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1 Introduction

The problem of test generation for combinational circuits is known to be NP-complete

[11, 13]. The growing :omplexity of VLSI circuits has made test generation a more

difficult task. Several Automatic Test Pattern Generation (ATPG) algorithms for

detecting stuck-at-faults in combinational circuits exist in the literature [5, 8, 10,

12, 14, 17, 18]. In [2] we have proposed a new algorithm based on a 15-valued

logic system that introduces some novel approaches to make test generation more

efficient. The advent in recent years of low-cost, high-performance parallel machines

has spurred further interest in investigating the possibility of developing fast parallel

CAD algorithms. In this report we present an approach to efficiently parallelize the

ATPG algorithm proposed in [2]. To make this report self-contained a condensed

version of [2] is presented in Appendix A.

The task of parallelizing test generation can be approached in various ways. One

common approach is to divide the fault set among several processors, a method some-

times referred to as fault parallelism [16]. Although communication overhead is low

in such an approach, it still provides no improvement over the uniprocessor algorithm

with respect to "hard-to-detect" faults or identifying redundant faults.

All test generation algorithms use some heuristic to guide test generation. These

usually consist of testability measures in the form of controllability and observability

values for all nets of the circuit. Although several such measures exist in the literature,

experimental results suggest that no single measure is inherently superior to the others

[6]. Consequently, some researchers have suggested the use of heuristic parallelism

whereby different processors would be used to generate test(s) for the same fault with

each of them using a different heuristic to guide the search [7]. The disadvantages of

such an approach are that parallelism is limited by the number of useful heuristics

available (usually no more than 5) and that no significant improvement is possible if

a fault is "hard-to-detect."



Instead of following either of the two approaches discussed above, we concentrate

on developing a scheme which exploits the properties of the algnrithm presented in

[2] to achieve efficient parallelism when generating tests for a fault. Added levels of

parallelism can be easily provided by including fault or heuristic parallelism. First, we

develop the concept of fault site testing in which we utilize the 15-valued logic system

in order to derive the common requirements of testing for s-a-!) and s-a-i faults at

the same site (§2). We then present a method whereby testing for different checkC point

faults can be efficiently overlapped (§3). Both these speed-up techniques car, exploit

parallelism during the Enumeration Phase. On the other hand, we can speed-up

the Propagation Phase by dividing the work of sensitizing a path, a key feature of

[2], among several processors (§4). It is important to note that our 15-valued logic

system makes it easy for such a division of tasks because subsequent merging of the

results computed by the different processors would involve simple set intersection. In

this report we also prebcnt P method of identifying several "independent" suibcircuits

during the Enumeration Phase so that their value justification can be performed in

parallel (§5). Finally, we provide a detailed step-by-step description of cur proposed

parallel ATPG algorithm (§6). To this end we use an algorithm description language

that does not cater to any specific existing programming language but uses simple

mathematical/logical descriptions of each computational step. This approach was

preferred because it provides a much more detailed insight than a flowchart can,

without burdening the reader with actual implementational details.

2 Fault Site Testing

In this section we discuss how we can exploit the common requirements that are

imposed when we sensitize the same path from the fault site to a primary output

in order to generate tests for both stuck-at faults at this site. In this report we will

use the term net to denote the different lines of a circuit; thus the circuit consists of
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four different kinds of nets - primary inpitt (PI) nets, primary output (PO) nets,

fanout stem (FOS) nets and fanou-, branch (FOB) nets. In order to perform fault

site testing we cannot impose the conditions required to sensitize the fault site until

the common requirements are taken into consideration. To do this we introduce a

primitive d-cube of a failure, (pdcf), different from that in [2], that allows us to take

into account ooth stuck-at faults at a given net:

n n.

0/1 A

In the pdcf shown, A is a variable which contains the information that there is a

difference between the normal and faulty circuits without imposing any constraints

about the direction of the difference. So A= {(x,Y)} and the corresponding A=

{(Y, x)) where x E {0, 1}. The calculus used in a {0, 1,,A, A} system is equivalent to

that in a {0, 1, D,D} system. One way of obtaining this equivalence is to replace D

by A and D Ly A. (Another way to do this would be to replace D by A and D by

A). Using this system we execute the Propagation Phase of [2] by sensitilng a path

p,. In the resulting deterministic test cube we set the value of net n to 0 (1) and

find its corresponding deterministic test cube to generate Tf(pi) for an s-a-0 (s-a-i)

fault at net n. The Enumeration Phase can then be independently executed for both

Tf(pi)'s in order to generate tests for both the faults.

Example 1. We use the same circuit described in Appendix A and shown in

Fig. Al to illustrate the concept of fault site testing. Since net 25 belongs to the set

of checkpoint faults for 4he circuit, we have to generate test for s-a-0 and s-a-1 faults

at this net. As explained above we start by constructing the pdcf shown below:

25 25f

0/1 A

Executing the Propagation Phase of [2] with the chosen sensitized path being the one

through nets 27, 30, 31, 36, 37. 40 and 45 yields the following deterministic test cube.
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4 7 9 10 11 11 i8 20 21 25 25, 27 28 29 30

1 0 0 0 0 1 1 0 0 0/1 A A 1 0 A

31 32 33 34 35 36 37 38 39 40 41 42 43 45

A 0 0 0 0 A A A A A 1 1 1

The value of all nets not indi1caued above is 0/1. To generate tests for the two stuck-at

faults we set the value of net 25, in the above test cube, to 0 and 1 and construct the

two corresponding deterministic test cubec. Note thai these deterministic test cubes

can be constructed independent of each other. The resulting cubes are shown below

where only the nets whose values change in the process are indicated.

Stuck-at-0 fault:

24 25 26

1 1ii

Stuck-at-1 fault:

2 5 8 22 2C 24 25 26

0 0 1 0 0 0 0 0

In the s-a-0 case, nets 21 and 24 are the oi.ly variant nets whereas nets 19 and 21

are variant for the s-a-1 situation. The Enumeration Phase for yielding tests using

these two test cubes can also be executed independently. []

3 Deriving Common Requirements for Testing

Different Checkpoints

It is well known that a test set, that detects all single stuck-aL faults at the PI nets,

FOB nets and the output nets of all XOR/XNOR gates of a circut, will detect all

single stuck-at faults in the circuit [4]. Thus these nets, he::ceforth referred to as

"generalized checkpoints," constitute our initial list of target faults for which tests
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have to be genelated. However, if any or these target faults is undetectable, additional

target faults mist be considered [1, 9].

In this section we investigate the possibility of reducing the computation required

in testing several checkpoints by first considering their common requirements and

performing "his computation only once.

Consider a two-input AND gate G, shown in Fig. 1(a), where both inputs of G

are generali7d checkpoints and thus belong to our initial 1;st of target :aults. Instead

of testing each of the inputs separately, we first impose the constraints that must be

satisfied to test the cutput n-t of G as shown in Fig. 1(b). The i.-sulting deterministic

cube can then be used to generate tests for the individual faults. Fig. 1(c) shows

the additional constraints that must be impobcd in order to generate tests for all four

faults at the inputs of G.

The above procedure should be adopted whenever we encounter a gate which has

at least two inputs belonging t o the set of generalized checkpoints.

4 Parallelism in Sensitizing a Path

The P, .pagation Phase of our algorithm involves the sensitization of a chosen path,

say pi, from the fault site to a prim'.ry output (PO). This sensitization process could

be performed on several (say k) processors by dividing pi into subpaths (p2,,pi,,..., Pik).

The division of path pi would depend on the availability of processors and the nature

of the circuit under consideration. A feasible approach is to divide the path into sub-

paths such that each processor is ailotted the task of performing sensitization between

successive FOS nets or between a certain number of FOS nets. In such a schen,, a

single processor would be usc-d for the Propagation Phase if the circuit under test is

a fanouL, one. Furthermore, if we add the provision of indicating node inversion

on the dominator forest, then, using the forest, we can determine exactly which of

A or L. should be present at the first net of every subpath. If this extra information
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is not included, then the test cubes yielded by the different processors must first be

compared and accordingly A must be replaced by A and vice versa in the values of all

nets in the test cube yielded by sensitizing the subpath Piz(+,) if the value of the first

net on P,(,+,) and the last net on pij are complementary. The actual sensitization

process for a subpath is similar to the Propagation Phase of [21 with the following

differences:

1. Instead of sensitizing a path all the way to some PO we now sensitize a subpath

pI.,-

2. The list of nets for which forward implication has to be performed will initially

contain only the first net of the subpath being sensitized.

3. The list of nets for which backward implication has to be performed will initially

contain all the nets, except the first one, that lie on the subpath being sensitized.

(The last two differences need not be implemented if the dominator forest contains

information about node inversion.)

Once all the processors have successfully sensitized the subpaths (else an alternate

path needs to be chosen) and the A to A conversion (if necessary) is performed the

resulting deterministic test cubes are intersected to yield a new test cube. Two

important facts should be noted at this point. The ease with which the computation

of several processors is merged by a simple set intersection operation is due to the

completeness of the 15-valued logic system. Second, the resultant test cube is not

necessarily a deterministic test cube and must consequently be converted into one.

If an empty intersection results for any net value or the resulting test cube cannot

be converted into a deterministic one, then an alternate path must be chosen. In the

situation where we get an empty intersection at a net, it might be useful to investigate

how the values of this net in the different test cubes can be used in the selection of

an alternate path.
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Example 2. Once again we will use the circuit shown in Fig. Al of Appendix A

to illustrate the principles of the procedure outlined in this section. Let net 3 be the

fault site for which tests hzve to be generated. Assume that the chosen sensitization

path is through nets 3f, 15, 20, 23, 24, 25, 27, 30, 31, 36, 39, 42, 43 and 45. We

divide this into three subpaths as indicated below:

Path p,,: 3 f - 15 - 20 - 23 - 24

Path p,: 24 - 25 - 27 - 30 - 31 - 36

Path P13: 36 - 39 - 42 - 43 - 45

Note that this division is based on allotting the path between successive FOS nets to

each processor. The initial test cube and resultant deterministic test cubes yielded by

the three processors that propagate sensitization along the above subpaths are shown

below. Nets which have a value 0/1 or 0/1/A/A are not indicated in the cubes.

Furthermore nets whose value in the deterministic test cube is unchanged from that

in the initial test cube are not indicated in the former.

Processor 1

(tc1 )1 :

3f 15 20 23 24

A A AA A

(d(tc,)),:

1 2 4 5 12 13 14 16 17 18 19 21

0 0 0 0 0 0 A A 0 0 0 o/A

22 25 26 27 28 29 30 31 36

37 38 39 40 41 42 43 45

1/A I/A i/A I/A 0/I/A 0/A 0/A 1/A
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Processor2

(tc1 )2 :

24 25 27 30 31 36

A A AA A A

(d(tc,)),:

7 9 21 26 2S 32 33 37 38 39 40 41 42 43

0 0 0/A A 1/A 0 0 A A A 1/A 1/ 11/A 1/N

Processor 3

(tcI) 3 :

36 39 42 43 45

A A A 2 A

(d(tc,)) 3 :

4 10 17 18 29 34 35 37 38 40 41 44

0 1 0 0 1 1 1 A A 1 1/A 1

Since the value of net 24 is a in (d(tc,)), and A in (d(tc,)), we complement all

A and A values in the latter. For the same reason the A and A values of (d(tc,))3

also have to be complemented. We then intersect the three test cubes to obtain the

following one:

1 2 3f 4 5 7 9 10 12 13 14 15 16 17

0 0 A 0 0 0 0 1 0 0 A A A 0

18 19 20 21 22 23 24 25 26 27 2S 29 30 31

0 ol o oA AA 1/ 1

32 33 34 35 36 37 38 39 40 41 42 43 .14 45

0 0 1 1 A-A 2 A 1 I/A A A I A

S



Note that the above is not a deterministic test cube - converting it to one changes

the value of net 6 to 0. The resultant test cube does not have any variant nets and is

hence a test for both the stuck-at faults at net 3 can be obtained from it setting the

value of this net appropriately. 0

5 Identifying Independent Subcircuits During Enu-

meration Phase

In this section we discuss how we can use the dominator forest to identify "inde-

pendent" subcircuits whose value justification during the Enumeration Phase can be

done in parallel. TOPS [14] introduced the concept of "basis nodes" whereby a net

(say m) is defined to be a basis node if and only if all FOS nets that influence m

totally reconverge prior to it. Utilizing this property TOPS could postpone the value

justification of basis nodes until that of other nodes because they do not interfere

with the value justification of nets lying outside its cone of influence. Furthermore,

if the circuit does not contain any nets whose value is constant (i.e. independent

of the PIs) then the value justification of the basis nodes will not lead to contradic-

tions. Although the use of basis nodes is a generalization of the "headline" concept

introduced in FAN [10], it is still a static procedure and does not take into account

the constraints imposed by the values of the test cube generated at any stage of the

test generation. In [2] we introduced the concept of conditional headlines - nets

whose value justification could be postponed to the last stage of test generation be-

cause they are guaranteed not to cause any contradictions (see §A.6.2). The process

of identifying these conditional headlines utilizes both the circuit structure and the

values of all the nets in the associated deterministic test cube.

In [2] the discussion of conditional headlines was restricted to nets whose value

was either 0 or 1 (see §A.6.2). We now generalize this concept so that nets with any
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of the 15 values of our logic system could be investigated for a similar satisfiability

property. We will denote a variant net as a Satisfiable Variant Net (SVN) if its

value justification is guaranteed to succeed and thus can be postponed to the last

stage of test generation. In some cases it may be possible to identify nets which

are not necessarily SVNs but their value justification depends on a subset of the PIs

which do not influence the value justification of some other variant nets. In such a

situation the value justification of the two sets of nets in question are independent

and could thus be performed in parallel. Thus it would be useful to identify these nets

- henceforth denoted as Independent Variant Nets (IVNs) - so that their value

justification can proceed independently. Note that with every IVN there is associated

a subcircuit such that the value justification of the IVN is independent of all nets

outside this subcircuit. Hence it is important to identify this subcircuit along with

the IVN.

For the remainder of this section we will refer to net as being "single-valued" if

the cardinality of the set of values associated with this net, in the deterministic test

cube being considered, is unity. Similarly a net will be termed "multi-valued" if the

cardinality is greater than unity.

We now present procedures for the identification of SVNs and IVNs using the

dominator forest and the values of the circuit nets in the deterministic test cube with

respect to which the nets in question are variant.

(a) SVN Identification:

(i) Let rn, be the net under inspection. Consider the subtree T of the dominator

forest that has net m as its root.

(ii) From T delete all nodes that correspond to FOS nets and also those nodes

that are single-valued in the deterministic test cube being considered. Note that the

removal of a node implies the removal of the entire subtree which has this node as its

root. Let us denote the remaining subtree as T'.
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(iii) If all the leaves of T' correspond to PI nets then net m, is an SVN.

Note that T' corresponds to a subcircuit (not necessarily "proper") of the largest

fanout-free subnetwork that has net m as its output. Moreover the only inputs of

this subcircuit at which there is a choice of values are PIs of the overall circuit. Since

all values are with respect to a deterministic test cube, the required value at net m,

can be satisfied and this value justification proce's will involve assigning values to

only the multi-valued PI leaves of T' and will be independent of all nets that are not

in T'.

(b) IVN Identification:

As in the case of SVNs, in order to check whether a net is an IVN we start with

the subtree T of the dominator forest that has net m, as its root.

(i) For every node m of T which is single-valued in the deterministic test cube in

question, consider the subtree Tm. which has net m as its root.

(ii) If none of the FOB leaves of T,, are multi-valued then delete the subtree Tm.

from T. Otherwise, consider the FOS nets corresponding to the multi-valued FOB

leaves of Tm. If all these FOS nets are outside T then delete the subtree T,, from T.

After all possible deletions let the remaining subtree of T be denoted as T'.

(iii) If for every multi-valued FOB leaf of T', the corresponding FOS net also

belongs to T' then net m, is an IVN.

The value justification of net m,, can be performed by assigniiig values to the multi-

valued PI leaves of T' and is independent of all nets that are not in T'. However unlike

the situation for SVNs, this value justification process is not guaranteed to succeed.

It is important to note that net in,, need not be the only variant net in T'. In such a

situation the value justification of all the variant nets in T' are dependent - however

it is independent of all nets lying outside T'.

As an example of a situation where a net can be ascertained to be a IVN and yet

its value in a certain d(tcf(pi, k)) cannot be justified, consider the circuit of Fig. 2.
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The output of the XOR gate is a IVN with respect to a d(tcj(pi, k)) which has the

values shown in the figure. However, enumeration will show that this net can only

have the value 1 given the values present at the FOB nets shown. The important

thing to realize, however, is that even though the value justification of a IVN may

not succeed, the justification process is independent of the rest of the circuit.

To understand the procedure for the identification of IVNs note that node m is

a basis node if and only if all the FOS nets corresponding to the FOB leaves of T

are contained in T. In order to generalize the concept of basis nodes we can then

relax this condition to allow the single-valued FOB leaves of T to have their FOS

nets outside T. This is because the value of these nets will not be changed during the

value justification of net rn. and will not affect any nets outside T. To further weaken

the requirement of an IVN we can delete single-valued nodes from T provided the

value justification of net m, does not result in an incorrect value at the single-valued

node m that was deleted. The value justification of net m, can affect the value of

node m by changing the value of the FOB leaves of the tree T, which has node m

as its root. Inspection of the multi-valued FOB leaves of T, can result in one of the

following three situations:

(i) All the FOS nets corresponding to the multi-valued FOB leaves of T, belong

to T.

(ii) All the FOS nets corresponding to the multi-valued FOB leaves of Tm are

outside T.

(iii) There is at least one multi-valued FOB leaf of Tm whose FOS net is outside

T and at least one multi-valued FOB leaf of Tm whose FOS net is in T.

Situation (i) does not violate the requirement of a basis node but the FOB leaves

of Tm can be affected by the value justification of m, and hence Tm should not be

deleted from T. In situation (ii) the value justification of net m, will not affect the

value of net rn provided net m, is an IVN as per the procedure described earlier.

12



Hence T, can be deleted from T. We now explain why we cannot delete the subtree

Tm from T when we have situation (iii). Consider the sit~iation depicted in Fig. 3

where nets rn and rn2 are the FOB nets corresponding to the FOS net in12 and nets

M3 and n14 are the FOB nets corresponding to the FOS net M3 4 . Let n, be the variant

net being inspected and let mn be a single-valued node in its tree. Furthermore let nets

mn1 2 and Mn34 be multi-valued in the deterministic test cube being considered. Note

that the presence of mi and n3 would prevent us from deleting Tm from T. During

the value justification of net m , , net Mn1 2 might be set to a certain value which in

turn will assign this new value to nets mn1 and M 2. This new value of net mI might

impose certain conditions on the value of net M 3 in order that the required value of

net m be satisfied. Consequently this will affect the value of net m4 and hence value

justification of net n,, will no longer be independent of nets lying outside T.

The distinction between SVNs and IVNs is of more importance in a sequential

implementation of the test generation algorithm because then we can prioritize the

value justification of variant nets. In this strategy nets which are neither IVNs nor

SVNs will be justified before IVNs which in turn will be justified before SVNs. Thus if

any stage results in a contradiction then the subsequent stages need not be performed.

6 Algorithm Description

In this section we provide a detailed description of our proposed parallel ATPG algo-

rithm. However, we first discuss the various arrays and data structures that we will

be making use of in the actual description.

Backwardlist: List of nets for which backward implication needs to be done.

If the value of the output of a gate changes we add it to this

list so that the corresponding implication is performed.

13



Branch-List: For each FOS net this list contains contains the corresponding

FOB nets.

Decisiontree: Tree structure to keep track of the decision points that

have been tried in terms of the values assigned to the PIs.

Error: Indicates the existence of a contradiction in the test

generation process.

Fault-List: Initial list of target faults (i.e. generalized checkpoints).

Forwardlist: List of nets for which forward implication needs to be done.

If the value of any input net of a gate changes we add it to

this list so that the corresponding implication is performed.

Gate-Predecessor: Given a net., its gate-predecessor is the logic gate for which

this net is the output. Note that a FOB net does not have a

gate-predecessor.

ListIVN: List of Independent Variant Nets.

ListSVN: List of Satisfiable Variant Nets.

Maxnet: Number of nets in the circuit.

NoTestPossible: Boolean indicating a redundant fault.

Predecessor: Linked list containing predecessor nets of all nets. The inputs

to a gate are the predecessors of the output and a FOS net

i., the predecessor of all its FOB nets.
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Successor: Linked list containing successor nets of all nets. The output

of a gate is the successor of all its input nets and all the FOB

nets are the successors of the corresponding FOS net.

TC[., .. , Maxnet]: Test cubes to be used in the test generation process.

Entries belong to the 15 valued logic.

Vnets: List of Variant ncts

In the procedures described in the next few pages we have frequently used terms

like dominator forest, node in forest, root etc. which were defined in [2] and are

given in Appendix A. Moreover in aU the procedures, we have assumed that if a

called procedure changes an argument, it changes it for the caller routine also. In our

description we have used two kinds of parallelism that should be distinguished. The

construct:

parbegin

S1

S2

S3

parend

has the standard interpretation that statements S1, S2, and S3 can be executed

simultaneously or sequentially in any order. On the other hand, the construct used

most frequently in this report is:

In parallel for (loop control construct) do

begin

S1
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S2

S3

end

where the loops are executed simultaneously or sequentially in any order, but within

a given execution of the loop statements S1, S2, and S3 are executed sequentially.

We have also used another construct called Initiate which initiates a called pro-

cedure at the point it is invoked. For every Initiate call there is a corresponding

Wait for-completion where the main routine has to wait till the procedure called by

Initiate has to finish execution before the statements following the WaitJfor-cornpletion

can be executed.

Procedure DOMINATOR-FOREST

/* This procedure constructs the dominator forest which is then globally

accessed (read only) by other subroutines in MAIN */

beginl

In Parallel for all nets (n) of type PO do

TREE (in)

/* Procedure TREE (in) is performed for every primary output net m */

endl

Procedure TREE (mr)

/* This procedure constructs the tree in the forest which has net mr as its root */

beginl

Create a root node corresponding to net mr

Node-list o {mr}

/* Note that Node-list is local to each parallel processor *1
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For all nodes (in) in Node-list until Node-list = do

begin2

For all mp E Predecessor(m) do

begin3

Child(m) mp

if mP is of tyre FOB then

begin4

Mark mp as a FOB leaf

Remove mp from Branch-list of Predecessor(mr)

/* Note that Branch-list is a global variable and all

the parallel processors have read/write access to it */

if Branch-ist of Predecessor(mp) = 4 then

begin5

if all nets in Successors(Predecessor(m)) are in this tree then

begin6

Ma First common ancestor of Successor s(Predecessor(mP)

Child(ma) (- Predecessor(m,)

Mark Predecessor(mp) as a FOS node

if Predecessor(m,) is of type PI then mark it as PI leaf

else add Predecessor(rp) to Node-list

end6

else if Predecessor(mp) is of type PI then create a single-node

tree for it and mark it as both a PI and FOS node

else Initiatel {TREE (Predecessorr(m,))} on another processor

end5

end4

else
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begin7

if mp is of type PI then mark -rap as PI leaf

else add mp to Node-list

end7

end3

Remove m from the Nodeilist

end2

Wait-for-completion (Initiatel)

end 1

Procedure RESETJIC (TC)

begin 1

For: i i to Maxnet

TCf;] . o/i

end 1

Procedure 3VP

/* This procedure performs all the implications of a 0 and a 1 at FOS nets

and stores those whose contrapositive assertions may be useful later *

begini

RESET-TC (TCo)

TCi o- TCo

In Parallel for all nets (n) of type FOS do

begin2

Forwardlist I. n}

In Parallel for i =o and i. do



begin3

TCi[n] - i

FORWA RD (TCi, DTCi)

For j = i to Maxnet and j Z n do

begin4

if DTCi[jl = L: / o/. then

if (DTCi[j], G-fePedece.sor(j)) E (L,, G) Tab' then

/ The (L,, G) Table is Table A7 of the Appendix and

tells us whether this particular implication is worth storing.*/

Store (i at net n ==4 L2 at net j)

end4

end3

end2

end I

Procedure PDCF (n, TCxi)

/* Net n is the fa-lt site*/

beginl

Initialize Token for all nets to False

RESETTC (TC)

TFLAG[n]] +- True

Check!ist -- {n}

/* The following segment identifies all True token nets

and initializes their value to c/i/,A/a */

For all nets m E Checklist until Checklist = do

begi n2
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In Parallel for all m, E Successor(m) do

begin3

TFLAG[m,] i-True

Add m, to Checklist

TCi~rm3 l 4 k- //

end3

Remove m from Checklist

end2

TCiL[nf] +

Forwardlist Jnf Iff

Back wardlist 4 -

In Parallel for all md E Dominator s(n) do

begin4

TCi[mdl - / /* Setting the value of the domrinators of (n)*/

Add md to Forwardlist /* Initial list of nets for which forward and

backward implication has to be performed *

Add md to Backwardlist

end4

endi

Procedure FORWARD (TC,TC')

/* The calling routine provides TC, while FORWARD returns TC' to it ~

begin 1

TC' 1 TC

For all nets (in) in Forwardlist until

'Forwardlist ~)or (Error = True) do
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begin2

if m is not of type PO then

begin3

if m is of type FOS then

begin4

Modify TC' by assigning the value of m to all its FOBt nets

add all the FOB nets of m to Forwardlist

end4

else if m is the input of a logic gate then

begin5

In TC' forward imply value of net m through gate

if gate output = 0 then Error = True

else if gate output changes then add output net

to Forwardlist and Backwardlist

end5

end3

Remove m from Forwardlist

end2

if Error = True then TC' 4- TC

endl

Procedure BACKWARD (TC,TC')

/* The calling routine provides TC, while BACKWARD returns TC' to it */

beginl

TC' - TC

For all nets (m) in Backwardlist until
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(Backwardlist = €) or (Error = True) do

begin2

if m is not of type PI then

begin3

if m is of type FOB then

begin4

In TC' assign the value of m to all nets in

the set (Successors(Predecessor(m)) - {m})

add all the nets in this set to Forwardlist and Backwardlist

end4

else if m is the output of a logic gate then

begin5

In TC' backward imply value of net m through driving gate

if any input (mi) changes then

if value oC mi = € then Error = True

else

begin6

add mi to Forwardlist and Backwardlist

forward imply new input values and add m

to Vnets if appropriate

end6

Use 3VP implications to changc value of any other net (if

possible) and add them to Forwardlist and Backwardlist

end5

end3

Remove m from Backwardlist

end2
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Error = True then TC' - TC

endl

Procedure DETERMINIZE (TC, DTC)

/* The calling routine provides TC, while DETERMINIZE ieturns DTC to it */

beginl

Error +- False

Repeat

TC' - TC

FORWARD (TC', TC")

if Error = False then

BACKWARD (TC", TC')

if Error = False then

TC +- TC'

/* Repeated forward and backward implications are performed

until a deterministic test cube or a contradiction obtained */

until (Forwardlist = Backwardlist = €) or (Error = True)

if Error = False then DTC - TC

endl

Procedure PROPAGATE (TC, DTC)

/* This procedure divides the propagation path into subpaths and then computes

the deterministic test cube that considers all the propagation requirements of

the path. This routine is called by providing TC and the resulting cube

is returned as DTC */

beginl
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Use path heuristic to identify path pi and subpaths (Pi, pi2... ,Pik) to

be sensitized

/* Notation: First net on subpath pij is termed rnij */

Error - False

begin2

TC - TC

Use node inversion information from dominator forest to set the value

of nets on path pi to A or A or A/-A (as appropriate) in TCi

/* Note that mi, is set to A */

Forwardlist 4- fall nets on pij} - fmi(j+.)}

Backwardlist - {all nets on Pij)- {mij}

/* The Forwardlist and Backwardlist are initialized as above in

order to avoid the unnecessary duplication of computation that

is common to several processors */

DETERMINIZE (TCij, DTCij)

end2

if Error = True then

begin3

/* Sensitizing path pi does not yield test */

If alternate path available then PROPAGATE (TC, DTC)

else NoTestJPossible -- True

end3

else

begin4

TC4 n =_ DTCQj

Set up Forwardlist and Backwardlist using result of above step
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DETERMINIZE (TC, DTC)

end4

endl

Procedure kOBLEAVES (r,.)

beginl

List - €

From Dominator forest find leaves of subtree that has m as root

If leaf is of type FOB then add it to List

return List

end1

Procedure PRIORITIZEVNETS (DTC)

begin1

In Parallel for all nets (me) in Vnets do

begin2

Consider the subtree T of the dominator forest that hl m, as root

In T follow multi-valued paths from every child of m,, towards the

leaves such that no path passes through FOS nets

if all paths end at leaves of type PI then add m to ListSVN,

delete m, from Vnets and add these PI leaves to Choicelist(m,)

/* ListSVN contains all the Satisfiable Variant Nets

Choicelist(m,) contains all the PI nets to be used in the

value justification of a net m, which is either a SVN or an IVN *1

else

begin3
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Checklist {All nodes that are children of m, in dominator forest}

For all m E Checklist until Checklist = 4 do

begin4

if m is single-valued then

begin5

add all children of m to Checklist

remove m from Checklist

end5

else

begin6

Listi FOB-LEAVES (m)

In-Stem -- False

Out-Stem -- False

Abort 4 False

/* In-Stem and Out-Stem keep track of whether any net

in Listi has its FOS net inside or outside T */

For all mb in Listi until (Listi 4') or (Abort = True) do

begin7

if m, E Dominator(Predecessoro(mb)) then

In-Stem +- True

if m, 0 Dominator(Predecessor(mb)) then

Out-Stem +- True

if In-Stem = Out-Stem = True then Abort i- True

else remove mb from Listi

end7

if In-Stem = False and Out-Stem = True then add m

to Delete-Nodes
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end6

end4

if Abort = False then

begin8

From T construct another tree T' by deleting all the

nodes (and their stibtrees) that belong to Delete-.Nodes

List 2 J- AIl the multi-valued FOB leaves of T'}

IVN ~-True

For all mi in List2 until (List2 = q5) or (IVN = False) do

begin9

if Predecessor(m,) belongs to tree T' then remove mi from List 2

else IVN +-False

end9

if IVN = True then add m,, to List J'VN, delete m,, from Vnets

and add all multi-valued PI leaves of T' to Choicelist(m,)

/* List J'VN contains all the Independent Variant Nets *

else Choicelist(m,) 4)

end8

else Choicelist(m,,)4-)

end3

end2

endi

Procedure ENUMERATION (DTC)

begini

TC +-- DTC
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For all nets (m,,) in Vnets until (Vnets 'k or (Decisiontree =k)do

repeat

begin2

Use controllability measures to identify a candidate PI (i) from m,

Forwardlist +- {m}

TC[m,] *- Value

1* Assign a value to a PI for value justification of in, *
FORWARD (TC, TC')

Store PI and Value in Decisiontree

TC ~-TC'

end2

until (objective at mn2 , met) or (Decisiontree q5

if Decisiontree = then

begin3

NoJ'e stPossible

Exit ENUMERATION

end3

else

begin4

Backwardlist 4

In Parallel (indexed by i) for all nets (mi,.,) in List JVN do

begin5

repeat

Use controllability measures to choose a net (mn) from Choicelist(mi,,)

Forwardlist 4-- { ml

TC2 [in] +- Value

FORWARD (TC,TC:)
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if m is a PI then store PI and Value in Decisiontree

TCi +- TC'

Remove mn from Choicelist(mi,,)

if m is a FOS net then add m to BackwardList

until (Choicelist(mi,) 4) or (Decisiontree =4)or (objective at mit, met

end5

if (Choicelist(mi,) , ) or (Decisiontree =4)then

begin6

No-.Te st 'os sibi e

Exit ENUMERATION

end6

else

begin7

TC i- Y, TC,

DETERMINIZE (TC, DTC)

if Vnets ~ )then
begin8

ENUMERATION (DTC)

TC i-DTC

end8

In Parallel (indexed by i) for all nets (m3 ,n) in List-SVN do

begin9

repeat

Use controllability measures to choose a PI from Choi celi st (m,,n)

Forwardlist 4- PI

TCi[PIJ 1- Value

FORWARD (TC, ,TC')
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TC i- TC1

Store PI and Value in Decisiontree

until objective at m,, met

end9

TC -- 1 TC,

DETERMINIZE (TC, DTC)

end7

end4

end

Procedure MAIN

beginl

READ-DATA

Construct Fault-List, Predecessor, Successor

parbegin2

DOMINATOR-FOREST

3VP

parend2

For all n in Fault-List until Fault-List = € do

begin3

if n drives gate G such that any other input(s) of G are in Fault-List then

begin4

Remove these input nets from Fault-List and add them to Faultset

/* Faultset contains the different checkpoints to be tcsted */

PDCF (mg, TC) /* mg is the output of G */

end4
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else PDCF (n, TC) /* In this case Faultset =

Remove n from Fault-List

PROPAGATE (TC, DTC)

if NoTestLPossible = False then

begin5

PRIORITIZEVNETS (DTC)

Using Faultset and G create list L, of ordered pairs (net me, value 1,)

corresponding to all checkpoint faults that can be enumerated in parallel

/* If Faultset = 4 then L, = {(n,0), (n,1)} */

In Parallel for all (m,, 1,) E L, do

begin6

TC -- DTC

TC[me] +- 1C

DETERMINIZE (TC, DTC')

ENUMERATE (DTC')

if NoTestPossible = False then return (DTC', Test)

else ADDITIONAL-FAULTS (m, 1)

/* If any of the generalized checkpoint faults are determined to be redundant

then the above step will determine the additional faults to be tested */

end6

end5

else

begin7

ADDITIONALFAULTS(mpdf, o)

ADDITIONALFAULTS(mpdcf, i)

/* Net mpd]f is the net used in the construction

of the PDCF i.e. either net n or net mg
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end7

end3

end 1
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7 Conclusion

In this report we have presented some new techniques for efficiently parallelizing

the 15-Valued Test Pattern Generation algcrithm introduced in [2]. This was ac-

complished by dividing the path to be sensitized into several subpaths and using a

separate processor to perform the sensitization of each subpath. This is possible be-

cause of the stre~Zth of the 15-valued logic system used. To make the algorithm even

more efficient we overlap the testing of sex e:al c',eckpoints and introduce the concept

of fault-site testing where the propagation phase for testing both the stuck-at faults

at any net is executed simultaneously. Wc have also presented a procedure to identify

"independent" subcircuits whose value justification during the Enumeration Phase

can be performed independently. It is important to note that in each ot the paral-

lelization techniques proposed the communication cvczhead is low because it involves

only the i~itersection of test cubes whose entries are elements of the logic system ised.

The analysis of the different ideas introduced in this report suggest that an impic-

mentation in an MIMD environment can prove to be a significant improvement in the

area of testing.
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Appendix

A A 15-Valued Algorithm for Test Pattern Gen-

eration

A.1 Introduction

In this appendix we present an ATPG algorithm, for detecting single stuck-at-faults in

combinational circuits that contain NOT, AND, NAND, OR, NOR, XOR and XNOR

gates. This algorithm is based on a 15-valued logic system and introduces some novel

approaches to make test pattern generation more efficient.

Test generation involves considering the value of a net in the good and the faulty

circuit. This can be done by representing the value of a net as an ordered pair (b., bf)

where bg(bf) is the value of the net in the good (faulty) circuit [15]. Thus the value

of a net can be one of the elements of the set U = {(0, 0), (0,1), (1,0), (1, 1)). In the

process of generating tests it might not be possible to uniquely specify the value cf a

net as one of the elements of U. However, we may already know that a net cannot

assume one or more of these values. We incorporate this information by defining the

value of a net as one of the 15 nonempty subsets of U. We denote these 15 sets

as 0, 1, D,-B, 0/1, OlD, lID, O/B, 11-B, DID, 0/l/D, 0/1/, OIDI-, 1lDI,

and 01DID where 0 = {(0,0)}, 1 = {(1,1)}, D = {(1,0)}, T= {(0,1)} and "/"

denotes set union. Note that U =O/I/D/B. These 15 values are equivalent to the

elements of the logic system developed by Akers [3] to provide a tool for test gen-

eration. Tables Al, A2 and A3 represent the AND, NOT, and XOR functions in

our 15-valued system for the values 0, 1, D, and B. The complete table for all 15

values can b- easily constructed from the given tables by using the set union oper-

ation. The tables for all other logic functions can be obtained from these three tables.
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A_ _I XOR LdJLQIAI
0 0 0 0 0 V a abe T011 0 0 1 D 0
11 01 1 D 1 -5 Vaibl110 D1 0 -5 D

-Complement q1 0 D D-
D 0 D D 0 D D D 0 1

D 1 0 o.15 D I DI

Table Al. AND table Table A2. NOT table Table Ai. XOR

table

Using this notation we will define a sensitized net as one whose value is either D,

or DI-D. Furthermore, if all the nets along a path in the circuit are sensitized,

then the path is said to be sensitized. As will be seen later on, this 15-valued system

exploits the linearity of XOR/XNOR gates during test generation. It also allows us

to characterize all restrictions that are imposed by a fault and the particular circuit

path chosen in order to propagate its effect.

There are three distinct phases in the algorithm presented here:

(i) Pre-processing phase (§A.2). In this phase we construct a set of trees based

on the interdependence of circuit nets. Among other things this forest will be used

to easily identify which circuit nets must be sensitized to derive a test.

(ii) Propagation phase (§A.3). In this phase we deliberately sensitize a single

path from the fault site to a PO and find all the resulting deterministic forward and

backward implications. In the process other paths may get sensitized. Path selection

is the only choice made in this phase--implications are based on all the constraints

that must be satisfied in order to sensitize the chosen path. This is possible because

of the completeness of the 15-valued system and the use of deterministic implication

rules.

(iii) Enumeration phase (§A.4). In general, the test cube constructed by the

Propagation Phase will not yield a test--particularly because no arbitrary choices

were made. Thus there may be gates whose input net values contain combinations
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capable of desensitizing the chosen path. In this phase we use an enumeration pro-

cedure to choose values for the PIs so that such combinations can never occur.

To illustrate the above phases of our algorithm we will consider the fault net 3

s - a - C h1 thc circuit of Fig. Al.

In order to make the last two phases more efficient we have developed some speed-

up techniques (§A.6). One is the extension of the contrapositive procedure presented

in SOCRATES [18] for backward implying 0 and 1 values. However, our procedure

not only generates the contrapositive assertions for all 15 values of our system, but

also requires less computation and storage than SOCRATES. We will also present

a procedure that not only takes into account the circuit structure but also the con-

straints imposed by the values of a test cube in order to identify nets whose value

justification can be postponed until the end. Furthermore, we will show how backward

implication of the values that desensitize the chosen path can help in the selection of

PI values during the Enumeration Phase.

A.2 Pre-processing Phase

A.2.1 Construction of Dominator Forest

The importance of identifying nets that must be sensitized for a fault to be detected

was first highlighted by Akers [3] and later by Fujiwara and Shimono [10]. As pointed

out in TOPS [14], the concept of graph dominators [19] can be used to identify the

nets which must be sensitized to detect a fault. In the context of test generation we

term the set of dominators of a net m as the set of all nets in the circuit which lie

on every path from net m to any PO. By definition, net m is a dominator of itself:

however, for ease of notation we define D(m) as the set of all dominators of m except

m itself. To account for multiple output circuits the concept of dominator tree can

be extended to that of a forest. We present here a procedure to construct this forest

for a given circuit. This forest will not only be used to compute the dominators for a
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particular fault site; but also for the sensitization of subpaths, selection of PIs in the

enumeration phase and generation of the initial list of target faults.

We construct a set of trees such that every net of the circuit corresponds to a

node in one of the trees in the forest. We start by creating as many trees as there are

POs such that each PO corresponds to a root of a tree. However, new trees may be

created during the procedure. Thereafter, each node which has no- been marked as

a leaf is inspected and the tree construction is continued as follows:

(i) If the node mi being considered corresponds to the output net of a logic gate Gi

in the circuit, then every input net of Gi becomes a child of this node mi. Furthermore,

if the input net is a PI it is marked as a PI leaf. If the input net is a FOB, then it is

marked as a FOB leaf.

(ii) If the node mi being inspected is a fanout stem (FOS), then wait until all the

FOBs corresponding to this FOS have been marked as FOB leaves. Then find the

immediate ancestor of all these FOB leaves. If such an ancestor exists, then make mi

a child of this ancestor node. If it does not, then start a new tree with mi as a root.

In either case, mark mi as an FOS node-if it is also a PI, then it must be marked

as a PI leaf also.

The above procedure is continued until every net of the circuit becomes a node in

some tree of the forest.

Note that the leaves of the trees in this forest correspond to the checkpoiats, i.e..

the PIs and the FOBs. Thus our initial list of target faults consists of all leaves of the

trees of the dominator forest and the output of all XOR/XNOR gates [4]. However,

in case any of these target faults are undetectable additional target faults must be

considered [1, 9].

The root of any tree in the constructed forest is either a PO or a FOS. If any tree

has a single node, then this node must correspond to a PI which is also a FOS. The

set D(m) contains all the nodes encountered when traversing the tree (in which m is
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a node) from m to the root.

The "basis nodes," as defined in TOPS [14], can also be identified easily from

the dominator forest. However, keeping in mind that a node cannot be a basis node

unless all FOS nets that influence it have c..mnpletely reconverged prior to it, we adopt

a simpler approach of identifying which nodes are NOT basis nodes. Thus, instead

of inspecting each node to verify whether it is a basis node or not, we pick one FOS

net at a time to generate the set of nodes which are NOT basis nodes. Let there be

k FOS nets denoted by mi, Z = 1, 2,..., k. Furthermore, let the FOS net ni have ni

FOB nets denoted by inilrn, 2 ,... , rnin. It can be shown [2] that the set of nodes

which are NOT basis nodes is given by

U [ [D(mij) U {mij}] - D(mi)].
i=1

Consequently, all nodes not belonging to the above set are basis nodes.

The dominator forest for the circuit in Fig. Al is shown in Fig. A2. Note that

the only basis nodes for this circuit are the PIs.

A.2.2 Selection of pdcf

The selection of the primitive D-cube of the failure (pdcf) in DALG (17] may involve

arbitrary choices which can result in mistaken decisions causing costly backtracking.

We avoid this problem by introducing a fictitious gate Gf at the site of the fault. If

the fault is at net n we introduce Gf between net n and a newly created net nf as

shown in Fig. A3. We now connect nj to all nets which were previously connected

to n. Accordingly, the unique pdcf depends only on the kind of stuck-at fault.

n nfl

n s-a-O 1 D

n s-a-i 0 D

Thus in our example we will modify Fig. Al to include the gate shown in Fig.

A4.
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A.2.3 Token Assignment

The goal of this stage is to identify which circuit nets can or cannot be affected by

the fault. In order to convey this information we associate with every net a Boolean

token. This token will be TRUE if and only if there exists a path from nf to any PO

which passes through this net. These tokens can be computed by a single forward pass

through the circuit. Table A4 shows the Boolean token tssignnient for our example.

Nets with 3f, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27,

TRUE Token 28, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45

Nets with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18,

FALSE Token 29, 32, 33, 34, 35, 44

Table A4. Token assignment for net 3 s - a - 0 in Fig. Al

A.3 Propagation Phase

In this phase we will sensitize a single path from net n1 to a PO, however, other paths

may also get -ensitized. In a manner nwalogous to DALG [17] we will use test cubes

whose entries reflect the current values of all nets during any stage of test generation.

The entries of any test cube, tCk, are elements of our 15-valued system.

We initialize this phase by constructing tc, in the following manner:

1. Set nets n and nf to the values specified by the pdcf.

2. Assign DID to all nets belonging to the set D(n).

3. Set all nets with FALSE tokens, except net n, to 0/1.

4. Assign 0/1/DID to all unassigned nets of the test cube.

In our example D(3) = {31,36,45}, and the resulting tc, is given below where

only nets Whose entries are different from 0/1 and 0/1/D/-D are shown.
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3 3f 31 36 45

1 D DID D/D DID

For each test cube tCk generated at any stage of our algorithm we find its corre-

sponding "deterministic" test cube, d(tck). We define a d(tck) as one in which no

entry can be changed without making some arbitrary choice(s) in one or more net

values. That is, all unique implications of the net values must be considered. Rules

for forward and backward implication procedures to be used in constructing d(tck)

from tck are given in §A.5. If in any d(tcj) we have a sensitized path pi from the

fault site to any PO, then the Enumeration Phase is invoked. This test cube, d(tcj),

is denoted as T(pi). The d(tc,) for our example is shown below. Only the entries for

nets whose values are different from those in tc, are hsted. In fact, for each cube that

we construct only the entries whose values are different from those in the preceding

one will be explicitly shown.

9 14 15 16 19 20 21 22 23 30

0 D D D O/D O/D O/D 0/1/D 0/1/D 0/D/-

32 33 37 38 39 40 41 42 43

0 0 DID D/-D D/D 1/D/- 1/D/- 11D/-D 1/D/-

If d(tc,) cannot be constructed because contradictions were encountered, then

there exists no test for the fault. Otherwise we have a sensitized path from nf to all

the FOB nets corresponding to the first FOS node (could be n itself!) encountered in

traversing the appropriate tree of the dominator forest from n to the root. If there is

no FOS encountered, then we have a sensitized path from nf to the PO corresponding

to the root of the tree. In our example, since net 3 is an FOS we have sensitized paths

only until its FOB nets, i.e., 14, 15, and 16.

At this point we have to select one of the FOB nets, say ml, to extend the

sensitized path. To obtain tc, we should sensitize all nets belonging to the set D(ml)-

D(n) by intersecting their values in d(tc,) with DID. If any empty intersection
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results, then the sensitized path cannot be extended through m, and alternate paths

should be investigated. Note that this step is implicitly perforning the equivalent

of the X-path check [12] while setting up which gate outputs should be sensitized.

As stated earlier, we would then construct d(tc,). If contradictions occur while

constructing d(tc2 ), then an alternate path must be selected. Otherwise we have a

sensitized path from nf to at least the FOB nets corresponding to the next FOS net

or some PO. Assume that we extend the sensitized path in our example through net

16. We use D(16) - D(3) = {21} so that net 21 has the value D in tc.. In the

resulting d(tc,) shown below we have sensitized paths till the FOB nets 37, 38 and

39.

6 30 31 36 37 38 39 40 41 42 43

10/D D D D D D 11D 1-D 1/-D 1/-D

The process of extending the sensitized path by selecting a FOB net, constructing

a tck and its corresponding d(tck) is continued until we reach some PO and have

constructed T1 (pi). If contradictions occur, then alternate paths should be investi-

gated. If all possible paths give contradiction, then no test exists. Note that all

possible single paths need not be explicitly investigated to arrive at this conclusion.

Proceeding with our example, let us extend the sensitized path through net 39. Since

D(39) - D(36) = {42,43}, the tc 3 shown below results.

42 43

D D5

However, the attempt to construct d(tc3 ) fails as shown below.

Steps in d(tc3 ) construction:

40 35 10 34(i) T- - 1

29 4 17 18 20 23 24(ii- --- oo ---

1 0 0 0D1 1D
25 26 27 2S 30

1,' 1- / 1 (l/D) f(O/D)- (Contradiction)
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Thus we go back to d(tc,) and choose another path-say through net 37. The

resulting tC4 sets the value of net 40 to D and the d(tC4 ) constructed from it is shown

below:

4 10 11 17 18 20 23 24 25

1 0 0 1 1 0 0/1 0//D 0/l/D

26 27 2S 29 34 35 41 42 43 45

01D 01D 0llD 0 0 0 1 1 1 D

We now have a sensitized path (say p,) from 3f to a PO, and thus d(tc4) is Tf(p,).

Note that T(pi) represents all the constraints that must be imposed to sensitize

path pi. Since the backward implication rule does not make any arbitrary choices,

there may be gates where the output value is a proper subset of the value implied

by the input values, i.e., the input values include combination(s) that will desensitize

path pi. We define the output nets of such gates as variant nets. If a net is not

variant it is defined to be invariant. In our example the only variant net w.r.t.

Tf(p,) is net 30.

If there are no variant nets in Tj(pi), then we have already obtained a test for the

fault. Otherwise the Enumeration Phase must be invoked to determine a test.

A.4 Enumeration Phase

The goal of this phase is to obtain a test by specifying the unassigned PIs in T (pj)

such that all nets are invariant and have values that are subsets of their corresponding

values in Tj(pi).

We choose an unspecified PI I,, in Tf(p,) and assign a logic value (0 or 1) to

it, thereby creating a new test cube which we denote by tcj(pi, i). Now we find

its corresponding deterministic test cube d(tc1 (pi, 1)) and update its list of variant

nets (note that new variant nets may be created). However if d(tc1 (p, i)) cannot be

obtained due to some contradiction, then we complement the entry for I,, in tc1 (pi, i)
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and construct its corresponding d(tc1 (pi, i)). If this also leads to a contradiction,

then there exists no test corresponding to T(pi). If we are successful in constructing

d(tcf(p,, i)) we now assign a logic value to some other unspecified PI l",, thereby

creating tcf(pi, 2). As before we must construct d(tc (pi, 2)) and update its list

of variant nets. This procedure is continued and we traverse the decision tree, in a

manner analogous to PODEM '12], until one of the following two conditions occur:

" The list of variant nets corresponding to some d(tcf(pi,j)) becomes empty.

This indicates the values of the PIs in d(tcf(pij)) represent test(s) for the

fault.

" The decision tree is exhausted, i.e. no test exists.

For sake of completeness we denote T1 (pi) as d(tc1 (pi, o)).

We now continue with our example for the fault net 3 s - a - 0 in the circuit of Fig.

Al. As stated earlier, net 30 is the only variant net w.r.t. Tj(p). By inspecti-g the

dominator forest we notice that nets 7 and 8 are the PIs which are "closest" to net

30. We thus start by setting net 7 to 0--however, this does not change the value of

any other net. We continue by setting net 8 to 0-once again no new changes result.

We now use the dominator forest to reach the FOS net 24 and thus determine that

nets 2 and 5 are the next "closest" PIs. We could, for example, set net 2 to 0-the

only resulting change is a OD at net 22. Net 30 is still the only variant net, so we

now set net 5 to 0. This changes the value of net 23 to 0 and that of nets 24, 25, 26,

27, and 28 to 01D. Also, all nets are verified to be invariant, thus a test has been

generated.

The algorithm described so far can be substantially improved by the introduction

of several speed-up techniques which we discuss in §A.6.
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A.5 Construction of Deterministic Test Cubes

In a d(tck) all deterministic implications (no arbitrary choice) of all entries of the

test cube tck are fully considered. To construct d(tc,) from tc we perform backward

and forward implications of all nets whose values in tc, are different from 0/1 and

0/1/D/-D and all other nets whose values change during this implication process. In

the general case, when we are constructing d(tCk) from tCk, we start by considering the

forward and backward implications of the nets whose values in tCk are different from

those in the last successfully constructed deterministic test cube and that of all other

nets whose values change during this implication process. During the construction of

d(tck) from tCk, if a backward or forward implication request results in a new value

L. for any net mj of the circuit, then we should update the corresponding net entry
I.

Lj by setting it to Lj fl L'. If this intersection yields the empty set then d(tck) cannot

be constructed.

In order to obtain d(tCk) the process of forward and backward implications should

be continued until no more changes occur in the values associated with any net. Note

that this process will terminate in a finite number of steps because we are performing

set intersection on finite sets.

The rules for constructing deterministic test cubes must include the provision for

appropriately handling the values of nets associated with fanout points and should

also take into account the information provided by the token vectors.

A.5.1 Forward Implication

The process of forward implications of the values associated with every net is clone

with the help of Tables Al, A2 and A3. These tables are a genera~ization of the

truth tables of the respective gates. For gates with more than two inputs the method

adopted is similar to that used by Akers [3]. We view every gate as being constructed

out of 2 input gates and use the existing values at the inputs of a gate to generate a
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new value for the output. Depending on the gate in question, appropriate tables are

used.

Suppose we are performing forward implications due to change(s) in input(s) of a

gate G whose output is net m. Let Lo be the set of values associated with net m in

the test cube prior to forward implication being performed. Also let LN be the value

obtained at net m by using the new values of the inputs of G. Net m will then be set

to Lo n LN unless Lo n LN = 0 which implies a contradiction. Four other situations

are possible:

1. Lo = LN. No further action is needed for this forward implication.

2. LN C Lo (proper subset). We now have to consider the forward implication of

the value of LN at net rn on all gates driven by G.

3. Lo C LN. We now have to perform a backward implication of the value Lo at

net m. This may result in further changes in the inputs of gate G.

4. Lo 5 LN and LN g Lo. Both forward and backward implications should be

performed.

A.5.2 Backward Implication

The process of backward implication involves determining the changes required at

the inputs of a gate in order to satisfy a requested change at the output. A change

in the value of a net will mean that one or more possible values associated with the

net has been deleted. In that sense an input change can be made only if the deleted

value can never be used with the existing values at the other inputs to generate an-

of the requested output value(s).

The backward implications rules for a two-input AND gate is shown in Table A5.

Note that the element 0 has been included in this table to detect an unsatisfiable

backward implication request.
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* 1 D D

o Ol1/D D 0 0 0

1 0 1 D -D

D 01D 01/D O

-D O1D 0 0 ll-

* Requested Output

• Existing value at one input

Table A5. Backward implication for a 2-input AND gate

The complete table for all 15 values is obtained by the set unioa opera'ion. The

resulting table is equivalent to that proposed by Akers [3]. To perform backward

implication for a two-input AND gate we reference the table using the requested value

at the output and the existing value at one input to generate the value of the other

input. Since the XOR gate is linear, Table A3 can be used for backward implication

also. Thus Tables A2, A3 and A5 can be used to perform backward implication for

any two-input gate. Irrespective of the gate in question, the valuc generated by the

appropriate table must be intersected with the existing value of the input to generate

the new value of the input. Analogously, the new value of the input and the requested

value of the output must now be used to generate the new value of the other input.

As before, any gate with more than two inputs will be represented as a cascade

of two-input gates. Consider an n-input gate G represented as a cascade of (n - 1)

tw- input gates G,, G2,.. ., _2 and G,,-, with net numbers as shown in Fig. A5.

Assume that the values at nets 1,2,... ,n are X,1X ...,.,, respectively. \Ve first
use forward implication of these values to compute Y1, I 2,..., Y' -2, the values of nets

n+ 1,n+2,... ,n+(n-2) respectively. Then using the value Z, which is the rcquired

value at the output of gate G, we apply the backward implication rules for gate G,_1
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to obtain Zn_2 and X', the new vrlues of nets n + (n - 2) and n respectively. Having

done that, we proceed backwards and apply the backward implicati)n rules for all

the gates, one at a time, ending with gate G1 .

It has been shown in [2] that the above procedure will stabilize in a single pass,

unlike the approach followed in [3] which r "y require several passes.

A.6 Speed-up Techniques

A.6.1 Use of th Contrapositive

The use of the contrapositive to reduce the search space wi s first suggested Ly Schulz,

et al., in SOCRATES [16]. llowver, the procedure presented in SOCRATES can only

be used to backward imply the value (, or 1.

In our 15-valued system, assume that the forward :mplication of a value L1 at net

rn with 0/1/DID at all other nets yields the value L2 at net m2. Thus when we

require a vaiue L C((O/1/D/D)-L 2 ) at net n 2, then the value of net rn1 cannot

contain any element of 11. tlowcver, in some cases the backward implication may

yield the same information. Hence it is useful to identify the conditions under which

a backward implication cannot yield the information provided by a contrapositive as-

sertion. In such cases we may store this information for possible future use. To obtain

the implications for all possible values of L1 we only need to perform implications for

each individual element of 0/l/D/,. Thus the procedure to obtain the implications

for the 15-valued system, henceforth referred to as 15-VP, would be to set the value

of net ra1 to each of the values 0, 1, D and D, one at a time and with 0/1/DID

at ali other nets, and observe the implied value at net rn2 -. It can be shown that the

information yielded by 15-VP can be obtaied from a simpler procedure that utilizes
a .- valued (0, 1. 0/1) logic system [2]. In this procedure, which we denote as .- VP,

we set the value of net rn to each of the values 0 and 1, one at a time and with 0/1

at all other nets, arid ,Iserve t1 1 i i)'ijed value at net '7 1. Table A6 shows how the
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information yielded by 15-VP can be obtained by the results of 3-VP.

Value applied Implied value at net M2
at net rm, (i) (ii) (iii) (iv) (V) (vi) (vii) (viii) (ix)

3-VP 0 0/1 0 1 .0 1 0 1 0/1 0/1

1 0/1 0 1 1 0 0/1 0/1 0 1

15-VP 0 0// ID 0 1 0 1 0 1 0/1/DI-5 0/1/DID

I 01I/DI-D 0 1 1 0 O/i/D/D 0/I/DiD 0 1

D 0I/-DI 0 1 D D OD 1/-D 0/5 1/D

T 0/ID/-D 0 1 -' D /0-D lID OlD I/D

Table A6. Relationship between 3-VP and 15-VP

We now present a procedure which, wvhen incorporated into the pre-processing

phase, can derive all the contrapositive assertions for our 15-valued system. For ease

of explanation we define the values 0 and 1 as "singleton" values.

1. Construct two test cubes tcoo and tc, in which the values of all nets of the

circuit are set to 0/1.

2. In tcoo (tc,) change the value of net nl, where n, is a FOS net, to the singleton

value L1(L1 ) and perform a forward implication of this value.

Let L2 (L 3 ) be the implied value at the output net m 2 of gate G.

3. If both L2 and L 3 are singleton values, then both these implications (Li at

m ==* L 2 at n 2 and T, at mi =€ L 3 at in 2 ) need to be stored.

4. If only one of the values (say L 2) is singleton and this value L2 and the gate G

happen to be one of the combinations listed in Table A7, then this implication

(L1 at m == L 2 at rn2 ) should be stored.

5. Repeat steps 1-4 for all FOS nets.
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L2  G

0 OR NAND XOR XNOR

I NOR AND XOR XNOR

Table A7. (L 2 , G) combinations that yield useful contrapositive assertions

The "learning procedure" presented in SOCRATES [18] performs the 0 and 1

implications for all nets of the circuit while we need to do this for only FOS nets.

It is easy to show that the information for all other nets can be derived from this

because of the deterministic nature of our backward implication procedure [2]. Hence

our procedure generates the contrapositive assertions in the 15-valued system and yet

requires less computation and storage than the method proposed in [18].

Note the contrapositive assertions in the 15-valued system corresponding to the

implications stored by the above procedure can be generated using Table A6. It has

been shown in [2] that if any implication was not stored by the above procedure,

then either its corresponding contrapositive assertions yield no information or the

information yielded can be derived by using the stored contrapositive assertions and

the backward implication rules.

A.6.2 Conditional Headlines

TOPS [14] extended the concept of headlines introduced in FAN [10] by using circuit

topology to identify more nodes whose value justification could be postponed until the

last stage of test generation. However, none of these schemes take advantage of the

additional restrictions imposed by a particular fault. These restrictions might identify

a potentially larger set of circuit nets whose value justification may be postponed.

Let the output net mr of a gate G be a variant net with a singleton value in

Tf(p,). Consider the tree T which is a subgraph of the dominator forest and whose

root is net ml. Furthermore consider the subtree T of T which does not contain any

of the subtrees of T whose roots ink, Mk - inl, correspond to FOS nets. Note that T1

corresponds to the largest fanout-free subcircuit whose output is net m, and whose
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inputs are FOBs and/or PIs. Net ml is defined to be a conditional headline if and

only if all the nets corresponding to the FOB nodes in T have singleton values in

Tj (Pi)

We now show that if net ml is a conditional headline, then it can be set to either

of the singleton values 0 or 1, subject to the condition that the values of all the FOB

nodes in T1 can be satisfied. Note that if nil is a conditional headline, then T satisfies

the following properties:

(i) The values in T1 (p,) of the nodes in Ti can only be 0, 1, or 0/1. This is

because if the value of any node includes either D or D, then this must be due to a

fault at node m, which belongs to T since all FOB nodes have singleton values. But

mi E D(ml), and hence ml would have a sensitized value.

(ii) At least one leaf of T is a PI net whose value in T1 (p,) is 0/1 because m is

a variant net with a singleton value in Tf(pi).

Consider a node m in T which has a singleton value and whose parent node has

the value 0/1 in T1 (pi). Note that the value of mj is a non-controlling input value

for the gate it drives since T1 (pi) is a deterministic test cube. If we delete from T all

the subtrees which have any such mj as a root, then the remaining tree corresponds

to a fanout-free circuit whose output is net ml and whose inputs have the value 0/1

in T1 (pi). Thus any required singleton value of net ml can be satisfied by specifying

the unassigned PIs in T1 subject to the condition that the values of the FOB nets in

T, can be satisfied. Note that this assignment does not interfere with the requirement

of other variant nets since ml is a dominator for all these PIs.

A.6.3 Backward Implication of the Desensitizing Values

In this section we discuss how backweard implication of the desensitizing value from

variant nets may help speed-up the enumeration process. Consider the output net "71

of a gate G, which is variant w.r.t. T1 (p,) and has the value L1 . Let L' be the value
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implied at net m by the values in T 1 (pi) of the inputs of G 1. We construct a new

test cube T'(pi) which is identical to Tf(pi) except that net mi has the value L' - L 1.

Note that the value L' - L, at net mi desensitizes path pi. Using TI(p) we backward

imply the value L' - L1 at net m, by applying only the backward implication rules

and the stored contrapositive assertions and observe the nets whose values change

in the process. Let 7i, 2 < j < J, be the nets where this backward implication

terminates. Note that rnQ is either a PI or the output of a gate whose input values do

not change during this process. Also, let L',2 < j < J, be the new value obtained at

net mj by the above procedure.

Since the value L' - L1 at net m, implies that the value of net mj is L', we know

from the contrapositive principle that, for any j, 2 < j < J, if the value of net m

does not contain any of the values in the set L', then the value at net m 1 will not

contain any of the values in the set L' - L1 and hence m will become an invariant net

w.r.t. Tf(pi). A sufficient condition to make m, an invariant net without interfering

with the requirements of other variant nets is that there exists some mj such that

rn, E D(mj) and inj is a basis node. If rni is not a basis node but is a conditional

headline w.r.t. Tf(pi), then net in1 can still be made invariant by removing the value

L' from net inj, provided the conditions that make net mj a conditional headline are

satisfied.

A.7 Examples

Example Al. Let us reconsider the circuit of Fig. A1 with the fault net 3 s - a- 0

to highlight the improvements obtained by the speed-up techniques. Note that to,

will be identical to that discussed earlier. However, the new d(tc,), shown below, is

different because the use of the contrapositive assertion and the value of net 30 drops

the value 1 from net 24 which has further deterministic implications.
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2 5 9 14 15 16 19 20 21 22 23 24 25 26

0 6 C D D D OlD O- OlD OlD 0/ OD/1 OIDI/ OIDID

30 32 33 37 38 39 40 41 42 43

OIDID 0 0 DI DID D/77 1/D/D 1/ID/ 1-DID lDI-D

As before we continue by setting the value of net 21 to D in tc.. When we construct

d(tc.), further use of the contrapositive drops T from the value of net 24 and more

deterministic changes occur as shown below:

4 6 17 IS 20 23 24 25 26 27

1 1 1 1 0 0 O/D OD O/D 0/1/D

28 29 30 31 36 37 38 39 40 41 42 43

0//D 0 0/D D D D D D 1/D 1/D 1 1/T

Since net 42 has the value 1 in d(tc.) the attempt to sensitize the path through net

39 leads to a contradiction in the construction of tc 3 and the computation for the

construction of d(tc3 ) is avoided.

Steps in tc 3 construction:

42

1 n (DID)= 0 (Contradiction)

As before, we now extend the sensitized path through net 37 by setting the value of

net 40 Lo D in tc 4 and obtain d(tc4) as shown below:

10 11 34 35 41 43 45

0 0 0 0 11 D

The only variant net is net 30 and its desensitizing value is 1. Using the procedure

explained in §A.6.3 we backward imply the value 1 at net 30 to get the value 1 at

nets 7 and 8. Since both nets 7 and S are basis nodes and 30 E (D(7) n D(S)), then

removing the value 1 from either net 7 or S would give a test for the fault. C[
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Example A2. Consider the class of circuits shown in Fig. A6 with the fault net

3 s - a - 0. Note that the ECAT circuit considered by Goel to illustrate the efficiency

of PODEM [12] is an element of this class. Using D(3) = {5, 7} we construct tc, as

shown below where all other nets have the value 0/1.

1 2 3 3f 4 5 6 7

0/1 0/1 1 D 0/1 DID 0/1 D/D

The only changes that occur when d(tc,) is constructed is that the value of nets 1

and 2 become 1. Since we have a sensitized path from 3f to the PO and there are

no variant nets, a test has been generated. Note that the algorithm specifies only the

value of PI nets 1 and 2 because it takes full advantage of the linearity of XOR gates.

0

Example A3. In this example we illustrate the use of conditional headlines.

Consider the circuit in Fig. A7 whose only basis nodes, other than the PO, are the

PIs. The only possible T 1 (p,) for the fault net 2 s - a - 0 is shown below:

1 2 2f 3 11 12 23 32 34 35

1 1 D 1 1 1 D D 0 D

Net 34 is the only variant net and its desensitizing value is 1. Thus we backward

imply the value 1 from net 34 which sets nets 31 and 33 to the value 1. The use

of the contrapositive sets the value of nets 20 and 24 to 1. It can now be verified,

using the procedure of §A.6.2, that net 24 is a conditional headline and net 20 is not.

Furthermore, the only condition required for net 24 to have the same independence

property as a headline is that the value 1 at net 12 be satisfied. This condition is

already met because net 3 is a PI. Thus the required value 0 at 24, which makes net

34 an invariant net with the value 0, can be met by specifying the PI nets 4, 5 and

6. 0
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Fig.1 Overlapping the testing
of several checkpoints

0

Fig.2 Conditional basis node with

unsatisfiable value.
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Fig. 3 Example whre the subtree corresponding to

a unit-valued node cannot be deleted.
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Fig.A2 Dominator forest for circuit of Fig.Al
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Fig.A3 Introduction of fictitious gate
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Fig.A4 Fictitious gate for net 3 s-a--O in
circuit of Fig.A1
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Fig.AG Circuit for Example A2
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