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* G Universal Gravitational Constant

H Hamiltonian

SIXX ,I ,IZZ Moon Mass Moments of Inertia

IX ,IXF,IyE Moon Mass Products of Inertia
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I
I Abstract

I From a few known periodic orbits of Phobos and Deimos

and Deimos, continuation techniques were used to find entire

families ofstable orbits. These techniques involved varying

a parameter,the Hamiltonian, of the system and analyzing how

3 the orbital behavior changed with the parameter. Floquet

multipliers, for stability analysis, were also computed.

AUTO86, a continuation and bifurcation software package, was

I used in this study. Artificial energy dissipation had to be

added to the conservative Hamiltonian system to enable use of

* AUTO.

I
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I
I. IntroductionI

Several stable orbits about two natural satellites of

Mars, Phobos and Deimos, were found by Jansson (4:28) using

Poincare's surface of section technique. This study was ac-

complished to compute additional stable orbits about both

U moons by using analytic continuation methods. It was hoped

that, using continuation methods with bifurcation analysis,

families of stable periodic orbits could be found.

3 The same modified restricted three body model and equa-

tions of motion were used to describe the Mars, moon, and

I artificial satellite system. A solution, in this case a

previously found stable periodic orbit, was used to start the

continuation process. A software package, AUTO86, was then

* used to compute stable and unstable orbits of various periods

using continuation methods. Stability was determined by

I analyzing the Floquet multipliers, which were computed for

each test case.

Along with finding stable orbits, bifurcation analysis

3 was accomplished on the solution branches to characterize the

behavior of the nonlinear equations of motion. Using this

3 approach, bifurcating orbits of higher period were sought;

unfortunately none were found.

The various stable orbits found about Phobos and Deimos

will be presented. Also, stable orbit behavior versus
U

changing system parameters will be demonstrated.

!1

I



I

II. Continuation Methods

Theory

The basis for being able to find solutions to the non-

I linear equations of motion is the numerical technique of

3 continuation. Continuation is the process of starting fl-oin a

known solution and varying a parameter contained in the

3 system. As this parameter is varied in small increments,

previous solutions starting fr m the known solution are used

I to approximate new solutions. Since the increments are small,

the iteration to compute the new solutions should converge

rapidly.

I To illustrate the idea of continuation, take an algebraic

system

I 4(x)=0 (1)

3 with a known solution B, and introduce into it a parameter A.

A new system is formed (1:18)

G(X,x)=f(x)+(1-X)(x)=0 (2)

3 For X=0, the known solution x=B is reverted to. For 1=1, the

system becomes

f(x) =0 (3)

I which is the system we want to solve. The "continuation path"

I in I is A-1 / / -I --I (4)

I2
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where X is incremented in small steps. X(X)=B is knewn and

is used to approximate x(Aa), similarly x(Xi) approximates

x(x l), ffor i=1,2,..q-1. Since the parameters A are close to

3 one another, the iteration used to solve for x(Xi l) should

converge rapidly.

3 Nonlinear Analysis

Continuation of a starting solution can tell you many

things about how a nonlinear system of equations behaves. For

3 instance, suppose from the known solution, additional

solutions vary continuously (call this a solution branch) to

3 a certain value of X. After this value of A, the solution

branch "splits off" into multiple branches. This splitting

I off is known as bifurcation. The point at which the number of

* solutions changes as a certain value of the parameter is

passed is called a branch point (8:40). It can be seen how

3 the nonlinear system behaves as the parameter is varied if the

solution is plotted versus the parameter. This is known as a

* bifurcation diagram. Bifurcation theory involves analyzing

3 and interpreting the solution branches of a bifurcation

diagram.

3 In the above example, the solution branch mapped out

solutions to the algebraic system of Equation (1). An equi-

I librium solution branch resulted, with each point on the

* branch being an equilibrium point. This study is concerned

with continuation of the first order ordinary differential set

I3
I
I
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m of equations that describe the motion of an artificial

satellite about a Martian moon. These equations are of the
m form

f (5)

where A is again the continuation parameter introduced into

the system. For this system, any point where

)m (6)

is called an equilibrium point. Therefore, the solution

branches for this system do not necessarily map out equi-

librium points. Periodic solution branches, which will be

discussed in the next section, could also be computed.

I However, it is still true that bifurcations result when the

* solution branch divides into multiple paths.

Besides dividing into multiple paths, the solution branch

may, at a certain value of the parameter, actually turn back

and follow a different path. The point where it turns back is

m another branch point known as a limit point. Figure 1 shows

m the branch points discussed and how the solutions to a

nonlinear set of equations can behave. Of parLicular interest

to this study is the investigation of periodic solutions to a

set of ordinary differential equations.

m Periodic Solutions

* A periodic solution to a set of equations in the form

of Equation (5) is described by

mAI!
I
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I

I X(t+T) =X(t) (7)

where T is the period and t is the time. Equation (5)

represents an autonomous system because the time variable does

I not appear in f(x,X) (5:81). An isolated periodic solution is

known as a limit cycle and is represented by a closed curve in

the phase plane for a two dimensional system, the phase plane

* being the solution plane with the system state variables as

its axes. An example of this would be a diagram of a periodic

I orbit about Phobos. This orbit would represent a periodic

solution to the nonlinear equations of the system and would

appear as a closed curve when plotted in its orbital plane.

3 After each period, T, the orbit would return to its original

starting position. The idea of orbital stability will now be

* addressed.

Stability

A periodic solution is stable if, with increasing time,

* all trajectories in its neighborhood end up on the trajectory

(6:26). With periodic solutions, stability is determined by

3 computing Floquet multipliers.

Floquet multipliers are simply eigenvalues of a special

matrix called the monodromy matrix. The monodromy matrix of

the periodic solution X (t) with period T and initial vector

Z* is defined by =(

U az

! 6
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where (8:240-241)

I(t;Z) (9)

is the solution to

3 t=f(X, t) ,X(O) =z (10)

and

I @~=f.,(x*, t) 4, 0 (0) =I 11

If the magnitude of any of the Floquet multipliers is greater

than one, then the periodic orbit is unstable. In general,

the Floquet multipliers, hence the stability vary with the

I parameter A (8:248).

3 In a conservative Hamiltonian system, periodic solutions

appear as closed paths in the phase plane (two dimensional

system) and do not approach a limit cycle. Each multiplier in

this system will have a magnitude of one.

I Method Using AUTO86

3 The continuation methods used in this study were

accomplished with the continuation/bifurcation software

3 package AUTO86, written by Eusebius Doedel. AUTO was used to

compute stable or unstable periodic solutions to the nonlinear

ordinary differential equations of this study. To do this,

3 the package takes a known periodic solution and uses

continuation to compute solution branches. The Floquet

multipliers, which indicate stability as discussed earlier,

are also computed. As the solution branches are continued,

17
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AUTO searches for limit points, bifurcation points, and other

branch points. It also has the capability to restart the

continuation along a desired solution branch at a bifurcation

* point.

AUTO requires user supplied subroutines, which include

the system equations of motion, a steady state or periodic

solution at a certain parameter value, and user determined

program constants. Pseudo arclength continuation is then

performed to compute solution branches. Arclength

continuation is used to compute past limit points on a branch

where other methods sometimes fail. As an example of pseudo

arclength continuation (2:12-14), the solution (uj_,Pj.,),

I where p is a parameter of

5 f(u,p) =0 (12)

is known along with its direction (duj.1 dpj_.). From the set

I of equations

f(uj,pj) -0 (13)

I o()2U( uJ- uj_l ) j-i +)2 p (pj-pj-1)i j-1- ds.o ( 14 )

where ds is the stepsize along the branch, the next solution

(uj,p 3 ) is computed. The stepsize ds can either be fixed or

adaptive. If it is adaptive and the Newton iteration scheme

converges rapidly, ds is increased for the next solution. If

the iteration fails to converge, the stepsize, 'I adaptive, is

halved. This continues until convergence is reached or the

I!
I
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stepsize reaches a predetermined minimum value. This practice

is also used for the continuation of periodic solutions.

AUTO computes the Floquet multipliers by applying a

3 standard eigenvalue routine. The number of Floquet multi-

pliers inside the unit circle is monitored. For the periodic

case, there is always a multiplier on the unit circle,

specifically at +1 (2:48). If any multipliers are outside

the unit circle, the solution is unstable. If all the

multipliers are on the unit circle, as in a conservative

Hamiltonian system, the solution is neutrally stable.

I9
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III. System Dynamics

Description

The system in this problem consists of a natural sat-

3 ellite, Phobos or Deimos, in a circular orbit about Mars. The

artificial satellite is chen orbiting Phobos or Deimos. It is

assumed that the mass of the artificial satellite is small and

does not affect the motion of Mars or the moons. This

situation is known as the restricted three body problem. The

I coordinate system, seen in Figure 2, consists of the moon

centered orthogonal axes x,y, and z. The angular velocity of

each moon about Mars is such that in one period, the moon will

have also rotated about its spin axis once. Therefore, the

x-axis is always pointing away from Mars. The y-axis is

tangent to the moon's orbit about Mars, the orbit being in the

x-y plane. The moons rotate about the z-axis, which completes

I the orthogonal set of axes.

Mars and the artificial satellite are considered sym-

metric spheres (x,y, and z moments of inertia are equivalent).

However, the moons Phobos and Deimos are modeled as triaxial

ellipsoids. Each moon rotates about its maximum axis of

inertia (z-axis). Because of the asymmetric non-spherical

moons, this becomes a modified restricted three body problem.

The values of the constants used to derive the equations of

I mtio an otersystc.m paramctcrs for U2Aars, nlhobos, ani

Deimos are contained in Appendix A.

II
I
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U Equations of Motion

The equati-ons of i,. .Aon for this system are shown below.

X~D.OAP(15)

I Y=PY-Q (X+D) (16)

2=pz (17)

+-!GR 5 sY(3Zx,+3I ,-Iy
4 Z

4 
.

,6x=OPY-GM,rsd 3 (X+D) -GM OfR3'X
+-3GR VX(3 I+1 , -+Izz ) (9

I ~~+Y2(IX;+IZX-x 3 )z( I,,I)

13,-GMm, d 3 Z- GM.O'R Z

15 GR -7Z CX2(IY+x 1-.r
4

+~~~~~ y MCI"IY Z2(T+yy-"

These equations of motion were derived from Hamilton canon-

ical equations and are identical to the equations used in

jre'L u XV ±nL U.LuuI L,'es Viz nayLe sauelliLe to two

degrees of freedom, or motiorn in the x-y plane. Therefore,



I

for this analysis, z=0, and the equations concerning z are to

be ignored.

Since the Lagrangian found does not contain time, t,

explicitly, the Hamiltonian, H, is constant and defined as

HIEn aL k-=const (21)
ka14k

where H also constitutes an integral of motion known as

Jacobi's integral (4:19). Because this system is nonnatural,

U, Jacobi's integral replaces the energy integral as a constant

of the motion. This system is norinatural because the

I satellite's kinetic energy is

T=-1/2m[ (2-Q4 2 +(+QX+QD) +2 2] (22)

which is not a homogeneous quadratic function of the

U generalized velocities. The resulting Hamiltonian is of the

i form

H-1/2m(P,+P ) +Q(YPx-XPy) +V (2)

I which is characteristic of the restricted three body problem

I (7:422). In this modified problem the generalized velocities

are

I P,+Q Y (24)

I=Py-Q (X+D) (25)

The fact that Jacobi's integral is a constant of motion ena-

bled stable orbits about the moons to be found (4:1).

I 13I
I



I

3 Known Periodic Solutions

For different values of the Hamiltonian, stable periodic

orbits were previously found for both Phobos and Deimos

3 (4:28). Table I lists the orbits that were simple and closed

in nature. More periodic orbits were actually discovered, but

i the majority rotated and precessed about the moons and took

several revolutions to complete one orbit. From Figure 3, it

is seen that the starting point of all stable orbits found was

3 on the negative x-axis, and the orbital motion was retrograde

with respect to the rotation rate of the moons.

i
i
U
i
i
i
I
i

I
i
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3 Table T. Simple, Closed Orbits Previously Found (4:33,50)

i PHOBOS DEIMOS

5 H S.P. PERIOD H S.P. PERIOD

-6.8528 -22,0 13,900 -2.738592 -10,0 18,800

1 -6.8527 -68,0 26,600 -2.738591 -13,0 25,800

-6.8526 -93,0 27,200 -2.738590 -18,0 35,400

-6.8525 -112,0 27,400 -2.738589 -23,0 53,600

S-6.8524 -129,0 27,400 -2.738588 -31,0 72,100

-6.8523 -143,0 27,500 -2.738587 -41,0 83,200

3 -6.8522 -156,0 27,500 -2.738586 -48,0 90,800

-6.8521 -169,0 27,400 -2.738585 -56,0 93,000

1 -6.8520 -179,0 27,600 -2.738580 -75,0 106,000

1 -6.8500 -332,0 27,600 -2.738570 -109,0 108,000

-6.8400 -708,0 27,500 -2.738560 -135,0 108,000

1 -2.738550 -156,0 108,000

-2.738500 -233,0 109,000

1 -2.738400 -340,0 109,000

-2.738300 -418,0 109,000

H- Hamiltonian Value, km2/sec2

S.P.- (x,y) Starting Point of Orbit, km
Period- Period of Orbit, sec

11
I
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IV. Solution Approach

3 Starting Solutions

As mentioned in section II, the numerical continuation

I package AUTO requires the system equations of motion and a

starting periodic solution. Figure 4 shows the periodic

solutions used to start AUTO for both Phobos and Deimos.

I These were the closest stable, closed orbits previously found

about the moons. As mentioned earlier, these orbits are

I retrograde (clockwise) with respect to the rotation of the

moons. The period of the orbit about Phobos is approximately

14,000 seconds, which is about half of the Phobos period about

3 Mars. The period of the orbit about Deimos is approximately

19,000 seconds. The period of Deimos about Mars is about

108,000 seconds.

Equation Modification

The equations for this Hamiltonian system are conser-

3 vative. It seems from previous work that there is a contin-

uum of solutions, simple closed orbits, as the Hamiltonian

I changes value. In a system with naturally occurring free

parameters, AUTO is designed to compute periodic solutions

that arise from bifurcation from a stationary solution, a Hopf

I bifurcation (2:1). AUTO works best with nonconservative

systems which have some type of energy dissipation. This

U-.ry I-V".m4 1y t-m *r;aS 1 *-c.-c.'. A*hi

modified to make efficient use of AUTO.

I17
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Since there is no naturally occurring free parameter in

the equations of motion, one was needed. The second equation

of motion, Equation (16), could be rewritten in terms of the

Hamiltonian H,

p -x (2Y+Px) +2H-2V (26)=~ ~ 2Py (6

3 However, making H the parameter here results in too much of a

change to the system when AUTO varies it; no solutions are

3 computed. The system was then modified to add artificial

energy dissipation. This dissipation term

aH (HoH(X, Y, Px, Py) )(27)

was added to the fourth equation of motion

UY j Y + -?y (Ho-H(X, Y , Px, Py)) (28)

I AUTO varies H0 as the continuation parameter and the Hamil-

tonian value, H(X,Y,PX,P Y), is constant on a specific orbit.

Part of the dissipation term

U-OH (29)

ay

Iis actually the second equation of motion, the velocity in the
y-direction. The initial value of H0 is the Hamiltonian value

for the starting solution. At this solution, Ho =H(X,Y,Px,Py),

therefore the dissipation term equals zero. As AUTO varies

H0, a small amount of dissipation is added to the system and

19I
I



I

AUTO looks for solutions to the changed system. The added

dissipation forces the solutions to be in the three dimen-

sional subspace of H =H(X,Y,P,P ), but the solutions still

3 behave as conservative once in this subspace. With this term

added, AUTO had no trouble locating stable periodic orbits for

a wide range of parameter values. This artificial energy

dissipation term was not the only term that could be used, but

I it did provide satisfactory results.

3 Output Interpretation

Output from AUTO consisted of initial x and y values of orbits

3 found, associated parameter values (Hamiltonian in this case),

maximum x and y values along the trajectory, the orbital

I period, and stability information including Floquet

*multipliers and the number of multipliers inside the unit

circle. Plots of the trajectories were made by numerically

3 integrating the initial x,y,Px, and PY values of the orbits

computed, along with the Hamiltonian value and period. The

I Haming Integrator, which contains a fourth order predictor

corrector algorithm (9:108), was used to numerically integrate

the trajectories. Many continuation runs were accomplished

3 for both Phobos and Deimos to seek periodic orbits and

nonlinear behavior patterns. The solutions found for both

U Phobos and Deimos will be discussed in the next section.

2

U
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V. Results and Discussion

Phobos

Running AUTO with the equations of motion plus the

I artificial energy dissipation term resulted in a wide range

of stable orbits found. As the continuation parameter, the

system Hamiltonian H, was varied, a continuum of stable orbits

were computed. The first objective of this study was to

verify the stable periodic orbits found in previous work.

I Stable Orbit Verification. Table II lists a sampling of

the stable orbits found using AUTO continuation methods. Many

more were found between the H values listed in the table. As

the parameter H increased, the starting point for the orbit

moved away from the origin of the moon. This means that the

I major axis of each orbit, which lies on the x-axis as seen in

Figure 2, increased for increasing Hamiltonian values. Also,

the orbital periods increased as the parameter H increased

until a certain period was reached. This period was 27,557

seconds, which is approximately the orbital period of Phobos

about Mars. These results agreed with previous work using

Poincare's surface of section technique. Figure 5 shows the

orbits found which were closest to the surface of Phobos. The

parameter value for the closest orbit found was H=-6.852806.

Many more orbits were computed with a lower parameter value,

U but these orbits "collided" wiLh Phobos when integrated around

their trajectories.

21I
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Table II. Stable Orbits Computed About Phobos
2 =.000228 r/s

H INITIAL X RP Ra  e PERIOD

-6.852806 -17.9 13.7 19.0 .16 11,000

-6.85280 -21.5 16.8 25.2 .20 13,901

-6.85275 -50.1 43.8 87.9 .33 25,424

-6.85270 -67.4 60.9 125.0 .34 26,676

1 -6.85265 -80.8 74.2 152.6 .35 27,050

-6.8526 -93.1 86.4 177.7 .35 27,229

-6.85257 -99.2 92.4 190.3 .35 27,288

-6.8517 -212.7 205.8 418.5 .34 27,532

-6.8502 -318.7 312.0 630.3 .34 27,550

I -6.84761 -450.2 442.6 892.9 .34 27,555

-6.84425 -576.5 568.8 1145.3 .34 27,557

-6.8400 -706.5 700.0 1399.6 .33 27,557

-6.8300 -939.2 932.4 1872.8 .34 27,558

-6.8259 -1018.7 1008.8 2029.5 .34 27,557

I -6.8203 -1119.0 1112.3 2229.5 .33 27,558

-6.8104 -1277.3 1270.5 2537.3 .33 27,558

-6.8000 -1431.9 1424.9 2807.1 .33 27,558

-6.7850 -1615.6 16C1.0 3203.9 .33 27,558

-6.768 -1804.6 1789.3 3570.2 .33 27,557

1 -6.748 -2006.0 1986.9 4103.3 .35 27,555

* H- Hamiltonian, km2/s2

RP , Ra  PL'uCentur, ApucenLer Distances, km
e- eccentricity

PERIOD- Period, seconds
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Figure 6 shows the orbits computed that were furthest

from Phobos. All of these orbits have the same orbital period

as Phobos. Since the periods are identical, the largest orbit

shown must have much higher orbital velocities than the smal-

lest. The largest orbit, with a major axis of 6090.2 km has

an initial velocity in the y-direction of 975 m/sec compared

to the smallest orbit, major axis of 2014.8 km, with initial

I velocity 313 m/sec. These larger orbits are basically in

orbit about Mars, being much less perturbed than the closer

orbits.

Figure 7 shows how the initial x,y position of the stable

orbits computed varied as the parameter H was varied. The

I squares represent the orbits found by continuation and the

triangles represent the orbits previously found. It is seen

that the two curves formed lie on top of each other. This

* shows that the continuation methods used in this study did

indeed agree with other methods used. In addition, more

I stable orbits were found at regular intervals of the Hamil-

tonian values.

Resonant Orbits. An attempt was made to characterize

resonant orbits found in a previous study. A previously found

resonant orbit, shown in Figure 8, encircled Phobos seven

I times before returning to its starting point. This orbit was

used to search for other resonant orbits. The results, shown

in Table III, were only marginally successful. Several larger

U 24
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I

Table IiI. Resonant Orbits of Phobos

H H INITIAL X MAX X MIN X MAX Y PERIOD

-6.85270 -62.0 66.3 -73.2 189 186,200

-6.85269 -64.0 72.2 -78.8 217.2 186,200

-6.85264 -64.6 73.3 -80.0 222.2 186,309

-6.85268 -65.4 74.7 -81.4 228.6 186,449

-6.852674 -66.6 76.9 -83.6 237.6 186,641

H- Hamiltonian Value, km/s2/

X- X value, km
Y- Y w'lue, km

PERIOD- Period, seconds

N

II
I
I
I
I
[
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U 28
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I
orbits of the same variety, seven encirclements, were found.

Again, following the same pattern of the single encirclement

stable orbits, as the parameter H increased, the size of the

orbits increased. After these few orbits were computed,

further solutions found were of the single revolution type.

It was hoped that a bifurcation would be seen here. Perhaps

AUTO failed to detect the phenomena which led back to the

I continuation of single revolution orbits. Therefore, no

definite pattern was found to these resonant orbits. Nothing

can be said of any higher order resonant orbits, although

their existance was indicated through a previous study (4:43).

Rotation Rate Effects. If this is considered a two

I body problem with the satellite orbiting Mars, the value for

the rotation rate of Phobos is calculated to be

Pnew=. 0 0 0 2 2 78 8 rad/s. This was calculated by setting x=y=0,

omitting the moon terms, then solving for the rotation rate,

. However, the stable orbits found thus far assumed

U Q01d=. 0 0 0 22 8 rad/s, evidently a rounded off approximation.

Continuation methods were used to find stable orbits for Qnew'

Figure 9 illustrates the results of decreasing Phobos' rota-

tion rate to its true value. The smallest orbit, whose

perigee point is on the x-axis closest to the surface of

I Phobos, was computed from gold' As this rotation rate is

* decreased to QnW=.00022788 rad/s, the perigee point moves

away from Phobos for the same starting point, which is

I 29I
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I

approximately (x,y)=(-22km,Okm). This also results in the

orbits becoming centered on Phobos. The rotation rate of

Phobos is assumed to be .00022788 rad/s for all further

3 analysis. Figure 10 again shows the effects of this change in

rotation rate. For the higher rotation rate, the x value for

the starting point of the stable orbit is larger than for the

smaller rotation rate. This means that as the Phobos rotation

rate is less accurately modeled, at a certain value of H, the

I stable orbit becomes larger. For example, at H=-6.8481, the

major axis of the stable orbit computed is 1267 km for the

faster rotation, compared to 893 km for the slower rotation.

It seems that as the largest values of H are approached, these

U differences diminish. This is shown by Figure 11. Both

curves start separately at the initial H value of -6.855, but

seem to converge as H increases to -6.755. The major axis, in

both cases, approaches 5400 km. Qualitatively, the effects of

correcting the value of Q are small, but the smallest orbits

I are affected rather significantly.

Table IV summarizes the range of stable orbits centered

on Phobos that were computed. Again, the periods converged to

3 Phobos' period. Figure 12 shows the orbits found that were

closest to Phobos. Figure 13 displays the orbits that were

I furthest from the moon. As in the case with the higher

* rotation rate, all of these larger orbits are essentially in

a Martian orbit and are only slightly perturbed by Phobos.

I 31I
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I Table IV. Stable Centered Orbits Computed About Phobos,
9=.00022788 r/sI

H INITIAL X R Ra e PERIOD

-6.85040 -14.2 14.1 16.3 .07 9,538

-6.850399 -17.1 17.0 21.3 .11 12,174

-6.850398 -21.4 21.3 29.8 .17 15,742

-6.850379 -30.2 30.0 49.6 .25 21,123

-6.50361 -40.1 39.9 72.5 .29 24,299

-6.850337 -50.2 50.1 94.9 .31 25,798

-6.850118 -104.7 104.5 207.9 .33 27,364

-6.8500 -124.3 124.1 247.4 .33 27,447

-6.84926 -209.6 209.4 418.8 .33 27,546

-6.84796 -306.9 306.8 613.4 .33 27,564

1 -6.84522 -446.2 444.7 891.2 .33 27,570

1 -6.84187 -572.6 571.7 1144.7 .33 27,571

-6.83266 -825.3 825.7 1649.3 .33 27,572

-6.82356 -1014.7 1011.9 2028.0 .33 27,572

-6.81256 -1204.1 1198.4 2404.4 .33 27,573

1 -6.79593 -1444.1 1443.8 2867.4 .33 27,572

-6.78562 -1600.0 1559.3 3580.6 .39 27,571

-6.76334 -1822.5 1822.0 3603.5 .33 27,572

-6.75889 -1868.0 1866.9 3692.0 .33 27,572

H- Hamiltonian, km
2/s2

R ,R.- Perigee, Apogee Distances, km
* e- eccentricity

PERIOD- Period, seconds

I
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I Collision Orbits. Many of the solutions found were

orbits that had a perigee point which was inside the surface

of Phobos. Other orbits had trajectories completely within

the surface of the moon. These orbits are called collision

orbits. Figure 14 shows several of these. The continuation

I run which computed these orbits also found a limit point.

This limit point, seen in Figure 15, occurred at parameter

value H=-6.850188. From this figure, the solutions are

I continued with H varying from its initial value of

H=-6.850392 at point A. As H decreases, the size of the orbit

I decreases. This has been the trend in all continuation runs

thus far. At point B, H begins to increase again. However,

the orbit size continues to decrease, which is unusual. At

point C, the Hamiltonian reaches its maximum value then the

solutions trace out the path C-D. Point C is a limit point

where the solution branch turns around and follows a different

path. In no other situation did this occur. This is

unfortunate, because all the orbits computed here were

collision orbits. Finding limit points while computing larger

orbits might have led to discovering different types of

orbits, stable or unstable, about Phobos. It was hoped that

these collision orbits would "grow" and become realistic

orbits of Phobos, perhaps as different types of orbit

* families. This did not happen.

I
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Mass of Phobos Effects. The gravitational parameter of

Phobos used in this study is GMphb:.000 6 6 km /s . This amounts

to a mass of 9.9E15 kg. From a recent article in "Sky and

3 Telescope," (3:158) the mass of Phobos was given to be

1.08E17 kg. This is quite a bit larger than the mass used in

this study. With this mass, GMphob=*00 7 2 04 km3 /s . Using AUTO,

the mass of Phobos was increased and solutions were found.

Figure 16 shows that as the gravitational parameter, hence

3 mass is increased, the orbits become larger for the same

Hamiltonian value. This makes sense because the larger mass

* and gravitational parameter cause a decrease in potential

energy due to the moon, Vmoon. This is evident by

V=Io =-GV -dMm" (30)

when dMaoon is increased. The Hamiltonian is expressed by

IH=1/2 (pX+ 2) +pXyp (X.D) +V (31)

3 The smaller V will make the value of H, a negative number,

smaller. Thereforze, the larger mass of Phobos results in

3 orbits which have a smaller Hamiltonian value for the same

size orbit.

Variations In Solutions. Figure 17 shows how the

solutions relate to the semi-major axis A. From this, there

appears to be places where the solutions are not unique for a

Itn~i ^FIvg ~ +n=. TUomI ,,, . V--- 10 -; -- - O

the previous figure. At approximately H=-6.8245 and -6.82, it

40
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I seems that two solutions exist for each value of H. The

difference in the size of the semi-major axis in both cases is

over 20 km. This shows that the continuation method using

AUTO is not perfect. There should be a smoothly increasing or

decreasing relationship between the parameter H and the size

I of periodic orbits computed. In this case and others, this

did not occur. Also, many times during the computation of

solutions, instead of smoothly varying, the parameter value

would "jump around" or frequently change directions. Because

of this the output was sometimes hard to follow. The drastic

I changes could be indications of bifurcations, but as no other

solution branches were computed and no bifurcation points

indicated, this was discounted.

The separate solutions could be orbits which lie on a

torus in the three dimensional subspace corresponding to the

H 0 = H(X,Y,P ,P )= constant situation.

Stability. As mentioned earlier, AUTO computes the

Floquet multipliers for each solution. The number of

3 multipliers on or inside the unit circle is indicated. In the

case of periodic solutions, there will be one multiplier on

3 the unit circle at +1; therefore, the location of the others

will determine stability. Another multiplier should be inside

the unit circle due to the dissipation term. The other two

* multipliers should be on the unit circle for neutral

stability. For a typical continuation run using AUTO, the

4
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I multipliers were plotted. The results are shown in Figure 19.

5 Most of the solutions generated multipliers that were on or

Inside the unit circle. These stable solutions had two

I multipliers on the real axis, one with a magnitude due to

dissipation less than 1 and the other at +1. The other two

3 multipliers were complex conjugate pairs with magnitudes equal

to 1. The multiplier shown outside the circle in Figure 19

was associated with the first unstable solution computed for

5 that particular continuation run. From this unstable orbit,

which was also a collision orbit, many more unstable orbits

* were computed.

The behavior of some of these unstable orbits is worth

noting. Figure 20 shows a comparison of two orbits computed,

both within Phobos, which had the same Hamiltonian value,

H=-6.850431. The larger orbit was stable though not realistic

5 and the smaller unstable. Though the smaller orbit was per-

iodic when its trajectory was integrated, its shape was not a

simple ellipse, as most orbits computed in this study were.

3 This orbit and several others with the same shape are shown in

Figure 21. As the sizes of the orbits in this figure in-

3 crease, they do not seem to become any more circular. This is

expected because of the many nearly circular orbits computed

in the proximity of Phobos. The biggest orbit in this figure

has the smallest Hamiltonian value, H=-6.850496. No further

solutions were computed past this one. It is uncertain

45I
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I whether the solutions that exist past this orbit become

elliptical again or approach infinite period, possibly a

heteroclinic orbit. As this behavior occurred in a region of

orbits smaller than Phobos, no useful information was gained.

It seems clear that a new family of orbits will not "leave"

I the interior of Phobos.

Deimos

As in the case with Phobos, a continuum of stable orbits

were found as the initial Hamiltonian value was varied.

Stable Orbit Verification. Table V contains a summary of

the orbits computed. Again, this is a summary of many more

stable orbits that were computed. As with Phobos, the period

of these orbits increased with an increasing Hamiltonian value

until the period of Deimos was reached, approximately 109,000

seconds. These orbits had periapsis distances that ranged

from just above the surface of Deimos to 4100 km, which is

over one-sixth the distance to Mars. Figure 22 compares the

initial x-values of these orbits with the ones previously

found. Both sets of solutions are in agreement. These orbits

were again retrograde (clockwise) with respect to the rotation

3 of Deimos. It was also noticed from the complete set of solu-

tions computed, that the sizes of the orbits increased less

and less for the same increase in Hamiltonian value.

Complete Solutions. The low altitude orbits, shown in

Figure 23, are not the rotating ellipse type found in pre-

I
49I
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I Table V. Stable Orbits About Deimos

INITIAL X Rp Rl e PERIOD

-2.738593 -8.21 7.83 8.02 .01 11,000

-2.738593 -8.75 8.33 8.58 .01 14,172

I -2.738593 -9.38 8.91 9.29 .02 15,648

-2.738592 -10.03 9.49 10.01 .03 17,204

-2.738592 -10.69 10.11 10.76 .03 18,800

-2.738590 -20.09 19,11 23.80 .11 43,325

-2.738588 -30.42 29.23 43.81 .20 68,583

I -2.738585 -50.10 48.75 88.82 .29 95,051

-2.738570 -109.30 107.81 214.60 .33 107,554

-2.738522 -202.42 200.90 402.62 .33 108,842

-2.738309 -411.67 410.16 821.94 .33 109,055

-2.737991 -601.04 599.84 1200.98 .33 109,074

-2.736828 -1030.19 1028.59 2059.00 .33 109,081

-2.736120 -1219.76 1218.97 2439.11 .33 109,083

-2.734672 -1535.71 1533.63 3072.72 .33 109,084

-2.733644 -1725.24 1724.08 3452.79 .33 109,085

-2.731663 -2041.06 2037.37 4081.47 .33 109,086

-2.727798 -2546.09 2536.66 5083.73 .33 109,090

-2.723074 -3050.70 3036.71 6087.03 .33 109,096

-2.710174 -4120.24 4107.76 8198.09 .23 109,129

H- Hamiltonian, km2/s2

I pKa- Fericenter, Apocenter Distances, km
e- eccentricity

PERIOD- Period, seconds
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I vious work. In the case of the rotating ellipse discovered,

the apogee and perigee locations changed with each satellite

revolution and traced out a nearly circular path about Deimos

(4:51-54). The low altitude orbits shown in Figure 23 are

non-rotating simple periodic orbits, the same type found in

I the Phobos analysis.

* As seen in Table V, these low altitude orbits are nearly

circular, having very small eccentricities. However, as the

orbits increase in size, they get less circular and converge

to an eccentricity of about .33. This follows the pattern of

I the orbits about Phobos, which were nearly circular close to

the surface and became less circular to an eccentricity value

of .33. As the satellites move further away from their

3 respective moons, they settle into elliptical orbits about

Mars. In both cases, the orbits became similar in shape, with

eccentricities of .33. But the largest Deimos orbits computed

were over twice as far from their moon as the largest Phobos

orbits. These orbits can be seen in Figure 24.

3 Collision Orbits. Many of the computed orbits had a

periapsis point which was inside the surface of Deimos.

Several of these collison orbits are shown in Figure 25. The

interesting case found with Phobos, where different size

orbits were discovered for the same Hamiltonian value did not

3 occur with Deimos. No limit points were computed.

I
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I Stability. The orbits computed for Deimos, summarized in

Table V, were stable. Again, their Floquet multipliers were

computed and the three not affected by the dissipation term

were found to be on the unit circle. For a typical

continuation run of solutions, Figure 26 plots the multipliers

I in relation to the unit circle.
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H VI. Conclusions and Recommendations

IUsing previously found periodic orbits of Phobos and

3 Deimos enabled many more to be found using the continuation

techniques discussed in this study. The orbits computed that

3were closest to the surfaces of the moons were associated with
the smallest Hamiltonian values and the largest orbits had the

I largest Hamiltonians. The orbits closest to the moons seem to

be perturbed the most, having short periods and low eccen-

tricities. As the distances increased, the orbits tended to

3 become eccentric, e % .33, and settle into Martian orbits,

with the same periods as their respective moons. These

I results agreed with previous work.

3 The search for different branches of solutions and limit

points was disappointing, only one was found in the Phobos

case. The discovery of more of these could have lead to

different types of orbits, possibly prograde instead of

I retrograde or possibly more resonant orbits. Some unusually

shaped orbits were computed, but did not lend themselves to

further analysis being very unstable and not in the range of

3possible orbits about Phobos.
The continuation/bifurcation software AUTO was of limited

3 utility in this type of problem. It was used to find a wide

range of orbits, but for this study was not very effective in

finding branch points associated with nonlinear behavior. For

3 this modified three body problem there is no naturally

58I
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was added to enable AUTO to compute periodic solutions. This

introduced energy dissipation, which is characteristic of the

nonconservative systems upon which AUTO is primarily used.

I This technique did allow various system parameters to be

changed and resulting orbital behavior analyzed. The mass of

Phobos was increased to show that this causes orbits with the

same Hamiltonian value to increase in size. Also, the

rotation rate of Phobos was decreased to show that this tended

to shift the stable orbits over the center of Phobos and

decrease their size for the same parameter, H, value.

The way this system was modeled, utilizing the equations

of motion in Section III, AUTO was used stricly as a

continuation tool to find more of the same types of solu-

tions. Its capability to find bifurcations and describe

nonlinear system behavior was not effective. Perhaps with a

ssystem having more parameters, or a nonconservative system

i where the Hamiltonian would vary on the trajectory, AUTO would

be more useful in mapping out the behavior of solution

3 branches and locating branch points.

5

I
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I Appendix A: System Parameters (4:67)

I Moons: Phobos Deimos

Axis Lengths (km)

x= 13.4 x= 7.5
y= 11.2 y= 6.1
z= 9.2 z= 5.2

Moments of Inertia (kg*km
2

i Ix = 42.016*M moon Ixx =  2.850*Mmoon

I yy= 52.840*Maoon Iyy= 16.658*Maoon

IN= 61.000*MMooR Izz= 18.692*M oon

Densiti (g/cm3
)

p 2.2 i 1.7

I Orbital Radius (km)

5 D= 9,378 D= 23,459

Rotation Rate (rad!sec)

i = 2.2788*10 .  = 5.76*10 .

Gravitational Attraction (km
3/sec 2)

i GMoon= 6.6*10 . 4  GMaoor= 8.8*10 .

3 Mars:

Gravitational Attraction (km3/sec 2)

IGMmars = 42828.32

I
!

I
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U Appendix B: Phobos Resonant Orbit Plots

IFigure Page

27. PhoboF Resonant Orbit, H= -6.852687............... 62I28. Phobos Resonant Orbit, H= -6.852674............... 63
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From a few known periodic orbits of Phobos and Deimos, continuation
techniques were used to find entire families of stable orbits.
These techniques involved varying a parameter, the Hamiltonian, of
the system and analyzing how the orbital behavior changed with the
parameter. Floquet multipliers, for stability analysis, were also
computed. AUTO86, a continuation/bifurcation software package,
was used in this study. Artificial energy dissipation had to be
added to the conservative Hamiltonian system to enable use of AUTO.I
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