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1. Introduction 

In this paper, a new contact-impact procedure called the pinball algorithm is described, for 
previous studies of contact-impact see [1-4]. A short description of pinball was previously given 
by Belytschko and Neal[5]. The thrust of the pinball algorithm is to allow vectorization of as 
much of the slideline calculations as possible. This is accomplished by greatly simplifying both 
the search for the elements involved in the impact and in the enforcement of impenetrability with 
the use of spheres, or pinballs, for each element in the slideline calculations. In this way, the 
search requires a simple check on the distances between pinballs to determine interpenetration. 
Once the contacting pairs of pinballs have been determined, the impenetrability condition is 
enforced with the use of a penalty formulation which can be completely vectorized. A similar idea 
has also been used in the two-dimensional NABOR algorithm[6], but the NABOR method used an 
ad hoc method based on spheres for the determination of stresses in the continua and did not use a 
representation of the surface normal. In the pinball algorithm the element spheres are used only in 
the contact algorithm, while standard continuum mechanics is used for the continuum elements. 

2. Variational Inequality and Discrete Interpolants 

The weak form of the contact problem is obtained from the principle of virtual work by 

appending the Lagrange multiplier type term 5 (X g).   We consider the trial functions to be 
kinematically admissible functions v, so vt € V and X € A where 

V =  {Vi: vj € C°(QA u QB), Vj = v? on Tv.} (2.1a) 

A = {X:Xe Cl(Tc\X<o} (2.1b) 

As indicated above, these functions need only be piece wise continuous and satisfy essential 
boundary conditions. The variations (or test functions) 8vj € \(>, §X e A 0 where 

V0 =  { 5vj: 5vj € C°, 5Vi = 0 on Tv.} (2.2a) 

A0 = {5A,:8XG c\SK<0on Tc} (2.2b) 

5W = oW™ + 5M - 5Wext (2.3) 

(see Belytschko [7]) where 

8W^=    j5v(iJ)ajjdQ (2.4) 

Q 

Swext =     f Svjbj dtt +    f 5vjT * dT (2.5) 

s 



5M    =   J övjpvi dQ (2.6) 
Q 

where the density is denoted by p, the body force by ty, the surface tractions by T*, and the 

Lagrange multipliers by X. The stress state is described by the Cauchy (physical) stress a^. 
The weak form for the contact problem is then given by : 

If ve V, X € A and 

./ 5W + J 6(Xg)dr > 0 (2.7) 

for all 5v e V0, bX € A0, then the momentum equation, traction boundary conditions and 
contact surface inequalities are satisfied. The equivalence of this weak form to the governing 
partial differential equations is demonstrated in [5]. 

3. Pinball Algorithm 

The main idea of the pinball algorithm is to enforce the impenetrability condition and 
contact conditions on a set of spheres, or pinballs which are embedded in the finite elements. By 
enforcing the contact constraint on the spheres rather than the elements themselves, the time 
required by the contact algorithm can be greatly reduced because: (1) the determination of whether 
interpenetration has occurred becomes a simple check of the distance between two pinballs, (2) 
when combined with a penalty method, it involves almost no recursive calculations or conditional 
statements, so it is much more amenable to vectorization. 

The hexahedral elements used in this formulation are described in detail by Flanagan and 
Belytschko[13]. A sphere, or pinball, is embedded in each of these hexahedral elements of the 
mesh. These pinballs will then be used to determine which elements are involved in the contact. 
The center and radii of the sphere are given in element e by 

Ci-jixfi (3.1) 
51=1 

-<l K =    , / — (3.2) 
47C 

respectively, where Cj are the coordinates of the center of the sphere, x^ are the coordinates of 

node I of element e, R is radius of the pinball, and Ve is the volume of element e. 
The center of each sphere is simply the average of its nodal coordinates while the radius is 

determined by setting the volume of the resulting sphere equal to the volume of the element itself. 
For materials with substantial compressibility the radius for each element would have to be 
recalculated every few steps. 

The detection of the impacting pairs is, computationally, a very simple procedure. The 
distance between the centers of each slave pinball and each master pinball is calculated and then 
compared with the sum of the radii of the two elements. Interpenetration has occurred when 

dij    < Rj + R< (3.3) 

__i 



where djj is the distance between the centers of elements 1 and 2 and R=. Rj are the radii of 
elements i and j. Note that in this procedure the masters and the slaves may be penetrated by more 
than one element during a time step. 

In a penalty of velocity projection formulation, where forces are added to each node 
involved in contact, contact of one element with several other elements does not impair the 
algorithm. On the other hand, in the displacement projection form of the Lagrange multiplier 
method[4], since the nodes are moved, difficulties arise when a single element comes into contact 
with several other elements because nodes are displaced in the contact algorithm. This difficulty is 
illustrated in figures 1. In figure la element 1 contacts two other elements 2 and 3. If a 
displacement-based slideline algorithm is used, element 1 would first be moved so that it does not 
penetrate element 2 as in figure lb, and then it would be moved again as shown in figure lc so as 
not to penetrate element 3. During this second adjustment element 1 may again penetrate element 2 
and this penetration would go undetected. This problem is especially troublesome in vectorized 
algorithms. Since the adjustment of position is a recursive operation, the first adjustment would 
not take place at all. 

The penalty force is proportional to the depth of penetration between the two elements; 
therefore the next step of the procedure is to determine the penetration depth of the two elements. 
In the pinball algorithm, the penetration is easily calculated. Consider two interpenetrating 
pinballs, 1 and 2, in figure 2, with the velocities \\ and v2; the normal of the associated surfaces 
are nx and n2. The position vectors of the centers of the two pinballs are given by Cx and C2. 
The penetration is given by g and is defined as the relative displacement of the centers of the 
pinballs in the average normal direction needed to eliminate tnterpenetration, so that the following 
equation determines g 

IIC1-C2 + gnll2=   (R,+R2)2 (3.4) 

and the normals of the two elements are given by 

n = j (i^-n!) (3.5) 

This gives 

g = -b+ \ b2 - c (3.6) 

where 
ii(*i - C2i) 

b = 
nJnJ 

XjXi + C2iC2i- 2xiC2i-(R1 + R2)^ 
c   =    —  (3.7) 

nJnJ 

Note that only the positive sign on the radical in (6) need be considered; the negative root 
corresponds to a negative value of g which is irrelevant. 

The penalty force which will be applied to the nodes of each element is proportional to the 
penetration depth and is given by 

Fp = (pxg + P2g)n (3.8) 



An expression for the parameter, p2, has been proposed for the case of a node impacting the 
surface of an element and the volume, area and bulk modulus referred to the impacted element[16] 

ßBA2 

P2 = ^r- <3-9) 

where B, A, and V are the bulk modulus, area of the impacted surface, and volume of the element, 
Fp is the penalty force on the pinbäll. 

The rate of penetration is computed by 

8 

g = lL(v|-vi)«n (3.10) 
1=1 

In the present context, the properties of two pinballs must be considered, so the penalty parameter 
will be given by 

P2 
= i^(B1R1+B2R2) (3/11) 

where B1? B2 are the bulk moduli of the impacting pinballs, and Rj, R2 are the radii of the 
impacting pinballs. Equation (9) gives the contact force that will be applied in opposite directions 
to each of the two impacting pinballs. This force is then divided among the eight nodes of each 
element 

Ff = |Fp n = l,8 (3.12) 

where F^* are the element level penalty force on local node n of the element. These forces are then 
assembled to the global force vector as usual. A flowchart of the impact algorithm is given in 
figure 3. 

The penalty force is divided among the eight nodes of the hexahedron to preserve the 
symmetry of the underlying linearized system. Since the position of the pinball depends on the 
eight nodes of the hexahedron, the linearized equations would not be symmetric if the force were 
subdivided only among the surface nodes; an alternative algorithm where C depends only on the 
surface node velocities and hence the penalty forces are distributed only to the surface nodes is 
now under investigation, Belytschko and Bindeman[17]. 

The penalty forces, along with the forces arising from element stresses and externally 
applied loads, are used in the calculation of the nodal accelerations. Therefore the contact routine 
appears in the algorithm immediately before the nodal accelerations are calculated. The flowchart 
of the complete explicit algorithm with the contact algorithm are given in figure 4. 

4. Numerical Examples 

In order to test the accuracy and efficiency of the proposed contact procedure several 
example problems were examined. The first problem considered was the impact of two one- 
dimensional bars consisting of ten elements each. This problem was performed in order to 
compare two different methods of enforcing the impenetrability constraint: the penalty method and 
the projection method. This contact constraint is the only nonfinearity that appears in the problem. 



As can be seen in figure 5 one of the bars is given an initial velocity so that it impacts with the 
second bar. The material properties are such that the wave speed in the two bars is 10.0 m/s. 

Figure 6 through 8 give the velocity time histories for the nodes at the midpoint of the first 
rod (x=5.0), at the interface on the first rod (x=10.0), and at the midpoint of the second rod 
(x=15.5). As can be seen from figure 7, the penalty method gives a rather noisy solution at the 
contact interface yet this does not appear to have much affect away from the contact zone (see 
figures 6 and 8). The results for the Lagrange multiplier method were nearly identical to the 
projection method and therefore were not included in the results. 

The second problem considered was of a copper rod impacting a steel plate at high 
velocity. The rod, acting as the projectile, consisted of 414 elements while the plate or target was 
made up of 1,428 elements. The geometry and the material properties for each of the objects is 
given in table 1. The evolution of the problem is shown in figure 9. In this example problem and 
the one that follows a Von Mises yield criteria is used with a piece-wise linear stress-strain model. 
Once the effective stress reaches yield the material undergoes isotropic hardening until the effective 
stress is equal to the ultimate stress, at which point the material is considered perfectly plastic. 
When the effective strain of an element reaches the maximum allowable effective strain, the 
element is eroded, that is the stress in the element is considered zero from that time on. The 
maximum allowable effective strain used for steel is 1.0 while that used for copper is 2.0. 

This problem was also examined by Belytschko and Lin[4] with their projection method 
and a comparison of running times for both the methods is given in the first column of table 2. As 
can be seen from this table, the efficiency of the new algorithm is substantially better than the 
previous one on a vectorized machine. For this comparison, both algorithms were implemented 
into the three dimensional finite element code WHAM3D and run on a Cray X-MP/14 with the 
CFT77 compiler. The differences shown in running times is due only to the different slideline 
algorithms used. 

The importance of vectorization for both of these slideline algorithms is demonstrated 
graphically in figures 10 and 1 h In these figures a breakdown of the total CPU is given for each 
part of the program for both vectorized and unvectorized compilers. (The unvectorized runs were 
performed on the same machine using the CFT77 compiler with the vectorization turned off.) For 
unvectorized runs, the new algorithm is only marginally more efficient than the previous method. 
When the vectorized compiler is used, however, the old version of the slideline algorithm 
consumes nearly fifty percent of the total CPU, the new procedure this value has been reduced to 
only fifteen percent for the vectorized run. 

The impact of an elastic sphere with a rigid wall was examined to test the accuracy of the 
new algorithm. Ten degrees of the sphere are modelled with 499 elements as shown in figure 12. 
All of the nodes in this model are constrained in the circumferential direction; in addition, the 
nodes along the diameter are also constrained in the radial direction. Figure 12 also gives the 
material properties and dimensions of the sphere. The contact radius as a function of time is 
compared for the numerical simulation and the analytical result[21] in figure 13. 

The final example problem is that a rod striking a plate at 136,000 cm/sec and a 60° 
obliquity. The projectile is modeled with 414 elements and the target with 5,300 elements. The 
time duration of the simulation is 1.0 x 10 sec. The geometry and material properties are 
described in table 3. The initial mesh is shown in figure 14. The final mass of the projectile is 
42% of the initial mass and the exit velocity is 117,756.34 cm/sec in the x direction. 

5. Conclusions 

The major breakthrouth of this paper is the demonstration that a contact-impact algorithm 
can be simplified dramatically by interpreting the gap g between the bodies as the gap between 
spheres embedded in the elements. This simplifies the contact-impact algorithm and facilitates 
vectorization. Computer times for large three-dimensional problems show a fivefold speedup in 
the slideline algorithm and as much as a factor of two in total running time 
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Table 1. Geometry and material properties of penetration problem 
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1. 

Projectilefrod with a round nose) Targetfpime) 
Length               = 4.900 in. 3.950 in. 

Width 7.900 in .(half plate is modeled) 

Thickness          = - 0.375 in. 

Radius               = 0.500 in. - 

Density              = 8.31e-3 lb-sec2/in.4 7.34e-3 lb-sec2 / in.4 

Bulk Modulus    = 2.0739e+7 psi 2.4200e+7 psi 

Shear Modulus   = 6.3800e+6 psi 9.3000e+6 psi 

Plastic Modulus = 1.5000e+5 psi 1.4300e+5 psi 

Yield Stress       = 2 0300e+4 psi 1.6000e+5 psi 

Ultimate Stress  = 6.5300e+4 psi 2.0300e+5 psi 

Initial Velocity   =     5.5566e+4 in./ sec.(x-component) 0.0 

-5.5566e+4 in./ sec (z-component) 

Table 2. Timing studies for penetration problems. 

Algorithm Example 1           Example 2. mesh 1  Example 2. mesh 2 

Previous method 34.7 sec.                   94.4 sec. 302.2 sec. 

Pinball algorithm 22.0 sec.                     '0.4 sec. 143.0 sec. 

Table 3. Geometry and material properties of penetration problem 4 

Projectilefrod with a rounH nose) Tareetfplate) 

Length                    = 10.25 cm 20.00cm 

With - 10.00cm 

Thickness              =. - 2.53cm 

Radius                   = 0.51cm - 

Density                  = 7.77e-3 kgm/cm3 7.77e-3 kgm/cm3 

Young's Modulus = 2.07e+7 N/cm2 2.07e+7 N/cm2 

Yield Stress 1.38c+5 N/cm2 9.13e+4N/cm2 

Ultimate stress       = - 1.12e+5N/cm2 

Failure stress          = - 3.65e+4 N/cm2 

Failure Strain          = 2.0 2.5 

Initial Velocity        = 117756.34 cm/sec.( x-component) 

-68015.79cm/sec (y-component) 



b) 

Fig. 1. a) Impact of one element with two other elements; 

b) movement of element 1 due to impact with element 2; 

c) movement of element I due to impact with element 3. 

Fig. 2. Interpenetration of 

two pinballs. 



1. If this is the first step, use the element volume to calculate a radius for all 

elements on the slideline. 

2. Calculate element normals for all elements. Elements with zero normals are 

eliminated from consideration in the contact search. 

3. Calculate the center of all elements with non-zero normals. 

4. Put elements into appropriate cells. 

5. Loop through elements of each cell to determine the penetrating pairs of 

elements. 

6. Calculate the contact forces to be applied to the nodes of impacting element 

pairs. 

7. Return to main driving routine.  

Fig. 3. Pinball algorithm. 

1. Initialization. 

2. Calculate the external nodal forces. 

3. Compute the internal nodal force array. 

a. Calculate the element stresses. 

b. Compute the element nodal forces arising from the element stresses. 

c. Assemble the element nodal forces to the internal nodal force array. 

4. Call the slideline algorithm to calculate the contact forces and add them to the 

external force array. 

5. Compute the nodal accelerations. 

6. Integrate the accelerations to obtain the nodal velocities and displacements. 

7. Go to 2. 

Fig. 4. Explicit time stepping procedure including slideline procedure. 
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10.0m 
0.5m 

Fig. 5. One-dimensional impact problem. 

1.50 

1.00 

>,  0.50 - 

    Projection. 
 Penalty 

■   Analytical 

Wy^yv 
6.0 9.0 

Time(sec) 
12.0 

Fig. 6. Projection and penalty methods at midpoint of first rod 
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1.50 

1.00 

>> 0.50- 

-1.00- 

-1.50 

    Projecnoa 
    Penalty 

Analytical 

0.0 

AkM 
3.0 6.0 9.0 

Time(sec) 
12.0 

Fig. 7. Projection and penalty methods at interface on first rod. 

1.50 

1.00- 

>>  0.50- 

-1.00-1 

-1.50 
0.0 

Projection 
Penalty 
Analytical 

-r— 
3.0 6.0 9.0 

Time(sec) 
12.0 

Fig. 8. Projection and penalty methods at midpoint of second rod. 
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Fig. 9. Example problem 1 at times 0, 25, and 54 ^seconds. 
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Fig. 10. CPU requirements of the Belytschko-Lin algorithm. 
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Fig. 11. CPU requirements of the pinball algorithm. 
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