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1. INTRODUCTION

The gencration of ncutral excited statc atoms or moleculcs in a liquid helium bath via collisions
with alpha particles was initially rcported by Surko and Reif (1968). Subscquent cxperiments utilizing
discharges from bcta cmitters, again, submerged in liquid helium, also found a ncutral entity in a long-
lived excited state (Rayficld 1969; Mitchell and Rayficld 1971). This excited atom or molccule
produced a Hej ion and an electron at the liquid surface. It was suggested that this excited specics
was cither the helium 23S atomic state or the a’Y!, diatomic state which is known 10 be bound.
Calvani, et al. (1972), generating the neutral entitics from an alpha source, sct a lower limit of 0.1 scc

on its natural lifctime (7).

A more rccent experimental study by Mcehrotra, Mann, and Dahm (1979), concluded that the
neutral cxcited specics was the 2’} molecular state, i.c., the lowest encrgy excited state in He,, and
not the 23S atomic state. These workers predict a lower bound on the lifetime of 10 sec in liquid
helium. This lifetime supports the assignment of the electronic state to the molecular a*Y; rather than
the atomic 23S state which has an cxperimentally known lifetime of 15 pscc in the liquid helium

(Mchrotra, Mann, and Dahm 1979).

Another interesting aspect of the excited molecule is that is reportedly forms a microscopic bubble
in the liquid (Dennis et al. 1969; Hickman and Lane 1971) with a theorctically estimated diameter of
12.5 A (Hansen and Pollock 1972). The size of the bubble is attributed to the size of the 2s Rydberg
orbital comprising the He 2°S state (Guberman and Goddard 1975).

In view of the large difference (a factor of 100) predicted by the two experiments (Calvani,
Maraviglia, and Messana 1972; Calvani ct al. 1974; Mchrotra, Mann, and Dahm 1979) for the lower
limit of the lifetime of the a* Y} state in liquid helium, high quality ab initio calculations were

undcrtaken in an effort to clarify this situation,

In this study, the lifctime, 1, for the spin-forbidden transition a°Y? — X‘X; is obtained from
calculations cmploying statc averaged multiconliguration SCF (MCSCF) plus configuration interaction
(CI) wavelunctions to describe the appropriate zeroth-order states. In order to calculate this spin-
forbidden lifetime, the spin-orbit (S-0) inducced perturbation W¥! 1o cach zeroth-order state will be

calculated using the full microscopic Breit-Pauli Hamiltonian (Bethe and Salpeter 1977). A recently



implemented method (Yarkony 1986, 1987) which employs the symbolic matrix clement approach of
Liu and Yoshiminc (1981) in the evaluation of the S-O matrix elcments will be uscd to evaluate the
! directly from a system of lincar cquations in the configuration state function (CSF) basis. This
technique has been usced successfully for studying spin-forbidden transitions in othcr moleculcs

(Yarkony 1986, 1987).
2. METHODS

The CI mcthod used to obtain the zceroth-order wavefunctions is the symbolic matrix element,
dircct-CI method of Liu and Yoshimine (1981). The molccular orbitals (MOs) needed as a basis sct
for the CI expansions were obtained {rom a statc-averaged multiconfiguration sclf consistent field (SA-
MCSCEF) approach. The SA-MCSCF procedure is the general sccond-ordcr, density matrix driven
MCSCEF algorithm of Lengsficld (1982). From the SA-MCSCF procedure one obtains a sct of

molccular orbitals determined by minimizing the encrgy functional

E,, = g w, < WIH Y, > = ZE w, E, )

where the Wy's arc the cigenfunctions of H®, the non-relativistic Hamiltonian operator, in the space of
the MCSCF expansion

Above, the w s are the non-negative weighing factors for the clectronic states which do not vary as a
function of internuclecar scparation, and the vy, arc the CSFs composed of the state-averaged, optimized
MOs. The weights were chosen to provide a balanced description of the states of interest. The
sensitivity of the multi-reference Cl results 1o a panticular choice of w,’s in the MCSCF optimization
was tested by varying the weights and by comparing our results 10 both experimentally derived
spectroscopic paramcters and to spectroscopic parameters obtained in earlier ab initio calculations
which employed a scparate MCSCF procedure for cach state (Konowalow and Lengsficld 19874,
1987b).

2.1 Spin-Orbit Inicractions. The spin-orbit part, H*, of the microscopic Breit-Pauli interaction is

given by (Bethe and Salpeter 1977)

to



Z, 5 - r. X p. - (3)
He = £ |IX 2 o -3 |2 P25
2!71(:2 iX r;l. ) r"j

Due to helium’s small nuclcar charge, the S-O interactions arc expected to be small and, therefore,
well suited for treatment by first order perturbation theory. The total perturbed waveflunction for state

I is given by

‘1‘,=‘I‘,°+\I‘l,, : (4)

with ¥ being the zeroth-order wavefunction. The usual spectral representation for the first-order
correction W] duc to S-O cffects is
L Lo <PHEY S
Y, =X VY. (5)
o (ES - E))
The summation over the L electronic stales is, in principle, infinite. Onc often used approach to
solving for ‘P} is to calculate explicitly the wavclunctions for a relatively small number of cxcited
states thereby drastically truncating L. This might causc onc to miss important contributions to ‘}’}

from the omitted states.

Within a given CSF space, this "omitted statcs” problem is eliminated by solving for ‘P‘[ dircctly
from .
(H° - E) ¥, = -H"Y] . (6)

Equation 6 can be transformed into matrix form as

(H° - EW' =-H” C! (7)

where it must be emphasized that B and H' arc matrices with elements formed over CSFs, not over
eigenstates. The vectors V! and C' are defined as the cocfficients for the first- and zeroth-order parts
of ¥
!
Wi =X C oy (8a)
r

W o= z vy (x) (8b)
4



The x and x’ label the spatial symmetrics to which the CSFs belong, and in general, k#x’. Equation
7 forms a large sct of lincar inhomogencous cquations which are solved to obtain V by a variant of the
mcthod suggested by Pople, ct al (1979).

2.2 Perturbed Wavefunctions. The following perturbations to X!yt yand ‘P°(a3231) arc

go+
calculated
Y (XL, = WXL+ WICTL XL (92)
Y (@'L.) = Y@Ly + Y'(1,:a’L;) (9b)

where the first-order corrections arise from the S-O interactions

YOI, X'E;,) ¢ < T HEXE;, > Q = 0

YT a*E)) @ < @®XHOIT, > Q = 1.

Where the quantum number Q (2 = A + §)), the z-component of the total orbital and spin angular

momentum is conscrved. Below, the first-order wave-functions will be abbreviated as W!'CIT

gor) and
v,

2.3 Electronic Tranxition Dipole Moment. In order to calculate the lifctime of the 113}:: - X'Z;

ur’

transition, the electric transition dipole moment p,(2>Y*,X'S*), defined b
X My g y

W@ELX'E) = <Y (@®E) b ¥ X'E,) > (10)

80+

is rcquired. The quantity, i, is the shilt operator form of the total clectric dipole moment operator

which has components (.1 .),). Substituting the perturbation expansion for cach state in Equation

10 gives, to first-order,



M@TLX'TY) = < PR, WCM,) > + < WK X)) >. n

Since the lower state in this transition is largely repulsive (possessing only a very shallow van der
Waals well), we need to obtain the vibrationally averaged transition dipole moment between a bound
clectronic state (here the 1135_‘_:) with vibrational wavefunction %,,(R) and a rcpulsive state (here the

X‘X; state) with a continuum vibrational wavefunction ¥, ,.(R) is

S = < XARO@ELX TN (R > (12)

where K*7 represents the energy for the continuum state (van Dishoeck, Langhoff, and Dalgamo 1983;
van Dishoeck and Dalgamo 1983). ¥, ”’(R) and yx,’(R) arc obtaincd by numecrically solving the radial
Schroedinger cquation for nuclear motion while ignoring rotational effects. The vibrational

wavefunction for the bound state is normalized to unity and the continuum wavefunction is defincd by

12
XAR) = (ﬂ] sin(kR-n) (13)
nk

where n is a phase shift factor and pu the reduced mass of He,.

The Einstcin coeflicient for spontancous cmission from the v’ to the kK’ vibrational state is (van

Dishoeck, Langhoff, and Dalgamo 1983, van Dishocck and Dalgamo 1983):

A, = .1419x10')AEau)4S .10 . (14)

vk

The radiative lifctime for the v' level is obtained by integrating Equation 14 over k'
3. DETAILS OF CALCULATIONS

The Gaussian-type basis set is csscntially that used by Sunil, ct al. (1983) in an earlier theoretical
study on the cxcited states of He, with two exceptions. A single, primitive p function has been added

with its exponent oplimized in increments of 0.001 to give the lowest encrgy for the F‘Hu at R =2.00



bohr (i.c., ncar rp). The CI part of the optimization uscd MOs obtaincd from a MCSCF calculation on
the F! I1, state (i.c., no statc averaging). This additional p function was deemed necessary due to an
unacceptably large AE(F’Hu - a32f,) at R = 2.00 bohr when compared with the cxperimental T,
between these two states. The orbital exponent for the more diffuse d-function was also changed to be
consistent with a basis sct uscd in an carlicr study on He, conducted in this laboratory (Konowalow
and Lengsficld 1987a, 1987b). The final atomic basis sct, reproduced in Table 1, consists of

(10s,6p,2d) primitives contracted to (7s,5p,2d), for a total of 34 atomic basis functions per atom.

The calculations arc performed in D,, symmetry with the appropriate averaging of states in the
SA-MCSCF 1o give wavefunctions which transform according to D_, symmetry. In D,,, the statcs
transform according 1o the irreducible representations (IRREPs) X'E;(lAg), TICB,. b3ﬂg(x:3B2g,

y By, and F'IT(x:'By,, v:'B,,).

The SA-MCSCEF is of the CAS type whercin the four clectrons are distributed, in all possible
ways, amongst thc lowest three MOs from IRREPs ag(og) and b, (o), and the lowest MO from
b, (1), b3 (1), by (), and bay(m,,), consistent with space and spin symmetry restrictions. The
state averaged energy is then optimized according to Equation 1, including the states XIZ;. a3E;.
b'M,,, b’M,,, F'I,,, and F'T,. Two different weighing schemes were used in this study. The
weights w= (2,2, 1, 1, I, ), and w= (1.5, 1.5, 1, 1, 1, 1) were employed and are denoted as

Scheme 1 and Scheme 2, respectively.

The cnergy was found to be consistent for the two sets of weights to € 1.x10 3 Hartrees and the
clectric transition dipolc moments (for X’Z; <- 2’%}) differed by less than 1%. An additional check
on the choice of weighing factors comes from the comparison of the computed molecular constants
with the experimental valucs (sce Tuble 4) when available. Finally, comparison of the resulls for the
a3Z: state from this study with extensive non-state averaged calculations of Konowalow and
Lengsficld (1987b) shows good agreement for the r,, D, @, and the description of the "intcrmediate

c!

hump” in the potential energy curve (PEC) for this state.

At smaller internuclear separations (R = 1.3, 1.5, 1.6), the basis sct became lincarly dependent and
molccular orbilals were climinated in order to obtain convergence in the CI diagonalization, At
R(He - He) = 1.30, one MO of b;, symmetry was eliminated from the virtual space, and at R = 1.50
and 1.60, two MOs of b,, symmetry were climinated. These correspond 1o MOs consisting primarily

of the most diffusc s-type atomic orbital (AOs).



The cffcct of climinating these MOs was checked at R = 1.70 by comparing the results for
calculations with all MOs included to calculations where first one MO and then a second MO was
removed (in decreasing order of diffuseness) from the by, IRREP. It was found that by eliminating
one MO, and then a sceond, the energy differed by no more than £3 x 1075 Hartree for any statc when
compared to the calculation using all the MOs. The transition dipole moment differed by no more
than 3%. The vibrational analysis was re-run with the electric transition moment increased at these
three points by twice the variation witnessed at R = 1.70 (i.c., by a factor of .06), then again with the
transition moment decrcased by a factor of .06 at thesc points. All the resulting lifctimes were
identical to the initial results to within at lcast two significant digits. Stability in the lifetimes to this

level of precision is acceptable for this study.

The final zeroth-order wavefunctions were obtained from sccond-order Cls with respect to the
SA-MCSCEF active spacc. The size of the resulting CI expansion (in numbcer of CSFs) for each state is
XIZ;(27,381), a3)::(38,218), b3ﬂg(33,702), F'I‘lu(23,490), for the cases where no MOs were eliminated.
When once and two MOs of b, symmectry were climinated, the corresponding totals are (26,364,
36,794, 32,607, 22,736) and (25,369, 35,403, 31,530, 21,992), respectively.

In the vibrational analyscs, PECs were represented by spline functions over the region for which
ab initio data was available with extrapolation using Lennard-Jones 6-12 functional forms. The 3323,
b3ﬂg, and F'ﬂu statcs were represented by spline functions for the region R = 1.30 - 6.50 bohr, while
spline functions were used to represent the X‘X; PEC for the region R = 1.30 - 15.0 bohr. The total
clectric dipole transition moment was also represented by a spline function for points along R = 1.3 -

6.5 bohr, and described by a sccond-order polynomial outside this range.
4. RESULTS AND DISCUSSION

4.1 State Propertics. Onc finds the following state description at R = 2.00 bohr:

A

X'y loil

g

3 +, 7—)
a’2y: lo.20,10,

3ry .
b’l,: 1cjlo,1x,

In- 16
FIl;: lgylo,lx,



Much of the behavior in the bound region can be undcerstood by treating Hc; as Hej plus an
electron in a Rydberg orbital. The three clectrons of Hej form the tightly bound “core” electrons (with
MO occupaltion 10'";10“) which interact to form the attractive potential at small R values. All three
excited states have this core description in the dominant CSF within the bound region. For R > 3.0
bohr, the contribution from a CSF containing the anti-bonding configuration 10310?, begins to make a
significant contribution for the three excited states in this study. Figure 1 contains plots of the
potential encrgy curves (PECs) for the four states of interest, and Table 2 rcports the actual encrgices.
Tablc 4 comparcs the spectroscopic constants for the four states of interest as predicted by this study
and experiment. These are provided, in pant, as a check on the overall quality of the wavefunctions
used in this study. The theoretical D, valucs are calculated as the difference in encrgy E(r,) - E(R =

40 bohr), with E(r,) detcrmined from a three-point fit to a parabola.

Table 5 lists the lowest 10 vibrational levels for @’} statc as calculated from the vibrational
analysis. The v = 9 level lics 13,332 cm™! above the equilibrium cnergy and 2,848 cm™ below the
barricr maximum. Tablc 5 also includes the v = 0 - 9 levels for the b’I'Ig and the v = 0 - 3 for the

F'IT,

In the following scctions, an analysis of the a°%;, F'TT,, and b I, states of He, is presented.
A gencral discussion of the structure of the wavelunctions for the excited states of He and its
rclationship to the shape of the PECs can be also found in papers by Mulliken (1964a, 1964b, 1966),
and by Guberman and Goddard (1975), who place special emphasis on the Y statcs.

4.1.1 The a’%! State. The small barricr to dissociation, or "hump”, has a maximum in this study
at R = 2.70A, and is rcported (Jordan, Siddigui, and Siska 1986; Milliken 1964b) to occur from the
competition between the attractive ionic-like core and the long-range repulsive interaction. Table 3
gives various cstimates of this barrier. The present study calculates the barrier height to be 1.56
kcal/mol at 2.70A, which agrees well with the relatively recent experimental value of 1.43£.05
kcal/mol at 2.72+.04A reported by Jordan, Siddigui, and Siska (1986). Probably the best theoretical
estimate (and maybe the best overall estimate) for this barrier comes from a recent paper by
Konowalow and Lengsficld (1987) who calculate the barricr to lic at 2.712A with a height of 1.507
kcal/mol. These agree quite well with the valucs obtained in the current study. As can be scen in

Table 4, the calculated 1, ®,, T, and D, vary from experiment by no morc than 1%.



4.12 The F'IT, State. The existence of the barrier with a predicted maximum of 10.9 kcal/mol at
R = 1.79A has been shown to arise primarily from an avoided crossing with a highcr state of the same
‘Hu symmctry, particularly the intcraction with the state that dissociates to He(1s?) + He'(1s3d) (Gupta
and Matson 1969). Mulliken (19644, 1966) also predicted the existence of a barricr due to a change-
over of the F'TT, state from onc which looks like a 3dIT statc in the united atom orbital (UAO)

description to one with 1s? + 1s2p characler as it approaches the dissociation limit.

Table 3 comparcs the current values for the height (10.9 kcal/mol) and location (R, = 1.79A) of
this barrier with results from two other theorctical studics. Gupta and Matsen (1969) calculated valucs
of 13.5 kcal/mol and 1.73A for the barricr height and location, while Browne’s (1965) results predict
12.5 kcal/mol at 1.77A. The predicted location for the maximum from these three studics are in
rcasonable accord. Tt is not surprising however, that the barrier height calculated in this study

(i.e., 10.9 kcal/mol) dilfers significantly from these other, very carly calculations.

The calculated 1, w,, and T, for this staic arc in good accord with the experimental values (sce
Table 4). No experimental D, was reported. It should be pointed out that the b3ﬂg and F'Hu statcs do
not enter independently into our calculations of the a3£: - X'Z; transition moment, since the
contributions from a large number of states of a particular symmetry are obtained by solving for the
perturbation over CSFs. However, it is still important that the CSF lists and MOs provide a suitable
basis for describing the 'I'Iu and 3ﬂg spacces, and so a comparison of the theorctical and the

experimental spectroscopic constants provides a useful check of our calculations.

4.1.3 The bI1, State. The b’M, has a UAO description of 2pIT which dissociates to He(1s%) +
He"(1s2p), thus Mulliken predicted that a hump is not likely 1o occur in the PEC for this state since it
is not a "promoted” Rydberg MO state. The potential encrgy curve for the b3ﬂg statc shown in

Figure 1 does not indicate a barrier, thus supporting this prediction.,

Table 4 shows the calculated r,, ©,, and T, 1o again be in excellent agreement with the available

experimental valucs. No experimental D is reported.



4.2 Transition Properties.

4.2.1 Spin-Orbit Intcractions. The first-order corrections to the X‘Z; and a’Y! states arisc from
interactions of these zcroth-order wavefunctions with the 3Hg and 'TT, symmetry manifolds,
respectively.  The magnitude of the perturbation of the a32:,’ by the lI'Iu manifold is plotted in
Figure 24, and labcled Curve A. Curve B in Figure 2a represents the first-order SO perturbation of the
a3Z: zeroth-order wavelunction attributable to only the lowcest energy state of 1Hu symmetry, the FlI'Iu
state. That is the L=1 trunction of Equation 5. Therefore, the diffcrence between Curves A and B
reflects the crror in the first-order perturbation treatment of °(a® +.) that is being introduced by
truncating the summation in Equation 5 to simply L=1. The analogous information is plotted in
Figure 2b for the X'X} state being perurbed by the °TT, manifold (Curve A) or only the b’Tl, state
(Curve B).

Onc can immediately see that much of the contribution to the total perturbation is excluded from
the ¥"’s if only the interaction with the lowest encrgy T, or *I, state is included. The difference in
the contributions at R=2.00 is a factor of ten for the a3Z:, - ', SO interaction and more than a
factor of 20 for the X’Z;M - 31’Igo+ interaction. The discrepancies change ncar R=4.0 bohr, where the
perturbation of the :13Z: state by a single 'ﬂu state accounts for approximatcly 79% of the total
interaction attributed to the 'TT, manifold. However, the single-state approximation for the X‘EZM -
1, , perturbation is more than one hundred-fold lcss than that calculated from the interaction with the

RO+

entire 3I’Ig manifold for most of thc bound region.

4.2.2 Elcctric Transition Dipole Moment and Lifetimes. The total electric transition dipole
moment, ;Ll(u32:,X‘Z*g), obtained from the perturbed wavefunctions in Equations 9, as well as its
singlct and triplct componcents (as given in Equation 11), arc plotted as the dotied curves in Figure 3,
and Table 6 lists the valucs of ul(a3Z:,X‘Z;) as a function of R(He-He). It can be scen that the
singlet component dominates over most of the 3323 bound potential, with the triplet component having
comparablc magnitude only at smail internuclear separations. At R=1.6, the triplct component is

alrcady a factor of five smaller than the single contribution,

The two moments have opposite signs for values less than 2.0 bohr, and then have the same sign
up through R=3.5, where the signs arc once again opposites. The diflcrence is signs at small

intcrnuclear scparation causcs a cancellation in forming the total transition moment, generating a near

10



zero moment at R=1.50 bohr. From R>1.85, the total transition dipole is largely determined by the
singlet component which has a maximum valuc of 6.0x10°® au at R=3.8 (from fitting to a parabola).
The decreasing transition moment for large R is consistent with the scparated atom limit, for which the

electric transition dipole moment must go (0 zcro as it represents a Hc(3sg) - Hc(lsg) transition.

The single state L=1 approximation in Equation 5 is also considered in Figure 3. The solid curvcs
in Figure 3 provide the singlet and triplet components, as well as the total p,(a*Xf, X' T as given in
Equation 11, but calculated within the L=1 approximation. Comparing the dottcd curves with the solid
curves onc f{inds at Icast three main differences.  First, the singlet contribution to u,(a3Z:,XIZ;) for the
single-state perturbation (SSP) (solid curve) is esscntially zero for the rcgion R=1.3 to 2.6 bohr, in
sharp contrast to the singlet contribution given by the dotted curve, which ncver falls below 50% of
the maximum in p, (T, X'E9). The second obscrvation is that the triplet contribution to
ul(aBZ:.XIZ;), from the SSP is much larger in this region. For cxample, at 1.85 bohr, the triplet
contribution is -2.1x10"® au for the SSP, while it is esscntially zcro for the perturbation over the
manifold of states. The third feature is the relative magnitude of the total ;Ll(a:‘Z:,X‘Z;)’s ncar their
maxima. For example, at R=4.0 bohr, wc find pl(a3Z:,X'Z;)=6.0x10'6 au for the calculation over the
', manifold, whilc the SSP gives p (a’Ey,X'£)=3.5x10"° au, and therefore accounts for only 58% of
the predicted total magnitude of the transition dipole moment. However, from Figure 2a, we sce that
at this gcometry approximately 79% of the S-O perturbation is accounted for using the SSP. Thus, the
electric transition dipole moment converges more slowly with respect to L, the number of cxcited

states included in Equation 5, than the S-O first-order perturbation contribution to W(:PE:I).

Table 5 lists the predicted lifetimes and cnergics from this study for the v=0-9 vibrational levels of
the a3Z: state for a radiative deccay process to the repulsive X'Z; state. The predicted lifetime for the
v=0 level is 18 scc, which is consistent with the more recent experimental prediction of 10 scc
(v=unknown) for a lowcr bound in liquid helium. The lifctimes are scen to monotonically decrease
with increasing vibrational quantum numbcer, at lcast up to v=9. At v=S$, the lifctime falls below the
predicted lower bound of 10 sec. The calculated lifetime of the v=0 Icvel using the clectric transition
dipole moment represented by the solid curve in Figure 3 (from the single statc approximation to
Equation 5), is predicted o be 195 scc, in sharp contrast with results determined by including all of

the eigenstates in our CSF basis.

11



5. CONCLUSIONS

The lifetime for the He, a’Y} cxcited state is predicted to be 18 scc for the v=0 vibrational level in
the gas phase, supporting the experimental value for the lower bound (in condensed phase) offcred by
Mchrotra, ct al. (1979), of 10 scc. These calculations also predict the lifetime to decrcase continuously

with increasing vibrational quantum number, at lcast up to the v=9 vibrational state.

One finds that the p l(a’Z;,XIZ;) shows maxima ncar 4 bohr, and the clectric transition dipole
moment for intcmuclcar separations greater than 1.60 bolir is determinced almost entirely by the singlct
component, <‘P'(‘Hulzu3E:l)Iu,,,l‘{‘°(X‘Zg°,)>. S-O intcractions originating in 'Hu states beyond the
F'I1, are essential to the characterization of the W'('I, ;L)) wavefunction, as well as p (X3, X'EY).
This is a strong argument in favor of using the method employed in this study, which is designed

specifically to include these higher cnergy contributions at little or no additional cost.
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Table 1. Atomic Basis Set

Type Exponent Coefficient
s 501.5045 0.002498
75.31147 0.015099
17.20769 0.092978
4.886925 0.311074
1.569584 1.0
0.541551 1.0
0.193932 1.0
0.104560 1.0
0.026725 1.0
0.008017 1.0
P 10.19643 0.092050
2.414857 0.474058
0.746691 1.0
0.139276 1.0
0.032392 1.0
0.012 1.0
d 1.5 1.0
0.042 1.0
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Table 2. CI State Energies as a Function of R(He-He)*

r(He-He) X'%y a’%} oI, FlII,
1.30 -5.302222 -5.021207 -4.986410 -4.901985
1.50 -5.469882 -5.098117 -5.067915 -4.986402
1.60 -5.532127 -5.119922 -5.091493 -5.011180
1.70 -5.583158 -5.134085 -5.107148 -5.027931
1.85 -5.642728 -5.144880 -5.119785 -5.042067
1.90 -5.658859 -5.146409 -5.121831 -5.044584
2.00 -5.686530 -5.147189 -5.123516 -5.047177
2.10 -5.709037 -5.145601 -5.122740 -5.047252
2.15 -5.718626 -5.144177 -5.121637 -5.046572
2.30 -5.741993 -5.138132 -5.116346 -5.042518
2.40 -5.753907 -5.133160 -5.111710 -5.038691
2.50 -5.763483 -5.127971 -5.106540 -5.034360
2.60 -5.771267 -5.122332 -5.101183 -5.029804
2.70 -5.777500 -5.166891 -5.095719 -5.025212
2.85 -5.784629 -5.109085 -5.087677 -5.018643
3.00 -5.789709 -5.102519 -5.080019 -5.012907
3.25 -5.795223 -5.092835 -5.068858 -5.006811
3.40 --b -5.005982
3.50 -5.798365 -5.085661 -5.059869 -5.006494
3.70 -5.799860 -5.081535 -5.054116 -5.008882
4,00 -5.801126 -5.077456 -5.047474 -5.013024
425 -5.801675 -5.075460 -5.043445 -5.015822
4.50 -5.801973 -5.074317 -5.040475 -5.017919
4.75 -5.802132 -5.073739 -5.038312 -5.019440
5.00 -5.802214 -5.073526 -5.036750 -5.020526
5.25 -5.802254 -5.073542 -5.035628 -5.021295
5.50 -5.802272 -5.073692 -5.034824 -5.021838
6.00 -5.802279 -5.074169 -5.033841 -5.022489
6.50 -5.802275 -5.074671 -5.033337 -5.022815
10.00 -5.802260 -5.075958 -5.032746 -5.023218
40.00 -5.802255 -5.075983 -5.032699 -5.023338

Atomic units used throughout.
®  Calculated only the F'IT,.
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Table 3. Barrier Heights and Barrier Positions for the a3%! and F'IT, States
u u

This Study Previous Theory Experiment
State Height® Position® Height Position Height Position
.——_#—_-——__{_—— 1
a’%! 1.56 2.70 2.7 2.9° 1.82°
1.85 2.68¢ 1.55 277
1.507 2.712 1.43£.05 | 2.72+.048
F'I, 10.9 1.79 13.5 1.73"
12.5 1.78'

- e ™ 06 a 06 O =

Energies in kcal/mol.

Distarices in Angstroms.

Peach (1978).

Sunil et al. (1983), MCSCF calculations.

Lundlum, Larson, and Caffrey (1967)

Brutschy and Haberland (1979).

Jordan, Siddiqui, and Siska (1986).

Gupta and Matsen (1969), Valence-bond calculations.

Browne (1965) did not report a barrier position from any fitting procedure, so we calculated the position and height
by fitting the potential energy data in Table 1 of Browne (1965) to a parabola giving these results.

Large-scale MCSCF plus second-order CI (Konowalow and Lengsfield 1987).
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Table 4. Molecular Constants for the a’%y, b’I1,, and F'T1, Electronic States®

Property a’%:
r, Theory 1.0493
Exp. 1.0457
T, 143,768.
144,048.

o 1,816.

1,809.

D! 15,636.
15,806.

3
bII,
1.0681
1.0635

148,962.
148,835.
(5,194)
(4,787.)

1,766. .
1,769.

19,942,

F'II,

1.0869
1.0849

165,665.
165,971.
(21,897.)
(21,923.)

1,673.
1,671.

5,293.

All distances in angstroms and energies in cm-1. Experimental data from Huber and Herzberg (1979).

The first set of values are T, with respect to the XlZ; at R=40 au, and the parenthetical values are T,’s with respect

to the E, of 2%},

Theoretical @,’s from AG(2-1) - AG(1-0)=-200.x, and @,=G(1-0) + 20 ,x,. See Herzberg (1950), pg. 95.

Determined from the energy difference between r, and R=40 au.
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Table 5. Results from Vibrational Analyses of the a’Y;, b’I1,, and F'I1, States with Energies in cm!
and Lifetimes, t, in Seconds

COM bl F'I,
v Energy 1 Energy Energy
0 899 18 873 826
1 2,635 15 2,570 2,420
2 4,290 13 4,199 3,936
3 5,867 12 5,757 5,270
4 7,373 11 7,242
5 8,785 9.6 8,658
6 10,097 8.5 10,000
7 11,306 7.5 11,270
8 12,433 6.7 12,459
9 13,452 6.0 13,569
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Table 6. The Total Electric Transition Dipole Moment p,(a*Zy,X'Z?), for 2’ — X'} as a Function
R(He-He) (in atomic units).

<X'Ziln, la’Ty>
R(He-He) (x10**6) au
1.30 -3.276
1.50 1.030
1.60 2.046
1.70 2.906
1.85 3.622
2.00 4.058
2.10 4269
2.15 4.352
2.30 4,557
2.40 4.670
2.50 4.794
2.60 4.868
2.70 4.959
2.85 5.089
3.00 5.340
3.25 5.615
3.50 5.877
4.00 5.990
4.25 5.768
4.50 5.383
475 4.882
5.00 4.319
5.50 3.182
6.00 2.199
6.50 1.466
10.00 2.145(-3)"
40.00 5.400(-5)

* Characteristic base ten noted parenthetically.
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This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes.
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1. BRL Report Number ___BRL-TR-3184 Date of Report __ DECEMBER 1990

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest
for which the report will be used.)
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of ideas, etc.)

5. Has the information in this rcport lcd to any quantitalive savings as far as man-hours or dollars
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6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)
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