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1.  The Task, We shall study the problem of object identification against a

background of clutter and using laser radar for obtaining range data. The
algorithm shall attempt to classify the object or objects in the scene. It may also
be able to do the detection but this is not the primary goal since, in a multiple

sensor situation, this may be better done by other scnsors.)

C“'I‘hc: algorithms shall be flexible so that they can easily be modified to
incorporate changes in technology (as long as range data are supplied). In
particular, if thc accuracy of the range determinations improves drastically,

only minor changes will be needed in the code. )

"~

To make this possible the code is made highly modular, so that only onc, or
a fe. . of the smaller modules need be replaced by other modules (also supplied) in
addition, of course, to changing parameter values. ("‘N

Our approach is actually based on the assumption that much higher accuracy
in range data will soon be achieved. It should then also be possible to recngnize
partially hidden objects. The main ideas in the code have been chosen with this
future task in mind.

Since at present we have few real images with reliable range data we have
had to build a terrain-object-noise simulator to produce data on which the
algorithmic ideas can be tried and which will also be useful for debugging the
programs.

Simulated data are good for this purpose, but they are not enough since the
model on which the simulation is based must be tested against reality. It is
therefore necessary to try the programs on real and reliable range pictures when
they become available, leading no doubt to modifications.

The code has been written in APL. The reason for using this unconventional

programming language is that its logical structure, which is based on some of the
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fundamental concepts of mathematics, makes it ideal for mathematical
experimentation. The drawback is that the fact that it is interpreted, rather
than compiled, makes it run much slower than, for example, optimized
compiled FORTRAN code. In experiments on the computer this can be
accepted - once good performance has been achieved the algorithms may be

rewritten into some other language or implemented through special hardware.

2. Generation of background. The scenery will be made up of large scale

features and of smaller details. The former, that can partially or wholly obscurc |

the objects and may also sometimes confuse the algorithm by appearing ’object
like’, will be chosen as random elevations of fairly smooth appearance.

The centers of the elevations will form a random process in the x,y-planc
on which objects will be placed. The user specifies the number of them
(right argument in the functions GENTERRAIN and GENSCENE) but the
locations, heights, and horizontal shape cross section are generated at random
by the algorithm.

The height/width ratio can be controlled (in a probabilistic sense) by
choosing a suitable power as the exponent in line [22) of GENTERRAIN. The
present value is .5 which produces fairly sharp outlines, a bit like trees. Other
values will produce the appearances of hills in a rolling landscape. This is also
influenced by CMAX/CMIN for height distribution and by the parameters AMIN,
AMAX,BMIN,BMAX that control the cross sections.

The small scale features in the background are more chaotic, at present just
white noise, with standard deviation called SMALLSCALE in line [7] of
GENSCENE. This could easily be replaced by a stationary stochastic process with,

say, a fairly but not completely, flat spectral density.
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Line [S] was inserted in order to let the user choose a particular probabilistic
behavior for the sky portion of the scene. At present it is not used, setting LSKY
equal to zero.

After the background is generated the program interrogates the user about
placing objects (see next section), and then adds noise to the range data computed
by the function SIGHTI. The latter computes the true ranges, taking possible
obscurations into account and using a depression angle called PSI, assumed small.

The error level in the range sensor on the background is denoted by BACK-

GROUNDERROR and on the objects by OBJECTERROR. Judging by the few,

real pictures we have seen the former is much bigger than the latter. If this
changes in the further development of laser radar some of the modules in the code

should be replaced as will be discussed in section 12.

3. Generation _of object shapes. The number of object shapes used, called
NOBIJECTS, was only six in the following experiments but can be set by the user
to any value he wishes.

To prepare for bigger values and to facilitate entering the shape we have
prepared the functions GENOBJECT, COLLECT, INSIDE, SCALING. They enable
the user to present any object of polygonal shape: he is prompted by the program
to type the coordinates of the vertices and the programs do the rest. For more
details in using these and other programs, see section §.

In the experiment we used the object shapes shown in section 10,
representing front and side view of a tank, front and side view of a small stylized
house, and two side views of vehicles. We used polygons with few vertices,
which may have been psychologically wrong, since the appearance of the object

boundaries will be too straight and simple. In future experiments one should use

A
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more detailed polygonal or splinc representations of the shapes - this will also
make it easier tor recognition algorithms.

The program PLACE places objects in the x,y planed at desired location for
the midpoint of the lower, horizontal part of their boundary and at height 2=0.
This implies that height variation in the background (vegetation, small hills, etc.)
will normally hide the lower horizo.. al part of the boundary which therefore will
not help in discrimination. This effect was not planned but showed up in many

of the experiments. It is not clear if this is a realistic effect.

4. Main approach. The logical organization is based on ideas presented in the
two working papers enclosed as Appes dix 1 and 2, but modified in two respects:

(i) we now assume range infermation rather than IR or visible light
images,

(i) we assume low accuracy (at least i‘or the time being) that seems to rule
out the sophisticated algorithms that was proposed in Appendix 2.

We arc preparing for the time when improvements in the accuracy of range
data will be made, enabling us to dcal with obscuration. This of course implies
that algorithms must be based on local features, since global ones may be hidden
from sight.

We shall think of a scene as presented in a deformed image

12 = DR[o(gg,8 8.}
Here the generators g; are local features, actually arc clements making up the
parts that can be secen of the boundaries of the objects in the scene. The
connector graph o joins arc elements in the appropriate order along the (partial)

boundaries of each object. Thus o will not be connected if several objects are

present in the scene.
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The operator R takes the configuration o(gg,8;,..8,.1) into a set: the part of
the scene consisting of objects as it appears in the image plane of the sensor.
The deformation mechanism D takes the set mentioned and transforms it into
range data adding observational noise.
Our task is to recognize the objects and this will be donec in terms of tie
generators g; and the connector graph o. In other words we need estimators g; of

arcs g generator estimates. We shall do this by choosing a collection {g;) of shape

elements, each consisting of a small binary picture, a template, say of size
LTEMPX by LTEMPY. In the experiments below we chose LTEMPX = LTEMPY
= 11 but this may not have been a wise choice.

We postpone the important problem of how to select (gi) until section 5. If
we tried to superimpose each gr( at each pixel in our image, and then test for
goodness of fit, the results of the tests should tell us a good deal about
hypothetical locations of objects.

But this is clearly wasteful, since only a small part of the picture will

normally belong to object boundaries. Instead we proceed in steps as follows to

reduce CPU time.

4.1, Since BACKGROUNDERROR »> OBJECTERROR the local variation
in grey level is much smaller on the objects than off; this is seen clearly in the
real pictures.

Exploit this by finding, at each pixel, if the variance of the pixel values at
the 148 values (8 neighbors) is large or small. Keep only the latter ones. This is

very fast and is done by the function CHANGE as called in statement [10] of

TESTSI.
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42, We now have a binary image. To rcmove from considcration isolated
or nearly isolated points in the set dcfined by the binary image = 1, we apply

CLEAN which eliminates points with less than FEW neighbors. This is also very

fast.

4.3, Compute the boundary of the binary image, applying the function
IBOUNDARY. The resulting, much thinner, binary image is then represented as a
2-column matrix with x and y coordinates of the boundary obtained; this is

carried out by the function COORD in line [11] of TESTS!. This is cven faster.

4.4. We now move the shape elements g; to each point remaining in the
binary image after Step 4.2 and test the fit by computing the (counting) measure
of the symmetric difference

my(x,y) = m(g;, subpicture at x,y).
This is done in statements [14]-{27) of TEST1. Here NSLICE denotes the range of
k in (g;) and we sweep the boundary completely, except when we are very close to
the border of the image where room is not available for placing any shape element
g;: statements [12]-[18] take care of that exception.

In [11] we compute a crucial parameter, THRESHOLD which is proportional
to the size of any shape element, LTEMPX x LTEMPY. The proportionality
constant, called K, is crucial. We have used values in the range 80% - 95%. It
determines whether

my(x,y) > K x LTEMPX x LTLEMPY

when we accept the shape element temporarily for further hypothesis testing, or

not.
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This step is time consuming and takes 2 good deal of the whole CPU time
used by the driver RECOGNIZE.

The resuit of TESTSI is a vector TESTSEL, of k-values for temporarily

accepted shape elements, and a 2-column matrix TESTSLOC of their locations.

4.5. We now try to reconcile the information in the test results TESTSEL
and TESTSLCC with the corresponding lists associated with cach hypothetical
object. In Appendix 2 we suggested that this matching be done by stochastic
relaxation, a suggestion that has not been implemented. We believe that in the
future, when advances in sensor technology will support more rcefined methods,
that may be the way to go. At present we are rescued by the fact that we need not

do_suhgraph matching, which is notoriously hard to compute. Instead we match

subsets of two geometries.

Each of the points (xj,yj) in TESTSLOC carries a label kj of the shape
element g’;;j that it supports. Similarly at each location (uj,v;) of the hypothesis
lists HYPLOC there is 2 label 2; of its shape element g;i. We want to match the
relative positions
(xj,yj) = (u;,v;) + offset.

We shall do this by brute force, trying all combinations for the offset. This
is clearly wasteful and we shall return to this later.

For each hypothesis the function FULLTEST tries all combinations for
of fset, lines {8]-[9] keeping track of the number of agrecements obtained and saving

the largest number. We also compute a vector KEEP intended for later use to

successfully remove elements from the testlists; this has not been implemented yet

however.
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This step is the most time consuming in the whole algorithm, especially if K

is small like 80% when the testlists tend to becom ; excessively large.

4.6. The rest of RECOGNIZE collects the accumulated evidence and prints,
either nothing when no object has been detected, or, in the opposite case a list of
possible objects and their hypothetical locations, lines [15])-[26], in decreasing order
of credibility. The number of agreements found between subsct of the testlist and
a subset of a hypothesis list is printed as the credibility. Very unlikely
hypothetical objects are not rrinted.

in the present form of the algorithm several objects are atlowed in the scene,
but not more than one occurrence of each object type. This restriction can be
removed by using the vector KEEP mentioned above.

In lines [27]-[40] hypotheses are removed that would involve centering objects
so close that it is physically impossible. The minimum distance is a global

variable called MINDIST.

5. Optimal Sclection_of Shape Elements. In the early stages of developing the
program TESTS1 and its forerunner TESTS we used arbitrarily selected shape
elements where the sets were chosen as rectangles, triangles, and squares with
different locations and orientation in the LTEMPX x LTEMPY square.

This secemed to work fairly well, but TEST!] often missed to fit the shape
elements even in cases where the picture, displayed on the monitor, looked clear

enough. This this reason we tried to choose the _shape elements in a_more systematic

manner.

Given the shape element, to use it as an estimator of location is not a new

mathematical topic. It was studied in U. Grenander (1978): Pattern Analysis,




G
Springer-Verlag, section 5.1, although with a different deformation mechanisms.

That sort of theoretical analysis ought to%c carried out for the present situation,
since it may lead to better microsiatistics, see Appendix 1.

X
'

Let X be the space of all possible shape elements, and say that we are given
a very iarge sample X|,X9,..X, from some probability distribution P over X. Of
course X is a discrete space, but of enormous cardinality, in our.casg 212l so that

we shall allow ourselves to treat P as nger}gpy a (3goarsc grained') density f, in

some vague sense continuous. We w =like to sclect y,;_fgg;\,l,x\,z,....xv )g(xl,xz..xn)

where p << n. Thc~xv will ‘serve as our shapc crcmcnts, and m order that they

serve well, we should lct rl.xz, «Xp, be all or most of thc shape elemcnts that occur

ot * -

- ~

for the given objects. : % -

ZP Y
H¥. ;

But that will lead to excessive CPU time requirements: we caunot test all
the shape elements x;. Instead we use only the selected ones and hope to cover the
most important part of X, namely the Lebesgue set

L(c) = {xlf(x) 2c)cX.

To estimate the set L(c) is a problem in abstract inference anc closely related

to Theorem 4.1 in section 5.4 of Grenander (ibid.). We shall use the following

procedure.

Choose a radius r, (denoted by the global variable RADIUS in the code) and

solve

max N(x;,r); N(x;r) = #(xj in ball centered at x; and of radius r)
i

Select le where v, realizes the max. Remove all x’s from that ball, maximize the
N-function, which is proportional to a coarse grained density, giving x\,2 and ¢ n-

tinue until p shape elements have been selected.
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Remark It seems likely (but not proven) that this can be formalized by a

theorem saying when and how "M% estimates the Lebesgue set in a general

situation. It is actually a sieve estimator and can be expected to be consistent if
k-

we let p== slowly compared to n=« and simultaneously r & 0,

This is implemented in two steps.

o ‘ - -
3.1, We.first form the long iist (x;} by calling the program FINDGENS. It

-

) =
operates-on ‘the Q-Qigfen;}%nal array ALLOBJECTS containing2ll tlgjeﬂ shapes,

and takes all the shape elements. scparéted by a distance caljed DIST along the

respective -boundaries. - - R o o=

e~ -

It called®ific auxilidry functions SELECT and SCREEN, that“seiarates points
along the boundary, and the function NINBALL which computes the coarse

grained density.

3.2. The second step is to do the estimation of the Lebesgue set, which is
implemented by the function LEBESGUE that takes as input the global variable
SLICES created by

SLICES « FINDGENS
It does what was described above, but in addition it delétes shape elements that
contain too many zeroes or too many ones. The reason for this is that such
extreme shape elements have too low inferential power as estimators; it is done in
statements [18]-[19].
This construction of an optimal set of shape elements requires a lot of CPU

time, but can be done off line.
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6. Utilitics. When experimenting with the recognition algorithms it is useful
to display pictures, say of small LX x LY dimension, quickly even if crudely.
This is done by the function display.
Since matrix coordinates are oriented differently from the usual Cartesian
system we should apply TURN to a matrix before displaying it.
To see a binary matrix directly do
SEE MATRIX
To scale a digital picture from level 0 to NLEVEL do
IMAGE «~ NLEVEL SCALE IMAGE.
Some statistical tests have been implemented for use in the early version
TZST and RECOGNIZER
STUDENT: Student’s two sample test
FISHER: Fisher's Z-test
KOLMOGOROYV: Kolmogorov-Smirnov’s two sample test
To display all the selected shape elements execute SEEGENS.

The function WHITE produces a field of standardized white Gaussian noise.

Since memory limitations prevented us from doing this by a fast APL algorithm

{

based on 3-dimensional arrays it has been done by looping and is therefore quite 3
4

slow.

Remark, This approach shares some features with the other recognition ]

algorithm that our group at Mathematical Technologies Inc. (Brown University
and University of Massachusetts) has been developing. In particular they both use

some sort of local test that are ultimately combined to make the global decision

2
about objects in the picture. '

[ PPy
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The present algorithm differs from the other one in that it is based on
conmputed shape elements, it avgids a complete scan by slﬁpcéﬂements over all or
most of the picture, and the details of the final matching - the decision function.

In TESTS we employed brute force computation for finding matches between
the pre-computed shape elements and the observed picture. It called the function
VIEW (or alternatively VIEWI1 for a correlation test) which swce;;s the entire
picture with a step cal}ed STEP. It was found necessary.to make STEP small, at
most = 4, bctte; = 2,. %gct accﬁptablc performarnce. 'Ifhi;_ step in the preliminary
version of the deci'sioni&ction required massive CPU time.

It was followed by cxc'c,ging SEARCH, which finds all éhc major local
maxima, separated by a distance called DIST, This step is fast.

To get better performance TESTS was replaced by TESTSI, to be described

below. This not only improved the performance but reduced CPU time by a

factor 10.
7. Experiments. We now begin experimenting with the code for detection/

recognition, The first, very preliminary experiments, used RECOGNIZER and
TESTS employing one of three statistical tests.

It was not very surprising that STUDENT did not give good performance.
After all the model used in the simulator tries to mimic one aspect of the current
state of laser radar technology: the signal from the background is very noisy.
Hence a test for distinguishing the two mean levels in the on/off parts of the
shape element can be expected to have low power,

On the other hand we had hoped that the Kolmogorov-Smirnov test would

perform well. This was not the case, however, for reasons that are not yet well

understood.
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Fisher's Z-test, for distinguishing between the two variances in the on/off
parts was much better. It required a lot of CPU time, however, at least in the
interpreted APL code, so that we therefore modified the algorithm to the one in
RECOGNIZE and TESTS1. We shall not report the preliminary experiments: all
the following ones use RECOGNIZE.

The experiments were coded as follows.

EXPi means no object present, POWER=i

EXPji means object no. j present, POWER=i

EXPDkhji means objects k and j present, POWER=i .

The letter D stands for double, If the letter M occurs it signifies that CMAX=20
rather than the default value 10, leading to larger obstructing features in the
landscape. If the code ends with A,B, or C it means an earlier experiment has

been replicated but with NHILLS larger than the default value 4.

1.1, We begin by testing the detector on scenes without any objects.

%.9306528 16.61265364 1,458086832¢€

C =
057855 f,acu0ii22 1.02035¢CH2¢
0 =
121
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The features.are quitessmall and dre barclywijsiblc‘-im»thc.-lp(ictuxe:

.
PO 1 I

The algorithm prints nothing; no detection is claimed.

EXP3MA. Here NHILLS=6 with the result

AQB-C‘=

8.87239012 20.2616818 16,1133888°
X0,Y0 =

69 43

A.B.C =

8.39912928 22.1700989R 4.54372117u
XO,.YO =

86 71

A.B.C =

9.51475366 26.46615592 6.021179599
XO..YO =

66 2

AQBQC =

13.9443201 10.19817297 3.063506872
X0,Y0 =

98 63

AJB.C =

10.49514866 19.96723674 4.310012924%
XO..YO =

95 28 ’

AQBQC =

28.01719476 10.99406942 1.0393744843
XO..YO =

60 96

St ia e




.
2

and one can see the biggest one (the first above) clearly in the picture

No detection claimed by RECOGNIZER.
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EXP3MB, VWith NHILLS=8, otherwise the same, we get

. me— aw

-

R

AB.C =

23,82277362 27.35850764 3 ,0R8117K733
XO.IO =

75 80

A;B-C - %
4,9748388 8.11624798 12.16930329 B
X0:Y0 =

38 93 ) i
AB.C = -
245,90576228 29.1501744 6. 2953u15§ 2
XG,Y0 = ) B
5 61. : R

q:',

23
-t zﬁ

“ASB.C =
zﬁy&izasu‘*lu a:gvoana 12.26605857 _ . .

"."‘ T -

107 108

AOB-C =

25.94169692 20.10258286 1.01020R911
XO..YO =

ue 71

X0,Y0 = 3
98 81 Y

A.B-C = :
8.21223868 27.0973R418 7.03u01421u i

A.B-C = 3
17.71027968 20.5557171 19.870102R8 1
X0,Y0 =
78 53

A.B.C =
29.47582726 8.232948Y4A 1.398242615
XO.yO =

) 126 86

o Ace o

and the two biggest features are séen iu the simuiaicd background

Zhadh

P e 8 2 ARt AL



No detection claimed. =~

EXPIMA '&;&gow,lqwer the exponent in the power law for the probability

distribution for't}y: height of the landscape features. This w.ill produce a more

irregular terrain, as i#&seen in ==
- N A~
=" ">
- - .
. P = -
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AJB.C =

6.68336848 19,37728582 5,.41831334
XO.YO =
4y 31

A.B.C =

27.18718064 22,94571718 19.03038763
XO:.YO =
38 46

AQBCC =

1346441574 4 . 439254R6 1R.945579258
XO..YO =
35 74

A.B-C =
5.7185285 27.30R80734 7.669Q47937
XO..YO =
87 1ik

AJB.C =

24.27206324 12.56854284 1R.173111R1
XOO.YO =

124 12
AJB.C =

5.96815684 10.81602766 1.71429037
XO..YO =

108 122

We see threé big features, one dominating the scene:

= e x Texen “eew
& akase e eamems W s g RO mMeNmme T WX

ﬁ‘w




No detection is claimed, although one, fairly small, feature resembles object no. 1.

: Finally,

EXPIMB. With NHILLS=8 gives an even more irregular landscape

oo o Cias Sk

Gp g b

3 Btk

ik

LSRR WL NG TREN !
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"AiBC = e ¥
10.90104948 29.942261R 13. 85779141
X0,¥0 =

93 122

A‘.B-C' =
15.00R887204 14,28380626 14.10716026

,rXO .-YO =
T 40728

L.

-

AB.C=

+8.023165 27. 33804138 19.1855004
X0,Y0 = - &
65 71

“AeBC = -
.- 19.9293719 6. g54507 17. 37612698~
«XUoYQ .-v

125 2 - - . -1
; -4

A.B.C = .

7.08649952 8.79876LFN 1447271031

X0,Y0 =

87 80

A«B-C =

11.9200693 22.60778608 10.54740R8
XODYO =

55 46

AQB-C =

10.73716446 5.52556014 3.98883433
XO..YO =

110 64

A-B.C =

26.45206262 17.81994588 11.10730498
XO’YO -

90 25

L

in which we can see several features, one broad and high, another very thin
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No detection made.

In these, and many other experiments with no object, we found no case with
false alarm. This is not necessarily good since it may m‘can the algorithm is too
conservative: it may miss some objects when actually present. We should keep
this in mind later on.

e N

7.2. We now place an object in the scenery ;nd Vwilfv look at "w}::%ppcns
for the six object_:::hgpcs we have used (see section 10 for their appearance).

=l

EXPOIM, With NHILLS=4 here and in most of the following experiments we get,

after placing object no. 0 in the middle of picture:

¥
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With an earlier form of RECOGNIZE we get the decision :

s - e

RECQGIIZE CXPOLH ) é
ALGCRITE! DECIDES CREDIBILITY OF EYPGTEESIS:
0BJECYE 110, 0 :

AT LOCATION 68 70 ;
70 o = 33 , 3

[




which is the correct one.

EXPO1,

landscape features are less visible:
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This is very similar, but CMAX has been
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The algorithm makes the right decision:
JESGGNILT EL?“l
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We now place object no. 1 in the landscape. It is smaller and hence more

difficult to detect/recognize.
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which is correctly identified by the algorithm:
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This is satisfying but it should be observed that this was done with CMAX=10 (no
M at end of name of experiment) so that there was no big features to confuse the

decision function.

EXP22 Placing object no. 2 and with power level 2 in the exponent the
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Now we make it harder for the decision function by choosing CMAX=20,

POWER=1. Placing object no. 3

EXP31M, The simulator generators

SAP3LE<CELSCENL 4

212 8.,32085986 7.83416738

MRS BN

G De v

o O Loy
el Lo S R

N D e
[}

[T =] |
(%]

o

3

Jo bt 0T o

11612 26.61937834% 14,07600349

oM O
~3
Hn4E=n

0 1R
DO We

]

oGl

26.80642312 15,01017801

[N
- -
n oJ

O N
YO NG
[Ea)

‘e
&=
(o]

W
o

153876 21.,3920344 12.636089¢5

PLACE O0BJECES?
AFSFER 0 OR 1

-
e

1
LOCEZIOF 2

Skt 6L

ALLOBJECTSL33;]
PLLCT 0BJECTS?
ARSVZS 0 OR 1
Do
0 )

-

b oEalm B P T2 B




SR o e .
VL e T o . 3 . T T e e
and the deafsion fitidtion: gives: -~ = o SN

RECOGUIZE EXP31K cv DA
ALGORITEM DECIDES CREDIBILITY OF EYPOTLZSIS:
OBJECT H0. 3 :
AT LOCATION 65 77
70 BE = 43

- — »
e 2 o~ .
2 :
. el . v e
Y . %
. - -
-5, ,

EXP41M. With object no. 4 the simulator produces a very ’hilly’ landscape
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This is wrong, the object is no. 4. The reason for the mistake is obviously that

too much of the object has been hidden by one of the main features in the

[os

landscape. With the current noies assumptions the rccogmition algorithm is not

able to cope with this amount of obscuration.
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Detection was achieved correctly,

EXP43. To see how the recognition algorithm handles the shape of object

no. 4 in a less chaotic background we lower CMAX to 10, momentarily, and get
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and the decision function then succeeds:
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Note that the object is again obscured partially
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This means that the algorithm could not make up its mind which of objects 1,2,

and 5 to choose.
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so that object no. 4 is correctly identified, but object no. 0 is not even detected.
The reason- for this is uncleay. The lower horizontal boundary of it is hidden by
low level obscuration, but this is always the case in these experiments, and does

not seem to seriously affect the power of the detection/recognition function.
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Here detection/recognition js perfect:
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The decision is correct:

EXPDO033M. We now made a cosmetic chang? in the code. We now print out the
credibilities of all object hypothesis above a certain level (NAGREE) and also the

final decision.
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To look more closely into this we lowered the threshold constant K from

90% agreement to 85%. We then got the correct decision
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This turned out to improve performance. The reason is of course that it

allows for high noise level.

However, it tends to make the lists TESTSEi. and

TESTSLOC a good deal longer, which requires more CPU time. We shall return to

this question in section 12,
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which looks correct but is not. Indeed, the object recognized as no. 1 has its
center located at the point 94,89 instead of at 4545. It is just luck that the

algorithm claims to have recognized no. 1.




«{9-
24. The experiments carried out so far indicate that for the given model

the algorithm

(i) performs well as a detector/recognizer when there is little or no

obscuration

(ii) performs less well as a recognizer when obscuration occurs, but still

fairly well as a detector.

In the latter case lowering the k-value to 85% leads to noticeable better

performance.




Code

[1]
£2]
£3]
Cu)
[s]
sl
£7]
£sl
L9l

£1]
[2]
£3]
L4l
sl
(6]
£71]
L8l

C1]
[2]
£3]
Lyl
[s]
[(6]
£71
Lel

[1]
L2]
£3l
C4]
L5]
[A]
(7]
[8]
[9]
[10]
(11]
[12]
[131

L1

V Z+S1 BOTR S23;N1;N2;M1;N23VARL;VAR2
ACRITERTOP FOR SMALL IN-VARTARCE
RAND ALSO LARGE OlUT-VARTANCR
Ni+pS1

N2+pS52
Nie(+/S1)eN1
N2+(+/52)eN2

VARL+(+/(S1-N1)%2)¢N1

VAR2+(+/(S2-N2)*2) +N2

2+(VARI1SCNNST)xVAR2

v

VY 2+CHANGE FIET.D;MEAVS;VARS;?

T+0

MEANS+FIEILD

VARS+FIET.D*2
LOOP:NEANS+NRANS+NILT;0107 0] NJ(T3119FIETD
VARS+VARS+NJLT;01070] NJLT;119FIET.D*2
T+T+1

+(7<8)/L0O0OP
2+(VARS-(MEANS*2)49)<12xTCONST

v

V Z+FEW CLEANX X3;T;NNEIGH

AREMNVES PNINTS NITR FEW NEIGRRORS FROM
ABINARY INAGE X

T+0

NNRIGH+(pX)pO0 '
LOOP:NNEIGH+NNEIGH+NI(T;01470] NJ[(T;114X
T+T+1

+(T<8)/L0OP

Z+«XANNEIGH>FEW

v

V COLLRCT;T:C;INTERTOR

ACNLLRCTS ALL 'NOBJECT OBJErTTYPRS IRTO 3-DTM ARRAY
ACALLRD ALLNBJECY?S

AEACH OBJECT REPRESENTED AS LxL DTGITAL BINARY PICTIRE
T+0

ALLNBJBCTS+(NOBJECTSL.L)p0
LOOP:C+2( YOBJECT') «¥T

C+CxLSCALR

¢l30]«C[;0)+0.51

Cl31)+CL;114419

INSTDE

ALLNBJECTSLT; 3 J«INTERTNR

T«T+1

;(T<NOBJECTS)/LOOP




1
£2]
£3]
Cu]
(sl
[s]
(7]
£e)
(9l
[10]
(111
[12]

[1]
(2]
£3)
Lu]
(sl
(6]
£7]
{8l

(1]
(2]
[3)
Lu]

£1]
£2])
(3]
[ul
sl
[e6l]
£7]
L8l
f9]

i~

vV COORDS«CNORD BOOT.E3;ROWS;ROWNUNS:CONS;COT.RUNS;L1:L2
ATRANSFORMS LixL2 BOOT.RA® MATRTX BOOTR IRTO 2-CNTL.UMN MNMATRTX COORD:
ACONTAINING X .Y-COORDIRATES

Li+~(pBOOTR)[ 0]

L2+(pB0OTB)[1]

NROWS++/+/B0OOT.R

COORDS+(NROWS,2)p0
ROWS+(1L1)e ,x[2p1 -

ROWNUMS+«ROWSxBOOT.E

COORDSL ;01+( .BOOT.E)/ ,ROVWNUMS
COLS+(Lipl)e ,x1L2
COLAUNS«CNLSxBOOT.R
COORDSIL 311+( .BOOT.R)/ ,COLNUMS

v

Vv 2+81 CNRR S2

ACOMPUTES CORRETLATINN
2¢(+/+/51%82)++/ +/ (~S1Ix~52
v

V 2+X CUTOFF FIEILD;NZ:Q1:Q2:Q3
ACOMPUTES THRESHOLD VALUR FOR FTELD
2+ FTRIL.D
2«2L42]
NZep2Z
Q1+2LL0,25%xN2]
Q2«z[L0.5xN2])
Q3«ZLL0,.75x#2]
2+Q2+Xx(Q3-Q1)+2
v

Vv DISPLAY Zi;MINi;MAX;D

NAX«T/T/2

MIN«L/L/Z

D«NAX-NIN

dLoJA(* .e0*[*)T+/((2-MIN)4D)e .2 0 0.2 O.4 0.6 0.8)
v

V Z«BLDIST:I:J

ACONPUTES BAMMING DISTANCE MATRTX 2
AFOR ALL SHAPR ELEMRANTS
Z+(2pNSLICRS)pO

Je14+J+0
BOO;:Z[I:JJ+Z[J:I]++/+/|SLICRS[I:3]-SEICRS[JB:
I«I+d

+(I<NSLICRS)/LOOP

Iel+ded+]

+(J<NSLICRS-1)/L0OOP

v




=52=

V ESTGERS FIELD;T;TENP
£1] AESTIMATES GENERATORS FROM DATA=FTELD
2] T+0
L3l RESULT+ 0 3 poO
L4]l ARESULT HAS AS ROWS U.V.T-VALURS
[5] LOOP:TEMP+SLICRSIT;::]
(sl LTEMPY+(oTEMP)L 0]
£71 LTEMPY+(pTRMP)[1]
L8] VIEWN FIELD
(9] SEARCH CRITERTON
[10] RESULT«RRSULT.L0] T.CNORDS
[11) 7T«T+1
[12] +(T7<(pGENERATORS)[0])/L:C:
v

V Z+HLIST EVIDENCE TLIST
[1] AaCOMPUTES DEGREE OF EVIDENCR FOR HYPNTRESTS (0OBJECT)
[2) ASPECIFIED BY SHAPELEEMENTS\LNCATIONS IN 3-CNLUMN MATRIX HLIST
(3] ASUPPNRTED BY 3-COLUMN MATRTX TLIST OF TEST RESULTS
(4] ~nGLOBAL SCALAR WEIGHT EXPRESSES IMPNRTANCE OF DTSTANCE
[5] ABEITWEEN SHAPR ELEMENTS AS COMPARED TQ0 ENCLIDRAR DISTANCE
{61 AaBETWEEN LOCATIONS
{71 Z+DISTETLHLISTL;01;7LISTL;01]

(8l 2+~(ZxWEIGHT)++/021(0 1 2 1 QHLISYPL; 1 2]e,.-TLISTL; 1 21)%2
v

V Z+FINDGENS;T3;ALLOBJECTSA
{11 ACOMPUTES GENERATORS (SHAPR ELEMENTS) FROM OBJECTS STORED
[2) aIN ARRAY WITR GLNBAL NAME ALLNBJECTS
(3] ARESULT STORED IN 3-DTM ARRAY 2
Tyl 2+(0,LTEMPX .LTEMPY)p0
(s3] T+0
{6l ALLNBJECTS1+((pALLNBJECTS)+(0,(2xLTEMPY) .( 2xLTEMPY) ) )p0
(73 ALLNBJECTSAL s LTEMPX+1L; LTEMPY+1L]+ALLNBJETS
[8] LOOP:IMAGE«+ALLOBJECTSATT;::
[o] 2+2.[0] DIST SELRCT IMAGE
[10]) T«T+1
[11) +(T<NOBJECTS)/LNOP -
[12] WNe+(p2)L0]
v

V 2+S1 FTSHRR S2;N1:;N2:M1:M2;:VAR1;VAR2

{11 nCOMPUTES FISHRR TYPR CRITEINN FOR VARTANCRS

[2] AOF THE TWO SAMPLES Si AND S2

3] Ni+pS1

(4] N2+pS2

[s] Mi+(+/51)sN1

[8] M2«(+/S2)+N2

7] VAR1+(+/(51-M1)*2)+N1

[8] VAR2+(+/(52-M2)*2)3N2

[9] Z2+(~(OVARL1+0.0001)-0VAR2+0.0001)Y4((+N1)+4N2)*0,5
v




(1]
(2]
(3]
(4]
(sl
{6l
£71
(8]
L9l

(1]
[2]
[3]
ful
[s5]
(6l
[71
[s]
[9]
[10]
[11]
[12]
[13]
(1y]
15]
161
[171
(18]
[19]

(1]
[2]
{3l
Cul
(sl
(6]
(71
(sl
{9l
[10]
[11]
[12]
{13]
[14]
(18]
{161
(171
(18]
{19]
£201
[21]

«53=

V Z+FORNLIST HYP;T
AFORMS LISTS HYPLIST.ET FOR HYPNTRRSTS KO. HYP
NT«(pTRSTSEL)(0]
TLIST«(NT,3)p0

PLISTL ;0)«TESTSEL

TPLISTL; 1 2)+TRSTSLNC
2'NH<+(pHYPRL' ,(¥HYP),')l0]"
HLIST«(NH,3)p0

2YHLISTL ;0]«HYPRL' ,(vHYP)
2'HLISTL ;1 2)«HYPLOC',vHYP
v

Vv HLIST FULLTEST TLIST;I:;J:NR;TLIST1
ACARRTES 0UT ALL TESTS FOR GIVEN LISTS
aTRYING T0 MATCH RETATIVE PNSTTIONS
I+J+0

NH«(pHLIST)[O]

Fr«(pTLIST)(O]

NAGREEMAX<+Q

KEEPMAX+\NT
LOOP:OFFSET+HLISTLI; 1 2]-TLISTLJ; 1 2]
PLIST1+TLIST
PLISTI(; 1 2)«TLISTL; 1 2]+(NTpl)e xOFFSET

KEEP«HLIST MATCH TLIST1
+(YAGREEMENTSSNAGREEMAX )/ LNn0OP2
KEEPMAX+KEEP
NAGREEMAX+NAGREEMENTS
LOOP2:I+I+1
+(I<NH)/LOOP
I+0
v+l
+(J<NT)/LOOP

v .

Y GENHYPLISTS;T3S30BJECT;;SUB:HAMMING ; BEST

ACOMPUTES LIST CALLRD HYPRI. OF SEAPR ELFMRENTS FOR EACH OBJECT
RAND LIST CALLRD HYPLOC OF CENTER CNORDINATES OF FITTED SHAPR ELEMENTS
AASSUMES AVAILABLE:3-DTM ARRAY GSLICRS OF

ASHAPE ELEMENTS

NSLICRS«(pSLICRS)[0]

T+«0

OBJECT«(L+2xLTEMPX .LTEMPY)p0
LOOP1 :0BJECTLLTEMPX+1L3LTEMPY+1\LI+ALLNBJECTS[T;;

ANOW COMPUTE LIST OF SURPICTURES ALOR: BOURDARY OF OBJECT
ASEPARATED BY DISTANCE CALLRD DISTRHYP

SUB«DTSTRYP SELRCT OBJECT

2('HYPLOC' 4¥T) o« '«CFNTERS"

S+0

2('HYPEL'.‘T)Q'*”BDO'
LOOP2 sHAMMING++/+/ | SLICRS~-(NSLICRSp1)e ,xSUR[S;::]
BEST+HAMMING\L/BAMMING

2(*HYPRL® ,¥T) +'[S]+BEST!

S+«S+1

+(S<NB)/LOOP2

T«T+1

+{T<NOBJECTS)/LNOP1

v




[1]
[2])
£3]
4]
£5]
(6]

(1]
(2]
[3l
[ul
[s]
(6]
L7]
[8]
£9]
(10]
(11]
(12]
{131
C1u]
[15]
[16]
{171
(18]
[19]
(201
(21]

[22]
(23]

[2u]

=54~

Vv 2«GENOBJECT NPOINTS;T
AGENERATES POLYGOR WITH NPOINTS VERTICRS
Z+(NPOINTS,2)p0

tX-COORDINATES?

20;0]«0

*Y-COORDINATES®

20;11«0

v

V RANGE+GENSCERE NHILLS3;X3;ANS:LNCATINN;0BJECT
AGENERATES SCERERY WITH NHILLS HILLS,
aSKY. AND OBJECTS

Z+GENTERRAIN NHILLS

2+2SCALExZ . =

20 s (LY~LSKY)+\LSKY)«SKY - T
R2SCALE IS HEIGHT SCALE

Z2+2+WHITE SMALLSCALE
X+0
RANGE+(LX.LY)p1000
LOOP1:RANGELX;]+STGHTL 2[X;]

XeX+3
+(X<LX)/L0oOPL
RANGE+RANGE+L0 .,S+WHITE BACKGROUNDERROR
LOOP2:*PLACE OBJECTS?®

"ANSWER O OR 1!

ANS<D
+(ANS=0)/LNOP3

'"LOCATION ?°*

LOCATINN«D

'0BJECT ?°

0BJECT+0

LOCATION PLACE OBJECT
+L0N0P2

LOOP3:RANGE«RANGE+L0 .5+WHITE OBJETERROR
v




11
[2]
t3]
ful
[s]
£6]
£7]
L8]
fa]
[10]
[111]
121
131
Ciu]
[15]
L1671
[171
[18]
[19]
£20]
[21]
[22]
[23]
[24]

(1]
(2]
[3]
Cul
(5]
{6]
7]
L8]
[9]
(10]

=55~

VY TERRAIN«GENTERRAIN NHTLLS:T;A:B;C3X5:YS3X0;Y0
AGENERATES BACKGROUND OF BILLY LANDSCAPR
aWITH NBILLS BILLS
aSHAPR OF BILL CONTROLLRD BY A'S AND B'S
AHRIGHT OF HILLS CONTROILRD BY C'S
AGLOBAL VARIABLE POWNER CONTROLS POWER LAW
ADISTRIBUTION FOR BHILL BRIGHTS;NREGATIVE VALURS GIVE PARETO
aDISTRIBUTIONS

T+0

TERRAIN«(LX.LY)pO v

XSerLX 7

YSerLY
LOOP: A+~ANIN+(AMAX-AMIN)x1E~8x2100000000

B+BMIN+(BMAX-BMIN)x1E~8x2100000000

C+CMIN+(CMAX-CMIN)x(1E~8x2100000000) *PONER

'AsBC =" . sl oz 7

A+BJC '

X0«+2LX

Y0«2LY ' . e mmy

tX0,¥0 = ... v C ;o

Xo,Yo_ .-

10 .
TERRAIN«TERRAIN+C4#1+((((XS~X0)+A)*2) e ,+((YS-YO)+B)*2)*0.5
T«T+1 -
+(T<NHILLS)/LOOP
v

~

-

V Z«IBOUNDARY IMAGE;T:0UT

ngggsvggieggggk BOUNDARY OF SET IMAGE

A HOOD DEFINITION IN TERMS OF TWO COT,
ABOUNDARY OF MATRTX IMAGE MUST BE FREE OF 178 COTUMN MATRIX
NJ« 8 2 p 0 "1 1 "1 101101 11710717
0UT+(pIMAGE)pO

I+0
LOOP:QUT+OUTV~RJLP;014L0] NILT:110IMAGE

T+T+1

+*(T<(pNJ)L0])/LnOP

Z+«IMAGEANOTT

v -




[1]
2]
£3)
Lul
£s)
(el
£7]
-
[9]
f10]
[11]
ri2l
[13]
[14]
151
{161
{171
18]
[19]
[20]
[21]
[22]
[23]

1]
£2]
3]
(4]
£sl
[61]
71
£8]
L9l

V INSIDE3V3;C13Y;Z:XsNX3sLRFT;RIGHT ; IN
ACOMPYTES DIGITAL PICTURE OF POINTS IN
ALxL-LATTICR INSTDE POLYGON
ADESCRIBED BY Lx2 MATRTX C

V«(1L)¢L
Ci+«(146L0] C)-C
INTERIOR+(L.L)p0
+((1878>1C1T :11)A0=11LxCL;11)/NARNTR:
Y+0
LoOoP1:2+(Y-CL311)+C1031]+0=C10;1]
X+CL;01+2xC1L 0]

Z2i+Z+1 .
Xe((02C10;:11)A(2121)A(2182)A(21<2)Vv(21=2)A0>C1T 31Ix16400] Cc1l;11)/X
X+«X[4X]

NX+pX
+(0=NX)/L0O0OP2

LEFT+X[2x1NX+2]

RIGHT+X[1+2%x14X%+2]

INe(v/ (Ve ,2LEFT)AVe SRTGHT)/V
INTERIORLLxIN;LxY]+1
LOOP2:Y+Y++L
+(Y<1)/LO0OP1
+0
WARNING:'DATA NOT WELL CONDTTIONED FOR ALGORTTHM! !¢

v

VvV Z+S1 KOLMOGOROV S2:N1:N2;ZS;F1;F2
ACOMPUTES KOLMOGOROV-SMIRNOV
ASTATISTIC (STANDARDIZED) FOR SAMPLES S1 AND S2
Ni1+pS1
N2+pS52

25+81,52

25+250428]

File(+/25¢.251)N1
F2+(+/250.252)%N2

2+«(T/1F1-F2)x(N1xN24#N1+N2)*0 .5

v




(1]
(2]
£3l
[u4]
£sl
[6]
7]
[8l
[9l
[10]
[11]
(12]
(13]
Liu]
(15]
[161
{17
(18]
[19]
[20]

[1]
(2]
(3l
L4l
(sl
L6l
£71
(8]
L9l
C10]
L11]
(12]
[13]
[14]

(1]

L1]
(2]
£3l
L4
[s]
(6]
£7]

-57=

V 2Z+X LEBESGUE SLICRS;T:;NSTNBALL:;S;MAX;CLOSE
AESTINATES LRBESGUR SET BY CHOOSTRG X
ABALLS OF RADIUS=RADIUS WITR HIGHRST DENSTTY
2+(0,LTENPX . LTEMPY )p0
I+0
LOOP1:+(0=(pSLICES)L0))/ENRD
S+0
NSTNBALL+(pSLICRS)L0])p0O
LOOP2:NSINBALLLS)«SLICRS[S3:] NTNBALL SLICRS
S+S+1
+(S<(pSLICRS)L0]1)/LOOP2
MAX+NSINBALL1\[/NSTNBALL
2+2.[0] SLICRSLMAX;:
CLOSE+RADIUS2+/+/ |SLICRS~((pSLICRS)[0)p1) e xSLICRSIMAX;;
SLICRS«(~CLOSE)/L0]) SLICRS
T+T+1
+(7r<X)/LO0OPY
ANOW DELETE EXTREME GENERATOR ESTIMATORS
END:DROP+(0 .3xLTEMPXxLTEMPY Y<1(0 ., 5xLTEMPYXXxLTEMPY)~+/+/2
Z«(~DROP)/L0] 2
NSLICRS+(p2)[0]
v

V KEEP+«HYPLIST MATCH TLIST;AGREEMENTS;NROWS;NCOIS
ATRIES TO MATCH SUBSET OF TEST RESULTS IN 3-CNTL.UMN
AMATRTX TLIST WITH SUBSET OF SHAPR ELFMENTS/LOCATIONS

n

ARESULT Z IS VECTOR OF SUBSCRIPTS IN TLIST THAT SHONLD BE
ADROPPED FROM TLIST AFTER MATCHING

AGREEMENTS+HYPLIST EVIDENCR TLIST

NROWS+(p AGREEMENTS)([0]

NCOLS+(pAGREEMENTS)([1]

KEEP+1NCOLS

MAX+[/L0] AGREEMENTS
AGREEMENTS+(AGREEMENTS=(NROWSp1)e . xMAX)AAGREEMENTS>AGREET.EVEL
NAGREEMENTS«+/v/L0]) AGREEMENTS

+(NAGREE>NAGREEMENTS) /0

KEEP«(~v/[0) AGREEMRNTS)/\NCOLS

v

V Z+S1 MAXDEV S2

Z+((T/«852)-1L/452)40.0002+4(T/.S1)~L/ .51
v

V CENTER+MAXLOC FIELD;BOOLE;U;V
ACOMPUTES LOCATINN OF SOMF (%) MAXIMUM OF FIELD
CRNTER+2p0
BOOLE«FIELD=[/[/FIELD
U+(v/BOOT.E) 11
V+(.BOOLELU;1)11
CENTER[0)«(UxSTEP)+LTEMPX+2
CRNTER{1]«(VxSTEP)+LTEMPY+2
v




[1]

[2]

[3]

[u]

(5]

Le]

£7]

£8]

L9l

L10]
[111]
[12]
[13]
(1]
[15]
f161
[171
[18]
[19]
[201]
£21]
[22]
231
[24]
£25]
[261]
271
[28]
[2s]
£30]
[31]
£32]
£33]
L3u])
£35]
[361
[371
[38]
[39]
[s0]

w58~

V Z+CENTER NINBALL SLICRS

n3-DIN ARRAY CONTAINS SLICRS OF SIZE LTEMPXxLTENPY
ACNMPUTES NUMBER OF SLICRS IN BALL CRNTERED SLICR=CRNTER
ARADIUS OF BALL=GLOBAL VARTABLR RADTUS
Z++/RADIUS>+/+/ | SLICES-((pSLICRS)[0]p1) e .xCRNTER

v

Vv LOCATION PLACR OBJECT
M+RANGELT (-L+2)+(tL)+LOCATION[ 0] ;T (1L)+LOCATION(1]]
RANGECT (-L42)+(1L)+LOCATIONLO] ;T (L) +LOCATIONL1]]«ML(LNCATIONC ]

x0BJECT)+10000x1-0BJECT
v

V RECOGNIZE IMAGE ;S3;T;LOCATIONS;NAGREEMAXS ;PERM;LOCLIST ;NEWLNC
ACOMPUTES CREDIBILITY OF LIXKELY RYPNTHRSES
AFOR RANGE DATA IMAGE
7+0
TESTS1 IMAGE

LOCATIONS« 0 2 poO
NAGREEMAXS+10
NT«(pTESTSEL)[0]
+(0=NT)/0
LOOP: 2 'FORMLIST !',vT
BLIST FULLTEST PLIST
+(NT=pXEEPMAX)/LO0OP1

LOST+(~(1NT) eKEEPMAX)/\NT

LOCATIONS«LOCATIONS,[0]L(+/[0] TLISTLLOST; 1 2]1)+pLOST
NAGREEMAXS«NAGREEMAXS  NAGREEMAX
LOOPY :T«T+1
+(T<NOBJECTS)/LOOP
S5+0
PERM«VYNAGREEMAXS
LOOP2 :+(S=oNAGREEMAXS)/SUMMARY

YALGORITRM DECIDES CREDIBILITY QF HYPNTHESTS:!

Y0BJECT NO. '«v((1pNAGREEMAXS)LPRRM]1)[S]

AT LOCATION ' .v(LNCATINNSLPRRM;1)LS;:]

'TO0 BE = '.¥(NAGREEMAXSUPRRM]1)LS]

10
S+S+1
+L00P2
SUMNARY : 10

‘RESULT OF DECISION FUNCTION IS:!

S+0
+(S=pNAGREEMAXS)/0

LOCLIST+ 1 2 91000000
LOOP3 :NEWLOC+(LOCATIONSIPRRM;1)[S;]
+(MINDIST>L/+/ | LOCLIST-((pLNCLIST)(0lp1)e .xNRNLNC)/LOOPY

LOCLIST+LOCLIST.L0) NEWLNC

YOBJECT NO. '+v((1pNAGREEMAXS)LPERM])L[S]

YAT LOCATION '.YNEWLNC
'WITH CREDIBILITY '.v(NAGREEMAXSUPRRM])LS]
10 ’
LOOPY : S+S+1
+(S<pNAGREEMAXS)/LOOP3

v
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V RECOGNIZEBR;:;T;NT;LOST;CRED
£1) ARECOGNITION ALGORTTAM FOR RECOGNTZING OBJECTS
EZ% nIN IMAGE REPRESENTED BY GLNBAL VECTOR CALLRD TLIST
3 T+0
C4] LOOP:2*FORMLIST '.¥T
£s] BLIST FULLTEST TLIST
£el +(o=NT)/0
[7] +(NT=0KEEPNAX)/LOOP1
] YALGORITRN SUGGESTS HYPNTHRSTS: OBJECT NO. '.(¥T).' IN IMAGE'
Lol LOST+(~(\NT) cKEEPMAX)/NT
[10) LZOCATION«L(+/00) TLISTLLOST; 1 21)4oLNST
[11] 'WITH LOCATION AT *.¥LOCATION
(12] 'WITR CREDIBILITY '.vNAGREEMAX
[131 0
Ci4] LOOPL:T«T+1
€151 <+(T<NOBJECTS)/LOOP
v

VY SCALED+LEVELS SCALE IMAGE ;MIN;MAX

(1] aSCALES IMAGE TO GREY LEVELS

(2] ALEFT ARGUMENT =NO. OF GREY LEVELS

[3] IMAGE«O0TIMAGE

Lul  MIN«L/L/IMAGE

(5] MAX«[/T/IMAGE

(6] SCALED+| (LEVELS-1)x(INAGE~-MTN)+MAX-MIN
v

V Z+SCALE SCALING OBJECT
[1] ASCALES AND PLACRS OBJEr™ IN LxL ARRAY
2] C+SCALExQBJECT
(3} CcL;0]«CcC;0]4¢2
'S INSTDE
(5] 2«INTERIOR
(6] Zz+«¢d(0]&2Z
v

V 2+«DIST SCREEN BOUND;CLOSE
1] ASEBLECTS SUBSET OF POINTS FROM BOUND=2CNT.UMN MATRTX
[2] aPTS SEPARATED BY DISTANCF 2DIST
£3l Z« 0 2 pO
L4l Loop:+(0=(pBOUND)[O])/0
(5] 2+z.[o0] BOUNDLO;]
(6] CLOSE+DIST2+/|BOUND~-((pBOUND)LOlp1)e.xBOUNDLO;]
(7]  BOUND«(~CLOSE)/L0] BOUND
(8] +rLooP
v




(1]
(2]
£sl
Cul
(sl
(6]
(7]
L8l
(9]
[10]
[11]
[12]
[13]
[14]
[15]
[161
(17
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L1l
[2]
£3l
Lul
[5]
(6]
£71
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[1]
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[5)
[6]
£71
[8)
L9l
[10]
[11]
[12]
[13]
[14]
[15]
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V SBARCE FIKTLD3FIEIDAL:LXF;LYP;THRESHOT.D:BOOT.R:;XS5:XS;3;2
ACOMPUTES LIST COORDS OF SEPARATED MAXIMA OF FIETD
ANIN SEPARATION DISTANCE=NRIGH
ACONSTART X DECIDES CUTOFF LRVEL

LXP+(pFIELD)[O]

LYP«+(pFPIELD)[1]

COORDS+ 0 2 poO

THRESHOLD«XxLTEMPXxLTENPY

FPIELDA«FIELD
LOOP:2+2p0

BOOT.E«FIELD1=T/T/FPIELDL

200)«(v/BOOLE)\1

2011« (.300.802[0]);1)11

+(FPIBELDIL200]):2L1)]<TRRESHOT.D)/O

COORDS+COORDS,[0] 2

XS+(0rZL0l-NEIGH) LXF| 2L0)+NEIGH

YS«(0r201)-NEIGH) JLYFLZL1])+NEIGH

FIETDILXSC0)+1XS[1]1-XS[0);YS[0]+1¥YS[1]-¥YS[0]11+«~100000000
+L00P

v

vV SEE IMAGE
(* O*')CAL0JRIMAGE]
v

V SEEGENS;T;FRAME

T«

FRAMR«(2+LTEMPX .LTEMPY)p ' %!
LOOP:FRAMEL1+1\LTEMPX : 1+ LTEMPY]«(* O )T 0IQSLICRS[T;:]]
YSHAPE ELEMENT NO. '«¥T

FRAME

10

T+T+1

+(T<NSLICRS)/LNOP

v

V 2+DIST SELECT IMAGE ;BOUNDARY ;NEWBOUNDARY ;T3;XVEC ;YVEC
ASELECTS SUBPICTIIRES OF SIZE LTEMPXxLTEMPY FROM IMAGE
ACENTERED AT POINTS ALONG BOUNDARY OF IMAGE
ASRPARATED BY DISTANCE DIST
AWARNING:SRT IN IMAGE MUST BE AT LRAST LTEMPX.LTENPY FROM
ABORDER OF BOOLFRAN MATRTX IMAGE

BOUNDARY«+IBOUNDARY IMAGE

NEWBOUNDARY«DIST SCREEN COORD BOUNDARY

NB«(oNENBOUNDARY)L[ O]

CRNTERS«(NB.2)p0

2+(NB.LTEMPX .LTEMPY) 90
XVEC+(~LLTEMPX4+2)+1LTEMPX

YVEC+(~-LLTEMPY+2) +\LTEMPY

T+0 .
LOOP:2[T;3)«IMAGELNEWNBOUNDARY[T;0)+XVEC ; NEWBOUNDARY[T;11+YVEC]
CENTERSLT;J«NEWBOUNDARY[T;]

T+T+1
+(T<NB)/LNOP

v
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[3l
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[6]
A
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[1]
[2]
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VY RESULT«SELECTALL;T;ALLNBJECTS1

aITERATES FUNCTION CALLRD SET.RCT ON ALL OBJECTS
T+0

RESULT«+(0 ,LTEMPX .LTEMPY)p0
ALLNBJECTS1+(NOBJECTS.(L+2xLTEMPX) L+2xLTEMPY)p0
ALLOBJECTSAL ; LTENPX+1L;LTENPY+1L)+«ALLNBJECTS
LOOP:RESULT«RESULT.[0) DTST SELECT ALLNBJECTSITT;;
T«T+1

+(T<NOBJECTS)/LOOP

v

V 2«SIGHTA FTELD3;APPRAR;:T

aCOMPUTES RANGE DATA FRON GIVEN RRIGHT FIELD
AELEVATION ANGLR IS PSI IN RADTARS
APPRAR+FIELD+(1LY)x30PSI

APPRAR+I \APPEAR

2«LYp0

T«1
LOOP:2{T]1+«(APPRARLT])>T/APPRAR[1\T])xT
207)«207)+207-11xAPPRARLTIST /APPFARL\T]
T«T+1

+(T<LY)/LOOP

v

Vv Z+SKY
AGENERATES BACKGROUND SKY
Z+(LX.LSKY)pDMAX

v

V 2+S1 STUDENT S2:;N1:N2:M1:M2;SD1:;5D2
ASTUDENT'S CRITERTON FOR TWO SAMPLES S1 AND S2
Ni+pS1

N2+pS2

Mi+(+/S1)+N1

M2+(+/8S2)+N2

SD1+((+/(S51-M1)%*2)#N1)*0.5
SD2+((+/(52-M2)*2)4N2)*0.5

Z+( IM1-M2)40.0001+(((SD1*2)#N1)+(SD2*2)4+N2)*0.5
v

V TESTS IMAGE ;NSLICFS;:T

ACOMPUTES VECTOR TESTSEI..QOF SHAPR ELEMENTS
ADETECTED IN IMAGE. AND 2-CNT.UMN MATRIX TESTSLNC
aNVITH THE CNORDINATES OF THRIR CENTERS

AUSES 3-DIM ARRAY SLICRS OF SETLECTED GENERATORS=
ASHAPE ELEMENTS

TESTSEL+10

TESTSLOC+ 0 2 p0

NSLICES+(pSLICRS)[O]

T+«0
LOOP1 ;TEMP+SLICRS[T;:

VIEW1 CHANGE IMAGE

SEARCH CRITERION

+(0=(pCOORDS)L0])/LOOP2
TESTSEL«TESTSEL.((pCNORDS)[0])pT
TESTSLOC+TESTSLNC .L0] TRANSFUVS COORDS
LOOP2 :T+T+1

+(T<NSLICES)/LNOP1
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[21]
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[26]
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[1]
[2]
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=62~

V TRSTS1 IMAGE;T;S3BOUNDARY ;NBOUND;BOOT.R3;NX ;MY ; THRESHOT.D
nCONPUTES VECTOR TESTSEL OF SHAPR ELEMENTS

ADETECTED IN IMAGE. AND 2-COL MATRIX TESTSLOC

ANITH THE COORDINATES OF THEIR CENTERS

AUSES 3-DIM ARRAY SLICES OF SELECTED GENERATORS=
ASHAPE BLEMENTS

AMUCR REDUCED SEARCH EFFORT

TESTSEL+10

TESTSLOC+ 0 2 pO

S+T+0

IMAGE+«FEN CLEAN CHANGE IMAGE

BOUNDARY«CGORD IBOUNDARY~IMAGE

MX+=-|LTEMPX42

MY«-LLTEMPY+2

THRESHOLD+KxLTEMPXxLTEMPY

BOOLE+((-MX)<BOUNDARYL[ ;0))ABOUNDARYL ;0)<LX+MX
BOOT.E«+BOOLEA((~-MY)<BOUNDARY[ ;11)ABOUNDARYL :11<LY+MY
BOUNDARY«BOOLE/LO] BOUNDARY

NBOUND+(pBOUNDARY)[ O]
LOOP1 s TEMP+STLICRS[T; ;]

+(THRESHOL.D>TEMP CORR IMAGEUMX+BOUNDARY(S:0]+\LTENPY;
MY+BOUNDARY[S311+\LTEMPY])/LOOP2

TESTSEL«TRSTSEL.T
TESTSLOC+TESTSLOC.[0) BONNDARY[S:)
LOOP2:S+S+1

+(S<NBOUND)/LOOP1

S+0

T+T+1

+{T<NSLICRS)/L0O0OP1

v

V Z«TRANSFUVS UVS

ATRANSFORMS UV-COORDINATES T0 XY'S
Z+(pUVS)p0
20 :0)«L(UVS(;0)xSTEP)+LTEMPX 42
2031)«L(UVSL ;1]1xSTEP)+LTEMPY 42
v

V Z+TURN MATRIX
ATURNS MATRTX FROM MATRIX COORDINATES TO XY'S
2«¢[0JAMATRIX

v
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V VIEW OBS;NUMX;NUMY3;U;V;SAMPLEIN ;SAMPLEONT
ACONPUTES CRITERION FOR RANGE DATA

AUSES CRITERION DEFINED BY ‘'TEST'V
NUMX+L(LX-LTEMPX)+STEP

NUNY«+L(LY-LTENPY)+STEP

CRITERTON«(NUNX.NUNY)pO

UeV<0
LOOPL s SANPLE+OBSL(UXSTEP)+1\LTEMPX ; (VxSTEP) +\LTEMPY]
SAMPLEIN+( .TENP)/ . SANPLE
SAMPLEO!T«(~.TENP)/ +SANPLE

CRITERTONLU;V]+2( '"SAMPLEIN ') (¥TRST).' SAMPLEOUT!
UeU+1

+(U<NUNX)/LOOP1

U«0

V+V+l

+(V<NUMY)/LOOP1

v

v VIEW1 OBS

ACOMPUTES CRITERION FOR RANGE DATA
AUSES CRITERION DEFINED BY ‘'TRST'V
NUMX«L(LX-LTEMPX)4+STEP
NUNY«L(LY-LTEMPY)#+STEP
CRITERION«(NUMX .NUMY)pO

U«Ve0
LOOP1 : SAMPLE+0BSU(UXSTEP)+\LTEMPX 3 (VxSTEP)+\LTEMPY]
CRITERTONLU;V]«( .TEMP) CORR,SAMPLE
U«U+1

+(U<NUMX)/LOOP1

U+0

VeV+1

+(V<NUMY)/LOOP1

v

V Z«WHITE STGMA:S

ACOMPUTES GAUSSTAN WHITE NOISE FIEID OF S.D. STGMA
aAND OF SIZB LXxLY

S+0

2«(LX.LY)p0
LOOP:2+2+2(LX.LY)p100000000

S+5+1

+(S5<12)/LooP

2+SIGMAx"6+1E"8x%2

v




This software package, written in APL, is intended for the following
purposes:

a)  to simulate terrain, placing of objects, and the noise of sensor

b) to compute optimal selection of shape elements to characterize a
given ensemble of objects: estimate a Lebesgue set in the space of
shape clements

c) to test for presence of objects in terms of their shape elements

d) to integrate the results of the tests by a parallel logic algorithm for the

detection and recognition of objects against clutter.

1. SIMULATION OF DATA
Choose size of picture (total size) as LX by LY. For example LX=LY=68 or
128. This is only limited by the size of the workspace that is available.
Choose vertical dimension of shy, LSKY, as upper part of picture. For
example, LSKY = ]2,
Choose height scale ZSCALE. This is only for convenience: to be able to
make landscape feature large or small compared to object size after objects have

been defined. For example, start with ZSCALE = 1.

1.. GENERATE OBJECTS, First define, for each object and orientation the
viewed object boundary by a matrix OBJECTO, OBJECT!, OBJECT?2, etc. with two
columns; x and y values in respective columns. Here x and y axes have

conventional orientations (not as in matrix coordinates where first coordinate




wf5=
points downward and second to the right). Call, for the first object,
OBJECTO - GENOBJECT NPOINTS
where NPOINTS is number of corners in polygonal boundary. The user will be
interrogated for the x,y values of the corners. Result is the desired corner matrix.

First, set size LxL of object frame. Here L will be smaller than LX
and LY. Example: L=37 or 51. A prime number is convenient since that
will avoid a special condition when executing function INSIDE called by
GENOBIJECT.

After all object types have been defined, say NOBJECTS of them, collect all
of them into a 3-dimensional array ALLOBJECTS by calli.ng, after defining
LSCALE, relating coordinates in polygonal boundarics to pixel size in LxL picture
(for example =.75) the function

COLLECT
Note: The number of objects in a simulated scecne can be smaller (some object

types do not occur in the scene) or larger (some object types occur more than once

in the scene) than NOBJECTS.

To display a picture (quickly and crudely on the screen) given by a binary
matrix defined digital picture IMAGE with the conventional orientation of
coordinate axes called the function

SEE IMAGE
Which was the character O for an inside point (=1) and a blank for an outside
point (=0). This will give a rough idea of how easy/difficult it will be to

discriminate between the objects. Use for example IMAGE ~ OBJECTO etc.




Note. When we call COLLECT, and later on GENSCENE, the function INSIDE is
invoked. Be sure to select x-coordinates that are not multiples of 1/L; otherwise a

warning statement is printed to indicate special condition not accepted by the

function inside.

1.2. GENERATE BACKGROUND, The simulated landscape will have smooth
large scale features but also more chaotic small scale features.

The smaller scale is controlled by a paramcter SMALLSCALE, for example
=1,

We now call the function GENSCENE in the focrmat

RANGE +~ GENSCENE NHILLS
where the parameter NHILLS controls the number of hills in the large scale
features.

This function also needs the parameter BACKGROUNDERROR = standard
deviation of the measurement errors of the range sensor, for example =10,

The function interrogates the user about placements of objects and their
location as a 2-vectur with (x,y) coordinates. Respond to question about which
object by inputting digital representation of object, for example type 5:

ALLOBIJECTS|[S;;)

It calls another function GENTERRAIN that interrogates the user about
location of the objects. This function needs the following global variables, with
suggested values,

AMIN=4 AMAX=50
BMIN=4 BMAX=50

CMIN=3 CMAX=10 or 5.
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During execution the simulated values of A,B,C as well as XO,XY are printed for
each hill. The C-valuec determines the height of a hill, A and B the half axes of
their elliptical contours, and XO,YO their location, all expressed in pixels as
units.
The resulting LX,LY matrix RANGE contains the measured distances. They
are obtained using the function SIGHTI, which needs the depression angle PSI (in

radians), for example .2.

1.3. UTILITIES.
1.3.1. To get a crude idea of a range field RANGE execute
DISPLAY RANGE
The resulting character matrix uses the symbols 'blank . ° o O' for increasing

values of the range.

1.3.2. In the IBM-CMS environment, to make the APL matrix MATRIX into
CMS file called MATRIX IMG
do
)JCLEAR
JCOPY IOFNS
JCOPY WS MATRIX
'MATRIX DATA’ PUT (20 FORMAT MATRIX)
JOFF
1.33. To rearrange matrix IMAGE for viewing it with conventional
orientation of axis do

NEWIMAGE ~ TURN IMAGE

and to scale it to NLEVELS grey levels
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NEWIMAGE « NLEVELS NEWIMAGE
for example with NLEVELS «~ 64.

134, To form the 3-column matrix HLIST needed later, and whose first
column is the shape element list of hypothesis no. T, and whose two remaining
columns are (x,y) locations of the shape elements, execute

FORMLIST T
At the same time it computes the corresponding TLIST from the image. It

results in the global matrices HLIST and TLIST.

135 To compute the giobal matrix ELDIST of Hamming distance
between shape elements do
DISTEL «~ ELDIST
where ELDIST will be a NGxNG matrix of mutual distances; this is done after
FINDGENS, LEBESGUE have been exccuted.

Use the function SEEGENS to sce generators (shape elements) obtained from

FINDGENS and LEBESGUE.

2, IN NERATOR
2.). SHAPE ELEMENTS., Generators will have to be chosen as shape elements:
neighborhoods of objects view through windows of size LTEMPX,LTEMPY
centered at points of the boundaries of objects. For example
LTEMP=LTEMPY=9.
All the shape elements will first be computed and stored in a 3-dimensional
atray ELEMENTS. This is done by executing the function FINDGENS which

needs the global variable DIST which separates points along boundary of objects,
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for example DIST=3. Execute the function as described below

FINDGENS

Note. It is necessary that object boundaries obtained from OBJECTS be at least
distance LTEMPX,LTEMPY away from boundary of LxL matrices in OBJECTS.

It is a good idea to display at least some of the shape elements, using the

utility function SEE or SEEGENS.
So that, after executing
COLLECT,
which creates a 3-dimensional array called ALLOBJECTS, do
SLICES = FINDGENS,

which selects shape elements centered at boundaries of all the objects,

22. THE LEBESGUE SET ESTIMATION, To estimate Lebesgue set in space of
all LxL shape elements we execute

. SLICES -~ K LEBESGUE  SLICES
where K is a number of generators, NG, wanted and a global variable RADIUS
designs the radius of the balls used to cover the Lebesgue set.  RADIUS should
be fairly small, say 5-15, the local variable K around 20. (there is also a

global K!).

Exccute GENHYPLISTS to form hypothesis lists HYPELO, HYPLOCO,
HYPELL, etc.

3. RE NITI BJE

3.1. JEST LIST, To get the two lists resulting from the tests on the matrix
RANGE we execute

]
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TESTS RANGE

This computes a list {vector) of shape clements detected in RANGE and a list

(matrix with two columns) of the corresponding coordinates for the centers of

these shape elements,

The driver TESTS calls the following functions:
a) VIEW IMAGE

which carries out a test (done by the function named TEST) for a particular shape

element. Then looping over all the generators in the 3xLTEMPXxLTEMPY array.

It results in each time in a matrix CRITERION

b) SEARCH CRITERION

which computes local maxima in CRITERION separated by a #;-distance DIST

¢) IBOUNDARY (to find boundary of a digital imge)
d) SCREEN (to select boundary points separated by distance DIST)
¢) COORDS (to transform to pixel coordinates)

f) TRANSFUVS (to transform n,v coordinates to x,y’s)

all of which are auxiliaries.

g) CUTOFF, use K=6 or smaller.

For TEST the user can select one of

STUDENT (computing standardized student t-test)
FISHER (for.Fisher’s z-text)
KOLMOGOROYV (for Kolmogorov criterion)

or he can substitute a test criterion of his own.

or 8.

A global variable STEP controls how crude the search should be, perhaps 4




3.2. Now we can exccute the driver
RECOGNIZER

It calls the following functions

a) EVIDENCE computes degree of evidence for a hypothesis specified by
HLIST on basis of data in TLIST. It results in a matrix AGREEMENTS,

b) MATCH which matches a HLIST against a TLIST. The global vector
KEEP is the set of shape clements tested that should be kept after discarding the
significant ones relative to the current hypothesis.

The function RECOGNIZER types out objects recognized in the observed

image.

3.3. An improved version of the above is the driver in the format
RECOGNIZE IMAGE
which calls the main functions TESTSI and FULLTEST.

If no object is detected in IMAGE nothing is printed. In the opposite
case the credibility of each object type is evaluated and printed starting with
the most credible hypotheses.

The scene can contain several objects, but, at present, not more than one of
cach type. This can be generalized by using the vector KEEP and looping
through TLIST after the first run modified by dropping all its rows except the

ones labelled in KEEP,




4. GLOBAL VARIABLES AND THEIR MEANINGS
name meaning typical valucs
AGREELEVEL ‘threshold value used in accepting -10- -5
tested shape element
ALLOBJECTS 3-dim array storing all objects as
LxL digital binary matrices
AMAX largest half axis of elliptical hill 20-50
contour
AMIN see AMAX, smallest value 0-5
BACKGROUNDERROR S.D. of sensor error 5-10
BMAX as in AMAX 20-50
BMIN as in AMAX, smallest value 0-5
CENTERS centers of hills generated by function
GENTERRAIN
CMAX highest hill possible 10-20
CMIN as in CMAX, smallest value 1-5
CONST 1
COORDS 2-column matrix for coordinates of
maxima detected in function SEARCH
CRITERION matrix of test values
DIST distance along boundary of object,
used by functions SELECT and
FINDGENS 2-4
DISTEL NGxNG matrix of Hamming distances
between shape ¢lements
DMAX 32
(ELEMENTS)
ERROR error matrix
FIELD

LXxLX matrix representing heightficld

in function SIGHTI




name
GENERATORS

HLIST

HYPELO etc.

HYPLOCO etc.

IMAGE

INTERIOR

K

KEEP

KEEPMAX

LSCALE

LSKY

LTEMPX
LTEMPY

LX
LY

MINDIST

NAGREE
NAGREEMAX

NB

meaning typical valucs
3-dim array of shape demands,
each of size LTEMPXxLTEMPY

vector of hypothesized shape
elements discovered in range data

shape element list for respective
hypotheses

same but 2-column matrix with
location of shape elements

binary digital picture i
inside of given polgon

cutoff cont 6o0or9

in respective
TEST programs

vector of shape element numbers
to be kept after testing

final vector KEEP for given
HLIST and TLIST

size of object binary numbers 37 or 51
(preferably prime)

scale factor used for transforming 075
polygonal shape to fit LxL matrix

height of sky in scene 0-20
x-length of template 9-11
y-length of ltemplate

x-side of picture 128
y-side of picture 128

smallest distance assumed between
hypothetical locations of object

centers . 10
number of agreements 6-8
largest number of agreements

found

number of neighbors in lattice 8

topology




NEIGH

NG

NH
NOBJECTS
NROWS
NSLICES
NT

OBJ

OBJECTERROR

OBJECTO etc.
OFFSET

POWER

PSI

RADIUS
RANGE
SAMPLE
SIGMA
SLICES
SMALLSCALE
STEP

TEST

TESTSEL

-Ti=

meaning typical value
minimum separation between 1-3

recognized local 'maxima’

number of generators 10-20
number of hypothesis in HLIST

number of object types allowed 4-10
number of rows in matrix

temporary number of shape elements

number of test values in TLIST

one of the objects

s.d. of signal from objects S
objects in digital form

vector nceded to bring shape clement
to desired position

exponent in power law for hill 1-3
height distribution

depression angle 0.1-0.2
radius of balls in shape element space 4-20
LXxLY matrix with range data

subsort of range data

temporary 3-array of shape elements

s.d. of small scale features of scene-heights 0.1

size of step in searching range data 4-8
character vector of test statistics used 'FISHER’
'KOLMOGOROV’
'STUDENT’

shape element vector selected after
testing data




name

TESTSLOC

TLIST

WEIGHT

ZSCALE

meaning
similar to TESTSEL but 2-column metrix
with locations of shape elements selected

vector of shape clement numbers
selected after testing

weight for distance between shape
clements relative to distance between
their locatici s

height scale factor

2-1




10. Objeccts,

QBJECT NO. 0

ECECTEIOCD CCOOCCED
COCCECE Ct‘.ﬂ
<CCCOCCCRACCCERI OGO CoE06660
CoCCCCCORCOCCaCanenterotChonooncn
SCCCpoennanCooepeoronnGRnorennnrnen
RSttt e b ol A K18 B R BT S S AR FIR T 0,00 T OS]
[y i sty samain el ste ol o s o el e e [slnlsin i ola] s
OCOCCCCCCOCECCOOOCEOoR0rrotonnreen
Loont S CC R e NG onnestcoootannnn
Radsiarasda st/ vinioiniosivaisn e s e

OBJECT NOQ. |

COCCoCU
CO0COGGE0
CCOnCOCCeonon
CCCOCGGCOCCEE
CCCGGLOEOChot
OCGELCNOCCCCE
CUCODCOEn0000
Lﬁ 6000000000
00GOO0CCCC0

BGDDGCQCEUDBD

0GOCOGEO0
00C000c0000
COD0BCCGCO00GRo
CCOCOGC000CCCCU0
CCOCCC000Ccocecconn0cn
CCCeCOCCeononoocooncasa
CCCCCGRCOCCCO0GR006En00
CCO0CO000oLt00000CC0000
COCCO0C00CCCO0006LGCEDN
;.EBCGDBuG‘”GUDBUDDDGBUD
oCCOGCCCEsCon000onnnn
CCEUSEECCBDBDBDBBGUUUUDO
CCCTOGELGHLEOC00000h0000

(=]




QBJECT NO. 3

LULCHL ulttienet COGO00OCEEC
SCLNCC IO TLLCO00URCCoCLEoern
e noenoernononene nlaqnuuVD
LiLLLCCLLLOtrutnton: (CSrOoncre
RS R ORI BN KNS T SRR N
S COCCCOCC(CLEn0nC (00000 0oot
CrCir LSO COCDCCEGECan! COTOn
paCAn pds Dald iy Py viddecdiigngen
ifE‘.':F.[‘t"‘(” LOCCCCROCOCCOOCONONG
CLLCToELRorEtunoLeoc.cococen
':- oL LCCCOCoUtBL CLit Lot Getn
PF‘FFIF‘(I"441wuq CCCo0aeeeeonn
< LCLLOSOL L COCRCOnnCoConnoenees
et g o R SRR T L, 8 L M Ty A 0 N 1 TS
A RTECCRURL N UL N LR HUN MR on

OBJECT NOQ. 4

RENL AN R LT RO Y NN T S
mﬂcc.mmttm‘. DO
Cainta ..cnccrnﬂtmc oOCH

(ORI & 2 M 0 R B K
U Lot o LLDELRcnern
LoCCorCnntnteneannnet 1!
i CoRGLOCOTCCOGCOUC OO0
LCCT L O CCOCOUOCOONCERnTRORanT
AT N RN L UL RN N AN
S ore, L 100% & £ AW R S L
N S B AL R
o rrrrn. nnz'c
~CONLDN 00! Lol
COCOTTUPTRCClTronnLn-oroernen

OBIECT NQ. 5

NNy LY
SCOrecen
—CCOROCh

eEoon COGERO000C0
L CDOCCOCOCNront
LGG00000C0GCOGCO0CNCIL

.,ccccr.am'
F (OLCOONDOOCCEOG0C00G
TEEE?EQFE (MNP AT ELAL SR E S !!!rl
cceggrmcc  COOCODOCCRRCGEOC
L COOL COOCGOCOGUGNTOCaHG
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STTeErS
SHAPE ELBLLIT
(3222222222224
«LUNCCODCON 0
«000000LLOC0
*0UCOCGICTCH
*COOC0OCCTTU
*0U0CLCOUCCO

« OGCUGOCOCO

*® *
» -
] *
* ®
* *
(2232322322224

SHAPE ZLEBHEID
L AR RRR AR RAN
*
.-
*

-

+C00000
+0000000
»C0000C00
«0000C0000
*00DCOCCCo
»C000CC00
+(0000C0

221222222 )4

ok kR RN

* % % & &
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12. Conclusions and continvation. Although the current version of our
decision function performs fairly well, at least in unobscured situations, it has

some weaknesses that should be removed.

12.1. It has a number of parameters that have to be set before execution.
At least two of them are critical: the acceptance percentage K, and the threshold
AGREELEVEL. One should also investigate by systematic experimentation with
the simulator, if the decisions depend critically upon other parameters.

One should make the algorithm adaptive in the sense that parameters are
either presenlt, when this works well, or estimated from the picture. The function
CUTOFF, which was used in the earlier version TESTlI and RECOGNIZER, is an

example of what sort of estimation procedure to use.

J22. The final matching done by RECOGNIZE uses FULLTEST that
employs a naive algorithm, trying all combinations between TLIST and the
HLIST’s. This can amount to up to 4000 comparisons. Since, at that stage of the
computing, we have a good idea of where hypothetical objects mziy be located, it
should be enough for each object to let OFFSET take on about 10 x 10 locations.
For a scene with two objects, and with some false positives presented by TESTS,
this would amount to about 300 values for OFFSET. This modification should
therefore lead to speed up by a factor of 10 or so.

This is imperative in realistic situations, where the number of object shapes
could easily be 500 or so. The matching will then be done by adding a hashing
component to RECOGNIZE,
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123, The experiments have, so far, included only a few cases with
obscuration. This should be continued systematically in order to find more
precisely under what circumstances the decision function does not work well.

Such knowledge is like to lead to further improvements.

124, When rcal pictures become available in larger numbers the decision
function should be tested on them. If the technology has improved to such an
extent that signals returned from the bLackground carry more information, this
should be rzflected by changes in line TESTS[20]. It may, at such a stage, also be

meaningful to replace our flat shape elements by spatial shape ¢lements,




Appendix 1
Mi istical Analvsis of Noisy I
1.  The micro-statistical approach. A major advantage of stochastic relgxation

is its yniversality: it can be applied, at least in principle, to most pattern inference
problems based on Bayesian models. Its use requires, however, a massive computing
effort, especially when the underlying connector graph o is large and the couplings
expressed by the prior measure are strong,

We have of course been aware of this in our group from the very beginning,
Since our algorithms are of parallel type one can hope that they are still feasible
in realistic situations given that parallel hardware is available. But we have also
tried to achieve computational feasibility by gnalytic studies that have led to
pattern theoretic limit theorems, most recently in work by Chow, Grenander, and
Sethuraman.

In -this report we shall suggest another analytic attempt to reduce the
computing drastically. It is based on the micro-statistics of the Markov process
induced by the prior: [ocal statistics defined in small sets surrounding the sites in
the connector graph. The size of these sets should be much smaller than n, the
number of sites, but considerably larger than w, the size of the neighborhoods in
the graph topology.

The micro-statistical approach will lead to fast computing when compared to
stochastic relaxation, but we pay for this by sacrificing some global information
as will be mentioned in Section 3. The optimality criteria, on which the
algorithms will be based, will be local so that we shall deal with another

optimality criterion tha. the MAP methods.
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But computational speed is not the only issue here. We know (see the
p;eceding report in this series) that sometimes we are forced to use local methods,
for example when we allow occlusion in the scene, or when the objects have
internal degrees of freedom. It is then natural to apply the micro-statistical
approach.

To illustrate the approach some computer experiments have been carried out,
so {ar only in very limited situations, by Johan Berglind. It is too carly to make
any definitive claims, but the experiments at least established the feasibility of

micro-statistical algorithms in the special circumstances examined.

2. Formalizing micro-statistical copcepts, To fix ideas, say that the connector
graph o is a square lattice & of size LxL in the plane and denote its sites by
z=(x,y), where x,y = 0,1,2,..L-1. Further we assume the lattice to be periodic and
have the usual closest neighbor topology, w=4, The pure images I will be binary,
I(x,y) =0 or 1, while the deformed (observed) images P may be B/W or gray level,
ID(x,y) € C, with a background space C of arbitrary cardinality. For simplicity we
also assume that the noise, conditioned by I, is i.i.d., so that it is enough to specify

a conditional density p,

Pa(a,b) = plIO(x,y) = a 1]
b= X(X,Y)

(1

None of these assumptions is essential for the following and can ecasily be
extended to more gene.. .tuations.

We si:a:l think of the pure images as discretized versions of sets in R? with
boundaries that are piecewise smooth, and where the length scale 1/L is small

The points { = (§,n) of the unit square (actually 2-torus) with 0 £ §,n < | are made
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to correspond to the lattice points 2 of the digital image

§ = x/L
(2)
n=y/L
2J]. Look at the scene in R2 through a square window Ww centered at (§,n)
(3) Wyn= ("0 |E'-8] <8, |n'-n] < 5).

We then see a slice of the pure digital image

@ Ixy = (I(x',y') with |x'-x| < 8L, |y'-y| < 8L}
x =¢L, y=nL

if t,n are multiples of the length scale 1/L.
How will these slices look for small 8 and large L? Three cases can occur:
1. Ixy is identically 0, all its points outside of the objects.
2. lyy is identically 1, all its points inside the objects.

3 I,‘y consists of points both inside and outside the objects.

In the third case a boundary separates points inside and outside. This
boundary is, asymptotically straight, unless we happen to be at a corner point of
the object - then the boundary is asymptotically that of the outside or inside of a
triangle (unless the smooth boundary arcs meet at angle = 0¢ or 180° which will
be ruled out for convenience). Hi;her order appro;timations may be required.

22. Introduce now formally g set U of slices, a slice, generically denoted
u, being a subset of a square Q = (-1,1) x (-1,1). The boundary separating 0 from
1 in Q of a slice is called its djyider. For any n € U we consider the set Igy of
pure images I €7 for which the restriction to the lattice points (x',y’)

(5) |x’-x| < SL, |y’-y| < 8L

we have
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Here we use the symbol u also to denote the indicator function of the set u.

A prior P on 9 will induce a probability measure P on the set

-Zty"{lgyl“em in the following way. If U is finite we introduce

P(1Y,)

L PaY)
ueU Xy

) Ri},) =

assuming of course that the denominator in (7) is not zero. If U is a subset of

some R4 we introduce P by densities, say with respect to Lebesgue measure in Rd,
in analogy with the expression in (7).

P is our micro-statistics and we shall use the above construction, with
appropriate modifications as needed, in several cases.

First let us consider some slice families U.

Ex.l. Let U consist of all sets obtained as the intersection of Q with a
half-plane. In particular u=0 shall mean the empty set and u=1 the full set Q.
The divider will thus be empty or a straight line segment.

Ex2. Let U consist of all sets obtained as the intersections of Q with
the union or intersection of two half planes. Then U contains all the slices from
Ex. 1 but also wedges, The wedges will approximate the local behavior of a
boundary point of an object where the tangent direction jumps.

Ex3. The two previous slice sets have boundarics consisting of zero,
one, or two line segments. An obvious extension is obtained by letting the divider

be a coric section, or two conic arcs joined together.
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23. We are now ready to describe the local restoration procedure based on
the micro-statistics family U. Consider an arbitrary site z = (x,y) and form the
joint frequency function f of the micro-statistic u and the oi:served image in the
window centered at z (solve (6) for u(¢,n))

(8) f = p(u) gnn PalId(x+6L2, y+6LA|u(t,n)]
where the product is over the window used.

The expression in (8) assumes a discrete U-family of slices. If U is
continuous a factor for the Jacobian should also be needed.

Now make the decomposition
9) u=vluu!
where U consists of all slices with u(0,0) = 0 and U, contains the ones with
u(0,0) = 1. Introduce the probabilities

ny = uerof
(10)

ul- rf
uEUl

and use as the optimality criterion for the restoration minimum expected
Hamming. The resulting glgorithm for restorgtion based on the micro-statistical
family U is then simply

0 if my>m
(11) I*(x,y) =
1 if "o < "l

and randomized 1%(x,y) in the exceptional case ng=1;.
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24, Let us look at this algorithm for the special cases in 2.2, If we denote
the length of our digital square 26L by m we get the following

Ex.l. The cardinality |U| ~ 12m? (enumerate the two points of
intersection between the divider and the boundary of the digital square), so that if
m=5 we get about 300 slices. We precompute the p(u) values for these slices. For
cach of these slices we must compute, for all z=(x,y), the product in (8), with
m2=25 multiplications. Thus, for each site we need about 7500 operations. The
step in (11) consists of just a single comparison. Note that with this approach gl
the sites can be processed in pargllel, 1If, for example, L=256, we need order of 1
sec on the STAR. If, instead, truly parallel hardware is available execution time
is probably negligible. And this is with no attempt at speed up of our algorithm!

Ex.2. Now when the slices also include wedges, so that our algorithm is
a boundary-and-corner detector, we get a larger slice family U, 25 times as big (the
corner point of a wedge has m? possible positions) if all wedges are included. The
need for parallel hardware is then accentuated unless algorithmic speed up can be
achieved (which seems likely). In the pure image we would normally expect most
poirts to be internal or external, fewer would be on a boundary, and very few
would be corners. Perhaps this can be exploited for speed up at the price,
naturally, of more complicated program logic.

Ex.3. When we allow more general form for the divider thc cardinality
of the slice family U will increase. This changes little in principle but at present
it is unclear whether the increase in restorative power motivates the greater
computing effort that will be required.

Actually, the issue here is related to the discussion in the preceding report
in this series dezling with the 'car experiment’. It is only when we have detailed

information & priori concerning pattern structure that it will pay off to base the




-87.
analysis on micro-statistics parametrized by boundary arcs represented by dividers

forming a larger U-space than in Ex. ! and 2.

23, Let us make some additional remarks on the implementation of the
idea of micro-statistics.

Remark 1.  The choice of prior on U can of course be derived from the
prior on 7. This was done, at least approximately, in Berglind’s computer
experiment using the Ising model. It could also be done for more interesting
image models.

It is tempting, however, to choose the measure on U directly, and perhaps
estimate it directly from data. This has not been tried yet but should be examined
analytically and experimentally. If we do this we should also pay attention to the
problem whether such a specification is consistent, in the sense that the slice
distribution p on U can be obtained as a local approximation of any full prior P
on 7.

E_{mm:k_& Consider for a moment the deformation mechanism D where
inside points result in N(mo.oz) values and outside points in N(ml,oz) values. In
practice mg and m; are unlikely to be known a priori and we have studied how
they can be estimated, for example using the half variance method.

However, we could allow the m's to vary slowly over the image, and estimate
them locally for each slice u. This looks like a realistic alternative, at least when
the slice window is large enough so that the statistical variability of the estimates

is small enough.

Remark 3. We have limited our discussion so far to set patterns: the pure
images are binary. Nothing prevents us, however, from applying the

micro-statistical approach to contrast patterns: the pure images take contrast
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values in a space of higher cardinality, The slices could then be, for example,
polynomial approximations to I(-,.) obtained from a Taylor expansion.

Remark 4,  Finally an idea that is only speculative. For each location z we
use micro-statistics from its associated window, this is done separately for all
locations. This is attractive, both because it follows from an optimality reasoning
and because it can be implemented in par:llel. Nevertheless, it may be possible to
gain in restorative power by linking overlapping slices together, let them be
coupled. Is there anything in this idea? I feel uneasy about it since it contradicts

our general strategy to derive model based methods - linking slices together is

more of an ad hoc idea.

3. Summary., The advantages of the micro-statistical approach are a) it
is single phase (not iterative with questionable speed of convergence), b) it seems
to reduce computing drastically (note that it avoids simulation), and ¢) it is based
on an optimality criterion that is, at least to some extent, meaningful and
natural.

The main disadvantage that I sce in it at present occurs when ¢) is not true.
Indeed, we give up some global cohesiveness, and for this reason the restored
images may simply not "look right". Only further study and systematic
experimentation will show if and when this is a serious objection. This is of

course related to Remark 4.




Anpendix 2
Parallel Logic Under Uncertaiaty. Continued ud Anglicd

1. Prcsent status of problem. The study carried out by our group is object
identification, to be implemented in the car experiment, has dealt with a number
of issues and it is time to take a look at what we have done. The following list is
not complete but will help to clarify the situation and plan the continuation.

LL  We have assumed that the scene contains one or no object of a finite
number n, of prescribed types, denoted & a=1,2,..n, The sceue is viewed at a
distance r and from an clevation angle y, both of which are assumed known.

L2. The object is assumed to be rigid and opaque so that it has no internal
degrees of freedom. Call the location z in the object plane, where z is some
distinguished point, for example the centroid of the cbject. Also denote the
orientation of the object by ¢, where ¢ is the angle hetween some distinguished
direction of the object and a fixed orientation in the object plane. Hence z € R,
¢€f0,2m) .

L3, Observing the scene we denote the view by 17‘), where 10 is a digital
LxL pixel, grey level picture in the image plane orthogonal to the line of sight.
The distance r is assumed big enough so that w: can limit ourselves to orthogonal
projections, but this is easy to modify if i turns out to be desirable. The
deformed image O represents in addition to the object, if any, noise from the
observational set up and a noisy bachuround (clutter). At present we model
ihis simply by two iid. sampies v Gaussian random vsr.ables N(mv,oz)

where m,=mg inside the object arca and m,»m, outside, This will probably be
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replaced by two stationary, but not necessarily isotropic, Gaussian stochastic
processes for object and background. To handle this extension analytically we
have discussed, at an ecarly stage of our work, to use Toeplitz approximations;
this can wait since we are familiar with such mathematical techniques.

14, We have developed boundary detectors using Bayesian estimators
derived from various Markovian models of the shape of the object. The simplest
of these, the Ising model, expresses only clumping tendencies. While it is of
theoretical interest it includes too weak prior information about object shape to be
a serious candidate for our continued work.

Two other lattice based models; closely related to each other, express more
detailed prior shape structure; one is the pixel-edge model, the other is built on
generators representing geometric tendencies of the boundary.

Still another model is continuum based and expresses the boundary as a
spline, in the simplest case reducing to a polygonal boundary.

The parameters tno,ml,a2 cannot be assumed to be known in advance. To
deal with this we proposed and studied the half variance method, which seems to
work fairly well but needs some work.

LS. The experimental set up uses small model cars, painted white and, so
far, located on a black background. The digital image is processed using various
boundary detectors, in order to get a better feeling for how the estimates of the
boundary behave statistically.

1.6, The work undertaken by the Hughes group should be of great help in
this. A careful data analysis of the results should make it possible to firm up the
mathematical models to be used as we go along in our joint work with them.

In an ecarly stage of our study we discussed the possibility of applying

stochastic relaxation to a vector of selected statistics computed from an estimate
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of the boundary.. At that time we were thinking of statistics such as the area of
the convex hull, the degree of concavity, the lengths of diameters, and many
others. The result of a successful data analysis should help pinpoint ;ood such
statistics. This can be viewed as the selection of hash functions, but the noisiness
of data makes for an unconventional form of hashing. As will be suggested b;low
we may be able to replace this by a less arbitrary approach.

11, We have pointed to the important correspondence problem between the
true and estimated boundaries. This is a case of unlabelled observations.

Tc deal algorithmically with the correspondence problem we discussed a
dynamic programming approach. Since it seems to require a massive
computational effort we may have to look for substitutes involving less computing.

1.8. We have studied the problem of optimal image approximation when

a piecewise smooth boundary is approximated oy a polygon or possibly by
other splines. The analytical result has been tried on real pictures and seemns
to work well. The result will be applied systematically. later on, when we
shall use it to obtain data compression when storing object profiles.
2. Resecarch strategy. We have not yet attempted to put these pieces
together to obtain an integrated solution to our problem in object identification. I
think it is time to start doing this during the academic year just begun. As a
preparation let us examine the general approach we have been using, explicitly or
not.

2.1. A guiding principle for our work has been the model based paradigm:

leorithm £ . lusis_should be derived { learl | _mathematical
models. Not only should the patterns, say shapes of objects, be described
mathematically in detail, but the same should hold for the whole chain involving

patterns and their generation, the observer, the deformation mechanism, and the
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algorithms for inference. The links in this chain should be integrated.

2.2. Another tendency is reductionism: the model construction should be
reduced, as far as possible, to first principles. In the case of our car experiment it
means that we should emphasize the mathematical generation of shape, the pure
image, this should be the starting point.

How to do this depends upon the degree of variability of the shapes
encountered. In the car experiment as envisaged so far we have only three degrees
of freedom, two for z and one for ¢. The nuisance parameter is hence low
dimensional, 8 = (z,9)€ R3. As will be suggested below we should go along to
higher dimensional nuisance pgrameters which will force [locgl methods upon us, and
we shall fgctor our problem into many smail ones of low dimensionality; this will
be made clearer below. In a related study, the leaf shape project, we meet the
extreme of this, when the 8-space is infinite, or at least very high, dimensional.

2.3, We also aim for generglity. The choice of the car experiment is
motivated not only by practical considerations, but also for its concreteness.
Nevertheless, we hope that the results will extend to much more general situations,

To make this possible I suggest that we extend the problem to allow for
several objects and allow occlusion. This will increase the number of d.f. We
should also allow internal d.f.'s, for example nuisance parameters representing
relative angles of parts that can be mov.d, say of doors, wheels, etc. Or,
parameters expressing the distribition of albedo, temperature, etc. over the object
surface.

Perhaps this sounds too ambitious at the present time, but we shall outline a
methodology for inference intended for such, more general pattern structures. It

is based on the idea of pgrallel logic under uncertainty that I have suggested

elsewhere.
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3. Formalizing the factoring of the problem.,  Now let us be more specific.
In order to achieve greater descriptive power we shall use a continuum based
approach, not a lattice based. The generators will be chosen as directed analytic
arcs, have arity two, with in-bond equal to the start point of the arc and out-bond
equal to the endpoint. The analytic form of the arc will be left open until the
completion of the data analysis based on the experimental data collected by the
Hughes group.

The natural similarity group S is here simply the transiation group in the

image plane. We shall not use the full Euclidean group, since rotations of the

object in R3 around a vertical object does not correspond to rotations in the image
plane; instead of simple rotations we meet more complicated transformations of
the image.

The bond relation p will be taken as EQUAL, meaning concatenation of arcs,
and the connection type £ = CYCLES, so that each connector graph o consists of a
finite . number of closed cycles. This choice of £ will be seen to have crucial
algorithn;ic consequences later on.

This regularity R = <EQUAL,CYCLES> over G via S defines a regular
configuration space Z(R). We shall use a subspace Z'(R) € Z(R) consisting of
the profiles obtained by placing a finite number k of objects of given types in the
image plane; the profiles may overlap or be disjoint.

An object is described by a vector («8,,8,,.8,) where the &’s are the
nuisance parameters and we use the convention that Ol-x, 8y=y, 93-¢ with z=(x,y).
The remaining 0's represent the jnternal degrees of freedom.

We shall assume the following construction of the objects; the reason behind
this assumption will become clear later. Each objeci is made up of rigid parts,

joined by hinges in such a way that the orientation of any of its parts, say the vih
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one, is uniquely defined by the principal orientation angle 8;=¢ and one hinge
angle ¢, This is a sort of separability condition: only first order interactions
between 84 and any 6,, v 3 4, are allowed.

A similar reasoning will be applied when we get to nuisance parameters
representing the temperature or albedo distribution over the surface of an object;
this will be dealt with later. Here we note only that boundary statistics will then
be replaced by what could be called surface patch statistics.

Let us write

1) L®=v £
k=0

where Z;((R) is the subset of %£'(R) with k objects. Then KL(R) can be

parametrized by the vector
@) (D) = (al,0,2,02,.aK,6K) .

The value of k in practice is likely to be small, Nevertheless the dimension of the
(«,8)-space may seem prohibitively large, both for string of the profiles and for
the decision algorithms to be developed for inference. Can it be done even for the
case we have dealt with so far, k=1 and d=3?

First, it is clear that the two d.f. for 8=x,8,=y cause no trouble. Indeed, we
need only store the profiles in standard location, say z=0, and the decision
algorithm can be based on differences of arc points in Rz. relative, not absolute
coordinates. For 83=¢ we could have done something similar if it had corresponded
to rotations in the image plane. Since this is not so we must store enough
information to describe the profiles f{or different 83-vaiues. Perhaps

83=0,10°,20°,..350° will be enough practically, which means 36 03-values.
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Now let us consider another d.f., 84, say an internal angle. The moveable
parts of the objects have been assumed to be joined by hinges whose angles are the
8, v=4,2,.d. Obviously, we can not hope to store profiles for all discretely chosen
combination of (93,04,...Od) but this is not needed. This is where factoring comes
in. Indeed, it is enough to store outlines for the rigid parts for a sufficient
number of combinations (63,8,), where v 3 4. Perhaps we will have to store 362,
but not 36d'2, profiles for each arc: the problem has been factored, reducing
storage drastically.

We shall need a prior on the configuration space ¥'(R) as always for a
Bayesian approach. Since we have widened our problem by allowing several
objects, k can be larger than one, and by letting objects have internal degrees of
freedom, d can be larger than 3, so that the prior lives on a larger parameter
space. The choice of prior speeds more discussion, but at this time let us only
consider the probability distribution of k, q; for k 3 0.

We do not see any reason for any particular analytical form for qp in
general, but only note that it expresses the principle of Qccam’s razor if its tail is

short. Say, quite arbitrarily, that we use a geometric distribution
3) ok ke0,1
qk 'i-_p- P 92 yoee

for the present and leave the final choice till later. The valus of p should be
small.

The ideal observer cannot always see the whole configuration ¢ € Z(R), since
objects, or parts of objects may hide each other. That means that the

identification map R: Z'(R) = 7 will only preserve boundary information of the

visible profiles.
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The deformation mechanism O; 9 =+ 9 D will be chosen as before, two i.i.d.

Gaussian samples from inside and outside the pure image I.

4, Choicc of inference algorithm, The fact that we now allow k and d to be
greater than one and three respectively has an important and obvious consequence
for the construction of the inference algorithm. It is clear to anyone who has
considered the multi-object situation with partial occlusion, that are now led to
base the inference on local statistics. Simple template matching, computationally
feasible or not, will not work, since we cannot be sure that we are dealing with
one and the same object throug:out. Instead we have to break up the estimated
boundary, say (8I)*, into pieces and extract local information from each picce.

4], 1 am not going to argue against this, but would like to point to an
obscure link in the reasoning.

Our deformed image 12 is an LxL digital, grey level picture. When we base
the inference on the estimated boundary we really employ a plausibility argument
implicitly. In the spirit of our whole approach we ought to give this an analytical
foundation and, at the same time, make the statement mathematically precise.

The above will become clearer if we, only momentarily, go back to the
original case k=1, d=3. Consider a boundary detector 3% an estimator of 9, so
that 3% 90 - (A1). If 3 could be shown to be a sufficient statistic we would be
on firm ground, but I am convinced that this is not the case (this should be shown
rigorously).

However, we may be able to make an asymptotic statement, almost as strong,
in terms of the linear length scale ¢ = 1/L. Can one show that some 3* is
€e-sufficient when L = «? Someone in our group ought to settle this question. It

may turn out that some boundary detectors 3* are e¢-sufficient, or contain,
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asymptotically, all the relevant information in the sample in terms of some other
formalization, while others are not, and this would have practical consequences for
the design of the inference algorithm and choice of 3*.

42, Let us now return to the general problem, k 3 0, d » 3. Say that
we have decided to use a particular estimator 3* and we have obtained a
boundary G'ID, consisting of one or more closed curves. If there are several
topological components in a“lD, let us consider a single one of them at first.

The directed and closed curve, {*, is hoped to contain, asymptotically all the
relevant observations in the sample. Divide {* into N arcs of equal length, say
tA-$1..-t}.1 and consider the jth one ;}‘. Some hints for choosing N will be given
later

The local information contained in ;}' shall be calculated as follows. Return
to a pure (undeformed) image I in R2, consisting of a single object. Consider a
directed arc { belonging to the boundary of these objects. Parametrize { as
h=(x,8,5),5;) where « is the pattern type of the object, 8 its nuisance parameter
and sy and s; the start and endpoint of { measured in arclength from some
conveniently chosen point in the boundary of the same object « and same €-value,
This h will be our locgl hypothesis, h€H where H is the full hypothesis space. Note
that it is a simple hypothesis.

43, Now go back to the deformed image and the directed arc ;}.
Introduce the probability that an arc { gives rise to ;} as
@) Q%8 = (5 = g1,
To avoid misunderstanding let us emphasize that { stands for an arbitrary arc of
the boundary of an object profile, it need not coincide with one of the full

analytic arc s generating the spline.
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Also let us mention for later reference that it may very well happen that ;}
originates from two object boundaries, one object occluding the other. This is
more likely to happen if ;} is long, or N is small, so that this indicates that one
should choose N moderately large, perhaps 15-25.

For a specified estimator 3* it should be possible to calculate analytically the
probability in ( ) asymptotically, but I suggest that we postpone this for the time
being.

If and when we can determine Q asymptotically we shall introduce the local
hypothesis
&) h(f}) = (§]Q(5.8;) > 6} €H
for some threshold value & However, I propose that we use, tentatively, the
following heuristic way of determining the local hypotheses. Give ;} with
endpoints 20 (start) and 2! (end) find the set f\'(;}) of {'s that have the same
endpoints (counted in the same direction!). Since our similarity group consists of
translation of RZ it is enough to search for an arc { such that the vectors 21-20
and { (endpoint) - { (start point) are equal. How to realize this algorithmically in
a feasible way deserves careful attention, but it is clear that this is much less
demanding computationally than the dynamic programming approach discussed in
our group. If it is a good way is another matter. For an arc ;eﬁ(;}) with length
parameters $; and s, introduce a distance measure like the following, perhaps in a

modified form,
m

(6) a(ghe) = L |zyzy
v=(

where m+1 is the number of lattice points z, on ;} and z,, are m equidistant
points on {. The exact form of the distance criteria is not important at this

preliminary stage, but will be later. What is important, however, is that d should




measure distance between djrected arcs, and not be of the form of a Hausdorff (or
similar) distance between sets.

Then let us, again tentatively, replace h(;}) by
M haY = §)3ehh), dg) e cH

with another threshold constant n. The subsets ;(;}‘) of H will be though of as
our plausible local hypotheses. Note that they are composite hypotheses in contrast
to the pure hypotheses h mentioned ecarlier.

From now on we shall discard arc length information, the sg»s) values in h.
Instead we project the local hypothesis to the space H' consisting of («-8)-
vectors, say h', only, Denote the projected set thus obtained from }’1'(;}) by
h'(}).

Recalling that our adopted connection type L = CYCLES, it is clear that our
inference problem deals with estimating an unknown connector o in this set L. Think

of the arcs {?, j=0,,1,..N-1; as the nodes in o, not as the segments, and use acceptor

functions
]

jphi,) = 4" hi )

®) Athj i

where ¢ is a positive decreasing function and d' an appropriate distance in H'.
We shall now try h maximize the criterion

©) Cloihghyhy.g) = oK) T, Ahj ,hi )

B S 2
where o* € L, k®* = number of cycles in o*, hj € hj' , and the product is taken over
segments (jj,jp) in ¢*. To achieve this we apply stochastic relaxation with
annealing to C(0* hg,hy,..hy ).

Let us mention in passing that the way we have outlined our recognition

algorithm the value of k means the number of cycles (wholly or partly visible
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objects) in 2 tnpological component of 1. It does no longer mean the total number
of objects in the scene.

Two decisions must be made to implement stochastic relaxation: how to
initialize o*hg,hy,.hy.j, and what should be the elementary up date operations of
the relaxation scheme.

Two suggestions for initialization: 1) Choose initially o* as a single cycle,
or, 2) Consider the joint plausible hypothesis set

N-1
(10) v h CH!'

j=0
and use some clustering algorithm (o get a rough idea of how many clusters there
are in the set. Use a o* with this aumber of cycles distributed as the analysis
indicates over the j-values.

The clementary up date operations should certainly involve replacing an hj' .
regarding the rest and o* as fixed.

It is less clear what operations we should use changing o* 1 suggest, as a
minimum, that we include cut-gnd-join opergtions as indicated in the figure below,

which take (a) into (b) or (b) into (a).




=101~

The decision on choosing the elementary up date operations must be made in
such a way that the clgss of operations if complete: given two connectors o) and o,
in CYCLES there should exist a chain of eclementary up date operations that
changes o into o,. I believe that the above choice leads to a complete class.

The conditional probabilities associated with these up dates and (9) are
easily calculated, note that k* may change so that the factor q(k*) in (9) affects
them, implementing a reasoning of type Occam’s razor.

Repeating updating, successively lowering temperature, and having iterated
many times we stop the process. Our recognition algorithm has as its result that
we see k* gbjects with owvalues as distributed over the current plausible local

1 . . .
hypotheses hj. As a side result we also get estimates for the nuisance parameters.

5. Discussion of proposed algorithm, The presentation in the previous section
is only a sketch with many details missing and decisions to be made before the
algorithm is completely specified. Nevertheless, I hope that the description is
sufficiently clear to serve as a starting point for our continued work.

The approach is basically the same as the one we decided upon a couple of
years ago, the main difference being that it does not rest on the solution of a
more or less arbitrary set of features characterizing the estimated boundary and
the set it encloses. Instead we try to exploit as much as possible of the
information contained in the observed image and handle it by a procedure
implementing pgrallel logic for noisy datg. It is also more ambitious in that it is
intended for multiple object scenes and objects with internal degrees of freedom.

But is it over ambitious? Can algorithms of the type suggested be processed

using computer technology available today or in the near future?
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For the simplest case, the one to which we have limited ourselves so far,
with a single object with no internal d.f.'s, can probablybe handled
computationally. But does this remain true if we allow more than one object, k>1,
and/or internal d.f.’s , d>3? I hope that this is made possible by the factoring of
the problem, but at present this is only a guess, perhaps wishful thinking.

The only way to find out if this is possible is to try it on real pictures from
our car experiment. 1 therefore suggest that we do this during the current
academic year, at first only for k=1, d=3, to firm up the model and algorithm, and
if the results look promising, that we go on to the general case. I do not mean
that we should just carry out a large scale computer experiment, but that we also
pay attention to the analytical issues that are only superficially discussed above.
Doing this, we may learn that substantial modification is needed, perhaps
oversights have to be corrected, and better heuristics invented.

I hope that our group will decide to undertake this ambitious study. We

would then have to divide up the work among ourselves to achieve a cohesive

team effort.




