisms that integrate inside closed contours to give a uniform
appearance. These mechanisms were studied by independently
varying the area, perimeter length, and shape of the enclosed test
patches.

For light-dark modulations of the surround, tests with equal
area showed essentially the same amount of color induction. There
was a slight increase in the amount of induction as the perimeter
length was more than doubled, and there was also a tendency for
the shapes with fewer lobes to show more induction than shapes
with more lobes. For isoluminant red-green and yellow-blue
surround modulation, the slopes of the functions relating induction to
penimeter length were shightly steeper and th.e shapes with fewer
lobes showed a larger difference from the shapes with fewer lobes.
These results contradict the predictions of traditional induction
models ike the edge-distance model, and they specify constraints for
the integration stage of network models.

(Bilibon Yoshim, and Qasim Zaidi of the Psychology
Department [65)).

1.5 Replication Lab

A replication lab, just begun, has reimplemented and is in the
process of evaluating algorithms for: segmentation techniques with
Markov random fields, Kalman-filter based depth from translational
motion, and multi-sensor registration techniques.

{Terry Boult)

1.6 Languages for Sensors

A language development effort for "Sensor-C" has started.
This language extends C++ to altow for efficient and easy use of
sensor type objects, currently not well supported. This work is in
conjunction with the PROKT language project in the Department of
Computer Science.

({Terry Boult and Gait Kaiser ).

2 Middle-Level Vision

2.1 Multiprocessor Surface Interpolation

A Many constraint propagation problems in early vision,
including depth interpolation, can be cast as solving a large system
of inear equations where the resulting matnx 15 symmetric, positive
definite, and sparse. Analysis and simulation of several numerical
analytic solutions to these equalions for a fine graned SIMD
machine with local and global communication networks (e.g., the
Conneclion Machine) shows that two methods are provably optimal
i terms of computational complexity. For a varety of synthetic and
real range data, the adaptive Chebyshev acceleration method
executes faster than the conjugate gradient method, if near-optimal
values for the minimum and maximum eigenvalues of the iteration
matrix are available.

When these iterative methods are implemented in a pyrmidal
multigrid (coarse-medium-fing) fashion, using a fixed multilevel
coordination strategy, the multigrid adaptive Chebyshev acceleration
method executed faster than the multigrid conjugate gradient method
again. This appears to be the case because an optimal Chebyshev
acceleration method requires local computations only. These
methods have now been validate on actual range data.  ~

(Dong Choi, and John Kender {17, 50]).

2.2 Shape from Texture Autocorrelation

A new method for determining local surface orientation has
been developed from rotationally invariant textures based on the
two-dimensional two-point autocorrelation of an image. This method
is computationally simple and easily parallelizable, uses information
from all parts of the image, assumes only texture isotropy, and
requires neither texels nor edges in the texture. Applied to locally
planar patches of real textures such as roads, dint, and grass, the
results are highly accurate, even in cases where human perception
is so difficult that people must be assisted by the presence of an
artificially embedded circular object. The method runs on the
Connection Machine.

(Lisa Brown, and Haim Shvaytser of SRl Sarnoff Research
Center [15, 16)).

2.3 Fusion of Shape from Textures

Existing work on the fusion of five difterent shape-from-texture
methods has suggested a novel approach for classifying textures
Each of the methods is tuned to certain image phenomena; the five
are shape from spacing, shape from orientation, shape from size,
and shape from absolute and relative eccentricity Given a single
texture patch, particularly one under perspective, each method will
respond differentially according to the degree it believes the patch
possesses cues that the method can exploit to derive shape
information. These differential strengths can be gathered together in
a new data structure, the "augmented texel”, as a signature feature
vector for the texture, where they can be manipulated in the usual
way by standard paltern recognition or image segmentation
techniques.

(Mark Moerdler [34))

2.4 Shape from Shadows

The determination of surface shape from the location of
shadow boundaries has been extensive analyzed, particularly in the
sefting of continuous mathematics. This has lead to an optimal,
paraliclizable algonthm, demonstrated on a network of workstations.
The problem is decomposable into a series of one-dimensional slices
in the pfane of the moving light source; each slice admils of a fine-
grained parallehsm, whereas the decomposition itself can be
attacked via coarse-grained parallelism Each strip is computed
using as a basis a family of interpolating splines of an unusual
piecewise linear form. The solution is checked against a side system
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of inequalities; if the solution fails, a non-linear approximation
algorithm accommodates the failing constraints.

More recenlly, a smoothing spline approach has been
developed to regularize noisy data; hence the algorithm can
approximate dala rather than interpolate it, with a corresponding
increase in robustness. Empirical invesligations on natural objects
have demonstrated that the method is relatively insensitive to a
range of smoothing parameters.

Additionally, the question of how to optimally position the
illuminants was solved in some very restricted cases: the tangent of
the incoming light ray angle should be uniformly distributed from zero
1o the maximum tangent permitled. As an offshoot, this investigation
yielded a theorelic foundation for optimal laser light striping
algorithms.  The theory suggests and demonstrates that the
shadows in light striping, ignored up to now, can instead be exploited
to further increase accuracy.

(Michalis Hatzitheodorou [23, 24, 25, 26)).

2.5 Dynamic Digital Distance Maps

Spatially varying distance cost problems, such as path
planning under the considerations ot surface height or terrain quality,
are relatively frequent, but vertex-based algorithms do not generalize
well to these problems Complexity bounds have been derived on
the constrained distance transform for computing digital distance
maps; they have also been extended to handle path planning with
spatially varying distance metrics.

(Terry Boult [10)).

2.6 Generalized Cylinders

Straight homogeneous generalized cylinders (SHGCs) are a
flexible class of parametric shapes capable of modeling many real-
world objects An image invariant has been demonstrated that
quickly and chcaply tests an image for the probable presence of a
SHGC, under various rotational transformations and imaging
condiions.

Building on this prior work, under a slightly more general
definition of SHGCs, it has been determined exactly what constraints
can be derived direclly from their image contours. Given most
conditions, all the parameters of an SHGC are shown to be
recoverable from contour, except two, and only except two. the tilt
toward the viewer, and the translation of the axis in the viewer
direction  Therefore, every general orthographic view of an SHGC
can be shown to have resulted from any member of a two-parameter
infinite family of SHGCs which are contour equivalent. Within this
family, the shape can vary significantly, even to the point of reversing
the sign of the gaussian curvature Implementing these results, a
method for ruling SHGC conlours has been demonstrated, once the
image has been ruled, all those parameters derivable from contour
alone can be recovered.

Faced with a lack of two constraints, either the use of more
image information or the use of shape heuristics is necessary.
Under the assumption cf constant, pure diffuse refleclance, it has
been determined that a non-monotonic SHGC can be recovered
from a single intensity image The tilt of the object is recovered by
using the ruled contour image and inlensity values along extremal
cross-seclion curves The location of the object's 3D axis is
recovered from intensity values along meridians of the surface. This
recovery algorithm has been tested on synthelic images, and is
being reimplemented for real imagery. The incorporation of
heuristics based on human perception of shapes, particularly the
apparent human preference for representational economies such as
object symmelry and object orthogonalily, is under development.

(Ari Gross, and Terry Boult [18, 19, 20, 21, 22)).

2.7 Energy-Based Surface Segmentation

Prior work has demonstrated that energy-based suriace
segmentation, derived from the oplimal mathematics of information-
based complexity, is inexpensive, local, easily parallelized, rapidly
updatable in the presence of change or noise, and more accurate

than other existing (and slower) methods. Recently, three major
advances have been achieved in this work on regularized surface
reconstruction.

First, an initial version of the sequential energy-based
segmentation system has been implemented, it serves as a testbed
to analyze how different grouping heuristics reduce the
computalional complexity of surace reconstruclion and
segmentation. A parallel implementation on a Connection Machine
is nearing completion.

Secondly, how to compute the energy under a wide, two-
parameter range of class/norm assumptions has been demonstrated.
The energy computation is based on reproducing kernel splines, and
again is efiicient, especially for sparse data, and is amenable to
parallel implementation

Third, the efficient computation of two types of "robust*
smoothing splines has been derived. They are unlike the traditional
smoothing splines used in regularizalion. Based on the relationship
between reproducing kernel splines and covarance measures,
regularization splines (L-2 norm splines) are shown to be a type of
least square estimate: they are oplimal bayesian estimalors for the
data, under the assumption that the errors are normally distributed.
However, smoothing splines based on L-1 or L-infinly norms are
known to be more robust with respect to other, more realistic,
assumptions on the errors. Although a general theory for these
robust smoothing splines has long existed, the techmiques for
generating them require general non-hinear minimization, which can
be very expensive. The newly discovered technique, however,
reduces the problem in these useful cases to the solving a linear
programming problem, which is far more efficient.

(Terry Boult, and Mark Lerner [11, 12, 13, 14])).

2.8 Flexible Extruded Objects

A Hough-like parameter space technique for modeling flexible
extruded objects as piecewise toroidal has been analyzed, and a
novel transform has been implemented that derves their three-space
curved axes from position and surface normal information. The
method 1s purely local, and succeeds where attempts to model
objecls as being piecewise cylindrical fal.  Aithough the local
computation involves 15 free variables (for three points each. three
of position, two of orientalion), does not involve the iterative solution
of non-linear equations It has been demonstrated on synthetic and
real range data.

Because the torus is an object with seven free parameters,
this work also has demonstrated the robustness of the parameter
space approach, even for high order objects. Better, it has
demonstrated that the structure of the parameter spaces themselves
can be chosen to counteract the tnangulation error. Errors that occur
in trying to find ton in objects that are unusually large or smali, or
unusually straight or flexed, can be made self-imiting.

This work required the extensive use of a symbolic
mathematical analysis system (IBM s propnetary Scratchpad II). the
resulting transform 1s based on a quadratic equation whose
coefficients incorporate 12 inner products of three-space vectors.
Along the way, it was discovered that, under some fairly general
conditions, every torus has a large tamily of antiton.  Their
hallucinatory appearance in the image must be explicitly ignored.

(John Kender, and Rick Kjeldsen of IBM T.J. Watson
Research Center {29)).

3 High-Level Vision and Systems

3.1 Robust Visual Robot Navigation

Algorithms for the representation of space and free-space path
planning have been surveyed. The survey also proposes a
taxonomy of this new field. There conlinues to be a relative paucity
of results on qualtative, topologtcal navigation, however,

Partly to address that need, an architeclure that integrates
preplanned and reaclive control to achieve smooth, natural,
autonomous navigation in a mobile robot has been demonstrated, in



over 100 runs. The robot, now donated to Columbia by AT&T, is an
autonomous three-wheeled indoor vehicle equipped with odometry,
ultrasonic sensors, and a camera augmented by a proprietary real-
time vertical edge finding chip. Control of the robot is distributed
among a set of behavior expers that tightly couple sensing and
action. Input 1s nesther fused nor compared against a prestored map.
Instead, collections of behavior experts define global bahaviors for
the robot, and those behaviors are composed into plans that direct
navigation.

The work has demonstrated novel techniques for robust real-
time sensing, Including an interesting variation on Kalman filtering. it
also records a sigmificant advance in the methodology of mobile
robot expenmentation and evaluation. To record ground truth as a
function of ime and video input, the robot pulls a small trailer holding
a splt-screen dual camcorder. The camcorder thus records on one
video tape the time stamp, the robot video input, and the video
image of the floor directly below the robot, on which fiducial markings
have been previously applied.

(Monnett Soldo [41, 42, 43, 44)).

3.2 Model-Based Active Sensing

in work closely related to visual sensor planning, an integrated
system of active louch strategies identifies polyhedral 3-D objects
through exploration. This work combines three approaches. it uses
geometnc  constrainls  between  components to eliminate
interpretations, it invokes interpretation iree methods for choosing
the best aclive sensing move, and it plans and moderates
exploratory moves made by tracing the object surface. A new
constraint Involving pairs of ine segments has been developed, it is
directly applicable to visual sensing. The choice of active sensing
move 1s determined by a generic cost function, also applicable to the
planning of mobile visual platiorms.

The placement of multiple fingertips to specified 3-D world
locations is an underconstrained problem. Methods have been
developed for generating good genenc candidale grasps to be
optimized. A successor algonthm has been demonstrated which,
given a desired position and normal for each fingertip, then
computes all the joint angles for the fingers and arm by optimizing an
intnguing cost function. Optimal rotational parameters are chosen by
several new techniques using a quaternion representation. These
later methods could also be used for representing and analyzing the
visual pose of an object.

(Ken Roberts [35, 36)).

3.3 Vislon Planning

Techniques have been developed, and a system, M_VP
(Machine Vision Planning), has been built to analytically determine
the complete locus of camera poses and oplical settings for viewing
a given fealure of an object. First, for each viewing constraint in
isolation, admissible domains of sensor locations and settings are
determined, by the analysis of the efiect of the constraint on the
CAD-CAM representations of the object. Then these component
results are combined in order to find globally admissible sensor
parameter values. Current techniques analytically satisty visibility,
field-of-view, resolution, and focus requirements; others are under
development, )

The approach is more accurate and far more efficient than
existing generate-and-test sampling techniques. Camera placement
experiments are available on a video tape that demonstrates the
method in an actual robotic setup.

(Dino Tarabanis, Peter Allen, and Roger Tsai of IBM T.J.
Watson Research Center [45, 46, 47, 48, 49]).

avigation by Landmarks

A model for topological visual navigation in two-dimensional
spaces has been formalized and implemented. 1l e_xplpres_and
emphasizes the methods and the efficiencies of qualitative v!sual
descriptions of objects, and of direction-giving by means of visual
landmarks.

3.4 Topological N
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The model formalizes three domains--the world itself, the map-
maker's view of it, and the navigator's experience of it--and the
concepts of custom maps and !andmarks Visual landmarks are
shown to be chosen depending on which of severai costs (sensor,
distance, communication, or others) should be minimized; paths
minimizing one measure can make others arbitrarily complex Path
selection, based on Dijkstra’s algorithm, automatically generates
intelligent overshooting and backtracking.

An arm-held camera has demonstrated the theory by
navigating a simple world: it seeks a landmark based on topology,
and adjusts its position based on symmetry; there are essentially no
quantitative measures. Because direction-giving is NP-complete,
several heuristics were found necessary; one is that the landmark
object itself, rather than ils views, may be its most compact
encoding Work continues on the related issues of error detection
and correction, camouflage, and “self-correcting” directions

(John Kender, Avraham Leff, Il-Pyung Park, and David Yang
(27, 30, 31, 32)).

3.5 Visual Servoing

A system for tracking moving objects has been demonstrated,
and a video of its periormance is available Catibrated (but not
registered) stereo cameras image a moving object with an arbitrary
trajectory; the PIPE performs an optic-flow computation on the
imagery in real-time. Velocily fields are thresholded to find regions
of object motion, which are then triangulated to give a 3-D position
vector in less than 100 milliseconds This vector is input to a second
order digital filter that compensates for video processing delays, and
predicts and smooths the tracking arm's trajectory  Extensions to the
system to enable real-time grasping by the hand are in progress

{Peter Allen, Aleksandar Timcenko, and Billibon Yoshimi [5))

3.6 Integrated Hand-Eye Systems

The Utah-MIT dexterous hand is a four fingered, 16 degree of
freedom device of high dexterity, equipped with rich force, position,
and tactile sensors. Research continues on autonomous low-level
control, grasping kinematics, active sensing for object recognition,
tactile sensor design, and the integration of dexterous hands into
robotics environments. A working hand-arm system exists that uses
a task description language to program grasping and manipulation
tasks. It has been used to perform picking-and-placing, handiing of
liquids, unscrewing fixtures, and aclive sensing tasks, including
vision-assisted grasping.

Robotic analogs of three human haptic sensing strategies
have been analyzed and implemented, to recover the 3D shape of
objects. Each strategy is inspired, in par, by an object model
prevalent in the vision communily: polyhedra, superquadrics, and
generalized cylinders These sirategies have been complemented by
visual input. A real-time linear feature extractor sends line segments
1o a robust line-based stereo system, which recovers the 3-D axes of
surfaces of revolution. These axes are then used by the hand
system to orient itself and to explore the object's contour, and to
recover the shape of the object.

(Peter  Allen, Paul
{1,2,3,4,6,7,8,33)).

Michelman, and Ken Robers

3.7 Sensor-based Volume Registration and Recovery

The PROVER System (Parametnc Representation of
Volumes: Experimental Recovery) is in prototype, as a testbed to
allow exploration of the numerical recovery of parametric
representations from mulliple types of data, and multiple sensor
types. The system explicitly encodes sensor error models.

To guide the implementation, the causes of misregistration in
medical volume date have been surveyed. Five major components
of registration error have been identified how features are matched,
which similarity metric is computed, which strategy is used to search
for correspondence, what image-lo-image transformations are
permitted, and how the final interpolation occurs  Several different
medical sensing systems have been investigated: computerized




tomography, magnetic resonance imagery, positron emission
tomography, ultrasound, and single positron emission. A
comparative evaluation is in progress.

(Lisa Brown, and Terry Boult).

3.8 Bayesian Analyses for Image Interpretation Systems
With an eye towards improving the accuracy of

photointerpretation tasks, a novel bayesian recognition strategy is

under development. [t will efficiently compute likelihoods for object

identification, by organizing and then pruning networks of inferences.
(Michelle Baker, and Terry Boult [9)).
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MIT PROGRESS IN UNDERSTANDING IMAGES

T. Poggio and the staff
Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139

ABSTRACT

Our program in Image Understanding is now focusing
on the critical issues of segmentation, saliency computa-
tion and integration of visual cues. These problems need
to be solved efficiently in order to ezploit in robust sys-
tems our ongoing work on object recognition. We have
also continued our work on the computation and the use
of motion, photogrammetry, analog VLSI circuits and
learning.

1 Introduction

Our present approach to vision is reflected in the orga-
nization shown in the figure. It consists of several stages
which are not strictly sequential (not all forward and
backward connections are shown). We feel quite opti-
mistic about the bottom — early vision ~ and the top lev-
els - model-based recognition — since progress has been
and is being made at a significant rate, both in terms of
applications and of theoretical foundations. More funda-
mental work still remains to be done at the intermediate
stages, especially at the dual stages of segmentation and
grouping and on the problem of feature selection. We
have continued our basic research on early vision, though
at a lower level of effort than in previous years, and on
objeci recognition along several different directions. We
will report on some of those. We have also continued
to explore the problem of integration and segmentation
using the Markov Random Field model paradigm. At
the same time we have begun {o attack in new ways the
fundamental problems of selection, grouping and again
segmentation. In the following, we will sketch some as-
pects of this overall approach to the vision problem and
mention a few of the minor projects.
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2 Segmentation and saliency
computation

We have described last year our work on grouping and
saliency computation. Especially the latter theory has
opened a number of interesting areas of research and ap-
plication. In particular, during the last year Shashua,
Spoerri and Ullman have extended the approach of find-
ing salient image contours to deal with discontinuity con-
tours, with the goal of using these contours for segregat-
ing objects from the background. The general scheme
proceeds in two stages. The first is a local estimation of
the existence of a discontinuity. For example, at a given
location and at a give orientation, we examine whether
the points on the two sides of the orientation element are
moving in the same or in different directions. The result
is a discontinuity map of potential fragments of discon-
tinuity boundaries (motion boundaries in the above ex-
ample). The next stage pieces together fragments that
form long continuous (and preferrably closed) bound-




aries. The second stage is similar in nature to the pro-
cess that is used to find salient image contours based
on length and curvature. There are some technical dif-
ferences that must be introduced in the discontinuity
computation, For example, if the saliency computation
is applied to this problem without modifications, it often
produces more than a single discontinuity contour sep-
arating a region from its surround. By incorporating a
certain form of local inhibition between neighboring dis-
continuity boundaries it becomes possible to ensure that
only one boundary will survive in such c¢ases. The com-
putation of discontinuity boundaries is being developed
by A. Shashua in the context of depth discontinuities,
and applied also to motion discontinuities by A. Spoerri.
It is satisfying to note that despite some differences
in details, a uniform computation emerges that appears
to play a similar role in a number of different processes.
The emerging unified scheme is the following. In all of
the above computations the first stage produces a mea-
sure M(z, y,0) that depends on image location (z,y) and
the local orientation . In the contour saliency compu-
tation M(z,y,6) is the local saliency (determined e.g.
by contrast) of a contour element at (z,y) with orien-
tation 6. In the symmetry computation M(z,y,6) is
a measure of the local symmetry. In the discontinuity
computation M(z,y,8) is a measure of the local change
(in velocity, disparity, etc.). The second stage takes the
map M(z,y,60) as input, and produces optimal 1-D con-
tours. The contours are required to be long and smooth,
and to maximize the measure M(z,y,6) along them.

2.1 Integration in the Vision Machine

As we described last year, the Vision Machine system
is our main tool for studying the problem of integrat-
ing several visual cues. The Vision Machine consists of
a movable two-camera Eye-Head system ~ the input de-
vice - and a 8K CM2. Its parallel early vision algorithms
compute edge detection, stereo, motion, texture and sur-
face color in close to real-time. The integration stage
is based on the technique of coupled Markov Random
Field models, and leads to a cartoon-like map of the dis-
continuities in the scene, with a partial labeling of the
brightness edges in terms of their physical origin. The
output of our integration stage feeds a parallel model-
based recognition algorithm. We have now developed a
new eye-head system wich has less degrees of freedom
(for instance it does not have zoom lenses) but is much
lighter and smaller. We plan to use it as a flexible input
device that can be moved to different rooms in the lab
or outside it. In addition to representing a focus for our
work on the integration of early vision modules and for
the development of parallel vision algorithms, the Vision
Machine system will also be the testbed for our overall
approach to the organization of vision, in which we will
integrate and test the different stages and strategies of
processing,.

3 Object Recognition

In previous reports, we have described a series of ap-
proaches to the problem of model-based object recogni-

20

tion, concentrating on the matching of aspects of object
shapes. Recent work has focused on several areas of the
domain, based in part on the results of earlier work.

3.1 Formal Analysis of Constrained Tree
Search

Earlier reports described the work of Grimson and
Lozano-Pérez on the recognition of occluded objects
from noisy data, either in the 2D from 2D case, or the
3D from 3D case. The original technique was designed to
recognize polyhedral objects from simple measurements
of the position and orientation of features in the data,
where the features could be edges, vertices, curved arcs,
distinctive points along curves, axes of cylinders, patches
of surface, etc. The technique searches for consistent
matches between object features and data features, us-
ing constraints on the relative shapes of pairs of features
to reduce the search.

Based on extensive empirical experience, the method
was extended to include a Hough tra..sform as a prepro-
cessor, which isolates portions of the search space likely
to contain a correct solution and rank orders these sub-
spaces for processing by the recognition engine, and to
include the use of a heuristic texmination of search, by
stopping once an interpretation that is sufficiently strong
is found. The addition of these two methods led to a very
efficient and robust recognition method.

Although the method has been run on tens of thou-
sands of examples, we have also performed a formal
analysis of the approach, in order to understand where
its limitations are, and to direct further research ef-
forts. Our analysis considers three different aspects of
the problem:

o Selection: Choosing subsets of the data that are
likely to come from a single object;

o Indexing: Choosing an object model from the li-
brary that is likely to correspond to the selected
data subset;

¢ Correspondence: Finding a legal match, if one ex-
ists, between the features of the object model and a
subset of the selected data features.

Grimson has established the following results, in somne
cases in collaboration with Dan Huttenlocher of Cornell:

o If selection is perfect (no spurious data is included)
and indexing is correct, then the expected amount
of search for constrained tree search methods is
quadratic in the number of data and model features.

¢ If selection is not used and indexing is corzect, then
the expected amount of search for constrained tree
search methods is a combination of a polynomial
in the number of data and model features, but is
exponential in the size of the correct solution.

o Using the Hough transform to isolate and rank order
subspaces of the search space for consideration re-
duces the values of the parameters in the complexity
bounds, but does not reduce the order of the bound
from exponential.

e The Hough transform cannot be used to identify
solutions to the recognition problem, without also
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incurring a significant false positive rate, especially
for problems with significant clutter or noise. A
similar result holds for another parameter hashing
scheme, Geometric Hashing.

o Ifselection is adequate (where a formal definition of
adequate can be given as a function of conditions on
the ratio of spurious data to model size), indexing is
perfect, and one heuristically terminates the search
once a sufficiently good solution is found (where for-
mal methods for defining thresholds for “sufficiently
good” are available), then the expected amount of
search is quartic in the number of data and model
featuires.

e Ifindexing returns an incorrect answer (i.e. one tries
to match a model not present in the data), even
using heuristic search termination, the expected
amount of search to deduce that the model is not
present in the data is exponential in the problem
parameters.

3.2 Selection, or Grouping, Methods

Although these formal results have been developed in
the context of constrained search methods, they may
have broader implications for other types of recognition.
One implication of these results is that effective selection,
or grouping, can significantly reduce the complexity of
recognition. A second is that efficient indexing methods
are necessary if one wants to extend recognition to deal
with large libraries of objects. As a consequence, we have
focused much of our recent effort on these problems.

One approach to selection is to be model-driven. For
example, the Hough transform and Geomatri~ Hashing
can be considered as grouping methods, but both re;nire
a specific object model, and for large libraries this will be
inefficient. A second approach is to be data-driven. Ear-
lier work by David Jacobs on the selection problem had
focused on generic data-driven grouping. Jacobs concen-
trated on methods for finding groups of edge fragments
likely to have come from a single object, based on sim-
ple measurements on convex sets of edges. He showed
that dramatic reductions in search (2-3 orders of magni-
tude) could be obtained by using these groups as starting
points. Moreover, the number of false positive and false
negative responses of the recognition system are reduced,
since one now concentrates on salient portions of the im-
age first. Jacobs has continued to explore this approach,
by examining more general grouping methods for flexible
objects and their role in controlling the search explosion.

As a complement to this edge-based approach, David
Clemens is developing a region based grouping method.
The idea is to use regions of smoothly varying inten-
ity tu find groups of edge-based 1mage features that are
likely to come from the same 3D object. By interpret-
ing regions and other cues, a relatively small number of
large feature groups can be produced without the com-
binatoric explosion that results from forming all possible
groups. Larger groups allow for more efficient matching
and model-pose solution. The efficiency of region-based
and other feature grouping is currently being compared
in a complete recognition system.

As part of this system, a semi-automated 3D model-
making program has been developed. Given several im-
ages of the model object and rough estimates of the cam-
era pose for each image, the system solves for the 3D
model points and for the exact camera poses. Image fea-
tures are automatically extracted, but feature matches
between images must be indicated by the user. This
enables us to quickly build 3D models of complicated
objects for use in recognition experiments.

Another way of attacking the selection problem is to
use multiple sensory cues. Any single visual cue may
only weakly define groups of data fragments likely to
have come from a single object. Taken in concert, how-
ever, several cues may provide much more salient groups.
Work by Ed Gamble in the context of the MIT Vision
Machine takes one approach to this integration problem,
by concentrating on the detection of object discontinu-
ities through integration of multiple cues. Motivated by
computational models of human visual attention and eye
movement studies, Tanveer Syeda is developing a com-
plementary approach, based on a computational model
of the visual attentional phenomenon. Visual attention
is that mechanism in brain that allows it to respond se-
lectively to some visual stimulus either in a spontancous
or deliberate fashion. An observer exercising this fac-
ulty commonly exhibits two kinds of attentional behav-
ior, namely, the attracted attention and the pay attention
modes. In the former, some aspects of the scene attract
the unbiased observer’s attention, while in the latter, the
observer has a priori goals in mind when looking at the
scene and hence pays attention to only those objects/
aspects relevant to the goal. In either mode, the end
result is a selection of certain aspects of the scene on
which to focus the later processing. The purpose behind
building a computational model for such a phenomenon
is two-fold. From computer vision point of view, such a
model can serve as a full-scale feature selection mecha-
nism that can act as a front end for an object recognition
system and help identify interesting regions in a scene to
start the recognition process. Secondly, it can supply
a plausible explanation for the mechanisin constituting
the attentional center in the brain, which studies so far
have not revealed (although its presence seems to be well
accepted in both psychophysical and physiological liter-
ature).

Briefly, the model suggests that the scene represented
by the image be processed by a set of interacting feature
detectors that generate a hierarchy of maps, representing
features such as brightness, color, texture, depth, group-
ing of edges, and others such as shape, size, symmetry,
etc. The feature maps are then processed by filters in-
corporating strategies for selecting distinctive regions in
these maps. The choice of these strategics is guided by a
central control mechanism that combines top-down task
level and a priori information with the bottom-up infor-
mation derived froin the features, to demonstrate either
mode of attentional behaviour as desired. Finally, an ar-
biter module housing another set of strategics selects the
most significant features across the feature maps, which
can then be used in, say an object recognition system.

In the work done so far, color and texture maps have




been built, and the filters for finding distinctive regions
in these maps have been developed. The color map out-
lines different color regions by not only grouping spa-
tially contiguous regions of similar color, but also label-
ing the regions with the perceptually seen color. The
distinctiveness of a colored region is judged based on its
and its neighbors’ properties such as the actual color
seen, contrast shown, size of the region, etc. The tex-
ture map is generated by regarding the image as being
generated by a space-limited stationary stochastic pro-
cess. The segmentation of the textured image is then
obtained by a comparison of the AR-spectra of adjacent
windowed regions of the image. Properties such as the
relative distribution of dark and bright blobs are then
made use of to judge the distinctiveness of a region.

Finally, the model supports a parallel implementation
of the various feature maps that will make it possible to
select distinctive features in a pre-attentive fashion. The
succ.ss of such a model in object recognition will depend
on how effectively it can reduce the combinatorial search
involved in the matching stage of recognition.

In related work, David Clemens and David Jacobs
have been investigating the ability to order groups of
model features by geometric properties that are invari-
ant under projection. Each model feature group would
be represented along a surface in a multi-dimensional
index space. At recognition time, parameters extracted
from each group of image features could be used to ad-
dress a point in the index space and find only those model
groups that could cause the image, thus reducing search
significantly. They have derived a lower bound on the di-
mension of such an index space, and developed a detailed
algorithm, Error in feature localization is predicted to
have a practical impact on the theoretical performance of
the system, but the potential benefits are great enough
that indexing remains an attractive approach.

3.3 Transformation Space Sampling

The constrained search approach finds solutions to the
tecognition problem by searching through a correspon-
dence space, i.e. a space in which individual points cor-
respond to sets of pairings of data and model features.
An alternative is to search a transformation space, i.c. a
space in which individual points correspond to possible
poses of the object. For example, the Hough transform
operates by letting each possible pairing of a data fea-
ture and a model feature vote in transformation space,
then searching for peaks in the result.

Grimson and Huttenlocher have argued that one of the
difficulties with using the Hough transform directly as a
recognition method is that for realistic <ized problems,
the likelihood of large peaks in the Hough space occuring
at random increases significantly. This is in part because
of noise in the sensory data implying that a large volume
of transformations must be considered as feasible. This
in turn increases the likelihood that several such volumes
may intersect at random, leading to a false peak in the
Hough space. These false peaks also occur, however, be-
cause we use a discrete tesselation of the transformation
space to define our Hough space. Thus, each bucket in
the tesselated space must integrate together votes from
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data-model pairings whose associated possible transfor-
mations intersect any part of the bucket, even though
those associated transformation volumes may not in fact
actually intersect. Todd Cass has devised a very efficient
algorithms for removing the second effect on the Hough
transform.

The idea is as follows. Suppose we can compute the
range of transformations consistent with any pairing of
a data feature and a model feature. For cxample, in the
simple case of matching points with an associated orien-
tation, the set of feasible transformations is a disk in the
translation subspace of the space, which tracks a heli-
cal arc over the range of possible orientations associated
with the pairing. Further, suppose that we can easily
determine whether a point in transformation space lies
within one of these feasible match regions. Then if we
sample the transformation space at some regular sam-
pling, we can easily determine the set of feature pairings
that are consistent with the pose associated with each
sample point, by simply counting the number of match
regions that contain that point. If we do the sampling at
a fine enough spacing, we can get a close approximation
to the Hough transform, using infinitesimal buckets, so
that we avoid the integration problem muntioned above.
Further, if the sampling is fine enough, the probability
that the poses associated with peak values in this sam-
pling are identical with the poses one would find in the
continous pose space approaches one, i.e. the peaks we
find this way are likely to be exactly the peaks one would
find in the ideal case, and their position in transforma-
tion space is likely to be very close to the ideal position.

While sampling the transformation space should per-
form correctly in the limit of very fine sampling, one can-
not guarantee its correctness for arbitrary sample sizes.
To overcome this shortcoming, Cass has extended this
idea of transformation sampling in the following man-
ner. Consider the volume of consistent transformations
associated with a pairing of a data feature .ad a model
feature (for simplicity, consider the case of .natching ori-
ented points, so that the volume is a tube with circular
cross-section that tracks along a helical arc). Denote the
volume associated with the pairing of data feature F;
and model feature f; by V;;. In essence, by considering
all such pairings of features, we are defining a function
over the pose space:

h(p) = I{(i,9)Ip € Vi;}lI
where p is a point in pose spsce. This function is piece-
wise constant, and changes value at the boundary of one
of the volumes V,,. Cass argues that by identifying those
points in pose space at which the boundaries of two such
volumes intersect, one can create a set of sample points
with the property that each contiguous region of con-
stant value of h has a sample point in this set. Cass
has developed a method for computing all such sample
points. One can then repeat the earlier process, at this
set of sample points, agair using the peak values of h
over this set of samples to define solutions {o the prob-
lem. Both methods lead naturally to efficient parallel al-
gorithms. The first algorithm has been implemented and
tested on the Connection Machine, and typically recog-
nizes highly occluded objects in very cluttered scenes in




a few seconds. The second algorithm is currently under
development and testing.

3.4 Recognition for Navigation

Besides the work on recognizing objecis described abnve,
we have also considered the application of cur recog-
nition methods to problems of navigation for mobile
robots. David Braunegg, in work described elsewhere in
these proceedings, has recently completed a system for
automatically building models of world locations and us-
ing them for Since the world world changes over time,
and the sensory input is imperfect, the system also main-
tains these models over time as the world changes and as
we receive new sensory data which is noisy. The MAR-
VEL system proceeds as follows: To recognize a loca-
tion, we first take a series of stereo pair images from a
single position in the current room. The stereo vision
module then finds salient features of the room and ab-
stracts them into the representation which will be used
for recognition. Recognition is performed by comparing
this representation to room models which were built by
the system from similar stereo data obtained previously.
The results of this recognition are used to update the
existing model to reflect the current state of the room
and the importance of the features to the recognition.
The system has been tested on nearly 1000 stereo pairs,
over a six month period in our laboratory. Its success is
reported elsewhere in these proceedings.

4 TUsing motion

The focus recently in work on motion vision has been
on improving accuracy by continuing the computation
in time, and by exploiting additional prior information.
Good results in motion vision can be obtained using di-
rect motion vision methods, contradicting earlier criti-
cism of the brightness change contraint equation. Di-
rect methods, based on brightness gradients, avoid the
complexity of feature extraction and the correspondence
problem, also, being eikonic computations, they lend
themselves to parallel high speed implementation in both
analog and digital hardware.

Joachin Heel has developed a number of methods ex-
ploiting Kalman filtering, and resampling methods boz-
rowed from computer graphics, that dramatically im-
prove the estimates of depth over those available from
just two frames (see paper in these proceedings). His
schemes, unlike some eatlier ones, do not place special
restrictions on the motion, or the arrangement of viewing
direction, or make special assumptions about the sur-
faces being viewed. He has also worked with Satyajit
Rao on the intimate integration of ealry vision modules,
such as shape from shading and direct motion vision.

David Michael exploits Kalman filtering in a quite
different, more traditional way. In his methods, the
Kalman filter is used to update the estimated state of
the vehicle carrying the sensor. A model of the vehi-
cle dynamics can be used to reduce the effects of noise
in measurements obtained from closely spaced frames.
He is also exploring the application of non-linear least-
squares techniques to the brightness change constraint
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equation over more than just two frames (see paper in
this proceedings).

Ali Taalebi is pursuing a direct motion vision method
exploiting fixation. If the sensors angular velocity is ad-
justed so that the image of a particular point in the
scene remains stationary in the image, simplification of
the constraint equations result that can be exploited by
using existing methods developed for the case of pure
translation (see paper in these proceedings). Fixation is
achieved by servoing the camera rotation actuators to
zero out the average optical flow over an image patch
centered on the point being fixated.

5 Photogrammetry

Photogrammetry is the science of making measurement
by means of images, and so is a field closely allied to
machine vision. There are four central problems in pho-
togrammetry: (a) absolute orientation, (b) relative ori-
entation, (c) exterior orientation, and (d) interior ori-
entation. Not so long ago, a closed form solution was
found to the least squares version of the problem of ab-
solute orientation, which comes up, for example, in the
‘calibration’ of a range finding system to be used with a
robot arm or a mobile vehicle.

Work now focuses on the problem of relative orienta-
tion, of importance in both binocular stereo and long-
range motion vision—sometimes referred to as “camera
calibration.” A new iterative algorithm has been devel-
oped by Berthold Horn using unit quaternion notation
for representing both rotation and an auxiliary quantity
derived from the baseline and the rotation (the auxil-
iary quantity is actually the rotation in a dual problem).
This iterative algorithm for the least squares problem
efficiently finds minima of the tolal error, and starting
from a small number of suitably chosen initial rotations
locates the global minimum.

In the simpler case, when there are only five corre-
sponding ray pairs in the two camera systems, exact so-
lutions can be found. Because the problem is (highly)
non-linear, there are typically a number of different solu-
tions. It has been observed that these solutions almost
always come in groups of four. With randomnly cho-
sen ray pairs there may be no solutions and sometimes
there may be as many as twenty solutions. There have
been several attempts recently to prove that there can be
at most twenty solutions and also to come up with algo-
rithms guaranteed to find all of them. Berthold Horn has
devised an algorithm, using the recently developed con-
cept of m-homogeneous sets of equations, which, starting
with twenty roots of a simplified set of equations, tracks
these solutions to find the twenty roots of the equations
representing the actual ray correspondences. The sim-
plified set of equations can be solved in closed form and
the final set of twenty roots may contain complex roots,
usually in groups of four. The algorithm in effect consti-
tutes a constructive proof.

6 Analog VLSI circuits for vision

David Standley has successfully implemented an analog
chip that accurately and rapidly determines the centroid




and orientation of a bright blob in an image. The 6 x 8
millimeter chip has an array of 29 by 29 sensors that can
determine the centroid position with sub-pixel accuracy.
It is extremely fast—the settling time appears to be less
than 100 micro-seconds. The chip performs a specialized
task that normally requires a great deal of highly repet-
itive computation if done on a serial computer. Special-
ized digital systems for moment calculations do exist,
but none perform the computation in a single chip.

The chip is based on a method developed by Berthold
Horn for turning some area-based computations into
contour-based computations. Furthermore, a theorem
applicable to certain discrete arrangements of resistors
allows one to simplify analog computations by exploit-
ing an equivalence between two apparently quite differ-
ent uses of a network (The new result is thought to be
related to Tellegens’ theorem). The upshot of all this is
that most of the computation can be done by a simple
regular resistive grid connecting the sensing elements.

The work on the centroid-and-orientation chip has laid
the basis for more sophisticated analog chips, particu-
larly in the area of motion vision. Ignacio McQuirk has
been studying and simulating a family of methods for
locating the focus of expansion in order to determine
which methods are both trustworthy and conveniently
implementable in analog hardware. All of the methods
studied are based on direct motion vision methods. Un-
fortunately, the special techniques used in the position-
and-orientation chip do not all transfer to this problem.
Also, the computation at each picture cell is more com-
plex, so we anticipate that we may have to depart from
the elegant and simple arrangement where the compute.-
tion is completely unclocked.

7 Learning

As we discussed in the last Proceedings, we have made
substantial progress towards a rigoreous and powerful
theory of learning from examples.

We first explain how to rephrase the problem of learn-
ing from examples as a problem of approximating a mul-
tivariate function.

To illustrate the connection, let us draw an analogy
between learning an input-output mapping and a stan-
dard approximation problem, 2-D surface reconstruction
from sparse data points. Learning simply means collect-
ing the ezamples, i.e., the input coordinates =;,y; and
the corresponding output values at those locations, the
heights of the surface d;. Generalization means estimat-
ing d at locations 2,y where there are no examples, i.e.
no data. This requires interpolating or, more generally,
approximating the surface (i.e. the function) between
the data points (interpolation is the iimit of approxima-
tion when there is no noise in the data). In this sense,
learning is a problem of hypersurface reconstruction.

From this point of view, learning a smooth mapping
from examples is clearly ill-posed, in the sense that the
information in the data is not sufficient to reconstruct
uniquely the mapping in regions where data are not
available. In addition, the data are usually noisy. 4 pm-
ort assumptions about the mapping are needed to make
the problem well-posed. One of the simplest assumptions

is that the mapping is smooth: small changes in the in-
puts cause a small change in the output. Techniques that
exploit smoothness constraints in order to transform an
ill~posed problem in a well-posed one are well known un-
der the term of regularization theory. We have recently
shown that that the solution to the approximation prob-
lem given by regularization theory can be expressed in
terms of a class of multilayer networks that we call regu-
larization networks or Hyper Basis Functions. Our main
result (Poggio and Girosi, 1989) is that the regularization
approach is equivalent to an expansion of the solution in
terms of a certain class of functions:

N
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where G(x) is one such functioa and the coefficients ¢;
satisfy a linear system of equations that depend on the N
“examples”, i.e. the data to be approximated. The term
p(x) is a polynomial that depends on the smoothness
assumptions. In many cases it is convenient to include
up to the constant and linear terms. Under relatively
broad assumptions, the Green’s function G is radial and
therefore the approximating function becomes:

N
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which is a sum of radial functions, each with its center§;
on a distinct data point and of constant and linear texms
(from the polynomial, when restricied to be of degree
one). The number of radial functions, and corresponding
centers, is the same as the number of examples.

Our derivation shows that the type of basis functions
depends on the specific a priori assumption of smooth-
ness. Depending on it w2 obtain the Gaussian G(r) =
e~(8)’] the well known “thin plate spline” G(r) = r*Inr,
and other specific functions, radial and not. As observed
by Broomhead and Lowe (1989) in the radial case, a su-
perposition of functions like Eq. 1 is equivalent to a
network with one “hidden” layer of units. The iuter-
prevation of Eq. 2 is simple: in the 2D case, for in-
stance, the surface is approximated by the superposition
of, say, several two dimensional Gaussian distributions,
each centered on one of the data points.

The network associated with Eq. 2 can be made more
general in terms of the following extension

n
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where the parameters t,, that we call “centers”, and the
coefficients ¢, are unknown, and are in general much
fewer than the data points (n < N). The norm is a
weighted norm

I~ ta)llly = (x — ta) " WIW(x—ta)  (4)

where W is an unknown square matrix and the super-
script T indicates the transpose. In the simple case of
diagonal W the diagonal elements w, assign a specific
weight to each input coordinate, determining in fact the




units of measure and the importance of each feature (the
matrix W is especially important in cases in which the in-
put features are of a different type and their relative im-
portance is unknown). Equation 3 can be implemented
by the network of Fig. 1. Notice that a sigmoid function
at the output may be sometime useful without increas-
ing the complexity of the system (see Poggio and Girosi,
1989). Notice also that there could be more than one set
of Green’s functions, for instance a set of multiquadrics
and a set of Gaussians, each with its own W. Notice
that two or more sets of Gaussians, each with its own
(diagonal) W, are equivalent to sets of Gaussians with
their own os.

7.1 The learning equations

Iterative methods of the gradient descent type can be
used to find the optimal values of the various sets of
parameters, the c,, the w; and the t,, that minimize an
error functional on the set of examples. Gradient-descent
is probably the simplest approach for attempting to find
the solution to this problem, though, of course, it is not
guaranteed to converge. We define
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In the stochastic gradient descent method the values
of cq, to and W that minimize H[f*] are regarded as
the coordinates of the stable fixed point of the following
stochastic dynamical system:

Co 3= =W H[f]-{-na(t), a=1,.
ta=—waI;t[£.] +p.(t), a=1,...,n
o OH[f]
W = —w—ser + 92(1)

where 7,(t), #,(t) and $2(t) are white noise of zero mean
and w is a parameter. The important quantities — that
can be used in more efficient schemes than gradient de-
scent — are:

» for the ¢,

S
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e and for W:
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where @;,o = (x;—ta)(x; —to)7 is a dyadic product
and G' is the first derivative of G (for details see
Poggio and Girosi, 1990a).

7.2 Interpretation of the network

The interpretation of the HyperBF network is the fol-
lowing. After learning the centers of the basis functions
are similar to prototypes, since they are points in the
multidimensional input space. Each unit computes a
(weighted) distance of the inputs from its center, that is
a measure of their similarity, and applies to it the radial
function. In the case of the Gaussian, a unit will have
maximum activity when the new input exactly matches
its center. The output of the network is the linear su-
perposition of the activities of all the basis functions in
the network, plus direct, weighted connections from the
inputs (the linear terms of p(x)) and from a constant
input (the constant term). Notice that in the limit case
of the basis functions approximating delta functions, the
system becomes equivalent to a look-up table. During
learning the weights ¢ are found by minimizing a measure
of the error between the network’s prediction and each
of the examples. At the same time, the centers of the
radial functions and the weights in the norm are also up-
dated during learning. Moving the centers is equivalent
to modifying the corresponding prototypes and corre-
sponds to task-dependent clustering. Finding the opti-
mal weights W for the norm is equivalent to transform-
ing appropriately, for instance scaling, the input coordi-
nates and corresponds to task-dependent dimensionality
reduction.

7.3 Extensions and Applications

Caprile, Girosi and Poggio (1990) have introduced tech-
niques for dealing with two aspects of learning: learn-
ing in the presence of unreliable examples and learning
from positive and negative examples. These two exten-
sions are interesting also from the point of view of the
approximation of multivariate functions. The first ex-
tension corresponds to dealing with outliars among the
sparse data. The second one corresponds to exploiting
information about points or regions in the graph of the
function that are forbidden.

From a theoretical point of view, it is also interest-
ing to compare the HyperBF networks with multilayer
perceptron schemes. It has been proved that multilayer
networks of the perceptron type can approximate ar-
bitrarily well continuous functions. Girosi and Poggio
(1989c) prove that networks derived from regularization
theory and including Radial Basis Functions have a sim-
ilar property. From the point of view of approximation
theory, however, the property of approximating contin-
uous functions arbitrarily well is not sufficient for char-
acterizing good approximation schemes. More critical
is the property of best approzimation. The main result




of Girosi and Poggio is that multilayer perceptron net-
works, of the type used in backpropagation, are not best
approximation. For regularization networks (in particu-
lar Radial Basis Function networks) they prove existence
and uniqueness of best approximation.

Regularization networks- of which HyperBFs are the
most general and powerful version — represent a gen-
eral framework for learning smooth mappings that rigor-
ously connects approximation theory, generalized splines
and regularization with feedforward multilayer networks.
They also contain as special cases the Radial Basis Func-
tions technique (Micchelli, 1986; Powell, 1987; Broom-
head and Lowe, 1988) and several well-known algo-
rithms, especially in the pattern recognition literature.

Edelman and Poggio (1990) have applied the tech-
nique to the problem of 3D object recognition with
promising results. They have been able to synthesize
a module that can recognize an object from any view-
point, after it learns its 3D structure from a small set
of 2D perspective views, using the HyperBF network
scheme. Their results were obtained so far with simu-
lated wireframe objects and assumed that the problems
of feature extraction and matching were already solved.
The problems of occlusions and spurious features were
ignored. Nevertheless, their results are interesting as a
nontrivial application of a technique for learning from
examples in which model acquisition is very simple.

From a broader point of view, this application to ob-
ject recognition can be regarded as just one example of
a drastically new approach to computational vision, in
which some of the needed modules of a vision system
are synthesized (or fine-tuned) from a sufficient set of
examples, using a standard machinery, without explicit
programming,.
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ABSTRACT

Research in the Computer Vision Laboratory at
Maryland 1s focused on problems whose solutions
would constitute sigmificant progress in 1mage
understanding. This paper describes some of the
fundamenta! problems that limit the performance
of vision systems, and indicates how our research is
addressing these problems The paper is organized
around some of the answers to the question “Why
is vision hard?”

1 Why Vision Is Hard: Visual
Proﬁlems Are Ill-Posed

There exist two general goals for practical vision sys-
tems: navigation in a complex environment and recog-
nition of classes of objects (such as people or trees) in a
complex scene. A large proportion of the research on
computer vision addresses one of these two goals, expli-
citly or implicitly. But achieving these goals presents
great difficulties.

These difficulties were realized during the 1960s
and '70s after the failure of early attempts to build
complete vision systems, i.e. systems that used
knowledge at all levels including domain-specific infor-
mation. “In order to complete the construction of
such systems it is almost inevitable that corners be cut
and overly simplified assumptions be made” [Brady,
1982]. Doing this results in a system capable of per-
forming a limited set of tasks, but does not enhance
our general understanding of vision.

At about that time it was proposed [Marr, 1982]
that many visual tasks depended on solving the follow-
ing problem: From one or more images of a scene,
derive an accurate three-dimensional geometric
description of the scene and quantitatively recover the
properties of the objects in the scene that are relevant
to the given task. If we can recover an accurate
description of our environment, we can navigate and
avoid obstacles, and if we can accurately recover the
properties of an object (shape, reflectance, color, etc.)
we can use them to recognize it.

How can this recovery be accomplished in a com-
plex visual environment? By following the general
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principles for the design of complex systems [Feldman,
1985]. We divide the visual system into functional
components, thus breaking the overall task into auto-
nomous parts, and analyze these components individu-
ally. We then define the representation of information
used by the components and the language of communi-
cation among them. The components are then tested
individually, in pairs, and all together.

In a visual system, according to the paradigm set
forth by Marr, the components are subsystems that
recover specific properties of the scene from images.
We call these subsystems modules. The majority of
computer vision research has been devoted to the
study of such modules and their integration. The
study of human and animal perception provides evi-
dence as to the nature of the modules. For example,
one source of evidence for the existence of modules in
the human visual system is the study of patients with
disabilities that come from brain lesions. Another
source is the experiments performed by psychophysi-
cists in which a particular module of the human visual
system is ‘“isolated”; examples are Julesz’s [1971]
experiment on stereoscopic fusion without monocular
cues, Land’s {1971] demonstration of the computation
of lightness, Gibson’s {1950] experiments on the percep-
tion of shape from texture, etc. Such studies suggest
that cues such as shading (image intensity variation),
texture (distribution of surface markings), contours and
outlines (image discontinuities), color, motion and
stereo are very helpful in recovering properties of the
scene from images. In computational vision, names
have been given to many of these modules: Shape frorm
shading, shape from texture, shape from contour, shape
and depth from stereo, structure from motion, direc-
tion of light source from intensity, physical discon-
tinuities from intensity discontinuities, motion from
image intensity derivatives, etc.

However, during the image formation process the
three-dimensional world is mapped into two dimen-
sions, and one dimension is lost. This creates many
problems when we try to solve the inverse problem of
recovering the world from the image. A problem is
ill-posed [Hadamard, 1923] if its solution either does
not exist, or is not unique, or does not depend continu-
ously on the data. Poggio and his colleagues {Poggio
et al., 1985) realized in the early 1980’s that most early
vision problems are ill-posed. This ill-posedness is one
of the reasons why vision is hard; the next section
describes our contribution to this general problem of




visual recovery. Our work here has led to some
interesting new mathematics of recovery.

2 Ill-Posedness: Boundary Preserving

Regularization, Integration,
and Active Vision

2.1 Boundary preserving regularization

This part of our work studies the general recovery
problem, i.e. how to recover an unknown function of
the scene from an image (or images), when the avail-
able constraints are not enough (the function can be
depth, shape, albedo, optic flow, etc.).

Poggio et al. [1984] discusses the application of reg-
ularization to low-level vision. Write L = 0 for the
constraint relating the image data to the unknown (e.g.

= Lu + I,v + [, for the computation of optic
flow (u, v) from an image I(z,y,t); L = I-I for the
case of image reconstruction, where I is the observed
intensity) and S = 0 for the smoothness constraint.

For the problem of interpolating an intensity func-
tion, reasonable choices for S are the first and second
derivatives of intensity [Poggio et al., 1984], or some
linear combination of the two derivatives. For the two
dimensional flow problem, Horn and Schunck (1981]
suggest using several first derivative constraints:

v dv du ou
S“‘az’s?'ay’s“'“az’ dy
Another option is to use second derivative constraints.
Still another two-dimensional constraint, if the unk-
nown is a scalar, is the derivative of the unknown in
the gradient direction. We do not expect these con-
straints to be exactly zero any more than we would
expect L to equal zero exactly.

There are three standard ways to balance data con-
sistency and smoothness requirements. One is to
minimize Y,L? subject to the constraint that

f Y15:2< Max ; the second is to minimize f y8:2
subject to Y,L? < Max; and the third is to minimize

VL% + X f Y352 Here Max is an upper bound on

the amount of permissible smoothness (or data con-
sistency) constraint error; the sums are over all data
points, the integral is over all space, and X > 0 is a
parameter to be determined. Max and X\ control the
relative importance of smoothness and consistency
with the image data.

We work with the third kind of regularization that
uses the parameter A. The Euler-Lagrange equations
we have to solve are linear in L and S, assuming L is
linear. If L and S are linear in the unknown, solving
these equations is easy. Provided we pick a reasonable
X the quality of the solution is fairly good except at
discontinuitics. Near discontinuities the solution is
much smoother than it should be. If we use a second
derivative smoothness term, we get oscillations in the
solution not present in the data or the real world.
That is because we have made the first derivative too
smooth; there should be a big jump in the first

S4=

L
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derivative in the vicinity of the discontinuities. If we
reduce the value of A\, we under-smooth and increase
noise vulnerability in regions where the unknown is
smooth. We might want to let A vary from position to
position, but there is enough difficulty finding one good
average A for the whole image. We could choose to
apply regularization only over regions where the unk-
nown is smooth. But we cannot know a priori where
the boundaries of such regions are. We can apply any
iterative regularization procedure: regularize, segment,
regularize, scgment, etc. But the initial regularization
loses valuable information about discontinuity location
because it smooths over discontinuities.

It is clear that this is a very important problem,

closely connected to the problem of segmentation.! The
problem is hard, from a mathematical viewpoint,
because the function to be recovered is usually not
“nice” (for example it has discontinuous derivatives,
i.e. corners) and there is noise in the input data
(image). Trying to reconstruct a function with corners
(discontinuities), we can follow one of the following
two general approaches: (a) to make a rigid distinction
between discontinuity and non-discontinuity points, or
(b) to accept that there are many kinds of discontinui-
ties (some rounder, some sharper) and reconstruct the
function while smoothing as little as possible over
discontinuities. Consider the following illustrative
example. If we have to recover a function like the one
in Figure 1, the first approach will attempt to find the
corner point A and then reconstruct by regularizing
between discontinuities (Figure 2), while the second
approach will reconstruct while smoothing as little as
possible in the corner (Figure 3). In intuitive terms,
the first approach “believes” in segmentation, while
the second one doesn’t.

Our contribution here follows the second approach.
We have developed a ““convex’ theory of discontinuous
regularization and a “linear” theory [Shulman and
Aloimonos, 1988a; Aloimonos and Shulman, 1987;
Shulman and Hervé, 1990; Shulman and Aloimonos,
1988b). A quadratic smoothness measure implicitly
assumes S is Gaussian and thus over-penalizes large
values of §. Discontinuities do occur and very large
values of § are much more likely than a Gaussian dis-
tribution would allow. For small values of S, a Gaus-
sian distribution seems to be a reasonable approxima-
tion. It is only at points where there is a sharp jump
in the unknown that we need to apply a non-quadratic
smoothness penalty. Thus we replace the condition

minimize Y L% + X[} 52
by: minimize Y L? + >\ng_ (S

where g7($,) = S2if §; < T,. Here 7} is a threshold

"The importance of the problem was also signified by the re-
cent AFOSR Workshop on the “Encounter of Computer Vision and
Mathematics”, organized by Profs. R. Bajesy and P. Lax of the
University of Pennsylvania, in May 1990.




Figure 1.

Figure 2.

Figure 3.

to be determined. The problem is : what should g7 be

for large S;?

One possible answer to this query is g (S;) = T;?
if §; > T;. This has been proposed in different nota-
tion by Blake and Zisserman [1987], Marroquin {1985],
Mumford and Shah [1985], and Geman and Geman
(1984]. The intuition is that there are two kinds of
points: discontinuities and non-discontinuities. At
non-discontinuities, S is Gaussian. At discontinuities,
all values of S are equally likely. Aside from any com-
putational problerns with the variational condition, the
idea that all large values of S are equally bad is ques-
tionable. We have computed many histograms of
differences of intensity; the tails are not particularly
flat. In a crowded room, depth distances between
occluding objects are not uniformly distributed. Very
large distances are unlikely because there is bound to
be some other object between two objects that are
very far apart. The equal goocdness assumption is say-
ing, in the case of a second derivative smoothness con-
straint on depth, that the wotld consists {roughly
speaking) of planar surfaces and sharp corners (discon-
tinuities in orientation). Indoors, this assumption is
often true, but an outdoor scene often has more
rounded than sharp corners.

Actually, we simply do not know what the best
penalty function is, i.e. what gr should be used. We
do not know the probability distributions of the S;.
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Let us assume that

(1) The distribution is symmetric about 0; so, for
any z, it is equally likely that $; = z and that
S,' =-2.

(2) The distribution is a mixture, so we can write

8§ =(1-B)G+B-H where B is a binary ran-
dom variable taking the values 0 and 1 (not bad
point; bad point), G is a Gaussian random vari-
able, and H is a random variable with unknown
probability density.

The best we can do is choose a penalty function P
that minimizes the expected solution error under the
worst possible distribution H. Thus we want a P such
that maxy ESE(P,H) = min, maxy ESE (p,H ).

Looking for the minimax penalty function is the
same as finding the worst, least informative H, and
choosing the P corresponding to that H. This least
informative H is probably too uninformative. We
assumed only that H is symmetric; otherwise it is
entirely arbitrary. In practice we can learn additional
constraints on H that are reasonably certain to hold.
Furthermore we are assuming we know the expected
value of B, i.e. we know the expected fraction of bad
points. This is equivalent to knowing the threshold,
T. In reality, finding a good T is nontrivial.

Huber (1981} shows that the least favorable distri-
bution, the one causing the greatest expected mean
square error, is the distribution corresponding to the
penalty function

gr (z) =2%forz < T,

= T? 4+ 2T|z-T|forz > T.
This function is convex; thus all local minima are glo-
bal minima. If we add a small quadratic to gy, we
obtain a strictly convex function
gr, (z)=2%forz <T
= T? 4+ 2T|z-T| + e(z-T) for 2 > T.

Now we are guaranteed unique local minima to our
variational condition provided we have enough data
points. In practice, we do not seem to need the extra
term involving €. If we use this expression, ¢ can be
any small positive number.

Figure 4 is an image of a complex scene. It was
photographed in two views, with camera distance
chosen such that the optical flow values should always
be of the order of magnitude of one pixel and the opti-
cal flow equation, which assumes short-distance
motion, is valid. Unfortunately the scene contains
many specular points and few curved objects and thus
is not ideal for our algorithm, but the preliminary
results we get ate fairly good anyway; in fact our
detection of depth discontinuities is quite impressive.
We only have to compute the horizontal component of
the flow; we display it as an intensity map in Figure 5
[Shulman and Hervé, 1990].
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Our second contribution is the linear theory of
discontinuous regularization [Shulman and Aloimonos,
1988b; Shulman, in preparation]. Standard regulariza-
tion minimizes the functional

fL2+ AS?

where L is the consiraint and § is smoothness; we
instead minimize

ffja,-(m)% b(D 5)?

where a;, b; are parameters to be determined. There
exist many justifications for why we use this expres-
sion; they have been presented in [Aloimonos and Shul-
man, 1987]. There are various ways for obtaining the
parameters, most of which are intractable. We have
implemented an adaptive estimation of the coefiicients
using  data-dependent learning from  examples
[Aloimonos and Shulman, 1987}, and we have applied
it to the problem of 1-D interpolation. The results
were up to 80% better than ordinary regularization (in
the sense of mean-square error). Shulman applied the
theory to the problems of image restoration and optic
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flow computation. In the restoration application, stan-
dard regularization and discontinuous regularization
were used to reconstruct an image to which correlated,
uniform noise had been added. The latter result had a
4% lower mean-square error. The optical flow applica-
tion used a planar dot pattern whose motion had a
discontinuity along the diagonal. When the flow was
reconstructed using standard anddiscontinuous regular-
ization, the latter reconstruction had a 19% lower
mean-square error. Applications of the theory to other
fields are discussed in [Shulman and Aloimonos,
1988b).2

A class of filters for image smoothing and
differentiation have been developed using a combina-
tion of regularization techniques and local methods.
The fundamental problem of smoothing and
differentiating of noisy images has been previously
approached in two different ways: 1) Minimization of a
smoothness functional, a theoretically well understood
procedure but one that involves the solution of a very
large system of equations involving all the pixels of the
image, for each image. 2) Use of small scale, ready
made filters for local smoothing. A method has been
developed [Weiss, 1989; Meer and Weiss, 1989] that
combines the advantages of the two approaches. Gen-
eral filters are constructed for local windows of the
image, derived from maximization of smoothness or
from “regularization” theory. In this way the theoreti-
cally robust minimization process becomes suitable for
practical implementation, possible in real time, and is
readily adaptable to local image properties. Filters for
more reliable derivatives have also been derived
[Weiss, 1989).

2.2 Integration

Within the recovery paradigm, it has become clear
that individual visual computations are undercon-
strained, but additional constraints can be introduced
by using multiple sensors or by combining multiple
techniques for inferring scene information from images.
We have developed [Aloimonos and Shulman, 1989
general methods for integrating visual modules and we
are currently performing experiments using these
methods. We have studied the coupling of stereo and
motion [Aloimonos and Hervé, in press|, motion and
texture [Aloimonos, 1989], motion and multiple views
Basu and Aloimonos, 1987], contour and motion
Aloimonos and Shulman, 1989), and motion from
binocular flows without correspondence [Duncan and
Li, 1989]. Finally, we have demonstrated that when
cues conflict, humans experience visual illusions
[Aloimonos and Huang, 1990]. For example, when
humans observe a set of points lying on the surface of
a rotating cylinder through a circular aperture, they
perceive a rotating sphere. We have developed

%For example, Yuille and Grzywacz [1988) successfully applied
this theory to the problem of motion coherence.




computational models explaining these illusions that
are consistent with results reported in the perception
literature.

2.3 Active vision

An important method for introducing additional con-
straints into visual computations is to control the
parameters of the sensor, for example its spectral sensi-
tivity, its focal length or its position and orientation.
This approach is known as the “active vision” para-
digm.

We pointed out several years ago that if the
observer is active many recovery problems become well
posed and some of them become linear. Since then we
have concentrated on the study of specific activities.
We showed {Aloimonos, 1989] how an active observer
can understand shape by unifying shading and texture
in a simple manner. We have also started some work
on exploratory vision, i.e. searching through the space
of activities in order to find the optimal one (i.e. the
one that will result in the most robust reconstruction)
[Herve and Aloimonos, 1990]. Most of our recent work
in active vision falls in the paradigm of purposive and
qualitative vision and will be described later.

3 Why Vision Is Hard: The Visual
World Is Noisy

Even well posed (or regularized) visual computations
are often numerically unstable, if noise is present in
both the scene and the image. Scenes are usually cor-
rupted by “noise” coming from various sources (dust,
fog, sun glitter, etc.). The -image formation process
introduces additional noise. As a result, many prob-
lems which theoretically have unique solutions become
very unstable in the presence of input noise. To make
the exposition simpler we concentrate on the problem
of visual motion interpretation. Our work here can be
classified into two broad categories: (a) geometric and
statistical analysis of the problem in order to construct
provably optimal estimators and to understand their
inherent limitations; (b) the paradigm of purposive and
qualitative active vision.

3.1 Optimal visual motion algorithms

We are now in the third phase of research in visual
motion. The first phase was concerned about what can
be inferred from dynamic imagery, i.e. how many
features in how many views are needed in order to
guarantee uniqueness. The second phase was devoted
to extracting closed-form solutions for structure and 3-
D motion given retinal correspondence of points, lines
Spetsakis and Aloimonos, in press], or other features
Spetsakis and Aloimonos, 1989].

The third phase is devoted to the quest for robust
algorithms. It has become very clear in the past few
years that the problem of estimating structure and 3-D
motion from dynamic imagery is unstable in the pres-
ence of noise. In [Spetsakis and Aloimonos, 1988] it
was shown that no matter how many point correspon-
dences we use in two frames, we cannot reduce the

error in the computation of structure using any non-
linear optimization technique (such as the ones existing
in the literature). A simple intuitive geometric reason
for this is the following (see Figure 6).

Figure 8,

Let p be a point before the motion, and suppose we
correspond it (wrongly) with point p’. The motion
constraints require that the true corresponding point
p" lie on a line (/) which is parameterized by the 3-D
motion and structure. Any algorithm that attempts to
find a robust solution must try to minimize the input
error p'p". However, we can only minimize one com-
ponent of this vector, the distance of p' from /. Thus
computation of structure from two frames in the pres-
ence of noise is at the mercy of input noise.

This argument doesn’t apply to the computation of
motion parameters. We have developed [Spetsakis and
Aloimonos, 1988b] an optimal algorithm for computing
3-D motion from two frames under the assumption of
Gaussian noise. The algorithm is optimal in the max-
imum likelihood sense and results in 2 weighted least-
squares approach. After realizing that the optimal

approach, in the presence of a 1% error in the input,®
could result in about a 50% error in the output, we
employed redundancy, i.e. we used multiple dynamic
frames, and the results improved considerably [Spet~
sakis and Aloimonos, 1988c|. Using more frames
increases the robustness because of the additional con-
straints. The following diagram (Figure 7) displays the
behavior of the above algorithms in the presence of
noise, along with the behavior of one more algorithm
that was replicated from the literature. It is clear that
these techniques cannot yet be used by machines. The
horizontal axis denotes error (noise) in the input and
the vertical one denotes error in translation or rota-
tion.

Recently, in our effort to address the stability of
structure from motion (SFM), we unified [Spetsakis
and Aloimonos, in press] the treatments of SFM with
regard to the input used. We introduced a new statist-
ical definition of feature points under which point
features and line features are just the two extremes of
a spectrum of possibie features. Almost any pixel in

31% in units of focal length, which for the focal lengths of
commercially available cameras corresponds to about a 4-6 pixel er-
ror in the image displacement.
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the image can be classified and used as a feature point
in this scheme. Based on this definition we have
designed an optimal algorithm for the SFM problem
that can utilize information from the whole image.
The input to the algorithm is the image displacement,
and its uncertainty, at each pixel for a set of three
frames. The only assumptions used are rigidity and
Gaussian noise in the image displacements. The out-
puts are the parameters of the motion between the
frames and the structure of the scene.

The theory behind this approach is simple and
elegant; it can be extended in several ways (e.g. to
multiple frames); and it was developed with noise sta-
bility in mind. More importantly, the new statistical
definition of the features relaxes the requirements on
the image displacement computation In fact, if the
tangential component of a displacement cannot be
computed then its uncertainty is set to infinity; the
algorithm can tolerate infinite uncertainty for all the
tangential components. In this way the aperture prob-
lem is avoided.

We have also developed analytical techniques for
analyzing the numerical errors introduced by the pro-
cess of discretization [Kamgar-Parsi et al.,, 1989a;
Brosh et al., 1989]. These techniques have been
applied to various structure from motion algorithms,
with discouraging results as far as the robustness of
these algorithms is concerned. Recently we have been
working on a new approach [Jasinschi, 1989a; Jasins-
chi, 1989b] to representing uncertainty in low-level
vision. If, for example, we take into account the con-
straints associated with motion uncertainty, we are
able to devise an adaptive procedure for estimating the
various parameters involved in space-time filtering.

Finally, we have begun to apply robust statistics to
various image estimation problems. As one example,
representation of an image by piecewise polynomial
surfaces may be of importance for some tasks. In
[Meer et al., 1989] a new algorithm was introduced
which recovers the fit corresponding to the absolute

majority of the pixels in the processing window. The
algorithm uses the least median of squares estimator
(LMedS) in a two-stage procedure. The goal of this
work has been to understand the benefits and
difficulties of applying the LMedS estimator to com-
puter vision problems.

3.2 Purposive and qualitative active vision

There is a disconcerting lack of visual systems which
perform well in real-world environments, particularly
when compared to the amount of mathematical theory
published on the subject. There seem to be several
reasons for this.

One reason is that extracting useful visual informa-
tion from images probably involves a very large
amount of computation. The visual cortexes of
animals that perform complex visually moderated
behaviors contain millions of neurons, each of which
performs computations which require thousands of
computer steps per second to simulate, and possibly
many more. Much of this capacity is probably neces-
sary to carry out whatever cortical image processing
occurs,

A somewhat related reason is the perception that
practical results will eventually flow from a successful

theory rather than vice versa.! This probably has more
to do with the lack of any practical systems to work
with than with philosophical conviction, since histori-
cally, empirical engineering applications or unexplained
observations have preceded theoretical developments
at least as frequently as the reverse. If there were sud-
denly to appear a number of machine vision systems
working robustly in different real-world domains, it is
quite probable that theories explaining their com-
monality would soon appear.

There is a third reason that may explain the dearth
of examples of working vision systems, which is that
the generally accepted goals for such systems may be
misplaced, or at least over-ambitious. The two com-
monly held touchstones for practical vision systems,
recognition and navigation, are high-level objectives.
Il both were achieved, automatic systems would have
many of the capabilities of the human visual system.

Another problematic aspect of the recovery (or
reconstruction) school of thought is the fact that visual
computations involve finding the value of some real
quantity, and usually the success of the visual task
relies on the accuracy of the first or second decimal
digit of that quantity. As a result, most machine
visual tasks are unstable. A slight error in the input is
enough to destroy some computations. How can we
perform robust visual computations that can be reli-
ably used for accomplishing various tasks?

If we could solve the general recovery problem we
would be able to perform many visual tasks, but luck-
ily, it is not always necessary to perform general

*This point of view was suggested by Nelson [Nelson and
Aloimonos, 1988].




recovery. Rather, we can consider more specific prob-
lems! We need vision in order to accomplish tasks that
are essential for our survival (recognize friends, enem-
ies, food, avoid danger, etc.). But to carry out a
specific task, we do not need to completely recover the
world and its properties. When we want to move
across a crowded room, we just need to avoid obsta-
cles; it is not necessary to reconstruct the scene and
thus know that the person in the corner is smiling!
Clearly, if we could reconstruct the scene our task
would be very simple; but it is obvious that complete
reconstruction is not necessary.

We can study visual abilities in a purposive
manner, keeping in mind a basic question: What am I
going to use this visual ability for? What tasks can be
performed using it? If we study vision in a purposive,
utilitarian [Ramachandran, 1989], or animate [Ballard,
1989] manner, the problems that we formulate are
much simpler, since they are relevant to the task at
hand. Since they are simpler, they can be solved by
qualitative techniques that exhibit robustness proper-
ties.

Although the foundations of purposive and qualita-
tive vision lie in mathematical and engineering con-

siderations, it seems to be consistent with evolution.”
Accepting that the ultimate goal of an organism is sur-
vival, visual abilities should have evolved in such a
way that they served survival purposes. Thus, visual
abilities for avoiding danger, recognizing food, recog-
nizing mates, friends and enemies developed. But
although some of these abilities were based on common
principles (for example the ability to intercept a mov-
ing object and the ability to avoid a moving object are
both based on the structure from motion module), they
were possibly developed at different times and it is
probable that they are implemented by separate
hardware. From this point of view we may expect that
the machinery of the brain devoted to vision consists
of various independent processes (which of course com-
municate) that are devoted to the solution of specific
visual tasks. That seems to be also the view of leading
neuroscientists [Regan}.

Consider a general® vision system of the future, as
we envision it based on our current understanding of
visual recovery. That system will consist of a large
number of modules, cach of which will be devoted to
recovering a property of the world from a series of
images. There will be modules for shape from shading
[Horn, 1986], shape from texture [Aloimonos, 1988},
structure from motion [Ullman, 1979], etc. All these
modules will communicate and cooperate in building
an accurate description of the environment (i.e. recon-
structing it). Of course, the system will also have
high-level modules which, using the outputs of the
other modules, will perform planning and reasoning.

5Phe philosophical standpoint is presented by Searle in his
book on intentionality [Searle, 1984].

8By general we mean capable of performing a nontrivial
number of visual tasks, but not necessarily as good as human vision.
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Here, we only consider modules interacting with the
image or with immediate representations of it.

What will this general vision system do? We will
expect it to be able to carry out certain basic tasks.
We ¢ .pect it to be able to move around in its environ-
mene and to understand visual motion. Thus it should
be able to perform kinetic stabilization (passive naviga-
tion), i.e. to understand its own motion from images
and adjust it accordingly. It should also be able to
avoid cbstacles. It should be able to avoid moving
objects that are on a collision course with it. It should
be able to detect moving objects in its surroundings
and track them and observe them. It should be able to
intercept a moving object (prey catching), or to extend
its arm and catch a small moving object. It should be
able to coordinzte its hands and eyes to pick up things.
It should be able to solve visual rendezvous problems,
such as putting a stick through a hole; and so on.

It is clear that mast of these tasks are simple appli-
cations of the structure from motion or passive naviga-
tion module. Indeed, suppose that the system has a
robus structure from motion module, i.e. a module
that, takes as input a sequence of images and gives as
output the structure of the imaged scene as well as the

relevant 3-D motion parameters.” Then the system can
detect its own motion and can reconstruct the scene,
which allows it to avoid obstacles and to solve visual
rendezvous and hand-eye coordination problems. It
can determine the 3-D motion of a moving object, esti-
mate its trajectory, and thus avoid something that is
going to hit it, or catch something by positioning its
arm at a specific point. Having a robust structure
from motion module is thus very powerful, as it can
solve all the above-mentioned tasks. It is no wonder
then that this module has attracted so much attention
in the past 15 years and has created a very rich litera-
ture. (See [Bandopadhay, 1986] for a review.) How-
ever, despite the numerous mathematically sophisti-
cated and elegant theories that have been presented,
no one has demonstrated important practical applica-
tions yet.

We have two alternatives. The first is to continue
our research on recovery, to try to understand why
existing approaches are unstable, to develop provably
optimal estimators of structure from motion, and to
introduce noise remedies such as redundancy. The
hope here is that our work will result in the best possi-
ble structure from motion module and that this module
will be good enough (i.e. robust); or we might be
surprised to discover that the best is not good enough
for some tasks.

The second alternative is to reconsider our
viewpoint about the recovery paradigm, and work
“around’’ the problem. This alternative suggests that

If the system is moving in a static s.ene, then the structure of
the scene is recovered along with the 3-D motion of the system. If
the system is stationary, then the shape and 3-D motion of moving
objects are recovered. When both the system and parts of the scene
are moving, only their relative motion can be recovered.




we should not try to solve the abstract structure from
motion problem by developing the structure from
motion module. Instead, it suggests that we must ask
the question: What tasks will I perform if I have a
structure from motion module? After the tasks have
been identified, we should solve them directly and not
as an application of a general module. For example,
we should directly solve the problem of avoiding obsta-
cles. We can ask: Is this moving object coming closer
to me? If so , where is the focus of expansion (FOE)?
Is it inside the boundaries of the image or outside? If
it is inside, does this mean that the moving object will
hit me? If it is going to hit me, how long will it take
with respect to my reaction time?

Can we solve such a collection of problems in a
robust manner? If we can solve such problems
directly, the general structure from motion module will
no longer be needed.® Moreover, because we are now
asking simple questions that have small numbers of
possible answers, the potential exists that we will be
able to achieve robust solutions, since the solutions are
qualitative.

We thus see a new paradigm emerging: that of pur-
posive and qualitative vision (which should of course
be active). In this framework, one does not regard a
vision system as a collection of modules whose purpose
is to reconstruct the world and its properties and thus
provide information for accomplishing various tasks.
Instead, one regards a vision system as a collection of
processes, each of which solves (or groups of which
solve) a particular visual task. If we look at computer
vision in this way, we are no longer considering vision
in isolation, as the recovery school of thought does, but
as a part of a larger process in which vision is used as
a front end. We are currently designing Medusa, a
simple, robust qualitative machine that can perform
many navigational tasks in real time; it is described in
another paper in these Proceedings.

4 Why Vision Is Hard: Visual Objects
Are Hard to Define

Even if we have succeeded in reconstructing the world,
in order to recognize objects we need to compare our
reconstruction with models of candidate objects. But
how do we model a bush or a chair? Researchers have
proposed object modeling techniques that can generate
a large variety of objects. It is not obvious, however,
how to use these techniques to capture the variability
of natural objects, or the great variety of artificial
objects that can all belong to the same class. Existing
machine vision systems have not attempted to handle

8We do not mean that this module and its supporting theoret-
ical research become obsolete. On the contrary, such research, which
has become highly sophisticated nowadays, will contnibute an 1m-
mense amount to photogramimetry, cartography and other visual
reconstruction problems. What we mean here is that if we can solve
all the above-mentioned tasks, the general structure from motion
module probably won't be needed for an autonomous “seeing”
machine that is expected to perform navigational tasks.
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object recognition in natural 3-D scenes, nor to deal
with artificial scenes that contain large numbers of pos-
sible objects. Our work here falls into three broad
categories:

(a) Learning the appearance of an object.

(b) Qualitative 3-D object recognition based on
primitives.

(¢) Object recognition through recovery and match-
ing.

4.1 Learning

How do we learn classes of shapes, for example, how a
fish looks, given many examples of fishes? How do we
learn to differentiate between different textures? How
can we learn to detect significant changes in an area
from aerial imagery? A system called ORACLE
(ORganized Adaptive Constraint LEarning) has been
constructed [Sullins, 1988a; 1988b; 1989a; 1989b] that
can perform these tasks by learning the input-output
behavior of a Boolean expression in disjunctive normal
form.

Most methods of learning in distributed environ-
ments are based on gradient descent algorithms that
involve changing the weights of the network in order
to minimize the difference between the expected and
actual input-output behaviors. The successes of such
“motion in weight space” methods have been limited
due to their inability to capture the implicit con-
straints of the behavior and properly distribute them
among the units of the network. Our system is based
on motion tn constraint space. It relates the input-
output behavior of a connectionist network to a
Boolean expression in disjunctive normal form, where
each hidden unit of the network learns to detect one of
the conjunctive parts of the expression. The potential
constraints at a processor are the states of an input
configuration that correctly activates the outputs,
These constraints are added and removed from the
processors in such a way that the correctness of the
behavior of the network is maximized. Unlike gradient
descent methods, which may become trapped in local
minima, or simulated annealing methods, which may
need an infinite amount of time to reach a good state,
this system determines a correct solution to many
problems very quickly. Unlike most traditional
“machine learning” algorithms, this system can learn
concepts in parallel, is - apable of continuously adapt-
ing to new information, and is highly resistant to feed-
back error.

Applications of this learning algorithm to tasks
such as learning 2-D shapes from examples have
demonstrated its potential applicability to practical
problems Recently, the algorithm has been general-
ized to iecarning under invanance. Also, it has been
successfully used for texture discrimination.

The initial problem used to test ORACLE involved
determining whether or not a given 6 by 6 pixel binary
image (that is, a set of 36 inputs) contained a set of
active input units in the shape of a square. There were
14 possible squares (9 of size 4, 4 of size 5, 1 of size 6),




and an input vector was given a 50% chance of being
assigned one of these squares. Vectors containing
squares were given “background noise” of 2577, that
1s, each non-square input was active with a probability
of 25%. This means that there were on the order of
2% (over 16 million) possible input vectors containing
squares. The inputs of vectors not assigned squares
were active with a probability of 50%, meaning that
there were 23 (over 60 billion) of these.

ORACLE learning curves for various levels of feed-
back error are shown in Figure 8. The X-axis
represents the number of examples. The Y-axis
represents the percentage of time that ORACLE gave
the correct response to the question of whether or not
the input contained a square. Note that this is not the
percentage of time that the output matched the (possi-
bly incorrect) feedback; we are interested in how well
the system managed to ignore incorrect feedback, not
in how well it duplicated it. Each curve is labeled
with its level of feedback error, the percentage of time
that the feedback was incorrect.

As Figure 8 shows, ORACLE learns to detect
squares afier seeing only a tiny fraction of the possible
input vectors. In fact, its correctness is generally close
to 1009, or at least much greater than the correctness
of the feedback. This indicates that ORACLE
succeeds in choosing the correct constraint motion in
the long run despite occasional errors. While the
learning time increases with the feedback error, the
behavior is still learned quickly even for large amounts
of error. The learning does not begin to deteriorate
until the feedback error is greater than 30%.

The individual processors behave as predicted
according to the theory. FEach of them quickly
acquires a seb of correct constraints that distinguish it
from the others and then goes through the slow process
of removing the incorrect ones it picked up along the
way. This is reflected in the learning curves, which
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quickly reach a good level of correctness and then
slowly ontinue to improve to higher levels. They do
not quite reach 1007% correctness because incorrect
constraints are still added from time to time.

The next experiment involved reducing the number
of processors to 5, far below the minimum needed to
cover all of the 14 conjunctive terms. The purpose of
this was to force the network to learn features of
squares. With a feedback error of 10%, the constraint
sets in Figure 9 were created after 20,000 examples.
As this figures shows, ORACLE discovered the ideas of
corners and parallel lines. Both of these features allow
a processor to accept more than one kind of square.
Generalizing to these features did not increase the
error significantly, as it is unlikely that the features
would arise at random (27 for the corners, which is
less than the 10% feedback error).

ORACLE was also given the more realistic problem
of detecting fishtails. A set of 26 pictures of fish tails
[Cousteau, 1953; 1963] were translated to the 6 by 6
binary format. These included many different species
with greatly dissimilar tails, in order to insure that
more than one type of detector would be needed.
Background noise was added by activating inputs with
probability 0.25, giving 2% possible fish tails. ORA-
CLE was either presented with one of these with pro-
bability .5 or was presented with random noise. Fish
tails were given positive feedback and noise was given
negative feedback, except for a feedback error of 107%.
The network contained 10 processors.

The problem was made more interesting by also
deactivating any input with probability 0.05. This
means that there were no good conjunctive terms for
the network to form, as there would always be fish
tails that violated any set of constraints at the deac-
tivated inputs. Because we allowed any of the inputs
to be corrupted, ORACLE was forced to find the most
basic prototypes of fish tails. These were far less well-
defined than the features or conjunctive terms of the
squares. Some of them are shown in Figure 10. The
learning curve is shown in Figure 11.

As can be seen from Figure 10, ORACLE found
widely varying features of fish tails. During each run,
three or four processors acquired one of these features,
but none of them accounted for a majority of the posi-
tive vectors that were accepted. This shows that the
system was able to properly distribute the detection of
different types of fish tails over different processors.

Figure 12 shows some textures that ORACLE was
trained to discriminate and Figure 13 shows the
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corresponding learning curves.

4.2 Qualitative object recognition

Two important issues arise in the representation of
objects for 3-D object recognition. The first issue is
the choice between object-centered and viewer-
centered representations. Object-centered representa-
tions model objects as constructions of 3-D primitives,
such as planar faces or generalized cylinders. Viewer-
centered representations model objects as a set of 2-D
characteristic views, or aspects. The advantage of
viewer-centered representation is that it reduces 3-D
recognition to 2-D recognition; solving the inverse pro-
jection problem is unnecessary. However, with each
model object having potentially many aspects, match-
ing becomes less efficient than with object-centered
models. The second issue concerns the amount of
detail inherent in object models. Quantitative models
facilitate simple, model-based verifieation procedures
at the expense of model complexity. Qualitative
models preclude top-down verification, but are invari-
ant to minor changes in shape.

In [Dickinson et al., 1989] a modecling paradigm for
3-D object recognition integrating object-centered and
viewer-centered models is proposed. Object models are
object-centered constructions of 3-D  volumetric

primitives, offering an efficient indexing mechanism for
large object databases. The 3-D primitives, in turn,
are mapped into a set of viewer-centered aspects. To
minimize the size of the aspect set, the aspects are con-
strained to be invariant to minor changes in primitive
shape, forcing the primitives to be qualitative in
nature. Primitive reconstruction matches local 2-D
image features to the set of viewer-centered aspects,
whose size depends only on the size of the set of primi-
ties, not on the number of object models or on object

Figure 12,
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model complexity. Object recognition then matches
the primitives to object-centered models. To accom-
modate incomplete aspects arising from occluded
model primitives, a hierarchical aspect representation
based on aspect faces is introduced. The levels of the
hierarchy are linked together by a set of conditional
probabilities resulting from an extensive analysis of the
aspects. This approach is general enough to allow for
a wide choice of primitives. We are currently examin-
ing functional primitives, in accordance with the para-
digm of purposive and qualitative vision.

4.3 Recovery and matching

We are continuing to study aspects of the matching
process as well as specific recovery tasks—such as pose
estimation, for example—-related to object recognition.
In [Margalit and Rosenfeld, 1989; Margalit and Knott,
1989; Kamgar-Parsi et al., 1989b] efficient algorithms
are presented for matching polygonal arcs. The algo-
rithm is based on an algorithm for run-length string
matching presented in [Margalit and Rosenfeld, 1988].
In [DeMenthon and Davis, 1989] new exact and
approximate solutions of the three-point perspective
problems are presented. Model-based pose estimation
techniques which match image and model triangles
require large numbers of matching operations in real
world applications. We have shown that by using
approximations to perspective, lookup tables can be
built for each of the triangles of the models. Weak
perspective approximations have been previously
applied to this problem; we have considered two other
perspective approximations. paraperspective and ortho-
perspective. Analytical expressions are obtained which
are as sunple as those obtained using weak perspective,
and which have much lower errors for off-center images
than weak perspective. The errors are evaluated by
comparison with exact solutions. The error estimates
show the relative combinations of image and triangle
characteristics which are likely to generate the largest
errors. The corresponding cells of the lookup tables
can be flagged, so that object pose calculations can

disregard image and model triangle pair combinations
when their characteristics correspond to the flagged
cells.

In [Friedland and Rosenfeld, 1989] a method was
described for recognizing compact objects in an image
by minimization of an energy function. The energy
function is based on a polar coordinate object represen-
tation, define using any center from which the object’s
contour is visible. It incorporates both low-level and
high-level information about the object: contour sharp-
ness and smoothness at the low level, and contour
shape at the high level.

5 Why Vision Is Hard: Vision Must
Operate In Real Time

Suppose we ask a human to identify an object, and we
measure the time T between the instant that the
object is displayed and the instant at which it is
identified. Let the average time for a neuronal firing,
i.e. the time it takes a neuron to perform a computa-
tion and pass the result to its neighbors, be {. The
quotient T /¢t is essentially the number of computa-
tional steps performed by the brain in order to identify
the object. Amazingly, we find that this number is
only a few hundred! Existing computer vision systems
that perform non-trivial tasks require millions or bil-
lions of steps on a serial computer. Our work is
addressing this issue by studying the role of parallel
processing in computer vision.

[Chandran and Mount, 1989] developed optimal
shared memory parallel algorithms for the Medial Axis
Transform (MAT). In [Bestul, 1989] a general tech-
nique for defining SIMD Algorithms that operate on
parallel pointer-based quadtrees was developed. It is
useful for creating parallel quadtree algorithms that
run in time proportional to the height of the quadtrees
involved but that are independent of the number of
objects (regions, points, segments, etc.) which the
quadtrees represent. The technique makes use of a
dynamic relationship between the processors and the
elements of the space and object domains being pro-
cessed.

In [Sher and Rosenfeld, 1989] a pyramid program-
ming environment on the Connection Machine is
presented. The mapping between the Connection
Machine and pyramid structures is based on a scheme
called Shuffled 2-D Gray Codes. A pyramid Hough
transform, based on computing the distances between
line or edge segments and enforcing merge and select
strategies among them, was implemented using this
programming environment.

[Pehkonen, 1989] describes the implementation of a
pose estimation algorithm on the Butterfly Parallel
Processur {(BPP) and Hathi 2 parallel computers. In
[Davis and Narayanan, 1989] two approaches are
described to the efficient processing of small images on
hypercube-connected SIMD machines. The first
approach, called fat images, is based on distributing
the bits representing the gray level (or other feature)
from each pixel across the processors of a sub-
hypercube, using Gray coding techniques to obtain a
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good mapping of the fat image into the hypercube.
The second method, called replicated images, involves
generating as many copies of the small image as will fit
into the machine, and then distributing the computa-
tion of basic image processing operations across the
copies.

A speed up analysis of parallel programs with an
image analysis program as a case study was reported in
[Seppanen, 1989]. The approach is based on the con-
cept of critical paths of concurrent programs. Utilizing
timing profiles of a program running on the desired
target computer, a model can then speed up behavior
of the program. The model can then be used for point-
ing out those factors that seem to affect the speed up
behavior of the program. An image analysis algorithm
was implemented on the Butterfly Parallel Processor
(BPP) and used as a testbed for the method. The
algorithm performs gray-level connected component
analysis and feature extraction for area-segmented
images. Then intra- and inter-area features are com-
puted for the area segments, including adjacency
graphs. Parallel computation is achieved by dividing
the input image into equal sized blocks and assigning
each block to a different processor of the BPP, accord-
ing to the principles of data parallelism. An asynchro-
nous slave process is attached to each image block,
and an asynchronous master process controls the slaves
via synchronization of barrier variables. Mutual exclu-
sion among the slaves is implemented with locking
primitives. Both of the main stages of the program
contain three steps: first, image blocks are processed
locally as long as possible; second, a description of
block interfaces is created to be utilized in the third
step, in which the partial results are merged.

In [Chen, 1989] a flexible parallel architecture for
both discrete relaxation labeling (DRL) and probabilis-
tic relaxation labeling (PRL) is developed. Through
proper space-time arrangement of the computational
steps involved, the relaxation labeling processes can be
rur on a systolic-array-like architecture in linear time
for each iteration. Thus a high degree of computa-
tional parallelism is obtained. The arrays use one-
dimensional, one-way communication lines between
adjacent PEs and interface with the external environ-
ment through only a single I/O port. Because of the
hardware simplicity and programmability features of
the PEs, the architecture is well suited for VLSI imple-
mentation and is flexible enough to execute different
relaxation algorithms. An illustrative example of run-
ning a region color labeling problem on the proposed
architecture has been formulated and a general running
procedure has also been developed.

6 Vision as a Part of a
Larger System

The reason we need vision is to accomplish tasks.
That is, vision is always a part of a larger system and
we need to be able to integrate it with other cognitive
abilities in a coherent and efficient manner. To be
more concrete, let us consider the problem of visual
navigation, i.e., visually mediated movement. This

requires us to consider vision in conjunction with plan-
ning. Most of the planning literature has concentrated
on a complexity classification of various planning
tasks. As most of the interesting problems are intract~
able, our research has focused on obtaining approxi-
mate efficient algorithms, i.e. algorithms that are not
optimal but are proven eflicient. For example, the
problem of rearranging rectangular blocks enclosed in a
rectangular room, or the Warehouseman's Problem, is
known to be PSPACE-hard and hence is considered
intractable. Following the suggestion in the seminal
paper by Hopcroft, Schwartz and Sharir, we presented
in [Sharma and Aloimonos, 1989] several constraints
under which the general problem becomes tractable by
giving polynomial algorithms which guarantee the rear-
rangement under different conditions. The concept of
temporary storage space is introduced as an important
part of the approach which can also be used in other
hard motion coordination problems. The other con-
straints restrict the possible sizes and relative place-
ments of the blocks.

Using the same methodology, the problem of
finding a collision-free path connecting two points in
the presence of obstacles, with constraints on the cur-
vature of the path, is examined in [Basu and
Aloimonos, 1989]. This problem of curvature-
constrained motion planning arises when (for example)
a vehicle with constraints on its steering mechanism
needs to be maneuvered through obstacles. Though no
lower bound on the difficulty of the problem in 2-D is
known, the exact algorithms for the reachability ques-
tion given so far are exponential. We have obtained a
simple polynomial time algorithm for obtaining an
approximation scheme for this problem. The approxi-
mation scheme can be used for obtaining the minimum
curvature path or minimum length path satisfying a
given curvature constraint. A probabilistic analysis of
the scheme has also been given to analyze its useful-
ness.

We need to create a much closer coupling between
vision and planning. Current experimental systems
display a rigid distinction between their vision and
planning modules, i.e., vision is used to extract infor-
mation which is then used by the planner. We believe
that vision and planning must be closely coupled, i.e.
during planning, the vision module should be accessible
at all times. Planning can also be seen as “taking
actions that have some effect on the perceptual input”.
In this way, the planner can manipulate the input in a
controlled manner. Using this viewpoint, [Basu, 1989)
has investigated the problem of moving obstacles and
on the basis of visual information has developed a
computational theory that suggests several strategies
that a robot can follow in order to plan a path (from a
specified start Lo a specified end pointj in the presence
of moving obstacles whose motion is not known a
priori. The input to this perceptual process is time
varying imagery acquired by the robot and the output
is a strategy that indicates how the robot should move
in order to obtain a safe path, i.e. a strategy that max-
imizes the probability of safely reaching the goal using
visually acquired knowledge at every instant.




Finally, based on this vi.wpoint about vision and
planning, [Herve et al., 1990] presents a rcoust tech-
nique for coordinating a hand/eye system without prel-
iminary calibration of any of its components. Where
the classical approach uses vision for calibrating the
system as a step in the expensive inversion of the
rooot’s kinematic map, we closely integrate the visual
feedback in a qualitative control strategy to accom-
plish robot positioning tasks. The topology of the per-
ceptual kinematic map between the joint coordinates of
the robot and a set of image parameters is analyzed
and exploit:d by a control strategy that provides the
manipulator with an ability to successfully maneuver
in its workspace.

7 Conclusions

We have presented a short summary of our image
understanding research during the past year. Our dis-
cussion was organized around some fundamental rea-
sons why vision is hard. These reasons are:

. Ill-posedness of visval modules, which we address
through our work on discontinuous regulariza-
tion, integration of modules and active vision.

) Instability due to noise, which we address through
our work on provably optimal algorithms and the
new paradigm of purposive and qualitative
vision.

. The difficulty of defining visual objects, which we
address through our work on learning.

J The fact that vision must be real-time, which we
address through our research on parallel algo-
rithms and architectures.

We also emphasize the fact that vision must be part of
a larger system. In particular, we propose coupling
vision and planning in a strong way, so that they
operate together at all times. Our work on navigation
demonstrates that this is both feasible and very
efficient.
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USC IMAGE UNDERSTANDING RESEARCH: 1989-1990

R. Nevatia, K. Price and G. Medioni*
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University of Southern California

Los Angeles, California

Abstract

This paper summarizes the USC Image Under-
standing research projects and provides refer-
ences to more detailed sources of information.
Our work has focussed on the topics of 3-D vi-
sion (including range data processing, stereo,
shape from contour and object recognition),
aerial image analysis, motion analysis (includ-
ing spatio-temporal analysis, 3-D motion esti-
mation, detection of moving objects and an in-
tegrated motion system), and parallel process-
ing (including mapping algorithms onto spe-
cific or flexible architectures, and processor-
time tradeoffs).

1 INTRODUCTION

This paper summarizes our research projects during the
last year. Some of this work is described in more detail
in other papers in these proceedings [Stein and Medioni,
1990b; Menet et al., 1990; Kim and Price, 1990; Ulupinar
and Nevatia, 1990b; Reinhart and Nevatia, 1990; Frazier
and Nevatia, 1990]; this work is covered only briefly in
this summary. We also provide references to details for
work not described elsewhere in these proceedings.

Our research activity has focussed on the following
major topics:

e 3-D Vision

¢ Aerial Image Analysis
o Motion Analysis, and
o Parallel Processing

In all of these areas, we have had broad research pro-
grams that have been catried out for an extended period
of time. Thus, it is not possible for us to give a com-
plete summary of our work here. Rather, we describe
our new results and attempt to give some context of the
long term work in which these results fit.

*This research was supported by the Defense Advanced
Research Projects Agency under contracts F33615-87-C-1436
and F49620-89-C-0126, monitored by the Wright-Patterson
Air Force Base and the Air Force Office of Scientific Research,
respectively.

90089-0273

2 3-D VISION

Our goal here is to develop techniques for description and
recognition of complex 3-D objects in complex scenes,
We focus on the analysis of objects using shape (as op-
posed to texture or other cues) and have made significant
progress in the past year. In particular, we have concen-
trated on the following:

e Range image analysis
We have made progress in the automatic acquisition
of models from multiple views, using either symbolic
or iconic representations. These models are useable
for a variety of applications, including for object
recognition as in a system described in our previous
work [Fan et al., 1989].

e Stereo

— We have completed a system which combines
area-based and feature-based processing to gen-
erate dense disparity maps.

— We have excellent results performing the
matching using very high level primitives re-
sulting from perceptual organization

— In the special case of urban scenes, we have
used “snakes” to accurately delineate the con-
tours of building tops.

e Shape from contour

We have developed a theory for inferring 3-D shape
of objects from their contours. The technique re-
lies on observations of certain types of symmetries
in the contours and the mathematically constraints
that derive from them. Our technique uses rela-
tively few assumptions and heuristics and is largely
based on geometrical properties of contours. We
have shown that it is applicable to the analysis of
zero-Gaussian curvatures surface, straight homoge-
neous generalized cylinders and “snakes” and are
working on extending it to yet more complex ob-
Jjects. Good results are obtained, however, currently
we assume that contours and symmetries are given
to our system. In separate projects, we are investi-
gating the computation of such symmetries.

o Symmetry Detection and Perceptual Grouping
Grouping of contours detected in an image is crucial
in proper segmentation and description of objects in
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a scene. In our previous work, we found that sym-
metries play a key role in computing such percep-
tual groupings [Rao, 1988; Mohan, 1989). Symme-
tries are also central to our technique for inferring
3-D shape from contours. In recent work, we have
been investigating efficient ways of computing these
symmetries [Saint-Marc and Medioni, 1990}: once
edge contours are represented by approximating B-
splines and the corners detected [Saint-Marc et al.,
1989}, the computation of symmetries is of complex-
ity O(n?), where n is the number of spline segments
as opposed to the number of points.

e Matching

We have defined a methodology based on efficient
coding and hash tables to recognize objectsin a clut-
tered environment, even when the number of models
is large. We can successfully recognize flat objects
under affine transform, and 3-D objects given 3-D
data (such as range images), with no restrictive as-
sumptions on the shape of these objects.

2.1 RANGE IMAGE ANALYSIS

Range imagery differs from intensity imagery in that the
input directly relates to the geometric shape of the ob-
jects in the scene. Our previous work has allowed us to
compute symbolic descriptions of range images, and to
perform matching with multi-view models. Recently, we
have obtained integrated representations of models from
multiple views, which is more natural since such models
can be observed offline from many positions. The model
building procedure is performed either by merging at the
data level prior to segmentation, or by merging the seg-
mented views, as explained below.

2.1.1 Data level merging

One of the difficulties of integrating multiple views is
in finding an accurate transformation between data ob-
tained from different views. Previous research has sug-
gested to determine the relative motion between views by
using marks and regular patterns in the scene by taking
intensity images at the same time and matching those
features [Vemuri and Aggarwal, 1986}, or by matching
surface features directly [Ferrie and Levine, 1987). These
techniques rely solely on the accuracy of feature detec-
tion and provide no feedback from the data themselves
as to how well the different views have been registered
under the estimated transformation.

Our approach is to use range data directly and try to
register successive views of the object with overlapping
arcas to compute transformations for the relative motion
between views. To reduce the possible large search space
and ensure that the algorithin converges, we assume that
the approximate transformation between the data from
two views is known, which is reasonable when the range
data are acquired in a controlled environment.

To register two overlapping views of range image of
the object, we first choose a set of surface points, called
control points, from one of the range image, and then
apply a minimization process to find the rigid transfor-
mation which minimizes a distance measure from those
control points to the surface represented by the other
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Figure 1: Object Modeling:
{) The original wood block, (b) wireframe of the reconstructed model
and (¢) & (d) two rendered images of the model

range images. This minimization process is done by us-
ing least-square method iteratively. The control points
and the distance measure have been chosen so that this
process can converge very fast.

To merge multiple views, we use a simple cylin-
drical /spherical representation for simple compact ob-
jects. Successive range image of views of the object are
merged after being mapped to a object-centered coordi-
nate frame by using the relative transformations found
by the registration process. To aroid the introduction
of a cumulative error term in the ‘ntegration process,
we also use a global registration stratsgy, i.e., we always
register the next view with the integrated result so far,
so that each view of range data can be registered more
globally with the remaining views.

An example is illustrated in Figure 1: the wood block
a) has been viewed from 8 side positions 45° apart, from
the top and the bottom. The reconstructed views of the
object are shown as shaded images in b) and c).

2.1.2 Symbolic level merging

The alternative approach consists of generating a sym-
bolic description, such as an attributed graph, for each
view, and then merge the different descriptions at this
high level. Each view is represented by a graph whose
nodes are the individual surface patches and the links
are the relationships between adjacent patches. The
matching between views is achieved either through a tree
search procedure [Fan et al., 1989], or by a 2-level con-
straint satisfaction network [Parvin and Medioni, 1989).
One of the difficulties to be overcome by this process is
the inference of surface patches from bounding contours,
since these are not necessarily continuous and generally
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Figure 2: Renault Part.

inaccurate at junctions. We have obtained good results
by modeling this process as a dynamic network subject
to weak smoothness constraints. The initial state of the
network consists of the curves produced by low level op-
erators, but these decay over time unless excited. Possi-
ble completions provide this excitation, competing with
each other and strengthening existing curves [Parvin and
Medioni, 1990).

2.2 STEREO

We are using different approaches to solving the stereo
correspondence problem, from using a combination of
area-based and feature-based processing, to working
with complex primitives resulting from a perceptual
grouping stage. We also are using active contours to
obtain accurate boundaries of roof tops in aerial views
of urban areas.

2.2.1 Feature and area-based processing

We have considerably improved the system described
last year [Cochran and Medioni, 1989a), in which we in-
tegrate area-based and feature-based processing, taking
advantage of the unique attributes provided by each one
separately. The area-based processing generates a dense
disparity map, and the feature-based processing accu-
rately locates discontinuities. The first improvement,
described in [Cochran and Medioni, 1989b), is the ex-
traction of depth and, in many cases, orientation discon-
tinuities from the image.

Figure 2 shows the results obtained for the “Renault
Part” stereo pair. Figure 2 (a) and (b) show one of the
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Figure 4: Books — Disparity Pyramid.

stereo intensity images and the respective disparity re-
sult; (c) shows a 3-D plot of the disparity, from which the
surface features (d) were extracted. The surface features
located on the disparity surface are the depth discontinu-
ities, th~ occluded regions, and the concave and convex
folds.

The second improvement is the use of a multi-level
py.amid, first processing a reduced (coarse) version of
the image pair, and then propagating the results to an-
other level for higher-resolution (finer) processing, as
shown in figures 3 and 4. This introduces a more
global context 2nd allows the correction of local errors in
matching, such as those due to photometric and geomet-
ric distortions. Fignre 5 showsa 3-M plot of the disparity
and figure 6 shows the extracted surface features.

We have applied this Stereo Vision System to a wide
variety of scenes and obtained results which compare
very favorably with state-of-the-art methods [Olsen,
1990; Hoff and Ahuja, 1989; Drumheller ~nd Poggio,




Figure 6: Books -— Surface Features.
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2.2.2 Stereo of aerial urban scenes

Current stereo algorithms, whether area-based or
feature-based, tend to fail around depth discontinuities,
since these are the locations where smoothness assump-
tions do not hold. This phenomenon is most easily ob-
servable in aerial views of urban scenes, and the roofs of
buildings can therefore be detected, but not accurately r
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delineated. Fua [Fua and Leclerc, 1988] and Mohan [Mo- ! \ "’j,f/’f/, ‘ ‘”{ H'?
han and Nevatia, 1989b] propose to solve the problem by ZaNW il

restricting the possible shapes in the form of a generic
model,

Hete instead, we propose to use the initial estimate
provided by a traditional siereo system (as described
in the last section). and to refine it by enforcing a lo-
cal smoothness constraint. This is accomplished by an
active contour model, whose details are given in these
proceedings[Menet ct al., 1990]. The estimate is shown
in figures 7-10.

We bave obtained excellent res
boundaries contain corners, as illustrated on figure 11
below.

esults, even when the

2.2.3 Stereo matching using high level features

We are also investigating an alternative approach Figure 10: Jussien — Surface Features.
to stereo that uses high level features for correspon-
dence. Lower level feature maiching may have difficulties
with global correspondence, particularly when repetitive




Figure 11: Example of delineation of buildings roofs with
deformable contour models

structures are present, requires presence of rather dense
texture and highly accurate knowledge of epipolar geom-
etry. High level feature matching can potentially over-
come these obstacles. Further high level features are
fewer in number and hence should be faster to match,
at least in principle. However, this approach has the
deficiency that high level features need to be computed
from monocular images; a process that is well known to
be difficult and error prone in itself. We have developed
sophisticated perceptual grouping raethods to overcome
this difficulty [Mohan, 1989).

Our first experience with high levcl stereo was in the
context of analyzing buildings in aerial scenes. In such
scenes, texture (on the roofs) is very sparse and dispar-
ity changes discontinuously at the boundaries. We found
that using high level features (rectangles) was very ef-
fective for stexreo processing of such scenes [Mohan and
Nevatia, 1989b]. We next investigated generalization of
this approach to scenes where the object skape is not
so constrained {[Mohan and Nevatia, 1989b]. In this
work, we found that ribbons (defined by two symametri-
cal curves with closures at the two ends) are an effective
method for organizing the curves in an image intc higher
level features and that these ribbons could be used for
stereo matching. This work, however, concent:ated on
the grouping problemn and not on developmext of a com-
petent stereo system.

In our recent work, we have been Luilding on our per-
ceptual grouping system tu develup a stereo system. Fea-
tures such as edgeis, curves, symmetnes, and ribbons
which represent geometric structures of objects in the
scene are extracted from each image using perceptual
grouping. The grouping algorithms are simiiar to those
described in [Mohan and Nevatia, 1989b] but several en-
hancements have been incorporated. Hierarchy of fea-
tures from the lefi and right images are then matched
using a relaxation network. Our method has shown ac-
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(b)

(c)

Figure 12: Results of a scene with multiple occlu-
sions (a) left image (b) right image (c) Disparity
output

curate results for images of multiple occlusions and wide
angle disparities. This is illustrated on figure 12.

2.8 3-D SHAPE FROM CONTOURS

Humans are able to readily perceive 3-D shape from a
monocular image. Many cues are used in this process
such as shading, shadows and texture. However, we be-
lieve that the most significant cue is the shape of the 2-D
contours. The process of inferring 3-D shape from con-
tours, however, has proven to be a very difficult one. We
believe that we have made a major advance in this area
and developed a theory that extends the range of shapes
that can be analyzed significantly. Our theory relies on
observations of certain symmetries in the scene and we
conjecture that only shapes having some symmetries are
percieved in 3-D by humans as well.

We define two types of symmetries that we call par-
allel and mirror symmetries (the precise definitions are
given in another paper in these proceedings {Ulupmar
and Nevatia, 1990b]. Given the observations of these
symmetries in some specific combination, we can infer




some qualitative properties of surfaces and objects in
the scene, such as whether they are planar, have a zero-
Gaussian curvature surface, or are some specific classes
of generalized cylinders.

Further, the contours and the symmetries allow us to
formulate some constraints on the quantitative shape fo
the surfaces being viewed. The constraints that derive
purely from the geometry of the surface are, however,
not sufficient to compute the precise shape of the surface
and leave some degrees of freedom unconstrained. These
degrees of freedom can also be fixed by using some simple
perceptual properties.

Our technique is rather mathematical and hence dif-
ficult to summarize without introducing a good deal of
notation. Hence, here we only give references to the
more detailed work and show some examples. The ba-
sics of our method, and its applications to analysis of
zero-Gaussian curvature surfaces are given in (Ulupinar
and Nevatia, 1990a}. Figure 13 shows some examples
from this work. The first column of this figure shows
the input contours to the program, the middle column
shows the computed surface orientations as a “needle
diagram” and the last column shows the surface orienta-
tions by painting the surface with intensities that would
result from a Lambertian surface illuminated by a point
source. Extensions of our method to straight homoge-
neous generalized cylinders (SHGCs) and snakes (gener-
alized cylinders of constant cross-section) and some re-
sults are given in [Ulupinar and Nevatia, 1990b).

We hope that these examples indicate the power and
range of our approach. We are in the process of further
developing the theory to apply to yet more complex ob-
Jects. It should be noted that this technique assumes
that the appropriate contours and symmetries are given;
this is far from a trivial task. However, we are making
progress on detection of the appropriate symmetries in
other projects in our group [Mohan and Nevatia, 1989a;
Saint-Marc and Medioni, 1990}.

24 SYMMETRY DETECTION

Once edges are extracted, the resulting contours need
to be represented for further reasoning. Iconic repre-
sentations do not make the necessary information ex-
plicit: by definition edgels only capture very local prop-
erties of an image, and the inference of higher structures,
such as object boundaries, requires grouping operations.
We believe thai such operations rely on basic and sim-
ple properties and various forms of symmetry [Mohan,
1989]. The representation must therefore make explicit
differential properties of contours, such as tangent and
curvature. Furthermore, because of the variability in-
herent in the imaging process, the representation should
be toleran! to noise, partial occlusion, and perspective,
naturally suggesting segmented, local descriptors {Rao
et al., 1987].

If the world was composed of polyhedral objects alone,
we would know to expect only straight line segments
in images, and polygonal approximstions would be ap-
propriate. In many cases, such an approximation is in-
deed sufficient, as demonstrated by several applicaiions
such as sterco {Medioni and Nevatia, 1985}, aerial im-

%, S
1SS

Cd
ST

T

= =
%, o

2, o
Y10 W

Figure 13: Sample contours, the needle images computed
and their images after shading the object with the com-
puted orientation at every point on the surface. The
last object has a non planar cross section and thus it is
segmented into two planar cross section objects before
processing.
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age understanding [Huertas and Nevatia, 1988a] or ob-
ject recognition [Mundy et al., 1988; Stein and Medioni,
1990a), but is unable to capture curvature information,
since it is a first order approximation. Also, if & contour
is smooth, the number of points required to approximate
it may be quite large, and the exact position of the points
somewhat unrelated to the contour itself. These issues
have been tackled by the graphics community in the con-
text of design, and we propose to use some of the re-
sulting tools, particularly approximating B-splines. The
resulting representation is compact and faithful to the
original data for smooth or piecewise smooth contours,
open or closed.

It is also very well suited for the detection of symme-
tries. Whereas it is easy to define symmetry between
two infinite straight lines, the concept of symmetry be-
tween curves is harder to define: Rosenfeld [Rosenfeld,
1986) provides a lucid account of the differences be-
tween Blum’s {Blum, 1967}, Brooks’ [Brooks, 1981}, and
Brady’s [Asada and Brady, 1984] definitions, and a more
recent paper by Ponce [Ponce, 1988] gives further com-
parisons. Here, we are interested not in local symme-
tries which provide skeletal shape primitives, but rather
in symmetries which help to infer shape from contour:
Nevatia and Ulupinar [Ulupmar and Nevatia, 1988] pos-
tulate that they are skewed and parallel.

These can be computed efficiently using our B-spline
representation. The main advantages are the low com-
putational complexity (O(n*), where n is the number
of spline segments instead of the number of points) of
the process and the stability of the results, Figure 14
shows an example of parallel symmetry detection using a
quadratic B-spline approximation starting from the two
digital curves displayed in figure 14(a).

As an application, for the very specific case of a torus,
the detection of parallel symmetries allows us to infer the
3-D orientation of the object in a much simpler fashion
than proposed in [Ponce and Kriegman, 1989}, as shown
on figure 15,

2.5 MATCHING

Object recognition involves identifying a correspondence
between part of an image and a particular view of
a known object. This requires matching the image
against stored object models to determine if any of
the models could produce a portion of the image. We
have actively promoted the idea that higher level fea-
tures organized in graphs are the key to recognition
in the presence of occlusion and photometric variations
[Nevatia and Price, 1982; Medioni and Nevatia, 1984;
Fan et al., 1989]. Recently, we have addressed the is-
sues involved in recognizing objects in a cluttered envi-
ronment when the number of models is large. We have
been able to show excellent rcsults for the recognition of
flat objects under affine transform [Stein and Medioni,
1990aj, and of 3-D objects given 3-D data [Stein and
Medioni, 1990b). The keys to our approach are

¢ a redundant representation
e Gray code to measure semantic difference

¢ hash tables for fast retrieval
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e automatic acquisition of models

For the problem of recognition of multiple flat objects
in a cluttered environment from an atbitrary view-
point [Stein and Medioni, 1990a}, the models are ac-
quired automatically and initially approximated by poly-
gons with multiple line tolerances for robustness. Groups
of consecutive linear segments (super segments) are then
quantized with a Gray code and entered into a hash ta-
ble. This provides the essential mechanism for indexing
and fast retrieval. Once the data base of all models is
built, the recognition proceeds by segmenting the scene
into a polygonal approximation; the Gray code for each
super segment retrieves model hypotheses from the hash
table. Hypotheses are clustered if they are mutually
consistent, and represent the instance of a model. Fi-
nally, the estimate of the transformation is refined. This
methodology allows us to recognize models in the pres-
ence of noise, occlusion, scale, rotation, translation and
weak perspective. Unlike most of the current systems,
its complexity grows as O(kN) when N is the number
of models, and k < 1.

An example of successful recognition is shown in fig-
ure 18 in the aerial image section.

For the recognition of 3-D objects from 3-D data, we
use a data structure called a splash, which describes the
variation of surface normals in a circular neighborhood of
a point, encoded as a super segment. From then on, the
matching methodology is identical to the 2-D case. The
full details can be found in [Stein and Medioni, 1990b}.

3 AERIAL IMAGE ANALYSIS

We have three projects for the analysis of images of aerial
scenes including efforts to develop modules that exhibit
high performance by themselves, the integration of mod-
ules into systems, and the formulation of a theory to de-
fine the underlying “visual abilities” required and useful
for extraction of cultural features from images of aerial
scenes;

e The focus of our work in the past has been the
development of modules for detection and decsrip-
tion of cultural (man-made) features present in
aerial scenes such as the transportation network
(fig. 16a,b) [Huertas et al., 1990; Huertas et al,
1989), building structures (fig. 17a,b,c) [Huertas
and Nevatia, 1988b; Mohan and Nevatia, 1988;
Mohan, 1989) and aircraft (fig. 18a,b,c) [Stein and
Medioni, 1990a). Below we give an example of a
module for pier and ships detection from the image
of a harbor complex.

These modules typically rely on perceptual grouping
of primitive geometric features (lines, anti-parallels,
junctions, portions of rectangles, etc) extracted
from the images, to detect the objects. Modules
for mobile objects such as aircraft and ships on the
other hand, use models and rely on scale and rota-
tion invariant matching techniques to detect the ob-
jects. Current work on 2-D and 3-D matching tech-
niques is covered in detail in othex papers in these
proceedings [Stein and Medioni, 1990b} or recent
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Figure 15: Positioning of a Torus
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(a) JFK Airport

(b) JFK Runways

Figure 16: Runway detection module

conference papers [Stein and Medioni, 1990a). Typ-
ically these methods are applied at a stage where we
have a great deal of confidence that these objects are
(or should be) present in the image. For instance,
after detection of runways, taxiways, and buildings,
we can then look for aircraft in the appropriate ar-
eas. These in turn, help reinforce the runway and
taxiway hypotheses made as well as help determine
the funtionality of some of the buildings.

A second portion of our work has concentrated on
devising & system that manages the modules and
integrates the results of the modules thus providing
local and global context as well as higher level rea-
soning suitable for the description of an entire com-
plex or scene. In the past we have concentrated in
the domain of large commercial airports, and devel-
oped modules for detecting major structures. Now
we are investigating the interaction of these mod-
ules. We hope to report on this work in a future
paper.

Our third project concentrates on the development
of general techiques. These include devising a tax-
onomy of perceptual grouping operations and, the
development of a language for describing tasks in
terms of grouping operations. We expand on these
topics in the following sections.

3.1 DEVELOPMENT OF GENERAL
TECHNIQUES

We believe that a hierarchy of processing steps is the
appropriate approach for aerial image understanding,
where the levels of the hiera.chy are chiefly determined
by three factors:
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1. The available sources of knowledge, both generic
and domain specific. We know for instance that
airport runways are straight (geometry), and that
they must have standard markings (object specific)
applied to the surfaces for safety and to aid pilots.

. The available image resolution and quality. For ex-
ample, it is more desirable to look for global fea-
tures, such as harbor piers, at lower resolutions and
then apply the model-to-feature matching to small
portions of high resolution images to locate the ships
(see below). Why? Because the pier areas are
salient features, a collection of macro features ar-
ranged in some simple geometric fashion along the
boundary of two distinct regions, land and water.
The detection of ships, and perhaps their classifi-
cation by type on the other hand, requires higher
resolution and more symbolic processing.

Measurements and assertions as a function of scale.
What can or should be raeasured at a given scale?
Invariably we can get bogged down into considering
everything possible at all scales, and build complex
and massive data structures. However, this is often
unreasonable for mapping and photointerpret **
tasks where the image content and typical

tions auickly make some approaches unfe.

The characterization of such hierarchie- |
of our work and involves two ft.
development of a formal lang .
and photointerpretation (or ovn ¢ ‘
opment of a grouping theory to ¢ {
abilities” required to accomplis. fa eve
that many of these visual abilit. can «wved in




terms of generalized classes of perceptual grouping op-
erations that can be applied in parallel. Eventually the
task descriptions should be given in terms of (or, com-
piled into) a sequence of alternating abstractions in the
representation of the features and application of classes
of grouping operations. We explore some of these ideas
below using as an example the task to “detect pier areas
and ships” from an image of a portion of a harbor aerial
scene.

Most of this work would fit at the “middle-level” level
of perception. The “connection” with the lower levels
of processing, is reflected by the fact that the grouping
processes are more “non-purposive”, and thus should be
implemented to run in parallel. The connection to higher
levels of processing (reasoning about segmented objects,
where an object is a single, functionally identifiable 3-D
object, as determined by the task at hand) is reflected
by grouping processes that are more purposive, operate
on increasingly abstract features, and are sequential in
nature.

Our group has for a number of years developed meth-
ods and techniques involving perceptual organization.
Groupings of near, parallel, collinear, co-curvilinear, and
symmetric features have been used to represent, segment
and extract parts or whole objects from aerial images to
images of office scenes. For an excellent reference on our
most recent work see [Mohan, 1989).

In the recent past we have begun work towards the de-
velopment of a taxonomy for grouping operations, and
here we only introduce informally the notion of group-
ing fields, a general tool for describing mathematically
the visual abilities that involve perceptual groupings of
visual primitives closer to the lower and middle levels of
perception. These are analogous to the ability that hu-
mans have to, presumably preattentively, acquire sensa-
tions that capture, nearly instantaneously, fundamental
and basic geometric arrangements of image elements in
a reflexive manner.

Briefly, the notion of a grouping field is analogous to
force fields in nature. When a visual feature, due to
its size, shape, or other property induce a perceptual
grouping with other features in the field of view, we say
that a grouping field exists around it. Conversely, any
visual feature in the field of view generates a grouping
field which is a function >f the feature properties and can
be influenced by the {ask at hand.

We believe that grouping fields will be useful in deal-
ing with many of the problems pointed out in the recent
past in previous work by [Lowe, 1985; Lowe and Binford,
1983; Lowe and Binford, 1982; Witkin and Tenembs- m,
1983; Stevens and Brookes, 1987) and others, attempting
to derive computational approaches to perceptual orga-
nization abilities.

The combinatorial explosions that arise in allcmpling
to establish relationships among low level features purely
on the basis of attribute processing is a major problem.
For photointerpretation tasks, at least, it seems that the
way to avoid this is to explore the generality aspects top-
down, that is, by describing what we want, say detect
piers and ships, and with our own experienced knowl-
edge of picrs and ships, generate a task description that
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include the perception landmarks (first, detect border
between land and water region, then detect pier areas,
next detect ships in the neighborhood of pier areas, last
identify ships.)

3.2 AN EXAMPLE: ANALYSIS OF
HARBOR COMPLEXES

In analyzing a harbor or port complex we want to be able
to describe the buildings in the port facility, the trans-
portation network around the facilities, and of course
the pier areas and the ships in the area. In our example
we concentrate on the piers and ships and the grouping
fields and grouping operations that lead to the detection
of the pier areas, We then briefly discuss ship detection
and classification.

What do we need to know about port and harbor fa-
cilities to detect the piers and describe the ships? That
the planning and design of port and harbor facilities is
strongly dependent on the characteristics of the ships to
be served, and the type of cargo to be handled [Wright
and Ashford, 1989]. To eventually describe the scene
completely we would have to know a lot of things about
the ships: Main dimensions (length, beam, draft), cargo-
carrying capacity, cargo-handling gear, types of cargo
units, shape, hull strength and motion characteristics,
mooring equipment, maneuverability, and so on.

To detect only the pier areas (where later we look for
ships) we only need the upper bounds on ship dimen-
sions and the image resolution. These parameters are
casily available a-priori and chiefly determine the extent
and strength of the grouping fields associated with the
features. Let us define a some grouping classes useful for
this task:

o Proximity-0D (PxOD): Groups nearby features
without regard for the dimensions of the features.
Each feature, whether a dot, a line, a ship, or an-
other suitable represented group, generates a group-
ing field about its center of mass. The extent of the
field (typically, circularly symetric) is determined
by field of view or by the task at hand as a fune-
tion of image resolution. Intersecting fields form a
group with the same extent and has a new center
of mass. The strength of the filed is proportional
to the “mass” (a function of the complexity of the
feature), and inversely proportional to the square
of the distance from the feature’s center of mass.
A scaling resolution constant is introduced so th..
the same two features at two different resolutions
attract each other with the same force.

Proximity-1D (Px1D): Groups nearby features
vhere a 1D attribute is dominant and can be used
to constraint membership. The strength of the field
in this casc would be proportional, and a function
of the attribute.

Proximity-ND (PxND): Groups nearby features
with ND attributes. Each attribute requires one
layer.

Parallelism with overlap (PlwO): Groups features
that are parallel to each other with respect to their
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Figure 17; Building detection modules

@«
(a) LAX Airport (b) Canny Edges (c) Detected Aircraft

Figure 18: 2-D Matcher applied to image edges for aircraft detection

dominant orientations. Each allowed orientation de- determines a layer for field intersection. The steps
termines a layer where the fields of each feature in a ladder have Co0D.

having that orientation is active. Intersecting fields
give for each orientation all the features parallel to
a given feature. The fields themselves have an el-
liptical shape with its minor axis equivalent to the
length of the feature in the dominant orientation,
and its major axis equivalent to the exteni of the
field of view or, constrained by the task at hand.
Note that allowing for angle tolerances is equivalent
to the intersection of fields across field layers.

e Collinearity-1D (ColD): Groups two or more fea-
tures with respect to their dominant orientation.
Each feature determines the extent its GF, also an
eilipse with high eccentricity. The eccentricity de-
termines the allowed tolerance in collinearity, and
the extent of the field is equivalent to the extent of
the field of view, or constrained by the task at hand.
The orientation of each feature determines a layer
for field intersection. The fragments of an airport

Parallelism with no overlap (PlwnO): The same as runway have ColD.

above with circularly symmetric fields. Let us now apply two of these definitions to our pier

Collinearity-0D (CoOD): Groups three or more fea- exar.np]e: ) .

tures without regard for the spatial extent of the Figure 19 shows an image of a portion of the U.S.
feature. Any two of the three features determine Navy facilities in San .D.lego. We know that we'should
the extent of the grouping field, typically an ellipse  €xpect to see mostly military ships that may require 1_0118
with high eccentricity, centered about the center of  term docking, thus 8110“'"15 for double or tnpl.e dockm'g.
mass of the feature. The eccentricity determines the =~ We know the image resolution 8{“1 the approximate §h1P
allowed tolerance in collinearity, and the extent of ~ dimensions, thus we know the xmni.mum size of the piers.
the field is equivalent to the extent of the field of ~ The following the levels of the desired task:

view. The orientation of the two selected features
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Figure 19: U.S. Navy Facility (512x512 image)

0: Analyze Harbor Scene.
1: Detect and classify buildings.
1: Detect and classify access roads.
1: Detect and classify ships.
2: Detect ships.
2: Locate ship repair/construction areas.
3: Locate ships.
4: Classify ships.
2: Locate Pier areas.
3: Locate boundary between land and water.
3: Locate ‘‘land’’ structures in water.
3: Detect pier areas.
3: Locate ships.
4: Classify ships.
3: Describe ships
2: Describe piers.
1: Describe piers and ships by class.
0: Describe harbor scens.

‘We now describe the task at level 2, Locate Pier Areas:

Locate Boundary between Land and Water: We
detect the boundary between land and water regions au-
tomatically using our implementation of [Ohlander et al.,
1978). In this example we arbitrarily selected the largest
region to represent the water region. Next we approxi-
mate these boundary by piecewise linear segments (thick
lines in fig. 20) using LINEAR, our implementation of
[Nevatia and Babu, 1980).

Locate “land” Structures in Water: Contrary
{o many natural siructures on the shores, man-made
structures appear highly geometric. We expect that
most piers appear as linear structures attached to the
shore, and in the water. Their linearity indicates that
the piers or portions of piers should be characterized
by anti-parallel pairs of segments of opposing contrast
[Nevatia and Babu, 1980], or apars for short. Ships are
typically docked parallel and adjacent to the piers. We
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Figure 20: Line Segments and anti-parallels

then expect that most of the line segments correspond-
ing to sides of piers, sides of ships, shadows, and so on
in the neighborhood of the piers would result in many
apars. The constraint on the range of separations be-
tween pair of segments (equivalent to the width of the
resulting apat) is a function of image resolution and ship
dimensions. The apars in our example are shown as thin
lines in fig. 20 obtained also using LINEAR.

Detect Pier Areas: The apars are easily classified
into land or water apar according to the detected wa-
ter region. Subsequent processing operates on the land
apars only. Next, we apply Px0D grouping to the land
apars. The extent of the fields is task-dependent and
does not have to be precisely determined. At the res-
olution in our example (about 8 meters per pixel), the
fields radii is roughly equivalent to a pier width plus the
width of three destroyers on both sides of the piers, or
about 16 pixels.

These fields (fig. 21) occupy a single layer. Each field
intersection operation shifts the center of mass of the
group, however the field associated with the group has
the same properties as the individual apar fields. We
then select the groups so that apar membership is ex-
clusive by extracting the groups in order of decreasing
mass (number of apars). The resulting groups (fields)
represent potential pier fragments (fig. 22.)

At any resolution, we expect that the lines be frag-
mented and incomplete, due to inefficiency in the line
detection process or due to real structures in the image.
Thus, we expect that the resulting groups represent pier
fragments rather than complete pier areas. Since we ex-
pect the pier sections to be straight, the next step calls
for collinearity grouping to join possible fragmented pier
areas. Note that the groups in fig. 22 are easily perceived
as being collinear.




Figure 21: Px0D - Proximity grouping fields

Figure 22: Selected proximity groups

We choose to represent the groups of apars by apars
as well, having a length and width equal to the diameter
of the final field. The orientation of the apar is given by
the dominant orientation (the largest peak in the length-
weighted histogram of the orientation) of the apars in the
group (see arrows in fig 23.)

Next we apply ColD to the pier area fraginents. The
longest piers are about three times the length of a de-
stroyer thus we allow the extent of the elliptic fields (see
fig. 23) to be up to three times the apars, and have a
width equivalent to the apar width (or group radius).

The result of the grouping is then represented, again
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Figure 23: Potential pier fragments and ColD fields

LY

Figure 24: Detected Pier Areas (low resolution)

by apars, which in turn represent potential pier areas
(see fig. 24). These are described by their approximate
length and position, and are used to extract image win-
dows from a high resolution image of the scene where we
look for ships.

Locate ships: We have performed some preliminary
experiments to detect the ships in the high resolution
windows using the same matching technique we have
used in the past to detect aircraft [Stein and Medioni,
1990b]. One of these windows is shown in figure 25a,
and the corresponding adaptively smoothed [Chen, 1989)]




boundaries in figure 25b. Three coarse-to-fine models
of a single and a double destroyer group were matched
against these edges to obtain the detected ships in figures
25¢,d.

Classify ships: We consider our ship detection re-
sults preliminary. The simplicity of the ships shape be-
comes a disadvantage to the matching technique. The
double ship configurations are easier to match for the
same reason. For ship identification better ship bound-
aries are required. We plan to apply a technique for
boundary refinement using B-snakes [Menet et al., 1990).
The matching technique can then be applied with finer
models for more accurate ship classification. Other al-
ternatives for ship detection include stereo processing of
these high resolution windows with a area/feature based
technique [Cochran and Medioni, 1989a), also followed
by boundary refinement and 2D matching.

3.3 FUTURE WORK

We plan to spend some time in the development of the
notion of grouping fields and grouping classes, in con-
Junction with the development of a task description lan-
guage for mapping and photointerpretation tasks. To
be useful we believe that grouping field generation and
manipulation should be amenable for parallel implemen-
tation, and hopefully can be extended to other domains.

4 MOTION ANALYSIS

We have a number of projects in the analysis of se-
quences of images including analysis of closely spaced
images, feature based analysis, motion estimation tech-
niques, and navigation using recognition of visual fea-
tures. Autonomous navigation provides the context for
much of the work, though the techniques have a much
broader utility.

Motion analysis using feature point analysis tech-
niques and multiple frames forms the central focus of
our work. This approach involves extracting a set of
consistent features from a sequence of images, finding
the corresponding features in consecutive frames, and fi-
nally computing the three-dimensional motion based on
the correspondences, which also provides an estimate of
the structure of the moving objects or scene. These are
often described separately or as sequential operations,
but integration into a single system and feedback to ear-
lier processing is a major part of the work.

Our effort includes several separate and related
projects including: analysis of clusely spaced images
(spatio-temporal analysis) using features such as lines,
corners, and regions to extract three-dimensional struc-
ture information, matching edge bascd contours in a se-
quence of images, integrating several feature detection
and matching techniques to derive three-dimensional
motion and structure estimates, study of the formulation
of the motion estimation problem, detection of moving
objects in a scene with a moving observer, and the visual
guidance of a mobile tobot. This overview discusses the
current status of the research in these areas. Some of
these a are covered in more detail in other papers in this
proceedings or in other recent conference papers.
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4.1 SPATIO-TEMPORAL ANALYSIS

The goal of our work in spatio-temporal analysis is to
generate a dense optic flow map from a motion sequence.
Because of the sparseness of 0D features (corners) or 1D
features (curves), we feel 2D features (regions) are more
likely to produce dense motion estimates.

Early work in spatio-temporal analysis includes that
of (Bolles et al., 1987]. We began our work with (Peng
and Medioni, 1988; Peng and Medioni, 1989}, which ex-
tracts paths in slices taken from image sequences in the
temporal direction (i.e. paths of an object point through
time and space). The slopes of the paths carry important
motion information, the flow normal to the contour can
be resolved by combining path slopes extracted from dif-
ferent slicing orientations. The drawback of this method
is that we only compute motion estimates on contour
points.

If we examine the slices more carefully, some pairs of
paths serve as the non-parallel sides of trapezoidal re-
gions. Each such region corresponds to a collection of
chords of a moving object seen in each image in the se-
quence. If we assume that the velocity changes smoothly
between two paths (i.e. between two points on an ob-
Ject), we generate flow valuse for all pixels in the region
by interpolation.

Assuming the motion in the scene is approximated by
piecewise translational motion along the axis of the cam-
era, and the focus of expansion (FOE) position is given,
the optical flow direction of each image element can be
determined. If slices are cut at the FOE along the di-
rection radiating from the FOE and image points are
matched in the slice, the match disparities are then the
magnitude of the velocity. This, when combined with
the interpolation, produces a dense optic flow map.

Since the spatio-temporal images are registered in
a Cartesian coordinate system, cutting radial slices is
equivalent to transforming the images into a polar coor-
dinate system. This causes resolution problems: if we
slice the sequence densely enough so that all pixels far
from the FOE are in at least one slice tien pixels close
to the FOE are included in many slices.

We devised a parallel algorithm to approximate the
complete radial slicing, which simplifies this data ac-
cess problem. We only take slices at each pixel along
the four directions: horizontal, vertical, 45°, and -45°.
Using the interpolation step mentioned above, each
pixel would have at most four estimates of the veloc-
ity components along different directions. Using the
method presented earlier in [Peng and Medioni, 1988;
Peng and Medioni, 1989], the normal velocity of the pixel
is recovered. With both the motion direction (from the
FOE position) and normal velocity (from the slice anal-
ysis), we are able to compute the velocity of the pixel.
From our experiments, the results from both approached
are very similar. Results of using this technique are
shown in figure 26 and 27 showing one frame of a se-
quence, the computed velocity for the optical flow and
the typical optical flow direction diagram.
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Figure 25: Fast 2D model-based matcher applied to edges of ships
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(a) First Frame (b) Velocity (c) Needle Diagram

Figure 26: SRI Sequence: Hallway
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(a) First Frame

(b) Velocity

(c) Needle Diagram

Figure 27: SRI Sequence: Zoom

4.2 FEATURE-BASED MOTION
CORRESPONDENCE

This contour-based matching technique is developed
from our previously reported work [Gazit and Medioni,
1988; Gazit and Medioni, 1989]. The major changes are
that multiple frame matches need not extend through
the entire sequence of images, thus allowing for occlu-
sion and (re)appearance of points midway through the
sequence; and the use of neighborhood and length to dis-
tinguish between correct and incorrect matches. These
changes have resulted in a significant improvement in the
quality of the matches.

A brief description of the contour matching method
is: A super-s-qment is an object described both as a list
of connected edgels and a list of connected line-segments
(that approximate the edgel contour). The algorithm
tries to match sections of super-segments. Since a sin-
gle object may correspond to several different super-
segments and a single super-segment may include more
than one object, the problem is to identify the matching
super-segment sections. We base our initial matching
crterion only on shape similarity and prozimity (with a
maximum allowable disparity). An initial approxima-
tion is found by first matching the line-segments and
combining matches along each super-segment. Next we
compute the section matches themselves. In order to
find appropriate matching sections, we break the line-
segment approximations used in the previous stage into
arbitrary small sections and match them (along the pos-
sibly matching section) by maximizing the similarity be-
tween the matching sections as well as the length (in
points) of the matching sections. The result is a very
large set of matches, the great majority of which are
spurious. The main thrust of the work is in how to deal
with these spurious matches.

Our solution to distinguish between incorrect and cor-
rect matches is based on the assumption that correct
matches will usually either be long or will have epprov-
ing neighbors, which are neighbur matches representing
a similar motion. The neighborhood size should ide-
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ally depend on object size, but since this step comes
before object segmentation, we instead use a fixed frac-
tion of the image size. Each match is assigned a ap-
proving length score which is a combination of the to-
tal length of supporting neighboring matches and their
number; a non-approving length score computed from the
non-supporting neighbor matches; and a shape similarity
score. Using these three measures together allows us to
detect incorrect matches in most of the cases, since they
are short, have little neighborhood support and a lot of
neighborhood rejection, as they represent an inconsistent
motion. A notable exception to this occurs with straight
line contours, which are easy to detect and for which we
have a partial solution, and repetitive structures.

We apply this algorithm hierarchically for different
scales for better performance [Gazit and Medioni, 1989).
We also combine pairwise matches into multiple-frame
matches by a tracking the matching sections through the
sequence. If section Pj in frame 1 matches section Py in
frame 2, Q, in frame 2 matches Q3 in frame 3 and P
overlap Q2, we can compute a new match (R, Ry, R3)
corresponding to the overlapping part. This is applied
to all frames in the image sequence.

The resulting section matches can be used for 3D mo-
tion estimation or motion segmentation. We are cur-
rently working on the latter case.

As an example, a sequence consisting of 10 250 x 512
frames of a toy jeep and train is given in figure 28. We
only show the last two frames and the resulting multiple
matches. Because the motion of the objects overlap, and
also to allow for better visability, we manually removed
the background matches and separated the matches cor-
responding to the train and those corresponding to the
jeep.

In this scene the camera is stationary, but both the
jeep and the train are moving. This is a difficult scene
as the motion is very large (disparity ranges from 0 to
150 pixels) and the scene contains occlusion.
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4.3 DETECTING MOVING OBJECTS
FROM A MOVING PLATFORM

Detecting moving objects from a moving platform is a
difficult problem, because the observer motion causes
stationary objects to appear to move. Thus, we must
separate genuine motion from the apparent motion of
the stationary environment. We have developed a sys-
tem that successfully detects moving ubjects within a se-
quence of reel images taken from an observation vehicle
traveling along a road. Unlike other systems, ours does
not require densely-sampled imagery, meaning that ob-
jects can move many pixels per frame with no detrimen-
tal effects. Nor does the system rely on critical param-
eter settings. It is computationally efficient, and highly
suited to parallel implementation. It requires no object
matching or recognition, and can thus detect moving ob-
Jjects that are partially occluded or that are camouflaged.

When an observer moves in a straight line, toward
a distant point in space, stationary objects in the en-
vironment appear to move along paths radiating from
that point. The point from which the paths radiate is
called the focus of expansion (FOE). We assume that
the FOE, and camera orientation, are relatively stable
between successive images (i.e., the observer must not
sharply turn or tilt between images).

To simplify the problem, we first perform a Com-
plex Logarithmic Mapping (CLM) as suggested by [Ca-
vanaugh, 1978; Weiman and Chaikin, 1979; Jain, 1984}.
This converts the problem from one of detecting a com-
plex motion along both the X and Y axes, to one of
deteciing motion along an angular axis, with stationary
objects moving along the other axis.

To detect the angular motion in CLM space, we have
developed a novel "moving-edge detector,” which oper-
ates on successive images and produces a map contain-
ing all pixels on the edge of regions that are movirg
relative to the stationary background. This map is then
thresholded to produce detected movement. Preliminary
results indicate that, once the threshold ic raised high
enough to eliminate false alarms, it can be increased by
a factor of five and still properly detect moving objects.

The resulting detected movement is then transformed
back into the rectangular reference frame, and overlaid
upon the original image to highlight the detected objects.
The resulis are presented in more detail in another paper
in these procecdings[Frazier and Nevatia, 1990]. This
technique depends heavily on the correct computation
of the FOE and very looscly on the movement threshold
value.

44 MOTION ESTIMATION

At USC, we continue an exploration of the multiframe
structure from motion problem using feature matches.
This work assumes a central projection pinhole camera
with no smoothness assumptions imposed conceining ob-
ject surfaces, The usc of muitiple (as opposed to two)
frames is desirable for several reasons:

» to increase the robustness of the solution,

s to allow recovery of stiucture/motion with fewer
features being tracked, and
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e to allow estimation of “higher order derivatives” of
the motion.

In our recent work, we have developed and imple-
mented two algorithms to solve the SFM problem that
make different assumptions concerning smoothness and
type of motion. The fitst is a closcd form algorithm that
models the relative motion between the camera and the
object or environment as a uniform 3D acceleration. The
second is an iterative algorithm that can recover arbi-
trary rigid transformations between frames. The closed
form algorithm is currently being used to generate initial
guesses for the iterative algorithm when the rotation is
known to be small.

The two algorithms share some characteristics: Both
assume that features are matched through at least thirce
frames. The image plane position of each feature is mod-
eled as having a bivariate Gaussian error distribution,
with the error coefficients provided as input. Although
ihe algorithms are developed using point features, they
can process both point and line features. A given feature
is not required to be visible in every frame, so the algo-
rithms can process features that become (un)occluded
during the image sequence. As output, both algorithms
generate the 3D location of each feature in each frame,
along with the motion parameters.

The closed form algorithm models the motion as a
uniform 3D acceleration. It minimizes a8 norn that is
closely related to the maximum-likelihood image plane
error norm subject to the constraint that the mean inter-
frame displacement must equal one. Under this formu-
lation, the 3D point positions are linear functions of the
motion parameters, and the motion parameters can be
determined by solving & small eigenvalue problem. The
computational complexity of the algorithm is linear in
the number of features being tracked times the number
of frames and takes about 0.43 seconds on a Sun 3/280
for 8 points in 11 frames.

The iterative algorithi solves the SFM problem as as
unconstrained minimization problem. The function to
be minimized consists of 3 (classes of) terms:

1. the image plane error or a more or less convex ap-
proximation to it,

2. terms which bias the motion to be chronogeneous
or some subclass of chronogeneous motion, and

3. a ierm which imposes a specific scale on the solu-
tion,

The exact set of terms to be used is still under inves-
tigation, Seemingly minor changes in the form of a term
may dramatically alter the convergence properties of the
algorithm. The algorithm is currently very slow because
analytic derivatives have not been programmed, and a
quasi-Newton method with a finite difference gradient is
being used to do the optimization.

4.5 INTEGRATED SYSTEM FOR MOTION

We have continued to develop and use an integrated sys-
tem for testing each of the subsystems of the motion
analysis system (segmentation, feature extraction and
matching, motion estimation, motion feedback to match-
ing and coordination). The results of each subsystem is




saved in a single data structure and the coordination
module controls exchange of information between sub-
systems. The integrated system is now being used to
generate a rough description of three-dimensional struc-
ture of the environment, using region-based matches re-
fined by corner matches over multiple frames. This work
is described in more detail in these proceedings in [Kim
and Price, 1990].

Feature matching is done in a coarse-to-fine manner to
reduce search space and enhance stability. Corner-based
matching for a region is guided by the motion computed
for the centers of mass of the matched regions and by
the constraint that matching corners are on the same
region. This allows large disparities between images and
different motions for each of the regions. Corner-based
matching is performed both in the forward and reverse
directions to decrease errozs in matching.

We have developed a translation dominant motion
analysis system as an additional feature of the general
motion analysis system. The basic assumptions are thet
each object in the scene is undergoing a translation dom-
inant motion and that an object may (or may not) be
in coherent motion with some of the others. An approx-
imate FOE (focus of expansion) using 8 LMSE (least
mean square error) estimation and motion parameters
are estimated for each region and then depth is computed
for the corners of the region. Each computed result is
associated with a reliability factor, which is a measure of
the closeness to the computed motion to a translational
motion. Regions with a high reliability are given high
priorities in the analysis and their results act as a guide
in the analysis of the less reliable regions by giving some
constraints to the motion parameters.

This motion analysis system was tested for two real
image sequences. A camera is moving straight along a
hallway in one of them, and in the other sequence, a car
is moving from the right side of the image to the other
end. With a reasonable amount of noise, we could obtain
an approximate environmental depth map for most of
the important regions in the scene. Depth maps with
region-corner matchings are shown in (Kim and Price,
1990] elsewhere in these proceedings.

Experiments show some weak points for this system.
First, the use of the FOE analysis for general motion
(translation + rotation) is sensitive to noise and thus the
computed motion parameters are numerically unstable,
In the case of translation dominant motion, an accurate
estimation of FOE is essential for reliable results. Sec-
ond, information of depth is lost along a smooth bound-
ary even when it forms a great part of a region since fine
structure is determined by corner matchings.

We will continue to add more features to our inte-
grated system. First, we plan to add more feedback
links within the integrated system so that an erroneous
operation of early stages is detected and corrected by
monitoring the results of later stages. This way, motion
analysis is done as a part of a cooperative process rather
than an isolated stage of a sequential process. Second,
our system is to be expanded such that it can handle
dynamic data and algorithms. The system would de-
cide to continue to analyze intermediate frames in a tree
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structure if necessary and would choose which algorithm
to use, according to the characteristics of the image se-
quence. Finally, we interd to strengthen robustness to
work well with reasonable amounts of noise for general
motion analysis.

4.6 MOBILE PLATFORM

We recently acquired a Denning mobile robot for both in-
door and outdoor experimentation. The initial phase of
experimentation has dealt with basic control and naviga-
tion issues but the goals include visual feature navigation
and a platform for testing our other motion algorithms.
We do not intend to work on real-time (high speed) con-
trol, which would be possible with additional special pur-
pose computers, but to develop high-performance anal-
ysis algorithms. The initial effort has included:

e implementing an obstacle avoidance routine using
the range data provided by the 24 ultrasonic sensors
of the robot, and

o building a simple planner allowing the robot to nav-
igate indoors.

An obstacle ir front of or on the sides of the robet is
detected by checking the ultrasonic sensors in near the
direction of motion. If there is an obstacle, the robot
turns toward the direction of the first sensor where the
path is clear. This is intended as a low-level survival
process rather than a major navigational tool.

The map of the robo! world is represented by a hier-
archical data structure that includes buildings which are
defined by a set of floors. Each floor has hall-ways, a
set of rooms and a set of walls. Each wall may include
doors.

In the first phase, the robot is assigned to navigate in
the hall-way of a floor. The ideal trajectory is the mid-
line between the two walls of the hall-way. The planner
first computes a list of the axis of symmetry of each hall-
way path. Each axis is limited to the common part of
the pair of walls, must be inside the external polygon of
the hall-way, but not inside any of its internal polygons.
A merging step produces the axes shown in dashed lines
on figure 29.

From the extremes and the intersections points of
these axes, a graph of trujectory control points is con-
structed, The path of the robot, shown by thick black
circles and lines on the figure, from its current location
toward a goal door is then computed from the graph
representation. Finally, the list of path control points
is given to the navigation routine that orients the robot
toward the next path contirol point, unless the robot is
bypassing an obstacle. We will be incorporating visual
object recognition into the navigation system but will
continue to use this low-level guidance and sonar obsta-
cle avoidance between visual control points.

5 PARALLEL PROCESSING

As shown in the previous sections, we are making good
progress in solving some difficult image understanding
problems. However, one major obstacle remains in ap-
plying our methods in practice, namely that of process-
ing speed. Our algorithms, when run on a conventional
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Figure 29: Floor map, Symmetry axis, Path and robot with real sonar data.

serial computer (such as a Symbolics 3600 or a Sun 3 or
4 series) can take several minutes or even hours to com-
plete. We believe that this long execution time and its
related computational complexity are inherent in the so-
lution to the problems and hence we must devise ways of
applying additional computing power to our algorithms.
This naturally leads to the study of parallel computa-
tion.

There has been significant recent activity in apply-
ing parallel processing to image understanding problems.
However, much of this activity focuses on numerical com-
putations applied to iconic data structures. While such
computations are necessary and useful, they are not
nearly -ufficient. Our approach to image understanding
is firmly based on use of symbolic representations and
symbolic computations. Parallelizing such computations
is significantly more complex than for iconic, numerical
computations and therefore, is the focus of our parallel
processing research.

We have chosen some specific and representative
medium and high level image understanding algorithms
that we have found to be of general utility and are study-
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ing their mapping onto suitable parallel architectures.
Our goal is not only to map these specific algorithms,
but also to learn how to parallelize classes of symbolic
algorithms. One specific algorithm we have focused on is
a “relaxation labelling” algorithm [Medioni and Nevatia,
1984]. We have found this algorithm to be useful in a
variety of tasks in our work at USC; relaxation labelling
has also been used by many other researchers elsewhere
[Rosenfeld et al., 1976).

We have obtained several efficient parallel implemen-
tations of discrete relaxation techniques on a class of
parallel architectures [Lin and Prasanna Kumar, 1990].
Using these approaches, stereo matching and other la-
beling problems can be solved. First, a faster sequential
algorithm compared to traditional approaches for dis-
creie relaxation is devedoped. This algorithm is then
parallelized and mapped onto a bus-connected paraliel
architecture. This n.apping leads to a parallel execu-
tion time of O(nm) using nm processors for consistently
labeling n objects with m labels. Two versions of this
design are developed; one for special-purpose VLSI im-
plementation and the other for general-purpose parallel

[,



.architec.tur'es. The stereo matching technique developed
in [Medioni and Nevatia, 1984] can then be modified to

lead to an efficient parallel implementation based on the
proposed solution.

The usual approach to parallel processing is to choose
a specific architecture (based on considerations of avail-
ability as well as suitability) and then attempt to6 map
the given algorithm onto it. This often leads to complex
implementations that are difficult to understand and put
a severe burden on the programmer. In recent work, we
are taking an alternative approach of using a flexible
architecture where the architecture can be modified to
suit the data flow requirements of the algorithm. Flex-
ible architectures are becoming feasible design solutions
as commercial processing elements that support parallel
processing, such as the Transputer, are becoming avail-
able. Efficient parallel implementation can be achieved
while maintaining the structure of the program much
as it is for the serial implementation. That is, parallel
efficiency can be obtained while maintaining algorithm
simplicity and keeping the programmer burden low, We
have succeeded in demonstrating this approach for the
relaxation algorithm; this work is described more fully
in [Reinhart and Nevatia, 1990}, In future work, we in-
tend to examine more complex algorithms and complete
systems with this approach.

~In another project, we are studying processor-time

tradeoffs. These are of fundamental importance in un-
derstanding the complexity and petformance of paral-
lel computations. Driven by technological limitations,
hardware cost, and flexibility, several schemes have been
proposed for implementing large size computations on
parallel architectures of fixed-size, or on architectures
having a reduced number of processors. The major goal
of such schemes is to keep the number of processors (or
the processing chip-area, if implemented in VLSI) inde-
pendent of the problem size and subject only to hardware
cost, and other practical considerations. Such consider-
ations are particularly important for problems on digi-
tized images. With increasing image resolution, a pro-
cessor array for a 1024 x 1024 image with a fixed number
of pixels, say 8, per processor requires more than 10° pro-
cessors. Design and implementation of such large arrays
may be prohibitive, in addition to dealing with I/O lim-
itations, programming and testing methodologies. Fur-
thermore, if this array is required to handle larger size
images, say images of size 2048 x 2048, then processor-
time trade-offs must be addressed again.

Direct mapping of parallel techniques from a spe-
cific organization onto a smaller version of the same or-
ganization generally does not lead to linear processor-
time trade-off. New techniques based on combining ef-
ficient parallel and sequential algorithms must be de-
veloped. We have considered seversl parallel architec-
tures with a large memory and a reduced number of pro-
cessors for parallel image computations [Alnuweiri and
Prasanna Kumar, 1990a; Alnuweiri and Prasanna Ku-
mar, 1990b). The memory size is proportional to the im-
age size. However, the number of processors can be var-
ied over a wide range while maintaining processor-time
optimal performance. Architectures considered include
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the reduced mesh of trees (RMOT), mesh-conj'nected mod-
ules (MCM), linear arrays, two dimensional meshes, hy-
percubes, and shuffle-ezchange networks. An alternate
cost-effective parallel architecture, designated window
architecture, is proposed for image understanding appli-
cations [Lin, 1990]. This architecture consists of a small
number of processors with mesh connections and a large
external memory with simple processor-memory access
scheme. Parallel solutions for several image understand-
ing problems, such as image labeling, computiag image
transforms, computing geometric properties, image and
stereo matching using high level primitives such as line

segm]ents, have been derived on this architecture [Lin,
1990}.
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IMAGE UNDERSTANDING RESEARCH AT GE

J. L. Mundy *
GE Corporate Research and Development Center

Schenectady, NY

Abstract

Our research program in image understanding
continues to emphasize the study of geometry
and geometric relations for the representation
and recognition of objects. A focus for the last
year has been the development of a constraint-
based geometric modeling system to represent
generic object classes and to process constraints
arisirg from camera viewpoint relationships.

Our work on model-based object recognition is
also continuing with emphasis on test and eval-
uation of the recognition system in the context
of aerial reconnaissance. In addition, some ex-
citing new results have been obtained through
the use of algebraic invariants which permit di-
rect indexing of object models from scene fea-
tures.

Object Recognition

Over the past several years, we have been developing
a model-based vision system using a compact image
feature, called the vertex-pair [Thompson and Mundy,
1987a). The vertex-pair provides sufficient geownctric
information to determine the affine transformation be-
tween the image and scene coordinate frames with a
computational cost proportional to N2, where N is tlie
number of image vertices. Significant highlights of the
development are:

e Initial demonstration of 3D object recognition from
an unconstrained viewpoint, both indoor and out-
door scenes. - 1986

Parallel implementation cf the complete rccogni-
tion algorithm on the Connection Machine, about
100X throughput increase [Thompson and Mundy,
1987b). - 1987

Development of automatic model vertex-pair selec-
tion based on geometric error performance as a func-
tion of viewpoint [Mundy et al., 1988]. - 1988

*Work at GE was supported in part by the DARPA
Strategic Computing Vision Program in congunction with
the Army Engineer Topographic Laboratories under Contract
No. DACAT76-86-C-0007 and the Air Force Office of Suicntific
Research under Contract No. F49620-89-C-0033.
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o The recognition system is integrated with SRI’s
Cartographic Modeling Environment and Core
Knowledge System. The introduction of viewing
constraints and demonstration of the automatic
generation of an airfield site database through ob-
ject recognition [Corby et al., 1988}. - 1989

The collection of a series of airfield monitoring im-
ages and the execution of a benchmark test of recog-
nition performance. Demonstration of recognition
accuracy in excess of 98% [Heller and Mundy, 1990).
- 1990

The main focus of attention for the object recognition
system in our current work is to extend the generality
of image features which are used to determine model
pose and to provide model hypothesis confirmation. The
vertex-pair has proved to be quite effective under a
wide variety of viewing conditions, but some valid ob-
ject instances are incorrectly missed because not enough
boundary vertices are recovered from the image data.
Another general area for improvement is the introduc-
tion of multi-resolution models The current recognition
system does not fail gracefully when image resolution is
decreased. Our current algorithms for selecting model
features does not account for the behavior of the image
scgmentation process. As the image resolution decreases,
projected polyhedral features merge together and short
edges disappear. Thus, it is necessary to account for
both sensor properties and image segmentation behav-
jor in generating model features. No single model feature
set will suffice, and a series of models are needed which
account for the entire space of camera viewpoints.
Another area which is being investigated in the area
of object recognition is the introduction of general con-
straints on the relationship between objects and the re-
lationship between objecis and cainera viewpoint. In
our recent benchmark testing we took advantage of loose
constraints on the camera viewpoint. For example, it
is assumed that the camera is above the ground and
within a range of elevation angle with respect to the
ground surface normal; i.e., the camera viewpoint orien-
tation is confined to a strip along latitudes on the view-
sphere. 1t is now clear that a practical recognition sys-
tem must be able to take advantage of a wide variety of
site constraints which can improve recognition accuracy
as well as considerably reduce the computation involved
in scarching the space of models and niodel pose param-




eters. The general area of constraints for recognitic.n,
as well as the development of constraint-based object
models is emerging as a promising new area for object
representation.

Constraint-Based Modeling

Another emphasis of our recent work is the representa-
tion of objects in terms of geometric constraints. The
constraints are expressed symbolically in terms of re-
lations between faces, edges and vertices of polyhedral
models, as well as more general constraints between
three dimensional position and orientation vectors. With
a relatively small primitive set of constraint relations it
is possible to construct any geometric relation on geo-
metric entities. For example, the constraints associated
with perspective viewing can be generated in terms of
the collinearity relation between eyepoint, image point
and world point. The collinearity relation can be de-
fined by the more primitive operations associated with
cross-product and dot-product on symbolic vector enti-
ties.

Our goal is to define a complete constraint represen-
tation and associated language so that any object model
can be defined, including curved surface models and
composite models involving generic constraint compo-
nents. The representation is general enough to account
for the constraints associated with multiple viewpoints
and to allow the integration of image segmentation data
derived from these such images. The general idea is that
the constraint model represents a class of possible object
configurations. A specific model instance is generated by
minimizing a set of error metrics defined with respect to
the empirical measurements taken from either manually
selected image points or from automatically segmented
image features. The final object instance is consistent
with all of the specified model constraints and projected
mode] features agree as well as possible with the actual
image feature locations and orientations.

This general approach has evolved from our work in
object recognition and the realization that the next gen-
eration recognition system must be able to accept generic
models which can account for a large number of specific
object configurations and can also represent a broad class
of geometric relations which knov'n to hold between ol-
jects and between objects and camera viewpoints.

Our work has progressed thiough a nv  ber of stages
as summarized by the following items:

o Implementation and experimentation with a proto-
type system which used symbolic algebraic manip-
ulation and a commercial nonlinear progrannmning
package from the IMSL library to solve the geomet-
ric constraint equations [Mundy et al., 1989). - 1988

(1]

Investigation of 2 fully symbolic appreach to the
solution of constraint relations. Implementation of
a prototype system based on the polynomial arith-
metic routines provided by the GEOMETER sys-
tem, which is being jointly developed by GI and
UMass [Connolly et al., 1989]. -1989

¢ Implementation of a new constraint repirescita-
tion and new constraint solver which uses sym-

bolic methods to compile constraints into polyno-
mials which are then solved by quadratic program-
ming methods. Demonstration of the system on the
construction of aircraft models from multiple or-
thographic views taken from mechanical drawings
[Nguyen et al., 1990]. - 1990

Our experience has indicated that robust convergence of
the numerical methods can be achieved by careful at-
tention to singularities and the use of pivoting to insure
well conditioned solution matrices throughout the solu-
tion process. We have found that complex constraint
systems can be solved with a small number of iterations
and that it is not necessary to provide initial values for
model parameters which are close to the final solution.

We have also observed that typical constraint systems
lead to a block diagonal form for the Jacobian matrix.
This result implies that the constraints can be parti-
tioned into a set of loosely coupled groups. A major
objective of our current work is to take advantage of
this characteristic of geometric relations. This grouping
will provide several advantages:

e Sparse matrix solution techniques can be invoked
to considerably reduce the amount of computation
required to solve the constraint system. It is esti-
mated that the solution cost will go from N3 down
to approximately N by reducing the constraint Ja-
cobian matrix to block diagonal form, where N is
the number of constraint equations.

o The global error associated with empirical measure-
ments can be reduced to a set of local error measures
associated with each block. The error minimization
process can then be directed at achieving error tol-
erance budgets within each group which will permit
much tighter coupling between error minimization
and model parameter adjustment. In effect, the er-
ror can “pushed” around the constraint network un-
til worst-case tolerances are met.

¢ The partioning of the constraints into a set of loosely
coupled local networks is a prerequisite for mapping
the constraint solution onto a parallel architecture.
In view of the thousands of constraints which will
be required to represent realistic scenes it will even-
tually be necessary to resort to parallel computa-
tion. Indeed, we have already explored the use of
the CONVEX “mini-CRAY” architecture an found
about a 10X improvement over a VAX-780 without
resorting to explicit use of parallelism.

We have already demonstrated that general constraints
can be readily applied to the representation of generic
aircraft models where the required symmetries associ-
ated with the fuselage and the relation among airfoil
surfaces and the fuselage can be expressed and solved by
our constraint modeling system. At preseni however, it
1s somewhat tedious to specify constraints and consid-
crable improvement is needed in the user interface. We
intend to explore the use of general constraint compo-
nents to reduce the modeling effort. It is also expected
that a constraint programming language will prove to be
a conveuient approach to specifying most of the object
representation.
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It is also emphasized that nothing in the approach lim-
its the representation to polyhedral models. Our initial
emphasis on polyhedra is based on the fact that many
practical applications can be effectively handled by poly-
hedral models. For example, we are applying our ideas
in constraint-based modeling to the generation of models
for image simulation with a focus on the application of
mission rehearsal.

Object-Recognition With Algebraic Invariants

A joint project with the Robotics Research Laboratory
at Oxford University on the use of algebraic invariants
in model-based object recognition was initiated in the
fall of 1988 [Forsyth et al, 1990]). This new research
area is especially important for progress in the use of
constraint-based models for object recognition. The no-
tion of algebraic invariants is that functions can be de-
fined on groups of algebraic curves which are constant
under viewpoint transformation. For example, invari-
ants can be defined for two coplanar conics such that
the conics can be characterized by a single number which
can be derived from any projective transformation of the
plane.

In order to insure that such invariants can be reli-
ably derived from image data, we have developed a pro-
jectively invariant fitting procedure which insures that
conics and other algebraic curves are derived according
to the following requirement:

If an algebraic curve, C, is used to approximate a
set of points, P, in the plane, then any projective
transformation of the plane to a new set of points,
P, will yield a curve C’ which is exactly the corre-
sponding transformation of C.

The desired property follows by using an algebraic invari-
ant to define the error measure for the data points. Thus
any algorithm used to minimize the error with respect to
the data points will produce a viewpoint invariant curve
fit.

The use of invariants for coplanar conic curves has al-
ready been demonstrated through the implementation of
a recognition system. We have shown that a library of
more than twenty objects can be reliably recognized by
indexing on algebraic invariant values. Our current em-
phasis is centered on the problem of deriving invariants
for three dimensional configurations of curves and sur-
faces. There are a number of techniques for generating
invariants which were developed during the last century
which we are investigating. It also appears that a new
approach may be feasible which is based on algebraic
elimination theory.

Ultimately, it is planned to use invariants in the recog-
nition of constraint-based models. It should he possi-
ble to derive invariants not only with respect to camera
viewpoint but also invariants over the class of shapes
which can be generated by a particular constraint model.
The use of such invariants would seem necessary to re-
duce the dimension of the search space on model param-
eters. Current model-based recognition systems are hard
pressed to determine the six parameters associated with
model pose. Even simpie constraint-models can have
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twice this number and complex shapes may have hun-
dreds of degrees of freedom. Clearly it will be necessary
to derive invariant indices from image features to help
reduce this search space.
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ABSTRACT

Image understanding research at Honeywell is directed
towards autonomous/semiautonomous vehicle navigation,
automatic target recognition, and image exploitation. The
objective of our work is to develop robust and efficient image
understanding techniques for these applications operating
from various platforms. The topics currently under investiga-
tion are: machine learning for multi-level vision system; iner-
tial navigation sensor integrated motion, binocular stereo, and
laser radar techniques for obstacle detection; qualitative 3-D
scene modeling for dynamic scene understanding, motion
analysis, and target tracking; map-based automatic target
recognition and tracking; and multisensor target recognition.
This paper summarizes the progress made in some of these
key areas during the period from March 1989 to June 1990.
We also briefly discuss the important topic of image database
and scientific performance evaluation of vision algorithms
and systems.

1. INTRODUCTION

This paper provides an overview of the research per-
formed by our group during the past year. Our research in
image understanding is directed towards model-based target
recognition and machine learning and knowledge-based
interpretation of scene dynamics. The key accomplishments
achieved during the past year are as follows. We have
developed an adaptive image segmentation technique that has
shown improvements of 30-50% over state-of-the-art nona-
daptive segmentation approaches. We have demonstrated the
concepts for a multistrategy machine learning system for tar-
get recognition, target model acquisition, and refinement. We
have also shown that robust range estimates can be obtained
by inertial navigation sensor integrated motion analysis. In
addition, we have performed experiments for binocular and
motion stereo integrated system for dense ranging.

We have investigated the following major topics:

(1) Machine learning for multi-level vision system for adap-
tive segmentation, target recognition, target model

acquisition, and target model refinement.

(2) [Inertial navigation sensor integrated motion, binogular
stereo, and laser radar techniques for obstacle detection.

(3) Qualitative scene understanding for dynamic scene and
motion analysis for target motion detection and tracking,
dynamic model matching for landmark recognition, and
hierarchical symbolic grouping for interpretation of ter-

rain.

The synopsis of the technical achicvements and key
ideas in each of these areas is given below. We also present

a brief discussion on image database and scientific perfor-
mance evaluation of vision algorithms and systems.

2, MACHINE LEARNING FOR MULTI-LEVEL VISION

Present target recognition sysiems are unable to adapt to
changes in environmental conditions, target variations, and
the unexpected appearance of new targets. Each of these
situations affects the appearance of the targets in the image,
which in turn, degrades the overall performance of current
generation recognition systems.

One of the key challenges to automating the target
recognition process is that of automatically responding to
changes occurring in the targets seen in an image. We
address this problem at every stage of the multi-level vision
problem by a unique multi-strategy machine leamning
approach not available in any current model-based recogni-
tion system. We want to show that significant benefits can
accrue by applying machine learning technology to automati-
cally recognize targets, acquire new target models and update
their descriptions, leamn new target features based on percep-
tual cues, and to adapt segmentation parameters based on
changing environmental conditions.

Through an in-depth analysis performed by Honeywell!
on the applicability of state-of-the-art machine learning tech-
nology to model-based vision, we have developed the con-
cepts for a novel machine learning system called TRIPLE
(Target Recognition Incorporating Positive Learning Exper-
tise. At the high level of computer vision, TRIPLE uses
explanation-based learning (EBL) and structured conceptual
clustering (SCC) in the target recognition and learning pro-
cess. During the intermediate leve] visicn processing, TRI-
PLE uses explanation-based learning with a perceptual cue
database to acquire new target features. Finally, at the low
level of vision, TRIPLE uses genetic algorithms for parame-
ter adaptation capability. Thus, the TRIPLE system provides
a learning capability at all three levels of vision: low, inter-
mediate, and high.

Addition of the muachine leamning techniques listed
above to each level of the computer vision process yields the

target recognition system shown in Fig. 1. Each stage of the
vision process now contains a localized learning loop that
provides the adaptive behavior necessary at each level.
Further, each level of the process is able to interact with the
levels immediately above and below it. This communication
allows each level to obtain extra or missing information from
the previous level and also allows feedback on data quality to
be passed from one level down to the next. For example, at
the high level of vision, the classification process may
request additional feature information from the intermediate
level in order to correctly recognize a target. The request
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Fig. 2: Comparison of adaptive image segmentation system

with default Phoenix

parameters and the traditional seg-

mentation approach commonly used in the Computer Vision

field.

may, in turn, require the intermediate level to obtain further
region and edge information from the low level. After the
classification results have been computed, the high level pro-
cess evaluates the usefulness of the features that were used
during the classification and sends this information to the
intermediate level. Finally, the intermediate level must also
supply feedback data to the low level process so that the util-
ity of the segmentation parameters can be determined.

Some of the other applications of machine learning that
we are working on include intent recognition and automated
knowledge acquisition for image exploitation.

2.1 Adaptive Image Segmentation

Image segmentation is typically the first, and most
difficult, task of any automated image understanding process.
All subsequent interpretation tasks, including feature extrac-
tion, target detection, and target recognition, rely heavily on
the quality of the segmentation process. Despite the large
number of segmentation techniques presently available, no
general methods have been found which perform adequately
across a diverse set of imagery. Only after numerous
modifications to an algorithm’s control parameter set can any
current method be used to process the wide diversity of
images encountered in dynamic outdoor applications such as
the operation of an autonomous robotic land/air vehicle,
automatic target recognizer, or a photointerpretation task.

The image segmentation problem is characterized by
several factors which make the parameter selection process
very difficult. These factors include numerous control
parameters, lack of precise scgmentation algorithm models,
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and problems associated with the evaluation of segmentation.

We have developed an adaptive image segmentation
system for the segmentation of color images based on a
genetic algorithm which can adapt to changes in the environ-
ment (time of day and weather conditions). The genetic
algorithm efficiently searches the enormous hyperspace of
segmentation parameter combinations using a collection of
search points known as a population. By combining high
performance members of the current population to produce
better parameter combinations, the genetic algorithm is able
to locate the parameter set which maximizes the segmentation
quality criteria. Fig. 2 presents the comparison of three
approaches on a database of 20 images. The default parame-
ters have been suggested after extensive amounts of testing
by various researchers who developed the Phoenix algo-
rithm 2 The parameters for the traditional approach are
obtained by manually optimizing the segmentation algorithm
on the first image in the database and then utilizing that
parameter set for the remainder of the experiments. This
approach to segmentation quality optimization 1S currently
standard practice in state-of-the-art computer vision systems.
The average segmentation quality for the adaptive segmenta-
tion technique was 95.8% (average of 100 experiments). In
contrast, the performance of the default parameters was only
55.6% while the traditional approach provided 63.2% accu-
racy. As the figure shows, the performance of both of these
alternative approaches was highly erratic throughout the
sequence.

This is the first segmentation approach to incorporate
adaptation in a closed-loop feedback system and will have




significant benefits for signal processing and adaptive control
applications requiring robust performance in unstructured
environments. The basic adaptation methodology is applica-
ble to imagery from other sensors and can utilize any se%-
mentation algorithm. The papers by Bhanu, Lee, and Ming’

égsgrovide details of the adaptive image segmentation pro-

2.2 Target Recognition, Target Model Acquisition and
Refinement

A major technology gap in state-of-the-art model-based
target recognition for outdoor scenes is the process of model
(natural or man-made) acquisition. Generally target models
are fixed and recognition systems do not have any learning
capability; therefore, they are not adequate by themselves for
target recognition in dynamic environments.

Due to recent advances in machine learning technology,
some of the problems encountered in the target recognition
domain seem to be resolvable. Learning allows an intelligent
recognition system to use situation context in order to under-
stand images. This context, as defined in a machine learning
scenario, consists of a collected body of background
knowledge as well as environmental observations which may
impact the processing of the scene.

Machine learning facilitates two main advances in the
target recognition domain: automatic knowledge base acquisi-
tion and continuous knowledge base refinement. The use of
learning during knowledge base construction will save the
user from spending the large amount of time necessary to
derive target models and databases. Knowledge base
refinement can then be incorporated to make any necessary

changes to improve the performance of the recogmtion Sys-
tem. These two mndifications alone will serve to
significantly advance the present abilities of most target
recognition applications.

At high level of vision, TRIPLE combines EBL and
SCC leamning methodologies with a knowledge-based match-
ing technique to provide robust target recognition.
Expianation-based learning provides the ability to build a
generalized description of a target class using only one exam-
ple of that class. Structured conceptual clustering allows the
recognition system to classify a target based on simple, con-
ceptual descriptions rather than using a predetermined,
numerical measure of similarity. While neither method, used
separately, would provide substantial benefits to a target
recognition system, they can be combined to offer a consoli-
dated technique which employs the best features of each
method and is very robust.

Using dynamic models, TRIPLE can recognize targets
present in the database. If necessary, the models can be
refined if errors are found in the representation. Additionally,
TRIPLE can automatically store a new target model and
recall it when that target is encountered again. Finally, since
TRIPLE uses qualitative data structures to represent targets, it
can overcome problems such as image noise and occlusion.
The papers by Bhanu and Ming!!+2 provide more details of
the TRIPLE system for target model recognition, acquisition,
and refinement.

3. INS INTEGRATED TECIINIQUES FOR OBSTACLE
DETECTION

We are working on both passive and active (laser radar) tech-

niques for obstacle detection for ground vehicles and hel-

icopters. In the following, we describe two passive ranging

techniques.
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3.1 INS Integrated Motion Analysis

Land navigation requires a vehicle to steer clear of trees,
rocks, and man-made obstacles in the vehicle’s path while
vehicles in flight, such as rotorcraft, must avoid antennas,
towers, poles, fences, tree branches, and wires strung across
the flight path. Automatic detection and recognition of these
obstacles by passive/active sensors and the necessary gui-
dance and control actions triggered by such detection would
facilitate autonomous vehicle navigation.

Many types of existing vehicles contain inertial naviga-
tion systems (INS) which can be utilized to greatly improve
the performance of several computer vision applications such
as obstacle detection, target motion detection, target tracking,
binocular stereo, etc. and make them useful for practical mili-
tary and civilian applications. As an example, motion
analysis techniques can effectively use the output of an INS
to improve interest point selection, matching of the interest
points, and the subsequent motion detection, tracking, and
obstacle detection.

We are using INS measurements to enhance the quality
and robustness of motion analysis techniques. The key ideas
of our maximally passive approach for obstacle detection!?
are the use of constraints from INS information for improved
correspondence, texture-based scene analysis for the selection
of uniformly distributed interest points, the concepts of match
and range confidences, smoothing of range values over multi-
ple frames, and the selective application of a laser sensor.
Details of tle INS integrated motion analysis for obstacle
detection are given in the paper and reports by Bhanu,
Roberts, and Ming.13-15.29

3.2 Binocular and Motion Stereo for Dense Ranging

Range measurements to objects in the world, relative to
mobile platforms such as ground or air vehicles, is critical for
visually aided navigation and obstacle detection/avoidance.
Active (laser) range sensors can be used to provide such
range measurements although they have a limited field of
view, suffer from slow data acquisition, and are expensive.
We address the development of a robust and efficient passive
technigue for obtaining range measurements. Qur approach
consists of a synergistic combination of two %pcs of passive
ranging: binocdJlar stereo and motion stereo.”Y The problem
that we address is the optimal combination of sparse motion
stereo range estimates, r,, (x,y), and sparse binocular stereo
range estimates, ry(x,y), so the resulting range map is as
accurate and dense as possible throughout the entire field of
view,

Binocular stereo and motion stereo compute range to
"distinguished" points in the image. Binocular stereo range
computations suffer the greatest error at the edges of the
camera’s field of view (FOV), where motion stereo range is
most accurate. The converse error relationship holds true in
the vicinity of the focus of expansion where motion stereo
range error is great and binocular stereo range error is small.

We have developed detailed error models for binocular
and motion stereo and inertial reference unit, and developed a
Kalman and Blending filter. The Kalman filter's binocular
stereo measurement consists of motion stereo range sub-
tracted from binocular stereo range. The filte
stereo measurcment is the negative of the filter’s binocular
stereo measurement. The coincident points of interest, i.e.
those points for which range is computed by both motion and
binocular stereo techniques, are used as measurements to esti-
mate errors in the ranging processes. The points in the range
maps which are not coincident can be corrected with these
error estimates, improving the overall quality of the




composite range map. The initial results of our work are
reported in the paper by Symosek et al.30

4. ROBOTIC VEHICLE NAVIGATION
4.1 Qualitative Motion Detection and Tracking

We have developed a unique approach called DRIVE
(Dynamic Reasoning from Integrated Visual Evidence) based
on qualitative reasoning and modeling for target motion
detection and tracking.3 19-22 The DRIVE system performs
dynamic scene understanding needed to support the applica-
tion of smart weapons and autonomous navigation of robotic
vehicles. Instead of refining a single quantitative description
of the observed environment over time, multiple qualitative
interpretations of the scene are maintained simultaneously.
This technique offers considerable flexibility over traditional
numerical techniques which are often ill-conditioned and
noise-sensitive.  With DRIVE, an autonomous system can (i)
detect and classify moving targets in the scene, (ii) estimate
the vehicle’s egomotion, and (iii) derive the 3D structure of
the stationary environment.

The 3-D motion of targets is obtained from (a) displace-
ment vectors of point features without any knowledge about
the underlying 3-D structure, (b) discovenng inconsistencies
between the current state of the qualitative 3-D scene model
and the changes actually observed in_the scene, and (c) by
detecting moving edges and regions.*

DRIVE uses a new algorithm for computing the region
of possible focus-of-expansion (FOE; locations in image
sequences, called the fuzzy FOE.21:23 This computation is
accomplished in a unique manner by separating the rotational
and translational components of the vehicle’s motion and
using a robust method for computing the displacement vector
between two images using adaptive windows.!® The tech-
nique is applicable to platforms with no on-board INS.

The ‘fuzzy’ FOE algorithm allows the direction of
instantaneous heading of an autonomous land vehicle to be
preciscly determined within 1° using image information
exclusively. The results obtained using ALV imagery taken
at five different sites demonstrate the algorithm’s perfor-
mance capabilities. This result has significant scientific
importance for targeting applications. It allows the determi-
nation of self motion of moving imaging devices. Rotation
in the horizontal and vertical directions (pan and tilt only) of
+ 5° or larger can be successfully handled by the algorithm.?
Moreover, it allows the use of passive approaches for sur-
veillance activities that must detect and track moving targets
and must detect and avoiu obstacles using passive sensors
mounted on a mobile platform.

We have developed preliminary algorithms to integrate
the DRIVE system with digital terrain elevation and land
cover data. These algorithms provide information about the
map location of the moving targets, the road label on which
the targets are possibly traveling, and neighboring landmarks.
Such information is desired for military applications and we
have performed initial experiments to establish its usefulness
in detecting moving targets in both high clutter and low con-
trast situations. The paper by Bhanu et. al.!8 provides details
of the interest point selection, disparity analysis, fuzzy FOE,
qualitative scene model, map-based tracking, and edge/region
based approaches,

4.2 Dynamic Model Matching for Landmark Recognition

We have developed a technique called PREACTE (Per-
ception REAsoning ACTion and Expectation) based on
dynamic model matching for landmark recogniiion from a
mobile platform.26-28 The technique can recognize lsndmarks
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and other targets from partial and complete views in dynamic
scenarios. It relies on the generation of multiple landmark
descriptions from 3D models based on different estimated
ranges and aspect angles. These descriptions are a result of
feature, spatial, and geometric models of a single landmark.
Expectations about the landmarks (appearances) vary dynami-
cally as the autonomous robot approuches the landmark,
Dynamic Model Matching also includes the generation of
specific landmark recognition planning strategies whereby
different features of different landmarks are emphasized at
varying ranges, It is an expectation driven, knowledge-based
approach and uses limited map information for updating the
robotic vehicle’s location in the map.

4.3 Interpretation of Terrain

An autonomous robotic vehicle must be able to navigate
not only on the roads, but also through terrain in order to
execute its missions of surveillance, search and rescue, and
munitions deployment. To do this, the vehicle must categor-
ize the terrain regions it encounters as to the trafficability of
the regions, the land cover of the regions, and region-to-map
correspondence. Our approach for terrain interpretation
employs a robust texture-based algorithm and a hierarchical
region labeling scheme for ERIM 12 channel Multi-Spectral
Scanner data. The technique, called HSGM (Hierarchical
Symbolic Grouping for Multi-spectral data), is specifically
designed for multi-spectral imagery, but is appropriate for
other categories of imagery as well. For this approach,
features used for segmentation vary from macro-scale
features at the first level of the hierarchy to micro-scale
features at the lowest level. Examples of labels at the
macro-level are sky, forest, field, mountain, road, etc.

For each succeeding level of the hierarchy, the identified
regions from the previous stage are further subdivided, if
appropriate, and each region’s labeling is made more precise.

The process continues until the last stage is reached and no
further subdivision of regions from the preceding stage
appears to be necessary. Examples of region labels for this
level of the hierarchy are gravel road, snowberry shrub, gam-
bel oak tree, rocky ledge, etc. Further development of the
technique will employ multiple sources of a priori informa-
tion such as land cover, terrain elevation map information,
range data, seasonal information, and time of day. Details of
the HSGM technique with results and examples from real
imagery are given in papers by Bhanu and Symosek.10:17

4.4 Vision-based Targeting Experiments

As discussed earlier, we have developed two key algo-
rithm suites, called DRIVE (Dynamic Reasoning from
Integrated Visual Evidence) and PREACTE (Perception,
REAsoning, ACTion and Expectation). DRIVE accomplishes
target motion detection and tracking while PREACTE per-
forms landmark recognition. We plan to advance this
research by performing a set of scientific experiments
directed towards a practical mobility and targeting application
of a robotic combat vehicle.

We plan to conduct scientific experiments in two areas:
landmark recognition for path traversal and target motion
detection and tracking. Two series of experiments are
planned, one in each of these areas. Each experimental series
begins with data collection and procceds through progres-
sively more difficult scenarios. The final experiments in the
series will be characteristic of practical mobility scenarios for
a robotic combat vehicle. For both series of experiments, the
vehicle will be in continuous motion.

Landmark recognition expcriments include laboratory
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landmark recognition tests using off road data; non-real time
landmark recognition in off road traversal by the robotic
vehicle; real time dynamic landmark recognition in off road
traversal by the robotic vehicle; and dynumic landmark model
learning with return path traversal. Motion detection and
tracking experiments involve verifving motion results against
land navigation data; non-real time detection of multiple
moving targets while maintaining reasonable rotation com-
ponents of the vehicle; real time detection of multiple moving
targets; integrating ETL map data with target motion detec-
tion and tracking; and advanced experiments camied out
under more difficult visual scenes involving low contrast and
high clutter.

We also plan to develop a flexible software architecture
and the associated software for "real time" instrumentation
and evaluation of the landmark recognition and the motion
detection and tracking algorithms. Some of the important
aspects of this work involve defining the criteria for evalua-
ticn and acquiring, retrieving, and presenting the desired
information in meaningful ways so as to provide insight into

the associated vision algorithms.

5. IMAGE DATABASE AND SCIENTIFIC
PERFORMANCE EVALUATION

At present, very little work has been done in the area of
performance evaluation for image understanding algorithms
and systems. In the DARPA-sponsored image understanding
research, a wide variety of algorithms and systems are being
developed for photointerpretation, navigation, manufacturing,
cartography, and targeting applications. Quantitative and
qualitative scientific performance evaluation methods for
vision algorithms and systems will provide an effective way
to scientifically measure the progress being made by the com-
puter vision field. The development of an effective evalua-
tion methodology will lead to more rapid technology transfer
to DoD applications by providing the means to assess readi-
ness of the technology. In addition, the technology develop-
ment timeline will shrink once a means exists to clearly
evaluate the performance of vision algorithms and systems.
All this will will help in advancing computer vision field at a
faster pace.

The critical ingredients
evaluation are:

(a) Image database and associated groundtruth information,
(b) Technigues for performance evaluation,
(c) Common system environments (KB Vision and others).

The  primary  cbjectives  of  the Image
Database/Performance Evaluation ase to establish a national
rescarch database of conipuier vision imagery and develop a
perfurmance evaluation capability for "matured” IU algo-
rithms. The dawabase will be accessible to all members of
DARPA’s IU community over the Arpanet through a set of
uniform access procedures. A taxoromy of computer vision
reseacch will be generated to characterize computer vision
algorithms and systems for the purpos: of database .ndcxing
and evaluation. A set of .echniques and models for
algorithni/system  perforimance  evaluation  of  selected
"matuted"” algorithm:, will be developed to facilitate the uni-
forrr. comparison of algonthms. Perfonmance evaluation pro-
vides performance analysis (strengths/weaknesses), sensitivity
unalysis, and performance models. All these lead to predic-
tion of performance of algorithms and prediction is an impor-
tant element of science.

Through active interaction with the DARPA 1U/SC
community, the following objectives are pursued for scicatific

for scientific performance
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performance evaluation.

(a) Creation of a standardized image database to be used for
performance evaluation of diverse vision algorithms and
systems. Generation of a taxonomy for vision research based
on applications, scientific principles, functionality, and
software/hardware variations. Design and development of an
extensible database system accessible over the Arpanet,

Establishment of a scientific methodology for performance
evaluation of model-based vision systems. Definition of a
standard terminology and establish benchmarks for perfor-
mance evaluatior of algorithms and cysicms. Implementation
and evaluation of the baseline model-based vision system.

5.1 National Research Database of Computer Vision
Imagery

The objective of establishing a national research image
database is to promote the orderly development and dissemi-
nation of image information to serve the needs of DARPA U
algorithms/systems developers. This encompasses the stan-
dards for data interchange and activities for data collection,
data organization, and design and development of an extensi-
ble database system accessible to IU researchers over the

Arpanet.

The important cousiderations for these databases are:
ground truth data requirements (site, sensor characterization,
sensor platform, targets of interest, meteorological condi-
tions), ground truth recording procedures, and database
quantity/quality/variety requirements. The ground truth infor-
mation is very critical and many times is not available or is
too expensive to capture. Whenever the ground truth infor-
mation is available, imagery should be partitioned into two
categories: For some imagery, the ground truth is supplied to
the researcher so that he/she can use them in the development
of vision algorithms; the other category should be the
imagery for which ground truth is sequestered and used to
evaluate the robustness of the algorithms after development.

One potential use of an accepted imagery database
would be for evaluating various "matured” algorithms that
perform the same function (c.g., stereo, segmentation, motion
detection, target recognition in range images, etc).

A current detailed taxonomy of vision research based on
diverse criteria is desired.? The rationale for characterization
is to help in the organization and development of image data-
base, definition of benchmarks, and methodologies for
evaiuation. This characterization will provide a common
framework of terminology and description to promote
improved communication among the members of the vision
community and between technology developers and appliers.
Since the coriputer vision field is still quite young and under-
going rapid evolution, the proposed taxonomy should be
viewed as 4 "snapshot” of the field today and will likely need
to undergo significant modifications and extensions as the
field progresses. After the development of the proposed tax-
onomy, the development of the other goals will be pursued: a
common image database, general vision system benchmarks,
and an effective methodology for performance evaluation.
One can think of a very ceep tree whose leaf nodes are very
specific (for example, the segmentation of tank targets at
"rlose” distances in range images for terminal homing appli-
cations) We associawe e specific database, benchmarks,
and methodslogy with these leaf nodes for performance
evaluation.




5.2 Scientific Methodology and Models for Performance
Evaluation

Since one of the goals of computer vision is to build
machines that can solve real world problems, we need to
define the systematic methods and models for perforance
evaluation of individual vision algorithms (segmentation,
feature computation, texture measurement, etc.) and systems
(target recognition, vision-based navigation, etc.) for a partic-
ular application (terminal homing, surveillance, etc.).

It is important to have common terminology and bench-
marks for performance evaluation. Subtle differences in
meaning can be very important for evaluation. A lexicon
that establishes standard terminology and standard bench-
marks will provide uniformity in carrying out scientific
expeniments for performance evaluation. The emphasis of
performance evaluation is on computer vision problems,
scientific experimental design and interfaces between vision
components and functions. We need to define a performance
metric for each of the image understanding algorithms as
well as a performance metric for the system as a whole.
This will be done for the specific matured algorithms/systems
(model-based vision for target recognition) being pursued by
the Image Understanding community.

REFERENCES

1. B. Bhanu, ““Machine Learning in Computer Vision,”’ Techni-
cal Report, Honeywell Systems and Research Center (1988).

2. B. Bhamu, “*Understanding Scene Dynamics,” Proc. DARPA
Image Understanding Workshop, pp. 147-164 (May 1989).

3. B. Bhanu and W. Burger, ‘‘Qualitative Motion Detection and
Tracking of Targets from a Mobile Platform,’* Proc. DARPA
Image Understanding Workshop, pp. 289-318 Morgan Kauf-
mann Publishers, (April 1988).

4. B. Bhanu and W. Burger, ‘A System for Motion Detection
and Tracking of Targets from a Mobile Platform,” Patent
granted, (1990).

S.  B. Bhanu and W. Burger, “‘A System for Computing the Self
Motion of Moving Immaging Devices,”” Patent granted, (1990).

6. B, Bhanu and W. Burger. ‘‘Qualitative Approach for Dynarnic
Scene Understanding,”” Computer Vision, Graphics and Image
Processing (Accepted), (To Appear 1990.).

7. B. Bhanu, S. Lee, and J. Ming, ‘‘Adaptive Image Segmenta-
tion Using A Genetic Algorithm,” Proc. DARPA Image
Understanding Workshop, pp. 1043-1055 Morgan Kaufmann
Publishers, (May 1989).

8. B. Bhanuy, S. Lee, and J. Ming. “A System for Adaptive
Image Segmentation,” Patent Pending, (1989).

9.  B. Bhany, S. Lee, and J. Ming, **Self-Optimizing Control Sys-
tem for Adaptive Image Segmentation,’’ Proc. DARPA Image
Understanding Workshop, Morgan Kaufmann Publishers, (Sep-
tember 1990).

10. B. Bhany, S. Lee, and J. Ming, ‘‘Adaptive Image Segmenta-
tion,” Submitted to IEEE Trans. on Pattern Analysis and
Machine Intelligence, (February 1990).

11. B. Bhanu and J.C. Ming, ““TRIPLE: A Multi-Strategy Machine
Jeaming Approach to Target Recognition,”” Proc. DARPA
Image Understanding Workshop, pp. 537-547 (April 1988).

12, B. Bhanu and B. Roberts, “Inertial Navigation Sensor
?lltgcsg;-;lted Obstacle Detection System,”” Patent Pending,

13, B. Bhanu and B. Roberts, ‘‘Obstacle Detection During Rotor-
craft Low Altitude Flight and Landing,’”” Second Annual
Technical Report for NASA-Ames (July 1990).

14.

15.

16.

17.

19.

20.

21.

22

23.

24.

25.

26.

27.

28.

29.

30.

B. Bhanu, B. Roberts, and J. Ming, ‘‘Inertial Navigation Sen-
sor Integrated Motion Analysis,’’ Proc. DARPA Image Under-
standing Workshop, pp. 747-763 Morgan Kaufmann Publish-
ers, (May 1989).

B. Bhanu, B. Robents, aid J. Ming, ‘‘Automatic Obstacle
Detection and Avoidance by Helicopters,” Proc. 1990 IEEE
Internationa! Conference on Robotics & Automarion, pp.
954-959 (May 1990).

B. Bhanu and P. Symosek, ‘‘Interpretation of Terrain Using
Hierarchical Symbolic Grouping for Multi-Spectral Images,”
Proc. DARPA Image Understanding Workshop, pp. 466-474
(Feb. 1987).

B. Bhanu and P. Symosek, ‘‘Interpretation of Terrain Using
Multispectral Images,” Submitted to Pattern Recognition,
(1989).

B. Bhanu, P. Symosek, J. Ming, W. Burger, H. Nasr, and J.
Kim, *‘Qualitative Target Motion Detection and Tracking,”
Proc. DARPA Image Understanding Workshop, pp. 370-398
Morgan Kaufmann Publishers, (May 1989).

W. Burger and B. Bhanu, ‘‘Qualitative Motion Understand-
ing,” Proc. Tenth International Joint Conference on Artificic!
Intelligence, IJCAI-87, Milan, Italy, Morgan Kaufmann Pub-
lishers, (August 1987).

W. Burger and B. Bhanu, “Dynamic Scene Understanding for
Autonomous Mobile Robots,”” Proc. IEEE Conference on
Computer Vision and Pattern Recognition, pp. 736-741 (June
1988).

W. Burger and B. Bhanu, “‘On Computing a "Fuzzy’ Focus of
Expansion for Autonomous Navigation,” Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 563-
568 (June 1989).

W. Burger and B. Bhanu, **Qualitative Understanding of Scene
Dynamics for Autonomous Mobile Robots,” The International
Journal of Robotics Research 9(6)(December 1990).

W. Buger and B. Bhanu, ‘‘Estimating 3-D Egomotion from
Perspective Image Sequences,’’ JIEEE Transactions on Pattern
A9ng(l)ysis and Machine Intelligence (Accepted), (To Appear
1990).

K.I. Laws, “The Phoenix Image Segmentation System:
Description and Evalyation,”” SRI International Technical Note
No. 289 (December, 1982).

J. Ming and B. Bhanu, “A Multistrategy Learning Approach
for Target Model Recognition, Acquisition and Refinement,”’
Proc. DARPA Image Understanding Workshop, Morgan Kauf-
mann Publishers, (September 1990).

H. Nasr and B. Bhanu, “Dynamic Model Matching for Target
Recognition from a Mobile Platform,”” Proc. DARPA Image
Understanding Workshop, pp. 527-536 (April 1988).

H. Nasr and B. Bhanu, ‘‘Landmark Recognition for Auto-
nomous Mobile Robots,”* Proc. IEEE International Conference
on Robotics and Automation, pp. 1218-1223 (April 1988).

H. Nasr and B. Bhanu, “‘Landmark Recogaition System Using
Dynamic Model Matching,” Patent pending, (1988).

B. Roberts and B. Bhanu, “Inertial Navigation Sensor
Integrated Motion Analysis for Autonomous Vehicle Naviga-
tion,”” Proc. DARPA Image Understanding Workshop, Morgan
Kaufmann Publishers, (September 1990).

P. Symosek, B. Bhanu, S. Snyder, and B. Roberts, “M_otio'x]
and Binocular Stereo Integrated System for Passive Ranging,
Proc. DARPA Image Undersianding Workshop, Morgan Kauf-
mann Publishers, (September 1990).




Image Understanding Research
at Rochester

Christopher Brown, Randal Nelson
Computer Science Department
University of Rochester

Rochester, NY

Abstract

Animate (real time, purposeful, active) vision
requires parallel computing of several varieties
(MIMD, SIMD, pipelined). This year’s re-
search has been devoted, on the applications
side, to sophisticated real time vision algo-
rithms in the areas of gaze control, optic flow
analysis, colored object recognition and loca-
tion, and selective attention. This year the
parallel computing environment has been able
to support users on the Psyche and Plat-
inum NUMA operating systems, the Zebra and
Zed pipeline parallel programming toois, and
the Instant-replay and Moviola debugging and
performance monitoring toolkits. Goals for
next year include integrating cognitive plan-
ning with dextrous manipulation and real time
vision, and incorporating increasingly sophisti-
cated multi-agent interaction in animate vision
systems.

1 Vision Applications

Vision applications are an important part of our research
in parallel, animate, real-time approaches to vision. The
laboratory is expanding with the addition of a Utah
16-dof dextrous manipulator, and we are designing a
system to integrate the full spectrum of Al techniques,
from cognitive planning down to real-time control. This
year we have concentrated on sophisticated vision algo-
rithms that use state of the art hardware, with the aim
of achieving responses fast enough to interact with the
world. Paul Chou’s Highest Confidence First (HCF) al-
gorithm for Markov Random Fields was extended to the
parallel Local HCF algorithm, which is ideally suited to
fast implementation on the Connection Machine. Relax-
ation algorithms for general arc consistency were imple-
mented on the CM by Cooper and Swain at Syracuse’s
DARPA-funded NPAC, as was an optimized version for
high level structure recognition. Pipelined parallel com-
putation is used heavily in Nelson’s movement detector
(which detects objects moving with respect to a possibly
moving background) and Swain's colored object recog-
nizer (see below).

Several parallel vision applications were pursued this
year, including Butterfly programming, Markov Random
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Field and connectionist applications, and work aimed
at integrating the real-time laboratory and using it for
complex planning tasks that include sensing and acting.
Key papers are [ Simard 1990 (Recurrent backpropa-
gation); Brown et al. 1989 (decentralized Kalman fil-
ters); Aloimenos and Brown 1989 (Robust computation
of intrinsic images); Chou and Brown 1990 (Sensor fu-
sion, reconstruction and labeling); Wixson and Ballard
1990 (Color histograms); Rimey and Brown 1990 (Hid-
den Markov models); Yamauchi 1989 (Juggler); Nelson
1990 (Movement detection); Brown 1990a (predictive
control); Swain 1990 (Thesis on colored cbject recog-
nition and location); Martin et al. 1990 (ARMTRAK
project).

1.1 Real-time Colored Object Search and
Recognition

Recent work on fast object detection uses -color his-
togram matching techniques and relational modeling.
Almost all current object recognition schemes require
that image features be matched to model features, re-
quiring a time polynomial in the number of features to
perform the matching. By adding an initial stage that
does not perform pose calculation but rather simply de-
tects the likely presence of the object in the image, con-
siderable efficiency can be gained. The idea is that this
initial stage would be used to rank each gaze in a set
of candidate gazes according to the likelihood that the
image produced by the gaze contains the desired object.
This ranking can then be used to choose the order in
which a more sophisticated object recognition program
(which would calculate pose) should be applied to the
candidate images.

Wixson [Wixson and Ballard 1990] and Swain [Swain
and Ballard, 1989} use object detection schemes that rely
on the assumption that the color histogram of an object
can be used as an object “signature” that is invariant
over a wide range of scenes and object poses. The color
histogram is computed by the Datacube parallel hard-
ware, and an efficient matching algorithm due to Swain
can locate the best match in data bases containing be-
tween 10 and 70 items in a constant 15 milliseconds.

Wixson's object search algorithm gazes around the
room and matches what it sees with the database, mak-
ing a spatial map of object locations, and can also adjust
its gaze position to improve the gocdness of the match




(a good example of active vision). Wixson is also us-
ing knowledge of expected spatial relationships to diréct
the search process. Indirect-search uses a finite set of
relationships (FRONT-OF, NEAR, LEFT-OF, etc.) be-
tween objects. The relationships may be known apriori
or, more interestingly, derived from experience with the
scene. Characterizing the occurrence of relationships as
Bernoulli trials leads to a confidence interval representa-
tion of the probability of the relations holding. In turn,
these probabilities can be used in a “highest impact first”
search that acquires information in the order that max-
imally decreases expected uncertainty. The result is to
derive Garvey-like strategies on the fly from first princi-
ples, while supporting learning,.

In his thesis Swain investigates color cues for object
recognition. He has developed a robust matching algo-
rithm called histogram intersection that can recognize
nonrigid, occluded colored objects from a large database
(up to 70 items so far, but that is not an upper bound).
It runs in time linear in the number of database entries,
taking 38 ms for a 19-object database and 150 ms. for
70 objects. An incremental version of histogram inter-
section relies on the fact that most histogram bins are
unnecessary in a match, and can perform recognition in
a constant 15 ms for databases at least up to 70 objects
in size. In one typical run, 30 of 32 objects were cor-
rectly identified from a catalog of 66 objects, while for
the remaining two objects the second best match was
correct. The instance views have different viewing an-
gles-from those that generated the catalog. The demon-
stration program pans the color camera around a scene
of colored objects, while simultaneously displaying the
three top-ranked objects in order. Correct recognition is
done at approximately 5 Hz. Swain has also developed a
saliency measure that subtracts histogram features com-
mon to a known ensemble, thus weighting more heav-
ily the features that are unique to each object. Last,
there is a histogram backprojection algorithm that in-
verts the global, de-spaced nature of the histogram into
scene locations that could have generated the histogram.
Backprojection also runs at about 5 Hz, which allows the
tracking of a moving object through a scene, or the loca-
tion of a sought object when the camera moves smoothly
or discontinuously over the scene.

1.2 Modeling attentional behavior sequences
with an augmented hidden Markov modej

Over the past year Selective attention, or the intelligent
application of limited visual sensing and computing re-
sources, has emerged as a basic topic for a long-range
program of research we are now pursuing. The work in
visual attention is proceeding in parallel with a new re-
search direction in the Systems area - models and mech-
anisms for flexible, satisficing, reactive real-time com-
puting.

Ray Rimey has implemented visual attention algo-
rithms using a spatially-varying (foveal and peripheral)
sensor. One aspect of the work attacks the specific prob-
lem of modeling foveation sequences [Rimey and Brown,
1990]. In most treatments of this subject, a sequence of
eye movements emerges as a result of sequential cogni-
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tive effort and image analysis, and is not explicitly repre-
sented. We augment the usual paradigm with-a new ex-
plicit representation of probabilistic but task-dependent
attentional sequencing. Explicit sequences are some-
thing like motor skills; they efficiently capture the effect
of much cognitive activity and feedback-mediated behav-
tor, and allow it to be generated quickly with low cogni-
tive overhead.

The explicit representation is an augmented hidden
Markov model (AHMM). A simple hidden Markov model
can learn an emergent behavior and re-generate it as an
explicit data-oblivious sequence. An AHMM incorpo-
rates a feedback sequence to modify the generated se-
quence (to pay attention to interesting things in unex-
pected places while following a scan path, for instance).
It can therefore relearn or constantly modify.its own ex-
plicit behavior, thus adapting to varying conditions. One
AHMM model uses a simple external feedback loop, an-
other uses internal feedback which modifies the internal
parameters (probabilities) of the AHMM thus effecting
the generation likelihoods directly. A third -allows the
foveation sequence to be expressed either in terms of im-
age locations (“where”) or image contents (“what”) or
both.

The Workbench for Active Vision Experimentation
(WAVE) has now evolved into a general platform for in-
tegrating software. In anticipation of moving over to the
Psyche operating system running on the Butterfly paral-
lel computer, WAVE was converted to the g+ program-
ming language used by Psyche and also was converted
to use the Zebra system for programming our-DataCube
MaxVideo image processing hardware. WAVE was used
to support the implementation of the selective attention

model, and its performance is encouraging [Rimey and
Brown, 1990)].

1.3 Gaze Control and Segmentation

In research carried out at Oxf.rd, Chris Brown did
work on Kalman filters for tracking applications, co-
operative work on projectively invariant matching of
geometric structures in images [Brown et al, 1989,
Forsyth et al., 1990) cn control of Rochester’s robot head
(Brown 1989a,c; 1990a,b), and on computational proper-
ties of rotation representations [Brown, 1989b).

The control work investigated predictive mechanisms
to solve problems of cooperation and delay. “Sub-
sumption” architectures find these problems trouble-
some since internal state representations are minimized,
control interaction is usually limited to preemption, and
actions are synchronized only through the outside world.
The work developed eight camera controls and investi-
gated their interaction. It showed that predictive tech-
niques can overcome the catastrophic effects of delays
and interactions.

A fixated object “pops out” under ego motion since
its surroundin.;s blur. This method of pre-processing a
scene to enhance edges and aid segmentation has par-
allels that use binocular visual capabilities, especially
vergence. Coombs and Olson cooperated on vergence
and segmentation algorithms for the robot head {Olson
and Coombs, 1990] vergence has many advantages even




for systems without foveas. (1) Mathematical sim-
plification: Fixating an object of interest puts-points
on the object near the-optic axis in both eyes, allowing
an orthographic projection -model and simplifying many
computations. (2) Useful coordinate systems: A
unique fixation point defines a coordinate system that is
related as much to the object being observed as it is_to
the observer, and hence is a step in the direction of an
object-centered coordinate system [Ballard, 1989b). (3)
Stereopsis: Since the fixation point has a stereoscopic
disparity of zero, points nearby will generally have small
disparities. This makes it possible to use stereo algo-
rithms that accept only a very limited range of dispari-
ties. Such systems can be very fast, and are amenable to
hardware implementation. (4) Disparity-based seg-
mentation: On the assumption that the gaze will nor-
mally be directed toward objects of interest, it may be
appropriate for binocular agents to ignore features at
latge disparities. Thus disparity may be used to induce
a segmentation on the scene.

The cepstral filter (akin to phase correlation) was-used
for the vergence calculations. It yields subpixel accuracy
and, when used with a PD control law, is responsive to
smooth and discontinuous variations in disparity. Ver-
gence allows “zero disparity filtering” in which only zero-
disparity points in images from the two eyes are passed
on to further processing.

1.4 Parallel Cooperating Agents and Juggler

Juggler is a balloon-bouncing program under develop-
ment, which has kept the balloon in the air for several
seconds (some dozen hits). As of November 1989 {Ya-
mauchi 1989), a version using five processors was running
under the Psyche Operating System. The implementa-
tion uses binocular vision and a competing agent model
of motor control; five processes compete with each other
for access to the robot arm to position the balloon in
the visual field, to position the racquet under the bal-
loon, and to hit the balloon. Juggler is robust because
even if processes had to share processors, failure to ex-
ecute any one process during a particular time interval
would have little if any affect on behavior: In the com-
peting agent model, each application process continually
broadcasts commands to the robot in competition with
other processes. Our experiences with Juggler led to
appropriate extensions to Psyche and communications
capabilities, and we have now begun to design real-time
facilities such as user-level scheduling.

5

1.

We have developed methods for the fast detection of
moving objects from a platform that may itself be mov-
ing [Nelson 1990]. This task has applications in surveil-
lance, process monitoring, and target detection. The
primary challenge is to distinguish robustly the i.nage
motion due to independently moving objects from back-
ground flow induced by movement of the platform. Qual-
itative, pattern recognition strategies avoid the difficul-
ties associated with quantitative determination of the
image motion field.

Two complementary algorithms have been developed

Movement Detection

and implemented. The first method, constraint ray_fil-
tering, uses knowledge-about the.observer’s motion. It
is based on the fact that, in a rigid environment, the
projected 3-D velocity-at any point in the image is con-
strained to lie on a 1-D locus in velocity space whose
parameters depend only on the observer motion. Thus
in principle, if the motion field and observer motion-are
known, an independently moving object can be detected
because its projected velocity is unlikely to fall on this
locus. In practice, quantitative estimates of the motion
field and observer motion are both difficult and compu-
tationally expensive to obtain. Nelson adapts the basic
principle to use partial information about the moétion
field and observer motion that can be rapidly and reli-
ably computed from real image sequences.

The second method uses knowledge about the motion
of the object to be detected. It takes advantage of the
fact that the apparent motion of a fixed point due to
smooth observer movement changes slowly while the ap-
parent motion of moving objects such as animals or ma-
neuvering vehicles often changes rapidly. Such animate
motion can be detected by using the motion field at a
given time to constrain the future motion field under
smooth continuation, and then looking for violations of
these constraints.

Both methods are implemented using the Datacube
Maxvideo system for low-level qualitative motion extrac-
tion and a SUN workstation for higher-level processing.
The alogorithms run in real time (10 Hz, 1/1( second
latency) and successfully detect independent movement
from a moving platform in a variety of situations, at full
(512 x 512) resolution. Details can be found in the paper
“Qualitative Detection of Motion by a Moving Observer”
in these proceedings.

2 Computing Environments for Parallel
Vision
2.1 Languages and Operating Systems

An alternate communications library for the Puma-robot
(ROBOCOM) was written by Brian Yamauchi and John
Soong for use in the Juggler project. ROBOCOM is
much faster than the BOTLIB package since it does not
use the multi-layered ISO-standard structnre for com-
munication.

This year Rochester released Zebra, an object oriented
programming interface to Datacubes MaxVideo family of
image processing boards. Each board type is represented
by an object class. Each physical MaxVideo board is rep-
resented by an instance of its class. Simply by declaring
the board objects as variables, tiie boards are opened
and initialized. Zebra takes a mucroprogramming-like
approach to controlling Datacubc boards. The regis-
ter set for each board is considered to be a micro-
instruction word. This instruction word completely spec-
ifies a board configuration. By sending instruction words
to boards, the hardware can be completely programmed
in a microprogramming-like manner. Instruction words
can be stored in and retrieved from files, allowing the
sharing of standard configurations between developers.
Instruction words are created an modified via an instruc-




tion word editor. One such editor is Zed, a graphical tool
provided with Zebra that drastically reduces the learning
curve for Datacube programming [Tilley, 1990).

Over the past year several languages for MIMD par-
allel computers have been developed and ported, and
quantitative comparisons made between programming
models. Parallel compilation issues and programming
paradigms are being been explored in the thesis work of
Gafter and Crowl [Crowl, 1989b). The key reports are
[Baldwin 1989a,b,c (Consul); Scott et al. 1990a (Multi-
model parallel programming); Crowl 1989b (A uniform
object model); Tilley 1990 (Zebra for MaxVideo)).

Three operating systems (Elmwood, Platinum, Psy-
che) have been developed for the Butterfly. The most
ambitious project is Psyche, though Platinum and Os-
mium solve automatically a number of problems that
users face when using Uniform System-style program-
ming on a MIMD computer (Automatic cacheing and
data migration, for instance). The key papers are [Scott
et al. 1989b,c (Psyche description); LeBlanc et al. 1989b
(Elmwoed description); Cox and Fowler 1989 (Platinum
description)]

We believe that building an integrated, reasoning, re-
active vision and robotic system requires multiple mod-
els of parallel computation. Psyche provides a low-level
interface with uniform naming and an émphasis on dy-
namic fine-grained sharing. Through its use of data ab-
straction, lazy evaluation of protection, and parameter-
ized user-level scheduling, it allows programs written un-
der many different programming models to coexist and
interact. The conventions of realm protocols, upcalls,
and block and unblock routines provide a structure for
communication across models that is, to the best of our
knowledge, unprecedented. With appropriate permis-
sions, user-level code can exercise full control over the
physical resources of memory, processors, and devices.
In effect, it should be possible under Psyche to imple-
ment almost any application for which the underlying
hardware is appropriate. This, for us, constitutes the
definition of “general-purpose parallel computing.”

Psyche differs from existing multiprocessor operating
systems in several fundamental ways.

1. It employs a uniform name (address) space for all its
user programs without relying on compiler support

for protection.

It evaluates access rights lazily, permitting the dis-
tribution of rights without kernel intervention.

. It places the management of threads, and in fact
their definition, in the hands of user-level code.

It minimizes the need for kernel calls in general
by relying whenever possible on shared user/kernel
data structures that can be examined asyn-
chronously.

It provides the user with an explicit tradeoff be-
tween protection and performance by facilitating
the interchange of protected and optimized invoca-
tions.

As of November 1989 we were able to run our first
real user applications. Implemented portions of Psyche
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include low-level machine support. interrupt handlers,
virtual memory (without paging), full support for inter-
kernel shared memory, synchronous inter-kernel commu-
nication via remote interrupts, support for atomic hard-
ware operations, remote source-level kernel debugging,
and loading of the kernel via Ethernet. Also core sup-
port for the Psyche user interface: realms, virtual pro-
cessors, protection domains, keys and access lists, soft-
ware interrupts, and protected and optimized invocation
of realm operations. Also rudimentary I/O to the con-
sole serial device, and remote file service via Ethernet.
There are minimal user-level tools: a simple shell, pro-
gram loader, and name server, support for command-
line argument passing, simple handlers for software in-
terrupts, and standard I/O and kernel call libraries.

2.2 Performance Monitoring and Debugging

This year we honed several of our tools to help the user
effectively implement parallel algorithms [e.g. LeBlanc
1989; LeBlanc et al. 1990; Mellor-Crummey 1989b]. The
main thrust has bzen the construction of parallel perfor-
mance monitoring tools and experimentation with the
use of these tools [e.g. Fowler and Bella 1989; Fowler et
al. 1989].

The information collected during program monitoring
can be used to replay a program during the debugging
cycle. During replay, events can be observed at any level
of detail, and controlled experiments can be performed.
More important, however, is the use of program moni-
toring to create a representation for an execution that
can be analyzed by our programmable toolkit.

The core of our toolkit consists of facilities for record-
ing execution histories, a common user interface for the
interactive, graphical manipulation of those histories,
and tools for examining and manipulating program state
during replay of a previously recorded execution. The
user interface for the toolkit resides on the program-
mer’s workstation and consists of two major components:
an interactive, graphical browser for analyzing execution
histories, and a programmable Lisp environment. The
execution history browser, called Mcviola, is written in
C and runs under the X Windows System.

Moviola implements a graphical view of an execution
based on a DAG representation of processes and commu-
nication. In a Moviola diagram, time flows from top to
bottom. Events that occur within a process are aligned
vertically, forming a time-line for that process. Edges
joining events in different processes reflect temporal re-
lationships resulting from synchronization. Event place-
ment is determined by global logical time computad from
the partial order of events collected during execution.
Each event is displayed as a shaded box with height pro-
portional to the duration of the event, and boxes are
connected with lines representing interactions. Irregular-
ity, inactive processors, and other indications of possible
bugs are readily apparent in such a diagram.

We have successfully used this facility for kernel de-
bugging and plan to use it as a base for user-level, multi-
model debugging. Low-level debugger functions will be
implemented by a combination of gdb and lld. High-
level commands from the user will be translated by a




model-specific interface, created as part of the program-
ming model. The-Moviola graphical interface has been
improved, significantly reducing the display tirmé and in-
creasing the functionality. The S graphics package has
been added to-the toolkit, facilitating graphical displays
of performance data. LISP tools have been written for
critical path analysis and for gathering and plotting per-
formance statistics.

3 Related Theses, 1989-1990

Yap, Sue-Ken., “PENGUIN: A language for reactive
graphical user interfaces”: Technical Report 344 (and
Ph.D. Thesis, April 1990).

PENGUIN (Programming Environment for Graphical
User Interfaces) is a computer language that supports
grammar-based specification of control flow in event-
driven graphical programs. The PENGUIN model of
intercomponent connection extends and subsumes the
older Seeheim model of UIMS design, allowing large pro-
grams to be constructed as co-operating components.
If the reactive nature of graphical programs should be
taken into account from the beginning of design, a graph-
ical program can be composed as a collection of mod-
ules whose input behaviour is specified, and modules
be grouped into separately-compiled components along
lines of clear division of labour and responsibility for re-
sources. Such partitions result in components that are
more likely to be reusable. Our experiences indicate that
the use of PENGUIN can reduce the volume of user in-
terface code by a factor of two to three and result in code
which is clearer than functionally equivalent code using
traditional control structures. Uniform handling of I/O
and signals as PENGUIN events leads to programs that
are more portable across systems.

Gafter, N., “Parallel Incremental Compilation,” Ph.D.
Thesis, June 1990: We describe a set of techniques that
enable incremental compilation to exploit fine-grained
concurrency in a shared-memory multiprocessor and
achieve asymptotic improvement over sequential algo-
rithms. Because parallel non-incremental compilation is
a special case of parallel incremental compilation, the
design of a parallel compiler is a corollary of our re-
sult. Instead of running the individual phases concur-
rently, our design specifies compiler phases that are mu-
tually sequential. However, each phase is designed to ex-
ploit fine-grained parallelistn. By allowing each phase to
present its output as a complete structure rather than as
astream of data, we can apply techniques such as parallel
prefix and parallel divide-and-conquer, and we can con-
struct applicative data structures to achieve sublinear
execution time. We describe new algorithms for parsing
using a balanced list representation and type checking
based upon attribute grammars modified with a combi-
nation of aggregate values and upward retnote references.
Under some mild assumptions about the language and
target program, these phases run in polylogarithmic time
using a sublinear number of processors.

Dibble, P.C., “A Parallel Interleaved File System,”
Ph.D. Thesis and TR 334, March 1990. This disserta-
tion introduces the concept of a parallel interleaved file
system. This class of file system incorporates three con-
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cepts: parallelism, interleaving, and tools. Parallelism
appears as a characteristic of the file system program
and in the disk hardware. The parallel file system soft-
ware and hardware allows the file system to scale with
the other components of a multiprocessor computer. In-
terleaving is the rule the file system uses to distribute
data among the processors,

Floyd, R.A., “Transparency in distributed file sys-
tems,” Ph.D. Thesis and TR 272, January 1989: Our
distributed file system, Roe, supports a substantially
higher degree of transparency than earlier distributed file
systems, and is able to do this in a heterogeneous envi-
ronment. Roe appears to users to be a single, globally
accessible file system providing highly available, consis-
tent files. It provides a coherent framework for uniting
techniques in the areas of naming, replication, consis-
tency control, file and directory placement, and file and
directory migration in a way that provides full network
transparency.

Mellor-Crummey, J., “Debugging and analysis of
large-scale parallel programs,” Ph.D. Thesis and TR
312, September 1989: This dissertation addresses the
problem of debugging and analysis of large-scale parallel
programs executing on shared-memory multiprocessors.
It is shown how synchronization traces can be used to
create indistinguishable executions that form the basis
for debugging. This result is used to develop a practi-
cal technique for tracing parallel program executions on
shared-memory parallel processors so that their execu-
tions can be repeated deterministically on- demand.The
design of an integrated, extensible toolkit based on these
traces is proposed. This toolkit uses execution traces to
support interactive, graphics-based, top-down analysis
of parallel program executions.

Olson, T.J., “An architectural model of visual motion
understanding,” Ph.D. Thesis and TR 305, August 1989:
The central claim of this thesis is that many puzzling
aspects of motion perception can be understood by as-
suming a particular architecture for the human motion
processing system. The architecture consists of three
functional units or subsystems. The first or low-level
subsystem computes simple mathematical properties of
the visual signal. It is entirely bottom-up, and prone
to error when its implicit assumptions are violated. The
intermediate-level subsystem combines the low-level sys-
tem’s output with world knowledge, segmentation infor-
mation and other inputs to construct a representation of
the world in terms of primitive forms and their trajec-
tories. It is claimed to be the substrate for long-range
apparent motion. The highest level of the motion sys-
tem assembles intermediate-level form and motion prim-
itives into scenarios that can bc used for prediction and
for matching against stored models. Simulation results
show that its interpretations are in qualitative agreement
with human perception.

Cooper, P.R., “Parallel object recognition from struc-
ture (The Tinkertoy project),” Ph.D. Thesis and TR
301, July 1989. The task is the recognition of objects
whose identity is defined solely by the spatial relation-
ships between simple parts. A massively parallel frame-
work incorporating a principled treatment of uncertainty




and domain dependence is developed to address the
problem. The basic architecture of the solution is formed
by posing structure matching as a part-wise correspon-
dence problem in a labelling framework, and then apply-
ing the unit/value principle. The solution is developed
incrementally. Complexity and correctness analyses and
implementation experiments are provided at each phase.
The formulation of the application problem is also gener-
alized, so geometric discrimination can be achieved. The
solution is generalized to handle uncertain input infor-
mation and statistical domain dependence. Segmenta-
tion and recognition are computed simultaneously by a
coupled Markov Random Field. The method deals well
with -occlusion and accidental alignment.

Swain, Michael, “Color Indexing”, Ph.D. thesis, June
1990. This dissertation demonstrates that color his-
tograms of multicolored objects provide a robust, effi-
cient cue for indexing into a large database of models.
It shows that color histograms are stable object repre-
sentations in the presence of occlusion and over change
in view, and that they can differentiate among a large
number of objects. For solving the identification prob-
lem, it introduces a technique called Histogram Intersec-
tion, which matches model and image histograms and a
fast incremental version of Histogram Intersection that
allows real-time indexing into a large database of stored
models. It demonstrates techniques for dealing with
crowded scenes and with models with similar color sig-
natures. For solving the location problem it introduces
an algorithm called Histogram Backprojection-that per-
forms this task efficiently in crowded scenes.
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Progress in Computer Vision at the University of Massachusetts!

Edward M. Riseman and Allen R, Hanson
Computer Vision Research Laboratory
Dept. of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

ABSTRACT!

This report summarizes progress in image
understanding resecarch at the University of
Massachusetts over the past year. Many of the
individual efforts discussed in this paper are further
developed in other papers in this proceedings. The
summary is organized into several areas:

1. Mobile Robot Navigation

2. Motion and Stereo Processing

3. Knowledge-Based Interpretation of Static Scenes
4, Image Understanding Architecture

The research program in computer vision at UMass
has as one of its goals the integration of a diverse sct
of research efforts into a system that is ultimately
intended to achieve real-time image interpretation in a
variety of vision applications.

1.

The initial focus of the mobile robot navigation project
(Fenncma and Hanson 1990b) has been on the development
of a systemfor goal oriented navigation through a partiaily
modeled, unchanging environment which contains no
unmodeled obstacles, This simplificd environment is
intended to provide a foundation for rescarch into navigation
in more complicated domains. The guiding philosophy of
this project is a tight coupling between planning,
perception, and plan execution, Incremental planning and
vehicle motion, guided by the relationship between the
internal model and the external world provided by perception,
serve 10 keep the vebicle accurately located within the
environmental reference frame,

1.1

Mobile Robot Navigation

Experiments in Planning and Plan
Execution

In a recent experiment (Fennema and Hanson 1990b), the
vehicle successfully navigated a multi-leg course, from the
robot laboratory to an office, moving approximately 50 feet

1This rescarch has been supported in part by the Defense
Advanced Research Projects Agency under RADC contract
F30602.87-C-0140 and Ammy ETL contracts DACA76-89-C-
0016 and DACAT76-89-C-0017.
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through two doorways and coming to rest within an inch of
its intended goal. Both rooms and the hallway were
accurately (but incompletely) modelled using a hierarchical
volumetric representation of space. Volumes are represented
by their surrounding faces, and faces contain information
about the visual appearance of the face. A more complete
description of the world representation may be found in
(Fennema and Hanson 1990a; Fennema and Hanson 1990b).
Clearly, many more experiments, under widely varying
environmental conditions (both indoors and outdoors), must
be run before the robustness of the techniques can be
established.

1.1.1 Plan Generation

Planning is carried out over the world model using
traditional planning techniques (e.g. A* search, freespace
representations, etc.) to generate a sequence of plan 'sketches'
(incompletely specified plans). Plans are generated in a
depth first manner, with more detailed plans closer to the
vehicle's current location. Associated with each plan sketch
is a milestone, which can be thought of as a precondition for
the execution of the plan sketch, These milestones are
typically specified as landmarks which must be verified
visually (and the vehicle's position relative to them
determined) prior to the execution of the next step in the
plan. The milestones form the basis for 'plan-level
servoing', discussed below.

11,2 Plan Execution and Perceptual Servoing

The rationale for not fully developing detailed plans prior to
moving the vehicle is that plans fail, Obstacles in the
planned path, irrcgular or slippery surfaces, uneven tire
inflation, or unexpected externally induced vehicle motions
can throw the vehicle off course, causing inaccurate
execution. To reduce the errors caused by these unexpected
events, the execution of each action is controlled by
'servoing’ on prominent visual features in the environment.
These features may be objects, such as prominent buildings,
or they may be local features, such as casily identifiable
comers, door {frames, or baschoards. Servoing occurs on
three nested levels:

‘action-level servoing' is used to maintain the
accuracy of cach primitive action executed by
the vehicle but does not relate the vehicle’s
position o its progress towards the goal;




'plan-level servoing' uses the milestones defined in
the plan to rclate the current location of the
robot W the plan and enviropmental model;

‘goal-level servoing' attempts to relocate the robot
when it becomes lost; this level of servoing is
not discussed here,

1.1.2,1  Action-Level Servoing

The Denning Mobile Robotics vehicle used in these
experiments can execute two 'primitive’ actions directly:
TURN 8 and a straight linc MOVE d. Neither of these
actions can be reliably excecuted in 'open loop' mode. The
straight line MOVE action, for cxample, results in a curved
path when executed and the vehicle can be significantly off
the intended straight line trajectory at the end of the action.
In actual experiments, exccuting a MOVE 40" has resulted in
the vehicle being as much as a foot off the intended straight
line after 20", with the error increasing.

In action-level servoing, the primitive action MOVE 40',
fo: example, is broken up into a sequence of smaller moves,
say MOVE 2'. The 2D appearance information contained in
the environmental model is used to generate two
dimensional correlation templates for prominent visual
features. From the predicted location of these features in the
image, a search window is established and the templates are
correlated with the image to establish their image location.
Using the measured discrepancy between predicted and actual
focations, the heading of the vehicle is modified to reduce
the error and the next sub-action is executed. The process is
repeated until the primitive action is complete. In actual
experiments, the use of action-level servoing has maintained
the vehicle within 1/4" of the intended straight line motion
over a 40' move. Details on action-level servoing and more
complete experimental results may be found in (Fennema
and Hanson 1990a).

1.1.2.2 Plan-Level Servoing

Plan-level servoing is designed to ensure proper execution of
a plan step prior to initiating the next step by relating the
progress of the vehicle towards the goal to the
environmental model. This is accomplished by matching
the milestones defined in the plan sketch to the image (2D
matching) followed by a 3D pose refinement step to
determine the relationship between the vchicle and the
environmental frame of reference,

Two different approaches to 2D model matching have been
developed. The most recent approach has been to use the
same feature extraction and 2D correlation methods used in
action-level servoing. Since the vehicle has been tracking
these points during action-level servoing, it is unlikely that
there will be a large discrepancy between where the vehicle
believes it is and where it actually is. Consequently, plan-
level servoing involves only the additional step of 3D pose
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refinement, using the matched points, in order to recover its
position: In an initial set of indoor experiments described in
(Fennema and Hanson 1990a), the vehicle was able to
recover its position to within a quarter of an inch after being
displaced up to 6 inches from where it thought it was, using
landmarks approximately 30 feet away. Additional
experiments with this technique are planned for the near
future,

An earlier approach (Beveridge, Weiss et al. 1989;
Beveridge, Weiss et al. 1990) matched straight lines
extracted from the image to model lines projected to the
image plane using the assumed location of the vehicle.
During this past year, the two-dimensional matching scheme
has been extended to include determination of scale, as well
as the rotation and translation parameters yiclding the best
fit. The model-to-image line correspondences determined
during 2D matching are used as the input to the 3D pose
computation step. The emphasis over the past year has been
on improving both the reliability and efficiency of the search
processes.

The 3D pose refinement technique developed earlier works
with either points or lines (Kumar 1989; Kumar and Hanson
1990a; Kumar and Hanson 1990b; Kumar and Hanson
1989a) and has been extended to be robust in the presence of
outliers. The robustness is achieved at a computational
cost, since the median of the error function is minimized by
combinatorial methods over the subset space of all matched
image and model lines. However, the method is capable of
handling up t0 49.9% outliers. In a recent paper (Kumar and
Hanson 1990a), the superiority of the least-median squares
algorithm over traditional least-mean squares algorithms as
well as those based on statistical M-estimation techniques
was established. The sensitivity of pose refinement and
other related 3D inference methods to inaccurate estimates of
the image center and focal length has been theoretically
established and experimentally validated (Kumar and Hanson
1990b). The results show that for 'small' field of view
imaging systems, incorrect knowledge of the camera center
does not affect the recovered location of the camera
significantly, The crror in the recovered orientation of the
camera is lincarly related to the error in the estimate of the
location of the center of the imaging system.

1.2 Automated Model Extension

The construction of positionally accurate environmental
models is a time consuming, tedious task, Ultimately, the
only feasible approach for vehicles which are required to
intcract with large scale changing environments is to provide
them with methods for automatically acquiring their internal
models during goal-oriented activitics or unrestricted
exploration,

Two preliminary experiments have been performed using
the 3D pose refinement algorithm to extend a partial model
from a set of known points to include unknown points;




these experiments are described in more detail in (Kumar and
Hanson 1990b). The known model points are used to locate
new points in the world coordinate system from pose
refinement and triangulation over the induced stereo baseline
obtained from a pair of 3D poses (e.g. location and
orientation of the camera for cach image). In both
experiments, an image sequence was obtained for which the
three-dimensional location of a set of points in the
environment was known (the model), Image featurcs are
tracked over a sequence of frames using a token-based line
tracker (Williams and Hanson 1988a; Williams and Hanson
1988b; Williams and Hanson 1988c), which provides the
token correspondences. The 3D pose estimation algorithm
described earlier is applied to cach frame to map cach feature
into a stable world coordinate frame. The 3D pseudo-
intersection of the rays passing through the camera center
and the image feature point in cach image frame is found
using an optimization technique which minimizes the sum-
of-squares of the perpendicular distances from the 3D pseudo-
intersection point to the rays. In cffect, this induces a stereo
bascline between frames from which the 3D coordinates of
the unknown features can be obtained by triangulation.
Note that the computation of the location of new points in
the world-coordinate systcm is not sensitive to accurate
estimation of the image center.

1.3 Automatic Acquisition of Enviconmental
Models

The problem of acquiring models or modifying incorrect

-models -is an important aspect of object recognition and

navigation. ‘The major functional requiremenis of modcting
for these tasks are: accurate prediction of visuat features,
accurate -surface orientation and curvature, and accurate
feature dimcensions,

We are currently buiiding a system for acquisition of
models from image data under known motion generated by a
camera mounted oh an arm in a robot workeell. In order to
obtain accurate depth and curvature information, an
extension of the Giblin and Weiss algorithm (Giblin and
Weiss 1987) is being used. This algorithm computes depth
and curvature by tracking contours in three successive
images. The surfaces need not be smooth and the algorithm
can use creases (tangent discontinuitics) as well as extremal
contours and surface markings, This produces 3-D contours
and curvatures to which a surface can be fit.

There are many types of surface that one ¢an fit to this 3-
D data. We have chosen a representation based on a vertices,
cdges, and faces. This type of model is supported by
Geometer {Connolly 1989; Connolly, Kapur et al, 1989)
which provides an environment that includes both planar and
algebraic faces.
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1.4 Image-Based Navigation Using 360 Degree
Views

Mobile robot navigation has proven to be a difficult task,
and when a system must be capable of automatically
acquiring 3D environmental models, it is currently beyond
the statc-of-the-art. We arc developing a quitc novel
approach to robot navigation (Hong, Tan ct al. 1990) that
atlows cnvironmental information to be acquired in terms of
a set of images of the world taken at a set of target
locations. The robot navigates through the world by
moving between neighboring target locations using an
image-bascd local homing algorithm. Such an approach is
feasiblc only because the system utilizes an unusual
imaging system that provides 360 degree views of the scene
in an extremely compact form.

The imaging system is compriscd of a spherical mirror
mounted above a video camera that is pointed upwards so

that a 360° hemispherical view of the world is obtained as a
ciccular extreme "fish-eye" image. This spherical imaging
system so greatly distorts.the scene during projection that
the image-changes dramatically as the robot moves, while
maintaining visibility of the whole cnvironment so that
both objects that are in-the path of movement as well as
objects just passed will remain visible. There is, however, a
projective invariant on the-horizon line, or in this case the
harizon circle.  As the robot moves on a planar ground
surface, distinctive world- features (i.e. landmarks) that
project to points on the horizon circle remain on the circle,
In addition, each feature other than the points directly in
front of and behind the robot slide around the horizon circle
as a function of the robot movement and surface distance. A
onc-dimensional circular "location signature” is extracted
from the hemispherical image by sampling along the

horizon circle at angular intervals (in our experiments 19,
allowing any resolution image to be compressed into a 360-
byte location signature.

Large scale navigation is then decomposed into a sequence
of small-scale navigation tasks by local homing. Around
cach target location, there is a "capture radius” that allows
comparison of landmarks in the current and target location
signatures to determine a motion to reduce the difference and
thereby home in on the local target in a series of small

steps. Thus, a compact 360° representation of the
cnvironment and an image-based qualitative homing
algorithm allows a mobile robot to navigate without
explicitly inferring three-dimensional structure from the
image. Experiments in typical indoor rooms and corridors
have been successful along paths that involve as many as 17
target locations for incremental homing. This rescarch is an
ongoing ecffort and the feasibility of sampling two-
dimensional space for general goal-oriented navigation is
being examined.




2. Motion and Stereo Processing

2.1 A Framework for the Integrated Processing
of Stereo and Motion

Work is in progress on understanding the dynamics of a
scene as viewed by a stereo pair of cameras undergoing
arbitrary motion, This subsumes both the analysis of static
stereo imagery at one time instant to obtain the static
disparity between the two images and thereby depth, and the
analysis of a monocular motion pair to obtain the optic flow
for a pair of frames and thereby relative motion and depth.
Thus, we are specifically interested in a reconstruction
paradigm which can be categorized as binocular motion, in
order to obtain additional constraints on the recovery of
motion and depth without depending on onc unique (and
possibly erroneous) source for the depth.

A promising approach utilizes the ratio of the relative
flow between the image pairs to the disparity as a function
of the motion in depth parameters (Balasubramanyam and
Snyder 1988; Waxman .and Duncan 1986). The vectors
parallel to the real instantancous 3D velocity scaled by the
depth of the point, located at the image of the 3D point, can
be extracted using purely image measurable quantities, This
field of scaled 3D vectors is called the p-field. ‘The p-ficld is
interesting from the point of view of binocular motion since
it-implics that at the image level, where normally only 2D
entities were available, it is now possible to examine and
exploit the nature of 3D phenomena directly.,

We arc currently examining the use of the p-fi¢id as a
framework within which to represent both the problem of
occlusion and discontinuity (Balasubramanyam and Weiss
1989) detection and flow/disparity computation as well as
computation of the 3D motion itself, For instance,
observing that the p-vector is a scaled version of the real 3D
motion vector, it secems more appropriate to impose
smoothness -on this vector since this is closer to the
assumption of smooth 3D motion, rather than on flow
smoothness. This was briefly examined in (Scott 1986) but
not within the framework of binocular motion,

It may be possible to use the p-ficld for the interpretation
of available flow and disparity information for the
estimation of the motion parameters. For instance, in the
case of ideal pure translation, the p-field directly yiclds the
direction of translation. In the case of general motion, we
are cxamining several possible algorithms for the
computation of the motion parameters.

2,2 Smoothness Consirainis For Optical Flow
& Surface Interpolation

Gradient-based approaches to the computation of optical
flow often use a minimization technique incorporating a
smoothness constraint on the optical flow ficld.
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Smoothness constraints are also of interest in surface
interpolation, where they are known as “‘performance
functions." All known smoothness constraints used to
compute optical flow have a subtle property, namely that
they do not mix derivatives of different components of the
optical flow ficld,

Snyder (Snyder 1990) presents an analysis of smoothness
constraints which do not satisfy this ‘decoupled’ property,
but rather in which derivatives of different components of
the flow can intcract. By using representation theory of the
group of Euclidean motions in the image plane, he uses the
single assumption that the smoothness constraint is
invariant under this group of transformations to gencrate a
complete list of all possible invariant smoothness
constraints,

The constraints are represented as type (p,q), by which it
is meant that they arc quadratic in p'® derivatives of the

optical flow field, and in qth derivatives of the grey level
image intensity function. This is done explicitly for the
values 0 < p,q £ 2. It appears that of thesec smoothness
constraints, excepting those linear combinations which are
decovnled, are new, In addition, he finds all invariant
“pe: ‘ormance measures” used in surface interpolation, when
the performance measure is quadratic in no higher than
fourth derivatives of the object function,

2.3 Orientation Statistics for Modeling 3D
Lines and Planes

One useful technique for deriving orientation information
from static images is the estimation of a unit vector
perpendicular to a number of derived unit vectors, For
instance, under perspective projection a ray pointing towards
the intersection of a group of converging image line
segments is perpendicular to their projection plane normals,
This has applications in finding vanishing points and in
locating the focus of expansion of a pure translational flow
field. Furthermore, the normal to-a planar surface is
perpendicular to the direction of all lines lying on that
surface.

The problem of estimating a vector mutually
perpendicular to several unit vectors can be characterized as
estimating the polar axis of a great circle on the unit sphere,
Bingham's distribution, which represents the intersection of
a 3D Gaussian distribution with the surface of the unit
sphere, is introduced to describe both equatorial and bipolar
distributions of unit vectors. Statistical parameter
estimation based on Bingham's distribution can be used to
solve for the polar axis of a great circle of points and to
represent the statistical uncertainty in the orientation
estimate, but the procedure is somewhat expensive
computationally. Collins and Weiss (Collins and Weiss
1990) develop a more convenient alternative based on linear-
Ieast-squares planc fitting. In addition, they consider the
problem of estimating the orientation and uncertainty of the




cross product of two uncertain unit vectors. The tentative
solution is to form a Gaussian approximation to the
“intersection" of two equatorial Bingham distributions.

The above methods are illustrated using two examples
(Collins and Weiss 1990). The first involves reconstruction
of planar surfaces using stereo line correspondences . If
relative pose of the stereo cameras can be described as a pure
translation, then the orientation of lines in the world can be
computed as the cross product of the projection plane
normals of its two corresponding images, one in each image
plane. Given a set of lines hypothesized to lie on a single
planar surface, the plane oriertation and uncertainiy can be
computed as the pole of a great circle formed froin ihe
uncertain line orientation estimates.

The second example involves the analysis of vanishing
points (Collins and Weiss 1989). The images of parallel 3D
lines converge to a vanishing point in the projective image
plane. A ray constructed from the camera focal point
towards the vanishing point has the same 3D oricntation as
the original world lines, The line orientation and its
approximate confidence region on the unit sphere is
estimated as the polar axis of a great circle of projection
plane normals. Furthermore, surface plane orientations are
hypothesized as the cross product of these uncertain line
directions.

2.4 Analysis of the Limits of Robustness of
Correspondence-Based Structure from
Motion

In spite of extensive research in correspondence-based
motion analysis, a comprehensive algorithm-independent
study of the theoretical limits on the accuracy of the
computation of environmental depth is not available. In
response to this situation, Dutta and Snyder have been
examining (Dutta and Snyder 1990) the robustness cf
correspondence-based approaches to structure from motion,

Their analysis shows, in an algorithm--independent way,
that small absolute errors in image displacements cause
absolute errors in rotational motion parameters significant
enough to lead to iarge relative errors in the determination of
environmental depth. Even if the motion parameters are
known almost exactly, such as by sophisticated navigation
systems, small errors in image displaccments still lead to
large errors in depth for environmental points whose distance
from the camera is greater than a few multiples of the the
total translation in depth of the camera,

2.5 Comparative Results of Four Motion
Algoritiims

In an earlier paper, Sawhney (Sawhney and Olicnsis 1989)
presented a new technique for recovering motion and
structure through image trajectories of rotational motion., A
closed form solution was presented for the problem of
recovering the 3D circular trajectory of a point given its

conic trajectory in the image plane. It was. also
demonstrated that when small sections of the conic arc in the
image are used as the input for a trajectory description, one
obtains very unreliable estimates of the underlying
trajectory. Hand-grouped sets of trajectories were used and it
was conjectured that if spatio-temporal clata from proximal
points could be grouped and trajectories fit to the grouped
data, reliable combined trajectory descriptions and accurate
3D results could be obtained.

An algorithm has been developed which uses
commonality of motion to first incrementally group point
tracks and then fits conic sections to a subset of these using
an optimization technique over a joint error measure. The
error measure uses a parameterization which makes the
common and independent parameters of each trajectory
explicit. The closed form solution was presented in
(Sawhney and Oliensis 1989).

The algorithm has been applicd o several image
sequences; the results are sumressized in (Sawhney and
Hanson 1990; Sawhney and Oliersis 1990,. I, adds*ion, the
results have been comrpar.d wid twd other motion
algorithms: -Adiv (Adiv 138%), Hara's relacve oiicntation
algorithm (Hormn 1988), as w=L. s t{urkar's pose zefirement
algorithm (Kumar and Han on 1%¢9a; £umar 9ad Hanson
1989b). The results are preiminny ead ccpresent a
continuing effort in understanding vobusi 3I: r=construction
from monocular motion. More accurawc .vsults applied-to a
more varied data set awaits precise calibration of our
cameras.

3. Interpretation of Static Scenes

3.1 Learning 3D Object Recognition Strategies

A general system for object and scene interpretation, called
the Schema System, has evolved as part of a long-term
research effort at UMass (Draper 1989; Draper, Brolio et al.
1989; Hanson and Riseman 1978; Hanson and Riseman
1987; Riseman and Hanscn 1984). The results of successful
experiments in the outdoor scene domain has led to the not
surprising conclusion that a declarative representation of
knowledge would be more useful for future work, and in
particular, automatic mechanisms for learning object
recognition strategies (Hanson and Riseman 1989).

The basis for recognizing objects in complex outdoor
scenes varies widely in terms of the processes utilized, the
reliability of the information extracted, the efficiency of the
underlying mechanisms, and the manner in which the
evidence is combined info an object hypothesis. All of this
information is certainly object- and domain-dependent.
Some objects can be distinguished on the basis of color,
while others can only be identified by scene and object
context. Three-dimensional information about shape or
texture of some objects might be recovered through bottom-




up -vanishing point analysis, while the locations of other
objects are more easily determined by model-based point
matching,

The problem-of learning how to recognize an object is
being addressed in (Draper and Riseman 1990) The system
is given a description of the object and a set of user-
interpreted training images. The task is to build the most
efficient object recognition strategy possible within
performance constraints set by the user. Three-dimensional
3D object recognition is approached within a generate-and-
verify paradigm. The task of learning to generate the
minimal necessary set of hypotheses is phrased as a search
problem. The task of learning to verify a hypothesis is cast
as a classification problem, followed by graph optimization.

3.2 Perceptual Organization of Occluding
Contours

Contours corresponding to surface boundaries are readily
perceived or completed by human observers even when local
evidence in the form of measurable image brightness
gradients is completely absent. A classic example of the
former is the Kanizsa triangle, in which the illusory
contours of the ‘occluding' triangle are visually compelling,
even though thére is scant evidence for their existence. An
example of completion occurs when one surface is partially
occluded by a second (opaque) surface.

Williams (Williams 1990) has developed a system for
perceptually organizing surface boundaries based on figural
clues alone, although results have only been demonstrated in
the 'Colorforms' domain and other simple scenes. The
system has, however, successfully extracted Kanizsa's
occluding triangle and has- correctly analyzed relatively
complex scenes containing multiple occluding surfaces.
Detailed results are presented in Williams (Williams 1990).
The current system is designed to complete gaps in the
straight sections of occluded contours but isn't yet able to
cope with more complex occlusions, such as missing
corners or missing sides.

In Williams' system, the mechanisms of occlusion of one
surface by another arc captured in a set of integer linear
constraints, These constraints ensure that the outputs of a
contour grouping process is physically valid and consistent
with the image evidence. Among the many feasible
solutions, the most compelling is the solution which best
explains the presence and form of the image structure. The
problem of computing a complete and consistent surface
boundary representation is thus reduced to solving an integer
linear program.

3.3 Perceptual Organization of Curves

Dolan (Dolan and Weiss 1989) is extending the perceptual
grouping mechanisms developed by Boldt (Boldt, Weiss ct
al. 1989) for straight lines to the case of general curves.
Like the straight line system, the curve grouping algorithm

relies on the Gestalt principles of proximity and good
continuation and employs an iterative token-based approach
to search for and describe significant curve structures
(including straight lines, conic arcs, inflections, corners, and
cusps).

The system iterates a cycle of linking, grouping, and
replacement over a range of perceptual scales, but within
each iteration processing occurs independently at each token.
Each token is linked to other tokens that are likely to be its
neighbors along some contour. Sequences of linked tokens
are analyzed and classified based on the geometric structure
they exhibit. Appropriate replacement tokens are then
generated to explicitly describe and replace each sequence.
Beginning with initial edge tokens (unit tangents centered at
edge locations), curved structure is discovered in a bottom-
up, local-to-global fashion and a multi-scale description
results, The computational complexity inherent in any
grouping process is managed here by searching locally
within a perceptual window (which defines the local scale)
and by explicitly replacing a sequence of tokens by a single
token at the next scale,

Since the work previously reported in (Dolan and Weiss
1989), a paralicl version of the grouping algorithm has
been implemented in anticipation of parallel hardware. Here,
the grouping process is simultancously applied to the
perceptual window (i.e. context) around each token for
potential grouping and replacement, and parallel replacement
of the aggregate tokens is assumed to take place
simultancously. A consequence of a highly distributed and
parallel grouping process is that redundant descriptions arise
because the contexts of nearby tokens overlap, and
overlapping aggregate tokens are produced. Dolan is
currently developing methods to identify and eliminate such
redundancies by representing multiple types of relationships
in the link graph; this will allow redundancy, as well
textural structures to be dealt with in this parallel
framework,

34 View Variation of Line Segment Features

Model-directed object recognition becomes much more
difficult when the viewpoint of the three-dimensional object
is unknown. A popular approach is based upon the use of
multiple two-dimensional views of three-dimensional
structures, and is referred to under a variety of terms such as
“aspect graphs”, “generic views", and **characteristic vicws"
(Burns 1987; Burns and Kitchen 1987a; Burns and Kitchen
1987b; Burns and Kitchen 1988; Ikeuchi 1987). If such
systems are going to be cffective, a clear understanding is
required of the manner in which the features of 2D
projections vary as a function of the 3D viewing position of
the object. It is important to find metric features of an
object whose variation is small over a large range of views
in order to constrain the number that must be stored.




Burns:(Burns, Weiss et al. 1990) presents an analysis of
the variation of point-set and line-segment :features with
respect to view. Although there are well known special-case
invariants for four points, such as the cross ratio, there iz no
scalar invariant for an arbitrary number of points in general
position, whether one uses true perspective, weak
perspective or orthographic projection. The paper focuses
on variation of features with respect to views of line
segment pairs under weak perspective, a commonly used
projection model in 2D recognition. The variation is a
function of both tt articular feature and the particular
configuration of 3D line scgments. The features studied are:
the relative orientation, size and position of one line
segment with respect to another, and the affine coordinates
of one endpoint in terms of the other three,

The information in the view-variation analysis allows
determination of semi-invariant features of an object over
areas of the 3D viewing sphere, i.e. features which have a
small variation over a large fraction of views. The
relationships between the range of feature variation and the
fraction of views are presented in a series of-graphs for the
features described above, and for varying instances of 3D
line segments pairs. The mathematical analysis embodied in
this paper is generally relevant to techniques for matching
3D models to 2D images.

3.5 Recovering Shape from Shading

Shape from shading has traditionally been considered an ill--
posed problem. However, in recent work, Oliensis (Oliensis
1990a; Oliensis 1990c) has demonstrated that the solutions
to shape from shading are often well--determined, with little
or no ambiguity. For the case of illumination that is
symmetric around the viewing direction (i.e. the light source
is behind the camera), it was shown in (Oliensis 1989) that
there is in general a unique solution to shape from shading.
This proof is valid-for general Lambertian objects (without
holes), and is the first proof that the problem of shape from
shading can be well--posed in general. These arguments
were extended to the case of general illumination direction in
(Oliensis 1990c), where it was demonstrated that, in this
case also, the solutions to shape from shading are strongly
constrained over much of the image. These results follow
from a combination of local uniqueness theorems and global
arguments concerning the properties of the flow of
characteristic strips, both derived from the mathematical
thecory of dynamical systems theory. The essential
constraints restricting the solution space are shown to be
provided by. the singular points in the image. Also,
characteristic strips are given a simple interpretation as space
curves, and demonstrated to be independent of the viewing
direction.

It has long been an open question whether the image of
the occluding boundary provides additional constraints on the
solution to shape from shading. In (Oliensis 1990c), it is
proven analytically that the answer to this question is

negative. Specifically, for a local image patch containing a
portion of the boundary, the problem of shape reconstruction:
is shown to be ill--posed. Shape reconstruction is actually
more ambiguous in the neighborhood of an occluding
boundary segment than it is in the neighborhood of an
interior image curve. The proof, which applies to a
Lambertian surface illuminated from a general light source
direction, is based on recasting the basic characteristic strip
equations of Horn in a form that is completely non--singular
on the occluding boundary.

Also, an example is presented in (Oliensis 1990c) in
which a small image region bordering the image of the
occluding boundary yields an ambiguous shape
reconstruction, even though the image contains both
singular points and the whole of the occluding boundary.
This example demonstrates that shape from shading can-be
well--posed and ill--posed simultancously: although the
shape corresponding to most of the image is actually
uniquely determined, the shape corresponding to the specified
small image region is ill--determined. It is argued that, in
general, these ‘ill--posed’ regions are probably small
fractions of the image, but that they can occur frequently, in
images both with and without visible occluding boundaries,
and in practice may lead to instabilities and errors in shape
reconstruction algorithms,

Finally, Olicnsis has developed (Olicnsis 1990b; Oliensis-
1990c).a new local algorithm for reconstructing shape from-
shading using a general quadratic surface model. The new
constraints for shape from shading should be investigated for
their potential for robust surface reconstruction.

4. The Image Understanding Architecture

The Image Understanding Architecture (IUA) consists of-
three levels of tightly coupled array of parallel processors
(Weems, Levitan et al. 1989). Work on the IUA has
advanced in four areas in the preceding year through
cooperative efforts by Hughes Research Labs and the
University of Massachusetts. A gencralized routing
algorithm for the low-level processor has been developed, an
Apply compiler for the low level has been implemented, the
IUA simulator and tools have been enhanced, and assembly
of the prototype system has begun. We have also started
development of a data parallel C for the low level, continued’
planning of the next generation of the DARPA IU
Benchmark, and started the development of the sccond
generation IUA and the design of the third gencration.

4.1 Routing On The CAAPP

The Iow-level processor of the IUA is a square mesh of
processing clements, augmented with a second
(reconfigurable) mesh, called the Coterie Network (Weems
and Rana 1990). Normally, a mesh network is considered to
be ill-suited for permutation routing because of the square-
root of N diameter of the network. Other architectures, such




as the Connection Machine and Masspar have devoted a
significant amount of additional hardware to support fast
permutation routing. These additions take the form of
hypercube or crossbar networks with sophisticated
controliers, On the other hand, the Coterie Network merely
adds a set of switches and some pre-charge logic to each
processor, with no increase in the number of physical
connections between processors.

Using the Coterie Network and the fast summary
capabilities (Rana and Weems 1990) of the CAAPP, we
have developed an adaptive routing algorithm that is at worst
an order of magnitude slower than routing on the
Connection Machine, and in many cases is up to two orders
of magnitude faster. The algorithm is actually a collection
of different algorithms, each suited to optimizing
performance on different types of permutation. The first
step is to quickly identify some gross features of the data to
be routed, such as the density of messages and the average
distance that they will travel, and then select the appropriate
algorithm,

Most of the routing algorithms are straightforward and
will not be repeated here, The reader is referred to (Herbordt
and Weems 1990a; Herbordt and Weems 1990b; Herbordt,
Weems et al. 1990) for the details. However, one algorithm
is particularly novel, as it uses the Coterie Network to route
data in a manner similar to the MIMD wormhole routing
technique (Dally and Seitz 1987) on the SIMD CAAPP.

Each message has a header that knows its destination.
Assuming that there is no blocking, a message header enters
the network along a row, with message packets following it
like a train of railroad cars behind an engine. When the
header reaches the column of its destination address, it
switches direction and the packets follow it along the
column. The message is then consumed by the destination
processor.

If the path of the header is blocked at any point by another
message, the header must stop and wait for a clear path, In
addition, the trailing packets must also wait. The problem
with this approach in a normal SIMD system is that the
header must notify each processor containing a trailing
packet. Such notification takes as many steps as there are
packets in the longest blocked message. When the path
clears, the notification must be repeated so that the train can
start to move again.

However, with the Coterie Network we can dynamically
form a bus that maps onto a train of packets. Each train is
connected to an independent bus with the header designated
the bus master. When the header is blocked it merely sends
a one-bit message out on the bus, and every trailing packet
is notified in a single cycle. When the blockage clears, one
more cycle is required to tell the trailing packets to advance.
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4.2 Apply Compiler for the CAAPP

We have implemented a version of the Apply language
(Hamey, Webb et al. 1987) for the low-level processor of
the JUA. The compiler generates C code that can be
integrated with the C that is currently used to program the
CAAPP. It permits us to rapidly write functions for the
CAAPP that perform local window based operations on
images. We have also compiled most of the Webb library,
supplied with Apply, for the CAAPP and tested their
performance. The details of this effort can be found in
(Scudder and Weems 1990).

4.3 Enhancements to IUA Simulator and Tools

The IUA simulator includes an elegant user interface that
provides extensive interaction with the processors for
debugging software (Weems and Burrill 1990). However, the
interface has only been available on Sun woikstations
because it was written with the SunViews windowing
system. The simulator has now becn converted to run with
X-Windows, which will greatly enhance its portability. In
addition, the use of X allows a user to run a simulation on a
powerful server while displaying the system status on a low-
cost workstation or X-terminal.

The low level of the IUA was originally programmed
using a FORTH interpreter because the simplicity and
extensibility of FORTH allowed us to casily add data
parallel constructs and run with low interpretation overhead.
While suitable for developing simple applications, FORTH
is severely limiting as applications grow in size, We have
thus implemented a C preprocessor that allows
programming of the CAAPP in a manner similar to the C-
PARIS facility on the Connection Machine. That is,
programs are developed using C control structures, but
CAAPP operations are cxecuted through calls to an
extensive library of subroutines.

4.4 Prototype System Assembly

All of the custom chips used in the IUA have been
assembled and tested at the Hughes Research Labs. A
breadboard has been built that exercises CAAPP chips and
ICAP chips running together and communicating with cach
other. The backplane for the prototype has been assembled
and tested. In addition, the first processor board, containing
256 CAAPP processors and four ICAP processors has been
assembled and is being tested prior to fabrication of the
remaining 15 boards that will make up the prototype.
Completion of the prototype and delivery to Umass is
expected by the end of Summer 1990,

4.5 Current . -t

We are now work 1 data parallel extension to C that
will explicitly support an image plane data type on the
CAAPP levei of the TUA. This language will permit the
user to define image planes of different sizes, automatically
mapping them onto virtual processors. We are also looking




into creating a C* compiler for the- CAAPP, in order to
provide portability of code with the Connection Machine and
Masspar,

As recommended by the DARPA IU Benchmark
Workshop participants, much of the benchmark (Weems,
Riseman et al. 1990; Weems, Riseman et al. 1988) has been
recoded as a set of library routines which are called by the
core of-the benchmark, The most complex portion of the
benchmark, the graph matcher, must still be recoded to
achieve greater generality. We are also starting to plan the
second level benchmark, which will incorporate tracking of
moving objects over a sequence of images.

The development of the second generation of the IUA has
already begun (Weems, Hanson et al. 1990). The only
significant changes to the architecture are that 256 CAAPP
processors will be placed on each custom chip, allowing 4K
processors to be placed-on a single board; and the ICAP
processors-will be upgraded to the TMS320C30 processor.
The latter change makes each ICAP processor a 32-bit, 32
MFLOP device instead of the 16-bit, 5 MIPS devices that
are currently used. With the TMS320C30 we will also be
able to éxpand the memory at each node, and also support a
multi-tasking kernel.

The third generation of the IUA is already being designed.
While the second generation is mainly a technology
enhancement of the first generation, the third generation will
be substantially different in its architecture. The low level
will change from bit-serial processors to-8-bit processors,
each with a much larger on-chip cache, and additional
support for floating point. The communication bandwidth
at the intermediate level will be greatly enhanced (Rana,
Weems-et al. 1988). At-the high level, we finally expect
systems to become large enough that a RISC-based
multiprocessor will be employed. Currently the prototype
is small-enough that only a single processor has been
incorporated at the high level. A full-scale implementation
of the third generation (256K CAAPP PE's, 1K ICAP
processors, 64 SPA processors) would achieve roughly a
terra-op in performance on 32-bit integer arithmetic.
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Abstract

The-image understanding program at SRI International
is a broad eflorl spanning the entire range of machine
vision research. In this report we describe our progress
in two domains: the first is concerned with modeling the
earth’s surface from acrial imaging sensors; the second
is concerned with visual interpretation for ground-level
vision.and land navigation. In particular, we describe
progress in sterco compilation and automated terrain
modeling from aerial imagery; in interaclive scene mod-
eling and scene -generalion; in automatic image segmen-
tation and delineation of man-made objects; in detecting
and tracking moving objects; and in using knowledge
beyond shape and immediate appearance to recognize
objects in natural scenes and other complex domains.

1 Introduction

The overall goal of Image Understanding research at SRI
International is to obtain solutions to fundamental prob-
lems in computer vision that-are necessary to allow ma-
chines to model, manipulate, and understand their en-
vironment from-sensor-acquired data and stored knowl-
edge.

In this report we describe progress in two domains,
aerial'and ground-based vision.! The first is concerned
with modeling the earth’s surface from photographs
taken from aircraft and satellites; the second is con-
cerned with modeling a natural environment in real time
from data taken by a robotic device moving through, and
interacting with, this environment.

In the discussion of the first domain we describe our
progress in developing stereo techniques for building ter-
rain-models from aerial imagery; interactive techniques
for-building three-dimensional models of man-made and
cultural objects, and a new automatic technique for seg-
menting aerial images into coherent regions and for de-
tecting and delineating man-made objects.

1Supported by the Defense Advanced Rescarch Piojects
Agency, under contracts DACA76-85-C-0004, MDA903-86-C-0084,
and 89[F737300.
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In the discussion of ground-based vision we describe
progress in developing techniques for building object de-
scriptions that evolve gradually over time as more data
are obtained, motion analysis techniques for detecting
and tracking moving objects in data taken by moving
sensors, and a new method for using contextual infor-
mation to recognize natural objects, such as-trees and
bushes, in outdoor scenes.

An important theme in much of our current work
is an.emphasis on computational performance — espe-
cially through the development of algorithms capable of
exploiting the new parallel machine architectures now
available (e.g., the Connection Machine'™).?

2 Automated Terrain Modeling
from Aerial Imagery

Stereo reconstruction is a critical task in cartography
that has received a great deal of attention in the im-
age understanding community ([Barnard90}, (Barnard &
Fischler], these proceedings). Its importance goes beyond
the obvious application to constructing geometric mod-
els: understanding scene geometry is necessary for ef-
fective feature extraction and other scene analysis tasks.
While considerable success has been achieved in impor-
tant parts of the problem, there is no complete stereo-
mapping system that can perform reliably in-a wide va-
riety of scene domains.

Historically, the computational modeling of_sterco vi-
sion has been driven by a number of diverse motivations.
The practical applications of automated stereo are so
important, especially in cartography and robotics, thal
many engineering-oriented approaches have been tried.
These often use “correlation” techniques: patches of in-
tensities in one image are searched for in the other image
by maximizing a measure of correlation or minimizing a
measure of error. The other motivations, such as the de-
sire to model biological stereo, involve a variety of tech-
niques. Some are feature-based. discrete local features

2Use of a Conncction Machine was provided by DARPA,




‘(usually-edges) are matched across images, others use
an approach in which a dense disparity map is the state
variable of a system, stereo matching is then formulated
as an.optimization problem. find the-best disparity map
by maximizing an objective function thal measures the
“quality” of the map.

Our research strategy in this task is to develop now
techniques for the key steps in the stereo process, such
as matching and interpolation, and, in parallel, to in-
tegrate these new ideas wilh existing techniques in the
. context-of an operational system. As part of this process
SRI has implemented [Hannah85] and evaluated [Han-
nah88, Hannah89} a complete high-performance stereo
system, STEREOSYS, that uses a combination of the
correlation and feature-matching approaches. In a test
of existing sterco systems on 12 pairs of digital images,
conducted by the International Society of Photogramme-
try, STEREOSYS was able to successfully process mote
of the-images than any other system (11 out of the 12
pairs); -while no formal ranking of the test results will
be published, it appears that this system placed first (or
very near the top) in the competition.

Another system we have developed {or stereo match-
ing is CYCLOPS [Barnard90]. This work began as
a stochastic-optimization approach to stereo matching,
but has recently evolved into a more complete system
for cartographic terrain modeling, including software
moduleés for camera modeling, epipolar resampling, the
generation of regular-grid elevation maps, ortho-images,
contour: plots, and synthetic perspeclive views, in addi-
tion to-the central task of image matching. One-of the
goals of this work has been to develop efficient stereo-
processing methods for massively parallet SIMD archi-
tectures. The CYCLOPS system is implemented on the
Connection Machine. The current implementation is ca-
pable of producing a dense terrain model (depth for every
pixel) for a typical pair of 1024x1024 aerial stereo im-
age in-about eight minutes, using a Connection Machine
with 4096 processors. First, camera model information
is used-to produce corrected images with only horizon-
tal parallax. The corrected images are then matched
with a multigrid optimization algorithm. Essentially, the
matching algorithmis a stochastic regularization method
that tries to find the flattest dense disparity map that
matches the photometry with least error. It does so by
iterating a microcanonical version of simulated annealing
across several levels of a resolution pyramid, using the
results_from the coarser levels to initialize the optimiza-
tion search at the finer levels. After the corrected images
are matched the disparity measuiements are converted
into-a dense but irregular mesh of depth measurements,
which -is then resampled into a grid of elevations with
respect to regularly spaced ground coordinates.

Onessignificant new development in the basic matching
algorithm of CYCLOPS is the three-pools mechanism.
Studies of anomolous stereo vision suggest that there
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are three psychophysically distinct “pools” of dispatity
detectors, corresponding roughly to crossed -(positive),
uncrosssed (negative), and near-zero disparity relative
to the vergence point. CYCLOPS uses the same repre-
sentation, coupled with several octaves of resolution hi-
erarchy, to achieve efficiency without sacrificing-dynamic
range. At every level in the hierarchy, components of in-
cremental disparity can assume only three local values:
1 (crossed), -1 (uncrossed), and zero. The base disparity,
however, can grow by a factor of Lwo across every level.
The scarch space in any one level is therefore kept to a
minimum, while the final composite disparity is allowed
to have a substantial range. In addition to increasing
efficiency, the three-pools mechanism leads to generally
better (i.c., more nearly optimal) results.

While the stereo problem remains a focus of one seg-
ment of our research program, addtional effort is now
being devoted to- developing an understanding of how
knowledge of scene depth can be effectively used in the
scene-partitioning and object-recognition tasks. The de-
velopment of much faster hardware will open the door to
a new stereo application: robot vision. Stereo obviously
has a significant role to play in robotics, whether as a
straightforward mensuration tool for industrial applica-
tions or as part of an integrated perceptual system of an
autonomous, mobile robot.

3 Interactive Techniques for
Scene Modeling: A
Cartographic Modeling
Environment

Manual photointerpretation is a difficult and time-
consuming step in the compilation of cartographic in-
formation. However, fully automated techniques for this
purpose are currently incapable of matching the human’s
ability to employ background knowledge, common sense,
and reasoning in the image-interpretation task. Near-
term solutions to computer-based cartography must in-
clude both interactive extraction techniques and new
ways of using computer technology to provide the end-
user with useful information in the form of both image
and map-like interactive computer displays.

In order to support research in semiautomated and
automated computer-based cartography, we have de-
veloped the SRI Cartographic Modeling Environment.
In the context of an interactive workstation-based sys-
tem, the uscr can manipulate multiple images; camera
models, digital terrain elevation data, point, line, and
area cartographic features, and a wide assortment of
three-dimensional objects. Interactive capabilities in-
clude free-hand feature entry, feature editing in the con-
text of task-based constraints, and adjustiment of the
scene viewpoint. Synthetic views of a scene from arbi-




trary viewpoints may be constructed using terrain and
fecature models in combination with texture maps ac-
quired [rom aerial imagery. This ability to provide an
end-user with an interactively controlled scene-viewing
capability could eliminate the need to produce hard-
copy maps in many application contexts. Additional ap-
plications include high-resolution cartographic compila-
tion, direct utilization of cartographic products in digital
form, and generation of mission-planning and training
scenarios.

Recent work has focused on porting the CME to a
UNIX/C platform (from its current LISP-machine im-
plementation) in order to support technology transfer
goals. Other work involves developing more flexible
object representations, irregular terrain grids, and im-
proved interfaces to other systems such as the SRI-
developed Core Knowledge System. One especially im-
portant technical improvement involves sensor geometry
extensions.

The SRI Cartographic Modeling Environment uses
sensor geometry models in-two principal ways: 1) pro-
jecting the 3D world coordinates into 2D sensor (pixel)
coordinates, and 2) computing the intersection of a 3D
ray (corresponding to a sensor pixel) with a terrain
model. The basic CME system currently supports-only
central (perspective) projection and orthographic projec-
tion. In central projection, each point in 3-space is pro-
jected onto the camera sensor plane along a ray passing
through a common point, the projecticn center. We arc
currently implementing a generic capability for dealing
with-non-central-projection sensor geometries. When ac-
complished, essential operations now supported for-cen-
‘tral projection-imagery would also be supported for other
types of (orbiting) sensors. These operations include:

1. Display of three-dimensional feature models that
are cartographically registered to non-central-
projection imagery.

2. Terrain rendering, using data acquired with any sen-
sor geometry, to a format simulating any other sen-
sor geometry. An example would be mapping non-
central-projection imagery onto a terrain model and
generating a simulated image showing the result
viewed with a central-projection sensor.

In addition to implementing non-central-projection
sensor geometries, we are also working on generating the
expected flow field observed by a moving sensor. This
work is an important component in the development of
automatic techniyues for improving terrain models fiom
sequences of real imagery. By comparing the measured
image flow in the real data with the predicted flow we can
discover discrepancies between the terrain mode! and the
actual terrain. Our goal is to use the depth-from-motion
technologies developed at SRI to convert the discrepan-
cics into improved depth estimates and thus a refinement
of the terrain model.
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Our carlier work in this overall task area was pre-
sented in two previously published-papers, one describ-
ing basic design issues for this type of system [Han-
son,Pentland, &Quam87}, and the othér providing an
overview of our original plans for the implementation
[Banson&Quam8s§).

4 Automated Detection and De-
lineation of Cultural Objects
in Aerial Imagery

The detection, delineation, and recognition of any signil-
icantly broad class of objects (e.g., buildings, airports,
cultivated land) in aerial imagery has proven to-be an
extremely difficult problem. In fact, a nominal compo-
nent in the solution of this problem, image partitioning,
is considered to be one of the most refractory problems
in machine vision.

We have recently formulated an optimization-based
approach, applicable both to image partitioning and to
subsequent steps in the scene-analysis-process, that in-
volves finding the “best” -description of the image in
terms of some-specified descriptive language.

In the case of image partitioning [Leclerc8s,
Leclerc89a, Leclerc89b, Leclerc89c, Leclerc§9d], we em-
ploy a language that describes the image in terms of re-
gions having a low-order polynomial intensity variation
plus white noise; region boundaries are described by a
differential chain code. The best description is defined as
the simplest one (in the sense of least encoding length)
that is also stable (i.e., minor perturbations in the-view-
ing conditions should not -alter the description). This
best description is found using a spatially local and par-
allel optimization algorithm, that has been implemented
on the Connection Machine.

The second step after image segmentation is to-sim-
plify the resulting chain-code and polynomial descrip-
tion even further by: (1) describing the boundaries using
straight lines and other more global models [Leclerc89c],
and (2) grouping nonadjacent regions whose intensity
variation can be mote simply described by a single poly-
nomial [Leclerc90a, LeclercO0b(these proceedings)).

In situations where the required image description
must proceed beyond that of a delineation of coherent
regions, we tequire an extended vocabulary relevant to
the semantics of the given task. Fua and Leclerc deal
with the problem of boundary/shape detection given a
rough estimate of where the boundary is located and
a set of photometric (intensity-gradient) and geometric
(shape-constraint) models for a given class of objects
[Fua&Leclerc88, Fua&Leclerc90]. They define an en-
crgy (objective) function that assumes a minimal value
when the models are exactly satisfied. An initial es-
timate of the shape and location of the curve is used
as the starting point for finding a local minimum of




the- cnergy furctlon by~ embeddmg this curyé-in a vis:
cous:medium:-and solving the dynamic-equations. This
epergy=minimization technique, which evolved from a
less-efficiént: grad:ent-desccnt approach [Leclerc&Fua8),
has been implemented on the:Connection Machine. It
‘has been applied-to straight-line boundary models and
to more complex models ‘that include constraints on
smoothness, parallelism, and rectilinearity, and has been
incorporated:into the SRI Cartographic Modeling Envi-
ronment described carlier. In an interactive mode, the
-user supplies an initial estimate of the boundary of some
object-(which may be quite complex, like the outline of
an aeroplane)-and then, if need be, corrects the opti-
-mized curve-by applying forces to the curve or by chang-
ing-one of afew optimization/model parameters.

Automatic recognition and delineation of important
cartographic objects, such as man-made structures, from
aerial imagery has been addressed [Fua&ianson89a,
Fua&Hanson89b]. The basis for the approach is a the-
-oretical:-fornudation of object delineation as an opli-
mization-probleny; practical-objective measures are in-
troduced that-discriminate among a-multitude of object
candidates using a mode] language and the minimal-
-encoding principle This approach is then applied in
‘two distinct ways to the extraction of buildings from
acrial imagery: the first is an operator-guided procedure
that uses a massively parallel Connection Machine im-
plementation-of the objective measure [Fua89) to dis-
cover a building in real time given-only a crude sketch.
The second-is-an automated.hypothesis generator that
employs-the objective measure during various steps in
the hypothesis-generation procecure, as well as in the fi-
nal stages of candidate selection; both serial and parallel
(Connection.Machine) approaches are implemented.

We believe that both the Leclerc and the lanson
and Fua techniques represent significant advances in
the state-of-the-art in their respective areas of image
partitioning and delineation of cultural features. Both
systems have been able to produce excellent results in
complex situations where existing (typically local) ap-
proaches fail. TFuture work on these techniques will
emphasize the incorporation of more complex models,
three-dimensional contextual information, and efficient
parallel implementations.

5 Object Recognition in the
Natural Outdoor World

The natural outdvor envitonnent poses sighificant ob-
stacles to the design and successful integration of the
interpretation, planning, navigational, and contiol func-
tions of a general-purpose vision system. Many of these
functions cannot yet be performed at a level of compe-
tence and reliability necessary to satisfy the needs of an
autonomous-robotic device. Part of the problem lies in
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the inability- of-available techniques, cspecially those in-
volved in-sensory interpretation, to use-contextualinfor-
mation and-stored knowledge in recognizing objects and
environmental features. One of our goals in this effort
is to design a core hnowledge structure (CKS) that-can
support a new gencration of knowledge-based generic vi-
sion systems. A sccond goal is Lo actually construct a
vision system, which employes the CKS, and has the
compelence Lo recognize objects appearing giound level
imagery of natural outdoor scenes.

5.1 Core Knowledge System

The CKS is an object-oriented knowledge/database that
was originally designed to serve as-the central informa-
tion manager for a perceptual system [SmithdeStrat87,
Strat&Smith88). The followm;, facilities of the CKS are
of particular importance in supporting the object recog-
nition task,

Multiple Resolution in Space and Knowledge.
The CKS employs a multiresolution octree to locate ob-
jects only as precisely as warranted by the data. Sim-
ilarly, a collection of geometric modeling primitives are
available to represent objects at an appropriate level of
detail, In parallel with the octree for spatial resolution
is a semantic network that represents things at multiple
levels of semantic resolution.

Inheritance and Inference. The CKS uses the se-
mantic network {o perforni some limited types of infer-
ence that ease the burden of querying the data store.
Thus, query responses are assesnbled not. only from those
objects that syntactically match the query, but also from
objects that can be mferred to-match given the relations
encoded in the semantic network. Spatial inference is
provided based on geometric constraints computed by
the octree manipulation routines.

Conflicting Data. One of the realities of analyzing
imagery of the real world is that conflicts will result-from
mistakes in interpretation and from unnoticed changes in
the world. The CKS treats all incoming data as the opin-
ions of the data sources, so logical inconsistencies will not .
corrupt the database. Similarly, values derived through
multiple inheritance paths are treated as multiple opin-
ions. This strategy has several advantages and disad-
vantages. Rather than fusing information as il arises,
the CKS has the option of postponing combination until-
its results are needed. ‘This means that the fusion-can
be performed on the basis of additional information that
may become available, and in a manner that depends
oti e mnediale Lash al hand. Sowe infornation nay
never be needed, in which case the CKS may forego its
combination entirely. The disadvantages are the need
to store a larger quantity of data and a slowed response
at retrieval time. For an object recognition system like
Condor (described below), the CIKS seems to provide the
right tradeoft.




5.2 Condor: A Contextual Vision Sys-
tem Built on the CKS

Much of the progress that has been made to date in ma-
chine vision has been based, almost exclusively, on shape
comparison and classification employing locally measur-
able attributes of the imaged objects (e.g., color and
texture). Natural objects viewed under realistic condi-
tions do not have uniform shapes that can be matched
against stored prototypes, and their local surface- prop-
-erties are loo-variable to be unique determiners of iden-
tity. The standard machine vision recognition paradigms
fail to provide a means for reliably recognizing any
of the object classes common to the natural outdoor
world (e.g., trees, bushes, rocks, and rivers). In- this
cffort [Strat&Fischler90, these proceedings], we have de-
vised a new paradigm which explicitly invokes context
and stored- knowledge to control the complexity of the
decision-making processes-involved in correctly identify-
ing natural objects and describing natural scenes,

The conceptual architecture of the system we describe,
called Condor (for context-driven object-recognition), is
much like that of a production system, there are many
computational processes interacting through a shared
data structure. luterpretation of an inage involves the
following four process types.

-» Candidate-gencration-(hypothesis generation)
o Candidate comparison (hypothesis evaluation)

- Clique formation (grouping mutually consistent hy-
potheses)

e Clique selection (selection of a “best” description)

Each process acts like a daemon, watching over the
knowledge base and invching itself when its contextual
requirements are satisfied. The input to the system is an
image or set. of iniages that may include intensity, range,
color, or other data modalities. The primary output of
the system is a labeled 31D model of the scene. The
labels included in the output description denote object
classes that the system has been tasked to recognize,
plus others from the recognition vocabulary that happen
to be found useful during the recognition process. An
object class is a categoiy of scene features such as shy,
ground, geometric-horizon, etc.

A central component of the architecture is a special-
purpose knowledge/database used for storing and pro-
viding access to knowledge about the visual world, as
well as tentalive conclusions derived during operation of
the systcns. Ty Condor, these capabilitics are provided
by the Core Knowledge Structure (CKS) as previously
discussed.

Visual interpretation knowledge is encoded in contezl
sets, which serve as the uniform knowledge representa-
tion scheme used throughout the system. The invoca-
tion of all processing operations in Condor is governed

by context through the use of various types of context
sets: an action is initiated only when one or more of its
controlling context sets is satisficd. ‘T'hus, the actual se-
quence of computations, and the labeling decisions that
are made, are dictated by contextual information (stored
in the Core Knowledge Structure), by the computational
state of the system, and by the image data available for
interpretation,

The customary approach 1o recognition in machine vi-
sion is to design an analysis technigque that is compelent
in as many contexts as possible. In contrast to this ten-
dency toward large, monolithic procedures, the strategy
embodied in Condor is to make use of a large number
of relatively simple procedures. Each procedure is com-
petent only in some restricted context, but collectively,
these procedures offer the potential {o recognize a fea-
ture in a wide range of contexts. The key to making this
strategy work is to use contextual information to predict
which procedures are likely to yicld desirable resulis, and
which are not,

Condor operates as follows: For each label in -the
aclive recognition vocabulary, all candidate generation
context sets are cvaluated. ‘The operators associated
with those that are salisfied are execuled, producing
candidates for each class. Candidate comparison context
sets that are satisfied are then used to evaluate each-can-
didate for a given class, and if all such-evaluators-prefer
one candidate over another, a preference ordering.is es-
tablished between them. These preference relations are
assembled to form partial ordets over the candidates, one
partial order for each class. Nest, a search for mutually
coherent sets of candidates is conducted by incrementally
building cligues of consistent candidates, baginning with
empty cliques. A candidale is nominated for inclusion
into a clique by choosing one of the candidates at the
top of one of the partial orders, Consivlency determina-
tion context scts that arc satisficd are used to test the
consistency of a-nominer with candidates already-in the
clique. A consisient nominee is added to the clique; an
inconsistent one is remwoved from further consideration
with that clique. Further candidates are added to the
cliques until none remain  Adlitional cliques are gen-
erated in a similar fashion as computational résources
permil. Ultimately, one dique is selected as the best se-
mantic labeling of the image on the basis of the partion
of the image thal is explained and the reliability of the
operators that contributed to the clique,

We have taken over 100 plivtugraphs (at au experi-
mental site in the fouthills Lelind Stanford University)
of which 30 liave so far Leen digitized and successfully
processed by Condor. In the future, additional imagery
will be acquired and processed to more fully evaluate
our approach. Based on our initial experiments, and the
unique architecture of of our system, we are highly op-
timistic about the ability of Condor to overcome many
of the limitations (with respect to object recognition)
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inherent inthe traditional machine vision paradigms.

6 Object Modeling from Multi-
ple Images

Our goal in this research effort is to develop automated
methods for producing a labeled three-dimensional scene
mwodel from image sequences. We view the image-
sequence approach as an important \ay to avoid many
of the problems that hamper conventional stereo tech-
niques because it provides the machine with both “re-
dundant” information and new information about the
scene, The redundant information can be used to in-
crease the precision of the data and filter out artifacts,
the new information can be used for such things as fill-
ing in-model information along occlusion boundaries and
disambiguating matches in ohe midst of periodic struc-
tures.

We-have developed Lwo techniques for building three-
dimensional descriptions from multiple images. One is a
range=hased technique that builds scene models from a
sequence of range images; the second is a motion anal-
ysis-technique that analyzes long sequences of intensity
-images. Qur approach for analyzing sequences of range
images is to provide the system with a wide variety of ob-
ject and terrain representations and an ability to judge
the appropriateness of these representations for partic-
ular-sets of data. The variety of representations is re-
quired for two reasons. First, it is needed to cover the
range of object types typically found in outdoor envi-
ronments. And second, it is nceded to cover the range
of data-resolutions obtained by a robot vehicle exploring
the environment,

In this approach to object modeling an object’s de-
scription typically goes through a sequence of represen-
tations-as new data are gathered and processed. One of
these sequences might start with a crude blob description
of-an initially detected object, include a detailed struc-
tural model derived from a set of high-resolution images,
and end with a semantic label based on the object’s de-
scription and the sensor system’s task. This evolution
in representations is guided by a structure we refer to as
“representation space”. a lattice of representations that
is-traversed as new information about an object becomes
available. One of these representations is associated with
an object only after it has been judged to be valid. We
evaluate the validity of an object’s description in terms
of its temporal stability. We define stability in a statis-
tical scnac augmented with a sct of cxplanations offer-
ing reasons for missing an object or having parameters
change. These explanations can invoke many types of
knowledge, including the physics of the sensor, the per-
formance of the segmentation procedure, and the relia-
bility of the matching technique. To illustrate the power
of these ideas we have implemented a system, which we
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call TraX, that constructs-and refines-models of outdoor
objects-detected in sequences of range data-gathered by

‘an autonomous land vehicle driving cross-country [Bo-

bick&Bollesg9).

We are continuing to explore the idea of using stability
Lo evaluate the reliability of representations. In addition,
we plan to develop new explanations based on support
and gravity and to explore ways to combine other types
of reliability criteria with stability.

6.1 Building 3-D Descriptions from Im-
age Sequences

We have developed a motion analysis technique, which
we call Epipolar-Plane Image (EPI) Analysis {Bolles87).
It is based on considering a dense sequence of images
as forming a solid block of data. Slices through this
solid at -appropriately chosen angles intermix time and
spatial data in such a way as to simplify the partitioning
problem. These slices have more explicit structure than
the conventional images from which they were obtained.
In the referenced paper we demonstrated the feasibility
of this novel technique for building structured, three-
dimensional descriptions of the-world.

In later work we extended this technique to locate sur-
faces in the spatiotemporal solid of data, instead of ana-
lyzing slices, in order to maintain the spatial continuity
of edges from one slice to the next [Bakerd:Bolles88).
This surface-building process is the three-dimensional
analogue of two-dimensional contour analysis. We have
applied it to a wide range of data types and tasks, in-
cluding medical images such as computed axial tomog-
raphy (CAT) and magnetic reasonance imaging (MRI)
data, visualization of higher dimensional (i.e., greater
than three-dimensional) functions, modeling of objects
over scale, and assessment in-fracture mechanics.

We have also implemented a version of- EPI analysis
that works incrementally, applying a Kalman filter to
update the three-dimensional description of the world
each time a new image is received [Bakerd:Bolles88).
As a result of these changes-the program produces ex-
tended three-dimensional contours instead of sets of iso-
lated points. These contours evolve over time. When a
contour is initially detected, its location is only coarsely
estimated. However, as it is tracked through several im-
ages, its shape typically changes into a smooth three-
dimensional curve that accurately describes the corre-
sponding feature in the world.

Recently we have extended of the EPI analysis tech-
nique in two dircctions. The first is the modcling of
biological structures from tomographic data [Baker90].
The descriptive formalism we are developing models tis-
sue as two-dimensional manifolds in three space. We
liave used this type of model to demonstrate simple ver-
sions of surgical simulation, kinematic modeling, and
kinematic analysis. In the second extension we are using




the temporal:tracking.mechanism in EP1 analysis to de-
tect.and track moving objects from nioving sensors. We
have added cvaluation routines that select key features
to be tracked on the moving objects. \Ve are currently
exploring-techniques for constructing three-dimensional
descriptions-of the tracked objects.

6.2 Detecting Moving Objects from

Moving Sensors

Building upon our work in motion vision- and terrain
modeling, we have recently begun development of tech-
niques for detecting and tracking moving objects from a
moving platform. This work is being performed jointly
with the Machine Vision Group at the David Sarnoff
Research Center.

Motion-(in a sequence of images) provides one of the
strongest cues available aboutl the presence of a possible
target in a scene. However, when-a sensor is inoving, ev-
erything in the image is moving. ‘Therefore, detection of
possible targets requires separating the motion induced
by the movement of the sensor from the motion caused
by the movement of the target. One approach to this
problem, wlhich has been developed at Sarnoff and other
places, is to modei the “background” image flow as a
simple parametric flow field, and:then use this model to
eliminate-image motion consistent with that flow. Any
motion not consistent with the background movement is
‘labelled as a-possible-moving object. Of course, such an
-approachfails dramatically when the simple background
assumption:is violated (e.g., when the terrain contains
many ridges and valleys, which induce a wide variety of
‘background image motion). )

The approach we are taking to handle these complex
backgrounds-is to integrate a full three-dimensional ter-
-rain map into the taiget detection system. The basic
jdea is to (i) use the model of the terrain and the known
motion of the sensor to predict the motion observed by
the sensor, (ii) compute the actual motion present in the
imagery, and (iii) use the differences to robustly detect
and track moving targets. We expect that the-addition
of a terrain model will yield a significantly more robust
-and sensitive detection- and tracking system than those
relying on simpler background assumptions.

Note, however, that inaccuracies in the terrain model
could produce differences between the predicted and
computed image motion- that, over a small number of
-images, look similar to moving objects. Therefore, inte-
gral to this approach is tne ability to correct an a pri-
ori-modn] of the environment as new data are acquired.
We plan to draw upon current techniques for recovering
structure from motion to dynamically update our mod-
els. By continually improving the underlying model, the
-motion detectivn procedure will be able to distinguish
short-term-deviations from moving objects.

As part of our research strategy we have de.led to

test our algorithms on both simulated and real data.
(We have used the Cartographic Modcling Environment
to provide extensive simulation data.) The advantage
of simulated data is that we know “ground truth” and
therefore are in a better position to judge the compe-
tence of the algorithms (along some key dimensions)
than when we analyze real data. This strategy has al-
ready paid ofl. Our initial experimentation with simu-
lated data pointed out a serious weakness in displaying
warped images to demonstrate the results of optic flow
computations. At-occlusion-boundaries optic flow-tech-
niques locate matches (and compute flow vectors) for
points that have similar greyscale values. This proce-
dure leads to stabilized intensity images when the flow
vectors are used to warp one image into another, but the
flow vectors are incorrect. Given a terrain model, we are
now able to predict occlusion boundaries and avoid these
erroneous results.
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Abstract

Research in the GRASP Laboratory has two
main themes, parameterized multi-dimensional
segmentation and robust decision making un-
der uncertainty. The multi-dimensional ap-
proach interweaves segmentation with repre-
sentation. The data is explained as a best fit in
view of parametric primitives. These primitives
are based on physical and geometric properties
of objects and are limited in numbér. We use
primitives_at the volumetric level, -the surface
level, and the occluding contour level, and com-
‘bine the results. The robust_decision making
allows us to combine data from multiple sen-
sors. Sensor measurements have bounds based
on the physical limitations of the sensors. We
use this information without making a priori
assumptions of distributions within the inter-
vals or a priori assumptions of the probability
of a given result.

1 Introduction

Our basic approach to Image Understanding can be
summarized as follows: we seek to divide the ob-
served scenes into 3D objects. 2D images are obser-
vations/measurements of these 3D physical objects un-
der certain illuminations and perspective projections.
Hence, the process of Image Understanding includes the
transformation of the 2D data into a description of 3D
objects in terms of physical and geometric primitives.
This grouping of image data, to produce such a descrip-
tion, is called segmentation.

Though image segmentation has been treated sepa-
rately from shape representation in the past, solving the
two- problems separately is very difficult. If an image
is correc’ly divided into 3D components, ambiguities in
the 2D segmentation can be resolved more easily. Con-
versely, a range image can be partitioned more easily into
3D shapes given a good 2D segmentation of the same
scene. Indeed, dividing the scene into 3D primitives is

*Acknowledgement:  Navy Grant N0014-88-K-0630,
AFOSR Grants 88-0244, AFOSR 88-0296; Army/DAAL 03-
89-C-0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89-
06770; and Dupont Corporation

107

PA 19104

a form of segmentation. Hence, 2D image segmenta-
tion and 3D description of parts should act together as
a cooperative process [Bajcsy et al., 1990], a combined
2D-3D segmentation process.

Range images and 2D images complement each other.
Range data is a reflection of geometric properties of the
objects only. However, 2D images contain indirect infor-
mation about geometric properties in combination with
surface properties (color, texture, translucence, etc.),
which_is not available at all in the range data. Because
of this, a cooperative 2D/3D_segmentation process has
the potential to be a major improvement over separate
segmentation.

By éxtension, the grouping of data through time is also
segmentation. One aspect of grouping temporal data. is
the construction of range images via sliding stereo or
structured light range images. Another aspect of group-
ing temporal data is the understanding of movable or re-
movable parts in objects in a scene. Understanding that
a part moves as a unit, separately from another part, is
a partitioning of the data. Without a priori knowledge,
this cannot be detected by noncontact sensing. This
segmentation would allow understanding of the dynamic
properties, the mechanical properties and the kinematic
properties of objects. However, in this paper, we con-
centrate on the aspects of 2D/3D segmentation process
which can be accomplished through non-contact sensing.

1. Definition of the segmentation problem:

¢ Segmentation is partitioning the space into
meaningful parts. This can be done on inten-
sity images or range images.

o Segmentation is data reduction and requan-
tization of sensory measurements into some
primitive elements.

o Segmentation is an inference of a symbolic
description of the world from one or more im-
ages.

2. What kind of measurements are available in non-
contact sensing?

¢ Multispectral Image: camera with filters hav-

ing different spectral sensitivities. We measure

energy flux incident on one image plane (irradi-

ance) that combines the following components:

— energy and spectral distribution of the inci-
dent light,




— reflectance properties of the objects, and
— geometry — orientation of the surface with
respect to the viewer and the light source.

e Multiple Views: In the paradigm of Active Vi-
sion, we seek the appropriate place to look, in-
cluding the movement of the observer. Motion
of the observer allows us to construct Range
Images. In principle, this could be done using
stereo; however, in this work we use structured
light range imaging.

3. What kind of primitive elements should we use?

¢ Primitives must balance the trade-offs between:

— data reduction versus faithfulness to mea-
sured data and

— localness versus globalness.

e Primitives should correspond to segments in
terms of physical phenomena.

Physical phenomena are manifested in the image via
the following discontinuities: depth, orientation, albedo,
shadow, shading, and specularity. Hence, our segmenta-
tion and resulting descriptions will be in terms of physi-
cal properties of the world (surface reflectance, shading,
shadow, highlights and geometry) rather than in terms
of image attributes. )

1In Section 2 our work detecting highlights and inter-
reflections is described. Section 3 details segmentation of
images into objects/surfaces made of specular and diffuse
materials (Bajcsy et al., 1989]. Section 4 explains the
segmentation of the range image and/or lightness image
into surfaces. Section 4 represents our efforts to recover
underlying geometric structure from an image. Since
geometry involves more than just surfaces [Leonardis et
al.,, 1990), we find volumetric descriptions in terms of
superquadric parts. All of this processing is only from
one viewing angle, which is not sufficient for describing
a scene composed of opaque objects. This question of
where to go next, based on the first view, is described
briefly in Section 5 and in more detail in the paper by
Maver and Bajcsy in this Proceeding.

The above work is being extended into the develop-
ment of a formal model for an observer of an indoor scene
being explored by a mechanical hand [Bajcsy and Sobh,
1990]. The task for the observer is to have a full view
of the hand and the object being held and/or manipu-
lated. We have adopted the formalism of discrete event
dynamic systems (DEDS), which allows us to predict
under which conditions the observer-automaton can ac-
complish the task. This includes both the stability and
the observability conditions. The formalism of DEDS
has been described in [Ho, 1987), [Ramadge and Won-
ham, 1987b; Ramadge and Wonham, 1987a] and others.

Observing and understanding motion is an established
part of the Image Understanding effort. In the GRASP
Laboratory, we have used a temporally-oriented ap-
proach rather than a spatially oriented approach. This
approach is described in Section 6, and detailed in the
paper by Wohn and Iu in this Proceeding,

The underlying theory of updating procedures and de-
cision making under uncertainity is summarized in sec-
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-tion 7, and described more thoroughly in the paper by
‘Mintz, McKendall and Kamberova in this Proceeding.

2 Color Image Understanding: Image
Segmentation and Detection of
Highlights and Inter-Reflections
Using Color.

Color image segmentation should be based on changes
in object colors. In addition to the object color changes,
however, an image of three-dimensional real objects con-
tains variations because of shading, shadows, highlights
and inter-reflections. Detection and separation of high-
lights for successful segmentation has been the focus
of recent efforts in color image segmentation [Gershon,
1987] [Klinker et al.,, 1988). We have approached the
construction of a computational model for color image
segmentation not only with-detection of highlights, but
also with detection of small color changes induced by
inter-reflections. )

We use the dichromatic model [Shafer, 1985] for dielec-
tric materials. There are two reflection mechanisms—
surface reflection and body reflection. The surface or
interface reflection occurs at the interface of air and ob-
ject material, and can be specular and/or diffuse reflec-
tions depending on the surface roughness. Surface re-
flectance at dielectric materials are spectrally flat for
both specular and diffuse reflections. Body reflection,
on the other hand, is spectrally colored depending on
the pigments, and always-diffused. When the body re-
flectance is non-flat, we can detect the flat component
of surface (or interface) reflectance regardless of surface
roughness. Highlights are caused by specular surface re-
flection; inter-reflections between the objects are caused
by both surface (specular or diffuse) and body reflec-
tions.

To better represent and process ‘the image color, a
color metric space is developed based on the physical
model of the camera and filters. The measured color in
R,G,B space is transformed into the metric space using a
set of orthogonal basis functions. We used the first three
of Fourier basis functions. Within our framework, how-
ever, any orthogonal basis functions can be used for bet-
ter representation of natural colors [Cohen, 1964] [Judd
et al., 1964). The metric space is similar to the opponent
space in human vision with intensity, hue and saturation.
With orthogonal values, we can manipulate each compo-
nent of color separately or in combinations. Transforma-
tion from R,G,B into orthogonal values is a pixel parallel
process, and is implemented on a Connection Machine
(CM2a).

Since illumination is usually spectrally colored, cali-
bration of measured images is performed with a white
object of reference to whiten the illumination. Whereas
the spectral distribution of object surfaces is not changed
by shading and shadow, it is affected by highlights
and inter-reflections between the objects even under the
white illumination. Since the highlights add the white-
ness to the object color under the whitened illumination,
they can be detected by observing the change of satu-
ration in the uniformly colored objects, which is equiva-




Figure 1: a Intensity b Body Reflections, and ¢ Surface Reflection. In (c), inter-reflections are visible as spatially

diffused low intens’

lent to examining to detect any spectrally flat reflectance
added in the body color. The inter-reflections are also
detected with the change in saturation and in hue values.

‘Segmentation is carried out in two steps; hue and sat-
uration segmentation under the assumption that objects
are piecewise uniform in hue and saturation. Intensity
is not easy to use in thé presence of shading, shadow
and highlights. Illumination whitening is important for
hue segmentation since under white illumination, the
highlights do not shift the hue values of object colors.
Highlights are detected by observation of saturation val-
ues. The use of the reference plate is not necessary
when the illumination is weakly colored. Roughly de-
tected highlights can be used for the reference. Within
each region, the detection and separation of highlights
and-inter-reflections is highly parallel, since it is accom-
plished via thresholding and arithmetic operations.

-‘Our method is improved over previous works [Ger-
shon, 1987] [Klinker ef al., 1988], in a few significant
ways. The previous methods can detect strong surface
specular reflection, but are not reliable in detecting small
surface reflections that are diffused. Since we interpret
the reflection mechanisms in our color space with all the
spectral characteristics of sensors considered, we can bet-
ter. observe the spectral variation of reflection. There-
fore, we can detect not only strong and distinctively ap-
pearing specular reflection, but also small surface reflec-
tions which are spatially diffused. Inter-reflections usu-
ally have a diffused appearance. The inter-reflections can
be detected by the change in saturation values although
e values also change.

Figure 1 (b) shows Body Reflections and (c) shows
the Surface Reflections of which the original intensity
is shown in Figure 1 (a). Though inter-reflections are
barely visible in the original color image, they are not
visible in Figure 1 (a). These inter-flections are visible
in figure lc, as spatially diffused, low-intensity values on
the horizontal strip.

In our previous work, we have concentrated on spec-
tral information. We are expanding our investigation to
include:

1. Multi-dimensional segmentation. The spatial seg-

109

values. The bright peaks of highlights are strong specular surface reflections.

mentation results can be used wtogether w_ith seg-
mentation by hue and saturation. [Leonardis et al.,
1990).

9. Active Camera Movements. This will allow.us to ob-
serve different moving patterns of surface and body
reflections as the observer moves.

3. Changing illumination (when possible) to disam-
biguate-the image variations due to the change of
shading/shadow and albedo.

3 Segmentation as the Search for the
best Description of the Image in
terms of Primitives.

A new paradigm for image segmentation has been de-
veloped. We segment images into piecewise continuous
patches [Leonardis et al., 1990]. Data-aggregation is per-
formed via model recovery in terms of variable-order bi-
variate polynomials using iterative regression. All the re-
covered models are potential candidates for the final de-
scription of the data. Selection of the models is achieved
through a maximization-of quadratic Boolean-problem.
The procedure can be adapted to prefer certain kinds of
descriptions (one which describes more data points, or
has smaller error, or has lower order model). We have
developed a fast optimization procedure for model selec-
tion. The major novelty of the approach is in combin-
ing model extraction and model selection in a dynamic
way. Partial recovery of the models is followed by the
optimization (selection) procedure where only the “best”
models are allowed to develop further. The results ob-
tained in this way are comparable with the results ob-
tained when using the selection module only after all the
models are fully recovered, while the computational com-
plexity is significantly reduced. We test the procedure
on rcal range and intensity images.

We believe this segmentation schema is a tool that will
prove useful in many tasks of early vision. The two pro-
cedures (model recovery and recover-and-select) clearly
show that the whole can be greater than the sum of
its parts (synergism). The iterative approach combin-




ing data classification and model fitting shows that:seg-
mentation and modeling are not two-independent:proce-
dures but have to be integrated. The procedure which
dynamically combines model recovery with model selec-
tion proves to be much more efficient than applyingthe
modules one after another.

Another important conclusion that we have drawn
from our work is that reliable segmentation can only be
achieved by considering many competitive solutions and
choosing those which reveal some kind of structure in
terms of underlying models. Fine-tuning of feature-de-
tectors does not lead to reliable segmentation, because of
the variability of the input data. Initial local estimates,
no matter how good they are, do not necessarily lead-to
a good result, and more global information is needed.
Optimization performed on the level of primitives rather
than on a pixel level not only improves the performance
enormously in terms of computational complexity but
also gives more reliable results.

The results are grouped such that the top row of the
figure (from left to right) shows the original image, its
3-D perspective plot, the reconstructed image from the
piecewise continuous segmented patches, and the 3-D
plot of the reconstructed image. The range images are
displayed with the depth value at each pixel from a ref-
erence plane appearing larger if the pixel is closer to the
camera. The white square in the patch indicates the seed
region for that patch. The individual surface patches are
displayed -in the second row of the figures in the order
in which they were selected by the model selection pro-
cedure, and are referred to below with their position-in
the row, counting from left to right.

The Coffee-mug image: The convex and concave por-
tions of the body of the cup are recovered as individual
second-order patches, as shown in the first two images
of the bottom row in figure 2. The handle consists of
very curved patches which are modeled piecewise-for the
given scale (which directly relates to the compatibility
constraint). According to the results, the missing parts
are better described as individual pixels than as para-
metric patches (due to the scale consideration). It should
be noted that the jump (Cp) discontinuities are clearly
delineated by the neighboring regions.

4 Integrated approach to 3D shape
(volume, surface, contour)recovery
via parametric descriptions

In section 3, we described segmentation of a 2-1/2 D
image into surface patches. In other work [Solina and
Bajcsy, 1990] we have used parametric descriptions of
superquadrics to fit volumetric aspect of a shape. We
are now in the process of developing a paradigm for de-
composition of complex objects in range images into the
constituent parts based on the shape, using contour, sur-
face, and volumetric primitives [Gupta and Bajcsy, 1990]
Unlike previous approaches, we use geometric proper-
ties derived from both boundary-based (surface contours
and occluding contours), and primitive-based (biquadric
patches and superquadric models) representations to de-
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fine and recover part-whole relationships, without.a pri-
ori knowledge about the objects or the-object domain.
The descriptions thus obtained are independent-of-posi-
tion, orientation, scale, domain and-domain properties,
and are based purely on geometric considerations. Since

‘both boundary-based and primitive-based primitives-are

included in our vocabulary, the representation is expres-
sive and robust,.

In the computer vision literature, the partitioning of
images and description of individual parts is-called seg-
mentation and shape representation respectively. We
have presented arguments in Bajcsy, Solina, and Gupta
[Bajcsy et al., 1990) that the problems of segmentation
and representation are related and must be treated simul-
taneously. We propose that for obtaining a global shape
description from single-viewpoint 3-D data requires ad-
dressing shape at the following levels :

1. Volumetric level: Superquadric shape primitives
capable of modeling parts in three dimensions are
needed to describe global 3-D shape of parts.

2. Surface level: Surface primitives describe inter-
nal surface boundaries and surface patches-which
are difficult to model by volumetric primitives, but
present s more accurate and detailed description of
shape that is neither too local nor too global.

3. Occluding Contour level: The Occluding:-con-
tour encodes the 3-D shape of parts projected-on
the image plane.

Given the three different modules for extracting vol-
ume, surface and boundary properties, how should they
be invoked, evaluated and integrated? To incorporate
the best of the coarse to fine and fine to coarse segmen-
tation strategy, we perform volume, sutface, and bound-
ary fitting in parallel on the input data, This requires
evaluation and comparison of information embedded in
models built by different aggregation methods. The oc-
cluding contour is segmented into parts at concavities
and convexities using the classical techniques. The-sur-
face is segmented into planar and bi-quadric patches us-
ing the segmentation algorithm outlined in the previ-
ous section. The segmentation also gives reliable ‘inter-
nal C; (orientation) discontinuities, which are vital-for
part-segmentation, but are very difficult to localize using
standard edge-detection techniques. The superquadric
model, being an object centered global part-model, is
not amenable to such segmentation techniques. So the
problem of fitting or recovering the superquadric mod-
els to parts of an object has to be attempted in such a
way as to make use of the segmentation information from
the surface and contour models that provide local seg-
mentation at their respective levels. The superquadric
model recovery itself proceeds from coarse to fine (global
to local), generating residuals and hypotheses about vol-
umetric parts as described below. We are developing a
control module to accomplish this non-trivial task in a
systematic manner.

To satisfy the practical constraints of computability
and robustness, we pose the problem of integration in
terms of evaluation of the intermediate descriptions and
segmentation of the objects in a closed loop process. To




........

Figure 2: The coffee-mug Image: The highly curved handle-is modeled-as a combination of the smaller patches.

-evaluate the superquadric models, we have developed a
-set of quantitative and qualitative measures, that gen-
erate global and local residuals of the models [Gupta et
.al., 1989]. The qualitative residuals are the regions of un-
derestimation, and surface and contour overestimation.
The fundamental principle behind our approach is that
these residuals are generated because of the presence of
parts (or negative volume), otherwise a correct volumet-
ric model would be obtained during the initial global fit.
The regions of contour overestimation guide the local-
ization of the concavities in the occluding contour. The
concavities in the occluding contour are in turn used to
-constrain the superquadric model to fit only a part and
not the complete object [Gupta and Bajesy, 1990]. It es-
sentially provides topological constraints to restrict the
model to a part of the object. Although the surface seg-
mentation is complete at the surface level, it does not im-
pose any topological constraints needed for superquadric
level of part segmentation. In addition, a mechanism
to combine individual surface patches to form the vol-
umetric parts is needed to generate strong hypotheses
about potential superquadric models. We have observed
that the information from the regions of underestimation
(primarily caused due to the parts ’sticking out’) makes
natural clusters of surface patches forming volumetric
parts. Using this simple observation, we have obtained
encouraging results on various complex objects.

Our goal is to develop a general-purpose shape seg-
mentation paradigm to generate object-centered and
view-invariant descriptions from a single general view of
complex objects. The approach has applications in ob-
ject localization and recognition, automatic model gen-
eration, and domain specific high level tasks.
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5 Searching for Additional Information

The task of constructing a volumetric description of a
scene from a single image is an underdetermined prob-
lem, whether it is a range image or an intensity image.
Once the first image has been taken, we develop a strat-
egy to get the additional information that-will allow us
to complete the volumetric description.

Range images are 2 1/2 D images, where the value of
a pixel corresponds to the distance from the observer to
the closest point in the scene. Some parts of the scene
may be partially occluded by objects. In structured light
range images, a pixel with no data corresponds to an
occluded area.

At the GRASP Laboratory, we have two structured
light range imaging systems. One uses a fixed laser (pro-
viding the plane of light), while the objects move on a
linear stage. Though this system provides high quality
range data, it is limited to a single view of the scene.
However, our second system uses a laser-camera pair,
mounted on a Puma 560 robot arm, which moves over
the scene [Tsikos, 1989). A range image is acquired by
moving the laser-camera pair along a straight line in
space, aiming at the scene. It is capable of viewing a
scene within the robot workspace from many different
angles. This capability allow us to construct a complete
3D model of a scene.

Our strategy is to use the information in a narrow
zone around the occluded regions. Occluded regions are
approximated by polygons. From the height of the bor-
der of the occluded regions and from the geometry of the
edges of the polygonal approximation, we calculate the
direction which will most effectively show us what is in
the occluded area. Experimental results on range data
are described in the paper by Maver and Bajcsy in this




Proceeding.

6 Image Motion Analysis: A
Temporally-oriented Approach

The fact that the relative motion between the viewer and
the object can be recovered from-a sequence of images
is well-known, and articles on the subject are abundant.
The majority of previous work dealt with the existence
and-the uniqueness of solution when the input was as-
sumed-to be given in the proper form (image flow field,
disparity vectors, position of feature points, conic con-
tours, etc). A typical result states that there are K
solutions for the 3-D motion and the object structure,
given M features over N frames. For the uniqueness,
some suggest that K could be 1 if M’ (where M' > M)
features are used; others suggest that K could be 1 if
N’ (where N’ > N) frames are used, etc. While these
results provide us with some useful theoretical frame-
work,-all known algorithms derived from their construc-
tive -proofs have turned out to be very sensitive to the
input -noise {Tsai and Huang, 1984; Waxman and Ull-
man, 1985).

In estimating 2-D motion, there is no known algorithm
that-estimates the 2-D image motion with sufficient ac-
curacy-for the 3-D motion recovery algorithm. -For exam-
ple,-the-image flow. estimated by any of the well-known
techniques [Hildreth, 1984], [Horn and Schunck, 1981]
does not seem to be useful at all for the purpose of 3-
D motion recovery. Furthermore, the accuracy of image
motion-estimate is lower-bounded: Even for a noise-free,
synthetically generated image sequence, there is the dis-
cretization effect in spatial as well as temporal domains.
Sometimes this discretization effect alone exceeds the
maximal noise level the 3-D motion recovery algorithm
can-tolerate.

The error in 2-D motion amplifies the error in 3-D mo-
tion parameters. The exact nature of error propagation
depends not only on the specific algorithm but also on
many factors such as the viewing angle of camera, and
motion-and structure parameters themselves, and thus
it is hard to derive the error formula analytically. Unless
one imposes unrealistic assumptions such as a huge view-
ing angle (typical viewing angle of camera lens is 30-50
degrees and the object of interest occupies even a smaller
field of-view), all the existing algorithms perform poorly
under-the presence of realistic noise. The difficulty is
that the 3-D motion recovery is ill-conditioned.

Hence, a more realistic approach, as far as the recovery
of 3-D motion is concerned, is to improve the motion
parameters over time, under the presence of noise. Just
like any other physical system, -the entire process from
the image sequence to the 3-D motion may be viewed as
a dynamic system, and the problem can be formulated
as a non-linear state estimation problem.

Our:-approach is not merely meant to attempt to im-
prove-the motion estimates over time. Most of the pre-
vious algorithms mentioned above are “biased” more to-
ward the spatial information in image sequences than
the temporal information, in the following sense. In the
token matching approach, the main idea is to find the
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minimal number of points ‘that guarantee a unique so-
lution when a small number (typically 2.or 3) of frames
are given. Similarly, the optical flow approach seeks the

‘lowest order-of flow derivatives from a single snapshot

of optical flow field. Of course, both “instantaneous”
approaches have to make use of the temporal informa-
tion in one way or another, but the extent of temporal
information being used is fixed at the stage of problem
formulation. We may call these approaches spatially-
orienled.

Our approach first explores the temporal information
prior to the usage of the spatial one. Here, a typical
question one may ask is: “How many frames are needed
when N features are given?”, as opposed to “How many
features are needed when M frames are given?”. We call
it temporally-oriented approach (TOA). The importance
of TOA's is that we can avoid many problems which one
may encounter in the SOA’s. Since we observe motion
over an extended time interval, we can reduce the num-
ber of features that are used in the computation. In
fact, we have shown that we could even recover the 3-D
motion of a single particle. Consequently, the problem
of requiring multiple features can be eliminated and the
task of segmentation is thereby reduced. Further, as-we
use more frames to estimate the 3-D motion, the problem
itself becomes more well-conditioned. When we observe
a moving object such as a space shuttle-or a baseball,
the longer we observe, the-more accurately we can es-
timate its motion and predict its position. In TOA’s,
we rely on the temporal information from the moving
object while keeping the amount of spatial data in a sin-
gle image as small as possible. Of course we may use
multiple features to get a-more robust estimate if they
are available. Therefore, the TOA’s and the previous
multi-frame approach are different in their motivation.

7 Robust Multi-sensor Fusion

We have developed a coherent methodology for fusing
data from multiple sensors in uncertain environments.
Since sensors exhibit noisy behavior that cannot be elim-
inated completely, all sensor measurements ate uncer-
tain. However, sensor errors can be modeled statistically
and geometrically, using both physical theory and em-
pirical data. For example, multiple range sensors may
be located on the wings of an aircraft. As the wings
themselves flex, the precise location of the sensors move,
relative to the center of the aircraft. These sensor lo-
cation errors can be bounded, but it is not necessarily
desirable to characterize these errors statistically. Also,
sensors may break or become worn out, but still send
data. For example, a camera with a broken IR filter still
sends data, which seems to be within the dynamic range
of the system (though perhaps at the saturation limit).
This kind of uncertainty can be handled by a statistical
decision theoretic approach.

A single distribution is usually an inadequate descrip-
tion of sensor noise behavior. It is much more realistic
and much safer to identify an envelope or class of dis-
tributions, one of whose members could represent the
actual statistical behavior of the given sensor. For ex-
ample, it may be difficult to fit the error distribution of a
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malfunctioning sensor by a Gaussian distribution; how-
ever, ¢-contamination models provide a good alternative.
Other reasons for uncertainty in statistical sensor models
include: sporadic interference, drift due to aging, tem-
perature variations, miscalibration, quantization, and
other significant nonlinearities over the dynamic range of
the sensor. This use of an uncertainty class in distribu-
tion space protects against the inevitable unpredictable
changes that occur in sensor behavior. The purpose of
this research is to examine sensor fusion problems for
both linear and nonlinear location data models using
statistical decision theory.

The contributions of this research are the delineation
of:

¢ Robust tests of consistency of data from differ-
ent sensors. This confirms that the measurements
are actually measuring the same thing. For exam-
ple, if two position sensors are actually measuring
position of two different objects, then the two result-
ing data points should not be averaged or combined
in any way.

¢ Robust procedures for combining data that
pass the preliminary consistency tests.

Robustness refers to the statistical effectiveness of the
decision rules when the probability distributions of the
observation noise and the precise location of the individ-
ual sensors are uncertain. This research provides statis-
tical performance bounds.

While range data is a 1D application of multi-sensor
fusion, our current research extends the theories to cover
the multi-dimensional case. This allows robust testing
of multi-dimensional feature vectors for similarities in
non-Gaussian noise, and gives a probability of correct-
ness of the result. This represents a significant theoret-
ical advance in mathematical statistics, since no prior
probability distributions are assumed. One example of a
multi-dimensional application is color comparison. The
color of a pixel can be expressed either as R,G,B (where
the data is not independent) or in an orthogonal basis.
These theories allow us to compare a pixel against an-
other pixel, and give probability of the colors being the
same, without assuming in advance that there is a spe-
cific probability of that color occurring.

The decision-theoretic formulation of these problems
allows us to find minimax decision rules based on a
zero-one loss function. Such rules minimize the maxi-
mum probability that the absolute error of estimation is
greater than an error tolerance e. The zero-one loss func-
tion is appropriate for situations where a system works
if the decision is correct within a given tolerance, and
the system fails if the decision is out of bounds.

This research in robust mulii-sensor fusion is based
on the theory of robust fixed size confidence sets. Our
prior work in this area includes the delineation of the
existence, structure, and behavior of:

¢ optimal, nonrandomized, fixed size confidence inter-
vals based on monotone decision rules;

e robust, nonrandomized, fixed size confidence inter-
vals based on monotone decision rules; and

o the extension of these ideas to both randomized, and
nonmonotone procedures.

These results and their applications appear in: [Kam-
berova and Mintz, 1989], (McKendall, 1990], [Martin and
Mintz, 1987), [McKendall and Mintz, 1988], {Zeytinoglu
and Mintz, 1984), [Zeytinoglu and Mintz, 1988].

8 Conclusion

As it is seen, the Image Understanding Program in the
GRASP laboratory represents a coherent programmatic
study of material properties, geometric properties, and
motion of objects through visual measurements. Our
approach is data driven, where we seek the best expla-
nation of the data via parametric models. The result
of this approach is not only compact representation but
also a measure of goodness of fit which then can be used
for feedback correction depending on the task. We also
do not depend only on one measurement, but rather try
to combine, in a systematic fashion, several different as-
pects of shape and material. We are in the process of
systematically testing our theories with different param-
eters of illumination, camera positions, signal/noise ratio
and complexity of the scene.

References

[Bajcsy and Sobh, 1990) Ruzena Bajesy and Tarek
Sobh. A Framework for Observing A Manipulation
Process. GRASP LAB 216 MS-CIS-90-34, Univer-
sity of Pennsylvania, Philadelphia, PA 19104, June
1990.

[Bajesy et al., 1989] R. Bajcsy, S.W. Lee, and A.
Leonardis. Image segmentation with detection
of highlights and inter-reflections. In Proceedings
of the Image Understanding and Machine Vision,
1989.

[Bajesy et al., 1990] Ruzena Bajcsy, Franc Solina, and
Alok Gupta. Segmentation versus Object Represen-
tation - Are they Separable?, chapter Analysis and
Interpretation of Range Images. Springer-Verlag,
1990.

[Cohen, 1964] J. Cohen. Dependency of the spectral re-
flectance curves of the munsell color chips. Psychon.
Sci., 1:369-370, 1964.

[Gershon, 1987) R. Gershon. The Use of Color in
Computational Vision. PhD thesis, University of
Toronto, 1987.

[Gupta and Bajcsy, 1990] Alok Gupta and Ruzena Ba-
jesy. Part description and segmentation using con-
tour, surface, and volumetric primitives. In Bernd
Girod, editor, Proceedings of the SPIE Conference
on Sensing and Reconstruclion of 3D Objects and
Scenes, Santa Clara, CA, February 1990.

[Gupta et al., 1989] Alok Gupta, Luca Bogoni, and
Ruzena Bajcsy. Quantitative and qualitative mea-
sures for the evaluation of the superquadric models.
In Proceedings of the IEEE Workshop on Interpre-
tation of 3D Scenes., 1989.

113




(Hildreth, 1984] E.C. Hildreth. Computation underly-
ing the measurement of visual motion. Artificial
Intelligence, 23, 1984.

[Ho, 1987] Y. Ho. Performance evaluation and pertur-
bation analysis of discrete event dynamic systems.
IEEE Trans. on Automatic Control, July 1987.

[Horn and Schunck, 1981)
B.K.P. Horn and B.G. Schunck. Determining op-
tical flow. Artificial Intelligence, 17:185-204, 1981.

[Judd et al,, 1964) D.B. Judd, D.L. MacAdam, and
G.W. Wyszecki. Spectral distribution of typical
daylight as a function of correlated color temper-

ature. Journal of the Optical Sociely of America,
54, 1964,

[Kamberova and Mintz, 1989] G. Kamberova and M.
Mintz. Robust multi-sensor fusion: a decision-
theoretic approach. In Sensor Fusion II: Human
and Machine Sirategies, SPIE Conference Proceed-
ings, pages 1198:192-201, November 1989.

[Klinker et al., 1988] G.J. Klinker, S.A. Shafer, and T.
Kanade. Image segmentation and reflection anal-
ysis through color. In Proceedings of the DARPA
Image Understanding Workshop, 1988.

[Leonardis et al., 1990] A. Leonardis, A. Gupta, and R.
Bajcsy. Segmentatlion as the Search for the Best
Description of the Image in Terms of Primitives.
Technical Report MS-CIS-90-30, GRASP LAB 215,
University of Pennsylvania, Philadelphia, PA, 1990.

[Martin and Mintz, 1987) K.E. Martin and M. Mintz.
Research on randomized robust confidence proce-
dures. Technical Report, Department of Systems
Engineering, University of Pennsylvania, 1987.

[McKendall, 1990] R. McKendall. Minimaz Estimation
of a Discrete Location Parameter for a Conlinuous
Distribution. PhD thesis, Department of Systems
Engineering, University of Pennsylvania, Philadel-
phia, PA 19104, May 1990.

[McKendall and Mintz, 1988] R. McKendall and M.
Mintz. Robust fusion of location information. In
Proceedings of the 1988 IEEE International Con-
ference on Robotics and Automation, pages 1239-
1255, 1988.

[Ramadge and Wonham, 1987a} P. J. Ramadge and
W. M. Wonham. Modular feedback logidc for dis-
crete event systems. SIAM Journal of Control and
Optimization, September 1987.

[Ramadge and Wonham, 1987b] P. J. Ramadge and
W. M. Wonham. Supervisory control of a class of
discrete event processes. SIAM JOuranl of Control
and Optimization, January 1987.

[Shafer, 1985) S.A. Shafer. Using color to separate re-
flection components. COLOR Research and Appli-
cation, 10(4):210-218, 1985.

[Solina and Bajcsy, 1990] Franc Solina and Ruzena Ba-
jesy. Recovery of parametric models from range im-
ages: the case for superquadrics with global defor-
mations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(2), February 1990.

[Tsai and Huang, 1984] R.Y. Tsai and T.S. Huang.
Uniqueness and estimation of three-dimensional
motion parameters of rigid objects with curved sur-
faces. IEEE Trans. Paitern Anal. Machine Intell.,
6, January 1984.

[Tsikos, 1989] Constantine J. Tsikos.  Laser Range
Imaging System. GRASP Laboratory, University
of Pennsylvania, Philadelphia, PA, May 1989.

[Waxman and Uliman, 1985] A.M. Waxman and S. Ull-
man. Surface structure and 3-d motion from image
flow: a kinematic analysis. Intl. Journal of Robotics
Research, 4:72-94, 1985.

[Zeytinoglu and Mintz, 1984] M. Zeytinoglu and M.
Mintz. Optimal fixed sized confidence procedures
for a restricted parameter space. The Annals of
Slatistics, 1984.

[Zeytinoglu and Mintz, 1988] M. Zeytinoglu and M.
Mintz. Robust optimal fixed sized confidence proce-
dures for a restricted parameter space. The Annals
of Statistics, 1988,

114




Progress Toward An Image Understanding
Application Development Environment

Tod S. Levitt, Scott E. Johnston,
Scott Barclay, John W. Dye
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Mountain View, California

Abstract

An image understanding (IU)
software workstation environment
is presented. The environment is
aimed at transfer of IU technology
into applications development. The
C++ environment is based on a
hierarchy of core IU objects
representing spatial, temporal,
inference, interface and storage
capabilities. A top level design and
implementation to date is shown.

1 Introduction*

This paper presents the design and
implementation to date of an image
understanding (IU) software application
development environment. The core

environment provides an integrated set of
tools to leverage the development of IU
applications and to facilitate transfer of IU,
inference and visualization technology
from its origins in research laboratories
into IU applications. The environment is
focused primarily at technology transfer,
rather than research and technology
development. It provides a development
platform and reusable components
including a library of image processing and
IU routines and data structures, and an
integrated set of higher-level reasoning

* Acknowledgement: This research was funded by
the Defense Advanced Research Projects Agency
and the U.S. Army Engineer Topographic
Laboratories under government contract number
DACA76-89-C-0023.
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capabilities such as bayesian networks and
logic engines. The design includes:

+ An object oriented structure built on
the C++ programming language.

» A description of the object
representations that are used for the
different classes of objects in the
environment. Object representations are
designed to provide a direct and useful
interface to environment capabilities and
programming constructs.

« A discussion of wuser interface, IU
routines, inference, database and other
capabilities, and how these facilities are
integrated with the object representations.

The core set of C++ objects serves as a
foundation for the representation of spatial,
temporal and symbolic entities central to
application development of IU and decision-
aiding systems. One reason we have chosen
C++ is to facilitate the integration of public

domain code, commercial programs and
hardware devices. It is intended that
application developers will extend the

object classes to create objects customized
for their application.

The typical application IU system
requires signal and/or image processing,
geometric and symbolic inferencing
capability, an interactive user interface for
inspecting and manipulating the
processing results, and an associated
database for storing the original data and

the derived results., Figure 1 shows the
roughly hierarchical relationship between
these environment components.




The following sections present our design of
these C++ objects and their associated class

hierarchy. The environment goals and
hardware and
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Figure 1.

IU Environment
Components

software assumptions are described in

Section 2. Sections 3-6 describe the core
spatio-temporal object classes. Section 7
discusses search and object traversal,

including methods supporting perceptual
grouping as well as spatial object inference.
Section 8 describes user interface objects
and methods, and section 9 discusses
database classes. Together, these objects
comprise the major functional components
of the design. Section 10 presents the status
of implementation to date. An appendix is
provided that lists the top level core object
classes.

116

2 Environment Goals and
Assumptions

Any IU environment aspires to all of the
following goals.

» availability of algorithms
» execution efficiency

» interoperability

» verifiability

* portability

« extensibility
+ coding efficiency
» function/data composability

customizability
Efforts on other IU resea~ch and
technology transfer environments [Quam,

84, KBVision, 87, Lawton and McConnell, 88,
Lawton and Levitt, 89, Waltzman, 90] suggest
that the first five goals are of primary
importance for environments aimed at
development of robust IU applications usmg
well-understood IU technologies, i.e.
technology transfer, while the second four
are goals associated with rapid prototyping
efforts common in IU research and
innovative development of IU technology.
This effort is focused at the goals that foster
technology transfer.

Because of the bias towards technology
transfer, and the desire to produce this
environment within 2 years, environment
component choices have largely been
driven by current availability and
prevalence of use of hardware and software
options. Another driving factor was that as
much as possible of the environment should
be public domain, so that source code can be
provided at minimal cost.

The basic development and user system
is a Sun 3, 4 or Sparc workstation with a
minimum of 12 megabytes core memory,
keyboard and mouse, a color display and at
least 300MB magnetic or read/write optical
disk. A Vitek image processing acceleration

board is under consideration for inclusion
in the environment.
The software development environment

is the Berkeley Unix 4.2 operating system on
a Sun workstation, though compatibility to

other Unix implementations and other
workstations is maintained where
reasonable. We have chosen C++ as the




programming language. This choice is
based largely on its efficiency, its relatively
good compatiblity with C, and its nearterm
widespread acceptance in the technology
transfer community, i.e. the non-academic
IU application development community. We
have chosen the Free Software Foundation's
Gnu Compiler over AT&T's 2.0 C++ compiler
for two reasons. The first is that the Gnu
compiler generates faster, more efficient
code because it is a true compiler and not
just a preprocessor to a C compiler. The
other reason 1is the availability of the
compiler source code makes it portable to
forseeable future (Unix) platforms.

X Windows is used for managing displays.
The InterViews toolkit from Stanford
provides a C++ interface to the X Windows
package. IDraw, another Stanford product,
provides the interactive graphic window
interaction., Chorus, a public domain image
processing library from the University of
New Mexico, provides both the standard set
of image processing functions as well as 2D
plotting capabilities. Other public domain
software packages being integrated in the
basic environment include the CLIPS logic
engine and rule-base package, the NCSA 3d
display routines, and several neural net
packages.

3 Core Spatial and Temporal Class
Hierarchy

The class hierarchy is based on the
structures developed in PowerVision and
View [McConnell et. al., 88, Edelson et.al,, 88].
In particular, the basic hierarchy of spatial
classes and the concepts of transforms,
function concatenation, virtual function
wrappers, and programmable database-like
search for perceptual grouping were all
present in the original PowerVision
implementation.

The current design has made strides in
uniformity of these structures, cleaned up

the relationship between objects and their
display methods by associating display
methods to the display objects (e.g.
windows) rather than the source objects
(e.g. a polygon), and has added class
structures for coordinates. This design
creates fundamental links between the
geometric structure implied by coordinates
and the programmability of search for

perceptual grouping, as well as the linking
together of lower dimensional spatial
structures to form higher dimensional
structures.

The core objects are organized into four
general classes: scalars, collections,
containers and coordinates. The scalars are
the standard numerics and symbols of C++.
Collections are general groupings of objects
including arrays, streams, and graphs.
Containers are groupings of objects that
necessarily have an implied dimensionality
and corresponding coordinate systems and
imbedding  spaces. Containers are
inherently spatial: images, curves, solids,
voxels, polygons, etc. Coordinates are objects
that represent coordinate systems. Local
coordinates are objects that are necessarily
included within other objects (including
other coordinates), while global coordinates
can be disembodied.

Containers are designed to wrap around
collections, and embed them in a coordinate
system. Loosely speaking, we think of the
semantic objects in IU systems, such as
images, surfaces and volumes, as collections
of values associated with coordinate systems.
The grouping together in a systematic way
of collections with coordinates forms
containers. An array of integers is a
collection. An array of integers associated
vith coordinates indicating the context of
the array in pixels and centimeters is a
container that is of the class Image. Figure 2
shows how containers, coordinates and
collections relate to each other, and how
they fit into an overall system.

Containers necessarily have coordinate
objects and are closely tied to the user
interface. The coordinate systems of the
containers can map into the display
coordinate systems. The display window
itself is represented as a container. The
necessary projections, translations,
rotations, and scaling are implemented by
"virtual" containers that wrap around
previously instantiated containers and
convert them into the appropriately
appearing object.

Collections do not
coordinate objects,

have associated
although they can have

indices, such as indexes for an array.
Collections are closely tied to the
underlying devices. For example, a

collection can be made to correspond to a
device such as an image scanner. The
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scanned image becomes an
representation of a :ollection). Efficient
access, traversal and transformations are
built as methods on conllections. Another
example is a neighborhood operation like

array (one

convolution. It can be realized as a
collection of data and a method that
manages buffers to create fast virtual

memory access to the data in the collection.

Tranforms are procedures that operate
on containers, coordinates and collections
and produce containers, coordinates and

collections as output. Although it is possible
to represent transforms as containers,
providing a pleasing uniformity of data
types, it can be semantically confusing to
the user. Because technology transfer is a
fundamental yoal, we have erred on the side
of clarity rather than uniformity. So an
image is called an image, for example,
instead of a function that represents a 2d
surface in 3space. We intend to overload
class names to permit users both views of
appropriate objects.
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Figure 2. Core Object Relationships

Where it is not confusing, transforms
are represented as overloaded constructors

of the class of their output objects. For
example, a histogram is a constructor
method for the one-dimensional signal that
is the output of the histogram transform on
an image.

When possible, transforms are defined
on containers but implemented on the
(coordinate-free) collections to maximize
reusability, For example, a one-dimensional
smoothing filter can be implemented on an
array, then be wusable on any linear
collection of data, such as an image row, a
curve in 3 space, or a specific traversal of
the edges of a solid. So the filter can be
represented at the more abstract level of the
container hierarchy as a method on a
curveNd (i.e. a one-dimensional curve in N
space), enabling polymorphism.

The next three sections describe the
collection, coordinate and container objects
in detail. This is followed by a description of
how containers and collection objects are
efficiently  traversed, accessed and
searched.

4 Collection Classes

Three classes of collection objects are
planned: Stream, Graph, and Array. They
can be characterized by the style of
traversing and accessing the collection.
Streams are traversed in a sequential
manner, where the next access is restricted
to the neighbor in a single forward

direction. Graphs are traversed in a linked
manner, where the next access is restricteu
to nearest neighbors in any direction.
Arrays are traversed in a random manner,
where the next access is unrestricted.

The collection class hierarchy can be
extended to wrap a stream, graph, or array
around external sources. A character stream
can be wrapped around a serial port. An
array can be wrapped around a frame
buffer. A graph can be wrapped around a
Connection  Machine or Transputer
topology.

Graphs are the general case of a linked
data structurc. A trcc is a subclass of graph,
and a list is a subclass of tree. This class
hierarchy allows lists and trees to be
manipulated by graph traversing routines,
e.g.,"WalkDepthFirst". Graphs can store
heterogeneous collections of objects. Graphs
are implemented with separate node and arc
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objects. At this time we do not plan to
support special subclasses for specific types.

The basic methods for a collection are as
follows:

constructors: creation and conversion
routines
destructors: memory, process, and device

deallocation routines
printers: ASCII printing routines

traversers: universal location
generation routines

searchers: selective location generation
routines

accessors: value access routines.

"Traversers" are methods for traversing

the object, visiting each member object or

argument and apply the function at (a
neighborhood of) each location.
"Searchers" are incremental, partial
traversal methods. A search routine
operates at the current location and chooses

which location(s) to visit next., A search
routine accepts two function pointers,
applying one to the current location
(neighborhood) and the other to choose the
next location(s).

"Accessors" are methods for accessing

the member object stored at the current
location in the collection object. Access can
be by value, or by reference to allow for
overwriting.

5 Container Objects

element in turn. Each traversal of an Object container objects represent an S-
has an associated current location. dimensional containment of objects in R-
Traversers accept a function pointer gpace,
Container
Point Curve Surtace Solid HyperSolid
R=1  Pointtd Curveld
R=2 Point2d Curve2d Surface2d
R=3 Point3d Curve3d Surface3d Solid3d
R=n PointNd CurveNd SurfaceNd SolidNd HyperSolidNd
S=0 S=1 =2 S=3 S=n
Figure 3. Top Level of Container Class Hierarchy
curve is a one-dimensional container in 3-
Figure 3 shows only the top levels of the space. A polygonal region is a two-
container inheritance hierarchy. dimensional container in 2-space. A
Additional subclasses are derived so that the polygon3d is a two-dimensional container

leaf node classes of the hierarchy are
realizations of more familiar spatio-
temporal data structures and procedures. A
signal is subclass of a one-dimensional
container in 1-space. An image is a subclass
of a two-dimensional container in 2-space.
A volumetric representation is a three-
dimensional container in  3-space.
Constraints for a linear programming
problem can be viewed as an N-dimensional
container in M-space.

The container subclasses are effectively
parameterized by the dimensionality of the
container's topology, and the dimensions of
the imbedding space. A 2d curve is a one-
dimensional container in 2-space. A 3d

in 3-space. A terrain elevation map is a two-
dimensional valued container in 2-space.

Specific classes of container are
represented in multiple ways. For example,
a three-dimensional container in 3-space is
a solid, and a solid can be represented
functionally (X*2 + Y2 + Z*2 <= 1),
volumetrically (via voxels or octtree), or by
a surface model.

The  cross-product of  the S-
dimensionality of the containers and the R-
dimensionality of the embedding space is
represented by a class hierarchy where the

top-level branching is container
dimensionality and the lower-level
branching is embedded space

119




dimensionality. Point, Curve, Surface, Solid,
and HyperSolid are the superclasses, and
their subclasses correspond to the space the
container is in.

To achieve efficiency, 0d, 1d, 2d, and 3d
containers are implemented as special-
cases, and Nd containers are handled in a
general fashion. In the same manner,
containers embedded in 1d, 2d, and 3d spaces
are implemented as special cases, and
embedding in Nd is handled in a general

fashion. Beneath each branch of the
container hierarchy are three subclasses
that reflect increasingly general ways of
representing a container:

1- Constant Containers

2- Valued Containers

3- Connected Containers

4- Aggregate Containers

Constant containers describe the shape

of a container without representing its
values , or "contents". The shape is defined
to be its geometric representation in
Nspace, without values necessarily being
defined at locations of the shape. Because a
shape is geometric, it usually has a
boundary that we call its "shape boundary"
to distinguish it from other uses of the term.
For example, a solid cylinder in 3space has a
solid cylinder as its shape, and a hollow
cylinder as its boundary shape.

We can represent a force field acting on
the solid cylinder by associating the
appropriate local magnitude and direction
of the force field with each point of the
shape. This is an instance of a valued
container. Valued containers have a shape
description and a content mechanism,
whereby values such as scalars or more
complex objects can be associated or stored
with each shape location.

Connected containers group other
containers, relating them with a series of
coordinate transforms or other relations
such as adjacency or attachment, and
merging them into a single connected
entity. A CAD model of a single car built
from surface facets is a connected
container. A smoothing pyramid is a
connected container, where image objects

are related (connected) by the order of the
smoothing and
that created them,

sub-sampling operations
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Aggregate containers group a disjoint
set of containers into a single entity. The set
of CAD models of all cars manufactured at a
particular plant is an aggregate container.

The basic set of methods for a container
are the following:

constructors: creation and conversion
routines

destructors: memory/process/device
deallocation routines

printers: ASCII printing routines

traversers: universal location
generation routines

searchers: selective location generation
routines

accessors: value access routines

draw: draw representation of self in an X
Window

display: add self to display list

inside: predicate to determine if point is
inside boundary.

"Traverser", "Searcher" and "Accessor"
methods typically window through to an
underlying collection. The current position
of a container traversal is in effect a
current position of the underlying
collection traversal, and the mechanism for
accessing the data in the container is the
same as the mechanism for accessing data
in the underlying container or collection.

"Display", "Draw" and "Inside" are
methods for realizing the user interface.
The display method queues the object for
display in an X Window by placing the
object on the display list of the window.
Then the window object takes care of
determining the necessary parameters to
call the object's draw method An object's
draw method produces pixel values that are
a representation of itselff and maps them
into a window display, or any container of
type Surface2d. The inside method is used by
the window object for each object on the

display list to determine if a particular
mouse click has fallen within its bounds.
Only containers and coordinates can be

displayed in the 2D and 3D object windows,
as coordinates are required to relate to the
window display. It is possible to display
collections in structured text or graph
browsing windows




6 Coordinate Objects

Coordinate objects represent coordinate
systems. A coordinate has a corresponding
type that is one of cartesian, polar,
cylindrical, spherical, quaternionic , or
shape. Shape means the coordinate system is
defined in terms of distinguished points in a
container, like attachment points, or the
ends of axes of sub-objects. A local
coordinate is necessarily contained in

another object such as a container or
another coordinate. A disembodied
coordinate is defined to be the subclass of

global coordinate. Coordinates have methods
that act as transformations between other
coordinate systems. A coordinate records its
transformations between other coordinates,

unless these transformations are explicitly
deallocated.

There are two subclasses: global and
local. Global coordinates can occur

disembodied, i.e. without being contained in
or referencing other objects. They can be
transformed and copied by any coordinate
constructor to mix in when constructing a
local-coordinate defined for a container or
other global or local coordinate. This
"places"” the container in the global
coordinate system. The global coordinate
remembers the containers that were
constructed with it.

A local-coordinate can represent the
imbedding space of the container, or other
ego-centered coordinate systems. An object
can have muiltiple local coordinates.The
base-coordinate is a distinguished local
coordinate. It is defined to be the first local-
coordinate associated to a container or other
coordinate., The base-coordinate is
instantiated by the container contructor. It
can be specified by the caller of the
contructor method. The base-coordinate is
guaranteed to have transforms associated to
all other local-coordinates of that container
or coordinate. It is intended, although not
required, that the base-coordinate
correspond to the natural traversal of an
associated cnllection of values. For example,
a raster image is a Surface2d container
whose values are in an Array2d (collection).
Its natural base-coordinate is the cartesian
coordinate with origin at array index (0,0),
one axis in the row direction and another
corresponding to columns. For a pyramid, a
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natural base-coordinate is similar, but
includes a third axis in the multi-resolution
direction.

Coordinates all contain the following
methods. Note that when local and global
are not explicitly called out, either applies.
For example, the transform method can
relate locals to locals, locals to globals or
globals to globals.

type: returns a mathematical type (e.g.
cartesian) or the type "shape".

origin: returns a point

dimensions: returns list of dimensions
units: returns list of named units per
dimension

minextents: returns list of minimum
extents per dimension

maxextents: returns list of maximum
extents per dimension

convert: inputs a type that is not "shape"
and creates versions of its local-coordinates
expressed in that type (e.g. cartesian to
polar conversion)

list-transforms: returns the list of
transforms known between itself and other
coordinates

transform: inputs another coordinate
with a known transform to itself, and a
third coordinate with a known transform
between it and the second coordinate;
returns a transform between itself and the
third coordinate.

propagate-transform: inputs a
coordinate with known transform between
itself and the coordinate, and returns the
list of transforms between all its local-
coordinates and the input coordinate.

7 Object Traversal and Search

From the user's point of view, containers
get traversed or searched. From the
workstation environment's point of view,
containers are pointers to collections that
get traversed or searched. Both traversal




and search can be thought of as routines
consisting of the cyclic applications of
three functions: move, access.and apply. In
the case of traversal every value in the
underlying collections is necessarily
visited, so the function for moving, or

choosing the next location(s) in a
container's shape, 1is known Dbefore
traversal is invoked.

In search all locations/values are not

necessarily visited. The move function must
be passed by reference to the search
method. The apply function is invoked on
the appropriate neighborhood at each
visited location for both traversal and
search methods.

Signal and image processing functions
traverse their contents to enable extraction
of higher-level interpretations. These
routines need to quickly iterate across their
N-dimensional data sources, with efficient
access to a local neighborhood ranging in
size from 1 to M units in any dimension.

Traversal is intended to provide the
support for a programming style whereby
the application developer codes the
operation to be done at each point in the
traversal, and leaves it up to some other
mechanism to slide this operation around
the container. This requires two things: an
underlying mechanism for efficient
traversing (tied to an efficient accessing
scheme) and a programmer interface.

When a programmer is presented with
an efficient source of neighborhood data, it
is convenient to string together a series of
smaller functions to do the work of a more
complex function. However, the
programmer is typically forced to write the
complex function out flat, inline in one
function, to avoid the overhead of piping
data between functions. The IU workstation

environment provides support to
concatenate existing low-level operations
without incurring extra overhead.

This can be done by constructing a
library of neighborhood operations that
describe what is done on one neighborhood,

but contain no mechanism for iteration.
Examples are convolution kernels, median
filtering, and basic arithmetic and logical
manipulations of Nd data. Neighborhood
operations that maintain a state are
implemented in this model by saving the
permanent state in static and/or global

variables for later retrieval.

This makes the process of writing more
complex neighborhood operations into one
of concatenating the series of operations

into a single neighborhood operation. A
specific neighborhood function is then
inserted in the middle of a looping

m~chanism that is capable of traversing the
container, and supplying the
neighborhoods of data to the operator.

Object access is streamlined with a
cacheing mechanism that makes a local
neighborhood available to the C++ program
in an internal C++ data structure. The
mechanism is program-controlled, in that
the program decides when to initialize it
and when tc refresh its contents. Because
the cache is represented as a standard C++
data structure, either an array or a nested
array of pointers to arrays, the efficiency
of data access within the cache is identical
to array-based data access.

A neighborhood cache is wuseful for
representing windowing operations on
imagery. The input object is an image, the
cache is an array of pointers to linear
arrays; as the window slides across the
image, the cache is refreshed by updating
the pointers.

For point transformations the cacheing
mechanism is useful in order to reduce the
overhead of row access. The cache is defined
to be a single array equal in length to the
image row, and it is refreshed after each
row is processed. The processing of the row
is done with a tight for-loop, with entirely
in-memory data access.

The ability to compose functions without
creating intermediate data structures yields
the ability to display the results of
experiments with a minimum of typing on
the part of the programmer (e.g. not
creating named functions as above) and
with a great saving of memory and memory

management overhead. In Powervision
functions created this way were called
"pixel-mapping-functions". Because
individual objects know how to display

themselves, the pixel-mapping-function
capability is re-created with a wrapper that
says: compose the following functions
(passed by reference) on this input data,
and add the display method for the result of
the last function at the end. Ordinarily, the
final result is saved, because it is often the
input to a next stage of processing.
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For example, to apply a convolution to
only the pixels in an image defined by a
mask, a search method is applied to the
image object, where the search method run
length encodes the mask and accesses the
"on" pixels only. The search method is
composed with the convolution to feed only
the relevant neighborhoods to the
convolution kernel.

Mapping functions

are implemented by

subclasses of their respective containers.
There are four basic types of mapping
functions, and so four basic mapping

function class extensions:

1) coordinate transformation of
container locations

2) look-up-table applied to container
values

3) arbitrary expression applied to
container values

4) arbitrary expression applied to
container locations,

8 User Interface

The wuser-interface supports the direct
manipulation and inspection of all entities
in the vision environment through a
windows-menu-and-mouse interface. The
user interface is based on X Windows, a
network window system, and InterViews, a
C++ package that defines basic X Windows
objects. The user interface must be capable
of displaying a list of containers to an X
window, and mapping mouse clicks to
specific objects in the display list. The
following presents the display list object,
window types and addresses issues in
imagery display and mouse protocol.

The display list is an object that keeps
track of what set of objects is currently
being displayed in a window. There is a
single display list associated with each
window. The display list is implemented as a
connected container of 2d surfaces. The
connected container groups two-
dimensional points, curves, and surfaces,
interrelating them  with coordinate
transforms and other programmecd
relations. Each container stored in the
display list knows how to redisplay itself,

and knows how to determine if a given
point is inside or outside its 2d shape
boundary or whether a given rectangle

overlaps its shape boundary.
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The window system supports
overlapping windows, as well as neatly tiled
windows, useful for applications once they
reach a certain level of maturity.

While in overlapping mode, each
window can be resized, repositioned on the
screen, collapsed down to an icon, and
expanded back to its original size and shape.
When overlapping mode is disabled (tiling
mode), the size and shape of each window is
predetermined (or tightly controlled), and
the opening and closing of windows is
directed by the application.

Each window is associated with a display
type that governs the type of information

that can be shown within the display
region. The supported window types
include:

» 2D Object Display Window

3D Object Display Window

2D Plotting Window

3D Plotting Window

Directed Graph Browser Window

Structured Text Browser Window

Dialog Box Window.

The display of objects to windows is
object-oriented, in that each entity within
the vision environment knows how to
display (or present) itself to a window of a
specific type.

Most graphics that overlay images
occupy a small area compared to the image
size. An example is the overlay of linear
features, such as roads or rivers, on an
image.

When the image is drawn, it is from one
container object. Each window is associated
with a display type that governs the type of
information that can be shown within the
display region. The linear features are
assumed to be a second container object
with coordinates that overlap the image.
The problem is to allow the user to select
and unselect the display of the graphic
overlays without redrawing the whole
screen just to refresh the small area under
the grapiic overlays.




The approach is to create a third object
that has the same container (i.e. “"shape")
information as the graphics, but uses the
values from the image collection.
Refreshing the screen is accomplished by
requiring the appropriate set of graphic
objects to refresh themselves. This
capability is called a "sprite" object in the
object-oriented imagery display literature.

9 Databases
Database functions include:

+ simple persistent storage of images,
objects, functions and other data,

+ flexible conditional queries to retrieve
or compute instances of objects,

+ structural ordering of the object
instances to provide fast, efficient
access to the objects,

* consistent convention for accessing a
variety of different objects with a
minimum of coding effort, and

extensibility to
sharing on
databases.

support
different

group data
physical

The database manager is organized in a
client-server model and consists of two
components, the database interface and the
database server. The database interface (or
client) provides the interface to the
database from any other programs. This
interface is provided as methods that the
other objects may invoke. Such methods
include: insert, delete, save, find, etc.

The database server manages the storage
and access to items assigned to the database
including the allocation and deallocation of
space. This includes creation,
documentation, modification, access, and
deletion of user objects (images, features,
etc.) and programming objects (functions,
documentation, numbers, characters, etc.).

Databases traditionally provide a shared
access that prevents two users from
interfering with each other when
accessing the same object and provide a
transaction system to ensure the integrity
of each interaction with the database. These
aspects of a database are not as important

for the IU environment and are not
discussed further here.

The approach to the database design is in
two levels. The basic level provides for the
storage of objects, groups of objects and
indices as files for management by the
operating system. These files can be stored
and read directly from the program or
under interactive user control.

The next level provides interface to
database management systems from
commercial products. The current plan is to
develop a gensric SQL interface for the class
hierarchy. This allows interaction with
standard relational database system (e.g.
Sybase, Ingress, Oracle). Interface to new
object oriented databases (e.g., Ontologics'
Ontos) is a future possibility. Hooks are
provided to build additional structures for
efficient access, such as quadtrees.

The database is integrated into the core
workstation software in several ways. The
primary access to the database is through
the C++ language. The user (developer)
takes advantage of the database through the
core object structure,

Our approach to the database uses the
strong typing feature of C++ by allowing the
database objects to be incorporated directly
in the object hierarchy transparently. That
is, the objects are compiled directly into the
program (with strong type checking) and
are stored in the database by invoking the
persistence attribute. All imagery, imagery
objects, functions, production rules,
reasoning structures, etc. are expected to be
stored in the database and accessed through
the same C++ program interface. A set of
user interface procedures that form a front
end to the objects stored in the database.are
provided for the developer

The Sybase relational database system
provides the basic relational database
capability. An object oriented view of the
database is provided by a set of object
oriented procedures used as a front end to
the relational database.

This approach assumes that the structure
of objects stored in the database is known to
the compiler; in fact., the object storage
mechanism is compiled and linked with the
application program. It also assumes that
the persistent objects have a standard set of
methods for storing, retrieving, inserting,
ordering, etc. These methods constitute the
interface to the database and must be
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chosen carefully to allow replacement of
the database structure at a later date.

The index or ordering information on
objects in the database is provided by
special objects that have the appropriate
structures. Any group of objects may be
ordered using this object type by creating
an appropriate indexing object. These
indexing objects include: binary trees, quad
trees, oct trees, hash tables, etc. The
indexing objects access the ordered objects
by providing an offset into a table storing
the data for these objects.

Another function of the data base is to
store information derived from the objects.
These are arbitrary sized objects and may be
retrieved by a variety of attributes. The
attributes of these objects are defined by
methods on the objects. These
methods/attributes may be precomputed and
stored in an indexing list or they may be
computed when the query is made.

10 Current Status

The current environment status represents
5 months of design and 3 of implementation
on a 27 month effort. The Chorus image
processing package is not yet available as of
the writing of this paper. Hence,
implementation results focus on basic user
interface and database capabilities.

Recall that InterViews and IDraw are
public domain object oriented user
interface toolkits built on top of X Windows.
To date, ADS has extended the graphical
object hierarchy of InterViews and IDraw
in two ways: the addition of images and of
Bayes nets.

Within IDraw, images are first class
objects. The user can put an image object
into the drawing by clicking with the
mouse and pulling out a rubber rectangle to
define the outline of the image. The system
presents the user with a menu of files, and
when the image file has been chosen,
inserts the image into the designated
rectangle in the drawing, clipping the
image if necessary,

Once an image object is defined and
displayed, the user can perform a variety of

drawing operations on it, as with any
drawing object. Images can be moved,
scaled, stretched in width or height, or
rotated.  Arbitrary image warping is
currently being implemented. In addition
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the user can draw any kind of graphical
object on top of the image, and then group
the object with the image, allowing drawing
operations to be performed on both objects
simultaneously. For example, the user can
draw a colored polygon over a region of
interest on an image, then group the
polygon with the image into a composite
object, then scale and rotate the composite
object. The polygon still covers the same
area of interest on the image. These
capabilites are shown in figures 4. (To save
space, some photos have been cropped so

that the full computer screen is not
shown.)

Rather than detailing each additional
capability, we show our current state of
implementation through two interactive

processing scenarios. They demonstrate the
benefits of an integrated object hierarchy,
the use of images as first class objects,
uniform representation of display and
interactive object manipulation, and
seamless access to remote processes.

The first application is diagnosis of
arthritis from evidence extracted from a
hand xray pictured in figure 5. Nodes and
links are included as graphical objects.
Graphically accessible methods are
associated to form, in this example, a Bayes
net object. Evidence can be acquired from

images by measurement, and the evidence
propagated through the Bayes net.
Probabilities can be graphically inspected.

For example, given a Bayes net that draws

inferences about a disease condition of
arthritic  hands called periarticular
demineralization, it is possible to take
measurements on an xray of a hand in order
to obtain evidence for the Bayesian
network.

As illustrated in figure 5, the user loads
the xray as an image object, draws a line
down the middle of one of the finger bones
(phalanges) and asks for a plot of the
intensity values under the line by selecting
"Profile" from a menu. The plot is shown in
a window. A measure is taken of the relative
density between the ends of the phalanx
and the average density along the axis. This

measure is added to the Bayes net as
evidence by selecting the image, line and
relevant Bayes node and selecting "Add

Evidence” from the list of Bayes net menu
options. The impact of the evidence at any
point in the net can be seen by selecting




the desired node and the menu choice "Show The second application scenario involves
Belief". It is displayed as a probability interactively querying a digital terrain
histogram over the possible hypotheses at database stored in Sybase. Figure 6 shows
the node. In figure 5 these hypotheses are

"demineralization” and "normal".
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seamless interaction with an external
process through a graphical interface. The
user brings in an image of a map that is
registered with the digital database. A
region of interest is selected by drawing an

"Retrieve" option from menus, a message is
sent to Sybase, generating an SQL query. In
this case, the database is populated with data
on offshore oil wells, so a popup window of
the wells in the region is displayed when
the query results are returned.

Interaction
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appropriate  terrain layers and the
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Figure 6. Graphical Sybase
References

[Edelson et.al.,, 88] Edelson, D., J. Dye, T.
Esselman, M. Black, and C. McConnell, "VIEW
Programmer's Manual", Advanced Decision
Systems, Mountain View, California, June
1988.

[KBVision, 87] "KBVision
Manual”, Amerinex Artificial
Amherst, Mass., 1987.

Programmer's
Intelligence,

[Lawton and Levitt, 89] Lawton D.T. and T.S.

Levitt, "Knowledge-Based Vision for
Terrestrial Robots", Proc. DARPA IU
Workshop, Morgan Kauffman, San Mateo,

California, May, 1989. pp 128-133.

128

[L.awton and McConnell,
C.C. McConnell, "Image Understanding
Environments”, Proc. IEEE, Vol. 76, No. 8§,
August, 1988, pp. 1036-1050.

88] Lawton, D.T. and

{McConnell et. al.,, 88] McConnell, C., K.Riley,
and D. Lawton, "Powervisicn Manual",
Advanced Decision Systems, Mouniain View,
Califurnia, 1988.

[Quam, 84} Quam, L., "The Image Calc Vision
System", Stanford Research Institute, Menlo
Park, California, 1984,

[Waltzman, 90]  Unpublished notes at the
Image Understanding Environment
Requirements Meeting, Hughes Al

Laboratory, Malibu, California, May, 1990.




Appendix A: Top-Level Class
Hierarchy

Container

Point
Pointld
Point2d
Point3d
PointNd

Curve
Curveld
Signal
Curve2d
SimpleCurve2d
PointCurve2d
EdgeCurve2d
PolynomialCurve2d
SplineCurve2d
BezierCurve2d
Curve3d
SimpleCurve3d
PointCurve3d
EdgeCurve3d
PolynomialCurve3d
SplineCurve3d
BezierCurve3d
CurveNd
SimpleCurveNd
PointCurveNd
EdgeCurveNd
PolynomialCurveNd
SplineCurveNd
BezierCurveNd

Surface
Surface2d
SimpleSurface2d
ConstantSurface2d
Box
Polygon
Parallelogram
RLE
ValuedSurface2d
Image
PolygonImage
WarpedImage
TiltedImage
RLE_Image
ConnectedSurface2d
AggregateSurface2d
Surface3d
SimpleSurface3d
ConstantSurface3d

ValuedSurface3d
ConnectedSurface3d
AggregateSurface3d

SurfaceNd
SimpleSurfaceNd

ConstantSurfaceNd

ValuedSurfaceNd
ConnectedSurfaceNd
AggregateSurfaceNd

Solid
Solid3d
SimpleSolid3d
ConstantSolid3d
GeneralizedCylinder
CSG's
ValuedSolid3d
Space
BoundedSpace
ConnectedSolid3d
AggregateSolid3d
SolidNd
SimpleSolidNd
ConstantSolidNd
ValuedSolidNd
ConnectedSolidNd
AggregateSolidNd

HyperSolid
HyperSolidNd
SimpleHyperSolidNd
ConstantHyperSolidNd
ValuedHyperSolidNd
HyperSpace
BoundedHyperSpace
ConnectedHyperSolidNd
AggregateHyperSolidNd

Coordinate
Global
Local

Base

Collection

Array

ByteArray

Array2d
ByteArray2d

Array3d
ByteArray3d

ArrayNd
ByteArrayNd

Stream
ByteStream
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Stream2d
-‘By:eStream2d

Stream3d
ByteStream3d

StreamNd
ByteStreamNd

Graph
Tree
List

Record
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Image Understanding Research at Brown University

D. B. Cooper, T. L. Dean, W. A. Wolovich

Brown University,
Providence, RI 02912

Abstract

This is a new interdisciplinary center in the
DARPA Image Understanding program. Since
our group effort has just recently begun, the
proceedings space available has been devoted to
four papers describing some of the key concepts
that are being explored. These four papers are
identified in the reference section of this paper.
Due to spatial limitations, this paper, the prin-
cipal investigators’ program overview, is brief
and only touches on the primary directions in
our program.

1 Introduction

The proposed work is a multidisciplinary effort consist-
ing of basic research and a number of demonstration
projects in image understanding, with an emphasis on
service robots. ! The purpose of the demonstration
projects is to act as a focus for much of the research,
and to produce subsystems, significant portions of which
should be exploitable for military applications. This will
involve our focusing on computational and accuracy con-
siderations. Since the systems must deal with consid-
erable complexity, planning capability is of importance
here. In general, more than one type of sensing will be
necessary. We plan to use passive stereo and continuous-
contact force/torque sensing in our initial investigations.
Some use will be made of active rangefinding—most
likely based on the use of structured light. The demon-
strations will involve topics central to image understand-
ing for mobile service robots in general, and therefore
will be applicable to robots for servicing military vehi-
cles, loading munitions, warehousing, scraping paint on
shipboard, scrubbing surfaces, etc.. The image under-
standing will be equally useful in indoor and outdoor
applications, although the experiments will be primarily
indoor.

2 Experimental Environment

To focus the basic research on topics important to prac-
tical applications and for the purpose of testing the al-

!Future investigations in the areas described will be sup-
ported, in part, by the NSF and DARPA under Grant No.
TRI-8905436.
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gorithms developed, our experimental environment will
be that of objest recognition, object position estimation,
scene understanding, and navigation in laboratory envi-
ronments. The tasks involved are those that might be
described as the functions of a repair person’s assistant.
Ideally, the robot should be able to respond to com-
mand tasks such as: Go to the nezt laboratory and bring
back a logic analyzer that is sitting on one of the workta-
bles. For this purpose, the robot must find its way to the
next laboratory, which is an unstructured man-made en-
vironment, recognize worktables and navigate to them,
recognize a logic analyzer on one of the worktables, and
estimate the position of the analyzer and the free space
around the analyzer in order to determine how to grasp
the analyzer and then move it. The robot should be able
to grasp and move small objects. Moving large objects
would require the coordinated use of two sizable arms,
which is not in our projected experimental facility.

What is the complexity of the scenes that we ex-
pect to deal with? There are a few classes of large
objects in the environment. They consist of: immov-
able walls, room partitions, and large storage cabinets;
rarely moved desks, worktables, bookcases, and file cabi-
nets; frequently moved chairs. There will also be moving
people, and cartons and other clutter that are on mov-
ing platforms or on the floors but which are frequently
moved. Objects that the robot must recognize and esti-
mate in order to manipulate them are largely small tools,
parts, and instruments. They will usually be on work-
tables, desks, or the floor. Occasionally, they will be on
mobile stands.

Because there are a number of disciplines that are be-
ing brought together in this project, tiie most practical
procedure appears to be to pursue two developments in
parallel. One is primarily vision and force/torque sens-
ing for high and low resolution scene and object recogni-
tion and estimation using planning. This will be model
based. The experimental facility will be a robot arm
with a force/torque sensor and a black and white ccd
camera, and a pair of color cameras that can pan, tilt,
and zoom on a stationary base,

The second development will be vision, tactile, sonar,
and proximity sensing for low resolution scene estima-
tion for navigation. This research will be carried out
using a mobile platform, and will emphasize planning
for real-time sensor fusion and navigation. The mobile



platform will have some on-board computing, but we
anticipate the need for additional computing resources
and hence are looking into communication hardware to
off-load some of the computing. In addition to permit-
ting research on vision and tactile sensing, and research
on planning, to proceed simultaneously, the two devel-
opments will permit assessing the relative merits of us-
ing fewer types of sensing with higher resolution, more-
complex scene models, versus more types of sensing and
lower resolution scene models with more-complex rea-
soning. A complete system may find that one approach
is better for some tasks, and the other approach is better
for other tasks.

3 Major Research Topics

The demonstration projects are important because they
focus a significant portion of our research effort on that
image understanding that is central to the realization of
practical service robots. We feel that the repair person’s
assistant creates a useful laboratory environment be-
cause it starts at a practical technology level, and prob-
lems of increasing difficulty can be tackled and incorpo-
rated into increasingly sophisticated systems. The Den-
ning surveillance robot and the TRC helpmate robot, for
transporting food and supplies to locations in a hospital,
are examples of presently useful technology.

Basic research will be covered that is generally appli-
cable to indoor and outdoor scenes, as well as to the
demonstration projects. The systems aspects of the
projects will force considerations that would not arise
were some of the topics to be considered alone. Among
the major topics that will be covered are the following.

1. 3D geometric modeling with emphasis on high-
degree polynomialsin x,y,z, for surfaces or groups of sur-
faces, and algebraic representations for nonplanar curves
or groups of curves. These curves are represented as in-
tersections of polynomial surfaces. This is boch for ob-
jects that are to be recognized or manipulated and for
scenes. This work can be viewed as extensions of the
use of collections of planar and quadric patches for mod-
eling 3D surfaces or 2D curves, or using collections of
high curvature points as significant features for object
representation. Since our higher degree polynomials can
represent larger patches of surfaces, which may be dis-
connected, by 2 single analytic function, they can cap-
ture more significant structure of objects, thus providing
greater discriminatory power that is important for object
recognition and position estimation when the number of
possible objects is large and clutter and occlusion are
prevalent. They also appear to have computational ad-
vantages. Objects of interest will often belong to large
classes, e.g., the class of chairs. Since the number of dif-
ferent shapes in this class can be large, we will model
the geometric variabilily probabilistically. Marhov Rau-
dom Fields show promise for this purpose. This is true
for other highly variable surfaces as well, such as human
figures or creased or crumpled paper.

2. 3D surface estimation, volume occupancy determi-
nation, object recognition, and object location and ori-
entation estimation. These are all difficult problems with
respect to computational cost and inference accuracy for

realistically complex situations. Among the approaches
we will be taking in dealing with these situations are
those in [Taubin and Cooper, 1990], [Cooper et al., 1990},
and [Dean et al., 1990). For 3D surface or curve or
2D curve recognition and position estimation from data,
[Taubin and Cooper, 1990] introduces: approximations
that permit computationally modest generalized eigen
methods for fitting algebraic functions to data; special
polynomials for use as features in a large object data
base; geometric invariants. The special polynomials are
of two types: one is a single polynomial that represents a
group of primitive surfaces, e.g., three planes, or a plane
and a 3rd degree surface; the other polynomial is what
we call an "interest region”. It is a region where the
polynomial changes little for small changes in the region
used, and is such that a 3rd or 4th degree polynomial fits
the data well, but a polynomial of lower degree does not.
In [Cooper, et al., 1990], the problem of 3D surface esti-
mation, recognition, and segmentation from a sequence
of images is put into a general Bayesian framework. This
appears to be able to handle essentially all situations
from highly variable surfaces through segmentation into
objects. In [Dean, et al., 1990}, we present an approach
to building planning and control systems that combines
sensor fusion and sequential decision making for active
perception. The approach is based on Bayesian decision
theory, and involves encoding the underlying planning
and control problem in terms of a compact probabilis-
tic model for which evaluation is well understood. We
illustrate our approach using a robotics problem that re-
quires spatial and temporal reasoning under uncertainty
and time pressure. We use estimates for the computa-
tional cost of evaluating the probabilistic model to justify
representational tradeoffs required for practical applica-
tion.

3. Continuous-contact tactile (force/torque) sensing.
Our primary objective, with respect to force/torque
sensing, is to determine how touch can be used for ob-
ject recognition via force-contact motion control along
the surface of an unknown object. Since force informa-
tion employs only “local” information, in that it involves
only the contacted object, and not the environment, far
less information need be processed (when compared to
vision) in order to identify a contacted object. We have
developed a new technique, termed “dual-drive” control,
for moving the end-effector of a robot along a surface,
without explicit knowledge of the surface, in order to ob-
tain trajectory information which can subsequently be
used to identify the object. This work is detailed in
[Wolovich, 1990].

4. Sensor fusion. This involves fusing models and
data from multiple images for passive stereo, tactile data,
and data from active sensing. The active sensing will be
structured light and perhaps others. Our approach is
to mod- ' the structural mutual dependencies among the
data sets produced by the various sensors, and then treat
recognition or position estimation as decision theoretic
problems based on these mutually coupled data sets. We
have developed machinery for doing this down at the
raw data level. Examples of this are global inferences
about 3D objects from patches of range data [Bolle and




Cooper, 1986] and 3D surface estimation from a sequence
of images [Hung et al. , 1990). The challenge in the
proposed research will be to use these tools we developed
for limited domains, and apply them to data from this
broad range of sensors. Other tools will be brought to
bear as well [Dean et al., 1990}, and additional ones will
have to be developed.

5. Planning for image understanding occurring in task
implementation. This involves determining the appro-
priate level of sensed information for the task at hand;
choice of appropriate sensors; determination of the most
advantageous sensor position; grasping and manipulat-
ing objects in a cluttered environment, and navigation
in a complex environment, guided by information ob-
tained from sensors. Bayesian decision theoretic tech-
niques play a role here, and useful approaches and results
have been obtained in recent years by us and others.

6. Learning Environmental Geometry. Learning ob-
jects, classes of objects, and configurations of objects
that the robot is to manipulate or deal with for purposes
of navigation is key to a useful robot system. We recog-
nize three levels at which geometric model information
can be put into the robot. The first is user programmed.
The second and third are supervised and unsupervised
learning, respectively. The latter two are the most inter-
esting, and in the long run, the ones of primary useful-
ness for any intelligent system. In supervised learning,
the object is shown to the robot and identified as to its
class association. If it has identifiable sub-parts such as
patches of primitive spheres, cylinders, and planes, these
are identified by pointing to and labeling each. But the
segmentation and representation parameter estimation
are carried out by the robot. In unsupervised learning,
the robot would figure out for itself what the meaningful
sub-parts of an object are. At a more general level, in
unsupervised learning a robot would have to figure out
for itself just what in a scene are useful or interesting ob-
jects. The latter takes considerable processing time, but
if a robot has periods of otherwise low demands on it, it
can use these periods for unsupervised learning. Situa-
tions between the supervised and unsupervised extremes
will be common. More generally, as we see it, learning in-
volves determining those models in the defined universe
of possible models under consideration that are appropri-
ate to the given information and learning data. The role
of the supervisor is solely to provide information that
narrows the search space so as to reduce the search and
learning times and ambiguity in the end result. This
work is being done in projects jointly with Dr. Ruud
Bolle of the IBM T. J. Watson Research Center, York-
town Heights, N. Y., and with Professor Jeffrey Vitter
at Brown University.
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Abstract

This paper presents an overview of the research in
image understanding (IU) at the University of Illi-
nois (UI) conducted since our last report in the pro-
ceedings of the 1988 DARPA 1U Workshop., Dur-
ing this period (1988-90), we have made progress
in four areas: integration in three-dimensional vi-
sion, motion analysis, navigation, and parallel al-
gorithms and architectures. Work in each of these
areas is reviewed. Research in a more recent area
of activity, object recognition, is also summarized.

1 Introduction

A major part of our recent research is in four areas of
image understanding. The first area (Sec. 2) deals with
integration of multiple image cues in performing image
interpretation. These cues capture different aspects of
the scene structure, and their integrated analysis leads
to a more robust inference about the scene characteris-
tics than possible from individual cues. The second area
(Sec. 3) is concerned with our work on interpretation of
image sequences showing dynamic scenes. Here we con-
sider the problem of estimating the three-dimensional
(3-D) motion parameters and the 3-D surface structure
from feature correspondences over a sequence of images
and examine the nonrigid motion problem. Projects in
the third area (Sec. 4) report work on different compo-
nents of an evolving 3-D representation and navigation
system with the goal of autonomously aquiring, main-
taining and using 3-D information about the environ-
ment. Finally, in the fourth area (Sec. 5), we summa-
rize our work on a specific multiprocessor architecture
that we have proposed for image understanding com-
putations, and on parallel algorithms for a variety of

"Parts of this research were supported by grants from
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IRI-89-08225, Air Force Office of Scientific Research under
grant AFOSR-90-0061, Army Research Office under grant
DAAL 03-87-K-0006, Joint Services Electronics Program un-
der grant N00014-90-J-1270, State of Illinois Department
of Commerce and Community Affairs under grant 90-103,
Rockwell International, and and Eastman Kodak Company.
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vision tasks. Section 6 concerns work on object recog-
nition which is a new area of activity at Ul, Represen-
tative projects in each of these areas are summarized
in the following sections. To keep the paper brief, we
have minimized discussion of and references to relevant
work done by others; such discussion and references ate
available in our publications cited.

2 Integration

Our goal in this area is to perform 3-D or other in-
terpretation of images, such that the interpretation si-
multaneously satisfies a range of constraints imposed
by the image structure and the model of the scene. To
do this, we use different computational processes each
of which carries complementary or redundant informa-
tion derived from different image cues. Image interpre-
tation is the result of a cooperative computation that
resolves conflicts and ambiguities arising from the indi-
vidual processes. We present below three examples of
our integration approach; for others, see (2, 7, 8, 22).

2.1 Integrated Passive Stereo

The traditional formulation of the problem of estimat-
ing three-dimensional surfaces from stereo images con-
sists of three steps: feature detection, feature matching,
and surface interpolation. We have argued in our pre-
vious work that the latter two tasks would be more ac-
curately executed in an integrated manner rather than
sequentially siice they are strongly interdependent. We
have reported an algorithm that performs such integra-
tion [22]. We have further developed this integration
algorithm; it now performs surface fitting directly on
depth data (points), rather than on disparity values [16].
Clusters are detected in the three-dimensional distribu-
tion of points which result from the matching of feature
points in the stereo images. Different clusters corre-
spond to different surfaces. The depth estimation can
be performed using arbitrary vergence angles for the
cameras.

The integration resulis in a number of advantages
not possible to obtain otherwise. We have explored a
new approach which performs a broader integration of
stereo; it integrates all three steps instead of just fea-




ture matching and surface interpolation. This is accom-
plished using an analog formulation in which all three
parts of the computation are performed by a monolithic
computational structure of dynamical systems. The in-
tegration is carried out in parallel by analog signals.
This new approach is also expected to be useful for sev-
eral other low level integration tasks. The details of
this work and the advantages of the dynamical systems
approach are presented ina separate paper in these pro-
ceedings [6].

2.2 Integrated Active Stereo

In this work, we are concerned with the problem of sur-
face reconstruction from stereo images for large scenes
having large depth ranges, where it is necessary to aim
cameras in different directions, to fixate at different ob-
jects, and to construct the global surface map of the
scene from small patches. Since the beginning stage of
the work reported in [3}, we have now developed an ac-
tive stereo system with a broad range of capabilities.
We have carried out the work in two stages. In the first
stage, we consider the problem of surface reconstruc-
tion of & single object, although the object surface may
have large breadth and depth. Cosequently, the scan of
the object suzface can proceed smoothly with no depth
discontinuities. We have developed a formalism for the
integration of three depth cues: focus, vergence, and
stereo disparity. Individually, these sources of depth
have their strengths and weaknesses which make them
suitable for specific contexts. We have noted that these
strengths and weaknesses are quite complementary, and
our approach attempts to dynamically combine the use
of these cues in a context sensitive manner, so as to
take advantage of their strengths while eliminating their
weaknesses. There are two components to the approach:
selection of a point of fixation on the object, and gen-
erating a local surface map in the vicinity of the fix-
ation point. A point is chosen for fixation if it mini-
mizes a certain objective function. The construction of
the surface patch in the vicinity of the fixation point
uses another objective function which contains as one
component the camera calibration parameters; thus, the
surface reconstruction can be performed using an unre-
liably calibarted camera system. This is an important
property, since the imaging parameters of a dynamic
camera system tend to be different from the true pa-
rameters, and the relationship between the two often
changes due to mechanical and other errors. By in-
cluding the camera parameters in the objective func-
tion, camera calibration is also carried out dynamically
along with surface reconstruction. The overall approach
interleaves the processes of image acquisition and sur-
facfz estimation. The details of this work can be found
in {1].

When the scene contains small objects and depth
boundaries, the selection of new fixation points becomes
difficult if the other objects in the scene are not in fo-
cus, and the surface reconstruction of the object cur-

135

rently in focus has been completed [17]. The location
of the object boundary can be obtained from the varia-
tion of image sharpness with focus setting, To select a
new fixation point, information about the layout of the
scene away from the object under fixation is necessary.
This presents a dilemma since to acquire such surface
structure is the objective of fixation in the fixst place!
To this end, we present an approach to acquiring coarse
structural information about the scene in the vicinity
of the next fixation point during the current fixation,
and utilizing this information for fixation and accurate
surface reconstruction in the vicinity of the next fixa-
tion point. This work is described in a separate paper
in these proceedings [18].

During our work on the focussing process, we have
observed that image blurring effects in the vicinity of
occlusion boundaries are quite complex. We have shown
that blurring processes operating in the vicinity of large
depth discontinuities can give rise to spurious and pro-
nounced image details which cannot be explained by
previously available blurring models, which usually pre-
dict suppression and not creation of image details due
to blurring. We have argued that blurring in high-relief
scenes should be viewed as a multicomponent process.
To this end, we have developed a model of blurring. Ex-
tensive experiments with images of real scenes obtained
with a CCD camera point toward the qualitative valid-
ity of our new blurring model. The details of this work
are presented in a separate paper in these proceedings
[37).

2.3 Integrating Region, Border and
Component Gestalt for Extracting
Perceptual Structure

This research concerns perceptual grouping, or goal in-
dependent detection of perceptual organization in im-
ages. The image tokens that may be grouped include
blobs, edge segments, and geometrical features of image
regions. Omne way of understanding grouping phenom-
ena is to eliminate all but one property at a time and
examine the effects of that property on grouping. Since
dots are without size, orientation, color and shape, dot
patterns provide a means for studying the effect of to-
ken positions on their grouping, while minimizing the
role of nonpositional properties.

The single variable that determines such low level
grouping of dots is the relative locations of dots. We
have reported in the past on our approach to perceptual
grouping of dots that integrates multiple constraints,
active at different perceptual levels and having differ-
ent scopes in the dot pattertn. We have extended this
integration approach for perceptual grouping to extract
perceptual structure in gray level images. The extended
approach infers the structure by integrating evidence
from region boundaries and region interiors. Although
the Gestalt constraints used in our approach are justi-
fied on perceptual grounds, we have carried out a quan-
titative analysis of their significance in defing a per-




ceptual segmentation, We have conducted experiments
with a set of dot patterns designed to satisfy to differ-
ent degrees the different constraints: interior homogene-
ity, border smoothness, and component compactness.
The segmentation results obtained by our algorithm for
various combinations of these properties are compared
with and are usually the same as perceptual segmen-
tation. Further, we have compared the results of our
approach with those obtained by traditional clustering
algorithms. These results show that the global opti-
mization of some simple function of interdot distances
which is used as the criterion function by the cluster-
ing algorithms does not lead to perceptually acceptable
segmentation. The clustering algorithms fragment per-
ceptual clusters, merge them, or do both. The results
are qualitatively unacceptable, and the types and ex-
tents of the errors point to a basic deficiency in the
approach rather than to minor problems of adaptation
to the data. Our integration approach gives satisfac-
tory performance in all the tests. Details of this work
are reported in [4].

3 Motion Analysis

The long-range goal of our research in this area is the
understanding of dynamic scenes. The framework we
have used consists of three stages: finding feature cor-
respondences in a sequence of frames, determining rigid
motion parameters and surface structure from the cor-
respondences, and analyzing and visualizing nonrigid
motion.

3.1 Detecting Feature Correspondences

Detecting feature correspondences is difficult due to a
wide variety of three-dimensional structural disconti-
nuities and occlusions that occur in real world scenes.
We have developed a computational approach to im-
age matching that uses multiple attributes associated
with a pixel to yield a generally overdetermined sys-
tem of constraints, taking into account possible struc-
tural discontinuities and occlusions[38, 43]. In our algo-
rithm, intensity, edgeness, and cornerness attributes are
used in conjunction with the constraints arising from
intraregional smoothness, field continuity and discon-
tinuity, and occlusions to compute dense displacement
fields and occlusion maps at pixel grids. A multireso-
lution multigrid structure, using both bottom-up and
top-down flow, is employed to deal with large dispari-
ties. Coarser level attributes are obtained by blurring
the finer level attributes. The algorithm is tested on real
world scenes containing depth discontinuities and occlu-
sions. For short range motion, we obtain time trajecto-
ries of feature points, which are defined by sequences of
point correspondences across frames.,

3.2 Rigid Motion and Structure from
Correspondences

Our work in this area can be divided into two categories
according to whether the images show long range mo-
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tion or short range motion.

In the first category, we have used point correspon-
dences to estimate long range motion and structure from
perspective views [44]. For a planar surface, we have de-
veloped an algorithm that gives a closed-form solution
for motion and structure parameters along with asso-
ciated errors, for a sequence of monocular perspective
images of feature points [39]. The algorithm is simpler
and more reliable in the presence of noise than the ex-
isting ones. For general surfaces, we have developed
an approach that consists of two steps [40]. The first
step is estimating the motion parameters using a ro-
bust linear algorithm that gives a closed-form solution
for motion parameters and scene structure. The second
step is improving the results from the linear algorithm
using maximum likelihood estimation. Algorithms have
been developed using point correspondences as well as
line correspondences, and tested on images of real scenes
from automatically computed displacement fields.

We have developed an approach to optimal estimation
of motion and structure which is applicable whether the
type of noise distribution is known or not {41]. For noise
distributions with Gaussian model and the uncertainty
polyhedron model, we have investigated maximum like-
lihood estimation. For Gaussian noise, this amounts
to minimizing a so called image plane error. For the
cases where the type of noise distribution is unknown,
it is shown that minimizing image plane error corre-
sponds to an unbiased, minimum variance estimator for
a locally lineari