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Abstract

It has long been assumed that the normalized spectrum of a radiated field
remains invariant on propagation. Recent developments in coherence theory have
demonstrated that, in general, the normalized spectrum of a radiated field changes on
propagation depending on the state of coherence and the original sgectrum of the
source. In this thesis we examined the effect of the spatial correlations of the source
fluctuations on the radiated fields.

We first considered the effect of source correlations on the total radiated
power using the concept of "radiation efficiency”. For a class of planar sources,
known as Schell-model sources we showed that the radiation efficiency and hence also
the total emitted power increase with increasing source size or increasing source
correlation length. Interestingly enough, our results indicate that any source of this
class whose linear dimensions are larger than about a wavelength has a radiation
efficiency that exceeds 90%.

In investigating the radiation efficiency of three-dimensional, partially
coherent, primary sources we develop a method for finding the correlation function that
maximizes the radiation efficiency and the total power emitted by such sources. In the
case of quasi-homogeneous sources we show that the optimal degree of spatial
coherence is sinkr'fkr’ where r’ is the spatial offset and & is the wave number. The
significance of this result is discussed in connection with blackbody radiation.

In considering the effects of the source correlation on the spectrum of the
radiation we analyze a simple physical configuration of two small sources. Our
calculations demonstrate that one can choose correlation functions that giv2 rise to line
narrowing, line broadening, line shifting and line splitting. Similar results are also
obtained when the full electtomagaetic nature of the sources is taken into account. We

illustrate this fact by considering radiation from two partially correlated linear dipoles.




To gain a different perspective for the effects of the spatial correlations on the
spectrum we consider an example in coherent-mode representation. In this example we
introduce the concept of "spectral modifier" to show the small spectral changes that
occur on propagation of single coherent modes, and we then examine the spectral
effects when several modes are present.

In the final part of the thesis we consider the spectral effects arising from
source correlations when the fields propagate in homogeneous or inhomogeneous
media. Our calculations elucidate the development of spectral shifts as a function of the
propagation distance and illustrate the various spectral effects for light propagation in

graded-index fibers.
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Chapter 1

Introduction

The term spectrum plays an important role in most areas of science. In optics it refers
to the distribution of energy as a function of frequency. This concept has deep roots
in the development of optical physics. The first reported experiments demonstrating
that sunlight consists of multi-color contributions were performed by Sir Isaac
Newton and published as early as 1666.] Since the days of Newton, observations
and measurements of spectra have became a leading research tool that was largely
responsible for the development of quantum mechanics and has made significant
contributions to areas such as thermodynamics, chemistry, astronomy and metrology.

In spite of the fact that relatively accurate measurements of spectra were
made as early as 18172, only rough guesses, intuition and an ample measure of luck
made the experimental results useful for the development of the various sciences that
were based on spectroscopy.3 Implicit in all spectroscopic measurements is the
assumption that the spectrum of the field measured by various means is equal to the
spectrum of the source generating it, even when the light has propagated a significant
distance from the source This assumption, as was demonstrated recently, is valid
only in special cases. In general, the spectrum of partially coherent light changes on
propagation. The extent and type of the changes are determined by the state of
coherence of the source and separately by the propagation medium.

Although the concept of coherence was recognized many years ago, it
appears that scientists have not considered the effects of coherence on the spectrum
until recently.4 Experimentally, it is known that the most common sources of light do
indeed produce a spectrum that does not vary appreciably on propagation. Although
several cases of spectral changes were encountered, they were either attributed to the

Doppler effect or left as an experimental uncertainty.6 Theoretically, the main
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reason that coherence effects on the spectrum have not been investigated earlier may
be due to the fact that for many years the main quantities used in coherence theory
were space-time correlations. In particular, the second order correlation function
most widely used was the mutual coherence function.” One of the major
developments of statistical optics in the last decade was the formulation of coherence
theory in the space-frequency domain, which shifted the emphasis from the mutual
coherence function to the cross-spectral density function. The transition to space-
frequency domain simplifies some of the theoretical techniques used to solve
boundary value problems and focuses the emphasis on the frequency-dependence of
all the relevant physical quantities.

Wolf first derived conditions under which the spectrum of light generated
by a quasi-homogeneous source remains invariant after propagation.3® According to
that analysis, planar secondary quasi-homogeneous sources whose degree of
correlation obeys a certain scaling law produce light whose spectrum is independent
of the direction of observation and is equal to the source spectrum. Additional
investigations have since shown the effects of spatial correlations in various physical
situations.

The simplest physical system that was considered was that of two small
radiating sources.® The simplicity lies in the fact that both sources are assumed to be
essentially point sources and the spatial correlation is a function that depends on the
position of the two sources and on the frequency. It has been shown that even this
simple system can produce spectral line shifts as well as actual modulation of the
radiated spectrum. These theoretical predictions have since been verified
experimentally by several groups.?

In considering different spatial correlations, the next level of complexity is

that of extended secondary planar sources. Here the spatial correlations are taken
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between any two points in the source plane. Most of the investigations relating to
planar sources examined the spectral shifts occurring on the propagation of light from
the source plane.10 Additional work explored more general spectral changes such as
line broadening, line narrowing and line distortion in partially coherent sources whose
cross-spectral density consists of several Hermite-Gaussian modes.!! A number of
experiments in this area have also been reported.12

When the radiating sources are three-dimensional, the spatial correlations
have additional degrees of freedom compared with the spatial correlations of planar
sources.13 The effects of the spatial correlations on the spectrum of the light
produced by three-dimensional sources are, however, similar to those produced by
planar sources.14

The investigation of changes in the spectrum of partially coherent light on
propagation have dealt so far mainly with propagation in free space. In many
practical applications light propagates in dispersive media that are homogeneous or
inhomogeneous. In these cases it is important to estimate, for example, the changes
in the spectrum after propagating a certain distance in the medium.15

The spectrum of the field is not the only physical quantity affected by source
correlations. Closely related quantities are the radiated power at a given frequency,
the directivity of a radiating system and the shape of intensity profile of light beams
produced by partially coherent sources. The effects of source correlations on the
spatial distribution of the radiated intensity have been investigated for several years.!6
Of interest in this thesis are the radiation efficiency, the directivity and the shape of the
intensity profile of partially coherent optical beams.

The radiation efficiency of partially coherent sources is a concept that has
been developed as a measure for the amount of light generated by a source of a given

intensity profile and with varying forms of spatial correlations. Most of the early
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work on radiation ;:fﬁcicncy involved quasi-homogeneous sources.!é Other types of
partially coherent sources including planar and three-dimensional sources have since
been investigated.!” Considering the effects of the correlation on the radiation
efficiency, it is natural to look for the spatial correlation that maximizes the radiation
efficiency and hence the total power emitted by a source of a prescribed intensity
profile.18 .

The total emitted power does not give much information about the
distribution of the radiation in space. The radiant intensity at a given frequency is
important for the characterization of the directivity of fields produced by partially
coherent sources and in calculations of the intensity profiles of partially coherent
beams. Since the radiant intensity depends on spatial correlation, so do the directivity
and the intensity profile. Of particular interest in this respect are the intensity profiles
of the so-called Gaussian Schell-model sources!9 that are closely related to certain

laser radiators.
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1.2 Organization cf the thesis

This thesis describes several investigations on the effect of source correlation on the
physical properties of the radiated field. Specifically, we discuss the dependence of
the spectrum of light produced by partially coherent sources on the spatial correlations
of the source fluctuations. Most of the material included in the following chapters has
already been reported in papers that are already published ur have been submitted to
publication. The pertinent references are listed in Appendix E. Each chapter is
concerned with a specific aspect of the theory, and the presentation does not always
follow the chronological development of the work. Throughout this thesis attempts
have been made to thoroughly document the relevant literature. End notes to every
chapter contain extensive lists of references in addition to supplemental statements that
could not be incorporated in the main text. Since much of the research concentrates
on closely related areas, some of the fundamental papers may be referenced more than
once, where appropriate.

In the second part of this chapter we review some elements of coherence
theory and establish the notation and conventions used throughout the rest of the
thesis. Our treatment is based on classical statistical optics and on the consideration
of statistically stationary fields. Most of the formal treatment is based on space-
frequency representation so that quantities such as the radiant intensity, the total
power and the directivity refer to their respective values at a single frequency. We
also present some of the basic relations in the space-time domain in order to illustrate
the advantages of using the space-frequency representation. Following the discussion
of the cross-spectral density function we describe model sources which are frequently

used in the theory as well as in the formulation of coherent-mode representation.
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Chapter 2 contains a description of investigations of the radiation efficiency
and directivity of fields produced by pariaily coherent planar and three-dimensional
sources. Specifically we examine the radiation efficiency of planar Gaussian Schell-
model sources. We determine the spatial correlation which maximizes the radiation
efficiency for three-dimensional sources of prescribed intensity profiles. While we
show that the maximum radiation cfﬁciency of pianar sources is obtained when the
source is fully coherent, three-dimensional coherent sources are, in general, highly
inefficient. Since the radiation efficiency and the directivity are evaluated at a single
frequency, it is necessary to account for the original source spectrum to obtain the
total efficiency or directivity. Some of the spectral effects are considered in the
following chapters.

In chapter 3 we begin our discussion of correlation induced spectral
changes. We consider a simple physical configuration of two small sources and
describe some of the possible ways in which the spectrum of light can be modulated
by appropriately modifying the spatial correlations. The analysis up to this point is
based on scalar theory. In chapter 4 the analysis is extended to the full
clectromagnetic fields, by considering the radiation produced by two linear electric
dipoles. This chapter expands the analysis of the spectral modulation technique to
include directional effects and the vector properties of the field. A comparison
between the results of chapter 3 and chapter 4 shows, as one might perhaps expect,
that the electromagnetic treatment reduces to the results of scalar theory in certain
limits.

The theoretical predictions of spectral changes in chapters 3 and 4 are
discussed without suggesting any possible mechanism that can produce the required
spatial correlations. iu chapter S we consider the radiation from a secondary planar

source whose cross-spectral density consists of several coherent modes. The choice
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of the Hcrmitc-Gaixssians as the functional form of the coherent modes makes the
analysis relevant to applications where independent laser modes are present in a
source. The theory developed in this chapter shows the spectral changes that occur
on propagation of individual coherent modes. When the radiation consists of several
coherent modes the changes in the spectrum can be attributed to correlation effects
which are manifested by the relative strengths of the individual modes present in the
source.

The analysis presented in chapters 2 through S concerned propagation of
light in free space. In most practical applications light passes through optical elements
and through media whose response is frequency-dependent. In chapter 6 we consider
propagation of partially coherent light through homogeneous and inhomogeneous
media, as well as the effects of dispersion. In particular, we consider propagation
through optical fibers whose index of refracticn has a quadratic profile (so-called
Selfoc fibers). As one may expect, spectral changes that take place on propagation in
free space are somewhat enhanced by propagation in a medium characterized by a
frequency dependent index of refraction.

Throughout this thesis various symbols were used to denote numerous
physical and mathematical entities. We made every effort to define all symbols the
first time that they occur in the text. In Appendix F we present a list of the main

symbols and their definitions.
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1.3 Elements of coherence theory

In this section we summarize some basic results of coherence theory which are
essential to the development of the maierial presented in the rest of the thesis. We
focus our attention on the development of space-frequency representation, and we
discuss properties of the cross-spectral density and the so-called coherent-mode
representation. This review also includes short derivations of the main relations

involving various physical quantities of interest.

The concept of spatial correlation

Consider an aperture in an opaque screen20 that is illuminated by a light source as
shown in Fig. 1.1. The field distribution in the plane of the aperture is known as a
secondary source. The concept of a secondary source is useful in describing practical
situations where one considers the light incident on the entrance or exit pupil of an
optical system, or when describing a particular distribution of light without regard to
the physical system which produces the radiation in the first place. We denote the
field strength at two typical points in the plane of the aperture and at two different
times by complex analytic signals?! V(P,, 1,), V(P,, t;) respectively. The
correlation between the fluctuations of the field at the two points is characterized by

the average

CB Pyt ty))=(V (R, V(R 1)) . (1.1
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Figure 1.1: A sccondary source consisting of an aperture in a planar opaque
screen. Py and P) are two typical points in the plane of the aperture.

This type of average, which occurs frequently in our analysis, is taken over an
ensemble of realizations of similar systems, and it is denoted by the angular
brackets.22

In this document we consider only fields which are stationary in the wide
sense, i.e. fields wiiose average is a constant which is independent of time, and
whose two-point correlation I depends on the two time arguments only through the

difference ¢, - ¢, namely

L(n, r; 1:)=<V‘(r1. nv(r,, t+‘t)) . (1.2)

The space-time correlation I\ry, r,, 1) is called the mutual coherence function.
which kad been widely used together with its normalized form, the complex degree of

coherence
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I'(n,n:7)
i T) = , 1.3
Vi) I, T(ry,1:7) (-3
whose magnitude satisfies the constraint
|Y(r,,r2;t)| <1. (1.4)

In Eq. (1.4) the lower limit, zero, is obtained for a temporally incoherent field and the
upper limit corresponds to a temporally coherent field.

The mutual coherence function conveniently facilitates calculations
involving interference of partially coherent light. For calculations involving the
propagation of partially coherent light it is usually better to use the cross-spectral
density function. Before we define it, we consider the generalized2¢ Fourier

representation for the field V(r, £) in the form

V(r.t)= jv(r;w)e—‘“ dow . (1.5)
0

The cross-spectral density function is defined by the ensemble average
W(r,rz;w)5(w—w')=<v‘(r;a))v(r2;w')) . (1.6)

where 8(w — @’) is the Dirac delta function. Its appearance in Eq. (1.6) arises from
the assumption of stationarity of the field. I is important to observe that the cross-

spectral density function defined by Eq. (1.6) is a measure of the spatial correlation of
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the field fluctuations at a single frequency . Because of our assumption of
stationarity, the cross-spectral density function has no information about the spatial
correlation of the fluctuations of the field at different temporal frequencies. As we
show below, the fact that the cross-spectral density is a spatial correlation at a single
frequency makes it particularly suitable for calculations where the frequency
dependence of the variables is important.

The cross-spectral density function and the mutual coherence function are

related by the generalization of the well known Wiener-Khintchine theorem?6

W(r.re)= [I(h,n,0edT 1.7)

r(n.n,0=[W.no)e " dv. (1.8)
0

This relatively simple relation is justified on the basis of a substantial amount of
mathematical analysis that is outside the scope of this manuscript.?’

Before leaving the subject of the mutual ccherence function we compare the
expressions governing the propagation of the mutual coherence function and of the
cross-spectral density function to the far zone. This comparison illustrates one of the
advantages of using the cross-spectral density in propagation calculations. In free

space, the mutual coherence function is given by
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1 stalwsez
@r’y RR

- -R
xXD sl,sz,'r-iez——l-)dzsl d2s2 ,
c

r(rlorZy t) =

(1.9)

where s; are position vectors in the source plane @, ; are the angles which the
vectors r; make with the positive z-direction, ¢ is the vacuum speed of light and D is
the differential operator

- 2
m.l-M%—%%{, (1.10)

c
with R; given by
R, =|rj—sj| : (1.11)

Equation (1.9) should be compared with the expression for W, the cross-spectral

density of the field in the far zone?’, i.c.,

W(")(Rul,Ruz;w) = (21:1:)2 cos @, cos@,

N ik(R,- R))]
XW(O)(—- Jku )cxp[ 1/] ,
ku]l 21 Rle

(1.12)
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where u;, are projections of the unit vectors u; on the source plane28, and wO js
the four-dimensional Fourier transform of the cross-spectral density in the source

plane

1
2n

WO, 1) = . ”w‘°)(r,,r2;m)e""“l"l*'Z"Z’dzrl d’r, . (1.13)
’ [+

In this notation k£ in Eq. (1.12) is the wavenumber associated with frequency ©,
k=—=—=—, (1.14)

and A is the wavelength of the field.

It is clear from Egs. (1.9)-(1.12) that, in general, it is simpler to use the
cross-spectral density function when calculating the propagation of partially coherent
fields in free space. In the rest of this section we review the properties of the cross-
spectral density and summarize some of the relationships between the cross-spectral
density and various physically measurable quantities.29

The first measurable quantity that we consider is the spectrum S(r; ®) which

is simply the ‘diagonal’ component of the cross-spectral density, i.e.,
S(rnw)=W(r,ro) . (1.15)
S(r, w) may represent the spectrum of the field or the spectrum of the source. It is

usually supplemented by a subscript or superscript giving it the proper designation,

e.g., S)(r; ) denotes the far-zone spectrum whereas SO)(r; w) denotes the source
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spectrum. We note that although most of our interest is in the diagonal component of
the cross-spectral density function, no propagation calculation can be performed
without the explicit knowledge of the full, complex-valued, cross-spectral density.

A quantity closely related to the spectrum is the radiant intensity30 J(u; w)
which is a measure of the amount of energy per unit frequency radiated at frequency
® in a solid angle d€2 about a direction specified by unit vector u. It is defined by

Ju ) = ’}im R*W(Ru,Ru;») . (1.16)

It is clear from the last two equations that the only difference between the spectrum in
the far zone S(")(;'; o) and the radiant intensity J(u; ) is the scaling factor R2. For
this reason we will use both the spectrum and the radiant intensity when investigating
spectral effects.

The radiated power at frequency w is given by the formula

P(w)= j J(u;0)dQ , (1.17)
(4x)

where (4n) denotes integration over all solid angles. The radiated power is an
important quantity that we encounter in calculations of radiation efficiency and
directivity. We will sometimes refer to this quantity as the total power3! at frequency
.

The spectrum, the radiant intensity and the power are the main quantities of
interest in this thesis. Unless otherwise noted, we will be concerned with their values

for observation points in the far zone. According to Egs. (1.15), (1.16) and (1.12)
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we may express the far-zone spectrum, and the radiant intensity in terms of the cross-

spectral density of the source, viz.,

2 2
$™)(Ru; ) = (Z—Kk)}-!;;—oﬁw(o)(—laz,ku; ), (1.18)
J(u;0) = (21k)? cos20 WO (—ku, ku; w) . (1.19)

For general propagation in source-free region, it follows from Egs. (1.5)
and (1.6) that the cross-spectral density function satisfies the double Helmholtz

equation
(V2 +k2)(V} + W (n.ry0) =0, (1.20)

where V§ is the Laplacian operator with respect to r;. It is straightforward to show
that a general solution of Eq. (1.20) expressing the cross-spectral density of the field

in terms of the cross-spectral density of the source is given by

W(n, 1y 0) = [[WO(s,,5:0)G" (1,5 0)G(ry. ;@) d"s d"s, ., (1.21)
where n = 1, 2, 3, according to the dimensionality of the problem, and G is the free
space Green’s function for the given boundary conditions. In particular, for

propagation in a linear system, we simply replace in Eq. (1.21) the Green's function

G(r, s; ) by the impulse response of the system.
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Representations .and models of the cross-spectral density

Another item of resemblance between the cross-spectral density and the
mutual coherence function is that the cross-spectral density can be normalized in a
way similar to Eq. (1.3). The normalized form is known as the complex degree of
spatial coherence which is defined by32

W(n.r,;0)
n,r, )= , (1.22)
#n. i) VW (LR 0)(W(ry,n; )
and which satisfies the constraint
(. 0)s1 . (1.23)

Here the lower limit co:respondé to spatial incoherence at frequency @ while the
upper limit corresponds to complete spatial coherence at that frequency. It follows
from Eqgs. (1.15) and (1.22) that the cross-spectral density can be expressed in the
general form

W(r,,ry; @) = |[S(1; @) [ S(ry; O (1, 1y @) (1.24)

Three special cases that are often encountered in coherence theory are derived from
Formula (1.24): the cross-spectral densities of the homogeneous33, Schell-model34
and quasi-homogeneous33 sources.

A homogeneous source is represented by the cross-spectral density
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W(rl,rz;w)=F(r2 -5;0) . (1.25)

This expression implies that the source is, in principle, infinitely large. We point
out that this difficulty can be removed if we assume that the function F vanishes
outside a finite domain ©.

A Schell-model source is characterized by a cross-spectral density whose
degree of correlation depends on the two spatial arguments only through their

difference, i.c.,

W(r.n;0) = S(r; @) S(r; @)u(r, —1; @) . (1.26)

This form of the degree of correlation is a natural choice in most practical situations.
When we describe secondary sources, it is reasonable to assume that the
fluctuations of a source in a given neighborhood are a result of the radiation from a
single, spatially coherent, primary radiator.36 When the separation between the
points r, and r; is larger, the fluctuations reflect contributions from more than one
primary radiator and hence the fields are only partially correlated. A similar
argument can be made regarding primary sources. Here one has to take into
account cooperative effects that depend on the nature of the radiating system.37
Supplementing the choice of the degree of correlation in this model, the choice of
the spectral intensity S(r; @) as a function of position effectively determines the
physical size of the source.

Quasi-homogeneous sources are a very popular special case of the Schell-
model class. They are used in many investigations in coherence theory for reasons
that become apparent from their mathematical and physical properties. Their cross-
spectral density is characierized by a sharply peaked degree of correlation and a
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broad intensity pfoﬁlc that does not change appreciably over a typical correlation
length (see Fig. 1.2). As a result of this relation between the intensity profile and
the degree of correlation, the cross-spectral density may be approximated by the

following expression
+
W(r.n.o0)= S(-’z—z—rk;w)u(rz -r;) . (1.27)

This approximation may not appear advantageous until one employs it in calculating
far-zone expressions for the cross-spectral density, the spectrum or the raAiant
intensity. Using the transformation

r=(r2+rl)/2 , r'=sr-n, (1.28)

with unity Jacobian, it is easy to show that the spatial Fourier transform of the

cross-spectral density can be factored in the form

W(Ipfzzw)=§(}}+f2)ﬁ(!%‘-f1;w). (1.29)

In Eq. (1.29) S and fi are the spatial Fourier transforms of the intensity and

correlation respectively, which for planar sources are given by

$(f)= (—21%, j S(r;wye " d?r | (1.30)
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Figure. 1.2: The relation between the intensity profile and the spatial correlztion of a

quasi-homogenedus source.

and

ﬁ(f;w)=(2—1lt)r j j uriox Vatr 1.31)

The fact that the spatial Fourier transform of the cross-spectral density of a quasi-
homogeneous source factorizes into a product of two spatial Fourier transforms of
half the dimensions is a significant simplification of the mechanics of the
propagation calculation, but at this point we should also point out that a large class
of physical sources can actually be characterized as quasi-homogeneous sources.
In particular, all sorts of thermal sources have relatively short spatial correlation
length and at the same time possess an almost uniform intensity profile, which is

precisely the description of a quasi-homogeneous source.
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The different model sources we have described represent some of the
physical properties of common light sources. Another description of partially
coherent sources can be made using coherent-mode representation,3® which is
based on the expansion of the cross-spectral density into a stm of mutually
uncorrelated coherent fields (modcs)._ Before we proceed with the formulation of
coherent-mode representation, we point out some of the properties of the cross-
spectral density function on which the representation is based.

The cross-spectral density is an hermitian quantity, i.c.,

W(r.r;0) =W (r,n;0) . (1.32)

It is also a non-negative definite quantity39, explicitly,
[[war.ro)f (s r)drdr 20, (1.33)
o

where n has the dimensionality of the source and f is any square integrable
function. Under very general conditions (in fact, in all known practical cases) the
cross-spectral density also satisfies the relation

[[wa.ryo) am dr, <o . (1.34)
(¢}

When a continuous function of two variables (r, and r,) satisfies conditions (1.32),
(1.33) and (1.34) it can be expressed as an absolutely and uniformly convergent

series known as the Mercer expansion
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W(r. ;@) = ¥ A, (@), (7:0)8,,(r;0) , (1.35)

where the index m has the same dimensionality as that of r, and r,, 4, are the non-
negative eigenvalues and ¢, are the orthogonal eigenfunctions of the Fredholm

integral equation
[Wr.r0)0, i@)d =1, (@8, () . (1.36)
o
The eigenfunctions can be made orthonormal, i.c.,
£¢I<r-,m>¢,-<r,w)d"r= 5; - (1.37)

where 4 is the Kronecker symbol.
It follows from the definition of the degree of correlation Eq. (1.22) that a

corss-spectral density which consists of a single eigenfunction is fully coherent, i.c.

, _| ¢, (r; 00, (r);0) l_
h(q,rz.mﬂ-lﬁmwm)lom(;m 1 L (1.38)

The magnitude of the degree of correlation of a source consisting of several modes
reduces with increasing number of modes. The rate of decrease depends on the

particular distribution of the eigenvalues.®
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Coherent-mode representation which we discussed earlier seems to be a
more complicated formulation than the closed form representation of partrially
coherent fields which we considered earlier. It is however important to note the
essentuial differences between these representations. Whenever both representations
are available, it is usually simpler to handle most calculations using the full
functional form of the model source. However, when the coherent-mode
representation is available and the source is relatively spatially coherent, the number
of eigenfunctions in the sum is manageable and it not only gives a picture of the
source in terms of a superposition of coherent fields but it also facilitates somewhat
simpler calculations because each one of the eigenfunctions can be propagated
separately as a fully coherent field.4? The advantage of propagating each
eigenfunction separately is used in inverse problems,*3 and in analyzing the spatial
content of the illumination.#4 In chapter 5 we consider a partially coherent source

and analyze correlaton effects on the spectrum using coherent-mode representation.
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Introduction ‘

The concept of radiation efficiency is used extensively in various fields of
electromagnetic theory.! It is usually a measure of the effectiveness of the production
of radiation by a given mechanism which is taken as the ratio of the emitted energy to
the energy used by the system. In many épplications the radiation efficiency also takes
into account the spatial or spectral distribution of the fields.

In this chapter we consider the total flux emitted by a partially coherent souice at
a fixed frequency ®, and compare it with the source integrated intensity at that
frequency. We begin our discussion with the analysis of the radiation efficiency of
planar Gaussian Schell-model sources. This example gives a unique insight into the
relationship between the size of the source intensity profile and the spatial correlation
length of the light fluctuations. We then examine the radiation efficiency of three-
dimensional primary sources. The treatment of certain aspects of quasi-homogeneous
sources requires the extension of the mathematical definition of the radiation efficiency.
After considering the radiation efficiency of a uniform coherent spherical source we
conclude this chapter by presenting a method for choosing the optimal spatial
correlation which maximizes the radiation efficiency of a three-dimensional, primary

sources of a prescribed intensity profile.

Radiation cfficiency and directivity
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2.2 The radiation efficiency of planar Gaussian Schell-model

sources

The radiation efficiency of partially coherent sources was studied by several
investigators.2 Initial work focused on quasi-homogeneous planar sources. Among
planar sources, the properties of Gaussian Schell-model sources have been studied
most extensively.3 This fact may be attributed to two main reasons: physically this
class of sources is closely related to the radiation from certain types of lasers* and
mathematically the Gaussian intensity profile and Gaussian correlation functions are
convenient forms in the analysis.

‘We Jefine the radiation efficiency of secondary planar sources by the formula

P (w)

Clw) = . 2.1)
(@) lS(r;w)dzr @b

D

where D is the domain occupied by the source and @ is the total emitted flux at a

frequency o, i.c.,

D) = j J(u;0)dS2 . (2.2)
(2x)

In Eq. (2.2) J is the radiant intensity and (2x) denotes integration over the half space

z >0 as shown in Fig. 2.1.

The Gaussian Schell-model source is characterized by the cross-spectral density
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¥

Figure 2.1: Illustrating the notation used in this chapter. The source is located in
the plane z = 0 and a typical observation point P is in a direction specified by unit
vector u and at a distance R (from the origin) assumed to be in the far zone.

2,.2 2
ry+r n-n
W(rl,rz;w)=s(O)(w)cxp[—-Zml—jchp _LZ_Z?L)_ , 2.3)
1

c

where 0 is the rms width of the intensity profile and o, is the rms correlation length
and SOXw) is the source spectral distribution. Although the cross-spectral density in
Eq. (2.3) implies, in principle, an infinite source, we note that whenever the maximum
physical exiension of the source L say, satisfies the relation L » o; then the Gzussian
intensity profile is essentially the blocking function which defines the size of the
cffective source.

To obtain an expression for the radiation efficiency of the Gaussian Schell-
model source we first evaluate the denominator of Eq. (2.1). Using Eq. (2.3) with

ry =ry=r, we have
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. 2K pee
IS(r;w)dzr = S(o)(m)J dGJ‘ rcxp[— r2/2oﬂdr
0 0
D

12.4)
=2n075%(w) .

Next we derive an expression for the radiant intensity J(u; w) using the four-
dimensional spatial Fourier transform of the cross-sepctral density [cf. Eq. (1.19)].

We obtain

W(=ks, ks ;@)= ﬁ;s‘“’(w)ofoi cxp(—k20'2 sin” 6/2) , (2.5)

where
1 1 1
= . 2.6
P @0

On substituting Eq. (2.5) in Eq. (*.19) we find that the radiant intensity generated by

the source is given by
J(u;6) = SO(w)k?0?0? cos?6 exp(-k20” sin? 6/2) . Q.7)

The expression for the total flux is obtained by substituting Eq. (2.7) into Eq. (2.2), it

is then given by the formula

o) =5O)(kao,)’ [cos?6 exp(-kc?sin? 2)d2 . (2.8)
(2x)
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To perform the intégration we define

cosf=x
ko[V2=¢ . (2.9)
Using Egs. (2.9) in Eq. (2.8) we obtain
con 2 1
o(w) =215V @)(koo,)* [ x* exp-£2(1-x*)]ax , (2.10)
0
which can be simplified to the form
e_g2 & 2
O(w) =215 (w)o?|1- : [ear. (2.11)
0

On substituting Eqs. (2.4) and (2.11) into Eq. (2.1) we finally obtain the following

expression for the radiation efficiency of planar Gaussian Schell-mode! sources:

Clw)=1-D()/¢ , (2.12)

where

¢
D(§)= cxp(—§ 2 )I exp(t2 )dt
0 (2.13)

is the Dawson integral’ (see Fig. 2.2).
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Figure 2.2:  Graphical representation of D(£)/€ where D(&) is the Dawson integral.

The radiation efficiency given by Eq. (2.12) is a function of the source intensity
profile and its spatial correiation length through Egs. (2.6) and (2.9). In particular, we
note from Eq. (2.6) that there are classes of different Gaussian Schell-model sources
that have the same radiation efficiency. Specifically, the characteristic quantity ¢ which
determines the radiation efficiency is a sum of a term corresponding to the source rms
intensity and a term corresponding to the correlation length of the source fluctuations.
It is clear from this equation that there are many combinations of different correlation
lengths and different intensity profiles that lead to the same value of 5 and hence to the
same radiation efficiency. These equivalent classes of partially coherent sources were
first discussed in connzction with the spatial distribution of the radiation produced by
Gaussian Schell-model sources.6 The radiation efficiency in Eq. (2.12) is independent
of the spectrum. Its only dependence on frequency is due to the wavenumber k and the
possible frequency dependence of the parameters G, and ©;. In this chapter we take

these parameters to be independent of frequency.
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Figure 2.3:  The radiation efficiency C(w) as a function of the normalized spatial correlation
length ko;. The three curves indicate that the radiation efficiency increases rapidly with an increase
in the source rms width.

Before we examine the equivalent classes of planar Gaussian Schell-model
radiators we consider separately the effects of the source size (rms intensity) and the
spatial correlation length on the radiation efficiency. In Fig. 2.3 we show curves
representing the radiation efficiency of three small sources. The intensity profiles are
characterized by rms widths o} = 1/k, 2/k, and 10/k respectively. We note that for
each one of the sources the radiation efficiency increases with increasing correlation
length. The asymptotic value of the radiation efficiency in each case may be obtained
directly from Egs. (2.6) and (2.9), by setting

E2 5 2(lccr,)2 ) (2.14)

In a similar manner we show in Fig. 2.4 the radiation efficiency as a function of

the source intensity profile (or the effective source size). We note that the radiation
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Figure 2.4: The radiation efficient C(®) as a function of the width of the source intensity
profile koy. The three curves indicate that the radiation efficiency increases rapidly with an increase
in the source correlation length.

efficiency increases rapidly with increasing width of the intensity profile and effectively
reaching its asympioiic value for a relatively small source.

The results shown in the last two figures are combined in Fig. 2.5 where the
radiation efficiency is shown as a function of both parameters ko; and ko,.. In this
picture an equivalent class of Gaussian Schell-model sources is represented by the
infinite number of sources specified by pairs of values of koj and ko, that lic on the
intersection of any plane parallel to the ko—ko, plane and the plotted radiation
efficiency surface. Several such curves are shown in Fig. 2.6.

Before we conclude the discussion of the radiation efficiency of planar sources
we point out a few physical considerations. Most secondary sources of practical
interest are likely to have spatial dimensions that are much larger than a wavelength.? If
we denote a typical source dimension by L, we then have L » 4, and according to
Fig. 2.4 the radiation efficiency is nearly independent of the intensity profile for this

range of rms source intensiiy. In addition, if we note that the smallest natural spatial
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Figure 2.5: The radiation efficiency of Gaussian Schell-model sources as a function of
the rms intensity and the correlation length.

correlation length? is on the order of A/2 corresponding to ko, > 3, then it follows
from Fig. 2.3 that the radiation efficiency of most planar Gaussian Schell-model

sources is over 80%.

\
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Figure 2.6: Contours of constant radiation efficiency of Gaussian Schell-model sources.
Each curve corresponds to a class of different partially coherent sources that have the same
radiation efficiency.
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2.3 Optimal radiation efficiency of three-dimensional

primary sources

In this section we analyze the radiation produced by arbitrary three-dimensional
scalar source distributions, whose degree of correlation at any pair of points depends
only on the (oriented) separation between the points. Working in a Fourier transform
space, we establish an operational method for calculating the spatial correlations that
maximize the radiation efficiency of such sources. The optimal correlation function
which we derive is, in general, not unique, and it is found to depend on the distribution
of the optical intensity across the source.

We begin the analysis by generalizing the definition of the radiation efficiency
Eq. (2.1) to the form

C(o =4%‘% , (2.15)
where
N= st(r)d3r : (2.16)
D

Here D is the source domain and Dis given by
| 2
B — 3
D= [;[),,SQ(r)d r:| . (2.17)
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The use of the effective volume D, rather than the actual volume D, enables us to
discuss infinite sources whose optical intensity distribution falls off sufficiently
rapidly.? The advantage of this formulation will become apparent later. In Egs. (2.16)
and (2.17) the subscript Q represents a primary source distribution.

Another difference between the calculations of the radiation efficiency of planar
and three-dimensional sources is in the evaluation of the total flux which, in the present

case, is given by the formula

D(w) = j Ju,0)dQ , (2.18)
(4x%)

where (47) denotes integration over all solid angles.
The radiant intensity generated by three-dimensional primary sources of any
state of coherence is given by Eq. (3.9) of Ref 11 (a).

J(u; @) = Q) W(—ku, ku; 0), (2.19)

where W is the six-dimensional spatial Fourier transform of the source cross-spectral

density i.c.,

WS, ;o) = $H Wy ry@)exp|=i(f; -1 + £y 1)|d*r dPry. (2.20)
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The defmiﬁon of the radiation efficiency in Eq. (2.15) is consistent with that

given in Eq. (2.1) in that the efficiency of primary sources is also bounded by
0<sC(w)<1. (2.21)

This relation can be derived by considering any source cross-spectral density of the

form

Wo (R 1y ) = |[So(1330) S (ry; @) (1, 1y @) (2.22)
Since the d?g‘l’e@ of correlation 1S NoTiali so that
ko ri@)<1, (2.23)

it follows from Eqs.(2.17), (2.19) and (2.20) that

V(s w) < IIJSQ(q;w) \/SQ(rz;w) d3r1 d3r2 =DN . (2.29)

The normalization of the radiation efficiency Eq. (2.21) can now be obtained on
substituting Eq. (2.24) in Egs. (2.18) and (2.15).

The result expressed by Eq. (2.21) is valid for all primary sources regardless of
their state of coherence or the distribution of their optical intensity. It is clear that the
lower limit C(w) — O is obtained, for example, in the limit of complete spatial

incoherence!? since, according to Eqgs. (2.19)-(2.20), for such a source the radiant
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J; @) gy

Figure 2.7: Normalized radiant intensity nroduced by a uniform, co-phasal, fully coherent
spherical source of radius a.

intensity J(u; w) vanishes. Other examples of this type are certain fully coherent and
partially coherent non-radiating source distributions.1!

We note that lower limit of the radiation efficiency for three-dimensional
primary sources occurs, as in the case of secondary planar sources, in the limit of very
short spatial correlation lengths. However, as we show in the following example,
unlike secondary planar sources, the radiation efficiency is not always maximized in the
limit of long correlation length.

Consider a uniform, co-phasal, fully coherent spherical source of radius a. The
radiant intensity produced by such a source is given by [Ref. 11(a) Eq. (4.15)]

;) = (412 3)’ Sp(@)[3),(ka) ka]” 2.25)

see Fig. 2.7. In Eq. (2.25) j,(x) is the spherical Bessel function of the first order i.c.,
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(1) = sinx cosx
A X x

(2.26)

In the limit of small argument x « 1 we have j;(x) = x/3. It then follows from Eq.
(2.25) that the radiant intensity generated by a spherical source of this type, whose
radius a is smaller than the wavelength is

Ju;0) = (4na3/3)zsg(r;w) =D*Sy(r;w), (a«d), (2.27)

where D is the volume of the source. On the other hand, for a source of this type
N =DSp(w) and D =D. Then according to Eq. (2.15), the radiation efficiency
C(w) » 1 asa = 0. This result shows that the maximum radiation efficiency is
achieved by a uniform coherent source in the limit as its linear dimensions are small
compared with the wavelength. When the dimensions of the source increase the
radiation efficiency decreases and actually vanishes for radii a such that ka is a zero of
the Bessel function j;.12 This result is in contrast with the result for the radiation
efficiency of planar secondary sources that achieve maximum efficiency for fully
coherent field distributions and large spatial dimensions (see Fig. 2.3).

We now wish to find the spatial correlation function gq(ry — ry; ®) which
maximizes the radiation efficiency C(w) for a given primary source with an arbitrary
(but known) intensity distribution Sq(r; ) and domain D. Since the quantities N and
D are then fixed, we may confine ourselves, in view of Eq. (2.15), merely to the
optimization of gq(ry — rp; ®) in such a way that the total flux ®(w) radiated by the
source attains its absolute maximum value.

According to Eqgs. (2.1R)-(2.20) the radiated flux at frequency ® is given by the

expression
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@)= | | [{So0m@) Sl —ry@)

(4m)D D
xcxp[-iku . (r1 -r )] d3r1 d3r2 asq . 2.28)
On introducing the average and difference variables!3
r=(n+n)2, r=n-n, (2.29)
as well as the auxiliary source function
R(r;0) = | S r+rTZiw)Slr=r72,0) dr, (2.30)
D

1

we may simplify Eq. (2.28) and obtain the following expression for the radiated flux:

()= j IR(r')gQ(r';m)cxp(-iku-r')d3r'dQ . (2.31)
(4x) D,

In Eqs. (2.30) and (2.31) the spatial integrations are performed over the domains D,
and D, which are determined from the original source domain D through the coordinate
transformation Eq. (2.29). For example, it is evident from Eq. (2.28) that the modulus
of ' does not exceed the maximum linear dimension of D. The function R(r’; ) is
related to the source-averaged correlation function employed in carlier studies of

radiation by partially coherent planar sources.
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The next step in the analysis is the integration of Eq. (2.31) with respect to Q.

Since the integral

I= Iexp(—iku -r')dQ
(4x)

(2.32)

has no preferred direction in space, we can rotate the coordinate system so that 7 is in

the direction of the polar axis of a spherical polar coordinate system, and the integral is

readily performed,

2 x
Iexp(-iku -r')dQ = I d¢Iexp(—ikr‘cos 0) sinfd6o
(4x) 0 0

1
=2n Iexp(-ikr'x)dx
-1

sinkr’
b,'

=4R

where 7' = IFl. On substituting Eq. (2.33) into Eq. (2.31) we find that

()= [Q(r)gy(r)d’r
Dz

in which we have defined the auxiliary function Q(7; ®) by

0(r'; ) =4nR<r';m)5‘%-,"’— .
r
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Here the functions R(r'; ®) and Q(r'; w) depend explicitly on the frequency ®, but we
will suppress this dependence in the rest of this chapter.

Since the source-averaged intensity function R(r) vanishes outside the domain
D,, the same holds true for Q(r’) and_ the integration in Eq. (2.34) can be formally
taken over the infinite three-dimensional 7’-space.

We now introduce the three-dimensional spatial Fourier transforms of Q(r) and

8q(r) by the formulas
OK) = —51 IQ(r‘)cxp(—iK-r')d3r' , (2.36)
(2m)
~ _ 1 ' N
gQ(K) = (z—n)_;-jgg(r Yexp(~iK -r')d’r' . (2.37)

On invoking Parseval’s theorem!5 in Eq. (2.34), we may then express the total radiated
flux by!6

& (w) = (2n)} j O(K)gy(K)dK . (2.38)

At this stage we focus our attention on the mathematical properties of the functions 0
and §Q. Because the function Q(r) is real and inversion symmetric with respect to the

origin, we can establish the relations

0" (K)=0(-K)=0(K) . (2.39)
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It follows from Eq. (2.39) that 0 is also real and inversion symmetric function of K
with respect to the origin in K—space. The other factor in the integrand of Eq. (2.38),
gQ, is the Fourier transform of the complex degree of spatial coherence of the source
fluctuations. According to Bochner’s theorem!?, a necessary and sufficient condition
for go(r) to be a correlation coefficient18 is that it is non-negative definite and it is

equal to unity at the origin. In the Fourier domain these requirements are equivalent to

(Ky20, (2.40)
and
g0 = [Ey(K)d’K =1 . (2.41)

It follows from Eq. (2.38) and from the properties of the two factors in the integrand of
that equation, that there is a simple operational method for finding a spatial correlation
function g, (r) which maximizes the total radiated flux &(w) and consequently also
maximizes the radiation efficiency C(w). In its simplest form, the basic principle of
this method is to determine the point K = K, at which O(K) assumes its absolute

maximum value; the optimal correlation function then corresponds to

§(K)= 8D (K -K,) . (2.42)

where 8% is the three-dimensional Dirac delta function. This is only a particular

solution of the maximization problem which has several interesting consequences.
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The first consequence of this solution is that an upper bound on the amount of

flux that a partially coherent source can generate is given by
P, (@) = (2R O(Ky) . (2.43)

The radiation efficiency corresnonding to this maximum flux is readily obtained by
substituting Eq.(2.43) into Eq. (2.15).

The second consequence of Eq. (2.42) is that at least one solution to the
maximization probiem is a fully coherent source. This follows from taking the inverse

Fourier transform of Eq. (2.42), i.e.,
go(r)= cxp(iKo . r') . (2.44)

It is important to note at this stage that the optimal correlation indeed corresponds to a
coherent source, but the phase of the correlation is not uniform as can be seen from Eq.
(2.44). The linear phase factor Kyr' in this equation depends on the optical intensity
distribution S(r) through the maximum point K, of the function Q.

The third consequence of our solution to the maximization problem is that the
optimal spatial correlation is, in general, not unique. Different source correlation
coefficients g,(r') may yield the same maximum radiation efficiency. Moreover, as we
pointed out earlier, Q is inversion symmetric and hence the point K = -K 0
corresponds to a maximum whenever K = K does. Consequently 8K + K,) is
also a particular solution 2of the maximization problem. Either one of the two
unimodular source correlation functions gy(r') can then be regarded as the optimal

complex degree of spatial coherence. Similarly, a linear combination of the form
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g(K)= pd®(K - K+ ¢ (K +K,) , (2.45)
where p + q = 1, is also in agreement with Eqs. (2.40) and (2.41) and produces,
according to Eq. (2.38), the maximum possible radiant flux ®(®).,,,. This choice of

g(K) however does not correspond to spatially fully coherent source distribution. In

fact, Eq. (2.45) corresponds to a degree of correlation of the form
8o(r')= pcxp(iKo . r') + qcxp(—iKo . r') , (2.46)

whose magnitude is given by19

lpcxp(iKo . r') + qcxp(—iKo . r')I = \/ p2 + q2 +2pgcos(2kr') . (2.47)

In general, O(K) may take on its maximum value over an extended domain
such as a surface in the three-dimensional K—space. In such a case the maximizing
g(K) may be distributed arbitrarily throughout the domain provided only that the
conditions of Egs. (2.40) and (2.41) are met. Hence an infinite number of optimal
correlations with varying degrees of spatial coherence can then be specified. In the
following paragraphs we consider several physically important applications where these
situations occur.

The first case that we consider is that of quasi-homogeneous sources. The

cross-spectral density of such sources may be expressed in the form

W(r,ry; @) = S[(r, + 1) /2, 0)[gp (7 — 1) - (2.48)
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We note that for quasi-homogeneous sources we may effectively set D; = D and

NS(r+7/2,@)\[S(r-1r{2;0) = S(r,0) , (2.49)

in Eq. (2.30). The source-averaged quantity R(r) then assumes a constant value
R(r')= st(r)d3r =N. (2.50)
D

It follows from Egs. (2.50) and (2.35), that the function Q(r') is, in this case,
independent of the source domain D; and it is given by the spherically symmetric

(isotropic) formula

sinkr'

Q(r') =4V =" .

(2.51)

We note, however, that strictly speaking there should be a finite (generally non-
isotropic) cut-off in the values of 7 in Egs. (2.50) and (2.51) due to the domain D,. In
the quasi-homogeneous approximation all contributions to the radiant flux dX @) arise
from a small neighborhood D, < D, around the origin r' = 0 in which gn(r') differs
appreciably from zero. We therefore let the function Q(r') extend over the entire space
without altering the situation physically.

Allowing for an infinite domain (D, — o) the spatial Fourier transform of

Q(7) is found by substituting from Eq. (2.51) into Eq. (2.36). One then finds that

O(K) = %[501(1 ~ k)~ 8(K|+ )] 2.52)
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The second term in Eq. (2.52) makes no contribution to the flux ®(w). We therefore

set
~ N
OK)=-78(K -k) , (2.53)

where K = IKI. We observe that for quasi-homogeneous sources O(K) is isotropic
and vanishes identically except on the energy shell X = k in the three-dimensional K-
space. Hence, in view of Eq. (2.38), the quasi-homogeneous source wiii be iotally
non-radiating if its complex degree of spatial coherence is such that g(K) = 0 when
K = k. This result is in agreement with earlier investigations [ see, for example, Eq.
(3.11) of Ref. 11(b)].

When the finite size of the quasi-homogeneous source is taken into account, it is
evident that O(K) will no longer be simply proportional to a é-function as in Eq.
(2.53). Instead it will be a sharply peaked, generally non-isotropic function, centered
around the shell X = k. In such a case the optimal correlations can be found by using
the general method we described above. Nevertheless, we show that physically
interesting results are readily obtained with the help of Eq. (2.53) for limitingly large
quasi-homogeneous sources.

Since the function O(K) in Eq. (2.53) is spherically symmetric, the values of
the Fourier transform g'Q(K ) on the shell K =k can be chosen in a number of ways.
Specifically, in view of Egs. (2.41) and (2.53), one may set as the optimal correlation

function
§Q(K)=;12—F(u)5(l(—k) . (2.54)
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where K = Ku and F(u) is an arbitrary non-negative function that satisfies the

condition

jF(u)dg=1. (2.55)
(4n)

Using the inverse of Eq. (2.37), it follows from Eq. (2.54) that the spatial correlation is

given by

gr)= IF (w)exp(iku - r')dQ. (2.56)
(4%)

In the case of an isotropic correlation F(u) = 1/4n and Eq. (2.56) yields [cf. Eq.
(2.33)] the spatial correlation

sinkr'
kr

gr')= (2.57)

This is an interesting result. It implies that in the limit as the size of a quasi-
homogeneous source approaches infinity, the optimal correlations that are isotropic and
that maximize the radiation efficiency of the source are given by the universal function
sin(x)/x with x = kr’. Since the correlation distance associated with the degree of
coherence given by Eq. (2.57) is about A/2, the efficient radiation characteristics of

such a source can be physically understood on the basis of an interference model.20
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Figure 2.8: Physical model explaining the reduced radiation efficiency of
correlated primary sources as a result of destructive interference [cf. Ref. 5(d)].

Consider a three dimensional source distribution in which several small
radiating volume elements are equally spaced on an arbitrary axis (see Fig. 2.8). When
all the volume elements are radiating coherently and in phase, it follows that the
radiation from any pair of elements that are separated by a distance of A/2 cancels
everywhere on the axis. If, however, the spatial correlation of the source fluctuations
has an effective length shorter than A/2, the destructive interference effects do not take
place.

The result given by Eq. (2.57) is also closely related to the radiation produced
by a source that is in thermal equilibrium with its surroundings, i.c., a blackbody
radiator. It was shown recently,?! that a fluctuating source with this form of spatial
correlations gives rise within the source medium to a field whose complex degree of
spatial coherence is also given by the function sin(kr')/kr'. This, in tumn, is the
correlation function that is known to be associated with blackbody radiation fields.22
Hence our results are consistent with the notion that a large uniform source in thermal
equilibrium has isotropic spatial correlations that lead to maximum radiation efficiency.

As another illustration of the operational method for finding the spatial
correlation function which maximizes the radiation efficiency, we consider three
spherically symmetric Schell-model sources, all of which have identical Gaussian

optical intensity distributions:
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So(r;@) = I(@)exp(- r’f20}) . (2.58)

Here I(w) characterizes the spectral content of the source and 0, is a positive constant.
We now compare three types partially coherent sources having this intensity
profile. The sources are: (a) fully coherent, (b) Gaussian correlated (optimal correlation
length as in Ref. 2(d), and (c) optimally correlated as discussed in this section.
For the fully coherent source we take go(r') = 1, whereas the Gaussian

correlated source is specified by
go(r) =exp(-r?/262) , (2.59)

and the optimal correlation length is given by

2
12{ k0,
(kag)z _ :(ki_g)g): when kay > -‘/23 : (2.60)
kag — oo when kaQ < —? . (2.61)

The general optimal correlations can be found by determining the points where
the spatial Fourier transform of the function Q(r") corresponding to Eq. (2.58) attains
its absolute maximum value. The first step in the procedure is to obtain an expression
for the auxiliary function R(r) by substituting Eq. (2.58) into Eq. (2.30). After

performing the indicated integration we obtain the formula
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—=="exp(-r?/8a}) . (2.61)

Next we substitute Eq. (2.61) in Eqgs. (2.35) and (2.36) to obtain the spatial Fourier

transform Q(K ):

O(K) = 4n1(w)%%—{exp[-z(k - K a2 - exp|-2(k + K)? aé]} . (2.62)

For ko, < v/3/2 this function assumes its maximum value at the origin K =0. When

kO’Q 2 \/3/2, the radius X corresponding to the maximum of O(K) for any given op

can be readily found using numerical methods. We will denote this radius by K.
Making use of Egs. (2.17) and (2.58) we find that for all the three model

sources that we are considering

N = (41:)31(@)03 i (2.63)

The total radiant flux generated by a Gaussian Schell-model source is given by

®(w) = 4n(210,0)’ I(@)exp[~ (ko) /2] , (2.64)
where
-1 1. (2.65)
o oy’ o
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and o, is to be chosen as described above [Eqgs. (2.60) and (2.61)] for maximum

radiated power. In the case of the optimally correlated source, the radiated flux is given
by Eq. (2.43),

D(w) = 2n)’ O(K,) . (2.66)

Because of the isotropy of Q(K ) in this case, the correlations that lead to this radiant
flux can, in general, be chosen in many different ways. However, when ko, < V3/2,
the value Ky =0 is the unique solution. This leads to §Q(K )= 5 (K) and
consequently the source is fully coherent and co-phasal, i.e., gQ(r') =]1. On
combining Eqgs. (2.62) and (2.66) and taking the limit as Ky — 0, we indeed see that
the resulting radiant flux @) is identical to that given by Eq. (2.64) with ko, — oo
Here we have used the fact that

lim %{exp[—Zaé(k - K)*]-exp|-203 (k + K)Z]} =4ko,. (267)

K-0

Making use of the above results we may now calculate the radiation efficiency
defined by Eq. (2.15). For the fully coherent and optimally Gaussian correiated
sources we find from Egs. (2.63) and (2.64) the formula

3
Clw) = (2—-;-] exp[-(ko)? /2] ,

Q (2.68)
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Figure 2.9:  The radiation efficiency of the three sources. Note that the radiation efficiency of the
sources decreases significantly with increasing source size, and that the three sources have identical
efficiency for values of koj < 0.86.

where O is given by Eq. (2.64). The radiation efficiency of the coherent source is
obtained in the limit kog — o, and it is given by

C(w)= cxp[-—2(k0'Q )2] . (2.69)

Similarly, for the radiation efficiency of an optimally correlated source we obtain from

Eqgs. (2.62), (2.63) and (2.65) the expression

Cl@) = E;glk—K;{cxp[—Za'é(k - Ko)'|- exel 205k + K, )2]} . (269

where K| is the location of the maximum ot O(K) which is determined by numerical

evaluation. These results are plotted in Figs. 2.9 and 2.10 as a funciinn of k6. As
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Figure 2.10: Logarithmic plot of the radiation efficiency of the three sources.

shown in Fig. 2.9, the three curves are identical in the region kg, <V/3/2, and take on
the maximum value of unity as k6 — 0. Figure 2.10 illustrates the differences
between the radiation efficiencies of the three model sources in the region kaQ >43/2.

Taking the correlations that maximize the radiation efficiency to be isotropic, .

i.e., choosing

8o(K)=8(K -K,)/4nK? | (2.70)

we readily find on taking the inverse Fourier transform of Eq. (2.70) that the optimal

degree of spatial coherence is given by

w _ sinKyr' 271
r)= . .
8o(r") —LKor, 27D
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As we poi;lted out, for small sources that satisfy 0 < ko, < V3/2, we have
Ko =0 and Eq. (2.71) corresponds to full coherence. On the other hand, for
sufficiently large sources, we see from Eq. (2.62) that the maximum radiation
efficiency is attained for Ko = k (but always Ky < k). Hence in the limit as
kog — oo, the optimal correlations given by Eq. (2.71) reduce to the universal result

[Eq. (2.57)], derived in the context of yuasi-homogeneous sources.

2.4 Summary

In this chapter we discussed the radiation efficiency of secondary and primary
partially coherent sources. We examined the dependence of the radiation efficiency and
the radiated flux on the spatial correlations of the source. We showed that typical
planar secondary Gaussian Schell sources have high radiation efficiency which
increases with an increase in the spatial correlation length of the source fluctuations.
On the other hand we demonstrated that three-dimensional primary coherent sources are
not necessarily characterized by high radiation efficiency. In particular, an isotropic
source that is characterized by a Gaussian intensity profile has maximum radiation
efficiency for a spatial correlation given by Eq. (2.71).

The method for choosing the spatial correiation which maximizes the radiation
efficiency of three-dimensional primary sources is significant in two aspects. First it
shows from the point of view of coherence theory that the spatial correlation of
blackbody radiators maximize the radiation efficiency of the source. The second aspect
has to do with the possibility of producing more efficient light sources. Most of the
light sources currently in use for illumination purposes are partially coherent and hence

even a small improvement in their efficiency has great significance for the energy
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market. At prescr;t, most of the practical methods for controlling source correlations
that we are aware of pertain to secondary planar sources, but new approaches to
controlling the spatial correlations of primary sources are currently being introduced.

Practical methods for controlling source correlations are also important for the
discussion in the next chapter were we consider the effects of the source correlations on
the spectrum of the radiation.
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3.1 Introduction

Techniques for modifying of the spectrum of radiation have been known for some time
both in optics and in antenna theory. The main method for changing the spectrum of
field is to vary the spectrum of the source itself, assuming that the spectrum of the
radiation is simply proportional to the source spectrum. As we now know, this
assumption is, in general, not valid in the case of partially cohereat sources, where the
spectrum may change on propagation.

In this chapter we show that source-correlations can give rise to interesting
modifications of spectra. We consider a simple physical configuration, consisting of
two small sources which generate fields of identical spectra, and we analyze the effects
of correlation between the two sources on the spectrum of the emitted radiation. We
show that spectral lines can be frequency-shifted, made narrower or broader and that
several lines may be generated from a single line by this mechanism. These results
suggest a new technique for modifying spectra in a desired manner by controlling
source correlations. In fact, since these results were first published, there have been
two reports of sp=ctral modulation by control of source correlations.!

The analysis presented in this chapter refers to a simple configuration and to
observation points on the axis of symmetry. The more general case of arbitrary

observation point is discussed in Chapter 4.

3.2 Radiation from two small scalar sources?
Consider light generated by two small fluctuating sources located at points P; and P,.
We assume that the fluctuations are statistically stationary. Let {Q,;(w)} and {Q,(w)}

be the ensembies that represent the source fluctuations at frequency w. Further let

Spectral modulation with scalar sources

71




Chapter 3

{V(P; w)} be the ensemble that represents the field at P, generated by the two sources

(see Fig.3.1). We assume that the spectra of the two source-distributions are identical

and we denote them by Sp(w). Specifically
Sp(@) =(0] (@) 0(@)=(0;(») Oy}, (3.1)

where the angular brackets denote the ensemble average.

The field produced by the two sources at a point P is given by

P e
V(P w) =Q1(w)T+Q2(CD)-E , (3.2)

where R, and R, denote the distance from the two sources to the observation point P

The spectrum of tne field at the point P is then given by
5, (P =Sp@){R? + B2+ 2R pp@e* R R 33)

where R denotes the real part and Ho(w), known as the degree of spatial coherence,

characterizes the correlation between the two fluctuating sources. Explicitly,

15(0) = (0] ()0, (@) /Sp(®). (3.4)
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0,(w)

Q,(w)

Figure 3.1: Illustrating the configuration. The two small sources Q; and Q; are
place symmetrically about the axis. A typical observation point P is at a distance R
and R respectively from the two sources.

As we have explained above [cf. Eq. (1.23)], the degree of spatial coherence satisfies
the inequality

luQ(a))| <1, (3.5)

for all frequencies. This condition is the main constraint on the possible types of
spectral effects that can be achieved with tiie present system.

For simplicity we will consider the spectrum of the emitted radiation at points
located on the perpendicular bisector, which we will refer to as the axis, of the line

joining the two sources. In this case R, = R; (=R say) and Eq. (3.3) reduces to?

S, (P.) = Ezfsg(w)[l + Ruy(@)] - (3.6)

We note that when prg(m) is independent of , the spectrum of the field at all axial

points will be proportional to the source spectrum Sg(w). This includes the case where
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the two sources are mutually incoherent at each frequency [g(w) = 0]. It also includes
the case when Fpq(w) = 1, which corresponds to two sources that are mutually fully
coherent at each frequency. These are, however, exceptional cases. In general,
Fu(m) will be frequency-dependent and Eq. (3.4) shows that the field spectrum Si{(w)
will then be no longer proportional to the source spectrum Sp(®). Hence, in general,
not only the source spectrum but also the correlation between the two sources will
determine the spectrum of the emitted light.

Before we proceed to examine the effect of the degree of spatial correlation on
the spectrum of the radiation we simplify our notation by setting

R2
sy(w)= -E-Sv(co) . 3.7

We will refer to sy{) as the reduced field spectrum. For the sake of simplicity we will
consider source-correlations that are characterized by a real degree of coherence.

Equation (3.4) then becomes
5y (P;w) = Sp()[1+ 1y ()] - (3.8)
It follows at once from this formula, that in terms of sy and Sp,

Sy(@)

1. 3.9
@ (3.9

[JQ((D) =

From the inequality (3.5) and from Eq. (3.9) it follows that only those reduced field

spectra si{w) can be generated for which
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Sy (@) =25, (w) . (3.10)

s{®) and Sp(w)are, of course, necessarily non-negative.
Conversely, when the inequality (3.10) is satisfied one finds at once from
Eq. (3.9) that

“1Spy(@)<1. (3.11)

Since the inequality (3.11) is the only constraint that the degree of spectral coherence
Ho(m) must satisfy we see from Eq. (3.10) , that any reduced field spectrum sy {(®)
which does not exceed twice the magnitude of the source spectrum SQ(w) at any
frequency w, can, in principle, be generated by this mechanism.

We now demonstrate how source correlations can give rise to various types of

spectral changes.

3.3 Change in spectral linewidth
Let us assume first that the source spectrum consists of a single spectral line of a

Lorentzian profile, viz. ,

= 4 12
So(®@) I”02+(w—w0)2’ (3.12)

(wg, Iy, Ag are positive constants and Iy « wg). Suppose that we wish to produce a

reduced field spectrum that consists also of a line of Lorentzian profile centered on the

same frequency @y, but is of a different width and of different strength, say
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sy (@)= (3.13)

y) p
I‘l +(0—-wy)

(I'y, A, are positive constants and I'} « @y ). On substituung trom Eqgs.(3.12) and

(3.13) into the inequality (3.10) we find that we must have
A,
Z.T[ ho] <2, (3.14)
where [ fo(w)]mu is the maximum value, in the range 0 < ® < oo, of the function

I"O2 +(w- a)o)2

(w)= . (3.15)
fo I +(0 - w,)*
Straightforward calculation shows that for all (positive) frequencies ,
2
(/L) Sf@<t  when  L>T,
) (3.16)
1< fy(@) < (Iy/1) when nL<ry.

Using these inequalities we deduce at once from (3.14) that we must have
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Figure 3.2:  Anexample of line broadening by source correlations. The source spectrum (solid line)
and the reduced field spectrum (dashed line) are lines of Lorentzian profiles and the curves are normalized

so that the source spectrum has the value unity at the center frequency. The relative linewidths used are
Ip/eg =0.1, I'j/wg = 0.15.

4o when [>T,
A

(3.17)
2
‘—::sz(l;/ro) when h<r, .

In the first case (I'; > I'y) the emitted (reduced) spectral line is broader than the
spectral line of the source; in the second case (I} < I'y) it is narrower.

With the conditions (3.17) assumed to be satisfied, the degree of spatial
coherence that will produce the reduced field spectrum (3.13) from the source spectrum
(3.12) is obtained at once on substituting from these equations into the formula (3.9).

One then finds that the required degree of spatial coherence is given by
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Figure 3.3:  An example of line narrowing by source correlations. The source spectrum (solid line)
and the reduced field spectrum (dashed line) are lines of Lorentzian profiles and the curves are normalized

so that the source spectrum has the value unity at the center frequency. The relative linewidths used are
rolmo =0.2, F}/(Do =0.1.

2 +(0— o)
=ﬁ_0 (w-aw,) -1

3.18
A0F17+(w—w0)2 G19

ﬂQ(w)

In Figs. 3.2 and 3.3 we show examples of line broadening and line narrowing
with Lorentzian lineshapes. The spatial correlation that produces the reduced field
spectrum depicted in Fig. 3.3 is plotted as a function of frequency in Fig. 3.4.

The method of producing Lorentzian field spectra of a controlled linewidths can

also be applied to Gaussian lineshapes.3 The source spectrum then has the form

Sp(@)= A, exp[-(w - w,)2[287] . (3.20)
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Figore 3.4: The degree of spatial coherence giving rise to the reduced field spectrum of a narrower

profile shown in Fig. 3.3.

(ay, &y, Ag are positive constants and &, << @y). We now consider the possibility of
producing a reduced field spectrum that also consists of a line of Gaussian profile,
centered at the same frequency ay, but of different width and different strength, say

sy (@) = A exp[-(@ - @) [287] (3.21)

(8;, A, are positive constants and 8, « @p). On substituting from Eqgs.(3.20) and
(321) intc the inequality (3.10) we deduce at once that the following condition must
be satisfied:

A
gw)] <2, (3.22)
y
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where [g(w)],,,, is the maximum value, in the range 0 < @ < oo of the function

g(@) = exp[-(@ - w,)? [24] , (3.23)
where
2.1 1 (3.24)
A 'glf Eg‘ . .

Consider first the case when 6, < &, (line narrowing). In this case 4 >0 and

evidently [g(®)],.= 8(wg) = 1. Hence the realizability condition (3.22) becomes

AJAG<2 . (3.25)

On the other hand when §; > §;, 4 becomes negative and g(w) has then no upper
bound in the range 0 < ® < o= . Hence a broader line of Gaussian profile, centered at
the same frequency @y, cannot be produced by this mechanism. However, in practice
one is unlikely to be interested in situations where the spectra SQ(a)) and sy{(w) have
Gaussian forms for all frequencies. If one requires that the reduced field spectrum has

a Gaussian shape only over a finite range around frequency a, say

Wy-asw<wy+ph, (3.26)

where a and B are positive constants, the inequality (3.22) needs only be satisfied
when the maximum of g(w) is taken over the restricted range (3.26). Instead of the

inequality (3.22) we then have the constraint
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Figure 3.5:  An example of line narrowing by source correlations. The source spectrum (solid line)
and the reduced field spectrum (dashed line) are lines of Gaussian profiles and the curves are normalized so
that the source spectrum has the value unity at the center frequency. The relative linewidths used are
8p/0g = 0.05, 8;/wg = 0.01.

%exp(yz Jla)<2 (3.27)

where v is the largest of the constants «, B.
Returning to the first case (§; < &), the degree of spatial coherence needed to
achieve this modification of the spectral line is according to Egs.(3.9), (3.20) and

(3.21) given by

Ho(®)= i:—;-cxp[-(w - @) /24] -1, (3.28)
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Figure 3.6: Anexample i line broadening by source correlations. The source spectrum (solid line)
and the reduced field spectrum (dashed line) are lines of Gaussian profiles and the curves are narmalized so

that the source spectrum has the value unity at the center frequency. The relative linewidths used are
80/0)0 =0.5, 81/0)0 = 0.7.

where A is defined by Eq.(3.24). In the second case (6, > &) the degree of spatial
coherence is given by Eq.(3.28) only for frequencies that are within the range (3.26);
for frequencies outside this range the degree of spatial coherence can take on arbitrary
values, subject to the constraint expressed by Eq. (3.11). Line narrowing and line

broadening of Gaussian profiles are illustrated in Figs. 3.5 and 3.6.

3.4 Spectral lineshifts
We now consider the possibility of changing not only the width of the line but also its
center frequency, from @y to @, say. Suppose that the source spectrum Sp(w) is again

tne single spectral line (3.13) of Lorentzian profile, but that the reduced field spectrum,
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Figure 3.7:  Spectral shift and line narrowing with Lorentzian profiles. The source spectrum (solid
curve) has a relative linewidth I'g/wg = 0.05 giving rise to a reduced field spectrum (dashed line) of
relative linewidth I'y/wg = 0.01 center=d at frequency ® = 1.1ayg.

whilst also a line of Lorentzian profile, is centered at a different frequency w;# @y, i.e.

that

sv(w) =

. 3.29
1‘12 +(0-w, )2 ( )

(wy, I, A, are positive constants, I'] « ;). On substituting from Eqs. (3.12) and

(3.29) into Eq. (3.10) we find that the following inequality must now be satisfied:

%[ fit)] . s2. (3.30)

Here [f;(®)];ax i the maximum value in the range 0 < ® < oo of the function
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Figure 3.8: The degree of correlation that gives rise 10 the frequency-shifted reduced field spectrum

shown in Fig. 3./.

Iy +(@- )" (3.31)
F+(w-0) '
1 1

fi(w)=

Unlike in the case considered above (when @, = @y) an explicit expression for the
maximum value of this function cannot readily be obtained (see Appendix A for details
of the numerical method used to determine the maximum value of A;). However it
seems that with suitable choices of the constants that specify the reduced field spectrum
(3.29) the inequality (3.30) can be satisfied for all non-negative frequencies . The
degree of spatial coherence which gives rise to the reduced field spectrum (3.29) is then
obtained on substituting from Eqgs.(3.29) and (2 12) into Ea.(3.9). TkLe rescltiug

expression is
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A T +(0-w,)
A0F7+(a) ®,)*

Hol@)= -1. (3.32)

In Fig. 3.7 we show an example of spectral changes in which both the linewidth and
the center frequency are modified by source correlations which are represented by the
degree of spatial coherence in Eq. (3.32). Figure 3.8 shows the degree of spatial

coherence that gives rise to these spectral changes.

3.5 Modulation of a single spectral line

As a last example we consider the possibility of generating from a source spectrum that
consists of a single line of Lorentzian profile a field spectrum that consists of several
lines of Lorentzian profile. More specifically, with two sources that have identical
spectra given by Eq. (3.12) we wish to generate a field whose reduced spectrum has

the form

A
sy (@)= ,§r2+<w . (3.33)

where N, A,, ©,, and T, are positive constants and I, « ®, (1< n<N). For this
to be possible the following condition obtained on substituting Eqgs. (3.33) and (3.12)
into Eq. (3.10) must be satisfied:
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Figure 3.9: Generation of three spectral lines from a single spectral line, all of Lorentzian profiles.

The source spectrum consists of a single line whose relative width is I'g/w = 0.25 and the three spectral

lines are all of relative width I'/wg = 0.05.

1 N
— YA @]  <2. (3.34)

n=1

Here [f,(®)]max is the maximum value, in the range 0 < @ < oo, of the function

1‘02+(co—a)0)2
F+(o-o)

f(w)=

(3.35)

Assuming that the constraint (3.34) is satisfied, the degree of spatial coherence needed
for generating the reduced field spectrum (3.33) is obtained at once on substituting

from Eqgs. (3.33) and (3.12) into Eq. (3.9). One then finds that
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Figure 3.10: The spatial correlation for generation of three spectral lines from a single spectral line.

1 i 2 +(0 - w,)°

X0-n=l ? rr|2+(w_wn)2

po(@)= 1. (3.36)

An example of generation of a field spectrum consisting of three lines froin a
source spectrum consisting of a single line is illustrated in Fig 3.9. Figure 3.10 shows

the degree of correlation which gives rise to this spectrum.

3.6 The spectrum produced by an array of partially coherent

sources

So far we have considered a very simple radiating system consisting of two small

sources with identical spectra and we showed that by appropriately correlating them,
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Figure 3.11: The notation for an array of scalar sources

the spectrum of the cmitt~d radiation can take on many different forms. With systems
consisting of a larger number of radiating sources one can, of course, produce more
diverse spectral changes than those considered above. A simple extension of the
system which we considered is an array of 2N equally spaced smail fluctuating

sources? (see Fig. 3.11). The field produced by the array is given by [cf. Eq. (3.2)]

ikR
V(P,w) = Z 0. (co)-— . (3.37)

i=-N

Using Eq. (3.37), the spectrum of the field at the point P is readily found to be

.k(k -R))

Sy (P, @) = Sy(w) 2 R2+Y Y p(w)—— RE | (3.38)

i=-N iz]
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Equation (3.38) shows some interesting new features. Even for observation points on
the axis, the exponentia’ factor, does not, in general, reduce to a constant which is
independent of frequency.5 As a result, it follows that the spectrum of the field will no
longer be proportional to the spectrum of the sources when the fluctuations are fully
correlated, p;;(w)=1. Specifically, the presence of the wavenumber k in the
exponential causes some modulation of the spectrum that is proportional to the
magnitude of the degree of correlation.® On the other hand, when the source

fluctuations are uncorrelated, H;j(@) =0 when i+ jand we then have

2N
Sy (Piw)=5,@)Y 2 . (3.39)

i=1

The spectrum of thc field is now seen to be proportional to the spectrum of the source

for all points of observation.

3.7 General remarks on spectral modulation

In thi - chapter we presented simple examples of partially coherent radiating systems in
which the field spectrum is modified by the degree of correlation of the source
fluctuations. As is evident from Egs. (3.3) and (3.38), this mechanism does not
produce any new frequencies but just increases or decreases their relative contributions
to the observed spectrum. This fact implies that in order to generate field spectrum of a
particular shape, the source must possess all the required spectral components. For this
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reason, it is convenient to choose broad t .nd sources tor theoretical and experimental
illustration of the spectral effects which we discus<ed in this thesis.

The basic question that we have not addressed in this chapter is how to produce
the prescribed spatial ccirelations. Several methods for generating and modifying
source correlations, at least for secondary sources, have been developed in recent
years. They include the use of scattering bv liquid crystals under the influence of an
external D.C. field’, the use of rotating ground glass plates® and of holographic
filters®, interaction of light with ultrason‘c wavesi®by imaging 2nd lensless feedback
systems and by the use of achromatic Fourier transform lenses.!1

The most notable method and experimental demonstration of spectral
modulation by control of source correlatio:: was reported by G. Indebetouw!2. His
technique makes use of spatial masks which produce a secondary source of prescribed

trequency dependent degree of correlation.
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In this method of spectral modulation it is usually wise to avoid sources v.hose
spectra consist of Gaussian profiles because of the rapid attenuation of the

spectrum away from line center.

In this notation there is no source corresponding to Q.

The only excepdon is when the sources are correlated symmetrically about the

axis, i.e. when U;;(@) =0 unless j=-i.
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Appendix A: The method used in determining the

maximum value of A,

Starting from Egs. (3.30) and (3.31) we have the constraint

ﬁ_l‘oz +(@ - wy)?

<2. Al
A T+ (@-a) av

First we set
A =15 [} (A2)

to normalize the source spectrum to the value of unity at ® = @y Next we set the
frequency @ = @, in Eq. (A 1). This choice is made only for computation purposes and
should not be mistaken as a statement that the function f,(®) in Eq. (3.30) is maximized at
® = ,. It follows from Egs. (A 1) and (A 2) that the upper bound on A, in this case is
given by

___gr
e IS+ (@) - @g)

(4] A3

This method for determining the value for A; was used with numerous choices of
the constants I, I, g, ®; and the resulting degree of correlation has alwas satisfied the

constraint (3.11).
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Introduction

The effects of source correlations on the spectrum of emitted radiation have been treated
so far only in the framework of scalar theory. In the previous chapter we considered a
simple system consisting of two scaiar sources and we examined some of the spectral
effects that may be produced on the axis by controlling the correlations between the two
sources. In this chapter we consider a system of two partially correlated linear dipoles.
First, we derive expressions for the observed spectrum at an arbitrary point in the far
zone. We then examine how the degree of correlation of the dipole polarization
fluctuations affects the spectrum of the field observed in particular directions. We also
consider the effects of the degree of correlation on the angular distribution of the
radiant intensity for fixed frequencies. In Secs. 4.4 and 4.5 we present expressions for
the total radiated power and for the directivity of the system as a function of the degree
of correlation and the spatial separation between the two dipoles. We also compare our
results for the partially correlated dipoles with results in the well known limiting cases
of fully correlated and uncorrelated dipoles.! This comparison gives a valuable
measure for the range of possible spatial and spectral modulation effects which can be

produced by controlling source correlations.

4.2 Far zone spectrum of partially correlated dipoles
Consider two linear dipoles, situated at points *y, and vibrating in the z direction as
shown in Fig. 4.1.

Let
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F(r,1) = p,()(r - yo))z,
4.1)
B(r,n)= Pz(t)a(r+)’0§')2,

be the electric polarization vectors of the two dipoles. Here pj(t), G =1, 2), specify
the polarization fluctuations of the dipoles as functions of time and § and £ are unit
vectors in the positive y and z directions respectively. We assume that pj(t) are random
functions of time, characterized by stationary ensembles.

In the space-frequency representation, the electric Hertz potential of the field

produced by the dipoles is given by

IL(r; ) ‘["( Ay )"M’] 4.2)
L(r;0) = 2} p,(@)~——+ P, (®)—- .
TR R,

where R, =|r—yoj'|, R, =|r+y05'|, and?

i 4

R

X

Figure 4.1: Tllustrating the configuration and the notation. The two dipoles
are marked by the heavy vertical arrows are separated by a distance 2y, from each

other.
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pi(w)= [p,)edr (=1, 2). (4.3)

In order to calculate the spectral intensity in the far zone, it is sufficient to

evaluate the magnetic field only; it is given by the expression:

B(r,w) = -ikV x IL(r; w). 4.4)

Since IL(r;®) is a vector along the z-direction, it follows that

=259 5T
VxIIz(r,a))-l:ayx axy]He(r,a)). 4.5)

On substituting Eq. (4.2) in Eq. (4.5) and calculating the partial derivatives, we obtain
the formula

kR, _
Vx IL(r;e) = j (@) — [ik——’—)(——y y°£——"—&)

R, R, R, R,
(4.6)
- e%[ 1 )(yﬂ'o - X .)
+ P () ——[ ik - — xX—-—y
) AR R,

For field points r = ru in the far zone IcRj »1 (=1, 2) and we have
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Figure 4.2:  Graphical representation of the approximation for R, made in Eq. (4.7).

R ~r-y,(u-y),

Ry ~r+o(u-3), @7

where u is a unit vector in the direction of observation (see Fig. 4.2).

Using Egs. (4.6) and (4.7), we may express the far zone B-field in the form

ikr
B(ru;w) ~ -(bkzeTsin 6

| By(@)exp(-ikygu- §)+ by (@)exp(ikyu- )] (4.8)

as kr = oo,
Here, we have used the spherical polar coordinates (r, 8, ¢) with the polar axis along
the z-direction and with @ = sin 8(j cos ¢ — £sin ¢).

The radiant intensity J(u; @) , i.e. the power per unit frequency at frequency @,
per unit solid angle around the direction specified by the unit vector u, is given by
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Ju,w)= Jim ru. (S("’)(ru; w)), 4.9)

where S (ru; @) is the Poynting vector at points in the far zone, and the angular

brackets denote the ensemble average. In terms of the B-field, we have

J(u,w)= lim r i9K<u . [(B(“)(ru;m) P u). X B(“)(ru;(o)]>, (4.10)
kr—e 87

where R denotes the real part and c is the vacuum speed of light. Using the vector

identity
u-(Bxu) xB=|Bxuf, (4.11)

we simplify Eq. (4.10) for the radiant intensity to the form
J s = 1i 2 i s 2 3 4.12
(u; @) Jim r® o~ (IB(ru ) ) 4.12)

Let us now assume that both dipoles have the same spectrum, i.e., that

(li)l(w)|2) = (lﬁz(w)F) =S, (w). (4.13)

We also introduce the complex degree of spatial coherence at frequency ®, which

characterizes the correlation between the two dipoles, by the formula
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1, (@) = (B (@), (@))/S, (). (4.14)

On substituting from Eqgs. (4.8), (4.13) and (4.14) in Eq. (4.12), we obtain the
following expression for the radiant intensity produced by the two partially correlated

dipoles:
4
J(u,w)= %Sp(w)sin2 9{1 + 91[;1 p(co) exp(2ikyo sin @sin ¢)]} (4.15)

If we express the degree of correlation in the form

(@ =l (@), (4.16)

where 2y(w) corresponds to the effective steering angle3 , we find that the radiant _

intensity of the two partially correlated linear dipoles is given by the formula

4
Juw) = %sp (@)sin? 0{1 + lu P(w)lcos[Zkyo sin@sin ¢ +2 w(w)]}. (4.17)

4.3 The effects of spatial correlation on the spectrum and
the angular distribution of the radiant intensity

We now consider some special cases which will help to illustrate the significance of Eq.

(4.17). First let us consider two uncorrelated dipoles. In this case M, (w)=0, and Eq.

(4.17) reduces to
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) _ ck? . 2
[ @:0))r,. = S5, (@)sin® 6. (4.18)

As one may expect, the same spectrum is obtained if the radiation originated from a
single dipole located at the origin and having polarization fluctuations equal to the sum
of the polarizations of the two dipoles.

Similarly, when the two dipoles are fully correlated, i.e. when
lup(w)|sl , (4.19)

the formula (4.17) for the radiant intensity reduces to

4
Vo), = %Sp(w)sinz Bcos?[kyysinOsing + y(@)].  (4.20)

We observe that for every frequency ®, the phase angle y(®) and the separation

constant ky, completely determine the angular distribution of the radiated power.

Returning to the general case when the two dipoles are partially correlated, we

note that when the point of observation is on the x-axis (6 = 7/2, ¢ = 0), the radiant

intensity according to Eq. (4.17) is given by
- ck?
J(& )= Hsp(w){l +Ru p(w)]. (4.21)

The result for this special case is in the same form as the corresponding expression for

the radiant intensity from two small partially correlated scalar sources [cf. Eq. (3.6)]
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S, (P;w) = %sg(w)[l +Rup (@) (4.22)

where P is any point on the perpendicular bisector of the line adjoining the two sources.

Aside from the 2/R? factor, the only significant difference is in the factor k4 appearing
in Eq. (4.21), and as a result, the product k‘SP(a)) is shifted to higher frequencies

relative to § p(a)).

The radiation pattern generated by the partially correlated dipoles differs from
the two limiting cases of fully-correlated and of completely uncorrelated dipoles in

several ways. If we denote the direction for which the radiant intensity is a maximum

by u_, it can readily be shown that the maximum possible radiant intensity

m?*

[J (um;w)]m produced by the two dipoles is obtained when they are fully correlated,

and is given by

4
V0] = %Sp(w). (4.23)

On the other hand when the dipoles are only partially correlated, the maximum radiant
intensity is smaller by a factor -;—[1 +lu P(w)”.

In the two limiting cases of fully-correlated dipoles and uncorrelated dipoles,
the nulls of the radiant intensity distribution are determined by the factor sin2 in
Eq. (4.18), and by the factor sin® §cos*[ky,sin Osin ¢ + y()] in Eq. (4.20). By
contrast, it follows from Eq. (4.17) that when the dipoles are partially correlated,
0< lu p(w)l <1, there are no nulls outside the plane 8 = 0. This fact is significant in

connection with the theorems regarding the approximation of desired radiation patterns
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by arrays of radiators.4 Specifically, in cases where the directivity of antennas is
important, effort is made to reduce the amount of sidelobes. Typical antennas in which
all elements are radiating coherently have several nulls in their radiation pattern and
hence there is a latitude of design options allowing for the shifting of these nulls. On
the other hand, the system considered here has no nulls in the radiation pattern outside
the plane @ =0 in which the radiation vanishes identically. As a result, no
rearrangement of the elements can produce a null in a particular direction as long as the
degree of correlation is less than unity.

We now illustrate the angular distribution of the radiant intensity produced by

the two partially correlated dipoles. Let the dipole spectrum be a Lorentzian line of
width §,, centered at frequency @, i.e.,

1

. 4.24
1+(co-a.)0)2/82 ( )

Sp(w)=

We choose a real-valued degree of correlation in the form
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H (@)

0.0 +

Degree of correlation

10 & > _:g_
0.0 0.5 1.0 1.5 2.0 0
Relative Frequency

Figure 4.3:  The degree of correlation given in Eq. (4.25). The constants used arc ®,/w, = 0.8,
W,/w,=1.2, 8, =56,=0.05 and A, = A, = 1.98.
1, (@) = A exp[~(@ - ©,)? 28} |+ Ayexp| - (0 - 0))?/28]].  (4.25)

Here @,, @,, 6,, and §, are positive constants, and we select A, and A, so that the

constraint
[up(w)l <1, (4.26)

is satisfied throughout the frequency range of interest. We note that by choosing a real-

valued degree of correlation the steering angle is set to zero (i.e., 2¥(w) = 0) in the

rollowing examples.
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225° 315°

270°
Figure 4.4:  Angular distribution of the radiant iniensity at frequency
o = @, for fully correlated dipoles (solid line) and partially correlated

dipoles (dashed line). The separation constant is ky, = 1 and the degree of
correlation is given by Eq. (4.25).

Figures 4.4 and 4.5 show the angular distributions of the radiant intensity in the
X, y-plane (6 = n/2) for two fully corrclated dipoles and for partially correlated

dipoles whose degree of correlation is given by Eq. (4.25). In Fig. 4.4 the angular

90° 90°

135° as°

225° 316° 225° 315°

(a) 270° ()] 270°
Figure 4.5:  The angular distribution of the radiant intensity for fully correlated dipoles (solid linc)

and partially correlated ¢poles (dashed line) and separation constant ky, = 1. The relative frequencies
are w/w, = 1.05 [(a)] and w/w, = 1.1 [(b)].
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distribution is calculated for the center frequency @ = @, of the polarization spectrum,
while Fig. 4.5 shows the angular distributions at different frequencies.

We note that in spite of the fact that the steering angle was fixed, [y(w) = 0],
there is a directional shift in the angular distribution of the radiant intensity produced by
partially correlated dipoles.

When the separation between the dipoles increases the lobe structure becomes
more complicated. In Figs. 4.6 and 4.7 we show the angular distributions of the
radiant intensity for dipole separation k y, = 3. Comparing the angular distributions
for dipole separation koy0 =1 (Fig. 44, 4.5) and koyo =3 (Fig. 4.6, 4.7), we note
that at each frequency the number of lobes with our two choices of correlations is
identical although their angular distributions are somewhat different. In fact, except
when the two dipoles are uncorrelated, the number of lobes of the radiant intensity, »,

is independent of the degree of correlation and it is given by

(4.27)

270°

Figure 4.6:  The angular distribution of the radiant intensity for fully
correlated dipoles (solid line) and partially correlated dipoles (dashed line) and
scparation constant ky, = 3. The relative frequency is w/w, = 1.
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(a) 270° (b) 270°

Figure 4.7:  The angular distribution of the radiant intensity for fully correlated dipoles (solid line)
and partially correlated dipoles (dashed line) and separation constant ky, = 3. The relative frequencies
are w/w, = 1.05 [(a)] and w/wy = 1.1 [(b)].

Here the square brackets denote the largest integer which is smaller or equal to the
quantity in the brackets.

The two limiting cases of fully correlated and uncorrelated dipoles constitute the .
limits of possible modification of spectra. In Fig. 4.8 we illustrate the range of
modulation that can be achieved at every frequency @, by the variation of the magnitude
of the degree of correlation lu P(w)l and the phase 2y(w). The figure shows four
concentric circles, (i) to (iv), representing the relative ranges of the angular distributions
of the radiant intensity in the x,y—plane. The external circle (i) corresponds to the limit
of fully-correlated dipoles. As one may observe from Eq. (4.20), the radiant intensity
of two correlated dipoles may attain any value inside the circle of radius ck*S p(w)/Zﬂ.
The iocation of the maximum of the radiant intensity is determined by the choice of the
steering angle 2y(w). Similarly it follows from Eq. (4.19) that when the dipoles are
uncorrelated, the radiant intensiiy is consirained to the uniform value on a circle (iii) of

radius cL*‘SP(w)Mn. When the dipoles are partialiy correlated we sce irom Eq. (4.17)
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(i)

(ii)

- (iii)

(iv)

Figure 4.8: The range of possible values of the angular distribution of the
radiant intensity. The shaded area indicates the region in which the maxima and
minima of the radiant intensity for partially correlated dipoles are found.

that the radiant intensity can have any value in an annular domain bounded by circles
(if) and (iv). Itis also apparent from this representation that unless the two dipoles are
fully correlated there are no nulls of the radiant intensity outside the plane 6=0.
Figure 4.8 gives a symbolic representation of the directivity of the system
consisting of two partially correlated linear dipoles. A detailed discussion of the

directivity is presented in Sec. 4.5.

4.4 The total emitted power
The total power P() radiated by the system at frequency @ is given by the expression

P(w)= jJ(u;w)d.rz, (4.28)
(4rx)
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where the integration extends over the whole 4x solid angle. On substituting from Eq.

(4.17) in Eq. (4.28) we obtain the expression

ck* . 2 . . .
P(w)= —Sp(w) jsm 0{1 + ER[u p(w)exp(szyo sin @sin ¢)]}d.(2. (4.29)

4 (@n)
After performing the integration in Eq. (4.29) {sce Appendix B], we find that

p(w):.:_;. k4SP(w){1+ f(2kyo)9t[pp(w)]}, (4.30)

where

1@)= 3o~ i@z). @31)

05 ettt 2y
0 4 8 12 16 20

Dipole separation

Figure 4.9: The behavior of the function f{z) in Eq. (4.31) as a function of the parameter
= 2kyo.
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and jiy(z) and j,(z) are spherical Bessel functions.

The maximum of the function f{z) can be shown to occur when z = 0 where it
has the value f{0) = 1 (see Fig. 4.9). It follows that the upper bound for the total
radiated power is

[P(@)],, = %ck“sp(w). (4.32)

In the limiting case when the two dipoles are uncorrelated, the total radiated

power is given by
[P(@)] =245 (o). (4.33)
uncorr, 3 P

On comparing the total power of two partially correlated dipoles P(w), and uncorrelated

dipoles {P(w)] we see from Egs. (4.30) and (4.33) that the ratio between the

uncorr.

power emitted by two partially correlated dipoles and two uncorrelated dipoles is given
by

P(w)
[P(@)]uncon.

=1+ f(zkyo)m[up(w)]. (4.34)

Since the function f{z) in Eq. (4.30) decreases rapidly with increasing z, it is evident
that the total power emitted by two dipoles that are separated by a distance that is much
larger than a wavelength, is equal to the total radiated power from two uncorrelated

sources. In other words, when the separation between the two dipoles is large
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compared to the wavelength of the radiation, no correlation effects could be deduced

from measurements of the total emitted power.

4.5 The directivity of two partially correlated dipoles
The directivity D(u; @) of a radiating system is defined by the ratio®

D(u; ) = 41J (1, 0)/ P(®w), (4.34)

where u is the direction of observation. We are particularly interested in the maximum
directivity D(w) = D(um; o) that occurs in a particular direction u_. It follows from
Eqgs. (4.23) and (4.30) that the directivity of the two partially correlated dipoles is given
by

3 1+ Ipp((\))'
21+ fhyg) R, @)

D(w) = (4.35)

When the two dipoles are uncorrelated, |u p(w)l =0 and the directivity reduces to the
value D(w)=3/2, as expected. Similarly, when the dipoles are fully-correlated the
directivity is given by

3

D(w)= ,
(@ 1+ f(2kyy)cos 2y (0)]

(4.36)

where 2y(w) denotes again the phase of Ko (@).
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Equations (4.35) and (4.36) also indicate that when the two dipoles are
separated by a distance that is much larger than a wavelength, the directivity of partially
correlated dipoles approaches the value

Jim D(w)= 3[1 +lu p(m)ﬂ/z, 4.37)

while the directivity of fully correlated dipoles approaches the value

lim (D(@)],,,, =3 (4.38)

kyg e

We also note that if we use Eq. (4.16) in Eq. (4.35) and differentiate with respect to the
magnitude of the degree of correlation m = lu p(w)l, we find that

dD(w) _ 3{1+ f(2ky,)coq 2y ()]}
dn o1+ mf2kyy)cof2y(@)]]

> 0, (4.38)

which implies that for a fixed value of the quantities f(2ky,)cos[2y(w)], the
directivity is an increasing function of the magnitude of the degree of correlation. Asa

result it is clear that the maximum directivity is obtained for fully correlated sources.

4.6 Summary
In this chapter we considered the effect of spatial correlations on the spectrum of the

field produced by partially correlated linear dipoles. We showed the changes in the
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angular distribution of the radiant intensity and the changes in the spectrum in a fixed
direction as a function of correlation of the dipoles polarization.

In examining the total emitted power and the directivity of the system we
showed that th: maximum radiated power and the maximum directivity are obtained

when the dipoles are fully correlated.

References

1 a. J.D. Jackson, Classical Electrodynamics, (John Wiley & Sons, 1975),
Sec. 9.2.
b. Y.S. Shifrin, "Statistical Antenna Theory", Trans. P. Beckmann (The
Golem Press 1971).

2 We assume that the Fourier transform in Eq. (4.3) exists. See footnote 24 of
chapter 1.
3 In the case of coherent radiation the quantity 2y(w) is effectively the steering

angle. See, for example, R.A. Monzingo and T.W. Miller, Introduction to

Adaptive Arrays (J. Wiley, New York, 1980) p. 43.

4 S.A. Schelkunoff, Bell Sys. Tech. J. 22, (1943) 80.

5 The directivity is defined in the space-frequency domain. This definition is

consistent with that used in antenna theory for the harmonic time dependent

case: see, for example,

Spectral effects with electromagnetic sources




Chapter 4 114

C.H. Papas, Theory of Electromagnetic Wave Propagation,(McGraw-
Hill, New York, 1965), p. 73.

B. D. Steinberg, Principles of Aperture and Array System Design, (J.
Wiley, New York, 1976) Chap 6.

Spectral effects with electromagnetic sources




Chapter 4 115

Appendix B: Evaluation of the integral in Eq. (4.29) for

the total emitted power

We begin with Eq. (4.29), viz.,

ck*
P(@)= gs‘,,(m)[ll +1)], (B1)
where
I = [sin’0dQ, (B2)
(4%)
L= | sinZGSR[u (@) exp(i2ky, sin Gsincp)]d.Q. (B 3)

(4m)

The value of the first integral is readily found:

2 =

I = [ do[(1-cos?8)sin0db
o 0

1 ax (B4)
=2n[(-x¥)dx=—.
_jl( dx =
The second integral is given by
2 =
I, = [ d¢[sin® @exp(i2ky, sinBsin )48 do. BS)
0 0

In evaluating the second term we first perform the integral! over ¢, giving
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%2

I, = 4n [sin®8.J,(2ky, sin 6) . (B 6)
0

Using the identity

sin® @ = sin 6 — sin fcos? 6, B7)
Eq. (B 6) can be expressed as a sum of two integrals

2 ~2
I, = 4x | sin@Jo(2ky, sin@)d8 + 4n [sinBcos’ 6J,2ky,sin6)dd. (B 8)
0 0
The first integral in Eq. (B 8) has the value2

n/2
ax [ sin 8.Jo(2ky, sin 6)d8 = 41 jo(2ky,), B9
0

and the second integral in Eq. (B 8) has the value

A fcos? k)
ar [sin@cos” 0., 2ky, sin 6)d6 = 41:—15ky—°-. (B 10)
] 0

Using Eqgs. (B 4), (B 9) and (B 10) in Eq. (B 1) we obtain the following

expression for the total emitted power
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P@)=3ck's, @)1+ rebHu, @)}, ®11)
where
3r. .. .
f@=>{is@- i/}, (B 12)

and jj,(z) and j,(z) are spherical Bessel functions.

1 LS. Gradshteyn and LM. Ryzhik, Tables of Integrals, series and products, (Academic Press, New

York, 1980) p. 401, #10.
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Introduction

The theory presented in the previous chapters used model sources for the representation
of the cross-spectral density, characterized by a spectral density function and a spatial
correlation function. In this chapter we investigate spectral effects which are produced
by source <orrelations using coherent mode representationl. This approach emphasizes
the role of spatial correlations in generatin,, spectral changes on propagation of partially
coherent light, and it clarifies the distinction between diffraction and correlation effects.

We will consider the class of statistically stationary, secondary, partially
coherent, planar sources, whose cross-spectral density function consist of a finite sum
of Hermite-Gaussian modes. We evaluate ihe spectral changes which occur on
propagation by decomposing the source into its coherent modes and evaluating the
contribution of each mode to the observed spectrum. We determine the field spectra for
observation points both in the far and in the near zone. A comparison of the
calculations shows that, at ieast in the cases considered in this chapter, most of the
spectral changes seen in the far zone are already present in the spectrum that would be
obrerved at very short distances fiom the source plane. A detaiied discussion of the
development of spectral changes with propagation distance from “'ie source plane is
given in Chapter 6.

Since we are considering sources consisting of Hermite-Gaussian modes and
because such modes also represent the transverse modes of certain laser cavities2, our
analysis provides an indication of the type of spectral effe-ts might be expected to arise
in fields produced by some multi-mode lasers.
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5.2 Coherent-mode representation of partially coherent
sources and fields

The cross-spectral density function of a statistically stationary, planar, secondary

source of any state of coherence, occupying a finite domain D may be expressed as a

sum of coherent modes viz.3,

WO, i) = Y A, (@) (7 O (735 0). (5.1)

nm

Here r; and r, are position vectors of points in the source domain D, 4, ,(®) are the

eigenvalues and yx;, ,,(r; ) are the eigenfunctions of the Fredholm integral equation

[WO@, ri0n,, , (73:0)d%h = Ay (@)X, (73 0). (5.2)
D

Here the eigenvalues

Ay m(@)20 (alln,m). (5.3)

The eigenfunctions (modes) { X, m(r;®)} of the source are taken to be orthonormal,

ie.,

[%; (o, (ro)dr=8,8,, (5.4)
D

where 3 is the Kronecker symbol.
The spectrum of the field at a typical observation point r is given by
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5 = T, @y, m(rio) (5.5)
nm

where V¥, (r,0) is given by

\y,w(r;(o) = Ix"‘m(r';(o)G(r,r';a))dzr', (5.6)
D

and G(r, r’;o) is the Green’s function, which characterizes propagation from the
source point r’ to the field point r.

It is evident from Eq. (5.5) that each term? contributes to the total spectrum
independently of all the others, i.e. there are no cross-terms. Moreover, since each
term under the summation is necessarily non-negative, the strength of the resulting
spectrum at an arbitrary frequency cannot be smaller than the strength of the weakest
one at that frequency.

The coherence properties of the source are manifested by the distribution of the
eigenvalues {A,,(w)}. In the case of a one-dimensional Gaussian Schell-model

source, for example3,

;—:—={32/2+1+B[(l3/2)’+1]m}—", .7

where B is a relative correlation length

A

T o)

(5.8)
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Here oj(w) is the r.m.s. width of the intensity distribution and ou(u)) is the r.m.s.
correlation length of the field distribution in the source plane.

In this chapter we only consider sources which contain a finite number of
modes, N. Let us choose a source with eigenvalues whose frequency-dependence is of

the form

Apm(@) = sO@A, . (5.9)

Here s(0)(w) is proportional to the source spectrum S(x, y, z = 0;®), and the A are

constants. Explicitly,

sO@) = [S(x,y;0)dxdy / YA, . (5.10)
D nm
We also choose the modes to be independent of the frequency w, i.e.,
Anm(F:0) = Lnm (F)- (5.11)

Since the domain D lies in a plane it is convenient to consider modes that are separable

in the two Cartesian directions, say x and y, i.c. modes of the form

Anm(X:¥) = 6,(x)9,, (). (5.12)

For the functional form of the modes we choose forn=0, 1, 2...

24 V4
¢,.(x)=( n" ) Jl Hn(x\/ﬂ:)cxp(—dxxz). (5.13)

2"n!
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where H, is the Hermite polynomial of order n and d, is a constant that determines the
spatial distribution of the mode in the x-direction [cf. Ref. 5, Eq. (2.13)]. Weuse a
strictly analogous expression for ¢,,(¥).

The choice of frequency-independent modes isolates the frequency dependent
factors in the expression for the cross-spectral density of the field in the source plane;
consequently, for an arbitrary source spectrum s0(®) we may analyze the effect of the
distribution of the constants {A,} on the resulting field spectrum. This is equivalent to
examining the effects of spatial correlations of the source fluctuations on the spectrum
of the field that the source produces.

If the source spectrum and the field spectrum each consist of a single line
centered at frequencies ®y and ', respectively, one may characterize the spectral

change occurring on propagation by the parameter

Wy~
@

Z=

(5.14)

However, even when the source spectrum consists of a simple line such as a Lorentzian

or a Gaussian, the resulting field spectrum is, in general, a distorted line. A

comparison between the spectral lines may then be made on the basis of peak

frequencies or the centroids of the line. In the following sections we choose the later

approach for calculating the new center frequency ', i.c., we define @' by the formula
! as™) (w)do

= . 5.15
@ I $™)(w)dw (3.13)
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5.3 Far-zone spectra
The far-zone field y,, , of a typical sour.c mode X, ,, can be obtained by substituting
Eq. (5.12) into Eq. (5.6) and using the asymptotic form of the Green's function. We

then obtain

2nkcosO

Vo (r0) = 0L )b, (ku), (5.17)

where @ is the angle between the direction of observation and the normal to the source
plane and &n( f) denotes the one-dimensional spatial Fourier transform of the function
On(x),

8,05 = = [0, 0 dx. (5.18)
2x 7

On substituting Eq. (5.13) into Eq.(5.18) and using the identity$

[H e e ax =PI H (1) TP, (5.19)

we obtain the following expression for the far field produced by the mode X, !
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W...,.(ru;c;)) o S CkcosO)r Jk/JZTi_ VK24,

ann-H!I '

(5.20)

2 2

ku ku 1{[ ku ku

xH | —=2= |H | =L lexp{—=|| —=2=1 + b
"(,/ux] "'(,/24,] 172 (,/24,] (,/u,J
The far-zone spectrum’ of the field is now obtained by substituting Eq. (5.9)

into Eq. (5.5),

S u0) = s(o)(m)zAn'MIwmm(u;m)lz, (5.21)
n,m

with ¥, , given by Eq. (5.20). We may now express the formula (5.21) in the

following form, which clearly indicates the various contributions to the far-zone

spectrum:

$™V ) = s‘°’(co)°°s eM(u;dx;d’;m). (5.22)

Equation (5.22) shows that the far-zone spectrum is a product of the source spectrum, a
geometrical factor, and a “spectral modifier” M(x; d,, d,; ). This factor is given by

M(u.,d, ,(o
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To examine the effect of the spectral modifier on the spectrum in the far zone,
let us consider sources whose spectrum consist of a single spectral line, centered at
frequency w,. We define the relative frequency a as a = @/, and the characteristic
mode lengths § = ky [\/2d, . N =ky/,[2d,. With these definitions Eq. (5.23) may be
expressed in the form

e I

A (5.24)

xz;:;:m—[”n(@“x )Hrn(nuy)]

Im!
m n!m!

2

For a fixed direction of observation the spectral modifier M is seen to contain an

envelope factor

F= gl:i«:x —az[(gux )2 + (nu, )2]} (5.25)

and a weighted sum of contributions from the individual modes. As we indicated
carlier this sum does not involve any cross-mode terms. It is, therefore, possible to
determine the spectral changes directly from the knowledge of the spectral modifiers
denoted by M, ,,,, of the individual modes:

A
. ‘@) = n.m 2
M,,wd,.d;o0)= nzumn!m!&qa

SR S COR %) S
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To illustrate the behavior of the spectral modifier of individual modes, and its
effects on the observed spectra, we consider sources for which there is only one-mode

contribution in the y-direction, i.c.,

Xnm (X)) = 6, (x)0, (). (5.27)

We also limit our observation points to the plane y = 0, where the spectral modifier

takes the form

Mn.O (ux;é’ na)= n_Az_':_;_‘_)n_‘ gﬂa?[”n(a'E-'ux )]2 cxp[—(aiux )2] (5.28)

In Figs. 5.1 and 5.2 we show examples of spectral modifiers of single modes
for selected values of the index n and a fixed direction of observation. One can see by
inspection that the spectral modifiers of modes specified by n =4, 6, 9, 11, give rise
to blue shifts while the spectral modifiers for modes specified by n =5, 10, 12, 14
give rise to red shifts.
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o o
[\M] w»
\
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- O

0.85 0.90 0.95 1.00 1.05 1.10 1.15
Relative frequency a = w/® 0

Figure S.1:  The spectral modifier My, o for the modes n =4, 6, 9, 11 as a function of the
relative frequency a. The positive slope of the curves imply a blueshift on propagation.

In order to determine the type of spectral shift due to an arbitrary mode n,, we
note from Eq. (5.28) that the fine detail in the spectral modifier is due to the square of

the Hermite polynomial. The behavior of one such factor is shown in Fig. 5.3. We -

0.6 |

S o.sg-“"'m

5 0.45.n=‘2/\

'u-é §n=5

= o.?‘.E-n=14
02 F

E o1 \
O.OE-L...l.;lll....l....l‘.--l....l

o
&

0.90 0.95 1.00 1.05 1.10 1.15
Relative Frequency a = o/® 0

Figure 5.2:  Spectral modifier My, g for the modes n = 5, 10, 12, 14 as a function of the relative
frequency a. The negative slopes of the curves imply a redshift on propagation.
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Figure 5.3:  An example of the detail in the spectral modifier due to the square of the Hermite
polynomial shown here for n=11. The points §,, §;, {., denote boundaries of regions giving rise
to particular spectral changes.

note that at the center frequency a =1, the behavior of [H,({)]? reflects its
dependence on the product &u,. When Eu, lies between the points markea vy the
symbols {, and {p, this factor produces a red shift, whereas for values of &u, between
Cy and L it produces a blue shift. When the values of Eu, correspond to the point {,,
the resulting spectral line is narrowed while for values of Eu, comresponding to the point
Cp, it is broadened. It is clear from the example shown in Figs. 5.3 that the type of
spectral effect observed for a fixed value of Eu, is determined by the value of &u,
compared with the nearest zero of the Hermite polynomial. Specifically, let {; < {, be
two consecutive zeros of the Hermite polynomial, and let {, be the value at which
[Ha(D)]? attains its maximum value in the interval (g, , {,); evidently, {; <{,<{, .

With these definitions we have

Blue shift § <&u,<l,
Red shift Cp < Eu,< 8
Line splitting Eu, = g,

Table §.1: The dependence of spectral changes on §u,
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Figure 5.4: Normalized far-zone spectra for the mode n = 7, with &u, = 1.0, resulting in a
blue-shifted line with Z = -0.011.

Examples of the three cases are shown in Figs. 5.4-5.6. The source spectrum

in these examples was taken to be a Lorentzian line,

E 1o
£ L
g 0.8 -
o -
§ 0.6 F
é L
S o4 F
(I
'E 02
Z oo F

0.88 0.92 0.96 1.00 1.04 1.08 1.12
Relative frequency m/mo

Figure 5.5: Normalized far-zone spectra for the mode n = 7, with §u, = 0.7, resulting in a
red-shifted line with Z = 0.0093.
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Figure 5.6: Normalized far-zone spectra for the mode n = 7, with Eu, = 0.816 corresponding
to a zero of the Hermite polynomial. Line splitting is evident as a result of taking &u, close to the
zero of Hy.

sO(a;8) = 1/[1 +(a-17/8%], (5.29)

with 8 = 0.06.

5.4 The dependence of field spectra on the relative
mode strengths

The spectral changes which occur for a single coherent mode is a consequence of wave
propagation. Such effects must be distinguished from the spectral changes due to
source correlations. When the source is spatially fully coherent it consists of a single
coherent mode. The spectral effects which then arise on propagation were described in
the previous section. However, when the source is partially coherent, several modes
are present and the resulting field spectrum then also depends on the relative strength of
the modes or, equivalently, on the distribution of the constants {A,,}.
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Figure §5.7:  Spectral modifiers for sources characterized by the spectral modifiers
M=M,, + M, +M,+ M, ,@.anc M= Ms_n + Mno.o + Mlz,o + Mu.o ®).

Let us first consider a source consisting of two coherent modes (n;,m;) and
(nz,m;). It follows from Eqgs. (5.22) and (5.26) that the spectral modifier for this
source is just the sum of the spectral modifiers of the two modes, i.e.,

MwEno =M, , @En+M, . @Eno). (5.30)
In terms of the cross-spectral density Eq. (5.1), the degree of correlation of the
source fluctuations is given by

W, r;0)

WOz WO ry)

u(n,rn;0) = (5.31)
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In Fig. 5.7 we show examples of spectral modifiers for sources consisting of
four modes. The degree of correlation u(=,, r,; ) for the corresponding sources is

shown in Figs. 5.8 and 5.9 for points along the x-axis, with r; = (C, 0) and

- 1.0 *:

© -

8 -

= l

E 05 |

o [

'g 0.0 Sutubataiin Sladdiadedbaladef nddekebedsh il

(=9

2 s

kS [

a -0.5 5

A 1.0 F

L AL " L A L " 1 1
0.0 1.0 2.0 3.0 4.0 5.0
Spatial offset
Fig. 5.8: Degree of spatial correlation p(0, 4x) of the two sources shown in Fig. 5.7 (a),

where the spatial offset is dx = x,/2d’l .

io
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Fig. 5.9: Degree of spatial correlation p(0, éx) of the two sources shown in Fig. 5.7 (b),

where the spatial offset is &x = x,f2dl .
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Figure 5.10: Comparison of the spectral modifiers for a source consisting of modes 0-30 (a)
and a source consisting of the single mode [n=9, m =0} (b). The normalization ensures that
both modifiers have the same magnitude at the center frequency.

r; = (x,0). In some cases the degree of correlation may approach a constant value
with increasing separation between the two source points. This result is well known
for Gaussian Schell-model beams3.

When the source consists of many modes taken with equal weights, it is
equivalent to a spatially incoherent source [cf. ref. 5]. Figure 5.10 shows the spectral
modifier for a source consisting of modes n = 0 through n = 30. For comparison we
also show the spectral modifier for a source consisting of the single mode n=9. It
can be seen from this figure that when the source consists of many modes, the spectral
modifier is relatively constant and consequently the far-zone spectrum produced by this

source cannot differ appreciably from the source spectrum.

5.5 Spectral changes in the near zone
The spectrum of the field throughout the half-space z > 0 may be evaluated by using

the angular spectrum representation for each one of the modes, i.e.,
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Vamr®) = [[A, (p.¢:0)e PP gpag (5.32)

InEq. 8.32) r=(x,y,2>0),

2 .
A, (P.G:0) = (%) [Xnmxy,2 = 0)e P ar gy, (5.33)
D

\/1 - p2 - q2 when p2 + q2 <1 (a)

m= (5.34)

i\/p2+qz—l when p2+q221. )

It can be shown by numerical evaluation that when kz > 100 one may neglect,
to a good approximation, the contributions from evanescent waves, i.e. waves for
which p2 + g2> 1. The infinite domain of integration in Eq. (5.32) can then be
replaced by the finite domain p2 +¢2< 1.

To simplify the calculation we consider the source modes given by Eq.(5.12) in
Eq. (5.33). The integration over the domain D may be carried out in closed form by
extending the domain of integration over the whole x,y-plane and using the identity

(5.19). One then finds that
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. . _k2 4dxdy 1/4 (t)"
A"”'(p'q'm)-z’f( x’ J V2 n!

2 (5.35)

xH..(:];”Tchxp -% (\/’Zx T +(\/§(‘I”r J

The fields y,, ,(r;w) are obtained by substituting from Eq. (5.35) in Eq. (5.32) and

letting d, =d, =d. The result is:

v (xyrco)-(i)z\[—zz i
n‘m 2l &y 21: d 2nn!

-k*(p*+q?)fad kp ) ik(px+qy+mz
x ” e (p+4”)/ Hn(_m)ed(p qy )dpdq.

p2+q2 <1

(5.36)

The integral (5.36) has been evaluated by many authors within the accuracy of
the paraxial approximation?. It has also been evaluated under more general conditions
or by making use of cylindrical symmetry!® Because we are interested in observation
points that may lie outside the paraxial region, we evaluated the integrals (5.5)
numerically for selected values of the mode index n.

In Table 5.2 we compare the relative frequency shifts calculated for the near

zone and for the far zone.
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Mok | oma | zen | ome | zewn | -2
frequency frequency
50 0.992737 | -0.007316 | 0.992654 | -0.007399 0.000083
9,0 1.020491 0.020079 1.021117 0.020681 0.000602
11,0 1.011317 0.01119 1.011482 | 0.011352 0.000162
12,0 0.993354 -0.00669 | 0.993168 | -0.006879 0.000189
13,0 1.007263 0.007211 1.007341 0.007288 0.000077
14,0 0.985337 | -0.014881 | 0.9845217 | -0.015722 0.000841
15,0 1.004433 0.004414 | 1.0044527 | 0.004433 0.000019
Table 5.2: The Z-numbers (relative frequency shifts) for observation points in the far and in

the near zone, for selected modes.

The rightmost column in Table 5.2 indicates that, at least for the modes considered
here, most of the spectral shift is already present for observation points in the near

zone. This observation is confirmed in Chapter 6.

5.6 Summary

In this chapter we employed the coherent-mode representation to analyze the changes in
the spectrum of light which is generated by a class of secondary, partially coherent,
planar, secondary sources. Our treatment isolated the spectral effects due to the
individual modes and has demonstrated that even coherent fields exhibit a non-
negligible spectral shifts for some directions of observation. These may have to be
taken into account in various applications, for example, in determining the speed of

moving objects from reflected light on the basis of spectral line shifts.
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The effect of the state of coherence of the source on the observed field spectra
was examined by varying the eigenvalues A, .. We found that when the source
consists of many coherent modes with the same eigenvalues (corresponding to the
incoherent limit), the spectrum of the field does not differ appreciably from that of the
source. _

The changes in the spectrum of the field on propagation from the immediate
neighborhood of the source plane to the far zone were studied by calculations of the
spectrum for distance kz = 100 and for kz = . We found that in the case we
studied, the spectrum close to the source (kz = 100) already possesses most of the
features that are present in the spectrum of the field in the far zone.

The evaluation of the near zone spectrum in Sec. 5.5 is computationally
intensive. In Chapter 6 we use the paraxial approximation to perform this calculation.
The paraxial approximation significantly reduces the difficulty involved in the
computation which gives a genuine insight into the development of spectral changes

with propagation distance.
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Chapter 6

6.1 Introduction

The work described in the previous chapters has focused on light propagation in free
space or in a rarefied scattering medium. In this chapter we examine the changes in the
spectrum of the field occurring on propagation through homogeneous and
inhomogeneous dispersive media. In particular, we investigate the development of the
spectrum as a function of the propagation distance and its dependence on the state of
coherence of the source in both homogeneous and inhomogeneous media. The
inhomogeneous medium considered here is a graded-index medium whose refractive
index varies quadratically in the radial direction!. Such a medium is readily available
for experiments in the form of so-called Selfoc fibers.

The changes in the coherence properties of light propagating through various
types of waveguides have been investigated by many authors2. In most of the work
encountered in the literature, the state of coherence is characterized by the mutual
coherence function. As we explained in Chapter 1, this approach is not very suitable
for the examination of spectral changes. Agrawal et al. [ Ref. 2 (a)] considered how
the cross-spectral density of the incident light changes on propagation in such
multimode fibers. We use the analysis of that reference to derive a closed-form
expression for the spectrum of the field at an arbitrary distance from the source.

The general expression derived for a graded-index medium can be used to
analyze the spectral changes occurring in a dispersive homogeneous medium in the
appropriate limit. The later result reduces to the well known free-space result? in the
limit in which the refractive index is unity. Our expression is, however, valid for
arbitrary propagation distances and allows us to examine how the spectrum evolves
from the near-field to the far-field region. We illustrate our results by using physical

parameters that apply in many practical configurations. In particular, we show how the

Spectral changes on propagation of partially coherent light in media

142




Chapter 6

spectrum of light c;an be shifted toward the shorter or the longer wavelength, depending
on the propagation distance and the state of coherence of the source. Our results
indicate that the spectral shift occurring in the far-zone region is considerably enhanced
in a homogeneous medium, with the enhancement factor depending on the index of
refraction of the medium.

We examine the evolution of spectral shifts from the near to the far zone by
deriving an alternative expression for the field spectrum that is valid, within the paraxial
approximation, for an arbitrary propagation distance in free space. We use this
expression to obtain the spectral shift for optical fields generated by a Gaussian Schell-
model source, and to study how the shift changes during transition from the near to the

far zone.

6.2 Propagation of the spectrum in graded index fibers
In this section we derive expressions for the propagation of the cross-spectral density
of the field in graded-index fibers. We establish the notation and derive an expression
for the field spectrum.

Consider a graded-index fiber with the axis of symmetry along the z-direction
(see Fig. 6.1). The fiber is characterized by an index of refraction having the parabolic
profile

ng(w)[l - az(w)(x2 + yz)] Jor 2+ y2 < R& (a)

(6.1)
ng (o)1 - a*(@)R]] for x2+y*>RZ, (b)

nt(x,y;0) =
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Illustrating the geometry and the notation.A point in the source plane z=0 is

denoted by (€, n) and an observation point is denoted by (x, y, z).

where Ry is the core radius, ny is the index of refraction at the center of the fiber, a is

the radial gradient of the index, and @ = kc (c = vacuum speed of light) is the

frequency associated with the free-space wavenumber k.

To obtain an expression for field propagation in this medium?® we first make the

assumption that Eq. (6.1a) is valid for all x and y. It follows that the differential

equation governing the propagation of a field V in this fiber is in the form

1.000

0.998

0.996
0.994

0.992

0.990

Figure 6.2:

{v2+g[1-a?(x* +?)|Vxynr=0 . (6.2)
ﬁ n(r)/n0
[ i 1 1 i - r/Ro
0.0 0.2 0.4 0.6 0.8 1.0
The parabolic index profile of Eq. (6.1) with a=0.1 .
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Its solution can be expressed as an infinite series of Hermite Gaussian functions’

V(x,y,2)= i ap n(ﬁx]ﬂ (ijexp(z ), (6.3)

nm=0 Yo Yo

where wj is the spot size

w, = 2/ka, (6.4)

and 8, are the propagation constants given by

By = VK —2ka(n+m+1). (6.5)

In Eq. (6.3) the coefficients ay, ,,, are determined from the boundary value of the field
incident on the fiber V(§,1, 0) using the orthogonality of the Hermite-Gaussian
functions. One then finds that

, -2 1
7 w2 ™ nim!
- (6.6)
jw& n,0)H (ﬁ) (f")exp[—%“—)d&dn,
Yo 0 0

where £ and n are the coordinates in the input plane D.
If follows from Egs. (6.3) and (6.6) that the field V(r) after propagation to any

plane z > 0 may be expressed in the form
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V(r)= [V 10K ¢ mdEdn, (6.7)
D

where the propagation kernel K(r,£,7) is given by

ki a ke [1
ot ol o))
e M= ne P \sinaz 2°°S“Z(€ +77)-(&x+m)[p, (6.8

and

o(r)= k[z + -;— cos az(12 + y2 )] (6.9)

sin az
When the medium is homogeneous, @ = 0 and Eq. (6.8) reduces to

K(r.§,m= E%e"’" exp{%[(x -8 +(y- n)z]} . (6.10)

which is also the propagation kernel for the paraxial Fresnel approximation.

146

Using Egs. (6.7) and (6.8), the cross-spectral density of the field for any two

points in the fiber is given by

Wi = [[ K G0k emoW@modads, 61
D
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where W(g,.p,;®) is the cross-spectral density in the source plane and p;= £ N j) is
a radius vector in that plane. The spectrum® of the field is obtained by setting

ry,=ry=r 1n Eq. (6.11), i.e,

S(r;o) = H K (r.p; 0K (r,p;Q)W(@,p;0)d g d°p,. (6.12)

On substituting from Eqs. (6.8) and (6.9) into Eq. (6.12) we obtain the following

expression for the spectrum of the field:

ka

S(riw) = (Znsinaz)z.””'dgl dg, dn, dn, W (p;,p,; )

(6.13)

wcoxp| L[ 0802 e2 2 ) -5(5, -8, )->{m, =) |}

Equation (6.13) can be used to obtain the field spectrum at any point r for a
given form of the cross-spectral density of the incident field in the source ; 'ine z = 0.
We will choose a Gaussian Schell-model for the cross-spectral density in the source

plane, viz.,

40

WP,y 0) = S(O)(m)exp[-. (82 +83) +(n + ni)}

B

(6.14)
(52 - g1)2 + (le "nx)z

Xex - ’
P 203
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where o is the r.ﬁl,s width of the Gaussian intensity distribution [Full-Width-Half-
Maximum(FWHM) = 2.35 ¢] and Oy is the r.m.s width of the spatial correlation.
On substituting Eq. (6.13) into Eq. (6.14) and performing the integration {see
Appendix C] we obtain the following expression for the spectrum of the field:

S(r;0) = s‘°"(m)M(r; o), (6.15)

where the spectral modifier M is given by

2 2,.2 2y/.2
mewo- 35 P

In Eq. (6.16) we have used the notation

A =2abo,sinaz/az , 6.17)
2 1 1

a‘ = +—, 6.18

80, 2°x ( )

and

(6.19)

b2 = 1 +(kacosu.z)2.
267 \2asinoz

Equations (6.15) and (6.16) are general expressions, valid within the paraxial
approximation, for the spectrum of the field produced by planar secondary Gaussian

Schell-model sources. In particular, Eq. (6.15) is valid at any distance z from the
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source plane and for any range of real valued n(w) and o). It can be easily verified
that S(r; ®) reduces to S(O)(m)exp(—rz/Zcf) in the limit z — 0, as one might
expect. In the limit when o — O our formulation corresponds to the case of
dispersive homogene rus media. The spectral modifier for homogeneous media M), is
given by

x*+ y2 1

1
M (r,o0)= - , (6.20)
R (o) s (z/zd)z exp 2;% Iy (z /Zd)z

where

2ko?

zZ, = . (6.21)
¢ ;]1+403/0§

The parameter z, is analogous to the so-called diffraction length or the Rayleigh range’
encountered in propagation of coherent Gaussian beams and reduces to it in the
coherent limit (g, » 6y).

Equation (6.20) is also applicable to paraxial free-space propagation if we set
n(w) = 1; then k = ky. Since we have examined in the previous chapter the spectral
changes that occur on free-space propagation, we consider this case first. Later we will
consider the general case in which n(w) > 1 and o > 0. In order to make our results
readily available for experimental verification, we assume that the source spectrum
SOXw) corresponds to that of a Gallium Phosphide (GaP) visible light source®, which
is well approximated by a Lorentzian line centered at 564 nm
(vo = @¢/2n = 532 THz) and having a FWHM of 36 nm (= 34 THz). All the

numerical results in this chapter pertain to this source spectrum.
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6.3 Free-space propagation
In the previous chapters we examined the changes in the spectrum of light on
propagation in free space and we reviewed the relevant published work. So far there
has not been a clear understanding of the development of the spectral changes with
increasing propagation distance from the source, a fact that may be due to the
complexity of the computations involved®. Our analysis provides a relatively simple
way for understanding the transition from near to far field within the paraxial
approximation.

In our notation the spectrum of the field after propagating a distance z in free-

space is given by

Sp(r;0) = SOwM (), (6.22)

where M is the spectral modifier for free-space propagation that is obtained from M), of
Eq. (6.20) by setting k = k.
The expression for the spectrum of the field in the far-zone is obtained in the

limit kyz — oo (with fixed direction of observation), and it is given by

2 22,2, 2v/.2
S}“’(nm):S‘“’(m)(%) exp[—koal (x4 a;y L ] (6.23)

where the superscript (e<) indicates the far-zone limit. Equation (6.23) is in agreement,
within the paraxial approximation, with a known result for far-zone radiant intensity of

Gaussian Schell-model sources3.
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Figure 6.3: Normalized spectral modifier Mg for propagation distance kgz = 100 in free
space. The spectral modifier is shown as a function of frequency v for koo = 20 and four different
values of the correlation length; koo = 1.0 (a), kgog = 8.0 (b), kgog =10 (c) and kgog = 20
(d). The direction of the spectral shift is determined by the slope of My at the center frequency of
the source.

We now return to the general expression for the spectrum of the field in free
space [Eq. (6.20)], and evaluate the spectral modifier M, for sources with different .
states of coherence, governed by the values of o, and o;.

Figure 6.3 shows the variation of the spectral modifier M, with the frequency
v = 0/2xn for several choices of g, and 0}, when the propagation distance is
z = 1000Ay/21 (i.c., when kyz = 1000), and the observation direction makes an
angle of 10° with the z-axis. Each one of the curves is normalized so that its maximum
value is unity. It follows from Eq. (6.20) that when the spect-al modifier, considered
as a function of v, has a positive slope at v = vy, the resulting line is blue-shifted
while a negative slope of the spectral modifier at that frequency results is a red-shifted
spectrum. If the spectral modifier is not uniform throughout the frequency range of the

source spectrum, the nature of the spectral changes may be more complicated (for more
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Normalized Spectral Modifier

Frequency v [THz ]

Figure 6.4: Normalized spectral modifier M for propagaticn distances ko= = 100 (a), kg2 = 250
(b). and koz = 600 (c) in free space for kgop = 20, koo =10. Atvg =532 THz a blue shift is
obtained for koz = 100 and a red shift for kyz = 600.

details see Sec. 5.3). The examples shown in Fig. 6.3 correspond to a blue shift for
koOg <9 and red shift for a_ -, 2 10 for GaP source for which vg = 532 THz.

For a given state of coherence the spectral shift also depends on the propagation
distance. This is shown in Fig. 6.4 where we compare the spectral modifier for
different propagation distances from sources with kyo7 = 20 and k40, = 10. The
spectral shift is to-vard higher frequencies for kgz = 100 (positive slope at n = n),
and toward lower frequencies for kyz = 600 (negative slope at n = ny). Figure 6.5
shows the spectra of the GaP source when kgz = 10 (i.e. in the near zone) and when
koz = 1000 (in the far zone) with ky0; = 20 and ko0, = 20. The source spectrum
exhibits a red shift in the far zone, and a slight blue shift in the near zone. It should
also be noted that the spectrum becomes asymmetric as a result of propagation.

We quantify the magnitude of the spectral shift by defining a parameter Av that
corresponds to the shift of the spectral peak from from the location of the peak of the
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Figure 6.5: Nommalized field spectrum for observation at an angle of 10° off axis and a
propagation distance kgz = 1000. The source is characterized by kooy = 20 and koo =20. The
solid line shows the original source spectrum and the dashed line shows the red-shifted field spectrum.

source spectrum. In Fig. 6.6 we show the spectral shift Av as a funciion of the
propagation distance kgz, for kosy = 20 and several values of ky0,. We note that
when the source is relatively incoherent (kgo, < 1) the spectral shift, which is
towards the blue for this angle of observation, develops rapidly with propagation
distance. When the source is relatively coherent (kocr8 » 1) an initial blue shift turns
into a red shift with increasing kqz.

For the states of coherence considered in this paper, the transition from the blue
shift to the red shift takes place when kyz ~ 100. In all cases the frequency shift in the
far zone approaches an asymptotic value which depends on ky0,. The constant value .
The frequency shift for kg0, = 25 [curve (d) in Fig. 6.6] is about 10% of the source
spectral width (FWHM = 34 THz).
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Figure 6.6: Frequency shifts Av versus propagation distance for sources ch~acterized by the
same value of koo = 20 and different values of kgGy: kgog = 1 (a), kgog = 10 (b), kgog =20 (¢)
and kocg =25 (d).

6.4. Spectral changes in homogeneous media

In the previous section we showed that the changes in the spectrum on propagation in
free space depend on the state of coherence and on the propagation distance from the
source. In this section we consider propagation through homogeneous media for
which the index of refraction [n(®) > 1] is independent of position in space. We
assume that the index of refraction is frequency dependent, a feature that indicates the

dispersive nature of the homogeneous medium. The wave number is then given by

k= n(m)%. (6.24)
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On substituting Eq. (6.24) in Eq. (6.20) we obtain the expression for the
spectral modifier for dispersive homogeneous media. When the refractive index n(w) is
nearly constant over the source spectral width, the medium acts as a non-dispersive
homogeneous medium of constant refractive index ng = n(y), where @ is the central
frequency of the source spectrum. We will consider the non-dispersive case first.

It is evident from Eq. (6.20) that the spectral modifier M), for a non-dispersive
homogeneous medium is identical to that of free space if k; is replaced by ngk,. Thus,
the free space results for the spectral modifier shown in Figs. 6.3 and 6.4 apply,
provided that the scaling factor kg is appropriately modified. The spectral changes can
be quite different as a result of the scaling. The comparison between the spectral
changes occurring on propagation in free-space and on propagation in homogeneous
non-dispersive media must be considered separately for distances short and long

compared with z,. For a short propagation range (z « z,)

—12- =1, (6.25)
1+(z/2,)

and the spectral modifier M, becomes independent of ny. Hence for such propagation
distances we expect no difference between the spectral changes occurring in dispersive
homogeneous media and free space. For long propagation distances (z » z,) the

approximation

1 z, )2
—~|= (6.26)
l+(z/zd) (
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holds, and the spectral modifier for propagation in homogeneous media [n(w) > 1]

then differs by a multiplicative factor
2,2 2
— 2 X +y [% ) 2
= ntexp| - -1 (6.27
f=n p[ 2?, ( z (n° ) ] )

in comparison with the spectral modifier for free-space propagation. In Eq. (6.27) zy is

given by the expression

2k00 7

6.28
;]1+4o,/o (6.28)

The extent of the spectral changes taking place under these circumstances depends on
the value of ny. Figure 6.7 gives a comparison of spectral shifts in free space (ng = 1)
and in two non-dispersive homogeneous media of refractive indices ng = 1.5 and 2.0
when kgop =20 and k(G = 10. The most notable feature is that the far-zone value
of the spectral shift increases with increasing refractive index ny. This is an important

feature which shows that the spectral changes are enhanced in a homogeneous medium.
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Figure 6.7:  Comparison of frequency shifts for propagation in non-dispersive homogeneous media.
The frequency shifts for a fixed angle of observation (10°) are shown for propagation in free space (a), for
propagation in a homogeneous medium of an index of refraction n(twg) = 1.5 (b) and for propagation in a
medium of index of refraction n(wg) = 2.0 (c). The observation angle is 10° and the source parameters
are kgop =20 and kgog = 10.

We next consider propagation in dispersive homogeneous media. As in the
case of non-dispersive media, we must consider the changes in the spectrum for short
and long propagation distances separately. For short propagation distances (z « z,),
the quantity l/(l + 22/ zﬁ)is again independent of the index of refraction and the spectral
effects are identical to those encountered in free-space propagation. For long

propagation distances (z » zg),

2 2 2
_ .2 X +y (2 2
f((D) =ny () cxp{‘—;&z—(f) ['-0 ((D) - 1]} (6-29)

and hence the difference in the spectral effects in this medium from those generated in

free-space depend on the variation of n(w) in the frequency range covered by the source
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Figure 6.8:  Comparison of frequency shifts for dispersive homogeneous media. 4v is shown as

a function of kg2 for propagation in free space (a), propagation in pure silica (b), and propagation in
silica doped with 7.9% GeO; (c). The observation angle is 10° and the source parameters are
kooy =20 and kgog =10 .
spectrum [cf. Eq. (6.27)]. We illustrate our results by using a slab of silica glass as an
example of dispersive homogeneous medium.

Figure 6.8 shows the frequency shift An obtained after light from GaP source
propagates through a slab of silica glass of various thicknesses. The source parameters

are ko0; = 20 and ky6, = 10. The frequency dependence of n(w) was obtained by
1 0Vg

using the well-known Sellmeier formulal?

(6.30)

3 B.mz.
nz(m)=l+2—7LL1- .

For pure silica B; = 0.6961663, B, =0.4079426, B, = 0.8974794,
A, =0.0684043, 4, =0.1162414, 1, = 9.896161 mm, where lj =2nc/w;.
The effect of dopants on the spectral shift can be easily included in our analysis.

For example, the refractive index n(w) of silica glass can be increased by doping it with
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germania (GeO,). .'I‘he refractive index n(w) is still given by the Sellmeier formula but
the parameters B; and «; are different and depend on the amount of the dopant. As an
example, we consider silica glass doped with 7.9% GeO2, for which the parameters are
B, =0.7136824, B, =0.4254807, B, =0.8964226, A, = 0.0617167,
Ay =0.1270814, A, =9.896161 mm. Figure 6.8 shows the expected change
(dashed curve) in the frequency shift. The shift is slightly larger for doped silica since
the dopant increases the refractive index by a small amount. In both cases (pure silica
and slightly doped silica) the frequency shifts in the far zone are much larger than those
that would be produced in free space.

The main conclusion of this section is that correlation-induced spectral shifts are
enhanced in a homogeneous medium of refractive index n(w) > 1. The frequency
dependence of the refractive index n(®) is not critical as the enhancement is found to
occur even when n is frequency independent. The origin of the enhancement factor for
large propagation distances can be understood by referring to Eq. (6.20) and using the
formula k = wn(w)/c in Eq. (6.21). The Gaussian factor in Eq. (6.20), plotted as a
function of w, is narrower for a homogeneous medium than for free space. It is this
feature of the spectral modifier that is responsible for a larger spectral shift when

n(w) > 1.

6.5 Propagation in inhomogeneous media

In this section we retumn to the general expression for the spectrum of light in a graded-
index fiber [Eqs. (6.15)-(6.19)]. In this case the parameter a is non-zero; it depends
on the fiber design. In particular we consider a fiber whose core is made of doped
silica (7.9% GeO, at the core center) and a cladding made of pure SiO,. If n,(w) is the
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Figure 6.9: Frequency shift Av versus the propagation distance kgz in a dispersive graded-index
medium (a). Curve (b) shows Av when the inhomogeneous nature of the medium is ignored by setting

a=0. Curve (c) shows the corresponding result for free-space propagation. The observation angle is
10° and the source parameters were chosen to be kgop = 20 and koo = 10

refractive index at the core center (r = 0) and n,(w) is the refractive index at the

boundary (r = R), the parameter a is given by

o) = -1-:;\/1 - (w)/r(w) . (6.31)

Since n;(w) and ny(w) can be obtained by using Eq. (6.29), the frequency dependence
of o(w) is readily determined. In the following calculations we take the core radius to
be Rp =25 um.

Figure 6.9 shows the frequency shift as a function of the propagation distaace
for a # 0 in such a medium, and the shifts generated in a homogeneous medium of
refractive index n,. We note that in the range of propagation distances shown in the

figure, the frequency shift is larger for a graded-index medium than in the
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homogeneous médium. This enhar~ement of the frequency shift is due to the
inhomogeneous nature of the medium and depends on the functional form of the
inhomogeneity.

Although the frequency shift Av tends to a constant (far-zone) in a
homogeneous medium, no such limit exists in the graded-index medium considered
here. This feature is due to the imaging p.roperty of a medium with a quadratic variation
of the refractive index. Such a medium reproduces the incident field periodically, with
a period given by Az = 2n/a, a feature that is due to the periodic nature of the
propagation kernel, Eq. (6.8). One would thus expect that the spectrum S(r; ®) given
by Eq. (6.12) also reduces to the source spectrum for z = 2mn/a, where m is a
positive integer. We show in Appendix D that this is indeed the case. Furthermore, we
find that the source spectrum is reproduced not only at z = 2mn/a, but also at
z=(2m + 1)n/a, except for a spatial inversion of the intensity distribution. For a
symmetric intensity profile such as a Gaussian, S(r; @) is reproduced periodically with
a period z;, = n/a.

It would appear from this discussion that the spectral shift should follow a
periodic evolution pattern with period z,. However, this is not the case, as is evident
from the solid curve in Fig. 6.10 where the spectral shift is plotted as a function of kyz
for propagation distances covering three periods (with gz, ~ 6600) for kyo7 = 20,
koo = 10, and o obtained by using Eq. (6.31). Figure 6.10 is drawn for a fixed
radial distance from the fiber axis (p = 10) rather than for a fixed observation angle.
This choice is made because for large propagation distances the radial distance would
exceed the fiber dimensions if the observation angle were kept fixed. Figure 6.10 also
shows that the frequency shift indeed be_omes zero for = /oy [ = a(wg)], but

its maximum and inimum values become larger for successive periods.
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Figure 6.10: Frequency shift Av as a function of propagation distance in a graded-index fiber
(solid line). The frequency shifts are calculated for observation at a fixed distance 10/kq from the center

of the fiber and koo = 20 and kgog = 10. The dashed line shows the frequency shifts when the
frequency dependence of a is ignored by setting [a(wg)/kg = 0.00048].

The physical origin of the non-periodic nature of the frequency shift can be
traced back to the dispersive nature of the graded-index media that makes o frequency
dependent. Indeed, if a is replaced by ay , we obtain the behavior indicated by the
dashed curve in Fig. 6.10. It is clear from this curve that when the frequency
dependence of a is ignored, the frequency shift Av shows periodic behavior with
period /o, . When a is allowed to vary with frequency, Av becomes non-periodic.

This feature may be understood by noting that the period z, = nt/a itself becomes

P
frequency dependent. Since the argument oz of the trigonometric functions appearing
in Egs. (6.17) and (6.19) is frequency-dependent, we may expect z-dependent changes
in the frequency shift. Thus we conclude that the spectral shifts occurring in an

inhomogeneous medium are strongly affected by the dispersive nature of the medium.
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Appendix C: Derivation of the expression for the spectrum of
the field Eq. (6.15)

The spectrum of the field at any point r is given by the expression

strw) = [[ K (oK (oW qrs @)%y d, - C1

Here K(r;p;w) is the propagator, given by Eqgs. (6.8), and W(p;;p,;®) is the cross-
spectral density in the source plane, given by Eq. (6.14). On substituting from Eq. (6.14)
into Eq. (C 1) we find that

0 ko 2
S(riw) =S¢ ’(m)(—-.——) B(x,0)B(;0) , (C2)
2nsinaz )

where

B(x;w) = chp{ & +8 (—‘;’Z—Gg—}

(C3)

xexp{ 1ka [3;95@% -&)-x(&, - 51)]}‘-@1 @, -

siInoz

To perform the two-dimensional integration we iniroduce the average and difference

variables

1 =%(é2+§,), (C4)

Y,=8,-§ . (C5)
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Equation (C 3) then takes the form

I(x;w)= Idyl cxp[— 712/20',2]

1 1 ikay. (€6
- 2 -
x| dy, cxp{ 75[8;,2 + 20':}- S| 71 Cos 0z x]} :
If we define the parameter a by the formula
2 1 1
a = + , C7
é;?' ;:’ C7
and use the relation!
- 2
2.2 Jr
- dx = — , (C 8)
:[. cxp[ px % qx] P ex;{f}»)
Eq. (C 6) may be written as
2
I(x;0)= [Ecxp[—xz( k,a ) ]
a 2asinoz
C9

xjdy ex —72 L +(k(xco.sa.z)2 +27xcosaz( ka )2
191N 267 "\ 2asinoz ! 2asinez ) [

Next we define
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2
b= 1 +(kaclosa.z) (C 10)
20% 2asin 0z
and use Eq. (C 8) again. We then find
I(x'm)—l-t-cx —12( ko ')2 1_(_1“1_00&)2 C11
Y= P ™ 2asinaz 2absinaz) |[ (€11

YYe note that

tocosaz )2 1 ) ) )
[ Xreosaz ) _ )
[l (Zabsino.z) ] Qabsinoa) [(2abs1n(x.z) (ka.cosoz) ] , (C12)

which, by Eq. (C 10) can be simplified to the form

2
1—("“"‘?5‘”) = (C13)
2absinoz 2bo;

On substituting from Eq. (C 11) and Eq. (C 13) into Eq. (C 2) and using a similar

expression for B(y, w) we obtain the expression

2
ko, Y 24y ka
S(r;w)=S5© m(————) - , (C14
(@)= O Sabsinez) )" "2 | 2abo, sinaz ©19
which can be written in the form

ko, 2 k2 x+y?
S(r;m)=S(°)(m)(TAL) exp{-ﬂf‘—zzy— : (C 15)
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with

sinaz

1 L.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products,
(Academic Press, New York, 1980), § 3.323.2.
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Appendix D: Proof of the periodic reproduction of the

source spectrum

When the propagation distance satisfies the condition az = mn for a positive
integer m, some of the factors in Eq. (6.13) become singular. However, the spectrum of

the field at such propagation distances remains well defined. In this appendix we use the

method of stationary phase to evaluate the spectrum in the limit as z — mn/a. We start

with Eq. (6.13) and rewrite it as

2
S(r,w) = (%) Hﬁd§1 dﬁ; dnl dnz W(&p&z:npnz;w)
D1

xoxp{ikw\[co;az (83 -&2+n}-n2)-x(E, - &) - ¥(m, -y )]} ,

where

sinaz D2

Since A - e as z — mn/a, we can evaluate the integral using the method of stationary

phasel. According to this method, if

I(A) = [ fyexplingo)]ar , D 3)

one has, under fairly general conditions

2n )lcxp(mu)+0(/\’3’2) as Ao (D4

Al

I(A) ~ exp[iAd(d)]f(d)

4
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Here d is a zero of ¢'(¢) [assuming there is only one] and y = sgn[9"(d)]. #.pplying these
formulas to Eq. (D 1), with the definitions

0&,) = ka[“’;‘" g2 -xéz] , © 5)
and

FE&)=W(E,.&,.n.0y0), ® 6)
we find that

LI
I(A) Ao exp( 2 )

ika 2(1 1 )} x -3/2
X - - wE,,—, 1, +0lA .
cxP{cosazx 2 cosoz & cosoz” 1 ) ( )

D7)

We repeat the same procedure for the integration over the variables §;, 1;, N, and take the
asymptotic limit A — oo, All the phase factors cancel and the final result is

S(r;m)=w( x X Y ) ;m). O 8)
cOosOz cOosSOzZ cosQz cosaz

Since cosaz =x 1 we see from the last equation that the spectrum of the source is
completely reproduced at propagation distances z = 2mn/a. For propagation distances
z=(2m + 1)n/o the spectrum of the source is again reproduced but is spatially inverted.

For a symmetric intensity profile such as Gaussian, the source spectrum and the intensity

Appendix D




Chapter 6 172

distribution are both reproduced at z = mr/a. It can be shown that Eq. (D 8) is exact at

z = m/a in spite of our use of an asymptotic approximation for evaluating the integrals in

Eq. @ 1).

1 N. Bleistein and R.A. Handelsman, Asymprtotic Expansions of Integrals, (Holt,
Rinehart and Winston, New York, 1975), Chapter 6.
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Summary

In this thesis we investigated effects of source correlations on the fields radiated
by sources of any state of coherence. .In particular we studied the effects of spatial
correlations of source fluctuations on the total emitted power and on the spatial and
spectral distribution and the spectrum of the emitted radiation.

After a general introduction presented in Chapter 1 we reviewed some elements
of coherence theory that are essential to the discussion in this thesis. Chapter 2 consists
of two parts. In the first part we introduce the concept of radiation efficiency and we
discuss the efficiency of planar, secondary, Gaussian Schell-model sources. We show
that for sources of this class the radiation efficiency increases with increasing source
size and with increasing spatial correlation length of the source fluctuations. We found
that when the linear dimensions of the source exceed several wavelengths, the radiation
efficiency is typically over 90%, irrespective of the source correlation lengthl. A
different result is obtained for the radiation efficiency of three-dimensional primary
sources; in this case we find that the radiation efficiency does not increase with
increasing source size or with increasing correlation length. In fact, we find, for
example, that the radiation efficiency of a uniform, spherically symmetric, coherent and
co-phasal source, decreases with increasing source radius.

For a primary partially coherent, three-dimensional sources with a given
intensity profile we developed a method which makes it possible to determine the
spatial correlation function that maximizes the radiation efficiency. Using this method

we showed that the radiation efficiency of an isotropic quasi-homogeneous source is

maximized when the degree of spatial coherence is given by sinkr’/kr’. This result is
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significant in Lhat~ it shows from the point of view of coherence theory that the spatial
correlation of blackbody radiators gives rise to the maximum radiation efficiency of
isotropic quasi-homogeneous sources.

The discussion of the radiation efficiency was formulated using the space-
frequency representation and the results therefore apply on a frequency by frequency
basis. In chapter 3 we focused our attention on the frequency-dependence of fields
generated by partially coherent sources by investigating the effects of source
correlations on the spectrum of the radiation. We analyzed a basic physical
configuration in which source correlation can be manifested, i.e., that of two small
sources. Using this simple example we illustrated possible modifications of field
spectra depending on the choice of the correlation function. Our calculations included
examples of line narrowing, line broadening, line shifting and line splitting.

The range of possible modification of field spectra can be significantly enhanced
by using a system which contains more than two sources. One such system is an array
of 2N sources which we also analyzed in the last part of chapter 3.

The discussion in chapter 3 of spectral modulation in scalar theory was
extended in chapter 4 to the full electromagnetic case. We considered the effect of
correlation on the spectrum of the electromagnetic field produced by partially correlated
linear dipoles. In this chapter we were mainly concerned with the dependence of the
angular distribution of the radiant intensity and with the shape of the spectrum in
various directions of observation. We showed that the the number of lobes of the
radiant intensity produced by the partially correlated dipoles are determined, just as in
the deterministic case, mainly by the separation distance between the two dipoles,

whereas the direction and the shape of the lobes were largely determined by the

correlation between the two dipoles.
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In the anaiysis of chapters 3 and 4 we assumed that we can choose certain
forms of spatial correlations. In chapter 5 we analyzed the radiation from a source that
consisted of a finite number of coherent modes. The spatial correlation of this sourre
then depends both on the number of the modes and on their relative strengths. For
sources that consist of Hermite-Gaussian modes we showed the spectral effects in the
far and in the near zone and .heir dependence on the mode composition of the source.
We also examined, for comparison, the small spectral shifts that occur or propagation
from sources that consisi of a single coherent mode. In the anaiysis of chapter 5 we
introduced the concept of "spectral modifier” which is a correlation-dependent factor
that determines the spectral changes in the emitted radiation.

Chapters 2-5 pertain to propagation in free spac~. In chapter 6 we consiuered
propagation of partially coherent light in lomogeneous 2ad inhomogeneous media. We
also studied how the spectrum changes as a function of the propagation distarice from
the source plane. Our results show that spectral shifts areer  ced in a medium whose
index of refraction is larger than unity,. Within a given homogeneous medium th.
spectral shii:s usually develop rapidly with increasing propagation distance from the
source plane. In the case of a non-dispersive graded-index fiber, we showed that the
spectral shifts are periodic along the propagation diicction. When dispersion effects are
taken into account we showed that there exists deviaticn of the spectral shifts fiom the
periodic form.

The research described in this thesis = < conducted between 1986 and 1989.
During this period many other contributions were made in t~is field by numerous
authors. It seeias that there is a great potential for further work in this area, especially

in connection with astrophysics, spectroradiometry and scattering.
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1 This statement assumes that the correlation length is not less than that of a

thermal source.
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Angular spectrum representation for coherent modes
Amplitude of a spectral line

Radial gradient of the index of refraction

Magnetic field produced by the dipoles

Speed of light

The radiation efficiency

Differential propagator

Dawson integral

Domain normalization parameter

Directivity (general)

Directivity (standard definition)

Directional distribution of the transform of 8o
Auxiliary function related to the total radiated power

Total flux at frequency ®
Eigenfunctions of Fredholm integral equation

Spatial correlation of a primary source

Auxiliary function related to the maximum amplitude
of a spectrally modified line

Mutual coherence function

Spectral line width

Degree of coherence
Hermite polynomial

Radiant intensity
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111
54
109

34
22

47

79

10
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11
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Spherical Bessel function

Wavenumber

Spatial frequency vector at which the radiation
efficiency attains its maximum value

Propagator
Wavelength of the radiation

Eigenvalues
Frequency independent eigenvalues
Specuai modifier

Spatial (spectral) degree of coherence

Degree of correlation of polarization fluctuations
Degree of correlation of source fluctuations
Number of lobes in the radiation pattern
Intensity normalization

Index of refraction for the fiber

Total radiated power at frequency @

Polarization fluctuations
Spatial Fourier transform of p;(r,r)
Electric Hertz vector

Scalar source distribution

Stationary source distributions
Auxiliary source function

Spectrum at position r
Spectrum of a source

Spectrum of the field
Reduced field spectrum

Far-zone spectrum in direction u
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100
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42
143
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Spectrum of polarization fluctuations

Equivalent rms for Gaussian Schell model source

rms width of correlation profile
rms width of intensity profile
Steering angle
Projection of unit vector on z = 0 plane
Analytic signal representation {r the field at point
P and time ¢
ss-spectral density function
Far-zor. 2 cross-spectral density function
Fourier transform of source cross-spectral densit;

Angular frequency
Eigenfunctions of Mercer expansion

Relative frequency shift

Free space effective diffraction length
Effective diffraction length

Repetition distance for spectrum in a fiber
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