
FIOF

AN OBJECT-ORIENTED
'MIIr'AY SIMULATION BASELINE.'i

-l"2 PARL:,A LEEl, SIMULATION RES'A R'II

Hobert .J I{izzai
.. (flt)~ i1 , I ;S,,\I]

A FIT/GCS/ENG/9OD- 12

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Potterson Air Uorco Base, Ohio

Best &vajViilb C

A FIT/G CS/EN G/90D- 12

AN OBJECT-ORIENTED
MILITARY SIMULATION BASELINE

FOR PARALLEL SIMULATION RESEARCH

THESIS

Robert J Rizza
Captain, USAIF

A FIT/GCS/ENG/90D-12

DTIC
ELECTE

SJAN 2 21991 U

Approvf-e for public release; distibution unlimited

A\ I'1/GCS/ENG/90D- 12

AN OBJECT-ORIENTED MILITARY SIMULATION

BASELINE FOR PARALLEL SIMULATION RESEARCH

THESIS

Presented to the Faculty of the School of Eniineering

of thc Air Force Institute of Technology

Air University

In Partia~l Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Systems)
A089 on I I I

ADTIC TAB&I
Ulhifrounced 0

Robert J Rizza, BS Ju 1 t0oatio

Captain, USAF
By ...

Di!ti,ibltiu on/ _

Aval labllity Codes

December, 1990 tD adoria

Approved for public release; diStibution unlimit ed

Nt.

Acknowledgments

I would like to thank my advisor, Dr. Thomas Hartrum, for his input during

this thesis effort. I would also like to thank my committee members, Major Kim

Nanzaki and Captain Catherine Lamanna for their inputs.

I would like to thank the entire GCS section for all their help and support, but

I would especially like to thank Captain Ann Lee. Without Ann I sincerly believe

that I may not have made it through to graduation. Her support, encouragement,

and faith, gave me the strength to endure. Her ever present smile and laughter gave

ine something to look forward to and something to count on at those times when

things looked their bleakest. I could say much more but instead I'll just say this: I

will always feel close to Ann, and never forget the friendship we shared.

I want to thank the graphics guys, those C gurus, who so many times bailed

i•c out when all my efforts at debugging failed. Without the help of Captains Ed

Williams, Dave Dahn, and Phil Platt, I could very easily still be debugging today.

I want to thank my neighbor, my friend, and my fellow corvetter, Skip Layfield

for his support and encouragement. Those times spent working together on my 70

alwa\?s brought me back to earth.

My four year old son Keith also deserves thanks. He was totally oblivious to

what was going on and that is what I thank him for most. Innocence is beautiful.

I don't know how to thank my wife. She may of had the most difficult job of

any of us. Having to stand by and watch me suffer, unable to help, was extremely

difficult for her. She was always there ready to give her love, hoping that it would in

some way lessen my load. Although it may not have showed, it did more than help,

in fact without her presence I would have been lost. Thank you Kathy, I love you.

Robert J Rizza.

Table of Contents

Page

Acknowledgments ii

'fable of Contents i.

List. of Figures vii

List of Tables viii

.\A.)tIact iN

1. INTRODUCTION1-1

1.1 Background I-I

1.2 Problem Statement- .

1.3 Research Questions-.

1.4 Definitions 1-I

1.5 Assumptions-..

1.6 Scope I-.

II. LITERATURE REVIEW -I

2.1 Introduction 2-1

2.2 Background 2-1

2.3 Related Work 2-:3

2.3.1 Simulations in General 2-3

2.3.2 Object-Oriented Simulation 2-I

2.3.,1 Military Sinulaioin Modelling 2-6

2.3.4 Some insights to C 2-7

2.3.5 Parallel Simulation -

iii

Ill. THE MODEL . :l

3.1 Introduction. 3-i

3.2 System Overview. 3-1

3.3 High Level Design 3-5

3.3.1 The Objects 3-5

3.3.2 The Events 3-9

3.3.3 Models for Perceive, Move, and Fight. 3-12

3.4 Low Level Design 3-13

3.4.1 Object Attributes 3- 13

3.4.2 Supporting F'unctions 3-20

3.5 The Interfaces 3-28

3.5.1 Overall System Interface 3- 2

3.5.2 The Driver Interface :3-30

IV. MAJOR ALGORITHM DISCUSSIONS AND IMPLEMEN-

'rATIONS I I

4t.1 The Evade Algorithm I-I

.1.2 The Sensor Check Algorithm.-

4.3 The Operator Evaluation Algorithm 1-12

4.4 The Attack Algorithm. I-I I

4.5 The Update Position Algorithm- l1

4.6 The Add New Routepoint Algorithm 4-15

4.7 The Calculate Current Orientption Algorithm 4-16

4.8 The Calculate Current Velocities Algorithm . .. 4-16

4.9 Other AlgorithmsIT

V. RESULTS, CONCLUSIONS, RECOMMENDATIONS)-I

5.1 Results, Meeting the Objectives I

iv

5.2 Conclusions 5-2

5.3 Recommendations 5-3

Appendix A. SIMULATION CODE A-I

A.1 Simulation Structures A-I

A.2 Rizsim Code A-2

A.3 Events Code A-7

A.4 Functions Code A-9

:\ppcndix B. TESTING STRATEGIES, RESULTS and CODE 1I-

B..1 Testing Strategies -l

B.2 Test Resalts and Code I1-l

B.2.1 'lest 1, add-new-routepoirt 13-3

B.2.2 Test. 2, calc-curr.orientation -I

B.2.3 Test 3, calc-curr-velocities 11(6

B.2.4 Test 4, calctimeatnextroutept. 11-7

B.2.5 Test 5, calc.tine-a~tnextncxtrouteioept I 9

B.2.6 Test 6, attack -I.

B.2.7 Test 7, differencein.-altitude- I

B.2.8 Test 8, get.sensor-range

B.2.9 Test 9, on-target-list B

B.2.10 Test 10, send-fupdate 13-17

B.2.11 Other Level One Functions B-18

.\ppendix C. SUPPORTING CODE, USERS MANUAL FOR

THE GENERIC DRIVER AND LINKED LIST CODE C-I

C.1 Generic Linked List C-i

C.1.1 General I)escription. (-.

C.1.2 Reference -I

v

C.1.3 The Generic Linked List Code (11.1i, lI.c) (. 13

C.2 Generic Simulation DriverC- 22

C.2.1 General Description (.-22

C.2.2 Reference C-22

C.2.3 The Generic simulation Driver Code (sim-driv.h,

sim-driv.c) C-30

C.3 The Carwash Simulation C-37

C.3.1 General Description C-37

C.3.2 The Carwash Simulation Code (hogwashxc) ('-37

C.3.3 Script of Hogwash Execution (.-I I

..\l~pndx . DISPLAY DRIVER INTERFACE REQUIREMENTS
P-1

:\p1w)'ldix E. RIZSIM Configuration Guide I

r. I Introduction to the rizsm Configuration Guide I- I

E.2 Rizsim M akefile I.:.

.\plcendix F. RIZSIM USERS GUIDE - I

\ ita . \IT A -I

Ilibliography................................. Illl-I

Vi

List of Pigurcs

•igut'e lPagc

3.1. The "Big Picture" 3-2

3.2. Depiction of a Typical Scenario 3-,4

3.3. Object Relationships 3-7

3.4. Object Attribute Relationships 3-17

U.5. Input File Fo'mat 3-26

3.6. Overall System Interfaces

I. I. CASE 1: x velocity vector - 0, y velocity vector 54 0 1-2

•1.2. CASi:, 11: N velocity vector # 0, y velocity vector = 0 .I-

1.3. CA7SE ill: x velocity vector = 0, y velocity vem'o." = 0.- !

1.1. GCENERAL CASE: x velocity vector # 0, y velocity vector -76 0 .

1. .5. Ilhust rat ion of Calculation.I- 3

•1.6. Illustration of Object Sensor Zone I- .I

1.7. Decision Tree for the Ope,-ator Evaluation Algorithm -.. -1 1:3

H.l. Function l)evelopment and Tisting Staircase IL?

11.2. Depiction of Benchmark Scenario 11-20

F.1. Input File Format F-3

vii

List of Tables

Th'blIc Page'

3.1. Simulation Object Types 3-6

3.2. Sim ulation Events 3-1()

3.3. Events and Supporting Functions 3-21

3,II Events and Supporting Minctions 3-21

1).1. Record Type 30 1) 1

ID.2. Record Type 31 I ..

A).3. Record Type 12 1)-I

Di. Record Type 33)-I

D-)i Record Tvyw 50). ..

A).6. Record Type 52 D)

I).7. Record lype 86 ..)..

V.III

A FIT/GCS/ENG/90D-12

Abstract

his-peper'documents the design and implementation of a discrete event mil-
itary simulation using a modular object-oriented design and the C programming

language. The basic simulation is one of interacting objects. The objects move

along a predetermined path until they encounter another object. Objects react to

the encountered object according to the implemented algorithm. Object reaction op-

tions are fight, evade, or do nothing. In the code's current form it is generic enough

to allow a user the flexibility of creating an infinite number of scenarios boundedcl

iii size by the hardware's memory capacity. The modularity of design will Mllow for

vasy expansion of object complexity and detail, Is well as easy removal or replace-

nient of functions or events. The simulation code makes use of a generic linked list

data structure and simulation driver. This adds yet another area to the code where

expansion, removal, or replacement could be easily accomplished. The net result is

i military scenario simulation program which is highly expandable and modifiable.

Yet compact enough to be easily understood.

ix

AN OBJECT-ORIENTED MILITARY SIMULATION

BASELINE FOR PARALLEL SIMULATION RESEARCH

L INTRODUCTION

This thesis deals with one part of the ongoing research effort investigating

possible run-time speedup of military simulation software using parallel processing.

Currently, a shortage of military simulation software for use in Air Force Institute

of Technology (AFIT) research exists. The purpose of this thesis is to provide a. new

source of this software.

1.1 Background

Recent development of high speed parallel and distributed computer architec-

tures have spawned a new interest in the simulation world. Fujimoto believes that

these new architectural designs can dramatically speed up the run-time of many

comiputationally intensive problems such as those in large simulations (12:19). The

bcnefits of speedup are twofold. First, speedup would enable existing simulations to

run at higher speeds, allowing for quicker decision making or enough time to make

additional simulation runs. Second, speedup would allow for the development of

more complex, and ideally, more accurate simulations.

At present, the Air Force Institute of Technology (AFIT) does not have the

ability to explore the applicability of parallel or distributed simulations dealing with

a military scenario.

In general there are three requirements needed before one can study parallel

or distributed computer simulations.

1-1

"* First, the study requires a computer with a parallel or distributed architecture.

AFIT has four such systems. Two are Intel Hypercube iPSC/ls, each using

thirty-two INTEL 80286 microprocessors, one per node. One iPSC/1 has a

vector processor at each node and the other has an expanded memory capacity

at each node. AFIT also has an Intel Hypercube iPSC/2 which uses eight

of Intel's 80386 microprocessors, one per node. Lastly, AFIT has an Encore

Multimax which uses a shared memory architecture with sixteen nodes.

"* Second, a software package to handle the protocol used for node intercommu-

nication (message passing between the nodes (processors)) is needed. AFIT

is currently using a software package called Spectrum, a parallel siiuulatioll

testbed developed by Paul Reynolds at the University of Virginia (UVA) (2-]).

which is written in the C programming language.

"* Lastly, the study requires a simulation which is comptutationally intensive.

has a significant amount of code which need not be run sequentially, and is

compatible with the software used to handle node intercommunication (ill this

case, compatible with Spectrum).

Parailelizing a. simulation can be studied using many types of sinitilaliolns.

IHowever, the area, of particular interest to AFIT is parallelizing baitic a•ud ol li,

muilitary scenario simulations. AFIT's interest in this area of study sterns tiol oidil

from the fact that the typical AFIT student is in the military, but from specific

interest and requirements from sponsoring organizations, as well as the opportmnity

to explore claims made by Nicols as to the limitations imposed on parallelizilg

,an event driven battlefield simulation (21:141). AFIT does not have a military

simulation which is appropriate for parallelization. Because of the lack of a military

simulation AFIT has only a limited ability to explore the applicability of parallel

or distributed architectures to simulation software. In addition to the requirements

si ated above, the simulation must also adhere to the following:

1-2

9 It must contain the types and number of constructs which according to current

literature pose a problem to parallelization.

o It should produce as an output the information needed to display the simula-

tion.

* The code shall be easily modified, maintained, and reused, since it will be

restructured in various parallel configurations.

To meet AFITs needs three options exist:

1. Find an existing simulation which meets the stated requirements.

"2. Modify an existing simulation to meet the stated requirements.

3. Create a new simulation which meets the stated requirements.

In regard to the first, two items, there are a number of military sinmiatiolls

c(urrently in use in the field. but the following constraints preclude them from use.

"* Most current military simulations are coded in Fortran which is not, compatible

with UVA's simulation testbed Spectrum. Spectrum is coded entirely in C.

"* Most current military simulations are very large, and have been built over time

by different programmers. This type of construction makes translatioii to (C

and parallelization nearly impossible.

"* Many of the current military simulations are classified, making it difficult if

not impossible to use them in AFIT's parallel processing laboratory.

Thus the only solution is option three. The rationale of this thesis is therelore

straightforward: without a military scenario simulation which meets the ba:3ic re-

quirements stated earlier, no further research into run-time simulation speedup cali

be made.

1-3

1.2 Problem Statement

Design and implement a discrete event military scenario simulation using a

modular object-oriented design approach and the C programming language.

1.3 Research Questions

Answers to the following questions are part of this research effort:

1. Can a discrete event military scenario simulation be written in C using a mod-

ular object-oriented design approach?

2. What types of issues and constructs are currently viewed as possible problem

areas to the parallelization process?

3. What information needs to be provided to a remote graphical interface system?

4. What, if any, real-time simulation inputs should the user be allowed to make?

1.4 Definitions

Discrete Event Simulation A simulation in which dependent variables change

discretely at specified points in simulated time called event times (23:62) (20:135).

Eveht Something which causes change in the state of an object or entity

(20:136).

Object An entity which has a state and a defined set of operations to access

and modify that state (28:204) (6:20).

Object-Oriented Design A design approach where the system is viewed as

being composed of interacting objects instead of a group of interacting functions

(25:277).

Time Driven (continuous) Simulation A simulation where dependent v'ari-

ables may change continuously over simulated time at set time increrhents (23:62).

1-4

1 5 Assumptions

Several assumptions were made concerning this effort. First, the simulation

developed here will be used solely for research pui poses with the intent of establish-

ing feasibility-of operational -appflcations of parallel or distributed architectures to

simulations, and in particular, military simulations. This assumption directly affects

issues of of scope. Second, DeRouchey's work in developing a generic graphical dis-

play driver (9) will support this simulation. Lastly, Spectrum (24), or a comparable

software package written in C, will be available for use during the follow-on research

which uses this code.

1.6 Scope

The extent of this work is restricted by the following limitations:

"* This simulation is written to run on a single serial processor. Parallel is'sues

will be considered during all phases of design and deveiopment, but this codc

will not be parallelized as part of this thesis.

"* The simulation should be a "representative" military simulation, but timn, fi-

delity and object characteristics are not goals.

* The simulation should provide output in a fashion that. can be used by a gpeieric

graphics display, but not be constrained by this interface. Because the graphics

driver is a separate but concurrent effort by DeRouchey (9), this work should

be independent of the graphics work.

1-5

II. LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to at least summarize some of the current lit-

erature concerned with simulations in general, event driven simulations, and object-

oriented simulations. Since C is the required implementation language as explained

in Chapter One, its applicability to object-oriented programming will also be ex-

plored.

All of the above topics have already been thoroughly addressed and a •,ell

understood. It is not the purpose of this chapter to imply that work of this type

has never been done before. However, as described in Chapter One, there exists a

specific requirement for a simulation which is:

"* a military scenario

"* event driven

"* written in C

"* highly modifiable and expandable

"* is or could create a high computational load

"* compact enough to be understood by one person

A simulation fitting this bill was not found, thus creating the need for this new

work.

2.2 Background

According to Thesen and Travis, simulation in its broadest sense is a perfor-

miance analysis tool which is used as a decision aid (29:7). Almost any question can

be answered by a, properly designed simulation. The proper design of a sirntlat.ioii

2-1

can only be done if the problem is completely understood. Thesen and Travis go on

to point out some common pitfalls to any simulation. First, creating a simulation

is an ait, requiring a special talent. The quality of any analysis depends on the

quality of the model. Second, sometimes it is difficult to determine if a particular

observation made during a simulation run is representative of the system behavior

because of the use of randomness in the simulation (29:7-8). To help avoid the first

pitfall, the programmer must use care, patience, and attention to detail while in the

creation phase. The second pitfall is one of interpretation, not coding, and should

be easily handled if the programmer does not forget what degree of randomness bas

been implemented in the simulation under study.

As defined in Chapter One, and as described by many other authors, a discret,

event simulation is a simulation where time is updated as events occur and not

at some predetermined time step (23:62) (20:135) (17:11). In this scheme, events

are processed as quickly as possible, effectively deleting the "dead time" between

events. Events can occur at irregular time intervals which are at least, in part.

deterinined by what are defined as events. Consider the following example of' a

discrete event simulation: A tank moves in a straight, line for 100 miles. If the only

event defined is "reached turnpoint" then this simulation has zero events and the

simulation time clock is never updated. However, if "travelled-one-mile" is an event.

then this simulation will have one hundred events, and the time clock should ref•c•t

the time of the last event.

There has been enormous amounts of information published in recent years on

the topic of object-oriented design. Object oriented design is one in which the design

focuses on objects rather than functions, with messages passed from object to object

(25:277). Objects are entities which have a state, a defined set of operations to access

or modify it, are denoted by a name and have restricted visibility of and by other

objects (28:204) (6:20) (7:48-50). Booch is probably one of the most widely recog-

nized proponents of object-oriented design today. Hlis books SOFTIVAJRE COM!M'O-

2-2

NENTS WITH ADA and SOF'. WARE ENGINE,,RING WIT!! ADA do a good job

describing why, and how, to use an object-oriented approach (6) (7). Now that. a

common baseline has been established, the discussion can turn to some of the current

work relating to this effort.

2.3 Related Work

2.3.1 Simulations in Gen: ral Simulations are much older than the oldest

mechanical computer. Indeed, man has probably been simulating from the point at

which he gained the ability to think abstractly. Anytime a person thinks ahead 1,)

"imagine" the consequences of an action, or sequence of actions, that persoi lha.

l)asically run a simulation, using their brain as the information processor. Today.

wit h the help of computers, we are able to sin! date actions, or a sequence of actions,

which for reasons of complexity, may not be able to be simulated in a single personl's

head.

Simulations, in general, are so well understood that. they will not. be (etailed

here. If more information at this level is needed, the references of Pritsker and

Neelankavil should suffice. However, the article by Thesen and Travis presenlted

some valuable information about not only what simulations were, and what they arc

used for, but what to keep in mind as one develops a simulation. Those suggestionis

were (29:13):

"* Define your objectives before simulating.

"* Use the correct level of detail - begin with a simple model.

"* Select software that is appropriate to your problem, level of experience and

time frame.

"* Remember that simulation results may be observations of random varýiables,

and interpret your results accordingly.

2-3

The following subsections present highlights and pertinent information froi

articles, papers, or books in the areas of object-oriented simulation, mi'itary mod-

elling, C as it pertains to discrete event simulations arid object-oriented design, anid

some baCKground on parallel simulations.

2.3.2 Object-Oriented Simulation The following papers address object-

oriented simulations.

A Perspective on Object-Oriented Simulation (25)

Probably the most important point made i:. this paper, as it pertains to the

work of this thesis, is that an object-oriented design fits well into how most things to

he simulated are viewed. To be more specific, one can very naturally view soiiethllipg

to be simulated as a group of objects, or things, that do something or may hay,

something done to them. Thus, they have legal operations which they can do (e.g.

the object aircraft might be able to turn, fire a missile, or land), or can be done to

them (e.g. the same aircraft may be fired on by another aircraft). Objects also hia\e a

corresponding state before, during, and after the operation. Roberts and I-ci in go o•i

to point out construction of objects in this manner help to modularize the problem in

its earliest stages of analysis. A second major advantage to object-oriented design is

that simulations become more easily extensible. This is, of course, a desired feature

of the simulation written as part of this thesis work. A last imlortant adv\ant.age

pointed out in this paper is that objects provide a natural baseline for concurrency.

The idea here is that each object, or subset of objects, could be assigned a particular

processor of its own and work away until communication was needed.

Design and Implementation Issues in Object-Oriented Simulation (5)

Bezevin points out an important aspect of coding a simulation. First and

foremost is the principle of readability. Having readable code is always important

and is obvious to anyone who has given a copy of their code to someone else to

use, but it's is of paramount importance to simulations and the work of this l l.i.,

2-4

in particular. In general, the only way to determine if a simulation is modelling

something correctly is to go back and look at the code. Unverifiable simulation code

is not worth much if real decisions are to be made based on its output. Bezivin's

point is well taken here because riot only is a simulation going to be produced as

part of this thesis effort , but it is known that the code will be used in follow-on

work and thus must be readable. The second point Bezevin makes is that simulation

code should be efficient. While this is certainly true, especially for large simulations

where time may be a critical factor, it is luckily not a requirement of the simulation

developed for this thesis. On the contrary, a high computational load is desired since

eventually this code is to be used to study speedup by parallelization. Tihe second

half of Bezivin's paper deals with how the object-oriented parallelization can help

meet the needs of the sometimes opposing objectives of readability and efficiency. As

found in many of the other references, the main thrust is that. by providing a good

object model (e.g. objects, and operations), the code naturally is ea.sier to follow

and normally more efficient.

Some E.periments in Object- Oriented Simulation (4)

".n this paper, Bezivin actually focuses on revealing greater flexibility of the

Smalltalk-80 simulation language. Languages specifically designed for use ill cre-

ating simulations are plentiful (23) (26) (14) (22); however, they are not the focus

of this research. Although Bezivin's paper revolved around Smalltalk-SO, it. did give

valuable insight into a type of simulation where there are basically two types of en-

tities, clients and servers. Clients are active entities and the servers are l)assive. In

the example given, Bezivin modelled vehicles travelling between cross road junctions

as active entities, and the junctions themselves where passive entities. This type of

concept may be applicable to this thesis work depending on final design decisions.

Bezivin also spent a good deal of time on semaphores and monitors, but at this

time there are no plans to use shared data, so there was limited apllicability ot this

"1 Smallt-alk-80 is a trademark of the Xerox Corporation

2-5

data. However, the Air Force Institute of Technology does have a shared memrory

para~lel architecture computer, and if it is used in the follow-on work to this thesis,

the information from this paper will be of value.

2.63 Military Simulation Modelling The intent -of this section is to

present some of the ideas or concepts of how military models are constructed or

appear, either through a specific example or background data. A military simula-

tion is "a type of model in which the objective is generally to replicate a reasonably

well understood process, and for which uncertainties are treated by Monte Carlo

method." (2:14).

Thc TAC Brawler Air Combat Simulatio (3)

TAC Brawler is a simulation of air-to-air combat capable of handling 2 - 32

aircraft. It is written in Fortran and has over 150,000 lines of code. In almost

all cases, the characteristics and behavior and reactions of TAC Brawler entities,

are much more detailed than the planned objects in the simulation to be developed.

I lowever, it is interesting to see how TAC Brawler models certain characterist ics. For

example, missiles and guns are both modelled. Missiles take into account guidance,

seeker, envelope and fuzing. Sensors modelled are eyes, radar and Infra Red Search

an(d Track (llST). Communications are explicitly modelled as well as Identify- Frienl

or Foe (IFF), defensive avionics, radar jamming and Missile Approach \\Variilly.

,'IMA\W'). This paper has a wealth of information on what things can be simulated as

well as limited information on how it is done.

Two Aggressive Aircraft in a Realistic Short-Range Combat as a Differential Game

Study (16)

In this paper, Jarmack offers a rigorous mathematical solution to a close aerial

combat with IR missiles. The level of detail, not to mention its complexity, of the

material presented is beyond that which is planned for this thesis work. Hlowe'er. if

2-6

at a later date, a more rigorous solution is needed in this area, this approach may

be applicable.

Simudation of Multiple Aircraft Information, Communication and Decision it Ail,

Combat (8)

This was an extremely good article on the modelling of communication and

decision making process. Although it is not planned at this time to model comimuni-

cations in the shizdation to be developed for this thesis, this is one area which may

be considered for consideration if time permits. Chan and Vogel also give a good

example of a decision tree which establishes how to assign target priorities. t'ii-

doubtedly, a tree of this nature will be used to determine targets in the simul;at ihii

being (leveloped.

:lilitary Make-Believe (1)

This was really a survey article of what the state of 4rt sinmud.ators -h.. d to

offer. This was a good background piece, but did not give much specific insight to

simulations at the level of the work of this thesis. The article's focus was oi big

system simulators such as interactive simulators for the Mirage F1 fighter, All-64-A

Apache helicopter, or the Mirage 2000 fighter.

2.3.4 Some insights to C C is a general-purpose programming lan,,l;,g,

which is touted for its portability, flexibility and 1 power (30:4). It, feat Iires ecoi0oii iv

of expression, modern control flow, data structures, and has a rich set. of operators

(18:xi). "C was originally designed for and implemented on the UNIX opetrating

system on the DEC PDP-11, by Dennis Ritchie The operating system, the C

coflllpiler, and essentially all UNIX applications programs are written in C"(18:xi). C

is widely used, and has gained even more popularity as versions became available for

use on personal computers. The following articles or papers deal with the applicat ion

of C to object-oriented progrniming or discrete event simulations.

2-7

Its' ail Atttitude (19)

In this article, Linowes sets out. to describe one way in which C cati be 11sC-t

to do object,-oriented programming. As is planned for this thesis work, l,iuowes

uses C structures as templates of objects. An instantiated structure thus cre'tes

an object. Linowes also formalizes a message passing scheme for communicattion

between objects. While this makes clear the communication between objects, it is

felt at, this time that it may add an unoecessary level to object interaction. Instead of

sending a "message" containing what operation is to be performed, it may be simpler

to just make the operation to be performed the message. Linowes also illustrates

how he handles inheritance of attributes to subclasses of objects. Basically, le uses

a strategy of #include chaining, where in the structure definition of one object Ie.

uses #include to include another file thus enabling inheritance to occur. This ,ein',

like a reasonable approach to inheritance if it is used in this thesis, work,

ObJct- On'ien tcd Program min g As a Program m inig Styhc (32)

\Wlhite's articlc was another example of how C could be used to code ushng

an o)bject-orientf, d approach. White is a little more detailed in his co\,erae t h11n

1i Aowes, but is nearly the same in how lie handles messages and inlierit ance. \Vhiit'

does separate "messages" from what lie calls "methods" where Linowes does iiot. It

White's version, "messages" get. sent to an object, where something decides what

"method" (operation) to invoke. It really just seems to be a rather minor diflerence,

but it is a slightly different twist. The rest of White's article focused on C++ and

how it can be used in object-oriented programming.

2-8

C" Bascd Discrete Evcnt Simulation Support System (27)

This paper describes a C based simulation environment for creating and exe-

cuting discrete-event simulation models in which tile event routines are coded in C.

The system described by Selvaraj et.al. is divided into eight task modules. The two

most important modules are the executive controller and the memory management

module. The executive controller module is similar to the Generic Simulation Driver

in the appendix of this thesis. It basically executes the simulation, placing nuld tak-

ing event entities off the "simulation calendar" (event list) until no more events exist

to be executed or the simulation gets a termination event, In the Generic Simuthtion

Driver memory management is not. handled as a ,eparate issue; instead it is done on

au s-needed basis within the code.

2.3.5 Pa•'allel Simulatioa While writing a parallel simulation is not the

objective of this thesis work, writing a simulation that. can be parallelized certIIinl y

is. Thus, some knowledge of what parallelization may entail is definitely an arca to

be considered,

A Survey of Parallel Cornputc Architectircs (10)

l)uncan starts his article off by aid.,essing Flynn's taxonomy (H1), Flv':1n clas-

sifics architectures on the presence of singic or multiple data streams of insti ,ct ions

wid data. Flynn's MIMD (multiple instrnction, multiple data stream.n) tmatino,

are the types of parallel computors available at tL A:. Force Institute of 'echnol-

ogy, and as such, will be what is discussed here. MIMI) machincs imvolve multipic

processors autonomously executing diverse instructions on diverse dat.a. MIMI) ar-

chitectures are generally more complex then machines of Flynn's other classificp.tions.

but MIMD machines can also mimic the other machines, ehiai.)r if necessary. The

next important area within MIMD machines deals with wheth.er the machine has a

shared neeim ry approach, where all the processors have imtnediame and lircct d,,('.-

io some central memory, or whether the machine has a dist ribumed lnemory s.liciu,,.

2-9

whereby each p)rocessor has its own memory anld access to another l)rocos,;ots meil,-

ory is indirectly through some type of message. As stated in Chapter One, t li- Air

Force Institute of Trechnolog, has both distributed memory machines and a shared

memory machine. It is apparent at. this point tlhat a significant, problem to be avoided

when designing any program which will be run on a distributed memory nidchin-eis

the use of global variables. It should be obvious, but excessive use of globals will

create a large communication overhead caused by message passing to keep varinbles

ipd(lated. Shared memory machines do avoid this shortfall, but in shared memory

machines other problems like data access sychronization must be solved.

Pa raild Disc'etc Even t Sir ula It ion (12)

This paper deals with the execution of a single simulationl program applica-

tion in a set of concurrently executing processes, o0 more simply put, the par1alh'l

executilon of a single simulation. More interesting t.han the general objective of this

pel~tr was the section called, "Why Is Parallel Discrete Event. Simulations Ilard'?".

Fujimoto points a finger immediately t~o global data structures, but of course ihis is

not. surprising, He also discusses how hard it. is to ensure thme peoper execution se-

quence of events, pointing out. that. the constraints that dictate which computal ions

must be executed before which others is often quite complex and data dependelnt.

It is h(ere that overlap into the synchronization area becomes e-vident. It app'lar.-.

howexver, that. clever partitioning of the p)roblem may help to alleviate part of t ,

pr-ecedence problems.

Au Empirical .9- , '.5dy of Data Part itioning and Replication in Pa ralid Simr mhtion (31)

Wieland's article looked at the issue of partitioning in a parallel simulat.ion. It

particular lie focused oni the issue of proximity detection be.wtween object s in adjacent

sectors, where sectoring has been chosen as the parallel partitioniung st rategy. Al

obvious strategy to handle movement between sectors is to create an event cor're-

spoti(lintg to travel across a bon(dary. At that event. time all object. cou hi, be 'l hamhd

over" fromn the processor currently controlling the object. to the l)rocessor cotit rollillui

2-10

the new sector. This strategy is straightforward enough, but the more subtle issue

is how to handle detection between objects that are near the borders but still ill

different sectors. Wieland mentions a number of strategies like use of a buffer zone

between sectors, overlapping sectors, or data replication as an object and its sensor

zone move from one sector to another. This last strategy intrinsically sounds best

since sensor zones can then be of differing sizes as is not the case for the other strate-

gies. One last note of particular interest are his comments on proximity detection

within a sector. Wieland comments that a quadratic equation can be used to solve

for tile time at which two objects will first come in contact with one another and

the time at which they will lose contact with each other. This notion will be furtter

explored as the design of the simulation for this thesis progresses.

2-11

III. THE MODEL

3.1 Introduction

This chapter is broken into three distinct areas: the overall model of battle or

high level design, a more detailed look at the model of battle or low level design, and

an explanation of program interfaces. In the high level design area there are three

topics of discussion, the objects which will be available for instantiation and use in a

given scenario, the events which may affect object attributes, and the basic models

for how objects perceive, move, and fight. In the low level design area objects will

be viewed in detail, and the functions which support the events will be discussed.

The object discussion will include attributes, and rationale for the object's existence.

The final area defines the interface between the simulation driver (what executes the

simulation), and the actual simulation.

3.2 System Overview

Here is the "big picture", without regard to describing how the code is actually

accomplishing any of these actions. Figure 3.1 illustrates the big picture as seen from

the outside. The user must create a scenario file (as described in this chapter and

Appendix F). Once created, the executable rizsim simulation code is executed using

the created scenario file. The simulation produces an output (at this time a file),

which is read by the display driver which graphically displays the simulation output.

3-1

u~ser created
scenario Dfile

uses

Cexecuting rizsirn

simulation:

creates

output

file
may be sent
directly to

(can read
display •

Figure 3.1. The "Big Picture"

3-2

Figure 3.2 depicts a simple two dimensional representation of a typical simn-

ulation scenario. At time t there are eight objects in the simulation, a flight of

three aircraft approaching from the southwest, a single ship approaching from the

northwest on an intersecting path with the flight of three, three tanks moving in a

northwestly direction, and one other single ship moving northwest. At time At later

two of the flight of three have been destroyed as well as the single ship attacker.

Now only one of the flight of three remains, along with the three tanks and the other

single ship. By some other At later, the remaining single ship has turned north to

evade the other aircraft as the other aircraft flew by. On the last leg of the single

ship's journey, the single ship destroys the three tanks.

3-3

I X_ time t O

Alater OX

I'

'I
I I

I t:4'
I I

x

At
I

Figure 3.2. Depiction of a Typical Scenario

3-4

3.3 High Level Design

The general system model is one of interacting objects. Moveable objects

(vehicles) have a predetermined route as part of the input scenario, which may or

may not be altered depending on obstacles or threats encountered. Moveable objects

may have a predetermined target or destination as an objective, or may be in search

"of a target of opportunity. Stationary objects, such as Surface-to-Air Missle (SAM)

sites, will attack any valid target within range if the site has the resources to do

so. Once the simulation has begun, objects move along their predetermined routes

carrying out their respective missions. If an obstacle or threat is encountered along

the route, an event (e.g. entered.-sensor-range) is scheduled to handle the situation.

The vehicle will choose to either attack, evade, or take no action, in response to the

obstacle or threat. Although all objects are autonomous entities reacting to threats

or obstacles separately, it is expected that similar objects (e.g. two F-15s flying the

same route with a half second seperation) will react similarly to the same threat

or obstacle. This is because the algorithm used by the F-15s to determine their

course of action will be the same. The simulation will continue until a termination

event is executed or no more events are pending in the Next Event Queue (NEQ).

A termination event can be scheduled at any time by using the end.sim function

available in the generic simulation driver.

3.3.1 The Objects The design strategy used in defining objects for this

simulation was to keep the objects as generic as possible without being unrealistic as

to the breadth of application of any one object. Stated simply, there is no "super"

object that can be instantiated to create any entity type in the system. However,

many of the semi-generic objects will be able to be instantiated to create a limited

number of seemingly different object types. A good example of this is the object

"64sensors" which can be instantiated as a number of different sensor types from eyes

to radar.

3-5

The objects are those entities within the simulation scenario which make up the

"order of battle". The order of battle as used here refers to the types and amounts

of instantiated objects which will be players in the scenario to be run. Table 3.1

lists all the object types which are available to the user for instantiation. Figure 3.3

shows the relationships between the objects in a given scenario. -Object-attribute

relationships are addressed in the low level design section.

Object Types
object-attributes

performance-characteristics
sensors

armaments
defensive.systems

route-data
operator
target-list

master-obj list

Table 3.1. Simulation Object Types

Objects instantiated using the "object-attributes" type are probably the most

important of all the objects within the scenario. It is the movement of these object s

which gives the simulation much of the computational complexity sought by this

work. The object attributes type, as are many of the other object types, is a skeletoil

definition where the user fills in the applicable attributes with the correct values when

the object is instantiated. By simply providing zeros as the velocity vector attributes

and no route points other than the object's current location, a user has effectively

created a stationary object. Thus, the object-attributes type can be instantiated to

cover a wide variety of objects, both moving and stationary.

3-6

aerfonnatcdran e :tic

obice•t-ributesj

target~list "

has ce

will "a•

master.obj.list

prformance2charact e

Figure 3.3. Object Relationships

3-7

Since each moving object will have some route associated with it, there is a

need for the "route-data" object. Even a vehicle that goes nowhere will have a route

associated with it, but its route will be a single point. The route data will provide

the simulation with the future locations of an object. This information is critical in

determining the vehicle's yaw, pitch, and velocity vectors.

"Sensors", like vehicles, can be instantiated with differing attributes, thereby

creating different sensors. Many of the vehicles may employ the same type of sensor

and some of the vehicles may be equipped with a number of different sensors. Thus

sensors logically map to an object class. The association of a sensor, or group of

sensors, with a particular object gives the simulation the ability to determine what

an object can or will perceive.

The rationale behind the creation of the "armaments" and "defensive.systems"

objects is essentially the same as for sensors. The association of a particular type of

armament, such as armament type, range, destructive power, etc. with an instan-

tiated object provides the simulation with information which can be used during a

fight sequence. Examples of armaments could include systems such as sidewinder

missiles, 50 caliber machine guns, or surface-to-air missiles. As with armaments, the

defensive systems object provides the simulation with information as to what type

of defensive systems an object is equipped, if any. Examples of defensive systems

are chaff, flares, or jammers.

The intent of the "operator" object is used to factor in intangible qualities such

as experience and threat knowledge. The values assigned to these qualities could be

used to help determine whether an attack will be successful (e.g. the armament hit

the target). Operator qualities could also be factored into the operator evaluation

function where decisions regarding a course of action (such as attack, evade, or take

no action) are made.

The "performance-characteristics" object is, as the name implies, where the

performance characteristics pertaining to a particular vehicle are stored. The uses of'

3-8

the information found in this object could be in any calculation needing performance

data, especially maximum or minimum limits such as climb, turn or acceleration

limits.

The "targetlist" object is a linked list containing pointers to each object's

targets and each target's location. This information is used in determining if an

encountered target should be engaged.

The "master-obj -list" object is a linked list containing pointers to all the ob-

jects in the system. Access to this information is critical in the determination of

sensor contacts and collision detection.

3.3.2 The Events The events are those happenings or occurrences which

may cause the system state to change. Events generally cause some process or

function to execute which is the driving mechanism which physically changes the

system state. As was the case for the objects, the design of the events used in this

simulation software calls for a generic approach to their implementation. Again,

there are limitations as to how far one can carry a generic approach, but here,

too, reasonableness must prevail. As a rule, events should apply equally well to all

instantiations of objects within a class (e.g. the reach-turnpoint event should apply

equally well to any moving object). Events will be implemented as C functions

which in turn will call the applicable functions to make adjustments to scenario

object attributes.

Table 3.2 lists the events which are currently used in the simulation work.

The reached turnpoint event sets a number of functions into motion. As a

consequence of reaching a turnpoint, the vehicle's current position is updated. Up-

dating a vehicle's position encompasses five tasks. First, the new position coordinates

are transferred from the route data to the current location attributes of the vehicle.

Next, the current orientation of the vehicle is calculated and the applicable attributes

are updated. Then, the current velocity vectors are calculated, again updating the

3-9

Events
reached-turnpoint

entered-sensor-range
made-sensor-contact

collision.distance-reached
ordnance-released

ordnance-reached._target

Table 3.2. Simulation Events

appropriate attributes. The object's current time is updated and finally, after all

attributes have been updated, the information is sent to the graphics display or to

an intermediate file. Once this has been accomplished, the sensor-check function

is called to help determine what the next event to be scheduled will be. Ideally,

in the absence of any intermediate sensory contacts or collisions (if no sensors are

operating), the next event will be the next event point from the vehicle's route data.

Thus, in order to determine what the next event really is, a check of the vehicle's

projected path must be made against all other paths and positions of stationary

objects to determine whether there will be a sensory contact or collision prior to the

next predetermined event point. Only then can the proper event be scheduled.

The made-sensor-contact event is basically a decision point. If this event oc-

curs, an object has come within sensory range of another object. The perceiving

object at this point must decide what to do about what it perceives. Thus, it must

interrogate the source to determine whether it is a friend or enemy, and if it is an

enemy, decide on a course action such as attack, evade, or take no action. Thus,

the execution sequence is: update the vehicle's position (the same five step process

from above), call the operator-evaluation function, schedule the event determined in

operator-evaluation, and perform a sensor check to schedule an intermediate event

if one is found.

The entered.sensor-range event is identical in function to reached-turnpoint.

3-10

The position of the object entering the sensor range of another object is updated as

above, and then the sensor check function is called to determine what the next event

will be for the object in question. Although the subsequent function calls are the

same as for both enter.sensor-range and reached.turnpoint, enter.sensor.range is a

separate and distinct event caused by sensor range information and the proximity of

another object. A reached.turnpoint event, of course, has nothing to do with either

of these factors. It should be noted here that for every enter.sensor-range event there

should be a corresponding made.sensor-contact event. This makes sense since every

time a object senses another object, the other object is coming into sensor range.

The collision-distance-reached event basically means two objects have reached

the same point in space at the same time. The collision-distance-reached event

will most likely involve a vehicle or vehicles without sensoring capabilities, either

because no sensors are present or they are malfunctioning and the vehicle is oper-

ating in the blind. As with all other events thus far, the vehicle's position must

be updated. A damage-assessment function call would determine the extent of the

damage and adjust the appropriate vehicle attribute accordingly. If a total destruc-

tion has occurred, then the damage-assessment would also send the graphics display

a destruction message signaling that the entity no longer needs to be displayed. At

that point the entity will no longer exist within the simulation. In the case of total

destruction, damage-assessment will also call the unschedule.events function which

will unschedule any event for which the now dead entity was previously scheduled.

The ordnance-released event is scheduled as a result of the operator-evaluation

function determining that an attack will take place. The ordnance-released event

basically starts a missile on its way to a target. The missile acts as any other moving

object in the system, but of course it is moves quite a bit faster. The missile moves

along a predetermined route. If it encounters the target before the missile terminates

at its last routepoint, an ordnance-reached~target will be scheduled.

The ordnance-reached-target event is scheduled in the sensor-check function

3-11

if sensor-check determines the missile catches the object which it is chasing. Ord-

nance-reached.target updates the position of both missile and target, then it calls

hit-miss to determine whether the missile actually scored a hit. In the event of a hit,

damage.assessment is called by hit-miss to determine the extent of damage. Since

there may be a considerable lag time between the firing or release of the ordnance

and its impact, due to the ordnance speed and distance to the target, it is reasonable

to model the ordnance impact as a separate event.

3.3.3 Models for Perceive, Move, and Fight

Perceive: The model for perceive deals with how an object becomes aware of

another object. Perception takes place through the use of some sensing equipment.

Examples of sensing equipment are radar, or the human eye.

The simulation system handles perception between objects by exhaustive com-

parisons. Typically, before the next predetermined event can be scheduled from a

vehicle's route data, the system must determine if an intermediate event needs to be

scheduled. Thus the basic model for perceive is given here:

e Compare the vehicle's sensor zone path, from its current location to its next

preplanned event location (from its route data), against all other vehicle sensor

zone paths or stationary object sensor zone locations.

* Determine if an entered.-sensor-range, made-sensor.contact, or a collision-di-

stance-reached will occur prior to the next preplanned event location.

- If a sensor(s) contact is found, schedule the earliest event.

- If no contact is found, schedule the next preplanned event from the vehi-

cle's route.data.

Move: Objects move through the system based on information known at the

start of the scenario (the route data), and reactions to situations (threats or obsta-

cles). Each vehicle object has, as part of its attributes, route data for the current

3-12

scenario. The route data contains the locations of all known events for that vehicle.

A typical set of route data will include the location of all turnpoints and targets. Ide-

ally, events are scheduled which coincide with a vehicle moving through turnpoints

and targets, eventually arriving at the vehicle's destination. Realistically, vehicles

can encounter threats, either ground-based or from another vehicle, or obstacles

which may add additional turnpoints to the preplanned route. Thus the basic model

for move is iteratively perceive - move (based on perceived data) - perceive.

Fight: Objects from opposing sides may fight if the following conditions are

met:

"* One or more of the objects is aware of (perceives) another object.

"* One or more of the objects is within range of the type of weapon the perceiving

object is equipped with.

"* The perceiving object has not previously exhausted its armament store.

Vehicles reaching a predetermined target will attack it. Vehicles encountering

enemy vehicles or stationary objects from an opposing side may attack based on

whether they have extra ordnance allowing them to do so, the probability of enemy

destruction versus their own, and whether undetected avoidance is possible.

3.4 Low Level Design

This section details object attributes and the functions which support the

occurrence of events. The object structures used in this simulation are in the file

sim.stru.h. The code for the functions used in this simulation is in sim.func.h and

simlfunc.c. These files are listed in Appendix A.

3.4.1 Object Attributes The basic construction of the objects are as C

structures where the object's attributes are components of the structure. Some of

the attributes themselves may also be structures containing additional information.

3-13

Thus some nesting of the structures will take place. Figure 3.4 shows the relationship

of objects to attributes.

The first object types are those instantiated through the use of the object-attri-

butes structure. Object-attributes can be instantiated to create a myriad of different

types of objects as well as creating the same basic type with differing characteristics.

A quick glance at the current attributes of this structure may lead one to believe

that this structure is used to instantiate only moving objects, since the structure

attributes include velocities, rotation rates, etc.... Ho',ever, moving objects are only

a subset of the total item types that can be instantiated using the object-attributes

structure. By simply initializing to zero those attributes which are not applicable.,

the set of non-moving objects can also be created using this structure.

Creating objects through instantiation of a structure is an excellent way to

ensure ease of modification and growth of this simulation code. This is because in-

formation for new or more complex manipulation of the objects within the simulation

can easily be incorporated by simply adding the required attribute to the already

existing structufe. Below is a brief explanation of the current attributes making up

objec tattibutes.

Attribute Explanations

int object-type: Used as an icon identifier for the display system

int object-id: hIteger value used as a object identifier.

int objectloyalty: Iteger value indicating loyalty.

double cu, rrent-time: The time of the most recent event for the object.

int fuel-status: Integer value denoting the current available fuel.

int condition: Integer value indicating the object's current condition. Values are

between 0 and 100, 0 being destroyed, 100 being fully operational.

int vulnerability: Integer value indicating the destructive force needed to destroy

the object.

struct location.type location: A structure containing the current location of tIle

3-14

object.

struct xyz.velocities: A structure containing the velocity vectors (v,, v., v,) of

the object.

struct orientation -tyDe orientation: A structure containing the current orien-

tation -of the object.

struct rotation-rates: A structure containing the rotation rates around the x, y,

and z axis.

struct operator-type operator: A structure containing the operator's qualities

such as experience and threat knowledge.

struct performance-characteristics performance: A structure containing the

performance characteristics of the object such as the minimum turning radius, max

speed, max climb rate, and average fuel consumption.

struct linkedlist* sensors: A pointer to a linked list which contains the informna-

tion about. the sensors the object has available to it.

struct linked-list* armaments: A pointer to a linked list which contains the in-

formation about the armaments the object has available to it.

struct linked-list* defensive-systems: A pointer to a linked list which co,•taii,•

the information about the defensive-systems the object has available to it.

struct linked-list* route-data: A pointer to a linked list which contains the rout-

ing information for the current scenario. -

struct linked-list* target-list: A pointer to a linked list which contains informa-

tion about a object's target(s).

3-15

The second object, operator-type, is a structure containing information about

the operator's experience and knowledge of the threat. These are two items which

are critical to the successful outcome of most confrontations. This object is not

being utilized in any of the current simulation algorithms, most notably, the at-

tack sequence algorithm. However, this"hook" was deliberately put in so that this

information could be incorporated at a later date to enhance the realism of the

simulation.

At this time the operator-type contains the following attributes, but of course

it can be expanded if other information becomes necessary.

Attribute Explanations

int experience: An integer value attributable to the operator's experience lvel.

iit threat-knowledge: An integer value attributable to the operator's knowledge

of a particular type of threat.

Object three is the performance-characteristics object. This object is basically

another hook. It contains some limiting performance factors which could easily be

used to determine current fuel status, and whether certain maneuvers are possi-

ble. Here, too, more information may eventually be incorporated depending on how

detailed performance is modelled.

Attribute Explanations

int min.turn-radius: An integer value giving the minimum turning radius of the

vehicle.

int mux-speed: An integer value indicating the maximum speed the vehicle could

travel.

avefluel-cons-rate: A rate indicating how fast the vehicle's fuel is being consumed.

int max-climb-rate: A rate indicating how fast a vehicle could climb (if applica-

ble).

3-16

vehcl or . _0r
star object

ha object-type
ha

" object~d ha[

has a & Lcoord -

-Iobjec-tJoyalty J

h• d Current-time I x-veloc'ityI

has a . fuel-statu I &- y,_velocity I [-in u n ra ,,

I. • c o n d i t i o n]•L d c t I• [m × s q <

I location-type I.- ya

mE h ve ýoil la

"rota~t/ion I J']• rag

[lisetfit

ma noe h ae pst sre no lis ob e xperienc

linked ~ ~~lists fie'mlcto

honas n access tiuesson

Fiur .4OjctAtrbueRe~lationship

3-17

Object four is a linked list containing the the route points for each object.

Every object has its own route data linked list. Even stationary objects will have a

route data linked list. The stationary object linked list will contain only one point,

it will match the objects current position and will be used to establish the object's

position on the display.

Attribute Explanations

struct locationtype: Structures which are the x, y, and z, coordinates of the

object's route points.

Sensors are object five. Each object can have a linked list containing the sensors

available to that object. The attributes are self explanatory. The default value ol'

the function get-sensor-range, if there are no sensors in an object's sensor linked

list, is 833 meters, approximately a half mile. The algorithm for sensor selection is

presented in the algorithm discussion section.

Attribute Explanations

int type: The integer value which represents a particular sensor such as radar = 1.

eye = 2 ...

int range: The integer detection range of the sensor.

int resolution: The integer factor which indicates how clearly an object is seen

once detected.

Armaments are object six. Each object may have a linked list of armaments

containing the armaments which are available for use by the object. This object has

a wealth of information which can be used to add to the realism of the simulation.

Currently this object is not being used, but further incorporation of the data con-

tained within this object is straightforward. For instance, the count attribute could

be checked and decremented as necessary, before a shot could be allowed.

3-18

Attribute Explanations

int type: The integer values which represent a particular type of armament.

int range: Integer value of the range of the armament.

int lethality: Integer value of the destructive power of the armament. Used to

determine condition of vehicle or stationary object based on its vulnerability value.

accuracy: Integer value of the accuracy of the armament.

count: How many of a particular type of ordinance are available or left.

Object seven, the defensive-systems, are similar in use to sensors. Each object

may have defensive systems which could be used to affect the outcome of a confrotnt a-

tion. Using this information could add to the realism of the simulation. However,

at this time this area has been left unaddressed. Attributes could be added to those

shown below if necessary.

Attribute Explanations

int type: The integer values which represents a particular type of defensive.systenl

such as chaff = 1, flares = 2, jammer = 3.

int range: Integer value of the range of the defensive-system.

int effectiveness: An integer representation of the defensive system effectiveness.

The target-list is object eight. Each object should have a target list, to help

determine who the "bad guys" are. The absence of a target list does not rnecai

that an object has no enemies, since a difference in the object-loyalty attribute will

indicate whether an encountered object is on the same side or not. Objects without

targets will evade other objects without the same loyalty if possible. The usage of

the target-list is explained in the algorithm discussion section.

Attribute Explanations

int target-type: The integer value which represents the type of the target (i.e.

F15, MIG, TANK ...).

3-19

struct location-type: Contains the expected location of the target.

3.4.2 Supporting Functions This section gives a verbal description of the

functions used to carry out the-effects of event occurrences. Object attributes may

need to be updated, current and future scenario states may need to be evaluated,

and decisions may need to be made. Tables 3.3 and 3.4 shows what functions are

used in support of the events possible using this simulation software.

Function: add-event-coords.to-route

Verbal Description: Add-event-coords-to-route uses add-new.routepoint to add

a new routepoint to both objects passed as the argument to this function.

Function: add-newsroutepoint

Verbal Description: Add-new-routepoint puts a new turnpoint into the route data

linked list. The new turnpoint becomes the next prescheduled routepoint.

Function: attack

Verbal Description: Attack creates a "missile" (an instance of object-attributes).

Attack initializes the location of the missile, gives it a velocity, creates and inserts

three routepoints into the missile's route data linked list. A pointer to the missile is

then put into the master.objIist, and a release-ordnance event is scheduled.

Function: calc-curr-orientation

Verbal Description: Calc-curr.orientation calculates the current orientation of an

object based on its current location and its next position from its route data.

3-20

Events Supporting Functions [Supporting Supporting Functioits

reached.turnpoint update-position calc.curr-orientation
calc.curr-velocities

update-object-current-time
send-fupdate

sensor-check calcAime.at.next.routept
get-sensor-range

calcAime-.atnextnext.routept
line-oLsight

difference.in-altitude
add-event-coords-to-rou te

add-newiroutepoi nt
entered.sensor-range update-position calc-curr-orientation

calc-curr-velocities
update.object-current-time

send-fupdate
sensor-check calc-time..atnex t.routept

get .sensor..ra nge
calct.irne.-at.-ncxt.ilex t.rout.el)t

line-of-sight
difference.in-altitmude

add-event-coords-to-rou te

add-new-routcpoint
n ade-sensor-conitact update-position calc.curr-orientation

calc.curr.veloci tics
update-object-current-time

send-.fupdate
operator-evaluation get-sensorirauge

evade
attack

"sensor-check calc-time-at-next-routept
get.sensor.range

calcAime.-at-nextnext-rou tept
lineof-sight

difference.in-altitude
add..eventcoordsto-route

add-new-routepoint

Table 3.3. Events and Supporting Functions

3-21

Function: calc-curr-velocities

Verbal Description: Calc.curr-velocities calculates the current velocity vectors

based on its current total horizontal velocity, and its next position from the object's

route data.

Function: calc.time.at-next-routept

Verbal Description: Calctime.a,t-next-routept calculates the time at the next

rcutepoint based on its current position the distance to the next position and the

total velocity vector.

Function: calc-time-.atnextnext-routept

Verbal Description: Calc-time-.atnextnext-routept calculates the time at t he

routepoint after the next routepoint based on its current position the total distalice

to the final position and the total velocity vector.

Function: damage-assessment

Verbal Description: The eventual function of damage-assessment is to determine

the amount of damage an object has sustained based on vulnerability, current con-

dition, and what ordnance was used. If total destruction has occurred, then call

terminate-objects. The current implementation of this function assesses all damage

to be total.

Function: differencein-altitude

Verbal Description: Differencein-altitude uses the objects current positions, their

z velocity vectors, and the time to the next event to determine if the objects will be

at, the same altitude at the next event time.

Function: evade

Verbal Description: Evade modifies the current velocity, and orientation of thle

3-22

object in question. Evade also adds a new routepoint to the object's route data and

sends the updated poition information to the display driver.

Function: hit-miss

Verbal Description: Hit-miss determines whether the target was hit or missed.

This could be based on factors such as range, ordnance accuracy, and defensive

systems used, as well as whether the ordnance and target are occupying the same

or nearly same location. The current implementation of this function determines

hit-miss solely by location of the ordnance and target. If a hit has been determined,

damage-assessment is called.

Function: line-of-sight

Verbal Description: The intent of the line.of-sight function is to check to see

whether a clear (unobstructed) line of sight exists between two objects. Obstruct.ions

may be caused by the terrain or possibly atmospheric phenomena. However, this

algorithm remains unimplemented, due in the most part to the fact that terrain has

not yet been modelled. The function exists as another "hook", and currently returns

true (a valid LOS exists) for all cases.

Function: on-collision-course

Verbal Description: On.collision.course determines whether two objects are on a

collision course. The return value is true or false. The primary use of this function

is when two objects of the same loyalty encounter each other. Since they are on the

same side they don't need to take any action (i.e. attack, or evade), unless they are

on a "collision course".

3-23

Events Supporting Functions Supporting Suppovtinq Funetios

ordnance-released update.position . calc-.curr-orientation
calccurr-velocities

update,,objectcurrentt ime
send-fupdate

sensor-check calctime-at..next-rou tep t.
get-sensor-range

calc-timeea~tnextniextrou t.el) I
line-of-sight

difference-in-alt, i udeh

add-event _coords.to-routvC
add-lic-vrout.epo lit

ord nance-reached-target update-posit.ion caklccu rr-orientat.ion
calc-curr-velocit ies

update-objectccurrentti inc
send..fupdate

add-newvroutepoint
hit-miss

collision-distance-reached update-position calc-curr oricutaitti(,m
calc..currvelocit ies

update-object-current-t imne

send(fupdate
____ d amag.ea.sessment I

Table 3.4. Events and Supporting Functions

3-24

Function: on.target.list

Verbal Description: The purpose of on.target-list is to determine whether a threat

encountered by an object is an actual target of the perceiving object. The function

wII return true if the threat is an actual target. The determination algorithm used

-is-explained in-the algorithm discussion section.

Function: operator-evaluation

Verbal Deircription: The basic function of operator-evaluation is to evaluate the

threat and choose a course of action. Evaluation of the threat may be in the forni

of answering questions such as: is the threat a "bad guy", is the threat the intelnded

target, and if it is a friend, are we on a collision course? Courses of action could he

all ack, evade, or do nothing.

Function: read.data-file

Verbal Description: The read.data.file function is used to read in the initial object

data from an ASCII file. The format for this file is shown in Figure 3.5. Important.:

Fields are separated by a single blank space, after all required fields are

entered for an object (i.e. an F-15) a C compatible End-of-Line (EOL) is

entered.

Function: send.fupdate

Verbal Description: The sendifupdate function is used to send formatted object

updates to a datafile which is to be read by a generic display driver. See Appendix

D for format and interface requirements of the generic diplay driver.

3-25

field I field 2 field 3 field 4 field 5 field•6 felhd 7

int 4 nt lilt double lit hit il(n

obiect type obiect id obi loyalty cuar time fuel astat j condition vuhnrIh1l;i g

field 8 field 9 field 10 field I1 I field 12 , field 13 4 field 14i

double double double double double 4 doxble double

curt xcoord_ curt y coord eurrt coord x velocity y velocity z velocity !_+yaw Pfate

field is field 16 field I7 Iield 18 field 19 field 20 field 21

double double 'gilt int iilt hit hlt

litch rate roll rate experience threat know m"n turn rad max speed ave f,,l .,..

field 22 field 23 field 24 field 25 field 26 field 27[iah'It d

Jut inlt double double double int il.,

max climb # routepts x coord y coord z coord # see1so, Sellt.uri yl,,.

4 Athe repeOated * raliteut tihne'.L , i .L!t

field 29 field ,10 field 31 field 32 field 33 field 34 field xt',

ijt _ _ _ ilnt int i4 t int im

sensor range uteor resolution # arnmnents arm type . arm range arm yeild ar11 1cct1CII.ak

sensor times can be repeAted # armament1 tiict

field 36 field 37 field 38 field 39 field 40 field i i Iwjdl I.

ilt int Jut int double double dolalle

arin speed anti count 4 targets txrge txcoord targj• •l tCootadl

f t - can be repeated * tdLargMSe_,

field 43 field 44 field 45 field 46

int int int int

defensivehys def vya type defeaye ringe defeys efte:t

_ an be repeat # defensive lyt times

Figure 3.5. Input File Format

3-26

Function: sensor-check

Verbal Description: Sensor-check compares a object's projected sensor zone path

with all other sensor zone paths and positions of stationary sensor zones within

the system to determine if the object's sensor will pick up anything before its next

predetermined scheduled event. In order for a sensor to be able to "see" another

object the following rules should be satisfied:

"* The sensor being used must be operational.

"* The object to be detected must move within the sensor's range.

"* An unobstructed Line-Of-Sight (LOS) must exist between the sensor and the

object being sensed. An unobstructed LOS is dependent in part on which

sensors are being used.

Five different events can be scheduled by sensor-check depending on what is

found during the sensor-check evaluation. If a sensor contact is found, and the sensor

range of both objects in question is zero, along with an altitude seperation of less

then five meters, a collision.distance.reached event will be scheduled. If a sensor

contact is found but there is a sensor range being used greater then zero or there

is a difference in altitude, then either an entered.sensor.range, made.sensor-contact,

or (in the case where the object is a missile) an ordnance-reached-target will be

scheduled. If a no contact is found, then a reached.turnpoint event is scheduled at

the appropriate time. The algorithm used to implement this function is detailed in

the algorithm discussion section.

Function: terminate-objects

Verbal Description: The terminate.objects function sends a message to the display

file indicating that an object need not be displayed any longer. It deletes all currently

scheduled events from the next event queue involving the now dead object, deletes

3-27

the object pointer from the master.objiist, and frees the memory used to hold the

event-argument.

Function: update-object-currenttime

Verbal Description: Update-object-current.time simply assigns the event~time-to

tf . object's current time attribute, thus updating the object current time to the

current event time.

Function: update-position

Verbal Description: Update-position takes the next route point from the route

data and updates the current location of the object. It then calls in this order,

calc-curr.orientation, calc-curr-velocities, update-object-current-time, and send-u p-

date.

3.5 The Interfaces

3.5.1 Overall System Interface In keeping with the modularity and object

construction design scheme, the code has been constructed to facilitate modification

and growth. The overall system interfaces are illustrated in detail in Figure 3.6. it

shows a rather complex structure which makes use of two generic C packages, the

generic simulation package (sim-driv.h and sim-driv.c) and the generic finked list

p)-ckage (ll.h and ll.c), which were developed in a separate effort and are given in

Appendix C. The simulation structures, simulation events, supporting simulation

functions, and main simulation code are all in separete files and are provided as

Appendix A. The only other interface is the generic display driver interface. The

generic display driver was a separate, but concurrent research effort (9). The interface

requirements are provided in Appendix D.

3-28

sin dr.c sr-tu1

-generic siaab Lisn reachddest sirultonoct

xeuentrs enoa

II~incrt oIriondjistia suacoed

Imake-driverxahe~tirc

sredle.eve I &curro-init-ev OI

Figure 3.6 Overall Sste nerae

3-29

3.5.2 The Driver Interface As was the case in the areas discussed pre-

viously, the simulation driver was approached generically. The design will not be

covered in detail here since it was completed as separate work and is given in Ap-

pendix C. The overall function of the driver is to execute the simulation. It ac-

complishes this -through the use of the functions make-driver, schedule--event, exe-

cute.sim, delete-event, and end.sim. These functions are all available to the user

writing an event driven simulation which makes use of a NEQ.

The following are brief explanations of the functions of the generic simulation

driver.

make-driver: The make-driver function allows the user to create an instance

of the simulation driver. The user can then use the other simulation driver functions

available to manipulate the the driver in creating a working simulation. A compari-

son function is supplied by the user to the driver to allow the driver to properly sort

events.

schedule-event: The schedule-event function allows the user to schedule

events by passing a pointer to the event function, its arguments, and the time of

the event with the simulation identifier 'driver'.

execute.sim: The execute-sim function executes the functions(events) whicli

have been scheduled with the schedule-event function. Executesimn will continue

dispatching events until there are no more events scheduled in the NEQ.

delete-event: The delete-event function gives the user the ability to remove

previously scheduled events from the NEQ. Using the event-id, returned to the user

when using "schedule-event", delete-event searches for a matching event-id in the

NEQ and deletes it.

end.sim: The end-sim function gives the user the ability to stop the sirmuli-

tion. End-sim effectively empties the NEQ.

3-30

IV. MAJOR ALGORITHM DISCUSSIONS AND

IMPLEMENTATIONS

The following sections highlight the major algorithms used in the simulation

implemented as part of this thesis work. Although each function has an associ-

ated algorithm only those deemed in need of a more detailed explanation are given

here. These algorithms represent the more complex or more interesting algorithms

of the simulation code. These algorithms are simply one way to model these func-

tions. They could, and possibly should, be modified to create more realism in fhc

simulation.

4.1 The Evade Algorithm

The basic high level algorithm employed is straightforward. However its in-

plementation is considerably more complex due to the number of special cases whicl,

exist. The basic algorithm states:

- Calculate or determine the threat object's path.

- Calculate and adjust the evading object's orientation and velocity vectors such th.11 I le

new direction is 90 degrees from the threat path, moving away from the threat pam l.

- Calculate a new routepoint for the evading object, given the evading object's new

orientation and velocity vectors.

- Add the new routepoint to the evading object's route data.

There are three special cases which must be handled separately due to the

usage of trigonometric functions and divide by zero problems.

4-1

* Case I: When the x velocity vector of the object to be evaded equals zero,

and the y velocity of the object to be evaded is not equal to zero. This is

the situation in two dimensions where the object to be evaded is moving on

a path which is parallel to the y axis. If this situation exists, then according

to the algorithm, the direction of evasion will be along a path parallel to the

x axis. What now must be established is whether the movement will be in

the positive x direction or the negative x direction. This is established by

simply evaluating the difference between the x coordinates of the two objects.

Once the direction is known, the total velocity vector is then applied to that

direction. This situation is illustrated in Figure 4.1.

Tew ath

original QA1"2. new path

original path

object to be evadedoV= 0

new.p -O4 ial path

origina at]
new path

Figure 4.1. CASE I: x velocity vector = 0, y velocity vector :$ 0

4-2

* Case II: Case II is just the opposite of Case I. Here the x velocity vector of the

object to be evaded is not equal to zero and the y velocity vector is equal to

zero. Handling this situation is logically identical to Case I so it need not be

detailed again. This situation is illustrated in Figure 4.2.

new ath
new ath

original path original

object to be evaded

I, 0

original pat i -- 0

t original path
new l)ath -

new 'ath

Figure 4.2. CASE 11: x velocity vector - 0, y velocity vector = 0

4-3

* Case III: Case III is slightly more tricky. In Case III both the x and y velocity

vectors of the object to be evaded are zero. This means that the object to be

evaded is stationary, and as a consequence will also not be eventually moving

out of the path of the other object. So how then does the evading object get

by the object to be evaded? The algorithm for this situation is as follows and

is illustrated in Figure 4.3:

evading object
next routepoint

distancel

V, 0

object to be v= 0 new vading object. p)it

evaded

Ax

evading object

original evading object path

Figure 4.3. CASE III: x velocity vector = 0, y velocity vector = 0

4-4

- Draw a line between the current locations of the two objects and calculate

the slope of this line.

- Calculate two new locations. Each location should be an equal distance

and on opposite sides of the evading object along a line which is 90 degrees

from the line found in step one.

- Now, compare the distances from each new point to the evading object's

next routepoint. The shorter of the two distances indicates the proper

direction for the evading object to turn.

- Add the new routepoint to the evading object's route data.

- Calculate the current orientation of the evading object.

There is one special case within this case which also warrants mentioning. This

situation occurs when an object's next preplanned routepoint is within its own

sensor range of the object it is trying to evade. When this occurs, the evading

object would, after moving to an intermediate evasion point, try to return to

its next preplanned routepoint which it could never get to, since evade would

simply be called over and over again. Thus, the way this is handled is that

before the evasion point is calculated and loaded into the evading object's rout ,t

data, the next preplanned routepoint is checked to see if it is usable (u1ot too

close to the object to be evaded). If it is too close to the object to be evadedI.

then that point is discarded and the next preplanned routepoint takes its place.

4-5

In the general case, both objects are moving and the object to be evaded is

riot moving in a path parallel to any axis. The algorithm for this case is as follows:

0Calculate the slope of the object to be evaded using its x and y velocity vectors.

- Assign the negative inverse of this slope to the slope of the evading object.

- Using the standard equation of a line, y -nx + b, calculate the y

intercepts of both lines.

- Simultaneously solve both equat'on3 for a common x and y coordinate.

- The difference between the common x and y coordinates and the current

"x and y coordinates of the evading object indicates the proper sign of ihe'

"x and y velocity vectors of the evading object.

- Calculate the slope angle, atan (evader slope).

The magnitude of the x and y velocity vectors of th• evading object will

be the absolute value of the total velocity vector times, the cosine of the

slope angle and the sine of the slope angle respectively.

This algorithm is illustrated in Figure 4.4.

4-6

evading objqct
next rou oint

object to be
evaded,

original evading object path• /I~ -s

evading objectX

new evading object path

Figure 4.4. GENERAL CASE: x velocity vector 0 0, y velocity vector • 0

4-7

4.2 The Sensor Check Algorithm

The sensor-check routine creates the majority of the workload for the hardware

running the simulation. This is because every time the sensor..check routine is called,

every object in the simulation scenario must be interrogated. Although this routine

creates a large workload, it does not necessarily mean it is the most complex of the

algorithms used in this simulation software. Indeed, the high level algorithm is easily

understood.

- Before scheduling an object's next preplanned event, determine if

there are any other events which should take place prior to the

preplanned event; schedule the earliest event.

At the hcart of this algorith•ml is the quadratic equaition (31). Spccifical,•Y, i.

is the solution of the quadratic equation in (t) which yields the sought after time at

which two objects will come within a given distance (d) of each other. The usage of

the qua(lratic equation in (t) is illustrated here. If two moving objects have a current

position of (xa 1 , y,,) and (Xbt 1 , Ybi,) as shown in Figure 4.5, then their respective

('oordinates at future time (t) can be represented by the following equations:

Xat = Xaft + VXqt,(t - ti)

4-8

YJt= yat, + v3,1,(t - t1)

Xb, = Xb, + v.t•,(t - ti)

i e it Yb jc + Vtbt, (t -i4e

xat is the x coordinate of object "a" at some time t
x~t, is the current x coordinate of object "a" at time t,
vXM is the current x velocity vector of object "a" at time t1
Yat is the y coordinate of object "a" at some time I
?/t, is the current y coordinate of object "a" at time 11
Vyat, is the current y velocity vector of object "a" at time t,
This assumes v does not change between t and t,

d VXt- Xbt) 2 + (y., be)

I %

* -

xatJ 1 Ylati

Figure 4.5. Illustration of Calculation

4-9

Now if we let: xat, = XA and t,,t = VXA and yt1, = Y'ý and ,,,t =

etc. and At = t - t1 (the time until the event will occur, e.g. if At is 5, t0hen the

event will occur in five time units from the current time). Then

To - Xbt = (XA + VXAA1) - (X 8 + VXnAt) = (XA - X8) + (YXA - VXB)A1

Making similar substitutions for the y coordinates yield

Ya. - Ybf = (YA - YB) + ("YA - V.'D)A

According to the distance formula: d(t) = V(Xat - xW,,)2 + (y,, - !•,1,)"

Miaking the substitutions into the distance formula yield:

((-,A - XB) + (VX'A V- V')) 2 + ((Y4 - Y*B) + (O"A - Vyu)ti)) - (U

For clarity Ict, I = (XA -- XB), m = (VXA - Vx•), It (Y-I. - VB), and

P = (VI'A -- Y',B). Putting it into the form of the quadratic equation yields:

(in 2 + t,2)A1 2 + (21iv + 2np)At + (12 + 1?2) __ (12= 0

-(21m1 + 2np) - if(21m + 2np)2 - 4(m 2 + p2)(1 2 + 0- -. d2)A t = 2 t - l_______________-~ 2(m2 + t, 2)

The distance (d) can be varied according to the range of the sensor being ,ised

by the objects in question. It should be noted here that this application of th'e

quadratic equation is in only two dimensions, thus the sensor zones of any object

appear as a cylinder that knows no bounds in the z direction as shown in Figitre -1.6.

Non-imaginary solutions to the quadratic are contact points, assuming thfle ohijctS

4-10

actually progress along their current routes without change. Imaginary solutiouw

indicate that an object will not intersect another object's sensor zones, or the objecl

is already within the sensor zone area of the other object. The two solutions that

can be found are the time at which the an object encounters a zone and the time

at, which an object exits a zone. This implementation of sensor-check uses only the

first solution, the time entering the zone.

Figure 4.6. Illustration of Object Sensor Zone

The actual implementation is not, as straightforward as the original algorithm

implies. The implementation algorithm follows,

4-11

-For all anoving objects
-For as many objects as there are in the mnaster.objlist

-While the popped object's id is not = to the current object id
-Calculate the term under the radical of the quadratic equation solution
using both the current object's and the popped object's sensor range

-Calculate the time the popped object will reach its next preplanned event
-If term winder radical in solution is >= 0 using the current object's sensor rangz

-Calculate the sensor contact timel (the quadratic equation solution)
-If the sensor contact time in < the event time and > the current time

-and <= the time of the other object'. next scheduled event, and <ý the time
of its own next preplanned event, and a line of sight exists between objects.

-Set the valid-contactl flag to TRUE
-It the term under the radical >= zero using the other object's sensor range

-Calculate the sensor contact time2 (the quadratic eq uation solution)
-If the sensor contact time is < the event time and > the current time and

<= the time of the other object's next scheduled event, and <= the time of
its own next preplanned event, and a line of sight exists between objects.

-Set the valid_,onta:ct2 flag to TRUE
-If valid j-onttactl or validLcontact2 are TRUE

-Set tile ,ppropriate contact flag(s) to TRUE or FALSE
-end for

-eCld for
-If contactl and contact2 are I'IUE, and 5•-neing range = 0, and difference inl altit.udC = 0

-Schedule a collision event
*Is,- if contactl or contact2 is TRUE

-(Add the iappropriate routepoints to the current object's route data
-if contact2 is TRUE

-Schedule an entcred-sensor-range event
-If cotact I is TRUE and the current object is no', a nissile

-Schedule a made sensor contact event
-if contactl iFi TI'iME and the current object in a mnissile

-Schedule al ord(•alcc-eadchd.target event
-|lse

-Sclhedule a reach(ed.iur-point event for the current object

,.:I The Operator Evaluation Algorithm

Tihe operator-evaluation algorithin is a very silmpic dleaision t,re, which culii-

,ktes in a. coim-se of action, either do nothing, evade, or atlack. lhe Ia.si(d(,cCisi. i,

I rcev is depicted in Figure 4.7.

4-12

is
object a

missile

yes no

Scheck
loyalty

sarn different

on
collision been

course seen?

no yes no yes

dono oye
nothing evade target attack

Figure 4.7. Decision Tree for the Operator Evaluation Algorithm

4-13

Although rudimentary, this algorithm could be considered a very simple expert

system where an operator's thought process is being modelled. The possibilities for

expansion to this algorithm are limitless.

4.4 The Attack Algorithm

The attack algorithm says:

Instantiate a MISSILE object

Initialize the MISSILE'S attributes

Determine and load the MISSILE'S routepoints

Fire the MISSILE

The approach taken in determining a missile's route was to give each inissih,

tIi'co routepoints. The first routepoint for the missile would be the current location

of the object from which it is being launched. The second routepoint. will be I lhe

current location of the object at which it is being fired, keeping in mind that a mo'nillg

target will continue moving from its current location. Thus, a third routepoint. must

be included if the missile is to have any chance of hitting its target. The third

routepoint of the missile is set to the target's next scheduled routepoint. Therel'ore.

although not occurring often unless scripted in that way, a target object can "get

a-way" if it can reach its next routepoint before the missile catches it. In the event

that the missile does not catch the target, the missile simply dies at that point.

4.5 The Update Position Algorithm

The update-position algorithm is the most used algorithm in this simulation.

It. is used in conjunction with other algorithms in every event in this simulation

sol'tware. The code for this algorithm is compact, making use of four functioni (calls

4-14

from within update-position. The order of the function calls is critical to ensure

calculated values are correct. The algorithm is stated here:

Pop the next position from the object's route data

Assign the next position coordinates to the current position coordinatcs

Calculate the current orientation of the object

Calculate the current velocity vectors of the object

Update the object's current time

Send the update to a file (or directly to the display driver, if available)

If there were no routepoints left on the list and the object was a MIS] iLF

Terminate the missile

4.6 The Add New Routepoint Algorithm

The add-new..routepoint ilgorithm is very simple, given some time in the future

at which the object is to arrive at the new point (e.,. add a new routepoint at a

I inie 30 seconds from now). Thus the algorithm reads:

To the current x, y, and z coordinates, add the time to the new routepoilit

multiplied by the respective velocity vectors.

Add the newly calculated point to the object's route data.

For example, if the current x, y, and z coordinates were 100, 250, and 1000,

with vX, v., andv, as 200, 200, 0, then new route point x, y, and z coordinates at a

time 15 -'onds from the current time would be, 100 + (200)(15), 250 + (200)(15).

and 100. . ko)(15).

There is one critical factor involved in the determination of a new routepoinli.

That fact is, the object must have its velocity vectors properly adjusted to reflec•

4-15

the new direction of movement before the new routepoint can be calculated. Obvi'-

ously this must be so since using the wrong velocity vectors will yield incorrect new

coordinate values.

4.7 The Calculate Current Orientation Algorithm

The calc-curr-orientation algorithm uses standard trigonometry to find the

angles between the object's current coordinates and the object's next routepoint.

Thus the basic algorithm used was:

Pop the next routepoint from the object's route data.

Calculate the angles between the two points, yaw and pitch

(roll is not calculated in this implementation).

Adjust the object's attributes accordingly.

Reinsert the popped routepoint into the object's route data.

4./ The Calculate Current Velocities Algorithm

The calc-curr-velocities algorithm uses a similar approach to calc-curr-orientatioll

although the trigonometry is slightly more involved. The algorithm for this function

is:

Pop the next routepoint from the object's route data.

Calculate the total horizontal velocity vector.

Find the angle between the current location and the next routepoint

location.

Calculate the horizontal distance between the two points.

Using the distance and horizontal velocity vector, calculate

the time to the next routepoint.

Using the sine, ana cosine of the angle found, calculate the new

4-16

x and y velocity vectors.

Using the delta z value and the time to the next routepoint, calculate

the new z velocity vector.

Reinsert the popped routepoint into the object's route data.

4.9 Other Algorithms

The following algorithms were not discussed in this chapter because they are

believed to be easily enough understood through their respective module headers

and Iby simply stepping through the actual code. The actual code is in Appendix A.

send-fupdate

calc-time-.at-nextroutept

calc-time.at-nextnext-routept

read-datafile

terminateveh icle

get-sensor-range

line-of-sight

damage-assessment

hit.miss

difference-i naltitude

add-event-coords-to-route

update-object-current -time

on-collision -course

on _target-list

4-17

V. RESULTS, CONCLUSIONS, RECOMMENDATIONS

5.1 Results, Meeting the Objectives

At the onset of this thesis effort, time was spent defining basic objectives which

needed to be met. These objectives were found, of course, to be driven by the planned

usage of the final product. That plan was to parallelize the simulation code created

by this thesis and to use the parallel version in speedup studies concerning military

"iIi1ulation executions on parallel computers. Thus the following were the objective.s

defined:

1. Create a military scenario simulation using a modular object-oriented designi.

2. Use the C programming language.

3. The final product must be easily modified.

4. The final product should exhibit a high degree of computational complexity.

5. The simulation code should be generic in nature such that differing scenrios

could be run simply by altering the input data.

6. The simulation output should interface with the generic display driver deve',-

oped by l)erouc'.ey (9).

It is believed that these objectives have been met. C structures were used to

create objects and their attributes. This design enhances both the modularity and

object-oriented nature of the simulation code. Structures of this nature ensure that.

all the information regarding the object are always physically tied to that object and

cii be found, used, or modified, by making the correct reference to the instantiated

structure. The usage of these types of structures also gives the simulation code much

of its flexibility and growth potential. Adding to, or changing the existing attribll C.'s

of any of the structures within the simulation can make available more or difFerent

5-1

information which in turn could be used to increase the complexity and/or realism of

the simulation. Adding to the ability of the code to be easily modified is the overall

structure of the files, their interconnections, and the generic structure of much of

the code. For instance, the simulation structures are in a separate file, easily found,

and easily modified. The same is true for the simulation functions. The simulation

driver is also a separate package, as is the linked list code. Either package could

be replaced if it were desired. These packages were also created using a fairly strict

modular object-oriented design, thus enhancing their modification potential. So, not

only does the simulation lend itself to modification, but so does its associatcd code.

in part or as a whole. Having stated the above, it, is easy to see that objectives on-

and three have definitely been met. Computational complexity is reached in this

simulation in two ways. First, there is the nature of the calculations themselves.

This simrilation makes use of numerous computations involving long float valued

numbers. Operations on these numbers include addition, -ubtraction, division, sine.

cos~ne, tangent, arctangent, and square root. The second area of computational load

comes from the sheer number of times these operations are required. The bottoin

line is that computational load can be increased simply by adding objects to the

simulation scenario. Thus, objective four can be put to rest. There isn't much to

say about objective five. The implementation allows the flexibility to creat.e a nearly

unlimited number of scenarios and thus unlimited simulations.

5.2 Conclusions

It was never an objective of this work to create an cccurate military simulation.

Once the design phase began in earnest, it became readily apparent that had accu-

racy been a requirement, the amount of work required would far exceed what could

be accomplished by one person in one thesis cycle. Realistic mrtilitary simulations can

take teams of programmers and modelers year.,. to produce (1 3. indeed, the creat ion

of A "representative" military simulation proved to he no easy task. The complexily

5-2

of the simulation grew quickly as the possible execution paths increased with every

implementation of a new function. In fact, trying to predict all the events of sim-

ulations involving more then five interacting objects prior to the actual execution

becomes extremely difficult, if not impossible. Once the execution is complete, ver-

ification of what actually -occurred is somewhat easier. However, stepping through

the output can be a lengthy process. By far the best way to verify the output is

to view the output via the graphical display driver discussed earlier. It should be

pointed out, however, that viewing the output does not necessarily mean that all

events were scheduled properly. Since the display driver operates on a principle of

extrapolation, an object's position will continue to be updated even if an event is

somehow omitted. The best approach to running a verifiable simulation is to first.

script the simulation as completely as possible; second, try and verify a. printout of

the output file against the script; then view the simulation's graphical display to

check the overall correctness of directions of movement, relative speeds, kills, and

pitch angles.

It is felt that the work of this thesis effort represents only the skeleton of w\ht

a real military simulation could ultimately look like. Addressing the ba-sic areas at.

least in some way, even if oAly as a hook, represents a significant part of the oe'cll

eft'ort. It is the opinion of the author that this is probably the most difficult part of'

thc total effort. What lies ahead, prior to parallelizing, is enhancing the code, and

i idling realism. This part is the "putting the meat on the bones" part..

5.3 Recommendations

Recommendations generaliy fall into two catagories, either those concerned

with ealhancing the serial version of the simulation code, or those concerned with the

parallelization issues. As far as enhancing the serial simulation code, the possibilities

are almost endless, depending on the level of detail sought.. Listed here are just a

few of those possibilities:

5-3

"* Modify the sensor check algorithm to include the third dimension. This would

give objects a spherical sensor zone instead of cylindrical. By off-setting the

actual object location from the center of the sensor zone, one can create a

sensor zone in front of, behind, above or, below an object.

"* Use more of the existing object attributes, such as weapons and operator at-

tributes, to add more realism.

"* Add more nondeterminism into the detection and attack processes.

"* Add more error checking into the input function. Although each input value

cannot be verified correct, they can be checked to be within acceptable ranges.

"* Terrain still needs to be addressed. This also creates a need for a viable im-

plementation of a Line of Sight function.

"* Modify the damage assessment function to include damage less then total de-

strucI~on.

"* Add some expert type decision making in choosing of sensor and/or armaments

for an object to use.

"• Add some nondeterminism to the hit mniis function.

Parallelization is a separate issue. The issues here are what machine to use,

distributed or shared memory, and how to partition the simulation. Suggestions to

these questions follow:

* Using the shared memory machire would alleviate problems associated with

global data which may make things a little easier to handle.

* If the choice is made to use a distributed memory machine, it is suggested

to break the problem space up into areas of set dimensions. Then creat.e an

artificial event type called "reached..node-boundary" to represent the point, in

time that an object needs to be handed over to another node.

5-4'

Appendix A. SIMULATION CODE

A.1 Simulation Structures

The following is a copy of the simulation structures file, sim-stru.h.

astruct location-type

d
double z.coord;
double y..oord;
double z..coord;

struct xyz.velocitiea

(
double x.velocity;
double y..velocit7;

double z.velocity;
1;

a truct orientatiolk-type
{
double roll;

double pitch;
double yaw;
1;

struct rotation..rtes
{
double roll-rate;
double pitch-rate'
double yau.rate;

struct operator-type

I
int experience;
int threat.knowledge;

struct performance.characteristics
(

iat nin-turn.radius;
int nsxsapeed;
int ave.luel.cono.rate;
int uax.clinb.rate;

struct sensors

Jut type;
int range;
int resolution;

struct armaments

A-1

{
int type;
int range;
int lethality;
int accuracy;
int speed;
Ot count;

estruct defens iv..yet eus
(
int type;
int rTnge;
Ont e*fectiveneooo

struct targets
{
int target.type;
struct 1ocation.type turset.location.
1;

struct event-arga
(
double event.time;
atruct object.-attributee *objectt;
struct object.attributes *object2;

struct object.-attributes

int object.type;
int obJect.id;
int objoct.loyalty;
double current..tiow;
int fuel.statue;
int condition;

int vulnerability;
struct location.type location;
struct xyz.-elocities velocity;
struct orientation.type orientation;
struct rotation-ratem rotation;
struct operator-type operator;
atruct porforuance.chbracteristice performance;
etruct linked.liet eroute-data;
struct linked-list esensors;
etruct linked-list narmanante;
struct linked-list *dotes@ iveSsystamus
struct linked.list *tet-e.list;

1;

A.2 Rizsini Code

The following is a copy of the actual simulatiou code, rizsim.c.

A-2

Iinclude I'll ,hb"
$include "s1 .driv'h"

#includo "eia..~ot.h
linc¢lud* "sJim.0tru.h"

#include "events.h"
tincludo s~do

#include falloc.h>

/0 DITE: 08/02/90 0/

to VERSION: 0.0 o/
/s TITLE: The main simulation code. The source of the simulation run o/
to FILEVANE: rizela.c o/
t. COORDINATOR: Rob Rizza o/
/e PROJECT: HS Thesi GCS-90D o/

/e OPERITING SYSTR: WSDOS *1
/* LANGUAGE: Microsoft Quick-C /
/0 FILE PROCESSING: Link and Coxpile oith ia.dwriv.C, slm..funzc., eventa.c, v
/0 and ll.c /

/s CONTEETS: see prototypes in next section 0/
/* FUICTION: Bsoically, this code intiiatet the execution of the simulations/

/000.OsoeeeeeeoeO.00eeeeeeeeeeeeeeeeeeee~eeeee.OOOeOOee.0e0sses.0es.0.....00/

/0 PROTOTYPES OF FUNCTIONS UITHII RIZSIM.C o/
/Ose 0...00000*000000000e000000000*00e000000004000000o000000000000000000000040/

void start.display 0;
void stop.display 0; /t doubl, last.ovenut..tie o
void ocheduliinitovento ()
void identiIf.icoso 0;
inst cmpare.ti•e 0(; / double* timel, doubles tifu2 */

/* OLOBdALS USED IN WIZSIW.C o/
/.e.o&0000000ee..e~esseoeeee~eeee~eeseeeteeeee~eOeeeeeeOOeOeOOeOeeoe•eeOOOOOOt/

strct linked.-liet 4masterobi'lstj
struct driver *simulation.driver;
int highest.obj.id a 0;

/ 0000000000000090000000000000000000000000e~e@SO~eesebebOseeeOsesSee~eess*•/

RIZSIH.C Mill CODE BEGINS BIRE 9/
/. eoooooeoee.0e.ee000000000001000000000900000..e0#90S00e00000.60s00000000000~/

void main ()
(

struct linked.list *state.queue a BULL;

struct drlver.data elest-event a BULL;
double last..evnt..tis*.

struct driver.data *deleted.event;
struct linked.list edeleted-ovent.list;

identify-icons 0:

simulation.driver a make.driver (6, compare-.tle);

master.obj.list a llmake (FIFO);

reoadatafile ("datafile,");

scheduleun it -events 0;

start-display 0;

stats-queue - ezecut.esin (.imulation.driver);

A-3

last.event a (struct driver.datmo)ll.pop (otete.queie);

laet.ovent.time m e(doublee)leet.oOvst->tite;

stop.display (lest..voat.tiue).

f......e.eoo*oo..veessoeee.e.e*.e*e4..eo*eo4eoe~e*ooe4.4oeee444C4.4ose4.eeoo$/

/# DATE: 09/30/90 9/

/t VERSION: 0.0 o/
to TITLE: otat.display .1
/t MODULE.VIUMER 0.0 o/

/o DESCRIPTION: Vrites a start display message to the dimpaly file o/
to ALGORITHM: open the diplay file 0/

to write th.e start display message C

to Close the display file '/
/t PASSED VARIABLES: none '/
/* RETURNS: none 0/

/t GLOBAL VARIABLES PASSED: none o/
to GLOBAL VARIABLES ClANOED: none 0/

/' FILES READ: none 9/

/. FILES VRITTEN: none 0/

/t HARDVARE INPUT: none 0/

I. HARDVARE OUTPUT: none 0/

to MODULES CALLED: none 0/

I. CALLING MODULES: min(o /

I. ORDER OF: This function is of order 0(l)
/* AUTHOR: Rob Rizza o/
I. HISTORY: none C/
j*400*900OOCSe*SCo*90090*9**S9*0999C99099C909099999990909*99909**4*9*e***/

void start.display ()
0
FILE *ptr.to.display-file;

if ((ptr.to.dimplay.file - topen ('dimplayc"., a")) !* NULL)
0
fprintf (ptr.to.display-file, 11O\n");
fclose (ptr.to.display.tile).

else
printf ('CAINOT OPEN DISPLAY FILE IN START.DISPLAY\n");
I

/9 DATE: 09/30/90 'I
/s VERSION: 0.0 0/

/* TITLE: etopdieplay */
/e MODULE.UUBER: 1.0 o/

to DESCRIPTION: Writes a stop 4isplayu essage to the dispaly file o/

to ALGORITHN: open tho diplay file o/

/t write thje stop display message
to close the display file
/0 PASSED VARIABLES: none
/s RETURNS: none o/

/o GLOBAL VARIABLES PASSED: none .1
/. GLOBAL VARIABLES CHANGED: none ./
/o FILES READ: non* o/

/o FILES WRITTEN: none '/
to HARDVARE INPUT: none */

/o HARDVARE OUTPUT: none 0/

/o NODULES CALLED: none 0/

1' CALLING NODULES: main(I */
/# ORDER OF: This function is of order 0(1)
/* AUTHOR: Rob Rizza 0/

/o HISTORY: none

A-4

void stop.-lspit: 0)st.-ovent.time)
doublq last-event.time;
{
FILE* ptr-to-displtky.file;

if ((ptr.to.display-file = fopes ('display.c". "a")) !a NULL)
fprintf (ptr.toodisplay.file, "86 %I-An", last event.time);
)

/eteeseeeeaeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeaee~eeeoeoooooooeeoee~eeeeeosee~eeeeee/

/0 DATE: 09/30/90 4/

/0 VERSION: 0.0

/0 TITLE: compare-time
/s MODULENUMBER: 2.0 e/
/0 DESCRIPTION: Used by the aim.driver to determine sorting of *wants 0/

/. ALGORITHN: subtract timel from time2 ./
/e PASSED VARIABLES: ixt timel, int tims2 ./
/* RETJRUS: 1. or -1 e/
/$ GLOBAL VARIABLES PASSED: non* e/
/* GLOBAL VARIABLES CHANGED: nonc */
/* FILES READ: none */
/s FILES WRITTEN: none */
/0 HARDWARE INPUT: none 4/

/s BARDBARE OUTPUT: none
/* MODULES CALLED: none 4/

/t CALLING NODULES: mainO /

/# ORDER OF: This function is of order 0() 4/

/e ALI'TOR: Rob Rizza 4/

/0 HISTORY: none
/4leaesee44ee~eeCelee44eoe~e~ee~e~eee~eeeeC4eeeeeee~eeeee4044*4.444e~ao~e..eeeo/

int compare.time (timel, tize2)
double etizol;
double *time2;
{

it ((etime2 - etimel) < 0.0)
return -1;
else
return 1;
1

/.ee0oeeeeeeaeoseeeeoee4440e~e~e44es~ebe~e0eoe*•ee~es4eeee*eee~ebe&e~e•e~eebe/

/* DATE; 09/30/90 */

/* VERSION: 0.0
I. TITLE: schedule..init.events
/M NDDULE.-NUBER: 3.0 4/

I. VESCR1PTILU: Schidulee the first event for all 0bjecta
/e ALGORITRB: Pop the pointer to the first object from the master obj list */
/e schedule the objsct's event /

replace the pointer into the master obj list /

/I PASSED VARIABLES: none e/
/e RETURNS: none 4/

/e GLOBAL VARIABLES PAbSED: none /
/* GLOBAL VARIABLES CHANGED: ec..e
/* FILE4 READ: none e/

/* FILEs oRITTEN: none */

/0 HARDWARE INPUT: nont 4/

/I HARDWARE OUTPUT. none
/s NODULES CALLED: none
/0 CALLING MODULES: main() o/
/. ORDER OF: This function is of order 0(n) sh4re n is the number of

in the manter object list 4/

A-5

/0 AUTHOR: Rob Rizza 0/
/0 HISTORY: none e/
/ * 0e* o ee o 0000000 00 0000/

void schedule.-init.-events 0)
{
int objects, i;
double initial.time;
double optr.to.nitial-.time. - NLL;

---struct object attributes optr.to.object a FILL.
struct e*vntarse opt1.to.svesnt.sgs a MULL;

objects " 11lsngth (uaster..obj.list);

for (1 * 1; 1 Co objects; i++)
{
ptr.to.object - (struct object.attributeoe)U..pop (mav-ter.obj-list);

if (ptr.to.object->object.type <* 5)
{
if ((ptr.tc.eventargs = (struct event-argse)nmalloc
(sizeof(struct event.args))) No NULL)
printf ("CANIOT NALLOC IN SCIEDULX._!IT_EVFETS\n");

ptr.to.event.args->objectl a ptr.to.object;
ptr -to -event.args->obiect2 - NULL;
ptTr_to0.vent.ear->svent.tins. - ptr.to.object->currtnt.time;

if ((ptr.toinitialtime a (doubleo)malloc(sizeof(initial-tins)))
-- NULL)

printf ("CANNOT MALLOC III CREDULE.IIiT_EVENTS\n")

*ptr-to-initial.time a ptr.to-cbject->current -time;

schedule-event (simulation-driver, ptr.to.,nitial.time.
reschod.turnpoint, ptr.to.evont.args);
I

11-insert (master-obj-list, ptr-toaobjoct);

/* DATE: 09/30/90 0/

/0 VERSION: 0.0 s/
/- TITLE: id,,ntify icons 0/

/* MODULE.NUKDER: 4.0 4/

/* DESCRIPTION: San,',. ,.spay f'./., the legal icons for this simulation s/
/o ALGORITHM: Open play file */

Send %h4 propriste icon tdentif;.rs 0/

Close the displsy file
/o PASSED VARIABLES: none "/
/, RETURNS: none */
/o GLO1AL VARIABLES PASSrD: none

/o GLOBAL VYIABLES CH89JOED: nonr 5/

/* FILF1 REID: none ./
/# FIL WRITTEN: none ./
/- HARIDWIARE INPUT,: none
/o HARDWARE OUTPUT: none 4/

/e MODULES CALLED: none 0/

/- CALLING MODULES: moin()
/o ORDER OF: This function is of ord.er 0(1) *-
/0 AUTHOR: Rob Rizza 0/

/o HI iTOAY: none 4/
/ i .ee* .4 ,,5 .4* .1. 0ed•oo*oeeese oseetebe*.e555e*, ee ese~oe-eeeoe* ~e*seee0Asss *eso*

1

void ide.".. ,toVi 0)

A-6

FILE eptr.-to-display.file;

if ((ptr-to.displayfile = fopen (°'display.c", "a")) 1- L'LL)
{
fprintf (pr..to.display.fil. e "32 1 tlf\a);
1printn (ptr.to.display.file, "32 2 mig1lIi');
fprintf (ptr-to.display.file, "32 3 misa.l\n") ;
fprintf (ptr.to.dieplayfile. "32 4 tank\u");

fprintf (ptr-.to.diplay-file. "'2 2 truck\&");

fclose (ptr.to.displayfile);
}
else
print. ("CANNOT OPEl DISPLAY FILE 11 IDEITIFY.ICOV\n");
I

A.3 Events Code

The following are copies of the simulation events code, events.h].and evcnts.c.

eeeeees•ee ee * .h *e**e***eeeeeeeeeee•vee*eeeeeee

void reached-turnpoint (): /s etruct eventarges* event-argument '/

void antered.-ensor.rankge 0: /o struct event,.argeo eveot-argu~ment */

void made*sensor.contact 0); / struct event-argoo even..argument */

void collision-distance-reached 0; /t etruct event~argse event-argament e/

void ordnance.released 0; /6 etruct event-args eeventarguament e/

void ordnanco.reached-tearget /) o / struct event.arga eevent.argument s/

/eoeeoeeeeeee~eoeeee*eeeeeveeoeoe oeenee,•eooeeee.eee~eoeodee~eeoe•*eee~eo•/

/. e eeoeeoeeeeeooeeeeoeeeeooeeeeoeeeeeeoeveeeeoeeeeeo~eeoeeeoe~~eseeceee~eee.eo/

/* DATE: 08/02/90 '/
/* VERSIDJ: 0.0 */
/' TITLE: The code for the events of this simulation 0/

/e FILENAME: events.c
/0 COORDINATOR: Rob Rizza /
/s PROJECT: HS Thesis OCS-90D 1
/c OPERATING SYSTEK MS-DOS 0/

/* LANGULGE: Micro ft Quick-C S/
/s FILE PROCESSING: Link and Compile with executable file which ases this 0/
/s code. s/
/o COSTENTS: see the *vente.h code for prototypes of functions in ovente.c 0/

/o F•tNCT7ON; Provides the simulation with legal events for the simulation 0/

Oinclude (malloc .h>
#include <etdio.h>
#include "events.h"
$include "'im.stru.h"
#include "simfunc .h"

void reached.turnpoint (event-argument)
struct event.args esvent-argument;

A-7

{
printf ("Object %d ham IELCIED.TUaIPT at WWt\n",
event.arpument-)objectl->object.id, ovent-arguent-)evont.time);

update.position (event.-argument);
sensor.check (event.argumont);
I

void entered.senasor.rans (event-argufment)
struct eventoargs *event.-argamet;
{
printf ("Object %d has ENTERED.SUSOI.XAUICE at Ilfrb",
event.argument->objectI->object.id, event.-argumeut->*went.t -.tn);
update.position (eventargu•ent);
sensor-check (Cvantargue•nt);
I

void uadets.nsor-contact (event.-argumaet)
struct ovent.args *event-argumeint;
(

printf ("Object %d has NADE.SEKSORCOUTACT at %lf\n",
eventargument->objectl->object.id, event-arguaent->event.time);
update-position (event.argument);
operator- evaluation (ovant.-argumfnt);
sennor.chock (event.argument);
I

void ordnence-.reloau4 (ovent-arguxent)
struct event.arge *evont.argu•uILt;

printf ("Object %d has tin RELWKSED as ORDNANCE at %1f\n",
event .argument->object l->objec-_.t.id, event.-argument ->event -tine);
update-position (event.-argument);
sensor-check (event-argument);
I

void ordnance-reachad-target (event.argument)
struct event-args *evont.argument;
{
double in.-.seconds;
struct event-args $neosevent-argumunt;

printf ("Object %d has reached it's target ORDIAPCE-.RECBED.TARUET at %lf\.r",

event.-argument->objectl->object.-id. event -argument-)event._time);
update.position (event.-argument);

inx.mseconds - event.-argument->event-time - event -arguament-)object2->currenit -time:
add.neu.routepoint (event -arSx ent->object2, in.x.seconds);

if ((neovevent.argt•ent a (struct event .arge)malloc(sizoof (struct event-args)))
.. lULL)

printf ("CANNOT NALLOC IEV.EVENT.-A3UNEIT II ORDUANCE.-EACHED.TARGET\n");

new-event .argmaient-3objactl event-.e'rpaent-)object2;
neu.eventargumnt->object2 a evekt-argument-ýobjoctl;
neu.oevtnt. argvmt-•-event -ti* - sv~nt.aguan, ->*vent-ti.e;

printf ("Object %d has ORDIAdCE.RECIED.TAROLT at %lf\n°',
event-argument-)objectI->object.-id, event arguent-),vant-tima);
update.posit'Lon (nev~vent..rguinent);
hit.-iss (event arguaoat);
hit-miss (new-event-argument);

void collisiGA-distance.reached (event.-argument)

A-8

struct event.args *event.argumant;
{

update.positon (event.-argument);
damageeasseuemsnt (.veat-arguaeat->objectl);
senasor.check (event-argumet);
)

A.4 Functions Code

The following is a copy of the simulation functions code, simifunc. h and sim-finiicc.

..... eo.e.oeeeee.eeee.eeee.eeoe s.¢, oooheeeee..eeeeeeo.eeeeeeeeee*eeee....es/

void add.event.coords.to.routo 0; /* struct eveuturges Cevet.-argument ./

void* add.neu.routepoint 0; /0 struct object.attributes *obJect-info. double in.x.seconds 0/

void attack (); /0 struct eeent-arxg *event-argument 0/

void calc-cuxr.r-orientation 0; /0 utruct object.-attributes eobject.info 0/

void calc.curr.volocitios 0; /e struct object.attributes eobject.info */

double calc.tim.e-at.uext-routept 0); .s' struct object.attributes *object.into 0/

double calc.timeat_..extnext.routopt 0. /e struct object -attributes ,object-info e/

void damage.assessment 0; /* struct event-arga *event.-argument ./

double difference-in-altitude (); /0 struct event.args *event-argufent */

void evade 0; /0 struct object.-attributes *evader, struct object -attributes *evaded *1

int get..ensor-range 0); Is struct object.attributes eobject_info o/

void hit-miss 0 ; /0 struct event-args *event.argument */

irat line-of.sight 0; /e struct event-arp *event-arguueat o/

int on.collision.course (); /4 struct event-args eevont-argument 0/

int on.target.list 0); /*struct object -attributes eobjectl, struct object.-attributes *object2s/

void operator-eva3uation 0; /a mtruct eventargs *event-arzgaent 0/

void read.datfile)0; /0 char *path 0/

void send-fupdate 0; /0 struct object.-attributes *object-info 0/

void sensor.check 0; /0 *truct event-arr4 *event.argument 0/

struct li•ked-list* .eruinate.objects 0; /4 struct event-args *event.argument 0/

void update.object-current.time 0); /e *truct event.args oever.targument. o/

void update-pomition 0(; /eatruct event-arg *event-argument ,/
/**so * 0000*0**e0**** Ct**0e0 * 00C* 4CS0e0S 0*e00 0**00O*0******** * s * * O/

Se iuunc-.c

A-9

/ae **o * eoe eeee.*ee*eeeoeee~eeoeoeooe~eeeeeeeoeaoeeeee eoeeeoetvoe9*eeoa**~ee, /

/o DATE: 08/02/90 .1
/* VERSION: 0.0 0/

/o TITLE: Event 3upporting Functions for ofit.-battleoosim o/
/t FILENAHE: eiujJfunc.c

/* COORDINATOR: lob lizza 4/

/t PROJECT- RS Thesis OCS-90D 0/

Is OPERATING SYSTEM: KS-DOS o/
I/ LANGUAGE: Nicrosoft Quick-C '/
I. FILE PROCESSING: Link and Compile with .x'c~utable flol oaich uses this s/
fs code. o/
/t CONTENTS: see the sim-unc.h code fox 1.-t 0 IT-Lu e s 4/

/s FUNCTION: Provides the simulation sith the Tax, joxA reuded to run the 0/
/t simulat ion o/
/OO •se oSoCeoo*000*404000054****0*4o 45505*545e~eeOt# e*Cee~eeeooee**o4e, e~es*c. /

#include <string•.h>

%include <stdio.h>
* ,.clude <process.h> s*ee* comment out to run on the aun eosteeoe/

#include <asth.h>
*include <mUkloc .h>
*include s$u.strn.h"
*include '1l.h

linclude "events.h"

Silcluda "sij.fUAc .h"
#include "sim.Jdriv .h"

Idefine PI 3.14159
Idcfine TRUE I
#define FALSE 0
#define NISSLE 3

/ce •c eceoeoeaeoeaeoseeaosceeeeo e~eoccees~,eaesceeoeeec~cae.9eomeoe sc•ecc, /

/0 DATE: 09/30/90 /
/0 VERSION: 0.0
I. TITLE: add -event.-coords.to*-route '/
/e NODULE.-NUBER: 2.0 ./
/t DESCRIPTION: Adds now routepoints to the objects in event.argusent o/
/4 based on the time to the event
(c ALGORITHM: Calculate the event time 0/

/i call add.no.ronutepoint e/
to PASSED VARIABLES: eventergas *eventargnuent 4/
/4 RETURNS: none
/t GLOBAL VARIABLES PASSED: none

to GLOBAL VARIABLES CHANGED: none
/0 FILES READ: none s/
to FILES VRITTEl: none
to HA1ADVARE INPUT: none s/

/c HARDVARE OUTPUT: now.a S/
/e NODULES CALLED: none s/
/c CALLING NODULES: sensor.check
/t ORDER OF" This function is of order 0(l)

to AUTHOR: Rob Pizza "f
/s HISTORY: none /
/teo Oeesoe ee*e*ego****so 0000 eee4 eeeeee eseo eee .eece0eoe see. c 0e eee0a/
void add- event -coordo-to.-routs (avant-arpseint)
struct event.-ar *event.arrgubne.;
{

double time-to.event;

if (event..erguuent->objecd 0 ! ULL)

t imeoto.ovent - event arpaent->event-tino - event-arguaent->coibojct I->current-t ime.
add-nu..routepoimt (event..argwaent->objectl I time.toeveant);

A-1O

)
if (event.arpgaent->object2 !- ULL)
{
timo.to.evoet = ev•ut..rgusfet->e*vwt.t to - evwnt.-a gent-)object2->current.tin.e;
add_..-r.-routspoi.tt (event.argent ->object2, time-to.event);

)

/ceeaeeeoeoeeeeeoeoeeeeeoeeoeoeeeeeeeeeeee~eeeeeoeoeeeeoooeee~eeeoeooeeeeeeeeoel

/e DATh; 08/13/90 /
/e VBSIOE: 0.0 o/

to TITLE: add.nes.routepoint
/t NODULE_.UINBER: 2.1
/. DESCRIPTION: This function is used t% detezriue the location of the now e/
to turmpoint added in response to an evade request
/. ALOORITHN: - using the current z, y, and z velocities, add in.z.seconds v/
/t times each of their respective values to the current
/4 ., y, and z coordinates S/
/. PASSED VARIABLES: object.-attributes oobject-ino, double in.z.soconds 0/

/4 RETURES: none
/t GLOBAL VARIABLES PASSED: none o/

/t GLOBAL VARIABLES CHARGED: none
/c FILES READ: none .1
/e FILES WRITTEN: C/
/c HARDVARE IdPUT: none 4/

Ic HARDVARE OUTPUT: none 4/

/t NODULES CALLED: none ,/
/e CALLING NUDULES: evade, sensor.chock 4/

/e ORDER OF: This function is of order 0(1) */
/I Ut•EOR; Pob Rizza 4/

(4 HISTORY: non* /
/ eeeeeoeeeeeeoeoeeeeeeeeeeeeeeeweeeeceeeecceeeeecceeeeeeeeeeccecccesceeoes••

void eadd. aev.-routopo nt (object.;nfo, in.x.soconds)
struct object.attributes eobject-info;
double In..:Seconud;
{
struct location.type cnes.next.,pt - NULL;

if ((noR.naxt.pt - (struct loczt-i oee)mullcc(sizeof(str-ct location..type)))t--ULL)

return NULL;

now.-next.-pt->z...oord = (objectinfo->location. x-coord + (in..-seconds e

object-inlo->velocity ..- velocit,));
nc .v.next .pt - >y..c.,-rd a (object. info-t'locat ion. y.coord + (in.x.secone- -
ebjc-t-info->velocity.1.velocity));
new_n¢•'t~pt->z.coord - (object- ino->Iocat ion. z_¢oor, . (in-r-soconkitt

ciject.,iufo->velocit7.z...velocity));

11-inaert (object _info-)-rout*.data, nee.nozt-pt).
)

/ceeeeceeeeeeeceee~eceeeee~eecedeeeeeeeeeee • .eeeceee.eeeeccc.,e 'tceeee~eeeee

/. DATE: 10/08190
/e VERSION: 0.0 5/

/c TITLE: attack
/t MODULE_NMUHER: 2.2

/o DESCRIPTION: Cr*etcs a NTRSLE object and fires it at , it'nvsd
/0 target
/I ALGORITUR: Create a NWSSLE object ./
/4 Creave An l.ood it's route poin•o

Schedule an ordnance released event"
/t PASSED VARIABLES: event.args eevent-argument */

A-l1

/0 RETItIS: none a,
I. GLOBAL VARIABLES PASSED: non* a/
/s GLOBAL VARIABLES CNANED: none ./
Is FILES READ: mone 0

/o FILES VRITTEN: non*.a
/a sARDVAPE INPUT: none
/v EANDVAI.E OUTPUT: Aonef
/a NODULES CALLED: none a
/0 CALLING NODULES: at
/0 ORDER OF: This function is of order 001)o
/a AUT NOR: hob lizac ej
/# NISTORY: none a1

void attack (event..argufant)
struct eveuteages eventeargument;

*xtern struct liaked-list *masteor-obj..-lst;
extern struct driver *simulation..driver;
extern int highest..obj...d;

struct location-type *tempt, otempý. smismel *rout eptl , *si..i...routspt2. *misale..-rout ept3;
atruct object -.attributes smisle;
struct ov~nt..args oneu-event...argumant;
FILE opt r..t o-display-I ile;
double *time..ptr;

if ((mismi. - (struct object -attribut esq)mailoc (mizoof (truct objoct..attributen))) NUWLL)

missie->objiuct..type a 3;
missi.->obj~ectid a ++Chighost.ob~J.d;
mimsli@->currenkt-tim@ - even- argumont->ovont..tin.;
miss1.->Iocat lor.x-coord a event -argument ->object I- >locat io, z..coord;
missle->iocat ion. y..coord a event -argument->abject I - >locat iiuiv. y..coord;
missle->locat ion. z..coord a event -argument- >object: ->locat ion . z..coord;
skisul*- >velocity.z...volocity a 1000.0;
mis.1.->velocity.y..veiocity - 0.0,
miss 1e->ve1ocit Y. a-velocity a 0.0;
missal->orientntion. yaw a 0.0.
misui.o-)orientation. pitch a 0.0;
minsae-)-orientation. roll - 0.0;
missl#-ýrotatiou.yav-.rats a 0.0;
misaie->rotat ion. pit ch..rate = 0.0;
missi.->rotat ion. roll-.rate = 0.0;

nisse-)~naoa *NULL;

misale->target -list - NULL;
=issi.->armaawmts - NULL;
misele-)idolensive- *yetam a NULL;

tempt a li-pop (event...ergament -->ebject2- >rout *_data);

missl *->rout *-amta 'A 1-sik. (LIFO);

*isaie..routept3 - (utruct location-%.typ.C~malloc (uizeof(struct locatior-type));
sisal*-.rout~ip*3->x-..oord w teapi ")z-coord;
sisaml..routept3->y-.coord a tempt .>I-.oord;
missl...routept3->-z-coord a tempi->z..coord.

uissi..routept2 a (utruct ioc,:tion-typeC)uanoc(sizeoo(struct locat ion..type));
missi.. rout opt2->x-c ord a event-argument ->object 2- 3locat ion. x coord +

((eentrgrnt~evnttn.event -argument -)otjact 2->enrrent-t ime) s
eve at -rgumomt->ob ject 2->vobocity .x-volocity) ;
..jiaaeltrout apt2-)j.c cord N evr, &rgWUaet->abjoct2-)obocat ion. 7..coord #
((eet.ap-n-~vn.time - *5 ent-arguez~t->object2-)cuxreat-t ime) s
ovent-argusent-)ýobj-ct2-')weilocity.y..veiocity);
r.insxlo-rout~opt2-;o..coord " eweat..akgumsnt,>object2->iocat ionk. z.coord +

A-12

((evetat..ergumient-event..time - eweukt-arguelkt-"'bject2->curr~nt-.tiae) 0
event..arguuent->,jbject2->velocity .z-welocity);

if (tabs (sisale..routspt2->z~coord - wiuule-routept3-)a-coord) < 0.- kk
tabs (ftiwole~rout4pt2->7..coord uissle..ronitept3->y..coord) < 0p.001 At
tabs (imissle..routept2-fz..coord - =iss1e~routept3->a..coord) < 0.001)

temp2 s 11-pop (event -argument-)objec t 2-ioute..data)
mismle..routopt34x..~coojrd w teup2-ý,x.co*:r4;
mimml*.xonktopt3->y.ceord w teap2-"_.e~or4,
misaaals rout opt 3->z..coord - tsup2-)z..coordi
11-insert (wiasse->route-data, ms.1os..roAtept3);
11-insert (siailse->route.4alta, misele..r' t~tept2);
11-.inaert (*etagot>bet-rt~aa temp2);

11-.insert (eveat.,argunent ->object 2->route..dat %, tempi);
11-.insert (winsle-)route-dat a, mi sale _rort opt3) ;
11..insert (nissle->route.Aata. witale-routept2);

miv~olerov~teptl a Catruct location..typee)malloc (sizeoo(struict locat ion.-typs));
mis.%&.er.rutajptt->x..coord - taisele->locat ion. x-coord;

s~s~e~ontpt ->'..cooda misale- >location. y..coord;
miss l-i.rout aspt I->a.._c o~rd a ia~asls->1ocat ion. a-coord.

if ((ne.e-v4t arpsatiot a (str~act event...rgse)aalloc(sizeoo(struct evert.argft))) *NULL)

printf ("CANNOT N.ALLOC ILW_.EYH1TA1RGUXE1T 11 ATTACK");

Raw -*went -argoment->object 2 r- #v,A,atr~usnt->object2;
ite w -event-argumen~t -;o*vnt. time - e vent -ar~immt->event.._t ioe;

ptr-.t o.display-f ils - opent ("dizys~.ly0 "j")
fprintf (ptx..A-o.displa,..tile. "30 %d MuA\", Mies814->o1-ject-d. is-obetyp)
fciose (ptc-.to.Aisplay..?ilO),

11..insert (uameter~obj~list. *missle);

51 f((time-ptr a (doub1.e*)un11oc(u~izeoo(double))) -- NULL)
prirttf ("CANNOT NALLOC TIME-PTR 11 ATTACK");
atine~ptr a event -argment ->o~sntT in";

a. hodule..ewvit (sinulativn..dlrivor, time..ptr, ordnanc*_-r*1**od, 1k*Wen .t~argur~e~t);

printf ("CAN107 NALI-OC MISSLE 1N ATTACK").

/e DATE: 08/23/90 4/
/* VERSIOV: 0.0) 0.

/s TITLE: ca~lc..crr-.oritntat ion
/# XODuLLUUNEA: 2.3
/e WiSCIIPTION: This function is ~used to determine the now orientation of a
/0 object baneu an its .;urrn-~ t azd next position
/e A2AOR~TIM, using the arctangerat f'ictios caliculate the nngla from
/4 the horizunfto1
/4 PASSED VARIfIAES: nbJert info '

/eRE~TUMNS: n*,%*S
I.GLOBIL VARIABLES PASSED: none
I.GLOBAL V1,RIABLES CMAIGED: none 4

FeiILES READ: nonie

A- 13

/o FILTS WRITTEN: '
/o HARDWARE INPUT; none e
/e HARDWARE UUTPVT: none a/

M. ODULES CALLED: none S

/4CALLING NODULES: evaed.*
isORDER OF: This function is of order Oft) a1
1*AUTHOR: Rob hizaze

/0 HISTORY: -mose a

void calc..cuxrr-orientation (object..Info)
struct object-attributes oobjeet..imfo;
f
double delta:x, 4elta-..~ de~ltaex, distance. aftle, pitch;
stxiict location-type *next...route..point 0 NULL:

if (l1i~soupty (objoc t -info- >route -data) Is TRUE)

next...route..poiat a (struct locittIon-.types) 13L.pop (object -.Info->route..dat&);
delta..: w next route..poixnt->x~coord - obj act. info- ýlocat ion. x.coord,
delta..y - next..reute..point->y..coord - object-info->loration.y..coord;
delta-.z w next-route*point ->z-coord -object -nfo->locat ion. z-coord;

angle a atan2 (deita-y. dol~'a..) s 360 / (2 * PI);

if (angle < 0.0)
angle a 360 + anglo;

if (angle >0 0.0 kk angle <- 90.0)
object.inf~rientaz~. it ft .0 - angla;

else if (angle > 90.0 at angle ý. 180.0)
obj act- info->orienvet ion. yaw a 360.0 - (auls 90.0O1;
else if (angle 5, 130,0 && angle <w 270.0)
obj oct..info->oriontat ion. yaw a 270.0 -(angle -180.0);

else
object-info->oriontatien, yaw a 180 - (angle -270.0);

pitcb atan2 (delta-..: (distance - oqrt ((dolt a.xe*delta.%x)+(dolt a.yedelt a- 0))
360/ (2 a P1);

objact-into->orientat ion. pitch a pitch;
e6bj ct-info->orientat ion. roll w object - info->orient at ion, roll;

11-.insert (object - info->route..data, next -route*-point);

.els

obj act- info->Or ientat ion. pitcht 0.0;
objeact- info->orient at ion. roll a 0.0;

/4DATE: 08/24/90
I.VERSION: 0.0

/s TITLE: calc..curr..velocitiee 4

/o NGDULE..JUMBL~: 2.4 4

/* DESCRIPTION: Th'a function ie used to determine the new volo':ity vectors o/
of .e vehicle 1""44 on its next route point 5

/eALGORITHM: - using '.he arctangeont function calculate %he angle from a/
I.the horizontal a

/4- then use the cosine sand sine functions multiplied by the o/
/4total v~lo.ity voctorc to find the skew velocity vectors a/

/ePASSED VARIABLES: object-.info 4

/s RETURNS: nc~ne 4

A-14

/I GLOBAL VARIABLES PARSED: sous 0/

/0 GLOBAL VARIABLES CHAIOED: none o/
/e FILES RSAD: none $/
/4 FILES VUITTEI: a/
/0 NADRVIRE INPUT: none a/
/* EARDVARE OUTPUT: rone a/

/t NODULES CALLED: non-t a
/0 CALLIUG NODULES: evade, Update.positiou 4/

/0 ORDER OF: This function to of order G(M) a/
/0 AUTHOR: Rob Rtiza a/

/I HISTORY: none a/

void cac..curr.velocities (object.Wo)
strutc objectattributes eobject.-ino;
{
struct location.type. next.route.poiat ENULL;
double delta.x, delta-y, delta.z, slopo-a ole, horizontal.evelvector,

ti-e..to..n:t-routoepoiftt, distance to.next.route.point;

if (lLiseupty (object. info->rout*.data) !z TRUE)
(
next.-route.point a (struct location.typoo)ll.pop (objot.intfo->route..data);
horizontal.vel.vector - oqrt
((object-info->volocity...volocity $ object.-ino->velocity...volocity) +
(object.info->velocity.y.veý,ocity 0 object.info->velocity.y.velocity));

delta.z a next.route.poist->x.coord - object.info->location. z-coard;
dolta.y - next.-route..poeint- >ycoord - object-afto->loation.y...coord;
delta.z - nezt.,route.point->:.cvord - object.info->location.z.-coord;

slope.angle - atan2 (deltaoy, delta..);
distance.to.next.route.point a oqrt ((delta.z * delta.-) + (delta.y * delta.y));
time-.to.-next -route..point a dintance.to.nezt.-routo..point / horizontal_velwector:

object..info->velocity.:.velocity a horizontal..el.vector * cot(slope-.angle);
object.info->velocityy..velocity - horizontal.vel.voctor a sin(slopeAnble);
object-into->velolity.z-velocity a delta.z / tine.to.next.route.point;

11.insort (object -info->route.data, next.-route.*point);
}
else
{

object..info->velocity.:xvolocity 0 0.0;
object.info->velocity.y.-elocity u 0.0;
object.info->velocity.z..,elocity - 0.0;
)

to DATE: 09/06/90 a/

/0 VERSION: 0.0 a/

/t TITLE: ;alc.time.at.next.routept 0/

/e NODULE..IUBER: 2.4 a/

/s DESCRIPTION: This function is used to determine the time at the next a/

/0 routepoint based on the distance travelled and the a/

/0 current velocity e/
/. AI.GORITHN: - pop the next routepoint off the route data queue a/
/a - lain the standard distance formula between 2 points 0/

/, find the distance travelled a/

/4 - calculate the total velocity vector
/4 - time at next routepoint a distance travelled / a/

/0 total velocity vector * curr.time 0/

/o PASSED VARIABLES: objoct.into a/

A-15

/0 RETURNS: double tifea.t.-nezt.routept 0/

/s GLOBAL VARIABLES PASSED: none s/
/, GLOBAL VARIABLES CRAIGED: non. o/

/s FILES READ: none
/* FILES VRITTE|: 4/

/* HARDVARE INPUT: none 0/

/s HARDVARE OUTPUT: none s/

/0 NODULES CALLED -none */

/* CALLIG NODULES: updato..poition s/
/* ORDER OF: This tunction is of 97dor 0(0) 0/

/0 AUTHOR: Rob liti a/

/s HISTORY: none
/e..*.eeooCo*o0o0o04o0ee0oe00ee*eo0ooo0o0000ooooo0o0eooeo0oooeee0eo0e0e00oee/

double clc.t ime.ot..nelt.roltspt (object.Lato)
struct object.attributei Oobjoct.-ino;
{
double delta.a, deltaoy, deltas., dietmeae.traseled, tle.at.nexttroutept, totalval.voctor:
struct location.type *eAxt.rot*tpt w NULL;
lot event;

time.at.next.routept 0 object-ituo->cuzrent.tLan;
if (ll.isompty (object info->route.data) !m TRUE)
{

noxt.routept a (struct location.typeO)ll.pop (object.itfo->route.data);
dtlta.z s object.info->location.x.coord - next. routept->x.¢coord;
delta.y - objoct.iafo->location. ,.coord - noxt.routtpt-)y.coord;
delta-z a object-info->location.x-coord - vst_-routept -zcoord;

lliisart (object_ vtfn->rontedat&, next.rnutupt);

distance.traweled sqrt ((dolta.zedolta.0) + (dolta-yodelta.y) + (delta..zedelta...))

total.vol.voctor a oqrt ((object -info->velocity. ,.vlocity *

object-into->volocity.Z velocity) +
(object.inlo->velocity y.velocity * object.info->velocity. y.velocity) +
(objectoimfo->velocitV Z,.velocity 0 object-tnto->velocityz.-volocity));

if (total..el.voctor !a 0.0)
ti.e-t-nezt.-routopt m object.itio->current.•eiu ÷
dietate..traveled / total.vel.voctor;

else
time.oat.-fext..routept a objoct.info->curreo-time;

I
return tine-at.-next.-Orutapt;

/...e~eeeeeee0oo0e00e0e0oe0eo0oeo0e0o0oo00ooo0eooeoeo0e000e0004eee00ee4ee04e0e/

/- DATE: 09/06/90 0/
/s VERSION: 0.0 e/
/s TITLE: calc-.t im.at..nextnext._routept */
/9 HODULE.JUMBER: 2.6

/o DESCRIPTION: This function is need to determine the time at the next o/

I. routepoint based on the distance travelled and the 0/

/ ¢current velocity 0/

/* ALGORITHM: pop the next routepoitt off the rout* data queue 0/

/4 using the standard distance formula between 2 points 0/

/4 find the distance travelled 0/

/0 - calculate the total velocity vector 0/

/0 - time at next routepoint a distance travelled / 0/

/* total velocity vector

/- PASSED VARIABLES: objoct.-nfo 0/

I. RETURNS: double tim.e-at.next.routopt 0/
/e GLOBAL VARIABLES PASSED: none

A-16

to GLOBAL VARIABLES CRAIGED: none 0/
/I FILLS READ: non *e
to FILES WRITTEN:
to HDADUVAR INPUT,: none 9/

to DIKRVAU OUTPUT: none o/
to NODULES CALLED. none o/
I. CALLING NODULMS: apQ ts.,poition 0/
/6-ORDE OF, This function is of-order 0(1) -/
to AUTIOR; Rob Manz el
to NISTORY: MoNe */

doubie calc. te.at..e.taext.rootopt (objecti.nto)
struct object-attributee oobject.info;

double doltrA_w. 4*lta.y, doltaox, diett nco.travtold, tine.at.wext.routept, totaZ~l.vol~vtor;

struct locitton.type $next-routopt * Utl± *nextanezt.-routept a NULL.;
int event;

time-at-next-routept m objct._into->ctrrent.tim*;

if (11.isompty (object.Into->route.adta) !- TRUE)

hit..routept a (struct locatiol-..type)ll-.pop (object.info->routa.data);
delta-.z 6bjoct.in16->locationux.coord - next.routept->x.coord;
delte.y w objoct.into->1ocatio. .y.coord - next. routopt->y.coord;
delta.z a object-into->location.z.-coord - next.-routept->z.coord;

distan~ce .travteled a eqrt ((idelta..zsdelta-z) + (delta..y-delta..y) 4 dl~~a~

total.val.vector a oqrt ((obJert.lnof->velocity.x.v.locity 0
0bj-ct.lnoo->jlocityit...lotity) +

(object- it to->velocity. y-vlocity o object-tinfo->velocity.y.-elocity) +

it (tot inveLYector u 0.0)
time.-t.next.routept a object.iafo->current.tia. +
diet ance.traeled / total.el.-vector;

e~s*

tira...t..ut..routopt * object. info->curront.tie.;

)

if (11.imempty (objwctrinfo->route.dlta) !m TRUE)
{
nextnext.routept a (struct location-type')llpop (object.ihfo->routo.Aata);
dultaos a nixt.routopt->Y-coord - nextnext..remttpt->xn-coord;
delta.y a next. routopt->y..coor4 - nextnext.-toutpt->y.coord;
delsta-iz nezt.rout•tpt- z.¢coord - maxtuett.-routopt-> .. coord;

distance..tvaveld w sqrt ((dolt..zdodlt s.) + (dolto.yodelt..y) + (Jolt*.-zdelta.z));

total.wel.vactow a *qrt ((object.info->vY1ocity.z.volocity *
objoct.iao->velolcity .veloclty) #

(objoct.•.•do->velocity y.volocity 0 object..1nfo->velocity.,.volo¢it y) +
(object.iafo->velocity.a..eloeity 0 object.-ifo->velocity.z-velocity));

1l.innort (object-info->route.dta, n-zdatat..reutpt);
1Linseert (object-into->routo.date, next-reltept):

if (total..vl.vector !m 0.0)
t imeo_&t.net.-routopt * tiaeoat.next.routept * diet nct.traveled /
total..9v.1.ctor;

else

time..at.next.routept S tiue..at-exttroutept;

A-17

return time.-at.-next routept;
)

it (next.routept !- VVLW A& neotnezt-routopt -o NULL)
ll-insert (object.info->route.dat&, n~oOtp)

return tine.-&t.%-ext..routept;
)

/ .e~e~eeeeeteoeeee~eesseemeeeeeeeeeeeeeoe*.eeeeeeeeeeeeee..ee.e..ee..eoete......

/s DATE: 09/20/90 0/
/4 VERSION: 0.0 4/

/6 1UTLE: dmge..aseeent ,/
/o NODUE.UIDER: 2.7 */
/o DESCRIPTIO1% Determine extent of 4"o55. '/
/0 Schedule appropriate event e/
/4 AL0ORITHRt: TBD

/, PAS"ED VARIABLES: event.args e.Yent..arguent 4/

. RETURNS: none .1
/s GLOBAL VARIABLES PASSEDz none 6/

/# GLOBAL VARIABLES CHANGED: none 9/

/s FILES READ: enon e/
/s FILES WRITTEN: none */
I' HARDVARE INPUT: none o/
/4 HARDVARE OUTPUT: none 4/

/# MODULES CAILLED: none '/
/* CAL.L.ING ODMES: ordna.nceroachod..taorgt
/s ORDER OF: This function is of order 0(1) ./
/9 AUTHOR: Rob Rizza '/
/* HISTORY: none
/eoeeeee@eee~oeeeeeeeeeeeeeee.eoe~eeeeeeeeeeeeee~eeeleeeeeoeeeeeeeeee6.ee~oeoe@/

void danaRe..eeselw4nt (event.ar6Ximnt)
struct event-aros eovent..argment;

torminate.objects (.vent.argument);

j...4eeee~e44*.eeeoeo*4ele~eseeoese~eeeeee*4*eeeeeeeeee~e~eee...4.4..e....e.../

/9 PATE: 09/20/90 +/

/0 VERSION: 0.0 s/

/. TITLE: differencein..Atitude */

/s NODULE.NUNBER: 2.0 8/
/o DESCRIPTION: Detersine. the difference in altitude of two object* */
/o ALGORITHM: Determine the current altitude of the objects 4/

/* Return their diferen•e
/. PASSED VARIABLES: event.args eovent.argament 9j
/6 RETURNS: double difference or 0.0 ,/
/s GLOBAL VARIABLES PASSED: none '/
/s GLOBAL VARIABLES CHANGED: none 4/

/, FILES READ: on.ne C

/o FILES WRITTEN: none
/s HARDVARE INPUT: none
/o HARDVARE OUTPUT: none
/* MODULES CALLED: none 4/

/* CALLIAG MODULES: sensor.check, collision distance reached 4/

/0 ORDER OF: This function is of order 0(1) s/

/o AUTHOR: Rob Rizza q/

I. HIST(+RY: none
/..e~e..•9ee..eteee eee9,..eee~ee•eeee9e'.e~e~s9...9,.e9.99e949,. *4**$** *oe

dnuble differencejin-altitude (even.rt_argent)

A-18

struct event.a~rgs 0evobit.argumont;

{

double difference, curr.tins;

curr-time - event -argument->object1-> carrent.time;

if ((difference a labs (event.-arguaent-)objectl-)location.z..coord -
(event.&agxuwet->object2->locat ion. X-coord +
((curr.time - event.-argment->object2->cu~rrnt .tiae)
*vont.-argeat->object2->velocity.s.volocity)))) <- 6.0)

return 0.0;
else
return difference;
)

/* e e •sees~ see eoeo.ee ee oeeeeeeeoeee eeoeseeeeeeeeeoeeeseeueeeee Oesees ceo. cc.ee ee/

/e DATE: 08/13/90
/* VERSION: 0.0
/e TITLE: evade a/
/e MODULE.NUMBER: 2.9 a/
/0 DESCRIPTION: This function is used to reorient and change the velocity a/
/4 vectors of a vehicle in response to it turning away from a o/
/s threat C/
/o ALGORITHM: - calculate or determine the threat vehicle's path o/
/0 - adjust your path to be 90 degrees from the threat path e/
Is moving away from the threat path o/
/s PASSED VARIABLES: evader, and evaded *1
/4 RETURNS: none o/
/e GLOBAL VARIABLES PASSED: none a/
/o GLOBAL VARIABLES CHANGED: none
/s FILES READ: none
/s FILES WRITTEN: a/
/0 HARDWARE INPUT: none a/
/o HARDVARE OUTPUT: none e/
/* NODULES cALLED: send.(f)update, add.-neoroutepoint 'I
/s CALLINo MODULES: operator-evaluation c/
/* ORDER OF: This function is of order 0(1) /
/i AUTHOR: Rob Rizza a/
/* HISTORY: none e/
/le~e •eooeoeeoeeese~eee~eoseeomee.e~eeCC*CeseeeoeoecSCoeCCCCCC~seeeeeee•Ceec,/

void evade (evader, evaded)
struct object.-attributes *evader;
struct object -attributes *evaded;
{

i•t is-routept.good w TRUE;
double evadeduslope, evader.slope, evaded.y-intercept, evader.-yintercept;
double x-direction-indicator, y.direction_ indicator, conon..z.pt. common.._pt;
double elope-angle, relative-position, total-volvoctor, 1..temp, yi-tamp;
double z2.temp, 12.temp, delta.z, delta.y, distl, dist2;

struct location-type *next-routept - NULL;

total-vel-vector - .qrt ((evader->velocity.z.velocity * evader->velocity.z-velocity) +
(*vader->velocity.yvelocity e evader-)velocity.y.velocity));

if (evaded->velocity.z.velocity -. 0.0 IAN evaded->velocityy.1-vlocity !- 0.0)
{

relative*position a evader->location. x.coord - evaded->location. xzcoord;

if (relative.position < 0.0)

evader->wvlocity,xvoloc¢ty a total.vel.vector v -1.0;
evader->velozity.y-velocity a 0.0;

A-19

evader->velocity. z.volor ity - 0.0;

evader->orient ation.yaw a 270.0.
evader-)orientation.pitch - 0.0;
*vad*r->orientat ion.roll - 0.0;

else
(
evader->velocity.zvelocity a total_.yl..vctor;
evndwr->volocIty.yvelocitj a 0.0;
*vader- >velocity. Z.volocity a 0.0;

evader->orientation.yau - 90.0;
evader->orientation.pitch a 0.0;
evader->orientation.roll - 0.0;

}
add-neu.routepoint (evader. 60.0);
I

else if (evaded->velocity.y.velocity a- 0.0 H& evaded->velocity.x.velocity = 0.0)
(

relative.position - evader->location. ycoord - *vaded->locat ion. y.coord;

if (relative -position < 0.0)
{

evader->velocity.x-velocity m 0.0;
evader->velocity.y-velocity = total.vel.vector * -1.0;
evader->velocity.z.velocity m 0.0;

evader->orientation.yawu 180.0;
*vader->crientationpitch - 0.0;
evader->orientationroll - 0.0;

I
else
(

evadei->velocity.z.-velocity a 0.0;
evader->velocIty.y.velocitj a total-vel.vector;
evader-,velocity.z-.veocity a 0.0;

evader->orientation. yaw - 0.0;
-vader->orientation.pitch - 0.0;
evader->orientaticn.roll * 0.0;
t
ad._nev..routepoint (evader, '50.0);

else if (e-vaded->vel*y.x_•oltcity 0 0.0 && evaded->velocity.y-velocity = 0.0)
(

delta.z - evader->location.x..coord - evaded->)location.x.coord;
delta.y m evader->locatlon. _-coord - evaded->location.y.coord;

ulope.-ngle a atan2 ((dela-._• 0 -1), delta.y);

xalteup a evader->Io ation.x..coord + (10 0 con (slope.angle));
yl-teup a ovader->Iocation. .coord + (10 o sin (slope.angle));

x2.teup - evace.->locatimL.z.coord - (10 e coo (slope.angle));
y2_tejap - evtd~r->locetion.y.coord - (10 * sin (slope.igle));

naxt-routept - ll.pop (evader->route_data);

if (.qrt ((.ext_routept->x_coord - ovaded->location. x-coord) e
(next-routept-;x.coord - eva4ed->locat ion. x-coord) 4
(next -routept->ycoord - evaded->] ocat ion. y-coord) 0
(next _routept->y_.-oord - evaded->locatior.y..coord)) <-

A-20

(double)Set..sbnsor.rangs (evader))
{
is.routept.good - FALSE;
if (11-ieepty (evadsr->route.data) in TRUE)
{
next-routept a L-pop (evader->ruote_data);
is-routept.good a TRUE;
)
}

ul..tmp - xl..te. - aezt.routept-)ýZ.ceord;
yl.rtop * 11t.rep - -rXt. rotept->y.coord;

x2_tenp- z2_teap - next.routept->x.coord;
y2.teup y2.temp - .tezt.routept->y.coord;

disti sqrt((zl-temp * zl.tomp) (y1.:tm • ye1teup));
diet2 s *qrt((x2._temp, • x2.-tp) * (y2_temp * '2-tomp))

if (distl <- diet2)
{

evader->velocity.z.velocity = tctal-.vol.ector * cos (slope.angle);
evader->velocity.jvoelocity 8 total-vel-vector * uin (slope-angle);
evader->velocity.zvoelocity - 0.0;
}

else

{
evader->velocity.x-volocity a total-vel-vector * can (slope-angle) * -1;
*vader->velocity.y.velocity * total.vel.vecter * sin (slope.angle) • -1;
evader->velocity.z -velocity - 0.0;

I

if (ienroutept.good - TRUE)

lljineert (evader->route..data. nest.routept);
add-.not- routepolnt (evader, 60.0);
calc.curr.orientation (evader);

else
{

evaded-elope a evaded->welocity.y.velocity / ovaded->velocity. x-veloci.y;
evaded.7..intercept - *vaded->1ocation.y.-coerd - (evaded.slope *
evaded->location.x.coord);

evader.-lope m -1 / evaded-slope;
evadr..y- intercept = evader->Iocat ion. ycoerd - (evader-slope $
evader->lecation. xcoord);

comon...pt m (*wadedsy intercept - ev*der_y_intercept) / (-1 e
(evaded-slope - evader.slope));
comeon_7_pt - evadedaslope 0 coomon.-.pt + evaded..y.intercept;

i.direction-indicator a evader->location.x..coord - co--on.x..uot;
y.direction.indicator m evader->Iocatian.y-coord - comonypt;

slope-angle a atean (evader.slope);

evader->velocity.x-velecity a fabs (total-vel-vector * coo (slope-angle));
ovader->7olocity.y.-velocity - Z&" (total.-el-vector • sin (slope..agle));

evader->voloc7ty.z.velocity - 0.0;

if (x-direction-iindicator < 0.0)
evader->velocity.x.velocity * -1 0 evader->velo.:ity. zvelocity;

if (ydirection-indicator (0.0)

A-21

evadea->velocity.y-velocity s -1 * evader->velocity.y1velocity;

add.neu.routepoint (evader, 600.);
calc-curr.orientation (evader);
I
send.fupdate (evader);
I

/seeeeoese*eoee*oo*oeeoeeoeeeeeeeoee~c~~e~e*4Ceeeeeece*eeeuieseoeaeoeeeeeeeee/

/* DATE: 09/20/90 ./
/o VERSION: 0.0
!0 TITLE: get..snsor.raenge /
/s NODULEIUMHER: 2.10
/s DESCRIPTION: This function is used by sensor.check to deteraine the -/

range of the sensor being used */
/e ALGORITHM: For as many item8 that there aro in the sensor list

/c - check the sensor range, save the largest range found c/
/4 - return the range found C/

/e PASSED VARIABLES: struct object-attributem* object.-sinfo
/s RETURNS: range
/s GLOBAL VARIABLES PASSED: none
/s GLOBAL VARIABLES CHANGED: none c/
/e FILES READ: none
/s FILES WRITTEN: none ./
/o HARDUARE INPUT: none Cl

/c HARDUARE OUTPUT: none c/

/s MODULES CALLED: none c/

/+ CALLINC MODULES: osexsor-check .1
/c ORDER OF: This function is of order O(n) where u iS the number of sensors*/
/e AUTHOR: Rob Rizza o/
/* HISTORY: none C/
/.. e e mecee~eeceelle~ee~eeooteeeese.Cas seeeeee seeeeeeseeCleeeeeeeee CCeaseC cCCC/

in% get.sensor.range (object-info)
struct object.attributes eobject.info;
4
int i, length, range a 833, tem..range a 0: /s default sensor range, approx 1/2 mile ./

struct sensors esensor - NULL;

if (object.info-)sensors !- NULL)
{

length - ll.length (object.info->sensors);

for (i - 1; i <0 length; i++)
4
sensor a (struct sensorse)ll.pop (object.-ifo->sensors);
if (sensor->range > range)
range w sensor->range;
ilminsert (object.info->sensors, sensor);

else
if (object.iufo-)object.type N NISSLE)
range z 0;

return range;

/.e eeoeeeosseeeeoee.. oeo~c.e~e eae. eCeooeCCeeo eCCe CCaCeo eeeoee*C• cCS* 545Ctooo/

/o DATE: 09/20/90 ./
/c VERSION: 0.0 '/
/0 TITLE: hit-miss
I. NODULE_.UMBER: 2.11

A-22

/I DESCRIPTION: Determines it a hit or miss takes place ,/
/a ALGORITHN: If '.he objects come within a specified distance /
/0 schedule a danage.naseoment a/
/0 Else ,/
/e call seisor.check s/
/a PASSED VARIABLES: event-arge sevent-argnuont a/

/* RETURNS: &on* a/
/0 GLOBAL VARIABLES PASSED: none a/

/6 GLOBAL VARIABLES CEAIOED: none s/

/A FILES READ: none a/
/e FILES WRITTEN: none i/
/0 HARDVARE INPUT: none a/
/e HARDVARE OUTPUT: none s/

/I NODULES CALLED: none a/

/I CALLING MODULES: ordnace-reached-target s/
IA ORDER OF: This function is of order 0(1) a/
/4 AUTHOR: Rob Rizza a/

/4 HISTORY: none a/
/.e e seeesee eeeeee 4s4ee4.e4. 454.455 eeCCe4.4.54.4.5ee~ee eeeeeeeee eeee~ee~eese e4. 4..e

void hit-sign (event-argument)
struct event.5rgs *event.eargument;
{

it (tabs (event.nargument->objectl->location.x..coord"-
event.-argumentt->object2->location. x.coord) <w 10.0 &A

fabs (event.-rgumentot->objectl->locat ion.y..coord -

event.-argument->object2->locat ion. y.coord) ý<; 10.0 &a
fabs (veont.argeuunt->objectl->locationz..coord -

eventarg=uent->object2->location.z.-coord) <= 10.0)
damagee.assssaament (eventsargument),

else
sensor.check (event..argument);
)

/.e •*eseeeeeeeeeeeeeseeeeeeeeeeeeeee4eeseeoeeeeeeeeeeseeeeeveeeeeeeeeeeee eeeseeee/

/. DATE: 09/20/90 s/

/* VERSION: 0.0 a/

I" TITLE: line.of.sight *1
/6 MODULE.-UNBER: 2.12 a/

/l DESCRIPTION: This function is used by sensor-check to determine if an aI
/a unobstructed line of eight exists betueen two objects e/
/s ALODRITHR: TBD aI

I. /I

/4 PASSED VARIABLES: struct event.argse event-ergmuent el
/s RETURNS: 0, 1 *1
/e GLOBAL VARIABLES PASSED: none 'l
/e GLOBAL VARIABLES CHANGED: none a/

/s FILES READ: none a/

/o FILES WRITTFE: none 4/
/s HARDWARE INPUT: none
/a HARDVARE OUTPUT: none a/

/a NODULES CALLED: none a-

/a CALLING NODULES: senior-check 0/

/* ORDER OF: This function is of order 0(1) a/

/a AUTHOR: Rob lizza s/

/I HISTORY: none a/
/e ee eseeeeeo • eocene.4 4.4. eee eee e 4...444444 .. 5.C 4.44.44.44.4 4.4..4..4.44.e4.4 incise4.4 4..C.44..4 4.•e 4.4 go .4

int liue.ofosight (event.-rgunent)
struct event-arge *event.argument;
(
return 1;
)

A-23

i. .. s eo.... eeoeove~o*ee~eeooeeee. *0 eo .eeeQ~@@e~eveo..e~eve... *e~ee @ e cc..,'

/0 DATE: 09/30/90 a/
/0 VERSION: 0.0 0/

/0 TITLE: ou.collieion.-cousoe
/0 NODUiLE._NUBER: 2.13 0/

/* DESCRIPTION; Doterseizes whether two objects mill occupy the am*
/0 location at the same time C/
/0 ALGORITHN: Determine it the objects will occupy the ame position at the 0/
I0 .ame tinm e,
/0 Retun TRUE if true ,/

nele return FALSE e/
/0 PASSED VARIABLES: bvont.-arge event.argument 0/
/o RETURNS: TRUE or FALSE
/* GLOBAL VARIABLES PASSED: none e/
/0 GLOBAL VARIABLES CIAIOND: none C,
/* FILES READ: none '/
/s FILES WRIrTEN: none C/
/s HARDOWAE INPUT: none 6/
/o HARDWAIE OUTPUT: none e/
/* NODULES CALLED: none 0/

/* CALLING NODULES: 0/

/* ORDER OF: This function in of order 0(1) e/
/* AUTHOR: Rob Rizza */
/* HISTORY: none 0/

int on.collision-courne (event-argument)
struct event.arg *eVent.-argmment;
{

double diffin.curr.xcoords, diff.in.curr.y.coords, diff.-_ircurriz-vele,
dilf.in.curr.y.vols, a, b, c, ternmunder.radical, tine..at-.next .routeptl.
time-at-next.routept2. senmor.contact-time, curr-tine;

curr-tinse - event.-argument->objectl->current - tine;

diff.in.icurr.x.coordm a event arguuent->objsctl->location. xcoord -
(event.argunent->object2->location .zcoord +
((curn.tine - event _.rg.ent->object2->current..tim.)
* event.argunent->object2->velocity. x-.vlocity));

dif.in.-curry.coords * event -. rgnr ent->objectl->location.y.-coord -
(event.rgument->object2->locat ion. y.coord 4

((curr..tie - event _&rguinnt->object2->current.t in*)
0 event.-srgument->object2->velocity.y.-velocity)) ;

difficurr-n-vels m veent.-argument->objectl ->velocity. .v.elocity -
event .- rgument->object 2->veloc ity ,...velocit7 ;
dil .in.curry.vels a event.argwuent->objectl->veocity y..vlocity -
event argment->object2-)velocity.y..velocity;

/ooeoeeeeoeo QUIDRATIC EQUATIPN 11 (t): t - (-b *- sqrt (bb - 4&c))/2a os.os..e/

a = (diff-in-curr..z.velm diff.in.curr.z.velm) +
(ditf.in-curr.-.vels 0 diff-in.curr.y.vele);

b - (2.0 * diff.in-cuxr.-.coords diff-.in.curr.z.vels) +
(2.0 * diff.in-carr.-i.coords e di•-fin-curr-.,vels);

c a (diff.incurr.x.coords * dif-in.curr.z.coords) +
(diff.in-curr.y.coords * diff.in.curr-y-coords)

term.under-radical - (b * b) - (4.0 * C c);

if (labs (ter-.under.radical) < 0.0001)
term-under.radical - 0.0;

A-24

if (teru.under.radical -- 0.0 At difterence-in.altitude(ev*wnt-argument) an 0.0)
(
time.at.nezt_routept1 v calctimeat .neztoroutept (event.-argument->object1);
time -at-next -routept2 0 cal-.time.-atnext.routept (event.-argument- obj ect2);

sensor.contact-.tie 0 (-1 0 b - sqrt (temntuader.radical)) /
(2.0 * a) # eveat.argumaet-)object1->current.tizen

if (sensor.contact-tine <- tim..at.next.routeptl AR
sensor.contact.-tla <= tiae.at..ext.routept2)

return TRUE;
)

return FALSE;
)

/. S*e**~**ee****CCC**S**eeee*eeeeCee*Ceee.***e~eCeO*eC*Ce*C .ee~eieeeeeeeeeeeee.,/

/* DATE: 09/30/90
/* VERSION: 0.0
/o TITLE: on.target.list s/
/* NODULE.-UMEBER: 2.14 C/
/* DESCRIPTION: Determinue whether an object is on another object's target */
/0 lint 5/

/. ALGORITHM: Search an object's target list for the other object 9/

1. Return TlUE it found e/
/c Else return FALSE 9/

I, PASSED VARIABLES: object-attributes #object1, object.atrributes *object2 0/
/# RETURNS: int TRUE or FALSE el
/1 GLOBAL VARIABLES PASSED: zone */
/. GLOBAL VARIABLES CRINGED: none sl
I* FILES READ: none 9/

/e FILES VRITTEN: none S/
/c HARDVARE INPUT: none 'l
/0 HARDVARE OUTPUT: none 'l
/o MODULES CALLED: none */
/I CALLING MODULES: 9/

/e ORDER OF: This function is of order 0(0) where n is the number of
/s targets in the objects target list 9/

/0 AUTHOR: Rob Rizza
/# HISTORY: none
/ce ec..eeeeoe*eooooeeeeeee~eeee~eeeeeoose~eoe eeeee~eeee e~eeeeeee~e soete.e*e. sc/

int on.target.list (objecti, object2)
struct object -attributes eobjectl;
strvict object.attributes eobject2;
{

int nun targets, i, return.value a FALSE;
struct targets $target;

if (objectl->targetlist !- NULL)
(

numtargeta a ll..length (objectl->target.list);

for (ft 1; 1 <. nun-targets; i++)
{

target a ll.pop (objectl->target.list);

if (target->target-type - objoct2->object.type)
return-value - TRUE;

llinsert (objectI->target-list, target);

return return-value;

A-25

/oee4*4eeeeeeee~e*eoeeeeoeeoeeeo~eeoeseeeseeeeeeeeeeoeooeee~eeeeoooeee.C..*e~eee/

/s DATE: 09/30/90 o-
/t VERSION: 0.0 '1
/4 TITLE: operator.evalution
I. NODULNUIUBEL: 2.16 o/
/s DESCRIPTION: Dotormiaos the zest coutse of action for am objoet which 4/

/, has soloed another object 4/
/e ALGOIRITH: see case statement below s/
/s PASSED VARIABLES: event.rgso *event.argument #/
/o RETURNS: sone o/
/s GLOBAL VARIABLES PASSED: none o/
/o GLOBAL VARIABLES CHANGED: none 4/

/s FILES MEAD: %oie/
/s FILES WRITTEN: none 4/

/s HARDVARE INPUT: none 4/

/s -ARDWIRE OUTPUT: none 4/

/4 NODULES CALLED: none 4/
/o CALLING NODULES: 4/

/s ORDER OF: This function in of order 0(1) 4/

re AUTHOR: Rob Ri-zzo /

/9 HISTORY: none
/4eee444.eeeeeeeeeeeeo~eeeeoeeeoeeoee~ee*Ceeeeeeeeveoeeeeeeeeoeoeeeoe eeoeee..ee/

void operator-evaluation (event.arLuyment)
struct event..ergs *event.argumnnt;

struct object-.attributes $observer = NULL;
struct object.-attributes eobserved a NU"..;
int event, notnaor-ragoobserver, sensor-ragse.-observed;

if (event.-argumcnt->objectl !a NULL)
observer a *vent.arguent->object1;

if (event.sarguant-oWject2 !a RPM!.)
observed - event .argument ->objec t2;

sea~sor~raige~obsorver w getsoensor-rasnge (observer);
sensor-.rango-observed u getsnesor.range (observed);

if (observed->object.type au NISSLE)
event 0 0:00; /e do nothing e/

else it ((observer->object.1oyalty a. observed-,obj%-:t.teyaty) I&
(on.collision.course (event-argument) an FALSE))

event a 0:00; /0 do nothing */

else if ((observer->objact.loyalty an observed- object.-loyalty) It
((on.collision.course (event.-argument)) me TRUE),
event a 0:01; /0 evade a/

else if ((observer->-' ject.-loyalty !a observod->object.loyalty) At
(aeneor.reoge. obeorver > Aenor.trene.observed) tS
(on.target-.list (observer, observed) - FALSE))
event a 001; /e evade e/

else if (observer->*bject.loyelty ?a oboerved->object.-loyalty as
(on.target.list (observer, observed) as TItVE II
senoor-.rangeobserver <a sensor-.raue-observed))
avant W 010; /a attack s/
switch (event)

case Ox0::

A-26

break;

case O101 :
{
/s put in cod* to make sure next routept is

not within *eneor range of the stationary
object being avoided 0/

evade (ebteree, observed),

break;

}
ca~a OK|O:

attack (event.-argument)

/o DATE: 00/31/90 4/

/o VERSION: 0.0 4/

/s TITLE: read.datfile 4/

/s NODJLE.NUMBER: 2.16 4/

/o DESCRIPTION: This function is used to read the scenario data from file 4/
/* ALGORITIN: - while the pointer has not reached the end of file s/
/0 - read in a line 4/

/s - asaign the data to it appropriate field 4/

/4 - write the icon identifying info to the display file 4/

/4 PASSED VARIABLES: path 4/

/s RETURNS: struct linked.liste master.obj-list 'I
/* GLOBAL VARIABLES PASSED: none o/
/o GLOBAL VARIABLES CHANGED; nong 4/

/. F!LS -L--'L . none
/s FILES WRITTEN :/
/0 HARDWARE INPUT: none 4/

/o HARDWARE OUTPUT; none ,/
/0 NODULES CAI1LFD: none 4/

I/ CALLING NODULES: main 9/

/o ORDER OF: This function is of order 0(n) where n is the number of lines e/
/0 in the file being read 4/

/s AUTHOR: Rob Rizza &
/o HISTORY: none
/*668 eeee4aee*eeeeeeeeeo4ee*ee..eae046e.eee eeeeo ee44.... .e/

void road.datatile (path)
char *path;
{

FILE eptr.to.datafils. eptr.to.diaplay.-ileo

extern struct linked.list "astar.obj_.list.
extern int higheot.obj-id;

strect object.attributes *object a NULL;
struct location.type eromtept NUULL;
etruct sensors elensor a NULL;
struct targets etarget V NULL;
struct armaments oarmament - NULL;
struct defensivo.eyetems edefenosive.systes 0 NULL;

Ant i. fields. num-ffiolds. line.num a 0, num_.routen.e a 0. nualtargotsa 0;
Ant nun-sensors a 0. nsn-armasents 0 0. num-deftn ive..seoteua n 0. object.type;

char line[400], optr.to.line i NlULL;
char etemp.ptr NWULL;

A-27

it ((ptr.to.datafile a topen(path, "r")) !o DULL)
(
while (Itfot (ptr_to_dtttil*))
(

it (Ugets (line, 400, pt r.toodttdile) me BULL)
break ;

it ((Object - (struct object.atttibuteab)mslloc

(hilsol(utrtact object.attribUtea))) !1 MULL)(
-+line.num;

object->object.ty" 0 &tot (strtoa (lime, "

object-ýobjsct.i4 a trot (etrtok (I=LL, ..)),

objact-Mebjct.loyalty 1 intet (trtak (, " M l)
obiect ->c•trret.t if U trot (*trtok (BULL,
object->tu.ol.tttus a stol (strtok (0U=., "
objoct->)oaditior a ott (smtok (NULL. i 1)),
objet.t->vulnerability m stot (*trtok (MULL, .
olbjoct ->loation.x.c.oo!d a *tot (strtok (BULL, "));
object->locatioA.y.coor4 a atof (strtok (BULL,
object->locatioa. .coord a atof (strtok (BUL, L.)).
object->velocity. x.velooity 0 &tot (strtok (NULL, IS));

object->velocity..Ivelocity a &tot (strtok (BULL, 11")
object >velocity.z.&-elocity m atof (strtok (BULL, I))

object->rotation. yawrate - atof (atrtok (BULL, .
object->rotation.pitchratt* &tot (strtak (NULL, .));
obj ect->rotation.rol1lrstae atof (strtok (DULL, 11));
objoct--operator.exporlenco a atel (otrtok (BULL, 11));
object->operator.threat-nttowledge ft &toi (Otr~ok (BULL, I'));
ohjoet->porforP&T1ua wif ttqr16_radius - *oi (etrtok (DULL, " 19);
object >Prtoromi:. e.max.speed a &tot (strtok (NULL, "1 1"));
object->•ertorint .evae..fuel..co..ret.* intot (etrtok (BULL,
objo4t->petorntmete.maX.cli*b.itOt a &tot (strtok (NULL, .9)

num-routopts a &tol (strtok (NULL,

object-•route.date m 1l..ake (LIFO);

for (i s 1; i <0 num.routepte; i*+)

it ((rontept - (struct locatton.type.)malloc
(sizeof(struct location type))) !m NULL)

routopt->x-coord a &tot (strtek (BULL,
routept- ,y.coord a &tot (strtok (NULL,
routopt->z-coord a &tot (strtak (BULL,

ll.insert (obJect->routo.data, roetept)
I
e1se

primtf ('CAIBOT UEAD I1 ROJTEPolITS. DOT KNOUOW WERO*Mn");

if ((aus•amoora m atoi (strtok (NULL, "))) > 0)

object->sonsors • l1-make (FIFO);
for (0 a 1; i <0 num.sensors; 1i+)
(

it ((veoeor (-Itruct seneorsO)
maf;oc(sizeof(et.tact •.omors))) !a NULL)

9e*tir->type - atoi (etrtok (BULL, 9);
eenvor->rang* - atoi (etrtok (PULL, 1);

A-28

uienaor.->rcso1lition - iatei C(itktok (VVLL!, .)

j11.iftse (01AUIOt-ýqno RA U sen~Msor); UG SNk~n

*Is

it ((,o-seruseents a atoi (strtok (NULL, 11)I' > 0)

object.>armabnts 0 1A.ake (FIFO);
for (1. * 1: 1 C(s Ru.armsaments; 1..)

if (0krakewint Is (sTruct atmkanonso)
mallc(.;.o~stqctsrumantf)) I- NULL)

arviasent->ty* Is &tot (strtok (HULL, I
tarmaseivt->rueg a atoi (strtok (NULL,

Ar~meht>accrec * toi (atrtok (NULL.);
armament->accuracy stei (strtok (NULL,

armament->couht a atoi (strtolt (HULL, I'))

pis uint ("CANNOT READ 1 II AMAENTS. Not IFHO1JOR MEH0OY\n-)

*Ig

objact->amwonto a NuLl';

if ((nun~tarGts I tvi (strQk (NULL, "9)) > 0)

for (1 a I; 1 <a z~qx~targ~ts; J+i')

it ((target a (struct targets')salloc(sixtaof(struct targe~ts)))
N3 ULL.)

target->%&rg*%_%.ypa II &tot (strtok (NULL,9)
target->target..-location.K...coord a stof (strtok
(BULL. 1 11)):
terg*t->%tArget..ocetioniYCeOrd a &tof (Gtrtoh
(HULL, " ")
targot->targo-.locat ion. zcoord a &tot (.rtok
(NULL. 1)

prizitf ("ChIli) READ 1N TMkETS, SOT LIOUGN NEXORYVVI);

teppr- strtok (WILL,*)

if (tenp~rtr -. HULL)

A -2 9

prittf ("BOGUS DATA IN LINE %d OF INPUT DATAFILE\nW' lio.nex);

if ((mtim dfe,•atve...ateaa * *to. (tea.p..tr)) > 0)
(

object->deteiilii.sysettm a 1la-ei0 (FIFO);
for (1 0 1; J <0 aum.dolfnfiv*.epteons; i++)
{

It ((d*teseiv*esYet.t a (otrQt 4eiemeive.spotetnes)
mslloc(aieont(etnct 4o slo ..o 7 styenM))) to NULL)
(
4efoeeiwe~e~eqee->typ.a stoi (atrtok (NULLt));
4*tehiie..iybt*S->k&Tle a *tol (ttrtk (lULL,)
temp.ptr a ttrtok (OULL. " It);

if (temp-ptr as VULL)
prrint ("BOGUS DATA IV LINK *d OF INPUT
DAFILE\n", 1Losnun)

defenaive.y~mtem->effect1vene * atoi (te.p.ptl)t

ll.ineert (object->defehaie..eteu , deifeiiev*..atet);
I

printf ("CANNOT MAD 10 DEFEISIVE SYSTEMS,
NOT K1OUQH NEMORY\W");

I

*180
oj•elct->defeosive.-systow * BULL.

it ((ptr-to.dieplavfile* fopen (itpayc", "al)) B NULL)

flprintf (ptr-to.displayjfilo, "130 %4 VW'."
object->obj•ct-id, object->object-tjp*);

rcoses (ptr.to-display~file);

ll.lnoert (sterte-obj.list, object)
)

prlnti ("CANNOT OPEN DISPLAY FILE 11 READ-.DAFILIP\n);
)
else

prititf ("CANNOT READ I1 VEHICLE ATTRIBUTES, NOT EIOUGH MNEORY\n");

ptintf ("CAINOUT OPEN VEHICLE FILL FOR READIMGUn");

highest-obj-i 0 objett->object-id;
1close (ptr.to.detfi1.)

/o DATE: 08/02/W0 5/
/# VERSION: 0.0
/* TITLE,: send.tl pdate '/
t, NODULE.-OIJLDER: 2.17 5/

/9 DMSCRIPTION: This function is used to send position updates to i file ./
" Lfot later access by the generic display */

/I ALGORITHM: open a file to store the information
/4 extract and read the required data lto the datafila 4/

A-30

. tclose the dotafile once the reading is complete a/
/* PASSED VARIABLES: objoct.nto */
/7 RETURIS: none */
/o GLOBAL VARIABLES PASSED: none o/

/7 GLOBAL VARIABLES CUAUGED: none */
/e FILES READ: none a/
/7 FILES VRITTRE: datefile a/
/7 RHARDIAE INPUT: none s/
/* HRDVARDA OUTPUT: none e/
/7 MODULES CALLED: none a/
/7 CALLING MODULES: reach-.tonpoint, roached-target. reached.destiAntion, ./
to reached.sensor.rang. */
/7 ORDER OF: This function is of order 0(1) o/
/c AUTHOR: Rob nizza a/
to HISTORY: none a/

void send.fupdate (object..iso)
struct object -attributes *object.info;
{

FILE *ptr-.to.display.file;

if ((ptr.to.dimplay.file n topen("display. c", "a")) !a BULL)
{
fprintf (ptr.to.display.file, "31 %d %If %.21f %.21f %.21f lIf %It %If %1f
%1f %lf %IT %If llf\n", object._into->object.id,
obj ect-_nfo->current-t ine, objectinfo->location. x.coord,
object-.info->location '...coord, object- info->locivt ion.z..coord,
object.info->velocity.x.velocity. object.info->volocity.y.velocity.
object .info->velocity, z.avelocity. object- into->orientation.yaw,
object-info->orio nt at ion. pitch, object- nfo->oriontat ion. rol .
obj ect info->rotation. yaw-rate, object.-info-orotat ion.pitch-rate,
object-.info->rotation.roll-rate);

fclose (ptr_-to*display -file) ;
}
else
printf ("CANNOT OPEN DISPLAY FILE IN SENDFUPDATE\n");
I

Ie. eseec.*eeeeeeveeeeeeeeeeeeceeeeeee..c..eeeeee.eeeeseeeee..eeceeece.eeeeee /

/e DATE: 09/04/90 e/
/o VERSION: 0.0
/0 TITLE: sonsor.chc.k ./
/s MODULE-NUMBER: 2.18 a/
/0 DESCRIPTION: This function is used to check whether a sensor contact e/

/0 is made prior to the next scheduled turnpoint. */
/e ALGORITHM: see discussion in Thesis o/

/I *

I. PASSED VARIABLES: struct argumnt.type argument */
/e RETURNS: none *7
/. GLOBAL VARIABLES PASSED: extern struct driver* driver a/
to extern struct linked.lists master-obhlist */
/e GLOBAL VARIABLES CHANGED: none
/e FILES READ: none e/
/t FILES VRITTEN: a/

to HARDWARE INPUT: none e7
to BARDVARE OUTPUT: none */
7* MODULES CALLED: none e/
/s CALLING MODULES: almost all the events call this function e/
to ORDER OF: 0(0)
to AUTHOR: Rob lizza s/

A-31

I. HISTORY: nane C/

void sensor.check (event.argament)
struct eventarg eovont.az-Int;

int nun.objs a 0, nunavohicles a 0, 1 a 0. j a 0. sensor.contact-found - 0,
valid.contactl a 0, valid.contact2 - 0, co•tactl a 0, contact2 -0. O enuing-range;

-double-cuzr.t ie. * cur.x.coord.other.ebjectp curz..coord._ther.object,.-
tazm.umder.radicell. term-under.radicaa2, a, b, ci, c2, event-.time,
dift.n.cu€r-.xcoords, diff•.lc.rr• coords. ditf..in.cur.x.vels,
dif.4_cuarry-vel. , t 1we.at..axet.routeptI. time_at ._*t-rontept2,
Seneir.•contact.timel, se•aor-coatact-.tiue2, realm , rg*g2, ti-e.to-event;

double t:ime-ptr a BULL;

struct location..type enext.routept ENULL;
struct object.attributes eother.object 0 BULL;
atruct object.attributes 0objecti - NULL;
struct object.attributes cobJect2 - NULL;

extern struct linked.list euauter.obj.list;
extern struct driver oesiulation.driver;

num.vehicles a 1l.l.ngth (master.aobje.list);

if (event.argupent->objectl->velocit.z-.velocity "0.0 11
event..rapment->objectl->velocity.y-velocity !0.0 il
event-arg•ent->objectl->)elocit 7 .xzvelecity != 0.0)

tiate-at-nezt-routept1 a calc.tiate.at.next-routept (event-argument->objectI)i

event-time - t-me.at.nezt.routeptl;

for (i a 1; i <a aun-vehicles; i+')

other-object * (struct object.attributese)ll.pop(uaster-obj.list);

if (event-argument->objectl->object.-id a- otherobject->object.id)
1f-insert (master-obj-list, other-object);

else
C

curr-tine a eveuntarguaent->objectl->current-tiue;

curr.x.coord.otheroobject - other.object->location.x.coord +

((currt.tie - other.•bject->current.time)
0 other.object->velocity.z..vlocity);

curr.y.coordother..object n other.-object->)lcat ion.y..coord
((curr.time - other•object->currert.-time)

C other-object-•velocity.y.velocity);

diff.inucurr.xcoords w event..arguwent->objectI->location.z..€oord -
curr..scoord.other.obj4ct;
diif.in.cnrry..coord3 M *veat.argumeat->objectl->location.7.coord -
curr.y.coord.other.object;

diff-in-.cur.z-vels - event.argument->objectl->volecity. zveleoity -

other.object->veloclty.z.zvelocty;
diffin..carr-y.vels a event.-arunent->objectl->velocity . ywvelocity -

other-object->velocity.y.velocity;

/eC-1Csee0ee QUADRATIC EQUATION I (t): t w (-b +- uqrt (bb - 4ac))/2a .CeC&ee6•,,./

rangel - (double)get-sensor.-rnge (event.arguaent->objectl);

A-32

range2 - (double) got.-sensor.range (other.object);

a = (ditf.in.curr..x..ele 0 dft.Ia..cuzr..z.els) +
(ditf-.4_curr..Jvels 0 diffoin-.curro.7Vel);

b u (2.0 4 diff-in.curr.i•coords 0 diff.lnocurr.z.vels) 4
(2.0 * diffi..1curr-ycoords * ditf_in.curr.y.veZl);

cl (diff.in..curr.x..coords ditft..Lam.cuxzw..cozds) *
(diff..i_-curr.y.coords * diff-t.cuzT..y.coords) -
(rangel-a range1); ;

c2 * (diff-in-curr..zcoords * ditffja..curlr.coords) +

(ditffoi.curr.y.coorde 0 d1ft-.iocuzrr-.y.crds) -

(range2 0 rane2);

tern.under.radical a (b s b) - (4.0 * a* ci);

if (tabs (termaunder.radicall) < 0.0001)
:er..under.radicall a 0.0;

te., kunder_radical2 a (b * b) - (4.0 * a* c2);

if (tabs (tern.under.radic-n2) < 0.0001)
term-under . .ic&12 a 0.0;

if (ter.nunder-radic 1 ')- 0.0 II te.r-uder.-radical2 > 0.0)
{
if ((t3me.at..next..routopt2 E calc-.t i..at-next.routapt
(otkorobject)) <0 curr-time)

time.at-naxt-rontept2 m calc-.tlz..at.neztnext.-routapt
(othex:. v.ject);

if (ti.n-•..a..uext_routept2 <w cuxrr.tin'
timo-at-next.routept2 a tia..at.noxt "eptl;

if (tezmder_radicalI >- 0.0)

sensor-contet.-r.-iel (- I * ? " (termzunder_radicall)) /
(2.0 * a) + currttime:

if (sensor..cont act.._t ime . ýv,-t i;.7,w
ta sensor.contact.--i (c .w me + 0.0000001)
&a *enshr.contact -,•t-...next.routeptl

kh line.of.I 4..h' 4n" ;) mu TRUE)
valid-contactl
I

if (tern_underradical2 >a 0.0)
{

/0 If (time.at-next.routept2a ether.objeca->current.-time)
time.at-noxt.routept2 a tie.m..t.nezt.-routeptl; e/

meansor-contact._ttm42 - (-1 o b - uqrt (ter.n-ader.radical2)) /
(2.0 * a) + curr.tlme;

f (sensor.contact.t me2 < event-time
ha sansor-contact.tim*2) (curr.ttme + 0.0000001)
ha senvor.contact-.tim2 <6 time.ate.xt..routept2
24 s*nsorcontact.time2 <0 (t ine-at.-next.-routapt1 + 0.0000001)

'i line.of.sight (evn at.-arguiant) m- TRUE)
valid-contact2 a TRUE;

if (valid.contact1 om TRUE At valid..cont . TRUE)

object * evoe-t.-argumnt->object1 ;
object2 - other-object;

A-33

if (sensoronatact-.tioel - sensor_.contot.time3)
{
contactl - TRUE;
contact2 - TRUE;

if (rangel - 0.0 &A rage2 - 0.0)
8eeiýrg.range 0 .;
else
sonsing.range - 1;

event-time a *ensor-contact.timle;

}

it (sensorcontact.tinel > soemor.contac.ttime2)

{
contactl w FALSE;
contact2 - TRUE;

event-.ti•e a sensor-contact.tiue2;
)

it (senoor-contact _.timel < sonsor-contact.time2)
{
contact1 - TRUE;
contact2 . FALSE;

*vent.time a mensor-.contact.-tiel;
}
}
else if (valid_contactl us TRUE A& valid.contact2 -- FALSE)
{
contacti a TRUE;
contact2 a FALSE;

event-.time i ensor.contact.ti=0i;
objecti a event -argument->objectl;
object2 = other-object;
}
else if (valid-.cont&tl us FALSE && valid.contact2 us TRUE)

{
contacti = FALSE;
contact2 a TRUE;

event-.tme - sensor.contact.tiue2;
objecti w *vent._&rgument->objectl;
object2 n other-object;
}
I
11-invert (Cnater-obj..-ist, other.object);
valid.contacti = FALSE;
valid.contact2 w FALSE;
I

if (contoctl us TRUE RA contact2 - TRUE AR menoing-.reane us 0 A&
difference.-iaaltitude (event.-argment) u. 0.0)

{
event.argument->ovent.time a event.tiae;
event-argument->objectl objectl;
eventorrguent->object2 a object2;

add.event. coords.to.*route (event.argpment);

if ((time.ptr * (doublee)ealloc(sizeof(curr.time))) us NULL)

A-34

pristf (C•JNOT ALLLOC TIN.-PTR 11 SEISOR.CISECI\n");

*time.ptr 0 event..rgament-0ovent.-tiMo;

schedule-event (siaulation.driver, time.ptr, collision.distance.reached, event-argument);
}

else it (contacts -, TRUE II contact2 m TRUE)

it (contactl - TRUE Oft contact2 - TRUE)
{
tie.sto.event - event.-argement-)objectl ->crreat.t ie - event-time;

add.neu.routepoint (event.-arguent->objectl, I tineto-event);

add.no..routspoint (event.-argment-)objectI. time.to.evont);

I
else
{
tins-to-event - event-tise - event-argment->objact->)current -tiue;

add-neowroutepoint (event. arguent ->objectI. timo.tooveint);
I

event -arguL~t- >event-t xse a event-time;

event arguaent->objectl objectl;
event..argument->object2 a object2;

it ((tims.ptr - (double)malloc (sizeof(curr..t te))) -- NUML)

printf ("CANNOT NILLOC TIIN.PTR 11 SENSOR.CUEC~n"):

*time.ptr - event.-argument->evnt.-tine;

if (contact2 uz TRUE)

schedule.event (simulation.driver, ttiaeptz, eot*red.-.ensor.-range.
event.armunent);

if (cortact1 -- TRUE *a event. argumnt->obj ectl->object.type !W HISSLE)

schedule.event (simulatein.driver, timeoptr. made.sensor.cont act,
event -argument);

else if (contacti -- TRUE tt event.argument->objectl->objecto.type -" HISSLE)

schedule.event (sizalation.driver, time.ptr, ordnmnce..reached.target,

event,-argueant);
I

else

if (ll.isemptr (event.argament->objectl->route.*data) != TRUE)

next.routept w (struct location-typee)l1-pop
(event -arguent -ýobjeetl->rout *-dat a) ;

llinsert (event_-argument-)obj ect1-)route-dat a. ezt.routopt);

if ((time.ptr w (doublee)aalloc(sizeof(curZ.tine))) - NULL)

printf ("CaNNOT NALLOC 1N CASE OzOl OF SENSOI..CBECEL");

stime"ptr a ttm&..at.next.rlUteptl;

event..-argment->object2 a NULL;
event_.&rgKienteevaat.-time a event-time;

schedule.event (simwlation.driver, time.ptr, reachedtunrnpoint,
event_.arxgent);

A
I
I

A-35

/0 fATE: 09/11/90 51

/I VERSIOI: 0.0 */
/, TITLE: terainsatevehicl, a/

/0 NWDItE.-NIMBER: 2.19 0/

/t OESCRIPTIOE: This function is used to terminate an object and any a/
/0 associated events a/

/a ALGORITEN: - send the terminator identifier, the vehicleid and time to */
/s terminate to-the display driver - a/

I. - delete scheduled events that are associated with the a/
I. identified vehicleo14 a/
/0 PASSED VARIABLES: struct object.attributes* object-info ./
/I RETURMS: struct linked.list* deleted.events a/
/# GLOBAL VARIABLES PASSED: sixulation.driver, mamter-obj.list 0/
/* GLOBAL VARIABLES CIANGED: at*or.obj_.list a/
/e FILES READ: none *I

/# FILES WRITTEN: display.c a/
/e BIRDVARE INPUT: none a/

/* HARDVARE OUTPUT: none* e/
/# MODULES CALLED: delete-event a/

/e CALLING NODULES: main
/a ORDER OF: This function is of order O(n) where n is the number of objects*/
/e in the master-obj.list 0/

/* AUTHOR: Rob Ri.-za a/
/o HISTORY: none
/e~es~eeeeeeeeeeeeeeoeeseeeeeeeeeeeeeeeeeeeeoeeseeeesseeeeeessee eeeseeses..seee/

int delete-object 0; /- struct object.attributee* object-info, into vehicle-id */

struct linked.list *teruinate.objects (event.arguoent)
struct event-arge *eventer-ornont:
(
eztern struct linked.list e*nasterobjlist;
extern struct driver osiuulation.driver;
struct linked.list Odeleted events = BULL;
struct driver-data sevent-data;
struct event.•args *deleted-evest-argmoent;

struct locationtype ebogus.routept;

FILE *ptr-to.display.file;

i.f ((ptr.to.display.file - fopen ("display.c*, "a")) I NULL)
4
fprintf (ptr.to.display.file, "33 Id %If\,". event.argmuent->objectl ->object-.id,
event.-argument->object-)€current_tine + 0.1);
iclose (ptr.to.display.file);
)

deleted.events m deleteevent (simulationedriver, event _arsuent->objectl->object id).
ll.deoto (mster,.obj.liot, delete-object, A(event~argument->obJect1->object.-id));
rhile (ll.ieumpty (deleted.events) != TRUE)

event-data a U1-pop (deleted-events);
delated.-event.-argment - evont.data->tzc.sargcents;

if (deleted.event.ar&=ent->object2 !- NULL)
if (deleted-event- argument->object2->object - id so
event-.argunent->objectl->object-.id)

bogus.routept n llpop (deleted.event-arsgsent->objectI->route.*data);
free (bogus-routept);
sensor-check (deleted.. eont._arpaent)
)

free (event-argauent);

A-36

return deleted-events;

/e ete eo~e~eeeeeeeseoeeoeeoeoeeeeee~ee e~eoeoeoseo eesesoeoeeeeeeeooeoeeeee se ee/

/4 DATE: 09/12/90 o/
/0 VERSION. 0.0 0/
/* TITLE: delete-vehicle o/
/0 NODULE.NUJBER: 2.19a ,/
/- DESCRIPTIONi This function is used by llAdolete to delete a pointer to e/

a object from the stoer.-obj-ist o/
/0 ALGORITHM: For as wmAy Itemi that there are in the list o/
/0 - if the vehicle-ld from the liet mtchem the referenced id s/
/e then delete it From the list o/
/C PASSED VARIABLES: struct object.-a tributes$ object-info, int object-id 0/
/I RETURNS: result 5/

/4 GLOBAL VARIABLES PASSED: none *,
/s GLOBAL VARIABLES CGAUED: none o/
/e FILES READ: none o/
/0 FILES WRITTEN: none */

/0 HARDWARE INPUT: none
/0 HARDWARE OUTPUT: none C/
/s MODULES CALLED: none 5/
/0 CILLING NODULES: 11-dolete ej
/s ORDER OF: This function is of order 0(1)
/# AUTHOR: Rob Rizza

/0 HISTORY: none 4/
/*e eoeoeeseeeseoeeooeeoeeoeeoeo oeeoeeeeeCcc eoeee eeee eeceeeeeoeoeeeee ee C CCee

int delete*obect (object.info, obj-id)
struct object.attributes cobjoct-info;
int cobj-id;
{
int result;

if (object.info->object.id -- eobj.id)
result - LL.DELYES I LL.STOP;
else
result m LL.DEL.NO;

return result;
}

/ SCeeeeoe eeeeteeoeeeoeeoeeeeeeeeeoeeeeeeeeeeeeeeeeeeeveeee eece Ceeeeeeve ee CCe C Ce

/4 DATE: 09/30/90 5/

/0 VERSION: 0.0
/0 TITLE: update.object.current.time e/
/e NODULE.NUMBER: 2.20
/c DESCRIPTION: Sirply updates the current time of the object o/
/a ALGORITHM: update the current object time to the current event time e/
/s PASSED VARIABLES; event..rgs eevent-argument el
/0 RETURNS: none
/e GLOBAL VARIABLES PASSED: none
/$ GLOBAL VARIABLES CHANGED: none 0/
/C FILES READ: none
/0 FILES WRITTEN: none
/e HARDWARE INPUT: none
/e HIRDUARE OUTPUT: none ./
/0 NODVLES CALLED: none
/e CALLING NODULES:
/e ORDER OF: This function is of order 0(1)
/0 AUTHOR: Rob Rizza
/e HISTORY: none C/

/ C*Cc*CCCC*CCCSCCS~cCCCCCCCCCCCecC.CCCCCSCCCCCCCCCCCCCCCCCCCCCCA-37Ce.CCCCC/

A-37

void update.object.current.tine (event-argusat)
struct eventoargs *evont~arp&aent;
{
if (event.-argument ->objectl !a 1ULL)
event.argumnt->object I->curreznt.time - event.argament->event tins;
)

/e*eoeeeoeeeoooooooeeeeeseeeeoeoooeoooeeeeoeeeeeoeeeaeeoeeoeooeoeeeeeoeoeeoe.,/

/0 DATE: 08/02/90 s/
I. VERSION: 00 .0
/s TITLE: update.position 9/

/s NODULE.jUIMER: 2.21
/* DESCRIPTION: This function Is used to extract the next route point from */
/. the route data linked list '/
/e ALGORITHM: pop the next route data point from the linked list
/9 extract and read the required data into tP-e current location */
/ mand orientation attributes of the vehicle *1
/' PASSED VARIABLES: objectinfo *1
I/ RETURNS: none 9/

/s GLOBAL VARIABLES PASSED: none *I
/s GLOBAL VARIABLES CHARGED: none
/$ FILES READ: none
/A FILES VRITTEN: none ,/
/s HARDVIRE INPUT: none

/s HARDVARE OUTPUT: none
/P NODULES CALLED: c alccurr.orientation
/0 CALLING MODULES: reach.turnpoint. reached-target. repched.destination, s/
I9 reachod.sensor..oange
/4 ORDER OF: This function is of order G(1) 9/

/* AUTHOR: Rob Rizza 9//0 HISTORY: none

lseeeeoeeooeseeeeeoeeeeeoeeeeoeeeeeeeeeoeeeeeooeoeoeeoeeeeeeeeoeeesete..eeee./

void update.position (event..rgument)
struct eventargs *event..ergent;
{

struct location.type eneuposition.info = NULL;

if (i-isoepty (event .- argument->objectl->route.*data) . TRUE)
{
neuwpositioninfo = (struct location..typeo)fl.pop
(event .argument->object 1->route.-data);
event .argument ->object 1 ->location. x.coord - neo.position-.info->z..coord;
event .argument->object I->location. y.coord E neu.position.-info->y.coord;
event -argument)objectl -)location. zxcoord a asem.poittion- info- >z-coord;

free (new.position.info) ;
calc.curr.orientatiou (event.arguent->objectl);
calccur-.relocities (event_.argumut->)objectl);
updato.object-.current.tine (event..argament);
send-.fupdate (event.-argumnt->objectl);

if (11.isempty (event-argument->objectI->routeodata) A&
(event.argmnent->object1->object -type - NISSLE))
terminate.objects (event.-eargment);

A-38

Appendix B. TESTING STRATEGIES, RESULTS and

CODE

B.1 Testing Strategies

A bottom-up strategy was used to test the simulation software written for this

thesis. Since the design was completed prior to the beginning of any coding, it was

reasonably simple to identify those functions that did not require any outside input

other than those variables passed as arguments. Thus, since these functions made

no function calls from within their code, they made up the lowest level of fuinctions

which were tested. Figure B.A illustrates the order in which testing took place. The

lowest step functions must be developed and tested prior to moving to the next

higher step.

Each function tested was tested using two strategies. IPirst, all known boundary

values were tested, as well as any value which was determined to be a possible

problem (zero is a good example of a problem value). Second, to the extent to which

it could be determined, all branches were exercised within each function.

As integration took place, the same two strategies were used as in each funct ion

test. However, it should be noted that although I used. for the most part. t he

same boudary or problem values previously found, these may or may not. have Iweci

boundary or problem values once integration took place. Also, as integration took

place, determining all possible paths quickly became a real problem. Thus, it is

likely that only a sampling of paths were tested during the integration phase.

B-i

step 3

hit-Iniss
operator.eval u atiott

step 2

damage-assessment
evade
on-collision-coturse
sensor-check
update.position

step 1

add-new-routepoint
attack
calc-curt-orientation
calc-curt-velocities
calctime-at-next-routept
caic-time-at-nextnext-routept,
difference-in-altitude
get-sensor-range

hie.of.sight
on-target.list
read-datafile
send.fupdate
terminate-objects
update-object-current-time

Figure B.I. Function Development and Testing Staircase

B-2

11.2 Test Results and Code

The objective of any software testing is to find errors (15:191). True to the

stated objective many errors were found and corrected. However, the test. results

given here are not from the tests where errors were found. The results given are

those found after needed corrections were made. The reason for inclusion of this

information here is to first, show what values were used in the testing process, and

second, to provide repeatable data which can be used in future testing or validation.

Please note, the following test code was written for the most. part in ANSI

C to run using Microsoft's Quick C; thus if used on another system some slight

modifications may be needed.

B.-.1 Test 1, add-new.routcpoint The following is a copy of the code uscd

to test the add new routepoint function. There were two concerns when testilig

this function. First, were the calculation being done correctly and, second '\eri the

routepoints being properly placed into the object's route data. Initial coordimatcs,

velocity vectors, or the "in x seconds" quantities were varied during each test run.

No problems were encountered.

$include "i. fuzi .h"

*include "in.-stru .h"
$include "ll.h"
$include <stdio.h>

void *add.neu.routepoint (stmct object -attributes oobjoct.into, double inx..e.con-ts);

void main(,

{
attract object -attributes $11;
struct location-type tune.point ;

FILE Optr.to-test.file;

FIS.locatioa.x.eoord 0 .:

FtS.location.y-coord 0 0;
F1S.locatiou...coord 0 0;

P1S.velocity. X.velocity a 150;
FIS.valoc¢ty.y.velocity a 160;
F15.velocity.zsvelocity 1 0;

FIS.route-data N 11-make (LIFO).

B-3

Add.tnw.r•outopoint (IFIS, 20);

neu.point - ll.pop (FI$,route.dat.);

ptr.totmt..tfile a topeft('Itestl .14" .")

fprintf (ptr..,'so.teslt.-lo, tx a %lf\t y i flt\t a a Xlf\R", fe,.poiakt->..coord, nov.point->y.coord,
ta4W.poiat3->._coord);

tclose (ptr.to.tGat.tile);
I

void *add-nea..rotapoaint (obJect-info. IS.60COVAS)
struct object.attributoe 0obJect.hifo;
double iA._.XSOCOd*;
(
struct location.type *nem.next.pt a lULL;

if ((nv.next..pt a (struct location.typ.e)a1loc(slaof(struct locuition.typ.)))-==U.L)
return NULL;

@eW..nelt.pt->z_cood a (object.info->loation.z..coowd + (iv.k.useconds * objsct-iufo->velocity~x.velocity)):
nev_next.pt->y._oord - (object-.into->location,. .coord + (in.X.second$ * object..ifo*-velocity.y.veoocity))i
nieuj.ixt.pt->z.coord a (object.- io->1ocation.z.¢coor4 + (ln.ao.~conds * object.info->velocity.z.volocity));

1l-insert (obj ect -info ->rout a-data. new-nelt-pt);

/seeeeeveeeseeee~eessample output **C*CC*******v****.

.*SO0.000000 y 1 1500.000000 1 a 0.000000

B.2.2 Test 2, calc-curr-ori~ntation The following is a copy of the code us.ed

to test the calculate current. orientation function. Keeping the initial point ('OO-

dirates at. 0, 0, 0, the next p oint was varied such that orientations returnvd were

from all quadrants including angles of 0, 90, 180, and 270. (see the sample output

following the test code.

Sinclude "aiafjunc .h"

Uinclude "sli..tra.b"
Uinclud. "11.h"
linclude<math.h2
#include <atdio .h>

void calc.curr.-arientatiou (struct object.attributes *object.into);

void maino
{
struct object -attributes FIS;
struct locatifl-type pointl;
FILE optr.to-toot.file;

B-A

FI,-lo0;1tionm.coord 0 0;
FIS.location.y.coord 0;
VIh.locatiobZa.coord P 0;

F1I~v~lcit7R..eloct7a 0;
FI,.veloecity.Y.Tlocity * 0;

Fl•,veloc•s~..y.locity * 0;

FIS.route...deta 11asko (LWVO);

poittl.I..cOOrd a 0;
pointl -Ioord a 100.
point't2.coord • 100;

11-066et(1,otodt a Aroiutl);

calc-curr-orientation WISF);

ptr.to.te*.fiilo m fopon("t*et2,rem", "");

fprintt (ptr.to..temst.il, lyaw a %lf\t pitch •%If\t roll s f\WI", F1W.oriantation.yauI, FIS Oi otatih, I-It.l'.
F1 S.oriehtation. roll) ;

fcloPe(ptr.to.to@t.tile);
)

void cal c¢urr.ortentation (object.into)
struct object..ttributes Oobject.info;

i

strict location.type *next.rout*.point a BULL.;

if (Ii iseupty (object..into->route..data) !• 1)
4
naxt.route.point a (struct locatioa.type)ll.pop (object.info->rout...dstt);
delta.z * neut.route.poimt->..coord object.into-)loca.ion. .coor4;
delta.y nat. rout..polnt--y.> oord - object._imo-)loc&t ion. y.coord;
delta.Z a nest.route.point->z.acoord - object.info->loc&t ion z..co,-r;

angle - atan2 (delta.y, delta.-) * 360 / (2 9 3.14-5t9);

it (angle < 0.0)
angle a 360 * angle;

if (angle >- 0.0 8a angle <- 90.0)

olij ct.-into->orientation. ye a 90,n - angle;
else it (angle > 90.0 A8 angle <m M60,O)
object.info-ýorientation.las a 360.0 - (asal - 90.0);
else it (angle > 180.0 8 angle <0 270.0)
object-info-)orientatlon.yaw t 270.0 - (angle " 180,0):
else

object.info-)oriontation.yau wa 10 - ("5le - 270.0);

pitch * itan2 (delta.., (distance m aqrt ((deltl.zedeita..)4(d~t:.ye.•el~a.y)))) (360 U (.14159),

objoc¢.infa->orientatiom.pitCh a pitch;
object-inet->orientation.roll a object.into->orientarion. roll;

ll-inoor% (object -info->rout *-data, kext -rout e-poist);

)
el~e

objectinfo-)orientation.pitc:h 0 0.0;
object.info->orientation.roll a 0.0;

B-5

Y&V a 44-9".9962 pitch a 35.264419 toll * 0.000000
74 a0.00000 pitch a 46.000036 roll 0 0.0000,00

7ft. * 136,000036 pitch a 36.244419 poll a 0.000000
Y6 1$0,000076 pitch a 46.0000)0 toll a 0,000000

yaw *226.000114 pitch a 36.26440* roll m 0.0000m
th 269.99948 pitch 0 46000038 toll a 0 0000v00
ya 31.9MS08 pitch % 36.204419 toll a 0,000000

yaw *359999924 pitch 0 46.000030 r.11 a 0.000000

13.2.3 Tcst 3. cale..eurr...et'eioties Tfhe following code was nsed t-o test. tile

cidltilate current v'elocities function. Like cakIulate current, orientation,. routopouiI s

were varied such that. all quadrants were represented. SeeŽ tile Samiple olt pult.

lihclude "eim.fuifc.h"
$includeq "Pimmtru.h"

1*TCiud# "aIlo.h"

void calc.curr..yeloc it too (struct obj oct-at tribuste* ~object- info'r);

VQW. maemO

struct objoct..mttriba1too Fig.
struct locattiou.typp poilkti;

rIS'locatiors.z..coor a 0;
FIS.locatiort.y..coord 0:
P~IS. locotiork.z-coot4 * 0;

F15.V~locity.1..w*loCity * 150;
F15.v..ec~itY.y..qloCitY a 160;
Fls.v~locity.r.velocity it 0:

r1s.rour...4sto m 11-mke (LIFO);

Pointl1.x.Cof-rd * 0;
point I - .coard 0 100;
point1 z..coord m 10;

calc-curr.welocit i~e (&IS)

ptrt-toot.ftil*o a fpopn(I'toot3 ro. "e'*a");

fprintf (per..to.teottfile, x..ve1 - Vlf\t Y-vol 111l\t :..wel %)An~s", F15.v~locity .volocity,

fel1oa.(ptr..to.test..tilo);

void calc.cuzr.velocitien (object.-io)
struct objoct.attributeo *objectizdo;
{
struct location-type *next.route..polnt 0 UJLL;
double dolta-x, delta-y. delta..z, s1ope.anle. horizontal.vol.-vector.

tine.to.nezt.route.poLat, d1stance.to.nezt.route.point;

if (ll.imeupty (Cbject.-,nto-%roate.data) 1- 1)

next-rout..*point 8 (struct lecation.typee)l1.pop (object.1ano-3route.data);
horizontml.-vl.vector - nqrt (Cobject-.ino->velocityz..velocity a object..info->velocity. xvoloc ity) *

(objact.-.info->velocity. y.-velocity a object-info->velocity.yvelocity)).

de~ltaz a nezt..route.polnt-)z.-coord - obJect.o1nfo->locatIon.z.¢coord;
delta.y a nexto-rOute.*point->y.coord - objecto-inuo-lecat lon.y.coord;

delteaz - next.-rout@-point-)z.ucoord - objecto4"o->locstloz.z.coord;

slope.anule - atan2 (delta.y, delta-z);

dintance-torozt.-route.point m sqrt ((delta.z a delta-x) + (delta.y 0 delta.y));

tim*_.to.-noxt.route.point = dist ance.-tozt.-route_-,oirt / borizontal.vel.vector;

object-info->velocity.z.velocity a horizontal-vel-vector 0 coe(slope-angle);
obj ct-info->velocity. y.veloc ity - horizontal.velv.ector * sin(slope-angle):

objoct.inio->velocity.z.zelocity a delta.z / timse_to_neztroute.poirt,

11.insert (object.-info->route.*data, next.-route.point);
I

else

{

object-info->valocity.z.velocity a 0.0;

object-.inlo->velocity.y..vlocity - 0.0;
object info->velocity.z-valocity a 0.0;

/ .S..Se~e~e*e45*e~sesseeeee*sample output ee..SeOSe*C*S******

x.vel " 150.000000 ..vel - 150,000000 z.vel - 15.000000
x.vel 3 212.132034 y.vel a 0.000000 z.vel .21.213203
x.Ie- a 150.000000 y.vel - -150.000000 a.vel a 16.000000
z-val * 0.000000 y.ol a -212.132034 zovel a 21.213203
Y.vel * -150.000000 y.vel a -150.000000 zyvol - 15.000000
z-vel - -212.132034 y.vel a 0.000000 z-vol w 21.213203
zivel * -150.000000 y7vel a 150.000000 Z.vol U 15.000000
x.vel 0.000000 y.vel a 212.132034 z.vol = 21.213203
,:-vel = 0.000000 y.vel a 212.132034 z.vol a 21.213203

B.2-.4 Test 4, calc-time-atLnezxtroutept The following code was used to test

the calculate time at next routepoint function. Values for the next routepoint loca-

tions varied bul included values in all quadrants as well as the next routepoint being

the same as the current routepoint location.

ginclude "'ineunc .h"
$include "siin..tru.h"

B-7

#include "l'.h"

#include <(tdio.b>
#include <uath.h>

double calc.tiue.at.nezt.routept (etruct object.attributes eobjectjinuo);

voids Kain C)
{
double tine_et.neztpt; ---

struct object.attribute, FIB, N29;

struct location.type poiut.1, point.2, point.3;

FILE eptr.-to.tset.-ile;

F1S.location.z.coord a 0;

IS.locationhy.coord - 0;

F1S.location.z.coord O 0;

F15.velocity.z.yelocit7 * ISO;

FIS.velocity.y.velocity - !W0;
FIS.velocity.Z.velocit7 A 0;

F15 current time a 0;

pointjIxzcoord a -300;

point.1,7.coord a 300;
point..l.z.coord a 30;

point.2,x.coord a 0;

point.2,y.coord w -5;
point.2,z.coord = 0;

FiS.route.data - ll.make (LIFO);

llinbert (FIS.route-data, &point_2);

llinsert (FI S.routeadata, &point.I);

time.at.nextpt - calc.time-at-sext.routept(SF15);

ptr.to.testtile a fopen(°tet4 C res,"a);

fprintf (ptr..to.teat-file, "time at next routepoint W WIfIn", time.at-nextpt);

fclose(ptr.to.test filo);

I

double calc.tiae.at.next-routept (object.-ifo)

struct object-attributes *object.inuo;
{

double delttaz, delta.y, delta.z, dietoce-traveled, tiae.-at.next.-routtpt, total..el_,ector;

struct location-type Onext-routept a FULL;

int event;

t ime.et.next.routept * object.-tuo-,current.ttse;
if (ll1isempty (object.nfo->route.dtta) != I)

{
next-routept a (etruct location.typee)1l.pop (object.info->route.data);

deltajz - object-into->locat ion. .coord - next-routept->z.coord;

deltajy a object.itWo->locationD.7Coord - next.-routopt->y-coord;

delta-z a object..-1nfo- locat ion. xcoord - next-routept->z.,coord;

11-insert (object.into->route.data, nezt-routept);

distanceotraveled a *qrt ((delta._xedelta..z) + (delta.yedelte&y) + (delta.zedelta-z));

B-8

total.vel.vector w sqrt ((object_- fo--v*eloccity .- X.eloclty * obJect.-ino->velocity. zvelocity) +
(object._ izo->velocit.y.._velocity * object_ into-)Velocity.y.,velocity) +
(object-_izfo-)vel" ity.sa-velocity a cbjact..tio->veoecity.zovelocity));

if (total.vel.vector , 0.0)
tine.-at.noezt..routept = object-.inme-ocur: - -time 4 distance.tr-aveled total.wel.vector;
else
time-at.next-routept * objoct.-inf• c=rent.time;

return tise-atsnezt.routept;

/***veeoeeeeee eeeeee eeeeeoeeeeeeeeeeeeeeoeee, Sample output eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee/

time at next routepoint w 0.000000
tine at next routepoint - 2.004994
time at next routepoint - 2.004994
time at next routepoint a 2.004994
time at next routepoint = 2.004994

B.2.5 Test 5, calc-time-at-nexlnext_,routept The following code was used to

test the calculate time at nextnext routepoint function. The same strategy used ill

testing calculate time at next routepoint was used to test this function.

#include "si.mfunc .h'
#include "sim..stru.h"
#include "ll. h"
#include (stdio .h>
$include <aath. h>

double calc.timeat..neztnext.routept (struct object.attributes eobjectinfo);

void* main 0)

double t ime.at.nextpt;
struct object -attributes FIS. N29;
struct location-type point.l, point.2, point.3;
FILE *ptr.to-tost.-ile;

FIS.location.z-coord - 0;
FIS.location. ycoord - 0,
FIS.loction.zcoord = 0;

FIS.velocity.z.-velocity = 150;
FIS.velocity.y.velocity a 160;
F1S.velocity.z .velocity a 0;

FIS.cu~ront.tome * 0;

point_| .z.coord a 300;
point-..y.coord a 300;
point.-.z.coord * 30;

point_2.z.coord a 300;
point_2.y.coord a 300i

B-9

point_2.z.coord a 30;

FIS.route.data a ll.make (LIFO);

11insert (PIS. routeadata. &point_2);
1l-ineert (F1S.route.data. &poiat..1);

t ime.at..neztpt a calc..t ime-&t-us.nextnet.routeopt (aPIS) .

ptar.to.-test.-file - fopen(-tentS. rea',0'pa);

fprintf (ptr.to. toet.tfile, "time at next routepo.1t a Ulf\n", time.at.nextpt);

fclose(ptr.to.test.file);

)

double cal¢.t ime.at-.nextart.routept (object.-ino)
struct object -attributes eobject4info;
(

double delta-x, delta.y, delta.z, distan~ce-.traveled, tin..at.-next.-routept, total.vel.-vector;
struct location.type enext..routept 0 BULL, *nextnext -routept - lULL;
int event;

time-at.next.routept u object.-into->current-.tins;

if (illisempty (object-info--route.datt) !a 1)
(
next-routept w (struct location..ypee)ll.pop (object-_info->route.data);
delta.x a object.info-)location.x..coord - next.-routept->z.coord;
delta-y - object -info->location.ycoord - next -routept->y-coord;
delta.z - object-info-).location.z.-coord - nezt.routept->z.coord;

dietance.trareled - .qrt ((dolta.-zedelta._z) + (delta.yedelta.y) + (dolta-.zsdelte..z));

total.vel-vector a sqrt ((objectjitfo--velocity.r..volocity e object-info->velocity.x.velocity) *
(object..iao-)velocity.y-velocity s object.info->velocityy.yvelocity) +
(object ino->velocity.z.-velocity s object.into->velocity.z..velocity));

if (total-vel-vectoa !A 0.0)
time-at.next.routept a object-info->current-.t m + distance.traveled / total.vel.vector;
else
time.at.next.routept a object-nfo->cuzrrent time;

if (ll.inempty (object.info->route.data) !a 1)

nextneat.routept a (struct location.typee)ll.pop (object -jfo->rout *-data);
delta.z 0 next-routept-3x..coord - neztnezt.routept->z.coord;
delta.y - next-routept->y.coord - nextnezt.routept->y.coord;
delta.z a next -routopt->z.-coord - neztnext._routept-->-.coord;

dintanceotraevoled eqrt ((dolta-zedelt a.z) + (delt .. yedelta.y) + (delta-zedelta.z));

total.veol.vctor = sqrt ((object..info->velocity. x.volocity 0 object.info->velocity.x.velocity) +
(object.info->v4locity.y.velocity e object.-info-)velocity. ..velocity) *
(object.info->velocity.z.velacity * object-jnfo-)velocity.z.velocity));

11_insert (objectinfo->route.data, nextnext.routept);
11.insert (object.info->route.data, next.routept);

if (total.veolvector * 0.0)
time.at.-next..-outepe ; ti•e.at..neot.routept + dietance.travoled / totalvel..vector;
alse

B-iO

tim .-at.-next .routept time..at.next.routept;

return tmeo.at-.next-.routept;

if (next.routept I- NULL U neztaezt.xzoutept - NULL)
11.inmert (objec%_WSo-)rozte.daIa, next.routept);

retu,'n time-at-.zext_.outept;-

/eeeeeeeeeeeeeeeveeee~eeeeeeeeeeeee mSapie output *eee*eeeeeeeeeeeeeeeeeeeeeeeee eeee/

time at next routepoint v 0.000000
time at next routepoint a 4,009988
time at next routepoint a 4.009988
time at next routepoint - 4.009988
time at next routepoint = 4.0099*8
time rt next routepoint w 2.004994

B.2.6 Test 6, attack The following code was used to test the attack function.

The major con~cerns in test this function were,whether the missle object was gett inIg

created properly (i.e. a type 30 message was passed to the disipay), and wihelher

the missle's routepoints were getting properly calculated and placed into the missl's

route data.

$include "sim-func .h"
linclude "sim..stru.h"
$include "ll.h"

Sinclude <stdio.b>
$include fmath.h)

void attack (struct event.args eevent..erpaent);

voide main 0

f
struct object.attributes FI6;
struct location.type point.1, point.2. point.3;
struct event.sars eevent..agument;

FIS.velocity.x3velocity a 10;
FIS.velocity.7.velocity - 10;
FIS.velocity.z.velocity a 0;

FIS.object.type - 1;
FIS.object.id = 123;
FIS.current.-time w 0;

F1r, .ocation.z.coord a 0;
F15.location.ycoord = 0;
FIS.location.z.coord a 0;

B-11

point.l.z.coord a 600;
point.1.ycoord a 500;
pointol.z.coord a 100;

FlS.ront*.data - lluake (LIPO);
11linsert (FIS.route.data, apoint-.);

ev*n%_-arg=nt•->object2 - &FIB;
event..argment-event.-t ime a 10;

at tack(event .arguant);
)

void attack (evCnt.argament)
strict event.arse* event..argment;

/e exter~n ntruct liated-liot omatet~erbj-lint;

extern atiuct driver *salulation-drlver;

extern int highest.obj.id; */

struct location.type etempi, eteop2, exisale.routeptl, *miusle.routept2, *misale..routept3;
struct object-attributes #mi..le;
struct ovent-args *new..vent..agument;
struct locationityp. *uissle.routept;

FILE *1ptr.to-test.file;
double *tim.eptr;

if ((mWasle a (struct object-attribntese)ualloc(sizeof(struct object.ettributes))) NULL)

aissle->object.type = 3;
/0 sisale-*object.id = ++highest.obj.id; */

aissle->current-time a event-nrgnment->evont.time;
xissle->location. x.coord m event-arpmaent->objectl ->location. xcoord;
missle->location. y.coord a event_.rgament->object1 ->location. y.coord;
missle->location.z.coord a event.•arzgint->objectl->location.z.coord;
Nissle-)velocity.x.velocity M 1000.0;
Missle->velocity.y.velocity - 0.0;
sissle->velocity.z..velocity a 0.0;
missle->orientation.yau a 0.0;
missle->orientation.pitch a 0.0;
missle->orientation.roll a 0.0:
aissle->rotation.yaw.rate - 0.0;
*issle->rotation.pitch.rate a 0.0;
missle->rotation.rollrate - 0,0;
aissle->sensorm a BULL;
sisal*-)target.list a FULL;
misnle->armamemts a NULL;
a isal.->defenniveamyatem. BULL;

templ a llpop (evoet.-argamnt->object2->rout.*_data);

zissle->route.data a hu.sake (LIFO);

misale.routept3 a (struct loctioa..typee)malloc(sizoot(struct location.type));
%issu..routept3->xcoord a teepl->x-coord;
nissl3*.routept3->y.-coord - teupt->y.coord;
misnle.routept3->:.coord a templ->z.coord;

vissle.routept2 a (ntruct location.typ.e)anfLoc(.iaeot(struct Yocation.type));
missle.routept2->xcoord * eventergcfnt->objsct2->location.z-coord +

((eve2.n.argu•ent->*vent.t ie - event..argmuent->object2->current-.tie) *
evanLarg~ment->objoct2->velocity.z-velocity);

niseile.routept2-)y.-coord a event..-argu•ent->object2->location.y..coord +

B-12

((eveznt_..aent->ovabt..ti.e - *vent.a argent->obJect2--)cur•nrat -tin*) e
event-argument ->objsct 2->volocity. y-veloctty) ;

-issle..routopt2->z.coord w event...rgumnat-"object2-->location.az.¢coord +
((event.-argumnt->vent.t to - event.-argment->objet2->curront.t ins) o
eventargemnt->object2->velocity .z.vslocity);

if (fabs (muasl*.routept2->z.cosrd - misslerOutept3->z.coord) < 0.001 A&
tabs (uiluse.routept2->y.coord - nilsie-routept3->).coord) < 0.001 A&
tabs (Clsle.routopt2->a.coord - *issl*.roatept3->..coord) < 0.001)

{

temp2 a 11-pop (event.argmemt->object2->routo.data);
missle.routept3->.c©oord a %wup2->z.coord;
missIe.*routept3->yc. oord a tomp2->y..oord;
misale.aroutept3->zcoord - tomp2->zcoord;
11-insert (uissle->route.data, uissl.sreutept23);
11.insert (mselo->,route-data, ,stesl*-rouetpt 2)
l1-innort (evopnt.•rgment->object2->roultsdata. "em2);
llinsert (evont.arument->object2->routeodata. tempt);

}

else
(
ll.insert (event-argvaont->object2->route..daa, tempt);
llinsert (misslo->route..data, misuleroutspt3),
llinsert (aisslo->routs-.data, missle.routopt2);
I
misoi..routoptl a (struct location.type)umalioc(sizoot(stract iocation.type));
*issle.routoptl->x-coord a *issl->focstiona. xcoord;
misse..routoptI->)..coord w misole->iocat ion. ycoord;
misale.routeptI->z.-coord - missl->iocat ion. z.coord;
ll.insert (ulssle->route.data, missis.routept1);

if ((neuwevsnt-.argument - (struct eventsargse)malloc(sizsot(struct evsnt-srgs))) N ULL)
printf ("CANNOT NALLOC ELVSVENT.-AROUMENT 11 ATTACK").
new-*vent.argument->objectI - missis;
new_ event.-argumnst->object2 a event.-rgunznt->object2;
nevw-event.-argunent->event.-timse a event_-argunt->event-.tin*;

/$ 11.insert (uastor.obj -list, misels); */

ptr..otootest.-file w fopen ("tost6.res, "a");
fprintf (ptr...to-teut..-ile, "30 %d Xd\An, uisslo->objoct-id. uissle->object-type);
while (11 .isopty(nogw-vent..arg•ment->object1->rout.*-data) !- 1)

missis.routept z i. pop(neu.svont.argment->objectl->routedata);
fprintf (ptr.to.-tast_-file, "z coord = %lf\t y coord = %lf\t z coord a

%lf\n", missis-rout *pt->z.©oord,

missle.routept->y.coord, misslo.routept->z.coord);

I
tclose (ptr.to.testftile).;

/s it ((tlne.ptr - (doubles)malloc(slzeot(doubie))) -. NULL)
prints ("CANNOT NALLOC TINEPIR IN ATTACK");
Stie...ptr a *vent.-argument->*vent-.tim.:

schedul*..vent (simulation.driver. tie.-ptr. ordnanco.relsased, eu..svent._argument);

else

printt ("CANNOT NILLOC MISSLE IN ATTACI");

/0 0ss..ee...eesss0eee eeesssss..esses sanple output seeeesses..eoesseoe............/

30 0 3
x coord 0.000000 y coord - 0.000000 z coord n 0.000000
x coord a 100.000000 y coord a 100.000000 z coord o 0.000000

B-13

x coord a 600.000000 y coord a 600.000000 a coord a 100.000000
30 0 3
z coord - 0.000000 y coord w 0.000000 a coord a 0.000M
x coord a 100.000000 y coord I 100.000000 a coord a 0.000000
x coord a 600.000000 y coord - 600.000000 a coord u 100.000000

B.2. 7 Test 7, differencein, -altitude The following code was used to test the

difference in altitude function. Z coordinate values above, below and, equal to each

other were tested.

#include "Sirefunc .h"
#include "aiu.mtru.h"
$include "11.h"
$include (stdio.h>
$include (math.h>

double difference.-in.altitude (struct ovent-args *event -argument);

void* main 0
T
struct object _attributes FIS, N29;
struct event.-rag *event.argpment;
double difference;
FILE *ptr.to.teet.file;

F1S.location.z.ccord - 0;
F1Scurrent.tims E 10;

M29. location.zcoord - 5;

H129 •current.time 80;
M29. velocity. .. velocity w 0;

event -argument->objectl aFIS;
event -argument->object2 w 1129;

difference a difference.-in..altitude(event-argmnent);

ptr_-to.test.-file * fopen("ltestV.rem", "a");

fprintf (ptr-to-test-tile. "difference - llf\n", difference);

lclose (ptr.to.test.file);
)

double difference.in.altitude (event.argument)
struct eventargs eevent.argament;
{

double difference. curr_time;

curr.time - event-argument->object1->current.t me;

if ((diff-rence a tabs (event-argument ->obj ect->location.z_-coord -

(event .-argument ->object2->location. z.coord +
((curr.•4-e - event _..rguannt-"object2->current.tine) *
event..erguuent->object2->velocity. ..velocity)))) <= 6.0)

B-14

return 0.0;
else
return difference;
)

/ .eoeole. eeoeoeeee eeeeD.eo.eeeeo~ee se~'amle output eeeeeeee*eeo e..oo..e...o..o

difference a 0.000000
difference a 1000. 000000
difference a 0.000000

B.2.8 Test 8, geLsensor.range The code used to test the get, sensor range

function follows. Sensor range values within the object's sensor list varied above and

below the default value as well as equal to the default value.

#include "iu.mfunc .h"
#include "sai...stru .h"

*include "1.h'
* include <stdio.h>

*include ftath.h>

*define HISSLE 3

int get.sensor.range (struct object.-attributes *object.info);

voids main 0)
(
struct object.attributes FIS;

Struct sensors euensorl. emeusor2. *oenbor3;
FILE optr.to-test -file;
int range;

FIS.sensors = ilumake (FIFO);

sensorl->range - 0;
sensor1->range a 0;

sensor3->rangs - 634;

1l-imnert (FIS.9ewor's, sensorl);
ll.insert (FIS.seniors, menlor2)
llinsert (FiS.sensors, Isseor3);

range w get..sensor.range (WFI);

ptr..to.teost-file M fopen ("teatS.rem". 'a0);

fprintf (ptr.to.test.file. "range * Zd\n". range);

fclose (ptr.to.tet.-.ile);

)

int get.-senor.ramge (object.info)
.truct object.attributes eobjectingo;

int i. length, range - 833, tamp-range - 0; /0 default sensor range, approx 1/2 mile o/

B-15

str•ict sensors Coe;.,ior w NULL;

if (object.-ifo->sensors In IILL)
C

length n 11.length (object-tJfo-)>aeSnors);

for Ui a 1; 1 <a length; 1++)
{

sensor * (*tract eoneorse)fl-pop (object-lnfo->seamor.);
if (s.nmor->rm e) range)
range = soneor->razge;
11.ineort (objectinio-)sessors. sensor);
I
}

else
if (object.tinfo->object-.t1pe HISSLE)
range - 0;

return range;

I

/***,eeees**ee***eeeeeee **seses**e sample output *eeee*eeeseee Ce**C*****4*****eC*e/

range - 3000
rans. - 833
range 834

B.2.9 Test 9, onltargcthlist The following code was used to test. the on ta:'get

list function. The M29 object type was varied, values used were 1, 2, 3, 4, and 5.

See sample output for results.

$include "sim.futm .h"

*include "sirewstru .1"
winclude °'ll.h"

#include <satdio.h>
#include <nath.h)

#define NISSLE 3

iat on-target-lit (etruct object-&tributes oobjectl, stract object -attributes oobject2);

void* main 0)

struct object.attributes F16, N29;
struct targets targeti;
struct targets target2;
struct targets target3;

FILE *ptr.to.test.file;
int return-value;

M29.object.type -
F1S.tsrget.list - 11.sk. (FIFO);

targoet .tlrget.type u 3;
target2.target.type - 2;
target3..target-type a 1;

B-16

l..insert (MIS.ta~rget.list, Itargoeti);
11.insert (FIS.targtt-.list, Starget2);
llinsert (FIS.targot-list. &target3);

return-value a oentarget.-lilt (WIS. A29);

ptr.to.temt fll.e a topes ("'test1O.res"' "t");

fprintt (ptr-.toteat.-ile. "return tialue u a U\', retau.value).

ftlose (pttro.test..tLle);
)

int on.targse.list (objectl. object2)
struct object.attributes oobjecti;
struct object_,ettributea sobject2;
(
int nUN.targets, it returi.volue a 0;
struct targets *target;

if (object1->target.-lit !a 3UL)

num..targets - ll.lenngh (objoctl->target-.l13t);

for (i a I; i <= num.targets; i++)
(
target a 1l.pop (objectI->target.list);

if (target->target.type am object2->object-.type)
retur.value a 1;

l1-insert (objectl->target.-liat, target);

)

return raturn.value;

/ee~e*O*.e~e *oseeeeeoeeeS~eeeoeo *.. nesample output ********C*****9*÷***eee*eeteee.t/

return value - I
return value 0 I
return value a I
return value a 0
return value - 0

B.2.10 Test 10, send-fupdate The following code was used to test the send

file update function.

5i•clude "sinfunc .h"
#include '"sim.stru.h"
linclude 11"1h"
$include <stdio.h>

void send.fuupdate (atruet object.attributes eobjct..info);

B-17

void* main 0
{
struct object.-attributes FIS;

FIS.object.id w 0;
FIS.current.tim. - 2;
FIS.locationmz.Xcoord • 6;
F1S.-ocation.y.-coord a 5;
FIS.locationm.2.cootd 0 S.
FIS. velocity...velocity a to;
FIS, veleci%~y.y..V*Iocity U 1O;

FIS.velocity.z.Velocity 4 10;
FIS.orieotation.yaw a 6;
FIS.orientation.pitch * 6;
FiS.ori ioutet'oroll a 6;
FIS.roetationyewra.te T 7;
FlS.rotatito.pitch.at. * 7;
PIS. rotatlon. roll-rate * 7;

send...upd~t. (IF|S) ;
)

void oendjfupdate (object.info)
struct object.-attributes *object.-ino;
{
FILE eptr-to-dieplay..file;

if ((ptr.to-dimplayfilo = lopem ("display.c", "a")) N NULL)

1printl (ptr.to.display.file, "31 %d %11 %.21f 2.21f %.21f %If %11 %lf %If %It %1f %lf %If 'A/f\t.
objoct.-ifo->object_id, object._info->curreit.tim*, object.info->locationz..coord, object_i.. v(,->1octi.L y,. yovI,
object -info->locat ion. z-¢oord, object -info-)valocit y, z -velocit y,
object.ittfo->velocit y.7-velocity, object -iafo->velocit 7. z-veloc it y

object .info->or' Lentat ion. yuw, object .into->crientat ion pitch.
objoct.inlfo->orientatiou, roll, object- info,->rot at ion. yew.rate, object_ itl~o->rot at ion. .pi tch-ra to,

obje ct. info->rotation. roll-rate);

fclosr (ptr.to.display.file);
I
else
pz intf ("CANNOT OPEN DISPLAY FILE IS SEID.FUPDATEWn");

/.C*C*C****eC.****eovee* vee*Cev**eeee** esample output CeCeeeS*C*eeeeCeweee~eC.~..~..,.e/

31 0 2.000000 5.00 5.00 5.00 10OOOoo 10.000000 10.000000 6.000000 6.000000 6.0ooooo 7.000000 7.000000 7.000000

B1.2.11 Other Level One Functions The following level one function's test

code was not included here either because none was created since the function was

extremely simple (i.e. the current line of sight function), or because they we.re tested

during integration.

e terminate-objects

* uldat object~current.timB

13-18

0 lile-of.sight.

0 read(datafile

'Plie following second and third level functions were tested during integration.

* operator-evaluation

* damage-assessment.

* evade

* on-colision-course

* sensor-check

* update.position

9 hit-miss

The following scenario datafile and simulation output c,.i, be used as a helwh,-

mark for future runs and verification of upper level function operation. "igiirc 112

depicts the two dimensional representation of the scenario. At time t there" are eight

objects in the simulation, a flight of three approaching from the sout hwest, a sitigit,

ship approaching from the northwest on an intersecting path with the flight of three.

three tanks moving in a northwestly direction, and one other single ship imoving

north northwest. At time At later two of the flight of three has been destroyed a,

well as the single ship attacker. Now only one of the flight of three remains as well

,as the three tanks and the other single ship. By some other At later, the remaining

single ship has turned due north to evade the other aircraft, as the other aircraft flew

by. On the last leg of the single ship's journey the single ship destroys the thrce

tanks.

B-19

time t •

13-20

II

'I!
It!

At lIter ,

lFigure 13.2. l)epict~ioii of l~etichiiark Scenari

13-20

1 6 0 100 100 5 -20000 0 10 150 160 0 0 0 0 6 6 1 900 100 1000 5 0 0 10 38000 0 4000 48000 32000 4000
12000 32000 4000 -20000 0 10 I 1 2000 1 0 1 2 0 0 0 0
1 2 6 0 100 100 6 -20080 -80 10 160 150 0 0 0 0 5 5 1 900 100 1000 6 80 -80 10 38050 -80 4000 48080 32080
4000 11920 32080 4000 -20080 -80 10 1 1 2000 1 0 1 2 0 0 0 0

1 3 6 0 100 100 5 -19900 -300 10 150 160 0 0 0 0 5 5 1 900 100 1000 5 80 80 10 37920 80 4000 47920 31920
-4000-12080-31920 4000--19900-300-10-1 1-2000 1 0-1-2-0 0 0 ---------------- -

2 4 9 0 100 100 5 -20000 32000 10 150 -150 0 0 0 0 5 6 2 1000 100 1000 2 12000 0 3500 -20000 32000 8.S
1 1 1300 1 0 00

2 5 9 0 100 100 5 48000 5.6 125 125 0 0 00 & 5 1 90 100 1000 6 48000 0 10 20000 30000 5000 18000
34000 5000 31000 34000 5000 36000 30000 5000 48000 0 5,5 1 1 3000 1 0 1 4 0 0 0 0

4 6 6 0 100 100 6 32000 16000 2 -10 10 0 0 0 0 6 6 1 25 100 0 2 25000 24000 2 32000 16000 2 0 0 0 0

4 7 6 0 100 100 9 32070 15930 2 -10 10 0 0 0 0 6 6 1 26 100 0 2 25000 24000 2 32070 15930 2 0 0 0 0
4 8 6 0 100 100 6 32140 15860 2 -10 10 0 0 0 0 5 5 1 26 100 0 2 26000 24000 2 32140 15860 2 0 0 0 0

/oe...e..e..e..s...e*eeoee..ee******4eee 6 display fi.e *.**e*..******. *eee*. .*b*e***4/

32 1 118
32 2 migl
32 3 missile
32 4 tank
32 5 truck
30 1 1
30 2 1
30 3 1
30 4 2
30 5 2
30 6 4
30 7 4
30 8 4
so
31 8 0.000000 32140.00 16860.00 2.00 -9.325600 10.631707 0.000000 318.744273 0.000000
0.000000 0.000000 0.000000 0.000000

31 7 0.000000 32070.00 15930.00 2.00 -9.319192 10.637324 0.000000 318.778798 0.000000
0.000000 0.0C0000 0.000000 0.000000

31 6 0.000000 3200C 00 16000.00 2.00 -9.312661 10.643042 0.000000 318.813964 0.00000
0.000000 0.000000 0.000000 0.000000
31 5 0.000000 48000.00 0.00 5.50 -65.653216 164.133011 27.325416 338.198496 8.787010
0.000000 0.000000 0.000000 0.000000
31 4 0.000000 -20000.00 32000.00 8.50 150.000000 -150.000000 16.366406 135,000038 4.411747
0.000000 0.000000 0.000000 0.000000

31 3 0.000000 -19900.00 -300.00 10.00 149.438208 160.569696 18.644730 44.785773 5.022943
0.000000 0.000000 0.000000 0.000000

31 2 0.000000 -20080.00 -80.00 10.00 149.625470 160.373597 18.656426 44.857080 5.026078
0.000000 0,000000 0.000000 0.000000

31 1 0.000000 -20000.00 (.CO 10.00 150.000000 160.000000 18.703125 44.999962 5.038594
0.000000 0.000000 0.000000 0.000000

31 1 100,000000 -5000.00 15000.00 1810.31 150.000000 150.000000 18.703125 44.999962
30 9 3
31 9 100.000000 -C000.00 15000.0C 1880.31 0.000000 1000.000000 -117.585938 359.999924
-6.706388 0.000000 0.000000 0.000000 0.000000

31 4 100.000000 -6000.00 17000.00 1645.14 150.000000 -160.000000 16.366406 135.000038
4.411747 0.000000 0.000000 0.000000 0.000000
31 4 100.153460 -4976.98 16976.98 1647.66 150.000000 -150.000000 16.366406 136.000038
4.411747 0.000000 0.000000 0.000000 0.000000

31 2 100.153460 -5094.49 14980.44 1878.51 149.625470 150.373S97 18.656426 44.857080
5.026078 0.000000 0.000000 0.000000 0.00)000

30 10 3

31 10 100.153460 -6094.49 14980.44 1878.51 68,765242 998.272418 -116.426690 3.368294
-6.584329 0.000000 0.000000 0.000000 0.000000
31 4 100.611513 -4908.27 16908.27 1655.15 150.000000 -150.000000 16.366406 135.000038
4.411747 0.000000 0.000000 0.000000 0.000000

B-21

31 9 100.611613 -5000.00 16611.61 1808.41 0.000000 1000.000000 -117.685937 359.999924
-6.706388 0.000000 0.000000 0.000000 0.000000
31 4 100.770225 -4884.47 16884.47 1657.76 150.000000 -150.000000 16.386406 135.000038

4.411747 0.000000 0.000000 0.000000 0.000000
31 3 100.8134P4 -4834.61 14878.46 1889.64 149.438208 160.559696 18.644730 44.785773
5.022943 0.000000 0.000000 0.000000 0.000000
30 11 3
31 11 100.813484 -4834.61 14878.46 1869.64 -21.681903 999.764920 -115.692854 358.757544
-6.593724 0.000000 0.0 0.000000 0.000000 -

31 11 101.423153 -4847.83 15847.97 1819.17 -21.681903 999.764920 -115.692854 368.757544
-6.693724 0.000000 0.000000 0.000000 0.000000

31 9 102.000000 -5000.00 17000.00 1646.14 707.106781 -707.106781 77.151979 135.0o0038
4.411747 0.000000 0.000000 0.000000 0.000000

31 10 102.163460 -4976.98 16976.98 1647.65 707.106781 -707.106781 77.151979 135.000038
4.411747 0.000000 0.000000 0.000000 0.000000

31 10 102.250626 -4906.27 16908.27 1655.15 0.000000 0.000000 0.000000 135.000038 0.000000
0o000000 0.000000 0.000000 0.000000

33 10 102.360628
31 1 102.333333 -4650.00 15360.00 1923.96 150.000000 150.000000 18.703125 44.999962 5.038594

0.000000 0.000000 0.000000 0.000000
31 4 102.333333 -4650.00 16680.00 1683.33 1IS0.000000 -150.000000 16.366406 135,000038 4.411747
0.000000 0.000000 0.000000 0.000000

30 12 3
31 12 102.333333 -4650.00 16650.00 1683.33 -0.000000 -1000.000000 185.095553 180.000076
10.486521 0.000000 0.000000 0.000000 0.000300
31 4 102.490372 -4626.44 16626.44 1685.90 150.000000 -150.000000 16.366406 135.000038
4.411747 0.000000 0.000000 0.000000 0.000000

30 13 3
31 13 102.490372 -4626.44 16626.44 1685.90 -91.065945 -995.844864 181.696118 185.225013

10.298085 0.000000 0.000000 A.000000 0.000000
31 4 102.538496 -4619.23 16619.23 1686.69 150.000000 -150.000000 16.366406 135.000038
4.411747 0.000000 0.000000 0.000000 0.000000
31 9 102.538496 -4619.23 16619.23 1686.69 707.106781 -707.106781 77.151979 135.000038
4.411747 0.000000 0.000000 0.000000 0.000000

31 4 102.538496 -4619.23 16619.23 1686.69 150.000000 -150.000000 16.366406 135.000038
4.411747 0.000000 0.000000 0.000000 0.000000

33 9 102.638496
33 4 102.638496
31 11 102.813484 -4877.98 16877.98 1658.45 707.106701 -707.106781 77.151979 135.000038
4.411747 0.000000 0.000000 0.000000 0.000000

31 11 103.135893 -4650.00 16050.00 1683.33 0o.000000 0.000000 0.000000 135.000038 0.000000
0.000000 o.0oooo0 0.000000 0.000000

33 11 103.235893
31 12 103.633333 -4650.00 15350.00 1923.95 707.106781 707.106781 88.167377 44.999962 5.038594

0.0000000 0.000000 0.000000 0.000000

31 13 103.790372 -4744.83 15331.85 1922.10 705.341229 708.867936 87.947235 44.857080 5.026078
0.000000 0.000000 0.000000 0.000000

31 12 103.983356 -4402.60 15597.50 1954.81 707.106781 707.106781 88.167377 44.999962 5.038594
0.000000 0.000000 0.000000 0.000000

31 1 103.983356 -4402.50 15697.50 1954.81 150.000000 160.000000 18.703125 44.999962 5.038594
0.000000 0.00 W. 1 0,000000 0.000000
33 12 104.083366
33 1 104.083356
31 13 104.140395 -4497.94 16579.97 1962.89 705.341229 708.867936 87.947235 44.857080 5.026078
0.000000 0.000000 0.000000 0.000000

31 2 104.140396 -4497.94 15579.97 1952.89 149.626470 150.373597 16.656426 44.857080 5.026078
0.000000 0.000000 0.000000 O.000000

33 13 104.240396
33 2 104.240396
31 5 182.778655 36000.00 30000.00 5000.00 -138.039408 110.431526 0.000000 308.659689
0.000000 0.000000 0.000000 0.000000 0.000000

31 3 214.001495 12080.00 31920.00 4000.00 212.132034 0.000000 0.000000 90.000000 0.000000
0.000000 0.000000 0.000000 0.000000

31 5 219.00009b 31000.00 34000.00 5000.00 -176.776695 0.000000 0.000000 269.999848 0.000000
0.000000 0.000000 0.000000 0.000000

B-22

31 5 259.363771 23864.64 34000.00 5000.00 -1"6.776695 0.000000 0.000000 269.999848 0.000000
0.00000 0.000000 0.000000 0.000000

31 6 259.363771 23864.64 34000.00 5000.00 0.000000 176.776696 0.000000 0.000000 1,.000000
0.000000 0.000000 0.000000 0.000000

31 5 319.363771 23864.64 44606.60 6000.00 -85.539066 -164.703162 0.000000 208.939352
0. 000000 0.000000 0.000000 0.000000 0.000000

31 3 382.952876 47920.00 31920.00 4000.00 -63.563167 -202.385091 0.000000 197.436048
0.000000 0.000000 0.000000 0.000000 0.000000
31 5 387.924759 18000.00 34000 00 5000.0 79.056942 -168,113883 0.000000 153.435002
0.000c"o 0.000000 0.000000 0.000000 0.000000
31 5 413.222980 20000.00 30000.00 6000.00 120.617966 -129.233534 -21.495845 136.974974
-6.933070 0.000000 0.000000 0.000000 0.000000
31 5 463.698013 26088.20 23476.93 3915.00 120.617966 -129.233634 -21.495846 136.974974
-6.933070 0.000000 0.000000 0.000000 0.000000

30 14 3
31 14 463.698013 26088.20 23474.93 3915.00 631.180567 -647.258641 -1304.332185 147.914793
-52.523533 0.000000 0.000000 0.000000 0.000000

31 5 464.216957 26150.67 23410.00 3903.86 120.617965 -129.233534 -21.495845 136.974974
-6.933070 0.000000 0.000000 O.000000 0.000000

30 15 3
31 16 464.215967 26160.67 23410.00 3903.86 531.071064 -847.327283 -1300.620964 147.922198
-52.444675 0.000000 0.000000 0.000000 0.000000
31 5 464.733861 26213.14 23343.07 3892.73 120.617965 -129.233534 -21.495845 136.974974
-6.933070 0.000000 0.000000 0.000000 0.000000

30 16 3
31 16 464.733861 26213.14 23343.07 3892.73 530.980100 -847.384289 -1296.910042 147.928349
-52.365539 0.000000 0,000000 0.000000 0.000000

31 14 465.835183 27223.42 21666.20 1127.42 531.180567 -847.2S8641 -1304.332185 147.914793
-S2.523533 0.000000 0.000000 0.000000 0.000000

"•1 14 465.931066 27274.36 21684.96 1002.35 631.180567 -847.258641 -1304.332185 147.914793
-52.523533 0.000000 0.000002) 0.000000 0.000000

31 14 466.027322 27325.48 21503.41 876.80 531.180567 -847.258641 -1304.332185 147.914793
-52.523533 0.000000 0.0000 0.000000 0.000000

31 15 466.257631 27234.94 21680.03 1248.42 531.071064 -847.327283 -1300.620964 147,922198
-52.444675 0.000000 0.000000 0.000000 0.000000

31 15 466.353131 27285.66 21699.11 1124.21 631.071064 -847.327283 -1300.620964 147.922198

-52.444675 0.000000 0.000000 0.000000 0.000000
31 15 466.449004 2'336.68 21517.88 999.62 631.071064 -847.327283 -1300.620964 147.922198

-52.444675 0.000000 0.000000 0.000000 0.000000
31 16 466.680435 27246.73 21693.57 1368.20 530.980100 -847.384289 -1296.910042 147.928349

-52.365539 0.000000 0.000000 0.000000 0.000000
31 14 466.698013 27681.74 20935.16 2.00 -658.604608 752.676695 0.000000 318.813964 0.000000
0.000000 0.000000 0.000000 0.000000

31 14 466.741048 27653.40 20967.64 2.00 -658.504608 752.676695 0.000000 318.813964 0.000000
0.000000 0.000000 0.000000 0.000000

31 6 466.741048 27653.40 20967.54 2.00 -9.312661 10.643042 0.000000 318.813964 0.000000
0.o00000 0.000000 0.000000 0.000000
33 14 466.641048
33 6 466.841048
31 16 466.775561 27297.23 241612.97 1244.64 630.980100 -647.384280 -1296.910042 147.928349
-52.365539 0.000000 0.000000 0.000000 0.O00

31 16 466.871038 27347.94 21532.06 1121.00 W30.980100 -647.334289 -1296.910042 147.928349
-52.365539 0.000000 0.000000 0.000000 0.000000

31 15 437.216957 27743.88 20868.02 2.00 -658.9•630 752.172385 0.000000 318.778798 0.000000
0.000000 0.000000 0.000000 0.000000

31 15 467.258992 27715.52 20900.39 2.00 -658.966390 752.172385 0.000000 318.778798 0.000000
0.000000 0.000000 0.000000 0.000000

31 7 467.258992 27716.52 20900.39 2.00 -9.319192 10.637324 0.000000 318.778798 0.000000
0.000000 0.000000 0.C00000 0.000000

33 15 467.358992
33 7 467.358992
31 16 467.7,3861 27806.08 20800.91 2.00 -819.419604 751.775177 0.0000oo 318.744273 0.000000
0o000000 0.000000 0.000000 0.000000

31 16 467.776896 27777.70 20833.27 2.00 -659.419Wi0 761.77517? 0.000000 318.744273 0.000000
0.000000 0.000000 0.000000 0.000000

B-23

31 8 467.776$96 27777.70 20833.27 2.00 -9.325600 10.631707 0.000000 318.744273 0.000000
0.000000 0.000000 0.000000 0.000000

33 16 467.876896
33 8 467.676896
31 3 640.276717 37920.00 80.00 4000.00 -212.132034 0.0000W0 -22.368046 269.999848
-6.019267 0.000000 0.000000 0.000000 0.000000

31 6 645.360870 48000.00 0.00 10.00 0.000000 0.000000 0.000000 136.974974 0.000000
0.000000 0.000000 0.000000 0.000000

-31 3-718.666188 80.00-80.00 10.00 0.000000 0.00000 0.000000 269.999846 0.000000
0.000000 0.000000 0.000000 0.000000

86 718.666168

B-24

Appendix C. SUPPORTING CODE, USERS MANUAL FOR

THE GENERIC DRIVER AND LINKED LIST CODE

C.1 Generic Linked List

C. 1. 1 General Description This program can be used to create instances of a

PRIORITY, LIFO, or FIFO queues. The header file (ll.h) contains key define state-

ments and the prototypes of the functions available to manipulate the instantiated

queues.

C.1.2 Reference Descriptions are written in the following format:

Function name

@ Summary

* Description

e Return Value

* Example

Below the name of the function, the summary shows an exact syntax model

for it and the Description outlines its actual effects. The return value type is

given and is often useful to test for error condition if one is given before the

results of the function call is used. Examples are referenced in the included

code, where needed new code is included to present the example.

C-1

llclear

"* Summary

-#include "ll.h"

struct linked-list* llclear (l-list)

struct linkedlist* l-list;

"* Description

The llclear function allows the user to empty a l-list leaving a list with no

elements.

"* Return Value

The return value is a pointer to the list which was emptied by using this

function or is NULL if the function call was not made to a valid list.

"* Example

See function end-sim (3.3) in sim-driv.c.

C-2

Ildelete

" Summary

#include "ll.h"

struct linkedlist* lldelete (1-list, equal-free ...);

struct linkedlist* l-list;

iut (*equal-free)();

void* cqualfrcc.argumcnts;

"* Description

The lldelete function allows the user to delete one or more occurrences of an

item from lUist. The function equal-free will be called from within II1delete.

Equal-free will be passed a pointer to the data contained within an elemncrt

of lIlist. The equal-free-arguments value can be used as a utility poiliter.

however, its most common use is to pass lldelete changing identifier values

which equal-free will use in it's comparison process to determine if an item

should be deleted. Thus, Ildelete knowing which list (lJist) is being referenced

will match, using the function equal-free, the data in the list with the data

passed as equalifree-arguments. Items matched will be removed from the list.

It is equal-frees job to:

1. Deallocate the memory used to store 'data', if desired.

2. Let lldelete know whether to;

C-3

- delete the node and stop searching for items to delete.

- delete the node and continue looking for another item to delete.

- not delete and stop.

- not delete but continue searching.

The choices are given as the return value of equal-free and are the consequence

of a bitwise 'or' of the following defines from ll.h:

- LL.STOP OxlO00

- LL.CONTINUE 0x0000

- LL-DELYES Ox0001

- LLDELNO OxOOOO

* Return Value

The lldelete function returns a pointer to a FIFO list containing the deleted

data. If no data is deleted or if the function call was not, made to a valid list

NULL is returned.

* Example

Sinclude (string.h>

*include (stdio h>

$linclude I'll.h"

int equal.free (chars data..te..atch);

char nsae (80] [80];

Main()
(

struct linked-list *PQ;

struct lintked-list $data-list;

int (ecompare)(;

FILE* source;

in* i - 0;

C-4

voids output;

chars nome..ptr;

compare - strcmp;

PQ - lUm-ake (PRIORITY. compare);

data-list - li1make (FIFO);

source a fopen (''aeineeile.c'', "r");

while ((aams.ptr w fZets(name[i], O, source)) is NIULL)

{

ll.oinert (PQ. aame.ptr);
i÷÷

)

feloso (source);

11-delete (PQ, equal._fres);
printf (' %d\nl I, 11-lenth(Pq)) ;

while ((output - ll.pop(Pq) !- NLL)

printf (''s\u", output);

printf ('WCdnl ', ll-longth.PQ)) ;

vhile (!(ll.iaempty (data.list)))

printf ("%s\n", l1-pop (data-list));

)

int equal-free (data.from..list)

chars deta-from-list;

tnt temp, result;

chars cs - t'kathy'I;

jut ii 5;

temp s strncup (c€, data.from.list, u);

if (temp an 0)

result a LLDELYES I LL.COITIBUE;

/s result - LL.DEL.TYES I LL,.STOP; s/

else

result - LL.DEL.10 I LL..COUTIEUK;

return result;

)

This program reads a set of strings from the file 'namefile.c' inserting each

string into PQ based on the strcmp function. After the file has been read,

items matching the string "kathy" are deleted. Either one occurence can I)e

deleted or all occurrences can be deleted based on the return value of equal-free.

C-5

1llinsert

9 Summary

#include "l1.h"

void* llinsert (llisc, data)

struct linked !ist* llist;

void* data;

* Description

The Llinsert function allows the user to insert items into the list. How an item

is inserted is dependent on what type of list has been created, either a LIFO,

FIFO, or PRIORITY. Respectively, items are inserted immediately after the

head, at th" tail, or by some priority mechanism. The sorting methodology

used when inserting into a priority queue is passed into the structure of the

queue when it is instantiated (see llrnake).

* Return Value

The llinsert function returns a pointer to the data which has been inserted or

NULL if the function call was not made to a valid list or not enough memory

space exists to accomodate the new element data.

,• Example

See function car-arrives (1.5) in hogwash.c.

C-6

llisempty

"* Summary

#include "ll.h"

int IIisempty (12list)

struct linkedlist* lUist;

"* Description

The L-isempty function gives the user the ability to directly determine if the

list has anay elements.

"* Return Value

The llisempty function returns true if the list is empty and false if it is nlot

empty. If the function call was not made to a valid list the return value is-

NULL.

"* Example

See function end-wash (1.7) in hogwash.c.

C-7

ll-length

"* Summary

#include "ll.h"

int ll_!ength (l-list)

struct linked-list* Illist;

"* Description

The ll-length functions gives the user the ability to directly determine how

many items are in the list.

"* Return Value

The ll-length function returns the integer value of the number of elements ini

the list or NULL if the function call is not to a valid list.

"• Example

#include <strinrg .h>

8include <sadie .I>

*include "11.h '

int equal.free (char* data.to.-atch);

char same 80] [8o01

struct linked-list *PQ;

int(econpare)();

FILKE source;

int i - 0;

voids output;

C-8

char* nxme..ptri

eompare - strcmp;

PQ a 11.make (PRIOrITY. compare),

source - topen (4 anuefile.cop, tr").

shile ((nae.ptr h tgts(msest] 80, source)) tu lULL)
{
ll.insert (QQ, mams.ptr) ;

tclose (aource)

lldelete (PU, equsl.frse);
printf ("%'d\n" , 11-lezgth(PQ)) ;

vh~le ((output - ll.pop(PQ) !- lULL)
printf (11%sWI), output);

printf (€ Wdn" , 11-length(PO));

)

int equal.free (Nate..lrow.list)

char* dsza.irom.list ;

{

int tamp, result;

chare Cs a ''kathy)';

int n U 5;

teUp * struemp (cO, dsta.from..Ist, n);

it (%amp -- O)

result a LLDEL.YES I LL.COITIIUE;

/. result a LL.DELYES I LLSTOP; .1

else

result n LL.DEL.1O I COITIVUE;

return result;
9

C-9

II .make

0 Sulklkmary

#include "lI.h"

struct linked.list* 11-makc (type, .. ,)

int type;

unsigned int (*colpare)(); opt'onal

void* utilixy-lptr; Optionai

* Description

The IImake function gives the user the ability to create a queue by choosing

a 'type' LIFO, FIFO, or PRIORITY. If the user chooses a PRIORITY queue

then the)' must. provide a pointer to a. function which will be used by the list to

determine where an item gets inserted. The optional utility pointer iirgUl'tent

is provided to give the user added flexibility in using the functions provided hy

tais implementation. An example of a possible use for this pointer is in b'Ick

referencing which may be required when using an intermediate level where t he

user supplied function is not given directly to the llmake function.

* Return Value

The llmake function returns a pointer to the newly created queue or NU LIL iI'

there is not, enough memory to create the queue.

* Example

C-10

See function main (1.0) in hogwash.c.

C-11

llpop

* Summary

#include"ll.h"

void* L-pop (l-list)

struct linked-list* l.Jist;

a Description

The llpop function allows the user to take items off the top of the queue. Once

an item is popped it is no longer in the queue.

e Return Value

The 11-pop function returns a pointer to the data which has just been)Ol)pped

from the queue or NULL if there are no items to be popped or the function

call was not to a valid list.

* Example

See function end-wash (1.7) in hogwash.c.

C-12

C.1.3 The Generic Linked List Code (11.h, ll.c)

/ee*eeooese eseoeoe This is the linked list header file, ll.h ***ee**e/

Odoeins FIFO I

dotfin. LIFO 2
Odetine PRIOTITY 3
hdefine LL-STOP OxiOOO
Odefine LL-.CONTINUE OzOOO0
:define LL-DEL.YES OzO00I

*define LL-DEL-.O OzO000

/ -------------------- PROTOTYPES ------------------------------------

struct linked-list elldelete 0); to struct linked-list *I-list, int (eequal.free) 0.
... [equal-froe.argumentsj a/
void ell-insert 0; Io struct linked.list el*list, void edata o/
int ll.isompty 0; I. struct linked.list *l.iist 0/
etruct linked-list ellmake 0); te int type, ... [ansigned int(ecompare)(), void *utility-11tr] */
void ell.pop(); /I stract linked-list el*list s/
struct linked-list ellcloear 0; /0 struct linked-list *I-list 0/
int ll.length 0; to struct linked.list ol.list 0/

/s DATE: 03/05/90
/o VERSION: 0.0 S/
/e TITLE: Generic linked list. C/
/5 FILENAME: ll.c ./
/v COORDINATOR: Rob Rizza sI
is PROJECT: ZIEO 650, winter 90, Bisb.e e/

/e OPERATING SYSTEN: MS-DOS ./
/0 LANGUAGE: Nicrosoft Quick-C S/
/e FILE PROCESSING: compile end link with file which uses a linked list
/e CONTENTS: 2.0 hunmake - used to make an instance of linked list '/
to 2.1 2l1pop - returns top item from the list */
/0 2.2 11.clear - empties the linked list SI
/c 2.3 lldelete - deletes a selected iton(s) from the list 0I

Is 2.4 ll.osempty - returns true it list is empty, olue false c/

/c 2.5 ll.length - returns the 0 of elements in the list o/
2.6 ll.insert - inserts element into the list by calling ./

/2-pinsert, lllinsert. or ll.fineart 5/

to 2.6.1 ll.pinsert - inserts element based on a priority -/
to 2.6.2 ll.ltnsert - inserts element onto the top of list
/0 2.6.3 Lt-finsert - Inserts element onto bottom of list
/s FUNCTION: Allows the user the ability to create an instance of a LIFO, ./
/e FIFO, or PRIORITY queue. S/
/eeeceoe~eeee~eeeee~ee~e~eee~eeeeeeeeeeeeee.eeeeeesee~e eeece*•e/

/s Code begins here e/
--

#include "'1.h"
/s #include <Ptdlib.h> **** comment out to run on sun eeceeee/
*include <stdio.h>
Sinclude <halloc.h>

Idef ine TRUE I
Scefine FALSE 0
Soefine LL.NAGIC 0z12345678 /t used to check for valid pointer addressing s/

C.013

/seeeees**...eseeeeeeeeeeeesesee STRUCTURES ee*ssseeosseseeeeeeeeee*.e/

struct list-element
(
void edata;
struct list.element *next;

struct linked.-list
{
unsigned long magic;
int typell;
struct list-element $tail;
int (ecospare)(); /* void*, void*, void* */
void* utility.ptr;
struct list-element head;

/0 DATE: 03/05/90 */
/* VERSION: 0.0
/s NINE: 1l.make 5/

/e MODULE NUMBER: 2.0 C/

/0 DESCRIPYION: User can instantiate a linked list sith this function C/
/0 ALGORITHM: Allocate memory for linked.list structure 5/

/C initialize the structure C/

/s PASSED VARIABLES: type. (scoupare)O. eutility.ptr C/

/o RETURNS: struct linked-list* temp */
/# GLOBAL VARIABLES PASSED: none e-

/5 GLOBAL VARIABLES CHANGED: none C/

/* FILES READ: none */
/e FILES VRITTEN: none e-

/* HARDVARE INPUT: none Cf

/s HARDVIRE OUTPUT: none C/

/* NODULES CALLED: none
/* CALLING NODULES: shatdver executable file is using tAe data structure e/

/I ORDER OF: This function is of order O(1) C/
/0 AUTHOR: Capt Rob Rizx */
/0 HISTORY: none ef
/*eseesees...e c eeeesseeecceceeeceseeseeeeeseeseeeee~sceeee cesec..see eec seesees /

struct linked-list$ ll..make(type, compare, utility.ptr)
int type;
int (Ocompare) 0;
voide utility.ptr;
4

struct linked.list etomp - NULL;

if((temp (struct linked.liste) malloc(sizooe (struct linked-list))))SULL)
return(teup):

temp->typell-type;
temp->head.nexti5ULL;
t emp->taisKULL;
tomp-)magicaLL.NAGOC;
temp-)ut ilityt.ptruutitity.ptr;

if (typeo.PRIORITY)
tezp->compareocompar*;

else
toep->compareouULL;

return(temp);

C-14

/eee*e•eeee•eeeee•eee•e.eeeeeeele*eeeeeee•••••••••••*eeeeeeeeeseeee•seeeeeee•we/

to DATE: 03/06/90 o/
/* VERSION: 0.0 C/
/t NANE: ll.pop C/

/* MODULE NUNBER: 2.1 C/
t. DESCRIPTION: Returns the top iteam from the linked list 4/

Ie AL9ORITEB: Remove the data froom the top af the list o/
eave point 2r

/. adjust pointer to neo top *lament s/
o deallocate saved pointer e1

/0 return data o/
/0 PASSED VARIABLES: struct linked.liste I-list 0/

/C RETURNS: eOndata
/e GLOBAL VARIABLES PASSED: none

/e GLOBAL VARIABLES ClANGED: none C/
/t FILES READ: none

/e FILES WRITTEN: none
/o EIRDVARE INPUT: note/
/* HARDWARE OUTPUT: non* 0/

/* NODULES CALLED: none C/
/o CILLING MODULES: whatever executable file is using the data structure 0/

/e ORDER OF: This function is of order 0(1)

I. AUTNOR" Capt Rob lizza *1
/e NISTORY: none o/

void 11.pop(l.isot)
struct linked-list el0list;
{
void oildata a NULL;
struct list-element stomp m NULL;

if (1l1ist->magic !- LL.-NAGIC)
(
printf ("Nagir number test failed in L-pop. check poiuter\n");
return NULL;
}
if (1-.list->head.next !z NULL)

lLdata a l.list->head.next-)data;
else
{
printf ("Cannot pop from ompty list\n");
return NULL;
)
temp a llist->head.nezt;
llist->heodnext - 11ist ->head. nextt->ext ;

if (l.list->head. nezxtaULL)
l_litt->tnailsNULL;

free(teap);

return ll_data;
)

/e•e•eeeee•e•.eee•••e•e~e•eee~e~eeeeeeee•eee ee•eee•e•oe~ee••ee CCCCe C••e•eee•eC c

/s DATE: 03/05/90 e/
/e VERSION: 0.0
/ N NINE: 11.clear
/e NODULE UNUBER: 2.2 C/

/o DESCRIPTION: Empties the linked list o/

fe ALGORITEN: While there are e?.ements in the list */
/* pop items off Cf

deallocate memory ./
/C return pointer to the empty list */

C-15

/A PASSED VARIABLES: struct linked.lists l.list 0/

/A RETURNS: struct linked.list 1.-list 0/

/e GLOBAL VARIABLES PASSED: none 'I
/A GLOBAL VARIABLES CIHAGED: none */
/0 FILES READ: some o/
/0 FILES WRITTEN: oeas
/A HARDWARE INPUT: none
/A XARDVM OUTPUT: zone
/e NODULES CALLED:, ome o/
/a CALLING NODULES: whatever executable file is uing the data structure o/
/s ORDER OF: This function 1I of oeder O(a) whore & w Sitins in the list e/
/0 AUThOR: Capt lob Reizz
/0 DISTORY: none C/
/*0*000*0*00****O00000*e*****••eeO•••eO*OeoOe~eOOOC*4.00000*000000o~eeOOOOOC000e/

struct linked.liet *l2.cloea (1.list)
gtract linked-liet *l.list;
(

strict liet.element $uede a BULL. eteop a NULL;

if (l.list-)magic !a LL.NAGIC)
(

printf ("Nagic number test failed in l1.clear, check pointer\n");

return NULL;
)

node m &l.list-)hesd;

while (node->next != BULL)
(

temp a node-)next->next;
free (node-)nezt- >data);
free (node->nezt);
node->next a temp;
)
return l.._ist;

)

/• eeeeoeeoeeoeeoeeeeeeoeeeeeeososooeeseeoooeoveeoeoooeeeeeeeee~eeeeeeeeeeeeeeee/

/s DATE: 03/05/90 0/

/0 VERSION: 0.0 e/
/0 SANE: lldelete Cl
/o NODULE NUMBER: 2.3 s/
/* DESCRIPTION: Deletes a selected item(s) from the list 0/

/ A ALGORITHM: While there are elements in the list 0/

Ie match item to be deleted 0/
/0 delete and stop search for matching items or 0/

/0 delete and continue looking for items to delete C/
/0 rreturn a per to the lest item deleted Cl
/A PASSED VARIABLES: struct linked-liste l..ist, (eequal.free)O ./
/e RETURNS: ptrto-datea
/A GLOBAL VARIABLES PASSED: none 0/
/s GLOBAL VARIABLES CHANGED: none
/e FILES READ: none '/
/* FILES VWITTEN: none ./
/a NARDVAIE INPUT: none 0/

/* NARDWARE OUrTPUT: none *
/A NODULES CALLED: none a/
/s CALLING NODULES: whatever executable file is using the data structure 0/

/e ORDER OF: This function is of order O(n) where n - Sitemas in the list 0/

/0 AUTHOR: Capt Rob lizua 0/

/ H DISTORY: none 0/
/seeseoe•••••eeo•••e••e•••••••e•••••••••eeeeeseeeeee~eeeeeeeoeeoeeoeeee~~eee•ee•/

struct linked.list oll.delete(..list. equal.fren, equal -free.arguments)
struct linked.list el*list;
int (eequal-free) 0;

C-16

void 0equal-free.arg•ments;
I
unsigned int result;
void optr.to.data a NULL;

struct list.elesent ensd. s DULL, stomp a VALL;
struct liaked.list odeleted.data.list - NMIf;

deleted..data..list n fl-aksk (FIFO).

if (1.list->skqaic I- LL.-AGIC)
(

printf ("Ngic aumber test failed in 11.delete, check pointer\n");

return NULL;
)

node - I6l.list->hoad;

while (nod*->nert t. NULL)
{

result 8 ($equalfree) (node->next -data. equal..freo..rguasnts);

if(result & LL.DEL.YES) As if result has a I in the LSB position o/
(/o then delete

temp = nod.->noTe:
ll.insert (deleted.datalist, node->next->data);
node->next m nodo->noxt->next;

if (node->nezt -a NULL)
1.list->tail m nods;

free (tesp);
)
if(result & LLSTOP) /0 if result has a I in the NSB position 5/

break; /$ then stop s/

if (0 (result * LL.DELYES)) /0 if result has a 0 in the XSB e/
node - node->nezt; /s position then continue
}

return deleted-data.list;
}

Is DATE: 03/06/90 ./
/0 VERSION: 0.0
/4 MANE: ll..isespty $/
/0 NODULE lUMBER: 2.4 o/
/s DESCRIPTION: &eturns true If the list is empty, else return false s/
/s ALOORITNH: If there is an element in the list return true . o/
/s PASSED VARIABLES: struct linked.lists lsit *

E ITRNS: true or false '/
/A GLOBAL VARIABLES PASSED: none ./
/s GLOBAL VARIABLES CNAROED: none s/
/0 FILES READ: none o/
/s FILES WRITTEN: none o/

/s HARDVARE INPUT: none s/
/e ZARDWARE OUTPUT: none 5/

/ M NODULES CALLED: none 5/

/5 CALLING NODULES: whatever executable file is using the data structure .1
/s ORDER OF: This function Ao of order 0(1) $/
/s AUTHOR: Capt Rob Rizza

/s HISTORY: note e/
/csss eeeeeeoeeeeeeeeeseeeooeessscoeeoeeeeesseee$ eseeeesee.5 555e5t5e5$ $$ $, $.$,/

int 11.-isempty(.1list)
struct lirked-list *I-list;

{

C-17

if (l.list->nagic to LL..RAIC)
(

printf ('Magic nmber test failed in fl..isepty, check pointer\n");
return NULL;

)

If (1.1ist->head.-ext Pm NULL)
return TRUE;

return FALSE;
)

/e*COCe*S**eoeCeeeesooeeeseeeaeeee**Ceeeeoeaeeeeeeeeeeeeee~eesee~eseeees***ceeee €/

/* DATE: 03/06/90 s/
/s VERSIONz 0.0 0/
/e NAME: ll.length
/* MODULE NUMBER: 2.6
/e DESCRIPTION: totes the number of elements in the list
/e ALGORITHN: While there is an element in the list e/
/0 increment the counter
/0 return counter
/e PASSED VARIABLES: struct linked.liste I.list
/s RETURIS: I (0 of elements in the list) *l
/e GLOBAL VARIABLES PASSED: none
/e GLOBIL VARIABLES CHANGED: none ./
/e FILES READ: none '/
/e FILES WRITTEN: none
/0 NARDVWIl INPUT: none el
/0 EARDVAIRE OUTPUT: none '/
/* XOtULFS CiLLED: none '/
/e CALLING MODULES: whatever executable file is using the data structure C/

I. ORDER OF: This function is of order O(n) where n a Sitems in the list e/
ic AUTHOR: Capt Rob Rizza .
/o HISTORY: none
eeeee..eeec*.eeeeeeeeee*e*eeeeeeee*eeee********ecee***e*****e*e***********el

int ll.length (1.list)
struct linked.list ol.list;
{

int i - 0;
struct list-element *node a BULL;

if (1.list->magic != LL.RAGIC)
{

printf ("NMgic number test failed in ll.length, check pointer\z.");
return N1ULL;

I

node - Bl..lixt->head;

shile (nods->next !a NULL)
{

node - node-nexzt;
)

return i;
I

/e DATE: 03/05/90 0/

/A VERSION: 0.0 0l
/e BAKE: ll.insh•ua
/s MODULE NUMBER: 2.6 s/
I. DESCRIPTION: Inserts an element into the list by calling lI.pinsert. */

ll..linsert, oT ll.finsert -
I' ALGORITHM: switch to selected type

C-18

/0 PASSED VARIABLES: l.liint, data ./
/a RETURNS: data ,/
/a GLOBAL VARIABLES PASSED: none a/
/a GLOBAL VARIABLES CiANIOED: none ,/
/0 FILES READ: none ,/
/e FILES URITTEI: son* A/
/, EARDVARE INPUT: none a/
/0 EARDWARE OUTPUT: son. A/
I/ NODULES CALLED, lo.piasnart (2.6.1), l..liseert (2.6.2). or a/
/0 21.finert (2.6.3) a/
/0 CALLING MODULES: shatever executable file to using the data structure $/
/t ORDER OF: This function Is of order 0(1) a/
/A AUTROo: Capt Rob Risza a/
Is NISTORI: none el
/ecee~ee.•¢.eeeee~e~~ee.~e~eeee •eee~eeee eeee....e..e~e~e~ee.../

static void 11.invsert (); /0 struct liskod.-Aist el$list, struct listloeasnt oneuwulement C/
static void 11_pimert 0; /a stract linktl1.tt el*list. struct list-element onewuelemont C/
static void ll.finsesrt (); / struct likean-lie* *l.-list, struct list..eleont neae.element */

void C 11.ineort(_li-tdata)
struct linked-list *I-lint;
void *data;

{

struct list-element enew-element a NULL;

if (I~list->agic !-LL.KAGIC)
(

ybrintf ("Negic number test failed in i_-insert, checA pointern");
retui NULLJ I ;

)

ii((lneu.elements(struct list.element a) aalloc(sizoof(struct list.-element)))ItJVLL)
ret urn(new.element);

new.eleuent->data-dat&;

seitch(CLlist->typell)
{

case PRIORITY: ll.pinsert•..1ist. new.element);
break;

case LIFO : ll.4n-sert(1.list, newelement);
break;

case FIFO : ll.finsort(.-liat, new.alesent);
break;

default return(3UI.L);
I
return(ne..eletuent->data);

/eeseeeeeeoeeoeoeooeeeeeeoeeoeeeoessossooossesesu(eoeeeeoeeeseeeoeeeee~eeeeeeee..ee/

/a DATE: 03/05/90 al
/0 VERSION: 0.0 0/
/0 SAKE: 11.pinsert a/
/C MODULE IUNBER: 2.6.1 a/
/c DESCRIPTION: Inserts an element into the list based on a user supplied e/

comparison function
/e ALOORITEN: Uhile there are ite*= in the list a/
/4 compare old and new Itea using compare function
/0 if new <- old c€ntinue comparing a/
/V else insert into list a/
/s PASSED VARIABLES: struct linked.liste I-list, struct list..elennt* 0/
/0 neswelesent s/

/, RETURNS: none a/

/e GLOBAL VARIABLES PASSED: none a/

CG19

/* GLOBAL VARIABLES ClANGED: none 0/
/0 FILES READ: none a/
/o FILES VRITTEN: none a/
/o HARDWARE InPUT: none a/
/* NAROVARE OUTPUT: none a/
/0 NODULES CALLED: nonm e/
/* CALLING NODULES: il-iasert (2.6) */
/0 O3RDER OF: This fauction is-o order- O() where a a Sitems-in the list - /
Ie AUTNOR: Capt lob Lisme 9/

/ H NISTORY: none

static void 11.pinsert(l_.ist, nmow-olement)
struct linked&lite 1..liat;
stract l14telomente eolmeut;
(
stnct listeolemeut enode a N•.LL.etaep a 3ULLJ;

ubilo(node-)>ext !a NULL At (o(1..List-)compare))(neu.olemont->data. node-nextt->data, l_list->utilityptr) < 0)
nodeanode->nezt; /0 loop to find where the item will be inserted 0/

/o based on user defined compare function 0/

teap-node->rext ;
node-)noeztmnseelement
nee.element -)next at*emp;

i (new.element->next =a lULL) /0 reset tail ptr if n•ew-element is the tail 0/
1.liet->tail a neoewlement;
I

/eseoeoeeeeate~ees~eeeeeeeeeeee~eee..9eeeoee~e..e..teeee..e..e.eeeee.e**,et eree/

/s DATE: 03/05/90 a/
/s VERSION: 0.0 0/

/s SANE: ll.linnort ,/
/o MODULE NUNBER: 2.6.2 0/

/s DESCRIPTION: Inserts an mlement at the top of the list 9/

/o ALGORITTH: Insert element at the top of the list '/
/e adjust pointers 9/

/9 PASSED VARIABLES: struct linked-listo 1.list, struct list-oeleente 0/

beeU..lesent
/* RETURNS: none 0/

/s GLOBAL VARIABLES PASSED: none q/
/s GLOBAL VARIABLES CHANOED: none
/0 FILES READ: none 0/

/s FILES UNITTEN: none 9/

/0 NARDVARE INPUT: none s/
/A NARDVARE OUTPUT: sone 9/

/o NODULES CALLED: sone s/
/* CALLING NODULES: ll.insert (2.6) 9/

/o ORDER OF: This function Js of order 0(1) a/
/s AUTHOR: Capt lob isest 0/
/s NISTORY: none a/
/ee*eee~eeeeeoeeee~eeeoeeeeee~ee..oeeeeleeeeeeee.9999eeeee~e..e~eeeoeeeeeeee e.ee,/

static void ll.inoert (_llet, now-eloemnt) /e inserts at the head of list 0/

struct linked-list e*Ilist;
struct list-element enewelem*nt;

struct listslement *zode - NULL. eteap - NULL;

temp a l._liot->hood.next;
1.-1iet->head.nezt - neowelement;
neu.element->next a temp;

if (now.elementt->next as It•L)
l.liet-)tail a neweelsment;

C-20

/P DATE: 03/05/90
A. VERSION: 0.0 9/

/A NAME: lit insert ./
/9 NODULI MURDER: 2.6.3 ./
/9 DESCRIPTION: Inserts am element at the bottom of the list 9/

/I ALOORITEH: Insert element at the bottom of the list 9/
/s adjnst pointers 9/
/A PASSED VARIABLES: stract liakedlist I.-list . struct list.elements 0/
/ new-element 0/
/. RETURNS: none 0/
A. GLOBAL VARIABLES PASSED: none s/
/A GLOBAL VARIABJLES CBANGED: none 9/

/0 FILES READ: none &/
/A FILES VUITTEM: none /
/A HARDWARE INPUT: none */
/A RARDVARE OUTPUT: non* 9/
/0 MODULES CALLED: none s/
/A CALLING NODULES: ll.-nsert (2.6) 9/
/A ORDER OF: This function is of order 0(1) 9/

/A AUTHOR: Capt Rob Rizza 9/

/o HISTORY: non* 5/

static void ll.finsert(l.list, new.elesent) /s inserts items at the tail of list s/
struct linked-list s11list;
struct list-elensnt *nee..lement;
f
struct list.slement 4node w BULL;

if (1_liat->tail !- BULL)
{

l.list->rtal->nezt * new.elenent;
new.element->next a NULL;
llist->tail a noucelenent;
)
else

l.list->head. next a neo.elnesnt,
noselosmemt->nszt * BULL;
l.list->tail - neo.elenent;
)

C-21

C, 2 Generic Simulation Driver

C.2. 1 General Description This piogram can be used to create an instance

of a simulation driver. The header file (sim-driv.h) contains the functions which car.

be used to build and execute an event- driven simulation.

C.2.2 Reference Descriptions are written in the following format:

Function name

"* Summary

"* Description

"* Return Value

"* Example

Below the name of the function, the summary shows an exact syntax nilodel

for it and the Description outlines its actual effects. The return value type is

given and is often useful to test for error condition if one is given beforeý the_

results of the function call is used. Examples are referenced in the included

code, where needed new code is included to present the example.

C-22

delete-event

a Summary

#include "sim-driv.h"

struct linkedlist* delete-event (driver, eventid)

struct driver* driver;

Pit event-id;

e Description

The delete-event function gives the user the ability to remove previously sched-

uled events from the Next. Event Queue (NEQ). Using the event-id, returned

to the user when using "schedule-event", delete.event searches for a mat chilig

eventid in the NEQ and deletes it.

e Return Value

The delete-event function returns a pointer Lo a structure containing the ['ol-

lowing information: *time, *event, *event-arguments, and an evcntid. (c

"simndriv.h" for structure)

a Example

Replace the function "end-wash" in hogwash.c with thie version given here.

This will cause all rewashes to be unscheduled (ie. deletes all rewash events).

void *nd.wash (arguseznt)

struct argument.list* argument;

struct driver-data* deletotd.data:

C-23

hit *yent~id;

uasiped int 3 - 0,

prt•btf ("CAR Id". erlulmnt•-ad)

priatt (" VlSS I$ F3IiSi90. TINE SINP" XW\i", *erpa"St->ttim);

while ((65000) /0 tine to read Oreso loop 0/

if (rend() 1 6 ae 3) /9 random selection of rewaehes */

(

event-id - schedule-event (argaeatocarueab, oriisnlt-)tie, resash, ar•ument);

printf ("REVASL.ID is 4d\V", eveat.id);

doleted.data a delete.e-eit (*ewt-)ciab, eent-id);

printf ("eeent.id deleted is %d\n", del~ted.det&->*vemtt.id);

I

e418 it (tl1iieapty(lifte)) /6 if you don't get a rawaah get nlext strrt-was| 'I

(/ froam the line if thare's sonaeoie in it */

teap..rguaeuit a (ll.pop(ltn.));

&rgpumt->cr..id a temp.targpneht->car~id;

chodule.event (ergumemt->carvesh, argiuent->time, start..wash. argument);

C-2,i

end-sim

9 Summary

- #include "sim-driv.h"

struct driver* end.sim (driver)

struct driver* driver;

a Description

The end-sim function gives the user the ability to c€op the simulation. End-sini

effectively empties the Next Event Queue (NE., The execute-sim function

checks for an empty NEQ and terminates execution when the NEQ is empty

(see the execute.sim function).

* Return Value

The end-sim functon returns a pointer to the simulation driver.

• Example

See function close-wash (1.3) in hogwash.c.

C-25

execute.sim

9 Summary

#include "sim-driv.h"

struct linkedlist* execute.sira (driver)

struct driver* driver;

"* Description

The execute-sim function executes the functions(events) which have been sched-

uled with the scheduleeverb function. Execute-silm will continue dispatching

events until there are no more events scheduled in the Next Event Queue.

"* Return Value

The execute.sim function returns a pointer to a FIFO queue containing the

eventid and time of event for each executed event.

"* Example

See function main (1.0) in hogwash.c.

C-26

make-driver

9 Summary

#include "sim-driv.h"

struct driver* make-driver (sizeof-time, compare.time)

int sizeoLtime;

int (*compare-time)();

* Description

The make-driver function allows the user to create an instance of the simula-

tion driver. The user can then use the functions available to manipulate tle

simulation driver in creating a working simulation. The compare function is

supplied by the user to allow for sorting of the events.

* Return Value

The make-driver function return a pointer to the just created simulation dri ver.

e Example

See function main (1.0) in hogwash.c.

C-27

print-stats

e Summary

#include "sim.driv.h"

void print-stats (stats)

struct linked-list* stats;

* Description

The print.stats function provides the user with a viewable output from Ilhe

returned value of execute.siin. The output is the eventid anid time of e\ent.

for each executed event.

e Return Value

Print-stats has no return value.

* Example

See function main (1.0) in hogwash.c

C-28

schedule-event

* Summary

#include "sim.driv.h"

int schedule-event (driver, time, event-func, eventlfunc-arguments)

struct driver* driver;

void* time;

void (*event-func)();

void* event.func-arguments;

* Description

The schedule.event function allows the user to schedule events by passing a

pointer to the event function, its arguments, and the time of the event with

the simulation identifier 'driver'.

e Return Value

Schedule-event returns a unique event-id for each newly scheduled event. It

returns NULL if the user tries to schedule an event at a time which has already

passed o: there is not enough memory space to schedule the event.

* Example

See function main (1.0) in hogwash.c.

C-29

C.2.3 The Generic simulation Driver Code (sim.driv.h, sihmdriv.c)

/wtve .6•e.e.*eoeeeeeee*eeeeeeeeae~eoeoeoee oe*e***.e~ieete**eoeeae*C*eeeeeeeveeeeee*v/

is This is the header file for sim.driv.c */

#define LLDEL.YES 0fx0001
#define LL-.D'L.O OxOO00

struct driver emake.-driver 0); /but sizesf..time, iut(eoeoW retemo)() 0/
int schedule.ovent 0 /. AstruCt driver *driver, veide time, void(oavont..tum¢))... 0vo5.d eevent-uc..argents] #/

struct linked-list *execute.nsimO; /*etract driver edriver e/

void printsitatos 0 ; /0 struct linksd..lste stats */
struct driver *end.sin O) /0 stract drivers driver s/
struct linked.list odeleteavent 0; /o strict drivers driver, int ovent.ident 4/

struct driver-data
void *tin.;
void (efunc)();

void *func_arguments;
int event.id;

I. se • oie..e eeeele...eeele.seeebeoel0eeIee.O leaeeeeeee seeeaeeee*ee44***e~eee.*0e e/

/I DATE: 03/05/90
/c VERSION: 0.0
/i TITLE: Generic simulation driver C/
is FILENAME: iinmdriv.c
I/ COORDINATOR: Rob Rizzo
is PROJECT: EEIG 650, vinter 90, Bisbee 4/

/a OPERATING SYSTEM: MS-DOS
is LANGUAGE: Microsoft quick-C .1
It FILE PROCESSING: Link and compile with llc and executable file which 0/

/i uses this file s/

14 CONTENTS: 3.0 make.oriver - allows user the ability to make an instance e/
is of sinkdriv */
is 3.1 schedule-event - allows user the ability to schedule events ./
I/ 3.2 esxecute-sin - executes the scheduled events s/

/t 3.3 endsin - terminates the simulation 5/

/i 3.4 print-stats - prints out the event-id and t3ize of that 4/

/4 event for all executed events

i, FUNCTION: Gives a user the basic functions needed to run am event driven */
1/ •simulation .1
/44 4e4446Ae 4e444.4e4*e44*ee~e.44****440444e4444e44e4*e4S44see~el 4deoe4ee* 4 , e4 **4/

/. Code begins here ./

linclude <stdio.h>
$include <otring.h>

tinclude <malloc ,h>
Vinclude "sainidriv.h"
$include "ll .h"
linclude "nint.stru.h" /o not part of the original generic sin.driv.c code ./

/1* eeeeee esee0eeeseeOeeeeoeeseeeto oee oeeCCeeeee*Ceeeeeeoee e** 0 /

/i Structures ued in sim-dri, v/
/e * e sesesoae.eeeeee~ eoseeeeeo eeeeeeeeeee eeeeeeeeeeeeeeseeeeeeeee ./

struct driver {
int sizeoof_tiae;

struct driver-data *curr.event;
struct linked.list oNEQ;
unsigned long event.id;

C-30

int (Ocoxpare)(; /e void*, void* .1

/.e * e* e******ee******Ce*e******C********.*********S**O****eeeeete*eeeeeeeeeeeee/**

I/ DATE: 03/05/90 0/
/0 VERSION: 0.0
Is BAME: Rake driver ,
/* NODULE BMUWER: 3.0 */

-- /* - DESCRIPTION: Allows the %&or to create an instance of gia_driv C
1* ALGORITHM: Allocate emory for street driver */
I' make an instance of priortty qouen
I. load etract driver C/

return driver
/s PASSED VaRIABLES: siaeof-time, (ecompare.time)O C/
b, RETURNS: driver a/
/* aLOBAL VARIABLES USED: none Cl

/s GLOBAL VARIABLES CNARGED: Rone ,
/* FILES READ: none '/

FILES VAITTEN: none ./
/* HARDWARE INPUT: none 'I
I* HARDVARE OUTPUT: none a/
/* NODULES CALLED: 11.make (2.0) */
/s CALLING NODULES: main (1.0) .1
I/ ORDER OF: This function is of order 0(1) 'I
14 AUTHOR: Capt Rob Rizza C,
/* HISTORY: none s/
i/e. C •eee~eeoeeeeeeeeeee~eeee~eeeeeeooaoeeoeeoeoeeeoee~eaeeeeoeeeeseeeeooeeoeeeeeeee/

iut ieu-conpar*e.time 0; /e struct driver.data* neowdata, struct drivor.datas old-data, struct driver- driver */

struct driver emake.driver (sizeof.tiue, compare.time)
int 'sizeof..ti•e;
int (oconpare-time)();

struct driver *driver - NULL;
struct linked.liut *NEQ u NULL;

if ((driver a (etruct drivere)malloc(sizeof(atruct driver)))=mNULL)
.return driver;

REQ = 11.make (PRIORITY, nee-compare.time, driver); /0 creating the Vest Event Queue (NEQ) 0/

driver->curr.event - NULL;
dri:er->IEQ = BEQ;
driver->event.id a 0;
driver->sizoof-timae aizeof-time;
drivex->cosjare a compare.time;

return driver;

/ 4eee.• 4.eeo~e40seees oeeeeseeeaeeee~eoeoee seee~eoeoeeeeoeeeeeseoeeeeeeee~e eeeCC.e e/

/* DATE: 03/06/90
/* VERSION: 0.0
/s NAME: Compare Time function
/* NODULE NUMBER: 3.0.1 0/
/* DESCRIPTION: Thin is the function taat is passed to linked list *l
/s ALGORITHM: Unpack and pass to compare
/s PASSED VARIABLES: eneu-data, sold-data, edriver
I/ RETURNS: aneer Cl
/* GLOBAL VARIABLES USED: none e/
/o GLOBAL VARIABLES CHANGED: none 4I

/* FILES READ: none
/s FILES WRITTEN: none
/s HARDVARE INPUT: none
/* HARDWARE OUTPUT: none

C-31

/e MODULES CALLUED: comparo-tim. (1.1)
/# CALlING NODULES: ll.pinsert (2.6.1) */
/* ORDER OF: This function Is of order 0(1)
Is AUTHOR: Cept lob Rizzs o/
/* HISTORY: none a/
fec.ee eee~e~e~ee se eet~eeeeee*ccceccecceec~cee~e~ee~cee eceec/

int new.compare.time (neu.data, o1..dasta. driver)
struct driver.data ene.data,
atruct driver-data sold-data;
struct driver *driver.
(

mt answer;

ansuer m driver-lctmpars (naeudate->tinm, old_deata->tIe); /a the time parts are extracted from '/
return (it)answer; /e new.data and old.date, passed to *1
} - /* the user defined compare func by S/

/s use of a ptr to driver whieh has *I
/c a ptr to the compare function o/

fee ae~e eoee eeeeeooeeveseseceeeceec eee eececcccccceccc 40.*e ccc eeec. eec..eeee

fe DATE: 03/05/90
fe VERSICE: 0.0
c I*N1AE: Schedule event function

/e MODULE NUMBER: 3.1 Cf
/# DESCRIPTION: All1s the user to schedule events in the simulation c-
/* ALGOQIT8M: Allocate memory for struct driver-data cf
/6 check to see if event can be scheduled
/0 load struct driver.data o/

insert driver-data into NRQ 0/

return eventotd c/

/* PASSED VARIABLES: edriver. *time, (eevent.func)), *eoent.fuxc.--Vuaents */
/s RETURNS: event.id e/
/0 GLOBAL VARIABLES USED: none o/

/s GLOBAL VARIABLES CHANGED: none 0/

/I FILES E.AD: none c/
/0 FILES VRITTEB: none */
/0 RARDVARE INPUT: none

/s HAROVARE OUTPUT: none e/
/0 MODULES CALLED: ll.insert I
/1b CALLING MODULES: main (1.0), open-wash (1.4), start..eash (1.6), e/

/c end.-ash (1.7. rewash (1.8) Cl
/* ORDER OF: This function is of order O(W)
f* AUTHOR: Capt Rob Rizza

/* HISTORY: none

int schadulaeevent (driver, time, .vent.func, event..funco-arguments)
struct driver *driveri
void otime;
void (*eevt..•fuc();
void *oventjfunc.oargerts,
(
int i - 0;
struct driver.data cnenueveet.dal'a a NULL;

if ((new-event.data .- (strvct driver.datac)m•a1oc(eizeootstruct dri-er.%dtWa)))uULL)
return NULL;

if !a..~~-.~n B ULL)
if (dr:ver--coupare (Cdriver->currevent->tise, time) < 0) Is (Ctia. < *(drivr->cuar.ovent->time)) 5/

I
printf ("Cannot schedule event, new event time Is already historyln");

returtn BULL;

}

n.wueveut..data->func a ovent-.func;
new.event..data->fun -arguments a event_.func.argumeaut;

C-32

neweventdatta->event~id a (Ant) ((driver->event..i# a (4+driver->event.id)));
neaeyvnt.-data->tjme a (voide)malfloc(sizeof(doublo));
mew -event -data->t me - (double*)memcpy(new.event.-data->time, t*me, driver->eizeof.time);

/e (double*) cast was not in original sim.driv.c code s/
11. insert (driver-)lNEQ, nes..eventdata);

return new.event-data-soerest.id;
I

/e~e~eee `e.eeeeeeeeeee~ e~eeee~esoeeeeee.e eeeeeee..~eee~e ¢ese e/

i/ DATE: 03/05/90 9/

ie VERSION: 0.0
is NAME: Execute Simulation function */
is NODULE NUMBER: 3.2 */
is DESCRIPTION: Allows the user to execute the simulation el

ls ALGORITHM: While there are events scheduled
is execute the event o/
is load state queue
/, return sim-state .1
/c PASSED VARIABLES: edriver ,/
i/ RETURNS: struct linked.lists simestats .
is GLOBAL VARIABLES USED: none ./
/s GLOBAL VARIABLES CHANGED: none e/
is FILES READ: none
is FILES VRITTEN: none
is HARDWARE INPUT: none Cl
/0 HARDVARE OUTPUT: none .1
/c MODULES CALLED: 11.make (2.0). 11.pop (2.1), 11.insert (2,6)
i/ CALLING NODULES: main (1.0)
is ORDER OF: This function is of order O(n) where n - Oevents in NEQ 91
is AUTHOR: Capt Rob Rizza Cl
i/ HISTORY: none C/
/eC~eeoecoeeeecccceeeeceeeoeeeeeeeoccceceeeeeeoeoeeeeeeeoeeoeeeeeceeeeeceeeeeeeec /

struct linked-list *execute.ein(driver)
struct driver *driver;

struct driver-data csiaminfo m 1U=.L
struct linked.list eslmstats a rOILL.

sin.stats = l1-make(LIFO); /0 Creatln the state queue 0/

whila (.!(llisempty(driver-),VEQ)))

ei.sinfo a 11.pop (drlver->NEQ),
driver->cuwr.oveoit - ai.ninfo; /* This allows driver to keep track of the current e-'ut *,
(e(aimn.info->1unc))(ein..l~o->fmwc..ergrsents); /e execute function (event) popped from NEC /
l1..ineert(sim.etats, .iz.inio); /e putting the sim.iufo into the stats queue s/
)

return sisstats;
)

/.. •@@eee eeeoeeeeeooemeeeeeeoeee~ee. .eeeeeesoceeeeoeeoeeoecoeeoeeeeeeeeeeeeee~e/

I* DATE: 03/05/90 s/
/s VERSION: 0.0 0/
/i RARE: End Simulstion functiou s/

is NODULE NUMBER: 3.3 e/
/e DESCRIPTION: Allows the user to end the simulation
/i ALGOAITBN: empty the SEQ
/o PASSED VARIABLES: etruct driver* driver 'I
is RETURNS: 11_clear (driver->NEQ)
i/ GLOBAL VARIABLES USED: nose
i. GLOBAL VARIABLES CHANGED: none
/s FILES READ: Lone '1
is FILES VPITTEN: none

C-33

to tAROVIAR INPUT: none '/
to HARDVARE OUTPUT: none
f* RODWo S CALLED: l1-clear (2.2) el
/* CALLING MODULES: close.wash (1,3) C/
/* ORDER OF: This ftxction Is of order 0(1) */

o AIUTNOR: Capt Rob kitA2a
/0 HISTORY: none
fee eeeoeseoeeoeeooeeeoeooeeeeeeesoeeeoeoeeeoeeseeoeoeeseeeoeoeeeoeeeeeeto*e~e*e~ee

otruct driver sendd-im (driver)
struct driver edriver;
{

return (struct drivers) 1..clear (dziver-4Eq);
)

/est 5e eooseeeoeeseeoeooeeoeesSee******C4eeooeCeioeeoeeeeeeeeeeesee~eeeeeeeeeeeo/

/# DATE: 03/05190 s/
/* VERSION: 0.0 s/

/s BNAE: Print stats function */
/* MODULE NUMBER: 3.4 4/

/s DESCRIPTION: Allows the user te see the event.id and itts time for every 6/
/s event e-
1e ALGORITHM: While output queue is not empty */
I. print event.id and it's time '/
/I PASSED VARIABLES: struct linkedlilet stats s/

/s RETURNS: none
/* GLOBAL VARIABLES USED: none 4/

/6 GLOBAL VARIABLES CHANGED: none 5/

to FILES READ: none '/
Is FILES WRITTEN: none 5/

/6 HARDVARE INPUT: none e/
/. PAROVARE OUTPUT: none
/s MODULES CALLED: ll.pop *1
/o CALLING MODULES: none '1
/1 ORDER OF: This function is of order 0(n) shore n $ *events in state queue 0/
/C AUTHOR: Capt Rob Rizza

to HISTORY: none
/e.4e*.se eS4**eoeo eeeeee~eeeeee*CCeeeeeeeeebe4e4CC.e~eC.teeoeee~ee~eeeeee.eeCee• see/

void print.smtate (state)

struct linked-list estate;

struct driver-data *output - NULL;

while ((output a (struct driver.datae)ll.pop(state)) in NULL)

Ant time;
printf ("%d\t". output->ovent.id);

time a e(inte)output->time;
printf (•Wdn. tima);

/.e e •eesee.eeeeeee*eeeeeeeeeoeeeeeeeee*e*eeeeoeeoeee~e~ S e~e~eeCCeeeSeeSee.Ceesees/

/* DATE: 07/07/90
/o VERSION: 0.0 '/

/* BANE: delete event function
/e MODULE NUMBER: 3.6

/s DESCRIPTION: Allows the neaJr to delete previously scheduled events using e/
event.id as t., deletion reference

Is ALGORITHM: While nest-)itefl in IE queue is not NULL
/0 delete items with the referenced eventid '/
/0 PASSED VARIABLES: @tract drivers driver, Ant event-id */
/* RETURNS: struct linkedlisto '/
/* GLOBAL VAkIABLES USED:
/* GLOBAL VARIABLES CHANGED: none 4/

C-34

/s FILES READ: none 0/

/s FILES VRITTEN: none e/
/6 BARDVARE INPUT: none 0/
/0 HARDWVARE OUTPUT: none

/s MODULES CALLED: 11-delate s/
/e CALLING NODULES: none SI
/* ORDER OF: This function is of order 0(n) where a S Oovents in the NEQ S/
/* AUTIOR: Capt Rob liszs /
/e HISTORY.: lOne /
/*e~e eeo~e~eeoeooooeeeeeeeeseoaeeeooe~eeeoeeoeeeeesese~es~eeooeeeeeoeeeee~eeeee.e,/

/o int equal-free (etruct driver-datie event.data. ante event-id); es generic aim..driv.c version *e

,truct linked.list edelete-event (driver, *vent-id)
struct driver *driver;
int event~id;

(
struct driver.data *data u NULL;
struct linked-list edeleted-data w NULL;

deleted.data a lidelete (driver->NEQ. equal-free, aevent-id);
data u ll.pop (deleted.data);

return data;

int equal.free (); /* ntruct driver.datae event-data, into event-id version used with rizsim.c 0/

struct linkted.list *delete.-e*nt (driver, object-id)
struct driver edriver;
int object.id;

(

struct linked.list *deleted-dats - BULL;

deleted.data - ll.dolete (driver->NEQ, equal.free, Aobject.,id);

return deleted.data;

/...ees..eeee,.eeseeeeeeeeoeeeseee.eeaeesoeeeeeeeeeseeteee~e.eavesete44eee..eeeses¢!

/s DATE: 07/07/90 ,/
/* VERSION; 0.0 /

/* NAME: Equal free function 4/

/* NODULE NUMBER: 3.6 /
/4 DESCRIPTION: This is the generic driver's function which tells ll.dellte e/

/, how it is to locate and delete itema from the list ./
/ A ALGORITHN: if event-id from the item in the list - eventjid referenced 4/

/* delete items with the referenced event-id s/
else

/4 continue looking to match eventid 4/

/' PASSED VARIABLES: struct driver-datae, tat event-id 4/
/ R RETJ•ENS: int result 8/

/4 GLOBAL VARIABLES USED: none 4/

/P GLOBAL VARIABLES CHANGED: none */
/* FILES READ: none 4/
/q FILES VRITTEN: note 4/

/* HARDWARE INPUT: none

/ H AARDVARE OUTPUT: none 9/

/4 NODULES CALLED: 11-delete 4/
/s CALLING NODULES: none 0/

/4 ORDER OF: This function is of order 0(1) since it simply does I conparison*/

C-35

/s AUTBOR: Capt Rob lizza o/

/s HISTORY: none

/6 int equal.free (event.data, event-id) eo generic anmtdriv.c version oe

struct driver.data eovena.data;
irnt *evnt-id;

ist result;

it (event.data-)ev- _id - *ovont.id)
result a LLDELV.YS I LLCOUTIIUE;
else
result - LL-DEL.5O I IL.COITIUU;

return result;

int equal.frse (event.data, objoct.id) /e version used vith rizsimc */

struct driver-data sevent.data;
int *ob;ect-id;

int resul;
struct oveut..arga Ceventargument m BULL;

event.argument a event.deta-func..arguments;

if (event..argument->object2 !a NULL)
{
if ((evont-argusent->objectl->object-id so Cobject-id) II

(event-argument->object2->object.id -= Cobject-id))

result = LLDEL-YES;

else
result - LL.DEL.NO;
)
else
{

if (evaunt.azgment->objectI->object.-id -. Cobject-id)

result = L,.-DEL.YES;

else
r,ýsult - LL _DEL _BO;

return result;
C

C'-36

C.3 The Carwash Simulation

CA.3.I General Description The carwassh simulation uses the t'unctions

available in the generic simulation driver to create a running event driven simulation

which uses the following algorithm.

Trhe main procedure schedules only two events, open the wash and close the

wash. Open the wash schedules the first car arrival, The car arrival event checlks to

see how to handle each new arrival either putting them in line if the wash is busy or

scheduling them for an immediate start wash if the wash is empty. The car arrival

event also schedules the next car arrival event. The start wash event schedules an

end wash event, The end wash event schedules selected cars for a rewash. RIwashs

are (lone immediately. End wash schedules a start wash of the next car' inll i, itf ,

rcwash is not scheduled, The simulation ends when close wash is executed,

C.3.2 The Carwash Simulation Code (hogwash.c)

/o DATE: 03/0S/90 5/

/5 VERSION: 0.0 5/

is TITLE: Carwash Simulation */
/o FILIAME: hogwash.c
/s COORDIIATOR: Rob Rizzo o/
/* PROJECT: EENG 650, Vinter 90, Bisbee
/s OPERATING SYSTEM: MS-DOS 5/

/e LANGUAGE: Microsoft Quick-C o/
/o FILE PROCESSING: Compile and link with ll.c and sim.driv.c o/
is CONTENTS: 1.0 main - schedules events, execute* simulation o/
ts 1.1 compare*time - used to sort events .1
/0 1.2 make.car-id - generates a new car id

/0 1.3 close-wash - signals carwash is closed, ends simulation o/
/0 1.4 open-wash - opens ash, •enerates lot car arrival o/

1.5 car-arrives - may schedule a start.wash, schedules next o/

/* arrival e/

1.e start.wash - schedules an endmgash
/ i.T end.uash - may schedule a rewash or start.wash 5/

/* 1.8 rewash - schedules an eandwash 5/

/o FUNCTION: This file implements a caresah simulation. The carwash opens. o/
care arrive, they either enter the wash or Set in line a/

After being washed some are rewashed. Simulation ends when .1
/s no more unexecuted events exist or the carwash is closed.
/s..*essssesseeeseeeoesseseeeeeeeesseseseeeseeseeeeeessessseeeeeeevseeessssssssss/

/...e~esseseaeeeeeeeeeese CODE BEGINS NERE eeeeeeeeeeeeeeeeeee seeee e/

tinclude "11 .h"

$include "simdri v.h"
$include <$tdio.h>
*include <stdlib,h>
tinclude <math.h>
vinclude <malloc .h>

C-37

I. user defined structure containing the ar• oents ocarwash, *timn, car.id 0/

struct argument.list {
stract driver* careash;
into time;
tit ear.id;

/t PROTOTYPES of user defined fenctions C/
to /

int compare.tise (into timet, into tim*2);
void close.waeh (struet driver* caroesh)e
void open..ash (@tract traent.listo argument);
void* catarrivet (stract argumont.list argument);
void startuamh (struct argment.listo argument):
void endvsash (stract argunet.liste argument);
void rtwaph (etruct orgumst..liote argument);

/* Global variables: line, and in.useflag. ./

line - is created in main() .1
/4 - inserts into line occur in car.arrives() C,
/, - pops occur in *nd.wash() ./
/, in.use.flas - is set in start.sashO and resash() */

- it is chocked in car.arrives() /

static struct linked.listo line;
Ittatic Ant in..u0eflag * 0;

/..ee•.eeeee$.eeeeeeeceeeeee•**ee~eeeeeeeeeee~~~ee.eeeeeeeee~eoooo/

/s DATE: 03/0r/90
t. VERSION: 0.0 C/

/* VAME: main '/
/* NODULE NUNMER: 1.0 .1
/4 DESCRIPTION: Creates an instance of the simulation. schedules events, and 'I
/. execute@ the simulation. o/
/. AI.GORITHN: create driver - schedule events - execute events .1
/' PASSED VARIABLES: none 9/

t. RETURIS: none 4/
/# GLOBAL VARIABLES USED: line ./
I, CLOBAL. VARIABLES CHANGED: line is created
/0 FILES READ: none
/. FILES VRITTEN: none, except by redirection at run-time ./
/, HARDWARE INPUT: none
to RARDWARE OUTPUT: none
/s NODULES CALLED: meke.driver (3.0), schedule#_event (3.1)0, *
/0 ll.make (2.0), execute.sis, (3.2) ./
/s CALLING MODULES: none */
/6 ORDER OF: This function is of order 0(I
/* AUTHCR: Capt Rob Rizz& C,
/* HISTORY: none 9/
/.ceeeeeceeeeeeeeeeee~eeeeeeeeeeeeee~oeeeee~~eeeeeeeeeee•e•/

void* maino

struet driver* carwash;
struct ergument.listo argument;
struct linked-list* sim-stats;
int timel 0 0; /0 tinel is the start time e/
int tine2 - SO; /o ti•fe2 is the closure time s/

if ((argu•ent-(struct argument-list$)malloc(sizeof(6t rucet argument -list))):=NUl.L)

C-38

return NULL;

arRgumsnt->time a Atimel;
argunant->caroash * (carwash - maka.driver(3, compare~ti.e));

line = l-rke (FIFO);

scheduleoevent (carwash. atimel, open-wash, argument);
- chedule.-evnt (carrash, -rtme2, close.wash, carwash);-
sia-stats a xocute..se,(carwash);
/0 print.stats (sin-state) 4/

/44eee444•4 ***4*4e eeee44444*444*4404444444444444eo4eee4e4444ee44444eee~e~eee~eee/

/s DATE: 03/05/90 4/
/* VERSION: 0.0 s/
/o NAME: compare.time
/s NODULE NUMBER: 1.1 4/
/* DESCRIPTION: Compare-time is used to tell si.ndriver how to sort events o/
/# ALGORITHM: return 'he resident time minus the time of the item to be s/
/* inserted #/

/* PASSED VARIABLES: etimcl. etime2 o/
/s RETURNS: time2 - timal a/
/* GLOBAL VARIABLES USED: none s/
/s GLOBAL VARIABLES CRANGED: none s/
/s FILES READ: none 4/

/s FILES WRITTEN: none 4/

I* HARDVARE INPUT: none */
/. BARDWARF OUTPUT: none /

/* MODULES CALLED: nonu n/

/,- CALLING MODULES: ne..compare.tine (3.0.1) 0/
/* ORCuER OF: This function is of order 0(1) /
/* AUTHOR: Capt Rob Rizzs o/
/* HISTORY: none e/
/4S*44440 e4444e4444444444444C44e4e4o4e~e4e4o4e444oooe44e44~ee44e.444e@oe4444¢ ,,n/

int compare.tius (timel tine2)
into timel;
inte time2;
{

return (stioe2 - stimel);
)

/4444444•#*S44 ee44 oo44S44S4eS4S4e44544.0•ee44e4.4oe)0eeo44ee4..e•0•qP e.*/

/o DATE: 03/0/90 4f
/0 VERSIO:; 0.0 4/

/4 NAME: make.car.id */
/* NODULE NUMBER, 1.2 o/
/* DESCRIPTION: make.car.id is used to generate a car id o/
/4 ALGORITHM: every time the function is called increment the count

PIASSED VARIABLES: none 4/

/- REiURRS: car.id 4/
/o GLOBAL V&RIABLES USED: none, but car-id is declared static in this func e/
/* GLOBAL VARIABLES CHANCED: noue ./
/# 1-Il.ES READ: nune */
/o FILES WRITTEN: uone oI

/* HARDWARE INPUT; none */
/o 11ARDV-RE OUTPUT: Lone o/
/ M MODULES CALLED: none 4/

/. CILLICG NODULES: upen~wash (1.4), and cay.arrives (1.5)
/i ORDER OF: This function is ut order 001) 4/

/. AUTHOR: Capt Rob Rizzo 4/

/ H HISTORY: none

ijt maike..car-ixd 0)

C- 39

static int car-id a 0;
return ++car-id;

/ O .. e..eoeeeeoeeeeeeeeoeoeeeefeeeeoaele oeaeeeaaeeeee.:'..eeeeaeeoe*eaoeeseee •eeeoo ee/

/0 DATE: 03/06/90

/I VERSION: 0.0 ./
/9 WANE: close-wash a/

- NODULE NIMBER:-1.3 -/

/I DESCRIPTION: Signals caruash is closed. ends the simulation 6/

/0 ALGORITHM: execute end-sin fuction e/
/1 PASSED VARIABLES: ecar-uash a/

/. RETURNS: none a/

/e GLOBAl. VARIABLES USED: none a/
/* GLOBAL VARIABLES CHANGED: none a/

/- FILES READ: none
/* FILES WRITTEN: none e/
/I HARDWARE INPUT: none
/4 HARDWARE OUTPUT: none C/
/o NODULES CALLED: end.sin (3.3) a/
/I CALLING NODULES: execute.sin (3.2) '/

/I ORDER OF: This function is of order 0(1) ./
/* AUTHOR: Capt Rob Rizza o/

/I HISTORY: none a/
/9. .O ee~e~eeeeeeae~eeeeeeaeeeeeeeeeeeoeeoeeeeeeeoeee.eeeeeeo oo e eeoeheeeoa.90o0*~e/

void close-wash (carrnuh)
struct drivers carg-sh;
(

end.sin. (cargash);
printf f"SOPRY THE CARUASB IS IOU CLCSED\n\n");

I

/ •e *eeo(o¥*• *e** 99SSS99Ce4eoe0Se009S900C•.09**09,9009999999099SS099909*9S*SS990~*4 99 /

/. DATE: 03/05i90 O/
/s VERSION: 0.0 9/

/* NANE: open-wash 5/

/* NODULE NUMBER: 1.4
/* DESCRIPTION: r 4gnals that the carwash is open, schedules lot car arrival 0/
/* ALGORITHN: none ./

lo PASSED VARIABLES: eargument 9/

/- RETURNS: none, but does print a message to standard output S/
/o GLOBAL VARIABLES USED: none a/

/" GLOBAL VARIABLES CHANGED: none
/ r FILES READ: none C/
/' FILES WRI TEN: nao:
/* HARDWARE INPUT: non, C/
/, HARDWARE OUTPUT. r. 9/

/9 NODULES CALLED: .r.id (1.2), sched'ile.event (3.1) 0/

/* CALLING NODULES: -a ;eo-it (3.2) a/

/ ORDER OF: This function in of order 0(1) O/

/" AUTHOR- Capt Rob Rizza oI
/* HISTORY: none
/...e 99599990*596OO9993595)CCCoeooooCCooCoooC*CoSCeooSoeSe55oC9oo9oeooo99ooee 9*e/

void opo-twash (argument)
struct gument..listo argumert;

int first.arrival.

printf ("IRE CARVASH IS NOW OPEN, TINE STAMP Xd'n". -rguaent->tbme);
oargnmont->tise 0 0orguseut-tltime * (rand() % 11) + 1; /I creating next cpr-arrives time 0/

argument->car.-id - auke.car. id%) /9 creating next .car's id -/
ncheteulo e.een.t (&rt•:aoaet->carwvsah, arglament->time, car-arriveol, argument),

C-40

/* DATE: 03/05/90 4/
!* VERSION: 0.0 C/
is NAME: car.arrives

is MODULE NUMBER: 1 .6
/0 DESCRIPTION: Vill schedule a start.wash event if uath 2-1 empty, schedules o/
I0a car-arrives event e/
is ILGOKITHM: it arrival tia. is alter last wash exit time o/
/a sche•-ule a start..asL o/

/e else e/
is put the car in the line queue
/i schedule the next car-arrives event c/

/e PASSED VARIABLES: *argument '/
is RETURNS: none o/
/i GLOBAL VARIABLES USED: line, in..use..flq o/
is GLOBAL VARIABLES CHANGED: may insert into line o/

is FILES AEAD: none s/

is FILES WRITTEN: none 01
/o HARDWARE INPUT: none o/

is HARDWARE OUTPUT: none s/

is MODULES CALLED: schedule-event (3.1), 11.insert (2.6), make .car.id (1.2) ./
/C CALLING MODULES: execite.sia (3.2) c/
/i ORDER OF: This function is of order O(n) where n is the num:;er of items C/
/i in sine i/

/s AUTHOR: Capt Rob Rizza c/
/i HISTORY: none C/

void* car-arrives (argument)
struct argument.list* argument,

struct argunont.liata nn..arguinsnt;
Ant now.-carid, time;
into time.ptr;

printf ("CAR %d", argumsnt->carid);
printf (" HAS ARRIVED AT THE CARWASK. TIME STAMP a d\n", eargument->tine);

if (eargament->time > inmuseflag) i/ if wash is empty schedule immediate start-wash ./
scheduleoevent (&rgument->carwash. argument->tine, start-uwah, argument);

else ie else if sash busy put car in line o/
1l-insert (line, argumtc'it);

if ((r.eargument- (struct argumsent.-liste)malloc(sizeof(st. uct argumentlist)))==WULL.)
return NULL;

if ((tie -ptrs(i ntc)mlloc(aizeof (tin*)))--FULL) /i need to malloc for Ant time because *1
return NULL; /0 do.,,;t want to over-vrit. same space ./

/s in memory 6/

new-argument-)tims - tiJe_|tr;
*neo..argument->time - Oaxgument->time + (rand() % 1) + 1; /i new car.-rrives time for next Car .1
new- argument -)caruash a argumsnt->carwash;
nevoargument->car.id * make..car.ido; /i making neow car-id for next car 4/

sc)'eduleoev, (neow-argument-)csrsaah, nea.amargment- time. car-arrives, neuwargument).

i' DATE: 03/05/90 $/

/- VERSION: 0.0 C/

/I NAME: start.-ash Cl

is MODULE NUMBER: 1.6 Cl
/* DESCRIPTION: Signals start of wash. Schedules end-gash event ci

I* ALGORITHM: none
/* PASSED VARIABLES: *arguments Ci

#. RETURNS: none
/s GLOBAL VARIIBLES USED: in.use.flag
,'" GLUOAL VARIABLES CHANGED: in.nseuflag '/

C-41

/* FILES READ: none o/
/* FILES WRITTEN: none C/

/0 HARDWARE INPUT: none o/
/* HARDWARE OUTPUT: none o/
/ M NODULES CALLED: schedule-event (3.1) o/
I. CALLING NODULE: executeeIm (3.2) e/
/* ORDER OF: This function is of order 0(1) a/
/0 AUTHOR: Capt Rob lizzn a/

- /0 HISTORY:-none e/
/e eeeCeeoeeeeeeeoeeeeeeeseeeoeeeoeeeeeoeeeeeeeeeteeeeooeooooeeeeeeoeoeeeeaeeeeee../

void start.wash (argument)
struct argument-liste argument;
{

u=aigned int j - 0;

printf ("CAR %d". argument->car-id);
printf (" HAS JUST ENTERED TEE WASH. TIRE STAMP- Z4\n", eargument->tlme);

while (j++ < 66000) /I time to read screen loop o/

in-use.flag - (eargument->time =eargument->time + 5);
schedule-event (argument-)carwamh, argument-3ti me, end.-ash, argument);

/4c4C4CC*444CCCoeeeeeeeeCe4eeCe.eCee.eeCoe.eevsee..ese~seeee~c.e..e~e..ee...eoeo eto/

/o DATE: 03/05/90 */
/* VERSION: 0.0 C/
/* :AME: end.wash e-
/ M NODULE NUMBER: 1.7 o/
/4 DESCRIPTION: Signals end of wash. NM.y schedule a rewash event or say e/
/. schedule a start .uach vent for the n~xy car In liro/
/* ALGORITHM: if a ranom 0 &o,.. a 3 4/

/ scheduale a rewash event e/
/a else if there is someone in line */

/* schedule a start-wash event
/o PASSED VARIABLES: *arguments Cl
/* RETURNS: none
/o GLOBAL VARIABLES USED: line e/
/o GLOBAL VARIABLES CHANGED: may pop from line o/
/* FILES READ: none 4/

/* FILES URITTEN: none I
/ H BA•DVARE INPUT: none '/
/4 RARDIAPS CUTPtT. Pone s/
/ M MODULES CALLED: uchedule..svent (3.). l1isempty (2.4), ll.pop (2 1) ./
/* CALLING NODULE: executemeim (3.2) */
/* ORDER OF: This function is of oraer 0(1) 4/
/o AUTHOR: Capt Rob Rizza -/
/e HISTORY: none
/4. C •ebeeeee~eoee~eteeeeeesee~eoeeeeeeeeeeeeCCeCCCeCCCCCCCeeeeeCCeoeCCveCoeeee•a~/

void eid-wnsh (argument)
struct argument.liste argument;

struct argument-liste tem-p.narguent;
ensigned mnt j - 0;
printf ("CAR %d", argument-#o.ur.id);
printf C" VASE IS FINISHED. TINE STAMPs Wd\n', eargument->tine);
while (j*+ < 65000) 's "e to read arson loop 4/

if (ranul) % 6 - 3) /e randoim selection of rawashes 4/
schedule-event (argument->careash. arg=ment->t me,* rewash. arMent),

Is. if (0l1_iompt$(line)) / if you don't get a rewash get next start-wash./
(/o from the line if there's someone in it */

temp,_a.--.a -t = (llpop(li)te));
&puegh.nt-),car~ic ta t riumernwkt ->ca~r-d;
schedule-event (argument->caw~ash, arg~ment->t-ime, ntart..uash, argunmnt),

C-42

)
I

/e*44. ee *.eS***e*******4*4**eO*44*******0444 S.*.o~e*eeoe**oe. e*e****e*****e* * 4 4/

/* DATE: 03/05/90 .1
/s VERSION: 0.0 4/

/* NAME: rewush
/# NODULE NUMBER: 1.6
/. DESCRIPTION: Cars are in the process of being rewamhed

/s ALGORITHM: none /

te PASSED VARIABLES: *argumnts .1
to RETURNS: none 'I
/s GLOBAL VARIABLES USED: innuse-lag a/

/o GLOBAL VARIABLES CHANGED: in.use.fla• /

/0 FILES READ): none 4/

/o FILES WRITTEN: none a/

/0 HARDWARE INPUT: none o/

/0 HARDWARE OUTPUT: none

/e MODULES CALLED: schedule.event (3.1) e/

/* CALLING MODULES: execute-sim (3.2)

/o ORDER OF: This function is of order 0(1) 4/

/0 AUTHOR: Capt Rob Rizza ./
I/ HISTORY: none e/
/e .e...ee.* eeee...*e4*ee**4*44*****eeee*eeoeo******e44eoe60o~e*ee4* ee*ee***~~/

void rewnsh (argument)
stract argument.lipts argument;

unsigned Ant j w 0;

printf ("CAR %d", argument->car.id);

printf (" HAS ENTERED FOR A REWASH. TIME STAPa Wd\n", oargument->,time),

while (j++ < 65000) /# time to read screen loop o/

in..useieflag (earguwent->time u eargument->time + S);
schedule-event (argument ->earuash, argument->timse, enduoash, argument);

G-43

C.A.3 Script of Hogwash Execution

THE CARVASH IS Nov OPnE. TIME STAMP a 0
CAR I HAS ARRIVED AT TUE CARVASE. TIME STANM - 9
CAR I HAS JUST ENTERED TIE VASE. TIME STIANP 9
CAR I VASE IS FINISHED. TIME STAMP. 14
CAR 2 HAS ARRIVED AT TUE CARVASE. TIME STAMP a 19
CAR 2 HAS JUST ENTERED TIE VASE. TINE STAM&P 19
CAR 3 HAS ARRIVED AT THE CArVASS. TIME STAMP - 21
CAR 2 VASE IS FINISHED. TIME STAMPO 24
CAR 3 HIS JUST RETERED TE VASE. -. ME STAMP= 1
CAR 4 HAS ARRIVED AT TUE CARVASE. TIME ST .41 - 2"
CAR 3 VASE IS FINISHED. TIRE STAMP- 29
CAR 3 HIS ENTERED FOR A REVASE. TINE STAMP'- 29
CAR 3 VASE IS FINISHED. TIRE STAUPm 34
CAR 4 HAS JUST ENTERED TUE VASE. TIME STAMP, 34
CAR S HAS ARRIVED AT THE CARVASE. TIME STAMP 36
CAR 6 HAS ARRIVED AT TEE CARVASI. TINE STAMP a 36

S4 WASH IS FINISHED. TINE STAMP- 39
CAP. � bA• .UST ENTERED THE VASE. TIRE STAMPO 39
CAR 7 HAS ARRIVED AT THE CPRWASH. TINE STAMP a 44
CAR 5 VASH IS FINISHED. R INE STAMP- 44
CAR 6 HAS)UST ENTEREa TE" VASE. TINE STAMPs 44
CAR 6 VASE IS FINISHED. TIME STAMP- 49
CAR 7 HAS JUST EITERED THE VASE. TINE STAMP- 49
CAR 8 HIS ARRIVED AT THE CARVASH. TINE STAMP a SO
CAR 7 WASH IS FINISHED. TIME STAMP- 64
CAR 8 HIS JUST ENTERED TEE VASE. TIRE STAMP- 54
CAR 9 HAS ARRIVED AT THE CARVASE. TINE STAMP - 58
CAR 8 VASH IS FINISHED. TIRE STAMPs 59
CAR 9 HAS JUST ENTERED TEE VASE. TINE STAMP. 69
CAR 9 VASE IS FINISRED. TINE STAMP- 64
CAR 10 HAS ARRIVED AT TEE CARVASH. TIRE STAMP a 66
CAR 10 HAS JUST ENTERED THE VASH. TINE STAMP- 66
CAR 10 VASE IS FINISHED. TINE STAMP. 71
CAR 11 BAg ARRIVED AT THE CARVASH. TIRE STAMP 0 74
CAR 11 RAS JUST ENTERED THE VASE. TIME STAMP- 74
CAR 11 VASE IS FINISHED. TINE STAMPm 79
CAR 11 HAS ENTERED FOR A REVISE. TIME STAMPm ?9
CAR 12 HAS ARRIVED AT THE CARVASH. TINE STAMP - 83
CAR 11 VASE IS FINISHED. TINE STAMPs 84
CAR 12 HAS JUST ENTERED TIE VASE. TIRE STAMP- 84
CAR 12 VASE IS FINISHED. TIME STAMP- 89
CAR 13 HAS ARRIVED AT THE CARVASH. TIME STAMP - 90
CAR 13 HAS JUST ENTERED THE VASH. TIME STAMP= 90
CAR 13 VASE IS FINISHED. TINE STAMP- 9S
CAR 13 OAS ENTERED FOR I REMASE. TINE STAMP- 95
CAR 14 RAS ARRIVED AT THE CARVASE. TIME STAMP a 96
CAR 13 VASE IS FINISHED. TIME STAMP- 100
CAR 14 HAS JUST UTERED TIE VASE. TINE STAMP- 100
SnRRY THE CARWASH IS MOW CLOSED

C-44

Appendix D. DISPLAY DRIVER INTERFACE

REQUIREMENTS

This appendix is included for completeness of this document. It was taken

directly from the thesis by DeRouchey (9).

The datafile is composed of records of several types. Each record type contains

fields in a specific format. The number of fields in a record is different for each record

type. In all cases the first field contains an integer which defines the record type.

Types

Icon Assigneinnt Assigns an icon index to a viewable object.

30 0 I

Example: 30 3 30

Table D.1. Record Type 30

Field Description

30 'u',ecord Id

0 0-, ject Index Nur..ber

I Icon Index Number

Object numbern. must begin with I and be seqicntipl.

D-1

Object Location Contains position and orientation data for ai viewable object..
The position and velocity values have a maximum width of eleven characters. This

width is inclusive of a minus sign and a decimal position. The angles are measinred

according to the right-hand rule, which is as follows: as you look down the positive

rotation axis to the origin, positive rotation is counterclockwise.

31 0 T x y z Vx Vy Vz b p z, Vh Vp Vr

Example: 31 2 2.5 1000 500 -20 1.2 2.4 -. 3 30.0 60.0 -90.0 0.5 5.0 -1.0

D-2

Table D.2. Record Type 31

Field Description

31 Record Id

0 Objec.b Index Number

T Time (seconds)

X X - position (meters)

Y Y - position (meters)

Z Z - position (meters)

VX velocity in x (meters/sec)

VY velocity in y (meters/sec)

VZ velocity in z (meters/sec)

H Heading (degrees)

P Pitch (degrees)

R Roll (degrees)

VH change in Heading (degrees/sec)

VI) change in Pitch (degrees/sec)

VR. change ina Roll (4degrees/sec)

Icon Identification Identifies an icon by index and geometry description filt-

iwlne.

32 I F

Exaniple: 32 3 migi

Icon number is determined freely by the user.

D-3

Table D.3. Record Type 32

Field Description

32 Record Id

I Icon Index Number

F Icon Filename

Object Termination Identifies when an object is to be terminated.

33 0 T

Example: 33 3 115.5

Table D.4. Record Type 33

Field Description

33 Record Id

0 Object Index Number

T Termination Time

Start Display Indicates all icons and the initial starting positions have been

identified and sent to the graphics engine. The graphics engine can begin displaying

the simulation.

50

I)-4

Example: 50

Table D.5. Record Type 50

Field Description

50 Record Id

Ihiet Display Indicates to the graphics display system that the sinulation was

restarted and will begin execution. Tihe graphics display system will pause ,liitil a

SIART DISPLAY is re,.eived.

52

Example: 52

Table D.6. Record Type 52

SField Description

52 Record Id

End of Simulation Indicates the end of the simulation. This will bc the last

line within the datafile that is read.

86 T

D-5

Example: 86 245.0

Table D.7. Record Type 86

Field Description

86 Record Id

T Termination time

Orde.ring

All icon identifications (type 32) must occur before any other type of recoid ii,

thc datafile. Each viewable object must be associated with an icon (type 30) before

a locaJtion record (type 31) for that object can occur in the da.,a fl,.

D-6

Appendix E. RIZSIM Configuration Guide

E'.I Introduction to the rizsimn Configuration Guide

To run the rizsitn simulation a number of supporting files need to he linked to-

ge-hcr. The files needed to be linked together are rizsimcn, llc, sitn.driv.c, simA'unc.c,

anl(d events.c. See Figure 3.6 for the file relationships. This configuration guide details

the compiling order of the associated files to create the executable rizsii simulation

code. The next section presents the UNIX makefile format used to compile and linlk

tlh ncdcd code. Other code which also must be present during the compihle and

liiik phase are ll.hi, sim..driv.h, sin.'func.h, and events.h,

1'.2 Rizsim Makefile

CFLAGS = -g

OBJS = sim-driv.o events.o sim-func.o 11.o

LIB -Im

rizsim: $(OBJS) rizsim.o

cc -o rizsim $(OBJS) $(LIB) rizsim.o

rizsim.o: rizsim.c

sim-driv.o: siin.driv.c

events.o: events.c

sim-func.o: sim-func.c

11.o: 11.c

E-i

Appendix F. RIZSIM USERS GUIDE

It is not the intent of this appendix to describe the functions, events, or ex-

pected behavior of any particular simulation. It is assumed the user already knows

how the simulation should perform given a starting scenario. The intent of this

appendix is to describe how the input scenario file is created and named.

Currently, as the rizsim.c code specifies, the scenario input file must be named

"datafile.c". If it becomes necessary to change the name of the input file it can be

dlone by simply changing the read-datafile function call parameter in the rizsim.c

code to correspond to the desired new data file name.

Figure F.1 shows the scenario input file format. All field entries are manda-

tory with the exception of those fields which are shown as "can be re-

peated" fields. These fields are directly tied the corresponding fields directly pre-

ceeding them, which gives the number of times the fields are to be repeated, if they

are to be given at all. For example, if field 27 was a 5, then fields 28, 29, and 30

should be repeated five times to accomodate the five sensors. Conversely, if field 27

was a 0, no entries for fields 28, 29, or 30 would be given, and the next entry should

be field 31.

Each field is seperated by a single space. A line of data encompasses

all data needed for oire object. A carraige return seperates lines of data,

thus, carraige returns will be after either field 43 or 46.

A word of caution is appropriate at this point. Since there is a wide variety of

legal enties for each field there has been no attempt to determine if any particular

entry is correct. This translates to mean that although a created file may be correct

format wise, it is up to the user to ensure that the data entered is correct. Incorrect

input, if not caught before the simulation is displayed will undoubtably result in

display anomalies. There Is, however, some error checking being done on the input

P.'

Appendix F. RIZSIM USERS GUIDE

It is not the intent of this appendix to describe the functions, events, or ex-

pected behavior of any particular simulation. It is assumed the user already knows

how the simulation shouldA' perform given a starting scenario. The intent of this

appendix is to describe how the input scenario file is created and named.

Currently, as the rizsim.c code specifies, the scenario input file must be named

"datafile.c". If it becomes necessary to change the name of the input file it can be

(lone by simply changing the read-datafile function call parameter in the rizsini.c

code to corresp ond to the desired new data file name.

Figure F.1 shows the scenario input file format. All field entries are manda-

tory with the exception of those fields which are shown as "can be re-

peated" fields. These fields are directly tied the ,corresponding fields directly pre-

cending them, which gives the number of times the fields are to be repeated, if they

aire to be given at all. For example, if field 27 was a 5, then fields 28, 29, and :0

should be repeated five times to accomodate the five sensors. Conversely, if field 27

was a 0, no entries for fields 28, 29, or 30 would be given, and the next entry sholcd

1) field 31

Each field is seperated ky a single space. A line of data encompasses

all data needed for one object. A carraige return seperates lines of data,

thus, carraige returns will be after either field 43 or 46.

A word of caution is appropriate at this point. Since there is a wide variety of

legal enties for each field there has been no attempt to determine if any particular

entry is correct. This translates to mean that although a created file may be correct

format wise, it is up to the user to ensure that the data entered is correct. Incorr, (t

input, if not caught before the simulation is displayed will undoubtably result. iii

display anomalies. There is, however, some error checking belng done on the input

F-1

data file; specifically the number of fields are checked against those required (i.e.

if a mandatory field is omitted or if an improper number of the optional fields are

provided, an error message will appear on the screen).

Once the input scenario file is created and the executable rizsim code has been

created, all that then needs to be done is to type the executable file name. The

output is sent to a file called display.c in the directory where the executable code is

run.

F-2

field I field 2 field 3 field 4 field 5 field 6 field

jnt int int double int int Jut

objcct type object id obj loyalty cunT time fuel stat condition vl__rahilit__'

field 8 field 9 field 10 field 11 field 12 field 13 field 14,

double double double double double double double

curr x coord curr y coord curt z coord x velocity y velocity z velocity yaw rate

field 15 field 16 field 17 field 18 [, field 19 field 20 field I-I

double double int int intitin

pitch rate roll rate experience threat know mn turn red max speed e fn,.lI

field 22 field 23 field 24 field 25 field 20 field 27 field 2S

alit int double double double int int

max climb # routcpts x coord y coord z coord # sensors sensor type

Sian be reheated * routent times calln i, r,' lat Id

field 29 field 30 field 31 field 32 field 33 field 34 field T3

jilt int int int int int int

sensor range •ensor resolutjion # armaments arm type arm range arn y-ild arm accu '.ry

sensor times can be repeated # arumatent times

field 36 field 37 field 38 field 39 field 40 field 41 fild 2"

iut int int int double double dotiblc

Sari speed arm count j targets target type targ x coord targ y coord targ 7 coord

-, _ ___can be repeated * tarxet times

field 43 field 44 field 45 field 46

int int int int

defensive sys def sys type def eye range def eye effect

Scan be repeated # defensive eye times

Figure F.1. input File Format

F-3

Vita

Robert John Rizza was born February 24, 1957, in New York City. After

graduating from Springfield Gardens High School in 1975, he enlisted in the United

States Air Force. He seperated from the Air Force in 1979 and enrolled in the

University of South Florida, Tampa. After receiving an Associate of Arts degree

he transferred to the University of Central Florida, Orlando. In 1983 he received

an ROTC commission and B.S. degree in environmental engineering technology,

graduating summa cum laude. He served as a test manager at Wright Patterson

AFB before attending the basic meteorology program at Texas A&M University in

1985. He served as the Wing Weather Officer to the 509th Bomb Wing, Pease AFB,

prior to attending the Air Force Institute of Technology. He is married to Kathleen

1M. Rizza and has one son: Keith.

lPcrmanent address: RD 2, PO Box 412
Cold Spring, New York
10516

VITA- I

Bibliography

1. "Military Make-believe," Miltronics, pages 16-24 (May 1989).

2. Battilega, John A and Judith K. Grange. The Military Applications tf Mod-
elling. Ohio: AFIT Press, 1981.

3. Bent, Nathaniel E. and Robert M. Kerchner. "The TAC Brawler Air Combat
Simulation." In Military Computing Conference, pages 250-258, 1987.

4. Bezivin, Jean. "Some Experiments in Object-Oriented Simulation." In Object-
Oriented Programming Systems, Languages, and Apf;!i'ations (OOPSLA) 87
Proceedings, pages 394-405, 1987.

5. Bezivin, Jean. "Design and Implementation Issues in Object-Oriented Simula-
tion," Simuletter, 19:47 - 53 (1988).

6. Booch, Grady. Software Components with ADA. Menlo Park, CA: Ben-
jamin/Cummings, 1987.

7. Booch, Grady. Software Engineering with ADA 2nd Edition. Menlo Park, CA:
Benjamin/Cummings, 1988.

8. Chan, Stephen L. and Barbara J. Vogel. "Simulation of Multiple Aircraft Infor-
mation, Communication, and Decision in Air Combat," Mathmatics and Com-
puter Modelling, 11:865-870 (1988).

9. DeRouchey, William. A Remote Visual Interface Tool for Simulation Con-
trol and Display. MS thesis, Air Force Institute of Technology, 1990.
A FIT/G CS/ENG/90D-03.

10. Duncan, Ralph. "A Survey of Parallel Computer Architectures," Comprn /cr.
pages 5-16 (February 1990).

It. Flynn, R. J. "Very High Speed Computing Systems," IEEE Proce(dingsl.

54:1901-1909 (1966).

12. Fujimoto, Richard M. "Parallel Discrete Event Simulation." In MacNair, E.,
et al., editors, Proceedings of the 1989 Winter Simulation Conference, pages 19
- 28, 1989.

13. Garrambone, Michael W., 1990. Major, USA, Operations Research Dept., Air
Force Institute of Technology, Personal Interviews.

14. Goldberg, A. and D. Robson. Smalltalk-80: The language and its Implementa-
tion. Reading MA: Addison-Wesley, 19R3.

15. Humphrey, Watts S. Managing the Software Process. New York: -ldison-
Wesley, 1989.

BIB-I

16. Jarmark, B. "Two Aggressive Aircraft in a Realistic Short-Range Combat
as a Differential Game Study," Computers and Mathmatics with Applications,
18:101-105 (1989).

17. Kaudel, Fred J. "A Literature Survey on Distributed Discete Event Simulation,"
ACM SIGSIM Simuletter, 18(2):11-21 (June 1987).

18. Kernigan, Brian W. and Dennis M. Ritchie. The C Programming Language.
New Jersey: Prentice Hall, 1988.

19. Linowes, Jonathan S. "It's an Attitude," Byte, 13:219 - 224 (1988).

20. Neelamkavil, Francis. Computer Simulation and Modelling. John Wiley and
Sons, 1987.

21. Nicols, David M. "Mapping a battlefield simulation onto message-passing par-
allel architectures," Distributed Simulation, pages 141-146 (1989).

22. Nygaard, K. and O.J. Dahl. "The Development of the Simula Language." In
Confc•'ence on History of Programming Languages, 1978.

23. Pritsker, A. Alan B. and Claude D. Pegden. Introduction to Simulation and
SLAM. New York: John Wiley and Sons, 1984.

2-1. Reynolds Jr., Paul F. and Phillip M. Dickens. Spectrum: A Parallel Simulation
Testbed. Technical Report, Virginia Institute for Parallel Computation, 1988.

25. Roberts, Stephen D. and Joe Heim. "A Perspective on Object-Oriented Simu-
lation." In Proceedings of the 1989 Winter Simulation Conference, pages 277
281, 1989.

26. Samuels, M. L. and J. R. Spiegal. "The Flexible ADA Simulation Tool (FAST)
and its Extensions." In Procecdings of the 1987 Winter Simulation Confcrence,
1987.

27. Selvaraj, Sathyakumar, et al. "C Based Discrete Event Simulation Support
System." In Proceedings of the 1988 Winter Simulation Conference, 1988.

28. Sommerville, Ian. Software Engineering. Addison - Wesley, 1989.

29. Thesen, Arne and Laurel Travis. "Introduction to Simulation." In Proceedings
of the 1989 Winter Simulation Conference, pages 7 - 14, 1989.

30. Waite, Mitchell, et al. The Waite Group's C Primer Plus. Indiana: Howard w.
Sams and Company, 1988.

31. Weiland, Frederick, et al. "An Imperical Study of Data Partitioning and Repli-
cation in Parallel Simulation." In The Fifth Distributed Memory Computing
Conference, pages 915-921, April 1990.

32. White, Eric. "Object-Oriented Programming as a Programming Style," The C
Users Journal, pages 43-58 (February 1990).

BIB-2

REPORT DOCUMENTATION PAGE L, AMprove o d'0o-O?6

J~~ W, I q to IU 14,J _I I I� so.P ý O ' Q~t, I'~ .pL-X I IC'

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1990 Master's Thesis
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN OBJECT-ORIENTED MILITARY SIMULATION

BASELINE FOR PARALLEL SIMULATION RESEARCH

6. AUTHOR(S)

Robert 3. Rizza, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Tichnology, WPAFB Ol 45433-6583 AFIT/GCS/ENG/90D-12

9. SPONSORING ,'MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING .MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Mnxnmum 20C words)

"11!s paper documents the design and implementation of a discrete event nulitary simulation using a modula
object-oriented design and the C programming language. The basic simulation is one of interacting objects. Thl
objects move along a predetermined path until they encounter another object. Objects react to the encountere
object according to the implemented algorithm. Object reaction options are fight, evade, or do nothing. lin tlh
code's current form it is generic enough to allow a user the flexibility of creating an infinite number of scenario
bounded in size by the hardware's memory capacity. The modularity of design will allow for easy expansion o
object complexity and detail, as well as easy removal or replacement of functions or events. The simulation cod
makes use of a generic linked list data structure and simulation driver. This adds yet another area to the cod
where expansion, removal, or replacement could be easily accomplished. The net result is a military scenari
simulation program which is highly expandable and modifiable, yet compact enough to be easily understood.

14. SUBJECT TERMS 15. NUMBER OF PkGES

Military Simulation, Object-Oriented Simulation, Simulation 196
16. PRICE CODE

17. SECUR17Y CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20, LIMITATION OF ",BSTRACTOF REPORT OF THIS PAGEI OF ABSTRACT

UNCLASSIFIED UNCLASSiFIED UNCLASSIFIED UL
NSIN 754O0-01-280.5500 Saa'd a o'" 29 ,98 v 2-89)

