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Abstract

From a few known periodic orbits of Phobos and Deimos
and Deimos, continuation techniques were used to find entire
families ofstable orbits. These techniques involved varying
a parameter,the Hamiltonian, of the system and analyzing how
the orbital behavior changed with the parameter. Floquet
multipliers, for stability analysis, were also computed.
AUT086, a continuvation and bifurcation zoftware package, was
used in this study. Artificial energy dissipation had to be
added to the conservative Hamiltonian system to enable use of

AUTO.
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I. Introduction

Several stable orbits about two natural satellites of
Mars, Phobos and Deimos, were found by Jansson (4:28) using
Poincare’s surface of section technique. This study was ac-
complished to compute additional stable orbits about both
moons by using analytic continuation methods. It was hoped
that, using continuation methods with bifurcation analysis,
families of stable periodic orbits could be found.

The same modified restricted three body model and equa-
tions of motion were used to describe the Mars, moonr, and
artificial satellite system. A solution, in this case a
previously found stable periodic orbit, was used to start the
continuation process. A software package, AUTO86, was then
used to compute stable and unstable orbits of various periods
using continuation methods. Stability was determined by
analyzing the Floquet multipliers, which were computed for
each test case.

Along with finding stable orbits, bifurcation analysis
was accomplished on the solution branches to characterize the
behavior of the nonlinear equations of motion. Using this
approach, bifurcating orbits of higher period were sought;
unfortunately none were found.

The various stable orbits found about Phobos and Deimos
will be presented. Also, stable orbit behavior versus

changing system parameters will be demonstrated.



II. Continuation Methods

Theory

The basis for being able to find solutions to the non-
linear equations of motion is the numerical technique of
continuation. Continuation is the process of starting from a
known solution and varying a parameter contained in the
system. As this parameter is varied in small increments,
previous solutions starting fr 'm the known solution are used
to approximate new solutions. Since the increments are small,
the iteration to compute the new solutions should converge
rapidly.

To 1illustrate the idea of continuation, take an algebraic

system

¢ (x)=0 (1)

with a known solution B, and introduce into it a parameter A.

A new system is formed (1:18)

G(A,x)=Af£(x)+(1-A)$(x) =0 (2)

For A=0, the known solution x=B is reverted to. For A=1, the

system becomes
£(x) =0 (3)
which is the system we want to solve. The "continuation path"

in A is At B PN
LY k) ~ lbq s \‘t)



where A is incremented in small steps. X(ll)=B is kncwn and
is used to approximate x(lz), similarly x(li) approximates
x(l“”, for i=1,2,..9-1. Since the parameters liare close to
one another, the iteration used to solve for x(l“l) should
converge rapidly.

Nonlinear Analysis

Continuation of a starting solution can tell you many
things about how a nonlinear system of equations behaves. For
instance, suppose from the known solution, additional
solutions vary continuously (call this a solution branch) to
a certain value of A. After this value of A, the solution
branch "splits off" into multiple branches. This splitting
off is known as bifurcation. The point at which the number of
solutions changes as a certain value of the parameter 1is
passed is called a branch point (8:40). It can be seen how
the nonlinear system behaves as the parameter is varied if the
solution is plotted versus the parameter. This is known as a
bifurcation diagram. Bifurcation theory involves analyzing
and interpreting the solution branches of a bifurcation
diagram.

In the above example, the solution branch mapped out
solutions to the algebraic system of Equation (1). An equi-
librium solution branch resulted, with each point on the
branch being an equilibrium point. This study is concerned

with continuation of the first order ordinary differential set




of equations that describe the motion of an artificial
satellite about a Martian moon. These equations are of the

form

where A is again the continuation parameter introduced into

the system. For this system, any point where

X=0 (6)

is called an equilibrium point. Therefore, the solution
branches for this system do not necessarily map out equi-
librium points. Periodic solution branches, which will be
discussed in the next section, could also be computed.
However, it is still true that bifurcations result when the
solution branch divides into multiple paths.

Besides dividing into multiple paths, the solution branch
may, at a certain value of the parameter, actually turn back
and follow a different path. The point where it turns back is
another branch point known as a limit point. Figure 1 shows
the branch points discussed and how the solutions to a
nonlinear set of equations can behave. Of particular interest
to this study is the investigation of periodic solutions to a
set of ordinary differential equations.

Periodic Solutions

A periodic solution to a set of equations in the form

of Equation (5) is described by

>
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X(t+T) =X (¢t) (7)

where T is the period and t is the time. Equation (5)
represents an autonomous system because the time variable does
not appear in f(x,A) (5:81). An isolated periodic solution is
known as a limit cycle and is represented by a closed curve in
the phase plane for a two dimensional system, the phase plane
being the solution plane with the system state variables as
its axes. An example of this would be a diagram of a periodic
orbit about Phobos. This orbit would represent a periodic
solution to the nonlinear equations of the system and would
appear as a closed curve when plotted in its orbital plane.
After each period, T, the orbit would return to its original
starting position. The idea of orbital stability will now be
addressed.
Stability

A periodic solution is stable if, with increasing time,
all trajectories in its neighborhood end up on the trajectory
(6:26). With periodic solutions, stability is determined by
computing Floquet multipliers.

Floquet multipliers are simply eigenvalues of a special
matrix called the monodromy matrix. The monodromy matrix of
the periodic solution X*(t) with period T and initial vector

7} is defined by
M=¢(T)=%'§(T;Z°) (8)




where (8:240-241)

$(t;2) (9)
is the solution to
X=£(X,t),X(0)=2 (10)
and
¢=f,(x*,t)®,®(0)=T (11)

If the magnitude of any of the Floquet multipliers is greater
than one, then the periodic orbit is unstable. 1In general,
the Floquet multipliers, hence the stability vary with the
parameter A (8:248).

In a conservative Hamiltonian system, periodic solutions

appear as closed paths in the phase plane (two dimensional

2 UE Il B BN S A B A s

system) and do not approach a limit cycle. Each multiplier in
thkis system will have a magnitude of one.

Method Using AUTO086

The ceontinuation methods used in this study were
accomplished with the continuation/bifurcation software
package AUTO86, written by Eusebius Doedel. AUTO was used to
compute stable or unstable periodic solutions to the nonlinear
ordinary differential equations of this study. To do this,

the package takes a known periodic solution and uses

continuation to compute solution branches. The Floquet
multipliers, which indicate stability as discussed earlier,

are also computed. As the solution branches are continued,
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AUTO searches for limit points, bifurcation points, and other
branch points. It also has the capability to restart the
continuation along a desired solution branch at a bifurcation
point.

AUTO requires user supplied subroutines, which include
the system eguations of motion, a steady state or periodic
solution at a certain parameter value, and user determined
program constants. Pseudo arclength continuation is then
performed to compute solution branches. Arclength
continuation is used to compute past limit points on a branch
where other methods sometimes fail. As an example of pseudo
arclength continuation (2:12-14), the solution (url,pyl),

where p is a parameter of

£(u,p) =0 (12)
is known along with its direction (d“y[’dpyl)‘ From the set
of equations

02 u(u;j"uj-l) dj_1+32p(pj-pj_1)pj_1°d8-0 ( 14 )

where ds is the stepsize along the branch, the next solution
“ﬁ’pj) is computed. The stepsize ds can either be fixed or
adaptive. If it is adaptive and the Newton iteration scheme
converges rapidly, ds is increased for the next solution. If
the iteration fails to converge, the stepsize, if adaptive, is

halved., This continues until convergence is reached or the
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stepsize reaches a predetermined minimum value. This practice
is also used for the continuation of periodic solutions.
AUTO computes the Floquet multipliers by applying a
standard eigenvalue routine. The number of Floquet multi-
pliers inside the unit circle is monitored. For the periodic
case, there 1is always a multiplier on the unit circle,
specifically at +1 (2:48). If any multipliers are outside
the unit circle, the solJution 1is unstable, If all tne
multipliers are on the unit circle, as in a conservative

Hamiltonian system, the solution is neutrally stable.




ITI. System Dynamics

Description

The system in this problem consists of a natural sat-
ellite, Phobos or Deimos, in a circular orbit about Mars. The
artificial satellite is cthen orbiting Phobos or Deimos. It is
assumed that the mass of the artificial satellite is small and
does not affect the motion of Mars or the moons. This
situation is known as the restricted three body problem. The
coordinate system, seen in Figure 2, consists of the moon
centered orthogonal axes x,y, and z. The angular velocity of
each moon about Mars is such that in one period, the moon will
have also rotated about its spin axis once. Therefore, the
x-axis is always pointing away from Mars. The y-axis is
tangent to the moon’s orbit about Mars, the orbit being in the
x-y plane. The moons rotate about the z-axis, which completes
the orthogonal set of axes.

Mars and the artificial satellite are considered sym-
metric spheres (x,y, and z moments of inertia are equivalent).
However, the moons Phobos and Deimos are modeled as triaxial
ellipsoids. Each moon rotates about its maximum axis of
inertia (z-axis). Because of the asymmetric non-spherical
moons, this becomes a modified restricted three body problem.
The values of the constants used to derive the equations of
motion and cother system p

Deimos are contained in Appendix A.

10
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Equations of Motion

The equations of uw~:ion for this system are shown below.
X=P+QY (15)
¥=P,~Q (X+D) (16)
Z=p, (17)

By=-QP,-GM,, ,dY-GM, R>Y
" -i- GR™Y(3I,+3I,,-1,,)
- lf- GR7Y[X3(I,,+ T, I

Y2 (It 1,,-1,,) +Z3 (I o+ I, -1,,) ]

(18)

B=QP ~GM,,, ,d™* (X+D) -GMpoo,R X
+%GR‘5X(BIW+I“-I“)

--J:ZS-GR XX (I, 4T, I

*Y (Tt I1,,-1,,) + 23 (Tt I,~1,.) ]

(19)

B,=-GM,, ..d*Z-GM,, R>2

3 pp-
+=GR *Z(3I,+31,,-I,,) (20)

- 22 GRZLX} (I,y+ I,y I
+Y2 (It I,,~ 1) +Z3 (14T, ~1,,) ]

These equations of motion were derived from Hamilton canon-

ical equations and are identical to the equations used in

F O P SO I R .
PFTEVIOUS Scudies.,

tudy

)

This testricts Lhe satelllite to two

degrees of freedom, or motion in the x-y plane. Therefore,




for this analysis, z=0, and the equations concerning z are to
be ignored.
Since the Lagrangian found does not contain time, ¢t,

explicitly, the Hamiltonian, H, is constant and defined as
H=Y" L 4. -L=const (21)
k=1 9d, k

where H also constitutes an integral of motion known as
Jacobi’s integral (4:12). Because this system is nonnatural,
Jacobi'’s integral replaces the energy integral as a constant
of the motion. This system 1is nonnatural because the

satellite’s kinetic energy is

T=1/2m[ (X-QY) *+ (¥+QXx+QD) +2?)] (22)

which is not a homogeneous quadratic function of the
generalized velocities. The resulting Hamiltonian is of the

form

H=1/2m(P3+P}) +Q (YP,~XP,) +V (23)
which is characteristic of the restricted three body problem

(7:422). 1In this modified problem the generalized velocities

are

X=P+QY (24)

Y=P,~Q (X+D) (25)

The fact that Jacobi’s integral is a constant of motion ena-

bled stable orbits about the moons to be found (4:1).

13
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Known Periodic Solutions

For different values of the Hamiltonian, stable periodic
orbits were previously found for both Phobos and Deimos
(4:28). Table I lists the orbits that were simple and closed
in nature. More periodic orbits were actually discovered, but
the majority rotated and precessed abocut the moons and took
several revolutions to complete one orbit. From Figure 3, it
is seen that the starting point of all stable orbits found was
on the negative x-axis, and the orbital motion was retrograde

with respect to the rotation rate of the moons.

14




Table T.

-6.8528

-6.8527

-6.8526

-6.8525

-6.8524

-6.8523

-6.8522

-6.8521

-6.8520

-6.8500

-6.8400

H
-2.738592
-2.738591
-2.738590
-2.738589
-2.738588
-2.738587
-2.738586
-2.738585
-2.738580
-2.738570
~2.738560
-2.738550
-2.738500
-2.738400

-2.738300

Closed Orbits Previously

Hamiltonian Value, kmz/sec

Found (4:33,50)

DEIMOS

S.P. PERIOD
-10,0 18,800
-13,0 25,800
-18,0 35,400
-23,0 53,600
-31,0 72,100
-41,0 83,200
-48,0 90,800
-56,0 93,000
-75,0 106,000
109,0 108,000
135,0 108,000
156,0 108,000
233,0 109,000
340,0 109,000
418,0 109,000

2

(x,y) Starting Point of Orbit, km

Simple,
PHOBOS
S.P. PERIOD

-22,0 13,900

-68,0 26,600

-93,0 27,200
-112,0 27,400
-129,0 27,400
-143,0 27,500
-156,0 27,500
-169,0 27,400
-179,0 27,600
-332,0 27,600
-708,0 27,500

H-
S.P.-
Period-

Period of Orbit,

15

sec
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IV. Solution Approach

Starting Solutions

As mentioned in section II, the numerical continuation
package AUTO requires the system equations of motion and a
starting periodic solution. Figure 4 shows the periodic
solutions used to start AUTO for both Phobos and Deimos.
These were the closest stable, closed orbits previously found
about the moons. As mentioned earlier, these orbits are
retrograde (clockwise) with respect to the rotation of the
moons. The period of the orbit about Phobos is approximately
14,000 seconds, which is about half of the Phobos period about
Mars., The period of the orbit about Deimos is approximately
19,000 seconds. The period of Deimos about Mars is about
108,000 seconds.
Equation Modification

The equations for this Hamiltonian system are conser-
vative, It seems from previous work that there is a contin-
uum of solutions,; simple closed orbits, as the Hamiltonian
changes wvalue. In a system with naturally occurring free
parameters, AUTO is designed to compute periodic solutions

that arise from bifurcation from a stationary solution, a Hopf

bifurcation (2:1). AUTO works best with nonconservative
systems which have some type of energy dissipation. This
Hamiltonian gystem ceonserves cnergy. This systcem was thus

modified to make efficient use of AUTO.

17
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Since there is no naturally occurring free parameter in
the equations of motion, one was needed. The second equation
of motion, Equation (16), could be rewritten in terms of the
Hamiltonian H,

P2-P, (2QY+P,) +2H-2V

2P,

Y= (26)

However, making H the parameter here results in too much of a
change to the system when AUTO varies it; no solutions are
computed. The system was then modified to add artificial

energy dissipation. This dissipation term

ap H (H,~H(X,Y, P, P,)) (27)

was added to the fourth equation of motion

P =- aH OH

v~ 57" op, o H (X, Yi P P)) (28)

AUTO varies Ho as the continuation parameter and the Hamil-
tonian value, H(X,Y,prx), is constant on a specific orbit.

Part of the dissipation ternm

o
3P,

(29)
is actually the second equation of motion, the velocity in the
y-direction. The initial value of Hois the Hamiltonian value
for the starting solution. At this solution, H, =H(X,Y,PX,PY),

therefore the dissipation term equals zero. As AUTO varies

l%, a small amount of dissipation is added to the system and

19




AUTO looks for solutions to the changed system. The added
dissipation forces the solutions to be in the three dimen-
sional subspace of }%=H(X,Y,PPEG), but the solutions still
behave as conservative once in this subspace. With this term
added, AUTO had no trouble locating stable periodic orbits for
a wide range of parameter values. This artificial energy
dissipation term was not the only term that could be used, but
it did provide satisfactory results.

OQutput Interpretation

Output from AUTO consisted of initial x and y values of orbits
found, associated parameter values (Hamiltonian in this case),
maximum X and y values along the trajectory, the orbital
period, and stability information including Floquet
multipliers and the number of multipliers inside the unit
circle. Plots of the trajectories were made by numerically
integrating the initial x,y,Px, and Py values of the orbits
computed, along with the Hamiltonian value and period. The
Haming Integrator, which contains a fourth order predictor
corrector algorithm (9:108), was used to numerically integrate
the trajectories. Many continuation runs were accomplished
for both Phobos and Deimos to seek periodic orbits and
nonlinear behavior patterns. The solutions found for both

Phobos and Deimos will be discussed in the next section.

20




V. Results and Discussion

Phobos

Running AUTO with the equations of motion plus the
artificial energy dissipation term resulted in a wide range
of stable orbits found. As the continuation parameter, the
system Hamiltonian H, was varied, a continuum of stable orbits
were computed. The first objective of this study was to
verify the stable periodic orbits found in previous work.

Stable Orbit Verification. Table II lists a sampling of

the stable orbits found using AUTO continuation methods. Many
more were found between the H values listed in the table. As
the parameter H increased, the starting point for the orbit
moved away from the origin of the moon. This means that the
major axis of each orbit, which lies on the x-axis as seen in
Figure 2, increased for increasing Hamiltonian values. Also,
the orbital periods increased as the parameter H increased
until a certain period was reached. This period was 27,557
seconds, which is approximately the orbital period of Phobos
about Mars. These results agreed with previous work using
Poincare'’s surface of section technique. Figure 5 shows the
orbits found which were closest to the surface of Phobos. The
parameter value for the closest orbit found was H=-6.852806.
Many more orbits were computed with a lower parameter value,
bui ithese orbits “coliided” with Phobos when integrated around

their trajectories.

21




l Table II1. Stable Orbits Computed About Phobos
Q =,000228 r/s
I H INITIAL X Bp R, e PERIOD
' -6.852806 -17.9 13.7 19.0 .16 11,000
-6.85280 -21.5 16.8 25.2 .20 13,901
l ~-6.85275 -50.1 43.8 87.9 .33 25,424
-6.85270 -67.4 60.9 125.0 .34 26,676
l -6.85265 -80.8 74.2 152.6 .35 27,050
' _6t8526 -9301 86-4 177.7 035 27,229
~-6.85257 -99.2 92.4 190.3 .35 27,288
l -6.8517 -212.7 205.8 418.5 .34 27,532
-6.8502 -318.17 312.0 630.3 .34 27,550
l -6.84761 -450.2 442.6 892.9 .34 27,555
l -6.84425 ~576.5 568.8 1145.3 .34 27,557
~6.8400 -706.5 700.0 1399.6 .33 27,557
l -6.8300 -939.2 932.4 1872.8 .34 27,558
-6.8259 -1018.7 1008.8 2029.5 .34 27,557
' -6.8203 -1119.0 1112.3 2229.5 .33 27,558
I ~-6.8104 -1277.3 1270.5 2537.3 .33 27,558
-6,.8000 -1431.9 1424.9 2807.1 .33 27,558
' -6.7850 -1615.6 16C1.0 3203.9 .33 27,558
-6.768 -1804.6 1789.3 3570.2 .33 27,557
l -6.748 -2006.0 1986.9 4103.3 .35 27,555
. H-  Hamiltonian, l\:mz/s2
] Rp’F’a— Perlcenter, Apocenier Distances, km
e- eccentricity
l PERIOD- Period, seconds
22
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Figure 6 shows the orbits computed that were furthest
from Phobos. All of these orbits have the same orbital period
as Phobos. Since the periods are identical, the largest orbit
shown must have much higher orbital velocities than the smal-
lest. The largest orbit, with a major axis of 6090.2 km has
an initial velocity in the y-direction of 975 m/sec compared
to the smallest orbit, major axis of 2014.8 km, with initial
velocity 313 m/sec. These larger orbits are basically in
orbit about Mars, being much less perturbed than the closer
orbits.

Figure 7 shows how the initial x,y position of the stable
orbits computed varied as the parameter H was varied. The
squares represent the orbits found by continuation and the
triangles represent the orbits previously found. It is seen
that the two curves formed lie on top of each other. This
shows that the continuation methods used in this study did
indeed agree with other methods used. In addition, more
stable orbits were found at regular intervals of the Hamil-
tonian values.

Resonant Orbits. An attempt was made to characterize
resonant orbits found in a previous study. A previously found
resonant orbit, shown in Figure 8, encircled Phobos seven
times before returning to its starting point. This orbit was
used tc search for other resonant orbits. The results, shown

in Table III, were only marginally successful. Several larger

24
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H
-6.85270
-6.85269
-6.85264
-6.85268

-6.852674

o

Table 111,

INITIAL X
~62.0
-64.0
-64.6
-65.4

~66.6

H-

Y-
PERIOD-

MAX X MIN X
66.3 -73.2
72.2 -78.8
73.3 -80.0
74.7 -81.4
76.9 -83.6

Hamiltonian Value, kmz/s2

X~ X value, km
Y value, km

Period, seconds

28

Resonant Orbits of Phobos

217.2

222.2

228.6

237.6

PERIOD

186,200
186,200
186,309
186,449

186,641




1

orbits of the same variety, seven encirclements, were found.
Again, following the same pattern of the single encirclement
stable orbits, as the parameter H increased, the size of the
orbits increased. After these few orbits were computed,
further solutions found were of the single revolution type.
It was hoped that a bifurcation would be seen here. Perhaps
AUTO failed to detect the phenomena which led back to the
continuation of single revolution orbits. Therefore, no
definite pattern was found to these resonant orbits. Nothing
can be said of any higher order resonant orbits, although
their existance was indicated through a previous study (4:43).
Rotation Rate Effects. If this is considered a two

body problem with the satellite orbiting Mars, the value for
the rotation rate of Phobos is calculated to be
S%“=.00022788 rad/s. This was calculated by setting x=y=0,
omitting the moon terms, then solving for the rotation rate,
Q . However, the stable orbits found thus far assumed
Qﬂd=.000228 rad/s, evidently a rounded off approximation.
Continuation methods were used to find stable orbits for Qv *
Figure 9 illustrates the results of decreasing Phobos’ rota-
tion rate to its true value. The smallest orbit, whose
perigee point is on the x-axis closest to the surface of
Phobos, was computed from Qnd' As this rotation rate is
decreased to Q,=.00022788 rad/s, the perigee point moves

away from Phobos for the same starting point, which 1is

29
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approximately (x,y)=(-22km,0km). This also results in the
orbits becoming centered on Phobos. The rotation rate of
Phobos is assumed to be .00022788 rad/s for all further
analysis. Figure 10 again shows the effects of this change in
rotation rate. For the higher rotation rate, the x value for
the starting point of the stable orbit is larger than for the
smaller rotation rate. This means that as the Phobos rotation
rate is less accurately modeled, at a certain value of H, the
stable orbit becomes larger. For example, at H=-6.8481, the
major axis of the stable orbit computed is 1267 km for the
faster rotation, compared to 893 km for the slower rotation.
It seems that as the largest values of H are approached, these
differences diminish. This is shown by Figure 11. Both
curves start separately at the initial H value of -6.855, but
seem to converge as H increases to -6.755. The major axis, in
both cases, approaches 5400 km. Qualitatively, the effects of
correcting the value of Q are small, but the smallest orbits
are affected rather significantly.

Table IV summarizes the range of stable orbits centered
on Phobos that were computed. Again, the periods converged to
Phobos’ period. Figure 12 shows the orbits found that were
closest to Phobos. Figure 13 displays the orbits that were
furthest from the moon. As in the caszse with the higher
rotation rate, all of these larger orbits are essentially in

a Martian orbit and are only slightly perturbed by Phobos.

31
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Table IV.

H INITIAL X
~6.85040 -14.2
~6.850399 -17.1
~6.850398 ~21.4
~6.850379 ~30.2
~6.£50361 -40.1
-6.850337 -50.2
-6.850118  -104.7
-6.8500 -124.3
-6.84926 -209.6
-6.84796 -306.9
-6.84522 -446.2
-6.84187 -572.6
-6.83266 -825.3
-6.82356  -1014.7
-6.81256  -1204.1
-6.79593  -1444.1
-6.78562  -1600.0
-6.76334  -1822.5
-6.75889  -1868.0

R +R,-

Q =.00022788 r/s

B
14.1
17.0
21.3
30.0
39.9
50.1

104.5
124.1
209. 4
306.8
444.7
571.7
825.7
1011.9
1198.4
1443.8
1559,3
1822.0

1866.9

R,
16.3
21.3
29.8
49.6
72.5
94,9

207.9
247.4
418.&
613.4
891.2

1144.7

1649.3

2028.0

2404.4

2867.4

3580.6

3603.5

3692.0

H- Hamiltonian, k1112/s2

Perigee, Apogee Distances, km

e- eccentricity

PERIOD-

34

Period, seconds

e

.07
.11
A7
.25
.29
.31
.33
.33
33
.33
.33
.33
.33
033
.33
.33
.39
.33

.33

Stable Centered Orbits Computed About Phobos,

PERI1OD

9,538
12,174
15,742
21,123
24,299
25,798
27,364
27,447
27,546
27,564
27,570
27,571
27,572
27,572
27,573
27,572
27,571
27,572

27,572
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Collision Orbits. Many of the solutions found were
orbits that had a perigee point which was inside the surface
of Phobos. Other orbits had trajectories completely within
the surface of the moon. These orbits are called collision
orbits. Figure 14 shows several of these. The continuation
run which computed these orbits also found a limit point.
This limit point, seen in Figure 15, occurred at parameter
value H=-6.850188. From this figure, the solutions are
continued with H varying from its initial value of

H=-6.850392 at point A. As H decrcases, the size of the orbit
decreases. This has been the trend in all continuation runs
thus far. At point B, H begins to increase again. However,
the orbit size continues to decrease, which is unusual. At
point C, the Hamiltonian reaches its maximum value then the
solutions trace out the path C-D. Point C is a limit point
where the solution branch turns around and follows a different
path. In no other situation did this occur. This 1is
unfortunate, because all the orbits computed here were
collision orbits. Finding limit points while computing larger
orbits might have 1led to discovering different types of
orbits, stable or unstable, about Phobos. It was hoped that
these collision orbits would "grow" and become realistic
orbits of Phobos, perhaps as different types of orbit

families. This did not happen.
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Mass of Phobos Effects. The gravitational parameter of

Phobos used in this study is GMww=.00066 kms/s{ This amounts
to a mass of 9.9E15 kg. From a recent article in "Sky and
Telescope,”" (3:158) the mass of Phobos was given to be

1,08E17 kg. This is quite a bit larger than the mass used in
this study. With this mass, GMMmb=‘OO7204 kmz/sz. Using AUTO,
the mass of Phobos was increased and solutions were found.
Figure 16 shows that as the gravitational parameter, hence
mass is increased, the orbits become larger for the same
Hamiltonian value. This makes sense because the larger mass
and gravitational parameter cause a decrease in potential

energy due to the moon, V This is evident by

moon *

am.
Vaoon=-Ginf oo (30)
when dem is increased. The Hamiltonian is expressed by
H=1/2 (Pi+P})+P,QY-P Q (X+D) +V (31)

The smaller V will make the value of H, a negative number,
smaller. Therefore, the larger mass of Phobos results in
orbits which have a smaller Hamiltonian value for the same
size orbit.

Variations In Solutions. Figure 17 shows how the
solutions relate to the semi-major axis A. From this, there

appears to be places where the solutions are not unique for a

3 3 3 3 A=A Iare ~&
value of the Hamiltonia Fi is an cxpanded view of

>hel e d!
va Caese wisidi A Ny

swes 10
ul’l 1o

the previous figure. At approximately H=-6.8245 and -6.82, it

40
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seems that two solutions exist for each value of H. The
difference in the size of the semi-major axis in both cases is
over 20 km. This shows that the continuation method using
AUTO is not perfect. There should be a smoothly increasing or
decreasing relationship between the parameter H and the size
of periodic orbits computed. In this case and others, this
did not occur. Also, many times during the computation of
solutions, instead of smoothly varying, the parameter value
would "jump around" or frequently change directions. Because
of this the output was sometimes hard to follow. The drastic
changes could be indications of bifurcations, but as no other
solution branches were computed and no bifurcation points
indicated, this was discounted.

The separate solutions could be orbits which lie on a
torus in the three dimensional subspace corresponding to the

Ho = H(X,Y,PX,PY)= constant situation.

Stability. As mentioned earlier, AUTO computes the
Flogquet multipliers for each solution. The number of

multipliers on or inside the unit circle is indicated. 1In the
case of periodic solutions, there will be one multiplier on
the unit circle at +1; therefore, the location of the others
will determine stability. Another multiplier should be inside
the unit circle due to the dissipation term. The other two
multipliers should be on the unit circle for neutral

stability. For a typical continuation run using AUTO, the

44




multipliers were plotted. The results are shown in Figure 19.
Most of the solutions generated multipliers that were on or
inside the wunit circle. These stable solutions had two
multipliers on the real axis, one with a magnitude due to
dissipation less than 1 and the other at +1. The other two
multipliers were complex conjugate pairs with magnitudes equal
to 1. The multiplier shown outside the circle in Figure 19
was associated with the first unstable solution computed for
that particular continuation run. PFrom this unstable orbit,
which was also a collision orbit, many more unstable orbits
were computed,

The behavior of some of these unstable orbits is worth
noting. Figure 20 shows a comparison of two orbits computed,
both within Phobos, which had the same Hamiltonian value,
H=-6.850431. The larger orbit was stable though not realistic
and the smaller unstable. Though the smaller orbit was per-
iodic when its trajectory was integrated, its shape was not a
simple ellipse, as most orbits computed in this study were.
This orbit and several others with the same shape are shown in
Figure 21, As the sizes of the orbits in this figure in-
crease, they do not seem to become any more circular. This is
expected because of the many nearly circular orbits computed
in the proximity of Phobos. The biggest orbit in this figure
has the smallest Hamiltonian value, H=-6.850496. No further

solutions were computed past this one. It is wuncertain
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whether the solutions that exist past this orbit become
elliptical again or approach infinite period, possibly a
heteroclinic orbit. As this behavior occurred in a region of
orbits smaller than Phobos, no useful information was gained.
It seems clear that a new family of orbits will not "leave"
the interior of Phobos.
Deimos

As in the case with Phobos, a continuum of stable orbits
were found as the initial Hamiltonian value was varied.

Stable Orbit Verification. Table V contains a summary of
the orbits computed. Again, this is a summary of many more
stable orbits that were computed. As with Phobos, the period
of these orbits increased with an increasing Hamiltonian value
until the period of Deimos was reached, approximately 109,000
seconds. These orbits had periavsis distances that ranged
from just above the surface of Deimos to 4100 km, which is
over one-sixth the distance to Mars. Figure 22 compares the
initial x-values of these orbits with the ones previously
found. Both sets of solutions are in agreement. These orbits
were again retrograde (clockwise) with respect to the rotation
of Deimos. It was also noticed from the complete set of solu-
tions computed, that the sizes of the orbits increased less
and less for the same increase in Hamiltonian value.

Complete Solutions. The low altitude orbits, shown in

Figure 23, are not the rotating ellipse type found in pre-
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H
-2.738593
-2.738593
-2.738593
-2.738592
~2.738592
-2.738590
~-2.738588
-2.738585
-2.738570
-2.738522
-2.738309
-2.737991
-2.736828
-2.736120
-2.734672
-2.733644
-2.731663
-2.727798
-2.723074

-2.710174

Table V. Stable Orbits About Deimos

INITIAL X 4 R, e
-8.21 7.83 8.02 .01
-8.75 8.33 8.58 .01
-9.38 8.91 9.29 .02
-10.03 9.49 10.01 .03
-10.69 10.11 10.76 .03
-20.09 19.11 23.80 .11
-30.42 29.23 43.81 .20
-50.10 48.75 88.82 .29
-109.30 107.81 214.60 .33
-202.42 200.90 402.62 .33
-411.67 410.16 821.94 .33
-601.04 599.84 1200.98 .33
-1030.19 1028.59 2059.00 .33
-1219.76 1218.97 2439.11 .33
-1535.71 1533.63 3072.72 .33
-1725.24 1724.08 3452.79 .33
-2041.06 2037.37 4081.47 .33
-2546.09 2536.66 5083.73 .33
-3050.70 3036.71 6087.03 .33
-4120.24 4107.76 8198.09 .23

H~  Hamiltonian, ka/s2
Kpn&— Pericenter, Apoceptgr Distances, km
e~ eccentricity
PERIOD- Period, seconds

50

PERI1OD

11,000
14,172
15,648
17,204
18,800
43,325
68,583
95,051
107,554
108,842
109,055
109,074
109,081
109,082
109,084
109,085
109,086
109,090
109,096

109,129
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vious work. In the case of the rotating ellipse discovered,
the apogee and perigee locations changed with each satellite
revolution and traced out a nearly circular path about Deimos
(4:51-54). The low altitude orbits shown in Figure 23 are
non-rotating simple periodic orbits, the same type found in
the Phobos analysis.

As seen in Table V, these low altitude orbits are nearly
circular, having very small eccentricities. However, as the
orbits increase in size, they get less circular and converge
to an eccantricity of about .33. This follows the pattern of
the orbits about Phobos, which were nearly circular close to
the surface and became less circular to an eccentricity value
of .33. As the satellites move further away from their
respective mcons, they settle into elliptical orbits about
Mars. In both cases, the orbits became similar in shape, with
eccentricities of .33. But the largest Deimos orbits computed
were over twice as far from their moon as the largest Phobos
orbits. These orbits can Le seen in Figure 24,

Collision Orbits. Many of the computed orbits had a

periapsis point which was inside the surface of Deimos.
Several of these collison orbits are shown in Figure 25. The
interesting case found with Phobos, where different size
orbits were discovered for the same Hamiltonian value did not

occur with Deimos. No limit points were computed.
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Stability. The orbits computed for Deimos, summarized in
Table V, were stable. Again, their Floquet multipliers were
computed and the three not affected by the dissipation term
were found to be on the unit circle. For a typical
continuation run of solutions, Figure 26 plots the multipliers

in relation to the unit circle.
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Vi. Conclusions and Recommendations

Using previously found periodic orbits of Phobos and
Deimos enabled many more to be found using the continuation
techniques discussed in this study. The orbits computed that
were closest to the surfaces of the moons were associated with
the smallest Hamiltonian values and the largest orbits had the
largest Hamiltonians. The orbits closest to the moons seem to
be perturbed the most, having short periods and low eccen-
tricities. As the distances increased, the orbits tended to
become eccentric, e % .33, and settle into Martian orbits,
with the same periods as their respective moons. These
results agreed with previous work.

The search for different branches of solutions and limit
points was disappointing, only one was found in the Phobos
case. The discovery of more of these could have lead to
different types of orbits, possibly prograde instead of
retrograde or possibly more resonant orbits. Some unusually
shaped orbits were computed, but did not lend themselves to
further analysis being very unstable and not in the range of
possible orbits about Phobos.

The continuation/bifurcation software AUTO was of limited
utility in this type of problem. It was used to find a wide
range of orbits, but for this study was not very effective in
finding branch points associated with nonlinear behavior. For
this modified three body problem there is no naturally
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was added to enable AUTO to compute periodic sclutions. This
introduced energy dissipation, which is characteristic of the
nonconservative systems upon which AUTO is primarily used.

This technique did allow various system parameters to be
changed and resulting orbital behavior analyzed. The mass of
Phobos was increased to show that this causes orbits with the
same Hamiltonian value to increase in size. Also, the
rotation rate of Phobos was decreased to show that this tended
to shift the stable orbits over the center of Phobos and
decrease their size for the same parameter, H, value.

The way this system was modeled, utilizing the equations
of motion in Section III, AUTO was used stricly as a
continuation tool to find more of the same types of solu-
tions. Its capability to find bifurcations and describe
nonlinear system behavior was not effective. Perhaps with a
system having more parameters, or a nonconservative system
where the Hamiltonian would vary on the trajectory, AUTO would
be more useful in mapping out the behavior of solution

branches and locating branch points.
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Appendix A:

Moons:

Axis Lengths (km)

Rotation Rate (rad/sec)

Q =

System_Parameters

Phobos

x= 13.4
y= 11.2
zZ= 9.2

Moments of Inertia (kg*kmﬂ

I,= 42.016%M

Iyy= 52'840*Mu00n

I,,.= 61.000"‘MMOn
Density (g/cmil

p= 2.2
Orbital Radius {(km)

D= 9,378

2.2788%10"

Gravitational Attraction (luﬁ/secz)

GMMOH:

Mars:

6.6%10"

Gravitational Attraction (km%secz)

GMM!‘S:

42828.32

60

Deimos

= 12

= 16

= 18

(4:67)

.850%M

R00

.658%M

200

.692%M

oo

23,458

H]

n

n

5.76%107

8.8%10°

§




27.
28.

Appendix B: Phobos Resonant Orbit Plots

Figure

Phobos Resonant Orbit,
Phobos Resonant Orbit,

H= -6.852687
H= -6.852674
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From a few known periodic orbits of Phobos and Deimos, continuation
techniques were used to find entire families of stable orbits.
These techniques involved varying a parameter, the Hamiltonian, of
the system and analyzing how the orbital behavior changed with the
parameter. Floquet multipliers, for stability analysis, were also
computed. AUT086, a continuation/bifurcation software package,

was used in this study. Artificial energy dissipation had to be
added to the conservative Hamiltonian system to enable use of AUTO.
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