
,(l .)NREPORT DOCUMENTATION PAGE UJTW fILE o

lb. RESTICTIVE MARKINGS

3 D111I4I'LlIKON/AVAILAIIILI1Y 01 REPORT

AD-A230 977
4. PLMIOI)FMIN(j UI4(.ANIZAtILP- HLUMI NUMUEI() S. MONITORING ORGANIZATION REPORT NUMBER(S)

Repo s-t No. 7
6&. NAME OF PERFORMING ORtGANIZATION I6b OFFICE SYMBOL h. NAME OF MONITORING ORGANIZATION

IXepirtmcent of In formation~t & (I plab)

k.ADDRESS (City. State, and ZIP Coide) 7b ADDRESS (City, State, and ZIP Code)

tlivIrsitv of Ca1ifoiai1
Irvine, CA 92717

(P1I: Fat Lant-,lcv) _______________________________

8a NAME OF FUNOINGISPONSORItJG a b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) ID 903-85-C-324~
Army Research II,stitite

5c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
5001 Eil eniwer Avcnie PROGRAM PROJECT TASK IWORK UNIT
Alexandria, Virginia 22333 ELEMENT NO. NO. NO. 1ACCESSION NO

IT TITLE (Include Security Class'ication)

A~ utti fed rramewo~rk f ot 1anni ng And Learning

12. PERSONAL AUTHOR(S) TPat Larncic'y and .1rohn A. Allen

13a. TYPE OF REPORT 13b. TIME OVERED hill DATE OF REPORT (Year, Monh,ODay) 15. PAGE COUNT
Final Report FROM 9/1/85 To8/31/ 9 01 Nnve o!)r U), 1990 1 28

16,~ ~ ~ ~ ~ t SUPEETAYNTTINT ppe~ar in S. 11inton (Ed.), Cc:-Ipttat ionl Approaches to L.'.jrnin
and Planning. San Mateo, CA: 11orpan K~aufmann.

17, COSATI CODES 18 SUBJECT TERMS (Continue on reveoe if necessa'v and edentefy by bli r
FIELD GROUP $sIBGROUP concept for;&Uani....mns-ends analysis incremep, ta -earninp 1

search contt knowledge o*41t"based reasoning "WcopnttiW6J
models concept hiernrchie in eltdarchitectures

19 AUSTRACT (Continue on teverse Of nectuaiy and Wdntify by block number) \~

OVER 6 (I i (~(AC(Cl %C4

20 0ISI~.eBUIIONIAVAILA8ILI TY Of ABSTRACT V1 APSMACI SECURITY CLASSIMIATION
tU~CL~iii~/lr~ty~~0 SAY(AS IRPT tC UqSER

Y28 NAME~ Of' PNSItF '~j:VU.AL 22b TWtti"E(mflude Atea Code) 22c. OIffC SYMB~OL.
PlI ,. . (4,-6I-28

01) FORM 1 473,6$4 MAR $110AP1 edition fmay be used simtoI toboutted. 0 P _______All othtic edittom Aft obitlte 1~7~

SEC'F iTN CL. AS' AT ION OF I HIS PAI,[J i.,

q ABS1 RA . I

In this paper we present a computational frxmework for planning and learning that is constrained
by knowledge of hu~;.an behavior. We fist decribe D.,DALUS, a plaMing systrm that learns from

successful problemsolving traces. The model stores plan knowledge in a probabilistic concept
hierarchy, retrieves relevant operators through a process of heuristic dassificatian, organizes search
using a flexible version of means-encs analysis, and stores plan knowledge through an incremental
process of concept formation. We report experimental studies of DEDALUS' behavior that show
learning improves solution quality and reduces search, but that also reveal increased retrieval cost
and fewer solved problems. In addition, we find that the model accounts for a variety of qualitative

phenomena observed in human problem solving. After this, we present our current designs for

ICARUS, an integrated architecture for intelligent agents that extends on the ideas in D&DALUS.

This architecture would store entire problem-solving traces in memory, which should support a

number of additional capabilities, including the unification of search control knowledge and macro-
operators, the interleaving of planning and execution, and the integration of dosed-loop and open-

loop processing.

UTnclasSIFIed
SECURITY CLASSIFICATIOIN OF TH!S FACE . , , Data E.ntered)

aooeesise For

A Unified Framework for -TIS -- i
MTIC XAB

Planning and Learning o 0
Justiloatg

PAT LANGLEY
JOHN A ALLEN . .

Di stribut 1on/

Department of Computer Science Availabt lty odes

University of California Avail ad/lor
Irvine, California 92717 Dist Special

Abstract
In this paper we present a computational framework for planning and learning that is constrained
by knowledge of human behavior. We first describe DZDALUS, a planning system that learns from
successful problem-solving traces. The model stores plan knowledge in a probabilistic concept
hierarchy, retrieves relevant operators through a process of heuristic classification, organizes search
using a flexible version of means-ends analysis, and stores plan knowledge through an incremental
process of concept formation. We report experimental studies of DADALUS' behavior that show
learning improves solution quality and reduces search, but that also reveal increased retrieval cost
and fewer solved problems. In addition, we find that the model accounts for a variety of qualitative
phenomena observed in human problem solving. After this, we present our current designs for
ICARUS, an integrated architecture for intelligent agents that extends on the ideas in DADALUS.

This architecture would store entire problem-solving traces in memory, which should support a
number of additional capabilities, including the unification of search control knowledge and macro-
operators, the interleaving of planning and execution, and the integration of closed-loop and open-
loop processing.

To appear in S. Minton (Ed.), Computational Approaches to Learning and Planning. San Mateo,
CA: Morgan Kaufmann.

A UNiPisD FaAmswoRi

1. Introduction

A robust intelligent agent must have three general charac' existics. First, it should be able to plan,
to generate possible action sequences that lead to the achievement of goals. Second, the agent
should learn from its problem-solving experience in a domain, improving its ability from previous
attempts at plan generation. Finally, the agent should integrate planning and learning with other
aspects of behavior, such as execution and perception. These capabilities are central to human
behavior, and we believe they are essential to the success of any agent that is situated in a complex
physical evironment. Our long-term goal is to develop a unified architecture that provides practical
abilities of this sort while r m;,ns,_-- 'oSistent with knowldge of humau cosmion.

In this chapter we describe DADALUS, a system that addresses two of the above abilities - plan-
ning, and learning. Our work on DADALUS has been influenced by previous work in both artificial
intelligence and cognitive psychology. The basic planning algorithm borrows from Newell, Shaw,
and Simon's (1960) GPS model of human problem solving, and very similar methods have been used
in Minton et al.'s (1989) PRODIGY and Jones' (1989) EUREKA, two systems that learn in planning
domains. DADALUS' representation and organization of knowledge, and its basic learning method,
draws from Fisher's (1987) work on COBWEB, an incremental approach to concept formation in-
tended to account for certain memory phenomena observed in humans. Our approach also makes
contact with work in analogical and case-based reasoning (Falkenhainer, Forbus, & Gentner, 1989;
Veloso & Carbonell, 1989).

We discuss these historical links in more detail throughout the following section, relating them
to distinctions from the literature on planning and learning, and showing that DADALUS provides a
unified framework that moves beyond these distinctions. We then present a preliminary evaluation
of the system, both as a practical learning method and as a psychological model, which reveals
some strengths and some limitations. After this, we respond to the limitations by outlining our
designs for ICARUS, an integrated architecture that incorporates ideas on planning and learning from
DADALUS, but that integrates these with mechanisms for perception and execution. As before, we
organize our discussion of ICARUS using issues that have recurred in the literature. Finally, we
summarize the approach we have taken and its contributions to the study of learning, planning,
and intelligent agents.

2. Characteristics of DZDALUS

Research on learning and planning has led to a number of dichotomies that have divided the
field. These range from the algorithms used to generate plans, through the basic representation
of acquired knowledge, to the mechanisms used to improve planning ability. In this section, we
describe the stance we have taken on four such issues in constructing DADALUS. In each case, we
find that the system provides an elegant unification of what have often been viewed as antithetical
positions.

2 LANGLEY AND ALLBN

Table 1. Pseudocode for means-ends analysis, the basic algorithm that DZDALUS uses to generate plans.
This formulation atimes a depth-first ordering on search, with backtracking when one exceeds a
depth limit, but other ordering schemes are also possible.

Inputs: STATE is a (partially described) initial stat*.

GOAL is a (partially described) desired state.

Outputs: A final state that matches the description of GOAL.

Variables: DIMH is the current depth of the search tree.

ENOlRT is the memory containing all knoun operators.

Procedure MLA(STATE. GOAL)

If DEPTH does not exceed the depth limit,

Then if STATE matches GOAL,

Then r~turn STATE.

Else let DIFFS be the differences between STATE and GOAL.

Let OPERATOR-SET be Seloct(DIFFS. NMEORY).

For each OPERATOR in OPERATOR-SET,

Let PRECONDS be the preconditions of OPERATOR.

If STATE does not match PRECOEDS,

Then lot STATE be HA (STATE, PRECOIDS).

If STATE is not Failed.

Then let NEV be the state that results

from applying OPERATOR to STATE.

If WEV matches GOAL.

Then return NEW.

Else lot FINAL be HZA(E, GOAL).

If FINAL is not Failed.

Then Rot-rn FINAL.
Return Failed.

2.1 Forward Chaining and Means-Ends Analysis

Much of the Al research on problem solving has focused on forward chaining or state-space search.

In this scheme, one applies an operator to an initial state, another operator to its successor, and
so forth, until reaching a state that matches the goal description. At each stage of this process,
one considers an operator only if its legal preconditions exactly match the current state. Many
of the formal results on heuristic search assume a forward-chaining approach (e.g., Pearl, 1984),
and much of the early work on learning in problem solving aimed to find heuristic conditions for
operator selection in state-space search (Langley, 1985; Mitchell, Utgoff, & Banerji, 1983; Ohlsson,

1983).

Another important approach to problem solving is known as means-ends anaysis. In this algo-
rithm, one selects some difference between the current and desired state, selects an operator which
reduces that difference, and attempts to apply the operator. If the operator's preconditions are

A UNIPIUD FRAMIWORK 3

not met, one r-cuisively calls the method to transform the current state into one that meets these
conditions. If the preconditions are met, one generates the state resulting from its application and

recursively calls the algorithm to transform the new state into the desired one. Table I gives details
on this approach to problem solving. The pseudocode assumes a depth-first ordering on search,

but one could use breadth-first search, best-first search, or other techniques, just as one can within
the forward-chaining framework.

To summarize, means-ends systems selectively retrieve operators that appear relevant to a prob-
lem, even if those operators cannot be immediately applied. In some cases this leads to a form of

backward-chaining behavior, in that the order of operator selection is the reverse of the application
order. In other cases this strategy produces forward chaining, in that selection and appl!cation or-

der agree, and in still others it generates mixed behavior. This technique was first used in Ie.-el,
Shaw, and Simon's (1960) General Problem Solver (GPS), and then later in Fikes, Hart, and Nils-
ion's (1971) STRIPS, the precursor of many existing planning systems. Much of the recent work on
learning iu problem solving has assumed means-ends planners (Minton et al., 1989; Jones, 1989),
and Newell and Simon (1972) report evidence that such methods occur in human problem solving.

At first glance, means-e'ids approaches seem superior to state-space method-, due to their focus
on relevant operators and their ability to break problems into useful subproblems. However, tradi-

tional means-ends systems examine only one difference at a time, and they ignore relations between
states and preconditions. In response, DaDALUS uses a variation (which we call fletibit means-ends

anaysis) that prefers operators which reduce more differences and whose preconditions mr e closely

match the current state. Thus, the retrieval process incorporates ideas from both approaches, bi-
asing the system toward operators that have more effect and that are more nearly applicable. As
we will see below, DADALUS can also place weights on each difference and state descriptor, giving
additional flexibility in its retrieval decisions. However, the basic algorithm is identical to that
shown in Table 1, differing from earlier means-ends methods only in its instantiation of the Select

procedure.
1

2.2 Search and Memory

Both forward chaining and means-ends analysis assume that planning requires search for compo-
sitions of primitive operators that will transform an initial state into a desired one. Although

they carry out this search through somewhat different spaces and employ different strategies, both
are dear variants of Newell's (1980) problem-space hypothesis. This states that cognition involves

search through problem spaces, which can be characterized in terms of problem states, goal descrip-

tions, and operators that transform one state into another. Much of the early research on planning
took this view (e.g., Fikes et al., 1971), and Newell and Simon (1972) present convincing evidence
that it provides a reasonable account of human behavior in novel domains.

1. DAEDALUS borrows the notion of flexible means-ends analysis from Jones' (1989) EUREKA s)'tem, which used
a very simil idea with a quite diferent retrieval method. Jones' (1990) more recent GIPS system also uses a
simila strategy.

4 LANGLEY AND ALLEN

P((1)-)01 .25 P(0F) 0251-o2 P(P)
(L O C K: ? Y 1.O S T A M . - a [3 T.AO C "-o k 7 5 5 .0
(HOLDING ?X) 1.0 75 (ONTABmL 7X) 1.0-
-(ON ?z ?Y) 1.0 (BLOCK 7MQ 1.0 MOCK 7Y) 1.0 -(HOLDIO ?Y) 1.0
DFEREW(B 7Y) 1.0 (HOLDING 7X) 1.0 -(ON 7Z 70 1.0

-(HOLDING W) 1.0
(ON ?X 7Y) 1.0 -(ON 72 X 1:0 DIFFR1.0 DIF:

-(HOLDINO 7M 1.0 DFFERFCMZ: (ONTABLE 7X) 1.0 CHOLDINO ?X) 1.0

OPERATOS: (10LDING ?X) 1.0 - 7X) 1.0 -(ONTABLB 7X) 1.0

lTAC 1. 7 07 . -(ON ?X TY) 1.0 OPERATORS: OPEPITODS:

OP~~O~RS: IPUDOWN 7YA 1.0 (PCKUP ?X) 10
(UNSTC][? 7Y)1.0

Figure 1. Initial concept hierarchy provided to D&DALUS for the blocks world domain. Terminal nodes
(shown with their descriptions) correspond to generic operator schemas.

A separate research tradition posits that planuing requires the retrieval of relevant plans or plan

components from long-term memory. Such knowledge-intensive approaches emphasize the encoding

of domain-specific heuristics for decomposing problems into simpler ones, heuristics for selecting

states and operators, or combinations of operators that directly solve problems or subproblems.

This view of planning provides a plausible explanation of human behavior in highly familiar do-

mains.

D)EDALUS unifies these two views of planning, as does much of the recent work on learning in

problem solving (Yoo, Yang, & Fisher, in press; Jones, 1989; Minton et al., 1989; Laird, Hucka,

Yager, & Tuck, 1990; Veloso & Carbonell, 1989). The system operates within a problem-space

framework, generating sequences of operators to transform an initial state into one that matches

a goal description; however, it uses domain-specific knowledge to constrain and direct this search.

D&DALUS stores this knowledge in a probabilistic concept hierarchy. Initially, this contains only

abstract descriptions of operator schemas, but over time the system uses the same data structure

to organize its experience in a domain and to retrieve relevant knowledge during planning.

Figure 1 presents the initial concept hierarchy given to the system for the blocks world domain.

This hierarchy plays the same role for D&DALUS as does the table of connections for Newell et al.'s

GPS (1960). Each terminal node corresponds to a generic operator schema, which is summarized

in terms of its legal preconditions, the differences it reduces upon application, and its name and

arguments. The root of the hierarchy contains a probabilistic summary of all nodes below it;

terminal nodes are described in the same language, but all their probabilities are one. In more

complex domains, one might also include internal nodes that index and summarize the operators

below them in the hierarchy. The description for such a nonterminal node contains four parts: the

probability of occurrence relative to its parent, the conditional probability of each precondition
given membership in the concept, the conditional probability of each reduced difference given

membership, and the probability that one should select each operator in this situation.

A UNIFIBD FRAUMwoRK

The retrieval of operators involves sorting a problem - described as a set of state descriptors and

differences - through this concept hierarchy. To do this, DADALUS invokes COBWZBR, a variant of

Fiahe,'s (1987) COBWEB algorithm that handles relational descriptions. This routine is responsible

for selecting a plausible analogical match; the latter is necessary because a problem may partially

match a given description in many ways. At each level, COBWZBR selects the node that best

matches the problem and recurs to the next level. Upon reaching a terminal node, the routine
returns the associated operator to DSDALUS for use in extending its plan. If an operator leads to a

loop or dead end, the system re-sorts the problem through the hierarchy to find another operator.

As we will see shortly, the learning process alters the structure of DADALUS' concept hierarchy

and the probabilities stored therein. However, the form of the hierarchy, the retrieval mechanism,

and the overall planning algorithm remain unchanged throughout the course of learning, providing

a unified view of memory and search in planning.

2.3 Cases and Abstractions

One common approach to encoding plan knowledge involves the use of abstract rules or schemas.

For instance, Minton et al.'s (1989) PRODIGY uses abstract selection, preference, and rejection

rules, Mooney's (1990) EGGS employs general plan schemas, and G. Iba's (1989) MACLEARN stores

abstract macro-operators. Each rule or schema covers many specific situations, allowing these

systems to use a simple matching or unification algorithm to determine their applicability. Learning

in this framework often uses some variation of explanation-based methods, as in the above systems,

but inductive approaches are also possible (Langley, 1985; Mitchell et al., 1983; Ohlsson, 1983).

Another approach encodes knowledge as specific cases from the domain, including particular

problems or subproblems, desirable and undesirable approaches to these problems, and possibly

the reasons for their desirability. Researchers in this case-based paradigm have proposed a variety

of methods (Hammond, 1990; Jones, 1989; Kolodner, Simpson, & Sycara, 1985; Veloso & Carbonell,

1989), many of them with direct mapping to techniques that assume abstractions. This approach

has close ties with work on analogical problem solving (e.g., Carbonell, 1983), although the focus

in 'case-based' methods is on transfer to problems within a domain rather than across domains.

However, they share a reliance on more sophisticated matching schemes than needed for abstract

knowledge structures, often requiring relational partial matching (i.e., structural analogy).

DADALUS unifies these two frameworks by storing both cass and abstractions in a single prob-

abilistic concept hierarchy. Figure 2 shows a blocks world problem that the system cannot solve

without search given the initial hierarchy in Figure 1, along with the structure of an optimal deriva-

tional trace provided to the system by an expert (the programmer). Each node in this trace can be

viewed as a miniature case, which corresponds to a problem or subproblem that is described as a

set of state predicates, a set of differences, and the operator used to solve it. DZBDALUS stores each

of these cases as terminal nodes in its concept hierarchy, organizing them via internal nodes that

index the cases that occur below them in the hierarchy. Given a problem with similar structure, the

system uses these stored cases or the resulting internal nodes to direct search on future problems.

6 LANGLEY AND ALLEN

STATE:

(ONTABLE A)
(ON'tABLE B)
(oNTrABLE F)[
(ON C A)
(ON D B)E

DIFFERENCES: 9A] _
(ON B A) ZD
(ON C B)
(ON D C) Idtial Stoie H(ON E D)
(HOLDIN F)/

OPERATORS:

(STACK B A) Desired State

Figure 2. A problem from the blocks world, along with an optimal derivational trace given to DMDALUS by a
domain expert. Each node in the trace consists of a state description, a set of differences, and the
selected operator. Black nodes correspond to problems on which the system selected the incorrect
operator; white nodes specify problems on which it made the right selection.

Yoo et al. (in press) describe a closely related approach to combining cases and abstractions for
planning.

Figure 3 shows the modified hierarchy after D)EDALUS has incorporated its experience with the
problem in Figure 2. Each new case (in gray) represents one of the problems or subproblems in
the derivational trace, described as a set of differences, a set of state predicates, and the operator
that led to its solution. The figure includes full descriptions for two of these cases (nodes N2 and
N3). The additional terminal nodes (in white) represent the original operator schemas that were
already present in memory. The extended hierarchy also contains some abstractions (in black) that
DAEDALUS created during the process of storing the trace components. The figure also siiows the full
description of one abstraction (node N1), which reveals that this concept provides a probabilistic
summary of the nodes (N2 and N3) below it. Each such description includes an overall probability
of occurrence, together with a conditional probability for each difference, state descriptor, and

operator.

Because D)EDALUS attempts to sort new problems to terminal nodes in its co-r"-pt hierarchy,
abstractions act primarily as indices for the retrieval of cases and the initial operator schemas.

I

A UNIFIED FRAMEWORK

P(NI) =0. 10 P(F)5
STATE: RN2) = 0 TAFT)

(ONTABLE ?Q) 1.0 STATE:
(ONTABLE ?S) 10.0 P(N3) = 0 P(F)
(ONTABLE 7T) 7) 1.0 STATE:
(ONTABLE T) 1.0 (ONTABLE ?I) 1.0
(ON ?R ?V) 10 (ONTABLE 7V) 1.0 (ONTABLE ?U) 1.0

(ON(ON ?S) 1 (ONTABLE 7) 1.0(ON ?R ?V) 1.0 (ONTAS ?) 1.0 (ONTABLE 7T) 1.0
DIFFERENtCE.S: - (ON ?R Tr) 1.o (ON'TABLE 7V) 1.0(ON 7R ?S) 1.0

(HOLDING ?S) 1.0 DIFFEREkNCES: - (ON 7S T) 1.0
(ON ?U ?Q) 0.5 (OO _ S_7T)__ ._
(ON ?Q R) 0_5 (HOLDING 7) 1.0 DIFFERENCES:

OPERATORS: - OPERATORS: (HOLDING ?V) 1.0

(STACK 7Q 7R) 0.5 (PICKUP 70) 1.0 (ON 7U 70) 1.0
(PICKUP 7S) 0.5 (ON ?QR) 1.0

OPERAIURS:
(STACK 7Q 7R) 1.O

F;'ure 3. Revised DEDALUS concept hierarchy that incorporates cases (gray) and abstractions (black) re-
sulting from storage of components from the derivational trace in Figure 2, along with the original
operator schemas (white) for this domain.

However, if a new problem is sufficiently different from a1 children of an abstra:t Z Ae N, the
COBWEBR routine will halt at that level of the hierarchy, returning the internal node N instead

of a terminal node. In such a situation, DAEDALUS Rimply selects the operator with the highest
conditional probability. This strategy should minimize the negative transfer that could result from
analogies with cases that bear only limited resemblance to the new problem.

2.4 Data-Driven and Knowledge-Driven Learning

One major paradigm in machine learning emphasizes the detection of regularities in training data.

This data-driven view includes most work on decision-tree construction (Quinlan, 1986), rule in-

duction (e.g., Langley, 1985; Clark & Niblett, 1989), and conceptual clustering (e.g., Fisher, 1987),
along with many other approaches to learning. The majority of work taking this perspective has

been applied to classification or diagnostic tasks, though some has been used in problem-solving
domains (Langley, 1985; Mitchell et al., 1983; Ohlsson, 1983).

8 LANGLZY AND ALLEN

Another major paradigm emphasizes the role of background knowledge in learning. This knowledge-

driven view includes work on explanation-based learning (e.g., Minton et al., 1989; Mooney, 1990)
and other approaches that involve compiling existing knowledge into new forms. The paradigm
also includes work on constructive induction, in which background knowledge biases the creation
of knowledge structures that summarize observations (e.g., Drastal, Raatz, & Czako, 1989; Elio &
Watanabe, in press). The former has been applied primarily in domains like planning and design, in
which a combination of rules can be compiled from traces. The latter has focused on classification

problems, like the data-driven work on induction.

Although the data-driven and knowledge-driven paradigms differ in their emphases, both data

and knowledge play a role - to differing degrees - in each framework. The work on constructive
induction provides the clearest case of the interaction between background knowledge and experi-
ence. More important, in this work the initial knowledge is typically stated in a form that could
plausibly be acquired by data-driven methods themselves, suggesting an approach to unifying these

two perspectives on learning.

The learning scheme used in DMDALUS provides one example of such a unified view, as does Yoo
et al.'s (in press) related work. Figure 4 illustrates the four learning operations that lead to changes
in the structure of memory. These operations include:

" eztending downward, which occurs when a case reaches a terminal node in memory; under
these circumstances, COBWzrBR creates a new node N that is a probabilistic summary of the

case and the terminal node, making both children of N;

" creating a disjunct, which occurs if a case is sufficiently different from all children of a node N;
in this situation, COBW.BER creates a new child of N based on the case;

* merging two concepts, which occurs if a case is similar enough to two children of node N that

COBWE.BR judges all three should be combined into a single child;

* splitting a concept, which occurs when a case is different enough from a child C of node N that

COBWE-BR decides C should be removed and its children moved up to become children of N.

The last three of these actions are considered at each level of the hierarchy, as the system sorts the
new case (taken from a successful trace) downward through memory. If none of these are deemed
appropriate, COBWEDR simply averages the case into the probabilistic description of the best-
matching node. Fisher (1987) describes category utility, the evaluation function used in making
these decisions. For our present purposes, the important point is that DmDALUS incorporates each
case into its hierarchy incrementally, with the very act of classification modifying the structure of

long-term memory.

Recall that the system begins with background knowledge in the form of an initial concept
hierarchy that summarizes and indexes legal domain operators. This knowledge structure can bias
the sorting of new cases, in that different initial hierarchies represent different indexing schemes.
Because learning in DABDALUS is integrated with classification, initial knowledge directly influences

changes to the hierarchy's structure and probabilistic descriptions. Given different background
knowledge, the system would acquire different heuristics for directing search. Moreover, once
DADALUS has incorporated the components of a problem into memory, the structural changes

A UNIFIED FRAMEWORK 9

(a) (b)

(c) (d)

Figure 4. Operations used by the COBWEBR routine to aiter the structure of D&DALUS' hierarchy: (a)
extending the tree downward; (b) creating a new disjunct; (c) merging two concepts; and (d)
splitting an existing concept.

introduced by this process bias future learning, while still letting the system respond to the nature of

later observations. In this sense, D&DALUS provides a unification of the data-driven and knowledge-

driven viows on learning. However, the current approach does not take full advantage of the

knowledge available to a planning system, and we will return to this issue in Section 4.

3. Evaluation of DAEDALUS

In the previous section, we argued that D)EDALUS provides an elegant approach to learning and

planning that eliminates four dichotomies that have appeared in the literature. However, science

requires more than elegance - one must show that a framework or theory actually produces some

desirable behavior. In this section we evaluate D&EDALUS as both a practical learning algorithm and

as a psychological model. We then summarize the overall strengths and weaknesses of the current

system.

3.1 Improvement in Performance

The goal of learning is some improvement in performance, and one can run experiments with any

learning system to determine whether it achieves this goal (Kibler & Langley, 1988). To this end,
we have carried out preliminary studies with D&DALUS using the blocks world domain described

in the previous section. In each case, we ran the system on ten training problems, measuring

its performance after every two problems on a separate set of nine test problems.2 We selected

both training and test problems that could be solved before learning, but not without some search.

2. This approach generates true learning curves, which are quite different from the cumulative curves reported by
Minton (1990a) Lad others. Here we present only preliminary results based on a single run, using one division

10 LANGLEY AND ALLEN

.L

z

I.

SI I

0 2 4 6 8 10
Number of Training Problems

Figure 5. A learning curve showing the reduction in DRDALUS' search as a function of experience, using
sample problems from the blocks world domain. The solid line shows the behavior of the learning
system; the dotted line shows behavior without learning.

During training, we operated D&DALUS in 'learning apprentice' mode, providing it with the optimal
derivational trace for each problem; we did this primarily to avoid the variation that would result

from nonoptimal traces the system might find through search.

We used a number of dependent variables in these studi", corresponding to different aspects

of planning performance. Figure 5 presents the basic resul, which maps the amount of search
against the number of training problems D&EDALUS has experienced. In this case, our measure

was the number of nodes in the search tree divided by the length of the final solution path, which

represents the amount of extraneous effort carried out on the test problems. The learning curve

shows that, as the system gains experience in the blocks world domain, its search becomes more

directed. In fact, after working on eight training problems, DsDALUS appears able to solve the

test problems with almost no search (i.e., the node to length ratio approaches one). Similar results

hold for another dependent variable, the length of the solution path. Before learning, the average
solution length was about 13, whereas after four training problems it dropped to just above six,

the optimal length for our test set, and remained at this level thereafter.

However, these dependent measures do not tell the entire story. The results in Figure 5 axe

based only on test problems that the system solved successfully within the computational limits

we set (500 search nodes). In fact, although DRDALUS solved all nine of the test problems (with

some search) before learning, it solved only seven of these problems after processing ten training

problems. Moreover, after only two training problems, the system could solve only two of the nine

test cases, although on both it produced optimal solutions with no search. After additional training,

into training and test problems, and one order of the training problems. Our future experiments will average over
different divisions and orders.

A UNIFIED FRAMEWORK 11

0I I I I -- -

0 2 4 6 a 10
Number of Training Problems

Figure 6. The increase in D&DALUS' retrieval cost as a [unction of learning (solid line), compared to the
same system without learning (dotted line), using training and test problems from the blocks
world domain.

DIEDALUS solved more of the problems successfully, but there were always problems it could not

complete. In general, the acquired knowledge reduced search and produced better solutions on

most test problems, but performance was worse than before learning on a few tasks. Naturally, we
would like to understand the source of this behavior, so we can eiminate it in future systems.

The most obvious hypothesis was that D&DALUS had encountered a bottleneck similar to Minton's

(1990a) utility problem or Tambe, Rosenbloom, and Newell's (1990) expensive chunk problem. In
some cases, the cost of retrieving acquired knowledge can more than offset the savings due to re-

duced search and solution length. In D&DALUS, nodes high in the concept hierarchy can come
to incorporate many features, some with little information content. Perhaps the cost of partial

matching against these abstract concepts was overwhelming the reduction in problem-space search.

To check on this possibility, we measured the number of unifications per node in the search tree. As

hypothesized, this measure of match cost systematically increased as a function of learning. Figure

6 suggests that this cost grows linearly with the number of training problems encountered, even

on test problems that D&DALUS successfully solved. In this run at least, the increase offset the

reduced search costs, leading to greater total effort even on solved problems. Clearly, improving

the system on this dimension should have high priority.

However, closer examination reveals that the utility problem cannot explain D&DALUS' failure

to solve -1i the test problems, because we based its computational limits not on overall cost, but

on the number of nodes searched. Thus, the failures must result from errors in selecting operators,

rather than from the cost of retrieving them. One version of this hypothesis is that, although

DEDALUS acquired cases and abstractions generally improve operator selection, they occasionally

lead it astray. If this occurs early in a problem, the system can spend its entire allocation of search

12 LANGLEY AND ALLEN

8

0

S I I I I I I II I I I

0 1 2 3 4 5 6 7 8 9 10
Number of Training Problems

Figure 7. The effect of learning (solid line) on DRDALUS' ability to retrieve correct operators for problems
in the blocks world domain, compated to accuracy without learning (dotted line).

nodes in a 'wild goose chase', even though its acquired search heuristics are generally accurate.

This suggests a novel approach to studying learning in planning domains, in which the interesting
behavioral measure is the accuracy of learned control knowledge, rather than the overall efficiency

of the planning system.

We used this insight to design another experiment that would provide information about D'EDALUS'

ability to retrieve correct operators at each step along its solution path. This study used the same

training and test problems as the previous one, but used in a rather different way. As before, we

trained DDALUS in 'learning apprentice' mode, providing the correct operator at each stage in its

search process. However, this time we used the same scheme on test problems, placing the system

back on the right track whenever it made a selection error. We also recorded the percentage of

correct decisions made during the generation of each plan. Figure 7 presents the results, which in-

dicate that D&SDALUS dearly improves its ability to select the right operators. Before learning, the

system makes the right choice in about 65% of the cases, whereas by the tenth training problem,

it has reached the 90% level. These occasional errors, when not corrected by a tutor, can send

D&DALUS down fruitless paths and keep it from solving certain problems. However, there is no

dear way to avoid the resulting search, and additional experience would presumably decrease their

likelihood further, until the system can solve all the problems in a domain with no search.

3.2 Psychological Adequacy

Earlier we mentioned our concern that DEDALUS be consistent with knowledge of human behavior,

giving us a second dimension along which to evaluate the system. VanLehn (1989) gives an excellent

review of the major findings with respect to human problem solving, including those related to

A UNIFIED FRAMEwoRK 13

Table 2. Psychological adequacy of DBDALUS and other models of learning in problem-solving domains. The
symbol 9 indicates that a model accounts for a given phenomenon, e specifies that it provides no
explanation, and 0 denotes that the model gives a partial account.

ACT SOAR EUREKA DaDALUS

MEANS-BNDS ANALYSIS 0

NONSYSTBMATIC SEARCH e e eD
PROBLEM ISOMORPHS 0 0 E 0

GRADUAL IMPROVBMBNT (D (D 9
ASSYMUTRIC TRANSPUR 9 9 (D (D
EINSTBLLUNG 0 9 9 9

REDUCBD VERBALIZATION 0 9 e e
AUTOMIZATION 0 0 e e
RARITY OP ANALOGY e e 9 0

SUPERFICIAL ANALOGY E e oD

learning. These phenomena are qualitative in nature, but they still provide constraints on the
operation of cognitive simulations. Table 2 lists most of the behaviors that VanLehn reports, along
with some items we have added. The table also shows how DADALUS fares in comparison with
three other models of problem solving and learning: Anderson's (1983) ACT, Laird, Rosenbloom,

and Newell's (1986) SOAR, and Jones' (1989) EUREKA.

The first three phenomena address issues about basic problem-solving strategies rather than
learning. In Section 2 we noted that Newell and Simon (1972) report evidence that humans appear
to use means-ends analysis in novel domains, and other studies have buttressed this hypothesis.
We have also seen that, like EUREKA, our system includes a flexible version of this process as one
of its central components. SOAR differs somewhat on this issue; the system can simulate means-
ends behavior using preference rules, but the architecture itself takes no stance on the centrality
of this strategy. Finally, the ACT framework provides support for backward chaining but not true
means-ends analysis, in the sense that it cannot select operators with unmatched conditions.

A second characteristic of human problem solving is its nonsystematic nature (Jones, 1989).
Short-term memory limitations appear to prevent use of search-control schemes like depth-first,
breadth-first, and best-first search, which must keep track of many problem states. Of the four
systems, three rely on one of these strategies, with only Jones' EUR-KA attempting to model
humn-' tendency to explore a search path in depth, then return to the initial state if unsuccessful
to consider an alternative path (Newell & Simon, 1972). Another model that attempts to explain

this behavior is Ohlsson's (1983) UPL.

A third phenomenon involves the relative difficulty of tasks. In some cases, even problems that
are formally isomorphic - in that their operators and problem spaces are equivalent - can have quite
different levels of difficulty (Kotovsky, Hayes, & Simon, 1985). This situation tends to occur when
isomorphic problems have different physical manifestations, suggesting different representations for
operators and/or states. Given alternative representations, each of the four systems could probably

14 LANGLEY AND ALLEN

model the observed differences on problem isomorphs. However, none provides an account of the
origin of these representations.

Some additional behaviors concern changes in performance as humans gain experience in a
problem-solving domain. One is so basic that it might easily be overlooked - in general, learn-
ing leads to reduced search on a class of problems. As we showed in the previous subsection,
DMBDALUS generally improves its performance along this dimension with experience, as do ACT,

SOAR, and EUREKA. However, this is no great feat for systems that were designed with this goal
in mind.

A related phenomenon involves the asymmetry of transfer across problems. The transfer from a
class of problems A to another class B is simply the reduction in training time on cas B due to
training on A. The asymmetry effect relates to situations in which the components of one problem
class, say X, are subsumed by another (more difficult) class, say Y. In such cases, the transfer from
class Y to class X is greater than that from X to Y. The standard explanation for this result is
that transfer results from carrying over learned memory structures to the new task, and since the
structures needed for the simpler task are subsumed by the more difficult one, training on the latter
generates all the structures needed by the former. Because all four models decompose problems
into subproblems, then learn methods for solving these subproblems, they should all produce this
effect.

Human learning does not always lead to improvements in performance, and a computational
model should have the same flaws as humans, even though they may be undesirable from an engi-
neering perspective. One well-established type of performance decrement is called the Einstellung
effect (Luchins, 1942). This occurs when one is trained on a set of difficult problems, learns a
strategy for solving them, and then is given a similar problem set that can either be solved in the
same manner or in a more efficient way. Under such circumstances, subjects typically find solutions
analogous to the original ones, even though they find ones with fewer steps if they receive no prior
training. Thus, although learning reduces search, it actually increases the length of solution paths.
Neves and Anderson (1981) have shown that AcT produces this behavior, and Jones (1889) has
produced similar results with EUREKA using quite different mechanisms. The SOAR and DADALUS

models have not been explicitly tested on this front, but their reuse of structures acquired in earlier
problems should generate the same effect.

In addition, experienced problem solvers show a variety of other differences from novices. Experts
typically solve problems much more rapidly, even when their solutions involve the same number of
steps in the problem space. Also, they tend to verbalize much less than people with less experience,
suggesting that they have lost access to intermediate subproblems. Such skills are sometimes
referred to as automatized, in that one can carry them out with little attention. Both DmDALUS

and EUREKA have difficulty explaining these phenomena, in that they never change the steps taken
in generating a solution; learning may eliminate poor choices, but each node in the derivational
trace must still be constructed one step at a time. In contrast, the other two systems actually

A UNIPInD FaAumwoRx 15

eliminate subproblems through learning, ACT through a mechanism similar to macro-operator
formation and SOAR through a chunking process. These model the reduction in verbalization, but
they only partially explain the observed speedup effect, which continues long after search has been

eliminated.

A final set of empirical results concern problem solving by analogy. In principle, this could occur
when a human is given the answer to one problem, and then later is asked to solve a problem with
an analogous solution. However, experiments reveal that such behavior is quite rare, even when
the two problems occur near each other in time (e.g., Gick & Holyoak, 1980). People are able to

solve problems by analogy when given an explicit mapping between source and target problems,

but they seldom find such a mapping on their own. Moreover, in those cases where they do manage

to retrieve a relevant problem, the reminding is usually based on some superficial, surface similarity
that may produce a misleading analogy (e.g., Ross, 1984). Both DJBDALUS and EUREKA fare well
on these phenomena, since both rely on a form of analogical retrieval that operates on surface-level

descriptions of problems. The ACT and SOAR models have more difficulty, since neither has any
architectural mechanism for analogy. One could implement forms of analogy using explicit rules,
but this seems unsatisfactory for a mechanism that (we hypothesize) is so basic.

3.3 Comments on DBDALUS

In this section, we evaluated DEDALUS along two dimensions - its ability to improve performance
with experience and its adequacy as a psychological model. As a practical learner, preliminary
experiments suggested that the system's learning mechanisms lead to improvement on two measures
of performance, producing a reduction in search and shorted solution paths. However, we also found
that these results held only for problems that DADALUS successfully solved, and that learning

actually led it to solve fewer problems overall. An additional experiment revealed that retrieval
accuracy does increase over time, suggesting that the failures result from acquired heuristics that

occasionally lead the system down paths from which it cannot recover. We also noted that DmDALUS
suffers from a clear utility problem in that, even on solved problems, its retrieval cost per operator
and overall planning cost increase with experience, rather than decreasing as desired.

As a psychological model, DEDALUS accounts for a variety of robust phenomena that have been
observed in human problem solving. However, three previous models also explain roughly the
same behaviors. DADALuS differs from Laird et al.'s SOAR and Anderson's ACT in its coverage of
analogical reasoning, an area it shares with Jones' EUREKA system. However, it fails to explain
the reduction of verbalization and the automatization observed in highly-skilled problem solvers,

which the other systems at least partially model. Moreover, DZDALUS' search organization does

not mimic the nonsystematic behavior found in humans', which only EUREKA has attempted to
handle. The system also lacks in the broader sense that humans are physical agents that interleave

planning with other processes. A fuller model of human behavior would explicitly link cognition
with action and perception.

16 LANGLBY AND ALLBN

4. Extending the Unified Framework

Our research has been driven by a variety of concerns that DADALUS only partially addresses. We

are interested in learning within the context of planning, but there are aspects of this domain that
the current system simplifies or ignores. We are concerned with modeling the basic features of

human problem solving, but DEDALUS accounts for only some of the known psychological phe-

nomena. Finally, our long-term aim is the construction of an intelligent agent that interacts with
a physical environment, yet the existing system can neither represent nor execute physical actions.

In this section we present our designs for ICARUS, a unified architecture that would draw on

techniques developed in DADALUS, but that would also integrate planning and learning with other

behaviors. We envision this architecture as supporting a broader range of learning abilities, provid-
ing a better account of human cognition, and serving as the basis for a physical agent that interacts

with its environment. Elsewhere (Langley, Thompson, Iba, Gennari, & Allen, in press), we have

described our designs for ICARUS in terms of separate components for recognition, planning, and
execution. Here we organize the discussion around five distinctions that recur in the literature, as

in Section 2.

4.1 Induction and Explanation

In Section 2 we argued that DZDALUS unified traditional notions of data-driven and knowledge-
driven learning, but that further knowledge was available for use in learning. In particular,

DADALUS constructs a derivational trace that specifies relations among problems and subprob-

lems, then ignores this structure during the learning process, which deals only with the problems

and subproblems in isolation. Flann and Dietterich's (1989) IOE system suggests the possibility of
a fuller unification of the data-driven and knowledge-driven views. Their method uses background

knowledge to construct explanations for each training instance, then carries out induction over these
explanations in search of common structures. If one interprets derivational traces as explanations

constructed from domain operators, then a system that stored abstracted traces in memory would

provide another example of such a system.

The storage and use of derivational traces plays a central role in our designs for the IcARus
architecture. However, these are more complex knowledge structures than search heuristics and
plan components, requiring more powerful approaches to representation, organization, retrieval,

and learning. In response, we intend to replace the current COBWE R routine with Thompson and

Langley's (in press) LABYRINTH, a system that classifies and learns about objects with componential
structure. For instance, one can view a person as composed of body, head, and limbs, and one can

further decompose an arm into an upper arm, a forearm, and a hand. The derivational traces

generated during means-ends analysis also have a clear componential structure, in this case a

recursive one. In addition to a set of differences and state descriptors, each problem is decomposed

into a desired operator application and two subproblems, one before the operator and the other

afterward.

A UNIPIRD FRsMawoIu 17

Like Fisher's (1987) CoBwzB, the LABYRINi B system represents knowledge in a probabilistic
concept hierarchy, with cases at terminal nodes and abstractions at internal markers. The main
representational difference is that some attributes, rather than pointing to primitive values, point

to other nodes in the concept hierarchy. These features of composite concepts can be viewed as

separate roles. For instance, in the PIRATE concept, one of the roles Liught point to two possible
values - the LEG concept (with a 0.9 probability) and the PEG concept (with a 0.1 probability).

Similar alternatives might exist for the INITIAL-STATE role, the OPZRATOR role, or either of the

subproblem slots at a given level of an abstract derivational trace. However, such 'internal dis-

juncts' need not always occur; in some cases a role will point to a single component concept (with

probability one) that summarizes all component cases that have filled that role.

ICARUS would use LABYRINTH in the same way that DADALUS employed COBW.BR, both for
retrieving similar problems and for storing problem solutions. Initial retrieval must be based on

differences and states in the top-level problem, as in DaDALUS, since at this point the system

has no other information. The use of derivational traces does allow more sophisticated planning

strategies, but we delay their discussion until the next subsectiou Am in COB'WEB, the storage

process is interleaved with classification, but LABYRINTH takes a recursive approach to handling
instances with multiple levels of structure. Briefly, the system first classifies all component objects

at the lowest level, then those at the next level, and so forth, until it has classified the top-level

object. In ICARUS, this means the system would first incorporate the lowest-level subplans into

memory, then higher-level ones, and finally the entire derivational trace.

The above account simplifies the problems that face LABYRINTH along several dimensions. For
example, in some domains, the roles of components must be determined during the match process,

which uses a greedy method similar to that used in COBWEBR. This would not be an issue for

the subproblems and operators that occur in derivational traces, but it would for the objects that

appear in differences and state descriptions. In addition, LABYRINTH incorporates another learning

operation beyond those shown in Figure 4, called attribute generalization, which replaces internal

disjuncts with their common parents in the concept hierarchy. This is necessary if composite

concepts such as derivational traces are to achieve any generality; without this operation, each role

would point to a large set of alternative values, each with very low probability. Finally, we will

need to extend LABYRINTH to allow tests for object identity across embedded components, since

the same states will occur in many subproblems in a derivational trace.

In summary, our designs for ICARUS call for the storage of entire derivational traces in an extended

probabilistic concept hierarchy. The abstractions that summarize these traces can be viewed as

resulting from a process of induction over explanations, further unifying the notions of data-driven

and knowledge-driven learning. Moreover, these extended knowledge structures provide scaffolding

for the storage of additional information that supports even more interesting forms of planing and

learning, as we describe in the remainder of this section.

18 LANOLDY AND ALLEN

4.2 Search Heuristics and Macro-Operators

Learning improves the ability to generate plans by reducing search, and researchers have explored
two main variants on this idea. The first focuses on the acquisition of heuristics that constrain
or direct search, thus reducing the effective branching factor. For instance, Minton et al.'s (1989)
PRODIGY learns abstract rules that specify some operators, states, or differences as preferable to
others, which it then uses to control means-ends analysis. Laird et al.'s (1986) SOAR acquires
similar rules for a different class of problem-solving strategies. Some work on case-based reasoning
takes an analogous approach. For example, Jones' (1989) EUREKA retrieves components of stored

derivational traces. which it uses as miniature cases to bias selection of nperAtors in a means-end

framework.

A second approach deals with the acquisition of composite structures that reduce search by
lessening the effective length of solution paths. For instance, G. Tha's (1989) MACLEARN defines
macro-operators as compositions of primitive operators; it then uses these macros to solve future
problems in fewer steps. Similarly, Mooney's (1990) EGGS constructs abstract schemas that let it
solve some problems in a single leap. Many case-based systems take a related approach, retriev-
ing entire derivational traces to problems similar to the one at hand. However, in much of this
work, the 'macro' does not apply exactly and thus must be adapted to the new situation (e.g.,
Veloso & Carbonell, 1989). This approach holds the potential for more transfer than the use of
opaque operators, but it requires that one check each step of the derivational trace to determine
applicability.

DEDALUS clearly follows the first of these paths, storing cases and probabilistic abstractions
that serve the same role as selection rules in PRODIGY and SOAR. Although the system constructs

a derivational trace during the planning process, it does not store the trace itself in memory, as
described by Veloso and Carbonell. Rather, it stores the components of this trace in its concept

hierarchy, using each of them when it seems appropriate. Laird et al. (1986) have noted that SOAR
can effectively simulate the use of macro-operators with search-control rules, in that the latter can
reproduce specific sequences of operators; DSDALUS' knowledge structures can produce macro-like
behavior in a similar manner. Nevertheless, one can imagine efficiency reasons for preferring actual
composite structures (Minton, 1990b), and timing studies with humans suggest that they store
some structures of this sort (Rosenbaum, Kenny, & Derr, 1983).

In contrast, the design for ICARUS supports both forms of plan knowledge. Recall that this
system would store entire derivational traces in memory, described as problems, subproblems, and
connections among them. The concept hierarchy would also contain probabilistic abstractions
of these traces. Upon encountering a new problem, ICARUS would retrieve a similar problem or
abstraction, as in the current system. However, this node would point not only to the operator
that proved useful in solving it, but also to the subproblems that occurred in the solution. At this
point, ICARUS would have two obvious choices:

select the retrieved operator, create new subproblems, and sort them through the concept
hierarchy to select further operators;

* examine the stored subproblems and simply select the operators stored there.

A UNIFIND FRAUmwotK 19

The first approach is identical to the strategy employed by DADALUS, and makes no use of the
stored substructures. The second takes advantage of this knowledge to avoid sorting subproblems
through memory, giving the effect of invoking a macro-operator.

However, there is also a third option, which holds the key to determining an appropriate response
and also suggests an approach to learning this knowledge. As in derivational analogy, one can oper-
ate in the second of the above modes, but comparing each subproblem to the analogous subproblem
in the retrieved trace. If the two are sufficiently similar, the subtrace is used as a further guide; if

not, the subproblem is sorted through memory to select an operator. Note that in highly regular
domains (where one often encounters equivalent subproblems), these comparisons will typically be

successful; in less regular domains, the same subproblems will seldom occur.

To encode this knowledge, IcARus' abstract derivational traces will store the probability of each
lnibtrace being rei"d, given that its parent problem has been retrieved. The system will consult

these scores in solving a new problem. If the probability for a subproblem's reuse is especially

high, ICARUS will simply reuse its operator without bothering to match it against the c-xrent

subproblem. If this holds for the entire abstract derivational trace, it will be treated like an opaque
macro-operator. On the other hand, if the probability for reuse is very low, the system will simply

sort the problem through memory to retrieve a plausible operator in this manner. If this holds for
each retrieved subtrace, the overall behavior will equivalent to using search heuristics. Finally, if
the reuse probability is neither high nor low, ICARUs would base its decision on a comparison of the

new subproblem and the stored one, simulating a form of derivational analogy. This would be the
default early in the system's experience with a domain, before it had acquired reliable probabilities.
Of course, arbitrary mixtures of these strategies could occur as well.

4.3 Planning and Execution

A physical agent must do more than plan, which involves the generation of possible action sequences.

It must also be able to ezecute its plans, which involves the enactment of those sequences. A
complete intelligent agent requires both capabilities, as well as some way to interleave them. A
growing number of researchers have started to examine this problem (e.g., Drummond & Bresina,

1990; Laird et al., 1990; Mitchell et al., in press), but if we want ICARUS to serve as the basis for
a robust agent, we must address it within our developing framework. Two basic issues arise with

respect to interleaving planning and execution.

First, plans must somehow be grounded in executable actions. Most planning research, especially
within machine learning, focuses on abstract, logical formalisms like that used in Section 2. In con-

trast, most work on robotics and control assumes sensori-motor descriptions that specify locations

and velocities of physical objects and limbs. Some work has attempted to combine planning and

execution while retaining separate languages for each (e.g., Fikes, Hart, & Nilsson, 1972), but this
seems far from satisfactory. Second, one must take some stance on when to execute a plan or

fragment of a plan. In some cases one can safely carry out some actions even before constructing
a complete plan. The agent must determine when it has generated enough of a plan to begin

execution.

20 LANULBY AND ALL3N

Our response to the first issue is to modify the representation of states, operators, and plans to
ground them in sensori-motor descriptions. Physical agents (including humans) exist not only in
space but in time, and they must deal with objects, situations, and actions that have duration. In
contrast to most Al work on planning, which assumes that states last indefinitely and that operators
are instantaneous, ICARUS will represent both as qualitative states (Forbus, 1985; Williams, 1985),
which are intervals of time during which the qualitative structure of a situation remains unchanged.3

This does not mean the environment is static, but that changes occur in a constant direction (i.e.,

the signs of derivatives remain the same).

Thus, each state and each operator in a plan will be described in terms of the changes that occur

while it is active, augmented by numeric information about positions, angles, rates of change,

and duration. In a complete plan or subplan, each state specifies an expected observation and each

operator indicates an executable action. In this view, motor skills such as throwing a ball or swinging

a bat (W. Iba & Gennari, in press) are simply very detailed plans. Upon deciding to execute a plan

or plan fragment, ICARUS would simply 'run' those aspects of the plan under its direct control (e.g.,

the rate and direction of a limb's movement) in the specified manner for the indicated duration.

Moreover, it should be easy to adapt means-ends analysis to this representational scheme; one need

simply replace the reduction of discrete differences with the reduction of continuous derivatives.

The representation of plans as derivational traces suggests a response to the second issue - when

to execute a plan or plan fragment. Note that the means-ends algorithm summarized in Table

1 is ambiguous. The pseudocode states that one should 'apply' a selected operator as soon as

its preconditions are met. However, this does not indicate whether one tests the preconditions

against an imagined or an actual state; or whether one applies the operator in the mind or in the

world. Thus, if backtracking were not an issue, ICARUS could simply execute each operator in its

developing plan as soon as its preconditions were satisfied. 4

Thus, the remaining concern revolves around whether backtracking is likely. As an example,

suppose a person drives to work along Highway 1 regularly, usually crossing a bridge to reach this

freeway. Further suppose that one day he learns the bridge is washed out and that he must find

another route to work. He generates another path to Highway 1, then immediately gets in his

car to drive away, without waiting to form a complete plan for the entire journey. The reason is

that, once he has reached the highway, the chance of backtracking is slim. To let IcARus take

advantage of such knowledge, we plan to augment abstract derivational traces with information
about backtracking probability. If the system retrieves a derivational trace for a given problem,

and if experience shows that the second subproblem is very likely to be solved, then the agent

would initiate execution as soon as it finds a complete plan for the first subproblem.

According to this scheme, ICARUS would begin its planning career in a particular domain by

always forming complete plans, unless it was prevented from this by time demands or memory

3. This framework downplays the distinction between states and operators, which has been central to nearly all
Al work on planning and problem solving. However, the distinction is not lost entirely, in that nodes will be
distinguished by the roles they play in a given plan.

4. This sidesteps an important issue. In continuous domains, an operator's preconditions will never match perfectly.
Thus, one must specify the degree of match required for execution. One approach would be to sort a state
description through the concept hierarchy to see if it passes through the node for the selected operator's conditions.

A UNIUIZD Fa MuuwoiK 21

limitations. As it gained experience with problems in the domain, it would collect estimates for the

probability of backtrackng on certain classes of problems, storing this information with abstract
derivational traces in the concept hierarchy. On problem classes that seldom require backtracking,

the system would gradually come to realize this fact and start to execute subplans before it had

constructed an entire derivational trace. In domains where early execution is unjustified by his-

tory, ICARUS would remain conservative, continuing to generate a complete plan before execution

whenever possible.

4.4 Closed-Loop and Open-Loop Processing

The planning community's growing focus on execution has raised concern about a related issue

- the monitoring of changing environments. In some cases, an agent's actions may not have the

desired effects; in others, external forces may alter the agent's surroundings. A robust agent must
be able to handle both sources of uncertainty, and monitoring is the obvious response. In this

extended framework, the agent compares predicted states to observed ones and, if the two disagree,
it responds by modifying its plan and thus its actions. Humans can clearly behave in such a

closed-loop, reactive fashion.

However, there is also psychological evidence for highly automatized behavior (e.g., Shiffrin
Dumais, 1981). Humans appear able to execute some motor skills in an open-loop mode, running

a 'motor program' without external feedback, as though it were an opaque macro-operator. In
well-behaved domains, there are clear advantages to such a strategy; monitoring requires attention,

which in humans is a limited resource. Of course, the dichotomy between reactive, dosed-loop

execution and automatized, open-loop behavior is really a continuum. A unified theory of execution
should support differing degrees of monitoring during enactment of a plan or motor program.

Our early work in this area (W. 1ha & Langley, 1987) modeled the control of jointed limb

movements. Our MAGIS system monitored the positions and velocities of a simulated arm at
a constant rate, noting divergences from desired behavior and responding to detected problems
by applying local corrections. Such errors led a learning mechanism to produce modified motor

schemas that were more accurate on future trials. The system could execute skills at differing

speeds, which effectively reduced the rate of monitoring and thus the ability to detect and correct

errors. Initially, the model was forced to trade off speed against accuracy; however, learning reduced

this effect, letting it carry out highly automatized skills at high rates with little error despite reduced

monitoring. There is some evidence for such a transition from closed-loop to open-loop mode in
human motor behavior (Keele, 1982; Schneider & Eberts, 1980).

One drawback of our earlier work was that monitoring was nonselective, in that it occurred at

regular intervals and examined all objects in the environment. In IcARus we plan to take a more

flexible approach, by retaining probabilities on whether specific expectations have been violated

in the past. If stored probabilities indicate that the result of applying a given operator is highly

predictable, the agent will not bother to monitor the new state (by sorting it through memory)

and will continue execution unabated. In uncertain cases, ICARUS will classify the new situation
and interrupt execution if it diverges from the expected state, then modify its plan in an attempt

22 LANGLZY AND ALLEN

to recover. The first type of knowledge structure will produce automatized, open-loop behavior
for a given component of a plan or motor skill; the second will generate dosed-loop behavior with
respect to a plan fragment.

This unified framework should also let ICARUS learn to distinguish between these two situations.
Like MAGGIE, the system would begin in closed-loop mode, monitoring its execution as much as
possible and comparing expected states to its observations. Along the way, it would accumulate
statistics about whether particular actions (in the context of a given class of plans) produce reliable
results. In nonreactive domains, the stored plans will make accurate predictions, and IcARus will
develop automatized skills that require little monitoring and can be executed rapidly. In domains
with uncertain operators or external forces, the acquired probabilities will encourage the system

to remain in closed-loop mode, telling it where and when to look for potential problems. In many
domains, the overall behavior will be some mixture of these two execution styles.

4.5 Directed and Distractable Behavior

In the previous subsection, we examined a notion of reactivity that detected when a plan to achieve
some goal went astray, so that repairs could be made. Another type of reactivity involves inter-
ruptions in the pursuit of one goal by another (presumably more important) 3ne. This introduces
another dichotomy in systems that interleave planning with execution, based on the issue of inter-
ruptibility. At one extreme, there are highly directed systems, which pursue their original goal in
a single-minded manner, independent of other developments in the environment.' At the other,
there are highly distractable systems, in that they are driven entirely by the current situation and
have no long-range view (at least not explicitly).

Clearly, both directed and distractable modes have roles to play in a general intelligent agent.
Reflex-like techniques are often viewed as central to real-time behavior, since they generally require
much less computation than deliberative schemes, and thus can respond in reasonable time to
environmental changes. For example, one does not want to think about an upcoming highway exit
when another car has come into the lane going the wrong direction. In such cases, distraction from
one's current explicit goal has clear survival value. However, directed deliberation is essential in
domains that require a more global perspective. For instance, local decisions can easily lead to
dead ends in many navigation problems.

The obvious response is for an agent to incorporate both forms of control. In a system of this sort,
directed reasoning leads to the systematic generation of action sequences, as in traditional planning
methods. However, the agent also monitors the environment, and reflexes or similar mechanisms
can interrupt the deliberation process when the need arises (e.g., Payton, 1990). This shifts the
system's attention to a new problem, which becomes the tocus ot add-ional deliberation.8 After this
goal has been achieved, the agent may attempt to return to the original problem, though memory

5. Such a system can still be reactive, in the sense that it may change its plan and thus its subgoals in response to

violated expectations, provided they are relevant to the top-level problem.
6. This account presents an overly negative picture, in that interruptians need not interfere with achieving a current

goal. In some cases, they can actually suggest better ways of solving the initial problem. Hayes-Roth and

Hayes-Roth (1979) report evidence of such 'opportunistic' planning in humans.

A UNIFIED FRAMEWORK 23

limitations can make this difficult for humans. In some domains, rapid and unexpected changes
in the environment cap Jead t3 frequent distractions, with constant interruptions and responses to
them produces long chains of behavior.

DEDALUS dearly falls at the directed end of the spectrum, making interruptions the real challenge
in developing ICARUS. To allow for distractions, we plan to associate priorities with each problem in
memory. On each cycle, ICARUS would attend to that problem with the highest priority, basically
using an agenda to focus problem-solving attention. Rather than using an explicit depth-first
search regimen, control would pass from problem to subproblem through propagated priority scores,
causing the parent to become suspended until the child had been solved or abandoned.

In this framework, classification of a new state - using the LABYRINTH algorithm described in
Section 4.1 - could lead to retrieval of a stored problem that differs from the one currently being
pursued. This could occur if the state is similar to the initial state of a stored problem, and
if the overall match is better than that against the active problem and its predicted state. For
instance, an oncoming car would match the initial state of a 'swerve' problem better than the
predicted state of driving along an unobstructed highway. If the retrieved problem had higher
priority (either positive or negative) than the currently active one, the latter would be suspended
and the agent would pursue the more urgent goal. Presumably, this would be the situation in the
case of an oncoming vehicle. Once this task has been handled, control would pass back to the
original problem, unless another one had taken over in the meantime.

In this view, there is no a priori distinction between plans and reflexes; ICARUs stores a single
type of data structure, which can be retrieved in either a goal-driven, directed manner or in a
stimulus-driven, distractable manner. This account also explains the origin of top-level problems,
which are generated when the agent encounters a familiar state that invokes a stored reflex. Of
course, the system must start somewhere, so we assume that it begins with some innate reflexes,
which it uses to generate top-level tasks in the early stages of its development.

In Section 4.1 we proposed a learning method for storing new plans and organizing them in
memory. Since reflexes would be encoded in the same data structures, ICARUS requires nc, additional
mechanism for their acquisition. However, it does need some means to estimate the priority scores
associated with each stored plan. Our response to this issue involves associating priorities with
each state in the concept hierarchy, as well as with plans. Upon classification, a new state would
inherit the priority associated with its parent. If this state occurs at the end of a plan or subplan,
ICARUS would use a variant of Sutton's (1990), tomporal difference method to revise the priorities
associated with states and plans that led to this situation. These changes would also propagate
upward through the concept hierarchy, altering the scores for abstract plans and states. Over time,
the score for a plan class would come to predict the scores for its final states. After sufficient
experience, a plan would receive high priority to the extent that its likely outcomes have high
priority for the agent.

Furthermore, we will assume that states (and thus plans) can have either positive priority (if
desirable) or negative priority (if undesirable). In this framework, a plan would not 'succeed' or
'fail', but would simply produce more or less desirable states. As a result, ICARUs would be able
to store all experience in a single type of know!edge structure, without need for arbitrary labeling

24 LANOLIY AND ALLBN

schemes. Moreover, this should let the system learn from both successes and failures using a single
mechanism, Sutton's temporal different method. This is a very different approach than that taken

by explanation-based systems like PRODIGY and SOAR, which reason about success and failure as

separate types of events.

5. Conclusions

In this chapter we described DADALUS, a system that improves its ability to plan with experience.

We presented the system in terms of its position on four dichotomies that exist in the literature on

planning and learning. We found that to generate plans, DEDALUS employs a flexible version of

means-ends analysis that incorporates aspects of forward chaining approaches. We also saw that

both search and memory play central roles in DSDALUS behavior, which we cast as problem-space

search constrained by knowledge in mmory. Moreover, this memory includes both specific cases

and abstractions of those cases, which the system organizes in a probabilistic concept hierarchy.

Finally, we noted that DBDALUS unifies notions of data-driven and knowledge-driven learning, in

that its initial concept hierarchy biases the concepts it induces, and that knowledge acquired during

earlier learning affects later learning.

Our experimental evaluation of DMDALUS revealed that its learning mechanisms do lead to re-

duced search during plan generation. In addition, the model accounts for a nu .ber of high-level

behaviors observed in human problem solving. However, we also found that the system reduces

search only at the expense of increased retrieval cost, and that it fails to model some important

psychological phenomena. These limitations suggested some natural directions for further research.

In response, we presented our designs for ICARUS, an integrated architecture for intelligent agents
that would subsume its predecessor. Unlike DBDALUS, the extended system would store entire

derivational traces in its concept hierarchy, along with abstractions of these experiences. In addi-

tion to synthesizing notions of induction and explanation, this approach would unify a variety of

additio ial forms of behavior. These would include:

" the use and acquisition of structures that support search heuristics, macro-operators, and

derivational analogy;

" the interleaving of planni X and execution, based on the grounding of plans in temporal sensori-

motor descriptions;

" the selective invocation of closed-loop and open-loop processing, and the transition from the

former to the latter through a mechanism of automization;

* the interruption of ongoing problems through a mixture of directed and distractable behavior,

and the acquisition of problem priorities based on plan results.

Thus, ICARUS promises to cover a much wider range of behaviors than its predecessor, unifying
many aspects of planning, execution, perception, and learning in a single integrated framework.

Although we have only started on the path from design to implementation, we are confident that

it leads to a robust architecture that will be consistent with knowledge of human behavior while

providing robust control for a physical agent.

A UmIFID FR&MswoRK 25

Acknowledgements

We thank other members of the ICARUS group - Wayne Iba, Deepak Kulkarni, Kate McKusick,
and Kevin Thompson for lengthy discussions that led to many of the ideas in this paper. John

Bresina, Mark Drummond, and Steve Minton also influenced our thinking. All of the above provided

useful comments on an earlier draft.

References

Anderson, J. R. (1983). The architecture of cognition. Cambridge: Harvard University Press.

Carbonell, J. G. (1983). Learning by analogy: Formulating and generalizing plans from past

experience. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning:

An artificial intelligence approach. San Mateo, CA: Morgan KaufmAnn.

Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. J. Sternberg

(Ed.), Advances in the psychology of human intelligence. Hillsdale, NJ: Erlbsum.

Clark, P. & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-284.

Drastal, G., Czako, G., & Raatz, S. (1989). Induction in an abstraction space: A form of con-

structive induction. Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence (pp. 708-712). Detroit, MI: Morgan Kaufmann.

Drummond, M., & Bresina, J. (1990). Planning for control. Proceedings of the Fifth IEEE Inter-

national Symposium on Intelligent Control (pp. 657-662). Philadelphia, PA: IEEE Computer
Society Press.

Elio, R., & Watanabe, L. (in press). An incremental deductive strategy for controlling constructive
induction in learning from examples. Machine Learning.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure-mapping engine: Algorithm
and examples. Artificial Intelligence, 41, 1-63.

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2, 189-208.

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1972). Learning and executing generalized robot plans.
Artificial Intelligence, 3, 251-288.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learn-
ing, 2, 139-172.

Flann, N. S., & Dietterich, T. G. (1989). A study of explanation-based methods for inductive

learning. Machine Learning, 4, 187-226.

Forbus, K. D. (1985). Qualitative process theory. In D. G. Bobrow (Ed.), Qualitative reasoning
about physical systems. Cambridge, MA: MIT Press.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12,

306-355.

Hammond, K. J. (1990). Case-based planning: A framework for planning from experience. Cogni-

tive Science, 14, 385-443.

26 LANGLZY AND ALLEN

Hayes-Roth, B., & Hayes-Roth, F. (1979). A cognitive model of planning. Cognitive Science, 3,

275-310. _

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine Learning,

3, 285-317.

1ha, W., & Langley, P. (1987). A computational theory of human motor learning. Computational

Intelligence, 3, 338-350.

Iba, W. & Gennari, J. H. (in press). Learning to recognize movements. In D. H. Fisher & M. Pazzani

(Eds.), Computational approaches to concept formation. San Mateo, CA: Morgan Kaufmann.

Jones, R. (1989). A model of retrieval in problem solving. Doctoral dissertation, Department of

Information & Computer Science, University of California, Irvine.

Jones, R. (1990). A probabilistic approach to learning in planning. Unpublished manuscript,

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA.

Kibler, D., & Langley, P. (1988) Machine learning as an experimental science. Proceedings of the

Third European Working Session on Learning (pp. 81-92). Glasgow, Scotland: Pitman.

Kolodner, J. L., Simpson, R. L., & Sycara, K. (1985). A process model of case-based reason-

ing in problem solving. Proceedings of the Ninth International Joint Conference on Artificial

Intelligence (pp. 284-290). Los Angeles, CA: Morgan Kaufrnann.

Kotovsky, K., Hayes, J. R., & Simon, H. A. (1985). Why are some problems hard? Evidence from
tower of Hanoi. Cognitive Psychology, 17, 248-294.

Keele, S. W. (1982). Learning and control of coordinated motor patterns: The programming
perspective. In J. A. S. Kelso (Ed.), Human motor behavior: An introduction. Hillsdale, NJ:

Erlbaun.

Lard, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in SOAR: T_- anatomy of a general
learning mechanism. Machine Learning, 1, 11-46.

Laird, J. E., Hucka, M., Yager, E. S., & Tuck, C. M. (1990). Correcting and extending domain
knowledge using outside guidance. Proceedings of the Seventh International Conference on

Machine Learning (pp. 270-283). Austin, TX: Morgan Kaufmann.

Langley, P. (1985). Learning to search: From weak methods to domain-specific heuristics. Cognitive

Science, 9,'217-260.

Langley, P., Thompson, K., Iba, W., Gennari, J. H., & Allen, J. A. (in press). An integrated

cognitive architecture for autonomous agents. In W. Van De Velde (Ed.), Representation and

learning in autonomous agents. Amsterdam: North Holland.

Luchins, A. S. (1942). Mechanization in problem solving: The effect of Einstellung. Psychological

Monographs, 54 (248).

Minton, S. N. (1990a). Quantitative results concerning the utility of explanation-based learning.

Artificial Intelligence, 42, 363-391.

Minton, S. N. (1990b). Issues in the design of operator composition systems. Proceedings of the

Seventh International Conference on Machine Learning (pp. 304-312). Austin, TX: Morgan

Kaufmann.

A UNIFIRD FRAMaWORK 27

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni, 0., & Gil, Y. (1989).

Explanation-based learning: A problem solving perspective. Artificial Intelligence, 40, 63-
118.

Mitchell, T. M., Utgoff, P. E., & Banerji, R. (1983). Learning by experimentation: Acquiring and

refining problem-solving heuristics. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.),

Machine learning: An artificial intelligence approach. San Mateo, CA: Morgan Kaufmann.

Mitchell, T. M., Allen, J., Chalasani, P., Cheng, J., Etzioni, 0., Ringuette, M., & Schlimmer, J. C.

(in press). Tio: A framework for self-improving systems. In K. VanLehn (Ed)., Architectures

for intelligence. Hillsdale, NJ: Lawrence Erlbaum.

Mooney, R. (1990). A general ezplanation-based learning mechanism and its application to narrative

understanding. San Mateo, CA: Morgan Kaufinann.

Neves, D. M., & Anderson, J. R. (1981). Knowledge compilation: Mechanisms for the autom-

atization of cognitive skills. In J. R. Anderson (Ed.), Cognitive skills and their acquisition.

Hillsdale, NJ: Lawrence Erlbaum.

Newell, A. (1980). Reasoning, problem solving, and decision processes: The problem space hy-

pothesis. In R. Nickerson (Ed.), Attention and performance VIII. Hillsdale, NJ: Lawrence

Erlbaum.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report on a general problem-solving program for

a computer. Proceedings of the International Conference on Information Processing (pp. 256-

264).

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Ohlsson, S. (1987). Transfer of training in procedural learning: A matter of conjectures and

refutations? In L. Bolc (Ed.), Computational models of learning. Berlin: Springer-Verlag.

Payton, D. (1990). Exploiting plans as resources for action. Proceedings of the Workshop on

Innovative Approaches to Planning, Scheduling and Control (pp. 175-180). San Diego, CA:
Morgan Kaufiann.

Pearl, J. (1984). Heuristics. Reading, MA: Addison-Wesley.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Rosenbaum, D. A., Kenny, S., & Derr, M. A. (1983). Hierarchical control of rapid movement

sequences. Journal of Ezperimental Psychology: Human Perception and Performance, 9, 86-

102.

Ross, B. H. (1984). Remindings and their effects in learning a cognitive skill. Cognitive Psychology,

16, 371-416.

Schneider, W., & Eberts,, R. (1980). Consistency at multiple levels in sequential motor output

processing (Technical Report 80-4). Urbana: University of Illinois, Human Attention Research

Laboratory.

Shiffrin, R. M., & Dumais, S. T. (1981). The development of automatism. In J. R. Anderson (Ed.)

Cognitive skills and their acquisition. Hillsdale, NJ: Erlbaum.

28 LANGLeY AND ALLBN

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on ap-
proximating dynamic-programming. Proceedings of the Seventh International Conference on
Machine Learning (pp. 216-224). Austin, TX: Morgan Kaufmann.

Tambe, M., Newell, A., & Rosenbloom, P. S. (1990). The problem of expensive chunks and its
solution by restricting expressiveness. Machine Learning, 5, 299-348.

VanLehn, K. (1989). Problem solving and cognitive skill acquisition. In M. I. Posner (Ed.),
Foundations of cognitive science. Cambridge, MA: MIT Press

Veloso, M. M., & Carbonell, J. G. (1989). Learning analogies by analogy - the dosed loop of
memory organization and problem solving. Proceedings of the DARPA Workshop on Case-

based Reasoning (pp. 153-158). Pensacola Beach, FL: Morgan Kaufmann.

Williams, B. C. (1985). Qualitative analysis of MOS circuits. In D. G. Bobrow (Ed.), Qualitative
reasoning about physical systems. Cambridge, MA: MIT Press.

Yoo, J., Yang, H., & Fisher, D. H. (in press). Concept formation over explanations, plans, and
problem-solving experience. In D. H. Fisher & M. Pazzani (Eds.), Computational approaches
to concept formation. San Mateo, CA: Morgan Kaufmann.

