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Abstract

It has long been assumed that the normalized spectrum of a radiated field

remains invariant on propagation. Recent developments in coherence theory have

demonstrated that, in general, the normalized spectrum of a radiated field changes on

propagation depending on the state of coherence and the original spectrum of the

source. In this thesis we examined the effect of the spatial correlations of the source

fluctuations on the radiated fields.

We first considered the effect of source correlations on the total radiated

power using the coicept of "radiation efficiency". For a class of planar sources,

known as Schell-model sources we showed that the radiation efficiency and hence also

the total emitted power increase with increasing source size or increasing source

correlation length. Interestingly enough, our results indicate that any source of this

class whose linear dimensions are larger than about a wavelength has a radiation

efficiency that exceeds 90%.

In investigating the radiation efficiency of three-dimensional, partially

coherent, primary sources we develop a method for finding the correlation function that

maximizes the radiation efficiency and the total power emitted by such sources. In the

case of quasi-homogeneous sources we show that the optimal degree of spatial

coherence is sinkr'/kr' where r' is the spatial offset and k is the wave number. The

significance of this result is discussed in connection with blackbody radiation.

In considering the effects of the source correlation on the spectrum of the

radiation we analyze a simple physical configuration of two small sources. Our

calculations demonstrate that one can choose correlation functions that gi,,- rise to line

narrowing, line broadening, line shifting and line splitting. Similar results are also

obtained when the full electromagaetic nature of the sources is taken into account. We

illustrate this fact by considering radiation from two partially correlated linear dipoles.
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To gain a different perspctive for the effects of the spatial correlations on the

spectrum we consider an example in coherent-mode representation. In this example we

introduce the concept of "spectral modifier" to show the small spectral changes that

occur on propagation of single coherent modes, and we then examine the spectral

effects when several modes are present.

In the final part of the thesis we consider the spectral effects arising from

source correlations when the fields propagate in homogeneous or inhomogeneous

media. Our calculations elucidate the development of spectral shifts as a function of the

propagation distance and illustrate the various spectral effects for light propagation in

graded-index fibers.
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Chapter 1 2

Introduction

The term spectrum plays an important role in most areas of science. In optics it refers

to the distribution of energy as a function of frequency. This concept has deep roots

in the development of optical physics. The first reported experiments demonstrating

that sunlight consists of multi-color contributions were performed by Sir Isaac

Newton and published as early as 1666.1 Since the days of Newton, observations

and measurements of spectra have became a leading research tool that was largely

responsible for the development of quantum mechanics and has made significant

contributions to areas such as thermodynamics, chemistry, astronomy and metrology.

In spite of the fact that relatively accurate measurements of spectra were

made as early as 18172, only rough guesses, intuition and an ample measure of luck

made the experimental results useful for the development of the various sciences that

were based on spectroscopy. 3 Implicit in all spectroscopic measurements is the

assumption that the spectrum of the field measured by various means is equal to the

spectrum of the source generating it, even when the light has propagated a significant

distance from the source This assumption, as was demonstrated recently, is valid

only in special cases. In general, the spectrum of partially coherent light changes on

propagation. The extent and type of the changes are determined by the state of

coherence of the source and separately by the propagation medium.

Although the concept of coherence was recognized many years ago, it

appears that scientists have not considered the effects of coherence on the spectrum

until recently.4 Experimentally, it is known that the most common sources of light do

indeed produce a spectrum that does not vary appreciably on propagation. Although

several cases of spectral changes were encountered, they were either attributed to the

Doppler effect 5 or left as an experimental uncertainty. 6 Theoretically, the main
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reason that coherence effects on the spectrum have not ten investigated earlier may

be due to the fact that for many years the main quantities used in coherence theory

were space-time correlations. In particular, the second order correlation function

most widely used was the mutual coherence function. 7 One of the major

developments of statistical optics in the last decade was the formulation of coherence

theory in the space-frequency domain, which shifted the emphasis from the mutual

coherence function to the cross-spectral density function. The transition to space-

frequency domain simplifies some of the theoretical techniques used to solve

boundary value problems and focuses the emphasis on the frequency-dependence of

all the relevant physical quantities.

Wolf first derived conditions under which the spectrum of light generated

by a quasi-homogeneous source remains invariant after propagation.3b According to

that analysis, planar secondary quasi-homogeneous sources whose degree of

correlation obeys a certain scaling law produce light whose spectrum is independent

of the direction of observation and is equal to the source spectrum. Additional

investigations have since shown the effects of spatial correlations in various physical

situations.

The simplest physical system that was considered was that of two small

radiating sources. 8 The simplicity lies in the fact that both sources are assumed to be

essentially point sources and the spatial correlation is a function that depends on the

position of the two sources and on the frequency. It has been shown that even this

simple system can produce spectral line shifts as well as actual modulation of the

radiated spectrum. These theoretical predictions have since been verified

experimentally by =veral groups.9

In considering different spatial correlations, the next level of complexity is

that of extended secondary planar sources. Here the spatial correlations are taken

Introduction
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between any two points in the source plane. Most of the investigations relating to

planar sources examined the spectral shifts occurring on the propagation of light from

the source plane. lo Additional work explored more general spectral changes such as

line broadening, line narrowing and line distortion in partially coherent sources whose

cross-spectral density consists of several Hermite-Gaussian modes. 11 A number of

expe iments in this area have also been reported. 12

When the radiating sources are three-dimensional, the spatial correlations

have additional degrees of freedom compared with the spatial correlations of planar

sources. 13 The effects of the spatial correlations on the spectrum of the light

produced by three-dimensional sources are, however, similar to those produced by

planar sources. 14

The investigation of changes in the spectrum of partially coherent light on

propagation have dealt so far mainly with propagation in free space. In many

practical applications light propagates in dispersive media that are homogeneous or

inhomogeneous. In these cases it is important to estimate, for example, the changes

in the spectrum after propagating a certain distance in the medium 15

The spectrum of the field is not the only physical quantity affected by source

correlations. Closely related quantities are the radiated power at a given frequency,

the directivity of a radiating system and the shape of intensity profile of light beams

produced by partially coherent sources. The effects of source correlations on the

spatial distribution of the radiated intensity have been investigated for several years. 16

Of interest in this thesis are the radiation efficiency, the directivity and the shape of the

intensity profile of partially coherent optical beams.

The radiation efficiency of partially coherent sources is a concept that has

been developed as a measure for the amount of light generated by a source of a given

intensity profile and with varying forms of spatial correlations. Most of the early

Introduction
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work on radiation efficiency involved quasi-homogeneous sources. 16 Other types of

partially coherent sources including planar and three-dimensional sources have since

been investigated. 17 Considering the effects of the correlation on the radiation

efficiency, it is natural to look for the spatial correlation that maximizes the radiation

efficiency and hence the total power emitted by a source of a prescribed intensity

profile.18

The total emitted power does not give much information about the

distribution of the radiation in space. The radiant intensity at a given frequency is

important for the characterization of the directivity of fields produced by partially

coherent sources and in calculations of the intensity profiles of partially coherent

beams. Since the-radiant intensity depends on spatial correlation, so do the directivity

and the intensity profile. Of particular interest in this respect are the intensity profiles

of the so-called Gaussian Schell-model sources19 that are closely related to certain

laser radiators.

Inrodction
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1.2 Organization of the thesis

This thesis describes several investigations on the effect of source correlation on the

physical properties of the radiated field. Specifically, we discuss the dependence of

the spectrum of light produced by partially coherent sources on the spatial correlations

of the source fluctuations. Most of the material included in the following chapters has

already been reported in papers that are already published ui have been submitted to

publication. The pertinent references are listed in Appendix E. Each chapter is

concerned with a specific aspect of the theory, and the presentation does not always

follow the chronological development of the work. Throughout this thesis attempts

have been made to thoroughly document the relevant literature. End notes to every

chapter contain extensive lists of references in addition to supplemental statements that

could not be incorporated in the main text. Since much of the research concentrates

on closely related areas, some of the fundamental papers may be referenced more than

once, where appropriate.

In the second part of this chapter we review some elements of coherence

theory and establish the notation and conventions used throughout the rest of the

thesis. Our treatment is based on classical statistical optics and on the consideration

of statistically stationary fields. Most of the formal treatment is based on space-

frequency representation so that quantities such as the radiant intensity, the total

power and the directivity refer to their respective values at a single frequency. We

also present some of the basic relations in the space-time domain in order to illustrate

the advantages of using the space-frequency representation. Following the discussion

of the cross-spectral density function we describe model sources which are frequently

used in the theory as well as in the formulation of coherent-mode representation.

Introduction
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Chapter 2 contains a description of investigations of the radiation efficiency

and directivity of fields produced by partially coherent planar and three-dimensional

sources. Specifically we examine the radiation efficiency of planar Gaussian Schell-

model sources. We determine the spatial correlation which maximizes the radiation

efficiency for three-dimensional sources of prescribed intensity profiles. While we

show that the maximum radiation efficiency of pianar sources is obtained when the

source is fully coherent, three-dimensional coherent sources are, in general, highly

inefficient. Since the radiation efficiency and the directivity are evaluated at a single

frequency, it is necessary to account for the original source spectrum to obtain the

total efficiency or directivity. Some of the spectral effects are considered in the

following chapters.

In chapter 3 we begin our discussion of correlation induced spectral

changes. We consider a simple physical configuration of two small sources and

describe some of the possible ways in which the spectrum of light can be modulated

by appropriately modifying the spatial correlations. The analysis up to this point is

based on scalar theory. In chapter 4 the analysis is extended to the full

electromagnetic fields, by considering the radiation produced by two linear electric

dipoles. This chapter expands the analysis of the spectral modulation technique to

include directional effects and the vector properties of the field. A comparison

between the results of chapter 3 and chapter 4 shows, as one might perhaps expect.

that the electromagnetic treatment reduces to the results of scalar theory in certain

limits.

The theoretical predictions of spectral changes in chapters 3 and 4 are

discussed without suggesting any possible mechanism that can produce the required

spatial correlations. 'i chapter 5 we consider the radiation from a secondary planar

source whose cross-spectral density consists of several coherent modes. The choice

Introduction
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of the Hermite-Gaussians as the functional form of the coherent modes makes the

analysis relevant to applications where independent laser modes are present in a

source. The theory developed in this chapter shows the spectral changes that occur

on propagation of individual coherent modes. When the radiation consists of several

coherent modes the changes in the spectrum can be attributed to correlation effects

which are manifested by the relative strengths of the individual modes present in the

source.

The analysis presented in chapters 2 through 5 concerned propagation of

light in free space. In most practical applications light passes through optical elements

and through media whose response is frequency-dependent. In chapter 6 we consider

propagation of partially coherent light through homogeneous and inhomogeneous

media, as well as the effects of dispersion. In particular, we consider propagation

through optical fibers whose index of refracticn has a quadratic profile (so-called

Selfoc fibers). As one may expect, spectral changes that take place on propagation in

free space are somewhat enhanced by propagation in a medium characterized by a

frequency dependent index of refraction.

Throughout this thesis various symbols were used to denote numerous

physical and mathematical entities. We made every effort to define all symbols the

first time that they occur in the text. In Appendix F we present a list of the main

symbols and their definitions.

Introduton
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1.3 Elements of coherence theory

In this section we summarize some basic results of coherence theory which are

essential to the development of the material presented in the rest of the thesis. We

focus our attention on the development of space-frequency representation, and we

discuss properties of the cross-spectral density and the so-called coheent-mode

representation. This review also includes short derivations of the main relations

involving various physical quantities of interest.

The concept of sp.tia correlation

Consider an aperture in an opaque screen20 that is illuminated by a light source as

shown in Fig. 1.1. The field distribution in the plane of the aperture is known as a

secondary source. The concept of a secondary source is useful in describing practical

situations where one considers the light incident on the entrance or exit pupil of an

optical system, or when describing a particular distribution of light without regard to

the physical system which produces the radiation in the first place. We denote the

field strength at two typical points in the plane of the aperture and at two different

times by complex analytic signals 2' V(P,, til), V(P 2, t2) respectively. The

correlation between the fluctuations of the field at the two points is characterized by

the average

C(PIP2;tIt2)=( V .(P, tI)V(P2I, t2)) (1.1)

Inroduction
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0

Figure 1.1: A sccondary source consisting of an aperture in a planar opaque

screen. PI and P2 are two typical points in the plane of the aperture.

This type of average, which occurs frequently in our analysis, is taken over an

ensemble of realizations of similar systems, and it is denoted by the angular

brackets.22

In this document we consider only fields which are stationary in the wide

sense, i.e. fields wose average is a constant which is independent of time, and

wnaose two-point correlation Fdepends on the two time arguments only through the

difference t2 - ri, namely

j,; V ' (r, t)V(r2 , t+,)) (1.2)

The space-time correlation flr l , r2, ') is called the mutual coherence function.23

which had been widely used together with its normalized form, the complex degree of

coherence

In oducon
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Y(riIr 2;r)= r(r, r,r2 ; T) (1.3)

whose magnitude satisfies the constraint

Ir,,r2; TA-5 1. (1.4)

In Eq. (1.4) the lower limit, zero, is obtained fot a temporally incoherent field and the

upper limit corresponds to a temporally coherent field.

The mutual coherence function conveniently facilitates calculations

involving interference of partially coherent light. For calculations involving the

propagation of partially coherent light it is usually better to use the cross-spectral

density function. Before we define it, we consider the generalized 24 Fourier

representation for the field V(r, t) in the form

V(r, t) = v(r;co)de- 'i" d . (1.5)
0

The cross-spectral density function is defined by the ensemble average

W(r,r 2; 0)(o)- (') = (v(,;W)v(r2;(')) , (1.6)

where 8(co - co') is the Dirac delta function. Its appearance in Eq. (1.6) arises from

the assumption of stationarity of the field. I is important to observe that the cross-

spectral density function defined by Eq. (1.6) is a measure of the spatial correlation of

Intrduction
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the field fluctuations at a single frequency Co. Because of our assumption of

stationarity, the cross-spectral density function has no information about the spatial

correlation of the fluctuations of the field at different temporal frequencies. As we

show below, the fact that the cross-spectral density is a spatial correlation at a single

frequency makes it particularly suitable for calculations where the frequency

dependence of the variables is important.

The cross-spectral density function and the mutual coherence function are

related by the generalization of the well known Wiener-Khintchine theorem26

W(r, r2 ; w)= f (rl, r2, ) e'a dT, (1.7)

F(r,r2 , T) = JW(r,,r 2;o)e-i)" dv. (1.8)
0

This relatively simple relation is justified on the basis of a substantial amount of

mathematical analysis that is outside the scope of this manuscript.27

Before leaving the subject of the mutual ccherence function we compare the

expressions governing the propagation of the mutual coherence function and of the

cross-spectral density function to the far zone. This comparison illustrates one of the

advantages of using the cross-spectral density in propagation calculations. In free

space, the mutual coherence function is given by

Introduction
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Ir ffCos 1 Cos 02Fr1,.r2, T:)= X JJR 2P

(1.9)
X / 1 $2' 'T'- R2 - RI )d 25s1 d 2S2

where sj are position vectors in the source plane a, Oj are the angles which the

vectors rj make with the positive z-direction, c is the vacuum speed of light and 6 is

the differential operator

d~2
D - I- - f I "(1.10)

c d0r c

with Rj given by

Rj ,=rj-sl . (1.11)

Equation (1.9) should be compared with the expression for W, the cross-spectral

density of the field in the far zoner7, i.e.,

W( ) (Ru, Ru2; o) = (2rnk) 2 cos 01 cos 02

exp[ik(R- R) 
(1.12)

X ' 0 (-kCU11,kU2 .1 ) RAR
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where uj_" are projections of the unit vectors uj on the source plane28, and 10 ° ) is

the four-dimensional Fourier transform of the cross-spectral density in the source

plane

d4(OI W _ _ (0) 2~ 2r1.3,(°)(fl f2) = (n ffW(r,,r 2 (;o)e-'(fr1+f2 "r2)d rld2 (1.13)
(2n)" JJ ..

Cy

In this notation k in Eq. (1.12) is the wavenumber associated with frequency co,

2ic 2;tv 6o
k= 2x = o) (1.14)

and , is the wavelength of the field.

It is clear from Eqs. (1.9)-(1.12) that, in general, it is simpler to use the

cross-spectral density function when calculating the propagation of partially coherent

fields in free space. In the rest of this section we review the properties of the cross-

spectral density and summarize some of the relationships between the cross-spectral

density and various physically measurable quantities. 29

The first measurable quantity that we consider is the spectrum S(r, co) which

is simply the 'diagonal' component of the cross-spectral density, i.e.,

S(r, o) = W(r, r;w) . (1.15)

S(r, co) may represent the spectrum of the field or the spectrum of the source. It is

usually supplemented by a subscript or superscript giving it the proper designation,

e.g., S(-)(r, w) denotes the far-zone spectrum whereas S(°)(r, co) denotes the source
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spectrum. We note that although most of our interest is in the diagonal component of

the cross-spectral density function, no propagation calculation can be performed

without the explicit knowledge of the full, complex-valued, cross-spectral density.

A quantity closely related to the spectrum is the radiant intensity3 . J(u; w)

which is a measure of the amount of energy per unit frequency radiated at frequency

c in a solid angle df about a direction specified by unit vector u. It is defined by

j(u;w)= lim R2 W(Ru, Ru;o0). (1.16)
R-400

It is clear from the last two equations that the only difference between the spectrum in

the far zone S(-Xr, o) and the radiant intensity J(u; 0) is the scaling factor R2. For

this reason we will use both the spectrum and the radiant intensity when investigating

spectral effects.

The radiated power at frequency co is given by the formula

P(a)= f J(u;co)df, (1.17)
(4R)

where (47c) denotes integration over all solid angles. The radiated power is an

important quantity that we encounter in calculations of radiation efficiency and

directivity. We will sometimes refer to this quantity as the total power31 atfrequency

CD.

The spectrum, the radiant intensity and the power are the main quantities of

interest in this thesis. Unless otherwise noted, we will be concerned with their values

for observation points in the far zone. According to Eqs. (1.15), (1.16) and (1.12)
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we may express the far-zone spectrum, and the radiant intensity in terms of the cross-

spectral density of the source, viz.,

( 2 °W )(-ku,ku;o), (1.18)

J(u;o) = (2itk) 2 cos 2 0 (o)(_kuku;o). (1.19)

For general propagation in source-free region, it follows from Eqs. (1.5)

and (1.6) that the cross-spectral density function satisfies the double Helmholtz

equation

(V2 + k2)(V2 + k2 )W(r,r 2 ;o)= 0, (1.20)

where V2 is the Laplacian operator with respect to rj. It is straightforward to show

that a general solution of Eq. (1.20) expressing the cross-spectral density of the field

in terms of the cross-spectral density of the source is given by

W(rj,r 2 ; o) = fJ W()(Sl,s 2 ;w)G* (r,s 1; wo)G(r 2 ,s2 ;o)dns1 dns2 , (1.21)

where n = 1, 2, 3, according to the dimensionality of the problem, and G is the free

space Green's function for the given boundary conditions. In particular, for

propagation in a linear system, we simply replace in Eq. (1.21) the Green's function

G(r, s; o) by the impulse response of the system.

Introduction



OCapm 1 17

Representations and models of the cross-spectral density

Another item of resemblance between the cross-spectral density and the

mutual coherence function is that the cross-spectral density can be normalized in a

way similar to Eq. (1.3). The normalized form is known as the complex degree of

spatial coherence which is defined by2

w(l,r 2; 0)
(rr2;Co) =W(=,r;) W(r 2 ,r2 ;) (1.22)

and which satisfies the constraint

k (q, r; wAI <1. (1.23)

Here the lower limit corresponds to spatial incoherence at frequency o while the

upper limit corresponds to complete spatial coherence at that frequency. It follows

from Eqs. (1.15) and (1.22) that the cross-spectral density can be expressed in the

general form

W(,r 2;w ) = 4( W r2; )lz(r,r 2 ;(). (1.24)

Three special cases that are often encountered in coherence theory are derived from

Formula (1.24): the cross-spectral densities of the homogeneous 33, Schell-model34

and quasi-homogeneous 35 sources.

A homogeneous source is represented by the cross-spectral density

inoduci on
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W(,r 2 ; w) = F(r2 -; w). (1.25)

This expression implies that the source is, in principle, infinitely large. We point

out that this difficulty can be removed if we assume that the function F vanishes

outside a finite domain a.

A Schell-model source is characterized by a cross-spectral density whose

degree of correlation depends on the two spatial arguments only through their

difference, i.e.,

W(rIr2 ;) = T() S )(r 2  -r;o(). (1.26)

This form of the degree of correlation is a natural choice in most practical situations.

When we describe secondary sources, it is reasonable to assume that the

fluctuations of a source in a given neighborhood are a result of the radiation from a

single, spatially coherent, primary radiator.36 When the separation between the

points r2 and r, is larger, the fluctuations reflect contributions from more than one

primary radiator and hence the fields are only partially correlated. A similar

argument can be made regarding primary sources. Here one has to take into

account cooperative effects that depend on the nature of the radiating system.37

Supplementing the choice of the degree of correlation in this model, the choice of

the spectral intensity S(rw, ) as a function of position effectively determines the

physical size of the source.

Quasi-homogeneous sources are a very popular special case of the Schell-

model class. They are used in many investigations in coherence theory for reasons

that become apparent from their mathematical and physical properties. Their cross-

spectral density is characterized by a sharply peaked degree of .;orrelation and a

Inmduion
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broad intensity profile that does not change appreciably over a typical correlation

length (see Fig. 1.2). As a result of this relation between the intensity profile and

the degree of correlation, the cross-spectral density may be approximated by the

following expression

W(r Icr2;oW))=.S r ; (r -r;o() (1.27)

This approximation may not appear advantageous until one employs it in calculating

far-zone expressions for the cross-spectral density, the spectrum or the rnA;ant

intensity. Using the transformation

r =(r2 + q,)/ 2 , r'= r2 - r, (1.28)

with unity Jacobian, it is easy to show that the spatial Fourier transform of the

cross-spectral density can be factored in the form

" 4(ff2 ; (o) = S(fI + f 2)h(f22;(o). (1.29)

In Eq. (1.29) 9 and fi are the spatial Fourier transforms of the intensity and

correlation respectively, which for planar sources are given by

Sf) - f S(r;w) e-f" d2 r , (1.30)

Inoduction
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' S(r; (0)

Figure. 1.2: The relation between the intensity profile and the spatial cor-la'.tion of a

quasi-homogeneous source.

and

~f;LI) = 2~2JJp(r';O)fyF-Vrd 2rI. (1.31)

The fact that the spatial Fourier transform of the cross-spectral density of a quasi-

homogeneous source factorizes into a product of two spatial Fourier transforms of

half the dimensions is a significant simplification of the mechanics of the

propagation calculation, but at this point we should also point out that a large class

of physical sources can actually be characterized as quasi-homogeneous sources.

In particular, all sorts of thermal sources have relatively short spatial correlation

length and at the same time possess an almost uniform intensity profile, which is

precisely the description of a quasi-homogeneous source.

Introduction



Chapter 1 21

The different model sources we have described represent some of the

physical properties of common light sources. Another description of partially

coherent sources can be made using coherent-mode representation,38 which is

based on the expansion of the cross-spectral density into a stm of mutually

uncorrelated coherent fields (modes). Before we proceed with the formulation of

coherent-mode representation, we point out some of the properties of the cross-

spectral density function on which the representation is based.

The cross-spectral density is an hermitian quantity, i.e.,

W(rr 2 ;W)=W*(r2 ,i;O). (1.32)

It is also a non-negative definite quantity39, explicitly,

J W(ri,r2 ;o)f* (r)f(r 2 )d'r d'r2  0, (1.33)
a

where n has the dimensionality of the source and f is any square integrable

function. Under very general conditions (in fact, in all known practical cases) the

cross-spectral density also satisfies the relation

fJlW(r,r2;0)A2 d"r dnr2 <oo (1.34)

When a continuous function of two variables (r, and r2) satisfies conditions (1.32),

(1.33) and (1.34) it can be expressed as an absolutely and uniformly convergent

series known as the Mercer expansion
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W(rj,r 2 ;a) = (1.35)

where the index m has the same dimensionality as that of r, and r2, A. are the non-

negative eigenvalues and 0. are the orthogonal eigenfunctions of the Fredholm

integral equation

fW(rl,r2;oa))'.(r; a)d"r = , (w). (r2 ;w) . (1.36)

The eigenfunctions can be made orthonormal, i.e.,

€O (r;co)O,(r,co)dr r i (1.37)

where 3 is the Kronecker symbol.

It follows from the definition of the degree of correlation Eq. (1.22) that a

corss-spectral density which consists of a single eigenfunction is fully coherent, i.e.

The magnitude of the degree of correlation of a source consisting of several modes

reduces with increasing number of modes. The rate of decrease depends on the

particular distribution of the eigenvalues.40
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Coherent-mode representation which we discussed earlier seems to be a

more complicated formulation than the closed form representation of partrially

coherent fields which we considered earlier. It is however important to note the

essential differences between these representations. Whenever both representations

are available, it is usually simpler to handle most calculations using the full

functional form of the model source. However, when the coherent-mode

representation is available and the source is relatively spatially coherent, the number

of eigenfunctions in the sum is manageable and it not only gives a picture of the

source in terms of a superposition of coherent fields but it also facilitates somewhat

simpler calculations because each one of the eigenfunctions can be propagated

separately as a fully coherent field.42 The advantage of propagating each

eigenfunction separately is used in inverse problems, 43 and in analyzing the spatial

content of the illumination." In chapter 5 we consider a partially coherent source

and analyze correlation effects on the spectrum using coherent-mode representation.
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Introduction

The concept of radiation efficiency is used extensively in various fields of

electromagnetic theory. 1 It is usually a measure of the effectiveness of the production

of radiation by a given mechanism which is taken as the ratio of the emitted energy to

the energy used by the system. In many applications the radiation efficiency also takes

into account the spatial or spectral distribution of the fields.

In this chapter we consider the total flux emitted by a partially coherent souce at

a fixed frequency w, and compare it with the source integrated intensity at that

frequency. We begin our discussion with the analysis of the radiation efficiency of

planar Gaussian Schell-model sources. This example gives a unique insight into the

relationship between the size of the source intensity profile and the spatial correlation

length of the light fluctuations. We then examine the radiation efficiency of three-

dimensional primary sources. The treatment of certain aspects of quasi-homogeneous

sources requires the extension of the mathematical definition of the radiation efficiency.

After considering the radiation efficiency of a uniform coherent spherical source we

conclude this chapter by presenting a method for choosing the optimal spatial

correlation which maximizes the radiation efficiency of a three-dimensional, primary

sources of a prescribed intensity profile.

Radiation cfficiency and directivity
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2.2 The radiation efficiency of planar Gaussian Schell-model

sources

The radiation efficiency of partially coherent sources was studied by several

investigators.2 Initial work focused on quasi-homogeneous planar sources. Among

planar sources, the properties of Gaussian Schell-model sources have been studied

most extensively.3 This fact may be attributed to two main reasons: physically this

class of sources is closely related to the radiation from certain types of lasers4 and

mathematically the Gaussian intensity profile and Gaussian correlation functions are

convenient forms in the analysis.

We defnie the radiation efficiency of secondary planar sources by the formula

C(O) S(r;o)d 2  (2.1)

D

where D is the domain occupied by the source and 0 is the total emitted flux at a

frequency co, i.e.,

O(w)= J J(u;o))dD . (2.2)
(2x)

In Eq. (2.2) J is the radiant intensity and (27t) denotes integration over the half space

z > 0 as shown in Fig. 2.1.

The Gaussian Schell-model source is characterized by the cross-spectral density
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u oP

z

Figure 2.1: Illustrating the notation used in this chapter. The source is located in
the plane z = 0 and a typical observation point P is in a direction specified by unit
vector u and at a distance R (from the origin) assumed to be in the far zone.

W(rr'; 0)) = S( ) (w) exp[ 1 LiTr2iexp[ -(r2 .1) 2 ] 23

where a; is the rms width of the intensity profile and ac is the rms correlation length

and S(0)(co) is the source spectral distribution. Although the cross-spectral density in

Eq. (2.3) implies, in principle, an infinite source, wz note that whenever the maximum

physical extension of the source L say, satisfies the relation L * aI then the G:ussian

intensity profile is essentially the blocking function which defines the size of the

effective source.

To obtain an expression for the radiation efficiency of the Gaussian Schell-

model source we first evaluate the denominator of Eq. (2.1). Using Eq. (2.3) with

r I = r 2 = r, we have

Radiation efW-ciency and directivity



Chaper 2 36

fS(r;o))d 2r = S(O) (wo)f IB rexp[- r2/a Id
D 02.4)

= 2rS(O)(O)).

Next we derive an expression for the radiant intensity J(u; 0) using the four-

dimensional spatial Fourier transform of the cross-sepctral density [cf. Eq. (1.19)].

We obtain

W(-ks1 ,'ks;w =-..S(O) (co) a2 exp(-k~a sin2 /) (25

where

1 1 1.6)

On substituting Eq. (2.5) in Eq. ('.19) we find that the radiant intensity generated by

the source is given by

J(u; W) = S(O)(o)) k 2 9 cos 2 0 exp(-k 2o "2 sin 2 0/2). (2.7)

The expression for the total flux is obtained by substituting Eq. (2.7) into Eq. (2.2), it

is then given by the formula

O(W0) = S()(w)(kaal)2 fcos20 exp(-k 2 -2 sin 2 0/2)dD2. (2.8)
(2x)
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To perform the integration we define

cos 6=X

(2.9)

Using Eqs. (2.9) in Eq. (2.8) we obtain

4(o) = 27rS(O"(o)(koa) X exp (2.10)
0

which can be simplified to the form

O(llCO) = 2tS(°)(o)) - 2e' 2dt (2.11)
0

On substituting Eqs. (2.4) and (2.11) into Eq. (2.1) we finany obtain the following

expression for the radiation efficiency of planar Gaussian Schell-model sources:

(a) = I - D(4)14 ,(2.12)

where

D( ) = exp(_ 2 )fJexp(t 2 )dt
0 (2.13)

is the Dawson integral5 (see Fig. 2.2).
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Figure 2.2: Graphical representation of D(4)/ where D( ) is the Dawson integral.

The radiation efficiency given by Eq. (2.12) is a function of the source intensity

profile and its spatial correlation length through Eqs. (2.6) and (2.9). In particular, we

note from Eq. (2.6) that there are classes of different Gaussian Schell-model sources

that have the same radiation efficiency. Specifically, the characteristic quantity a which

determines the radiation efficiency is a sum of a term corresponding to the source rms

intensity and a term corresponding to the correlation length of the source fluctuations.

It is clear from this equation that there are many combinations of different correlation

lengths and different intensity profiles that lead to the same value of a and hence to the

same radiation efficiency. These equivalent classes of partially coherent sources were

first discussed in conntction with the spatial distribution of the radiation produced by

Gaussian Schell-model sources. 6 The radiation efficiency in Eq. (2.12) is independent

of the spectrum. Its only dependence on frequency is due to the wavenumber k and the

possible frequency dependence of the parameters ac and oy. In this chapter we take

these parameters to be independent of frequency.
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Figure 2.3: The radiation efficiency C(w) as a function of the normalized spatial correlation
length kcc. The three curves indicate that the radiation efficiency increases rapidly with an increase
in the source rms width.

Before we examine the equivalent classes of planar Gaussian ScheU-model

radiators we consider separately the effects of the source size (rms intensity) and the

spatial correlation length on the radiation efficiency. In Fig. 2.3 we show curves

representing the radiation efficiency of three small sources. The intensity profiles are

characterized by rms widths a I = I/k, 2/k, and 10/k respectively. We note that for

each one of the sources the radiation efficiency increases with increasing correlation

length. The asymptotic value of the radiation efficiency in each case may be obtained

directly from Eqs. (2.6) and (2.9), by setting

g2 - 2(ka,)2 . (2.14)

In a similar manner we show in Fig. 2.4 the radiation efficiency as a function of

the source intensity profile (or the effective source size). We note that the radiation
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Figure 2.4: The radiation efficient C(o) as a function of the width of the source intensity
profile kaI . The three curves indicate that the radiation efficiency increases rapidly with an increase
in the source correlation length.

efficiency increases rapidly with increasing width of the intensity profile and effectively

reaching its asymptotic value for a relatively small source.

The results shown in the last two figures are combined in Fig. 2.5 where the

radiation efficiency is shown as a function of both parameters ko I and ka c. In this

picture an equivalent class of Gaussian Schell-model sources is represented by the

infinite number of sources specified by pairs of values of koj and koa that lie on the

intersection of any plane parallel to the kar-ka, plane and the plotted radiation

efficiency surface. Several such curves are shown in Fig. 2.6.

Before we conclude the discussion of the radiation efficiency of planar sources

we point out a few physical considerations. Most secondary sources of practical

interest are likely to have spatial dimensions that are much larger than a wavelength.? If

we denote a typical source dimension by L, we then have L * A. and according to

Fig. 2.4 the radiation efficiency is nearly independent of the intensity profile for this

range of rms source intensity. In addition, if we note that the smallest natural spatial
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Figure 2.5: The radiation efficiency of Gaussian Schell-model sources as a function of
the rms intensity and the correlation length.

correlation length8 is on the order of /2 corresponding to ko(T > 3, then it follows

from Fig. 2.3 that the radiation efficiency of most planar Gaussian Schell-model

sources is over 80%.

5-4 0.93

0.9
o0.8

2 0.6

0.4
10 .
0 -------

0 1 2 3 4 5
koc

Figure 2.6: Contours of constant radiation efficiency of Gaussian Schell-model sources.
Each curve corresponds to a class of different partially coherent sources that have the same
radiation efficiency.
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2.3 Optimal radiation efficiency of three-dimensional

primary sources

In this section we analyze the radiation produced by arbitrary three-dimensional

scalar source distributions, whose degree of correlation at any pair of points depends

only on the (oriented) separation between the points. Working in a Fourier transform

space, we establish an operational method for calculating the spatial correlations that

maximize the radiation efficiency of such sources. The optimal correlation function

which we derive is, in general, not unique, and it is found to depend on the distribution

of the optical intensity across the source.

We begin the analysis by generalizing the definition of the radiation efficiency

Eq. (2.1) to the form

C(W) = - , (2.15)

where

N = JSQ(r)d3 r. (2.16)
D

Here D is the source domain and Dis given by

12
D= fF r dr .(2.17)
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The use of the effective volume D, rather than the actual volume D, enables us to

discuss infinite sources whose optical intensity distribution falls off sufficiently

rapidly.9 The advantage of this formulation will become apparent later. In Eqs. (2.16)

and (2.17) the subscript Q represents a primary source distribution.

Another difference between the calculations of the radiation efficiency of planar

and three-dimensional sources is in the evaluation of the total flux which, in the present

case, is given by the formula

(w)= J(u;(o)df2, (2.18)
(4x)

where (41r) denotes integration over all solid angles.

The radiant intensity generated by three-dimensional primary sources of any

state of coherence is given by Eq. (3.9) of Ref 11 (a).

J(u;o) = (2n)6 Wf(-ku, ku; co), (2.19)

where W, is the six-dimensional spatial Fourier transform of the source cross-spectral

density i.e.,

= (2) 6 fJ WQ(ri,r2 ; w)exp[-i(f "r + f2 r2)]d3 j d3r2 . (2.20)
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The definition of the radiation efficiency in Eq. (2.15) is consistent with that

given in Eq. (2.1) in that the efficiency of primary sources is also bounded by

0 <CW) < 1. (2.21)

This relation can be derived by considering any source cross-spectral density of the

form

= .I2C(r;(o) JQ(r2; OlUQ(rIr2; O) (2.22)

Since the derep nf errelation is nor--iaiized so that

kQ(rlr2;0)1!51 9 (2.23)

it follows from Eqs.(2.17), (2.19) and (2.20) that

V (u;( 0 ffJSQ(r; w)4SQ(r2;o)d'r, d3 r =V W. (2.24)

The normalization of the radiation efficiency Eq. (2.21) can now be obtained on

substituting Eq. (2.24) in Eqs. (2.18) and (2.15).

The result expressed by Eq. (2.21) is valid for all primary sources regardless of

their state of coherence or the distribution of their optical intensity. It is clear that the

lower limit C(co) -- 0 is obtained, for example, in the limit of complete spatial

incoherence l ° since, according to Eqs. (2.19)-(2.20), for such a source the radiant
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Figure 2.7: Normalized radiant intensity prmduced by a uniform, co-phasal, fully coherent
splierical source of radius a.

intensity J(u; co) vanishes. Other examples of this type are certain fully coherent and

partially coherent non-radiating source distributions 11

We note that lower limit of the radiation efficiency for three-dimensional

primary sources occurs, as in the case of secondary planar sources, in the limit of very

short spatial correlation lengths. However, as we show in the following example,

unlike seconidary planar sources, the radiation efficiency is not always maximized in the

limit of long correlation length.

Consider a uniform, co-phasal, fully coherent spherical source of radius a. The

radiant intensity produced by such a source is given by [Ref. 1 (a) Eq. (4.15)]

J(u; 0) = (4=a3/3)2SQ(o.w)[3j, (ka)/ka2 , (2.25)

see Fig. 2.7. In Eq. (2.25)jl(x) is the spherical Bessel function of the first order i.e.,
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sinx cosx (2.26)

In the limit of small argument x ,( 1 we have jj(x) x/3. It then follows from Eq.

(2.25) that the radiant intensity generated by a spherical source of this type, whose

radius a is smaller than the wavelength is

J(u;W)=(47a/3) S,,(r;c)=D2SQ(r;co), (a,, .) (2.27)

where D is the volume of the source. On the other hand, for a source of this type

N = DSQ(co) and !D = D. Then according to Eq. (2.15), the radiation efficiency

C(w) -4 1 as a -+ 0. This result shows that the maximum radiation efficiency is

achieved by % uniform coherent source in the limit as its linear dimensions are small

compared with the wavelength. When the dimensions of the source increase the

radiation efficiency decreases and actually vanishes for radii a such that ka is a zero of

the Bessel function j1 . 12 This result is in contrast with the result for the radiation

efficiency of planar secondary sources that achieve maximum efficiency for fully

coherent field distributions and large spatial dimensions (see Fig. 2.3).

We now wish to find the spatial correlation function gQ(r - r2; (0) which

maximizes the radiation efficiency C(o) for a given primary source with an arbitrary

(but known) intensity distribution SQ(r; (o) and domain D. Since the quantities N and

D are then fixed, we may confine ourselves, in view of Eq. (2.15), merely to the

optimization of gQ(r I - r2; co) in such a way that the total flux (D(w) radiated by the

source attains its absolute maximum value.

According to Fqs. (2.1 R)-(2.20) the radiated flux at frequency co is given by the

expression
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0((A)= J J %(,:w) SQ(r 2;W)gQ(-r 2;W' O)
(4i)D D Xexp-ikza.(r, -r 2 )]d3 , d 3

2 d. (2.28)

On introducing the average and difference variables 13

r=(r + r2 )/2 r'=r -r2, (2.29)

as well as the auxiliary source function

R(r';w) = JISQ(r + r/2;n) SQ(r - r2;o) d3r , (2.30)
D,

we may simplify Eq. (2.28) and obtain the following expression for the radiated flux:

000)= f fR(r')gQ(r';co)exp(-iku r')d3r'dfQ. (2.31)

(4x) D2

In Eqs. (2.30) and (2.31) the spatial integrations are performed over the domains D1

and D2 which are determined from the original source domain D through the coordinate

transformation Eq. (2.29). For example, it is evident from Eq. (2.28) that the modulus

of r' does not exceed the maximum linear dimension of D. The function R(r'; c) is

related to the source-averaged correlation function employed in earlier studies of

radiation by partially coherent planar sources.14
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The next step in the analysis is the integration of Eq. (2.31) with respect to Q.

Since the integral

= exp(-iku., r')dQ (2.32)
(4x)

has no preferred direction in space, we can rotate the coordinate system so that r' is in

the direction of the polar axis of a spherical polar coordinate system, and the integral is

readily performed,

2x x

fexp(-iku" r')dI2 = f doiexp(-ikr'cose) sin 6dO

t4xI 0 0

1
= 2n fexp(-ikr'x)dx (2.33)

-1

sinkr'
kr'

where r' 1 A,'. On substituting Eq. (2.33) into Eq. (2.31) we find that

0(4) = fQ(r')gQ(r') d 3r' , (2.34)
D2

in which we have defined the auxiliary function Q(r'; a)) by

sin kr'
Q(r';(0) = 4nR(r';O) s (2.35)

kr'
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Here the functions R(r'; (o) and Q(r'; (o) depend explicitly on the frequency (o, but we

will suppress this dependence in the rest of this chapter.

Since the source-averaged intensity function R(r') vanishes outside the domain

D 2, the same holds true for Q(r) and the integration in Eq. (2.34) can be formally

taken over the infinite three-dimensional r'-space.

We now introduce the three-dimensional spatial Fourier transforms of Q(r') and

gQ(r') by the formulas

Q(K) = 1 JQ(r')exp(-iK.r')d3r' , (2.36)

gQ(K)= (2-) gQ(r')xp(-K-r')d 3r' . (2.37)

On invoking Parseval's theorem 15 in Eq. (2.34), we may then express the total radiated

flux by 16

O(w) = (2X) 3 f Q(K)jQ (K)d 3 K . (2.38)

At this stage we focus our attention on the mathematical properties of the functions

and gQ. Because the function Q(r) is real and inversion symmetric with respect to the

origin, we can establish the relations

Q* (K) = Q(-K) = Q(K). (2.39)
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It follows from Eq. (2.39) that Q is also real and inversion symmetric function of K

with respect to the origin in K-space. The other factor in the integrand of Eq. (2.38),

gQ, is the Fourier transform of the complex degree of spatial coherence of the source

fluctuations. According to Bochner's theorem 17, a necessary and sufficient condition

for gQ(r') to be a correlation coefficient 18 is that it is non-negative definite and it is

equal to unity at the origin. In the Fourier domain these requirements are equivalent to

o, (2.40)

and

gQ(O) =f Q(K)d 3K=1 . (2.41)

It follows from Eq. (2.38) and from the properties of the two factors in the integrand of

that equation, that there is a simple operational method for finding a spatial correlation

function go(r') which maximizes the total radiated flux O(co) and consequently also

maximizes the radiation efficiency C(w). In its simplest form, the basic principle of

this method is to determine the point K = Ko at which O (K) assumes its absolute

maximum value; the optimal correlation function then corresponds to

g(K) = 3 3) (K - K0) . (2.42)

where 3,3) is the three-dimensional Dirac delta function. This is only a particular

solution of the maximization problem which has several interesting consequences.
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The first consequence of this solution is that an upper bound on the amount of

flux that a partially coherent source can generate is given by

Om,((o) = (2L)Q(K0 ) . (2.43)

The radiation efficiency correspionding to this maximum flux is readily obtained by

substituting Eq.(2.43) into Eq. (2.15).

The second consequence of Eq. (2.42) is that at least one soluticn to the

maximization problem is a fully coherent source. This follows from taking the inverse

Fourier transform of Eq. (2.42), i.e.,

gQ(r') =exp(iKo r') . (2.44)

It is important to note at this stage that the optimal correlation indeed corresponds to a

coherent source, but the phase of the correlation is not uniform as can be seen from Eq.

(2.44). The linear phase factor K0.r' in this equation depends on the optical intensity

distribution SQ(r) through the maximum point K0 of the function Q.

The third consequence of our solution to the maximization problem is that the

optimal spatial correlation is, in general, not unique. Different source correlation

coefficients gQ(r') may yield the same maximum radiation efficiency. Moreover, as we

pointed out earlier, Q is inversion symmetric and hence the point K = -K 0

corresponds to a maximum whenever K = K0 does. Consequently (3)(K + K0 ) is

also a particular solution af the maximization problem. Either one of the two

unimodular source correlation functions gQ(r') can then be regarded as the optimal

complex degree of spatial coherence. Similarly, a linear combination of the form
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j(K) = p5 3 ) (K - Ko ) + q5(3)(K + K 0), (2.45)

where p + q = 1, is also in agreement with Eqs. (2.40) and (2.41) and produces,

according to Eq. (2.38), the maximum possible radiant flux O(co)ma. This choice of

j(K) however does not correspond to spatially fully coherent source distribution. In

fact, Eq. (2.45) corresponds to a degree of correlation of the form

gQ(r') = pexp(iKo . r')+ qexp(-iK0 • r') , (2.46)

whose magnitude is given by19

Ipexp(iKO -r') + qexp(-iK0 • r'- Ip2 + q+ 2pqcos(2kr'). (2.47)

In general, Q(K) may take on its maximum value over an extended domain

such as a surface in the three-dimensional K-space. In such a case the maximizing

j(K) may be distributed arbitrarily throughout the domain provided only that the

conditions of Eqs. (2.40) and (2.41) are met. Hence an infinite number of optimal

correlations with varying degrees of spatial coherence can then be specified. In the

following paragraphs we consider several physically important applications where these

situations occur.

The first case that we consider is that of quasi-homogeneous sources. The

cross-spectral density of such sources may be expressed in the form

W(r,,r 2;w) = S[(r + r2 )/2; o)]gQ(r - r2 ) . (2.48)
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We note that for quasi-homogeneous sources we may effectively set D1 - D and

,IS(r + r'/2;w) S(r - r_/2; w) = S(r, o) , (2.49)

in Eq. (2.30). The source-averaged quantity R(r') then assumes a constant value

R(r') = JSQ(r)d3r = N. (2.50)
D

It follows from Eqs. (2.50) and (2.35), that the function Q(r') is, in this case,

independent of the source domain D; and it is given by the spherically symmetric

(isotropic) formula

sin Wr
Q(r') = 4nN s (2.51)

kr'

We note, however, that strictly speaking there should be a finite (generally non-

isotropic) cut-off in the values of r' in Eqs. (2.50) and (2.51) due to the domain D2. In

the quasi-homogeneous approximation all contributions to the radiant flux 0(o) arise

from a small neighborhood D, C D2 around the origin r' = 0 in which gQ(r') differs

appreciably from zero. We therefore let the function Q(r') extend over the entire space

without altering the situation physically.

Allowing for an infinite domain (D92 - -c) the spatial Fourier transform of

Q(r') is found by substituting from Eq. (2.51) into Eq. (2.36). One then finds that

O(K) = 'V [aaK-k-IKI+k)] . (2.52)
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The second term in Eq. (2.52) makes no contribution to the flux 0(m). We therefore

set

NO(K)=ir 4(K -k), (2.53)

where K = K!. We observe that for quasi-homogeneous sources Q(K) is isotropic

and vanishes identically except on the energy shell K = k in the three-dimensional K-

space. Hence, in view of Eq. (2.38), the quasi-homogeneous source wil be iotally

non-radiating if its complex degree of spatial coherence is such that j(K) = 0 when

K = k. This result is in agreement with earlier investigations [ see, for example, Eq.

(3.11) of Ref. 11(b)].

When the finite size of the quasi-homogeneous source is taken into account, it is

evident that O(K) will no longer be simply proportional to a 3-function as in Eq.

(2.53). Instead it will be a sharply peaked, generally non-isotropic function, centered

around the shell K = k. In such a case the optimal correlations can be found by using

the general method we described above. Nevertheless, we show that physically

interesting results are readily obtained with the help of Eq. (2.53) for limitingly large

quasi-homogeneous sources.

Since the function O(K) in Eq. (2.53) is spherically symmetric, the values of

the Fourier transform kQ(K) on the shell K = k can be chosen in a number of ways.

Specifically, in view of Eqs. (2.41) and (2.53), one may set as the optimal correlation

function

gQ(K) = - F(u)b(K - k), (2.54)
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where K = Ku and F(u) is an arbitrary non-negative function that satisfies the

condition

J F(u)dW =I (2.55)
(4x)

Using the inverse of Eq. (2.37), it follows from Eq. (2.54) that the spatial correlation is

given by

g(r') = JF(u)exp(iku -r')df2. (2.56)
(4x)

In the case of an isotropic correlation F(u) = 1/4n and Eq. (2.56) yields [cf. Eq.

(2.33)] the spatial correlation

g(r') = sin kr. (2.57)

This is an interesting result. It implies that in the limit as the size of a quasi-

homogeneous source approaches infinity, the optimal correlations that are isotropic and

that maximize the radiation efficiency of the source are given by the universal function

sin(x)/x with x = kr'. Since the correlation distance associated with the degree of

coherence given by Eq. (2.57) is about Xf2, the efficient radiation characteristics of

such a source can be physically understood on the basis of an interference model. 2°
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-d2

Figure 2.8: Physical model explaining the reduced radiation efficiency of
correlated primary sources as a result of destructive interference [cf. Ref. 5(d)].

Consider a three dimensional source distribution in which several small

radiating volume elements are equally spaced on an arbitrary axis (see Fig. 2.8). When

all the volume elements are radiating coherently and in phase, it follows that the

radiation from any pair of elements that are separated by a distance nf AJ2 cancels

everywhere on the axis. If, however, the spatial correlation of the source fluctuations

has an effective length shorter than 2, the destructive interference effects do not take

place.

The result given by Eq. (2.57) is also closely related to the radiation produced

by a source that is in thermal equilibrium with its surroundings, i.e., a blackbody

radiator. It was shown recently, 2' that a fluctuating source with this form of spatial

correlations gives rise within the source medium to a field whose complex degree of

spatial coherence is also given by the function sin(kr')/kr'. This, in turn, is the

correlation function that is known to be associated with blackbody radiation fields.22

Hence our results are consistent with the notion that a large uniform source in thermal

equilibrium has isotropic spatial correlations that lead to maximum radiation efficiency.

As another illustration of the operational method for finding the spatial

correlation function which maximizes the radiation efficiency, we consider three

spherically symmetric Schell-model sources, all of which have identical Gaussian

optical intensity distributions:
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SQ,(r; ,= I(W)exp(-r2/12a). (2.58)

Here 1(w) characterizes the spectral content of the source and qQ is a positive constant.

We now compare three types partially coherent sources having this intensity

profile. The sources are: (a) fully coherent, (b) Gaussian correlated (optimal correlation

length as in Ref. 2(d), and (c) optimally correlated as discussed in this section.

For the fully coherent source we take gQ(r') = 1, whereas the Gaussian

correlated source is specified by

gQ(r) =exp(_,.2/2<-2) , (2.59)

and the optimal correlation length is given by

(ku8 )2 = 12(kO'Q)2 when k rQ > -, (2.60)
4(kou2)2 -32

kag -4 oo when kaQ <-.- (2.61)

The general optimal correlations can be found by determining the points where

the spatial Fourier transform of the function Q(r') corresponding to Eq. (2.58) attains

its absolute maximum value. The first step in the procedure is to obtain an expression

for the auxiliary function R(r') by substituting Eq. (2.58) into Eq. (2.30). After

performing the indicated integration we obtain the formula
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-exp(-r-2/8aQ2) (2.61)

Next we substitute Eq. (2.61) in Eqs. (2.35) and (2.36) to obtain the spatial Fourier

transform O(K)•

74

O(K) = 47L() {kexp[-2(k - K)2 aQ2J _ exp[-2(k + K)2 O-Q2] (2.62)

For koQ < 4/2 this function assumes its maximum value at the origin K = 0. When

kaQ "r3-/2, the radius K corresponding to the maximum of Q(K) for any given qQ

can be readily found using numerical methods. We will denote this radius by K0.

Making use of Eqs. (2.17) and (2.58) we find that for all the three model

sources that we are considering

VV = (4R)3 j(CO)o' . (2.63)

The total radiant flux generated by a Gaussian Schell-model source is given by2d

0(co) =47r(27~~) I(co)exp-(ka9/] (2.64)

where

1 1 1(2.65)
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and ag is to be chosen as described above [Eqs. (2.60) and (2.61)] for maximum

radiated power. In the case of the optimally correlated source, the radiated flux is given

by Eq. (2.43),

0(w.) = (2ir)3Q(K 0) . (2.66)

Because of the isotropy of Q(K) in this case, the correlations that lead to this radiant

flux can, in general, be chosen in many different ways. However, when kaQ < "5/2,

the value K0 = 0 is the unique solution. This leads to jQ(K) = ,63 (K) and

consequently the source is fully coherent and co-phasal, i.e., gQ(r') = 1. On

combining Eqs. (2.62) and (2.66) and taking the limit as K0 -- 0, we indeed see that

the resulting radiant flux 0(p) is identical to that given by Eq. (2.64) with ku, -4 *

Here we have used the fact that

lim -ljexp[-2.2(k-K)2- exp[-2cr (k + K)211 = 4kaQ . (2.67)
K-*0 KQQ

Making use of the above results we may now calculate the radiation efficiency

defined by Eq. (2.15). For the fully coherent and optimally Gaussian correlated

sources we find from Eqs. (2.63) and (2.64) the formula

CQw) a ) expf-(ka)2 /2],
(2.68)
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Figure 2.9: The radiation efficiency of the three sources. Note that the radiation efficiency of the
sources decreases significantly with increasing source size, and that the three sources have identical
efficiency for values of kaI < 0.86.

where a is given by Eq. (2.64). The radiation efficiency of the coherent source is

obtained in the limit kog -- cc, and it is given by

C(Qw) = exp[-2(koQ) ]. (2.69)

Similarly, for the radiation efficiency of an optimally correlated source we obtain from

Eqs. (2.62), (2.63) and (2.65) the expression

W) =  1  
-ex-2 4.(k-Ko)2] - exp[-2q2(k + Ko)2]} (2.69)

where K0 is the location of the maximum ut* O(K) which is determined by numerical

evaluation. These results are plotted in Figs. 2.9 and 2.10 as a funczinn of kaQ. As
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' 0 Fully coherent

, ........... Gaussian Correlated

S-2

0 1 2 3 4 5

ka[

Figure 2.10: Logarithmic plot of the radiation efficiency of the three soUWces.

shown in Fig. 2.9, the three curves are identical in the region kOuQ < -/2, and take on

the maximum value of unity as kaQ -+ 0. Figure 2.10 illustrates the differences

between the radiation efficiencies of the three model sources in the region kaQ > -,3/2.

Taking the correlations that maximize the radiation efficiency to be isotropic,

i.e., choosing

gQ(K) = 8(K - Ko)/4xK2 , (2.70)

we readily find on taking the inverse Fourier transform of Eq. (2.70) that the optimal

degree of spatial coherence is given by

sin Kor'
gQ(r') = Kor(2.71)
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As we pointed out, for small sources that satisfy 0 < koQ < ,3/2, we have

K0 = 0 and Eq. (2.71) corresponds to full coherence. On the other hand, for

sufficiently large sources, we see from Eq. (2.62) that the maximum radiation

efficiency is attained for K0 - k (but always K0 < k). Hence in the limit as

kaQ -- c0, the optimal correlations given by Eq. (2.71) reduce to the universal result

[Eq. (2.57)], derived in the context of quasi-homogeneous sources.

2.4 Summary

In this chapter we discussed the radiation efficiency of secondary and primary

partially coherent sources. We examined the dependence of the radiation efficiency and

the radiated flux on the spatial correlations of the source. We showed that typical

planar secondary Gaussian Schell sources have high radiation efficiency which

increases with an increase in the spatial correlation length of the source fluctuations.

On the other hand we demonstrated that three-dimensional primary coherent sources are

not necessarily characterized by high radiation efficiency. In particular, an isotropic

source that is characterized by a Gaussian intensity profile has maximum radiation

efficiency for a spatial correlation given by Eq. (2.71).

The method for choosing the spatial correlation which maximizes the radiation

efficiency of three-dimensional primary sources is significant in two aspects. First it

shows from the point of view of coherence theory that the spatial correlation of

blackbody radiators maximize the radiation efficiency of the source. The second aspect

has to do with the possibility of producing more efficient light sources. Most of the

light sources currently in use for illumination purposes are partially coherent and hence

even a small improvement in their efficiency has great significance for the energy
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market. At present, most of the practical methods for controlling source correlations

that we are aware of pertain to secondary planar sources, but new approaches to

controlling the spatial correlations of primary sources are currently being introduced.

Practical methods for controlling source correlations are also important for the

discussion in the next chapter were we consider the effects of the source correlations on

the spectrum of the radiation.
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3.1 introduction

Techniques for modifying of the spectrum of radiation have been known for some time

both in optics and in antenna theory. The main method for changing the spectrum of

field is to vary the spectrum of the source itself, assuming that the spectrum of the

radiation is simply proportional to the source spectrum. As we now know, this

assumption is, in general, not valid in the case of partially coherent sources, where the

spectrum may change on propagation.

In this chapter we show that source-correlations can give rise to interesting

modifications of spectra. We consider a simple physical configuration, consisting of

two small sources which generate fields of identical spectra, and we analyze the effects

of correlation between the two sources on the spectrum of the emitted radiation. We

show that spectral lines can be frequency-shifted, made narrower or broader and that

several lines may be generated from a single line by this mechanism. These results

suggest a new technique for modifying spectra in a desired manner by controlling

source correlations. In fact, since these results were first published, there have been

two reports of :ectral modulation by control of source correlations. 1

The analysis presented in this chapter refers to a simple configuration and to

observation points on the axis of symmetry. The more general case of arbitrary

observation point is discussed in Chapter 4.

3.2 Radiation from two small scalar sources 2

Consider light generated by two small fluctuating sources located at points P, and P2-

We assume that the fluctuations are statistically stationary. Let {Ql((O)) and {Q2(co)}

be the ensembles that represent the source fluctuations at frequency o. Further let
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f V(P; o) ) be the ensemble that represents the field at P, generated by the two sources

(see Fig.3.1). We assume that the spectra of the two source-distributions are identical

and we denote them by SQ(w). Specifically

SQ (W=(QI*(0)) Q,(M))=(Q*(0)) Q, (0)) , (3.1)

where the angular brackets denote the ensemble average.

The field produced by the two sources at a point P is given by

AkR

V(P;0)) = Q,(o))  +2 (W.) 'R2 ,(3.2)

where R1 and R 2 denote the distance from the two sources to the observation point P

The spectrum of me field at the point P is then given by

Sv (P; 0) =SQ(0)){1Ri 2 +,;; 2 + 29i[pQ(w)e ik(R2-R1 )/RR2], (3.3)

where 91 denotes the real part and PiQ(tw), known as the degree of spatial coherence,

characterizes the correlation between the two fluctuating sources. Explicitly,

.UQ(0O) = (Qj ( 0))Q 2 (o))/SQ((0). (3.4)
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P
Ql((O) 4 R 1

R2

Figure 3.1: Illustrating the configuration. The two small sources Q1 and Q2 are
place syirmetrically about the axis. A typical observation point P is at a distance R1
and R2 respectively from the two sources.

As we have explained above [cf. Eq. (1.23)], the degree of spatial coherence satisfies

the inequality

k12Q(0)1 1 (3.5)

for all frequencies. This condition is the main constraint on the possible types of

spectral effects that can be achieved with the present system.

For simplicity we will consider the spectrum of the emitted radiation at points

located on the perpendicular bisector, which we will refer to as the axis, of the line

joining the two sources. In this case R2 = R, (= R say) and Eq. (3.3) reduces to2

Sv(P; o) = 24 SQ(t)[1 + 9/1Q(w)]. (3.6)

We note that when 9?gQ(0o) is independent of co, the spectrum of the field at all axial

points will be proportional to the source spectrum SQ(cO). This includes the case where
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the two sources are mutually incoherent at each frequency [Q(w) =_ 01. It also includes

the case when XpQ(o) =_ 1, which corresponds to two sources that are mutually fully

coherent at each frequency. These are, however, exceptional cases. In general,

XpQ(wo) will be frequency-dependent and Eq. (3.4) shows that the field spectrum Sv(a)

will then be no longer proportional to the source spectrum SQ(o). Hence, in general,

not only the source spectrum but also the correlation between the two sources will

determine the spectrum of the emitted light.

Before we proceed to examine the effect of the degree of spatial correlation on

the spectrum of the radiation we simplify our notation by setting

z2

Sv (() = -- Sv (o) . (3.7)
2

We will refer to sv(o) as the reduced field spectrum. For the sake of simplicity we will

consider source-correlations that are characterized by a real degree of coherence.

Equation (3.4) then becomes

SV(P; CO) SQ(CO)[+Q(w)] (3.8)

It follows at once from this formula, that in terms of Sv and SQ,

Sv(OJ)
IQ(W) = S-- . (3.9)

SQ())

From the inequality (3.5) and from Eq. (3.9) it follows that only those reduced field

spectra sv(ow) can be generated for which
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sv(o)< 2 SQ(o). (3.10)

sv(co) and SQ(w)are, of course, necessarily non-negative.

Conversely, when the inequality (3.10) is satisfied one finds at once from

Eq. (3.9) that

- 1 _5Q(CO) <5 1 . (3.11)

Since the inequality (3.11) is the only constraint that the degree of spectral coherence

IIQ()) must satisfy we see from Eq. (3.10) , that any reduced field spectrum sv(oa)

which does not exceed twice the magnitude of the source spectrum SQ(w) at any

frequency co, can, in principle, be generated by this mechanism.

We now demonstrate how source correlations can give rise to various types of

spectral changes.

3.3 Change in spectral linewidth

Let us assume first that the source spectrum consists of a single spectral line of a

Lorentzian profile, viz.,

1 A (3.12)S (o) F° + ((0 - O)2

(coo, Fo, Ao are positive constants and Fo v co). Suppose that we wish to produce a

reduced field spectrum that consists also of a line of Lorentzian profile centered on the

same frequency wo, but is of a different width and of different strength, say
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Sv (W), A 2  (3.13)1- + (to_- to)

( F, A 1 are positive constants and F1 o wo ). On substituLing fom Eqs.(3.12) and

(3.13) into the inequality (3.10) we find that we must have

A2 [fo -<2 (3.14)

A0  n

where [o(c)] is the maximum value, in the range 0 < (o < oo, of the function

w2hee ¢o 2
2 )2 (3.15)

0 2 +(wO-%00)

Straightforward calculation shows that for all (positive) frequencies (o,

(roi 2  o I when r > r"0

(3.16)

1< fo(Co)(ro/T)
2  when I < r o .

Using these inequalities we deduce at once from (3.14) that we must have
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Figure 3.2: An example of line broadening by source correlations. The source spectrum (solid line)

and the reduced field spectrum (dashed line) are lines of Lorentzian profiles and the curves are normalized

so that the source spectrum has the value unity at the center frequency. The relative linewidths used are
r0/o0 = 0.1, rI/tm0 = 0.15.

5_ <2 when r- > ro
A0

(3.17)

5 2(r/0)2 when Fr < F0Ao

In the first case (F1 > F0) the emitted (reduced) spectral line is broader than the

spectral line of the source; in the second case (F-1 < F0) it is narrower.

With the conditions (3.17) assumed to be satisfied, the degree of spatial

coherence that will produce the reduced field spectrum (3.13) from the source spectrum

(3.12) is obtained at once on substituting from these equations into the formula (3.9).

One then finds that the required degree of spatial coherence is given by
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Figure 3.3: An example of line narrowing by source correlations. The source spectrum (solid line)

and the reduced field spectrum (dashed line) are line- of Lorentzian profiles and the curves are normalized

so that the source spectrum has the value unity at the center frequency. The relative linewidths used are
F0/o)(0 = 0.2, rI/o 0 = 0.1.

22
PQ (w) r +(O-(o )2 _1 (3.18)
A0 r - 2 -)02

In Figs. 3.2 and 3.3 we show examples of line broadening and line narrowing

with Lorentzian lineshapes. The spatial correlation that produces the reduced field

spectrum depicted in Fig. 3.3 is plotted as a function of frequency in Fig. 3.4.

The method of producing Lorentzian field spect-ra of a controlled linewidths can

also be applied to Gaussian lineshapes. 3 The source spectrum then has the form

SQ(0)) = A( exp[-(CO - (0)2/262]. (3.20)
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Figure 3.4: The degree of spatial coherence giving rise to the reduced field spectrum of a narrower

profile shown in Fig. 3.3.

(C), 80, A0 are positive constants and 60 << coo). We now consider the possibility of

producing a reduced field spectrum that also consists of a line of Gaussian profile,

centered at the same frequency 4 but of different width and different strength, say

sv(w) =A1exp[-( (-0 0 )2/2 2
1  (3.21)

(31, AI are pn.'itive constants and 31 *, wo). On substituting from Eqs.(3.20) and

(3.21) intc the inequality (3.10) we deduce at once that the following condition must

be satisfied:

Al [g 0o)]m~x 2, (3.22)
A0

Spectrel modulaion with scalar sources



Chapter 3

80

where [g()]. is the maximum value, in the range 0 < co < -c of the function

g(o)) = exp[- (0) - 0o0) 2 A41, (3.23)

where

! 1 1
(3.24)

Consider first the case when 81 < 60 (line narrowing). In this case A > 0 and

evidently [g(i)]ma= g(wo) = 1. Hence the realizability condition (3.22) becomes

A1/A 0 2 . (3.25)

On the other hand when 61 > 80, A becomes negative and g(co) has then no upper

bound in the range 0 < co < -*. Hence a broader line of Gaussian profile, centered at

the same frequency w0, cannot be produced by this mechanism. However, in practice

one is unlikely to be interested in situations where the spectra SQ(o)) and sv(o) have

Gaussian forms for all frequencies. If one requires that the reduced field spectrum has

a Gaussian shapl only over a finite range around frequency %n, say

0o0 - a < co_< wo +,B, (3.26)

where a and P are positive constants, the inequality (3.22) needs only be satisfied

when the maximum of g(o) is taken over the restricted range (3.26). Instead of the

inequality (3.22) we then have the constraint
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Figure 3.S: An example of tine narrowing by source correlations. 'Me source spectrum (solid tine)

and the reduced field spectrum (dashed line) are lines of Gausian profiles and the curves ae normalized so

that the source spectrum has the value unity at the center frequency. 'Me relative linewidths used are

A.

O/0 =0., /0 0.0 .8.

A exp(y2 / 21As 1) !5 2, (3.27)

where 3 is the largest of the constants sori

Returning to the first case (61 < 3o), the degree of spatial coherence needed to

achieve this modification of the spectral line is according to Eqs.(3.9), (3.20) and

(3.21) given by

uQ(o)= exp[-CD-Wo00)2/2A]- 1, (3.28)
A
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Figure 3.6: An example of line broadening by source correlations. The source spectrum (solid line)

and the reduced field spectrum (dashed line) are lines of Gaussian profiles and the curves are normalized so

that the source spectrum has the value unity at the center frequency. The relative linewidths used are

So/6) o = 0.5, Si/(oo = 0.7.

where A is defined by Eq.(3.24). In the second case (31 > 8o) the degree of spatial

coherence is given by Eq.(3.28) only for frequencies that are within the range (3.26);

for frequencies outside this range the degree of spatial coherence can take on arbitrary

values, subject to the constraint expressed by Eq. (3.11). Line narrowing and line

broadening of Gaussian profiles are illustrated in Figs. 3.5 and 3.6.

3.4 Spectral lineshifts

We now consider the possibility of changing not only the width of the line but also its

center fr-equency, from wo to co, say. Suppose that the source spectrum SQ(co) is again

the single spectral line (3.13) of Lorentzian profile, but that the reduced field spectrum,
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Figure 3.7: Spectral shift and line narrowing with Lorentzian profiles. The source spectrum (solid

curve) has a relative linewidth rO/w0 = 0.05 giving rise to a reduced field spectrum (dashed line) of

relative linewidth F1 ico0 = 0.01 centersd at frequency w = 1.lwO.

whilst also a line of Lorentzian profile, is centered at a different frequency 0ol* o , i.e.

that

S'4() = j (3.29)
S+((- 01)

(co, F1, Aj are positive constants, F1 v cl). On substituting from Eqs. (3.12) and

(3.29) into Eq. (3.10) we find that the following inequality must now be satisfied:

AL[ <2. (3.30)
A0  Ma

Here [fl(ca)]mu is the maximum value in the range 0 < (o < - of the function
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Figure 3.8: The degree of correlation that gives rise to the frequency-shifted reduced field specmnm

shown in Fig. 3.,.

1-2 2F +(o -w) 2  (3.31)
I1,o- 2 + (0) -,) 2

Unlike in the case considered above (when col = ) an explicit expression for the

maximum value of this function cannot readily be obtained (see Appendix A for details

of the numerical method used to determine the maximum value of A,). However it

seems that with suitable choices of the constants that specify the reduced field spectrum

(3.29) the inequality (3.30) can be satisfied for all non-negative frequencies W. The

degree of spatial coherence which gives rise to the reduced field spectrum (3.29) is then

obtained on substituting from Eas.(3.29) and (A 12) ;nto Eu.(3.9). "t.. rcs;lti;.,g

expression is
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(W) F2 +(-) 2  1 (3.32)
AQ( O r2 +(cowo •)2

In Fig. 3.7 we show an example of spectral changes in which both the linewidth and

the center frequency are modified by source correlations which are represented by the

degree of spatial coherence in Eq. (3.32). Figure 3.8 shows the degree of spatial

coherence that gives rise to these spectral changes.

3.5 Modulation of a single spectral line

As a last example we consider the possibility of generating from a source spectrum that

consists of a single line of Lorentzian profile a field spectrum that consists of several

lines of Lorentzian profile. More specifically, with two sources that have identical

spectra given by Eq. (3.12) we wish to generate a field whose reduced spectrum has

the form

A A- (3.33)S--i +(6Oj2 = n 0_ W.)2,

where N, An, con, and Fn are positive constants and F ( .o n (1 < n N) . For this

to be possible the following condition obtained on substituting Eqs. (3.33) and (3.12)

into Eq. (3.10) must be satisfied:
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Figure 3.9: Generation of three spectral lines from a single spectral line, all of Lorentzian profiles.

The source spectrum consists of a single line whose relative width is o/ow0 = 0.25 and the three spectral

lines are all of relative width r/io 0 = 0.05.

N

Here [ffn(()] is the maximum value, in the range 0 co < -, of the function

r2 + (00 2- +( 0) (3.35)

Assuming that the constraint (3.34) is satisfied, the degree of spatial coherence needed

for generating the reduced field spectrum (3.33) is obtained at once on substituting

from Eqs. (3.33) and (3.12) into Eq. (3.9). One then finds that
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Figure 3.10: The spatial correlation for generation of three spectral lines from a single spectral line.

1N r2  - o)2
=- 1. (3.36)

AO n=1 F +(-w)

An example of generation of a field spectrum consisting of three lines from a

source spectrum consisting of a single line is illustrated in Fig 3.9. Figure 3.10 shows

the degree of correlation which gives rise to this spectrum.

3.6 The spectrum produced by an array of partially coherent

sources

So far we have considered a very simple radiating system consisting of two small

sources with identical spectra and we showed that by appropriately correlating them,
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Q2 (co) P

Q 1(o)

Q (co)

Figure 3.11: The notation for an array of scalar sources

the spectrum of the ,mitt"d radiation can take on many different forms. With systems

consisting of a larger number of radiating sources one can, of course, produce more

diverse spectral changes than those considered above. A simple extension of the

system which we considered is an array of 2N equally spaced small fluctuating

sources4 (see Fig. 3.11). The field produced by the array is given by [cf. Eq. (3.2)]

V(P;) = N Qi(o) i (3.37)

Using Eq. (3.37), the spectrum of the field at the point P is readily found to be

Sv(P; o) = SQ()) : R'2 + y (w) e (3.38)

p i =-a i j 
it cR 

j 
( 3u3 8
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Equation (3.38) shows some interesting new features. Even for observation points on

the axis, the exponentia: factor, does not, in general, reduce to a constant which is

independent of frequency. 5 As a result, it follows that the spectrum of the field will no

longer be proportional to the spectrum of the sources when the fluctuations are fully

correlated, puij(o) = 1. Specifically, the presence of the wavenumber k in the

exponential causes some modulation of the spectrum that is proportional to the

magnitude of the degree of correlation. 6 On the other hand, when the source

fluctuations are uncorrelated, pij(w) = 0 when i * j and we then have

2N
Sv(P;))=SQ(,2(.))R (339)

i=1

The spectrum of thc, field is now seen to be proportional to the spectrum of the source

for all points of observation.

3.7 General remarks on spectral modulation

In thi -chapter we presented simple examples of partially coherent radiating systems in

which the field spectrum is modified by the degree of correlation of the source

fluctuations. As is evident from Eqs. (3.3) and (3.38), this mechanism does not

produce any new frequencies but just increases or decreases their relative contributions

to the observed spectrum. This fact implies that in order to generate field spectrum of a

particular shape, the source must possess all the required spectral components. For this
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reason, it is convenient to choose broad t nd sources for theoretical and experimental

illustration of the spectral effects which we discuszed in this thesis.

The basic question that we have not addressed in this chapter is how to produce

the prescribed spatial ccrelations. Several methods for generating and modifying

source correlations, at least for secondary sources, have been developed in recent

years. They include the use of scattering bv liquid crystals under the influence of an

external D.C. field7 , the use of rotating ground glass plates 8 and of holographic

filters9, interaction of light with ultrason;c waves'0 by imaging 4.nd lensless feedback

systems and by the use of achromatic Fourier transform lenses.11

The most notable method and experimental demonstration of spectral

modulation by control of source correlatioi was reported by G. Indebetouwla. His

technique makes use of spatial masks which produce a secondary source of prescribed

trequency dependent degree of correlation.
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Appendix A: The method used in determining the

maximum value of A I

Starting from Eqs. (3.30) and (3.31) we have the constraint

o + (-0)2 <2. (A 1)
A0  2 +( -(i) 2

First we set

Ao = (A 2)

to normalize the source spectrum to the value of unity at o = coo. Next we set the

frequency c = o) in Eq. (A 1). This choice is made only for computation purposes and

should not be mistaken as a statement that the function fl(co) in Eq. (3.30) is maximized at

= co. It follows from Eqs. (A 1) and (A 2) that the upper bound on A1 in this case is

given by

[ A 2  w 0 (A 3)m'Iax + A<, O))2

This method for determining the value for AI was used with numerous choices of

the constants Fo, F1 , oo, o, and the resulting degree of correlation has alwas satisfied the

constraint (3.11).
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Introduction

The effects of source correlations on the spectrum of emitted radiation have been treated

so far only in the framework of scalar theory. In the previous chapter we considered a

simple system consisting of two scalar sources and we examined some of the spectral

effects that may be produced on the axis by controlling the correlations between the two

sources. In this chapter we consider a system of two partially correlated linear dipoles.

First, we derive expressions for the observed spectrum at an arbitrary point in the far

zone. We then examine how the degree of correlation of the dipole polarization

fluctuations affects the spectrum of the field observed in particular directions. We also

consider the effects of the degree of correlation on the angular distribution of the

radiant intensity for fixed frequencies. In Secs. 4.4 and 4.5 we present expressions for

the total radiated power and for the directivity of the system as a function of the degree

of correlation and the spatial separation between the two dipoles. We also compare our

results for the partially correlated dipoles with results in the well known limiting cases

of fully correlated and uncorrelated dipoles. 1 This comparison gives a valuable

measure for the range of possible spatial and spectral modulation effects which can be

produced by controlling source correlations.

4.2 Far zone spectrum of partially correlated dipoles

Consider two linear dipoles, situated at points ± y0 and vibrating in the z direction as

shown in Fig. 4.1.

Let
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Pj(r,t) = pl(t)6(r -yo)i,

(4.1)

P2(r,t) = p2 (t),(r+yoy)i,

be the electric polarization vectors of the two dipoles. Here pj(t), (j = 1, 2), specify

the polarization fluctuations of the dipoles as functions of time and J and i are unit

vectors in the positive y and z directions respectively. We assume that pj(t) are random

functions of time, characterized by stationary ensembles.

In the space-frequency representation, the electric Hertz potential of the field

produced by the dipoles is given by

S,- . i 'R'  - e t 2 1

(r; .o) = (0) _+ f(4.2)

where R, =r - yoi, R2 
= k + yo.I, and2

z

0

x
Figure 4.1: Illustrating the configuration and the notation. The two dipoles
are marked by the heavy vertical arrows are separated by a distance 2yo from each
other.
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Pj(wO)= pj (t)e'" dt (j1=, 2). (4.3)

In order to calculate the spectral intensity in the far zone, it is sufficient to

evaluate the magnetic field only; it is given by the expression:

B(r, co) = -ikV x H (r; o )).  (4.4)

Since He(r;o) is a vector along the z-direction, it follows that

// (r; 0o))= [--j T .]/, (r; o)). (4.5)

On substituting Eq. (4.2) in Eq. (4.5) and calculating the partial derivatives, we obtain

the formula

(- 1 YYyo x(

& 2 (i fj; (4.6)

For field points r = ru in the far zone kR, * 1 (j = 1, 2) and we have
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T

Figure 4.2: Graphical representation of the approximnatio for RI made in Eq. (4.7).

R - r y0 (u.-I), (4.7)

where u is a unit vector in the direction of observation (see Fig. 4.2).

Using Eqs. (4.6) and (4.7), we may express the far zone B-field in the form

B(ru; c)- - i k 2e .k si9
r

[fit(w) exp(-ikyou -i) + 2 (co) exp(ikyou .1](4.8)

as kr -+ --*

Here, we have used the spherical polar coordinates (r, 0, ) with the polar axis along

the z-direction and with 0P= sin 0(jcos0- i sin 0).

The radiant intensity J(u;co) , i.e. the power per unit frequency at fr-equency 0,

per unit solid angle around the direction specified by the unit vector u, is given by
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J(u;w) = lim r2u .(S(i)(ru;aw)), (4.9)
lr -- 0-

where S(')(ru;o) is the Poynting vector at points in the far zone, and the angular

brackets denote the ensemble average. In terms of the B-field, we have

,(u;(0 l)-.-im r 2 -L u-< [((" ,, ;c)xu* ()( c), (.0

where 9t denotes the real part and c is the vacuum speed of light. Using the vector

identity

u.(Bxu) xB=lBxu, (4.11)

we simplify Eq. (4.10) for the radiant intensity to the form

J(u; w) = lir r2 -i--(B(ru;C)12). (4.12)
kr-i.. 87E'

Let us now assume that both dipoles have the same spectrum, i.e., that

( I'I) = Ef S,((0). (4.13)

We also introduce the complex degree of spatial coherence at frequency co, which

characterizes the correlation between the two dipoles, by the formula
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=I 0) (Of2(0)S 0) (4.14)

On substituting from Eqs. (4.8), (4.13) and (4.14) in Eq. (4.12), we obtain the

following expression for the radiant intensity produced by the two partially correlated

dipoles:

J(;co)= ck4 S,,(o)sin2 6{1+ 9[p1 (w) exp(2ikyo sinG sin 0)]}. (4.15)

If we express the degree of correlation in the form

(4.16)

where 2W(w) corresponds to the effective steering angle3 , we find that the radiant

intensity of the two partially correlated linear dipoles is given by the formula

A~U;w() = LkSP (() Sin 2 e 1 +IUP (o)Jlcos[2kyo sin G sin 0 + 2v1'(w)I}. (4.17)

4.3 The effects of spatial correlation on the spectrum and

the angular distribution of the radiant intensity

We now consider some special cases which will help to illustrate the significance of Eq.

(4.17). First let us consider two uncorrelated dipoles. In this case p (=o)- 0, and Eq.

(4.17) reduces to
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ck4[J(u;ow)] ,or" = -- S(o)sin2 6 . (4.18)

As one may expect, the same spectrum is obtained if the radiation originated from a

single dipole located at the origin and having polarization fluctuations equal to the sum

of the polarizations of the two dipoles.

Similarly, when the two dipoles arefidly correlated, i.e. when

k' (w)1 (4.19)

the formula (4.17) for the radiant intensity reduces to

[J(u;wo)]r =ck4 S,(o)sin2 0cos 2 [ky0 sin 0sin# + V(w)1. (4.20)

We observe that for every frequency o, the phase angle '(wo) and the separation

constant ky0 completely determine the angular distribution of the radiated power.

Returning to the general case when the two dipoles are partially correlated, we

note that when the point of observation is on the x-axis (0 = ir/2, # = 0), the radiant

intensity according to Eq. (4.17) is given by

J(i,A) = c-k S' (O)[ + 9iL',(wo) 1. (4.21)

The result for this special case is in the same form as the corresponding expression for

the radiant intensity from two small partially correlated scalar sources [cf. Eq. (3.6)]
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Sv( 2 P~)=- O)1 + 9./.Q (CO), (4.22)
SV (P;W) 2 r i (4.22

where P is any point on the perpendicular bisector of the line adjoining the two sources.

Aside from the 2/R 2 factor, the only significant difference is in the factor 0 appearing

in Eq. (4.21), and as a result, the product OS P(w)) is shifted to higher frequencies

relative to S (cO).

The radiation pattern generated by the partially correlated dipoles differs from

the two limiting cases of fully-correlated and of completely uncorrelated dipoles in

several ways. If we denote the direction for which the radiant intensity is a maximum

by um , it can readily be shown that the maximum possible radiant intensity

[J(u,; ))]m produced by the two dipoles is obtained when they are fully correlated,

and is given by

[Jk4l ck (
[~U/J;nmax =- S(a)). (4.23)

On the other hand when the dipoles are only partially correlated, the maximum radiant

intensity is smaller by a factor 1[1 +k p(co)].

In the two limiting cases of fully-correlated dipoles and uncorrelated dipoles,

the nulls of the radiant intensity distribution are determined by the factor sin20 in

Eq. (4.18), and by the factor sin 2 0cos 2 [ky0 sin 0sin + yv(ao)] in Eq. (4.20). By

contrast, it follows from Eq. (4.17) that when the dipoles are partially correlated,

0 <jk'(o)l < 1, there are no nulls outside the plane 0=0. This fact is significant in

connection with the theorems regarding the approximation of desired radiation patterns
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by arrays of radiators.4 Specifically, in cases where the directivity of antennas is

important, effort is made to reduce the amount of sidelobes. Typical antennas in which

all elements are radiating coherently have several nulls in their radiation pattern and

hence there is a latitude of design options allowing for the shifting of these nulls. On

the other hand, the system considered here has no nulls in the radiation pattern outside

the plane 0 = 0 in which the radiation vanishes identically. As a result, no

rearrangement of the elements can produce a null in a particular direction as long as the

degree of correlation is less than unity.

We now illustrate the angular distribution of the radiant intensity produced by

the two partially correlated dipoles. Let the dipole spectrum be a Lorentzian line of

width 80, centered at frequency wo, i.e.,

1

S P(0) = 1 +(- 2/5 2 "  (4.24)

We choose a real-valued degree of correlation in the form
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Figure 4.3: The degree of correlation given in Eq. (425). The constants used arc ol/c o = 0.8.
W2/0 o = 1.2, 81 = 5 2 = 0.05 and A1 = A 2 = 1.98.

(0)=A, exp[_ (W - 2 /282 + A,2 ex+f (a) - 0)2 )2 /23 2. (4.25)

Here w1 , (02, 6,, and 82 are positive constants, and we select AI and A2 so that the

constraint

(4.26)

is satisfied throughout the frequency range of interest. We note that by choosing a real-

valued degree of correlation the steering angle is set to zero (i.e., 2WV(aO) - 0) in the

iollowing examples.
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90*
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18P O

18(w 0

2250 35

270*

Figure 4.4: Angular distribution of the radiant intensity at frequency
(o = (o0 for fully correlated dipoles (solid line) and partially correlated

dipoles (dashed line). The separation constant is kyo = 1 and the degree of

correlation is given by Eq. (4.25).

Figures 4.4 and 4.5 show the angular distributions of the radiant intensity in the

x, y-plane (0= t2) for two fully correlated dipoles and fo partially correlated

dipoles whose degree of correlation is given by Eq. (4.25). In Fig. 4.4 the angular

90* 900

135o 450 135"

180 00 1800 00

2250 310 22 315"

(a) 2700 (b) 270

Figure 4.5: The angular distribution of the radiant intensity for fully correlated dipoles (solid line)
and partially correlated e;poles (dashed line) and separation constant kyo = 1. Thc relative frequencies

are w/wo = 1.05 [(a)] and oo 0 = 1.1 [(b)].
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distribution is calculated for the center frequency ca = cor of the polarization spectrum,

while Fig. 4.5 shows the angular distributions at different frequencies.

We note that in spite of the fact that the steering angle was fixed, ['(w) = 0],

there is a directional shift in the angular distribution of the radiant intensity produced by

partially correlated dipoles.

When the separation between the dipoles increases the lobe structure becomes

more complicated. In Figs. 4.6 and 4.7 we show the angular distributions of the

radiant intensiy for dipole separation k0y0 = 3. Comparing the angular distributions

for dipole separation k0y0 = 1 (Fig. 4.4, 4.5) and k0y0 = 3 (Fig. 4.6, 4.7), we note

that at each frequency the number of lobes with our two choices of correlations is

identical although their angular distributions are somewhat different. In fact, except

when the two dipoles are uncorrelated, the number of lobes of the radiant intensity, n,

is independent of the degree of correlation and it is given by

n= I (4.27)

900

180 ....

2250 3150

2700

Figure 4.6: The angular distribution of the radiant intensity for fully
correlated dipoles (solid line) and partially correlated dipoles (dashed line) and
separation constant ky0 = 3. The relative frequency is a/ 00 = 1.
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7315* 225-I T315
°

(a) 2700 (b) 2700

Figure 4.7: The angular distribution of the radiant intensity for fully correlated dipoles (solid line)
and partially correlated dipoles (dashed line) and separation constant kyo = 3. The relative frequencies
are wo o = 1.05 [(a)] and coo o = 1.1 [(b)].

Here the square brackets denote the largest integer which is smaller or equal to the

quantity in the brackets.

The two limiting cases of fully correlated and uncorrelated dipoles constitute the

limits of possible modification of spectra. In Fig. 4.8 we illustrate the range of

modulation that can be achieved at every frequency , by the variation of the magnitude

of the degree of correlation P ,4o1 and the phase 2W(w). The figure shows four

concentric circles, (i) to (iv), representing the relative ranges of the angular distributions

of the radiant intensity in the x,y-plane. The external circle (t) corresponds to the limit

of fully-correlated dipoles. As one may observe from Eq. (4.20), the radiant intensity

of two correlated dipoles may attain any value inside the circle of radius ck4S P(o)/2x

The iocation of the maximum of the radiant intensity is determined by the choice of the

steering angle 2K(o)). Similarly it follows from Eq. (4.19) that when the dipoles are

uncorrelated, the radiant intensity is consurained to the uniform value on a circle (ii) of

radius ck4S P(o)/4r. When the dipoles are partial' correlated we s= irom Eq. (4.17)
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Y

(i)

((iii

(iv)

Figure 4.8: The range of possible values of the angular distribution of the
radiant intensity. The shaded area indicates the region in which the maxima and
minima of the radiant intensity for partially correlated dipoles are found.

that the radiant intensity can have any value in an annular domain bounded by circles

(it) and (iv). It is also apparent from this representation that unless the two dipoles are

fully correlated there are no nulls of the radiant intensity outside the plane 0 = 0.

Figure 4.8 gives a symbolic representation of the directivity of the system

consisting of two partially correlated linear dipoles. A detailed discussion of the

directivity is presented in Sec. 4.5.

4.4 The total emitted power

The total power P(aw) radiated by the system at frequency o) is given by the expression

P(w)= JJ(u;(o)d2, (4.28)
(4n)
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where the integration extends over the whole 4nt solid angle. On substituting from Eq.

(4.17) in Eq. (4.28) we obtain the expression

P c)k-~w 4 sin 2 o I{+ 91[.u,,(w) exp(!2kyo sin 0Gsin O)~I.(4.29)
'M (4x)

After performing the integration in Eq. (4.29) [~ceC Appendix B], we find that

P~w-c4S Iwc + f (2ky)9tI~)~ (4.30)
Pf0)3 ckP t(0 0 LPJJd

where

f (z) [J .~j(Z) - j, (z)/z], (4.31)

f(2ky 0
1.0

0.5

0.0 ---- -- --- / --- -

-0. ,' , o2ky0
0 4 a 12 16 20

Dipole separation

Figure 4.9: The behavior of the function flz) in Eq. (4.31) as a function of the parameter
z = 2kyo.
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and jo(z) and j 1(z) are spherical Bessel functions.

The maximum of the function f(z) can be shown to occur when z = 0 where it

has the value f(O) = 1 (see Fig. 4.9). It follows that the upper bound for the total

radiated power is

[P(w)Ub= 3ck 4S (w). (4.32)

In the limiting case when the two dipoles are uncorrelated, the total radiated

power is given by

[P(o)]II.. = -ck 4S ((). (4.33)
3

On comparing the total power of two partially correlated dipoles P(W0), and uncorrelated

dipoles [P(o)wor" we see from Eqs. (4.30) and (4.33) that the ratio between the

power emitted by two partially correlated dipoles and two uncorrelated dipoles is given

by

P((o) I + f(2ky,)94,L(w)]. (4.34)

Since the functionf(z) in Eq. (4.30) decreases rapidly with increasing z, it is evident

that the total power emitted by two dipoles that are separated by a distance that is much

larger than a wavelength, is equal to the total radiated power from two uncorrelated

sources. In other words, when the separation between the two dipoles is large
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compared to the wavelength of the radiation, no correlation effects could be deduced

from measurements of the total emitted power.

4.5 The directivity of two partially correlated dipoles

The directivity D(u; a)) of a radiating system is defined by the ratio5

D(u; o) = 4xl (u; o)/P(w), (4.34)

where u is the direction of observation. We are particularly interested in the maximum

directivity D(co) - D(um; co) that occurs in a particular direction um. It follows from

Eqs. (4.23) and (4.30) that the directivity of the two partially correlated dipoles is given

by

D(,) = 3 - 1+(4.35)
2 1 + f(2kyo)[4p(.O)]

When the two dipoles are uncorrelated, kp(.oi = 0 and the directivity reduces to the

value D(o) = 3/2, as expected. Similarly, when the dipoles are fully-correlated the

directivity is given by

3D((o) 3 (4.36)l + f(2kyo)cos[2v(.o)] '

where 2 (co) denotes again the phase of/up(O)
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Equations (4.35) and (4.36) also indicate that when the two dipoles are

separated by a distance that is much larger than a wavelength, the directivity of partially

correlated dipoles approaches the value

lira D(w) = 3[1 + ,(oV l2, (4.37)

while the dfrectivity of fully correlated dipoles approaches the value

lim [D(CO)]gp, , =3. (4.38)
ky-...

We also note that if we use Eq. (4.16) in Eq. (4.35) and differentiate with respect to the

magnitude of the degree of correlation m = k,(o), we find that

dD(c) 3{1 + f(2kyo)cos[2iV(w)]} > 0, (4.38)
&n 2[1 + mf(2kyo) cos[2V()112

which implies that for a fixed value of the quantities f(2ky0 )cos[2Vf(o)], the

directivity is an increasing function of the magnitude of the degree of correlation. As a

result it is clear that the maximum directivity is obtained for fully correlated sources.

4.6 Summary

In this chapter we considered the effect of spatial correlations on the spectrum of the

field produced by partially correlated linear dipoles. We showed the changes in the

Spectral effects with electromagnetic sowurces



Chapter 4 113

angular distribution of the radiant intensity and the changes in the spectrum in a fixed

direction as a function of correlation of the dipoles polarization.

In examining the total emitted power and the directivity of the system we

showed that h: maximum radiated power and the maximum directivity are obtained

when the dipoles are fully correlated.
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Appendix B: Evaluation of the integral in Eq. (4.29) for

the total emitted power

We begin with Eq. (4.29), viz.,

ck4

where

'1 = jsin2edf, (B 2)
(4n)

I2= Jsin2 0 91[{± (a)) exp(i2kyo sin 0sinM)]d . (B3)
(4x)

The value of the first integral is readily found.

2x %€
11 = J" dof(Q-COS2 0) sine0d0

o1 =
0 0

x(B 4)

= 2,tj(1 -x 2 )dx =
-1

The second integral is given by

2x xt

12 = J dcJ sin3 0exp(i2kyo sinOsin 0)dOd . (B 5)
0 0

In evaluating the second term we first perform the integral' over 0, giving
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xr/2

12 = 4t fsin3
0Jo(2kYo sin0)dA. (B 6)

0

Using the identity

sin3 0 = sin 0- sin Ocos2 o, (B 7)

Eq. (B 6) can be expressed as a sum of two integrals

12 = 4n f sin0Jo(2kyosin0)d+4n fJsin0cos2 Jo2kyosin0)dA. (B 8)

0 0

The first integral in Eq. (B 8) has the value2

Vr2

4n f sin 0 Jo(2kyo sin 0)dO = 4n jo(2kyo), (B 9)
0

and the second integral in Eq. (B 8) has the value

xr/2 2J(ko

41rf sin cosZ OJ0 2kyosinO)dO= 4 1
L (2 o) (B 10)

Using Eqs. (B 4), (B 9) and (B 10) in Eq. (B 1) we obtain the following

expression for the total emitted power
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P(W)= 2ck~p({[I+ f (2kyo)9p (00)]}(.11
3

where

f (Z = [o - j l,(B 12)

and jo(z) and j1 (z) are spherical Bessel functions.

1 I.S. Gradshteyn and LM. Ryzhik, Tables of Integrals, series and products, (Academic Press, New

York, 19 8 0) p. 401, #10.

2 Ibid, p. 740 #5 and p. 982 #4.
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Introduction

The theory presented in the previous chapters used model sources for the representation

of the cross-spectral density, characterized by a spectral density function and a spatial

correlation function. In this chapter we investigate spectral effects which are produced

by source correlations using coherent mode representation1 . This approach emphasizes

the role of spatial correlations in generatin, spectral changes on propagation of partially

coherent light, ard it clarifies the distinction between diffraction and correlation effects.

We will consider the class of statistically stationary, secondary, partially

coherent, planar sources, whose cross-spectral density function consist of a finite sum

of Hermite-Gaussian modes. We evaluate ihe spectral changes which occur on

propagation by decomposing the source into its coherent modes and evaluating the

contribution of each mode to the observed spectrum. We determine the field spectra for

observation points both in the far and in the near zone. A comparison of the

calculations shows that, at ieast in the cases considered in this chapter, most of the

spectral changes seen in the far zone are already present in the spectrum that would be

ol'erved at very short distances fGom the source plane. A detaiied discussion of the

development of spectral changes with propagation distance from "ie source plane is

given in Chapter 6.

Since we are considering sources consisting of Hermite-Gaussian modes and

because such modes also represent the transverse modes of certain laser cavities 2, our

analysis provides an indication of the type of spectral effez., might be expected to arise

in fields produced by some multi-mode lasers.

Spectra cffects Dn coherent mode representation
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5.2 Coherent-mode representation of partially coherent

sources and fields

The cross-spectral density function of a statistically stationary, planar, secondary

source of any state of coherence, occupying a finite domain D may be expressed as a

sum of coherent modes viz.3,

W(r ;= O.rm(W)Xm(;)Xm ;). (5.1)
n~m

Here r1 and r2 are position vectors of points in the source domain D, knm((w) are the

eigenvalues and Xnm(r o) are the eigenfunctions of the Fredholm integral equation

J W(O)(rl,r 2 ; o),.,m(rl; a)d 2r = Xgm(w)Xn,m(r 2 ;co). (5.2)
D

Here the eigenvalues

XpM(c) > 0 (all n, m). (5.3)

The eigenfunctions (modes) {X,..(rco)) of the source are taken to be orthonormal,

i.e.,

Xi.j (t;oo)Xkj(ro)d 2 r = 8it 8 j,, (5.4)
D

where 8 is the Kronecker symbol.

The spectrum of the field at a typical observation point r is given by

Spectal effects in coherent mode repesntation
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S(r;o) = Xm@.( Vnm(r)), (5.5)
n.m

where in,.m(ro) is given by

N4,.m(r;c) = fXnm(r';o))G(r,r';co)d2r', (5.6)
D

and G(r, r';w) is the Green's function, which characterizes propagation from the

source point r' to the field point r.

It is evident from Eq. (5.5) that each term4 contributes to the total spectrum

independently of all the others, i.e. there are no cross-terms. Moreover, since each

term under the summation is necessarily non-negative, the strength of the resulting

spectrum at an arbitrary frequency cannot be smaller than the strength of the weakest

one at that frequency.

The coherence properties of the source are manifested by the distribution of the

eigenvalues ({n.m(O)). In the case of a one-dimensional Gaussian Schell-model

source, for example5 ,

. {12/2 + 1 + (3/2)2 + 1 f (5.7)X0

where [ is a relative correlation length

= (5.8)

Spectral effects in coherent mode reresentation



Chapter 5 122

Here oi(o0) is the r.n.s. width of the intensity distribution and a;1,(co) is the r.m.s.

correlation length of the field distribution in the source plane.

In this chapter we only consider sources which contain a finite number of

modes, N. Let us choose a source with eigenvalues whose frequency-dependence is of

the form

X, ,M(cO) = s(°)(ao)A n.,n. (5.9)

Here s(O)(ow) is proportional to the source spectrum S(x, y, z = 0;o,), and the An are

constants. Explicitly,

s(°)(0))= f S(X, YW) dx dy/ A.,M. (5.10)
D

We also choose the modes to be independent of the frequeny co, i.e.,

,,.,,(r;co) a ,,.(r). (5.11)

Since the domain D lies in a plane it is convenient to consider modes that are separable

in the two Cartesian directions, say x and y, i.e. modes of the form

X,,n(Xly) = ,(X)4,,,(Y) (5.12)

For the functional form of the modes we choose for n = 0, 1, 2...

*,(x)= . , ( (5.13)
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where H. is the Hermite polynomial of order n and d. is a constant that determines the

spatial distribution of the mode in the x-direction [cf. Ref. 5, Eq, (2.13)]. We use a

strictly analogous expression for Om(Y)"

The choice of frequency-independent modes isolates the frequency dependent

factors in the expression for the cross-spectal density of the field in the source plane;

consequently, for an arbitrary source spectrum s(0 )(ow) we may analyze the effect of the

distribution of the constants {An) on the resulting field spectrum. This is equivalent to

examining the effects of spatial correlations of the source fluctuations on the spectrum

of the field that the source produces.

If the source spectrum and the field spectrum each consist of a single line

centered at frequencies wo and o'0 respectively, one may characterize the spectral

change occurring on propagation by the parameter

Z = too -C0 (5.14)

However, even when the source spectrum consists of a simple line such as a Lorentzian

or a Gaussian, the resulting field spectrum is, in general, a distorted line. A

comparison between the spectral lines may then be made on the basis of peak

frequencies or the centroids of the line. In the following sections we choose the later

approach for calculating the new center frequency c', i.e., we define o' by the formula

f cS() (o)dw

f S()(o)do (5.15)
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5.3 Far-zone spectra

The far-zone field vn,. of a typical sour.,c mode X.m can be obtained by substituting

Eq. (5.12) into Eq. (5.6) and using the asymptotic form of the Green's function. We

then obtain

2,tkcosO -
2rda o 0n(kux,)Om(kuy), (5.17)

where 6 is the angle between the direction of observation and the normal to the source

plane and jn(f) denotes the one-dimensional spatial Fourier transform of the function

On(x),

0,,(f) = - 0 ,(x)e-ft dx. (5.18)

On substituting Eq. (5.13) into Eq.(5.18) and using the identity6

J H,(x)e x /2 e'1 y dx = i"r- H.(y)e- Y2A, (5.19)
-. 0

we obtain the following expression for the far field produced by the mode X .m:
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(-i)n' kcosO/r kl2dx k/42d
2M+mn!m!

xH, H., exp, -!-

The far-zone spectrum 7 of the field is now obtained by substituting Eq. (5.9)

into Eq. (5.5),

ii2
s(-)(U;wO) = s(O)(,,) nIW,M(u;o,,I (5.21)

n!,m

with Wn4m given by Eq. (5.20). We may now express the formula (5.21) in the

following form, which clearly indicates the various contributions to the far-zone

spectrum:

S(-)(u;ow) = s(o)(m)Cos2o
r( =M(u;d.;dY;o)). 

(5.22)

Equation (5.22) shows that the far-zone spectrum is a product of the source spectrum, a

geometrical factor, and a "spectral modifier" M(u; d, dy; ). This factor is given by

M(u;d;d,;o)= - --I k k e+1 2

x2d. 4-d 1R4kx)( y7)J
( " (5.23)

,,,,,2"+'n!m![ t4,2d ) [2 d  "

Spectral effects in coherent mode represofion



Chapter 5 126

To examine the effect of the spectral modifier on the spectrum in the far zone,

let us consider sources whose spectrum consist of a single spectral line, centered at

frequency C0. We define the relative frequency (x as ( = 0W/o), and the characteristic

mode lengths 4 = k0/2 , 11 = 0 /14y. With these definitions Eq. (5.23) may be

expressed in the form

M(u;d,,dY;co) = TI x exp-a2[(Uux) +

AY.( 2 (5.24)

For a fixed direction of observation the spectral modifier M is seen to contain an

envelope factor

F= _l- exp{-a[(u) +(Tlu)]} (5.25)

and a weighted sum of contributions from the individual modes. As we indicated

earlier this sum does not involve any cross-mode terms. It is, therefore, possible to

determine the spectral changes directly from the knowledge of the spectral modifiers

denoted by Mn.m, of the individual modes:

M ',,udd ~o)) AnIm 411a 2

xz2+n!m! T

X[H . (1u )H ( lu )]2 exp -a 2 ,Ju,)2 ] ( 52 )
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To illustrate the behavior of the spectral modifier of individual modes, and its

effects on the observed spectra, we consider sources for which there is only one-mode

contribution in the y-direction, i.e.,

Xn"m(XY) -- O(x) 0(y) (5.27)

We also limit our observation points to the plane y =0 , where the spectral modifier

takes the form

MM,0 (us,; j; a) = a[O 2 2 expf(cu, )21. (5.28)

In Figs. 5.1 and 5.2 we show examples of spectral modifiers of single modes

for selected values of the index n and a fixed direction of observation. One can see by

inspection that the spectral modifiers of modes specified by n = 4, 6, 9, 11, give rise

to blue shifts while the spectral modifiers for modes specified by n = 5, 10, 12, 14

give rise to red shifts.
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1.2 6

1.0

~0.7

, 0.2

0.0

0.85 0.90 0.95 1.00 1.05 1.10 1.15

Relative frequency a = (/0)0

Figure 5.1: The spectral modifier Mn.0 for the modes n = 4, 6, 9, 11 as a function of the
relative frequency a. The positive slope of the curves imply a blueshift on propagation.

In order to determine the type of spectral shift due to an arbitrary mode n,, we

note from Eq. (5.28) that the fine detail in the spectral modifier is due to the square of

the Hermite polynomial. The behavior of one such factor is shown in Fig. 5.3. We

0.6

ZE 0.5 n=12
0.4

03 n=5

0.2

0.1

0.0

0.85 0.90 0.95 1.00 1.05 1.10 1.15

Relative Frequency a = coA0

Figure 5.2: Spectral modifier Mn.0 for the modes n = 5, 10, 12, 14 as a function of the relative
frequency a. The negative slopes of the curves imply a redshift on propagation.
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1.0

0.8

F 0.6

0.4

0.2

0.0 1 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 5.3: An example of the detail in the spectral modifier due to the square of the Hermite
polynomial shown here for n = 11. The points a, C, C, denote boundaries of regions giving rise
to particular spectral changes.

note that at the center frequency a = 1, the behavior of [H( )] 2 reflects its

dependence on the product 4u.. When 4u, lies between the points marked by the

symbols , and b, this factor produces a red shift, whereas for values of ux between

b and it produces a blue shift. When the values of 4Ux correspond to the point Ca,

the resulting spectral line is narrowed while for values of x corresponding to the point

b, it is broadened. It is clear from the example shown in Figs. 5.3 that the type of

spectral effect observed for a fixed value of tux is determined by the value of 4Ux

compared with the nearest zero of the Hermite polynomial. Specifically, let j < 2 be

two consecutive zeros of the Hermite polynomial, and let m be the value at which

[Hn( )]2 attains its maximum value in the interval (& , 2); evidently, i < m< 2"

With these definitions we have

Blue shift < 4ux< Cm

Red shift Cm <  ux< C2

Line splitting 4u, = 2

Table 5.1: The dependence of spectral changes on k.
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E 1.0

n0.8

o 0.6

0.4 . \

0.2

0.0 l
I i I , I , I .• I ,

0.88 0.92 0.96 1.00 1.04 1.08 1.12

Relative frequency WOO

Figure 5.4: Normalized far-zone spectra for the mode n = 7, with 4u, = 1.0, resulting in a
blue-shifted line with Z = -0.011.

Examples of the three cases are shown in Figs. 5.4-5.6. The source spectrum

in these examples was taken to be a Lorentzian line,

E 1.0

S0.8

0.6

0.4/

~ 0.2 ,

0.0
z 0.0 I . I . I .

0.88 0.92 0.96 1.00 1.04 1.08 1.12

Relative frequency Wo 0

Figure 5.5: Normalized far-zone spectra for the mode n = 7, with 4ux = 0.7, resulting in a
red-shifted line with Z = 0.0093.
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1.0

0.8

0.6

0.4

0.2

0.0

0.6 0.8 0.9 1.0 1.1 1.2 1.4

Relative Frequency co/ 0

Figure 5.6: Normalized far-zone spectra for the mode n = 7, with 4u, = 0.816 corresponding
to a zero of the Hermite polynomial. Line splitting is evident as a result of taking ku, close to the
zero of H7.

s10)(a8;) = 141 + (a - 1)2 /8 2  (5.29)

with 8 = 0.06.

5.4 The dependence of field spectra on the relative

mode strengths

The spectral changes which occur for a single coherent mode is a consequence of wave

propagation. Such effects must be distinguished from the spectral changes due to

source correlations. When the source is spatially fully coherent it consists of a single

coherent mode. The spectral effects which then arise on propagation were described in

the previous section. However, when the source is partially coherent, several modes

are present and the resulting field spectrum then also depends on the relative strength of

the modes or, equivalently, on the distribution of the constants (An }.
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3.1

2.5

2 .0

1.5(a

S0.9

0.4
I . ! I . B .I

0.9 0.9 1.0 1.0 1.0 1.1 1.1

Relative frequency oYo 0

Figure S.7: Spectral modifiers for sources characterized by the spectral modifiers

M = M4.0 + M6.0 + M9. 0 + M11,0 (a), any M = MS.( + M10, 0 + M12 o + M14.0 (b).

Let us first consider a source consisting of two coherent modes (nl,ml) and

(n2,m2). It follows from Eqs. (5.22) and (5.26) that the spectral modifier for this

source is just the sum of the spectral modifiers of the two modes, i.e.,

M(u;t,71; t) = M a.M (u;t,11;ot) + M M2 (u; ,r ;a). (5.30)

In terms of the cross-spectral density Eq. (5.1), the degree of correlation of the

source fluctuations is given by

(°,(r2 ;) 1 ir 2;c) (5.31)

S ctra (e irn co ) heren (r2 , r2 ; Co)
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In Fig. 5.7 we show examples of spectral modifiers for sources consisting of

four modes. The degree of correlation g(-,, r2; co) for the orresponding sources is

shown in Figs. 5.8 and 5.9 for points along the x-axis, with r1 = (0, 0) and

1.0
0

0.5

C 0.0 .

-0.5

-1.0

0.0 1.0 2.0 3.0 4.0 5.0

Spatial offset

Fig. 5.8: Degree of spatial correlation t(O, 5) of the two sources shown in Fig. 5.7 (a),

where the spatial offset is & = xvi;,

1.0

S0.5

-C.5

0.0

0.0 1.0 2.0 3.0 4.0 5.0

Spatial offset

Fig. 5.9: Degree of spatial correlation t(0, &) of the two sources shown in Fig. 5.7 (b),

where the spatial offset is & = xvi23 .
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6.o

~5.0 ()/

4.0

S 3.0

S2.0 , 7 a

1 1.0 _

0.0

0.88 0.92 0.96 1.00 1.04 1.08 1.12

Relative frequency oYW0

Figure 5.10: Comparison of the spectral modifiers for a source consisting of modes 0-30 (a)
and a source consisting of the single mode [n = 9, m = 0] (b). The normalization ensures that
both modifiers have the same magnitude at the center frequency.

r2 = (x, 0). In some cases the degree of correlation may approach a constant value

with increasing separation between the two source points. This result is well known

for Gaussian Schell-model beams8 .

When the source consists of many modes taken with equal weights, it is

equivalent to a spatially incoherent source [cf. ref. 5]. Figure 5.10 shows the spectral

modifier for a source consisting of modes n = 0 through n = 30. For comparison we

also show the spectral modifier for a source consisting of the single mode n = 9. It

can be seen from this figure that when the source consists of many modes, the spectral

modifier is relatively constant and consequently the far-zone spectrum produced by this

source cannot differ appreciably from the source spectrum.

5.5 Spectral changes in the near zone

The spectrum of the field throughout the half-space z > 0 may be evaluated by using

the angular spectrum representation for each one of the modes, i.e.,
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V1M,(rCO) = IAdpdq. (5.32)

In Eq. (5.32) r = (x, y, z > 0),

A.m(p~q;c) = JXm(xy~z = (5.33)

and

;i -; q p2 2 when p2 +q 2 <1 (a)

M={ (5.34)

i4p2 + q2 _ I when p2 +q 2 > 1. (b)

It can be shown by numerical evaluation that when kz > 100 one may neglect,

to a good approximation, the contributions from evanescent waves, i.e. waves for

which p2 + q2 > 1. The infinite domain of integration in Eq. (5.32) can then be

replaced by the finite domain p2 + q2:5 1.

To simplify the calculation we consider the iource modes given by Eq.(5.12) in

Eq. (5.33). The integration over the domain D may be carried out in closed form by

extending the domain of integration over the whole xy-plane and using the identity

(5.19). One then finds that
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• k 2  d ,,d )* 1/4 (j)n.Am m(p, q - 20"

X H nCIAV exp { ,±[t7 kP )2 ( 3 2 ]} (5.35)

'P<:°)i~,--:-', J1

The fields V,.m(r,(o) are obtained by substituting from Eq. (5.35) in Eq. (5.32) and

letting d, = dy = d. The result is:

V"" ~(X, Y,Z; () ) 2= ( j,-, i

x j e- 2(P2+q)1/4d h ( 'a(px+qy+,,)d (5.36)

p2 +q2 s 1

The integral (5.36) has been evaluated by many authors within the accuracy of

the paraxial approximation 9. It has also been evaluated under more general conditions

or by making use of cylindrical symmetryl 0 Because we are interested in observation

points that may lie outside the paraxial region, we evaluated the integrals (5.5)

numerically for selected values of the mode index n.

In Table 5.2 we compare the relative frequency shifts calculated for the near

zone and for the far zone.
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Near zone Near zone Far zone Far zone
Mode center Z-shift CetrZ-" Ks. - Z 1

5,0 0.992737 -0.007316 0.992654 -0.007399 0.000083

9, 0 1.020491 0.020079 1.021117 0.020681 0.000602

11,0 1.011317 0.01119 1.011482 0.011352 0.000162

12, 0 0.993354 -0.00669 0.993168 -0.006879 0.000189

13, 0 1.007263 0.007211 1.007341 0.007288 0.000077

14, 0 0.985337 -0.014881 0.9845217 -0.015722 0.000841

15, 0 1.004433 0.004414 1.0044527 0.004433 0.000019

Table 5.2: The Z-numbers (relative frequency shifts) for observation points in the far and in
the near zone, for selected modes.

The rightmost column in Table 5.2 indicates that, at least for the modes considered

here, most of the spectral shift is already present for observation points in the near

zone. This observation is confirmed in Chapter 6.

5.6 Summary

In this chapter we employed the coherent-mode representation to analyze the changes in

the spectrum of light which is generated by a class of secondary, partially coherent,

planar, secondary sources. Our treatment isolated the spectral effects due to the

individual modes and has demonstrated that even coherent fields exhibit a non-

negligible spectral shifts for some directions of observation. These may have to be

taken into account in various applications, for example, in determining the speed of

moving objects from reflected light on the basis of spectral line shifts.
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The effect of the state of coherence of the source on the observed field spectra

was examined by varying the eigenvalues An,m . We found that when the source

consists of many coherent modes with the same eigenvalues (corresponding to the

incoherent limit), the spectrum of the field does not differ appreciably from that of the

source.

The changes in the spectrum of the field on propagation from the immediate

neighborhood of the source plane to the far zone were studied by calculations of the

spectrum for distance kz = 100 and for kz -- o. We found that in the case we

studied, the spectrum close to the source (kz = 100) already possesses most of the

features that are present in the spectrum of the field in the far zone.

The evaluation of the near zone spectrum in Sec. 5.5 is computationally

intensive. In Chapter 6 we use the paraxial approximation to perform this calculation.

The paraxial approximation significantly reduces the difficulty involved in the

computation which gives a genuine insight into the development of spectral changes

with propagation distance.
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6.1 Introduction

The work described in the previous chapters has focused on light propagation in free

space or in a rarefied scattering medium. In this chapter we examine the changes in the

spectrum of the field occurring on propagation through homogeneous and

inhomogeneous dispersive media. In particular, we investigate the development of the

spectrum as a function of the propagation distance and its dependence on the state of

coherence of the source in both homogeneous and inhomogeneous media. The

inhomogeneous medium considered here is a graded-index medium whose refractive

index varies quadratically in the radial direction1 . Such a medium is readily available

for experiments in the form of so-called Selfoc fibers.

The changes in the coherence properties of light propagating through various

types of waveguides have been investigated by many authors2. In most of the work

encountered in the literature, the state of coherence is characterized by the mutual

coherence function. As we explained in Chapter 1, this approach is not very suitable

for the examination of spectral changes. Agrawal et a. [ Ref. 2 (a)] considered how

the cross-spectral density of the incident light changes on propagation in such

multimode fibers. We use the analysis of that reference to derive a closed-form

expression for the spectrum of the field at an arbitrary distance from the source.

The general expression derived for a graded-index medium can be used to

analyze the spectral changes occurring in a dispersive homogeneous medium in the

appropriate limiL The later result reduces to the well known free-space result3 in the

limit in which the refractive index is unity. Our expression is, however, valid for

arbitrary propagation distances and allows us to examine how the spectrum evolves

from the near-field to the far-field region. We illustrate our results by using physical

parameters that apply in many practical configurations. In particular, we show how the
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spectrum of light can be shifted toward the shorter or the longer wavelength, depending

on the propagation distance and the state of coherence of the source. Our results

indicate that the spectral shift occurring in the far-zone region is considerably enhanced

in a homogeneous medium, with the enhancement factor depending on the index of

refraction of the medium.

We examine the evolution of spectral shifts from the near to the far zone by

deriving an alternative expression for the field spectrum that is valid, within the paraxial

approximation, for an arbitrary propagation distance in free space. We use this

expression to obtain the spectral shift for optical fields generated by a Gaussian Schell-

model source, and to study how the shift changes during transition from the near to the

far zone.

6.2 Propagation of the spectrum in graded index fibers

In this section we derive expressions for the propagation of the cross-spectral density

of the field in graded-index fibers. We establish the notation and derive an expression

for the field spectrum.

Consider a graded-index fiber with the axis of symmetry along the z-direction

(see Fig. 6.1). The fiber is characterized by an index of refraction having the parabolic

profile

r2 r2 2 + 2 ) fr 2 +Y2 2 (a

n2(x,Y,))- -  (6.1)

Sp ta c(0 oo r -axe n lg R (b)
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z

Figure 6.1: Illustrating the geometry and the notation.A point in the source plane z =0 is
denoted by (4,'1) and an observation point is denoted by (x, y, z).

where R0 is the core radius, no is the index of refraction at the center of the fiber, a is

the radial gradient of the index, and w = kc (c = vacuum speed of light) is the

frequency associated with the free-space wavenumber k.

To obtain an expression for field propagation in this medium4 we first make the

assumption that Eq. (6.1a) is valid for all x and y. It follows that thc differential

equation governing the propagation of a field V in this fiber is in the form

{v2+ 2g~ -
2 (x2 + y2)]}V(x,Y,z) [I 0.a (6.2)

n(r)/n 0

1.000

0.998

0.996

0.994

0.992

0.990 r/R 0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.2: The parabolic index profile of Eq. (6.1) with a = 0.1.
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Its solution can be expressed as an infinite series of Hermite Gaussian functions5

V(x,y,z)= i oa- m- _exp(iPmZ), (6.3)
nM=O W( .1

where wo is the spot size

wo =4-/ka, (6.4)

and &. are the propagation constants given by

in,.m = k - 2ka(n + m + 1). (6.5)

In Eq. (6.3) the coefficients aum are determined from the boundary value of the field

incident on the fiber V(4,ij, 0) using the orthogonality of the Hermite-Gaussian

functions. One then finds that

2 1

a w0 2n+mn!m!

42 4 2 + 2 (6 .6 )

D kWO WOI W )

where 4 and 71 are the coordinates in the input plane D.

If follows from Eqs. (6.3) and (6.6) that the field V(r) after propagation to any

plane z > 0 may be expressed in the form
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V(r) f V(4, r,0)K(r; 7, ) d dr/, (6.7)
D

where the propagation kernel K(r, ,rl) is given by

K~; i7=-e'~r C ep ika 1 2Stz +772 (+ 77Y)l 1  (6.8)
2ni sin az sin az L2 J

and

((r)=k z+ a cos z(X2+Y2)]. (6.9)

When the medium is homogeneous, a = 0 and Eq. (6.8) reduces to

2niz 2zL

which is also the propagation kernel for the paraxial Fresnel approximation.

Using Eqs. (6.7) and (6.8), the cross-spectral density of the field for any two

points in the fiber is given by

W(r,r 2 ;o) = JJK* (d,2;Ao)K(r2 ,P2;o)W(oP2 ;co)d g d 2A, (6.11)

D
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where W(A,p 2;w) is the cross-spectral density in the source plane and pj = " jijj) is

a radius vector in that plane. The spectrum 6 of the field is obtained by setting

r = r2 = r in Eq. (6.11), i.e.,

SCC.) • 2 2
S(r;co) = JK*(rA;OK(r,p,;o)W(A,p;rco)d 2 A d 2 . (6.12)

On substituting from Eqs. (6.8) and (6.9) into Eq. (6.12) we obtain the following

expression for the spec-um of the field:

S~r~co . a )2ff ff d 2 drT1 dii2W(P1,P2g(O)

(6.13)Sika CSL (cs /2 _ 1{ sin L + 2- 2)-x(7 -_)-y(T-mT)l]}.

Equation (6.13) can be used to obtain the field spectrum at any point r for a

given form of the cross-spectral density of the incident field in the source iane z = 0.

We will choose a Gaussian Schell-model for the cross-spectral density in the source

plane, viz.,

41 2  1F II

xexp 2+ '2
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where ai is the r.m.s width of the Gaussian intensity distribution [Full-Width-Half-

Maximum(FWHM) = 2.35 orI] and ag is the r.m.s width of the spatial correlation.

On substituting Eq. (6.13) into Eq. (6.14) and performing the integration [see

Appendix C] we obtain the following expression for the spectrum of the field:

S(r;0) = S( 0)(co)M(r;a;co), (6.15)

where the spectral modifier M is given by

1 (kaL 2  [k2 (X2 +y 2 )/z 2 ]

(r;a°o)=A ex2p[ 2  (6.16)

In Eq. (6.16) we have used the notation

A = 2aboa sin az/az , (6.17)

a2 11 , (6.18)

and

b2  1 kac os 
612

b =.a (6.19)

Equations (6.15) and (6.16) are general expressions, valid within the paraxial

approximation, for the spectrum of the field produced by planar secondary Gaussian

Schell-model sources. In particular, Eq. (6.15) is valid at any distance z from the
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source plane and for any range of real valued n(co) and a(co). It can be easily verified

that S(r; o) reduces to S(°)(co)exp(-r 2/2o )in the limit z -4 0, as one might

expect. In the limit when a -+ 0 our formulation corresponds to the case of

dispersive homogene ,us media. The spectral modifier for homogeneous media Mh is

given by

1 12 +y 1
Mh(r°CO) 1xp - 2 +, (6.20)

where

Zd 2k (6.21)zd 3/1 9o

The parameter zd is analogous to the so-called diffraction length or the Rayleigh range7

encountered in propagation of coherent Gaussian beams and reduces to it in the

coherent limit (r >> oi).

Equation (6.20) is also applicable to paraxial free-space propagation if we set

n(co) = 1; then k = k0. Since we have examined in the previous chapter the spectral

changes that occur on free-space propagation, we consider this case first Later we will

consider the general case in which n(w)) > 1 and aX > 0. In order to make our results

readily available for experimental verification, we assume that the source spectrum

S(°)(o) corresponds to that of a Gallium Phosphide (GaP) visible light source8 , which

is well approximated by a Lorentzian line centered at 564 nm

(v 0 = w0/2t = 532 THz) and having a FWHM of 36 nm (- 34 THz). All the

numerical results in this chapter pertain to this source spectrum.
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6.3 Free-space propagation

In the previous chapters we examined the changes in the spectrum of light on

propagation in free space and we reviewed the relevant published work. So far there

has not been a clear understanding of the development of the spectral changes with

increasing propagation distance from the source, a fact that may be due to the

complexity of the computations involved9. Our analysis provides a relatively simple

way for understanding the transition from near to far field within the paraxial

approximation.

In our notation the spectrum of the field after propagating a distance z in free-

space is given by

S =(r;w) = S 01((o)Mf(r;o), (6.22)

where Mjis the sp ctral modifier for free-space propagation that is obtained from Mh of

Eq. (6.20) by setting k = ko .

The expression for the spectrum of the field in the far-zone is obtained in the

limit koz - cc (with fixed direction of observation), and it is given by

2 2 2]
<pa: + Y)/z("-tF2az"4 (6.23)

where the superscript (cc) indicates the far-zone limit. Equation (6.23) is in agreement,

within the paraxial approximation, with a known result for far-zone radiant intensity of

Gaussian Schell-model sources3.
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Figure 6.3: Normalized spectral modifier Mf for propagation distance k0 z = 100 in free
space. The spectral modifier is shown as a function of frequency v for kooj = 20 and four different
values of the correlation length; kOag = 1.0 (a), koag = 8.0 (b), kAog = 10 (c) and k0og = 20
(d). The direction of the spectral shift is determined by the slope of Mf at the center frequency of

the source.

We now return to the general expression for the spectrum of the field in free

space [Eq. (6.20)], and evaluate the spectral modifier M/for sources with different

states of coherence, governed by the values of cg and aI .

Figure 6.3 shows the variation of the spectral modifier Mf with the frequency

v = (027r for several choices of a. and a,, when the propagation distance is

z = 1000o/27t (i.e., when k0z = 1000), and the observation direction makes an

angle of 10" with the z-axis. Each one of the curves is normalized so that its maximum

value is unity. It follows from Eq. (6.20) that when the specL-al modifier, considered

as a function of v, has a positive slope at v = v0 , the resulting line is blue-shifted

while a negative slope of the spectral modifier at that frequency results is a red-shifted

spectrum. If the spectral modifier is not uniform throughout the frequency range of the

source spectrum, the nature of the spectral changes may be more complicated (for more
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Figure 6.4: Normalized spectral modifier Mf for propagation distances k: - 100 (a), kOz = 250
(b), and k0z =600 (c) in free space for k0ou = 20, kOug = 10. At v 0 = 532 THz a blue shift is
obtained for kOz = 100 and a red shift for kjz = 600.

details see Sec. 5.3). The examples shown in Fig. 6.3 correspond to a blue shift for

koOag < 9 and red shift for 2t 10 for GaP source for which v0 - 532 THz.

For a given state of coherence the spectral shift also depends on the propagation

distance. This is shown in Fig. 6.4 where we compare the spectral modifier for

different propagation distances from sources with k0o 1 = 20 and k0og = 10. The

spectral shift is to-vard higher frequencies for koz = 100 (positive slope at n = no),

and toward lower frequencies for k0z = 600 (negative slope at n = no). Figure 6.5

shows the spectra of the GaP source when k0z = 10 (i.e. in the near zone) and when

k0z = 1000 (in the far zone) with k0oal = 20 and koarg = 20. The source spectrum

exhibits a red shift in the far zone, and a slight blue shift in the near zone. It should

also be noted that the spectrum becomes asymmetric as a result of propagation.

We quantify the magnitude of the spectral shift by defining a parameter Av that

corresponds to the shift of the spectral peak from from the location of the peak of the
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Figure 6.5- Normalized field spectrum for observation at an angle of 10" off axis and a
propagation distance koz = 1000. The source is characterized by k0a = 20 and kOCg = 20. The
solid line shows the original source spectrum and the dashed line shows the red-shifted field spectrum.

source spectrum. In Fig. 6.6 we show the spectral shift Av as a function of the

propagation distance k0z, for k0s = 20 and several values of koag. We note that

when the source is relatively incoherent (koag < 1) the spectral shift, which is

towards the blue for this angle of observation, develops rapidly with propagation

distance. When the source is relatively coherent (koOg * 1) an initial blue shift turns

into a red shift with increasing kz.

For the states of coherence considered in this paper, the transition from the blue

shift to the red shift takes place when koz - 100. In all cases the frequency shift in the

far zone approaches an asymptotic value which depends on k0ag. The constant value.

The frequency shift for k0o = 25 [curve (d) in Fig. 6.6] is about 10% of the source

spectral width (FWHM S 34 THz).
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Figure 6.6: Frequency shifts Av versus propagation distance for sources chr-'cterized by the
same value of k0 a I = 20 and different values of kOag: kOj(g = 1 (a), koag = 10 (b), koJrg = 20 (c)
and kOag = 2 5 (d).

6.4. Spectral changes in homogeneous media

In the previous section we showed that the changes in the spectrum on propagation in

free space depend on the state of coherence and on the propagation distance from the

source. In this section we consider propagation through homogeneous media for

which the index of refraction [n(o)> 1] is independent of position in space. We

assume that the index of refraction is frequency dependent, a feature that indicates the

dispersive nature of the homogeneous medium. The wave number is then given by

k = n(c) m . (0(6.24)
C
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On substituting Eq. (6.24) in Eq. (6.20) we obtain the expression for the

spectral modifier for dispersive homogeneous media. When the refractive index n(co) is

nearly constant over the source spectral width, the medium acts as a non-dispersive

homogeneous medium of constant refractive index no = n(w0 ), where o is the central

frequency of the source spectrum. We will consider the non-dispersive case first.

It is evident from Eq. (6.20) that the spectral modifier Mh for a non-dispersive

homogeneous medium is identical to that of free space if k0 is replaced by noko. Thus,

the free space results for the spectral modifier shown in Figs. 6.3 and 6.4 apply,

provided that the scaling factor k0 is appropriately modified. The spectral changes can

be quite different as a result of the scaling. The comparison between the spectral

changes occurring on propagation in free-space and on propagation in homogeneous

non-dispersive media must be considered separately for distances short and long

compared with zd. For a short propagation range (z 4 zd)

11 , (6.25)1 + (Z/Zd)
2 '

and the spectral modifier Mh becomes independent of no. Hence for such propagation

distances we expect no difference between the spectral changes occurring in dispersive

homogeneous media and free space. For long propagation distances (z * Zd) the

approximation

1er - o p g ) 2 (6.26)
1 + (zzd) kZ)
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holds, and the spectral modifier for propagation in homogeneous media [n(o) > 1]

then differs by a multiplicative factor

2 2

in comparison with the spectral modifier for free-space propagation. In Eq. (6.27) zo is

given by the expression

2kF
Z 2k (6.28)°= 1+ 4oy /oy2"

The extent of the spectral changes taking place under these circumstances depends on

the value of no. Figure 6.7 gives a comparison of spectral shifts in free space (no = 1)

and in two non-dispersive homogeneous media of refractive indices no = 1.5 and 2.0

when k0u1 = 20 and k0ao = 10. The most notable feature is that the far-zone value

of the spect ral shift increases with increasing refractive index no. This is an important

feature which shows that the spectral changes are enhanced in a homogeneous medium.
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Figure 6.7: Comparison of frequency shifts for propagation in non-dispersive homogeneous media.
The frequency shifts for a fixed angle of observation (10") are shown for propagation in free space (a), for
propagation in a homogeneous medium of an index of refraction n(coo) = 1.5 (b) and for propagation in a
medium of index of refraction n(awo) = 2.0 (c). The observation angle is 10" and the source parameters
are kocq = 20 and kocg = 10.

We next consider propagation in dispersive homogeneous media. As in the

case of non-dispersive media, we must consider the changes in the spectrum for short

and long propagation distances separately. For short propagation distances (z << zd),

the quantity I/(1 + z2/z 2)is again independent of the index of refraction and the spectral

effects are identical to those encountered in free-space propagation. For long

propagation distances (z * z0),

f(a) = n(o),exp -2 -z I 6) [CO(,- 11} (6.29)

and hence the difference in the spectral effects in this medium from those generated in

free-space depend on the variation of n(co) in the frequency range covered by the source
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Figure 6.8: Comparison of frequency shifts for dispersive homogeneous media. dv is shown as
a function of koz for propagation in free space (a), propagation in pure silica (b), and propagation in
silica doped with 7.9% GeO2 (c). The observation angle is 10" and the source parameters are
koa = 20 and k0og = 10.

spectrum [cf. Eq. (6.27)]. We illustrate our results by using a slab of silica glass as an

example of dispersive homogeneous medium.

Figure 6.8 shows the frequency shift An obtained after light from GaP source

propagates through a slab of silica glass of various thicknesses. The source parameters

are k0o = 20 and koag = 10. The frequency dependence of n(rw) was obtained by

using the well-known Sellmeier formula10

3 B(2

n 2(0) = 1 + 2 Bioi (6.30)

For pure silica B1 = 0.6961663, B2 = 0.4079426, B 3 = 0.8974794,

A1 = 0.0684043, A2 = 0.1162414, A3 = 9.896161 mm, where Aj =2 rc/coj.

The effect of dopants on the spectral shift can be easily included in our analysis.

For example, the refractive index n(cw) of silica glass can be increased by doping it with
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germania (GeO2). The refractive index n(0) is still given by the Sellmeier formula but

the parameters Bj and 0j are different and depend on the amount of the dopant. As an

example, we consider silica glass doped with 7.9% GeO2, for which the parameters are

B 1 =0.7136824, B 2 = 0.4254807, B3 = 0.8964226, 1 = 0.0617167,

X= 0.1270814, 4, = 9.896161 mm. Figure 6.8 shows the expected change

(dashed curve) in the frequency shift. The shift is slightly larger for doped silica since

the dopant increases the refractive index by a small amount. In both cases (pure silica

and slightly doped silica) the frequency shifts in the far zone are much larger than those

that would be produced in free space.

The main conclusion of this section is that correlation-induced spectral shifts are

enhanced in a homogeneous medium of refractive index n(co)> 1. The frequency

dependence of the refractive index n(co) is not critical as the enhancement is found to

occur even when n is frequency independent. The origin of the enhancement factor for

large propagation distances can be understood by referring to Eq. (6.20) and using the

formula k = on(co)/c in Eq. (6.21). The Gaussian factor in Eq. (6.20), plotted as a

function of (o, is narrower for a homogeneous medium than for free space. It is this

feature of the spectral modifier that is responsible for a larger spectral shift when

n(w) > 1.

6.5 Propagation in inhomogeneous media

In this section we return to the general expression for the spectrum of light in a graded-

index fiber [Eqs. (6.15)-(6.19)]. In this case the parameter a is non-zero; it depends

on the fiber design. In particular %,c consider a fiber whose core is made of doped

silica (7.9% GeO 2 at the core center) and a cladding made of pure SiO2 . If nh(Co) is the
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Figure 6.9: Frequency shift Av versus the propagation distance k0 z in a dispersive graded-index
medium (a). Curve (b) shows Av when the inhomogeneous nature of the medium is ignored by sett.g
a = 0. Curve (c) shows the corresponding result for free-space propagation. The observation angle is
10" and the source parameters were chosen to be k0c I = 20 and k0org = 10.

refractive index at the core center (r = 0) and n2 (0o) is the refractive index at the

boundary (r = R0), the parameter a is given by

a(0o)= 1-n (co)/n (W) . (6.31)

Since nl(wo) and n2(o) can be obtained by using Eq. (6.29), the frequency dependence

of a(m) is readily determined. In the following calculations we take the core radius to

be R0 = 25 im.

Figure 6.9 shows the frequency shift as a function of the propagation distaace

for a * 0 in such a medium, and the shifts generated in a homogeneous medium of

refractive index nh. We note that in the range of propagation distances shown in the

figure, the frequency shift is larger for a graded-index medium than in the
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homogeneous medium. This enhair'ement of the frequency shift is due to the

inhomogeneous nature of the medium and depends on the functional form of the

inhomogeneity.

Although the frequency shift Av tends to a constant (far-zone) in a

homogeneous medium, no such limit exists in the graded-index medium considered

here. This feature is due to the imaging property of a medium with a quadratic variation

of the refractive index. Such a medium reproduces the incident field periodically, with

a period given by Az = 2nt/A, a feature that is due to the periodic nature of the

propagation kernel, Eq. (6.8). One would thus expect that the spectrum S(r; W3) given

by Eq. (6.12) also reduces to the source spectrum for z = 2mir/ a, where m is a

positive integer. We show in Appendix D that this is indeed the case. Furthermore, we

find that the source spectrum is reproduced not only at z = 2m/r/a, but also at

z = (2m + 1)n/a, except for a spatial inversion of the intensity distribution. For a

symmetric intensity profile such as a Gaussian, S(r, o) is reproduced periodically with

a period zP =- ta.

It would appear from this discussion that the spectral shift should follow a

periodic evolution pattern with period z P. However, this is not the case, as is evident

from the solid curve in Fig. 6. 10 where the spectral shift is plotted as a function of k0 z

for propagation distances covering three periods (with k0zP - 6600) for ko"I = 20,

koag = 10, and C obtained by using Eq. (6.31). Figure 6.10 is drawn for a fixed

radial distance from the fiber axis (p = 10) rather than for a fixed observation angle.

This choice is made because for large propagation distances the radial distance would

exceed the fiber dimensions if the observation angle were kept fixed. Figure 6.10 also

shows that the frequency shift indeed be_.omes zero for zP = t/ao [ao = ao(o0)], but

its maximum and -'iinimum values become larger for successive periods.
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Figure 6.10: Frequency shift Av as a function of propagation distance in a graded-index fiber
(solid line). The frequency shifts are calculated for observation at a fixed distance 10/k0 from the center
of the fiber and k0a I = 20 and koag = 10. The dashed line shows the frequency shifts when the
frequency dependence of a is ignored by setting [a(*)/k0 = 0.000481.

The physical origin of the non-periodic nature of the frequency shift can be

traced back to the dispersive nature of the graded-index media that makes a frequency

dependent. Indeed, if a is replaced by %0 , we obtain the behavior indicated by the

dashed curve in Fig. 6.10. It is clear from this curve that when the frequency

dependence of a is ignored, the frequency shift Av shows periodic behavior with

period r/oo . When ax is allowed to vary with frequency, Av becomes non-periodic.

This feature may be understood by noting that the period zp = o/a itself becomes

frequency dependent. Since the argument acz of the trigonometric functions appearing

in Eqs. (6.17) and (6.19) is frequency-dependent, we may expect z-dependent changes

in the frequency shift. Thus we conclude that the spectral shifts occurring in an

inhomogeneous medium are strongly affected by the dispersive nature of the medium.
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Appendix C: Derivation of the expression for the spectrum of

the field Eq. (6.15)

The spectrum of the field at any point r is given by the expression

S(r;o ) = *K(r;pt;w)K(r;;w)W(r,r2 ;w)d 2p d2 (C )

Here K(r;p;€o) is the propagator, given by Eqs. (6.8), and W(pj;p 2 ;a) is the cross-

spectral density in the source plane, given by Eq. (6.14). On substituting from Eq. (6.14)

into Eq. (C 1) we find that

s(,-,.) = s 2)(i)( kca 2 R(x;co)B(y;co), (C 2)k2nsinwz

where

-~;c)=f xl 2 q 2

(C 3)
expf si-k [COOL(,2- ,2)-(2

To perform the two-dimensional integration we introduce the average and difference

variables

1 "( 2 + k1 ) '  
(C 4)

Y2=: 2 - • (C 5)
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Equation (C 3) then takes the form

I(X; c) = jdy1 exp[- yl'/2ufl

Xf y, xp, 2[ +I + [yosa-I (C 6)
xfdr 2 {r ++' s i coazx

If we define the parameter a by the formula

a2 1 + (C7)

and use the relation I

Jexp[-p 2x ± qx dx =-i expfST'. (C 8)
P 14pi

Eq. (C 6) may be written as

J(x; co) = i.Kexp X2( kaj/(xm)=a [ 2a sin ccz)2]

(C 9)

2 1 (kacoiaz )2 + ka 2
xfJdy1 epYL +[2J 2a sincLZ 2a XC sQkin ~)

Next we define

Apmhxz C
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b 2 =1 (ka cos ccz )2 ( 0
2J (2asinaz (ClO)

and use Eq. (C 8) again. We then find

I(x;o) = exp -{x 2([ - (kaCOsLZ 2}. (C 11)

'Ve note that

[ R cs~ )2] -,[2bsn) -~2 -(ka cos o~z) 2] (C 12)
1 2absinczz = (2absina z)

which, by Eq. (C 10) can be simplified to the form

-'J 21] 1 (C 13)

On substituting from Eq. (C 11) and Eq. (C 13) into Eq. (C 2) and using a similar

expression for B(y; a)) we obtain the expression

S°()(2absinczz k Cx x 2ykt I
S(rm) 2 La2si=z ,J}' (C 14)

which can be written in the form

S~ (0) - .(ka ) 2 " k X2+ y (C 15)s zA) Tp-7-- I
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with

sinazA =2aboa1  (C 16)

I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products,

(Academic Press, New York, 1980), § 3.323.2.
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Appendix D: Proof of the periodic reproduction of the

source spectrum

When the propagation distance satisfies the condition az = mn for a positive

integer m, some of the factors in Eq. (6.13) become singular. However, the spectrum of

the field at such propagation distances remains well defined. In this appendix we use the

method of stationary phase to evaluate the spectrum in the limit as z -+ mt/cc. We start

with Eq. (6.13) and rewrite it as

S (r; o) koL 2 .JJJJd4 1 a%2 AdT1 r 2 W(&1 , 2,TIIT1 2;tO)2nJ

(D 1)

x exp ikOLA[ COSZ(k2 _ k +r T1 )(2 -D-'i r)]

where

1
A=

sin ou (D 2)

Since A -4 co as z -- m7c/a, we can evaluate the integral using the method of stationary

phase'. According to this method, if

I(A) = Jf(t)exp[iAO(t)]dt , (D 3)

one has, under fairly general conditions

I(A) - exp[iAO(d)]f(d) A, exp 7141 ) + O(A -3 2 ) as A-- **. (D 4)
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Here d is a zero of '(t) [assuming there is only one] and p. = sgn[O"(d)]. i,-pplying these

formulas to Eq. (D 1), with the definitions

V(t2) = k4 Cos -. t 2 !  () 5)

and

f(2) = W(tII'1q'T12' 0 ) I (D 6)

we find that

1I(A) - (ixp O

Aka k4

(D 7)

XeX4 lka X2(-1_ coI )}W&, X TI,11)+O(A-3 /2 )

We repeat the same procedure for the integration over the variables 41, 11, T12 and take the

asymptotic limit A --+ o. All the phase factors cancel and the final result is

S(r;W()= x  , Y- -;o). (D8)

Since cosoz = X 1 we see from the last equation that the spectrum of the source is

completely reproduced at propagation distances z = 2ira/a. For propagation distances

z = (2m + I)nt/a the spectrum of the source is again reproduced but is spatially inverted.

For a symmetric intensity profile such as Gaussian, the source spectrum and the intensity
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distribution are both reproduced at z = mrn/a. It can be shown that Eq. (D 8) is exact at

z = mnl/a in spite of our use of an asymptotic approximation for evaluating the integrals in

Eq. (D 1).

N. Bleistein and R.A. Handelsman, Asymptotic Expansions of Integrals, (Holt,

Rinehart and Winston, New York, 1975), Chapter 6.
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Summary

In this thesis we investigated effects of source correlations on the fields radiated

by sources of any state of coherence. In particular we studied the effects of spatial

correlations of source fluctuations on the total emitted power and on the spatial and

spectral distribution and the spectrum of the emitted radiation.

After a general introduction presented in Chapter 1 we reviewed some elements

of coherence theory that are essential to the discussion in this thesis. Chapter 2 consists

of two parts. In the first part we introduce the concept of radiation efficiency and we

discuss the efficiency of planar, secondary, Gaussian Schell-model sources. We show

that for sources of this class the radiation efficiency increases with increasing source

size and with increasing spatial correlation length of the source fluctuations. We found

that when the linear dimensions of the source exceed several wavelengths, the radiation

efficiency is typically over 90%, irrespective of the source correlation length1. A

different result is obtained for the radiation efficiency of three-dimensional primary

sources; in this case we find that the radiation efficiency does not increase with

increasing source size or with increasing correlation length. In fact, we find, for

example, that the radiation efficiency of a uniform, spherically symmetric, coherent and

co-phasal source, decreases with increasing source radius.

For a primary partially coherent, three-dimensional sources with a given

intensity profile we developed a method which makes it possible to determine the

spatial correlation function that maximizes the radiation efficiency. Using this method

we showed that the radiation efficiency of an isotropic quasi-homogeneous source is

maximized when the degree of spatial coherence is given by sinkr'/kr'. This result is

Swnmary
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significant in- that it shows from the point of view of coherence theory that the spatial

correlation of blackbody radiators gives rise to the maximum radiation efficiency of

isotropic quasi-homogeneous sources.

The discussion of the radiation efficiency was formulated using the space-

frequency representation and the results therefore apply on a frequency by frequency

basis. In chapter 3 we focused our attention on the frequency-dependence of fields

generated by partially coherent sources by investigating the effects of source

correlations on the spectrum of the radiation. We analyzed a basic physical

configuration in which source correlation can be manifested, i.e., that of two small

sources. Using this simple example we illustrated possible modifications of field

spectra depending on the choice of the correlation function. Our calculations included

examples of line narrowing, line broadening, line shifting and line splitting.

The range of possible modification of field spectra can be significantly enhanced

by using a system which contains more than two sources. One such system is an array

of 2N sources which we also analyzed in the last part of chapter 3.

The discussion in chapter 3 of spectral modulation in scalar theory was

extended in chapter 4 to the full electromagnetic case. We considered the effect of

correlation on the spectrum of the electromagnetic field produced by partially correlated

linear dipoles. In this chapter we were mainly concerned with the dependence of the

angular distribution of the radiant intensity and with the shape of the spectrum in

various directions of observation. We showed that the the number of lobes of the

radiant intensity produced by the partially correlated dipoles are determined, just as in

the deterministic case, mainly by the separation distance between the two dipoles,

whereas the direction and the shape of the lobes were largely determined by the

correlation between the two dipoles.
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In the analysis of chapters 3 and 4 we assumed that we can choose certain

forms of spatial correlations. In chapter 5 we analyzed the radiation from a source that

consisted of a finite number of coherent modes. The spatial correlation of this sourt'e

then depends both on the number of the modes and on their relative strengths. For

sources that consist uf Hermite-Gaussian modes we showed the spectral effects in the

far and in the ne=r zone and heir dependence on the mode composition of the source.

We also examined, for comparison, the small spectral shifts that occur op. propagation

from sources that consisi of a single coherent mode. In the analysis of chapter 5 we

introduced the concept of "spectral modifier" which is a correlation-dependent factor

that determines the spectral changes in the emitted radiation.

Chapters 2-5 pertain to propagation in free space. In chapter 6 we consiiered

propagation of partially coherent light in homogeneous ind inhomogeneous media. We

also studied how the spectrum changes as a function of the propagation distance from

the source plane. Our results show that spectral shifts are er. ced in a medium whose
index of refraction is larger than unit. Within a given homogeneous medium t,

spectral shi.s usually develop rapidly with increasing propagation distance from the

source plane. In the case of a non-dispersive graded-index fiber, we showed that the

spectral shifts are periodic along the propagation dihction. When dispersion effects are

taken into account we showed that there exists deviation of the spectral shifts if om the

periodic form.

The research described in this thesis "- conducted between 1986 and 1989.

During this period many other contributions were made in t0is field by numerous

authors. It see.as that there is a great potential for further work in this area, ezpecially

in connection with astrophysics, spectrradiometry and scattering.
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1This statement assumes that the correlation length is not less than that of a

thermal source.
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Appendix F: List of symbols

Symbol Pa ge

A~ n  Angular spectrum representation for coherent modes 135

A Amplitude of a spectral line 75

a(co) Radial gradient of the index of refraction 143

B Magnetic field produced by the dipoles 98

c Speed of light 14

C(O) The radiation efficiency 34

Differential propagator 13

D( ) Dawson integral 37

D Domain normalization parameter 42

D(u; tw) Directivity (general) 111

D(Co) Directivity (standard definition) 111

F(u) Directional distribution of the transform of gQ 54

f(z) Auxiliary function related to the total radiated power 109

O(w) Total flux at frequency (o 34

0. Eigenfunctions of Fredholm integral equation 22

gQ Spatial correlation of a primary source 47

g((O) Auxiliary function related to the maximum amplitude

of a spectrally modified line 79

R Mutual coherence function 10

Fi  Spectral line width 75

y Degree of coherence 11

H,(x) Hermite polynomial 124

Radiant intensity 15
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Ai Spherical Bessel function 46

k Wavenumber 14

K0  Spatial frequency vector at which the radiation
efficiency attains its maximum value 59

K(... Propagator 146

X Wavelength of the radiation 14

)n Eigenvalues 22

A n,,Frequency independent eigenvalues 122

M Spectral modifier 125

t Spatial (spectral) degree of coherence 17

9p Degree of correlation of polarization fluctuations 100

9Q Degree of correlation of source fluctuations 72

n Number of lobes in the radiation pattern 106

N Intensity normalization 42

no, n Index of refraction for the fiber 143

P(c) Total radiated power at frequency o) 15

pj (r, t) Polarization fluctuations 96

Sj (r, t) Spatial Fourier transform of pj (r, t) 97

Electric Hertz vector 96

Q(r;co) Scalar source distribution 48

Qi (CO) Stationary source distributions 71

R(r';co) Auxiliary source function 47

S(r; c) Spectrum at position r 14

SQ Spectrum of a source 72

Sv  Spectrum of the field 72

sv  Reduced field spectrum 74

S(-)(ru;01) Far-zone spectrum in direction u 99
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, Spectrum of polari7ation fluctuations 99

o Equivalent rms for Gaussian Schell model source 36

a rms width of correlation profile 35, 57

01 rms width of intensity profile 35

Ni(CO) Steering angle 100

U. Projection of unit vector on z = 0 plane 14

V(P, t) Analytic signal representation f r the field at point

P and time t 9

W(...) Cross-spectral density function 11

W(* )  Far-zor, e cross-spectral density function 13

If, (0) Fourier transform of source cross-spectral dens:,-" 14

W Angular frequency 14

XIM Eigenfunctions of Mercer expansion 120

Z Relative fr'equency shift 123

z0  Free space effective diffraction length 156

Zd Effective diffraction length 149

z Repetition distance for spectrum in a fiber 161
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