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Preface

The purpose of this effort was to determine if vortex

paneling methods can compute the vortex bursting that occurs

l over a unit aspect ratio delta wing at high angles of

attack. The leading-edge vortex flows dominate the flow

field over such wings. The vortex breakdown, or bursting

that occurs over the wing affects the lift and drag, as well

as the moment-balance of the aircraft. It is therefore

desirable to compute such effects if possible.

Multiple calculations were performed on both the ELXSI

l at the Air Force Institute of Technology, and the Cray-YMP

at Ohio State University. The unreliability of the ELXSI

provided great anxiety as to whether or not this thesis

l would be completad. However, the Cray-YMP worked quite well

and was an invaluable, albeit limited, resource.

I would like to take this time to give appreciation to

others. I would like to thank my thesis advisor Major Curt

Mracek for his invaluable time, support, and assistance. I

l would also like to thank the other committee members, Cap-

tain Phil Beran, and Lieutenant Colonel DeJongh for their

I valuable inputs. I would also like to give thanks to all my

classmates for their help and friendship. Finally, and most

importantly, I would like to give thanks to my wife, Lora,

for her support and understanding throughout the past one
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and a half years.

Special thanks and remembrance is given to a fellow

student and friend, Captain Wayne Wilsdon who died in an

automobile accident during his tour at AFIT. His generosity

and help made it possible for all to pass the Aerodynamics

of Wings and Bodies course. His help, and friendship will

not be forgotten.
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Abstract

A unit aspect ratio delta wing is analyzed to determine

if a unsteady vortex panel method can calculate the vortex

bursting of the vortex developed along the leading-edge. A

two-dimensional vortex panel method is used to investigate

wake splittipg schemes of the vortex cores that comprise the

vortex sheet, or wake. The worthier of the splitting meth-

ods is later implemented into the three-dimensional wake.

The weighting values of the Kutta equations are investigated

for the leading-edges, and are determined to be problem spe-

cific. An alternative approach to the management of the

wake data is presented and implemented. The delta wing is

then analyzed for 20.5 and 30 degrees angle of attack. The

panel method produced a perturbation and enlargement in the

wake at the two-thirds chord position over the winq at 30

degrees angle of attack, indicative of vortex breakdown.

However, a qualitative comparison with the results of the

20.5 degree angle of attack calculation negates this conclu-

sion. Vortex bursting was not evident over the wing at Ju

degrees angle of attack.

U

I : iii.
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Chapter I

I Introduction

* 1.1 Problem Statement

To determine if vortex paneling methods can compute the

vortex breakdown that occurs over a delta wing at high

* angles of attack.

* 1.2 Motivation for Research

The design of modern aircraft combines both analytical

and experimental testing. As more powerful computers

3 emerge, the usefulness and applicability of computer codes

to predict the fluid characteristics over airfoils has

I increased. As aircraft operate in the high angle of attack

regimes, the flow field becomes quite complex and is domi-

nated by vortex-flow effects. The aerodynamic challenges

this brings are expected to increase, as designers try to

solicit the advantages of this flow. The ability to compute

I this complex airflow would facilitate the design process and

i reduce the costs associated with development.

3 1.3 Background

A grasp of what is vortex breakdown and how will it be

I determined numerically needs to be addressed. Within the

I1
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context of this effort, the terms "vortex Lreakdown" ana

"vortex bursting" are used synonymously and are restricted

I in reference to the fluid flow over delta wings. Ekaterina-

ris and Schiff describe vortex breakdown:

An increase in the angle of attack strengthens the
vortices (generated along the leading edges) until
eventually a sudden change occurs in the nature of
the cores. This sudden change is know as vortex
breakdown. Vortex breakdown involves a transition
of the vortex core from jet-like to a wake-like
flow. (2:1)

Hitzel defines vortex breakdown as '... a rapid change of

the vortex structure and a corresponding diminishing of the

induced suction forces" (3:73). O'Neil, Barnett, and Louie

describe the breakdown effect with respect to the leading-

edge vortex, "... the well-defined leading-edge vortex

degenerated rapidly into a substantially larger, more

diffuse vortical flow region with relatively mild gradients"

* (7:220).

Several attempts have been made to compute the leadirg-

edge vortex breakdown that occurs over delta wings at high

angle of attack. Hitzel investigated this phenomena using

Euler-methods. He found that the Euler-methods simulated

3 the leading-edge vortices despite the neglect of viscous

effects. He states,

Often vortex-breakdown was supposed to be triggered

by viscous effects. However as experiments showed,
breakdown is almost independert of viscous
effects.. .Breakdown is triggered by adverse
pressure-gradients which decelerate the axial flow.
By the demands of continuity and the conservation of

2
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momentum the vortex-core is forced to widen conside-
rably.. .and the suction-peaks producing the nonlin-
ear lift will decline.

In his calculations, Hitzel was able to compute the lading-

edge vortex breakdown that provided "good agreement" with

experiments. However, his solutions "exhibit very high

total pressure losses in the vortex-core", and he attributes

these losses to numerical errors introduced by the descreti-

zation of the mesh. Furthermore, there were two vortex

diminishing effectz. One of these causes was the decreasing

geometrical resolution of the vortex wake. As the vortices

leave the wing, they flow into the coarser outer part of the

computational domain. The other vortex diminishing effect

was caused by the downstream boundary conditions. Hitzel

states, "Any boundary condition impose some constant free-

flow conditions, (therefore) the vort , almost must cease to

exist at the boundary." (3:73-83)

O'Neil, Barnett, and Louie also investigated vortex

breakdown over delta wings using Eulex-methods. They echo

Hitzel's remarks that vortex breakdown is governed primarily

by inviscid factors. They found in their computations that

the well-defined leading-edge vortex degenerated
rapidly into a substantially larger, more diffuse
vortical flow region with relatively mild gra-
dients.. .The occurrences of such breakdown-like
events in the Euler solutions were found to have
definite trends, and were clearly not a result of
arbitrary numerical coincidence.

I 3



They developed a method to identify the location of vortex

breakdown. At the onset of vortex breakdown, the locus of

maximum swirl angle, falls in toward the vortex axis. This

identifies the point of vortex breakdown, or shear-layer

collapse. However, they too experienced the numerical dis-

I sipation induced by the artificial viscosity, which is com-

mon to all Euler codes. (7:218-226)I
1.4 Scope of Development

The effort used the vortex panel method developed by

Mracek. (6:11-100) Panel methods are used to describe

inviscid, potential-flow aerodynamics. The method is a

hybrid of vortex paneling methods, which describe the sur-

face, and vortex lattice methods, which are used to model

the wake. The advantages over Euler-methods are numerous.

Hitzel states,

"In Euler-calculations usually the start conditions
already introduce vorticity... A proper natural
evaluation of the vorticity however should start
from zero evolving to the flight-velocity to simu-
late the real time-dependent build-up of the flow."
(3:75)

This was performed within the panel method employed by

starting the fluid flow impulsively. This method has a

continuously developing wake that is not bound by a computa-

tional domain, or mesh. This eliminates the vortex dimi-

nishing effects and the initial induced vorticity over the

4



surface as found in Euler-codes. This method also allows

for the ability to apply and move control surfaces on the

airfoil, and account for roll-, pitch-, and yaw-rates.

A two-dimensional vortex panel method was used to

investigate two separate splitting algorithms of the wake.

The wake will be modeled as a vortex sheet composed of

discrete vortex cores. As the wake cores are convected

downstream, the distance between adjacent cores i. ease.

In order to sustain a continuous distribution of wake cores,

additional cores are added between those that have moved

sufficiently apart. The strengths of the added cores are

determined from the conservation of circulation within the

wake. This provided a splitting model to be used in the

three-dimensional vortex panel method. Similar to the two-

dimensional modeling of the wake, the three-dimensional

representation of the vortex sheet used discrete vortex

cores, although, they are of finite length due to the added

dimension. An investigation into weighting values on the

Kutta condition for the leading edge was accomplished to

create the correct flow condition off the leading edge. The

wake data was organized into a finite element methodology.

This reduced the amount of computer memory and computational

time required for a given calculation. An analysis is then

presented on a unit aspect ratio delta wing, comparing the

results at 20.5 and 30 degrees angle of attack.

5



Chapter II

Two-dimensional Model

2.1 Introduction

A two-dimensional vortex panel method was used to

investigate two different wake splitting algorithms. The

Isuperior of the two models was then extended into the three-

dimensional vortex panel method. A panel method describes

potential-flow aerodynamics. The surface of the airfoil is

Imodeled using segments on which the surface vorticity is
linearly varying. The wake was modeled as a vortex sheet

1composed of vortex cores. As the cores are convected down-

stream, they disperse and move further apart. In order to

model a continuous wake, additional cores are added between

those cores that have moved sufficiently apart. This was

termed wake splitting, as the strength of the new core is

dependent on the two adjacent cores.

2.2 Two-Dimensional Vortex Panel Method

A two-dimensional vortex panel method was used to

investigate the wake splitting because of its simplicity and

corresponding relationship to the three-dimensional vortex

panel method. In both cases, a potential flow model is used

to describe the flow. The velocity is described as:

6
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(2-1)

The continuity equation for incompressible flow is:

VV - 0 (2-2)

Subsituting in for the velocity potential yields Laplaces

equation.

V20 _ 0 (2-3)

The vortex distribution was choosen such that Laplaces

equation was always satisified, therefore, only the boundary

conditions needed to be investigated.

For the two-dimensional model, the surface of the

airfoil was modeled using line segments, or panels, on which

the surface vorticity is linearly varying. Time was

partitioned into time steps and equated to the average

length of the panels representing the surface. Both the

chord and freestream velocity was nondimensionalized. A

wake was generated off the trailing edge and was modeled as

a vortex sheet composed of discrete vortex cores. At each

3 new time step a new trailing edge core was generated. The

wake cores were then convected at the local particle

velocity to preserve a pressure free wake position.

1 7



The total velocity of the potential flow around a body

can be written in terms of the free-stream velocity and the

disturbance velocity.

V - Vs Vd (2-4)

The disturbance velocity is the change in velocity due to

the presence of the physical body and the velocity induced

by the wake.

Vd = Vbody - Vwake (2-5)

The no penetration condition on the surface was used to

solve for the vorticity on the airfoil.

V A- 0 (on the surface) (2-6)

where f is the unit normal vector to the surface.

The velocity induced at any location in space by a

point vortex is given by: (4:381)

dr (2-7)
dV - 2nrAe

2mr

8



Figure 1 presents a panel where the vorticity is linearly

varying.

1P(xy)

3r

Q(R,0) L

Figure 1. Two-Dimensional Vortex Panel

Where the linearly varying vortex distribution is provided

by:

( ) - _ 2(2-8)

Where Gi and G2 are the vortex strengths at the endpoints.

It is known that

dF - f2( )d (2-9)

Therefore, the total velocity induced by a vortex panel is

determined by integrating along the length of the panel:

I 9
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V P d (2-10)

Using a right-handed coordinate system yields:

do - -sinfpi + cosP) (2-11)
i r /xk)2 .y2

r( -

where,

I sin[ P -Cosi PI - (2-12)

r r

Thus,

I-vo_) + yd2 (2-13)

*~~~ - k~l~ 1i

IId
- 2n (x -k) + y']a

By normalizing the length of the panel to one, the vortex

strength along the panel becomes:

f'(k) - GI(I-k) + GA (2-14)

10



Substituting for fl(t):

if 1____ (2-15)

or,

I = G1 o(1- [[(-)]

VP FLL (Xt+22n- f (2-16)

+G2 of'y - t(x.- _d d+2- it (X- U2 + y 2

This supplies four integral equations that need to be

solved:

3VPXIC2OG II + V PYIG2OGIJ+

V G (2-17)

where,

Ii



VPXG 2  njo (X-k) 2 #y2

-0 1 f,(1 -7 2--
2PIG 2 rt 0 ( X- t) 2  + y2

(-8

I =,~0  1 tx 2 dt

IY -G 1 1t (X-t)2 +y2

solving these integrals yields:

3 VPXcIG- W 1(1 -x)A+XlnRJ

I yi C - , 1 [ ( l - x )R ~ A O 1 ]( -9

I IG- m [1 e+ InR]

I PYIG - ='- -yAO + 1 x~nR1

where,

3 AO - tan1'(x)-tan-1(xI) (-0

I mR - In[(X_)2-+y2]

1 12



There are two singularities: x=O, y-O, and x=1, y=O. Other

regions that deserve careful consideration are when y=O, and

x<O, O<x<l, and x>1. The results of these limits are:

- x<0 y-0 AO-0

Sx> I y-0 AG-o (2-21)

O<x<l y-O AG--a

0 < x< 1 y-40 Ae--rn

A simple coordinate transform was used when the panel did

not lie on the axis. Where,

I {) [Cos Y siny Y IM (2-22)
17)= -sin7 cosyJkif

The velocity induced on a point in space by a panel can be

considered as:

VP - V 14- V Y

" [V. VY]( } (2-23)

M Cosy sin y]I}
- [V x Vy] -siny cosy 3

where,

13
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V - VPX 2 OG + VpyIGI OG 2  (2-24)

Vy - V IYG2 OG I +. V PYI GIOG 2

I The vector dot product with the outward normal, required for

the no-penetration condition, was then performed on this

component of the velocity.

The surface of the airfoil consisted of numerous panels

joined together at their endpoints as illustrated in Figure

1 2. The endpoints were termed nodes. For a closed surface,

there are the same number of nodes as there are panels. The

surface vorticity was constrained to be continuous, i.e. the

Gi of a one panel was equal to the G2 of the preceding

panel. Therefore, each node has a single vortex strength
I (G).I

I
7 109

5 
4

I

Figure 2. Vortex Panel Modeling of a NACA0012 Airfoil

I
14I



The no penetration condition was only solved at the

midpoints of each panel, or control points. Each panel has

an influence at every control point. When the vector dot

product is performed with the outward normal, this provides

a number of equations equal to the number of panels

describing the surface. This results in an influence matrix

[A]. The only unknowns are the vorticity at each node.

Hence,

[A](G} - [Vbo.dy] (2-25)!
where [VbodY] is the perturbation in velocity that the body

I produces at each control point.

The wake consists of vortex cores that have been

generated at the trailing edge, then convected downstream at

3 the local particle velocity. The strengths of all the wake

cores are known except for the trailing edge core. Its

5 strength was determined from:

F total - 0 (2-26)I
or,I

1Fc  f wng & I-wk, - 0 (2-27)

15
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where,

r wing LbodyT (2-28)

I= G,,=

It = distance between control points

Twake = Ycirculation of the remaining wake cores

IC - circulation strength of the trailing edge core

F wake wing

S-rake- [I](}

The [1] is a row matrix containing the distance between the

control points of adjacent panels and (G} is a column matrix

comprising the vorticity strength at each node.

The wake also influences the velocity at the control

points. The vortex sheet was modeled as a set of discrete

cores. The velocity induced at any point in space by a

vortex core is determined from: (4:381)

= F(2-29)

21tr

16



where r is the distance from the vortex core to the point in

question.

I The trailing edge core also induce velocities at the

control points, given by:

VCL r e (2-30)

where,

I ri = distance from trailing edge core to a control point

IThe vector dot product with the outward normal vector at
each control point can be performed. The result is th,

disturbance the trailing edge core has on the velocity at

the control points.

{c}F - [V] (2-31)

The matrix {c} is comprised of the distances from the

trailing edge core to each control point. The no

penetration condition is therefore,I
i [ ,]{G} { c V wlke- *'V - 0 (2-32)

1 17



Substituting for the trailing edge core strength,

[[A]-{c}[I]]{G} - {C}Fwake -Vwake '-Vt,'r (2-33)

or,

I
[A']{G} - [b'] (2-34)

where,

[A'] - [A]-{c}[1] (2-35)

[b'] {C}Vwak I-Vwake*II-VfS •

The only unknowns are the strength of the vorticity at

the nodes, however, imposing the Kutta condition requires

I that the strength of the vorticity at the trailing edge is

zero, or Gi=O. Therefore, the number of equations now

I exceed the number of unknowns. The method of solution was a

reduction in the square of the errors. This is given by:I
[A'] T[A']{G} - [A'] T[b] (2-36)

This matrix equation can be solved using a number of

different numerical methods techniques available. Once the

strengths of the vorticity are known at the nodes, the

18



strength of the trailing edge core is calculated. The wake

cores are then convected at the local particle velocity to

produce a pressure free surface.

2.3 Wake Splitting Algorithms

The wake cores are convected at the local particle

velocity. The velocity induced on a core by itself is infi-

nite. Since this is unrealistic, there was a small area

around each wake core for which that core had no influence.

Once the wake cores move downstream, large distances

are created between adjacent cores. In an attempt to model

the diffusion of the vorticity and to sustain a continuous

wake, wake cores will be added between those that have moved

sufficiently far apart. This is illustrated in Figure 3.

Two different wake splitting algorithms were investi-

gated. In each case, cores are divided into smaller ones as

the wake forms. The first method of wake splitting was

I similar to that investigated by Mook, et al (4:4). Once the

distance between two adjacent cores reached a prescribed

I distance, F dt, a core would be added and the two bounding

I cores reduced in strength. This distance was choosen in

order to sustain approximately the same distance between

Ievery core. The strength of the added core would be given

by:

I

I



Iade T n lF 1 (2-37)
gaded 3 3

and then

3 (2-38)

U If additional cores were required to be added on both

sides of a wake core, the strength of the added cores would

be:

radded I - 1 n 1 + 11
3I (2-39)

I mdded2 m Fn 3 Fn+

where,

Hrn-1 2 r. -I

rn- -rn (2-40)

I 20



In this way, the total circulation of the wake remained

constant throughout the splitting process. Figure 3

illustrates this procedure. A row of four nodes are

represented by the darkened circles at an arbitrary time, T.

At t+6t, they are convected at the local particle velocity

to their new respective positions. Enough distance has been

created between the last three nodes to require splitting.

This necessitates the addition of two wake nodes represented

by the open circles. The strengths of the wake nodes are

then determined by the equations 2-37 through 2-40.

2 3 4 5 6

I

Tige 3.BscToDmninlWk Splitting

The second algorithm was an extension of the first.

The wake cores would be convected at the local particle

velocity to establish their new respective positions. If

the distance between any adjacent cores was sufficient to

l warrant splitting, a new core would be added between them at

21



their original positions before convection. The strengths

of which are given by equations 2-37 through 2-40. The

entire wake would then again be convected and the distances

between adjacent cores rechecked. This would continue until

all the distances between adjacent cores were within the

specified limit. This method is illustrated in Figure 4.

Pass 1

I \ \' Z
\ .' ,

0 'IPass 2 " ."

Figure 4. Enhanced Two-Dimensional Wake Splitting

2.4 Results

The airfoil investigated was a NACA0012 airfoil. The

following equation was used to determine the location of the

nodes. (1:113)

22



I IForri 4~pDrc, c

REPORT DOCUMENTATION PAGE CME 0:,04 1F

I AGEN .S_ ON .. 's 2. REPOPT DATE I3 REPORT TYPE AND DATES COVEREDI _December 
1990

I 7 f -'- S, E
"  

E FU N D iN G N J f 5 kS

VORTEX BURSTING OVER A UNIT ASPECT RATIO
DELTA WING USING VORTEX-PANEL METHODS

5 Donald A. Lorey, Captain, USAF

NAM-,S ANC ADDR SS,ES) 6 PEROFM NG CRGA% ._-13N
REPORJ N]M&2h,

!Air Force Institute of Technology, AFIT/GAE/ENA/90D-14
;WPAFB OH 45433-6583

I , -z..... - :Ja ,. ,:.. AN ; M,: A D,- 10 5 C.., -. ' MC,. C ,

IS A

I

Approved for public release:

distribution unlimited

A unit aspect ratio delta wing is analyzed to determine if a unsteady
vortex panel method can calculate the vortex bursting of the vortex
developed along the leading-edge. A two-dimensional vortex panel
,method is used to investigate wake splitting schemes of the vortex
cores that comprise the vortex sheet, or wake. The worthier of the
,splitting methods is later implemented into the three-dimensional
;wake. The weighting values of the Kutta equations are investigated
for the leading-edges, and are determined to be problem specific. An
alternative approach to the management of the wake data is presented
iand implemented. The delta wing is then analyzed for 20.5 and 30
,degrees angle of attack. The panel method produced a perturbation and
enlargement in the wake at the two-thirds chord position over the wing
!at 30 degrees angle of attack, indicative of vortex breakdown. How-
!ever, a qualitative comparison with the results of the 20.5 degree
angle of attack calculation negates this conclusion. Vortex bursting

.as-not ev.int. ...r he winag a 3 derees anle ofL.

iVortex Bursting, Vortex Breakdown,
Vortex Panel Methods, Vortex Lattice Methods

S- ' ' 9 SEC,., IY CLASS 2C _ _1%1_,

-OF TH PAO ,U[



y(x) * .12(0.2969- 0. 1260x - 0.3516x 2

0.2k (2-41)

I 0.2843x 3 - O.Oix1 )

I where,

x - 0.5-0.5cos(e) (2-42)

Where 0 is incremented from 0 to 21 by:

2n (2-43)

number of panels

This was used to capture the increased curvature of the

leading edge.

The airfoil was modeled using 200 panels, at an angle

of attack of 5 degrees, and was impulsively started. The

chord was set equal to one, and the time step was 0.01,

since this was the approximate average length of the panels.

Figures 5 and 6 compare the vortex sheet at time steps of

25, 50, 75, and 100. The vortex cores are not shown.

Instead a curve connecting consecutive cores is provided as

a representation of the vortex sheet. Notice there is no

visible difference in the wake for these times. Likewise,

Figures 7 and 8 show the position of the wake at 125 and 150
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time steps. A small difference is noticeable at 150 time

steps. Both algorithms produced essentially the same

results. However, the enhanced splitting method required

approximately 25 percent more computational time. This

5added computational requirement would increase as the

calculation was continued. The primary cause was the added

calculations required to compute the local velocity twice

for the entire wake each time step. The enhanced splitting

algorithm therefore did not provide a substantial improve-

ment to warrant its use in the three-dimension paneling

method.

1 0.59

0.44

0.29

0.14 TS=25 TS=50 TS=75 TS=TO0
I ~ ~~~-0.01 "S25T=

-0.31

I -0.46-

-0.61 o. .....'. ... ,. ... ..... .d ....TT _
0 .50 1.00 1.6 2.0

Basic Splitting Method
-- NACA0012 Airfoil, 200 Paniels, 5 Degree Angle of Attack

I Figure 5. Wake Formation Using the Basic Splitting Algorithm

I
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Figure 6. Wake Formation Using the Enhanced Spli-tino

Algorithm

I
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Figure 7. Downstream Wake Formation Using the Basic
Splitting Algorithm
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Chapter III

Three-dimensional Model

1 3.1 Introduction

A three-dimensional vortex panel method was used to

investigate the vortex generated over a unit area aspect

3 ratio delta wing at high angle of attack. The method was

developed by Mracek and uses triangular elements, or panels,

on which the surface vorticity is piecewise linearly vary-

3 ing. Quadratically varying vortex cores are placed at the

edges in order to generate a nonzero vorticity at the edges.

3 The wake was modeled as a vortex sheet, composed of discrete

vortex cores, which emanate from the edges of the surface.

U (5:Chapter 2)

The presentation of the complete aerodynamic model is

too extensive to present here. The solution method used was

3 a minimization in the square of the errors. This permited

the use of weighting values to accentuate, or deemphasize

I certain equations with respect to the other equations. The

3 weighting value for the Kutta equations was investigated for

the leading edges.

3 An alternate approach to Mracek's modeling of the wake

was performed. The new method is analogous to a finite

i element technique, using nodes and elements. The nodes are
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3convected at the local particle velocity. The splitting

algorithm was extended from the two-dimensional model and

i applied to the three-dimensional wake.

3.2 Aerodynamic Model

3 The three-dimensional vortex panel method was provided

by Mracek. The method uses triangular panels, or elements,

U on which the surface vorticity is piecewise linearly vary-

ing, to model the lifting surface. The vertex of each

triangular element was termed a node. Additional vortex

3 cores are placed at the edges in order to generate a nonzero

vorticity at the edges. The wake was modeled as a vortex

3 sheet, composed of discrete vortex cores, or vortex lattice,

which emanated from the edges of the wing.

Typical to vortex paneling methods, there exists more

5 equations than unknowns. The unknowns to the problem are

the strength of the surface vorticify at the nodes, and the

3 constants of integration associated with the surface edge

cores. Again, Laplaces equation was satisfied, and only the

boundary conditions were addressed. The resulting matrix

i equation was:
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A -- C D U-W
B 0 0 (3-1)

*E F G0

J 0 0
K L_ P

* This equation is the culmination of four sets of equations,

each of which are discused separately.

I The no penetration conditions at the midpoint of each

element, or control points, is given by:

3V. = 0 on the surface (3-2)

5 Each element has an influence in the velocity at every

control point on the surface. The result was an influence

matrix, [A].

I
(.Q~ (3-3)

[A-C D] = (U-W)

* Also included was the influence of the edge cores which are

3 dependent on the surface vorticity, and the velocity induced

by the wake.

i The flow field must also satisfy the continuity equation

for incompressible flow.

2
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divV - 0 (3-4)

A vector field, A, is chosen such that

B V = curlA (3-5)

Thus, the continuity equation becomes:I
3 div(curlA) = 0 (3-6)

The vorticity in the flow field is defined as:

n = curl V (3-7)

Because the freestream is irrotational, the vorticity was

defined as the curl of the disturbance velocity only. The

disturbance velocity can then be found by solving the

following equation:

n _ _V2 A (3-8)

GreeiL' -; theorem yields:
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.j From Karamcheti, if the vorticity is contained within a

short distance, E, of the surface, as E approaches zero, the

I product of Inj and E remains constant, and n becomes tangent

to the surface (3:530-532). Therefore,

Y(S)- im Ti c (3-10)

Rewriting the volume integral as a surface integral:

I Y (S) (3-11)
A(r) :- JslI- ' da

Since the disturbance velocity is the curl of the vector

field A, and the divergence of the curl of a vector is

identically zero, any vector field that represents the

surface vorticity will satisfy the continuity equation as

long as:

divy M 0 (3-12)

This divergenceless condition for the surface can be

represented in matrix form by:

(3-13)
[B 0] - (0)
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Quadratically varying cores are added to the edges of

the lifting surface to either capture or create the vortex

sheet. The circulation around the core is dependent on tne

vorticity of the neighboring vortex element. This is

depicted in Figure 9.

Y

I --- y

IY
Y.1 F(x) , ¥x

3 d

l Figure 9. Edge Core and Edge Element

Along the edge of the element:

Y(x) - Yy2Y yx # yl (3-14)

d

For the edge cores to be compatable with the vortex 
panel,

the circulation is given by:

3
I
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dF (3-15)
dx

Integration provides the circulation around the core.

F(x) = YY2-Yyj l Yy xG (3-16)

where G is a constant of integration. In order to make the

circulation continuous in strength around the body, two

adjoining edge cores must have the same circulation at the

connection. Additionally, the circulation around the cores

are continuous through the first derivat'ie at the juncture.

These compatibility equations, in matrix form, are given by:

*~ [ F ](n) =(3-17)J 0 = o

The final matrix equation is the Kutta equation. The

Kutta condition was imposed only at the nodes of the surface

along the edges. This was given by:

I [ K{- 
( 3 -1 8 )

[K LG
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A more in-depth derivation is provided in the following

section.

sciA weighting matrix was used to emphasize one equation

3 with respect to the other equations. Hence,

A C D u-W-
WIB 0 O (3-19)

3W 2E W 2F G - 0
w 3J 0 0

_w 4K w 4 L_ Lw 4 P_

The weighting value applied to the divergenceless

condition has little impact on the solution. The weighting

value used for this condition was 50. The weighting value

for the edge compatibility needed to be large because these

conditions need to be imposed exactly. Therefore, the

weighting value associated with the edge compatibility was

set to 500. Along the trailing edge, the Kutta condition

also needed to be satisfied. The weighting valued applied

to the Kutta equation was set to 50. An investigation into

the weighting value of the Kutta condition along the leading

edge is presented in section 3.3.

Equation 3-19 can be expressed as:

[Sl~n)(3-20)
[S] - {T}

34



where,

-A+C D
wB 0 (3-21)

[S] = w 2 E w 2 F
w 3 J 0

w 4 K w 4 L

and

-U- W-I U-o (3-22)

0
w 4 P

The chosen method of solution was to minimize the sum

of the squares of the errors. This is the solution of the

following equation:

[S]T[S](n} _ [S] T {T} (3-23)

3.3 Kutta Weighting Values

The Kutta condition states: (6:45-50)

ACpIedge - O (3-24)
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where the pressure coefficient is defined as:

,p-p (3-25)

Using Bernoulli's equation for unsteady flow:

30 V 2 p (3-26)
- -- -  P H(t)

It R 2 p

where R is the position vector of the point in an inertial

reference frame.

The far-field boundary condition was that the velocity

potential was not changing with respect to time. The

pressure coefficient can then be written as:

; [ _2 2  1O (3-27)Cp =U-- V- -2--

IHence,

3
I
I
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AC; = Cp -CPU

I V!_V 2 0 *  -
- . - -O +- 2V) Vat I - (3-28)

I 2 + 2Vo.VP6 t

I
The Kutta equation was imposed ideally at the trailing

Uedge. This was performed by using a weighting value of 50
for the Kutta equations associated with the trailing edge

nodes. Along the leading edges, however, a large pressure

gradient exists. In order to capture this pressure gradient

a large number of elements would be required. This was

unachievable along the front of the wing using discrete

points. Therefore the Kutta condition can not be satisfied

ideally. Instead, since it was known that the wake will

convect off the leading edge tangential to the wing surface,

the Kutta condition was only imposed, in as much, to cause

this effect. A weighting value was implemented on the Kutta

equations associated with the leading edge nodes.

It was evident that the required weighting value for

the Kutta equations was job dependent. Several unit area

aspect ratio delta wings, modeled with various number of

elements were analyzed. Initially, a delta wing, modeled

with 20 rows of elements was investigated with Kutta

weighting values of 0.2 and 0.5. The angle of attack was
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20.5 degrees, and the computations were computed to 20 time

steps, or one chord length of wake. The Kutta weighting

value of 0.2 was not sufficient enough to establish the

tangency condition. The value of 0.5 however, produced the

satisfactory result. As a test to investigate if the 0.5

value was too excessive, another computation was performed

using 0.45. This value proved inadequate, therefore, a

calculation with a Kutta weighting value of 0.48 was

performed producing the required tangency condition. A unit

area aspect ratio delta wing was then modeled with 30 rows

of elements, using the 0.48 Kutta weighting value. Again

the problem was carried out to obtain one chord length of

wake, or in this case, 30 time steps. For this calculation,

the value of 0.48 was inadequate. The required Kutta

weighting value for the 30 row delta wing was determined to

3 be 0.5. The angle of attack was then increased to 30

degrees. Initially a value of 0.5 was used as the weighting

f value. This proved inappropriate and a value of 0.515 was

needed for this increased angle of attack. No analytical,

or empirical relationship could be derived to determine the

i appropriate weighting value for any job in general. This

data is provided in Table 1.

i
1!3
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Table 1. Kutta Weighting Value

3 No. Angle of Kutta Results
of At. A(- wpi rhf "

Rows Value

20 20.5 0.200 Insufficient
20 20.5 0.500 Over-constrained
20 20.5 0.450 Insufficient
20 20.5 0.480 Satisfactory
30 20.5 0.480 Insufficient
30 20.5 0.500 Satisfactory
30 30.0 0.500 Insufficient
30 20.0 0.515 Satisfactory

3i 3.4 Wake Modeling

The wake was model as a vortex sheet comprised of

9 discrete vortex cores. The fluid flow was started impul-

sively, therefore, initially there was no wake. Once the

fluid was set into motion, vorticity was formed on the

surface. With this quadratically varying vortex cores were

developed along the edges. The movement of the wake was

3 given by the no pressure jump condition. The pressure on

the upper surface of the wake must equal the pressure on the

lower surface of the wake. In order to satisfy this condi-

3 tion, the wake cores were convected at the local particle

velocity. The cores new positions were given by:S
r(t+At) - r(t)+VpAt (3-29)
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where,

VP = local particle velocity

dt = time step

Once the cores have moved downstream, the flow field around

the wing is changed. This required a new vortex distribu-

3 tion on the wing and edges. The strength of the wake was

determine by the conservation of circulation.

3 Ftotal =O (3-30)

This procedure was performed throughout the calculation for

each time step.

In order to simplify the wake, vortex cores are al .o

used to model the wake parallel to the flow. The endpoints

of which connect to the endpoints of the cores convected

from the edges of the surface. This creates a quadrilat-

eral, or wake element, consisting of four vortex cores

connected at their endpoints. Figure 10, illustrates the

development of the wake lattice. Where the cores connect

are termed wake nodes. To satisfy the fact that the vortex

cores that comprise the wake will be of constant strength,

the core circulation will be the average value of the

quadratically varying edge core. The quadrilateral bounds a
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Figure 10. Development of the Wake Latti.ce
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closed ring of circulation. Only the value of this

circulation need be stored. The circulation of the

I quadratically varying edge core is given by:

I
x 2  (3-31)l F(x) = gl - 2x+g3

I Therefore, the strength of the ring of circulation is given

* by:

3(x)dx (3-32)

G ~ = )g9
6 g 2

As the calculation is carried out, the wake moves

downstream and spreads out. As with the two-dimensional

calculations, the wake was split in order to more closely

model a continuous vortex sheet. The model was an extension

I of the one chosen in the two-dimensional model, although,

now the wake was split in the spanwise direction. Once a

wake element has deformed to warrant splitting, it was

divided into two new wake elements, and two wake nodes are

added. This is represented in Figure 11. The strength of

* the new wake elements are given by:

I
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SG"2 = Gi G"2 - G 12 G"132 G 13I G' ! 22  2 :3z

G 131 21 G'3 1 G 2 2(-2
3 3 (3-33)

G 2 2 G
33 3 223 G2 = 2

a) b) c)

02G 0 G1 G'2~

12 22 12 12 = G2

G G 3G'-3 GG. q 13 G '

U
Figure 11. Splitting the Wake LatticeI

Mracek performed the same splitting technique, but

3 managed the wake data in a redundant manner. He considered

each row of wake data as an independent wake entity, which

I necessitated the existence of two rows of wake nodes for

each row of wake elements. To make the wake continuous, the

I 43



rows of wake elements would be attached. Assuming there

were the same number of wake elements in two consecutive

rows, the upstream row of wake nodes would correspond to the

downstream row of wake nodes from the preceding row of

elements. This redundancy required twice the amount of

computer memory needed to describe the wake.

To eliminate the extra computer memory requirement, the

bookkeeping of the wake used a finite element technique.

The poL'tions of the nodes, and the strengths of the

circulations of the wake elements were only stored. Four

nodes are associated with each wake element. Each node is

shared by the surrounding elements. The wake can then be

represented two-dimensionally. The nodes are numbered

sequentially, starting at the upper left side and ending at

the bottom -ight side of the wake. A matrix consisting of

rows and columns was used to manage the circulation strength

of the wake elements, Figure 12.

A two-dimensional representation of the wake is given

by Figure 12. For the next time step this wake was used to

in the solution process to solve for the vorticity

distribution over the wing. It was also used, along with

the new vorticity distribution, to determine the local

particle velocity of the wake nodes. The wake nodes were

then convected at the local particle velocity. A new row of

wake nodes was added along the edges of the wing along with
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Figure 2. Finite Element Representation of the Wake

a new row of wake elements. The spanwise distance of the

elements was then checked to see if splitting was necessary.

Additional nodes and elements were added as required. This

process starts with the last row of elements and proceeded

upstream towards the wing. Once a row of elements was

reached that does not require splitting and still contained

its original number of elements, no further investigation

into the spanwise distance of the elements was needed. This

was based on the premise that the wake is continually

Idiverging. The nodes and elements were then resequenced to
conform to the previous numbering scheme, Figure 13.

As a check, two calculations using a unit aspect ratio
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3 delta wing, modeled with 20 rows of elements, at an angle of

attack of 20 degrees were performed each using one of the

Iwake data management systems described above. The calcula-3 tions were performed to 20 time steps. The finite element

methodology was verified, computing the same wake mesh as

Mraceks method. However, the finite element technique

required less total memory, and computer time than the

previous method employed. Therefore, this wake data

management procedure was retained for the remainder of this

effort.

2 3
1 2 - T.E.

G(1,1) G(1,2) G(1,3)

5 678

G(2,1) G(2,2) G(2,3)

10 II 12 13 14

15 16 17 18 92

Figure 13. Three-Dimensional Wake Formation
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Chapter IV

Results

Two geometries were investigated for the analysis. In

both cases a unit area aspect ratio delta wing was modeled

using 30 rows of elements. The wing was analyzed at 20.5

and 30 degrees angle of attack. It is known that vortex

breakdown does not occur over a delta wing with an aspect

ratio of one at 20.5 degrees angle of attack. Therefore,

this was calculated as a baseline. An angle of attack of 30

degrees was used to determine if paneling methods can com-

pute the vortex bursting that occurs over the delta wing.

I In order to establish if vortex bursting occurs, the

criteria established by O'Neil, Barnett, and Louie shall be

I used. In both cases, the fluid was impulsively started.

The Kutta weighting values for the 20.5 and 30 degree angle

I of attacks were 0.50 and 0.515 respectively. These values

I were sufficient to sustain the wake tangency condition with

the surface of the airfoil throughout the calculations.

* Figure 14 presents the element composition of the delta

wing.

I Both calculations were carried out to produce one chord

length of wake. The time step was set equal to the height

of the triangular elements. This produced wake elements

I
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that were initially geometrically square and required 30

time steps to produce one chord length of wake. Figures 15,

and 16 show the wake mesh at this time for the 20.5, and 30

degrees angle of attack. The view was from above the air-

foil. In both figures the wing elements were not presented

to help clarify the pictures. The 'X' represents the body

frame origin, and the front apex of the wing. The trailing

edge is easily recognized as the vertical line where the

wake is orginating. The paneling method computes both the

leading edge and the trailing edge vortices typical of the

flow over delta wings. However, the method breaks down for

the 30 degree angle of attack where these two vortices meet

and combine. This was due to the first order convection

scheme used for the wake nodes, convecting the cores at the

local particl velocity. As two vortex cores come within

close proximity of each other, their respective velocities

increase dramatically. This is evident from equation 2-29.

Figures 17, and 18, provide a hidden line picture that pro-

vides a clear view of the leading edge vortices and the

destruction of the wake mesh for the 30 degree angle of

attack. For the 20 degree angle of attack, the leading edge

vortex expands in a continuous manner as it is convected

downstream. However, viewing the leading edge vortex for

the 30 degree angle of attack, shows a perturbation and

enlargement of the vortex approximately at the two-thirds
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Figure 15. Wake Mesh at 20.5 Degrees Angle of Attack and 3

l Time Steps

Ix

I
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Figure 16. Wake Mesh at 30 Degrees Angle of Attack and 303 Time Steps
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cord position. This fits the description of vortex-

breakdown provided by O'Neil, Barnett, and Louie. Cross-

sections of the leading-edge vortices are taken in the Y-Z

plane just along the trailing edge of the wing, Figures 19,

and 20. Here the paneling method performed well by modeling

the vortex roll-up. The vortex for the 30 degree angle of

attack is larger than the vortex produced at an angle of

attack of 20 degrees, as would be expected. Further inves-

tigation into the pressure gradients in the spanwise direc-

tion should be performed to verify this result.

Figures 21, and 22, show the coefficient of pressure

3 distribution in the spanwise directions for 20.5 and 30

degrees angle of attack respectively. The length in the

spanwise direction is normalized by one-half the local span

3 (Ymax). The pressure distributions are provided at one-

half, two-thirds, and five-sixths chords and at the trailing

edge. These curves are typical of the trends investigated

experimentally under similar conditions over delta wings.

I It is evident here that the Kutta condition is not satisfied

* at the leading edges as the coefficient of pressure does not

equal zero at the end of each curve, as it should. The rise

3in the curves are the enhanced lift provided by the suction

induced by the leading edge vortices. A peculiar decrease

I in the coefficient of pressure, or decrease in lift, is con-

* spicuous at the two-thirds chords position at 30 degrees
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Figure 19. Trailing Edge Cross Section of the Wake for

20.5 Degrees Angle of Attack
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Figure 20. Trailing Edge Cross Section of the Wake for
* 30 Degrees Angle of Attack
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5 angle of attack. This corresponds to the chordwise location

of the vortex perturbation. These sharp gradients in the

pressure coefficient, however, contradict the vortex break-

3down criteria as stated previously.
In an attempt to eliminate the sharp pressure

3 gradients, the calculations were continued for another ten

time steps, or one-third chord length. This was performed

to allow the wake to split more thoroughly, and hence,

3 create the mild pressure gradients required to meet the vor-

tex breakdown criteria. Figures 23, and 24, show the wake

3 mesh, at this time, for the 20.5 and 30 degrees angle of

attack respectively. At this time the wake is beginning to

deteriorate for the 20.5 degrees angle of attack. The wake

* has severely degenerated for the 30 degree angle of attack

behind the wing, although, it still retains its structure

3 over the wing. The perturbation in the leading-edge vortex

is stil evident and implies the existence of vortex break-

I down.

S Again the pressure distributions in the spanwise

direction, at the same chordwise positions, over the wing

5 are reviewed. The coefficient of pressure distributions are

provided in Figures 25, and 26. Each position along the

U surface of wing at 20.5 degrees angle of attack provides

i
I
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more lift with the increased wake. The pressure gradient at

the two-thirds chord position, at an angle of attack of 30

degrees, has not diminished, and has actually increased with

the increased amount of wake. However, this is the only

position that exhibits a decrease in the amount of lift pro-

vided for both calculations. This severe pressure gradient

again fails the criteria for vortex bursting over the wing.

Due to the extreme wake degeneration for the 30 degrees

angle of attack, a question arises if this was a valid cal-

culation. In an attempt to answer this query, another cal-

culation was performed for the 30 row delta wing at an angle

of attack of 30 degrees. However, for this computation the

wake was not allowed to split beyond the one and one-third

chords position from the leading apex of the wing. The wake

mesh is provided in Figure 27. For this calculation the

wake has not deteriorated to the point of the previous com-

putation. However, the coefficient of pressure distribution

over the wing is equivalent to the preceding coefficient of

pressure distribution, Figure 28. This provides the unex-

pected result that the pressure distribution over the wing

is relatively independent to the wake downstream.

A comparision of the wake cross sections at two-thirds,

and five-sixths chords length and at the trailing edges are

provided for the 30 and 20.5 degrees angle of attack

computations in Figures 29, 30, and 31, respectively. The
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I Figure 27. Wake Mesh at 30 Degrees Angle of Attack and
40 Time Steps, No Splitting Beyond -40

3.00

2.50-1/

2.00 
/-12

Z: 1.50

I 1.00

0.50

1 -0.00

10.00 0.20 0.4-0 0.60 0.80 1.00
Figure 28. Prsue Span Y/Ymoax

PresureDistribution Over the Wing
Angle of Attcck = 30 Degrees, No Splitting Beyond -40

1 1/3 Chords Length of Wake

I 59



comparisons are performed at 40 time steps. At the two-

thirds chord position, the wake has only progressed one com-

plete revolution. At the trailing edge, it has developed to

approximately one and one-half revolutions. At every

chordwise postion, the wakes generated by the two calcula-

tions are analogous. The prominent distinction between the

different angle of attacks is the magnitude of the leading

edge vortex. Again this leads to the conclusion that vortex

breakdown does not exist in the 30 degrees angle of attack

cal cul ation.

20.5 Degrees

30 Degrees

Figure 29. Vortex Comparisons At the Two-Thirds
Chordwise Position
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Chapter V

Conclusions and Recommendations

A unit aspect ratio delta wing was analyzed to deter-

mine if a unsteady vortex panel method could compute the

bursting of the leading edge vortex. The criteria for which

vortex bursting would be identified was that defined by O'N-

eil, Barnett, and Louie; a degeneration of the leading-edge

vortex combined with relatively mild gradients. (6:220) A

two-dimensional vortex panel method was employed to evaluate

wake splitting procedures of the vortex cores representing

the vortex sheet, or wake. The worthier splitting scheme

was then extended to the three-dimensional panel methods.

The weighting values applied to the Kutta equations along

the leading edges were determined to be problem dependent.

No relationship between the airfoil parameters and the

weighting value could be determined. A finite element tech-

nique was employed to manage the wake data. This provided a

reduction in the amount of computer time and memory required

for a given calculation. A unit area aspect ratio delta

wing analysis was performed. A qualitative comparison

1 between 20.5 and 30 degrees angle of attack was accom-

plished. At the 30 degrees angle of attack the paneling

method produced a perturbation and enlargement in the
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leading edge vortex at the two-thirds r-hordwise position.

However, wake cross-sections and coefficient of pressure

comparisons to the 20.5 degrees angle of attack computation

determined that the panel methcds did not calculate vortex

breakdown.

A possible explanation of the failure to predict vortex

bursting was the splitting method employed. The process

would check the spanwise distance of the wake elements, and

split the elements in the spanwise direction if warranted.

This was based on the premise that the wake is continuously

diverging. However, the wake elements would also elongate

in the chordwise direction. This is apparent in Figures 29

through 31. The area most susceptible to this stretching is

in the leading edge vortex. A method of splitting the wake

in the chordwise direction should be performed before fur-

ther analysis of vortex breakdown is accomplished.

The vortex sheet generated off the edges of the

airfoil, in this effort, was used as the flow visualization

of the wake. Further analysis could be performed by the

inclusion of Lagragian points within the flow field. This

could easily be incorporated within the computer code and

would possibly provide further insight into the problem.

Another area of interest would be the implementation of

a second order convection scheme of the wake nodes. The

intermingling of the leading edge and trailing edge vorti-
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cies induced unrealistically high velocities of the wake

nodes. Thus, the deterioration of the wake mesh. A second

order convection scheme could possibly eliminate this defi-

ciency. However, the use of a higher-order method would

require more computer time, but should still be performed to

determine its benefits.
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