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Adaptive Detection in Subspaces

Barry D. Van Veen
Chong H. Lee

Department of Electrical and Computer Engineering
1415 Johnson Drive

University of Wisconsin
Madison, WI 53706

Abstract estimation of the covariance matrix in the reduced
This paper considers subspace based adaptive detection dimensioned subspace.

in the context of the likelihood ratio test studied by Kelly, The outline of this paper is as follows. SLtior 2
[ 11. The probability of false alarm for this test depends only introduces the detection problem and modifies Kelly's results
on the subspace dimension while the probability of for subspace processing. The relationship between partially
detection is a function of the subspace. Thus, we propose adaptive beamforming and the parameters of the subspace
choosing the transformation onto the subspace to maximize detection problem is also illustrated. A technique for
the probability of detection over a likely class of noise and choosing the subspace to approximately maximize the
interference scenarios. An approximate solution to this vrobability of detection over a set of likely interference
optimization problem is described. This approach can lead scenarios is described and analyzed in section 3. Several
to dramatic increases in the probability of detection given a simulation examples are given in section 4 to illustrate the
fixed number of data observations due to a large gain in the effectiveness of this approach. A summary is provided in
statisucal stability associated with the reduced dimension Section 5.
subspace. The relationship between subspace design for
adaptive detection and partially adaptive beamformer design 2. Adaptive Detection
is explored. Simulations verify the analysis. Let the N dimensional vector xi be the data vector

observed at the N sensor outputs at time i. The xi are
1. Introduction assumed to be independent and Gaussian distributed with

Processing of sensor array data in subspaces, means under the two hypotheses
sometimes termed the beamspace domain, has been H.: E(xi}=O, i= 0.11....K
proposed for adaptive beamforming and source location HI: E(x0I =bs, Eix = 0, i = 1,...,K
estimation (e.g. [2-4]). Benefits of mapping the data into a (1)
subspace prior to processing include reduced real time The covariance is the same under both hypotheses
computational burden, improved adaptive convergence H.H: E{(xi-E(x)Xx,-Efx))H)=M (2)
behavior, increased resolution and robustness. In this paper The signal vector s is assumed known, but the signal
we consider subspace based adaptive detection for sensorarry dta n he ontxtof he ikeihod ati tst tuded amplitude parameter b and the noise covariance M arearray data in the context of the likelihood ratio test studied unknown. Given K signal free data vectors x i, i = 1,2,...K,
by Kelly [1]. The signal to be detected is modeled at the w Given signal s pen in
sensor outputs as a known vector with unknown amplitude, we wish to determine whether or not a signal is present in
The noise and interference are modeled as zero mean the data vector x0.
Gaussian random vectors with unknown covariance matrix. Kelly [1] uses a likelihood ratio approach wherein the

The likelihood ratio test is dependent on the unknown signal unknown parameLers M and b are replaced by their

amplitude and noise/interference covariance, so the detection maximum likelihood estimates. This leads to a threshold

statistic is obtained by maximizing the likelihood ratio over based decision statistic whose probability of false alarm

these unknown parameters given the data. Kelly [1] shows (PFA) is dependent only on K, N and the threshold. An

that the false alarm rate for this statistic is independent of expression for the probability of detection is also derived in

the noise/interference covariance matrix and derives an [1]. This approach is repeated below assuming the data is

expression for the probability of detection. transformed into a subspace prior to performing detection.

Kelly's [1] results are generalized here for detection in Define an N by P (P< N) dimensioned full rank matrix

arbitrary reduced dimension subspaces. Expressions for the T and transformed data vectors zi = THxi, i = 0,1.K.

probabilities of detection and false alarm as a function of the The subspace data remains zero mean except for zo under H I
subspace are given. The probability of false alarm is which has mean Elzo) = bTHs = bsT. The transformed
dependent only on the subspace dimension so we propose covariance matrix is MT = THMT. The joint probability
choosing the subspace to maximize the probability of density functions f0 and f1 under H0 and H1 are given by
detection over a likely class of interference scenarios. An ,.1
approximate solution to this optimization problem is fo(z 0 ... zg)= , .ex{_rMTT
obtained by choosing the components of the subspace one at itNMT (3a)
a time, with each additional component chosen to maximize K*1

the probability of detection. In spite of the loss in SNR f,(z . - l(20' IM( T I( T)l
which results from subspace processing, dramatic x . dedT
improvements in detection performance can be obtained I (3b)
because of the increased statistical stability associated with where the sample covarance matrices To and T1 are
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To =~H where L= K+I--P and

K+1I.o HI (4a) Hk(y) = Gk(ry)fQr) &r

T1 =L (z,,-bsTXZO -bsrp + (4b) fo (I 2a)K-+ (4b) -l Xn

The likelihood ratio test is based on separate maximizations Gk(x) = exp(-x) I L
of fo and fl over the unknown parameters MT and b. The a .on (12b)
detection statistic is then taken as the ratio of the maxima. f(r) = P+L-I)! (1 _- r-L

The estimates of MT and b which maximize f0 and fI are by L(P-2) (I .c)
definition the maximum likelihood estimates. The parameter a which appears in the exiression for PD is a

It is well known that the maximum likelihood estimate function of the transformation matrix T
of the covariance matrix is given by the sample covariance a 1
matrix [7]. Hence, To maximizes f0 over MT and T I a= ll TMT.r
maximizes fI over MT. We now have =H2T )-T-s.(r x1 l s  THs (13)

max f0 =[(eitrdetTJ Transforming T by any nonsingular matrix on the right
does not change a. The untransformed detection problem

Kel considered in [1] is represented by setting P = N.
max -[( 1  The above expressions allow evaluation of the effect ofmax t, T on detection performance. Mapping onto a subspace

r f(5) redc-es the number of data vectors required for existence of
b appears only in TI so for convenience we form the K+Ist  the te.t The original test required K > N; the transformed
root of the ratio of fI to f0. termed L(b), and maximize it test requires K > P. If PFA is held constant, then reducing
over b to obtain the likelihood ratio test from N to P leads to a smaller threshold Lo which tends to

L(b) = detT increase PD. r represents a Beta distributed (12c) loss factor
which arises due to the estimation of the covanance matrix

detT1  () 1]. The loss factor reduces the effective value of a (see
Hi (12a)). Note that Etr} = (K+2-P)/(K+I). As P decreases,

max L(b) detT° > L. the distribuion of the ioss factor becomes concentrated
b min defT1 < closer to the maximum value of unity, which tends to

b Ho  (6b) increase PD. This increase corresponds to the gain in

where L, is the threshold parameter. statistical stablity associated with estimation of the
Using a derivation analogous to Kelly's (II, b is given covariance matrix in the subspace. Much fewer parameters

by - (P 2 vs. N2 ) must be estimated given the same number of
data vectors.

b =TS zO PD also increases as a increases. The dependence of aH -i

sTS ST (7) on T is illutrated by reexpressing (13) in the form

K s (14)

S ZiZ i  where M 1 /2M / is the Cholesky factorization of M. The
P-1 (8) term in brackets is a projection matrix. Thus, a is

Substitute for b in (6b) to obtain the likelihood ratio test proportional to the norm of the projection of M- tfs onto

I the P dimensional space spanned by MH2T. This norm is
L 0 0  upper bounded by T nonsingular (P = N). If M were

tS-1f <known, we could attain the upper bound with P = I by
I + Z0S"- rT - _ 1% choosing T = M- 1s. However, M is not known and we

0 0 will not in general attain the upper bound. This results in a
S T (9) loss in performance associated with subspace processing.

Note that this test is of the same form as Kelly's, as it The parameter a is related to the signal to noise ratio at
should be since the transformation T is linear. Thus, the the output of a linearly constrained minimum variance
analysis given by Kelly applies directly to (9) with minor beamformer. Using the freedom to transform T on the right
modifications due to T. A summary of the properties of by a nonsingular matrix, we assume without loss of
this test is given here; the reader is referred to [I] for details. generality that T is of the form

The probability of false alarm (PFA) is given by T = [ s T,%] (15)

PFA t 'K. where the N by P-I matrix Ts satisfies sHT 5 = . The ]

P L0  . (10) partitioning in (15) is always possible provided sHT * 0. a

This test has the constant false alarm rate (CFAR) property condition which is satisfied by all T of interest since a = 0
since the PFA depends only on K and P; it is independent of if sHT = 0. Substituting this T into (13) yields
MandT. The probability of detection (PD) is aHMS SHMT - -j

PD I L L L,-}I o 164 THMs THMTJ , odeog
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where (A)i 1 denotes the element in the first row and first pose an alternative optimization problem. a(0) is inversely
column of A. Apply the formula for the inverse of a proportional to P(O) (22) so maximizing a(@) over T is
partitioned matrix to obtain equivalent to minimizing Pl(e) over T, where T, is

2(sHs constrained to be orthogonal to the signal vector s. Here
a = the constraint that T contain a component in the space

SHMS HMTU(T'MTs) 1 T H M s  spanned by s is explicitly enforced; this constraint is
to noise ratio at the output of a implicit in maximization of a(@) over T although it can be

represents the signal made explicit by onstraining T to be of the form given in
partially adaptive linearly constrained minimum variance
beamformer with weight vector w expressed in generalized (15). Minimizing a weighted average of the interference

sidelobe canceller (GSC) [2] form as w = s - Tswn. In power over Q gives theyroblem

GSC terminology, s is a fixed beamformer designed to pass min ("b(O) P1(O) dO
the signal, Ts is the signal blocking matrix which is 1. Jo.a (25)
orthogonal to the signal, and w n is a set of unconstrained This problem is identical to the partially adaptive
adaptive weights. w n is chosen to minimize the output beamformer design prnblem posed in . T12 . , "he
powe methods developed in [2,5,6] can be employed to solve (25).

min(s - Tswn)HE {xxH)(s - Note that (24) and (25) are not equivalent- At a single
Wn (18) value of 0, maximizing a(0) over T is equivalent to

which has solution minimizing PI(0) over Ts. However, the optimization
, =(T HMT)THMs (19) problems (24) and (25) perform the maximization and

S s s . minimization over a range of 0. Using the relationship
This solution is obtained independently of whether x is between a(0) and Pl(O) we see that (25) is equivalent to
distributed according to HI or Ho because of the
orthogonality of T, and s. The output power due to the min| b(0) ---d0
interference, P1, is given by Tfe a()

1TI aveage(26)

P=sHMs -sHMT (THMT)-THMS Thus, while (24) maximizes the average SNR, (25)
s S Ss (20) minimizes the average of the -nverse SNR. The inverse

and, assuming the signal is present in x, the output power SNR criterion more heavily weights small SNRs and
due to the signal, Ps, is deemphasizes large SNRs in choosing T.

) The remainder of this paper considers the optimization
s . (21) problem of (24). A closed form solution to (24) is not

Thus, (17) is rewriuen apparent so we follow a strategy similar to that posed for
P partially adaptive beamformer design [2). Approximate

a = - solutions are obtained by designing T one column at a ime.
P1 . (22) Partition T as T = [ t To ] where t is an N dimensional

vector and T, is assumed known. The P columns of T are
3. Design of T designed one at a time, with each new column being a

The discussion in the previous section suggests a function of previously designed columns. a(0) is expressed
general philosophy for designing T to optimize the as a function of t and To using the relationship for the
subspace based detector's performance. P should be chosen inverse of partitioned matrices as
as small as possible and T should lead to values of a which H H H
are close to the upper bound. Below we propose two a() = s"M- ()s- c (O)c(O)+ t A (O)c(O)c (O)A(0)t
similar methds for designing T. tHAH(O)A(0)t  (27)

Let 0 be a vector which parameterizes the Ahere
interference/noise environment and denote the corresponding -i

covariance matrix as M(0). 0 can represent interferer P(0)= - eM"'(0)T(TM(0)To TMM(0) (28a)
locations, power levels, isotropic background noise 0 ((0S
characteristics, etc. For example, if we assume the A(8)=P(0)M c(0)= P()M-(.)s (28b)
interference environment consists of two interferers in white The first two terms in (27) do not depend on t. Thus, the
noise, then 0 would represent the interferer locations, optimization problem is expressed as
Denote a as a function of 0 as a(o) I b() tHAH(O)C(O)CH(O)(O

a(O) = sIH TTHM(O)T T Hs. (23) max b H dO

For convenience we assume lbl - . The goal is to optimize t A (O)A(8)
T over a set of likely interference scenarios denoted by fl. (29)
For example, maximize a weighted average of a(O) over Q2 where fQt represents a subset of Qk.

f( Development of an approximate solution to an
J b(O) a(0) dO optimization problem of the same form as (29) is given in
JOE0  (24) [2] and [5]. Application of these results leads to a t which

where b(0) is a nonnegative weighting function, satisfies the set of linear equations
A A

The correspondence between a and the SNR at the At = c (30)
output of a partially adaptive beamformer can be used to whe
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A H where d(a) is the array response or direction vector
A = b(0)A (0)A(0' d corresponding to direction a. In general, 0 for this

fie 1 t (31a) environment would include L, aw 2 , (72 , and ai, i = 1, 2,
= b)d .... L. PI(O) is expressed as

b( ) d(3b) P(O) =(s - Tswn HM(e)s - Tswn)
Consider the case where the design region is 01 H H (J 2  2

approximated by a single point of the parameter space, it = I - s I -

0o such that the integrals in (31a,b) are well approximated (37)

by the integrands evaluated at 00. Now X = Note that wHd(a) is the response in direction a associated

b(O0 )AH(O,)A(0 0 ) and c = b(o)AH( 0 o)c(0o). The presence with W.

of the projection matrix P(.i ,) in the definitions of A(O) There are two factors in PI: the interference term depend

and c(Oo) implies that c(Oo) .tes in the space spanned by the on how well the response of s matches the response of

columns of A( 0 ) and that A is not full rank. Let = Tsw n at the interferer directions ai, and the white noise
A term depends on the norm of s - Tsw n. In general these

UZVH be the singular value decomposition of A. The two terms are inversely related; as response matching
minimum norm solution to (30) is improves the norm gets larger. The relative sizes of ai2 and

t = VZ - 1 U Hc(0) (32) Gw2 determine the relative importance of response matching

where here superscript -1 denotes pseudo inverse, versus weight vector norm.
Compose UJ of the columns of U corresponding to If the ai2 are much larger than aw 2 , then responseCompse ofthe oluns f Ucorrspodin to matching dominates. Given a Ts which provides good

nonzero singular values. Using (32) in (27) we have
---- response matching, PI will be insensitive to variations in

t AH(O)A(eO) t = cH(0)LU U c(0) Oi2. PI will be sensitive to variations in the interferer

t H A H(0 CH( ----- directions. If T. is chosen to provide good response
c )Uc(0 ) (33) matching over one range of a, it is unlikely that good

so that response matching will be obtained over a different range of

(-UUc a. PI should not be sensitive to changes in the number of
S0 (34) interferers L provided L 5 P-I. Assuming the d(ai), i =

Now U is a basis for the space spanned by the columns of 1,2,...,L are linearly independent, the response matching
A(00 ). c(Oo) lies in this space so the projection of c(Oo) term represents L equations in P-i unknowns (wr). If L <

onto the space orthogonal to U is zero and (34) simplifies P-1, then the response matching term can always be made

to equal to zero independent of Ts, although this may result in
oH-1 (@)s. a large norm for s - TsWn. A good T, will achieve
a(0) = swil (35) response matching close to zero while keeping the norm

which is the maximum value for a(00 ). small.
Thus, as the design region shrinks to a point, the If aw 2 is much larger than the ai 2 , then the norm

design procedure suggested here leads to a value for a( 0o) dominates and the design will not be sensitive to variations
which is equal to the value obtained in the absence of in ai 2, to L, or the interferer locations. A T, designed for
subspace processing. This suggests that the best overall oi2 much larger than aw2 should perform well when ;,O,2 is
performance is obtained by designing each column of T over much larger than the ai2 because a Ts which results in good
separate subregions of Q which are are made as small as
possible. If these subregions are sufficiently small, then the response matching can yield a small norm by setting w =

subspace based detector should show very little degradation 0. In contast, a Ts designed for aw2 much larger than the
in a(0). oi2 is not necessarily capable of good response matching.

The correspondence between a and the SNR at the The preceding discussion suggests that the most
output of a partially adaptive beamformer facilitates analysis important parameters to include in 0 are the interferer
of the sensitivity of the design procedure to differences directions. The best all around performance is obtained by
between the acuial interference environment and the class of designing T$ assuming the ai2 is much larger than aw 2 .
environments assumed during design. This allows The exact number of interferers does not appear to be
determination of which parameters are most important to significant as long as L 5 P-l.
include in 0. If the design results in a(0) being large for 0
in the set Q, then PI(O) will be small for 0 in the set 12. 4. Simulations
We address the sensitivity of a(0) to environments 0 not in A linear equal spaced array of 50 sensors is used to
fQ by examining the sensitivity of P1(O) to environments 0 illustrate the potential performance improvements which are
is not in Ql. possible by performing detection in subspaces. The sensors

Suppose the interference environment consists of J are spaced at one half wavelength. The signal to be detected
point interferers in white noise so that arives from the direction perpendicular to the array so

M(O) L ffad(,)dH(ct-)+Y21 s50-1/2[ 1 I... I]H .

iz l (36)
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The niagnitude of b is set to uit,. The noise consists of the detection loss associated with the loss of SNR in the
two interferers in white noise, where the ratio of interferer subspece for the cases studied here.
power to white noise power is 30 dB. This implies
M = 1000d(a )d kal ) + 100 t't2)d (c2) + 50-112I References
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50 dimensional space to a 4 dimensional space. The worst Table 1. Design gions for the columns of T.
case loss is 3.51 dB. ol um n e in f cn

The PD's of both detectors are computed for the same Column sinaI sinc12
182 cases assuming K = 75 signal free data vectors and a 1 .6- 1.0 .6- 1.0
constant PFA = 10-6. The PD's for the non-subspace 2 .6- 1.0 .1 - .58
detector ranged from a minimum of .4855 to a maximum of 3 .3 -. 58 .1 - .58
.5066. Table 2 presents a histogram of the PD's for the 4 .1- .28 .1 - .28
subspace detector. Subspace processing results in a
tremendous improvement in the PD; the PD is greater than Table 2. Difference between l0log(a) for the non-
.999 for 177 of the 182 cases. The worst case PD of .8539 subspace detector and l~iogza) for the subsiace detector.
is significantly greater than the best case non-subspace PD Range for Difference Number of Cases
of .5066. The two cases where the PD is less than .9 0 < dif < .5 174
correspond to the two cases where the loss in a is greater .5 < dif < 1.0 3
than 1.5 dB. Customization of the regions used to design 1.0 < dif < 1.5 3
each column of T could be used to improve a and the PD at 1.5<dif3.6 2
these points.

A histogram of the PD's over the same set of
interference scenarios is given in Table 4 assuming PFA = Table 3. PD's for subspace detector with K = 75. The

10- 6 and K = 30. The non-subspace detector does not exist non-subspace detector PD's range from .4855 to .5066.

in this case because K < N. The worst case PD is .6472; Range for PD Number of Cases
175 of the cases have PD's better than .99. The subspace .85 < PD < .9 2
detector performs significantly better than the non-subsp ce .9 < PD < .99 0
detector even though it has less than one half the number of .99 < PD < .999 3
signal free data vectors available. .999 < PD < .9999 4

.9999 < PD < .99999 173
5. Summary

The detection problem posed by Kelly [1] is modified to Table 4. PD's for subspace detector with K = 30.
perform detection on data which is mapped into a subspace Range for PD Number of Cases
prior to processing. The detection performance tends to .64 < PD < .9 2
increase due to the reduction in data dimension, but tends to .9 < PD <.99 4
decrease due to a loss in SNR associated with the mapping .99< PD < .999 175
into the subspace. A procedure is proposed for designing .99 _______________
the subspace transformation to minimize the SNR loss.
The subspace design problem for optimizing detection is
shown to be closely related to the partially adaptive
beamformer design problem. Simulations illustrate the
effectiveness of subspace detection. The gain in detection
performance associated with reducing dimension far exceeds
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