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L INTRODUCTION

The work presented in this report is a continuation of a former program?® in which
the pressure dependence of heats of explosion (HEX) for RDX (secondary explosive),
XM39 (RDX composite propellant) and M30 (triple base propellant) were determined. The
measurements were made in calorimeter bombs which were prepressurized tc various
levels with inert gas (He or Ny). Low loading densities (.0002-.012 g/cc) were used in
order to minimize the transient pressure increase during combustion.

The program was started to provide information which could help improve interior
ballistic (IB) code predictions of gun performance at low pressures. The discrepancies
between measurements and predictions of ignition delays and pressurization rate in guns
and gun simulators was discussed at a recent JANNAF workshop.? It is generally believed
that the discrepancies at low pressures are due to two assumptions: (1) infinite-rate
kinetics (to calculate the rate of energy production) and (2) thermodynamic chermical
equilibrium (to calculate the thermal enerey (E) of the propellant combustion products).
The validity of these assumptions becomes questionable as pressure decreases. The
absence of thermochemical equilibrium among combustion products under low pressure
conditions is not unexpected. It is consistent with the HEX measurements at low
pressures! and with strand bummer observations of two stage propellant flames!3 where,
below a critical pressure, the second stage (and thermochermical equilibrium) is inhibited.
The use of fini'‘e rate kinetics will, in principle, eliminate the need for both these
assumptions but acquiring the necessary information for incorporation into the codes will
take time. The objective of the program was to evaluate an alternate method for
estimating values of E which is independent of the thermochemical equilibrium assumption
and can be incorporated into the IB codes relatively quickly. This alternate method is to
substitute for the value of E at a given gun pressure the HEX value measured at the same
pressure in calorimeter bomhbs. This implicily assumes that combustion and cooling
processes in bombs and guns are similar. If this assumption is valid then the HEX
measurements at various pressurization levels are expected to he botter estimates of E
than the calculated themochemical equilibriuin values that are now being used in IB
codes. There is the additional requirement (for use in the IB codes) that these processes
depend primarily on total pressure (i.e., are not strongly dependent on gas compasition).

The earlier work! showad th: * as initial (inert) pressures (Po) and loading densities
(LD) decreased there was a fall off in measured HEX and ignition became niore difficult.
The goal of this work is to extend the HEX measurements to lower LD in order to minimize
uncertainties in the pressurization level in the calorimeter. At low LD the ignition energy
can be comparable to the combustion energy and must be subtracted from the {total)
therial energy of the calorimeter to obtain HEX values.

L. EXPERIMENTAL TECHNIQUE

The experimental technique has been described previously.! HEX were ineasured
with a Parr Calerimeter System. The bombs (volume = 340 cc) were modified te provide
for uansient pressure measurements and sampling of combustion products. The data




reported here are for perforated propellant grains except for a few XM39 data which were
taken with propellant slabs (solid).

It was possible to obtain data for M30 at lower LD (and Po) by using larger
diameter (.016" vs .008" Ni) ignition wite and increasing the wire area in contact with the
propellant, i.e., increasing ignition power and energy to the propellant. These data are
denoted in Table | as enhanced ignition. For XM39, it was also necessary to place
Zirconia Felt (Zicar Products), a thermal insulator, at the bottom of the capsule which
supports the grains in the calorimeter during ignition and &amespreading (i.e., decrease
the the heat transferred from the propellant) in order to obtain data (denoted in Table 2
as thermal insulation) at lower LD.

——t
—

TABLE 1. M30 |
Po m <HEX> Sh <p’® Sp
(psia) | Gas (@) (cal/g) | Nh | (cal/g) | (psi) Np {pst)
1018 He 1 963 3 g 416 a 186
1015 N, 1 977 2 9 329 2 49
1015 He 28 943 § 7 131 5 55
1018 N, 28 945 2 10 108 2 5
1018 He 16 893 2 46 103 2 ]
1015 He 08 838 4 KY 60 2 1
465 He 1 958 2 20 628 2 82
465 He .28 956 3 19 89 3 43 |
165 He 1 943 4 8 352 2 81
168 N, 1 913 2 4 301 1 -
165 He .28 923 3 6 51 3 28
165 N, .28 870 1 - a3 1 -
65 He 1 827 3 11 200 2 88
85 He .28 864 2 32 G -
65 N, 28 177 2 12 61 | 2 1
45 He i 918 ] 17 1T ¢ 39
45 He 28 818 4 11 34 4 13
28 He 1 9l 3 34 180 1 -
25 N, 1 a28 2 13 0 -
25 He 28 693 6 81 17 5 9
25 N, .28 723 2 29 25 2 18
a5 He 16 825 i 11 12 2 1
25 He .08 587 2 176 13 2 1
= ced igriton. -




TABLE 2. XM39 -
#
oo} m <HEX> Sh <P*> Sp
(psia) Gas (9) (cal/lg) | Nh | (cal/g) | (psi) Np (psi)
1045 | He | 44 | 829 1 - 0 -
940 He 2.2 830 2 0 (600) 1 -
940 N, 2.2 835 1 - 1072 1 --
940 He 52 810 3 12 272 1 -
940 N, .52 802 2 5 216 | --
940 He 24 794 4 23 123 4 8
940 He 13 731 2 4 80 2 10
940 He 07 661 2 90 38 2 12
795+ He 2.2 822 1 - - 0 -
545+ He 44 833 1 - --- 0 -
465 He 2.2 825 2 3 (600) 1 -
485 N, 2.2 823 1 - 880 1 -
463 He .52 810 2 7 182 2 4
465 N, 52 798 2 21 163 2 4
295+ He 44 830 1 - 0 -
248+ He 44 832 1 . - 0 -
2457 He 2.2 807 1 - - 0 -
240 He 2.2 825 2 4 452 1 -
240 N, 2.2 819 2 2 894 2 24
240 He 52 769 2 36 123 2 4
240 N, .52 789 2 11 128 2 7
168 He 2.4 812 2 14 312 2 78
165 N, 2.2 804 1 - 480 1 -
16E He B2 - 739 ) 51 71 8 16
165 N, 52 712 2 14 86 2 7
45 He 2.2 818 3 28 108 1 -
48 He 52 711 2 29 29 2 i
48%* He 24 578 3 82 7 2 1
i6$* He 14 581 3 57 1 2 1
458+ He 07 529 2 83 7 2 4
o e e
+ = Slab
$ = Thernal insulation
* = finhanced ignition
3




The ignition energy was obtained by integrating (over time) the product of the
instantaneous ignition voltage and current. The Paix Calorimeter System uses a
transformer to provide a 60 Hz ignition voltage. Th s was measured. The ignition current
was measured using a Peason current monitor (Mode: #411) (Pearson Electronics, Inc.).

II. EXPERIMENTAL RESULTS

Figure 1 shows the instantaneous ignition voltage, ignition current and calculated
ignition energy using .016" Ni ignition wire for an exveriment with 1.03 g M30 propeliant
in N,, Po = 466 psia. The ignition energy is 18.3 cal. which is about 2% of the total heat
measured in the calorimeter. Figure 2 shows the corresponding pressure increment which
is obtained frcin the piezoelectric transducer signal. The pressure measurement is subject
to error due to heating of the piezoelectric transducer during the experiment. Efforts were
made to mirimize this heatag by shielding with vacuura grease but were not entirely
successful. At present, it has been ausumed that the maximum pressure increments (P*)
are not greatly affected by changes in heating dus to differences in LD.

The data reported earlier! did not include corrections for ignition energy. These
correctic - 5 have been made lor the data presented in Tables 1| and 2. Table 1 °
surmmari. a5 tile HEX and P* measurerrents for M30, m is the sample mass (x10%), < >
signifies the mean of the measurements, Nh and Np are the number of HEX and P*
measurements, respectively, Sh and Sp are the corresponding standard deviations. The
corresponding information for XM39 is given in Table 2.

Various plots of the data in Tables |1 and 2 are shown in Figures 3 through 8. Figure
J is a plot of HEX vs. Po for M30 which shows the effects of changes in mass and ambient
gas on the measurements. At Po 2 465 psia, for bothm = 1 g and m = .28 g, HEX values
are relatively constant (~950 cal/g) and (at Po = 1018) equal in He and N;. At Po <
165 psia, for m = 1 g in He, there is some indication of a fall off in HEX values. At Po <
= 165 psia and m = .28 g, the fall off is obvious for both gases and HEX appear to be
smaller in Ny than in He (data at Po = 25 psia have large scatter).

Figure 4 is the corresponding plot for XM39. HEX appear to be equal for grains
(perforated) and slabs (solid) and slightly less in Nj than in He. At Po > 465 psia, the
HEX values for m = 2.2 g are relatively constant {~820 cal/g) and those for m = .82 g are
slightly smalier but also appear to be constant (-800 cal/g). At Po < 240 psia there is
little change in HEX with m 2 2.2 g but there is an obvious fall off in HEX form = 52 g
(in both He and Nj).

Figure 8§ is a plot of HEX vs. m for M30. This figure shows the fall off in HEX with
m (or LD) at two different initial pressures. The fall off for Po = 1015 psia is noticeable
atm< .28 g. Atm = .08 g, HEX = 838 cal/g and the corresponding operating pressure
range (Fo ~ (Po+P*) for values of Po and P* listed in Table 1) is 1015-1075 psia. For Po
= 25 psia the fall off in HEX with m is noticeable atm = 1 g. The fall off appears to be
interrupted between m = .06 g and m = .28 ¢, data taken under “"enhanced ignition"
conditions. These data have large scatter and the change in behavior may not be real.
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Figure 1. Ignition Characteristics of Parr Calorimeter System with .016" Ni Fuse Wire .
(a) Igrition voltage (60 Hz): increase in voltage at Time = 294 ms is due to cessation
of current flow. (b) Ignition current (60 Hz). (c) Ignition energy: calculated from
integration (overtime) of the product of instantaneous voltage and current shown
in (a) and (b).
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Atm = .08 g, HEX = 587 cal/g and the corresponding operating pressure range is 25-38

|
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Figure 2 Piezoeleciric Transducer Signal: Transient Pressure During Combustion and
Cooaiing in the Calorime.er. Signal was processed by a 30 Hz electronic filter to reduce
noize during ignition.

Figure € is the cowsponding plot (to Fig. 3) for XM39 data. The fall off in HEX
with m for Po = 940 psia is noticedble at 1 < 62 g. Atm = .07 g, HEX = 861 cal/g and
the corresponding operating pressure rangs is 940-978 psia. For Po = 4§ psis, the fall off
starts at m < 22 g. At m = 07 g, HEX=829 cal/g and the corvesponding operating
pressure range is 45-82 psia.

The fall off in HEX with m at fived Po and especialy for small values of m suggest
that HEX are not solely dependant on the operating pressure level in the calurimeter. This
will make it difficult to use measurerd [ EX for estimating values for E.

The data in Figure 7 denonstrates that HEX for M30 is not solely dependent on
pressure levels in the hotab during buming, bnt caii depend on loading dernsity. The data
for .26 and 1.0 g (light points) indicate t~at HEX increase slightlv with maximum total
pressure (initial pressure + measnred maximum pressure incre.nent) but are not greatly
dependent on mass. The data for .08 ard .16 g (dark puints) have initial pressures (i.e.,
minimum bomb pressures) = 1000 psia. HEX fo. these data are lower than HEX for the
data ohtained at higher loading densities {(seven points) although five of the latter data
have maximum bomb pressures < v00 psia. For these experiments, it appears that HEX
depend mere strongiy on loading density (Le., the concentration of combustion products
in the bomb) than on pressure levels.




HEX Dependence on Initial Pressure (M30)
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Figure 3. Dependence of Experimental Heats of Explosiion on Initial Pressure for M30

Figure 8 is the comesponding plot (to Figure T) for XM39 data. All data with total
maximum pressures > 800 psia have Po = 940 psia. The other data have maximum total
pressure < 800 psia. Despite lower operating pressures in the calorimeter, HEX values for
m = 2.2 g with maximum total pressures < 700 psia appear to be greater than those those
for m = .07, .13, and .24 g. This stronget dependence on loading density than on
pressure is similar to the M30 behavior shown in Figure 7.

IV. DISCUSSION OF RESULTS

The data in Figure 3 for 1 g M30 suggests that HEX are not greatly dependent on
Po for Po = 25 psia and on pressurizing gas composition. The differences between
measured HEX (911-977 cal/g) and those calculated (~955 cal/g) assuming a (generally
accepted) freeze-ocut temperature greater than 1500 K is not great. This suggests that for
Po > 28 psia combustion in the calorimeter is almost complete (i.e., combustion products
comrespond to a thermochemical equilibrium mixture) for 1 g samples. Comparison of
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HEX Dependence on Initial Pressure (XM39)

900.
o
S~
g ! QA N % v n <
= 800. } v o 8
8
g 8
% o 02.2 g. grain in He
b 00.52 g. grain in He
C o019 ® £4.4 g, slab in He
Q; | V2.2 g. slab in He
22.2 g. grain in N2 J
©®0.52 g. grain in N2
600. $ 4 e + 3 P -+ N
.000 200. 400. 600. 800. 1000

INITIAL PRESSURE [ psia )

Figure 4. Dependence of Expetimental Heats of Explosion on Initial Pressure for XM39

measured and calculated HEX values for .28 g M30, at Pc = 465 and 1018 psia also
indicate that combustion is almost compiete. At lower Po (<4685 psia) there is a {all off
in HEX from the calculated values (the calculated values are not greatly dependent on Po
or LD) for the .28 g samples. This fall off suggests that changes occur in the combustion
mechanism (or extent of reaction) at low pressures which inhibit the establishment of
thermochemical equilibrium among combustion products.

The data in Figure 4 for 2.2 g and 4.4 g XM39 indicate that differences between
measured HEX (800-835 cal/g) and calculated values (~810 cal/g) are small suggesting
that combustion is complete. Comparisons of the HEX values (768-810 cal/g) for .52 g
XM39 with calculated values indicate that combustion is complete at Pc > 465 psia. At
lower Po there is fall off in HEX values from calculated values, similar to the behavior with
M30, indicative of changes in the combustion mechanism at low pressures and deviations
of combustion products from thermochemical equilibriur.




HEX Dependence on Mass (M30 in He)
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Figure 8. Dependence of Experimental Heats of Explosion on Loading Density for M30

The HEX calculations and reasons for the HEX dependence on initial pressures and
loading densities has been discussed previously.! The transition at lower Po and LD from
complete to incomplete combustion is attributed to a decrease in chemical kinetic rates
and the subsequent increased importance of transport rates (diffusion and heat transfer)
in the combustion process. This increased depondence on transport processes under
these conditions is thought to be responsible for the increase in variability of the data at
low Po and low LD which can be seen from the values of the standard deviations (s) in
Tables 1 and 2. The small decrease in HEX when N, is substituted for He at low Po and
low LD may be due to differences in transport properties of the gases.

The thermochemical properties of ths propellant combustion products presently
used in [B codes are those calculated for closed bomb combustion products in
thermochemical equilibrium at loading densities between .2 - .33 g/cc. Blake calculations
for M30 under these conditions give values for E (which do not greatly depend on LD)
near 1025 cal/g. If the altemate method for estimating £ which is now under consideration
(ie., for a given pressure measured HEX and E values are equal) is valid then the HEX

9




HEX Dependence on Mass (XM39 in He)

900. v v . v —
= S,
S" 800. + [ a
(1]
= 1 ~
= a
5 0. 1 © «
= 1o ,
&

600. ¢+
S 00
i) 1 O Initial pressure = 940 psia ]
= © O Initial pressure = 45 psia

500. +

400. — } ‘ + ~+

.000 §.00 .00 3.00
SAMPLE MASS { g )

Figure 8. Dependence of Experimental Heats of Explosion on Loading Density for XM39

values for M30 in Figure § at m = .08 g indicate that in the pressure range 1015-1078 psia,
E ~838 cal/mole and in the pressure range 25-38 psia, E ~587 cal/g. Although the
corresponding standard deviations for these measurements are quite large, 32 and 176
cal/g, the difference between the calculated E and measured HEX are statistically
significant for both the high and low pressure ranges.

For XM39, the calculated E ~895 cal/g. The HEX values for XM39 in Figure 6 at
m = .07 g indicate that in the pressure range 940-978 psia, E ~731 cal/g and in the range
45-52 psia, E ~5629 cal/g. The comresponding standard deviations (4 and 83 cal/g) indicate
that the differences between calculated E and those based on the HEX measurements are
significant.

Lower values for E may improve IB code predictions at low pressures but the
substitution of measured HEX values for E in IB calculations requires that they be
independent of LD (i.e., dependent only on total pressure in the calorimeter). It is
necessary to determine if values for HEX measured at the lowest LD (m = .08 and .07 g

10




HEX Dependence on Max. P (M30 in He)
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Figure 7. Maximum Total Pressure and Heats of Explosion: Selected M30 Data to Show
Pressure and Loading Density Effects on Experimental Heats of Explosion

in Figures § and 6, respectively) which have been used to make esimates of E, are
consistent with this requirement. The data in Figures 7 and 8 indicate that HEX values are
affected by changes in LD which suggests that the HEX have some dependence on the
concentration of combustion products in addition to the operating pressure levels in the
calorimeter.

It is noteworthy to emphasize that the effect of systematic errors in the calorimeter
determination of thermal energy can greatly affect HEX values. Determination of the
calorimeter energy equivalent which is used to convert the calorimeter temperature
increase into energy is obtained by a standardization method in which increases in the
calorimeter temperature are approximately 3°C. At low loading densities (m = .07 g), the
increases in temperature are approximately .03°C. Conclusions based on the low loading
density HEX values remain questionable without determining the validity of using the
calorimeter energy equilivalent for such small increases in temperature.

11




HEX Dependence on Max. P (XM39 in He)
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Figure 8. Maximum Total Pressure and Heats of Explosion: Selected XM39 Data to Show
Pressure and Loading Effects on Experimental Heats of Explosion

V. SUMMARY

An alternate method for estimating the thermal energy (E) of propellant combustion
products for calculating gun performance at low pressures has been investigated. The
method assumes that at a given gun pressure, E is equal to the measured heat of
explosion (HEX). HEX have been measured in calorimeters for M30 and XM39 at low
initial pressures (Po) (26-1015 psia). Low loading densities (LD) (.012 - .0002 g/cc) were
used to minimize the uncertainty in the calorimeter pressure during combustion. At the
higher LD, HEX values for M30 and XM39 were constant and not much different from HEX
values calculated for an equilibrium combustion process. As Po and LD decrease, a fall
off in HEX from the values obtained at higher L0 and higher Po is observed. The HEX
values in this low pressure fall off region are much less than calculated HEX and also the
calculated E values now used in gun calculations. HEX values in the fall off region may

12




also depend on the concentration of combustion products in the calorimeter. This latter
dependence will increase the difficulties of using the HEX measurements in IB codes.

The HEX measurements in the fall off region are also dependent on the physical
environment, The addition of thermal insulation to the capsule which support the
propellant grains and changes in its location relative to the grains which affect transport
processes during combustion also affect HEX values.! This implies that some knowledge
of the physical processes which occur during combustion at low pressures in calorimeter
bombs (and guns) will be required to asses the usefiliness of estimating values for E from
the HEX measurements.

Future work to determine the magnitude of the calorimeter errors in measuring
small thermal inputs is planned and an effort will be made to obtain infonmation on the
sensitivity of HEX measurements to the presence of combustion product gases and to
simulated (inert) propellant grains.
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