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1. The Task, We shall study the problem of object identification against a

background of clutter and using laser radar for obtaining range data. The

algorithm shall attempt to classify the object or objects in the scene. It may also

be able to do the detection but this is not the primary goal since, in a multiple

sensor situation, this may be better done by other sensors. )

-The algorithms shall be flexible so that they can easily be modified to

incorporate changes in technology (as long as range data are supplied). In

particular, if the accuracy of the range determinations improves drastically,

only minor changes will be needed in the code.

make this possible the code is made highly modular, so that only one, or

a fe. . of the smaller modules need be replaced by other modules (also supplied) in

addition, of course, to changing parameter values.

Our approach is actually based on the assumption that much higher accuracy

in range data will soon be achieved. It should then also be possible to recognize

partially hidden objects. The main ideas in the code have been chosen with this

future task in mind.

Since at present we have few real images with reliable range data we have

had to build a terrain-object-noise simulator to produce data on which the

algorithmic ideas can be tried and which will also be useful for debugging the

programs.

Simulated data are good for this purpose, but they are not enough since the

model on which the simulation is based must be tested against reality. It is

therefore necessary to try the programs on real and reliable range pictures when

they become available, leading no doubt to modifications.

The code has been written in APL. The reason for using this unconventional

programming language is that its logical structure, which is based on some of the
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fundamental concepts of mathematics, makes it ideal for mathematical

experimentation. The drawback is that the fact that it is interpreted, rather

than compiled, makes it run much slower than, for example, optimized

compiled FORTRAN code. In experiments on the computer this can be

accepted - once good performance has been achieved the algorithms may be

rewritten into some other language or implemented through special hardware.

2. Generation of background. The scenery will be made up of large scale

features and of smaller details. The former, that can partially or wholly obscure

the objects and may also sometimes confuse the algorithm by appearing 'object

,like', will be chosen as random elevations of fairly smooth appearance.

The centers of the elevations will form a random process in the x,y-plane

on which objects will be placed. The user specifies the number of them

(right argument in the functions GENTERRAIN and GENSCENE) but the

locations, heights, and horizontal shape cross section are generated at random

by the algorithm.

The height/width ratio can be controlled (in a probabilistic sense) by

choosing a suitable power as the exponent in line [22] of GENTERRAIN. The

present value is .5 which produces fairly sharp outlines, a bit like trees. Other

values will produce the appearances of hills in a rolling landscape. This is also

influenced by CMAX/CMIN for height distribution and by the parameters AMIN,

AMAX,BMIN,BMAX that control the cross sections.

The small scale features in the background are more chaotic, at present just

white noise, with standard deviation called SMALLSCALE in line [7] of

GENSCENE. This could easily be replaced by a stationary stochastic process with,

say, a fairly but not completely, flat spectral density.



-3-

Line [5] was inserted in order to let the user choose a particular probabilistic

behavior for the sky portion of the scene. At present it is not used, setting LSKY

equal to zero.

After the background is generated the program interrogates the user about

placing objects (see next section), and then adds noise to the range data computed

by the function SIGHTI. The latter computes the true ranges, taking possible

obscurations into account and using a depression angle called PSI, assumed small.

The error level in the range sensor on the background is denoted by BACK-

GROUNDERROR and on the objects by OBJECTERROR. Judging by the few.

real pictures we have seen the former is much bigger than the latter. If this

changes in the further development of laser radar some of the modules in the code

should be replaced as will be discussed in section 12.

3, Generation of obiect shapes. The number of object shapes used, called

NOBJECTS, was only six in the following experiments but can be set by the user

to any value he wishes.

To prepare for bigger values and to facilitate entering the shape we have

prepared the functions GENOBJECT, COLLECT, INSIDE, SCALING. They enable

the user to present any object of polygonal shape: he is prompted by the program

to type the coordinates of the vertices and the programs do the rest. For more

details in using these and other programs, see section 8.

In the experiment we used the object shapes shown in section 10,

representing front and side view of a tank, front and side view of a small stylized

house, and two side views of vehicles. We used polygons with few vertices,

which may have been psychologically wrong, since the appearance of the object

boundaries will be too straight and simple. In future experiments one should use
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more detailed polygonal or spline representations of the shapes - this will also

make it easier for recognition algorithms.

The program PLACE places objects in the x,y planed at desired location for

the midpo.nt of the lower, lborizontal part of their boundary and at height 2=0.

This implies that height variation in the background (vegetation, small hills, etc.)

will normally hide the lower horizo.. al part of the boundary which therefore will

not help in discrimination. This effect was not planned but showed up in many

of the experiments. It is not clear if this is a realistic effect.

4 Main approach. The logical organization is based on ideas presented in the

two working papers enclosed as Appt, dix I and 2, but modified in two respects:

(i) we now assume range information rather than IR or visible light

images,

(ii) we assume low accuracy (at least for the time being) that seems to rule

out the sophisticated algorithms that was proposed in Appendix 2.

We are preparing for the time when improvements in the accuracy of range

data will be made, enabling us to deal with obscuration. This of course implies

that algorithms must be based on local features, since global ones may be hidden

from sight.

We shall think of a scene as presented in a deformed image

)= 3)(R[a(g 0 ,gl,...gn, )]

Here the generators gi are local features, actually arc elements making up the

parts that can be seen of the boundaries of the objects in the scene. The

connector graph a joins arc elements in the appropriate order along the (partial)

boundaries of each object. Thus a will not be connected if several objects are

present in the scene.
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The operator R takes the configuration o(g 0,g 1,...gn.l) into a set: the part of

the scene consisting of objects as it appears in the image plane of the sensor.

The deformation mechanism D takes the set mentioned and transforms it into

range data adding observational noise.

Our task is to recognize the objects and this will be done in terms of the

generators gi and the connector graph a. In other words we need estinmators gk of

arcs g: Renerator estimates. We shall do this by choosing a collection (g } of shae

elements, each consisting of a small binary picture, a template, say of size

LTEMPX by LTEMPY. In the experiments below we chose LTEMPX = LTEMPY

= 11 but this may not have been a wise choice.

We postpone the important problem of how to select (&*) until section 5. If,k

we tried to superimpose each gk at each pixel in our image, and then test for

goodness of fit, the results of the tests should tell us a good deal about

hypothetical locations of objects.

But this is clearly wasteful, since only a small part of the picture will

normally belong to object boundaries. Instead we proceed in steps as follows to

reduce CPU time.

4.1. Since BACKGROUNDERROR >> OBJECTERROR the local variation

in grey level is much smaller on the objects than off; this is seen clearly in the

real pictures.

Exploit this by finding, at each pixel, if the variance of the pixel values at

the 1+8 values (8 neighbors) is large or small. Keep only the latter ones. This is

very fast and is done by the function CHANGE as called in statement [10] of

TESTS 1.
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4.2 We now have a binary image. To remove from consideration isolated

or nearly isolated points in the set defined by the binary image = 1, we apply

CLEAN which eliminates points with less than FEW neighbors. This is also very

fast.

43 Compute the boundary of the binary image, applying the function

IBOUNDARY. The resulting, much thinner, binary image is then represented as a

2-column matrix with x and y coordinates of the boundary obtained; this is

carried out by the function COORD in line [11] of TESTSI. This is even faster.

4.4. We now move the shane elements gk to each point remaining in the

binary image after Step 4.2 and test the fit by computing the (counting) measure

of the symmetric difference

mk(x,y) = m(g*, subpicture at x,y).

This is done in statements [14]-[27] of TESTI. Here NSLICE denotes the range of

k in (g*) and we sweep the boundary completely, except when we are very close to

the border of the image where room is not available for placing any shape element

gk: statements [12]-[18] take care of that exception.

In [11] we compute a crucial parameter, THRESHOLD which is proportional

to the size of any shape element, LTEMPX x LTEMPY. The proportionality

constant, called K, is crucial. We have used values in the range 80% - 95%. It

determines whether

mk(x,y) > K x LTEMPX x LTLEMPY

when we accept the shape element temporarily for further hypothesis testing, or

not.



-7-

This step is time consuming and takes a good deal of the whole CPU time

used by the driver RECOGNIZE.

The result of TESTSI is a vector TESTSEL, of k-values for temporarily

accepted shape elements, and a 2-column matrix TESTSLOC of their locations.

4.5. We now try to reconcile the information in the test results TESTSEL

and TESTSLCC with the corresponding lists associated with each hypothetical

object. In Appendix 2 we suggested that this matching be done by stochastic

relaxation, a suggestion that has not been implemented. We believe that in the

future, when advances in sensor technology will support more rt-fincd methods,

that may be the way to go. At present we are rescued by the fact that wve need not

do suhgzraph nmatching which is notoriously hard to compute. Instead we match

subsets of two geometries.

Each of the points (xj,yj) in TESTSLOC carries a label kj of the shape,j

element gkj that it supports. Similarly at each location (ui,vi) of the hypothesis

lists HYPLOC there is a label Ji of its shape element gi. We want to match the

relative positions

(xj,yj) = (ui,vi) + offset.

We shall do this by brute force, trying all combinations for the offset. This

is clearly wasteful and we shall return to this later.

For each hypothesis the function FULLTEST tries all combinations for

offset, lines (8]-[9] keeping track of the number of agreements obtained and saving

the largest number. We also compute a vector KEEP intended for later use to

successfully remove elements from the testlists; this has not been implemented yet

however.
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This step is the most time consuming in the whole algorithm, especially if K

is small like 80% when the testlists tend to becon' .; excessively large.

4.6. The rest of RECOGNIZE collects the accumulated evidence and prints,

either nothing when no object has been detected, or, in the opposite case a list of

possible objects and their hypothetical locations, lines [15]-[26], in decreasing order

of credibility. The number of agreements found between subset of the testlist and

a subset of a hypothesis list is printed as the credibiliti,. Very unlikely

hypothetical objects are not printed.

In the present form of the algorithm several objects are allowed in the scene,

but not more than one occurrence of each object type. This restriction can be

removed by using the vector KEEP mentioned above.

In lines [271-[40] hypotheses are removed that would involve centering objects

so close that it is physically impossible. The minimum distance is a global

variable called MINDIST.

5. Optimal Selection of Shape Elements. In the early stages of developing the

program TESTS1 and its forerunner TESTS we used arbitrarily selected shape

elements where the sets were chosen as rectangles, triangles, and squares with

different locations and orientation in the LTEMPX x LTEMPY square.

This seemed to work fairly well, but TESTI often missed to fit the shape

elemeats even in cases where the picture, displayed on the monitor, looked clear

enough. Th*s this reason we tried to choose the shape elements in a more systeniatic

manner.

Given the shape element, to use it as an estimator of location is not a new

mathematical topic. It was studied in U. Grenander (1978): Pattern Analysis,
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Springer-Verlag, section 5.1, although with a different deformation mechanisms.

That sort o£ theoretical analysis ought tole carried out for the present situation,

since it may lead to better microstatistics, see Appendix 1..

Let X be the space of all possible shape elements, and say that we are given

a very large sample xl,x 2,...x n from some probability distribution P over X. Of

course X is a discrete space, but of enormous cardinality, in our-case 2121, so that

we shall allow ourselves to treat P as given, by a (.poarsie grained') density f, in

some vague sense continuous. We w t4like to select yYAVlxv2 )..Xvp l( ,x2..xn)

where p << n. Thehxvi will-serve as our shapeereiints, and in order that they
- ,- -

serve well, we'should let.x-,x 2,...Xn be all or most of the shape elements that occur

for the given objects.

But that will lead to excessive CPU time requirements: we caanot test all

the shape elements xi. Instead we use only the selected ones and hope to cover the

most important part of X, namely the Lebesgue set

L(c) = (xlf(x) , c) CX.

To estimate the set L(c) is a problem in abstract inference an6 closely related

to Theorem 4.1 in section 5.4 of Grenander (ibid.). We shall use the following

procedure.

Choose a radius r, (denoted by the global variable RADIUS in the code) and

solve

max N(xi,r); N(xi,r) = #(xj in ball centered at xi and of radius r)
i

Select xvl where v I realizes the max. Remove all x's from that ball, maximize the

N-function, which is proportional to a coarse grained density, giving x v2 and c-n-

tinue until p shape elements have been selected.
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Remark, It seems likely (but not proven) that this can be formalized by a

theorem saying when and how -W estimates- the Lebesgue set in a general

situation. It is actually a sieve estimator and can be expected to be consistent if

we let p--* slowly compared to n-- and simultaneously r 1 0.

This is implemented in two steps.

5.1 Wefirst form the long iist (xi) by calling the program FINDGENS. It

operateson 'the 3-dllitensional array ALLOBJECTS -containing~ll t14Ject shapes,

and takes all .the .shApe elements separated by a distance call d DIST along the

respective-boundaries. -"

It calle-'_tiauxfrtrS functions SELECT and SCREEN, thatese'tarates points

along the boundary, and the function NINBALL which computes the coarse

grained density.

5.2. The second step is to do the estimation of the Lebesgue set, which is

implemented by the function LEBESGUE that takes as input the global variable

SLICES created by

SLICES -- FINDGENS

It does what was described above, but in addition it deletes shape elements that

contain too many zeroes or too many ones. The reason for this is that such

extreme shape elements have too low inferential power as estimators; it is done in

statements [18]-[19].

This construction of an optimal set of shape elements requires a lot of CPU

time, but can be done off line.
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6. Utilities. When experimenting with the recognition algorithms it is useful

to display pictures, say of small LX x LY dimension, quickly even if crudely.

This is done by the function display.

Since matrix coordinates are oriented differently from the usual Cartesian

system we should apply TURN to a matrix before displaying it.

To see a binary matrix directly do

SEE MATRIX

To scale a digital picture from level 0 to NLEVEL do

IMAGE "- NLEVEL SCALE IMAGE.

Some statistical tests have been implemented for use in the early version

TEST and RECOGNIZER

STUDENT: Student's two sample test

FISHER: Fisher's Z-test

KOLMOGOROV: Kolmogorov-Smirnov's two sample test

To display all the selected shape elements execute SEEGENS.

The function WHITE produces a field of standardized white Gaussian noise.

Since memory limitations prevented us from doing this by a fast APL algorithm

based on 3-dimensional arrays it has been done by looping and is therefore quite

slow.

Remark, This approach shares some features with the other recognition

algorithm that our group at Mathematical Technologies Inc. (Brown University

and University of Massachusetts) has been developing. In particular they both use

some sort of local test that are ultimately combined to make the global decision

about objects in the picture.
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The present algorithm differs from the other one in that it is based on

conputed shape elements, it avids. a complete scan by shape,'ements over all or

most of the picture, and the details of the final matching - the decision function.

In TESTS we employed brute force computation for finding matches between

the pre-computed shape elements and the observed picture. It called the function

VIEW (or alternatively VIEWI for a correlation test) which sweeps the entire

picture with a step called STEP. It was found necessary .0 make STEP small, at

most = 4, better = 2, to get acceptable performance. This step in the preliminary

version of the; decision~octionr required massive, CPU time.

It was followed by exec~ing SEARCH, which finds all the major local

maxima, separated by a distance,called DIST. This step is fast.

To get better performance TESTS was replaced by TESTS1, to be described

below. This not only improved the performance but reduced CPU time by a

factor 10.

7. Experiments. We now begin experimenting with the code for detection/

recognition. The first, very preliminary experiments, used RECOGNIZER and

TESTS employing one of three statistical tests.

It was not very surprising that STUDENT did not give good performance.

After all the model used in the simulator tries to mimic one aspect of the current

state of laser radar technology: the signal from the background is very noisy.

Hence a test for distinguishing the two mean levels in the on/off parts of the

shape element can be expected to have low power.

On the other hand we had hoped that the Kolmogorov-Smirnov test would

perform well. This was not the case, however, for reasons that are not yet well

understood.
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Fisher's Z-test, for distinguishing between the two variances in the on/off

parts was much better. It required a lot of CPU time, however, at least in the

interpreted APL code, so that we therefore modified the algorithm to the one in

RECOGNIZE and TESTS1. We shall not report the preliminary experiments: all

the following ones use RECOGNIZE.

The experiments were coded as follows.

EXPi means no object present, POWER=i

EXPji means object no. j present, POWER=i

EXPDkhji means objects k and j present, POWER=i.

The letter D stands for double. If the letter M occurs it signifies that CMAX=20

rather than the default value 10, leading to larger obstructing features in the

landscape. If the code ends with A,B, or C it means an earlier experiment has

been replicated but with NHILLS larger than the default value 4.

7.L We begin by testing the detector on scenes without any objects.

EXP3.

.- 505516 16.77435583 3.342535154

121 06

A . .. -

L:..C3Ci'12C. 13.3!285364 1.45S082632e
Y0.o =

12.7C331'1! 25.027237GG 2.06976C536

3426

..4C', 22 .1. 0293CC'-:23

10 121
117 121
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The f eatures- are- quit-"mall and irr.e-barelyv isiblein.the..pcture:

The algorithm prints nothing; no detection is claimed.

EXP3MA. Here NHILLS=6 with the result

A.B.C =
8-87239012 20.2616818 16.11339889
xo..YO
69 43

A.B.C=
8.39912928 22.17f00q896 4.541791174
x0.z0 =
86 71

A.B.C=
9-51".75366 29.46615592 6.021179599
xO.Y0 =
66 2

A.B.C =
13.9443201 10.1q17997 3.06350O6892
xaOY
98 63

A.B.C =
10.49514866 19.9679367". 4.910012924
xO*Y0 =
95 28

A.B.C =
28.01719476 10.99406942 1.03q744841~
x0.Y0
60 96
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and one can see the biggest one (the first above) clearly in the picture:

No detection claimed by RECOGNIZER.
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EXP3MB. With NHILLS=8, otherwise the same, we get

AB.C =

23.82277362 27.3585076U 3.0Rl17.733
XO0 =
75 80

A-B.C =
4.9748388 8,11694798 12.16q30329
x0,iyo
38 93

A.B.C
24-.90576228 29.1501744 6.2963u154
xd.70
5 61. --

A.B.C =
2*&f.9i2 4 4 14 9 7 0 a n q4 12 .2 f6O05 QS7' _

107 109

A.B.C =
25.94169692 20.102589R6 1.01020R911
XOYO0 =
46 71

A.B-C =
8,21223R68 27.0973R41A 7.0301IU21 4
X09O ,i0=

98 81

A.B-C =
17.71027968 20.5557171 lq9870102R8
XO,Y0
78 53

A.B.C =
29.47582726 8.2329484 1.3q8942615
XO,.O =
126 86

and the two biggest ifeatr s aie seefl in in simulatcd background
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No detection claimed. .

EXP IMA.. W.,now .lower the exponent in the power law for the probability

distribution for the height .of the landscape features. This will produce a more

irregular terrain, as iusecn in

- -. 4
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A.B.C
6,68336848 19.37798589 5.41RA133q
XO'Y0 =
44 31

A.B.C =
27.18718064 22.9457171R 19.0303R763
XO'0 =
38 46

A.B.C =
13.46441574 4.43925496 1R.94557958
XOjYO =
35 74

A.R.C =
5.7185285 27.3088073L 7.66q47937
XOYO =
87 114

A.B.C =
24.27906324 12.5R8542A4 1R.173111R1
XO .YO =
194 12

A.B.C =
5.96815684 10.81602766 1.71429037
XOYO =
108 122

We see three big features, one dominating the scene:
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No detection is claimed, although one, fairly small, feature resembles object no. 1.

Finally,

EXPIMB. With NHILLS=8 gives an even more irregular landscape
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A;B.CV
10.90104948 29'.942261R 13o857791€ir
ZO ,YO =

9-4 122

A-.B.C =
15.00R88904i 14.28380626 14.10716029
; ! O 0 -Y O =

40-' 28-

A.BC =
1-8-.23165 27.33604.a38 19.1R55004
XO.O =
65 71 tI"

" A.B.C
-19; 9§3719 6.9545074 17 .37612618--"

125 2

A.B.C
7.08649952 8.79896464 l4.4727Iq31
XO PXO =

87 80

A.R.C =
11.9200693 22.6077860A 10.54740R8
XO7O =
55 46

A.B.C =
10.73716446 5.52556014 3.98883433
XO.O =
110 64

A.B.C =
26.45206262 17.81994588 11.10730498
XO7O=
90 25

in which we can see several features, one broad and high, another very thin
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No detection made.

In these, and many other experiments with no object, we found no case with

false alarm. This is not necessarily good since it may mean the algorithm is too

conservative: it may miss some objects when actually present. We should keep

this in mind later on.

7.2. We now place an object in the scenery and will look at -what happens

for the six object shapes we have used (see section 10 for their appearance).

EXPOI. With N.HILLS=4 here and in most of the following experiments we get,

after placing object no. 0 in the middle of picture:

It
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77 VL

72 1 '5C 1

With an earlier form of RECOGNIZE we get the decision

RL'COGV7ZZE £'XVO 11! '
ALGOQPIIEz1 DEC1DE'3 CREDIBIZLI5?7 OF HYO-HE-8
AO' LCAI go 8 70
ATJLOCATO 6810.
TO CV = 33
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which is the correct one.

EXPO I. This is very similar, but CMAX has beeni lowered to 10 so that

landscape features arc less visible:

0- , 7 0

10 .731i0622 .3G14727S 5 .45222636

13.2G."E02O4 '22.531145816 2.1144-602S

26 16

with the simulated range picture looking like:

N;* 7~- .*.

.. ,*A.
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The algorithm makes the right decision:

:;LcOcw::"" DEC2U2.S Ch'DIJILI"c:f.r, Of! ,",-

,'T LOCAYiTOZ! 57 70
"0." =

We now place object no. I in the landscape. It is smaller and hence more

difficult to detect/recognize.

EXPIL With POWER=1 1, NHILLS=4 t! e simulator produces main features

. ,:r,C =
26.1243S336 2S77 C -1-64 2. _ '271659
-0 YO

A-O C2

10.226-V7578 5.7426149 5.19828006
7"0 ,YO =
413 14

,t ,B,C =

29.39374266 6.63629956 6.55634035
.'0 ,YO

20 112

25.40773'58 24.06750128 1.91069218
xJ0 =
,-5 28

resulting in a picture like
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-. r ' -

.- ,4

which is correctly identified by the algorithm:

ALGCRITHEk DECZDES CAREDIBIrLITY OF HYPOTHESJIS:

TO0 BE 13

This is satisfying but it should be observed that this was done with'dMAX= 10 (no

M at end of name of experiment) so that there was no big features to conf use the

decision f unction.

EXP22, Placing object no. 2 and with power level 2 in the exponent the

simulator gives
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, p 2 2 C .£ C .- ; % ' L

. 7 .7216 s A 29.2121 C244. 1 ..71?295E, 21,70zo
i1 121

-. 0031,7. 27.23790454 '

74 65

10.3 70S"16 A.9036494 7.233.'31OL

C7 110

-9.O69, - 17.16288792 6.68136142

C4 43

looking like

al .' .Ai : ' " *.T ".
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and with the decision

7ECOGi'ZZE -ZP22
,,c, z~I~?m E'C DDS CRED.p.,?XL7-'.Y oil,-'i.' "ST"

,.X L. .. . 'Q. 2
"" LOCOZTIOZ 64. 69

-E 17

Now we make it harder for the decision function by choosing CMAX=20,

POWER=I. Placing object no. 3

EXP31M. The simulator generators

.zZs31k<-GDh7SCi.'Z/i- 4
A,B ,C =

7.02304912 8.390,669C6 7.83416730

11-6 123

29.4"2741612 26.61937834 14.076003119 ,1
ZO ,YO
90 41

12.579:.4932 28.80842312 15.01017801
,.'0 ,YO =

13 U6

A ,B,C =
13.51103376 21.3920344 12.63808995
Z-0 YO:
103 4

PLA CE OBJECTS?
ARSWER 0 OR 1

1

LOCA7TIOV ?

54 64

O?,EC' ?

ALLOBJCTS[ 3;;]
PLACE OBJECTS?
APSUf. 0 OR 1

0
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and the d'iii Mbdtiongives-,

RECOG!1IZL' EZPS1141
ALG-ORITHMI DECIDES CREDIBILITY OF EYPo 11ESIS:
OBJECT fl0. 3
IzT LOCATIONI 65 77
TO BE 4 i3

EXP4IM.With object no. 4 the simulator produces a very 'hilly' landscape
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C
7 1.7:.7's _2 2C0 73 Z2 732 ",z. 2! 1. .C

27-. L2 12. 242G02G242 14:,22'2 G 72

27

1 03 22. a297S562 ),.0CI'.i7
* . r. -

3 .03727 C 6 .50137S6' 13 .557P.5 5

Z.

21,- 2", 1 S
,! . V --. I

S. . .~. . 002 1

1

LOCATIOU ?

6 4 64
OBJECT ?
C:

ALLOBJECTS[ 4; 1

PLACE OBJECTS?
APSER 0 OR 1

0

with the decision

1?ECC. Z.E A.P4 11!
ALGORITEI, DECIDES CREDIBILITY OF iYPOTEESIS:
OBJECT 1Y0. 0
I: LOCAT-Iu 70 71
TO BE = 6

This is wrong, the object is no. 4. The reason for the mistake is obviously that

too much of the object has been hidden by one of the main features in the

landscape. With the currt-,t no-ise assumption-s thc rccognition algorithm is not

able to cope with this amount of obscuration.
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Detection was achieved correctly.

S.

EXP43. To see how the recognition algorithm handles the shape of object

no. 4 in a less chaotic background we lower CMAX to 10, momentarily, and get
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- .4rC005172 20 .302%,107 3.0O47(7%C-'

23 .074445~ -2OOO3Z2:. .96072330

£.9226147.79372100S !.S3 20sojur.

126 43

PLACE OBJEC "s?
APISUEI? 0 017 1

JLOCA TIC!. ?

64 614
OBJE~CT ?

ALLOBJOCTS4; ;3
PLACE OCBSC2S?
A17SUiEJ 0OR1?
U:

0

looking like
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and the decision f un.-tion then succeeds:

4EXP5IM. Fial objCt .5
.- .0 7 1

-7 L :.,1Is, +G 0 7 4~

-q -- 7

EXP5131515lly 2o.2770522 5.1000

, 110,

19.81815I72 6.27370622 8.0600202

AEIC =

19.75220166 19.2573.0936 14.10708654
XO,YO-
32 52

PLACE OBJECTS?
A1.'3UE2 0 01", 1

U:

0:
A.LLOAJCIJEC2'SE 5;;

P LA C 0 ?J 1.

~j;rlY?0 OR

0
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with the appearance

Note that the object is again obscured partially

•6 A'COGYIrZ9 I5I.
ALGORITH&I DCDES CREDIBIrIm OF EYPOTHESIS
OBJECT 10. 0

LOCATIO7 58 69
TO BE = 14

HLGORITjj1 DECIDES CIDIBILzI'Y or 0? pO,7o E , S1:
ODJECT 1.0. 2
,.T LOCATIOg 56 6s

-E = 14

• "LGORITlll DECIDS CREDIBILiTV 0F EY YQ,0,4 S:
O.JEC. -10. 5
AT LOCATIOL' 55 so,
TO B1 14

This means that the algorithm could not make up its mind which of objects 1,2,

and 5 to choose.
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We ~j~~2sma~) an 51(similat)! are sometimes not

successfully.'identified when obicured.

I& Now we shall place two objects in the picture. _The, performance of

the algorithm will no longer~ be as good as before.

EXL0 The- sirnulator'!gives , -

15.03SC75. 58 17 .'Ili0('7 0!, 2 7 U 15 5 G

C

57 52,

LOCATIOJI ?

37 37
o3jEC7 v ?

PLACE OEJEC23?
t!I7STIE4? 0 OR 1

LOCA27IOL, ?

95 70

ALLO0DJECTES[; ;24
PLAC! ODJ-,ECTS?

0
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looking like

But

R'CCGIZZE EZ'PDO042
'ALGOARZT.M DE'CIDES CREDIBILITY OF? lYP02j-ISN5I$:
0-DJECT NO.
AT2 'OCATO7 0-6 83
TO BE= '

so that object no. 4 is correctly identified, but object no. 0 is not even detected.

The reason- for this is uncleag. The lower horizontal boundary of it is hidden by

low level obscuration, but this is always the case in these experiments, and does

not seem to seriously affect the power of the detection/recognition function.
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EXwm.LI Hqrl&4iftqig~vw'

7. .477 11 fl2.ii9

~7~~6~3GC15.404~73904,.12270

St4]VV,2 20.22C38153 -0862S

1642fW-3-47- Y84-950248,0l f '

* 37 37

LOCA2'IOP ?

85 70
OBjf"CT ?

A L LC.-j!'C 3::

FL Z S

and the range data picture is
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Hecre detection/recognjtj 0 n is perfect:

ALC-OI'Z!Mi DE7CIDES CIUD.T3ILITY Qi0ST 2~Y~~

,.T LQC.4-r 7 F 34~ 4.2
'0 E 13

N Ie o eeta te ceiiiy o hypothesis object no. I is only 13, much
lower than 39.
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XPD252. Now

,1'.74,514,7CG 2 U:.551207 4s 2.S6359393 -

27 2€ R.,7 3 C- 2 71 G 1 045

I I Cz

2,7, .201:73625 6 .3.'!.50712 6.1320454C.Oc

2. .1 520S734-'T.321.7

710 '- Z.

... ,, -. OR? I
. :

L:
37 37

O. J..C_ ?

-" .C, E CDJ,'CTS?Z. 01 2. TS2

2..

95 70
JTC2 ?

LOBJ C'2E 5 ".;]

PLACE OBJECTS?
z. .:. .',E. 0 0OR 1

0 e

with the appearance
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4f , jo " ,

. .#

and, again, a correct decision

.', COGUIZZ- :;:PD252
!.LGO2...Z., D'CI'C. CI.?DIII ? .. =''"""'

OEJECT IT.. 5- *rn -o.. .
Ad LOC-IO 92 75

ALUGORTZL' DECIDE:? CZEDrZT OD 1'3 1" L ' T "Y 0
ODJOCT . 0. 2

-:T LOCTZOZ 34_1, :
O BE = 14

Now let'us make it harder by putting CMAX 20.
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12 .7 3 ... 22 ."7;7712 1S.1C.,77 7

121 1C6

5.2?573522 1~.42%?'5 1..025£P.
12 03

17 Z52 5 ,1 . 0''' 3 0107755 I.2
:D 'Yo

230.53503452 2C .32C1.53 15.V3C"ZL~..4,,,.

51 se

A,;'s, 5: 0 OR 1i 0-1 . -i^

45 45O;;JL'. . ?
0 A*.'3J E C 27 ?

PLACE O.JECTS?
P115TUT.7 0 or- 1

1

1

55 75
O.JECT ?

PLACE 0,-,.-' ,C- .?
"-"Mi 0 C'5"1

with the picture 0
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• ., . - ., . ."

The decision is correct

RECCC-,7 Z EXPD25 31!

•:ORITV D"CZDES CP.EDZrTLIz'7 OF H7'YCO2:.;E Z* :
0FcJ.CT Y0. 2
A2' LOCATIOLT 417 54
"0 DE = 49

ALAI-O-?I2HE" DCCID.':F Ct ..: LZT-7 OF 'P2'I:
01JEC HO. 5
A. LOCATIOV O S2
TO DL.' = 4 5

EXW233L We now made a cosmetic chane- in the code. We now print out the

credibilities of all object hypothesis above a certain level (NAGREE) and also the

final decision.
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For

j * . -519 - 4-j 5,' '

5X1"0.155 S~rn C$~5-6 C0f C51S I C 545 1S C 2

ZOJO =O

r U .j; 1 l

SL Q- itO7~ , '

.

L'OCZI; ?

C~"0 02

SG5 75

OBJECTCTS 7

and 0
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the algorithm mistakes object 3 for -object 1.
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,,

c." .; ' . S

T- : T.'J =

,$l . '-.*. '-,e.. .,

,L.'. ......... ~ DCZDE C.89 2ELZ' " C 2 c"''.

0 cC2 0 4

=t'Cz_7 7" : 8

O'..'L'Ci' F'C. 5
f0 ,. r 0 21

~~ S~

., .. . 06 S1

' .OC.,.iu, 35 51
... ".' 13

ODt:. CW. 0

"? LOc;2I! 66 91
~ (fl'i~E 3 5,

(:BJEC; 110. 1

ZT LCC ,I017 35 51
I'IL C2EDIPILITY 13

To look more closely into this we lowered the threshold constant K from

90% agreement to 85%. We then got the correct decision



a- -

, .. . . . .1 . .. . . . .

':"7 ;.*! = 5C
P 8.

5C5

5

"'" L.OC.?I101 40 50

DE C.D-

XJ CV L'EO. 2

Z 42

LG,:--77: D"C.DE

L , ", -- n s,

-. C' M-0. 1

C"TE1oV.

:2 LOCATIOJ? 3 51

.r.SUL2 0£ DECSO D"?CZSIZ'P2IO01_ '$"

.4U LOCM"IO' 86 86

uIT. CREDZBZLITY 53
This turned out to improve performance. The reason is of course that it

allows for high noise level. However, it tends to make the lists TESTSEL and

TESTSLOC a good deal longer, which requires more CPU time. We shall return to

this question in section 12.
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EXZDiA3ML We got

t 1'/,

., , =
1C .5713, :.C; 1C .3223,,L2 8 .C77025 ,41

12-5 21L

110. . 27E 1 r 7 C

1 c 2x.". :: ,c3: -. " "'. 2 17 S . :, , 31 C' 2 5 C: G. 12 57 OP3 £ 7

57 1i:-
£'L.:CL" OIfzJ'T2

4... . . 1
1

L

.5 75
C'.JE'CTC2 ?

.z,L ...,.- sE 1 3;;
,: .. S.. 0 02 1

1
-[',:*'

85 75

U:

0

and
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The decision was



w48

RFC009Y~ZZZ CXPD14 3V'
ALCOP1IH DZCZDES CREDDZ52o OF &ZC2~SS

AT LOC.45210. C"7 84
TO BE = 4 3

ALGO.rIT;1I! D4 iCDZ'S C.2 IZ31I5Y o P z'
ODIrC2Fo. 3
AT? LOC.'T7zOZ. C0 04
r520 DE =4 2

ALOORPZT~tT:!J D"CZ.' c:!'ivr1LZ5* :7 21'"~ 7:ss

03JL'CT Z*0. 2
1.2 ZIC5.Y

ALGORITII 37IE CJ71:DI1LIT52: or L'rP052E,"SI:

'LOCAT.2XG2' 14 80

OJJLIC5217 R2. 0
L0CAfZI0.' 15 70
F3S D = 24

.~~conz ~ 85 DE:17$CD9'L;5r7 C7

0DJ2C5 PC I.
AT5 LOCATZ0! Sii4 39

13

1?i.'SULT 091 '--1Z1.3r. -1.7!C42ZO7 Xe':
CJC2'C LT. 4
.'12 .LOCR -IL7 '7 0

:CrJ2CAT1. 14

'%-'! CF~rD 1P Ljm if

which looks correct but is not. Indeed, the object recognized as no. 1 has its

center located at the point 94,89 instead of at 45,45. It is just luck that the

algorithm claims to have recognized no. 1.
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7.4. The experiments carried out so far indicate that for the given model

the algorithm

(i) performs well as a detector/recognizer when there is little or no

obscuration

(ii) performs less well as a recognizer when obscuration occurs, but still

fairly well as a detector.

In the latter case lowering the k-value to 85% leads to noticeable better

performance.



v Z*S1 DOT# S2g11;12;NI;N2;VARI;VAR2
CA] ACRI7~rRTOPY FOR SMAT. IN-VARTA NCR
£2] RAND ALSO LARGE Ofl'-VARTANCm
E33 11pSl
[4] N2*pS2
£53 N1.-(+/S1)*1l
[63 M2eC.1S2)*12
£73 VAR1,.+(e/S1-NI)*2)*I1
E83 VAR2.-(./(52-N2)*2)*12
E9] Z+(VARliCl7IS7')XVAR2

V

V Z*CRANGN FIR rDgNEANSgVARS;T
£13 74-0
£ 2] MANS.-Flr.D
£33 VARS.PIEJrD*2
£4] LOOP:NRANS.NRANS.NJ£T:034r0] NJ£T;134FIr.tD
E53 VARS.-VARS+1J£T;o]*ro3 NpJ£T:1l*F~rD*2
£63 74.7+1
£ 7]3 4'(78)/LOOP
£8] Z.-(VARS-(NRANS*2)t9)<12x7CONSTF

v

V Z4.FEV CLEAN Z;7T;NfIGR
[13 ARRNOVIS PINTSr. WV? FEW NEIGH RORS FROM
£ 2] mBINARY IMAGO Z
£3] 74-0
£4] RNRIGH.(PX) PO
£53 LOOP:INIGH4NEIZGH.NJ£T.;0J4ro] NJ7Y;11*I
£6] .7+1
£7] -*(T(8B)ILOOP
£ 83 Z.ZANNRIGH> FEW

V

V COLLRCW;T;C ;IN.TRToR
[13 mCnLLRCTS ALCINOBJRCT OUMEP7TYPES INTO 3-DTN ARRAY
£2] ACALLND ALOBJECTrS
£33 RACH OBJECT REPRESENTED AS LxL DTGITAL BINARY PIC 'MIRE
£4] 74.0
£53 ALLOBJNCTS4-(IOBJRBCTS.L.-L) p 0
£6] LOOP:C4-&( 'OBJEXCT) sy7
£7] C,.CxLSCALEr
£8] C£;0].C£;OJ.O.51
£ 93 C£;134.C£;1]..i9
[103 INSTDR
£113 ALLnBJECTS(7; ;]-iNTER TOR
£123 74.7.1
£131 .f(TCNOBJE9CTS)/LOOP

v



V COORDS+CoORD BOOT.E;ROVS;ROUNUS;CO.S;COUIMs;Li aL2
E13 ArRAISFORMS LlXL2 BOOKA TRMNAI'RT BOOT.R INrO 2-cO7.uNN NATRTI COORD:,

CS3 L1..s(pBOOr.N)E0]
E43] L24(pBQoonl)El]
E53 NROVS.,I./1BOOT.R
E63 COORDS.-(NROVS.2)pO
E7] ROVS4C(tLl)*,xL2pl
CS3 ROVIUNS+ROWSxOOKR
E93 COORDSE;034.( .BOOt.)I*ROVNUMS
E103 COLS*(Llpl)*.xtL2
iii COLNUNS+a-CLSM BOOKMf

£123 COORDS£ ;i).C .BOO~1.EI COLIUNS

V Z.-SI CORR S2
E13 ACOIEPUIS CORRMrATZrOI
E2] 24(+/+/SIXS2)++I+C(-S1)x'-S2

V Z.KX CUTOFF FIET.D;RZ;Q1;Q2;03
E13 ACONPUES THRISROLD VALUR FOR FTEt.D
E2] Ze.OFTIT.D
E33 Z.-ZEAZ3

E53 Q1..ZL0.25xN2]
L6] Q2*ZCLO.SxNZJ
E73 Q3.ZELO.75XNZ3
E83 Z4.Q2'x(Q3-Q)*2

V DISPLAY Z;-MNI;AZ;D
E13 NAz..,rlrlz

£33 D+NAZ-NINF
E43] 4Eo]340 o.*'rI(-I)D. 0.2 0.4 0.6 0.83

V Z4EBLDIS.T;I;J
E13 *CONPUTIS HAMNG DISTPANCH MATRTX Z
E2] mFOR ALL SHAPR ILENRNTIS
E33 Z.-(2pISLCRS)pO

E53 LOOP:ZEI;J].ZEZC: I/,ISLICRS(I:;J-SLICRS£Jr;:3

(7) +P(I(ISLICRS)ILOOP

E9) *CJ4fNSLICRS-1)/ILOOP
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V ESTGEIS FIET.D;T;TKNP
£1) aESTIMATES GENERATORS FROM DATA=FT1ZD
[£23 24-0
E3) RESULT. 0 3 p0
('4) PRESULT HAS AS ROllS U*YV.T-VALURS
E53 LOOP:TKNP*SLICRS£Ta;J
E6) LT'EMPT+(pTEMP)£03
£73 L.TEMPY4-(pTRMP) 113
Es) VIEW FIET.D
E9] SEARCH CRITER TON
1103 RESULT.-RXSULT.£03 T,COORDS
Ell" T4.7+1
[123 *e(T<C pGENERATORS)[03) /VC,

V Z4H LIST EVIDENCE TLIST
E13 ACOMPUTES DEGREE OF EVIDENCE FOR HYPOTRESTS (OBJECT)
£2) ASPECIFIED BY SHAPET.EEMRNTS\LOCATIONS IN 3-COLUMN MATRIX BLIST
E3) ASUPPORTED BY 3-COLUMN MATRTX TLIST OF TEST RESULTS
£43 AGLOBAL SCALAR WRIGHT EXPRESSES IMPnRTANCE OF DTSTANCE
£53 PBE2'WEEN SE APR ELEMENTS AS COMPARED TO EFICLIDEAN DISTANCE
E6) mEETWEEN LOCATIONS
£73 Z+-DIST8EHLIST£ ;0J;TLISTE;0)]
E83 Z4.-(ZxWEIGHT)../El3(n 1 2 1 WHIST£; 1 2J..-Trisrt; 1 2J)*2

V Z4-FINDGENS;T ;ALLOBJECTS1
113 ACOMPUTES GENERATORS (SHAPE ELEMENTS) FROM OBJECTS STORED
E2) AIN ARRAY WITY GLOBAL NAMR ALL OBJECTS
E33 ARESULT STORED IN 3-DTM ARRAY Z
E43J Z.-(0.LTEMPy.LT8MPY)p0
[53 T4.0
£6) ALLnBJECTS1.( (PALLOBJECTS)+(O,(2xLTENPT) .(2xLTEMPY) ))pO
£7) ALLOBJsESIE :LTENPY+iL;LTENPY+iL3).ALLnBJEcTS
E83 LOOP:IMAGE4-ALLOBJECTsirr;;
£9) Z4-z.Eo3 DIST SELECT IMAGE
[10) T+T+1l
E113 .§(T<NOBJECTS)ILOOP
[123 Nr,4(PZ)E03

v Z.-S1 FISHER S2;Ni ;12;Mi ;M2;VARI ;VAR2
£1) nCOMPUTES FISHRR TYPR CRITEZON FOR VAR TA CRS
£2) AOF THE TWO SAMPLES Si AND S2
£33 N14-pS1
£4) N2*P52
£5) M14-(+/S1)*N.
E63 M24-(+/2)fN2
E7) VAR1.-(+I(S1-Mi)*2)+N.
£8) YAR2+-(+/(52-M2)*2)g.N2
E93 Z.-(-(OVARI+0.0001)-.VAR2+0.Oo0iA,((,N1)+,N2)*O.5
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V Z4--FORMLIST HYP;T
[13 FiFORMS LISTS HYPLISTETC FOR HYPnraSTS NO. HIP
[23 NT-+(pTXSTSEL)EOJ
[33 TLST*(NT*3)p0
E~43 TLIST( ;O)-TESTSEL
[53 TLIST£; 1 234-TESTSLnC
£63 itNH*-(pHYPRL'.(YRIP).')roJ'
£7) HLIST*(NR,3)pO
£8) i'HLIST£;O)4-HYPRLtsCYHYP)
£9) .a'HLISTE;1 23hHYPL0C'.vHYP

V

V BLIST FULLTEST TLIST;I;J;NH;TLISTI
£13 RCARRTES OUT ALL TESTS FOR GIVEN LISTS
£2) ATRYING TO MATCH REr.ATIVE POSTTIONS
£ 33 1-J-4-O
E'43 NH4-(pH1LIST)EO]
E53 NT-o(pTLIST)£O)
[53 NAGREEMAX.O0
£73 ICEEPI'AX4-xNT
£83 LOOP:OFFSET+HLISTEI; I 23-TLISTEJ; 1 2J
£9) TLIST14-TLIST
£103 TLIST1£; 1 2)4-TLISTt; 1 23+(NTPl)o.xOFFSET
Eli] )EEP4-HLIST MATCH TLISTI
[1 23 *o(NAGREEMENTS~gNAGREEMAI) /LnOP2
El13) KEEPAX4Z-KEEP
[14) NAGREEMAX.-NAGREEMRNTS
£153 LOOP2:Ie4-11
£161 .o(.rNH)/LOoP
£171 14-0
£18) ;4-cJ+l
£19) .1(J<NT)/LOOP

v

V GENHYPLISTS;T;S;OBJECT;SUR;EHMNG;BEST
£1) ACOMPUTES LIST CALLRD HYPR. OF SRAPR ELEMENTS FOR EACH OBJECT
£2) AAND LIST CALLRD HYPLOC OF CENTER COORDINATES OF FITTED SHAPR ELEMENTS
£33 ASSUMES AVAILABLE:3-DTM ARRAY SLICRS OF
£43 aSHAPE ELEMENTS
[5) NSLICRS*(pSLICRS)[03
C£63 T4-0
£7) OBJEC24e(L+2 xLTENPY. LTEMPY)p 0
E£8) LOOPI :OBJECT£L.TEMPY+ tL ;L.TENPY+ tL34-ALLfBJKC'PSE2T;;3
£9) ANOW COMPUTE LIST OF SURPICTURES ALON4 BOUNDARY OF OBJECT
£10) aSEPARATED BY DISTANCE CALLED DISTRYP
El) SUB4-DTSTHYP SE1ECT OBJECT
£12) &( 'HYPLOC,T).'+-CRNTERS'
£13) 54-o
£14) 1 ( 'HYPRL I vT) * 4-MBPO f
C15) LOOP2:HAMMING4+++ISLICRS-(NSLICRSp1) ..xSUiRES;:)
£161 BEST14HAMMINGWE1/AMMING
£171 &( 'HYPRL' .vT),*'£S)+-BEST'
£18) s+S+1
£19) -*(S<NB)ILOOP2
£20) T,4-T,+1
£21) .'(T<NOBJECTS)/L0OP1

v



V Z4-GENOBJECT NPOIVTS;T
E13 11GENERATES POLYGON wiTH NPO rmTs VERTICRS
£2) Z4.(NPOINTS92)pO
£33 t-COORDINATES'
E4) ZE;03+O1
E53 'I-COORDINATES'
E63 ZE;i3i-D1

V RANGE.GEN1SCRNE IEILLS;X;ANS;LnCATION;OBJECT
E13 aOENERATES SCENERY WITH NHILLS HILLS,
E23 nSXY% AND OBJECTS
£33 Z.-GENTERRAIPJ NHuLLS
E4) Z4-ZSCALExZ
E53 ZE;(LY-LSKYI+tLSKY).SXY
E63 n2SCALE IS HEIGHT SCALE
E73 Z'sZ+WHITE SMALLSCALE
£8) I4.o
£9) RANGZ4e(LZ.LY)p1000
E10) LOOP1:RANGEEZ;3)+STGHT1 ZEI;)
Ell] Z1+1.1
E12) -.(XCLZ)ILOOP1
£131 RANGE+-RANGE+L0 .5+wHITE BACKGROUNDERROR
E14) LOOP2:'PLACH OBJECTS?'
£15) 'ANSWER 0 OR 1'
E161 A NS+O0
£171 +,(APJS=0)/LOOP3
£183 'LOCATION ?'
£19) LOCATION4+O
£20) 'OBJECT ?I
£21) OBJECT+OE
£223 LOCATION PLACE OBJECT
£231 .*LOOP2
£24) £00 P3:RANGE4-RAJGE+LO .5+WHITE OBJEI7TERROR

v



V 2'RRAIV+-GENTERRAIN NHTLLS;T;A ;B;C txs;rs;xo 570
E1.3 *GENERATES BACXGROJIND OF HILLY LANDSCAPR
E2) mWITH NHuLLS HILLS
E3) ASHAPM OF HILL CONTROT.LRD BY A'S AND B'S
E43) WHIGHT OF HILLS CON'PROr.LRD BY CIS
E53 AGLOBAL VARIABLE POWER CONTPROL.S POWER LAW
£6) RDISTRIBU2'ION FOR HILL HRIGHTS;NMGATZVE VALURS GIVE PARETO
£7) mDISrRIBUTIONS
[8) T4-0-
(93 TERRAIN+-(LI.LY)po

E113 754- lLY
E12] LOOP:A.AMIN+(ANAZ-AMIN)X1E-Bx?100000000
E133 B.-BMr+(BMAX-BMIN)xlE-8x?100000000
E14) C*.CNIN+(CMAZ-CMIN)x(1E-Sx?100000000)*POWER
E153 'A.B.C ='
E161 A.B.C
E1.71 X0+-?LX
E18) YO.-?LY -

£193 'XOY0 = I--
[20) 3XO YO
E21) to
£22) TERRAINI*TERRAI+C,1((((XS-Xo)*A)*2)..+((YS-Y0),B)*2)*0.5
E233 T4-T+1
E243 *l(T.CNHILLS)ILOOP

V

V Z4+IBOUNDARY IIIAGP;.T;OIIT
E13 RCOMPUTES INNER BOUNDARY OF SET IMAGE
(23 RUSES NEIGHBORHOOD DEFINITION IN TERMS~ OF TWO COL.UMN MATRIX
(33 RHOUNDARY OF MATRTI IMAGE MUST BE FREE OF 1'S
C43 J 82p0-1 11 1-11- -11(53 OUT4-(pIMAGE)po

E7) LOOP: OUT+OUTv..Nj[T; OR403 N#Y(T';1)4tMAGsE83 T4.1
E93 -0CT< (pNJT)£o))/LOOP
(10) 24-IrMAGEAOfIT



V INSTDE;V;C1:7:Z;X;NI;LNFT;RrGHT;IN
E13 ACONPUTES DIGITAL PICTURE OF POINTS IN
[23 ALxL-LATTICK INSTDE POLYGON
[33 ADESCRIBED BY Lx2 MATRTI C
[43 V-( iL)+L
E53 Cl44W~03 C)-C
[6) INTERIOR+-(L.L)pO
[73 +,((1s-eicir;1J)A01IlLxCE;1)WARNTNf
[8) Y-40
[93 LOOPl:Z.-(7-CE;13)Cl[;l].0:Clt;1)
E103 X+C[;Q)+ZxCl[;0J
El13 Z1+Z~l
E12] .C((o$ClE ;13)A(Zlk1)A(Zl&2)A(Zlc2)v(zi=2)AOclr ;i~xi~to) clE;1)3)/z
E133 X4-XE4X)
[143 114-pZ
E153 +,(01NX)/LOOP2
E161 LKFT'rXE2xiNX*23
El7] RIGHT+-XEl+2xtNX*23
[183 IN*4(V/ (V*.kL9FT)AV*.&RTGHT)/IV
[193 INTBRIOR[LxIN;LxY34.l
[20) LOOP2:7.++L
[21) -- (Y<l)/LOOPl
[223 -o0
[233 WARNING:tDATA NOT WELL CONDTTIONED FOR ALGoRTTYRM! t

v

V Z4-Sl KOLMOGOROV S2;11;N2;ZS;Fl;F2
E1) ACOMPUTES KOLMOGOROV-SMIREOV
E2) ASTATISTIC (STANDARDIZED) FOR SAMPLES 51 AND S2
E33 nl~w
E43 N24-PS2
E53 ZS4-Sl.S2
ER), ZS.4-ZSEAJZS)

[83 F24-(+/ZS*.S2)*N2
[93 z.-(rIF-F2)X(1xN2*NlN2)*0.5
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V Z.-K L9DESGUE SLICRS;T;NSTNBALL;S;MAI;CLOSE
E13 AESTIMATES LEBESGUR SET BY CHOOS TUG X
E23 PBALLS OF RADIUS=RADTUS WITHl HIGHEST DENSTTV
E33 Z.-(0.LTEMPY.L.TENPY)po
E43 T4.o
E53 LOOP1:*l(0=(pSLICES)(OJ )/END

E7) NSTNIBALL.-(pSLICES)E0)pO
E8) L00P2:NSINBALL(SJ.-SLICRESS; :3 NTNBALL SLICRS
(93 S4-5+1
(10) *i(S<(pSLICES)E0))ILOOP2
E113 MAZ4-NS1NBALL ifINS TNBALL
E123 Z4-Z.E03 SLICNEMAZ:;;
E133 CLOS14sRADIUSk+/+/ ISLICRS-( (pSLICRS)Eo~pl) e.xSLICP!SEMAI; :3
E143 SLICES+(-CLOSIE0) SLICES
(153 T.r+i
E161 *(T<X)ILOOPI
E171 PNOW DELETE EXTREME GENKRATOR ESTIMATORS
E18) EID:DROP,-(0.3xLTEMPYxLTEMPY)C 1(0 .5xLTEMPYxLTEMPY)-+/+/Z

E203 ISLICRS4i-(pZ)(0)

V KEEP4.HIPLIST MATCH TLIST ;AGREEMENTS ;NROVS ;NCOLS
E13 RTRIES TO MATCH SUBSET OF TEST RESULTS IN 3-CO IUMN
E23 PiMATRTI TLIST WITH SUBSET OF SHAPR ELEMENTS/LOCATIONS
(33 s
(43 ARESULT Z IS VECTOR OF SUBSCRIPTS IN TLIST THAT SHOULD BE
(5) ADROPPED FROM TLIST AFTER MATCHING
(63 AGREEMENTS.HYPLIST EVIDENCR TLIST
(73 IRO US4 ( pAGREEMENTS) (0)
E8) NCOLSe-( pAGREEMENTS) (1)
(9) KEEP. iNCOLS
(10) MAI4-r/(03 AGREEMENTS
E113 AGREENENTS4-(AGREEMENTS ( NROVSpi) *.xMAX) AAGREEMENTS>AGREE.RVEL
(1 2J NAGREEMENTS.-+/v/ a) AGREEMENTS
(131 .j(NAGREE>NAGREEMENTS) /0
(143 KEEP.C-v/EOJ AGREEMRNfTS)/:NCOLS

V Z+S1 MAXDEV S2
E13 z.-((r/.52)-L/.S2)*.0.00i+(r/.S1)-L/.S1

V CENTER.-MAILOC FTET.D;BOOT.R;U;V
(E1) mCOMPUTES LOCATION OF SOME (!) MAXIMUM OF FTET.D
(2) CENTER*-2p0
(3) BOOLE.-FIELD=r/ r/FIE.D
[43 U4-(v/BOOT.E)il
[53 V4-( .BOOT.E(U;)) ai
(63 CEN.TER(03.( UxSTEP)+LTEMPY.2
E.73 CENTER(1).( VxSTEP)+LTEMPI.2



V Z-C ENTER NIBALL SLICftS
Ell m3-DIM ARRAY CONTAINS SLICRS OF SIZE LTENPXLTEMPY
E2:3 fCONPUTES NUMBER OF SLICES IN BALL CRNTRED SLICR:CMNTER
E31 ARADIUS OF BALL=GLOBAL VAR TABLP RADTUS
E43 Z.+/RADIUS>+I+I ISLICES-((pSLICRS)£03p1) .XCR!NTPR

v

V LOCATION PLACR OBJECT
[13 N.RANGREr(-L.2)+(UL)+LOcATIONE03;rutL)+LOcATIONE13J
£2) RANGE~r(-L.2)+(iL)4LOcATIONE03;ruxL),LOCATONE133)ML(LOcATON1)

EOBJECT)+10000X1-OBJECT
V

V RECOGNIZE IMAGE ;S;T ;LOCATIONS;NAGREEMAIS;PERM; LOCLIST ;NEWLOC
113 ACOMPUTES CREDIBILITY OF LZIELY RYPOTRRSES
E23 APOR RANGE DATA IMAGE
E3 .0
E43) TISTS1 IMAGE
E5) LOCATIONS* 0 2 p0
£6) NAGREEMAZS4- 1
E7) NT.-(pTESTSEL)EO3
E8) *o(0:NT)/0
£93 LOOPW~FORMLIST '.'7T
E103 BLIST FULLTEST TLIST
E13 *o(NT=PKEEPMAX)/LOOPI
£12) LOST4 ( -( i NT) eEEPMAX)/t NT
£133 LOCATIONS4.LOCATIONS9£0L(./tO) TLIST[LOST; 1 23))*LOST
[14'&3 NAGREEMAXS.-NAGREEMAIS ,NAGREENAX
£15) LOOPI:T.-T+1
£161 -*(T<NOBJECTS)/LOOP
£171 54-0
£18) PKRA44NAGREEMAXS
£19) LOOP2 :.,(S=oNAGREEMAXS)ISUWIARY
£20) 'ALGORITHM DECIDES CREDIBILITY OF HYPnTNESTS:'
E21) 'OBJESCT NO. '.V(('ipNAGREENAIS)£PP!RMJ)ES3
£22) #AT LOCATION '.y(LnCATIONSEPRRM;3)S;3
£233 'TO BE = '.V(NAGREEMAIS£PXRM3)S3
E243 tO
£253 S4.1
£263 1 LOOP2
E273 SUMMARX:iO
E28) 'RSULT OF DECISION FUNCTION IS:'
E2S3 S4-0
£30) +l(S:0NAGREEMAXS)I0
£313 LOCLIST4. 1 2 p1000000
£32) LOOP3 :NEWLOC+-(LOCA.TIONSEPRM;)E)S;)
£333 *(MhNDIST>'L/+/tLOCLIST-(CpLnCLIST)£0)p1)..xNRWLnC)LOOP&
E343) LOCLIST.-LOCLIST.£o) NEWLI7C
£35) 'OBJECT NO. '.i(UipNAGREEMAZS)£P9RM)£S
£361 'AT LOCATION 9.VNEWLnC
£371 'WITH CREDIBILITY '.,(NAGREEMAXS£PRRMI)E)SJ
£38) iO
E39) LOOP4:S.S.1
E4~03 *,(SpNAGREEMAZS)/LOOP3

V
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V RECOGNIZER;'; NT;LOST;CRED
EA3 PRECOGNITION ALGORTTNM FOR RECOGNTZIN( OBJECTS
E23 mIN IMAGE REPRESENTED EB' GLOBAL VECTOR CALLRD TLIST
E33 r4-0
E'43 LOOP:ltFORNLIST tovT
(53 BLIST FULLTEST 2'LIST
E63 -. (o=Nr)/0
(7) *,(NTaoKEEPNAX)/LOOPI
E83 'ALGORIrNM SUGGESTS HIPORHSTS: OBJECT No. '.i)'IN IMAGE'
£93 LOS'-('-( iNT) aEEPMAI)I/iNT
E103 LOCATION.-L(+/£03 TLISTELOST; 1 23))oLOsT
E113 'WITH LOCATION AT '*vLOCATION
(123 'WIrh CREDIBILITY '.yNAGREEMAX
£131 t0
E1143 LOOPl:T+Tf+l
£153 *'(TCNOBJECTS)ILOOP

V

V SCALEDi.LEVELS SCALE IMAGE ;MIN;MAI
113 A4SCALES IMAGE TO GREY LEVELS
£2) '4LEFT ARGUMENT =NO. OF GREY LEVELS
£33 IMAGE.-orIMAGE
(E43 MIN44LILIMAGE
(5) MAX..-rlrIIMAGE
E53 SCALED-L (LgVELS-1)x(INAGE-MTN)*MAX-MIN

V

V Z.-SCALE SCALING OBJECT
E13 ASCALKS AND PLACRS OBJECT IN LxL ARRAY
(23 C.-SCAL~xOBJECT
D33 C£;03.c[;03.e.2
E43J INSTDE
£53 z.i-NTRIOR
[63 Z44(3?*z

v

V Z+-DIST SCREEN BOUND;CLOSE
E13 ASELECTS SUBSET OF POINTS FROM BOIIND=2C01;UMN MATRTX
£23 APTs SEPARATED BY DISTANCg ZDIST
£33 Z* 0 2 p0
£E43 LOOP:.(0=(pBOUND)£03)ln
£53 z*.z.£o3 BOLINDE0;)
£6) CLOSE4-D~cbTk+IIBOUND-C(pBOUND)E0)p1)..xBOUND[0;)3
£7) BOUND4-(-CLOSE)IE0J BOUND
E83 *oLOOP

V
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V SEARCH FIET.D;FIETDI:LXF;LYF;TNRESHOT.D;BOOT.R;IS:YS;Z
E13 ACOMPUTES LIST COORDS OF SEPARATED MAXIMA OF FIEKrD
E23 AMIN SEPARATION DISTANfCE=NRIGH
E33 ACONSTANT X DECIDES CUTOFF L9VEL
E43 LXF*(PFZSLD)EO3
£5) LYF4-(PFIBLD)E13
£6) COORDS.- 0 2 p0
E73 TffRESNOLD+ExLTEMPXLTEMPY
E8) FIELDI+FIELD
£9) LOOP:Z*2p0
£10) BOOr19E*FIELD = rl/r IFIELDI
E113 ZE030)(/BOOTE) a
E12) ZE13.-(.BOOL8E£ZE);3)t1
£13) .$(PIELDIEZEo);ZE133)TRRSHO.D)f
£143 COORDS*COORDSs£O) Z
£153 xs.(orZEo)-NEIGH).LXFIZEO)+NRIGH
£161 Ys.(orZ£13-NEIGH).LYFLZ£13.NEIGH
£171 FIRET.1£S£O).iXSE13-XS£O) ;YSE0)+iYS£1)-!SE0)).100000000oo
£18) *LOOP

V SEE IMAGE
E13 (t O')E4Eo)hIMAG83

V SEEGENS;.T;FRAME
E13 T4O
E23 FANE4(2+L.TEMPX.LTESMPY)p t*t
£3) LOOP:FRAMRE£1iLTEMPX;1+tLTEMPY3W(' o')ro)kSLICRE£T;;)]
E43) fSHAPE ELEMENT NO. '.T
£5) FRAME

£71 T4-T+1
£el *i(T<NSLICRS)/LOOP

V Z4DIST SET.ECT IMAGE ;BOUNDARY ;NRWBOIINDARY ;T;IVEC ;IVEC
E13 ASELECTS SURPICT1IRES OF SIZE LTEMPINL2'EMPY FROM IMAGE
E2) mCITERED AT POINTS ALONG BOUNDARY OF IMAGE
£3) ASRPARATED BY DISTANCE DIST
£4) AVARNIIG:ISKT IN IMAGE MUST BE AT LRAST LTEMPY.LTEMPX FROM
£5) mBORDER OF BOOLEAN MATRTI IMAGE
£6) BOUNDARZ+IBOUNDARI IMAGE
£7) NEVBOUNDARY4-DIST SCREEN COORD BOUNDARY
£83 NB4.( p NEWBO UNDARY) £ 0)
£9) CRNTERS4(NB.2)pO
£102 Z4(NB.L.TEMPX.LTEMPY)pO
1113 XVEC.-(-ILTENPX*2)+iLTEMPX
E123 YVEC+-(-LLTEMPYf2).iLTEMPY
£133 T4-0
E143 LOOP:ZET; ;3i-MAGENEWBOUINDARYET;,o).XVEC;NEFJBOUNDARY[T;1)+YVEC)
E 153 CENTERSET;J'eNSWBOFINDARYET;)

£171 -*(T<NB)/LOOP
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V RESULT4-SELECTALL ;T ;ALLOBJTEC7S1
(12 AITERATES FUNCTION CALLRD SlE.CT ON ALL OBJECTS
E23 T4-0
E33 RESULT4-(0 LTEMPX%.TEMPY)PO
E432 ALLOBJECTS1*C(NOBJECTS.(L+2xLTEMPYT) L+2xLTEMPY)po
E53 ALLOBJECTrS1(;LTENPX+ iL;L.TENPI+ L32+ALLnDJECTS
(6) LOOP:RESULT'sRESUL.T&[03 DTS SELECT ALLflBJECTS~rT;;3
[7) T.T.1
(83 -1 TCIOBJECTS) ILOP

V

V Z.-SIGH.T1 FTET.;APPRAR;T
(13 PCOMPUTES RANGE DATA FROM GIVEN IEIGH7 FIELD
E23 PELEVATION ANGLE IS PSI IN RADTANS
E3) APPRAR+-FIELD+( iLY)x3OPSI
[43) APPMAR44 \APPEAR
E53 24-LYp0
E63 T4-1
E7) LOOP:ZET)4, (APPRAR(T))'r/APPRAR~tlT))xT
E8) ZET)4.zET3,ZE(T-1)xAPPRARET)&rIAPPRAR(iT3
(9) T.-T+1
(10] 4i(T<LY)ILOOP

V

V Z4-SKI
(13 N GENERATES BACKGROUND SKY
(23 Z+-(LX.LSKY)pDNAZ

v

V Z4-S1 STUDENT S2 ;NI;N2 ;741;M2 ;SD1 ;SD2
(13 ASTUDENTS CRITER TON FOR TWO SAMPLES 51 AND S2
(23 114.p81
(3) N24-PS2
(43 M1.-(+/51)*N1
(5) M2.-(+/S2)fN2
(6) SD14-((4/(S1-M1)*2)*N1)*0.5
(7) SD2.-((+/(52-N2)*2)+N2)*0.5
(83 Z.-(IMI-M2),0.0001+(((SD1*2).N1)+(SD2*2)*N2)*0.5

v

V TESTS IMAGEP;NSLICRS;T
(13 pCOMPUTES VECTOR TESTSEL.OF SHAPR ELEMXNTS
(23 siDETECTED IN IMAGE. AND 2-CO UMN MATRIX TESTSLOC
(3 AWITH THE COORDINATES OF THEIR CENTERS
(43 mUSES 3-DIM ARRAY SLICES OF SELRCTFED GENERA TORS=
(5) ASHAPE ELEMENTS
(6) TESTSEL~tO
E73 TESTSLOC- 0 2 PO
(83 NSLICEPS4-pSLICEs)(0)
(9) T4.0
(102 LOOP1 :TEMP4-SLICE(; ;
E113 VIEW1 CHANGE IMAGE
(123 SEARCH CRITERION
(13) +l(0=(pCOORDS)E0)LlOP2
(14) TESTSEL4-TESTSEL.((pCOORDS)(0])p.T
(153 TESTSLOC4-TgSTSLnOC 30 TRANSFUVS COORDS
(161 LOOP2:T4-T+1
(171 .CT<NSLICES)/LOOP1
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v TrSTs1 INAGE;T;S;BOUNDARY;NBOUND;BOOr.t;NX;NY;THRESSOT.D
[13 mCONpurES VECTOR rEsTSEL OF SNAPRf ELEMNS
£23 oDETEC2'ED IN IMAGE., AND 2-COL MATRiX TESTSLOC
E33 aV12' THE COORDINATES OF THEIR CENTERS
E143 AUSES 3-DIN ARRAY SLICKS OF SELECTED GENNRATORS=
E53 RSHAPE ELEMENTS
E63 mMUCH REDUCED SEARCH EFFORT
E7] 2'ESTS9L4-t0
E83 TESTSLOC4- 0 2 p0
Es3 S.T.0o
E103 ZMA GE'-FEW CLEAN CHANGE IMAGE
E113 BOUNDARrY.COORD IBOLIRDARYwIMAGE
£123 NX.--LLTEMPX*2
E133 MYI.-LLTENPY*2
£114] 2'RESHOLD4-KxLTEMPXxLTEMPZ
£153 BOOLE4((-MX)CBOUNDARYE;03)ABOUNDARY£;oiCLX+Mx
E161 BOOT.E4-BOOLEA( (-MY)<BOUNDARY£ ;13)ABOUNDARY£ ;13]LY+NY
E171 BOUNDARY*oBOO.E/£03 BOUNDARY
E183 NBOUND*(pBOtINDARY)E0]
193 LOOPl:TEMP+ST.ICRSET;;3

£20] *+(THRESHOt.D>TEMP CORE IMAGE £MX.BOUNDARYES;0)+ iLTEMPY;
MY+BOTINDARYES;l)+ iLTEMPY3) )LOOP2

£21] TESTSEL4TSTSATh
£223 rEsTSLOC*.TESTSLOC.E0] BOFINDARYES;3
£233 LOOP2:S4+1
E243] .l(SNFBOUND)ILOOP1
E253 8.0o
E26] T+T+l
£27] .'( T<NSLICJS) ILOOPI

v

V Z.-TRANSP Ut'S UVS
E13 ATRANSFORMS UV-COORDINATES TO II'S
£2] Z*(pUVS)PO
£33 2£ ;o.L(UVS£ ;03xsTEp)+LTEMPI*2
£z43 ZE;1].L(UVSE;1xsTEp)+LEMPY*2

v zeTURN MATRIX
£13 ,TURNS MAYT T FROM MATRIX COORDINATES TO 17'S
£2] Z4£ o]34MATRII

V
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V VIEW OBS;NUNX;NUHYt;V;SANPLEIV;SANPLOIT
[13 ACONPUTES CRITERION FOR RANG~E DATA
(2) RUSES CRITER TON DEFINED BY tTESTtV
[33 NUNI.-L(LZ-LTENPI)*SEP
[43 NUNY*L (LY-LTENPY) #STEP
(53 CRITERTON4(NUNI.NUNY)pO
(63 U4-V.-0
[7) LOOPI :SAN?LE.OBS( (UxSTEP)+iLTEMPZ; (VxSTEP)+lLTEMPY3
[8) SAHPLEIN.C .oTENP)1I SANPLE
(93 SANPLEOIIT.-( -TEP)1/ SANPLE
(10] CRITVRTON(U;V3.&( 'SAMPLED? ').(YTP:ST) .' SAMPLEOITt
1113 1141+
(123 .$(U<NUNZ)ILOOP1
(13) 11.0
(143 v.v.1

V VIEW1 OBS
(13 PCOMPUTES CRITERION FOR RANGE DATA
(23 R USES CRITERION DEFINED BY 'trSTtV
(3) NUNXi*.L ( L -LTENPX) * STEP
(43 NUM4L (LY-LTENPY) *STEP
(5] CRITERION+ CNUMI .NUHY) p0
(63 U*V4-0
(7) LOOP1 :SANPLE4-OBS( (UxSTEP)+iLTEMPX; (VxSTEP)+ILTENPY)
(83 CRITERTON(U;V).C .TENP) CORRoSAIEPLE
(9]* U441+1
(103 .C-U<NUMZILOOP1
[113 U14-0
(123 v4-V+i.
(133 .o(V<NUNYILOOP1

V Z4-WHITE STGMA;S
[13 xCOMPUTES GAUSSTAN WHTTE NOISE FIET.D OF S.D. STGMA
(23 RAND OF SIZE L~xLY
(33 5.0
(4) Z4-(LX.LY)po
(53 LOOP:Z4Z+?(LZ*LY)plOOOOOOOO
(6) S+S4.1

(83 Z*SIGAx6+1E-BxZ
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9. Instructions for Using Software Package for Scene and ATR Simulation

0. Inoucion

This software package, written in APL, is intended for the following

purposes:

a) to simulate terrain, placing of objects, and the noise of sensor

b) to compute optimal selection of shape elements to characterize a

given ensemble of objects: estimate a Lebesgue set in the space of

shape elements

c) to test for presence of objects in terms of their shape elements

d) to integrate the results of the tests by a parallel logic algorithm for the

detection and recognition of objects against clutter.

1. SIMULATION OF DATA

Choose size of picture (total size) as LX by LY. For example LX-LY-68 or

128. This is only limited by the size of the workspace that is available.

Choose vertical dimension of shy, LSKY, as upper part of picture. For

example, LSKY - 12.

Choose height scale ZSCALE. This is only for convenience: to be able to

make landscape feature large or small compared to object size after objects have

been defined. For example, start with ZSCALE - 1.

1.1. GENERATE OBJECTS. First define, for each object and orientation the

viewed object boundary by a matrix OBJECTO, OBJECTI, OBJECT2, etc. with two

columns; x and y values in respective columns. Here x and y axes have

conventional orientations (not as in matrix coordinates where first coordinate
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points downward and second to the right). Call, for the first object,

OBJECTO - GENOBJECT NPOINTS

where NPOINTS is number of corners in polygonal boundary. The user will be

interrogated for the x,y values of the corners. Result is the desired corner matrix.

First, set size LxL of object frame. Here L will be smaller than LX

and LY. Example: L=37 or 51. A prime number is convenient since that

will avoid a special condition when executing function INSIDE called by

GENOBJECT.

After all object types have been defined, say NOBJECTS of them, collect all

of them into a 3-dimensional array ALLOBJECTS by calling, after defining

LSCALE, relating coordinates in polygonal boundaries to pixel size in LxL picture

(for example -. 75) the function

COLLECT

N ' The number of objects in a simulated scene can be smaller (some object

types do not occur in the scene) or larger (some object types occur more than once

in the scene) than NOBJECTS.

To display a picture (quickly and crudely on the screen) given by a binary

matrix defined digital picture IMAGE with the conventional orientation of

coordinate axes called the function

SEE IMAGE

Which was the character 0 for an inside point (-I) and a blank for an outside

point (=0). This will give a rough idea of how easy/difficult it will be to

discriminate between the objects. Use for example IMAGE - OBJECTO etc.
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N When we call COLLECT, and later on GENSCENE, the function INSIDE is

invoked. Be sure to select x-coordinates that are not multiples of Il/L; otherwise a

warning statement is printed to indicate special conaition not accepted by the

function inside.

1.2. GENERATE BACKGROUND. The simulated landscape will have smooth

large scale features but also more chao tic small scale features.

The smaller scale is controlled by a parameter SMALLSCALE, for example

=.1.

We now call the function GENSCENE in the format

RANGE -GENSCENE NHILLS

where the parameter NHILLS controls the number of hills in the large scale

features.

This function also needs the parameter BACKGROUNDERROR = standard

deviation of the measurement errors of the range sensor, for example =10.

The function interrogates the user about placements of objects and their

location as a 2-vect.r with (x,y) coordinates. Respond to question about which

object by inputting digital representation of object, for example type 5:

ALLOBJECTS[5;;]

It calls another function GENTERRAIN that interrogates the user about

location of the objects. This function needs the following global variables, with

suggested values,

AMIN=4 AMAX=50

BMIN-4 BMAX-50

CMIN-3 CMAX=I0 or 5.



-67-

During execution the simulated values of A,B,C as well as XO,XY are printed for

each hill. The C-value determines the height of a hill, A and B the half axes of

their elliptical contours, and XO,YO their location, all expressed in pixels as

units.

The resulting LX,LY matrix RANGE contqins the measured distances. They

are obtained using the function SIGHTI, which neels the depression angle PSI (in

radians), for example .2.

1.3. UIIIS

1.3.1. To get a crude idea of a range field RANGE execute

DISPLAY RANGE

The resulting character matrix uses the symbols 'blank * 0 o 0' for increasing

values of the range.

1.3.2. In the IBM-CMS environment, to make the APL matrix MATRIX into

CMS file called MATRIX IMG

do

)CLEAR

)COPY IOFNS

)COPY WS MATRIX

'MATRIX DATA' PUT (20 FORMAT MATRIX)

)OFF

1.3.3. To rearrange matrix IMAGE for viewing it with conventional

orientation of axis do

NEWIMAGE - TURN IMAGE

and to scale it to NLEVELS grey levels
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NEWIMAGE - NLEVELS NEWIMAGE

for example with NLEVELS -64.

1.14, To form the 3-column matrix HLIST needed later, and whose first

column is the shape element list of hypothesis no. T, and whose two remaining

columns are (x,y) locations of the shape elements, execute

FORMLIST T

At the same time it computes the corresponding TLIST from the image. It

results in the global matrices HLIST and TLIST.

.. To compute the global matrix ELDIST of Hamming distance

between shape elements do

DISTEL -ELDIST

where ELDIST will be a NGxNG matrix of mutual distances; this is done after

FINDGENS, LEBESGUE have been executed.

Use the function SEEGENS to see generators (shape elements) obtained from

FINDGENS and LEBESGUE.

2. SELECTING GENERATORS

2.1. SHAPE ELEMENTS. Generators will have to be chosen as shape elements:

neighborhoods of objects view through windows of size LTEMPX,LTEMPY

centered at points of the boundaries of objects. For example

LTEMP-LTEMPY-9.

All the shape elements will first be computed and stored in a 3-dimensional

array ELEMENTS. This is done by executing the function FINDGENS which

needs the global variable DIST which separates points along boundary of objects,
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for example DIST-3. Execute the function as described below

FINDGENS

N It is necessary that object boundaries obtained from OBJECTS be at least

distance LTEMPX,LTEMPY away from boundary of LxL matrices in OBJECTS.

It is a good idea to display at least some of the shape elements, using the

utility function SEE or SEEGENS.

So that, after executing

COLLECT,

which creates a 3-dimensional array called ALLOBJECTS, do

SLICES - FINDGENS,

which selects shape elements centered at boundaries of all the objects.

2.2. THE LEBESGUE SET ESTIMATION. To estimate Lebesgue set in space of

all LxL shape elements we execute

SLICES - K LEBESGUE SLICES

where K is a number of generators, NG, wanted and a global variable RADIUS

designs the radius of the balls used to cover the Lebesgue set. RADIUS should

be fairly small, say 5-15, the local variable K around 20. (there is also a

global K!).

Execute GENHYPLISTS to form hypothesis lists HYPELO, HYPLOCO,

HYPELI, etc.

3. RECOGNITION OF OBJECTS

3.1. TEST LIST. To get the two lists resulting from the tests on the matrix

RANGE we execute
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TESTS RANGE

This computes a list (vector) of shape elements detected in RANGE and a list

(matrix with two columns) of the corresponding coordinates for the centers of

these shape elements.

The driver TESTS calls the following functions:

a) VIEW IMAGE

which carries out a test (done by the function named TEST) for a particular shape

element. Then looping over all the generators in the 3xLTEMPXxLTEMPY array.

It results in each time in a matrix CRITERION

b) SEARCH CRITERION

which computes local maxima in CRITERION separated by a 1 l-distance DIST

c) IBOUNDARY (to find boundary of a digital imge)

d) SCREEN (to select boundary points separated by distance DIST)

e) COORDS (to transform to pixel coordinates)

f) TRANSFUVS (to transform n,v coordinates to x,y's)

all of which are auxiliaries.

g) CUTOFF, use K-6 or smaller.

For TEST the user can select one of

STUDENT (computing standardized student t-test)

FISHER (for-Fisher's z-text)

KOLMOGOROV (for Kolmogorov criterion)

or he can substitute a test criterion of his own.

A global variable STEP controls how crude the search should be, perhaps 4

or 8.
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3.2. Now we can execute the driver

RECOGNIZER

It calls the following functions

a) EVIDENCE computes degree of evidence for a hypothesis specified by

HLIST on basis of data in TLIST. It results in a matrix AGREEMENTS.

b) MATCH which matches a HLIST against a TLIST. The global vector

KEEP is the set of shape elements tested that should be kept after discarding the

significant ones relative to the current hypothesis.

The function RECOGNIZER types out objects recognized in the observed

image.

3.3. An improved version of the above is the driver in the format

RECOGNIZE IMAGE

which calls the main functions TESTSI and FULLTEST.

If no object is detected in IMAGE nothing is printed. In the opposite

case the credibility of each object type is evaluated and printed starting with

the most credible hypotheses.

The scene can contain several objects, but, at present, not more than one of

each type. This can be generalized by using the vector KEEP and looping

through TLIST after the first run modified by dropping all its rows except the

ones labelled in KEEP.

I
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4. GLOBAL VARIABLES 'lND THEIR MEANINGS

name mn inL

AGREELEVEL threshold value used in accepting -10- -5
tested shape element

ALLOBJECTS 3-dim array storing all objects as
LxL digital binary matrices

AMAX largest half axis of elliptical hill 20-50

contour

AMIN see AMAX, smallest value 0-5

BACKGROUNDERROR S.D. of sensor error 5-10

BMAX as in AMAX 20-50

BMIN as in AMAX, smallest value 0-5

CENTERS centers of hills generated by function
GENTERRAIN

CMAX highcst hill possible 10-20

CMIN as in CMAX, smallest value 1-5

CONST 1

COORDS 2-column matrix for coordinates of
maxima detected in function SEARCH

CRITERION matrix of test values

DIST distance along boundary of object,
used by functions SELECT and
FINDGENS 2-4

DISTEL NGxNG matrix of Hamming distances

bctween shape elements

DMAX 32

(ELEMENTS)

ERROR error matrix

FIELD LXxLX matrix represcnting hcightficld
in function SIGHTI
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name mtayipc alue

GENERATORS 3-dim array of shape demands,
each of size LTEMPXxLTEMPY

HLIST vector of hypothesized shape
elements discovered in range data

HYPELO etc. shape element list for respective
hypotheses

HYPLOCO etc. same but 2-column matrix with
location of shape elements

IMAGE binary digital picture
INTERIOR inside of given polgon

K cutoff cont 6 or 9
in respective

TEST programs

KEEP vector of shape element numbers
to be kept after testing

KEEPMAX final vector KEEP for given
HLIST and TLIST

L size of object binary numbers 37 or 51
(preferably prime)

LSCALE scale factor used for transforming .075
polygonal shape to fit LxL matrix

LSKY height of sky in scene 0-20

LTEMPX x-length of template 9-11
LTEMPY y-length of ltemplate

LX x-side of picture 128
LY y-side of picture 128

MINDIST smallest distance assumed between
hypothetical locations of object
centers 10

NAGREE number of agreements 6-8
NAGREEMAX largest number of agreements

found

NB number of neighbors in lattice 8
topology
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name man typ lue

NEIGH minimum separation between 1-3
recognized local 'maxima'

NG number of generators 10-20

NH number of hypothesis in HLIST

NOBJECTS number of object types allowed 4-10

NROWS number of rows in matrix

NSLICES temporary number of shape elements

NT number of test values in TLIST

OBJ one of the objects

OBJECTERROR s.d. of signal from objects .5

OBJECTO etc. objects in digital form

OFFSET vector needed to bring shape element
to desired position

POWER exponent in power law for hill 1-3
height distribution

PSI depression angle 0.1-0.2

RADIUS radius of balls in shape element space 4-20

RANGE LXxLY matrix with range data

SAMPLE subsort of range data

SIGMA I

SLICES temporary 3-array of shaole elements

SMALLSCALE s.d. of small scale features of scene-heights 0.1

STEP size of step in searching range data 4-8

TEST character vector of test statistics used 'FISHER'
'KOLMOGOROV'

'STUDENT'
TESTSEL shape element vector selected after

testing data
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nam tpavl

TESTSLOC similar to TESTSEL but 2-column mptrix
with locations of shape elements selected

TLIST vector of shape element numbers
selected after testing

WEIGHT weight for distance between shape .2-1
elements relative to distance between
their locatici s

ZSCALE height scale factor
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11. Shape elmnts

SUAPS ELZECCV? NO. 0 SHA PE SELE1D.' Do0 I SHAPE XLEMI5fNO.11 2 SHAPE ELEI!ERT 10. 3

.0000000 11 G c* I1 *00000 *

*[300000E.L3200*r * * *Oooooo
*UMG *uc U * 000010

* Co~ oon C0,00000 n* ZC"; 00000* *000000
aw05 .0* *00000000000* * ODD 0000*000000

* - *00'000000000* Ma0m000* *000000
* * '00000O0000 D 00000* *000000 *

**00000000000* * 00000* *0000

* * *00000000000* * 000000*

SHAPE ZERgY7 910- * SPA.IP ELCZ;IT 110 5 SHAPE ZLEIICIJT 90. 6 SHAPE ELEHEZI2 110. 7

C0113E!C** *cc * *30

*coco * OCO' 000' *0000000 *

* - * * 00000* * 000*000000 *

* ~~OM * 000* 000 000000
*C0* * 0 0o0co* * 00000* .0000000 *

*0000000 *M*E0L* * 000000u* *0000000 *

<000000000 * 00000* *

*00000000 * * 0U0*

*0000000 * ** ***

SHAPE ELEZIE'r 10. 8 SHAPE ELEREZT BYo. 9 SHAPE ELIEI 110. 10 SII1APE SEEIr! L'0. 11

* * 0 CC 00***
***000 * * 000* CEO0*

*0000 *000rj MCI 00 * MGMo*

00000 * *00000 * 0000* * 00000'
*000000 **000000 * * 0;0000* * 000000*
*000000 **00oooo0 * 00rioo GoO*
*000000 **00000000000, *0000(00(j]0* * 000000'
*000000 * 0C<0000000.* tj0* *10000000*

'000000 * *0E000000000* *ME00DUCI** 0000
*000000 **0U10C0UGfl00 '.0000000000. * 000000*

SHAPE ELE1lIENT NO. 12. SHAPE ELEISEPI HO. 13

* * CC*

C* * 000*
* 00* * 0000*

* 000* * 00000*
oo* 0000' .000000*

* 000000* * .00000
* 0000000000* * Moo*0
000,0000000* E000'

'000000000' *

*0006(ijLjrOOO***
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12. Conclusions and continuation. Although the current version of our

decision function performs fairly well, at least in unobscured situations, it has

some weaknesses that should be removed.

12.1. It has a number of parameters that have to be set before execution.

At least tWo of them are critical: the acceptance percentage K, and the threshold

AGREELEVEL. One should also investigate by systematic experimentation with

the simulator, if the decisions depend critically upon other parameters.

One should make the algorithm adaptive in the sense that parameters are

either present, when this works well, or estimated from the picture. The function

CUTOFF, which was used in the earlier version TESTI and RECOGNIZER, is an

example of what sort of estimation procedure to use.

12 The final matching done by RECOGNIZE uses FULLTEST that

employs a naive algorithm, trying all combinations between TLIST and the

HLIST's. This can amount to up to 4000 comparisons. Since, at that stage of the

computing, we have a good idea of where hypothetical objects may be located, it

should be enough for each object to let OFFSET take on about 10 x 10 locations.

For a scene with two objects, and with some false positives presented by TESTS,

this would amount to about 300 values for OFFSET. This modification should

therefore lead to speed up by a factor of 10 or so.

This is imperative in realistic situations, where the number of object shapes

could easily be 500 or so. The matching will then be done by adding a hashing

component to RECOGNIZE.
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The experiments have, so far, included only a few cases with

obscuration. This should be continued systematically in order to find more

precisely under what circumstances the decision function does not work well.

Such knowledge is like to lead to further improvements.

12,4. When rcal pictures become available in larger numbers the decision

function should be tested on them. If the technology has improved to such an

extent that signals returned from the background carry more information, this

should be reflected by changes in line TESTS[20]. It may, at such a stage, also be

meaningful to replace our flat shape elements by spatial shape elements.
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Micro-statistical Analysis of Noisy Images

1. The micro-statistical) sianznih. A major advantage of stochastic relaxation

is its universality: it can be applied, at least in principle, to most pattern inference

problems based on Bayesian models. Its use requires, however, a massive corn ntinf

ef fort especially when the underlying connector graph a is large and the couplings

expressed by the prior measure are strong.

We have of course been aware of this in our group from the very beginning.

Since our algorithms are of parallel type one can hope that they are still feasible

in realistic situations given that parallel hardware is available. But we have also

tried to achieve computational feasibility by analytic studies that have led to

pattern theoretic limit theorems, most recently in work by Chow, Grenander, and

Sethuraman.

In this report we shall suggest another analytic attempt to reduce the

computing drastically. It is based on the micro-statistics of the Markov arocess

induced by the prior: laolstaiscs defined in small sets surrounding the sites in

the connector graph. The size of these sets should be much smaller than n, the

number of sites, but considerably larger than w, the size of the neighborhoods in

the graph topology.

The micro-statistical approach will lead to fast computing when compared to

stochastic relaxation, but we pay for this by sacrificing some global information

as will be mentioned in Section 3. The optimality criteria, on which the

algorithms will be based, will be local so that we shall deal with another

optimality criterion tha , the MAP methods.
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But computational speed is not the only issue here. We know (see the

preceding report in this series) that sometimes we are forced to use local methods,

for example when we allow occlusion in the scene, or when the objects have

internal degrees of freedom. It is then natural to apply the micro-statistical

approach.

To illustrate the approach some computer experiments have been carried out,

so far only in very limited situations, by Johan Berglind. It is too early to make

any definitive claims, but the experiments at least established the feasibility of

micro-statistical algorithms in the special circumstances examined.

2. Formalizing micro-statistical concests. To fix ideas, say that the connector

graph a is a square lattice ZL of size LxL in the plane and denote its sites by

z-(x,y), where x,y - 0,1,2,.-L-1. Further we assume the lattice to be periodic and

have the usual closest neighbor topology, w-4. The pure images I will be binary,

I(x,y) -0 or 1, while the deformed (observed) images ID may be B/W or gray level,

ID(x,y) c C, with a background space C of arbitrary cardinality. For simplicity we

also assume that the noise, conditioned by I, is i.i.d., so that it is enough to specify

a conditional density pn

(1) IPn(ab) p[ID(xy) - aI l]

b -I(x,y)

None of these assumptions is essential for the following and can easily be

extended to more gene.. 'tuations.

We s hqL think of the pure images as discretized versions of sets in IR2 with

boundaries that are piecewise smooth, and where the length scale I/L is small.

The points g - (C,") of the unit square (actually 2-torus) with 0 4 tl < I are made
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to correspond to the lattice points 2 of the digital image

4 - x/L
(2)

- y/L

21. Look at the scene in IR7 through a square window Wt" centered at (,7)

(3) Nw . Mc,",1)l1 ICI -< S. 11 nI- 5).

We then see a ilice of the pure digital image

(4) t y - (I(x1,y') with Ix-x I L, V-N < SL)

Ix - L, y - 7L

if C,n are multiples of the length scale I/L.

How will these slices look for small 5 and large L? Three cases can occur:

1. Ixy is identically 0, all its points outside of the objects.

2. Ixy is identically 1, all its points inside the objects.

3. Ixy consists of points both inside and outside the objects.

In the third case a boundary separates points inside and outside. This

boundary is, asymptotically straight, unless we happen to be at a corner point of

the object - then the boundary is asymptotically that of the outside or inside of a

triangle (unless the smooth boundary arcs meet at angle a 00 or 180* which will

be ruled out for convenience). Higher order approximations may be required.

" Introduce now formally a set U of slices, a slice, generically denoted

u, being a subset of a square Q - (-1,1) x (-1,1). The boundary separating 0 from

I in Q of a slice is called its divr For any n E U we consider the set lU of

pure images I e9." for which the restriction to the lattice points (x ',y')

(5) '-xI < 5L, Jy'-yJ < SL

we have
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(6) l(x "y u - x

Here we use the symbol u also to denote the indicator function of the set u.

A prior P on 5F will induce a probability measure P on the set

.. xy=(IxUyIueU) in the following way. If U is finite we introduce

- P(Ily
(7) P(Ixy) - _(Iy

)  ,
E P(IxUy)

uEU

assuming of course that the denominator in (7) is not zero. If U is a subset of

some Rd we introduce P by densities, say with respect to Lebesgue measure in pd,

in analogy with the expression in (7).

P is our micro-statistics and we shall use the above construction, with

appropriate modifications as needed, in several cases.

First let us consider some slice families U.

ELL Let U consist of all sets obtained as the intersection of Q with a

half-plane. In particular u=O shall mean the empty set and u-I1 the full set Q.

The divider will thus be empty or a straight line segment.

E. Let U consist of all sets obtained as the intersections of Q with

the union or intersection of two half planes. Then U contains all the slices from

Ex. I but also Zcrs, The wedges will approximate the local behavior of a

boundary point of an object where the tangent direction jumps.

EThe two previous slice sets have boundaries consisting of zero,

one, or two line segments. An obvious extension is obtained by letting the divider

be a conic section, or two conic arcs joined together.
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2 We are now ready to describe the local restoration procedure based on

the micro-statistics family U. Consider an arbitrary site z - (xy) and form the

joint frequency function f of the micro-statistic u and the observed image in the

window centered at z (solve (6) for u(ti))

(8) f - p(u) 11 pn[I(x+6L, y+Lnu(tn)]

where the product is over the window used.

The expression in (8) assumes a discrete U-family of slices. If U is

continuous a factor for the Jacobian should also be needed.

Now make the decomposition

(9) U - U o U U

where U0 consists of all slices with u(O,O) - 0 and U1 contains the ones with

u(0,0) - 1. Introduce the probabilities

(lO) 0 I u EU f1u l 0 f

ueu 0

(10)
NJ E f

and use as the optimality criterion for the restoration minimum expected

Hammin. The resulting algorithm for restoration based on the micro-statistical

taMly U is then simply

( 1 1 ) ri ( x ,y ) i t h e e x e t i

I I if Ito < n l

and randomized I*(xy) in the exceptional case nfO-n 1.
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2&1  Let us look at this algorithm for the special cases in 2.2. If we denote

the length of our digital square 26L by m we get the following

E" The cardinality IU I W 12m 2 (enumerate the two points of

intersection between the divider and the boundary of the digital square), so that if

m-5 we get about 300 slices. We precompute the p(u) values for these slices. For

each of these slices we must compute, for all z=(xy), the product in (8), with

m2 -25 multiplications. Thus, for each site we need about 7500 operations. The

step in (11) consists of just a single comparison. Note that with this approach auL

the sites can be rocessed in naralleL. If, for example, L-256, we need order of 1

sec on the STAR. If, instead, truly parallel hardware is available execution time

is probably negligible. And this is with no attempt at speed up of our algorithm!

Ez.2. Now when the slices also include wedges, so that our algorithm is

a boundary-and-corner detector we get a larger slice family U, 25 times as big (the

corner point of a wedge has m2 possible, positions) if all wedges are included. The

need for parallel hardware is then accentuated unless algorithmic speed up can be

achieved (which seems likely). In the pure image we would normally expect most

points to be internal or external, fewer would be on a boundary, and very few

would be corners. Perhaps this can be exploited for speed up at the price,

naturally, of more complicated program logic.

EWhen we allow more general form for the divider the cardinality

of the slice family U will increase. This changes little in principle but at present

it is unclear whether the increase in restorative power motivates the greater

computing effort that will be required.

Actually, the issue here is related to the discussion in the preceding report

in this series dealing with the 'car experiment'. It is only when we have detailed

information a priori concerning pattern structure that it will pay off to base the
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analysis on micro-statistics parametrized by boundary arcs represented by dividers

forming a larger U-space than in Ex. I and 2.

2. Let us make some additional remarks on the implementation of the

idea of micro-statistics.

ReMark 1, The choice of prior on U can of course be derived from the

prior on -. This was done, at least approximately, in Berglind's computer

experiment using the Ising model. It could also be done for more interesting

image models.

It is tempting, however, to choose the measure on U directly, and perhaps

estimate it directly from data. This has not been tried yet but should be examined

analytically and experimentally. If we do this we should also pay attention to the

problem whether such a specification is consistent, in the sense that the slice

distribution p on U can be obtained as a local approximation of any full prior P

on -..

Remsrk 2. Consider for a moment the deformation mechanism D where

inside points result in N(m0 ,o2 ) values and outside points in N(ml,o2 ) values. In

practice m0 and ml are unlikely to be known a priori and we have studied how

they can be estimated, for example using the half variance method.

However, we could allow the m's to vary slowly over the image, and estimate

them locally for each slice u. This looks like a realistic alternative, at least when

the slice window is large enough so that the statistical variability of the estimates

is small enough.

Remark3. We have limited our discussion so far to set patterns: the pure

images are binary. Nothing prevents us, however, from applying the

micro-statistical approach to contrast patterns: the pure images take contrast



* -88-

values in a space of higher cardinality. The slices could then be, for example,

polynomial approximations to 1(.,.) obtained from a Taylor expansion.

Remark 4. Finally an idea that is only speculative. For each location z we

use micro-statistics from its associated window, this is done separately for all

locations. This is attractive, both because it follows from an optimality reasoning
0

and because it can be implemented in parallel. Nevertheless, it may be possible to

gain in restorative power by linking overlapping slices together, let them be

coupled. Is there anything in this idea? I feel uneasy about it since it contradicts

our general strategy to derive model based methods - linking slices together is

more of an ad hoc idea.

3. Summarl The advantages of the micro-statistical approach are a) it

is single phase (not iterative with questionable speed of convergence), b) it seems

to reduce computing drastically (note that it avoids simulation), and c) it is based

on an optimality criterion that is, at least to some extent, meaningful and

natural.

The main disadvantage that I see in it at present occurs when c) is not true.

Indeed, we give up some global cohesiveness, and for this reason the restored

images may simply not 'look right'. Only further study and systematic

experimentation will show if and when this is a serious objection. This is of

course related to Remark 4.
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Appendix 2

Parallel Lonic Under Uncertainty. Continued and Anolied

to the !Car Experiment'

1. Present status of problem. The study carried out by our group is object

identification, to be implemented in the car experiment, has dealt with a number

of issues and it is time to take a look at what we have done. The following list is

not complete but will help to clarify the situation and plan the continuation.

.LL We have assumed that the scene contains one or no object of a finite

number n. of prescribed types, denoted H wl,2,...n. The scetie is viewed at a

distance r and from an elevation angle 0, both of which are assumed known.

"2 The object is assumed to be rigid and opaque so that it has no internal

degrees of freedom. Call the location z in the object plane, where z is some

distinguished point, for example the centroid of the object. Also denote the

orientation of the object by *, where # is the angle between some distinguished

direction of the object and a fixed orientation in the object plane. Hence z E A2 ,

OqO,2n) .

1.. Observing the scene we denote the view y ( where 13) is a digital

LxL pixel, grey level picture in the image plane orthogonal to the line of sight.

The distance r is assumed big enough so that wz can limit ourselves to orthogonal

projections, but this is easy to modify if j,. turns out to be desirable. The

deformed image 11) represents in addition to the object, if any, noise from the

observational set up and a noisy ba-1.,ound (clutter). At present we model

: is simply by two i.i.d. samples ,i.ha Gaussian random vr,' ables N(mVo 2 )

where m.Pm0 inside the object area and mhpm, outside. This will probably be
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replaced by two stationary, but not necessarily isotropic, Gaussian stochastic

processes for object and background. To handle this extension analytically we

have discussed, at an early stage of our work, to use Toeplitz approximations;

this can wait since we are familiar with such mathematical techniques.

1A We have developed boundary detectors using Bayesian estimators

derived from various Markovian models of the shape of the object. The simplest

of these, the Ising model, expresses only clumping tendencies. While it is of

theoretical interest it includes too weak prior information about object shape to be

a serious candidate for our continued work.

Two other lattice based models, closely related to each other, express more

detailed prior shape structure; one is the pixel-edge model, the other is built on

generators representing geometric tendencies of the boundary.

Still another model is continuum based and expresses the boundary as a

spline, in the simplest case reducing to a polygonal boundary.

The parameters m0,ml,o 2 cannot be assumed to be known in advance. To

deal with this we proposed and studied the half variance method, which seems to

work fairly well but needs some work.

LL The experimental set up uses small model cars, painted white and, so

far, located on a black background. The digital image is processed using various

boundary detectors, in order to get a better feeling for how the estimates of the

boundary behave statistically.

. The work undertaken by the Hughes group should be of great help in

this. A careful data analysis of the results should make it possible to firm up the

mathematical models to be used as we go along in our joint work with them.

In an early stage of our study we discussed the possibility of applying

stochastic relaxation to a vector of selected statistics computed from an estimate
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of the boundary.. At that time we were thinking of statistics such as the area of

the convex hull, the degree of concavity, the lengths of diameters, and many

others. The result of a successful data analysis should help pinpoint good such

statistics. This can be viewed as the selection of hash functions, but the noisiness

of data makes for an unconventional form of hashing. As will be suggested below

we may be able to replace this by a less arbitrary approach.

1"7 We have pointed to the important correspondence problem between the

true and estimated boundaries. This is a case of unlabelled observations.

To deal algorithmically with the correspondence problem we discussed a

dynamic programming approach. Since it seems to require a massive

computational effort we may have to look for substitutes involving less computing.

L. We have studied the problem of optimal image approximation when

a piecewise smooth boundary is approximated by a polygon or possibly by

other splines. The analytical result has been tried on real pictures and seems

to work well. The result will be applied systematically. later on, when we

shall use it to obtain data compression when storing object profiles.

2. R search stratemy. We have not yet attempted to put these pieces

together to obtain an integratea solution to our problem in object identification. I

think it is time to start doing this during the academic year just begun. As a

preparation let us examine the general approach we have been using, explicitly or

not.

"1 A guiding principle for our work has been the model based paradigm:

algorithm for pattern analysis should be derived from clearly stated mathematical

models. Not only should the patterns, say shapes of objects, be described

mathematically in detail, but the same should hold for the whole chain involving

patterns and their generation, the observer, the deformation mechanism, and the
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algorithms for inference. The links in this chain should be integrated.

22. Another tendency is reduclonisM; the model construction should be

reduced, as far as possible, to first principles. In the case of our car experiment it

means that we should emphasize the mathematical generation of shape, the pure

image, this should be the starting point.

How to do this depends upon the degree of variability of the shapes

encountered. In the car experiment as envisaged so far we have only three degrees

of freedom, two for z and one for *. The nuisance parameter is hence low

dimensional, 0 - (z,o)E IR. As will be suggested below we should go along to

higher dimensional nuisance Daramelers which will force l methods upon us, and

we shall factor our roblem into many small ones of low dimensionality; this will

be made clearer below. In a related study, the leaf shape project, we meet the

extreme of this, when the $-space is infinite, or at least very high, dimensional.

" We also aim for reneralitL. The choice of the car experiment is

motivated not only by practicil considerations, but also for its concreteness.

Nevertheless, we hope that the results will extend to much more general situations.

To make this possible I suggest that we extend the problem to allow for

several objects and allow occlusion. This will increase the number of d.f. We

should also allow internal d.f.'s, for example nuisance parameters representing

relative angles of parts that can be movd, say of doors, wheels, etc. Or,

parameters expressing the distrib ation of albedo, temperature, etc. over the object

surface.

Perhaps this sounds too ambitious at the present time, but we shall outline a

methodology for inference intended for such, more general pattern structures. It

is based on the idea of narallel lorie under uncertainty that I have suggested

elsewhere.
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3. Formalizing the factoring of the nroblem. Now let us be more specific.

In order to achieve greater descriptive power we shall use a continuum based

approach, not a lattice based. The generators will be chosen as directed analytic

arcs, have arity two, with in-bond equal to the start point of the arc and out-bond

equal to the endpoint. The analytic form of the arc will be left open until the

completion of the data analysis based on the experimental data collected by the

Hughes group.

The natural similarity group S is here simply the translation group in the

image plane. We shall not use the full Euclidean group, since rotations of the

object in A3 around a vertical object does not correspond to rotations in the image

plane; instead of simple rotations we meet more complicated transformations of

the image.

The bond relation p will be taken as EQUAL, meaning concatenation of arcs,

and the connection type 1 = CYCLES, so that each c6nnector graph o consists of a

finite.number of closed cycles. This choice of £ will be seen to have crucial

algorithmic consequences later on.

This regularity 2 - <EQUAL,CYCLES> over G via S defines a regular

configuration space .(2). We shall use a subspace S0(2) r .40(2) consisting of

the profiles obtained by placing a finite number k of objects of given types in the

image plane; the profiles may overlap or be disjoint.

An object is described by a vector (a;91,02, ...ea) where the G's are the

nuisance parameters and we use the convention that 01 =x, 02 -y, 93=0 with z(xy).

The remaining B's represent the internal degrees of freedom.

We shall assume the following construction of the objects; the reason behind

this assumption will become clear later. Each object is made up of rigid parts,

joined by hinges in such a way that the orientation of any of its parts, say the vth
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one, is uniquely defined by the principal orientation angle 03=0 and one hinge

angle 0*. This is a sort of separability condition: only first order interactions

between B3 and any 8v , v ) 4, are allowed.

A similar reasoning will be applied when we get to nuisance parameters

representing the temperature or albedo distribution over the surface of an object;

this will be dealt with later. Here we note only that boundary statistics will then

be replaced by what could be called surface patch statistics.

Let us write

(1) *~(2) - U
k=O

where .'f(R) is the subset of .i'(R) with k objects. Then .' (2) can be

parametrized by the vector

(2) (iB,) _ (al,Ol,92,2,...ak, 6 k)

The value of k in practice is likely to be small. Nevertheless the dimension of the

(,)-space may seem prohibitively large, both for string of the profiles and for

the decision algorithms to be developed for inference. Can it be done even for the

case we have dealt with so far, k-l and d-3?

First, it is clear that the two d.f. for 0 1-X,02 -y cause no trouble. Indeed, we

need only store the profiles in standard location, say z-0, and the decision

algorithm can be based on differences of arc points in I , relative, not absolute

coordinates. For 03-0 we could have done something similar if it had corresponded

to rotations in the image plane. Since this is not so we must store enough

information to describe the profiles for different 63-vaiues. Perhaps

83=0,10",200,...3500 will be enough practically, which means 36 03-values.
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Now let us consider another d.f., 04, say an internal angle. The moveable

parts of the objects have been assumed to be joined by hinges whose angles are the

0'; v-4,2,...d. Obviously, we can not hope to store profiles for all discretely chosen

combination of (0 3,e4,...d) but this is not needed. This is where factoring comes

in. Indeed, it is enough to store outlines for the rigid parts for a sufficient

number of combinations (03,0v), where v ) 4. Perhaps we will have to store 362,

but not 36 d'2, profiles for each arc: the problem has been factored, reducing

storage drastically.

We shall need a prior on the configuration space .'(R) as always for a

Bayesian approach. Since we have widened our problem by allowing several

objects, k can be larger than one, and by letting objects have internal degrees of

freedom, d can be larger than 3, so that the prior lives on a larger parameter

space. The choice of prior speeds more discussion, but at this time let us only

consider the probability distribution of k, qk for k ) 0.

We do not see any reason for any particular analytical form for qk in

general, but only note that it expresses the principle of Occam' razor if its tail is

short. Say, quite arbitrarily, that we use a geometric distribution

1

(3) qk - pk; k-0,1,...

for the present and leave the final choice till later. The value of p should be

small.

The ideal observer cannot always see the whole configuration c 1 E (2), since

objects, or parts of objects may hide each other. That means that the

identification map R: -'"(R) -. - will only preserve boundary information of the

visible profiles.
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The deformation mechanism V .-- 51 will be chosen as before, two i.i.d.

Gaussian samples from inside and outside the pure image I.

4. Choice of inference algorithm. The fact that we now allow k and d to be

greater than one and three respectively has an important and obvious consequence

for the construction of the inference algorithm. It is clear to anyone who has

considered the multi-object situation with partial occlusion, that are now led to

base the inference on local statistics. Simple template matching, computationally

feasible or not, will not work, since we cannot be sure that we are dealing with

one and the same object throughout. Instead we have to break up the estimated

boundary, say (81)*, into pieces and extract local information from each piece.

AJ. I am not going to argue against this, but would like to point to an

obscure link in the reasoning.

Our deformed image ID is an LxL digital, grey level picture. When we base

the inference on the estimated boundary we really employ a plausibility argument

implicitly. In the spirit of our whole approach we ought to give this an analytical

foundation and, at the same time, make the statement mathematically precise.

The above will become clearer if we, only momentarily, go back to the

original case k-I, d-3. Consider a boundary detector *, an estimator of al, so

that 8*: 9'')., (01). If 8* could be shown to be a sufficient statistic we would be

on firm ground, but I am convinced that this is not the case (this should be shown

rigorously).

However, we may be able to make an asymptotic statement, almost as strong,

in terms of the linear length scale E - I/L. Can one show that some * is

c-sufficient when L - -? Someone in our group ought to settle this question. It

may turn out that some boundary detectors 8* are c-sufficient, or contain,
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asymptotically, all the relevant information in the sample in terms of some other

formalization, while others are not, and this would have practical consequences for

the design of the inference algorithm and choice of 8".

4,2, Let us now return to the general problem, k ) 0, d ), 3. Say that

we have decided to use a particular estimator 80 and we have obtained a

boundary 8*If consisting of one or more closed curves. If there are several

topological components in ael., let us consider a single one of them at first.

The directed and closed curve, ;*, is hoped to contain, asymptotically all the

relevant observations in the sample. Divide ;* into N arcs of equal length, say

and consider the jth one ;#. Some hints for choosing N will be given

late,,

The local information contained in ;# shall be calculated as follows. Return

to a pure (undeformed) image I in I2, consisting of a single object. Consider a

directed arc ; belonging to the boundary of these objects. Parametrize ; as

h-(o;O,s0,s 1) where cc is the pattern type of the object, B its nuisance parameter

and so and s I the start and endpoint of ; measured in arclength from some

conveniently chosen point in the boundary of the same object at and same 0-value.

This h will be our local hpothesis, heH where H is the full hypothesis space. Note

that it is a simple hypothesis.

4.. Now go back to the deformed image and the directed arc ;'#

Introduce the probability that an arc ; gives rise to ;# as

J.J(4) Qr,),,P(; .. ;*).

To avoid misunderstanding let us emphasize that ; stands for an arbitrary arc of

the boundary of an object profile, it need not coincide with one of the full

analytic arc s generating the spline.
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Also let us mention for later reference that it may very well happen that

originates from two object boundaries, one object occluding the other. This is

more likely to happen if ;# is long, or N is small, so that this indicates that one

should choose N moderately large, perhaps 15-25.

For a specified estimator 8* it should be possible to calculate analytically the

probability in ( ) asymptotically, but I suggest that we postpone this for the time

being.

If and when we can determine Q asymptotically we shall introduce the LeL

hyp~othesis

(5) h(;4) - (g jQ(g~lj) ) 5) E H

for some threshold value 6. However, I propose that we use, tentatively, the

following heuristic way of determining the local hypotheses. Give ;V with

endpoints z0 (start) and zI (end) find the set h(O) of 's that have the same

endpoints (counted in the same direction!). Since our similarity group consists of

translation of 12 it is enough to search for an arc ; such that the vectors zl-z 0

and ; (endpoint) - ; (start point) are equal. How to realize this algorithmically in

a feasible way deserves careful attention, but it is clear that this is much less

demanding computationally than the dynamic programming approach discussed in

our group. If it is a good way is another matter. For an arc ;Ceh(;#) with length

parameters sI and s2 introduce a distance measure like the following, perhaps in a

modified form,

m
(6) E - zvI

v-0

where m+I is the number of lattice points z on ;* and zv are m equidistant

points on ;. The exact form of the distance criteria is not important at this

preliminary stage, but will be later. What is important, however, is that d should
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measure distance between d arcs, and not be of the form of a Hausdorff (or

similar) distance between sets.

Then let us, again tentatively, replace h(;'P) by

with another threshold constant n. The subsets h(s) of H will be though of as

our plausible local hvotheses. Note that they are composite hypotheses in contrast

to the pure hypotheses h mentioned earlier.

From now on we shall discard arc length information, the so,s I values in h.

Instead we project the local hypothesis to the space HO consisting of (a.e)-

vectors, say h', only. Denote the projected set thus obtained from h(;) by

h

Recalling that our adopted connection type E - CYCLES, it is clear that our

inference problem deals with estimating an unknown connector a in this set E. Think

of the arcs ;, j-O,,I,...N-1; as the nodes in o, not as the segments, and use acceptor

functions

(8) A(h Jl' h J2 d(h j2hj )]

where 0 is a positive decreasing function and d' an appropriate distance in H'.

We shall now try h maximize the criterion

(9) C(o*;hohl...hN.l) - q(k*) 11 A(hj! hj2)

where o* e £, k* - number of cycles in o, hj e h!, and the product is taken over

segments (J,J 2) in o*. To achieve this we apply stochastic relaxation with

annealing to C(o; h0,hi,...hN.).

Let us mention in passing that the way we have outlined our recognition

algorithm the value of k means the number of cycles (wholly or partly visible



objects) in a topological component of I. It does no longer mean the total number

of objects in the scene.

Two decisions must be made to implement stochastic relaxation: how to

initialize o*,hO,hl,...hN.l, and what should be the elementary up date overations of

the relaxation scheme.

Two suggestions for initialization: 1) Choose initially a* as a single cycle,

or, 2) Consider the joint plausible hypothesis set

N-i
(10) U hjCH'

j-0

and use some clustering algorithn' to get a rough idea of how many clusters there

are in the set. Use a a* with this aumber of cycles distributed as the analysis

indicates over the j-values.

The elementary up date operations should certainly involve replacing an hj,

regarding the rest and o* as fixed.

It is less clear what operations we should use changing o*. I suggest, as a

minimum, that we include cut-and-join ogerations as indicated in the figure below,

which take (a) into (b) or (b) into (a).

(a)

-4 .121 4-6A

eg7gbS



S

-101-

The decision on choosing the elementary up date operations must be made in

such a way that the class of operations if complete: given two connectors aI and a2

in CYCLES there should exist a chain of elementary up date operations that

changes o into 02. I believe that the above choice leads to a complete class.

The conditional probabilities associated with these up dates and (9) are

easily calculated, note that k* may change so that the factor q(k*) in (9) affects

them, implementing a reasoning of type Occam's razor.

Repeating updating, successively lowering temperature, and having iterated

many times we stop the process. Our recognition algorithm has as its result that

we see k* obiects with -values as distributed over the current plausible local

hypotheses h!. As a side result we also get estimates for the nuisance parameters.

5. Discussion of gronosed alforithnL The presentation in the previous section

is only a sketch with many details missing and decisions to be made before the

algorithm is completely specified. Nevertheless, I hope that the description is

sufficiently clear to serve as a starting point for our continued work.

The approach is basically the same as the one we decided upon a couple of

years ago, the main difference being that it does not rest on the solution of a

more or less arbitrary set of features characterizing the estimated boundary and

the set it encloses. Instead we try to exploit as much as possible of the

information contained in the observed image and handle it by a procedure

implementing arallel logic for noisy data. It is also more ambitious in that it is

intended for multiple object scenes and objects with internal degrees of freedom.

But is it over ambitious? Can algorithms of the type suggested be processed

using computer technology available today or in the near future?
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For the simplest case, the one to which we have limited ourselves so far,

with a single object with no internal d.f.'s, can probablybe handled

computationally. But does this remain true if we allow more than one object, k>l,

and/or internal d.f.'s d>3? I hope that this is made possible by the factoring of

the problem, but at present this is only a guess, perhaps wishful thinking.

The only way to find out if this is possible is to try it on real pictures from

our car experiment. I therefore suggest that we do this during the current

academic year, at first only for k-i, d-3, to firm up the model and algorithm, and

if the results look promising, that we go on to the general case. I do not mean

that we should just carry out a large scale computer experiment, but that we also

pay attention to the analytical issues that are only superficially discussed above.

Doing this, we may learn that substantial modification is needed, perhaps

oversights have to be corrected, and better heuristics invented.

I hope that our group will decide to undertake this ambitious study. We

would then have to divide up the work among ourselves to achieve a cohesive

team effort.


