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SUMMARY

A finite-element model of a geared rotor system on flexible bearings has
been developed. The model includes the rotary inertia of shaft elements, the
axial loading on shafts, flexibility and damping of bearings, material damping
of shafts and the stiffness and the damping of gear mesh. The coupling
between the torsional and transverse vibrations of gears were considered in
the model. A constant mesh stiffness was assumed. The analysis procedure can

0 be used for forced vibration analysis of geared rotors by calculating the
critical speeds and determining the response of any point on the shaft to mass
unbalances, geometric eccentricities of gears and displacement transmission
error excitation at the mesh point. The dynamic mesh forces due to these
excitations can also be calculated. The model has been applied to several
systems for the demonstration of its accuracy and for studying the effect of
bearing compliances on system dynamics.

INTRODUCTION

Even though there have been numerous studies on both rotor dynamics and
gear dynamics, the studies on geared rotor dynamics have been rather recent.
The study of the dynamic behavior of geared rotor systems usually requires
that torsional and transverse vibration modes be coupled in the model , a
problem not present for studies of for rotors without gears.

For rotor dynamics studies, the finite-element method seems to be a
highly efficient modeling method. An early finite-element modeling method
(Nelson and McVaugh, 1976) used a Rayleigh beam finite-element, which included
the effects of translational and rotary inertia, gyroscopic moments, and axial
load. Zorzi and Nelson (1977) generalized the Nelson and McVaugh study to
include internal damping. Later, Nelson (1980) developed a Timoshenko beam by El
adding shear deformation to his earlier work. The Timoshenko model was
extended by Ozguven and Ozkan (1983) to include effects such as transverse and ...
rotary inertia, gyroscopic moments, axial load, internal hysteretic, viscous
damping, and shear deformations in a single model. None of these models can
handle geared rotor systems, although they are capable of determining the
dynamic behavior of rotors consisting of shafts supported at several points ,1es
and carrying rigid disks at several locations.
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Gear dynamics studies, on the other hand, have usually neglected the
lateral vibrations of the shafts and bearings and have typically represented
the system with a torsional model. Although neglecting lateral vibrations
might provide a good approximation for systems having shafts with small
compliances, the dynamic coupling between the transverse and torsional
vibrations due to the gear mesh affects the system behavior considerably when
the shafts have high compliances (Mitchell and Mellen, 1975). This fact lead
investigators to the include lateral vibrations of the shafts and bearings in
their models. Lund (1978) included influence coefficients at each gear mesh
by using the Holzer method for torsional vibrations and the Myklestad-Prohl
method for lateral vibrations, thus, obtaining critical speeds and a forced
vibration response.

Early geared rotor dynamics models concentrated on the effects of mass
imbalance and eccentricity of the gear on the shaft, virtually neglecting the
actual dynamics of the gear mesh. Hamad and Seireg (1980) studied the
whirling of geared rotor systems supported on hydrodynamic bearings.
Torsional vibrations were not considered in this model and the shaft of the
gear was assumed to be rigid. Iida, et al. (1980), who considered the same
problem, by assuming one of the shafts to be rigid and neglecting the
compliance of the gear mesh obtained a three-degree-of-freedom model that
determined the first three vibration modes and the forced vibration response
due to the unbalance and the geometric eccentricity of one of the gears. They
also showed that their theoretical results confirmed experimental
measurements. Later, Iida, et al. (1984, 1985, 1986) applied their model to a
larger system consisting of three shafts coupled by two gear meshes.
Hagiwara, Iida, and Kikuchi (1981) developed a simple model that included the
transverse flexibilities of the shafts by using discrete stiffness values that
took the damping and compliances of the journal bearings into account and that
assumed the mesh stiffness to be constant. With their model they studied the
forced response of geared shafts due to unbalances and runout errors.

Some of the studies used the transfer matrix method to couple the gear
mesh dynamic with system dynamics. Daws (1979) developed a three-dimensional
model that considered mesh stiffness as a time-varying, three-dimensional
tensor. He included the force coupling due the Interaction of gear deflection
and time varying stiffness, but he neglected the dynamic coupling. As a
continuation of the Daws study, Mitchell and David (1985) showed that dynamic
coupling terms dominate the dynamic behavior of the system. Another model in
which the transfer matrix method was used is the model of Iwatsubo, Arii, and
Kawai (1984a) in which the forced response due to only mass unbalance was
calculated for a constant mesh stiffness. Later, they (1984b) included the
effects of periodic variation of mesh stiffness and profile errors of bsch
gears.

Other studies used lumped mass and finite-element methods to couple the
lateral and torsional dynamics typical of geared rotor systems. Nerlya, Bhat,
and Sankar (1984) extended the model of lida et al. (1980) by representing a
single gear by a two-mass, two-spring, two-damper system which used a constant
mesh stiffness. The gear shafts were assumed to be massless, and equivalent
valies for the lateral and torsional stiffnesses of shafts were used to obtain
a discrete model. As a continuation of this study, Neriya, et al. (1985) used
the finite-element method to find the dynamic behavior of geared rotors. They
also found the forced vibration response of the system due to mass unbalances
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and runout errors of the gears by using modal summation. Bagci and
Rajavenkateswaran (1987) used a spatial finite line-element technique to
perform mode shape and frequency analysis of coupled torsional, flexural, and
longitudinal vibratory systems with special application to multicylinder
engines. They concluded that coupled torsional and flexural modal analysis is
the best procedure to find natural frequencies and corresponding mode shapes.

An extensive survey of mathematical models used in gear dynamics analyses
is given in a recent paper by Ozguven and Houser (1988a).

The major goal of this study was to develop a finite-element model for
the dynamic analysis of geared rotor systems and to study the effect of
bearing flexibility, which is usually neglected in simpler gear dynamics
midels, on the dynamics of the system. The formulation of rotor elements,
except for gears, used the rotor dynamics program ROT-VIB, which was developed
by Ozguven and Ozkan (1983) and Ozkan (1983). However, because of the
coupling between torsional and transverse vibration modes, a torsional degree
of freedom has been added to the formulation, and some special features of
ROT-VIB have been omitted.

SYMBOL LIST

[C] damping matrix of the system

CxxCyy bearing damping coefficients in the x and y directions, respectively

cm mesh damping coefficient

cs  modal damping value of sth mode

dl,d 2  diameters of driving and driven shafts, respectively

E, G modulus of elasticity and shear modulus, respectively

egep geometric eccentricities of driven and driving gears, respectively

et amplitude of the harmonic excitation

Fs average value of force transrmiitted (static load)

(Ft}  total force vector of the system

Ig'lp mass moment of inertias of driven and driving gears, respectively

i imaginary number

Jd,Jm mass moment of inertias of load and motor, respectively

Ktcl torsional compliance of the flexible coupling

km mesh stiffness coefficient

kxx,kyy bearing stiffness values
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LI,L 2  lengths of driving and driven shafts, respectively

mg,mp masses of driven and driving gears, respectively

Np tooth number of driving gear
PI

{q} total response of the system

rg,rp base circle radii of driven and driving gears, respectively

t time

UgUp mass unbalances of driven and driving gears, respectively

xg,xp coordinates perpendicular to the pressure line at the centers of the

driven and driving gears, respectively

yg'yp coordinates in the direction of the pressure line at the centers of

the driven and driving gears, respectively

01,E)2 total angular rotations of driving and driven gears, respectively

epeg fluctuating parts of e1  and e2, respectively

[4'] modal matrix

[S] sth normalized eigenvector

(p,Wg rotational speeds of driving and driven shafts, respectively

wr rth natural frequency

THEORY

A typical geared rotor system, as shown in figure 1, consists of a motor
connected to one of the shafts by a coupling, a load at the other end of the
other shaft, and a gear pair which couples the shafts. Shafts are supported
at several locations by bearings. Hence, a geared rotor system consists of
the following elements: (1) shafts, (2) rigid disks, (3) flexible bearings,
and (4) gears. When two shafts are not coupled, each gear can be modeled as a
rigid disk. However, when they are in mesh, these rigid disks are connected
by a spring-damper element representing the mesh stiffness and damping.

For the formulation of the first three elements listed above, the
existing program ROT-VIB, (Ozguven and Ozkan, 1983) was used. ROT-VIB is a
general-purpose rotor dynamics program that calculates whirl speeds,
corresponding mode shapes, and the unbalance response of shaft, rigid-disk,
bearing systems by including the effects of rotary and transverse inertia,
shear deformations, internal hysteretic and viscous damping, axial load, and
gyroscopic moments. In ROT-VIB the classical linearized model with eight
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spring and damping coefficients is used for modeling bearings, and finite
elements with four degrees of freedom at each node (excluding axial motion and
torsional rotation) are employed for the shaft elements.

In the present analysis the formulation used in ROT-VIB for these
elements was modified. First, in order to avoid nonsymmetric system matrices
which result in a complex eigenvalue problem, the gyroscopic moment effect was
ignored and internal damping of the shaft was only included in the damping
matrix. Second, the gear mesh causes coupling between the torsional and
transverse vibrations of the system, which makes It necessary to include the
torsional degree of freedom. Therefore, the mass and stiffness matrices of
the system, which are taken from ROT-VIB, have been expanded in this study to
include the torsional motion of the shafts. Hence, five degrees of freedom
have been defined at each node with only axial motion being excluded. This
motion, which would be important for helical gears, could easily be Included
in later analyses.

Gear Mesh Formulation

A typical gear mesh can be represented by a pair of rigid disks connected
by a spring and a damper along the pressure line which is tangent to the base
circles of the gears (fig. 2). In this model, both mesh stiffness and damping
values are assumed to be constant, and tooth separation is not considered,
since the gears are assumed to be constant, and heavily loaded. By choosing
the y axis on the pressure line and the x axis perpendicular to the pressure
line, the transverse vibrations in the x direction are uncoupled from both the
torsional vibrations and the transverse vibrations in the y direction. For
the system of figure 2, the mesh forces in the y direction can be written as

I = cm(y p + rpO 1 + epWpcos El - r - egWg cos E2 - etNp p cos(NpEl))

+ km(y + rp0 + e sin 01 - y- re - e sin2 - e sin<Np2 (1)
m p p 1 p e1  g g2 g 9 2 t p 2

N2 = - N1  (2)

where Wl and N2 are mesh forces in the yy and yg directions at the
driving and driven gear locations, respectLvely cm  and km are mesh damping
and mesh stiffness values; ep and e are geometric eccentricities of
driving and driven gears; and rp an rg are base circle radii of the
driving and driven gears. The angles e1  and e2  are the total angular
rotations of the driving and driven gears, respectively, and are equal to

el = ep + Wpt (3)

e2 = eg + Wgt (4)

where ep and e are the alternating parts of rotations and wp and g
are the spin speeds of the driving and driven shafts, respectively. The
displacement, et, which may be considered to be a transmission error
excitation, is applied at the mesh point. This displacement is usually taken
to be sinusoidal at the gear mesh frequency but could include higher harmonics
of this frequency. Ozguven and Houser (1988b) have shown that it is possible
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to simulate the variable mesh stiffness, approximately, by using a constant
mesh stiffness with a displacement excitation representing loaded static
transmission error. Thus, by choosing et as the amplitude of the loaded
static transmission error, the effect of variable mesh stiffness can be
approximately considered in the model.

Mesh forces also cause moments about dynamic centers of the gears which

are equal to

M1 = Wl(rp + ep cos e1) (5)

M2 = W2(rg + eg cos (2) (6)

Here, the initial angular positions of geometric eccentricities are taken to
be zero. The mesh stiffness and damping matrices and the force vector of the
system due to gear errors and unbalances can be obtained by writing the force
transmitted as the summation of the average transmitted force (static load),
Fs, and a fluctuating component, and then neglecting high order terms
following the substitution of equations (1) and (2) into equations (5)
and (6). By defining the degrees of freedom of the system at which the
coupling effect appears, as

(ql} = [yp ep yg eg]T (7)

the additional mesh stiffness matrix which causes the coupling effect and
corresponds to {ql} can be obtained from equations (1), (2), (5), and (6) to
be

km kmr -km  -kmrg

kmrp  kmr 2  -kmr -kmrpr

[Km] = km -kmrp  km kmrg (8)

-kr -kmrpr kmr kmr2

m g mpg 9 m g m gJ

Similarly, the mesh damping matrix can be found to be

cm c mrp  -c -Cmrg

cmrp cm r -cmrp -cmrprg

[C m  = _cm _cmrp cm cmrg (9)

2
-c r -crr c r c r2
mrg mrpg inrg mrg

The other degrees of freedom defined at nodes p and g have not been
included in the vector (ql} since elements of [Km] and [Cm] corresponding to
these degrees of freedom are all zero. For the degrees of freedom expressed as

{q2} = FYp xp ep Yg Xg eg]T (10)
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the force vector due to runout, transmission errors and mass unbalances are
given by

Upo Wsin opt + F

2UpW cos 0pt
P P p

-Fe cos wpt + r F{F} p (11)

Ug W sin gt F1

2
Ug03 cos Dgt

Fe cos t -r Fl

where

F1 = cm(egog cos ogt - ep&p cos Wpt + etNp cos(Ncat))

+ km(eg sin wgt - ep sin opt + et sin(N(opt)) (12)

Adding the mesh stiffness matrix given by equation (8) to the stiffness
matrix of the uncoupled rotor system yields the total stiffness matrix of the
system. The natural frequencies wr and the mode shapes fur} of the system
can be determined by solving the eigenvalue problem by considering the
homogeneous part of the system equation. In the solution, the Sequential
Threshold Jacobi method was used.

Forced Response

The total force vector can be obtained by combining the force vector due
to the mass unbalances of the shafts and the other disks and the force vector
due to the mass unbalances of gears and gear errors as given in equation
(11). This vector Is the sum of harmonic components with three different
frequencies wp, wg, and (Npwp), and has the following general form:

{Ft} = (Fsp} sin wpt + (Fcp} cos cpt + {Fsg} sin ogt + {Fcg} cos ogt

+ (Fsm} sln(Nplpt) + (Fcm} cos(Npopt) (13)

The total response of the system to this excitation can be written as

{q} = [ap](Fsp} sin wpt + (ap](Fcp} cos wpt + [Cg](Fsg} sin ogt

+ [(ag](Fcg} cos wgt + [am]{Fsm} sln(Npwpt) + [cm]{Fcm} cos(Npwpt) (14)

where [a], [ag] and [am ] are the receptance matrices corresponding to the
exciting frequencies, wp, wg, and (Npwp), respectively, and given by
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n
T

[ap] = 2 c(15)
2 P

s= Ws  - W + 1WpC s

[ag] = 2 (16)

S= S -g +igCs
s=l s

n TI: {ts}{[(s}T (16)

[am] Z 2 2  1

s - N + iNWC s

s=lpp

Here, {s} represents the sth mass matrix normalized modal vector, n is the
total number of the degrees of freedom of the system, I is the unit imaginarynumber, and cs  is the sth modal damping value given by the sth diagonalelement of the transformed damping matrix CC] where

[C] = [c]T[C][4] (18)

and where E@] is the normalized modal matrix. In this approach it is assumed
that the damping matrix is the proportional type, which is usually not correct
for such systems. When the damping is not proportional, the transformed
damping atrix [C] will not be diagonal, in which case cs will still be the
sth dlagoal element, and all nonzero, off-diagonal elements are simply
ignored when using the classical, uncoupled-mode superposition method.
Another approach for including damping in the dynamic analysis of such systems
would be to assume a modal damping, s, for each mode and then replace cs  in
equations (14) and (15) by 2(sw s. However, it is believed that using the
actual values for damping, when they are known, and using an approximate
solution technique may give more realistic results than assuming a modal
damping value for each mode.

APPLICATIONS AND NUMERICAL RESULTS

Comparison With An Experimental Study

As the first application, the experimental setup of lida et al. (1980)
was modeled (fig. 1). The gear system consists of two geared rotors: one is
connected to a motor with a mass moment of inertia of Jm, and the other is
connected to a load with a mass moment of inertia of Jd. Each shaft is
supported by a pair of ball bearings. The parameters of the system are listed
in table I. The gears with inertias 1P and I are both mounted on the
middle of the shafts of lengths Ll and L2  an diameters dl and d2,
respectively. The driving and driven gears' respective base circle radii are
r and rg and their masses are mp and mg. In their study, Ilda et al.
(T980) did not specify the length of the second shaft, L2 , and the properties
of bearings and couplings. Instead, they gave the total torsional stiffness
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values for driving and driven parts of the system and a total transverse
stiffness value for the second shaft. Therefore, we have estimated the length
of the second shaft, L2, and the torsional stiffness of the first coupling,
Ktcl, in our model so that the total values given by Iida et al. (1980) were
obtained. The forced vibration response due to a geometric eccentricity eg
and a mass unbalance U is shown in figure 3, along with the experimental
results of Ilida et al. ?1980). Since no information is given about the
damping values of the system, a modal damping of 0.02 has been used at each
mode in the computations. As seen in figure 3, predictions from the
analytical model show good correlation with the experimental results.

Response Due to Geometric Eccentricities, Mass Unbalances, Static

Transmission Error and Mesh Stiffness Variation

As a second application, the system used by Neriya et al. (1985) was
studied to investigate the effects of geometric eccentricities and mass
unbalances of the gears on the forced response of the system. The natural
frequencies, mode shapes, and the responses at both gear locations due to
geometric eccentricities and mass unbalances of gears obtained were almost
identical to those documented by Neriya. The results of this analysis have
not been included in this study since gear eccentricities and unbalances
excite the system at the shaft rotational frequencies as was shown in the
first example. The contribution of such low-frequency excitations on the
generated gear noise is usually negligible when compared with that of
high-frequency excitations caused by transmission errors and mesh stiffness
variations.

On the other hand, the system shown in figure 4 has been modeled to
obtain the dynamic mesh force due to a harmonic displacement excitation of
amplitude et and frequency (Npwp) representing the mesh stiffness
variation. Dimensions of the rotors shown given in figure 4 and other system
parameters are listed in table II. The bearings are assumed to be identical,
and geometric eccentricities and mass unbalances for gears are assumed to be
zero, so that the only excitation causing a forced response is the harmonic
displacement excitation defined. Since the displacement input approximates
the loaded static transmission error, the value of et was taken as the
amplitude of the loaded static transmission error. Figure 5 shows the
variation with rotational speed of the ratio of dynamic to static mesh load
for three different bearing compliances. The first two small peaks of
figure 5 correspond to torsional modes of shafts, and the third peak
corresponds to the coupled lateral/torsional mode governed by the gear mesh.

As shown in figure 5, when the bearing stiffnesses are decreased, the
dynamic force also decreases considerably because of a resulting decrease in
the relative angular rotations of the two gears. Although the displacements
in the y direction increase slightly, they do not appreciably affect the
dynamic force. In this example, a mesh damping corresponding to a modal
damping of 0.1 in the mode of gear mesh has been used. This was the value
used by several investigators for the same problem.
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The Effect of Bearing Compliances on Gear Dynamics

A parametric study of the system shown in figure 6 was performed. The
effects of bearing compliances on the natural frequencies and the forced
response of the system to the harmonic excitation representing the static
transmission error and the mesh stiffness variation were studied. The system
parameters are given in table III. The natural frequencies and the physical
descriptions of the corresponding modes for a value of bearing stiffnesses
kxx kvy = l.Ox1O9 N/m are presented in table IV. The forced response at the
pinion ocation in both the transverse (pressure line) and rotational
directions, and dynamic mesh forces are plotted in figures 7 to 9. Figures 7
and 8 show that the system has peak responses only at two natural frequencies
in the range analyzed. Mode shapes corresponding to these two natural
frequencies are presented in figure 10. When the free vibration
characteristics of these two modes is investigated in detail, it is seen that
the dynamic coupling between the transverse and torsional vibrations at these
two modes are dominant. It is also seen that dynamic loads are high at only
the second one of these two modes as shown in figure 9. The reason for this
is that the transverse and torsional vibrations for the second mode considered
apply at the same direction at the mesh point. This results in large relative
deflections at the mesh point which implies that this mode is governed by gear
mesh. It is also seen from these figures that lowering the values of bearing
stiffnesses causes a decrease in both the values of the natural frequencies
and the amplitudes of the peak responses and dynamic loads.

Figure 11 shows the variation of these natural frequencies with bearing
stiffnesses for three shaft compllances: (1) long shafts (low stiffness) with
dimensions given in figure 6, (2) moderately compliant shafts with half the
length of the long shafts, (3) very short (stiff) shafts. The shaft and the
bearings supporting the gears can be thought of as two springs connected in
series. When one of these components is very stiff compared with the other,
its effect on the overall dynamic behavior becomes negligible. When the mode
shapes for these two modes are examined for the case of short shafts and stiff
bearings, the first of these two modes becomes purely torsional, while the
lateral vibrations become more important in the second mode. As shown in
figure 11(a), since the mode considered becomes purely torsional in the case
of short shafts and stiff bearings, the value of this natural frequency does
not change as bearing stiffnesses exceed a limiting value. For the other mode
considered, the natoiral frequency becomes very high when a short bearing is
used with a very stiff bearing, since the lateral vibrations are more dominant
than torsional vibrations in this mode (fig. 11(b)). Similarly, when the
shafts are flexible enough, the effect of bearing stiffnesses on the natural
frequency becomes negligible above a limiting value of bearing stiffness.

CONCLUSION

A finite-element model was developed to investigate the dynamic behavior
of geared rotor systems. In the analysis, transverse and torsional vibrations
of the shafts and the transverse vibrations of the bearings have been
considered. Effects such as transverse and rotary inertia an axial load, were
included in the model, and internal damping of the shafts was included only in
the damping matrix. The gear mesh was modeled by a pair of rigid disks
connected by a spring and a damper with constant values that represent average
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mesh values. Tooth separation was not considered. The model developed finds
the natural frequencies, corresponding mode shapes, and forced response of the
system to mass unbalances and to the geometric eccentricities of gears and
transmission error excitations. Although a constant mesh stiffness was
assumed, the self-excitation effect of a real gear mesh was included in the
analysis by using a displacement excitation representing the static
transmission error.

Although it may be justified to solve nonlinear equations in simpler
models, for large models such as the ones used in this study, avoiding
nonlinearitles and transient solutions saves ccnsiderable computation time.
In the example problems only the first harmonic of the static transmission
error was considered and good predictions were obtained.

Finally, it has been shown that the bearing compliances can greatly
affect the dynamics of geared systems. Decreasing the stiffness values of
bearings beyond a certain value lowers the natural frequency governed by the
gear mesh considerably. However, in the case of compliant shafts, when the
bearing stiffnesses are above a certain value, the natural frequency
corresponding to the gear mesh does not change considerably by increasing
bearing stiffnesses. On the other hand, it has been seen that the amplitudes
of dynamic to static load ratio and the deflections at the torsional and
transverse directions are decreased by using bearings with higher compliances,
which shows that the bearing compliance may also affect the dynamic tooth
load, depending upon the relative compliances of the other elements in the
system.
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TABLE 1. - PARAMETERS OF THE GEAR SYSTEM OF FIGURE 1

Moments of inertia:

Of motor, Jm' kg-m2 . . . . . . . . . . . . . . . . . . . . . . .. . 0.459

Of load, Jd, k9'M
2 . . . . . . . . . . . . . . . . . . . . . . . . 0.549

Of driven gears, I., kg-m2 . . . . . . . . . . . . . . . . . 6.28.xlo-3

Of driven gears, I,, kg-m2 . . . . . . . . . . . . . . . . . . . . 0.030

Mass:

Of driven gears, ing, kg .. .... ...... ..... ...... 5.65

Of driving gears, inp, kg .. ...... ...... ........16.96

Basic circle radius:

Of driven gears, rg, m. .... ...... ...... ..... 0.1015

Of driving gears rp In.......................0.0564

Length:

Of driven shaft, L2 i.........................0.40

Of driving shaft, L, in........................0.78

Diameter:

Of driven shaft, d2, in........................0.02

Of driving shaft, dl, m .. .... ...... ..... ...... 0.03

Geometric eccentricity of driven gears, eg, i............1.2x10- 5

Mass unbalance of driven gear, UgV k9*m . .. ...... ..... 2.8x,0-4

Torsional compliance, Ktcl, N-in/rad. .. ...... ...... .. 115.0

Mesh stiffness coefficient, kin, N/in. .. ...... ........2.0x108
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TABLE 11. -PARAMETERS OF THE GEAR SYSTEM OF FIGURE 4

(Variable hearing stiffness of values.]

Moment of inertia:

Of motor, im' kg-i 2 . . . . . . . . . . . . . . . . . . . . . . . 1.15x13-2

Of load, Jd, kgM2 . . . . . . . . . . . . . . . . . . . . . . . 5.75x]0-3

Of driven gears, 1g' km 2 . . . . . . . . . . . . . . . . .. . 5x10-3

Of driven gears I,1 kgm 2 . . . . . . . . . . . . . . . . . .. . 5x10-3

Mass:

Of motor, mm, kg.......................9.2

Of load, md, kg .. .... ...... ...... ..... ..... 4.6

Of driven gears, mg, kg....................0.92

Of driven gears, mp kg....................0.92

Basic circle radius:

Of driven gears, rg. m. ..... ..... ...... ...... 0.047

Of driving gears, rp, m .. .... ...... ...... ..... 0.047

Mesh stiffness coefficient, kin, N/M .. .... ...... ..... 2.0x108

Average values of force transmitted, Fs, N. ..... ...... .. 2500
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TABLE III. - PARAMETERS OF THE GEAR SYSTEM OF FIGURE 6

(Variable bearing stiffness values.]

Moment of inertia:

Of driven gears, Ig, k9 m2  . . . . . . .  . . .. . .. . .. .. . . . . . . 0.0018

Of driving gears, Ip, kg.m
2. . . . . .  . . . . . .. . .. . .. . . . . . . .. 0.0018

Mass:

Of driven gears, mg, kg .... ....................... .... 1.84

Of driving gears, mp, kg .................... 1.84

Base circle radius:

Of driven gears, rg, m ...... .................... ... 0.0445

Of driving gears, rp, m ..... ................... .... 0.0445

Amplitude of the harmonic excitation, et, m ..... .......... 9.3x10-6

Mesh stiffness coefficient, ki, N/r ............... 1.0×10 8

Tooth numbers of driving gear, N. .................. 28

TABLE IV. - FIRST 14 NAIURAL FREQUENCIES OF THE SYSTEM OF

FIGURE 6 FOR THE CASE OF kxx/km = 10

Natural frequency, Corresponding mode
Hz

0 Torsional rigid body

581 Transverse, torsional

687 Transverse, x dir., driving shaft

689 Transverse, y dir.

691 Transverse, x dir., driven shaft

2524 Transverse, torsional

3387 Transverse, y dir.

3387 Transverse, x dir., driving shaft

3421 Transverse, x dir., driven shaft

3421 Transverse, y dir.

6447 Torsional, driving shaft

6539 Torsional, driven shaft

6831 Transverse, x dir., driving shaft

6840 Transverse, y dir.
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