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AFIT/GCS/ENG/90D-3

Abstract

This study discusses the design and development of the Visual Interactive

Simulation Interface Tool (VISIT). VISIT was designed to provide the graphical

representation and user interface for a simulation that is running on another

processor utilizing internet communications.

The system provides support for various input devices to control the

simulation display and environment. Simulation objects are displayed using

either a three-dimensional wireframe representation or a Gouraud shaded

representation. Viewer interaction to the simulation is provided by a collection

of commands that allow the viewer to initialize, start, stop, abort, and restart

the simulation. The viewer also has the ability to establish checkpoints. Upon

reaching a checkpoint the viewer can step through the output display and/or

manipulate the objects within the simulation.
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A REMOTE VISUAL INTERFACE TOOL

FOR SIMULATION CONTROL AND DISPLAY

I. Introduction

This thesis discusses the design and development of the Visual Inter-

active Simulation Interface Tool (VISIT). A visual interactive simulation as

defined by O'Keefe is " a simulation which produces a dynamic display of the

system model, and allows the user to interact with the running simulation

(16:461). VISIT provides the capability to graphically display the output

from a simulation running on another processor. The simulation processor is

accessible via network communications to the graphics processor. The viewer

is allowed to manipulate and control the simulation through a collection of

commands.

The methodology developed for this thesis is of particular interest because

of its ability to generically interface to a wide range of simulations. It also

provides the freedom of allowing the simulation processor to be any system

capable of implementing the Transmission Control Protocol/ Internet Protocol

(TCP/IP).

1.1 Background

According to Biles a simulation is defined as "the development of a

mathematical-logic model of a system and the experimental manipulation of

the model on a digital computer" (3:7). A model is defined as "a representation

of a system developed for the purpose of studying that system" (13) and Bratley

defines a model as "a description of some system intended to predict what

happens if certain actions are taken" (6).
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For a model to be useful, it is imperative that all its relevant behavior

and characteristics be determined in a feasible way. It may be determined

numerically, analytically, or by running the model and providing to it input,

and observing the results; the latter being a simulation. Although simulations

provide a powerful tool for analyzing a given model, they are typically very

large, application specific, and difficult to use.

Existing simulations are very large, having been built over time by nu-

merous programmers. They typically initialize parameters, run for extended

periods, and produce large amounts of paner output. There is either limited

or no feedback presented to the viewer to identify how far the simulation has

progressed. The simulations generally use limited graphics capability or none

at all. They are developed for specific applications; any graphical representa-

tion incorporated into the simulation may require considerable redevelopment

effort when the simulation is modified. Simulations that lack a visual display

and interactive capability are difficult to use. If input parameters are entered

incorrectly, the output will also be invalid, but considerable time and resources

are wasted to generate that output. There is usually no interactive mechanism

to abort a simulation gracefully if the viewer desires too.

The Air Force Institute of Technology (AFIT) needs an interactive visual

interface to enhance and supplement its in-house simulation capabilities.

AFIT has numerous computer systems that are capable f running large-

scale simulations, but does not have a generic interface to display the running

simulation graphically. Also, there is no capability to allow the user to interact

with the running simulation. Clearly a standardized interface for use as a

graphical representation tool for a given simulation would be beneficial.
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1.2 Thesis Statement

A concurrently executing discrete-event simulation can be represented,

controlled, and manipulated through a generic interface on a general-purpose

graphics workstation, utilizing network communications with updates of at

least 15 frames per second.

1.3 Scope

This thesis effort investigated the creation of a generic, three-dimensional,

graphical interface to a simulation. The interface had to be generic enough to

support multiple classes of simulations, but not so generic that a new graphics

standard for simulations would be generated.

The simulation output is displayed in three-dimensional graphics and

allows the viewer to specify any set of viewing pal. mneters. The interface

allows the viewer to specify a terrain or playing surface and irons to represent

the simulation objects. All displayable objects (icons, terrain, etc.) use the

AFIT polygon file format (see Table E. 1).

The viewer can control the simulation by starting, restarting, continuing,

and aborting it. To control the simulation display, the viewrr can specify

checkpoints, (specific instances during the course of the simulation where all

relevant data is stored) as needed. Upon reaching a checkpoint, the viewer

can step forward through the output display frames and query objects within

the simulation. The viewer can also suspend the simulation to create, destroy,

or reposition objects.

The display data is generated either from a simulation executing concur-

rently or read from an output file from a previous simulation execution. The

data packets are transmitted using TCP/IP protocol over ethernet connections

to the graphics display system (see Figure 1.1). The update packets are used
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to extrapolate the position and orientation of an object from one position to

the next. This information is extrapolated to graphically represent a smooth

transition between the two locations.

Simulation Processor
Sim Mode /Data Mode

Status Packets T Command PacketsB
Data Packets H E Status Packets

Graphics
Display

System

Figure 1.1. Network Message Traffic Flow

1.4 Assumptions

Several assumptions were made in the analysis, design, and development

of the Visuai Interactive Simulation Interface Tool. The development of this

software system could only occur if the supporting hardware and software

were available.

As a minimum, the following equipment was assumed:

1-4



1. A graphics workstation with sufficient disk storage space, ethernet

capability, and RS-232 communications port.

2. A TCP/IP protocol communications package for ethernet access.

3. A collection of 3-dimensional input devices, such as the CIS Dimen-

sion Six Spaceball and VPL Dataglove.

4. A system capable of executing the test simulation, with the software

required to develop the simulation and access the ethernet via TCP/IP

protocol.

1.5 General Approach

The general approach for this thesis consisted of six major steps:

1. First, the literature search was conducted. From the literature search

a familiarity with the categories of simulations was developed. Also,

an understanding of the Visual Interactive Simulation approach was

acquired. This approach provided the framework for the development of

VISIT.

2. Second, the requirements analysis was performed for the software sys-

tem. Since there was no sponsor other than AFIT, the requirements

were identified by the author and validated by the thesis advisors. This

task was extremely difficult in that there was no actual user to identify

specific requirements.

3. After the initial requirements analysis was validated, the design of the

interface began. An object-oriented design approach was utilized to

benefit from the natural breakout of objects/entities within a simulation.

This design incorporated a virtual environment software library (10)

which allowed the interactive input/output processing to be delegated to

a separate processor, thus freeing the graphics display from this task.
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4. Next, the interface software was developed using C. The system was able

to display the graphical representation on the graphics workstation while

receiving the input from a simulation executing concurrently on another

system accessible through an ethernet communication. An ethernet

protocol package was modified to allow the simulation processor to be

system independent, with the single restriction that it be capable of

accessing a TCP/IP socket.

5. A test simulation was generated that provided the necessary conditions

to test the interface. The test simulation had to support checkpoints,

specific locations within the simulation identified by the viewer, where all

state variables and events are saved. Additionally, simple test cases were

developed for those capabilities not easily testable by a test simulation.

6. As time permitted, various external input device configurations were

incorporated. These configurations allowed the external input device

to communicate with the interface via two sources. One source was

the graphics display system itself, the other was a separate Unix-based

workstation which was connected to the display system through an

ethernet connection.

1.6 Summary

The execution of a concurrent simulation can be represented graphically,

controlled interactively, and manipulated dynamically. The representation

is accomplished using AFIT standard polygonal descriptions to represent the

simulation objects in either a wireframe or Gouraud shaded display. The

simulation is controlled by allowing the viewer to stop, start, restart, suspend,

and abort the simulation. The manipulation is controlled dynamically through

a standard, parameterized interface on a general purpose graphics workstation

utilizing network communications.
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The simulation interface functions much the same as an interactive

symbolic debugger. The viewer is allowed to maneuver an object, remove an

object, set checkpoints, and step through an execution. The checkpoints allow

the viewer to "retreat" back to this position after following some path that

proved undesirable. The idea of a checkpoint places a great burden on the

simulation developer.

1.7 Thesis Overview

The remaining chapters of this thesis represent the body of research

developed in this effort. Chapter Two is a literature search that provides

the information discovered while researching the specific topics of this effort.

Chapter Three summarizes the requirements analysis and contains the design

of the software system. Chapter Four discusses the actual implementation

and assesses its utility and performance. Finally, Chapter Five presents the

conclusions for this thesis and recommendations for future enhancements to

the system.
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II. Literature Review

2.1 Introduction

This chapter surveys current literature on topics related to this thesis.

This review is limited to on-going research in computer graphics. Specifically,

this paper briefly introduces the topics of Visual Interactive Simulation (VIS)

and graphical interfaces.

2.2 Visual Interactive Simulation

Simple animation to represent a discrete-event simulation has existed

for many years. Amiry used animation in his simulation of a steel melting

shop in 1965, but the present approach to VIS was developed by Hurrion (12)

in 1976 at the University of Warwick, England. Hurrion was constructing

simulations for job shop scheduling applications in manufacturing.

Hurion determined that the human scheduler (the person responsible

for scheduling the various machines in the manufacturing environment) held

some control over the system, and the decisions made by the scheduler were

sometimes difficult to portray in the simulation. Simulations were then

created that gave the active scheduler control over decisions. This interaction

required the scheduler to know the current system state. Letters were then

added to the display to provide the system state of the entities to the scheduler.

This approach allowed the scheduler to view the results of his decision.

Hurrion's initial applications represent model-prompted interaction in

which the model prompts the user for a decision or additional data. Additional

research at the University of Warwick created user-prompted interaction.

User-prompted interaction allows the user to suspend the running simulation

and thus control the interaction.
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Other research and commercial development followed as the capabilities

of VIS became known. Crookes (8) discussed the value of VIS for developers

when they verify and validate a model. Interaction and animation provide

instant feedback to the user and a mechanism to determine the validity of the

model. By altering various parameters a user could observe the effects and

compare them to what was expected.

Various packages have been developed that use VIS methods. VIS

has dominated discrete-event simulation development in the United Kingdom

during the past decade (2:109). The concept of VIS is not well known within the

United States because VIS is centered around the user's ability to manipulate

the running simulation. In the United States, animation, in this sense - the

visual "playback" of a simulation, dominates visual simulation development

(2:109).

A Visual Interactive Simulation provides the capabilities in a simulation

for visual output, user interaction, and visual input. Although a VIS does

not have to contain all of these elements, visual output and user interaction

in some form are required, but visual input (the model is created visually

instead of programmed or data-driven) is most often absent in present day

VIS systems (16:461). Hurrion's initial work did not allow visual input.

There are three ways to incorporate visual output into a VIS pack-

age: embedded programming, automatic display, and animation. Embedded

programming allows the developer to embed the statements for the visual

output within the simulation. Automatic display is a technique in which

the developer uses the generic display routines available from the operating

system. Animation is the final visual output technique. Animation allows the

developer to generate formatted output which is then decoded by an animation

tool.

There are also three approaches to incorporate the user interaction
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capability. They are embedded programming, standard interactions, and

stopping interactions. Embedded programming is accomplished the same way

as in visual output. Standard interactions make up a set of preconceived

interactions that the developer may or may not include in the simulation.

Finally, stopping interactions are provided where a VIS uses an interpreter

for execution, thus allowing the developer to stop the execution at any line

and modify the simulation.

The final capability of a Visual Interactive Simulation is visual input.

This capability is provided by either graphical representations or iconic rep-

resentations. The first method uses an intermediate graphicai representation

to describe the simulation model. The second method uses placement of icons

and their connectivity to describe the simulation model (16:462).

Bell states that there are four major issues in VIS which require further

research. These issues are the type and quantity of the virtual display,

software and hardware for VIS, the need for methodology, and the role of

expert systems (2:114). This effort will address the first two issues only. The

importance of good screen layout is known to developers, but few developers

have been trained in interactive computer graphics design. Present systems

require the development of a simulation model first, then incorporate the

graphical interface and interaction. VIS has typically been developed on

stand-alone IBM-AT class computers with limited graphics capability (2:110).

Additionally, user interaction may compromise data integrity. A user can

easily alter a system model by interacting with the model and emphasizing his

or her own preconceived expectations. It is difficult to precisely "reproduce' a

series of user interactions, thus causing the accumulated statisti"Q tn hc-coiwo

invalid. However, a given simulation can constrain user interaction and thus

preserve the integrity of the data.
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2.3 Graphical Interfaces

The way a problem is presented influences one's understanding and

ability to solve it. Researchers in human factors have emphasized the

suggestive power of visual representations for a long time. Duisberg states

"Solving a problem is simply a matter of representing it so that the solution is

transparent " (9:305).

Animation is one way of providing a visual representation for the human-

computer interface of a software system. A human's perceptual capabilities

are optimized for real-time image processing. Interactive graphics can com-

municate instantly data in multidimensions concerning the internal state of

a dynamic process. A fully interactive animation must interpret user input

in relation to screen images, in addition to creating the images in the first

place (9:300). The field of human-computer interaction combines many disci-

plines: computer graphics, human factors, cognitive psychology, and artificial

intelligence.

Many mechanisms to construct specific graphical user interfaces have

been developed. However, the most interesting classes of graphical user inter-

faces, namely those that involve concurrency, distribution, real-time control,

or direct manipulation, remain difficult to construct (11:321). The advent

of networks of loosely coupled workstations and of cheap, tightly coupled

multiprocessors is beginning to change the nature of graphical computing.

Applications are increasingly incorporating parallelism and often involve si-

multaneous multi-user interaction. There continues to be a need to deal with

concurrent interaction with input/output devices.

An increasingly popular complementary technique involves the use of

object-oriented systems to model the relationships between the objects on the

screen being manipulated and their internal representation. This approach is

particularly successful at the presentation level, namely at the level seen by
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the user. There exists a direct correspondence between the icons and images

the user sees, and an underlying representation.

The overall progress in interface construction has been significant; how-

ever current systems fail to provide mechanisms that facilitate dealing with

the central problem of graphical interfaces of the near future. These inter-

faces involve concurrent, distributed, directly manipulated graphical objects.

Interfaces requiring the use of direct-manipulation gesturing techniques also

pose a severe challenge to today's user interface construction methodologies.

2.4 Summary

VIS is the most important advance in discrete-event simulation since

special simulation programming languages were introduced in the late 1950's

(2:115). VIS development is becoming more popular in the United States

as a means to visually portray discrete-event simulations instead of simply

providing a visual playback capability. User interaction is an important

addition to the visual feedback that is presented to the user.

Graphical interfaces continue to provide excellent capabilities to a sim-

ulation but ftrther work is needed in many areas. Concurrency, distributed

output, real-time control, and direct manipulation are among them. Finally,

the creation of a visual display to explore the outcome of a simulation provides

a developer the environment to stretch his or her creativity to its limits.
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III. Requirements Analysis & Design

3.1 Introduction

With the development of numerous simulation systems at AFIT, there

arose a requirement to develop a display system capable of graphically rep-

resenting a simulation. Additionally, there was a requirement to allow the

user to control the running simulation. Thus, the requirement was to provide

an environment which allows the user to graphically view, manipulate, and

control a time-dependent simulation, in real-time.

This chapter details the user requirements for this thesis effort. As

this effort progressed, requirements were added and modified to ensure a

generic interface, friendly user interaction, and realistic display features. The

beginning of this chapter discusses the functional requirements, which is then

followed by a discussion of the non-functional requirements. Next the design

criteria and decisions made during the creation of the software system are

discussed. Finally, a summary of the requirements analysis and design is

presented.

3.2 Requirements

The following requirements were established:

1. Functional Requirements

(a) Categories of Simulations Supported. This interface will sup-

port both time-driven and event-driven simulations. It treats time-

driven simulations as a special case of event-driven, where the

movement of an object is extrapolated from a known position with

respect to the time increment instead of the event.
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(b) Classes of Simulations Supported. It will support war-gaming

and mission planning military simulations. It will support other

simulations that utilize moving objects on a static playing field.

(c) Real-Time Display vs Playback. It will support displaying data

from either a concurrently executing simulation or a datafile from

a previous execution. Viewer interaction is not applicable when

reading from a datafile.

(d) Design/Representation of the Terrain. A 3-dimensional spec-

ification will be utilized by the graphics display system for the

terrain/playing surface.

(e) Design/Representation of Simulation Objects. The system will

support the ability to link each object within the simulation to an icon

for the display. A list of icons and their graphical representations

will be maintained on the graphics display system. The viewer may

incorporate new icons into this list. All icons will be in accordance

with the AFIT polygon geometry file format (see Table E.1).

(f) Movement of Objects. It will support a smooth movement of

objects, based on position and orientation, that is proportional to

simulation time.

(g) Objcct Instantiation. The interface will support simulations that

have static and movable objects. Static objects are objects that

never move or change, such as the terrain/playing surface. Movable

objects are those that will change position during the simulation.

All objects known by the graphics display system are viewable.

(h) Viewing Control. The viewer will be allowed to establish check-

points during execution. Checkpoints are specific times during the

course of the simulation at which all relevant data are stored. Upon

reaching a checkpoint, the viewer will be allowed to manipulate
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the simulation, return to a previous simulation checkpoint, step

forward through the display, continue the simulation, or restart the

simulation.

(i) Viewer Interaction. The viewer will be allowed to interactively

suspend the display of the simulation. When the display is sus-

pended, the viewer will be allowed to move objects within the

display, delete objects, or select objects to use as a viewpoint refer-

ence. The viewer will be allowed to interact with any object known

to the graphics display system and displayable from the current

viewpoint. The viewpoint may be changed during the suspension.

2. Non-functional Requirements

(a) Network Communications. This interface will be developed to

run on a Silicon Graphics Iris 4D workstation. It will support data

communications that utilize the application layer TCP/IP protocol

package. All communication between the simulation and the graph-

ics display system will take place on the existing ethernet LAN in

place within the graphics lab.

(b) Frame Update Rate. The graphical display will support ren-

dering 25000 Gouraud-shaded polygons. The update rate will be at

least 15 frames per sec.

(c) User Interaction Devices. The interface will support interaction

devices other than a mouse and kevt -ard. The ability to pick

an object in a 3-dimensional display will require a 3-dimensional

picking device.

(d) Coordinate System Supported. The interface will support simu-

lations that utilize the right-handed cartesian coordinate system to

generate position and orientation data.
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(e) Time Scaling. The viewer may specify a time scale factor to control

the real-time display clock with respect to the actual simulation

clock.

3.3 Design Overview

The remainder of this chapter covers the rationale for the design de-

cisions made during the development of this software interface. With the

previous section requirements in mind, several general design considerations

were developed. These general considerations are discussed first. Then

communications aspects are covered, followed by user interaction considera-

tions. Data representation issues and graphical concerns arc the final topics

discussed.

It should be stated that the breakout of the design considerations into

the aforementioned categories is not disjoint. Data representation, graphical

modeling, and display issues have interrelationships in the design of this sys-

tem. Therefore, portions of the discussion of these topics will be interspersed.

The ordering of their presentation has no bearing on their importance.

Finally, the design of this software interface involves multiple computer

systems and their descriptions are presented here. The expression "graphics

display system" refers to a computer workstation with a color graphics monitor

and specialized graphics hardware. The term "simulation processor" refers to

any general-purpose processor capable of executing a simulation and commu-

nicating over an ethernet network. The term "local area network (LAN)" refers

to an ethernet based network on which both the graphics display system and

the simulation processor can communicate. These topics are discussed further

in the remainder of this chapter, but a general understanding is essential to

continue further.
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3.3.1 General Considerations

3.3.1.1 Hardware. The graphical display system used for the de-

velopment of this software interface was a Silicon Graphics Iris 4D/85GT.

This system utilizes the UNIX operating system and provides a software

development environment using the C programming language. The C lan-

guage was used for development to allow easy integration of this interface to

existing network and input device communications packages. The 4D/85GT

system provides a monitor capable of displaying 1280 by 1024 pixels of 24 bit

color values (18). The system also utilizes special graphics hardware and a

complete graphics library to provide the capability to generate and display 3-

Dimensional geometric shapes at a rate sufficient to handle the requirements

for this software interface.

Other graphics display systems were available. However it was shown

in previous thesis work (22:15) that their performance and capabilities could

not exceed those of the Silicon Graphics 3130. The SGI series 4D is a successor

to the model 31xx series with improved capabilities and faster performance.

The SGI 4D/85GT is rated at 90,000 gouraud-shaded independent, unlighted,

10 x 10 quadrangles per second (18).

The simulation processor used for the development of this effort was a

Sun4/260 workstation. The performance and capabilities of this system are

sufficient to meet the requirements of the simulation processor and it was

already connected to the existing LAN. The LAN also contains a connection to

the graphics display system.

3.3.1.2 Generic Interface. The interface between the simulation

processor and the graphics display system had to be generic enough to support

a wide range of simulation.;. The interface had to support the display

of existing simulations without forcing a major rewrite of the simulation
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software. To support this requirement, two modes of operation were designed,

datamode and simmode. Datamode allows the graphical display system to

display the results of an existing simulation by executing a software tool on

the simulation processor. This software tool reads a datafile that contains

converted simulation output. The contents of the datafile are sent to the

graphical display system over the LAN using a prescribed message packet

format. In this mode the simulation does not have to be altered if the required

information for the datafile is available in the current simulation output. The

simulation output must be converted into the datafile format externally (see

Appendix C).

In the second mode of operation, simmode, the simulation is executing

concurrently on the simulation processor as the graphics display system

displays the output. The output, using the network message packet format,

is provided to the graphics display system via the LAN that interconnects the

two systems. This mode of operation provides more capability to the viewer

but has the restriction that the graphical display system can only display

the information at the rate at which it receives packets from the simulation

processor.

3.3.1.3 Coordinate Systems Used. This software interface adopts

the standard convention of using the right-handed cartesian coordinate system

for the world coordinate system and the left-handed cartesian coordinate

system for the eye coordinate viewing system. In the left-handed system the

positive z axis points forward from the viewer's positioi., the positive y axis

points upward, and the positive x axis is to the right (15:340). Since the

simulation objects are described in one coordinate system and displayed using

another, a transformation is applied to the geometric description of the objects

before they are displayed onto the screen.
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3.3.2 Communications

3.3.2.1 Simulation Processor. In order to support a wide range

of simulations the graphics display system must communicate with a wide

range of computer systems. The communications protocol has to be generic,

reliable, and available. The Transmission Control Protocol / Internet Protocol

(TCP/IP) satisfies these requirements. TCP/IP is a common term referring

to the Defense Advanced Research Project Agency Internet network protocols

developed for use on the ARPANET. TCP and IP are only two of the many

protocols that were developed. The internet protocols support heterogeneous

host systems and architectures that utilize a wide variety of internal data

structures (5).

The Internet Protocol is the lowest-level protocol and provides the

network-level services of host-addressing, routing, and packet disassemble

and reassemble. All other protocols use the services of the IP. TCP provides

reliable and controlled transmission of data from the application to the IP

(14:344). A more detailed discussion can be found in (14).

TCP/IP provides the generic network communications between the sim-

ulation processor and the graphics display system in a reliable manner. The

TCP/IP protocol is supplied and available on both computer systems used in

the development of this software interface.

3.3.2.2 External I/O Device. To maintain a sufficient display rate

on the graphics display system, user input and output had to function at a rate

that would minimize the delay encountered using external I/O devices. The

keyboard and mouse are standard input devices that provide efficient input

and are already a fundamental part of the graphics display system. However,

it is very difficult for a viewer to select an object from a three-dimensional

display using a two-dimensional device. In order to provide this capability, an
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external three-dimensional device is required. This external device requires

cpu processing time for the system to read from the device and write to

the device. An existing Virtual Environment Display System (VEDS) was

available that provided the ability to offload this requirement to a separate

processor (10).

The Virtual Environment Display System (10) is a system of software

libraries and various hardware devices that support virtual environments

such as VISIT. VEDS provides a means of allowing a separate computer

system to handle the interaction with certain external 1/0 devices. The VEDS

processor establishes a communication link to the device, continually reads

data from the device, and stores the latest data from the device into memory.

This memory is shared with another process running on the VEDS processor,

which in turn establishes a network connection to the graphics display system.

In this environment the VEDS processor always has the latest data read

from the device stored in memory. When the graphics display system requests

data from the device, it is received over the ethernet connection from a memory

location on the VEDS system, instead of polling an RS-232 communications

line to the physical device. This ensures minimal waiting for data.

3.3.2.3 Datamode Driver. For existing simulations to be displayed

on the graphics display system, a software tool had to be developed that

would reside on the simulation processor. This software tool would read a

datafile that contained the converted simulation output. The data would

then be formatted into the records required by the graphics display system.

A network message packet had to be developed that would contain the

simulation data in a format known to both systems. The message packet

header contains simulation-specific information to identify the quantity and

type of information contained in the body of the packet.
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3.3.3 User Interaction. A parameter file was developed to provide the

user the flexibility to provide initial viewing parameters. These parameters

allow the viewer to customize the environment for viewing a simulation.

3.3.3.1 Keyboard. The keyboard was utilized to allow the user the

ability to modify the initial viewing parameters. This provides an environment

for the user to experiment with different settings for various parameters and

visually see the effects. The user may not have the computer graphics

background and providing a flexible environment to modify and customize will

allow the viewer to become comfortable and more willing to actually use the

system. Since a mouse is becoming a more popular interaction device, popup

menus are incorporated to provide the same functions as the keyboard.

3.3.3.2 3-D Device. In order to interact with a three-dimensional

display the viewer needs a three-dimensional picking device. Selecting objects

within the current display will require the viewer to manipulate a cursor over

the object desired. Once positioned, pressing a button or key indicates to

the interface select the object nearest the cursor. When objects appear to the

viewer very close to each other selecting among them with cursor keys or a

mouse becomes very difficult. In order to provide a picking capability, the

system has to incorporate a three-dimensional device.

The CIS Dimension Six spaceball was chosen for its unique capabilities.

The spaceball provides both the direction of movement and the amount of

movement. This provides a fast and controlled movement of the cursor on

the display screen along any of the three primary axes in either a positive or

negative direction. In addition, the device provides the capability to provide

three degrees of rotation in either a positive or negative direction.

3.3.4 Data Representations
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3.3.4.1 Simulation Objects. The graphical display system and the

simulation processor must have a common reference to the various objects

within the simulation. To ensure that both systems uniquely identify all

objects correctly, initialization records will be sent by the simulation processor

to identify each object. The initialization links each object with a geometric

description file for that object. The fie contains the polygonal description

which is used by the graphical display system (see Appendix E).

3.3. _'.2 Network Message Packets. The graphical display system

and the simulation processor will require an enormous amount of internetwcrk

traffic. The amount of traffic is dependent upon the size of the simulation being

displayed. A very large simulation containing hundreds, perhaps thousands of

objects, will communicate one message packet for each update to each object.

These packets are read by the graphics display system one at a time within

the display loop. Small simulations, on the other hand, may communicate

fewer message packets, and thus create less network traffic.

A message packet format was adapted from an existing internet com-

munications package (see Appendix C). The message packet header contains

a field which identifies the type of information contained in the packet body.

Certain record types contain zero bytes of data in the body while others contain

over 500 bytes of data. Since the interface reads the message header first to

determine the record type and length of the message body, time is saved by

reading the exact number of bytes in the body instead of having a default size

large enough to contain any message body.

3.3.4.3 Terrain. Realistic terrain features were desired in the dis-

play of certain simulations. Flat terrain, although easy to generate and

display, provides little realistic qualities to the displayed image. A three-

dimensional description was desired in a format that was fairly simple to
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incorporate into the graphics display system as well as the simulation pro-

cessor. The terrain description was generated using the same geometric

description format as the simulation objects (see Appendix E).

3.3.5 Graphical Display

3.3.5.1 Hidden Surface Removal. There are many techniques

available to handle the hidden surface problem in displaying computer graph-

ics. Algorithms exist that provide a solution to hidden surface removal, but

the hardware implemented Z-buffer available on the 4D/85GT was used for

this thesis effort. The Z-buffer was chosen because it requires less software de-

velopment, it is incorporated into the overall design of the graphics hardware,

and it provides a fast method of hidden surface removal. The graphics display

system contains an array of memory 24 bits in depth that is used to calculate

the z value for geometric shapes within the current display. The Z-buffer

maintains one location for each pixel on the screen. The buffer is initialized

to the maximum value allowed and the color framebuffer is initialized to the

background color.

During the rendering process, polygons, lines, points, and characters are

converted to pixels that have an x, yand z screen coordinate and a color. When

the Z-buffer hardware is enabled, the z coordinate determines the distance

from the pixel location to the eye position. The z coordinate is then compared

to what currently exists for that pixel location in the Z-buffer. If the new z

value is less than the value in the Z-buffer, the new z value is written into

the Z-buffer and the new color value associated with that pixel is written into

the framebuffer. If the new z value is greater than the value in the Z-buffer,

it is discarded and the Z-buffer and framebuffer are not changed. Therefore,

during the rendering process the Z-buffer maintains the distances to those

items which are closest to the viewer and thus surfaces that are hidden by
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others are eliminated (15:369).

3.3.5.2 Object Movement Technique. Event-driven simulations up-

date the position of their objects at certain events which occur at non-uniform

times throughout the execution of the simulation. As each object's location

and/or orientation is updated, a network message is sent to the graphics

display system. One way to display the objects would be to reposition and

reorient the object whenever a new update is received from the simulation

processor. This would be very efficient, but not very visually appealing. To

provide a more realistic display of the simulation, the position and orientation

of the objects must be interpolated between two successive updates. In this

manner the position and orientation is updated a proportional amount during

each update of the graphics display screen. The update represents the differ-

ence in the coordinates at the two positions, divided by the number of frames

required to represent the objects in the simulation time needed to get from

position one to position two. The orientation update is calculated in a similar

manner.

Interpolation provides a realistic display when two locations of a given

object are known. However, in an event-driven simulation, certain objects

contain an initial position and orientation and may not be involved in any

event throughout the simulation. These objects provide only one location, so

interpolation cannot be used. Instead, a method of extrapolating the next

position from a known position and velocity is used.

Extrapolation requires additional information be provided in the update

records received from the simulation processor. Besides the information

required for interpolation (time stamp, position coordinates, and orientation

angles), the update records must contain the velocity vector components of the

object's position and orientation (see Appendix C).
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With this approach it is possible for object positions to be "overshot". If

the next update of an object does not occur at an exact time increment used by

the display system, a slight jump may appear on the display. Another, more

severe case, occurs when the display system does not receive a location update

record in time. If an update arrives and the time to activate that update has

come and gone, the next display cycle will display the object "jumping" from

its current displayed position to where it should be based on this late-arriving

update record.

3.4 Summary

The network communications was a crucial aspect in this software

system. The structure of the message packets was required for the simulation

processor to communicate with the graphics display system. After finalizing

the animation technique, data requirements for the simulation processor

were established. Various geometric descriptions were generated to model

known objects for a given simulation. With the network message structure

established, geometric description format finalized, and animation technique

chosen; the software design was ready for prototyping.
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IV System Implementation

4.1 Overview

The overall strategy used in developing the implementation of the VISIT

was one of prototyping. The project was broken down into three main areas

during the design phase; data representation/processing, communications,

and graphical display/user interaction issues. To handle this project in an

orderly manner, a prototype for each major area was implemented and tested

before they were integrated into a complete system.

The data structures representing the simulation objects, their positions,

and orientations were considered first for development. However, the need

to provide a network communications capability between the graphics display

system and the simulation processor to transfer this data seemed the more

difficult task and was undertaken first. The display issues, as well as user

interaction concerns, were implemented last to ensure a working product

would be established and, as time permitted, enhanced.

4.2 Communications

To assist in the discussion of the implementation of the networking

features, an overview of the hardware environment is presented here. The

Silicon Graphics Iris 4D/85GT workstation is connected to a subnet on the

LAN that is available throughout the AFIT complex. This subnet utilizes

thickwire ethernet connections and provides a network file system (NFS) to

all hosts. The simulation processor used throughout the development was a

Sun 4 workstation, also connected to this subnet. A layout of the hardware

architecture is shown in Appendix A.
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Using an NFS environment, all development files were available to

the graphics display system and the simulation processor. This provided a

very efficient working environment since a window could be maintained on

the graphics display system that was remotely connected to the simulation

processor. Since both systems had access to the same file system, no files had

to be repeatedly transferred between the two systems. This enabled virtually

all work to be accomplished on one system instead of going back and forth

between the two systems.

4.2.1 Simulation Processor. The simulation processor used in the de-

velopment was chosen for its availability and because it was already connected

to the same subnet. However, there was a requirement that the software sys-

tem support a wide variety of platforms for the simulation processor. In

order to provide this capability, an existing network conmnunications package

was used as a starting point. This package provided a client-server based

relationship between two heterogeneous computer systems and was available

for a Sun 4 and a Silicon Graphics Iris 3130.

The message packet format was modified to provide the necessary in-

formation in the header of the packet (see Table 4.1). This provided the

capability for using variable size record formats. A single field within the

message header holds the number of bytes contained in the message body.

When messages are passed between the two systems, m bytes are read from

the network socket first, then n additional bytes are read. The size in bytes

of the message header is represented by m, while n represents the length in

bytes of the message body. This allows for efficient network traffic by only

sending the number of bytes required for this particular type record.

The flow of messages is bidirectional as shown in Figure 1.1. The

simulation processor sends data records and status records to the graphics
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Table 4.1. Message Packet Structure

Field Description

request request type

reply reply from cube

channel values used in cube calls

node reserved for future use

pid reserved for future use

type reserved for future use

maxlth reserved for future use

cnode reserved for future use

cpid reserved for future use

ccode reserved for future use

recvdlth reserved for future use

object object number

icon icon index number

buflth length of following buffer

buf[MAXBUF] message data

display system and the display system sends command records and status

records to the simulation processor (see Appendix D). In order to maintain

efficient processing, the graphics display system performs "nonwait" reads

from the network socket. The system queries the network socket to see if any

messages are pending; if none are available it continues on instead of waiting.

4.2.2 Modes of Operation. To provide a display system for existing

simulations, two modes of operation were designed. In datamode the existing
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simulation output, previously converted to a datafile in the format required, is

read by a software tool residing on the simulation processor. In simmode the

simulation creates message packets during the execution and passes them to

the graphics display system for delayed realtime processing.

4.2.2.1 Datamode. The software tool was developed to execute on

a Sun 4 workstation and is called Simtoge (SIMulation TO Graphics Engine).

Simtoge is not Sun specific and will compile and execute on other Unix based

systems. The tool functions as a preprocessor. It reads the datafile, creates

the network message, sends the message, and waits for commands. The basic

algorithm is as follows:

1. Initialize the network socket

2. Establish a handshake with the graphics display system

3. Open the datafile

4. While not end of file:

(a) Check for incoming network messages

(b) Read a record from the file

(c) Create the network message packet

(d) Send the message packet

Once the datafile is completely sent across the network, the system

continually checks the network socket for incoming messages from the graphics

display system. This provides the features and "hooks" needed by a simulation

to communicate with the graphics display system. The tool is designed to be

called from the graphics display system as part of its initialization procedure

if required.
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4.2.2.2 Simmode. In simmode the simulation processor will cre-

ate the network message packets as it executes the simulation. The processor

will have to perform some initialization tasks before beginning the execution

of the simulation.

The basic algorithm is as follows:

1. Initialize the network socket

2. Establish a handshake with the graphics display system

3. Begin the simulation

4. Until the simulation ends:

(a) Check for incoming network messages

(b) Process an event

(c) Create the network message packet

(d) Send the message packet

4.3 Data Representations

4.3.1 Object. The task of maintaining the location, orientation, and

characteristics of all objects within the simulation requires a detailed data

structure that can be easily manipulated and maintained. The data structure

for an object is shown in Table 4.2. The various characteristics of an object

(color, scale, min, max, centroid, plist, etc.) are established when the object is

linked to an icon index. As update records are received from the simulation

processor the array of' locations is updated. During each frame update the

current position of each object is updated and stored in the position field of the

structure.
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Table 4.2. Object Data Structure

Field Description

color wireframe color

visible flag to indicate object's visibility

scale world coordinate scaling parameters

rotation world coordinate rotation parameters

min minimum x, y, & z coordinate

max maximum x, y, & z coordinate

position object's current world coordinates

distance distance to the cursor in picking mode

centroid object's center coordinates

type display characteristic

display flag to indicate if object is displayed

pcount number of polygons in geometric description

plist pointer to the list of polygons

objectId object's identification number

iconId icon number associated with this object

termination-time simulation time when this object goes away

current-location the current location record used

final-location the last location record

locations array of location records
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4.3.2 Message Packet. The message packet is the medium used to

transfer data between the simulation processor and the graphics display

system. The format of the message header is shown in Table 4.1. This format

contains fields that were established for parallel processing applications and

are not relevant to this thesis. These fields were maintained to allow this

software system to be expanded to applications involving parallel processing

simulations.

Several of the fields are used in almost every record passed from the

simulation processor to the graphics display system. The list of record types

and their format is located in Appendix C. The ordering of messages received

from the simulation processor is critical to the graphics display system. The

icon description record used to link the simulation object type to a geometric

description file must be received first. A list of geometric description files

available on the Iris 4D/85GT is contained in Appendix E.

Once all objects types that will be used by the simulation are known to

the graphics display system, the object records can begin. When a new object

is created in the simulation, an icon assignment record must be received. This

record links the simulation object to an icon file that will be used to represent

the object on the display screen. After the object is linked to an icon, the

initial position record must be received. This record identifies the location,

orientation, velocity, and simulation time at which the object will be at that

location.

The graphics display system will wait to begin the display of the sim-

ulation until a special message packet (record type 50), used to instruct the

display system to begin the display process, is received. The simulation should

send this message after all known objects that have a location at time 0 are

sent to the graphics display system. Once the display system rezeives this

record it will begin to display and update all objects known to the graphics
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display system. The method used to update the position of objects is discussed

in Section 4.3.2.1. New objects can be created after the start of the display

process.

The graphics display system sends network packets to the simulation

processor when the viewer stops the simulation to manipulate a known object.

When the viewer relocates or removes an object from the display system,

this information is passed to the simulation processor. The simulation must

then respond to those records and reply with object update records. In

datamode these records have no effect on Simtoge. Simtoge, the simulation

postprocessor, reads the message and displays an acknowledgment in the

console window, but does not manipulate the object. The graphics display

system will continue updating an object's position and orientation after it is

relocated.

4.3.2.1 Extrapolation Technique. VISIT uses an extrapolation

method to update an object's position and orientation during the display

process. Given a known position, orientation, velocity, and time, an object's

future position can be determined. This assumes a straight line movement

and/or a constant rotation. Table 4.3 shows the format of the location structure

used to extrapolate an object's position and orientation. During each frame

update the system performs the following steps to update each object.

1. Check to see if an object is activated at this time

2. Check for a new update record

3. Check to see if object should be terminated

4. Update position

In this mode of operation an object can be displayed as soon as it becomes
"active" in the simulation. The graphics display system utilizes the velocity
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information and the frame update rate to determine the next location to

display each object. Whenever a new location becomes current (based on

simulation time) the velocity data from the new record is used. As long as the

location records arrive before the display clock reaches the simulation time for

the update, overshooting a position should not occur.

Table 4.3. Location Data Structure

Field Description

time simulation time

x position coordinate

y position coordinate

z position coordinate

Vx Velocity Vector

Vy Velocity Vector

Vz Velocity Vector

heading orientation angle

pitch orientation angle

roll orientation angle

Vheading Velocity angle

Vpitch Velocity angle

Vroll Velocity angle

object object number

4.3.3 File System. The various files required to execute VISIT are

listed in Table 4.4. A default parameter file is supplied that establishes the

correct viewing parameters for the test datafile used throughout development.
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Appendix B identifies the structure and content of the parameter file. A

configuration file is also required that establishes the correct data for the

current hardware configuration. The geometry description files currently

available are listed in Appendix E.

Table 4.4. Data Files Required

File Description

configuration file identifies spaceball configuration

parameter file identifies initial viewing parameters

data file simulation records datamode only

4.4 User Interface

The system is executed using the following command line.

VISIT -f parameter file

[-h remote host [-p remote programi]

[-n] ntsc mode

[-s] I/O server mode

[-c] I/O config file

The -f switch is used to specify the parameter file used for initialization. The

-h option specifies the remote host used for the simulation processor. The -p

option specifies the program that is executed on the simulation processor. The

-n option allows the graphics system to use an ntsc monitor for the display.

The -s option specifies that the external 1/0 device is read from the VEDS

processor using the config file specified with the -c option. A menu-based

script fie is available that incorporates various default configurations.
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4.4.1 User Environment. To provide a friendly user environment, many

of the viewing parameters and display controls are available for modification

by entering a single keystroke on the keyboard or by using the popup menu

with the mouse. A list of keyboard functions and a list of functions provided

with the mouse menu is included in Appendix A. A separate window is

maintained in the upper-right corner of the display screen for on-line help.

A menu of topics is displayed and allows the viewer to retrieve help on the

keyboard, mouse, and spaceball functions.

Figure 4.1 shows a screen snapshot with the various viewing parameters

displayed. The display of the parameters is user selectable and allows the

viewer to monitor the various parameters as they are altered. Also the clock

statistics are displayed in the upper-left corner of the window. The viewer can

control the speed of the display clock and monitor the correlation between the

display clock and the simulation clock in real-time.

4.4.2 Viewing Control. Throughout the execution of the simulation the

viewer maintains considerable control over the viewer's display. Once the

display has been set in motion, the viewer may pause the display, reset the

simulation clock, step through the display a frame at a time, or establish a

checkpoint. Viewer control is maintained by storing and keeping all update

records for each object within memory. Resetting the display clock time is

accomplished by relocating the current location pointer for each object within

the data structure of location records.

The simulation clock may be reset to time 0 or to any time up to the

current simulation clock time. A checkpoint can be set any time during

the display of a simulation for any simulation time into the future. Upon

reaching this time, the display will pause and allow the viewer to interact

with the simulation objects. Once the viewer has finished interacting with the
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Figure 4.1. Screen Snapshot with Viewing Parameters Displayed

simulation the display may be set back in motion with a single keystroke.

Viewer interaction is provided with the CIS Dimension Six spaceball.

The device provides six degrees of freedom and is used to select objects,

relocate objects, and manipulate the viewing position. External 1/0 to this

device requires considerable time and is a key factor in the performance of the

interface. The device is made available to the system in two modes, server

mode and local mode.

In server mode the data are received from the VEDS processor and in

local mode the data are received from the graphics display system's serial port.

Either way a reduction is seen in the frame update rate in most situations

(see Table 5.1). The reduction is due to the system accessing the device for

data each time through the display loop. To compensate, a flag is maintained
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in the system to "pass over" reading the spaceball. This allows the viewer to

control when the system accesses the device for data.

When the spaceball functions are required, the viewer presses the ap-

plicable keyboard key and the system will execute the code that accesses the

device for data. When using the spaceball, the display is usually paused, and

no concern exists for how fast the frame buffer is updated because the simu-

lation objects are suspended at their current location. Once the viewer has

finished using the spaceball, the viewer can toggle off access to the spaceball

before releasing the display in motion. A detailed discussion of the spaceball

operation can be found in Appendix A.

4.5 Graphical Issues

4.5.1 Z-Buffer. Using the hardware Z-Buffer on the Iris 4D/85GT pre-

sented some unusual problems during the course of development. The initial

displays created showed polygon tearing in the geometric shapes used to rep-

resent the simulation objects. The initial evaluation determined that there

was a hardware inconsistency in what appeared to be the Z-Buffer. Later

analysis by Silicon Graphics determined that the model 4D/85GT possessed a

different design in the hardware that is used for transforming the geometric

shapes to the display screen. During this analysis, software development was

ported to a different workstation, yet the software anomalies associated with

the Z-Buffer did not go away.

Upon detailed analysis, the perspective and lsetdepth functions of the

graphics library, provided with the system were used incorrectly. The lsetdepth

function takes two parameters: near and far, and the perspective function

takes four parameters: field of view, aspect ratio, near clipping plane, and far

clipping plane (17). The problems encountered were the result of incorrectly

setting the parameters to these functions. Equations 1 and 2 depict the
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interrelationships between the parameters of these two functions. Lsetdepth,

by default has the near parameter set to the minimum value that can be

stored into the Z-buffer and far set to the maximum value. During the

rendering process the z screen coordinate (0 < z,,e,, < 1), is computed from

the perspective transformation and mapped into an integer value (near <

zviit _ far). The computed value is then compared to what currently exists

in the Z-Buffer.

I far + near 2- far . near [ far - near ] far + nearP
Sfar - near + (f -(f2r+ -naa] 22

(4.1)

far . near . (farv - near,,,,)

= (far - near) (4.2)
Zce = (far + near)(far,,p - near,) _ fary + near(2

2(f ar- near) 2

When this comparison involves values approaching the two opposite

ends of the range of near and far, a "wrap around" condition occurs due to

the hardware used for this comparison on the 4D/85GT. In essence, when

the hardware should select the object nearest to the viewer, the hardware

selects the object farthest away. This results in polygon tearing: portions of

one polygon being replaced with portions of another incorrectly at overlapping

surfaces. To compensate for this condition, the far parameter should be set

to a value less than the default and/or the near parameter should be set to a

value greater than the default.

Also related to the polygon tearing was the parameter specifications

to the perspective function. As previously stated, the z value specifies the

distance from a given pixel to the eye point, utilizing 24 bits of accuracy for

a maximum distance of 21 or 8,388,608. The relationship between the z
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value computed and the distance is linear only when using the orthographic

projection. When using the perspective projection this relationship is non-

linear and is dependent upon the ratio of the far clipping plane to the near

clipping plane. As this ratio increases, the degree of non-linearity increases.

As a reference, ratios greater than 1000 show effects of polygon tearing

(1:32). During the initial development, a near value of .01 and a far value of

4,000,000 were used, which resulted in a ratio far exceeding the recommended

maximum.

To achieve an acceptable display, the ratio had to be reduced. The easiest

way to reduce the ratio and yet maintain an acceptable image was to increase

iie near clipping plane. After experimentation with various values for both

functions, an acceptable display quality was achieved from most viewing

positions. However, when the viewer's eye position was placed within an

object and moving about in the display, objects that approached the viewing

position were being clipped away. To compensate, the perspective function

was called whenever entering this mode of viewing and the near clipping plane

was reduced to 10. Upon exiting this mode the near plane was reset.

4.5.2 Viewing. The viewer has complete control over what position to

use as a viewing position of the simulation. The viewer may establish a

viewpoint at a static location and watch the entire scenario from that position.

However, the interface allows both keyboard control and spaceball control

to maneuver the viewing position. This enables the viewer to position the

viewpoint virtually anywhere that is within the hardware limits of the display

system.

Another useful feature is one that allows the viewer to position the

viewpoint within one of the simulation objects. This provides the viewer

with the ability to watch the simulation from that object's moving perspective.
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This view ranges from the slow ground-level perspective of a tank to the view

obtainea from a missile launched from an aircraft. Figure 4.2 is a screen

snapshot depicting a view of the test simulation from one of the aircraft.

I -

Figure 4.2. Screen Snapshot of a Simulation Object's View

4.6 Summary

The network communications proved to be a big challenge throughout

the development of the software interface and the software tool Simtoge.

The spaceball communication connections between the various systems also

presented some difficult times. However, the prototyping method of software

development worked very well with this thesis. The decomposition of the

problem into the three major areas provided a manageable method of develop-

ing the software. The Iris 4D/85GT system provides a very flexible software

development environment that worked well for this effort. The subnet layout
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of the LAN used within AFIT was very well organized and provided a good

testbed for the network communications.
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V Results and Recommendations

5.1 Introduction

Overall, the required objectives were achieved. Fast, efficient network

communications are maintained between the simulation processor and the

graphics display system. Realistic animation is achieved in most situations,

but is highly dependent upon the complexity of the scene. The viewer

maintains complete control over the execution and display of the simulation.

Existing simulation output, once converted into a format-specific datafile,

can be displayed utilizing an incorporated software tool that executes on the

simulation processor.

5.2 Results

A test scenario was constructed to thoroughly test the various aspects

of the software interface. This scenario contained 35 simulation objects. The

objects ranged from missiles that utilize 25 polygons in their description to

aircraft that contain over 100 polygons in their description. The scenario had

an average of 2,000 polygons within each frame. There were 645 location

records transferred from the simulation processor to the graphics display

system. The vast majority of these records were for four aircraft that were in

existence throughout the entire simulation. Figure 5.1 shows a user viewing

the test scenario using the spaceball to manipulate the display.

Table 5.1 contains the frame update rates achieved using this scenario

under various conditions. The table identifies what factors were critical in

determining the frame update rate. The terrain was a simple 3-dimensional

description using 1,152 3-sided polygons. A grid was formed by creating

closed-line polygons using the same description as the terrain. Combined with
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Figure 5.1. Viewer Interacting with VISIT

the simulation objects a frame contained 3,150 polygons on average when the

terrain features and grid were displayed.

Another key factor was the display of the clock statistics. This entailed

displaying raster font character strings on the screen and querying the system

clock during the display loop. As can be seen by the table, when the entire

window contains terrain features there is little performance degregation

displaying the grid and clock statistics. This is due in part to the system

having to paint each pixel in the frame buffer each time through the display

loop. When the terrain features are not displayed, the frame update rate

is almost tripled, but a big degregation is seen when the clock statistics are

displayed.

The other factor was the spaceball access time, which was discussed
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previously in Section 4.4.2. The table shows little performance loss when the

terrain occupies the entire window and the spaceball is accessed in server

mode. However, in local mode the spaceball reduces the frame update rate

severely.

5.3 Evaluations

The VPL dataglove was utilized during initial development as an input

device for .his interface. However, the correlation of hand movements and

rotations to a virtual hand displayed on the screen could not be accurately

computed. In retrospect, the approach of computing a ratio of physical

movement to virtual movement with a largve contrast in size between the two

was incorrect. A different approach based on the functionality of the spaceball

may warrant exploration.

A hand gesture could be used to indicate which direction and axis to move

the viewing position or center of interest. Then using some type of throttle

gesture, the viewer can control the speed of movement. In this fashion the

viewer can move relatively fast across large spans of the display and relatively

slowly when narrowing in on a target area of the screen. This approach is

quite similar to how the spaceball uses the amount of torque applied to the

ball in a given direction to indicate the amount of movement.

5.4 Recommendations for Further Research

A hierarchical approach to simulation objects is desired when displaying

large simulations. The hierarchy of the simulation should be representable, in

some fashion, on the display screen. Also, communications with a simulation

executing on a parallel processor system in real-time should be examined.

The interface should be able to handle the display requirements as long as the

data records reach the display system before they are required. However the
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Table 5- 1. Frame Update Rates (using 1200 x 800 window)

Terrain Features Grid Clock Spaceball Frames/sec

Full Window off off off 11.9

off on off 9.9

on off off 10.0

oon n off 10.0

off off Server 12.1

off on Server 10.0

on off Server 10.1

on on Server 8.7

off off Local 8.7

off on Local 7.3

on off Local 7.3

on on Local 6.5

Half Window off off off 12.0

off on off 12.5

on off off 10.0

on on off 9.8

off off Server 14.7

off on Server 11.6

on off Server 9.9

on on Server 9.0

off off Local 9.9

off on Local 8.0

on off Local 7.9

on on Local 6.8

Not Displayed off off off 29.3

off on off 20.5

off off Server 29.3

off on Server 19.4

off off Local 13.9

off on Local 11.4
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current version maintains the location records in system memory and does

not write them to disk. A very large simulation may require some type of

intermediate disk saving capability.

5.5 Conclusions

The viewer has the ability with this interface to completely control a

simulation's execution and display. This provides the necessary capabilities

so often needed by developers and users. The interface has the ability to see

the simulation as it executes knowing immediately if the simulation is valid,

knowing immediately if the input data was in the correct format, knowing

immediately if results were obtained. It has the ability for a developer to

validate the requirements with a user by showing instead of explaining. It

contains the ability for a group to see the execution and control of a simulation,

which may or may not be executing in the local environment. Finally, the

interface has the ability to display a simulation that executes on hardware

with no graphics display capability.

5.6 Summary

The resulting interface provided a very efficient, fast, and reliable

medium to transfer data between a simulation processor and the graphics

display system. The graphics system provided real-time display capabilities

which maintained a reasonable frame update rate. User interaction was

provided in various forms that allowed the viewer to interactively control and

manipulate the simulation.
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Appendix A. VISIT User's Guide

Introduction

VISIT is an interactive simulation display system that permits the

graphical display of a simulation that is concurrently executing on another

system. Display data is received by the graphics display system and commands

are sent to the simulation processor via ethernet communication utilizing the

TCP/IP protocol.

The following sections explain how to setup and operate VISIT. In

addition, the various file formats are explained in detail.

Preparing VISIT for Use

Before VISIT can be used various initialization tasks must be accom-

plished in the proper sequence. Figure A.1 shows a block diagram of the

complete VISIT system.

The following procedure should be used when executing the display of a

simulation.

1. Begin by logging into the Silicon Graphics Iris 4D/85GT

2. Ensure appropriate files are present on the systems used (see Table A.1).

3. Type VISIT <cr> to execute the main menu

4. Select the appropriate configuration from the menu.

Once the message to start displaying the simulation is received, the

graphics system will begin the display. The display initially appears in pause

mode to allow the viewer to manipulate the viewing parameters or to change

the display control characteristics. The animation of the simulation will begin
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after a keyboard p is pressed. To exit the system, the viewer enters a keyboard

q. An on-line help facility is available by typing HELP <cr> in the help

window.

Interactive Input

The parameter file provides the various initial parameters. 1Mowever

the system provides the flexibility to interactively modify the various viewing

parameters and the simulation objects themselves. Keyboard functions, a

mouse menu, and the s-aceball furnctigns provide these capabilities.

Keyboard & Mouse. The keyboard provides access to virtually all view-

ing parameters and allows the user to interactively modify the simulation

environment. The list of keyboard functions is displayed in Table A.2.

The mouse provides a single popup menu by clicking on the right mouse

button. The options are selected by clicking the right mouse button when the

applicable option is highlighted. To cancel before selecting an option, click on

the menu title and you will return to the display. The popup menu functions

are listed in Table A.3.

CIS Dimension Six Trackball. THE CIS Dimension Six force-torque ball

(shown in Figure A.2) is a six degree of freedom input device combining the

Table A.1. Data Files Required

File Description

configuration file identifies spaceball configuration

parameter file identifies initial viewing parameters

data file simulation records datamode only
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Figure A. 1. System Architecture Layout
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functionality of a joystick, a button box, and a dial box (7). The ball allows

rotations about the three primary axes and translations in three directions.

Force sensors inside the ball register the amount of force and torque applied

to the ball and send this information over an RS-232 interface to the host.

The device has eight function buttons that provide user input capability

(see Table A.4). There is also a set of three buttons on the trackball that allow

the user to change from translations to rotations. The force applied to the

ball is sent to the host and read into a data structure. The status of the three

control buttons determines how that data structure is filled. The trackball

is used to both modify the viewing parameters and alter the location and/or

existence of simulation objects.

Figure A.2. CIS Dimension Six Force-Torque Ball
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Viewing Mode. In viewing mode the user is allowed to either zoom

in or out, or pan along one of the three primary axes. To zoom, the user

depresses a function button and then applies force to the ball in the direction

specified in Table A.5 to achieve the desired change in the display. As the

system reads the amount and direction of force, the display is updated. Once

a position is reached and the user is satisfied, a function button is depressed

to exit viewing mode.

To pan the display, the user depresses a function button and then applies

force to the ball in the direction in which the display is to pan. This system

uses the left-hand coordinate system, so applying force to the right will pan

along the positive x axis, pushing forward on the ball will pan along the

positive y axis, and pulling up on the ball will pan along the positive z axis.

Applying force in the opposite direction for either axis will pan along the

respective negative axis. Again, once a suitable position is reached, a function

button is depressed to exit viewing mode (see Table A.4).

Picking Mode. The user can maneuver a cursor anywhere within

the current display screen and 'pick' an object, move that object with the

trackball, and 'drop' the object at the new location. The user may also delete

an object from the current display once it has been picked. If the object that

the user wants to pick is not currently within the viewing window, the user

can enter viewing mode and reposition the window so that the desired object

is viewable.

The user enters picking mode by depressing a function key on the

trackball. This causes the system to display a wireframe cube in the center of

the viewing window. The user then maneuvers the cube by applying force in

the appropriate direction towards the object that is to be picked (see Table A.5).

When the object appears within the cube or near it, the user depresses another
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function key. This triggers the software system to calculate the distance from

the cube to all viewable objects within the simulation. The closest object to

the cube is then displayed in wireframe mode for visual feedback to the user.

At this point the user has three options.

If the object that was calculated by the system to be nearest to the cube

is not the object that the user wanted selected, a function key is available

to 'unpick' the object. This will reset the display mode of the object back to

shaded and display the cube again. The user may then maneuver the cube

closer to the desired object and pick it again.

A second option after the object is picked is deletion. The user can

depress a function key that will cause that object to be removed from the

current list of displayable objects. This will also trigger the system to send

a network message to the simulation system that an object was deleted from

the simulation.

A final option is to relocate the object. Once the object has been picked,

the user may apply force to the ball and thus relocate the object within the

viewing window. The user can also reorient the object by applying force to

the ball in any one of three rotation directions. The user can switch between

translations and rotations by depressing the applicable control button on the

device. Once a suitable position and orientation has been achieved, a function

key is depressed to 'drop' the object at its current displayed location. This

also triggers the system to send a network message to the simulation that the

location of an object has been altered.
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Table A.2. Keyboard Functions

[-Kley Function

+ increase field of view

- decrease field of view

b toggle spaceball

c toggle clock display

f decrease time scale

F decrease time scale

g toggle terrain grid

1 toggle cockpit mode

p toggle pausing display

r reset clock to 0.0

s decrease scale factor

S increase scale factor

t toggle terrain display

v toggle viewing parameters

w toggle wireframe mode

x toggle display trails
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Table A.3. Mouse Menu Functions

Option Function

Toggle Clock toggle clock display

Toggle Parameters toggle viewing statistics

Toggle Terrain toggle terrain display

Toggle Pause toggle pausing display

Simulation Control submenu to control simulation

Clock Control submenu to control display clock

Pick Object pick object to view from

Change Terrain change terrain file

Pause send msg to pause simulation

Continue send msg to continue simulation

Stop send msg to stop simulation

Abort send msg to abort simulation

Restart send msg to restart simulation

Reset Clock set clock to 0.0

Set Clock set clock to time n

Set Breakpoint set breakpoint to pause display

Step Display step through display by frames
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Table A.4. Trackball Function Keys

Key Function Comments

1 Display Cube Begin picking mode

2 Pick Object

3 Cancel Pick

4 Drop Object

5 Activate Zoom

6 Delete Object

7 Activate Pan

8 Deactivate Terminates movement

Table A.5. Trackball Translations

I

Key PAN Function ZOOM/MOVE Function

slide ball forward pan forward move entity along +y

slide ball backward pan backward move entity along -y

slide ball right pan eastward move entity along +x

slide ball left pan westward move entity along -x

slide ball upward pan upward move entity along +z

slide ball downward pan downward move entity along -z
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Appendix B. Parameter File Format

The VISIT parameter file provides a method for initializing the viewing

parameters. The file is arranged so that only one parameter keyword and its

associated value(s) can be on a single line. The order in which the parameters

appear within the file is not important.

The file syntax is shown in Table B.1. In the table, literal symbols appear

as contiguous strings of alphabetic characters. Substitutable symbols appear

in angle brackets "<" and ">". Optional information appears within square

brackets "I" and "]". C-style comments (/* */) and #include and #define

directives may be contained within a parameter file.
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Table B.1. VISIT Parameter File Format

Keywords Comments

COI <x> <y> <z> Center of Interest Coordinates

EYE <x> <y> <z> Eye Position Coordinates

FOV <angle> Field of View

FUR <rate> Frame Update Rate

IDIR <path> ICON Directory

MTT <time> Maximum Simulation Time

RA <angle> Rotation Angle Amount

SF <factor> Object Scaling Factor

SS <factor> Movement Step Size

TER <x> <y> <z> Terrain offset

TF <factor> Time Scaling Factor

TFILE <filename> Terrain Geometry Description

CSCALE <factor> Coordinate Scaling Factor

MANGLE <mode> Angle Measurement in CW Direction

NPLANE <distance> Near Clipping Plane

FPLANE <distance> Far Clipping Plane
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Appendix C. Datamode File Format

The datafile is composed of records of several types. Each record type

contains fields in a specific format. The number of fields in a record is different

for each record type. In all cases, the first field contains an integer which

defines the record type.

Types

Icon Assignment. Assigns an icon index to a viewable object.

Table C.1. Record Type 30

Field Description Data Type

30 Record Type integer

0 Object Index Number integer

I Icon Index Number integer

Example: 30 3 8

This examples indicates simulation object number 3 is assigned to icon

index 30. Simulation Object numbers must begin with 1 and be sequential.

Object Location. Contains position and orientation data for a viewable

object. The position and velocity values have a maximum width of eleven

characters. This width is inclusive of a minus sign and a decimal position.

The angles are measured according to the right-hand rule, which is as follows:

as you look down the positive rotation axis to the origin, positive rotation is

counterclockwise (17:7-17).
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Table C.2. Record Type 31

Field Description Data 7pe

31 Record Type integer

0 Object Index Number integer

T Time (seconds) float

X X - position (meters) float

Y Y - position (meters) float

Z Z - position (meters) float

VX velocity in x (meters/sec) float

VY velocity in y (meters/sec) float

VZ velocity in z (meters/sec) float

H Heading (degrees) float

P Pitch (degrees) float

R Roll (degrees) float

VH change in Heading (degrees/sec) float

VP change in Pitch (degrees/sec) float

VR change in Roll (degrees/sec) float

Example: 31 2 2.5 1000 500 -20 1.2 2.4 -.3 30.0 10.0 -90.0 0.5 5.0 -1.C

This examples indicates that object number 2 at simulation time 2.5 is

positioned at 1000, 500, -20. The object has a heading of 30 degrees, a pitch

of 10 degrees, and a roll of-90 degrees. The velocity components are 1.2, 2.4,

and -.3 for position and 0.5, 5.0, and -1.0 for orientation.
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Icon Identification. Identifies an icon by index and geometry description

filename.

Table C.3. Record Type 32

Field Description Data ype

32 Record Type integer

I Icon Index Number integer

F Icon Filename character string

Example: 32 8 migl

This example indicates that icon index number 8 is associated with the

geometry file migl. Icon numbers are determined freely by the user.

Object Termination. Identifies when an object is to be terminated. This

is the time at which the display system stops displaying the object.

Table C.4. Record Type 33

Field Description Data 7pe

33 Record Type integer

0 Object Index Number integer

T Termination Time float

Example: 33 3 115.5

This examples indicates that object number 3 will be no longer displayed

at simulation time 115.5.
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Start Display. Indicates all icons and the initial starting positions have

been identified and sent to the graphics engine. The graphics engine can begin

displaying the simulation.

Table C.5. Record Type 50

Field Description Data Type

50 Record Type integer

Reset Display. Indicates to the graphics display system that the simula-

tion was restarted and will begin execution. The graphics display system will

pause until a START DISPLAY is received.

Table C.6. Record Type 52

Field Description Data Type

52 Record Type integer

End of Simulation. Indicates the end of the simulation. This will be the

last line within the datafile that is read.

Table C.7. Record Type 86

Field Description Data Type

86 Record Type integer

T Termination time float

Example: 86 245.0

This example indicates that the simulation displayis to stop at simulation

time 245.0.
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Ordering

All icon identifications (type 32) must occur before any other type of

record in the datafile. Each viewable object must be associated with an icon

(type 30) before a location record (type 31) for that object can occur in the

datafile.
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Appendix D. Message Packet Descriptions

Introduction

The fields of the message packet used by this interface are shown in

Table D.1. The icon field is only used by the icon assignment and icon

identification type packets; all other packets avoid this field. The buf field

contains type-specific data and is identified specifically for each type packet.

This message packet structure was adapted from an existing network

communications package. This package allowed communication between the

4D/85GT system and a parallel processing system; however, it relied on the

message header fields be of type short. This restriction prevented an easy way

of storing the simulation time, (a float type), within the message header, and

that is why the simulation time is stored in the buffer instead of being a field

within the message header.

Data Types

Table D. 1. Message Packet Structure

Field Description

request Request Type

object Object Index Number

icon Icon Index Number

buflth Length of Buffer

buf Data
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Type 30 - Icon Assignment. Assigns an icon index to a viewable object.

The buffer contains 0 bytes of data for this record. Object numbers must begin

with 1 and be sequential.

ype 31 - Object Location. Contains position and orientation data for

a viewable object. This record type should not be sent until after the icon

assignment packet has been sent for the object number in this packet. The

buffer contents for this record are the following:

simulation time,x,yz coordinates, x,yz velocity vector coordinates, head-

ing, pitch, roll, heading change, pitch change, and roll change.

All values are separated by one space character.

7pe 32 - Icon Identification. Identifies an icon by index and geometry

description file that is used by the display system to represent the object. The

buffer contains the filename only. This filename is concatenated to the path

name provided in the parameter file. This packet type must be sent for each

icon used, but before any icon assignment is sent for that particular icon.

7ype 33 - Object Termination. Identifies the simulation time in which

an object is terminated. The buffer contains the simulation time at which

termination occurs.

Viewer Interaction 7ypes

These message packet types are used when the viewer interacts with the

display of the simulation using the spaceball device. These commands have

no effect in the data mode of operation.

7pe 34 - Move Object. This message packet is used to send the new

location of an object back to the simulation. The contents of the buffer are:
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simulation time, x, y, z position, roll, pitch, and heading.

7pe 35 - Destroy Object. This packet is used to send the simulation

time at which the user interactively deleted an object. The simulation time is

placed into the buffer.

Simulation Control 7pes

The simulation control is quite different from the display control capa-

bility of the system. When the user selects to pause the display only the

display and object position updating pause; no message packet is sent to the

simulation processor. The simulation control packets are for communication

with the simulation processor. The current simulation time is loaded into the

buffer before the packet is sent for all packets of this type.

Type 40 - Pause Simulation. The display system sends this message to

the simulation system when it becomes necessary to pause the simulation.

Currently, this condition never occurs internally and is aliowed only as a user

selected option.

Type 41- Continue Simulation. The display system sends this message to

the simulation system when it becomes necessary to continue the simulation.

Currently, this condition never occurs internally and is allowed only as a user

selected option.

Type 42 - Stop Simulation. The display system sends this message to

the simulation system when it becomes necessary to stop the simulation.

Currently, this condition never occurs internally and is allowed only as a user

selected option.
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Type 43 - Abort Simulation. The display system sends this message to

the simulation system when it becomes necessary to abort the simulation.

Currently, this condition never occurs internally and is allowed only as a user

selected option.

Type 44 - Restart Simulation. The display system sends this message to

the simulation system when it becomes necessary to restart the simulation.

Currently, this condition never occurs internally and is allowed only as a user

selected option. This is the only simulation control message packet that the

simulation postprocessor, Simtoge, uses. The other five packets are read and

an acknowledgment is displayed in the console window; no action is taken.

Type 45 - Save State. The display system sends this message packet

when a user determined breakpoint is reached.

Type 25 - Quit Communications. This packet is sent by the graphics

display system as a house-cleaning function before termination of the interface.

The buffer contains the current simulation time.

Status Types

Type 50 - Start Display. Instructs the graphics display system to begin

displaying the simulation. At this point the display system will allow user

interaction and control. This packet should not be sent until all icon identi-

fication and icon assignment packets have been sent for the objects that are

known at simulation time zero. The buffer and object index field will be empty.

Type 52 - Reset Display. Instructs the graphics display system that all

current data is no longer valid and the simulation will restart. The simulation

must send a Start Display packet to allow the display system to continue. The
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buffer and object index field will be empty.

7pe 86 - Datafile Complete. Instructs the graphics display system that

reading of the datafile is complete. The buffer and object index field will be

empty.

Modifications

As stated in the introduction this message packet structure is based

upon a communications package received from Oakridge National Laboratory.

The modifications that were made are noted here because it's the only place

that they fit in.

First, the original package relied on a global visibility for the network

socket file descriptor and message packet structure. That could not occur in

the interface. It was necessary to make these two entities parameters for all

modules that required them.

Second, several new request types were added to the original package.

Basically all request types identified in this appendix are new .nd are identi-

fied in the header file /veds/oakridge/include/AFITcom.h. All previous request

types were maintained. A subset of the original collection of modules was

combined into one file, identified as /veds/oakridge/lib/simutils.c. This file

is linked in by both the interface VISIT and the simulation postprocessor

Simtoge.
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Appendix E. AFIT Geometry File Format

The AFIT geometry file provides a method for describing three dimen-

sional objects composed of planar polygons, and for specifying attributes such

as color and a shading model. The file is organized in a position dependent

manner such that the position of a line within the file (its "line number")

determines the class of information a line may contain.

The file syntax is shown in Table E. 1. In the table, literal symbols appear

as contiguous strings of alphabetic characters. Substitutable symbols appear

in angle brackets "<" and ">". Optional information appears within square

brackets "[" and "I". C-style comments (/* */) and #include and #define

directives may be contained within an AFIT geometry file.

A list of available geometry descriptions using this format is shown in

Table E.2.
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Table E. 1. AFIT Geometry File Format

Line Keyworcis Comments

1 None Up to 1024 characters

2 [ccw] [cw! [purge] [nopurge] Geometry Parameters

3+ points <# of points> Object component and

patches <# of patches> attribute counts

[attributes < # of attributes>]

[textures < # of textures>]

4+ <x> <y> <z> Vertex Lines

[normal <i> <j> <k>1

[color <r> <g> <b>

[tindex <u> <v>[

5+ <n> <Pt 1> ... <pt n> Polygon/Patch Lines

[attribute <n>I

[texture <n>1

[type_{ PLAIN,_COLOR, TEXTURE}] __________

6+ [shading {FLAT, GOURAUI), PHONG}] Attribute Lines-

[reflectance {FLAT, PHONG, COOK)] __________

[kd <n>]

[ks <n>[

[n <n>l

[opacity < n>[I

[m <n>]

[material <filename>[

7+ filename Texture Map Filename
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Table E.2. Available G'..ometrv Files

Filename Polygons

f18 29

alO 12

f14 105

migi 101

missile 25

tank 20

truck 14
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Appendix F. Simulation Developer's Guide

Introduction

This appendix is meant to assist anyone who will be using the interface

in sim mode and has to design into a simulation the various "hooks" used by

this interface. There are various features that should be incorporated into

a simulation in order to utilize the maximum functionality of this interface.

However, very little extra work should be required to just view a simulation;

the majority of &.e extra work is required for viewer interaction and control.

Data Representations

The objects within the simulation are represented graphically on the

display system by what is referred to as icons. To represent an object on

the display screen the graphics display system must know what to use for

it's representation. Table E.2 lists the currently available icons. These

icons are described using polygonal descriptions in the file format specified in

Appendix E.

All obj cts are described with their center oriented at the origin of the

world coordinate system. The front of the object is poir'ted away from the

origin down the positive y axis. The initial orientation of the object is zero

for all rotation angles. All objects are measured in meters and are externally

scalable to any size. The interface allows the viewer to control the object scale

size, but that value applies tc all objects known to the display system.

The orientation angles are measured according to the right-hand rule,

which is as follows: as you look down the positive rotation axis to the origin,

positive rotation is counterclockwise. The interface reads a parameter at

initialization time that may be used to indicate that the angle measurements
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are the reverse of this rule. The important thing to remember is be consistent,

either all angles are counterclockwise positive or clockwise positive.

The position of objects are specified using the 3-dimensional right-

handed cartesian coordinate system. The units used are of no importance to

the display system except for consistency. Whatever unit of measurement is

used for positioning, must be used throughout. If you use meters to describe

the objects and miles to indicate their positions, an erroneous display will

occur. Also, there is a coordinate scaling parameter in the parameter file that

may be used to indicate to the display system to scale all coordinates by this

factor.

When using a unit of measure other than meters, the object descriptions

may be scaled within the interface by the viewer. A keyboard function

is available to the viewer to scale up or down by a factor of 2 all object

representations. This is a global factor that applies to all objects and may not

be applied to individual objects.

Object positions and orientations are sent to the graphics display system

whenever a position or orientation changes. The packet that is sent requires

the position coordinates, orientation angles, and velocity vector coordinates

for the position and orientation. This information is used to determine the

objects movement within the simulation. These records must be sent to the

display system in simulation time order for any given object.

Communications

Appendix D describes the various message packets that are sent back

and forth between the two systems. Appendix C describes the format of

the datafile used for data mode operation by the simulation postprocessor,

Sim' oge. Simple playback viewing of a simulation can be accomplished by

creating a datafile in the format specified and using the data mode of operation.
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However, to utilize the full functionality of the interface direct communications

between the simulation processor and the graphics display system is required

in real-time.

The necessary modules required for communications with the display

system are available in the file /veds/oakridge/lib/simutils.c. This file contains

the network communications modules used by the interface and the simula-

tion postprocessor, Simtoge. The modules also contain the message packet

structure that is used to transfer the data between the sysLems.

Many simulation control capabilities are provided by the interface that

rely on the simulation processor to perform some function. In data mode

these message packets are built and sent to Simtoge and an acknowledgment

message is displayed in the console window. The viewer will have the ability

to send the simulation a message to pause, stop, cont'nue, restart, or abort the

simulation. Also, the display system will send a message to the simulation

processor when the display system reaches a viewer established breakpoint.

To assist the simulation in communicating with the display system,

display status messages exist. The simulation must send a packet to the

graphics display system when it is ready for the display system to begin

displaying. This allows the simulation to perform all of it's initialization,

identify it's objects, and begin it's execution before the display system begins.

It is important to remember that the display system will continue to

display and update the simulation objects based on what is currently known.

This requires the simulation processor to keep ahead of the graphics display

system with respect to simulation time. The viewer may control this by

pausing the display. Pausing the display pauses the display of the simulation

at the current simulation time. In the background communication will

continue betwecn the two systems, thus allowing the simulation processor to

continue sending data.
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Finally, when the viewer exits the interfaee system a message packet is

sent to the simulation processor to terminate. This is a send-only request, no

return message will be accepted.

Viewer Control & Interaction

The viewer also has the ability to relocate and delete objects that are

currently known to the graphics display system. Packets will be sent to the

simulation processor when either of these actions are taken by the viewer.

This will require some action be taken by the simulation. When an object is

deleted by either a termination record from the simulation or a delete object

from the viewer, the object number may not be reused.

Summary

The information presented in this appendix is intended to be a supple-

ment to the other portions of this document. It is highly recommended that a

developer read all appendices to this document before attempting to develop

a simulation that will require this interface. Expansion of this interface to

support parallel simulation applications should require minimal effort.
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Appendix G. VISIT Man Page

The following page contains a Unix manual page for the software inter-

face.
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NAME

VISIT - Visual Interactive Simulation Interface Tool

SYNOPSIS

VISIT -f parameter file [ -h remote host -p remote program]
[-s ] [-c config file] [-n]

DESCRIPTION

VISIT is the Visual Interactive Simulation Inierface Tool. It provides
a graphical display of a simulation that is executing concurrently on
another processor. The interface provides the user with the ability
to control and interact with the real-time display of the simulation
execution. A separate mode is available to display the output from
a previous execution.

The initial operation of the interface is controlled by a parameter
file. This file contains the initial value for various viewing parameters
and graphical configuration variables.

The operation of the spaceball is controlled through a configura-
tion file. This file specifies which input device is connected, to which
port, and at what baud rate.

By default, the configuration file VEdefault.config is used for con-
figuration information. This may be overridden using the -c option.
The format of the configuration file is shown by the following line.

spaceball /dev/ttyXX 19200

SEE ALSO

server(LOCAL)

AUTHOR

Bill DeRouchey
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