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OCEAN FEATURE RECOGNITION USING GENETIC ALGORITHMS

WITH FUZZY FITNESS FUNCTIONS (GA/F3)"'

C.A. Ankenbrandt!, B.P. Buckles!, FE. Peuyl. & M. Lybanonz

1Depzutmem of Computer Science
Center for Intelligent and Knowledge-based Systems
301 Stanley Thomas Hall, Tulane University
« New Orleans, LA 70118, (504) 865-5840

-

ABSTRACT

A model for genctic algonthms with semantic nets is derived for which the
wmmMMNMmanwmwmmmmwdxammmmmLAnm@Mm
represents the manner in which objects in a scene are attached to concepts
in the net. Predicates between object pairs are continuous vajued truth
functions in the form ofaninVCrsecxponcnnal[uncnon(e'be. Lin
relationships are combined via the fuzzy OR (Max {...}). Finally,
predicates between pairs of concepts are resolved by taking the average of
the combined predicate values of the objects attached to the concept 2 the
tl of the arc representing the predicaie in e semantic net. The method

15 tilustrated by applying it to the idenufication of oceanic features in the
North Atlantic.

keywords: genetic algorithms, feature labelling, semantic nets, fitness
functions

* This work was supported in part by a grant from Naval Occan Rescarch
and Dévelopment Activity, Grant #N00014-89-J-6003

BACKGROUND

Ganatic algorithms are a problem solving method
requiring domain-spacific knowledga that is often
heuristic. Candidate solutions ara representad as
organisms. Organisms are groupad into populations
known as generations and ara combined in pairs to
produce subsequent genarations. An individaal
organism’s potential as a solution is determined
by a fltness function.

e

FYitness functions map organisms into real numbers
snd are used to detarmina which organisms will bae
usad (and how frequently) to produce offspring for
the succeeding generation. TFitness functions
often require heuristic information because a
precisa maeasure of the sultability of a given

organism (i.e., solution) Lis not always
attainable. An example is the recognition (i.s.,
labeling) of sagmerts in a scene. Genaral

characteristics of objects in the ascene such as
curvature, aize, length, and relaticnship to each
other may be known only within broad tolerance
lavels. That is, therae i3 great variability in
the ralationships among objacts in different
scenes. { -

Semantic nets (SNa) are effective rapresantatlons
of binary relationships between concepts (a.g.,
objacts in a scene). SNs denote concepts via
nodes in a directed graph. The arcs are labelled

by
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by predicates. We introduce here a representation
of an organism whosa fitness function evaluation
is dependent upon an SN context.

Bacause relationships (i.e., predicates) relating
concepts ara not precise, their evaluation is in
the form of a truth functional with range (0,1]
rathar than the traditional (0,1}. That 1is, we
use fazzy logilc [YATS, 2ZARR  2T789%) ta cambire
heurlstically the information concerning a
part’cular organism. Thus, we derive genetic
algorithms with fuzzy fitness functions (GA/F3).

GENETIC ALGORITHMS

Genetic algorithms (GAs) are search procedures
modelled after the mechanics of natural selection.
They differ from traditional search techniques in
sevaral ways. First, GAs have the property of
implicit parallelism, where the algorithm 1is
equivalent to a search of the hyperplanes of the
search space, without directly testing hyperplane
values [HO75, GO88]. Nearly optimal results have
been found by examining as few as ona peoint for
every 2°° points in the saarch space [GC86].
Second, GAs are randomized algorithms, using
operations with :.ondeterministic results. The
results for an oparation depend on tha value of a
random numbar. Third, GAs operate on many
solutions simultaneously, gathering information
from all current points to direct the search.
This factor mitigates the problems of local maxima
snd noise. ™

Trom a machanistic view, genetic algorithms are a
variation of the generate and test mathod. 1In
pure generate and test, solutions are generated
and sent to an evaluator. The evaluator reports
wvhather the solution posad is optimal. 1In genetic
slgorithms, this generate and tast procass ls
repeated jitaratively over a set of solutions. The
evaluator returns information to guide the
selection of new solutions for following
iterations.

GA tarminoloqy is taken from genet..s Each
candidate solution examined is termed an organism,
traditionally represaented as a list. The set of
organisms maintained 1s termed a population, and
the population at a given time is termad a
ganaration. Each iteration envolves three steps.
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Firat, each »ryanism in the current generation is
avaluated, producing a numerical fitness function
reault The criteria for evaluation is domain
apecific information about the relative marit of
that particualar orjanism. Better organisms are
assigned higher fitnesa function values. Second,
scma orjanisms are selected to form one or more
organisms for the next generation. Specifically,
the numkber of copiea of each organism selected is
diractly preportional to its fitnass function.
Third., soma of those organisms selected are
modified via genetic operators. Each genetic
cparat>r takes the chosen organism(s), and
produces a new organism(s) . The most common
genetic cparators include crossover and mutation.
This iterative procedure terminates when tha
population converges to a solution.

Tha crossover operator takes two organisms
selected and combines partial solutlons of each.
Whai orjaniams are represented with lists, single
print crossover can be viewed as combining the
teft hand side of one organism chosen with the
riqht hand side of the other, and conversaly.
Tais crrates two offspring. The croasover point,
“hat point where the crossover takes place, i»
randemly determined.

The mutation operator uses a minimal change
strateqgy. It takes a selected organism, and
changes the value at one randomly determined
posltion This corresponds to a tight local
saarch. Thae offapring produced is identical to
the parent except at the mutation point.

Segmented Image

a.

Fizare 1,

Oceanic Feacures
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GZMETIC ALGORITHM PFRCBLEM MCDEL
FOR OCEANIC FEATURE LABELING

Scena recognition is an application for which thae
GA model we propose is suited. For example, Fij
l1(a) s a segmented image of the North Atlantic
for which Fig. 1(b) is the original image. 7Thae
lines (referred to hera as sagments, s,, s, .. )
represent boundaries between warm and ccld regicns
of sea water. The problem is to classify the
segments as Gulf Stream North Wall (HW), Gulf
Stream South Wall (SW), cold eddies (CE), warm
eddias (WE), continental shelf (CS), and "other"
(c). .

Relationships which can be expressed as fuzzy
truth functions are known to <xist within or
batween classifications. Principal ameng thesa
are (1) tha average width of the Gulf Stream is S7
kilometers, (2) the average diameter of an eddy is
100 kilometers, (3) cold eddies are usually south
of the Gulf Stream, and (4) warm eddias ara
usually north of the Gulf Stream. To these cne
zust add the trivial (yet necessary) relaticnships
such as the south wall is at a lower latitude than
the north wall and the known geophysical
coordinates of continental shelves.

A scene consisting of classification categerles

(cat,, caty, ..., cat.) and relationships
3

expressed as truth functions . p2)

' , )

i i
betwean categories can be modelleg as a semantic
nat (or, more precisely, an associatiocn 1list). A
generic one is shown in Frig. 2.

Segments are

Originsl

(Nocth Atlancic)




ptl)

we,we

Legend

Cantenental Sheif

Cold Eddy

Warm Eddy

North Wall of Guif Stream
South Wall of Guif Stream
Other

Figure 2. Generic Semantic Net for Oceanic Features

attached to the categories via the INST (instance)
relation. An allele (or gena) is a category name.
An organism is a list of categories, one allele
for each segment. For example, given six segments
then (NW, NW, SW, CS, CE,0) and (CE, SW, CE, 0, O,
CS) are representativa organisms. Formally, let
an association list be defined as A = <V,P> where
VvV = {caty, caty, ... catm) is a set of
catagories, and P = (P, (@) { 1,3 <m, g=
1,2,..., ry4) 1s a set of binary predicates,
Thase predicataes describe the relationships
between categories and the ideal relationship
between segments assigned to these categories.

Let an organism for spatial labeling is defined as
Q = <S, INST>, where S = (s;, 85, .y ’n) is a
set of segments, and INST: § -> V is a function.

Crossover Operators

Thare are three applicablae crossover operators.
Thesa include single point crossover, two point
crossover, and varying multiple ooint crossover
{BOo87]. Crossover oparators ragquire the
imposition of a total order on the segmants in §.
Lat 8, < 84 if 4 < J; sy =9, 1f 4 = §; 84 > 8y i
i > j. Denote by INST,y the instance mapping for
organism Oy .

Single Point Crossover. Given < 8y, 8y, <o 8p>,
choose a random integer k, 1 < k < n. For parent

organisms Ol and 02 create an offspring, 0‘, such
hat

( INSTG, (84) i 4 S X
XNSTO, (91) -

| INSTo, (sy) if & > &

Two Point Crossover. Let < =,, %, .+ 85> be &
Circular list. Formally, succ{sy) = e .4
(Ptad(si+1) = 8;) 1f£ L < n and succ(s,) = s,
(p:-d(sl) = s,). Choose two random integers, kil
&nd k2. ryor parent organisms O, and O, create an
offspring, O’ such that

681

( INSTo (81) if sy € {8x1r succ(skl),
INSTq (83)= { ., pred (skz))
| INSTo, (3y) otherwise

Varying Multiple Point Crossover. For parent
organisms O, and Oy, craate an offspring 0’ such
that

( INSTy; (8y) with probability 0.5
INSTq, (8y) =
o (84
| INSTg, (sy) with probability 0.5

Mutation Operator

Our mutation operator selects one segme-=t randomly
and assigns it to a randomly dataermined category.
Choosa two random integers k1, 1 < k1 < n, and k2,
1 < k2 < m. Remove sy, from its current category
in organism O and attach it to caty, (L.@., set
INSTq(8yq) f"C‘txz)-

Titneas Tunction

For the modsl, the fitness function is the sum of
all satisfied predicates in the semantic net. Iet
E denote the function. Lat 71(9), be defined as
above, with m possible categories. Then

m =m Ty

¥ I

E= 1
=i i=1 g=1

Plj (1)

P;4'9) 1s a predicate for a relationship between
~agegor1.s, i and §. Each predicate 911(9) has a
corresponding derived pradl.ata, prad;j ix, 1.
for an analogous ralationship between segments sy
and s;, where sy is in category 1 and sy 1s in
category 3. Pij(q) is interpreted based on the




normalized truth value of the derived predicatae.
Specifically,

{ £ L predyy(@x, 1)
_S1.8¢ (2)
lcat;| = Icatjl

pij(g) {

k o otherwise

whera |cat,| and |caty| are the number of saegments
classified as category i and category 3,
respactivaely. Because all such predicates are not
definad batween all possible pairs of segments,
the normalizing factor (the denominator) is
subjact to radefinition on a case by case basis.
Altarnativas to (2) are dascribed following the
description of dewived predicates balow.

An exampla of a fuzzy pradicate P, {9) from ocur
domain is the relat! nship "is near", wheras
catagory 1 "4s na::" category j. The
corraesponding derived predicate predij(g)(k,l)
describes the relationship between two segments,
sy In category i snd s; in catagory 3. The sum of
pred, (9) (x,1) for all possible pairs of segmants
oy ana s} is normalized by the maximum possible.

Definitions of pzadij(g)(k,l) are dapendent on the
underlying semantics of the problem domain. One
approach is to define them propositionally as
(0,1) if a measurable relationship between sy, and
8, is within or bayond some thrashold. A sacond
approach praferrad here is to define them as fuzzy
truth functions on the interval [0,1]. 1Invarse
exponantial truth functions are commonly used in
fuzzy =et theory to measure the "nearness"” of two
concepts. An alternative nearness measures are in
{2195). For axampla, if tha dascription of 914(9)
contains a nominal value (e8.g., the SW is
approximately 50 kilomaters from tha NW) then let
X, reprasant the nominal value and

(q)
P!ldij(k,l) = e “plXo-XI (3)

where

X is the obsaerved value corrasponding to the
same measure (distance, curvative, angla of
daclination) between sy, and s,

B is a constant contrast factor in (0,1)
wvhich emphagizaes the magnitude of the
difference between the observed and nominal
value when increased

There are many situations for which the nearness
measure is not bounded by an ideal but the closer
to s, the batter. In such casas, xo can be
replaced by zero in formula (3).

"Not near” or "as distant as possible” may be
measured by the furzy complement of (3).

ég)
k,1) =1 - ¢ 4
Praij (k, 1) 0 (4

wbere £() is the right side of formula (3).

Soma relationsnips such as "above" or "smaller”
are not easily modalled as nearness maseisvae,

Such relationships can be considered as ordinary
propcsitional truth values.

(q) ( 1 if sy and s; are 30 related
pred  (k,1) = 1 (5)

13 \ 0 otherwise
If there 1s a measure X associated with the
relationship and X > X; when the condition is
mat, the derived predicate of formula (5) can be
represented by the cailing function

9)
-pzeéj = [ (Xye=X3) / Lixe-%y 1+1) ] (6)

For ’(Q)Lj' each object attached to caty cequiras
jcats]| evaluations of pr-d(q)i . The multiple
avaluations are combined to a sgnglo value using
fuzzy OR

(
max (p:ng) ;k,l)]; for each sy in caty (7)
s i
1
This corresponds to finding the bast segment, s3,,

that matches the ralationship for a given segnment
sy . By contract, the combination rule

min [prég)iik,l)]: for each sy in cat, (8)
8

corresponds to fuzzy AND.
by the formula (2) is

The heuristic implied

)
L preézik,l)/|cltjl; for each s, in cat; (9)
s
1

which corresponds to the average truth functional
valua of 8) with all s, segments in cntj.

Lat 1(9)1 (k) atand for the segment lavel

combination rule, (7}, (8), or (9). PRosasible
aggregation rules to computa rlj(q) are
L ég:jk)/lcltll (10)
By
)
max [éq jk)] (11)
[} i
1 3
9)
min é k (12)
p ( 1; )]

which correspond to average, best, and worst
match, respectively. The aggregation rule of
formula (10) is the one implied by formula (2).

EXAMPLE

Fig. 3 is a reproduction of Fig. 1(a) with most
sagments laballed (corractly). Eight segments are
labelled as 8y, 87, .e 8g and are used below in
an example. Table 1 lists and defines all
predicates and Arrived predicatee juquired f-r the
semantic net of Fig. 2. The notation |caty]




Table 1. Predicate Desacriptions
Predicate Tunctional [Pred(k,l)]/normalizer Description
P(ll max (exp(-0.5 x)}/lcoorx| near known (8 coordinates (distance = x)
cs.ce =
2 Bax (Otp( O S x))/(lcat g 1-1) near other C3 segment (distance = x)
ce,cs x whexe kaxl @
1) (1/10at 1) Elexp(-0.51100-x(} 1/ |cat g! WE diamstes near 100 ke (distance = x)
ve,we ve' .
P(z) ’ max (.lp( -0.3% x)]/(1cat gl-1) near other WE segment (distance = x)
wa, we . = where kxl
1) = (1/10at g 11T [ (X -Xy) /(1% -Xy 14131 1/1cat | WE north of NM (X, and X| are latitudes)
we, Aw =
1
(1) max [-xp( 0.5 x)}/leat,I-1) near other NW segsent (distance = x)
nv,nw x where kzl
1 (1/1cat g 1) Clexp(-0.5150-x1) ]/ cat,,! NW S0km from SN (distance = x)
nw, aw x
(2) (1/1eat g DI | [(Xp-X)/ (1%, -%3 14331 J/teat, ) HW north of S¥ (X, and X; are latitudes)
nw, sw x
1
m max [otp( 0 5 x)]/lclt.'l 1) neax other SN segmant (distancs = x}
av, gw x where
1 (1/0cat oqDE [ (1% -Xy}/ €%y -Xp141)] )/ jcat,,| SW noreh of CE (X, and X; are latitudes)
aw,Ce =
1
p::,c. (1/1cateq ) Llaxp(-0 $1200-x1) ]/ 1cat gl CR diameter near 100 km (distance = x)
P(Z) max [DXP( 0 5 x})/1 (cat g1-1) near other CE segment (distancs = x)
ce,ce x where
p(l) max [oxp( 0 3 x)]/l(cnt |-1) near othar O segment (distance = x)
°,0 x where k
(*) (1/1eat ) L{l-axp(-0.5x))/icat | not nesr C3, WE, CX, NW, or SW
o, °
. =

refers to the numbar of segmaents that are an
instance of category h. The value 0.5 is chosen
arbitrarily for f in all derived predicates. The
exponential form of derived pradicates is used for
all relationships except "north of" where formula
(6) is substituted. The default value for any
predicate or derived predicate is zero should a
denominator evaluate to zero.

The eight saegments distinguished in Fig. 3 are
characterized in Table 2. For this example, we
nead only the geophysical coordinates, the
distances between segment centroids, and the
distances batwaen the closest points of segments.
A larger, more complete daescription might also
contain the length and degree of curvature of each
segment .

Table 3 lists six organisms together with their
fitness function values which are computed using
the predicates in Table 1. The fitness function
is given by formula (2). The combination and
aggregation rules are formulas (7) and (12),
respactively. Derived predicates are varlations
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of formulas (3) and (4) except "north of", which
is represented by formula (6) with the requisite
maasure being latitude. Organism 0, has no
sagments labelled incorrectly. O, has two
sagments. labelled incorrectly. O3 *“:rough O¢ have
3, 3, 5, and 8 incorrectly labelled segments,
respectively. The fitness function values
correspond roughly to the correctness of the
labelling. Additional predicates (i.e., a more
complex semantic net) would improve upon the
ordering and separation in most cases.

CONCLUSION

A model for labelling complex scenes via genetic
algorithms with fuzzy fitness functions evaluated
over semantic nets and GAs is possible. Truth
functionals indicating the degree to which
specific interfeature relationships are fulfilled
are combined at the segment level then aggregated
at the category level using fuzzy set operators.

We are currently investigating such issues as the
effect of many predicates clustered on one or two
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Table 3. Fitness Function Values for
Selected Organisms
0, = <MW SW NW SWCECRCECE> ; E(Oy = 2.2088
0 = <SW 5 NW W% C¥ Cu CB 2> : BlOj) = 2.2313
03 = < SW NW NW CE CX WW 90> B(0) = 2.1251
Of = <3W 9w NW CE NW CE CE Cx> : $(0g) = 1.4731
L)

Og = <MW NW CZ CZ SW NW W CB> : E(Of) = 1.6757
Og = <SW CE SW CR SW NW W N> R(0g) = 0.9235

categories, alternate forms for the truth
i functionals themselves, and the crossover rules.

[BO87]

{GO86]
t '!'{

’1 {Goss]
f {HO75]

{Lca7)

[R183)

Our image set consists of six segmented infrared
photographs of the North Atlantic, each photograph
having a different degree of observation. Our
testbed will consist of a GA algorithm capable of
manipulating the alleles’ correspondence to the
semantic net.
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