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. Abstract

L M

% This -paper documents the design and implementation of a discrete event mil-
itary simulation using a modular object-oriented design and the C programming
language. The basic simulation is one of interacting objects. The objects move
along a predetermined path until they encounter another object. Objects react to
the encountered object according to the implemented algorithm. Object reaction op-
tions are fight, evade, or do nothing. In the code’s current form it is generic enough
to allow a user the flexibility of creating an infinite number of scenarios bounded
in size by the hardware’s memory capacity. The modularity of design will allow for
casy expansion of object complexity and detail, as well as easy removal or replace-
ment of functions or events. The simulation code makes use of a generic linked list
data structure and simulation driver. This adds yet another area to the code where
expansion, removal, or replacement could be easily accomplished. The net result is

a military scenario simulation program which is highly expandable and modifiable.

vet compact enough to be easily understood. ( ,



AN OBJECT-ORIENTED MILITARY SIMULATION
BASELINE FOR PARALLEL SIMULATION RESEARCH

I. INTRODUCTION

This thesis deals with one part of the ongoing research effort investigating
possible run-time speedup of military simulation software using parallel processing.
Currently, a shortage of military simulation software for use in Air Force Institute
of Technology (AFIT) research exists. The purpose of this thesis is to provide a new

source of this software.

1.1 Background

Recent development of high speed parallel and distributed computer architec-
tures have spawned a new interest in the simulation world. Fujimoto believes that
these new architectural designs can dramatically speed up the run-time of many
computationally intensive problems such as those in large simulations (12:19). The
benefits of speedup are twofold. First, speedup would enable existing simulations to
run at higher speeds, allowing for quicker decision making or enough time to make
additional simulation runs. Second, speedup would allow for the development of

more complex, and ideally, more accurate simulations.

At present, the Air Force Institute of Technology (AFIT) does not have the
ability to explore the applicability of parallel or distributed simulations dealing with
a military scenario.

In general there are three requirements needed before one can study parallel

or distributed computer simulations.
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e First, the study requires a computer with a parallel or distributed architecture.
AFIT has four such systems. Two are Intel Hypercube iPSC/1s, each using
thirty-two INTEL 80286 microprocessors, one per node. One iPSC/1 has a
vector processor at each node and the other has an expanded memory capacity
at each node. AFIT alsbﬁ has”an Ihiel Hypeféube iPSC/? which uses eight
of Intel’s 80386 microprccessors, one per node. lLastly, AFIT has an Encore

Multimax which uses a shared memory architecture with sixteen nodes.

o Second, a software package to handle the protocol used for node intercommu-
nication (message passing between the nodes (processors}) is needed. ATIT
is currently using a software package called Spectrum, a parallel simulation
testbed developed by Paul Reynolds at the University of Virginia {UVA) (24),

which is written in the C programming language.

e Lastly, the study requires a simulation which is computationally intensive.
has a significant amount of code which need not be run sequentially, and is
compatiblc with the software used to handle node intercommunication (in this

case, compatible with Spectrum).

Parailelizing a simulation can be studied using many types of simulations.
However, the area of particular interest to AFIT is parallelizing battle and othey
military scenario simulations. AFIT’s interest in this area of study stems not only
from the fact that the typical AFIT student is in the military, but from specific
interest and requirements from sponsoring organizations, as well as the oppertunity
to explore claims made by Nicols as to the limitations imposed on parallelizing
an event driven battlefield simulation (21:141). ATIT does not have a military
simulation which is appropriate for parallelization. Because of the lack of a military
simulation AFIT has only a limited ability to explore the applicability of parallel

or distributed architectures to simulation software. In addition to the requirements

stated above, the simulation must also adhere to the following:




e It must coniain the types and number of constructs which according to current

literature pose a problem to parallelization.

It should produce as an output the information needed to display the simula-

tion.

The code shall be easily modified, maintained, and reused, since it will be

restructured in various parallel configurations.

To meet AFITs needs three options exist:

. Find an existing simulation which meets the stated requirements.
2. Modify an existing simulation to meet the stated requirements.

3. Create a new simnulation which meets the stated requirements.

In regard to the first two items, there are a number of military simuliations

currently in use in the field. but the following constraints preclude them from use.

e Most current military simulations are coded in Fortran which is not compatible

with UVA’s simulation testbed Spectrum. Spectrum is coded entirely in C.

e Most current military simulations are very large, and have been built over time
by different programmers. This type of construction makes translation to C

and parallelization nearly impossible.

e Many of the current military simulations are classified, making it difficult if

not impossible to use them in AFIT’s parallel processing laboratory.

Thus the only solution is option three. The rationale of this thesis is therelore
straightforward: without a military scenario simulation which meets the basic re-
quirements stated earlier, no further research into run-time simulation specdup can

he made.




1.2 Problem Statement

Design and implement a discrete event military scenario simulation using a

modular object-oriented design approach and the C programming language.

1.3 Research Questions

Answers to the following questions are part of this research effort:

1. Can a discrete event military scenario simulation be written in C using a mod-

ular object-oriented design approach?

o

What types of issues and constructs are currently viewed as possible problem

areas to the parallelization process?
3. What information needs to be provided to a remote graphical interface system?

4. What, if any, real-time simulation inputs should the user be allowed to make?

1.4 Definitions

Discrete Event Simulation A simulation in which dependent variables change
discretely at specified points in simulated time called event times (23:62) (20:135).

Event Something which causes change in the state of an object or entity
(20:136).

Object An entity which has a state and a defined set of operations to access

and modify that state (28:204) (6:20).

Object-Oriented Design A design approach where the system is viewed as

being composed of interacting objects instead of a group of interacting functions
(25:277).

Time Driven (continuous) Simulation A simulation where dependent vari-

ables may change continuously over simulated time at set time increments (23:62).
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15 Assumptions

Several assumptions were made concerning this effort. First, the simulation

developed here will be used solely for rescarch puiposes with the intent of establish-

- -ing feasibility-of- operational-applications of parallel or distributed architectures to- - - - -

simulations, and in particular, military simulations. This assumption directly afTects
issues of of scope. Second, DeRouchey’s work in develtl)ping a generic graphical dis-
play driver (9) will support this simulation. Lastly, Spectrum (24), or a comparable
software package written in C, will be available for use during the follow-on rescarch

which uses this code.

1.6 Scope

The extent of this work is restricted by the following limitations:

e This simulation is written to run on a single serial processor. Paralicl issucs
will be considered during all phases of design and deveiopment, but this code

will not be parallelized as part of this thesis.

¢ The simulation should be a “representative” military simulation, but time fi-

delity and object characteristics are not goals.

o The simulation should provide output in a fashion that can be used by a generie
graphics display, but not be constrained by this interface. Because the graphics
driver is a separate but concurrent effort by DeRouchey (9), this work should

be independent of the graphics work.
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II. LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to at least summarize some of the current iit-
erature concerned with simulations in general, event driven simulations, and object-
oriented simulations. Since C is the required implementation language as explained
in Chapter One, its applicability to object-oriented programming will also be ex-

plored.

All of the above topics have already been thoroughly addressed and are veell
understood. It is not the purpose of this chapter to imply that work of this type
has never been done before. However, as described in Chapter One, there exists a

specific requirement for a simulation which is:

e a military scenario
e event driven

written in C

highly modifiable and expandable

e isor could create a high computational load

compact enough to be understood by one person

A simulation fitting this bill was not found, thus creating the need for this new

work.

2.2 Background

According to Thesen and Travis, simulation in its broadest sense is a perfor-
mance analysis tool which is used as a decision aid (29:7). Almost any question can

be answered by a properly designed simulation. The proper design of a simulation
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can only be done if the problem is completely understood. Thesen and Travis go on
to point out some common pitfalls to any simulation. First, creating a simulation
is an aii, requiring a special talent. The quality of any analysis depends on the
quality of the model. Second, sometimes it is difficult to determine if a particular
observation made dtrxiringiar. simulation run is rrépirésenrtra,tirvér of the Wsyisterrn' behavior
because of the use of randomness in the simulation (29:7-8). To help avoid the first
pitfall, the programmer must use care, patience, and attention to detail while in the
creation phase. The second pitfall is one of interpretation, not coding, and should
he easily handled if the programmer does not forget what degree of randomniess has

been implemented in the simulation under study.

As defined in Chapter One, and as described by many other authors, a discrete
event simulation is a simulation where time is updated as events occur and not
al some predetermined time step (23:62) (20:135) (17:11). In this scheme, events
are processed as quickly as possible, effectively deleting the “dead time” between
cvents. Events can occur at irregular time intervals which are at least. in part.
determined by what are defined as events. Consider the following example of a
discrete event simulation: A tank moves in a straight line for 100 miles. If the only
cvent defined is “reached.turnpoint” then this simulation has zero events and the
simulation time clock is never updated. However, if “travelled_one_mile” is an event,
then this simulation will have one hundred events, and the time clock should reflect

the time of the last event.

There has been enormous amouats of infcrmation published in recent years on
the topic of object-oriented design. Object oriented design is one in which the design
focuses on objects rather than functions, with messages passed from object to object
(25:277). Objects are entities which have a state, a defined set of operations to access
or modify it, are denoted by a name and have restricted visibility of and by other
objects (28:204) (6:20) (7:48-50). Booch is probably one of the most widely recog-
nized proponents of object-oriented design today. His books SOFTWARE COMI’0-
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NENTS WITH ADA and SOFt WARE ENGINEERING WITH ADA do a good job
describing why, and how, to use an object-oriented approach (6) (7). Now that a
common baseline has been established, the discussion can turn to some of the current

work relating to this eftort.

2.3 Related Work

2.3.1 Simulations in Gen: ral Simulations are much older than the oldest
mechanical computer. Indeed, man has probably been simulating from the point at
which he gained the ability to think abstractly. Anytime a person thinks ahead to
“imagine” the consequences of an action, or sequence of actions, that person has
basically run a simulation, using their brain as the information processor. Today.
with the help of computers, we are able to sin: :late actions, or a sequence of actions,
which for reasons of complexity, may not be able to be simulated in a single person’s

head.

Simulations, in general, are so well understood that they will not be detailed
here. If more information at this level is needed, the references of Pritsker and
Neelankavil should suffice. However, the article by Thesen and Travis presented
some valuable information about not only what simulations were, and what they are
used for, but what to keep in mind as one develops a simulation. Those suggestions

were (29:13):

Define your objectives beiore simulating.

Use the correct level of detail — begin with a simple model.

Select software that is appropriate to your problem, level of experience and

time frame.

Remember that simulation results may be observations of random variables,

and interpret your results accordingly.
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The following subsections present highlights and pertinent information from
articles, papers, or books in the areas of object-oriented simulation, miitary mod-
elling, C as it pertains to discrete event simulations and object-oriented design, and

some background on parallel simulations.

2.3.2 Object-Oriented Simulation The following papers address object-

oriented simulations,
A Perspective on Object-Oriented Simulation (25)

Probably the most important point made i:. this paper, as it pertains to the
work of this thesis, is that an object-oriented design fits well into how most things to
be simulated are viewed. To be more specific, one can very naturally view something
to be simulated as a group of objects, or things, that do something or may have
something done to them. Thus, they have legal operations which they can do (e.g.
the object aircraft might be able to turn, fire a missile, or land), or can be done to
them (e.g. the same aircrafi may be fired on by another aircraft). Objects also have a
corresponding state before, during, and after the operation. Roberts and Heim go on
to point out construction of objects in this manner help to modularize the preblenin
its earliest stages of analysis. A second major advantage to object-oriented design is
that simulations become more easily extensible. This is, of course, a desired feature
of the simulation written as part of this thesis work. A last important advantage
pointed out in this paper is that objects provide a natural baseline for concurrency.
The idea here is that each object, or subset of objects, could be assigned a particular

processor of its own and work away until communication was needed.
Design and Implementation Issues in Object-Oriented Simulation (5)

Bezevin points out an important aspect of coding a simulation. IFirst and
foremost is the principle of readability. Having readable code is always important
and is obvious to anyone who has given a copy of their code to somecone eclse to

use, but it's is of paramount importance to simulations and the work of this thesis
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in particular. In general, the only way to determine if a simulation is modelling
something correctly is to go back and look at the code. Unverifiable simulation code

is not worth much if real decisions are to be made based on its output. Bezivin's

point is well taken here because not only is a simulation going to be produced as

part of this thesis effort , but it is known that the code will be used in follow-on
work and thus must be readable. The second point Bezevin makes is that simulation
code should be efficient. While this is certainly true, especially for large siimulations
where time may be a critical factor, it is luckily not a requirement of the simulation
developed for this thesis. On the contrary, a high computational load is desired since
cventually this code is to be used to study speedup by parallelization. The second
Lialf of Bezivin’s paper deals with how the object-oriented parallelization can help
meet the needs of the sometimes opposing objectives of readability and efficiency. As
found in many of the other references, the main thrust is that by providing a good
object model (c.g. objects, and operations), the code naturally is easier to follow

and normally more efficient.
Some Ezperiments in Object-QOriented Simulation (4)

in this paper, Bezivin actually focuses on revealing greater flexibility of the
Smalltalk-80 ! simulation language. Languages specifically designed for use in cve-
ating simulations are plentiful (23) (26) (14) (22); however, they are not the focus
of this research. Although Bezivin’s paper revolved around Smalltalk-80, it did give
valuable insight into a type of simulation where there are basically two types of en-
tities, clients and servers. Clients are active entities and the servers are passive. In
the example given, Bezivin modelled vehicles travelling between cross road junctions
as active entities, and the junctions themselves where passive entities. This type of
concept may be applicable to this thesis work depending on final design decisions.
Bezivin also spent a good deal of time on semaphores and monitors, but at this

time there are no plans to use shared data, so there was limited applicability of this

1Smalltalk-80 is a trademark of the Xerox Corporation
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data. However, the Air Force Institute of Technology does have a shared memory
parallel architecture computer, and if it is used in the follow-on work to this thesis,

the information from this paper will be of value.

- 283 Military Simulation Modelling The intent-of this section is to
present some of the ideas or concepts of how military models are constructed or
appear, either through a specific example or background data. A military simula-
tion is “a type of model in which the objective is generally to replicate a reasonably
well understood process, and for which uncertainties are treated by Monte Carlo

method.” (2:14).
The TAC Brawler Air Combat Simulatio- (3)

TAC Brawler is a simulation of air-to-air combat capable of handling 2 - 32
aircraft. It is written in Fortran and has over 150,000 lines of code. In aimost
all cases, the characteristics and behavior and reactions of TAC Brawler entitics
are much more detailed than the planned objecis in the simulation to be developed.
However, it is interesting to sec how TAC Brawler models certain characteristics. For
example, missiles and guns are both modelled. Missiles take into account guidance,
secker, envelope and fuzing., Sensors modelled are eyes, radar and Infra Red Secarch
and Track (IRST). Communications are explicitly modelled as well as Identify-Friend
or Foe (IFF), defensive avionics, radar jamming and Missile Approach Warning
MAVW). This paper has a wealth of information on what things can be simulated as

well as limited information on how it is done.

Two Aggressive Aircraft in a Realistic Short-Range Combal as a Differcntial Game
Study (16)

In this paper, Jarmack offers a rigorous mathematical solution to a close aerial
combat with IR missiles. The level of detail, not to mention its complexity, of the

material presented is beyond that which is planned for this thesis work. However, if
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at a later date, a more rigorous solution is needed in this area, this approach may

be applicable.

Simulation of Mulliple Aircraft Information, Communication and Decision in Air

Combat (8)

This was an extremely good article on the modelling of communication and
decision making process. Although it is not planned at this time to model communi-
cations in the simnlation to be developed for this thesis, this is one area which may
be considered for consideration if time permits. Chan and Vogel also give a good
example of a decision tree whick establishes how to assign target priorvities. 1'n-
doubtedly, a tree of this nature will be used to determine targets in the simulation

being developed.

AMilitary Make-Believe (1)

This was really a survey article of what the state of art simulators had 1o
offer. This was a good background piece, but did not give much specific insight to
simulations at the level of the work of this thesis. The article’s focus was on big
system simulators such as interactive simulators for the Mirage I'1 fighter, AIl-61A

Apache helicopter, or the Mirage 2000 fighter.

2.8.4 Some insights to C C is a general-purpose programming language
which is touted for its portability, flexibility and power (30:4). It features economy
of expression, modern control flow, data structures, and has a rich set of operators
(18:xi). “C was originally designed for and implemented on the UNIX operating
system on the DEC PDP-11, by Dennis Ritchie The operating system, the C
compiler, and essentially all UNIX applications programs are written in C”(18:xi). C
is widely used, and has gained even more popularity as versions became available for
usc on personal computers. The following articles or papers deal with the application

of C to object-oriented programming or discrete event simulations.



It's an Attitude (19)

In this article, Linowes sets out to describe one way it which C can be used

to do object-oriented programming. As is planned for this thesis work, Linowes

uses C structures as templates of objects. An instantiated structure thus cre~tes

an object. Linowes also formalizes a message passing scheme for communication
between objects. While this makes clear the communication between objects, it is
felt at this time that it may add an unoecessary level to object interaction. Instead of
sending a “message” containing what operation is to be performed, it may be sunpler
to just make the operation to be performed the message. Linowes also illustrates
how he handles inheritance of attributes to subclasses of objects. Basically, he uses
a strategy of #include chaining, where in the structure definition of one object he
uses #include to include another file thus enabling inheritance to occur. This secins

like a reasonable approach to inheritance if it is used in this thesis work,
Object-Oriented Programming As a Programming Style (32)

White's article was another examiple of how C could be used to code using
an object-oriented approach. White is a little more detailed in his coverage than
Linowes, but is nearly the same in how he handles messages and inheritance. White
does separate “messages” from what he calls “methods” where Linowes does not. in
\White’s version, “messages” get sent to an object, where something decides what
“method” (operation) to invoke. It really just seems to be a rather minor difference.
but it is a slightly different twist. The rest of White's article focused on C++ and

how it can be used in object-oriented programming.




C Bascd Discrete Fvent Simulation Support System (27)

This paper describes a C based simulation environment for creating and exe-

cuting discrete-event simulation models in which the event routines are coded in C.

The system described by Selvaraj et.al. is divided into eight task modules. The two

most important modules are the executive controller and the memory management
module. The exccutive controller module is similar to the Generic Simulation Driver
in the appendix of this thesis. It basically executes the simulation, placing and tak-
ing event entities off the “simulation calendar” (event list) until no move events exist
to be executed or the simulation gets a termination event, In the Generic Simulation
Driver memory management is not handled as a .eparate issue; instead it is done on

an as-needed basis within the code.

2.3.5 Parallel Simulation While writing a parallel simulation is not the
objective of this thesis work, writing a simulation that can be parallelized certainty
is. Thus, some knowledge of what parallelization may entail is definitely an avea to

be considered,
A Survey of Parallel Computer Architectures (10)

Duncan starts his article off by addeessing Flynn's taxonomy (11). Flvan ¢las.
sifics architectures on the presence of singic or multiple data sireams of instractions
and data. Flynn’s MIMD (multiple instruction, multiple data stream) madchines
are the types of parallel computers availabls at tl.e Al Force Institute of “echnol-
ogy, and as such, will be what is discussed here. MIMD machines invelve multipic
processors autonomously executing diverse instructions on diverse data. MIMD ar-
chitectures are generally more complex then machines of Flynn's other classificrtions,
but MIMD machines can also mimic the other machines « chavior if necessary. The
next important area within MIMD machines deals with whether the machine has a
shared memcry approach, where all the processors have immediate and direct access

to some central memory. or whether the machine has a distributed memory scheme,




whereby each processor has its own memory and access to another processor's mem-
ory is indirectly through some type of message. As stated in Chapter Oune, the Air
Force Institute of Technology has both distributed memory machines and a shared
memory machine. It is apparent at this point that a significant problem to be avoided

when designing any program which will be run on a distributed memory miachine is

the use of global variables. It should be obvious, but excessive use of globals will

create a large communication overhead caused by message passing to keep variables
updated. Shared memory machines do avoid this shortfall, but in shared memory

machines other problems like data access sychronization must be solved.
Parallel Discrete Event Simulation (12)

This paper deals with the exccution of a single simulation program applica-
tion in a set of concurrently executing processes, or more simply put, the parallel
execution of a single simulation. More interesting than the general objective of this
paper was the section called, “Why Is Parallel Discrete Event Simulations Hard?™,
Fujimoto poiuts a finger immediately to global data structures, but of course ihis ix
not. surprising. He also discusses how hard it is 1o ensure the proper execntion se-
quence of events, pointing out that the constraints that dictate which computations
must be executed before which others is often quite complex and data dependent.
It is here that overlap into the synchronization area becomes evident. It appears,
however, that clever partitioning of the problem may help to alleviate part of the

precedence problems.
An Fmpirical Study of Data Partitioning and Replication in Parellel Simulation (31)

Wieland’s article looked at the issue of partitioning in a parallel simulation. In
particular he focused on the issue of proximity detection between objects in adjacent
sectors, where sectoring has been chosen as the parallel partitioning strategy. An
obvious strategy to handle movement between sectors is to create an event corve-
sponding to travel across a boundary. At that event time an object conld be “handed

over” from the processor currently controlling the object to the processor controlling
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the new sector. This strategy is straightforward enough, but the more subtle issue
is how to handle detection between objects that are near the borders but still in
different sectors. Wieland mentions a number of strategies like use of a buffer zone
between sectors, overlapping sectors, or data replication as an object and its sensor
~ zone move from one sector to another. This last strategy intrinsically sounds best
since sensor zones can then be of differing sizes as is not the case for the other strate-
gies. One last note of particular interest are his comments on proximity detection
within a sector. Wieland comments-that a quadratic equation can be used to solve
for the time at which two objects will first come in contact with one another and
the time at which they will lose contact with each other. This notion will be further

explored as the design of the simulation for this thesis progresses.




III. THE MODEL

3.1 Introduction

This chapter is broken into three distinct areas: the overall model of battle or
high level design, a more detailed look at the model of battle or low level design, and
an explanation of program interfaces. In the high level design area there are three
topics of discussion, the objects which will be available for instantiation and use in a
given scenario, the events which may affect object attributes, and the basic models
for how objects perceive, move, and fight. In the low level design area objects will
be viewed in detail, and the functions which support the events will be discussed.
The object discussion will include attributes, and rationale for the object’s existence.
The final area defines the interface between the simulation driver (what executes the

simulation), and the actual simulation.

3.2 System Overview

Here is the “big picture”, without regard to describing how the code is actually
accomplishing any of these actions. Figure 3.1 illustrates the big picture as seen from
the outside. The user must create a scenario file (as described in this chapter and
Appendix F). Once created, the executable rizsim simulation code is executed using
the created scenario file. The simulation produces an output (at this time a file),

which is read by the display driver which graphically displays the simulation output.
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Figure 3.1. The “Big Picture”




Figure 3.2 depicts a simple two dimensional representation of a typical sim-
ulation scenario. At time ¢ there are eight objects in the simulation, a flight of
three aircraft approaching from the southwest, a single ship approaching from the

northwest on an intersecting path with the flight of three, three tanks moving in a

northwestly direction, and one other single shriprmovirng northwest. At time At later

two of the flight of three have been destroyed as well as the single ship attacker.
Now only one of the flight of three remains, along with the three tanks and the other
single ship. By some other At later, the remaining single ship has turned north to
evade the other aircraft as the other aircraft flew by. On the last leg of the single

ship’s journey, the single ship destroys the three tanks.




£ At later \

At later

Figure 3.2. Depiction of a Typical Scenario
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3.8 High Level Design

The general system model is one of interacting objects. Moveable objects
(vehicles) have a predetermined route as part of the input scenario, which may or
may not be altered depending on obstacles or threats encountered. Moveable objects
may have a predetermined target or destination as an objective, or may be in search
of a target of opportunity. Stationary objects, such as Surface-to-Air Missle (SAM)
sites, will attack any valid target within range if the site has the resources to do
so. Once the simulation has begun, objects move along their predetermined routes
carrying out their respective missions. If an obstacle or threat is encountered along
the route, an event (e.g. entered_sensor_range) is scheduled to handle the situation.
The vehicle will choose to either attack, evade, or take no action, in response to the
obstacle or threat. Although all objects are autonomous entities reacting to threats
or obstacles separately, it is expected that similar objects (e.g. two F-15s flying the
same route with a half second seperation) will react similarly to the same threat
or obstacle. This is because the algorithm used by the F-15s to determine their
course of action will be the same. The simulation will continue until a termination
event is executed or no more events are pending in the Next Event Queue (NEQ).
A termination event can be scheduled at any time by using the end_sim function

available in the generic simulation driver.

3.3.1 The Objects The design strategy used in defining objects for this
simulation was to keep the objects as generic as possible without being unrealistic as
to the breadth of application of any one object. Stated simply, there is no “super”
object that can be instantiated to create any entity type in the system. However,
many of the semi-generic objects will be able to be instantiated to create a limited
number of seemingly different object types. A good example of this is the object

“sensors” which can be instantiated as a number of different sensor types from eyes

to radar.



The objects are those entities within the simulation scenario which make up the
“order of battle”. The order of battle as used here refers to the types and amounts

of instantiated objects which will be players in the scenario to be run. Table 3.1

lists all the object types which are available to the user for instantiation. Figure 3.3

shows the relationships between the objects in a given scenario. ‘Object-attribute -

relationships are addressed in the low level design section.

| Object Types |
object_attributes
performance.characteristics
Sensors
armaments
defensive_systems
route_data
operator
target_list
master_obj_list

Table 3.1. Simulation Object Types

Objecis instantiated using the “object_attributes” type are probably the most
important of all the objects within the scenario. It is the movement of these objects
which gives the simulation much of the computational complexity sought by this
work. The object_attributes type, as are many of the other object types, is a skeleton
definition where the user fills in the applicable attributes with the correct values when
the object is instantiated. By simply providing zeros as the velocity vector attributes
and no route points other than the object’s current location, a user has eftectively
created a stationary object. Thus, the object_attributes type can be instantiated to

cover a wide variety of objects, both moving and stationary.




target Jist
—

performancecharactgéstics

Figure 3.3. Object Relationships




Since each moving object will have some route associated with it, there is a
need for the “route_data” object. Even a vehicle that goes nowhere will have a route
associated with it, but its route will be a single point. The route data will provide
the simulation with the future locations of an object. This information is critical in

determining the vehicle’s yaw, pitch, and velocity vectors.

“Sensors”, like vehicles, can be instantiated witﬁ differing attributes, thereby
creating different sensors. Many of the vehicles may employ the same type of sensor
and some of the vehicles may be equipped with a number of different sensors. Thus
sensors logically map to an object class. The association of a sensor, or group of
sensors, with a particular object gives the simulation the ability to determine what

an object can or will perceive.

The rationale behind the creation of the “armaments” and “defensive_systems”
objects is essentially the same as for sensors. The association of a particular type of
armament, such as armament type, range, destructive power, etc. with an instan-
tiated object provides the simulation with information which can be used during a
fight sequence. Examples of armaments could include systems such as sidewinder
missiles, 50 caliber machine guns, or surface-to-air missiles. As with armaments, the
defensive systems object provides the simulation with information as to what type
of defensive systems an object is equipped, if any. Examples of defensive systems

are chaff, flares, or jammers.

The intent of the “operator” object is used to factor in intangible qualities such
as experience and threat knowledge. The values assigned to these qualities could be
used to help determine whether an attack will be successful (e.g. the armament hit
the target). Operator qualities could also be factored into the operator evaluation

function where decisions regarding a course of action (such as attack, evade, or take

no action) are made.

The “performance_characteristics” object is, as the name implies, where the

performance characteristics pertaining to a particular vehicle are stored. The uses of
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the information found in this object could be in any calculation needing performance
data, especially maximum or minimum limits such as climb, turn or acceleration
limits.

The “target.list” object is a linked list containing pointers to each object’s
targets and each target’s location. This information is used in determining if an

encountered target should be engaged.

The “master_obj_list” object is a linked list containing pointers to all the ob-
jects in the system. Access to this information is critical in the determination of

sensor contacts and collision detection.

3.3.2 The Events The events are those happenings or occurrences which
may cause the system state to change. Events generally cause some process or
function to execute which is the driving mechanism which physically changes the
system state. As was the case for the objects, the design of the events used in this
simulation software calls for a generic approach to their implementation. Again,
there are limitations as to how far one can carry a generic approach, but here,
too, reasonableness must prevail. As a rule, events should apply equally well to all
instantiations of objects within a class (e.g. the reach_turnpoint event should apply
equally well to any moving object). Events will be implemented as C functions

which in turn will call the applicable functions to make adjustments to scenario

object attributes.

Table 3.2 lists the events which are currently used in the simulation work.

The reached_turnpoint event sets a number of functions into motion. As a
consequence of reaching a turnpoint, the vehicle’s current position is updated. Up-
dating a vehicle’s position encompasses five tasks. First, the new position coordinates
are transferred from the route data to the current location attributes of the vehicle.
Next, the current orientation of the vehicle is calculated and the applicable attributes

are updated. Then, the current velocity vectors are calculated, again updating the
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FEvents |

reached_turnpoint
entered_sensor.range
made.sensor.contact
collision.distance_reached
ordnance_released
ordnance_reached_target °

Table 3.2. Simulation Events

appropriate attributes. The object’s current time is updated and finally, after all
attributes have been updated, the information is sent to the graphics display or to
an intermediate file. Once this has been accomplished, the sensor_check function
is called to help determine what the next event to be scheduled will be. Ideally,
in the absence of any intermediate sensory contacts or collisions (if no sensors are
operating), the next event will be the next event point from the vehicle’s route data.
Thus, in order to determine what the next event really is, a check of the vehicle's
projected path must be made against all other paths and positions of stationary
objects to determine whether there will be a sensory contact or collision prior to the

next predetermined event point. Only then can the proper event be scheduled.

The made_sensor.contact event is basically a decision point. If this event oc-
curs, an object has come within sensory range of another object. The perceiving
object at this point must decide what to do about what it perceives. Thus, it must
interrogate the source to determine whether it is a friend or enemy, and if it is an
enemy, decide on a course action such as attack, evade, or take no action. Thus,
the execution sequence is: update the vehicle’s position (the same five step process
from above), call the operator_evaluation function, schedule the event determined in

operator_evaluation, and perform a sensor check to schedule an intermediate event

if one is found.

The entered_sensor_range event is identical in function to reached_turnpoint.
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The position of the object entering the sensor range of another object is updated as
above, and then the sensor check function is called to determine what the next event
will be for the object in question. Although the subsequent function calls are the
same as for both enter_sensor_range and reached.turnpoint, enter_sensor_range is a
separate and distinct event caused by sensor range information and the proximity of
another object. A reached_turnpoint event, of course, has nothing to do with either
of these factors. It should be noted here that for every enter_sensor_range event there
should be a corresponding made_sensor.contact event. This makes sense since every

time a object senses another object, the other object is coming into sensor range.

The collision_distance_reached event basically means two objects have reached
the same point in space at the same time. The collision_distance_reached event
will most likely involve a vehicle or vehicles without sensoring capabilities, either
because no sensors are present or they are malfunctioning and the vehicle is oper-
ating in the blind. As with all other events thus far, the vehicle’s position must
be updated. A damage_assessment function call would determine the extent of the
damage and adjust the appropriate vehicle attribute accordingly. If a total destruc-
tion has occurred, then the damage._assessment would also send the graphics display
a destruction message signaling that the entity no longer needs to be displayed. At
that point the entity will no longer exist within the simulation. In the case of total
destruction, damage_assessment will also call the unschednle_events function which

will unschedule any event for which the now dead entity was previously scheduled.

The ordnance_released event is scheduled as a result of the operator_evaluation
function determining that an attack will take place. The ordnance.released event
basically starts a missile on its way to a target. The missile acts as any other moving
object in the system, but of course it is moves quite a bit faster. The missile moves
along a predetermined route. If it encounters the target before the missile terminates

at its last routepoint, an ordnance_reached_target will be scheduled.

The ordnance_reached.target event is scheduled in the sensor.check function
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if sensor.check determines the missile catches the object which it is chasing. Ord-
nance_reached.target updates the position of both missile and target, then it calls
hit_miss to determine whether the missile actually scored a hit. In the event of a hit,
damage_assessment is called by hit_miss to determine the extent of damage. Since
there may be a considerable lag time between the firing or release of the ordnance
and its impact, due to the ordnance speed and distance to the target, it is reasonable

to model the ordnance impact as a separate event.

3.3.8 Models for Perceive, Move, and Fight

Perceive: The model for perceive deals with how an object becomes aware of
another object. Perception takes place through the use of some sensing equipment.
Examples of sensing equipment are radar, or the human eye.

The simulation system handles perception between objects by exhaustive com-
parisons. Typically, before the next predetermined event can be scheduled from a
vehicle’s route data, the system must determine if an intermediate event needs to be

scheduled. Thus the basic model for perceive is given here:

e Compare the vehicle’s sensor zone path, from its current location to its next
preplanned event location (from its route data), against all other vehicle sensor

zone paths or stationary object sensor zone locations.
¢ Determine if an entered_sensor_range, made_sensor_contact, or a collision_di-
stance.reached will occur prior to the next preplanned event location.
~ If a sensor(s) contact is found, schedule the earliest event.

— If no contact is found, schedule the next preplanned event from the vehi-

cle’s route_data.

Move: Objects move through the system based on information known at the
start of the scenario (the route data), and reactions to situations (threats or obsta-

cles). Each vehicle object has, as part of its attributes, route data for the current
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scenario. The route data contains the locations of all known events for that vehicle.
A typical set of route data will include the location of all turnpoints and targets. Ide-
ally, events are scheduled which coincide with a vehicle moving through turnpoints
and targets, eventually arriving at the vehicle’s destination. Realistically, vehicles
can encounter threats, either ground-based or-from another vehicle, or obstacles
which may add additional turnpoints to the preplanned route. Thus the basic model

for move is iteratively perceive - move (based on perceived data) - perceive.

Fight: Objects from opposing sides may fight if the following conditions are

met:

o One or more of the objects is aware of (perceives) another object.

¢ One or more of the objects is within range of the type of weapon the perceiving
object is equipped with.

e The perceiving object has not previously exhausted its armament store.

Vehicles reaching a predetermined target will attack it. Vehicles encountering
enemy vehicles or stationary objects from an opposing side may attack based on
whether they have extra ordnance allowing them to do so, the probability of enemy

destruction versus their own, and whether undetected avoidance is possible.

3.4 Low Level Design

This section details object attributes and the functions which support the
occurrence of events. The object structures used in this simulation are in the file

sim.stru.h. The code for the functions used in this simulation is in sim_func.h and

simfunc.c. These files are listed in Appendix A.

3.4.1 Object Attributes The basic construction of the objects are as C
structures where the object’s attributes are components of the structure. Some of

the attributes themselves may also be structures containing additional information.
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Thus some nesting of the structures will take place. Figure 3.4 shows the relationship

of objects to attributes.

The first object types are those instantiated through the use of the object_attri-

butes structure. Object_attributes can be instantiated to create a myriad of different

7 typesofc;bject.s as well as c}eatlng the same basic type thl?dnﬁ‘ermg characteristics.
A quick glance at the current attributes of this structure may lead one to believe
that this structure is used to instantiate only moving objects, since the structure
attributes include velocities, rotation rates, etc.... Herever, moving objects are only
a subset of the total item types that can be instantiated using the object_attributes
structure. By simply initializing to zero those attributes which are not applicable,

the set of non-moving objects can also be created using this structure.

Creating objects through instantiation of a structure is an excellent way to
ensure ease of modification and growth of this simulation code. This is because in-
formation for new or more complex manipulation of the objects within the simulation
can easily be incorporated by simply adding the required attribute to the already
existing structure. Below is a brief explanation of the current attributes making up

object_attibutes.

Attribute Explanations
int object_type: Used as an icon identifier for the display system
int object_id: Integer value used as a object identifier.
int object_loyalty: Integer value indicating loyalty.
double current_time: The time of the most recent event for the object.
int fuel_status: Integer value denoting the current available fuel.
int condition: Integer value indicating the object’s current condition. Values are
between 0 and 100, 0 being destroyed, 100 being fully operational.
int vulnerability: Integer value indicating the destructive force needed to destroy
the object.

struct location_type location: A structure containing the current location of the
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object.

struct xyz_velocities: A structure containing the velocity vectors (v, vy, v.) of

the object.

struct orientation_tyoe orientation: A structure containing the current orien-

--tation-of-the object: — - o L

struct rotation_rates: A structure containing the rotation rates around the x, y,
and z axis.

struct operator_type operator: A structure containing the operator’s qualities
such as experience and threat knowledge.

struct performance_characteristics performance: A structure containing the
performance characteristics of the object such as the minimum turning radius, max
speed, max climb rate, and average fuel consumption.

struct linked_list* sensors: A pointer to a linked list which contains the informa-
tion about the sensors the object has available to it.

struct linked.list* armaments: A pointer to a linked list which contains the in-
formation about the armaments the object has available to it.

struct linked_list* defensive_systems: A pointer to a linked list which contains
the information about the defensive_systems the object has available to it.

struct linked_list* route_data: A pointer to a linked list which contains the rout-
ing information for-the current scenario. - -

struct linked_list* target_list: A pointer to a linked list which contains informa-

tion about a object’s target(s).




The second object, operator_type, is a structure containing information about
the operator’s experience and knowledge of the threat. These are two items which
are critical to the successful outcome of most confrontations. This object is not

being utilized in any of the current simulation algorithms, most notably, the at-

“tack sequence algorithm. However, this “hook” was deliberately put in so that this

information could be incorporated at a later date to enhance the realism of the

simulation.

At this time the operator_type contains the following attributes, but of course

it can be expanded if other information becomes necessary.

Attribute Explanations
int experience: An integer value attributable to the operator’s experience level.
ine threat_knowledge: An integer value attributable to the operator’s knowledge

of a particular type of threat.

Object three is the performance_characteristics object. This object is basically
another hook. It contains some limiting performance factors which could easily be
uscd to determine current fuel status, and whether certain maneuvers are possi-
ble. Here, too, more information may eventually be incorporated depending on how

detailed performance is modelled.

Attribute Explanations
int min_turn_radius: An integer value giving the minimum turning radius of the
vehicle.
int mux_speed: An integer value indicating the maximum speed the vehicle could
travel.
ave_fuel_cons_rate: A rate indicating how fast the vehicle’s fuel is being consumed.
int max_climb_rate: A rate indicating how fast a vehicle could climb (if applica-

ble).
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Object four is a linked list containing the the route points for each object.
Every object has its own route data linked list. Even stationary objects will have a
route data linked list. The stationary object linked list will contain only one point,

it will match the objects current position and will be used to establish the object’s

position on the display.

Attribute Explanations

struct location_type: Structures which are the x, y, and 2z, coordinates of the

ohject’s route points.

Sensors are object five. Each object can have a linked list containing the sensors
available to that object. The attributes are self explanatory. The default value of
the function get_sensor_range, if there are no sensors in an object’s sensor linked
list, is 833 meters, approximately a half mile. The algorithm for sensor selection is

presented in the algorithm discussion section.

Attribute Explanations
int type: The integer value which represents a particular sensor such as radar = 1.
cye =2 ...
int range: The integer detection range of the sensor.
int resolution: The integer factor which indicates how clearly an object is secn

once detected.

Armaments are object six. Each object may have a linked list of armaments
containing the armaments which are available for use by the object. This object has
a wealth of information which can be used to add to the realism of the simulation.
Currently this object is not being used, but further incorporation of the data con-
tained within this object is straightforward. For instance, the count attribute could

be checked and decremented as necessary, before a shot could be allowed.




Attribute Explanations
int type: The integer values which represent a particular type of armament.
int range: Integer value of the range of the armament.
int lethality: Integer value of the destructive power of the armament. Used to
determine condition of vehicle or stationary object based on its vulnerability value.

accuracy: Integer value of the accuracy of the armament.

count: How many of a particular type of ordinance are available or left.

Object seven, the defensive_systems, are similar in use to sensors. Each object
may have defensive systems which could be used to affect the outcome of a confronta-
tion. Using this information could add to the realism of the simulation. However,
at this time this area has been left unaddressed. Attributes could be added to those

shown below if necessary.

Attribute Explanations
int type: The integer values which represents a particular type of defensivesystem
such as chaff = 1, flares = 2, jammer = 3.
int range: Integer value of the range of the defensive_system.

int effectiveness: An integer representation of the defensive system effectiveness.

The target_list is object eight. Each object should have a target list to help
determine who the “bad guys” are. The absence of a target list does not mean
that an object has no enemies, since a difference in the object loyaliy attribute will
indicate whether an encountered object is on the same side or not. Objects without
targets will evade other objects without the same loyalty if possible. The usage of

the target.list is explained in the algorithm discussion section.

Attribute Explanations

int target_type: The integer value which represents the type of the target (i.c.
F15, MIG, TANK ...).
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struct location_type: Contains the expected location of the target.

3.4.2 Supporting Functions This section gives a verbal description of the

~ functions used to carry out the effects of event occurrences. Object attributes may -

need to be updated, current and future scenario states may need to be evaluated,
and decisions may need to be made. Tables 3.3 and 3.4 shows what functions are

used in support of the events possible using this simulation software.

Function: add_event_coords_to_route
Verbal Description: Add.event_coords.to_route uses add_new_routepoint to add

a new routepoint to both objects passed as the argument to this function.

Function: add.new_routepoini
Verbal Description: Add_new_routepoint puts a new turnpoint into the route data

linked list. The new turnpoint becomes the next prescheduled routepoint.

Function: attack

Verbal Description: Attack creates a “missile” (an instance of object_attributes).
Attack initializes the location of the missile, gives it a velocity, creates and inserts
three routepoints into the missile’s route data linked list. A pointer to the missile is

then put into the master.obj.list, and a release_ordnance event is scheduled.
Function: calc.curr_orientation

Verbal Description: Calc.curr_orientation calculates the current orientation of an

object based on its current location and its next position from its route data.
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Events

reached_turnpoint

Supporting Functions

Supporting Supporting Functions |

update_position

calc.curr_orientation
calc.curr.velocities
update_object_current_time
send_fupdate

sensor_check

calc_time._at_next_routept
get_sensor.range
calc.time.at_nextnext.routept
line_of sight
difference.in_altitude
add_event_coords_to.route
add_new_routepoint

entered_sensor_range

update_position

calc_curr.orientation
calc_curr.velocities
update.object.current.time
send.fupdate

sensor_check

caic_time.at_next_routept
get.sensor.range
calc.time.at_nextnext_routept
line_of_sight
differencein_altitude
add_event_coords_to_route
add_new_routepoint

made_sensor_contact

update_position

calc.curr_orientation
calc_curr_velocitics
update_object_current_time
send.-fupdate

operator_evaluation

get_sensor_range
evade
attack

sensor._check

calc_time_at_next_routept
get_sensor._range
calc_time_at_nextnext_routept
line_of_sight
difference.in_altitude
add.event_coords._to_rouie
add-new_routepoint

Table 3.3. Events and Supporting Functions
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Function: calc_curr.velocities
Verbal Description: Calc_curr.velocities calculates the current velocity vectors
based on its current total horizontal velocity, and its next position from the object’s

route data.

Function: calc_time_at_next._routept
Verbal Description: Calc_time.at_next.routept calculates the time at the next
rcutepoint based on its current position the distance to the next position and the

total velocity vector.

Function: calc.time.at_nextnext_routept
Verbal Description: Calc_time at_nextnext._routept calculates the time at the
routepoint after the next routepoint based on its current position the total distance

to the final position and the total velocity vector.

Function: damage_assessment

Verbal Description: The eventual function of damage_assessment is to determine
the amount of damage an object has sustained based on vulnerability, current con-
dition, and what ordnance was used. If total destruction has occurred, then call
terminate.objects. The current implementation of this function assesses all damage

to be total.

Function: differencedn_altitude
Verbal Description: Difference.in.altitude uses the objects current positions, their
z velocity vectors, and the time to the next event to determine if the objects will be

at the same altitude at the next event time.

Function: evade

Verbal Description: Evade modifies the current velocity, and orientation of the
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object in question. Evade also adds a new routepoint to the object’s route data and

sends the updated poition information to the display driver.

Function: hit_miss

Verbal Description: Hit_miss determines whether the target was hit or missed.
This could be based on factors such as range, ordnance accuracy, and defensive
systems used, as well as whether the ordnance and target are occupying the same
or nearly same location. The current implementation of this function determines
hit_miss solely by location of the ordnance and target. If a hit has been determined,

damage_assessment is called.

Function: line_of_sight

Verbal Description: The intent of the line_of sight function is to check to sec
whether a clear (unobstructed) line of sight exists between two objects. Obstructions
may be caused by the terrain or possibly atmospheric phenomena. However, this
algorithm remains unimplemented, due in the most part to the fact that terrain has
not yet been modelled. The function exists as another “hook”, and currently returns

true (a valid LOS exists) for all cases.

Function: on_collision_course

Verbal Description: On_collision_course determines whether two objects are on a
collision course. The return value is true or false. The primary use of this function
is when two objects of the same loyalty encounter each other. Since they are on the

same side they don’t need to take any action (i.e. attack, or evade), unless they are

on a “collision course”.
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ordnance._released update_position

Events ] | Supporting Functions ] Supporting Supporting Funclions

calc.curr_orientation
calc.curr.velocities
update.object.current.time
send_fupdate

sensor_check

calc_time_at_next_routept
get.sensor.range
calc.time.at_nextnext_routept
line_of_sight
difference.in.altitude
add_event _coords_to_route
add_new_routepoint

ordnance._reached_target update_position

calc_curr_orientation
calc_curr_velocitics
update_object_current_time
send.fupdatc

add_new_routepoint
hit_miss

collision_distance_reached updatec_position

calc_curr.oricatation
calc.curr.velocities
update_object_current_time
send_fupdate

damage_assessment

Table 3.4. Events and Supporting Functions




Function: on.target.list

Verbal Description: The purpose of on.target.list is to determine whether a threat
encountered by an object is an actual target of the perceiving object. The function
will return true if the threat is an actual target. The determination algorithm used

-is-explained in-the algorithm discussion-section.

Function: operator.evaluation

Verbal Description: The basic function of operator_evaluation is to evaluate the
threat and choose a course of action. Evaluation of the threat may be in the form
of answering questions such as: is the threat a “bad guy”, is the threat the intended
target, and if it is a friend, are we on a collision course? Courses of action could he

attack, evade, or do nothing.

Function: read.data_file

Verbal Description: The read.data_file function is used to read in the initial object
data from an ASCII file. The format for this file is shown in Figure 3.5. Important:
Fields are separated by a single blank space, after all required fields are
entered for an object (i.e. an F-15) a C compatible End-of-Line (EOL) is

entered.

Function: send.fupdate
Verbal Description: The send_fupdate function is used to send formatted object
updatcs to a datafile which is to be read by a generic display driver. See Appendix

D for format and interface requirements of the generic diplay driver,
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field 43
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field 45

field 46

int
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L

can be repeated # defensive eys limes

}

Figure 3.5. Input File Format




Function: sensor.check

Verbal Description: Sensor.check compares a object’s projected sensor zone path
with all other sensor zone paths and positions of stationary sensor zones within
the system to determine if the object’s sensor will pick up anything before its next
predetermined scheduled event. In order for a sensor to be able to “see” another

object the following rules should be satisfied:

o The sensor being used must be operational.
e The object to be detected must move within the sensor’s range.

e An unobstructed Line-Of-Sight (LOS) must exist between the sensor and the
object being sensed. An unobstructed LOS is dependent in part on which

sensors are being used.

Five different events can be scheduled by sensor_check depending on what is
found during the sensor_check evaluation. If a sensor contact is found, and the sensor
range of both objects in question is zero, along with an altitude seperation of less
then five meters, a collision.distance_reached event will be scheduled. If a sensor
contact is found but there is a sensor range being used greater then zero or there
is a difference in altitude, then either an entered_sensor.rahge, ma'dé.sensor-contact,
or (in the case where the object is a missile) an ordnance_reached.target will be
scheduled. If a no contact is found, then a reached_turnpoint event is scheduled at
the appropriate time. The algorithm used to implement this function is detailed in

the algorithm discussion section.

Function: terminate_objects

Verbal Description: The terminate_objects function sends a message to the display
file indicating that an object need not be displayed any longer. It deletes all currently

scheduled events from the next event queue involving the now dead object, deletes
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the object pointer from the master_obj_list, and frees the memory used to hold the

event_argument.

Function: update_object_current_time

--Verbal Description: Update_object_current_time simply-assigns the event_time to- -

tl : object’s current time attribute, thus updating the object current time to the

current event time,

Function: update_position

Verbal Description: Update_position takes the next route point from the routc
data and updates the current location of the object. It then calls in this order,
calc_curr_orientation, calc_curr_velocities, update_object_current_time, and send_fup-

date.

3.5 The Interfaces

3.5.1 Overall System Interface In keeping with the modularity and object
construction design scheme, the code has been constructed to facilitate modification
and growth. The overall system interfaces are illustrated in detail in Figure 3.6. It
shows a rather complex structure which makes use of two generic C packages, the
generic simulation package (sim_driv.h and sim_driv.c) and the generic linked Iist
package (Il.h and ll.c), which were developed in a separate effort and are given in
Appendix C. The simulation structures, simulation events, supporting simulation
functions, and main simulation code are all in separate files and are provided as
Appendix A. The only other interface is the generic display driver interface. The
generic display driver was a separate, but concurrent research effort (9). The interface

requirements are provided in Appendix D.
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3.6. Overall System Interfaces
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3.5.2 The Driver Interface As was the case in the areas discussed pre-
viously, the simulation driver was approached generically. The design will not be
covered in detail here since it was completed as separate work and is given in Ap-
pendix C. The overall function of the driver is to execute the simulation. It ac-
complishes this -through the use of the functions make_driver, schedule_event, exe--
cute.sim, delete_event, and end.sim. These functions are all available to the user

writing an event driven simulation which makes use of a NEQ.

The following are brief explanations of the functions of the generic simulation

driver.

make_driver: The make_driver function allows the user to create an instance
of the simulation driver. The user can then use the other simulation driver functions
available to manipulate the the driver in creating a working simulation. A compari-
son function is supplied by the user to the driver to allow the driver to properly sort

events.

schedule_event: The schedule_event function allows the user to schedule
events by passing a pointer to the event function, its arguments, and the time of

the event with the simulation identifier ‘driver’.

execute_sim: The executesim function executes the functions(events) which
have been scheduled with the schedule.event function. Execute_sim will continue

dispatching events until there are no more events scheduled in the NEQ.

delete_event: The delete_event function gives the user the ability to remove
previously scheduled events from the NEQ. Using the event_id, returned to the user
when using “schedule_event”, delete_event searches for a matching eventid in the

NEQ and deletes it.

end_sim: The end_sim function gives the user the ability to stop the simula-

tion. End_sim effectively empties the NEQ.




1Vv. MAJOR ALGORITHM DISCUSSIONS AND
IMPLEMENTATIONS

The following sections highlight the major algorithms used in the simulation

implemented as part of this thesis work. Although each function has an asscci-
ated algorithm only those deemed in need of 2 more detailed explanation are given
here. These algorithms represent the more complex or more interesting algorithms
of the simulation code. These algorithms are simply one way to model these func-
tions. They could, and possibly should, be modified to create more realism in the

simulation.

4.1 The Evade Algorithm

The basic high level algorithm employed is straightforward. However its im-
plementation is considerably mcre complex due to the number of special cases whicl

exist. The basic algorithm states:

- Calculate or determine the threat object’s path.

- Calculate and adjust the evading object’s orientation and velocity vectors such that the
new direction is 90 degrees from the threat path, moving away from the threat path.

- Calculate a new routepoint for the evading object, given the evading object’s new
orientation and velocity vectors.

- Add the new routepoint to the evading object’s route data.

There are three special cases which must be handled separately due to the

usage of trigonometric functions and divide by zero problems.




o Case I: When the x velocity vector of the object to be evaded equals zero,
and the y velocity of the object to be evaded is not equal to zero. This is
the situation in two dimensions where the object to be evaded is moving on

~ a path which is parallel to the y axis. If this situation exists, then according

to the algorithm, the direction of evasion will be along a path parallel to the
x axis. What now must be established is whether the movement will be in
the positive x direction or the negative x direction. This is established by
simply evaluating the difference between the x coordinates of the two objects.
Once the direction is known, the total velocity vector is then applied to that

direction. This situation is illustrated in Figure 4.1.

new path
D\ original WIK 0 new path

original path

object to be evaded O

w_path
ne ‘E_D\eu'giaal path

origina] Ba.t]!lj

new path

Figure 4.1. CASE I: x velocity vector = 0, y velocity vector # 0




o Case II: Case Il is just the opposite of Case 1. Here the x velocity vector of the
object to be evaded is not equal to zero and the y velocity vector is equa! to
zero. Handling this situation is logically identical to Case I so it nzed not be

detailed again. This situation is illustrated in Figure 4.2.

new jpath
new path

original pagh
original path 8 p

object to be evaded
—— )

vy # 0
. vy = 0
original path
original path

new path

new bpath

Figure 4.2. CASE II: x velocity vector # 0, y velocity vector = 0
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e Case III: Case III is slightly more tricky. In Case III both the x and y velocity
vectors of the object to be evaded are zero. This means that the object to be
evaded is stationary, and as a consequence will also not be eventually moving
out of the path of the other object. So how then does the evading object get

| by th; 6Bjéct to l;e;vé.d;d? The ;.lgrofitrhr’nfof i,hris Vsirtr.urz;.tibn i§ as foillows’a.nd
is illustrated in Figure 4.3: l

evading object
next routepoint

distancel

new gvading object pat

bject to b
O)JeCeva?de:i3 O

distance?

evading object

original evading object path

Figure 4.3. CASE III: x velocity vector = 0, y velocity vector = 0
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— Draw a line between the current locations of the two objects and calculate

the slope of this line.

~ Calculate two new locations. Each location should be an equal distance
and on opposite sides of the evading object along a line which is 90 degiees
from the line found in step one.

— Now, compare the distances from each new point to the evading object’s

next routepoint. The shorter of the two distances indicates the proper

direction for the evading object to turn.
- Add the new routepoint to the evading object’s route data.

— Calculate the current orientation of the evading object.

There is one special case within this case which also warrants mentioning. This
situation occurs when an object’s next preplanned routepoint is within its own
sensor range of the object it is trying to evade. When this occurs, the evading
object would, after moving to an intermediate evasion point, try to return to
its next preplanned routepoint which it could never get to, since evade would
simply be called over and over again. Thus, the way this is handled is that
before the evasion peint is calculated and loaded into the evading object’s route
data, the next preplanned routepoint is checked to see if it is usable (not too
close to the object to be evaded). If it is too close to the object to be evaded.

then that point is discarded and the next preplanned routepoint takes its place.




In the general case, both objects are moving and the object to be evaded is

not moving in a path parallel to any axis. The algorithm for this case is as follows:

e (alculate the slope of the object to be evaded using its x and y velocity vectors.

- Assignﬁ the negative inverse of this élope to the slbpe of the evading 6bject.

— Using the standard equation of a line, y = mz + b, calculate the y

intercepts of both lines.
Simultaneously solve both equations for a common x and y coordinate.

The difference between the common x and vy coordinates and the current
x and y coordinates of the evading object indicates the proper sign of the

x and y velocity vectors of the evading object.

Calculate the slope angle, atan (evader slope).

The magpitude of the x and y velocity vectors of the evading object will
be the absolute value of the total velocity vector times, the cosine of the

slope angle and the sine of the slope angle respectively.

This algorithm is illustrated in Figure 4.4.




evading object

next routeﬁomt

object to be
evaded

new evading object path

Figure 4.4. GENERAL CASE: x velocity vector # 0, y velocity vector # 0




4.2 The Sensor Check Algorithm
The sensor_check routine creates the majority of the workload for the hardware

running the simulation. This is because every time the sensor.check routine is called,

every object in the simulation scenario must be interrogated. Although this routine

creates a large workload, it does not necessarily mean it is the most complex of the

algorithms used in this simulation software, Indeed, the high level algorithm is easily

understood.

- Before scheduling an object’s next preplanned event, determine if
there are any other events which should take place prior to the

preplanned event; schedule the earliest event.

At the heart of this algorithm is the quadratic equation (31). Specifically, it
is the solution of the quadratic equation in (¢) which yields the sought after time at
which two objects will come within a given distance (d) of each other. The usage of
the quadratic equation in (t) is llustrated here. If two moving objects have a current
position of (@at,, ¥ar,) and (xse,, ¥be,) as shown in Figure 4.5, then their respective

coordinates at future time (¢) can be represented by the following equations:

Lot = Tqy + vxah(t - tl)




Yat = Yar, + vvah(t - tl)
Ty = 36!. + va:bt,(t - tl)

Yo = Yo, +ovg(t ~ )

Za4¢ is the x coordinate of object “a” at some time ¢

Tq¢, 15 the current x coordinate of object “a” at time t,
Vzat, 1S the current x velocity vector of object “a” at time ¢,
Yat i the y coordinate of object “a” at some time ¢

Yay, is the current y coordinate of object “a” at time ¢,
Vyat, IS the current y velocity vector of object “a” at time t,
This assumes v does not change between t and t,

d = J(mal - xbt)z + (ym‘ -

Vzby Uy

Theys Yooy
Vray Vya

xah ) ya!)

Figure 4.5. Illustration of Calculation




Now if we let: #ar, = X4 and vzaq, = Vxa and yar, = Ya and vyq, = Wy
etc. and At = t — 1 (the time until the event will occur, e.g. if At is 5, then the

event will occur in five time units from the current time). Then

Par = 2 = (Xa + Vxadt) - (Xp + VxpAt) = (X4 ~ Xg) + (Vxa = Vap)Al

Making similar substitutions for the y coordinates yield

Yoo — Yt = (Ya — Ys) + (W4 — Wp)Al

According to the distance formula: d(t) = \/(:zta. - )+ (3}“1 - )

Making the substitutions into the distance formula yield:

((Xa = XB) + (Wxa = Vap)A? + (Ya = YB) + (Wea — WA = &

For clarity let, = (X4 — Xp),m = (Vxa = Vxp)yn = (Y4 — Yi), and

p = (W4 — Wp). Putting it into the form of the quadratic equation yields:

(m? + pHALE + (20m + 2up)AL + (P 4+ n?) - &*= 0

—(2tm 4 2np) % \ﬂ2lm + 2np)? = 4(m? 4+ )2 + n® - &?)
B 2(7"-2 -+ p?)

At

The distance (d) can be varied according to the range of the sensor being used
by the objects in question. It should be noted here that this application of the
quadratic equation is in only two dimensions, thus the sensor zones of any object
appear as a cylinder that knows no bounds in the z direction as shown in Fignre 4.6,

Non-imaginary solutions to the quadratic are contact points, assuming the objects




actually progress along their current routes without change. Imaginary solutions
indicate that an object will not intersect another object's sensor zones , or the object
is already within the sensor zone area of the other object. The two solutions that

_can be found are the time at which the an object encounters a zone and the time

at which an object exits a zone. This implementation of sensor_check uses only the

first solution, the time entering the zone.

Figure 4.6. Illustration of Object Sensor Zone

The actual implementation is not as straightforward as the original algorithm

implies. The implementation algorithm follows.




-lor all moving objects
-For as many objects as there are in the master_obj list
-While the popped object's id is not = to the current object id
-Calculate the term under the radical of the quadratic equation solution
using both the current object's and the popped object's sensor range
-Calculate the time the popped object will reach its next preplanned event
-If term under radical in solution is >= 0 using the current object's sensor rang=
-Calculate the sensor contact timel (the quadratic equation solution)
-H the sensor contact time is < the event time and > the current time
T ~ “7"and <="the time of the otherobject's next scheduled event, and <= the time -
of its own next preplanned event, and a line of sight exists between objects.
-Set the valid_contactl flag to TRUE
-1f the term under the radical > = zero using the other object's sensor range

-Calculate the sensor contact time2 (the quadratic egaation solution)

-If the sensor contact time is < the event time and > the current time and
<= the time of the other object's next scheduled event, and <= the tine of
its own next preplanned event, and a line of sight exists between objects.

-Set the valid_~antact2 flag to TRUE
-1f valid contactl or valid.contact2 are TRUE
-Set the appropriate contact flag(s) to TRUE or FALSE
-end for
-end for
-1f contactl and contact2 are TRUE, and s=nsing range = 0, and Qifference in altitude = 0
-Schedule a collision event
Edse if contactl or contact?2 is TRUE
-Add the appropriate routepoints to the current object's route data
-If contact2 is TRUE
-Schedule an entered._sensor_range event
-If contactl is TRUE and the current object is not a missile
-Schedule a made sensor contact event
-if contactl is TRUTF and the current object i A missile
-Schedule an ordnancereached target event
-klse
-Schedule a reached_inrnpoint event for the current object

4.3 ‘The Operator Evaluation Algorithm

The operator_evaluation algorithi is a very simple decision tree which culmi-

nates in a course of action, either do nothing, evade, or attack. The basic decision

tree is depicted in Figure 4.7.
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Figure 4.7.
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Decision Tree for the Operator Evaluation Algorithm
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Although rudimentary, this algorithm could be considered a very simple expert
system where an operator’s thought process is being modelled. The possibilities for

expansion to this algorithm are limitless.

4.4 The Attack Algorithm

The attack algorithm says:

Instantiate a MISSILE object

Initialize the MISSILE’S attributes

Determine and load the MISSILE’S routepoints
Fire the MISSILE

The approach taken in determining a missile’s route was to give each missile
three routepoints. The first routepoint for the missile would be the current location
of the object from which it is being launched. The second routepoint will be the
current location of the object at which it is being fired, keeping in mind that a moving,
target wili continue moving from its current location. Thus, a third routepoint must
be included if the missile is to have any chance of hitting its target. The third
routepoint of the missile is set to the target’s next scheduled routepoini. Therefore.

tgot

although not occurring often unless scripted in that way, a target object can “go

away” if it can reach its next routepoint before the missile catches it. In the event

that the missile does not catch the target, the missile simply dies at that point.

4.5 The Update Position Algorithm

The update_position algorithm is the most used algorithm in this simulation.
It is used in conjunction with other aigorithins in every event in this simulation

soltware. The code for this algorithm is compact, making use of four function calls
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from within update_position. The order of the function calls is critical to ensure

calculated values are correct. The algorithm is stated here:

Pop the next positicn from the object’s route data

Assign the next position coordinates to the current position coordinates

Calculate the current orientation of the object

Calculate the current velocity vectors of the object

Update the object’s current time

Send the update to a file (or directly to the display driver, if available)
If there were no routepoints left on the list and the object was a MISSILE

Terminate the missile

J.6 The Add New Routepoint Algorithm

The add.new.routepoint zlgorithin is very simiple, given some time in the future
at which the object is to arrive at the new point (e.5. add a new routepoint at a

time 30 seconds from now). Thus the algorithm reads:

To the current x, y, and z coordinates, add the time to the new routepoini
multiplied by the respective velocity vectors.

Add the newly calculated point to the object’s route data.

For example, if the current x, y, and z coordinates were 100, 250, and 1000,
with vg, vy, and v, as 200, 200, 0, then new route point x, y, and z coordinates at a
time 15 =~onds from the current time would be, 100 + (200)(15), 250 4+ (200)(15).
and 1000 , (U)(15).

There is one critical factor involved in the determination of a new routepoint.

That fact is, the object must have its velocity vectors properly adjusted to reflect
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the new direction of movement before the new routepoint can be calculated. Obvi-

ously this must be so since using the wrong velocity vectors will yield incorrect new

coordinate values.

4.7 The Calculate Current Orientation Algorithm

The calc.curr_orientation algorithm uses standard trigonometry to find the
angles between the object’s current coordinates and the object’s next routepoint.

Thus the basic algorithm used was:

Pop the next routepoint from the object’s route data.
Calculate the angles between the two points, yaw and pitch
(roll is not calculated in this implementation).

Adjust the object’s attributes accordingly.

Reinsert the popped routepoint into the object’s route data.

4.8 The Calculate Current Velocities Algorithm

The calc_curr_velocities algorithm uses a similar approach to calc_curr_orientation
although the trigonometry is slightly more involved. The algorithm for this function

is:

Pop the next routepoint from the object’s route data.

Calculate the total horizontal velocity vector.

Find the angle between the current location and the next routepoint
location.

Calculate the horizontal distance between the two points.

Using the distance and horizontal velocity vector, calculate

the time to the next routepoint.

Using the sine, and cosine of the angle found, calculate the new
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x and y velocity vectors.
Using the delta z value and the time to the next routepoint, calculate
the new z velocity vector.

Reinsert the popped routepoint into the object’s route data.

4.9 Other Algorithms

The following algorithms were not discussed in this chapter because they arve
believed to be easily enough understood thrcugh their respective module headers

and by simply stepping through the actual code. The actual code is in Appendix A.

send-fupdate
calc_time.at_next_routept
calc_time.at_nextnext_routept
read_datafile
terminate_vehicle
get_sensor_range
line_of_sight
damage.assessment
hit_miss
difference_in_altitude
add_event_coords_to_route
update_object_current time
oncollision_course

on_target_list
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V. RESULTS, CONCLUSIONS, RECOMMENDATIONS

5.1 Results, Meeting the Objectives

~ At the onset of this thesis effort, time was spent defining basic objectives which

needed to be met. These objectives were found, of course, to be driven by the planned
usage of the final product. That plan was to parallelize the simulation code created
by this thesis and to use the parallel version in speedup studies concerning military
simulation executions on parallel computers. Thus the following were the objectives

defined:

1. Create a military scenario simulation using a modular object-oriented design.
2. Use the C programming language.

3. The final product must be easily modified.

4. The final product should exhibit a high degree of comp:utational complexity.

5. The simulation code should be generic in nature such that differing scenarios

could be run simply by altering the input data.

6. The shmulation output should interface with the generic display driver devel-

oped by DeRouctiey (9).

It is believed that these objectives have been met. C structures were used to
create objects and their attributes. This design enhances both the modularity and
object-oriented nature of the simulation code. Structures of this nature ensure that
all the information regarding the object are always physically tied to that object and
can be found, used, or modified, by making the correct reference to the instantiated
structure. The usage of these types of structures also gives the simulation code much
of its flexibility and growth potential. Adding to, or changing the existing attributes

of anv of the structures within the simulation can make available more or different
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information which in turn could be used to increase the complexity and/or realism of
the simulation. Adding to the ability of the code to be easily modified is the overall
structure of the files, their interconnections, and the generic structure cf much of
the code. For instance, the simulation structures are in a separate file, easily found,
and easily modlﬁed The same is true fof thérVsimulatiibrnii'u’mr:tions. The éimruilatironr
driver is also a separate package, as is the linked list code. Either package could
be replaced if it were desired. These packages were also created using a fairly strict
modular object-criented design, thus enhancing their modification potential. So, not
only does the simulation lend itself to modification, but so does its associated code.
in part or as a whole. Having stated the above, it is easy to see that objectives onc
and three have definitely been met. Computational complexity is reached in this
simulation in two ways. First, there is the nature of the calculations themselves.
This simulation makes use of numerous computations involving long float valucd
numbers. Operations on these numbers include addition, -ubtraction, division, sinc.
cosine, tangent, arctangent, and squars root. The second area of computational load
comes from the sheer number of times these operations are required. The bottom
line is that computational load can be increased simply by adding objects to the
simulation scenario. Thus, objective four can be put to rest. There 1sn’t much to
say about objective five. The implementation allows the flexibility te create a nearly

unlimited number of scenarios and thus unlimited simulations.

<~
(8]

Conciiusions

It was never an objective of this work to create an sccurate military simulation.
Once the design phase began in earnest, it became readily apparent that had accu-
racy been a requirement, the amount of work requires would far exceed what could
be accomplished by one person in one thesis cycle. Realistic military simulations can

take teams of programmers and modelers years to produce (13). indeed, the creation

of a “representative” military simulation proved to he no easy taskh. The complexity




of the simulation grew quickly as the possible execution paths increased with every
implementation of a new function. In fact, trying to predict all the events of sim-
ulations involving more then five interacting objects prior to the actual execution

becomes extremely difficult, if not impossible. Once the execution is complete, ver-

ification of what-actually occurred is somewhat easier.- However, stepping through

the output can be a lengthy process. By far the best way to verify the output is
to view the output via the graphical display driver discussed earlier. It should be
pointed out, however, that viewing the output does not necessarily mean that all
cvents were scheduled properly. Since the display driver operates on a principle of
extrapolation, an object’s position will continue to be updated even if an event is
somnehow omitted. The best approach to running a verifiable simulation is to first
script the simulation as completely as possible; second, try and verify a printout of
the output file against the script; then view the simulation’s graphical display to
check the overall correctness of directions of movement, relative speeds, kills, and

pitch angles.

It is felt that the work of this thesis effort represents only the skeleton of what
a real military simulation could ultimately look like. Addressing the basic areas at
least in some way, even if ouly as a hook, represents a significant part of the overall
effort. It is the opinion of the author that this is probably the niost diflicult part of
the total effort. What lies ahead, prior to parallelizing, is enhancing the code, and

a iding realism. This part is the “putting the meat on the bones” part.

5.2 Recommendations

Recommendations generaliy fall into two catagories, either those concerned
with enhancing the serial version of the simulation code, or those concerned with the
parallelization issues. As far as enhancing the serial simulation code, the possibilities
are almost endless, depending on the level of detail sought. Listed here are just a

few of those possibilities:




o Modify the sensor check algorithm to include the third dimension. This would
give objects a spherical sensor zone instead of cylindrical. By off-setting the
actual object location from the center of the sensor zone, one can create a

sensor zone in front of, behind, above or, below an object.

¢ Use more of the existing object attributes, such as weapons and operator at-

tributes, to add more realism.
e Add more nondeterminism into the detection and attack processes.

e Add more error checking into the input function. Aithough each input value

cannot be verified correci, they can be checked to be within acceptable ranges.

o Terrain still needs to be addressed. This also creates a need for a viable im-

plementation of a Line of Sight function.

¢ Modify the damage assessment function to include damage less then total de-

struction.

¢ Add some expert type decision making in choosing of sensor and/or armaments

for an object to usec.

e Add some nondeterminism to the hiv miss function.

Parallelization is a separate issue. The issues here are what machine to use,
distributed or shared memory, and how to partition the simulation. Suggestions to

these questions follow:

¢ Using the shared memory machire would alleviate problems associated with

global data which may make things a little easier to handle.

¢ If the choice is made to use a distributed memory machine, it is suggested
to break the problem space up into areas of set dimensions. Then create an
artificial event type called “reached_node_boundary™ to represent the point in

time that an object needs to be handed over to another node.
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Appendix A. SIMULATION CODE

A.l Simulation Structures

The following is a copy of the simulation structures file, sim_stru.h.

struct location_type
{

double x_coord;
doubdble y_cooxd;
double z_cooxd;

}:

struct xyz.velocities
(

doudble x_velocity;
double y_velocity;
double z_velocity;

H

struct orientation_type
{

double roll;

double pitch;

double yaw;

};

struct rotation_rates
{

double roll_rate;
double pitch_rate:
doubdble yaw_rate;

};

struct oparator_type
{

int experience;

int threat_knowledge;
};

struct performance_characteristice
{

iat min_turn_radius;

int max_speed;

int ave_.fuel _cons_rate;

int max.climb_rate;

};

Struct sensors
{

int type;

int range;

int resolution;

}

struct armaments
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{

int type;

int range;

int lethality;
int accuracy;
int speed;

iat count;

| B

struct defensive_systems
{

int type;

int range;

int effectiveness;

};

struct targets

int target_type;
struct location_type turget_location;
5

styuct event_arxgs

{

double evant_time;

struct object. attributes sobjecti;
struct object_attributes *objectl;
| B

struct object_attributes

{

int object_type;

int object_id;

int object_loyalty;

double current_time;

int fuel _status;

int condition;

int wvulnerability;

struct leocation.type location;
struct xyz_velocities velocity;
struct orientation_type orientation;
struct rotation_rates rotation;
struct operator.type operator;
struct psrformance_churacterietice performance;
struct linked_liet eroute_dats;
struct linked_list ssensors;

struct linked_list sarmaments;
struct linked_list *defensive_systems;
struct linked_list etarget_list;

b

A.2 Rizsim Code

The following is a copy of the actual simulation code, rizsim.c.
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sinclude "11.0"
8include “eim _driv.h"
#include "eim_func.h"
ginclude "aim_stru.h"
#include "events.h"
finclude <stdio.h>
#include <malloc.h>

[esss000000
/* DATE: 08/02/90

/+ VERSION: 0.0

/¢ TITLE: The main simulation csde. The source of the simulation run

/¢ FILEVAME: rizeim.c

/¢ COORDIBATOR: Rod Rizza

/* PROJECT: NS Thesis GCS-90D

/* OPERATING SYSTEN: NS-DOS

/+ LABGUAGE: Microsoft Quick=C

/+ FILE PROCESSING: Link and Compile with eim_driv.c, sim_func.c, events.c, ¢/
/e and 11.¢ ./
/¢ CONTENTS: see prototypes in next section ./
/¢ FUNCTION: Basically, this code intiiates the execution of the simulatione/

/.QO‘.....‘OO.....‘.........'......‘.“.‘...0.‘.‘..‘....‘.‘.....‘...Q..0.0.00/

,.0..'..‘....“‘.........'..“.....‘....‘...‘.‘.‘....‘.....‘...Ot.‘....‘...O./
A PROTOTYPES OF FURCTIONS WITRIE RIZSIN.C ./
/0000000000 00000000E00INEEEIRERNIINNINEERLItEItetttetitetetittatiitotereie/
void start_display ();

void stop_display (); /¢ doubl, last_event_time ¢/

void echedule_init_evente ()

void identify_icons ();

int compare_time (); /+ doudbles timel, doudbles time2 o/

/00.“0.0“..Q..‘..‘.‘.0‘.0.....‘.......‘..0“"....0O“'Q......‘OO..'..O‘..O/

/e GLOBALS USED ID RIZSIN.C ./
/08000000000 000000000000000000000008000000000lI0t0tettettsestttertssdttisssss/

struct linked_list smaster_obj list;
struct driver ssimulation_ driver;
int higheat_obj id » O;

/0.....‘O.‘0.....‘..‘.‘......‘...“"‘......"................‘.‘......‘.“.‘/
[ RIZSIN.C KRAIN CODE BEGINS HERE ./
[400000000008000000008000060000010800000000000804800C300000008300¢840000000¢0/
void main ()

{

struct linked_list emtats_qusue = BULL;

struct driver_data ¢last_event = NULL;

double last_event_time;

siruct driver_data ¢deleted_event;
struct linked_list »deleted_event_list;

identify_icons ();

simulation_driver = make _driver (8, compare_time);

master_obj_list = 11 _make (FIFD);

read_datafile ("datafile.c");
schedule_init_events ();:
start_display ();

stats_queue ® execute_sim (simulation_driver);




last_event ® (mtruct driver_date+)ll_pop (stete_quene);
last event time = e(doubles)last _oeventedtime;

stop.displey (lust_event. time);

}

(9000000000 000000000000000000400600400¢040408004004000000040040000000000000 00/
/+ DATE: 09/30/90 ) - ) o */
/+ VERSION: 0.0 s/
/¢ TITLE: start_dieplay o/
/¢ MODULE_BUMBER: 0.0 +/
/¢ DESCRIPTION: Writes a start display message to the dispaly tile ./
/¢ ALGORITHN: open the diplay file o/
I write thje start display message ¢/
A close the display file ./
/* PASSED VARIABLES: none ./
/+ RETURES: none o/
/¢ GLOBAL VARIABLES PASSED: mone o/
/+ GLOBAL VARIABLES CRABGED: none o/
/¢ FILES READ: none o/
/¢ FILES MRITTEN: nhone s/
/¢ RARDVARE INPUT: none o/
/¢ HARDWARE OUTPUT: none o/
/+ MODULES CALLED: none ./
/¢ CALLING NQDULES: main() o/
/+ ORDER OF: This function is of orxder 0(1) ./
/¢ AUTHOR: Rod Rizza ./
/e RISTORY: mone o/

i‘..‘...............‘......Q........'...'.........Q..'......".'..‘.‘.'..’..'i
void start_display ()

{
FILE eptr_to_display_file;

it ((ptr.to_display_file = fopen (“display.c", "a")) != WULL)
{

fprintf (ptr_to_display_file, “"50\n");

fclose (ptr_to_display_tfile);

}

else

printf ("CANNROT OPEN DISPLAY FILE I8 START_DISPLAY\n");

}

/000 000000000000¢000000800000000000000000000004804006080008003000000000000000/
/* DATE: 09/30/90 o/
/e VERSIDE: 0.0 o/
/e TITLE: stop_display «/
/¢ MODULE_BUMBER: 1.0 o/
/¢ DESCRIPTION: ¥Writes & etop dieplay wessage to the dispaly file ./
/% ALGORITHNM: open tho diplay file o/
/e write thje stop display message o/
/e close the display file i
/¢ PASSED VARIABLES: none o/
/¢ RETURES: none ./
/e GLOBAL VARIABLES PASSED: nomne ./
/* GLOBAL VARI\BLES CBANGED: none ./
/e FILES READ: mone ./
/¢ FILES VRITTES: none ¢/
/o HARDVARE IWPUT: none o/
/* BARDVARE OUTPVUT: none ./
/¢ MODULES CALLED: none ./
/¢ CALLIRG MODULES: main(} */
/e ORDER OF: This function is of order 0(1) ./
/* AUTHOR: Rob Rizza ./

/e HISTORY: none o/




FAZLTTITT T . LI T Y T T Ty T A Ty
void stor_dispiy; (Jast_event_time)

doubls last_event .time;

{

FILEes ptr_to_dispiuy_file;

if ((ptr_to_display_file = fopen ("display.c”, "a")) ‘e BULL)
fprintf (ptr_to.display.file, "86 X1f\n", last_event_time);
}

fessnresoncense [T IIT T I Ty PP T Y P P T Y YY)
/+ DATE: 09/30/90 ./
/+ VERSIOR: 0.0 o/
/¢ TITLE: conpare_time ./
/+ MODULE_BUMBER: 2.0 o/
/¢ DESCRIPTINE: Used by the sim_driver to determine scrting of events ./
/¢ ALGORITRM: subtract timel from time2 ./
/+ DPASSED VARIABLES: iut timel, int time2 s/
/* RETURES: 1, or -t ./
/¢ GLOBAL VARIABLES PASSED: none ./
/+ GLOBAL VARIARLES CBANGED: monc n/
/* FILES READ: none s/
/% FILES WRITTEBR: none ./
/¢ HARDUARE INPUT: none ./
/¢ HARDVARE OUTPUT: none ./
/¢ WMODULES CALLED: nene ./
/% CALLIBG MODULES: main() ./
/¢ DRDER OF: This function is of order 0(1) s/
/* aUTHOR: Rob Rizza Y
/+ RISTORY: none ./

/O"l‘.'..‘...‘..‘..“‘0““..".“‘.“‘....“..“.“.".‘.i“.“ill‘!“..‘.‘/
int compare_time (timel, time2)

double etimal;

double *timel;

{

it ((stime2 - otimel) < 0.0)

return =1;

else

return i;
3

/0000604000000 040000804030300080 0000ttt riittittdtstRetseriseittdtrose/

/* DATE: 09/30/90 ./
/% VERSION: 0.0 ./
/+ TITLE: schedule_init_events ./
/¢ RMODULE_NWUMBER: 3.0 s/
/e DESCRIPTILY: Schodules the first event for all cbjects ./
/¢ ALGORITSN: Pop the pointer to the first object from the master obj list ¢/
/e schedule the objsct’s event o/
/e raplace the pointer into the master obj list ./
/¢ PASSED VARIABLES: none ./
/* RETURES: aone »/
/* GLOBAL VARIABLES PASSED: none .o/
/¢ GLOBAL VARIABLES CRANGED: pcue ./
/* FILES READ: none ./
/¢ FILE; WJRITTER: none o/
/+ HARDVARE IBPUT: menc ./
/* BARDWARE OUTPUT. none ./
/+ MUODULES CALLED: none .72
/¢ CALLIWG NODULES: main() s/
/+ ORDER OF: This function is of order 0(n) whare n is the numbor of o/
/e in tie master object list ./




/¢ AUTHOR: Rodb Rizza

/+ BISTORY: neone
AL PO

void schedule_init_events ()

{

int objects, i;

double initial time;

double *ptr_to.initial _time = FULL;
---struct-object_attributes eptr_to_objert = FULL;
struct evant_Args spty to.event_axrgs = NULL;

objects = 11 length (master_obj_list);

for (i = 1; i <= objects; i++)
{

ptr_to_object = (struct object_attridbutese)ll_pop (mazter_obj_list);

if (ptr_to_object->object_type <= 5)

if ((ptr_tc_event_args = (struct event_args*)malloc
(sizeof(struct event_args))) == JULL)
printf {"CANBOT MALLGC IN SCREDULE_INIT_EVENTS\n");

ptr_to_event_args->objectl = ptr_to_object;
ptr_to_event args->obiect2 = BULL;
ptr_to_event_avga->event_time = ptr_to_object->current_time;

if ((ptr_to_initial_time = (doublee)malloc(sizeof(initial_time)))
== JULL)
printf ("CABBOT HALLOC I¥ SCHREDULE.IEXT_EVEETS\n");

eptr_to_initial_ time ® ptr_to_cbject=>current_time;

schedule_event (simulation_driver, ptr_to_initial_time,
reached_turnpoint, ptr-to_ovont-nr;l) H

}

11_insert (master_obj_list, ptr_te_objact);

}

}

¢/
o/

sosene/

/".O““...‘...‘..0‘.“‘.‘.....‘..‘.“‘..‘.‘.““‘.'..“.‘.‘..‘.‘.‘.0““"./

/+ DATE: ©9/30/90

/e VERSION: 0.0

/s TITLE: id.ntify icons
/+ NODULE_WUMBER: 4.0

/* DESCRIPTION: Sen + ... .isplay fii- the legal icons for this simulation
/% ALGORITHM: Open . . play file

1 Send the = propriate icon identifisre

« Close the display file

/* PASSED YARIABLES: none

/#+ RETURES: none

/* GLORAL VARIABLES PASSCD: none
/e GLOBAL VARIABLES CH{AGED: nonw
/* FILFS READ: none

/* FIL WRITTEE: none

/~ HARDWARE 1WPUT: none

/+ BARDWARE OUTPUT: none

/* RMODULES CALLED: none

/+* CALLING MODULES: main()

/* ORDER OF: This function is of order 0(1)
/e AUTHOR: Rob Rizza

/* BiSTORY: none

o/
o/
./
s/
s/
./
o/
o/
./
s/
o/
./
o/
./
s/
o
¢/
x/
./
./
o/

IV eei088an o4t INEsIPEN0008E0008006200500000000000003¢00000000 SRttt IRSese/

void iden-. reoug ()
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{
FILE eptr_to_display_trile;

if ((ptr_to_display_file = fopen ("display.c". "a")) != J1L)
{

fprint? (ptr.to.display.file, 32 1 £18\n");

fprint? (ptr_to_display_file, '32 2 migi\a");

fprint? (ptr_to.display_file, "32 3 missile\n");

fprintf (ptr_to_display_file, "“32 4 tank\n");

forint? (ptr_to_display.file, *32 § truck\a");

fclose (ptr_to_display_file);

}

else
print€ ("CARBOT OPEN DISPLAY FILE I¥ IDENTIFY.XCON\n"“);
}

«oQ

A.3 Events Code

The following are copies of the simulation events code, events.h and events.c.

[0000000000000000000030050008 QUONLE . D 900000 0000008000000003¢CE0N0REIRGS/
void reached_turnpoint (}; /¢ struct event_args* event_argument «/
void entered_sensor_range (): /¢ struct event args® event_argunent ¢/

void made_sensor_contact (); /¢ struct event_args® event_argument ¢/

void collision_distance_reached (); /* struct event_args+ eveat_argument */
void ordnance_released (); /¢ struct event_args ®event_argument ¢/

void ordnance_reached_target (); /e struct event_args *event_argument »/
/.‘.‘......'.‘.“......‘.“.....‘.....‘..‘......‘.