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Abstract

The dynamical behavior of stimulated Brillouin scattering (SBS)

under a variety of conditions is investigated both theoretically and

experimentally. Under conditions of a single continuous-wave laser

field, the initiation of the SBS process is treated by including the thermal

fluctuations of the material density which lead to spontaneous Brillouin

scattering. Predictions a, i made for the threshold of SBS, for the output

Stokes spectrum, and for the tempo-'al behavior of the Stokes light. The

spectrum of the output Stokes light is predicted to exhibit gain-

narrowing as the input laser intensity is increased. Under certain

conditions, the Stokes output intensity is expected to exhibit nearly 100%

fluctuations even f.- above the threshold for SBS. Experiments

performed in a single-mode optical fiber verify many of the predictiois of

the theory.

Due to the high gain that can be achieved for the Stokes wave, a

small amount of feedback from both interfaces of the interaction region

is found to dramatically modify the characteristics of the output Stokes

light. The system is found to undergo a transition from stochastic to

deterministic behavior. Theoretical analysis demonstrates that the

threshold for Brillouin oscillation can be much lower than the threshold

for single-beam SBS, and the spectrum is shown to be nearly

monochromatic. The temporal behavior of the Stkes light above

threshold is found to exhibit both stable and periodic output.
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Experiments utilizing a single-mode optical fiber with feedback from the

endfaces confirmed many of the theoretical predictions.

Stimulated Brillouin scattering in the presence of two

counterpropagating laser beams is studied. Under these conditions, the

laser beai.s become temporally unstable to the growth of 8;tokes and

anti-Stokes light. For the case when the input intensities of the two

waves are comparable, the threshold for instability can be significantly

lower than the threshold for usual single-beam SBS and, for the case of a

broad Brillouin line, the system can show a period-doubling route to

chaos. This Brillouin instability was observed experimentally using

carbon disulfide as the Brillouin-active maLerial.
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Chapter 1

Introduction

Predicting the temporal evolution of natural phenomena is an

innate desire in all of us. However, nature has posed certain obstacles

which limit one's ability to know precisely the manner in which a

system evolves. There exist various mechanisms due to which a system

can fluctuate in time, and these fluctuations can be classified into two

distinct types: stochastic and deterministic. A stochastic system is one

whose behavior is inherently "noisy" in the usual sense; the global

behavior of the system may be described only through the use of

statistical methods. Thus, for a stochastic system one may speak only in

terms of the likelihood of a variable assuming a range of values at a

particular time. A deterministic system is one whose dynamics are well

defined in the sense that equations can be formulated which completely

describe the evolution of all the variables in the system; by specifying the

initial conditions of the system, the temporal evolution is then known for

all time. Nevertheless, under certain conditions, a deterministic system

can display extremely complicated behavior reminiscent of a stochastic

system in which the ability to make long-time predictions is lost.

The origin of the randomness associated with a stochastic system

is the existence of many (essentially infinite in number) degrees of
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freedom. The global behavior of the ensemble is determined through

statistical methods, since treating the dynamical behavior of each degree

of freedom would be intractable. In many systems there exist only a few

degrees of freedom of interest which are coupled to a large ensemble (i.e.,

a reservoir) of variables that behave similarly to one another. This

coupling leads to a translation of the stochastic behavior of the ensemble

to the principal variables. One of the most studied and most important

examples of a stochastic process is that of Brownian motion in which a

particle immersed in a liquid undergoes irregular movements due to

collisions with the molecules of the liquid. Einstein1 first addressed this

problem by assuming that the action of the liquid molecules on the

particle can be described as a random sequence of kicks which could be

treated as a delta-correlated fluctuating force. He was then able to relate

the mean-square displacement of the particle to the temperature of the

liquid and the frictional force experienced by the particle. This model is

an example of one which obeys the fluctuation-dissipation theorem: the

presence of fluctuations leads to dissipation and vice-versa. 2

A deterministic system can show three types of temporal behavior:

steady-state, quasi-periodic, and chaotic. When a system displays the

first two types of behavior, predicting the future evolution of the system is

trivial. However, a system that possesses nonlinearity and as few as

three degrees of freedom can show deterministic chaos. A system is

defined to be chaotic, if one of the Lyapunov exponents associated with

the attractor of the system is positive. 3 A positive Lyapunov exponent

implies that the trajectories for two arbitrarily close initial conditions
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become entirely distinct and uncorrelated after a period of time (i.e., the

inverse of the value of the positive Lyapunov exponent). Since in practice

it is impossible to know the initial conditions of a system to infinite

accuracy, the ability to make long-term predictions is lost. This type of

behavior was first quantitatively treated by Lorenz4 in 1963. By using a

simple theoretical model of fluid flow in the atmosphere, he showed that

the resulting equations displayed a temporal evolution that was

aperiodic and that small changes in the initial conditions led to entirely

distinct trajectories. Lorenz concluded that this type of behavior

suggests that long-term predictions of the weather may be impossible.

Optics has lent itself well to theoretical and P.perimental studies

of stochastic and deterministic behavior. In Section 1.1, examples are

discussed of a system that displays classically stochastic behavior.

Examples of chaotic systems in optics are reviewed in Section 1.2, in

which particular attention is devoted to nonlinear optical systems. In

Section 1.3, the field of stimulated Brillouin scattering is reviewed, and

reasons are given to explain why it provides an ideal system with which

to study both stochastic and deterministic behavior in nonlinear optics.

1.1 Stochastic Behavior in Optics

Perhaps the simplest and most fundamental stochastic system in

optics is the light that is emitted by a source composed of a large number

of identical dipoles oscillating at a frequency coo* 5 The dipoles are

assumed to undergo collisions with one another such that the effect of

each collision between the dipoles is assumed to impart a phase shift
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onto the field emitted by each of the participating dipoles; during the

period of time between collisions each dipole is assumed to oscillate

sinusoidally. Since each collision occurs with a different geometry, the

phase shifts imparted onto the emitted field by all the collisions are

assumed to be uniformly distributed between 0 and 21r. The temporal

nature of the collisions can be described statistically in such a way that

the probability that the dipole does not experience a collision during a

time between t and t + dt is given by

1 -t/I °
p(t)dt=-e dt (1.1)

0

where ro is the mean period of between collisions for the dipole. The total

complex field amplitude can be expressed as a sum of the fields from

each dipole

N

ET(t) = E0 jei ' (t) (1.2)

i

where Oi is the phase associated with the field from each dipole and E°

is the dipole-field amplitude (all the dipoles are assumed to emit a field

polarized along the same direction). For simplicity the dipole amplitude

will be taken to be equal to unity. By assuming that the phases from

each dipole are not correlated with each other and are uniformly

distributed between 0 and 21r, the sum in Eq. (1.2) can be performed at a

time t which leads to a particular value for ET(t). If the the total field is

then calculated after a time T, which is short in comparison to the mean
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I I I I I I I

30

. e

-30

-30 0 30

Re(E2T

Fig. 1.1 Plot of 5000 realizations of the total field E T emitted by a collection (N =100)

of dipoles.

period between collisions rthen the phases Oi will not have changed

their values and the r--ulting value for the total field will be the same as

at time t. However, if r is longer than rthen the resulting value for

ET(t+T) will be a new realization. If a large number of these realizations

are performed theni a distribution of values for the total field is created.

Figure 1.1 is a plot of the distribution of values for ET(t) on the complex

plane for the case of N = 100. The distribution is centered at E2,(t) = 0 and

appears to be symmetric about the origin with a width approximately

equal to 10. In fact, this model possesses the same statistical properties

as the Gaussian random process associated with the two-dimensional

model of Brownian motion.' The probability density for the total field in

the limit of large N is then given by
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1 e-IE t2/N
P[ET() e T -- 1 (1.3)

This distribution confirms the observations made previously concerning

Fig. 1.1. An important point to consider is that as long as the time

interval over which the field ET has been sampled is much longer than

the mean period of between collisions r the time averages will be equal

to the ensemble averages of similarly prepared systems taken at the

same time. This statement is simply an assertion that the field emitted

by the dipoles is an ergodic process for times long compared to T . The
0

origin of this ergodicity can be attributed to the form of the probability

density of the period between collisions for the dipole (Eq. 1.1), which

tends to zero for long times.

Since a photodetector makes a direct measurement of the intensity

of the field, it is useful to calculate the probability density P[I(t)] for the

intensity I T  I ET I 2. This quantity can be easily derived from Eq. (1.3)

and is given by

1 -I T IN
P[IT(t)] = e T (1.4)

The expectation value of the intensity is then simply given by < IT > = N.

A measure of the fluctuations in the intensity relative to the expectation

value of the intensity is given by the normalized standard deviation A[

3/ 2 >- < I >2
4 = =1>1.> (1.5)

<I>
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Thus, one sees that the fluctuations in the field intensity are, on the

average, as large as its average value. Experimental realization of an

optical system analogous to a collectiorn of dipoles has been made by

Arecchi et al.6

The example discussed here is an example of a stochastic system

in which the statistical uncertainty of an ensemble of variables (i.e., the

dipoles undergoing collisions) is translated to the dynamical variable of

interest (i.e., the total electric field of the dipoles). Although the ability to

predict the actual temporal evolution of the field is lost, by making

measurements of its statistical properties, information can be gained

about the physical properties of the dipole collisions.

1.2 Deterministic Fluctuations in Optics

Since an electromagneti field varies in both space and time, two

types of instabilities exist which can lead to a change in the dynamics of

an optical system. A convective instability is said to occur if

perturbations to the system grow exponentially in space; an absolute

instability is said to occur if perturbations to the system grow

exponentially in time. The study of these instabilities is important in

order to study a system's transitions between static, periodic, and chaotic

evolution. Examples of convective instabilities in optics are gain

processes such as single-beam stimulated Raman scattering, single-

beam stimulated Brillouin scattering, and stimulated emission from a

collection of inverted two-level atoms. Examples of absolute instabilities



8

in optics are threshold for a laser and self-oscillation in phase

conjugation. In this Section, we will focus the discussion on absolute

instabilities that lead to changes in the temporal evolution of a system.

In some cases these absolute instabilities are based partly on the

presence of an existing convectix e instability.

The optical device that has been studied most extensively is the

laser, and it has been found to display many of the dynamic instabilities

that can occur in nonlinear systems: periodic cscillations, self-pulsing,

and deterministic chaos. 7 Its universal behavior was demonstrated by

Haken, 8 who showed that the equations describing a single-mode laser

were isomorphic to the Lorenz equations. Thus, the study of chaotic

dynamics entered the field of optics. Since then, nearly every type of

laser has been shown both experimentally and theoretically to exhibit

temporally unstable behavior, including chaos.9

The instabilities that occur in lasers have alro been shcwn to exist

in nonlinear optical devices. 7 , 10 Ikeda et al.1 1 demonstrated that the

-ILl-

Ei

M1\ rr M2

Si medium

Fig. 1.2 The geometry of R ring cavity with a Kerr medium.
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field transmitted through a ring cavity that contains a material with an

intensity-dependent refractive index (see Fig. 1.2) could display self-

pulsing and chaos. In the limit in which the transit time of the cavity is

much longer than the response time of the nonlinear index, the

temporal evolution of the field at mirror M1 can be reduced to the

following mapping in which each iteration represents one transit time

of the cavity:

E- + xpil

where E is the incident field amplitude, R is the reflectivity of the input

V2
(Ml) and output (M2) mirrors; all the fields are normalized by (n 2kL)

where k is the wavevector magnitude, n2 is the nonlinear coefficient, and

L is the length of the nonlinear material. The stationary solutions to this

mapping can be multivalued for sufficiently large values of the

transmitted incident field. However, most of these solutions are unstable

and the mapping displays a period-doubling r ute to chaos as the

incident field amplitude is increased. An example of the evolution of the

field in the chaotic regime is shown in Fig. 1.3, which shows a phase-

space plot of the field [i.e., Im(En ) versus Re(En)] for 5000 iterations of Eq.

(1.14) with R = 0.5 and IE. 12 = 15. This chaotic phase-space trajectory isS

termed a strange attractor. 3 Although the structure of the attractor

remains the same for different iniCal conditions, the sequences of values
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of E become entirely distinct for any nonzero deviation between the twon

initial points. This deterministic structure strongly contrasts with the

stochastic phase-space trajectory shown in Fig. 1.1, yet in both cases

long-time predictions for the field are impossible.

In all the previously discussed optical systems in which

complicated deterministic behavior occurred, a nonlinearity exists that

is coupled to an external feedback mechanism provided by a cavity.

Silberberg and Bar-Joseph 12 demonstrated that instabilities and chaos

could occur in a nonlinear optical system in which no external feedback

exists. The system they considered is conceptually very simple: two

scalar waves with the same optical frequency counterpropagating in a

medium with an intensity-dependent refractive index (i.e., a Kerr

4

-4-

0 4 8

Re(E n )

Fig. 1.3 A plot of E on the complex plane for the Ikeda mapping in the chaotic
n 2

regime for a series of 5000 points for the case R = 0.5 and I _. 2 = 15.
I
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medium) which has a finite response time r. At low input intensities,

the two fields pass through the medium experiencing only a nonlinear

phase shift. However, above a certain threshold intensity, the output

intensities begin to fluctuate periodically in time, and at higher

intensities, the temporal evolution of the output intensity becomes

chaotic. A gain-feedback argument can be used to explain the origin of

this instability. Gain at the sidemodes to the input frequency of the two

fields exists due to the sluggish response of the medium (e.g., stimulated

Rayleigh-wing scattering). These sidemodes then experience distributed

feedback as a result of the index grating created by the interference of

the two input fields. An important criterion for the instability to have a

low threshold is that the sidemodes that experience gain are also modes

of the index grating; this mode-matching leads to the requirement that

the response time of the material be approximately equal to the transit

time through the medium. A similar treatment 13 was also performed

for the case in which the material is composed of a collection of two-level

atoms, and temporal behavior similar to the behavior that occurs in a

Kerr medium is predicted. 14 Khitrova et al.15 have observed a related

instability in sodium vapor.

Gaeta et al. 16 extended the treatment of Silberberg and Bar-Joseph

to include the vector nature of the field and found that the polarizations

of the counterpropagating fields could become temporally unstable for

threshold input intensities much less than those required for the scalar

instability. They assumed that the tensor medium was an isotropic Kerr

medium and that the input fields were polarized parallel to one another.
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In some cases, both the intensities and the polarizations of the output

fields could show instabilities and chaos, whereas in other cases only the

polarization of the fields exhibit complicated temporal behavior. Since

the instability is related to parametric four-wave mixing between the

different polarization components, no restriction is placed on the

response time of the material. Gauthier et al. ? observed related

polarization instabilities and chaos in sodium vapor.

1.3 Stimulated Brillouin Scattering

This Thesis deals with the temporal nature of stimulated

Brillouin scattering (SBS) under various conditions. As will be shown,

SBS provides a fertile nonlinear optical system with which studies of

both stochastic and deterministic fluctuations can be performed. The

following discussion is a brief review of the previous work on SBS.

Stimulated Brillouin scattering is the coupling of a laser and a

Stokes field through an acoustic wave. Although first observed by Chiao

et al. in 1964,18 the majority of the research on SBS has been performed

in the Soviet Union. 19 The prime reason for this intense study was the

realization by Zel'dovich et al.2 0 in 1972 that the strong Stokes light

generated in the backward direction possessed certain spatial properties

of the incident laser light which could lead to self-pumped phase

conjugation. Thus, SBS provides a technique for performing aberration

correction of high energy laser pulses without the need of external pump

beams which are normally required for phase conjugation by four-wave

mixing. 2 1 The simplicity and efficiency with which SBS can be
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performed has made it attractive for performing phase conjugation: one

simply focuses the laser beam into a Brillouin-active medium and as

much as 90% of the laser light can be converted into Stokes light.

Another important feature is that in many materials SBS is the

dominant optical nonlinearity as long as the incident laser pulses are

longer than the phonon lifetime ( -1 ns) of the material. 22

The theoretical foundation for most of the work that has dealt with

SBS has been the steady-state coupled intensity equations for the Stokes

field and the laser field,

dz = -go,, IS (1.5a)

and

dI

where I, and I are the laser and Stokes intensity, respectively, g0 is the

SBS gain factor, and the laser and the Stokes field are assumed to travel

in the +z and the -z directions, respectively. In the limit in which the

Stokes intensity does not grow sufficiently large to deplete the laser

intensity, the Stokes intensity is seen to experience exponential gain in

which the total single-pass gain G is equal to g011 L. Equation (1.15) can

been used to model SBS for the case in which the Stokes output is

initiated from spontaneous Brillouin scattering. A very small

nonfluctuating Stokes seed is injected at z = L, which can then be
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amplified to intensities comparable to the input laser intensity. The

magnitude of the injected Stokes seed can be estimated by determining

the intensity of the spontaneously scattered light (e.g., 10-121I) that is

generated near z z L. 19 This model has been useful for making

predictions for the expected intensity of the Stokes signal at z = 0 for a

particular value of the input laser intensity.

Several workers have included the temporal nature of the SBS

process by including the time dependence in the propagation of the

intensities in Eq. (1.7) or by including the differential equation for the

acoustic wave. For the case in which the laser field is turned-on and

maintained at a steady input value, the system reaches a steady-state via

relaxation oscillations associated with the turn-on of the laser intensity.

Attempts to treat rigorously the temporal nature of initiation of the SBS

process have only been made recently. 2 3 ' 24 Due to the stochastic nature

of the density fluctuations which lead to the spontaneous scattering. it is

expected that the amplified Stokes light could also exhibit these

stochastic fluctuations. These issues are addressed theoretically and

experimentally in Chapters 2 and 3, respectively.

Due to the extremely high values of the single-pass gain that are

attainable in SBS, a small amount of feedback can lead to Brillouin

oscillation in which the characteristics of the Stokes output is entirely

different from the output associated with usual SBS. This Brillouin

oscillation has been demonstrated experimentally by several workers 2 5

in a ring-configuration. As will be shown in Chapter 4, the behavior cf

the SBS process under conditions of Brillouin oscillation is of a
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deterministic nature and, in a fashion analogous to that of the laser, can

show both steady-state behavior as well as temporal instabilities.

As discussed in Section 1.2, instabilities due to

counterpropagating waves have been demonstrated for a wide variety of

nonlinear materials. Zel'dovich and Shkunov26 first showed that for an

extremely short Brillouin-active medium, counterpropagating laser

beams could be temporally unstable. In Chapter 5, a more general

theoretical treatment of counterpropagating beams in a Brillouin-active

medium is given in which temporal instabilities and chaotic behavior

are predicted. Experimental results are also presented in which these

temporal instabilities are observed.
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Chapter 2

Theory of Stimulated Brillouin Scattering

Spontaneous Brillouin scattering occurs when light propagates in

a material and is scattered due to density fluctuations within the

material. If the incident light field is sufficiently strong, stimulated

Brillouin scattering (SBS) occurs in which the density variations in the

material are induced through the process of electrostriction. Under

these conditions, the incident laser field, a Stokes field, and an acoustic

field become strongly coupled through a parametric nonlinear optical

process (see Fig. 2.1) in which the frequencies and the wave vectors of the

three waves satisfy the conditions. 1

(01 = (0s +01 (2.1a)

and

k1 = k s +q , (2.1b)

where w (ki), % (k,), and A? (q) are the frequencies (wavevectors) of the

laser, Stokes, and acoustic waves, respectively. These relations [Eq. (2.1)]
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Brillouin-active medium

laser field '1 iii
acoustic field

Sokes field II
z=O z=L

Fig. 2.1 Schematic illustration of the geometry for SBS in which the laser and Stokes

fields are coupled through an acoustic field.

are equivalent to the requirements of energy and momentum

conservation for efficient parametric coupling. Under conditions of

strong excitation, nearly all the incident light can be converted into

Stokes light. Although the SBS process can serve as an amplifier for a

well-defined Stokes wave incident at z = L, SBS finds its greatest

application for the case in which no Stokes wave is injected into the

medium but grows spontaneously from noise (i.e., phase conjugation).

The majority of the theoretical work that has been performed on SBS has

neglected the spontaneous initiation of the SBS process and simply

assumed that a small nonfluctuating Stokes seed is injected into the

medium. 2 ' 3  In order to determine the conditions under which this

approximation is valid, the spontaneous intiation of SBS must be

incorporated.

In order to treat the initiation and the statistical properties of the

Stokes light generated through SBS, spontaneous Brillouin scattering

must be accounted for in the theory. Zel'dovich 3 considered a localized

model of the initiation of SBS in which he considered spontaneous
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scattering only in the region near z = L since the Stokes light in this

region experiences the greatest gain. This model is useful in making

reasonable predictions for the threshold of SBS. (Threshold being

defined as the point at which the expected value of the output Stokes

intensity reaches a particular fraction, i.e. 1%, of the input laser

intensity.) Boyd et al.4 performed a detailed calculation which includes

a rigorous derivation for the amount of scattering that initiates the SBS

process. Thus, they were able to make accurate predictions for the

threshold for SBS and found that it depends upon the frequency of the

incident laser field as well as upon the fundamental properties of the

SBS medium. Wandzura, 5 Dainov et al.,6 and Boyd et al.4 included the

distributed nature of the spontaneous scattering in the Brillouin

medium and found through numerical simulations that the Stokes

output intensity could have large temporal fluctuations even far above

threshold for SBS.

In this Chapter, a theory that treats both spontaneous and

stimulated Brillouin scattering is presented. In a procedure similar to

Boyd et al.,4 the equations for the laser, Stokes, and acoustic fields are

derived with the inclusion of spontaneous scattering. In the limit in

which the laser field is undepleted, an analytic solution for the Stokes

field is found for which the output Stokes field exhibits large fluctuations

and a gain narrowed optical spectrum. The effects of laser depletion are

included by numerically integrating the full set of stochastic coupled

nonlinear equations. The statistical properties of the Stokes output light

are determined in the limit of a steady-state input laser field and they
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are found to depend sensitively on the input laser intensity and ratio of

the transit time through the medium to thc phonon lifetime. Under

certain conditions anomalous features appear in the the Stokes output

intensity and are associated with relatively sharp phase discontinuities

in the Stokes field. These features are similar to those predicted in

theories of superfluorescence 7 and stimulated Raman scattering. 8 ,9

2.1 Stochastic Initiation of Stimulated Brillouin Scattering

In accordance with Fig. 2.1, we assume that a single-mode laser

propagates in the positive z direction and can be expressed as

E(z,t) = -1E(z,t)ei(kz-wt) + c.c. (2.2

where k, is the laser wavevector magnitude. The Stokes wave generated

by SBS is assumed to be counterpropagating to the laser field such that

E.(z,t)= E (z,t)e i (- k~z - , t) + c.c. , (2.3)

where k8 is the Stokes wavevector amplitude.

The acoustic wave equation describes the propagation of the

variation of the density of the medium (z,t) from its mean value Po. We

assume that the acoustic wave is driven by two sources. The first source

is prespnt due to thermal fluctuations which give rise to spontaneous

Brillouin scattering. The second source arises from the process of



electrostriction in the presence of the laser field and leads to SBS. The

resulting equation of motion for the density3

P 2P_ _, I- 22+ (2.4)
dt 2  9t onz 2  2  8r dz 2

wnere I- = 417/ 3 Po0 is a damping parameter, 77 c.racterizes the viscosity,

v is the speed of sound in the medium, y is Lhe electrostrictive constant,

E(z,t) = E(Zt) + kEs(z,t) is the total optical field and f(z,t) is a Langevin

noise source. We assume that f(z,t) is a Gaussian random variable with

zero mean such that the ensemble average <f(z,t)> is equal to zero. We

also assume that f(z,t) is delta correlated in the sense that

< f(z,t)f(z ,t)> = Q 8(z- z') 3(t-t ). (2.5)

In evaluating the electrostrictive driving trm on the right-hand-

side of Eq. (2.4), the terms that oscillate at zero frequency and at optical

frequencies are neglected since they do not lead to excitation J acoustic

waves inside the medium. The optical fields are also assumed to obey

the slowly varying amplitude approximation (SVEA) in that

I DE./l1 I<< I k.E. I forj equal to I and s, in which case the electrostrictive

driving term of Eq. (2.4) becomes

1 2(EF* ei(qz-a)+ c.c.) (2.6)
16,r i l(.6
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where £2 = wl - o) is the acoustic frequency and q = k, + ks is the acoustic

wavevector amplitude, which are related through the velocity of sound in

the medium by the expression £2 = qv. The form of Eq. (2.4) can now be

simplified by introducing the complex representation

5(z,t) = -1p(z,te i (q z - Q ) + c.c. . (2.7)

By substituting Eq. (2.7) into Eq. (2.4) and making the SVEA for the

acoustic field, the equation for the acoustic amplitude becomes

dp +F P dp = ,,iq2EE (2.8)
at 2 dz 167rf2 S

where F = Pq 2 is the phonon (energy) decay rate and f(z,t) is the complex

amplitude of the Langevin noise source f(z,t) which are related by

f(z,t)= fz,t) e (qz - f&) + c.c. , (2.9)

where f(z,t) is also delta correlated such that

< f(z,t)f *(z,t) >= QS(z- z')8(t - t') , (2.10)

where Q = Q/4D2. Equation (2.9) is valid under conditions in which the

decay rate F of the acoustic field is much smaller than the Brillouin

frequency £2. In Appendix 2.1 the value of Q, which is a measure of the

strength of the fluctuations in f(z,t), is derived and is given by
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Q=2kBTpOF
Q 2 , (2.11)

u2A

where k B is Boltzman's constant, T is the temperature, and A is the

cross-sectional area of the interaction region.

The driven wave equation that governs the propagation of plane-

wave optical fields along the z axis through a Brillouin-active medium is

given by

d2t n 2 d 2 t _ 4;r d2 (
& 2  c 2 dt 2  c 2 odt2 '

where n is the background refractive index and P(z,t) is the additional

material polarization arising from changes in the dielectric constant

due to variations in the material density. This polarization can be

expressed as

5(z,t) = 4' (z,t)E(z,t) . (2.13)
4KPo

In order to derive coupled-amplitude equations for the laser and Stokes

field, the expression for the total optical field E = E + E8 is substituted

into both the wave equation [Eq. (2.12)] and into the expression for the

polarization [Eq. (2.13)]. The complex representations for the laser field,

the Stokes field, and the acoustic field [Eq. (2.2), (2.3), and (2.7),

respectively] are then used to derive the following coupled-amplitude

equations for the optical fields
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dE1  n dEl ipE (2.1,a)

and

_ _ _ n t - )CP El , (2.14b)

cz dt

where ic = yo / 4ponc.

One last assumption is made regarding the spatial evolution of

the acoustic field given by Eq. (2.8). For most materials the linear

absorption F!2v of hypersonic sound waves is sufficiently large that the

acoustic wave is absorbed in a distance small compared to the distance

over which the optical fields on the right-hand side of Eq. (2.8) have

changed appreciably. The acoustic field is then assumed to be in a

spatial steady-state such that dp/dz = 0, in which case the equation for

the acoustic field becomes

p r
+-p= iAEE+f (2.15)

dt 2 A 1 E;+

where A = yq 2/16ir .2. Equations (2.14) and (2.15) form the basis for the

theoretical study of the initiation and of the statistical properties of SBS.

2.2 Limit of Undepleted Laser Field

In the limit in which the Stokes field E8 has not grown sufficiently

large to deplete energy from the laser field E, the laser field can be taken
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to be constant throughout the medium. In this case Eq. (2.14a) can be

neglected and only Eqs. (2.14b) and (2.15) need be considered. The form of

these equations is identical to the ones used in theories treating

superfluorescence 10 and stimulated Raman scattering. 1 1 The solution

to these equations is well known and, in the long-time limit in which no

Stokes wave is injected at z = L, the relation for the Stokes waves at z = 0

is given by4

t 0 _(tr) Q0
ES(0,t)= E1 fJdt'J dz'e 2 f *(Z" t') JO(GTz (t-t)/U), (2.16)

-cc L

where 10 is the zeroth-order modified Bessel function. The parameter

G = g011 L is the single-pass logarithmic intensity gain experienced by

the Stokes wave in the absence of pump depletion -. 'here

I= (nc/87r) I E1(0) 2 is the steady-state input laser intensity and

g0  pc)v (2.17)go =pondvl-

is the SBS gain factor. The expectation value for intensity

I = (nc/8) IEs(0, t) 2 ofthe Stokes wave atz = 0 is then given by

< 1I > =aI, eGI2[Io(G/2)-II(G/2)] , (2.18)

where I1 is the first-order modified Bessel function and where ais given

by
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goLkBTwl F
gLT= (2.19)

4AS2

The contribution from the modified Bessel functions in Eq. (2.18) is due to

the distributed nature of the noise in the medium. In the localized

model of the intiation of SBS 3 in which a nonfluctuating noise seed is

injected into the medium at z = L, the term in brackets containing the

modified Bessel functions is replaced by the factor eG/ 2 . A detailed

comparison between the two theories is made by Boyd et al.4 In the limit

of low gain (G << 1), Eq. (2.18) can be approximated by

<I >=aII , (2.20)

which represents the spontaneous scattering of the laser light into the

Stokes field. In the high gain limit (G >> 1), large-argument expansions

for the modified Bessel functions can be utilized12 and the resulting

expression for the Stokes intensity is

<I _ eG (2.21)
S 4G 3 /2

The Stokes intensity is seen to be reduced by a factor of sF- G3/2 from the

usual single pass exponential gain factor eG which is obtained by

considering a localized noise source near z = L.

The fluctuations in the Stokes intensity can be estimated by

calculating the second-order moment of the Stokes intensity <12> from

Eq. (2.16) which leads to
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<12 >=2<I >2 (2.22)
S S

A measure of the fluctuations in the Stokes intensity is given by the

normalized standard deviation Al

Al = A 2 (2.23)

which in the case of no pump depletion is equal to unity. This result can

be simply understood by the fact that in the absence of pump depletion,

the Brillouin medium is serving as a linear amplifier for thermal (or

quantum) noise which also has 100% fluctuations. Thus, the

fluctuations in the Stokes light are simply a macroscopic manifestation

of the thermal (or quantum) noise which is initiating the SBS process.

Although the relative fluctuations of the Stokes field are as large

as those of the Langevin noise source which initiates SBS, the spectra of

the fluctuations for the two quantities are expected to be different. As a

result of the delta-correlated property of the noise source f, its

corresponding spectrum is broadband. However, the resulting

fluctuations which drive the Stokes field will be spectrally filtered since p

experiences damping which limits its ability to respond to fluctuations

that occur in a time short compared to 2/F. The spectrum of the Stokes

field can be easily determined by taking the temporal Fourier transform

of Eqs. (2.14b) and (2.15) and solving the resulting linear differential

equations [or alternatively, by taking the Fourier transform of the two-



29

time correlation of the Stokes field using Eq. (2.16)]. The homogeneous

solution may be neglected since no Stokes field is assumed to be injected

at z = L. The resulting solution for the Fourier transform of the Stokes

field F(8) at z = 0 is

F (8) = L )e " (2.24)
6+iF/2 Jd

0

where 8 = w - is the frequency detuning from the Stokes frequency,

h(z) is the Fourier transform off(z,t) and g = £go where £ = (1 - i2/1"1 .

The normalized power spectrum S(3) is

<F (8)F*(8)> el£l2G
8) = S e - (2.25)

< F(O)F*(O) > eG-1
S 8

In the limit in which the gain is small (G << 1), S(8) reduces to a

Lorentzian lineshape

_ 1
S(O) = 1- (2.26)1+482 /F 2

with a full-width at half maximum (FWHM) equal to F. This result [Eq.

2.26)] is expected since spontaneous Brillouin scattering is the dominant

contribution to the Stokes field in the limit of small Stokes gain. In the

limit in which the gain is large (G >> 1), S(3) has the form of a Gaussian

lineshape

S() = e- 4 ° : / r - (2.27)
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Fig. 2.2 Spectrum of the Stokes light in the limit of the undepleted laser field plotted

for three different values of the single-pass gain G.

with a FWHM equal to r/TG/In2. This effect of the narrowing of the

spectrum by the factor of 1 G /ln2 is the well known effect of gain

narrowing 13 that occurs in several types of amplifiers. Figure (2.2)

shows a plot of the power spectrum S(6) [Eq. (2.25)] for several different

values of the single-pass gain G.

2.3 Numerical Simulations of SBS

In order to determine the statistical properties of the Stokes light

in the regime in which the laser field is depleted, the full stochastic

nonlinear differential equations [Eqs. (2.14) and (2.15)] must be

numerically integrated. All the numerical simulations shown here

were performed on a single computing element of an Alliant FX-8 mini-

supercomputer. The Stokes field and the laser field are integrated using
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the method of characteristics. The input laser field at z = 0 is assumed to

be smoothly ramped on and kept at the steady-state value chosen for the

particular case. The value of the Stokes field at z = L is taken to be equal

to zero. The noise source f is assumed to be a complex Gaussian random

variable which is delta-correlated in both space and time. For each grid

point in space and time, two uniformly random numbers were

generated using a random number generator of Fortran and were then

converted to a single complex Gaussian random number using the Box-

Mueller method. 14

There are three important parameters that determine the

behavior of emitted Stokes light. First, the input intensity of the incident

laser light (or correspondingly, the single-pass gain G) determines

roughly the amount of SBS that occurs. Secondly, the ratio of the transit

time of light tl-rough the medium T = nL/c to the phonon lifetime F 1 ,

which is simply the product F T , is an estimate of the how rapidly the

Stokes light is expected to fluctuate in comparison to the transit time

through the medium. The reason why the quantity F T t plays an

important role is that the Stokes field and the laser field are

counterpropagating. Thus, under conditions of laser depletion, the SBS

process essentially possesses an extra degree of freedom that is not

present in amplifiers (e.g., Raman) in which the pump wave and the

amplified wave are copropagating. Thirdly, the strength of the

fluctuations of the noise operator f(z,t) which is quantified by a [Eq. 2.19],

determines the amount of laser light that is spontaneously scattered into

the Stokes field initiating the SBS process. Although a appears to be
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proportional to the phonon damping rate F, it is actually independent of

F since the gain factor go is inversely proportional to F.

For all the cases treated here, several of the parameters associated

with the experiments performed in an optical fiber (see Chapter 3) will

be used. That is, the following values are assumed: the photon energy is

taken to be hco, = 3.9 x 10-19 J (i.e., the = 514.5 nm), T = 3000K, the cross-

sectional area A = 1 x 10- 7 cm 2 , F1 2 = 0.1 and the gain factor

go = 2.5 x 10-9 cm/W. In most single-mode SBS experiments performed

in a focused geometry, the Fresnel niumber of the interaction is equal to

unity, which fixes the ratio LIA to the value of 1/I) in the expression for

a [Eq. (2.19)]. However, in a single-mode optical fiber this restriction is

lifted due to the guided nature of the light and L can be taken to 'e

independent of A. Thus, the value of the quantity L /A can be much

larger than the value for a focused geometry. Although the strength of

the noise parameter for an optical fiber is used, it is expected that much

of the ensuing analysis is general and can be applied to SBS in any

medium.

Figures (2.3), (2.4), and (2.5) are plots of the output Stokes intensity

for various values of G for the cases F T = 1, 10, and 100, respectively.

The origin on the time axis is taken to be at an arbitrary time for which

the effects of the turn-on of the laser field may be neglected. Since the

Stokes light fluctuates on a time scale roughly equal to the phonon

lifetime VF, the temporal evolution of the Stokes intensity is displayed for

an equal number of phonon lifetimes to allow for direct comparison

between the three cases. On each plot the time averaged SBS reflectivity,
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R = <Is>/II, is listed. For the case of G = 5, the Stokes emission in each

case appears very noisy, characteristic of amplified spontaneous

Brillouin scattering. As expected, there is roughly a factor of ten

increase in the Stokes output intensity for each ten-fold increase in FT,

since in the undepleted-pump regime the amount of spontaneous

scattering is proportional to the length L of the medium. For the case

G = 15, the temporal evolution still appears similar in all cases. Large

fluctuations persist with a time scale longer than for the case G = 5 due

to the gain narrowing of the Stokes field. At larger input intensities and

hence larger values of G, the temporal evolution for F t = 1 and 10

undergoes a qualitative change signified by reduced fluctuations and the

appearance of "dispersive" looking features (which I will refer to as

"phase-waves" and whose origin will be explained in the analysis that

follows). For F t = 100 the output still appears noisy, with large

fluctuations and with none of the "dispersive" looking features that

appear for the other two values of FT t . At still larger laser intensities

(G = 200), the output intensity for FTf = 1 is characterized by durations of

steady output separated by phase waves. These phase waves are more

pronounced for the case FTt = 10 with peak intensities far exceeding the

input laser intensity. Phase waves in the output intensity begin to

appear among the random fluctuations for F Tt = 100. Note in all three

cases the expected value for the SBS reflectivity is approximately the

same due to the strong depletion of the laser light which leads to very

weak dependence on the amount of noise that initiated the SBS process.
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Figure (2.6) shows a plot of the relative fluctuetiun A/ [Eq. (2.23)J

of the Stokes intensity as a function of the single-pass gain G for the

three cases F T t = 1, 10, and 100. As seen from the numetical

simulations, the relative fluctuations decrease rapidly to zero with

increasing values of G for smaller values of F T t . However, large

fluctuations persist for large values of FT t even under conditions such

that the Stokes field is strongly depleting the laser field. This behavior

can be understood by noting that the region in which the laser is most

btrongly depleted is roughly -wthin a gain length L / G nf the front end of

the Brillouin medium (0 < z < L/G), since *his is where the Stokes field is

largest. Figure 2.7 gives a schematic illustration of the SBS process in

the regime of strong depletion and shows the expected value of the laser

intensity distribution. If the Stokes seed generates an amplitude noise

spike of temporal width 1/1F, then the full "p'"se" can be better amplified

in the pump depletion region (z < L / G) as long as the amount of energy

contained within the spike is smaller than the energy contained withi-

the laser field in the puMr Aepletion region. If the peak intensity of the

spike is roughly given by I, then the condition for amplification of the

spike is simply that its length c/nFbe smaller than the length of the

depletion region. Thus, the condition for observation of large

fluctuations in the regime of strong pump depletion is given by the

inequality F T t > G. The rapid decay in the magnitude of the relative

fluctuations for small values of F T t explains why fluctuations are

typically not observed in focused geometries with a Fresnel number

equal to unity. The value of FTI for CS 2 is approximately equal to 0.02L
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Fig. 2.7 Schematic drawing of the SBS interaction that illustrates how fluctuations of

the Stokes light can persist under conditions of strong pump-wave depletion. The

Stokes noise spike will be amplified if the energy in the spike at z = 0 is less than

the energy that can be supplied by the pump wave in the depletion region.

at a laser frequency of 0.53 pim, 2 where L is the length of the interaction

region in centimeters; in typical focused geometries, L is less than 10 cm

which corresponds to a value of F t which is still considerably less than

one.

Phase waves have been observed experimentally using a pulsed-

laser input by Vasil'ev et al.,15 Basov et al. 16 and by Dianov et al.6 in a

single-mode optical fiber. The origin of phase waves can be attributed to

a phase fluctuation that occurs in the Stokes field near z = L. As this

phase fluctuation propagates towards z = 0, the Stokes intensity

experiences a sharp decrease followed by sharp spike which leads to its

dispersive shape. Figure 2.8(a) is a plot of the phase of Stokes field at

z = 0 as a function of time for the case G = 200 and FT t = 10 and Fig. 2.8(b)
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Fig. 2.8 Temporal evolution of (a) the phase of the Stokes field and (b) the intensity

(gI 8 L) of the Stokes field for the case G = 200 and Ir = 10. Sudden changes in

phase are accompanied by dispersive-looking spikes in the Stokes intensity.

is the corresponding intensity. Whenever the phase of the Stokes field

undergoes a relatively abrupt change, a dispersive looking feature

appears in the intensity. Also note that the larger the change in phase,

the larger the magnitude of the intensity spike. There are three

requirements that must be satisfied for a strong phase wave to occur in

SBS: 1) the phonon lifetime must be shorter than the transit time of light

through the interaction region, 2) the single-pass gain G must be large
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enough such that the pump beam is strongly depleted, and 3) the single-

pass gain G must be larger than the ratio of the transit time to the

phonon lifetime.

These points are best illustrated by considering the localized

model for the initiation of SBS in which the interaction is separated into

two regions such that in the region L -I < z < L (where I = L/G is the

gain length) spontaneous Brillouin scattering dominates and provides

the Stokes seed to be amplified in the remainder of the medium

(z < L - I -L) for which SBS dominates. An expression for this

spontaneous Stokes field is given by formally integrating the equation

(2.15) for p in the long-time limit and neglecting the term which

contributes to SBS and substituting this expression into the Eq. (2.14b) for

the Stokes field. The solution for the Stokes field at z = L - I is then given

by

L ? F

E(L-l,r)=-i cE, Jdz'J dr'f*(z',r')e 2 (2.28)

L-1 -c

where r = t - nz Ic is the local time variable. From this expression one

can see that the spontaneous Stokes seed undergoes phase and

amplitude fluctuations on a time scale comparable to its phonon

lifetime. In order for phase waves to occur, the condition that the single-

pass gain G be sufficiently large such that the Stokes field is depleting

the pump field, stems from the need for the Stokes output to be relatively

insensitive to the amplitude fluctuations of the Stokes seed. However, the

additional condition G > FT t must also be imposed as explained above. If
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the Stokes seed is now assumed to undergo nearly a z -phase change

then, as it propagates towards z = 0, the phase change reverses the usual

flow of energy from the laser to the Stokes field for a time 11'. The Stokes

field that immediately follows this phase fluctuation experiences gain

from a repleted pump field which leads subsequently to a sharp spike in

the Stokes output. Thus, the condition that Tt > 1 must be satisfied for

the generation of the phase wave since an important feature of this

process is that the phase of the density which initiates the Stokes seed

must a have different phase than the phase of the density encountered by

the phase wave as it propagates through the medium creating the

reverse flow of energy to the laser field. However, in the limit which FT

< 1 the density throughout the medium has a homogeneous phase

distribution inhibiting the growth of the phase wave.

Appendix 2.1 Derivation of the value of Q

In order to determine the value of the parameter Q which

characterizes the strength of the fluctuating noise source f(z,t), we start

with the acoustic wave equation (2.4) and assume that no optical fields

are present in the medium. The equation of motion for the amplitude of

the component of the density variation 1 (z,t) which has a wavevector

amplitude equal to q is given by

d2j3 q 1- + r + 2  =f , (A2.1)
t 2  q

where
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Olq(t) = - f dz(z,t)e- iq z , (A2.2)
L

and

q(t) = dz f(z,t)e-'qz (A2.3)
L

where the length of the medium has been assumed to be much greater

than the acoustic wavelength 21r/q. The complex representations are

introduced such that

q(Z't) = 1pq(zt) e-i t +c.c. (A2.4a)

and

fq (z,t) = -if (z,t) e-i +c.c. (A2.4b)

Equation (A2.4a) is substituted into Eq. (A2.1) and the SVEA is made

which yields the following equation of motion for the complex amplitude

dqq(t)

-OPq + Fp (t) = fq (t) (A2.5)
dt 2~

Formally integrating Eq. (A2.5) yields
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F t F I -pq(t) e()e Jdt' f 2 (A2.6)

0

The energy density for an acoustic travelling plane wave is 1 7

v2 v2  (< U >= V2 < _ 2 >= 2 < p2> .(A2.7)

pO q 0  q

In the long-time limit (t >> 2/fn, the first term on thi RHS of Eq. (A2.6)

can be neglected in which case the total energy in mode q is given by

E =f dV <u>

2po f Pq q

2 ( Q )AL
2p rL

v2QA (A2.8)
2pot

where A is the cross-sectional area of the acoustic wave. According to

the equipartition theorem a value of kBT is assigned to the energy in

each mode in thermal equilibrium where kB is Boltzman's constant.

Equating Eq. (A2.8) with the value of kBT and solving for Q yields the

following expression

Q= 2k TP0 F (A2.9)
v2A
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This is the same result as that reached by Boyd et al.4  A quantum

mechanical treatment 1 8 of the phonon field yields a similar result in

which case kBT is replaced by (h + 1)i2 where h = (e %/kBT 1) "1 is the

phonon occupation number. At room temperatur: h12 << k BT in which

case the classical result for Q is nearly equal to the quantum

mechanical result.
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Chapter 3

Experimental Study of Stimulated Brillouin Scattering

in an Optical Fiber

In many materials, SBS is the dominant steady-state nonlinear

optical process. 1  The first reported experimental observation of

stimulated Brillouin scattering was by Chiao, et al.2 in quartz. However,

most studies of SBS have been performed in liquids and gases in a

focused geometry with high energy laser pulses. 1 The first observation

of SBS in an optical fiber was by Ippen and Stolen 3 with 600 ns laser

pulses. Since then, absorption losses have been greatly reduced and

optical fibers have lent themselves easily to the generation of SBS under

continuous-wave (CW) excitation with milliwatt power levels. 4 Several

workers have observed large fluctuations in the Stokes signal in single-

mode fibers, these fluctuations were unexplained 5 or, as in the

experiment of Ippen and Stolen,3 were believed to be due to be relaxation

oscillations. A possible explanation is that these observed fluctuations

were the result of the spontaneous initiation of SBS discussed in Chapter

2. In a very recent experiment in a single-mode optical fiber with 1 As

and 200 ns laser pulses, Dianov et al6 demonstrated that fluctuations

can exist in the Stokes output and attributed them to the thermal
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initiation of SBS. Although fluctuations in the Stokes signal have been

observed in a focused geometry under pulsed conditions, 7 a single-mode

fiber lends itself much more readily to the observation of fluctuations

due to the large values of the product of the spontaneous Brillouin

linewidth and the transit time FT t that can be attained. For large values

of FT , large fluctuations in the Stokes intensity should be observable far

above the threshold for SBS (see Section 2.3).

In this Chapter, experimental studies of SBS in a single-mode

fiber with CW excitation are described in which many of the theoretical

predictions made in Chapter 2 regarding the statistical nature of the

Stokes light are addressed. Section 3.1 describes the direct measurement

of the gain factor g for the optical fibers used in the experiments. In

Section 3.2 the threshold for SBS is characterized by measuring the

Stokes output power as a function of the input laser power. In

accordance with theoretical predictions, the value of the threshold

single-pass gain is found to be considerably lower than the value which

would be measured in a focused geometry. In Section 3.3, the temporal

behavior of the Stokes output intensity is described. The Stokes intensity

is found to be extremely noisy with nearly 100% fluctuations. In Section

3.4, the measurements of the spectrum of the Stokes light as a function of

input intensity are described and the spectrum is found to exhibit gain

narrowing.
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Section 3.1 Measurement of the SBS Gain Factor

In order to obtain an accurate estimate of the single-pass gain G

for the Stokes waves, the gain factor go for the optical fiber was

measured. A pump-probe experiment is performed in which the

transmitted power of the probe beam through a known length of fiber

was measured for a fixed value of the pump laser power. By measuring

the total gain experienced by the probe beam, an accurate estimate of the

gain factor can be made. The optical fibers used in the experiment were

manufactured by Corning and are composed of silica with a 3 mol %

GeO2-doped core. The fibers are step-indexed with a core diameter equal

to 3.6 gm. In all the experiments fiber couplers were used with 10x

objectives to couple light into the fibers.

The experiment to measure the gain factor was performed with a

10-meter-long fiber since for this length the absorption losses within the

fiber could be neglected. The experimental set-up is shown in Fig. 1.

FI V~X2 pol BS1 12 C 0m

100lase o nfiber

< pol C2

500 m

fiber

Fig. 3.1 Experimental set-up used to measure the SBS gain factor of the optical fiber.
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Light from a Coherent Innova argon-ion laser operating in a single

longitudinal mode at a wavelength of 514.5 nm is sent through a

Faraday isolator in order to keep Stokes light from reflecting off the laser

mirrors and back into the fiber. The light is then split into two beams by

a 50/50 dielectric beamsplitter with each beam containing approximately

700 mW of optical power. One of the beams, which served as the pump

beam, is passed through a half-wave plate and a polarizing beamsplitter

to allow the pump power to the fiber to be varied. The pump beam is then

launched by coupler C1 into the 10 meter-long fiber, and the power of the

pump beam inside the fiber is estimated by measuring the power

through the coupler (C2) at the opposite end of the fiber with a calibrated

UDT power meter and calibrating this measurement with large area

photodetector (D1) which monitors the input beam power via reflection

from the pellicle beamsplitter (BS1). The transmitted pump beam is

found to contain 80% of its power in one polarization direction. The

Stokes probe beam is generated by launching the other beam into the 500

meter long fiber which generates a Stokes signal. Under conditions of

normal SBS, the spectrum of the Stokes signal would be the gain-

narrowed spontaneous Brillouin spectrum. However, the cleaved ends

of the fiber can form a low-Q cavity due to the weak reflection (- 4%) at

each endface. In the presence of the very high gain, the fiber can serve

as a Brillouin oscillator and the Stokes output spectrum becomes

essentially as narrow as the linewidth of the laser (< 2 MHz). This effect

will be discussed in greater detail in Chapter 4 which considers SBS in

the presence of feedback. By using this Brillouin oscillator, a Stokes
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signal wave is generated with a very narrow spectral linewidth and with

a frequency that is at the peak of the Brillouin gain spectrum. The

Stokes signal wave is then passed through a polarizer which is rotated

such that the transmitted light is polarized parallel to the polarization

direction along which the transmitted pump field contains 80% of its

power. By slightly misaligning the coupler C2, the Stokes probe power

inside the fiber could be varied.

The power of the Stokes probe wave was monitored via reflection

from the beamsplitter BS1 with a large area photodetector D2. By

measuring the power of the probe beam with the pump beam blocked,

and then unblocked, the total gain of the probe due to SBS could be

determined. The total gain for the probe wave was measured for two

different input pump powers (130 mW and 200 mW inside the fiber) and

for two different input probe powers (28 gW and 70 ±tW inside the fiber).

The total gain eG for a particular pump and probe power is then given by

the signal at D2 with the pump unblocked, divided by the signal at D2

with the pump blocked. From this quantity the value of G is determined

and the value for the gain factor is given simply by the relation

0.8GA (3.1)
go= pIL

where P, is the laser power inside the fiber, A = 1 x 10-11 m 2 is the area of

the fiber core, L = 10 m is the length of the fiber, and the factor of 0.8 in

the numerator takes into account the fact that only 80% of the light of

transmitted pump wave is polarized parallel to input Stokes field. The
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final value for g0 is determined by averaging the four measured values

and is given by

g. = (2.5+0.1) x 10- 1 1 m/W. (3.2)

This value is close to the theoretically predicted value of 5x10 "1 1 m/W for

bulk silica.
8

Section 3.2 Measurement of SBS Threshold

The threshold single-pass gain Gth for SBS can be defined as the

value of G for which the output Stokes intensity is one percent of the

input laser intensity. Using the high-gain (G >> 1) expression for the

expectation value for the Stokes intensity [Eq. (2.29)], Gth is then given by

the following transcendental equation

G312 e-Gh = 100a (33)th T.3

where a is the fraction of laser light that is spontaneously 'cattered into

the Stokes field and is given in te,-ns of fundamental parameters by Eq.

(2.27). Boyd, et al9 predict that the threshold single-pass gain for SBS is

not a universal value but varies for different materials and for different

laser frequencies. The origin of this variation is due to the varying

amount of spontaneous Brillouin scattering that initiates the SBS

process for different materials. However, since the threshold single-

pass gain Gth varies approximately with the natural log of the strength a
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laser ON
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Fig. 3.2 Experimental set-up used to measure the Stokes output power as a function of

the laser input power.

of the spontaneous scattering, for most materials the threshold value Gth

is predicted to be in the range between 20 and 25 in which the interaction

region is of a Fresnel number equal to unity, i.e., L / VA-- .1 0 For optical

fibers, the situation can be considerably different. Due to the guiding

nature of the fiber, a single-mode interaction is maintained over a much

longer length than is generally the case for an interaction region of

Fresnel number equal to unity. Thus, the strength a of the spontaneous

scattering can be several orders of magnitude larger than the value

which would be expected in a focused geometry, leading to a threshold

single-pass gain Gth < 10 for fiber lengths of several kilometers.

The experimental set-up used to measure the threshold for SBS is

shown in Fig. 3.2. The pump beam was coupled into the fiber and, with

the pellicle beamsplitter BS1, the input pump power and output Stokes

power could be measured with large-area photodetectors DI and D2,

respectively. The coupling efficiency into the fiber was determined by

measuring (at low input powers) the power of the light transmitted

though the fiber, multiplying this value by e L , where a is the absorption
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factor for the fiber, and dividing it by the power incident upon the fiber

coupler. The signals from detectors D1 and D2 were sent to two separate

channels of a Tektronix RTD710 transient digitizer. By setting the total

sample interval to 10 sec and by manually rotating the half-wave plate

900 during time interval, the full range of values for Stokes power versus

the incident power could then be generated. The measurements were

performed for two different lengths of fiber (100 m and 500 m) and at two

different laser wavelengths: the single-mode argon operating at 0.5145

gm and a Coherent 669-21 frequency-stabilized single-mode ring dye

laser operating at 0.5890 gm. With the single-mode argon-ion laser, up

to 400 mW of laser power could be launched into the fiber, and with the

dye laser, up to 120 mW could be launched.

Due to the presence of high Brillouin gain inside the fiber, even

small reflections from the endfaces of the fiber can result in the

formation of a Brillouin oscillator. The characteristics of the Stokes

output under these conditions can be dramatically different than would

be expected from normal SBS (see Chapter 4). 6 ' 10 In order to prevent the

fiber from forming a Brillouin oscillator, the reflections from each end of

the fiber were minimized. The back end of the fiber was placed in index

matching fluid and the front end was cleaved in such a manner that the

Stokes output beam and the specular reflection of the laser from the

front end of the fiber were well separated after passing back through the

fiber coupler. This procedure insured that the normal to the front

endface was not along the axis of the fiber minimizing the amount of

Stokes light reflected back into the fiber.
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Fig. 3.3 Experimental results for the SBS reflectivity as a function of the input laser

power at a wavelength A, = 0.5890 g~m for the (a) 100-meter-long fiber and the (b)

500-meter-long fiber.
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Fig. 3.4 Experimental results for the SBS reflectivity as a function of the input laser

power at a wavelength A, = 0.5145 pm for the (a) 100 meter-long fiber and the (b) 500

meter-long fiber.

Figures 3.3 and 3.4 are plots of the SBS reflectivity (output Stokes

power divided by the input laser power) as a function of the input laser

power for the dye laser and the argon laser, respectively. Figures 3.3(a)

and 3.4(a) show the results for the case of the 100-m-long fiber and Figs.

3.3(b) and 3.4(b) show the results for the case of the 500-m-long fiber. In

all cases the output Stokes light contained approximately 70% of its

power in the polarization direction parallel to that of the incident laser.
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By assuming that the threshold for SBS occurs when the SBS reflectivity

is equal to 1%, and by using the measured value for g0 , an estimate for

the threshold single-pass gain for each case can be made with the

following expression

Gth =0.7goPthLeff IA (3.4)

where the factor of 0.7 takes into account the slight depolarization of the

laser field inside the fiber, P th is the threshold laser power

corresponding to an SBS reflectivity of 1%, and Leff = (1 - e'aL)/a is the

effective interaction length' which takes into account linear optical

absorption of the laser and Stokes fields inside the fiber. In the limit

where the total ab: .'rption pathlength is large (aL >> 1), L ef is simply

I @ 0.5145 gm @ 0.5890 gzm

a 4.38 km1  3.32 km1

L. T(100 m) 81 m 85 m

F T (100 m) 453 360
t I -

Left (500 m) 203 m 269 m

F Tt (500 m) l133 1139

Table 3.1 List of the effective interaction length and the ratio of the transit time to

the phonon lifetime for the 100-meter-long and 500-meter-long optical fibers at the two

laser wavelengths used in the experiments.
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the Beer's length a-I. Table 3.1 lists, for both the laser wavelengths

(0.5145 pgm and 0.5890 pum), the absorption coefficient a and the effective

length Leff for the 100-m and 500-m-long fibers. In calculating the value

for F TV the effective length Leff of the fiber and the experimentally

determined value for the Stokes linewidth at 0.5890 g~m (see Section 3.4)

were assumed. (The value of the linewidth at 0.5145 g~m was

extrapolated from the w 2 dependence of the linewidth.)

The corresponding values for Gth in all four cases are shown in

Figs. 3.3 and 3.4. An estimate for the theoretical value of Gth can be made

using c.q. (3.3) and substituting the appropriate values for a. The

predicted values for Gth with the 100-m and 500-m-long fibers is: Gth =

12.6 and Gth = 11.4, respectively at 0.5890 pm, and Gth = 12.1 and Gth= 11,

respectively at 0.5145 pgm. [In determining the magnitude of a for each

case, the values for F T from Table 3.1 are used.] Thus, the

experimentally measured values for the threshold single-pass gain

confirms the prediction that the threshold single-pass gain for SBS in an

optical fiber can be considerably smaller than the values that would be

expected from a geometry with Fresnel number equal to unity.
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Section 3.3 Temporal Behavior of the Output Stokes Intensity

The experimental set-up used to observe the temporal behavior of

the Stokes output intensity is similar to the set-up shown in Fig. 3.2,

except that the large-area detector D2 is replaced by a fast photodiode

detector with a uniform frequency response from d.c. to 150 MHz. The

output from the photodiode is sent to the transient digitizer and a 5 ns

interval between sampling points was used in all cases. As explained in

the previous Section, care was taken to insure that the reflections from

the ends of the fiber were minimized so that the regime of pure single-

beam SBS could be studied. The results shown here are cnly for case of

the wavelength 0.5145 gm, since much higher laser powers could be

attained with the argon-ion laser than with the dye laser, and the results

for similar laser powers were qualitatively the same in both cases. The

temporal evolution of the laser over a 5 ps duration is shown in Fig. 3.5

and shows that the laser intensity is indeed quiet over this time interval.

Co

0 -

I I I I

0 5

time (gsec)

Fig. 3.5 Laser output power is plotted as a function of time.
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Fig. 3.6 Temporal evolution of Stokes output power for the case of the 100-meter-long

fiber for an input laser power of (a) 87 mW and (b) 265 mW.

Figures 3.6 and 3.7 are plots of the temporal evolution of the Stokes

power for the 100-meter and 500-meter-long fibers, respectively. Figures

3.6(a) and 3.7(a) show the Stokes output just above threshold, while Figs.

3.6(b) and 3.7(b) show the Stokes output far above threshold. In all cases

the Stokes output exhibits the large fluctuations, which is in accordance

with theoretical predictions for large values of the product FT, (Section

2.3). The estimated values for FTt for the different fiber lengths and

laser wavelengths are listed in Table 3.1.
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Fig. 3.7 Temporal evolution of Stokes output power for the 500-meter-long fiber an

input laser power of (a) 44 mW and (b) 220 roW.

Similar behavior has been observed by Harrison et al. 11 under very

similar experimental conditions, but they attribute the source of the

fluctuations to the system undergoing deterministic chaos. Their

theoretical model assumes that the medium has nonlinear refractive

index, and they neglect the stochastic initiation of the SBS process.

However, in order for chaotic behavior to occur in their model, the values

of the nonlinear-index coefficient and the Brillouin linewidth are

required to be several times larger than the measured values. 12 Their
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model also predicts that the system undergoes a period-doubling route to

chaos as the input laser intensity is increased. In of the none of the

experimental data taken by either Harrison et al. 12 or myself (in the

absence of feedback from the fiber endfaces) was any periodic behavior

observed.

Figures 3.8(a) and 3.8(b) are plots of the normalized standard

deviation AI, [Eq. (2.22)] of the Stokes intensity as a function of theS

estimated single-pass gain, G for the 100- and 500-meter-long fibers,

respectively. The value of G was estimated from the expression

G = 0.7goP L / A (3.5)

where the value for L is taken to be the actual length of the fiber. There

exists a slight quenching of the fluctuations at higher input powers and

in all cases the value of AI, is slightly less than unity. The solid curve

represents the result of numerical simulations for the parameters that

correspond to the experimental conditions (see Table 3.1) with the

inclusion of the depolarization of the Stokes output field. The effect of the

depolarization was taken into account by assuming that the statistical

nature of the Stokes field is similar to that of a thermal beam. The

normalized standard deviation A[ for partially polarized light from a
PP

thermal beam is given by the following expression 13
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G

Fig. 3.8 Plot of normalized standard deviation of the experimentally measured

Stokes output intensity as a function of the normalized input internsity G for the (a)

100-meter-long fiber and the (b) 500-meter-long fiber. The solid curve in (a)

represents the theoretical prediction.

<I >2 +<I >2
Al/P = < I y (3.6)

PP <I>

where I and I are the intensities of the x and y components of thex y

thermal field, respectively, and I = I + I is the total intensity. For thex y
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case in which 70 % of the light is polarized along the x direction, the

resulting value for Al is 0.78. This factor of 0.78 was used to scale the
PP

the values of Al obtained from numerical simulations. The theoreticals

curve is found to be in reasonable aggreement with experimental data.

Obtaining a theoretical curve for the 500 meter-long-fiber would have

taken a prohibitive amount of computer time, and thus comparison with

theory is not possible in this case.

Section 3.4 Spectrum of Stokes Light

In this Section, the results for the spectrum of the Stokes light

measured as a function of the input laser intensity are described. The

first measurements of the spontaneous Stokes spectrum in an optical

fiber were performed by Thomas, et al.14 At a wavelength of 0.5145 gm

and in a pure silica core fiber, they observed the spontaneous spectrum

of the light scattered at an angle of 1800 to the direction of the laser light

PMT

super cavity
SRTD

FI X/2 pol FAOM[

dyelaser H No 0fiber

Fig. 3.9 Experimental set-up used for measuring the optical spectrum of the Stokes

field.
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and measured a value of the Brillouin linewidth equal to 130 MHz.

Pump-probe experiments have also been performed to measure the gain

spectra for near infrared for fibers of different core profiles and

containing various dopants. 15 Various workers have also made careful

measurements of the Brillouin frequency shift4 ' and its shift as function

of core dopant. 
16

The experimental set-up is shown in Fig. 3.9. For all the spectral

measurements, a Coherent 699 frequency-stabilized dye laser was used

due to its long term (> 5 s) frequency stability to within 2 MHz. Light

from the laser was passed through a Faraday isolator and the laser

power to the fiber was varied with the half-wave plate and a polarizer.

The Stokes light reflected from the pellicle beamsplitter BS1 was passed

through an Isomet acousto-optic modulator model 1205C and the first-

order diffracted component was sent into a NRC "super-cavity"

scanning Fabry-Perot interferometer. In order to measure the Brillouin

frequency shift, the super-cavity model SR-220 was used due to its large

free spectral range (100 GHz) and the shift was found to be 35 GHz. In

order to perform high resolution measurements on the Brillouin

spectral line itself, the longer-length super-cavity (SR-120) was utilized.

The modeA SR-120 possesses a free spectral range of 6 GHz and a finesse

greater than 10 4 . The scanning rate of the super-cavity was kept at 25

Hz. The acoustic-optic modulator (AOM) served two purposes in the

experiment: by modulating the rf signal to the AOM with a frequency

generator, sidebands to the carrier frequency could be imposed on the

light entering the interferometer which allowed for frequency
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calibration of the interferometer; and the AOM isolated the

interferometer from the fiber. As the interferometer was scanned, the

transmitted light was detected by a cooled Thorn EMI 50 III

photomultiplier (PMT). The signal from the PMT was then sent to the

RTD710. To achieve well defined spectra, particularly for small Stokes

signals, the RTD710 was set to average 128 data, each corresponding to a

scan of the super cavity. This averaged data was then read into an PDP-

11 microcomputer through an IEEE-4888 interface. The spectrum of the

(a)

0) (b

29MHz

I ! !

W75 MHz
0)

freqLency

Fig. 3.10 Output Stokes spectrum for an input laser power of (a) 66 mW and (b)

5.8 niW.
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Stokes light depends sensitively on the presence of feedback from both

the endfaces of the fiber. Thus, as discussed in Section 3.2, reflections

from the fiber endfaces were minimized, and the 500-meter-long fiber

was used for all the spectral data shown here due to its larger absorption

pathlength (Brillouin oscillation is more difficult to achieve with a

larger absorption pathlength).

Figures 3.10(a) and 3.10(b) are the Stokes spectra for high (66 mW)

and for low (5.8 mW) pump powers, respectively. The gain narrowing at

the higher laser power is evident. Figure 3.11 is a plot of the normalized

FWHM of the Stokes spectrum as a function of the normalized input

intensity G as calculated using Eq. (3.4). The experimental data is given

by the solid circles while the solid line denotes the theoretical prediction

for the linewidth. The spontaneous linewidth is assumed to be 135 MHz

0 1 1

II I III

0 35

G

Fig. 3.11 Experimentaly measured linewidth of the output Stokes spectrum (solid

circies) plotted as a function of the single-pass gain, G. The solid line is the

theoretical prediction.
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and the single-pass gain G is estimated from the measured value of the

gain factor go [Eq. (3.2)] and the laser power inside the front end of the

fiber. The theoretical prediction for the linewidth for small values of G is

given by the FWHM of the lineshape given by Eq. (2.33) and for larger

values of G is given by the FWHM of the power spectrum of the

numerically integrated times series of the Stokes field. The agreement

between theory and experiment is seen to be very good.
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Chapter 4

Stimulated Brillouin Scattering in the Presence of

External Feedback

As mentioned in Chapters 2 and 3, an optical system that exhibits

gain can serve as an amplifier for the thermal or quantum noise which

is inherent in the system. However, as has been shown for the laser,

when gain is accompanied by feedback from an optical cavity, the

behavior of the system can become dramatically modified. When the

gain of the system exceeds the losses of the cavity, the system undergoes

a transition from stochastic behavior to one that can be treated in a

deterministic fashion. This transition can be understood as the

occurrence of an absolute instability in the system. For the case of a

laser, an inversion is established within a collection of atoms or

molecules, and through the process of stimulated emission, one or more

modes of the cavity oscillate. Since gain can also be achieved through

nonlinear optical processes (e.g., stimulated Raman scattering, SBS,

four-wave mixing), parametric oscillators can be created my

introducing feedback to the wave which experiences gain. However, in

general, the energy which provides the gain for a parametric oscillator

is stored in the pump wave, not in the interacting medium.
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Due to the extremely high gain that can be achieved in SBS,

several workers have constructed Brillouin oscillators 1 using only a

small amount of feedback. Only recently have theoretical studies been

undertaken to treat the SBS process in the presence of feedback.

Baumgartel et al.2 and Bar-Joseph et al.3 showed ihat the output

intensity of the Stokes wave from a Brillouin oscillator could become

temporally unstable and exhibit steady oscillations. Dianov et al.4

studied SBS in the piesence of feedback using the full stochast:c

differential equations and found that the Stokes output intensity loses its

stochastic nature at sufficiently high input intensity. However, in both

cases '3 they studied the temporal behavior of the Stokes output only for

short times after the turn-on of the laser field.

In this Chapter, the behavior of SBS in the presence of feedback is

investigated. In Section 4.1, the threshold for Brillouin oscillation is

determined, and even for the case in which the feedback is weak, the

threshold can still be considerably lower than the threshold for usual

SBS. The spectrum of the Stokes light is calculated and is found to

undergo extreme narrowing at the threshold for Brillouin oscillation.

In Section 4.2 results are presented that show the temporal behavior of

the Stokes intensity when the system is above the Brillouin-oscillation

threshold. The evolution of the outpu. 3tokes intensity is found to be

deterministic in which both stable or oscillatory behavior occurs.

Experimental studies of SBS in an optical fiber with weak feedback are

described in Section 4.3. Brillouin oscillation can occur at a threshold

considerably lower than at the threshold for normal SBS. The spectrum
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is observed to undergo a extreme narrowing and becomes much

narrower than what would be expected from the gain-narrowed

linewidth associated with usual SBS. In Section 4.4 experimental

observations of the temporal evolution of the Stokes output intensity are

shown. The behavior is of a deterministic nature in which the Stokes

intensity is found to drift between a wide range of oscillatory behavior

and a nonfluctuating stable output.

4.1 Spectrum and Threshold of SBS with External Feedback

Most of the theoretical groundwork required to treat SBS in the

presence of reflecting boundaries is formulated in Chapter 2, and all

that is needed is to provide the appropriate boundary conditions to

describe the cavity conditions. The geometry is shown in Fig. 4.1, where

ri and r2 are the amplitude reflectivities of the boundaries at z = 0 and z =

L, respectively. The reflecting boundary at z = L leads to a laser field that

is counterpropagating in the -z direction. Under these conditions, tl~e

generation of a field component at the anti-Stokes sidemode to the laser

ri  r2

laser field > Brillouin-active

Stokes field -medium

z=0 z=T

Fig. 4 1 Schematic illustration of the geometry for SBS in the prezonce of reflecting

boundaries where r and r2 are the amplitude reflectivities.
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frequency is possible due to a four-wave mixing process between the

Stokes field and forward- and backward-traveling laser fields. 5

However, in this treatment the generation of the anti-Stokes field is

ignored. This assumption is valid as long as the intensity of the

backward-traveling laser field is weak, or as long as the length of the

Brillouin-active medium is sufficiently large that the total phase-

mismatch associated with the four-wave mixing process (i.e.,

AkL = 2nl2L/c) is much greater than unity. This process is discussed in

greater deta* in Chapter 5.

The spectrum of the Stokes field is derived using the equations for

the Stokes field [Eq. (2.13b)] and the acoustic density [Eq. (2.14)] in the

limit of an undepleted laser field. The details of the derivation are given

in Appendix 4.1, and the power spectrum <Fb*(O,3)Fb(O,6)> of the

backward-traveling Stokes field is found to be equal to

< Fb*(O.5)Fb(0,,5) > B 1+1r22 (e1£ 12 Gb - )e i£ 2Gf _1 (4.1)S 'S nvA ie[(2o+0)+_ £(Gf +Gb)]

v 1-rlre r It i

where Gf b is the single-pass gain due to the forward- (backward-)

travelling laser fields inside the cavity, 0 is the relative detuning of the

nearest longitudinal mode of the cavity from the center of the Brillouin

spectral line (e.g., 0 = +7 corresponds to the situation in which the peak

of the spontaneous Brillouin spectrum lies exactly between two cavity

modes), £ = (1 - i2S/F "1 and g = £g." In the limit where rl, r 2 -+ 0, the
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spectrum reduces to the gain-narrowed spectrum associated with usual

SBS. The threshold for Brillouin-oscillation, which is equivalent to the

threshold for absolute instability, occurs when the denominator of the

right-hand-side of Eq. (4.1) vanishes. By setting both the real and the

imaginary parts of the term within the absolute-value brackets equal to

zero, we find that the threshold intensities and the oscillation frequency

are given by the expressions

22 ln(rlr2)(.aGth + Gth = -21n(r r 2 0 2)2(4.2a)

f b 12 [rT nr ]2

and

3th 0(4.2b)
F-- 2[/T ln(rlr2)]

For the case in which a forward-traveling laser field with a

normalized intensity equal to G is incident on the cavity and the feedback

is weak (r 1r 2 < 10"2), the left-hand-side of Eq. (4.2a) can be approximated

by Gth. If the cavity is also assumed to be sufficiently long that many

modes of the cavity lie beneath the Brillouin gain curve (FT t >>10), then

the oscillation frequency occurs roughly at the peak of the Brillouin line

(th- 0). The threshold laser intensity is then given by

Gth = -21n(r 1r 2). (4.3)
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Thus, even for small values of the reflectivity product (e.g., I r lr 2 12 = 104),

the threshold for Brillouin oscillation (Gth = 9) can be considerably

smaller than the threshold value for usual single-beam SBS.

When the term within the absolute-value brackets in the

expression for the Stokes spectrum [Eq. 4.1)] becomes small, the output

spectrum can become much narrower than either the gain-narrowed

spectrum or the cavity lineshape. The origin of this extreme spectral

narrowing is that the new modes of the cavity in the presence of Stokes

gain resemble a cavity whose effective reflectivity product is enhanced by
the factor exp[£(Gf+ Gb)/2] over its empty cavity value of rlr2 . Thus,

even in the limit of very small feedback (r1r2 << 1), a reasonable amount

of gain is sufficient to lead to a considerable narrowing of the Stokes

spectrum. Figure 4.2 shows plots of the Stokes spectrum for various

values of G for the cases FT = 5 and FT t = 100. In both cases, the values

of the reflectivities are taken to be I r1 12 = I 2 12 = 0.04 and the peak of the

spontaneous spectrum is assumed to lie at a cavity resonance such that

0 = 0. The spontaneous Brillouin spectrum is also shown for

comparison. For a value of G = 3, the spectrum for both values of FT t

possess nearly the same linewidth, but for FT t = 100 the effect of the

cavity on the lineshape is more pronounced due to the oscillations at the

cavity-mode frequencies. For a value of G close to the threshold for

Brillouin oscillation (Gth = 6.43), the spectrum for FT t = 5 has narrowed

considerably, but the narrowing is even more dramatic for the case

F Tt = 100. At the threshold for oscillation, the spectrum is perfectly

monchromatic which suggests that regardless of the stochastic
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Fig. 4.2 Plots of the Stokes spectrum in the presence of feedback2 
2

r 1 1 = Ir r 1 = 0.04) for two different values of G for the case of a relatively short

medium with /F Tt = 5 (a) and a long medium with r Tt = 100 (b). The dashed curve

in each case represents the spontaneous Brillouin spectrum.

initiation of the SBS process, the output from a Brillouin oscillator can

assume a deterministic nature.

4.2 Temporal Evolution of Stokes Output with Feedback

In order to determine the temporal behavior of the Stokes field for

input intensities above the threshold for Brillouin oscillation, the full
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stochastic differential equations for the laser field, Stokes field [Eq. (2.14)]

and the density [Eq. (2.15)] are numerically integrated with the

appropriate boundary conditions. For all the numerical simulations

presented in this Section, the reflectivity of the boundary at z = L is

assumed to be small, in which case the intensity of the backward-

traveling laser field is relatively weak. Under these conditions, the

forward-traveling Stokes field will not experience significant gain, thus

the Brillouin interaction between the Stokes field and the backward-

traveling laser field may be ignored. This effect is modeled by injecting

the Stokes field at z = 0 back into the medium at z = L with a one transit-

time delay and scaled by the reflectivities of the mirrors, such that

E (L,t) = rlr2 E(OAt - 7i). (4.4)

The validity of this scheme has been tested by comparing the results for

several cases with those results obtained in which interaction between

the backward-traveling laser and the forward-traveling Stokes field is

included. The behavior of the Stokes output field at z = 0 is found to be the

same for both schemes as long as the value of the product I r212 G

remains approximately less than 3.

Figures 4.3 and 4.4 show the temporal evolution of the Stokes

intensity for various values of G for the cases rT, = 5 and 100,

respectively. In all cases, the output is shown for the case in which the

transients associated with the turn-on of the laser field are no longer

present. For an input laser intensity (G = 4) below the threshold value
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for Brillouin oscillation, the Stokes intensity fluctuates in a stochastic

fashion and remains at a small value for both cases of F T =5

[Fig. 4.3(a)] and FT t = 100 [Fig. 4.4(a)]. For a value of G = 8, which is just

above the threshold for Brillouin oscillation, the Stokes output undergoes

a transition to an extremely stable state for the case FT = 5 [Fig. 4.3(b)]

with an SBS reflectvity greater than 15%. However, for F T = 100

(Fig 4.4b), the output intensity self-pulses with a period equal to the

round-trip time (2T of the cavity. This temporally unstable

deterministic behavior corresponds to the behavior predicted by Bar-

Joseph et al.3 through a stability analysis of the Stokes intensity. At still

higher input intensities (G = 15), output intensity for the case F T =5

2.10 -6! (a) 12 b)

0 - 0

I I I I I I I

25 (c) 30 (d)

0 0

170 200 170 200

tiT t/T

Fig. 4.3 Plots of Stokes output intensity, normalized by (g L) " , as a function of time2 20
for the caseFT =5, Ir1 I = Ir2  =0.04, andfor(a) G=4,(b)G=8,(c)G= 15, and

(d) G = 25. Above the threshold for Brillouin oscillation (Gth = 6.4), a region of

oscillatory behavior (b) is found to exist between stable regimes (a),(c).
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Fig. 4.4 Same as in Fig. 4.3 except r T t = 100. Above the threshold for Brillouin

oscillation, stable output is predicted only at high values o, G.

[Fig. 4.3(c)] also becomes temporally unstable, and begins to oscillate

with a period roughly equal to 3T t . For the case FT t = 100 [Fig. 4.4(c)] the

Stokes intensity still self-pulses at a basic period of 2T t , but it also

contains a periodic envelope whose period is approximately equal to 15Tt .

As the intensity is increased, the period of this envelope shortens until

eventually at an input intensity of G = 25 [Fig. 4.4(d)], the output becomes

stable and remains stable for increasing laser intensity. The output also

becomes stable once again for the case FTt = 5 and G = 25 [Fig. 4.3(d)].

4.3 Experimental Measurements of the Threshold for Brillouin

Oscillation and the Stokes Output Spectrum

As shown in Section 4.1, the threshold for SBS can be lower than

the threshold for usual single-beam SBS. The experimental set-up for
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meas-ring the backscattered Stokes power as a function of input laser

power is the same as that shown Fig. 3.2. No index matching fluid was

used and the fiber ends were cleaved such that a fraction (-4%) of the

light within the fiber was reflected back into the fiber by the glass-fiber

interface. Figures 4.5 and 1.6 are plots of the SBS reflectivity as a

function of the input laser power for the dye laser (L = 0.5890 pLm) and

the argon-ion laser (A/ = 0.5145 urm), respectively. Figures 4.5(a) and

4.6(a) show the results for the case of the 100-meter-long fiber and Figs

4.5(b) and 4.6(b) show the results for the case of the 500-meter-long fiber.

In all cases the output Stokes light contained approximately 70% of its

power in the polarization direction parallel to that of the laser. As

described in Section 3.2, an estimate can be made for the experimentally

measured single-pass gain at threshold by utilizi - the following

expression

Gh =0.7 gP L /A (4.4)
th o fh eff

The threshold power Pth is the laser power at which the SBS reflectivity

reaches 1%. The corresponding values of G th for all four cases are

shown in Figs. 4.5 and 4.6. For tbe 100-meter-long fiber, the values for

G th in the presence of feedback are measurably lo*,er than the values

measured without feedback [see Figs. 3.3(a) and 3.4(a)] which suggests

that feedback from the ends of the fiber could be playing a role in the

dynamics of the Stokes light. However, for the 500-meter-long fiber, the

reflectivity curves [Figs. 4.5(b) and 4.6(b)' are virtually identical to the
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curves measured in 'he absence of feedback [Figs. 3.3(b) and 3.4(b)],

which leads to the same values of Gth. Thus, the threshold data for the

500-meter-long fiber does not show evidence for the occurrence of

Brillouin oscillation. The effect of the absorption of the Stokes field can

be included in the theoretical prediction for the value of Gth, by adding

the round-trip absorption pathlength (2aL = 0.88 for the 100-meter-long

fiber, and 2aL = 4.38 for the 500-meter-long fiber) to the right-hand-side of

IIIII I
1
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.VC)

G =8
th

0

Z " - h 11.
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I I I I I I
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I III

0 100

laser power (mW)

Fig. 4.5 Experimental results for the SBS reflectvity in the presence of feedback

plotted as a function of the input laser power at a wavelength A, = 0.5890 grm for the

(a) 100-meter-long fiber and for the (b) 500-meter-long fiber.
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Fig. 4.6 Experimental results for the SBS reflectvity in the presence of feedback

plotted as a function of the input laser power at a wavelength A1 = 0.5145 gm for the

(a) 100-meter-long fiber and the (b) 500-meter-long fiber.

Eq. (4.3). Thus, the predictions for the values of threshold value of G are

equal to 7.3 and 10.8 for the 100-and 500-meter-long fibers, respectively.

The predicted values of Gth agree reasonably well with the

experimentally observed values.

The spectrum of the Stokes light was measured with the same

experimental configuration as the one shown in Fig. 3.10, except that

both fiber lengths (100- and 500-meter-long) were used. Figure 4.7(a) is a
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plot of the Stokes spectrum for a input laser power of 36 mW at the front-

end of the 100-meter-long fiber. This value of the laser power

corresponds to a value of G = 7.1. The measured spectral width of 41

MHz is approximately equal to the gain-narrowed linewidth that was

measured in the absence of feedback from the fiber endfaces. However,

at slightly higher input laser powers the spectrum suddenly collapses

with a width equal to that of the laser spectrum. Figure 4.7(b) is a plot of

SI I

(a)

V41- -zH

I !

(b)

*'-'- 2MHz

.2

S I , I I

frequency

Fig. 4.7 Spectrum of the Stokes light for the 100-meter-long fiber (a) just below the

thresnold for Brillouin oscillation (P1 = 36 mW) and (b) just above the threshold for

Brillouin oscillation (P1 48 mW).
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the Stokes spectrum for a laser power equal to 48 mW (G = 9) which is

just above the threshold for Brillouin oscillation. The spectrum for the

case of the 500-meter-long fiber displayed similar behavior.

4.4 Experimental Results for the Temporal Evolution of Stokes

Output Power i tha resence of Feedback

The experimental set-up employed to monitor the temporal

evolution of the Stokes output power in the presence of feedback is the

same as the one discussed in Section 3.3. The argon-ion laser

(A = 0.5145 gim) was used because it can deliver much higher laser

powers than those possible with the dye laser. However, for the range of

input powers accessible with the dye laser, behavior similar to that of the

argon-ion laser was obtained. Also, for all the cases shown here the 100-

meter-long fiber was utilized since the absorption pathlength was

relatively small (aL = 0.44) which made it a more ideal configuration

with which to study Brillouin oscillation. As predicted in the Section 4.2,

the temporal evolution of the Stokes output above the threshold for

Brillouin oscillation takes on a deterministic nature. However, for a

fixed input laser power, the output exhibited transitions between

different forms of periodic pulsations and intervals of stable output

consisting of almost no flucutations. The duration of a particular class

of behavior lasted no more than 1 msec, and the transitions occurred in

a time equal to roughly 5 Jgsec.

The period of the pulsations that was most commonly observed

was equal to the round-trip time (2T, = 1 gsec) through the fiber. Figure
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Fig. 4.8 Plots of the temporal evolution of the Stokes output power for input laser

powers of (a) P I = 56 mW, (b) P I = 79 raW, (c) P! = 82 maW, and (d) P I = 202 raW. In

all cases the basic period of the self-pulsing is equal to the round-trip time (I p~sec) of

the fiber.

4.8 shows several examples of the observed oscillations with a 1 gsec

period for various input laser powers. Generally, oscillations with this

periodicity were easier to achieve at laser powers close to Brillouin

oscillation threshold power (- 50 mW) than at the higher powers.

Oscillations at higher harmonics of the fundamental oscillation

frequency (1/2T f) were also observed. Figure 4.9(a)-4.9(e) shows temporal

evolution of Stokes output power for the cases in which it exhibits

oscillations at the second, third, fourth, fifth, and sixth harmonic of the

fundamental oscillation frequency, respectively. In Fig. 4.9(f), the Stokes

output is seen to be relatively stable as would be expected from

theoretical simulations shown in Section 4.2.
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Fig. 4.9 Plots of the temporal evolution of the Stokes output power for input laser

powers of (a) PI = 130 mW, (b) PI = 96 mW, (c) P, = 76 mW, (d) PI = 250 mW, (e)

PI = 100 mW, and (f) PI = 250 mW. Plots (a)-(e) show evidence of second, third,

fourth, fifth, and sixth harmonics, respectively, of the fundamental oscillation

frequency (1/2T t) Plot (f) demonstrates stable Stokes output.

At present, the theoretical model presented here does not predict

constant transitions between different types of periodic behavior, nor

does it predict the appearance of oscillatory behavior at harmonics of the

fundamental oscillation frequency (1/2Tt). However, since the spectrum

of the emitted Stokes light is nearly as narrow that of the laser, I believe
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that laser bandwidth effects may be playing a role in the complicated

dynamics that are observed. Attempts have been made to include laser

bandwidth effects by assuming a phase diffusion model for the laser;

however, the result of these simulations have not yielded results which

could explain either the transitory behavior or the observation of higher

harmonics. Another mechanism which may contribute to the observed

behavior are fluctuations in the optical pathlength of the fiber due to

changes in the ambient temperature. This effect could lead to a

relatively slow modification of the mode structure of the Brillouin

oscillator wi'thin a time interval of a few milliseconds.

In summary, the theoretical model described in this Chapter has

been able to confirm most of the experimental observations such as the

threshold for Brillouin oscillation and the extreme narrowing of the

Stokes spectrum. The numerical simulations have also shown

qualitative, but not quantitative, agreement with the experiment in that

the temporal evolution of the Stokes intensity displays deterministic

behavior including nonfluctuating output and temporal instabilities.

Appendix 4.1 Spectrum of Stokes light with feedback

The geometry under consideration is shown in Fig. 4.1. The

spectrum of the Stokes light emitted from the cavity is treated in the

limit in which neither the backward-traveling Stokes field Ef nor thes

forward-traveling Stokes field are sufficiently large to deplete the

forward-traveling laser field Ef or the backward-traveling laser field Eb,
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respectively. Equations (2.13b) and (2.14) are used to describe the

propagation of the Stokes fields inside the cavity such that

dEb dEb
-Sb  n s -iJpbE (A4.1a)
oz c dt

dPb F b *(A4.b)

dt + 2pb 1 = sE f2+(4.

dEf n dEf
+c _ S icPf E b  (A4.1c)

dzC dt

and

+Pf F iA E E + (A4. d)
--- pf = s bl

where Pb and Pf are the amplitudes of the acoustic density associated

with the backward- and the forward traveling Stokes fields, respectively,

and fl and f2 are uncorrelated noise terms which possess the same

Gaussian noise properties as those associated with the noise term f(z,t)

described in Section 2.1. The equations for the temporal Fourier

transforms of the backward-traveling Stokes field Fb(z,5) and the

forward-traveling Stokes field FIf(z,) can be derived from Eq. A4.1(a)-(d)

and are given by

dFb fs ib[ 2 -g 1  
b hl (A4.2a)

and
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dFf _ -n& 8 + F + ip f (A4.2b)
ci [c 2 bjs 8 f1

where g = £g' f = (1 - i2,5/1 1 , 4f,b = 2 b,f / F' 'f,b is the intensity of the

forward- (backward-) traveling laser field, and h1 and h2 are the Fourier

transforms of and f2, respectively. Since no Stokes field is injected into

the cavity, the homogeneous solutions to Eq. (A4.2) vanish. The

particular solutions to Eq. (A4.2) are

i- +g--1  'kL-z)

Fb(z,.)=C(z,8)e , c 2 f (A4.3a)

and

Ff(z,)=Cf(z,A)e' c 2 ) , (A4.3b)

where Cb and Cf are given by

Cb('5=C(L5)i2£Ef -; (i"&,-,, In) T--
Cb (z 8) =Cb(L,8) fdz 42(z) e(A4.4a)

and

i2~ xEz *,(in
8 /c-gIb/2 )z (4.bCf(Z,8)- Cf(O, 3 )+ bdz' h1 (z')e~

i c g b 2 z
C z3= 08+ F ' zh('e(A4.4b)

The boundary conditions for the total Stokes field leads to the following

relations between the Stokes amplitudes
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Fb(L,.5)= rFf (L, 6 )e ikaL (A4.5a)

and

Ff (0, ) = r Fb (O S) e ksL (A4.5b)

The power spectrum of the Stokes field at z = 0 is

< Fb*(0,,3)Fb(0,) > =<C*(08&C (0 8) >e 1j12Gf (A4.6)8 sb b Ib

where G f =g 01,L. The expression for C b(OA5 is found by applying the

boundary conditions [Eq. (4.5)] to Eqs. (4.3) and (4.4). The resulting

expression is then substituted into Eq. (4.6) to yield the power spectrum

< F*(03)F(O,5) = rkT 1+tr 2 2(e IE12 Gb -)Me 112Gf - 1 (4
nvA [i(2bT,*)+-!(Gf +O)]12 '47

I I- rr~e2 
-

where Gb g0 IbL and =(co - 21rv )T, represents the relative detuning

of the Stokes frequency from the nearest cavity-mode frequency v C
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Chapter 5

Instabilities and Chaos of Counterpropagating Waves

in an Briiouin-Active Medium

Several theoretical investigations have shown that the mutual

interaction of two light waves in a nonlinear medium can lead to very

complicated behavior, including chaotic fluctuations in the intensities of

the transmitted waves. The possibility of instability in the interaction of

counterpropagating waves was considered by Silberberg and Bar-

Joseph' for the case of a nonlinear Kerr medium having a

noninstantaneous response. They showed that for sufficiently large

input intensities these fluctuations become chaotic. The origin of this

instability is the combined action of the gain experienced by the

sidemodes to the input fields and the distributed feedback due to

scattering from the grating formed by the interference between the two

input fields. Khitrova et al.2 have observed a related instability in

sodium vapor. More recently, Gaeta et al.3 have shown that chaotic

temporal fluctuations can occur in the polarizations of waves

counterpropagating in a Kerr medium that possess tensor properties,

even for the case of a medium with instantaneous response. The

threshold for this instability can be much lower than the scalar
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instability. Gauthier et al.4 have observed the polarization instability

also in sodium vapor.

In Chap. 2 and 4 only the generation of Stokes light was

considered. This assumption is valid as long as only a single pump

wave is present. In the case of counterpropagating waves, if the

medium is sufficiently long then the anti-Stokes field cannot grow due to

the large phase mismatch which suppresses the four-wave mixing

process leading to anti-Stokes generation.

In this Chapter, the behavior of two laser beams

counterpropagating in a Brillouin-active medium is studied. Unlike the

case of normal SBS, this interaction leads to coupling of Stokes and anti-

Stokes waves through a four-wave mi ing process, which can lead to

deterministic fluctuations of the two laser beams. Under certain

conditions chaotic fluctuations are predicted.

5.1 Theoretical Development

The total field within the Brillouin-active medium is represented

as the sum of the forward- and backward-travelling plane-wave

components as

E(z,t) = 1 E (z,t)e(k ) +-1E (-kz-) + c.c. (5.1)

2 f 2 b

Unlike the case of normal SBS treated in Chap. 2, both the forwai-d and

backward travelling waves may contain contributions at the the Stokes

and anti-Stokes frequencies. Since we are interested in the deterministic



dynamical behavior of the two strong fields, only the electrostrictive

driving term in Eq. (2.4) for the material density is considered such that

d2o5 d d2o _2 d2A -Y d2 t2(52

dt~2 dt 2 2 8grcdZ2 (52

In evaluating the electrostrictive driving term on the right-hand side of

Eq. (5.2), the terms that oscillate at optical frequencies are neglected as

well as those terms which lead to an acoustic wave with a wave vector

nearly equal to zero. The right-hand side of Eq. (5.2) then reduces to

2q2 (E Ee iqz

167( f b +c.c.) , (5.3)

where q = 2k. The form of Eq. (5.2) can now be simplified by introducing

the complex representation

5(z,t) = l p(z,t)ei qz + c.c. , (5.4)

by making the slowly varying amplitude approximation for the acoustic

field, and by assuming that the acoustic field is strongly absorbed, i.e.,

that Fl dp/l- I >> (2f121q) I dp/dz I, to give

d2 + 22 +F-P+f 2 p Efb. (5.5)

The expression for the acoustic field amplitude [Eq (5.4)] is substituted

into the polarization given by Eq. (2.13). Both the polarization and the
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field amplitudes [Eq. (5.1)] are then substituted into the driven wave

equation (2.12) and the SVEA is made which yields the following

coupled-amplitude equations

dEf n dEf
+ - = ipEb (5.6a)dz c dt

and

d n d Eb = -i p *. (5.6b)
-z c dt f

Equations (5.5) and (5.6) have been derived previously but were used to

treat the case in which Eb was generated by reflection of the transmitted

field Ef 5 The case treated here is one in which both Ef and E b are

applied externally. As shown below, complex temporal behavior can

occur even when there is no external feedback. Equations (5.5) and (5.6)

yield the following simple steady-state solution (designated by the

superscript zero):

p(z)= E (z)E* (z), (5.7a)

i -- g. IZ
E()= E(0le 20 ,(5.7b)

and

i F-g If (L-z)E'(z) E'(L)e 2.0 0 (5.7c)
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where If = (nc/8n) I E /0) 12 and Ib= (nc/8n) I Eb(L) 1 2 are the input

intensities of each wave. One can see from Eqs. (5.7) that in the steady-

state the fields do not exchange energy but that the phase velocity of

propagation of each wave is affected by the intensity of the other wave.

The nonlinear contribution to the phase shift is proportional to the

product of the line-center gain factor g with the ratio F/D of the

Brillouin linewidth to the Brillouin frequency shift. Since g is itself

proportional to r 1 [see Eq. (2.17)], we note that the nonlinear phase shift

is actually independent of F.

5.2 Linear Stability Analysis

To determine the stability characteristics of the steady-state

solution [Eq. (5.7)], the amplitudes of the forward and backward waves

are perturbed such that

Ef(z) = E(z)+ f,(z)e" + fa(z)e bt (5.8a)

and

Eb (z) = Eg(z)+ b (z)e + b (Z)et (5.8b)

where the second and third terms in each equation represent small

perturbations to the steady-state solution. If Re() > 0, the steady-state

solution will be temporally unstable to the growth of these perturbations.

The linearized equations for the perturbations amplitudes are derived by

inserting these expressions for the electric fields into Eqs. (5.5) and (5.6):
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-fs (-An/c+AIb s+  g bn-Ea+g (C. O+(c Eo0 c ) * .9a)
dz 2 1 6 r b gy 1 6 n a b5.a'

dbs (Un / c - 9 f)b - '- g  E )a, (.b

dfa .I"/+- cn Eo*Eb
-dz -- 2.nc gII)fa-.-go- E E b* Ef -* Eo*)b(59c

and af~ , go( cnb*cn~oE*I

z ( nc+ g-I)b * + gii ) h- (5c
db*~ a F (e E E * )fag+ 9( o*'r ( 9d

dz 2 f a16r b 167(5.9d)

where

g=g F12Aj2 (5.9e)
g g 2 + ra + £22 (.e

To understand the nature of the coupling described by these

equations, we assume Im(a) > 0. The complex amplitudes fs and b can

then be interpreted to be the amplitudes of the forward- and backward-

traveling Stokes fields, respectively, and the complex amplitudes fa and

b can be interpreted to be the amplitudes of the forward- and backward-a

traveling anti-Stokes fields, respectively. Then, for example, Eq. (5.9a)

describes the spatial evolution of the forward-traveling Stokes wave. The

first term on the right-hand side describes the change in the

propagation vector that is associated with A and with the normal SBS

gain (proportional to g) owing to the presence of the backward pump

wave [see Fig. 5.1(a)]. The backward pump wave scatters from the
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retreating acoustic field created by its interference with the forward-

Stokes wave. The gain coefficient is resonantly enhanced when Im(A)

(i.e., the frequency difference between the pump and Stokes fields) is

equal to the Brillouin frequency £2. The second term in Eq. (5.9a) [see

Fig. 5.1(b)] can be interpreted as the scattering of the backward-Stokes

wave from the refractive-index variation associated with the standing-

wave pattern created by the interference of the counterpropagating

pump waves. This term describes distributed feedback of the same type

as that discussed by Silberberg and Bar-Joseph. The third term

describes the four-wave mixing process arising from the scattering of

the backward pump wave from the retreating acoustic wave driven by

the interference between the forward pump wave and the backward anti-

Stokes wave [see Fig. 5.1(c)]. The other equations [(5.9b)-(5.9d)] can be

interpreted in an analogous fashion. For each equation the second term

vanishes for the case of a sharp Brillouin line, F/ £2 - 0, which is the

limit in which SBS is usually studied. In this limit the system of four

coupled equations decouples into two systems of two coupled equations;

each system describes a four-wave mixing process. 6

The linearized equations [Eqs. (5.9)] are solved with pump wave

amplitudes given by Eqs. (5.7b) and (5.7c) by seeking solutions for the

perturbations that vary as ec'. The general solution for f', b, fa' and ba

is then found in terms of linear combinations of such solutions for each

of the four eigenvalues of a. The particular solution is found by applying

the boundary conditions fs(O) = bs(L) = fa(O) = ba(L) = 0. Because the

steady-state solution is unstable for Re(X) > 0, the threshold for instability
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Fig. 5.1 Schematic diagrams that illustrate the three contributions to the forward-

traveling Stokes field f given by Eq. (5.9a).

is determined by setting Re(A) = 0. More than one solution to the

linearized equations can be found even under these conditions, and the

different solutions correspond to different longitudinal modes of the

system and to different oscillation frequencies Im(A). The instability

threshold for the system is the lowest intensity that yields a solution to

the coupled linearized equations with Re(A) = 0 for any value of Ir(nG).
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Typical results of the stability analysis arz shown in Fig. 5.2 for

the case of a Brillouin medium with F/ 12 = 0.03. In Fig. 5.2(a) the

normalized forward input intensity at threshold for the Brillouin

instability is plotted as function of the ratio of the input intensities for

several different values of the normalized length of the medium. In

each case the system is unstable in the region above the curve. Figure

I I 1 /

30 (a) AkL = 0.1

100
0

10

0-
I I II

I I I I
3 (b) AkL =0.1

10

0 -10 0

II II0.001 0.01 0.11

b f
Fig. 5.2 Forward input intensity at (a) the threshold for instability and (b) the

frequency of oscillation, each plotted as a function of the backward-to-forward input

intensities for F/Dr2 = 0.03 and for various values of the normalized length of the

medium AkL.
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5.2(b) shows the normalized oscillation frequency Im(A.) at threshold.

The oscillation frequency is close to the Brillouin frequency for each case

shown. The quantity AkL = 2n2L/c, which here is called the

normalized length of the medium, is therefore approximately equal to

the single-pass phase mismatch of the nearly degenerate four-wave

mixing process. 7 The threshold input intensity increases rapidly for a

short medium (WkL = 0.1) with balanced pumping (b/I f = 1). This

increase occurs because for balanced pumping the Stokes gain is nearly

I I I I

30 (a) AkL = 0.1 N

10

10

0 -
I I II

1 (b) ztkL =0.1

11I00
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Fig. 5.3 Same as in Fig. 5.2 but for the ease of a much larger Brillouin linewidth

such that F1 0= 0.3.
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equal to the Stokes loss, and for a short medium the coupling between

the waves is sufficiently strong to prevent either wave from growing.6' 8'9

For comparison, we have plotted the results of the stability analysis for

the case of a medium with a much larger Brillouin linewidth such that

F1 = 0.3 (Fig. 5.3). Although these two cases are quite similar in their

behavior near the threshold for instability, the temporal behavior of the

two cases will be shown to be considerably different.

The Brillouin instability predicted above is an example of a

absolute instability in that perturbation to the steady-state solution grows

exponentially in time and thus will develop from an arbitrarily small

initial perturbation. The process of SBS is the exponential spatial

growth of an input Stokes wave and hence is a convective instability.

Even if no Stokes wave is applied externally, an input Stokes (and anti-

Stokes) wave is created by spontaneous Brillouin scattering. The

threshold for SBS excited by a single laser beam and seeded by

spontaneous Brillouin scattering is described by the condition that the

single-pass gain Gf =goI/L is approximately equal 25. From Figs. 5.2

and 5.3 the threshold for the Brillouin instability is seen to be lower than

the threshold for single beam SBS for most of the cases that are

considered; hence the dynamic Brillouin instability will occur but SBS

will not. However, the threshold for instability predicted in Figs. 5.2 and

5.3 is higher than that of single-beam SBS for the case of a short medium

with balanced pumping and for the case of long medium with

imbalanced pumping. To determine whether SBS or the dynamic

instability will occur in these two cases, a more detailed consideration of
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the initiation of SBS by spontaneous Brillouin scattering on the present

calculation must be performed. For the case of highly imbalanced

pumping, the situation is similar to that of SBS with a single pump

beam, and a threshold for SBS is simply g0 IL = 25, where I is the

intensity of the stronger pump beam. Therefore, since the dynamic

instability treated here has a higher threshold, it is probably not

experimentally observable for this case. For the case of a short medium

(AkL << 1) with balanced pumping, the situation is quite different. Here,

as mentioned above, the coupling between the Stokes wave (which in the

absence of coupling, experiences gain) and the anti-Stokes wave (which

in the absence of coupling, experiences loss) is so large that that the

coupled solution experiences little net gain, and as a result, even the

usual SBS process is suppressed by the presence of the

counterpropagating pump waves.6 To see that even the normal SBS

process is suppressed by the presence of the counterpropagating wave,

the simple limiting case is considered in which 1/0 approaches 0 and

the Stokes and anti-Stokes waves are tuned exactly to Brillouin

resonance. By solving Eqs. (5.9a) and (5.9d), the transmitted Stokes field

strength is found to be related to the input Stokes and anti-Stokes fields

when If= I and in the limit G >> 1 by
f b f

fs(L) = 2f 8(0) +b*(L) .(5.10)

Hence, in the presence of counterpropagating pump waves, the Stokes

field is amplified only by a factor of approximately 2, although the
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amplification in the presence of a single pump wave of the same

intensity would be eGf where Gf was assumed to be large.

Figure 5.4 shows plots of the normalized length of the medium

AkL versus the normalized intensity Gf [Fig. 5.4(a)] and normalized

oscillation frequency [Ira() - 2]IF [Fig. 5.2(b)] corresponding to each of

the allowed solutions of the linearized perturbation Eqs. 5.10 with
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Fig. 5.4 Forward i- jut intensity at (a) the threshold for instability and (b) the

frequency of oscillation for each mode of the system for the case of equal input

intensities and I'/0 = 0.3. The solid curve in (a) gives the lowest threshold intensity

for any mode, and th~e solid curves in (b) give the corresponding oscillation

frequency.
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Re(A) = 0. The case of balanced pumping (If = 1b ) and a broad Brillouin

line (F/f- = 0.3) is assumed. The various U-shaped curves in Fig. 5.4(a)

can be interpreted as the threshold for instability for the different

longitudinal modes of the system. The solid curve in Fig. 5.4

corresponds to the lowest input intensity that leads to instability for any

mode. Local minima in this threshold occur for AkL approximately

equal to the integral multiples of z. The solid curves in Fig. 5.4(b) give

the oscillation frequency of the mode with the lowest threshold. This

frequency is approximately equal to the Brillouin frequency except for

the case of a short medium, in which case the lowest-frequency mode of

the system has an eigenfrequency much greater than the Brillouin

frequency.

Silberberg and Bar-Joseph I have shown that the origin of the

instability of counterpropagating waves in a Kerr medium with

noninstantaneous response is the combined action of gain experienced

by the sidemodes of the pump frequency and distributed feedback.

Distributed feedback1 0 results from the scattering of light at the

sidemode frequencies from the grating induced by the interference

between the two pump waves. However, this gain distributed feedback

mechanism does not appear to be the origin of the instability for the case

of a Brillouin-active medium. The Brillouin instability occurs even in

the limit of a medium with a sharD Briy"ouin linewidth, although as

mentioned above there is no distributed feedback structure in this limit.

The Brillouin instability appears to be more closely related to the infinite

reflectivity that is predicted to occur for certain values of the pump
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intensity in phase conjugation by four-wave mixing. We can establish

this connection most simply by considering the limit F/.12 - 0, in which

case the linearized perturbation equations [Eqs. (5.9)] decouple into two

sets of equations. Each set describes a four-wave mixing process. These

equations are identical to those describing Brillouin-enhanced four-wave

mixing, and the Brillouin instability is a consequence of the infinite

reflectivity that can occur in phase conjugation by Brillouin-enhanced

four-wave mixing. 7 Infinite reflectivity is also predicted for phase

conjugation by degenerate four-wave mixing in a Kerr medium, 11 and it

might be thought that this infinite reflectivity is related to the

instabilities that can occur with counterpropagating beams in a Kerr

medium.1 However, in the scalar limit such instabilities occur only for

the case of a medium with noninstantaneous response, whereas the

infinite reflectivity is predicted for any value of the response time.

Infinite reflectivity in degenerate four-wave mixing does not necessarily

imply instabilities in counterpropagating waves for the following reason:

when the angle between the pump and probe waves in the phase

conjugation geometry is sufficiently small, additional nearly phase-

matched contributions to the nonlinear polarization, known as cross-

coupled waves, become important.1 2  These additional contribution

prevent the development of the instability unless the medium has

noninstantaneous response. Curiously (and importantly), the cross-

coupled waves do not contribute for the case of a Brillouin-active

medium with F/I << 1 because these additional contributions tire not

Brillouin resonant. Moreover, polarization instabilities in
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oscillates at the Brillouin frequency. However, for the higher input

intensity Gf = 8, the output oscillates periodically with a fundamental

frequency equal to to one half the Brillouin frequency. For still higher

intensities (Gf = 16), the output intensity oscillates with a fundamental

frequency equal to one quarter of the Brillouin frequency. At the highest

intensity shown (Gf = 30), the output intensity oscillates in a chaotic

fashion.

5
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Fig. 5.5 Temporal evolution of the transmitted intensity of the forward-traveling

wave normalized by (goL) " for three different values of the input intensity [(a)

Gf= 8, (b) Gf= 16, and (c) G 40] for the case AkL = 2, F/2 = 0.03, and If= I b .

f f
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Fig. 5.6 Temporal evolution of the transmitted intensity of the forward-traveling

wave normalized by (g0L) "1 for the case AkL = 2, r/a = 0.3, and equal input

intensities. As the input intensities are increased, the system becomes chaotic

following the periodic-doubling route. For input intensities such that (a) Gf = 6, the

output oscillates at the Brillouin frequency. For input intensities equal to (b) Gf = 10

and Gf = 16 the out put oscillates with a fundamental frequency equal to one half and

one quarter, respectively, of the Brillouin frequency. For Gf = 30 the temporal

evolution is chaotic.
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The dynamical behavior can also be illustrated by means of phase-

space trajectories. Figure 5.7 are plots for various values of G fof the real

part versus the imaginary part of the complex electric amplitude of the

forward-traveling wave at its output from the interaction region. As for

the case shown in Fig. 5.6, the ratio of the two input intensities is unity,

AkL = 2, and Ff2 = 0.3. For the case of low input intensities (Gf= 4), the

system is seen to be stable, and the trajectory reduces to that of a single

point. Slightly above the threshold for instability (Gf = 6), the output

I I I I I 1

13 (a) (b)
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SrQ ' " 0

-13 r I I I
I I I r

13  
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4 0

-13 1 1 1 I I I
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Re[E f(L)] Re[E f(L)]

Fig. 5.7 Phase-space trajectories of the complex field amplitude of the transmitted

traveling wave normalized by (g0L)"1 / 2 for four different values of the input

intensities [(a) Gf= 4, (b) G f= 6, (c) G f= 16, and (d) Gf = 301 for the case of F/fl = 0.3,

AkL = 2, and If = Ib .

fb m|
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fields oscillate sinusoidally about their steady-state values, and the

phase-space trajectory takes the form of a closed loop. For still higher

input intensities (Gf = 16), the trajectory is still periodic but with a period

equal to twice the fundamental Brillouin period (i.e., the evolution is

period 2), and the phase-space trajectory takes on a more complicated

form. Finally, for the case Gf = 30, the system evolves chaotically.

Analysis using the method of Grassberger and Procaccia 13 shows that

this trajectory is chaotic with a fractal dimension of 2.2.

Figure 5.8 shows the phase-space trajectories for the case of a

narrow Brillouin resonance with F1 2 = 0.03 and an interaction

pathlength such that AkL = 72. These parameters correspond to those of

our experimental investigation discussed in the following Section. The

threshold for instability for this case, as determined by the stability

analysis, occurs for Gf = 12.6. For the case of an input intensity

corresponding to Gf = 10, the trajectory reduces to a single point. For

intensities above the instability threshold, the trajectory takes on the

form of a nearly circular orbit corresponding to an output wave

consisting of a component at the laser frequency and of a Stokes

sideband. Note that the amplitude of the Stokes sideband increases with

increasing input laser intensity.
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Fig. 5.8 Phase-space trajectory of the complex field amplitude of the transmitted

forward-traveling wave for four different values of the input intensities [(a) Gf = 10,

(b) G= 20, (c) Gf = 30, and (d) Gf = 40] for the case of F/D = 0.03, AkL = 72, and
If= Ifb

5.4 Experimental Results

The experimental investigation of the stability of

counterpropagating laser beams was conducted using a frequency-

doubled Nd:YAG laser that operated in a single transverse and a single

longitudinal mode. The laser produced a smooth output pulse of 22-nsec

duration (FWHM intensity) containing as much as 30 mJ of energy. the

output beam was collimated with a diameter of 1 mm (FWHM intensity)

was split into two beams that were directed counterpropagating into a
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Fig 5.9 Experimental arrangement used to study counterpropagating light waves in

a cell containing carbon disulfide: wi, w2, half-wave plates; pbs, polarizing

beamsplitter.

15-cm-long cell containing carbon disulfide. The intensities of the two

beams could be adjusted independently by using polarizing optics, as

shown in Fig. 5.9.

The threshold for instability relative to that for normal, single-

beam SBS was determined by means of the following procedure. One of

the beams is blocked (i.e., the backward-traveling beam) and the

intensity of the other (forward) beam is slowly increased until the

threshold for SBS is reached. The occurrence of SBS is signaled by the

generation of backscattered Stokes radiation which is detected using a

Fabry-Perot. The measured threshold intensity for single-beam SBS was

found to be I = 42 MW/cm 2 . The backward beam is then unblocked,

and the intensities of the two beams are gradually decreased (at a fixed

intensity ratio) until the Stokes component no longer appears in the
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Fig. 5.10 Experimental measurement of the threshold for instability relative to the

threshold for single-beam SBS plotted as a function of the ratio of intensities of the

backward and forward waves.

output. The intensity of the forward-going beam at which this occurs

gives the instability threshold relative to that of SBS. The results of these

measurements are shown in Fig. 5.10. These results show that for the

case equal input intensities the threshold for instability is approximately

67% that for single-beam SBS. These results also show that the presence

of the counterpropagating beam whose intensity is even 10% of the that

of the pump wave is sufficient to lead to a measurable reduction of the

threshold for instability.

The temporal evolution of the intensity of the light leaving the

interaction region was measured with a streak camera having a

resolution of 2 psec. Experimental results for the case of equal input

intensities are shown in Fig. 5.11. In Fig. 5.11(a) the input intensity of

each beam is equal to 0.661 th, which is just below threshold for

instability. Figures 5.11(b) and (c) show the time evolution for input
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Fig. 5.11 Experimental data showing showing the temporal evolution of the

transmitted intensity of the forward-traveling wave for the case of equal input

intensities (If = 1b ) . Just below the threshold for instability (a), the output remains

stable. For the remaining three cases (b)-(d) the output oscillates at the Brillouin

frequency (7.7 GHz). Note in (b) and (c) the input intensities are below the threshold

for single-beam SBS.

intensities equal to 0.81 h and 0 .8 7 1 BS, respectively. These input

ealSBS i

intensities are above the threshold for instability but well below the

threshold for single-beam SBS. Hence the oscillation seen in the

experimental data provide evidence for the instability predicted in

Section 5.2. In Fig. 5.11(d) the input intensity is equal to 1.041 TheSBS'

frequency of the observed oscillations is in all cases equal to within our

measurement accuracy to the value 14 7.7 GHz, which is the Brillouin

frequency of carbon disulfide at 0.53 gm. Using the Fabry-Perot
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interferometer, the spectral content of the radiation leaving the

interaction region was examined. For all cases in which the instability

occurred, radiation was observed only at the laser and the first Stokes

frequencies. These results (that the Stokes intensity greatly exceeds that

of the anti-Stokes ) agree with the predictions of the theory in Section 5.3.

The far-field emission pattern of the transmitted light was also

examined. We find that under conditions of dynamical instability part of

the Stokes radiation is emitted in the form of a hexagon surrounding the

transmitted laser beam as shown in Fig. 5.12. The angle between the

pump wave and this part of the Stokes radiation is 3 x 10-3 rad. We find

that the hexagonal emission occurs for I = Ib and for I/Ishs in the

range 0.8 to 1.05. The origin of this could be related to the transverse

spatial instabilities predicted for Kerr media 15 and atomic systems. 16 A

spatial instability of similar nature has been observed by Grynberg et

al. 
17

Fig. 5.12 Hexagonal far-field emission pattern of the Stokes emission. The central

portion of the transmitted beam has been blocked.
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Chapter 6

Conclusions

In this Thesis, the results of theoretical and experimental

investigations of SBS under a variety of conditions have been presented.

Stimulated Brillouin scattering has proven to be a versatile nonlinear

optical process with which to study both stochastic and deterministic

behavior.

In Chapter 2, a treatment of normal SBS with a single pump wave

is described in which the spontaneous initiation of the process is

included. The amount of laser light that is scattered spontaneously is

derived by assuming that the density of the medium is driven by thermal

fluctuations (represented by a deita-correiated fluctuating force). Thus,

the full stochastic nonlinear differential equations are used to examine

the statistical properties of SBS. In the limit of an undepleted laser field,

an analytic solution to the output Stokes field is derived, whose intensity

is predicted to exhibit 100% fluctuations and whose spectrum is gain-

narrowed. The dynamical behavior of the Stokes light is explored in the

depletion region by numerically integrating the stochastic differential

equations. The ratio of the transit time of the light through the medium

to the phonon lifetime (i.e., IT) is shown to strongly determine temporal

behavior of the Stokes output intensity. For smaller values of FTt , the
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the Stokes output intensity. For smaller values of FT, the fluctuations

in the Stokes intensity become suppressed above the SBS threshold.

However, dispersive looking features appear in the intensity that are the

result of phase jumps in the Stokes field which propagate through the

medium and reverse the flow of energy between the Stokes field and the

laser field. These phase-waves are analogous to those predicted for

superfluorescence and stimulated Raman scattering. For larger values

of F Tt, large fluctuations in the Stokes intensity persist until the value of

the single-pass gain G is larger than the value of FT . This is also the

condition for the appearance of phase-waves in the Stokes output. Thus,

the condition for the suppression of Stokes fluctuation6 cannot be

considered as equivalent to the condition of strong depletion of the laser

field.

In Chapter 3, the results of experiments in both 100- and 500-

meter-long single-mode optical fibers are discussed, and many of the

predictions of the theoretical model introduced in Chap. 2 are verified.

The value of the SBS gain factor g 0 was measured and is found to be

equal to 2.5 x 10"11 m/W. Since the effective value of the Fresnel number

for a guided-wave geometry can be much larger than the value that is

possible in a focused geometry, the respective threshold single-pass gain

for SBS can be much lower. Experimental measurements of the

threshold result in values as low as Gth 11.4 for the 500-meter-long

fiber. The temporal evolution of the Stokes intensity is found to exhibit

large fluctuations which is in good agreement with theory. Phase waves

were not observed since the intensities that could be reached in the
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experiment were insufficiently high to suppress the stochastic intensity

fluctuations. The output spectrum of the Stokes light is observed to

narrow as a function of increasing input laser power. For the largest

value of the input power, the gain-narrowing saturated such that at the

highest input laser powers, the linewidth of the Stokes spectrum was

roughly one fifth of the spontaneous Brillouin linewidth of 155 MHz.

These results also agree closely with the theoretical analysis.

Theoretical and experimental studies of SBS in the presence of

feedback are described in Chap. 4. As a result of the extremely high gain

that is achievable with SBS, a very small amount of feedback leads to a

Stokes output whose behavior is entirely different in character from the

stochastic behavior observed in Chapters 2 and 3. With the appropriate

boundary conditions, theoretical analysis of the stochastic differential

SBS equations demonstrates that the system exhibits a transition from

stochastic behavior to deterministic behavior. The resulting threshold

for this Brillouin oscillation can be much lower, and the output

spectrum is dramatically narrower than for the case of usual single-

beam SBS. In the Brillouin oscillation regime, the temporal behavior of

the Stokes wave can show stable output with no fluctuations as well as

temporal instabilities which lead to periodic behavior. The input laser

intensity G and the parameter FT t determine into which regime the

system settles. Experiments were performed in an optical fiber in which

the ends were cleaved such that a small fraction of the light was fed back

into the fiber. The threshold input intensity for Brillouin oscillation is

measured to be as low as Gth = 7.7 for the 100 meter-long fiber. The
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Stokes spectrum is observed to be as narrow as that of the incident laser.

The Stokes output power displays a wide range of behavior in the regime

of Brillouin oscillation, not all of which could be explained by the

theoretical model. Both stable output and oscillations at twice the transit

time through the fiber are observed. However, for a fixed input intensity,

the Stokes output drifts between different types of behavior, which

includes oscillations at sub-harmonics of the transit time. The origin of

the behavior can perhaps be ascribed to the fact that the frequency

stability of the input laser field was insufficient to allow the system to

reach a stationary state, or to fluctuations in the length of the fiber due to

environmental factors.

In Chapter 5 a study is made of SBS with counterpropagating

equal-frequency laser beams in a Brillouin-active material. Theoretical

analysis demonstrates that the transmitted beams can become

temporally unstable and can show deterministic chaos. The threshold

for this instability can be as much as five times below the threshold for

usual single-beam SBS. The important parameters that determine the

threshold input intensities for the temporal instability are the effective

phase-mismatch AkL associated with the four-wave mixing process

between the Stokes and anti-Stokes waves and the ratio between the two

input laser intensities. For values of AkL less than 100 and for ratios of

the backward-to forward input intensity in the range 10-3 < IbI f < 103, the

threshold for instability is found in almost all cases to be less than usual

SBS threshold. Although the ratio of the Brillouin linewdth to the

Brillouin frequency shift FID plays a small part in determining the
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determining the temporal behavior of the output waves above the

threshold for instability. For small values of F12 (< 0.2), the output

intensity is predicted to show oscillations at the Brillouin frequency.

However, for larger values of this ratio, the output intensity is observed to

exhibit a period-doubling route to chaos as the total input intensity is

increased. Results of an experiment performed in carbon disulfide with

a frequency-doubled, pulsed Nd:YAG laser provide evidence for the

existence the temporal instability. The threshold intensity for the

instability was found to be 33% lower than the threshold for usual SBS.

The transmitted field was observed to oscillate at the Brillouin frequency,

which is in agreement with the theoretical predictions. The reason that

chaos is not observed experimentally is due to the large phase-mismatch

(AkL = 72) and to the small value of the Brillouin linewidth to the

Brillouin frequency (F/£2 = 0.01) associated with the experimental

conditions. Kulagin and Pasmanik1 have recently suggested that ultra-

pure freon would be a suitable candidate as a Brillouin-active material

with which to observe Brillouin chaos since it has a reasonably large

value of F/D(- 0.25 at 1.06 pin).

1. 0. Kulagin and G. A. Pasmanik, private communication (1990).


