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ABSTRACT by predicates. We introduce here a representation
of an organism whose fitness function evaluation

A model for genetic algonthms with semantic nets is derived for which the is dependent upon an SN context.
relationships between concepts is depicted as a semantic net. An organism
represents the manner in which objects in a scene are attached to concepts Because relationships (i.e., predicates) relating
in the net. Predicates between object pairs are continuous valued truth concepts are not precise, their evaluation is in
functions in the form of an inverse exponential function (e¢Olxl). 1:n the form of a truth functional with range (0,1]
relationships are combined via the fuzzy OR (Max [...1). Finally, rather than the traditional 10, I). That is, we
predicates between pairs ofconcepts are resolved by taking the average of use fuzzy logic (YA75, zAa 7,Tr51 t- C-hin
the combined predicate values of the objects attached to the concept ..,.,'e lieuristically the information concerning a
tail of the arc reprcsentir.-, h! pri a¢ in the semantic net. The method part'.cular organism. Thus, we derive genetic
is illustrated by applying it to the identification of oceanic features in the algorithms with fuzzy fitness functions (GA/F 3 ) .
North Atlantic.

GENETIC ALGORITHMS
keywords: genetic algorithms, feature labelling. semantic nets, fitness
functions Genetic algorithms (GAs) are search procedures

modelled after the mechanics of natural selection.
This work was supported in part by a grant from Naval Ocean Research They differ from traditional search techniques in

and DcvelopmentActivity. Grant#NO0014-89.J-6003 several ways. First, GAs have the property of

implicit parallelism, where the algorithm is
BACKGROUND equivalent to a search of the hyperplanes of the

search space, without directly testing hyperplaneGenetic algorithms are a problem solving method values (HO75, GOBS]. Nearly optimal results have
requiring domain-specific knowledge that is often been found by examining as few as one pn"

4
t for

heuristic. Candidate solutions are represented as every 2 33 points in the search space [GO861.
organisms. Organisms are grouped into populations Second, GAs are randomized algorithms, using
known as generations and are combined in pairs to operations with ;.ondeterministic results. The
produce subsequent generations. An individiial results for an operation depend on the value of a
organism's potential as a solution is determined random number. Third, GAs operate on many
by a fitness function. solutions simultaneously, gathering information

... from all current points to direct the search.
ritness functions map organisms into real numbers This factor mitigates the problems of local maxima
and are used to determine which organisms will be and noise. -

used (and how frequently) to produce offspring for
the succeeding generation. Fitness functions rrom a mechanistic view, genetic algorithms are a
often require heuristic information because a variation of the generate and test method. In
precise measure of the suitability of a given pure generate and test, solutions are generated
organism (i.e., solution) is not always and sent to an evaluator. The evaluator reports
attainable. An example is the recognition (i.e., whether the solution posed is optimal. In genetic
labeling) of segments in a scene. General algorithms, this generate and test process is
characteristics of objects in the scene such as repeated iteratively over a set of solutions. The
curvature, size, length, and relationship to each evaluator returns information to guide the
other may be known only within broad tolerance selection of new solutions for following
levels. That is, there is great variability in iterations.
the relationships among objects in different
scenes. GA terminology is taken from genet cs Each

candidate solution examined is termed an organism,
Semantic nets (SN-1) are effective representations traditionally represented as a list. The set of
of binary relationships between concepts (e.g., organisms maintained is termed a population, qnd
objects in a scene) , SNs denote concepts via the population at a given time is termed a
nodes in a directed graph. The arcs are labelled generation. Each iteration envolves three steps.
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Firit. *'ach ir-jaruom in the -urrpnt generation is GENETIC ALGORITHM rpCHLF- MCOEL
evaluatied, prodlucing a numerical fitness function TOR OCEANIC F-EATURE LABELING
renilt The criteria for evaluation is domain
npecific informat ion about the ielative merit of Scene recognition is an application for which the
that Fartioular orqanism. 1Oetter organisms are 5A model we propose is suited. For exA Jep F13
ann-.gnted hiciher fitness function values. Second. l(a) is a segmented image of the North Atlantic
some or gninmn are selected to form one or more for which Fig. 1(b) is the original image. '!he
orgAnlima for the next generation. Specifically, lines (referred to here as segments, s 1, '2, -)
the number of copies of each organism selected is represent boundaries between warm and cold reo-irnm
directly proportional to its fitness function, of sea water. The problem is to classify the
Third, some of those organisms selected are segments as Gulf Stream North Wall (14W), Gulf
modified via genetic operators. Each genetic Stream South Wall (Sw), cold eddies (CE), warm
operator takes the chosen organism(s), and eddies (WE), continental shelf (CS), and 'other"
produces a new organism(s). The most common (0)
qenetic operators include crossover and mutation.
Thins iterative Procedure terminates when the Relationships which can be expressed as furzzy
pcpulation converges to a solution, truth functiona are known to ' 3t within or

between classifications. Principal amorng these
The crossover operator takes two organisms are (1) the average width of the Gulf Stream is 5C
selected and combines partial solutions of each. kilometers, (2) the average diarter of an eddy is
Whe-i organisms are represented with lists, single 100 kilometers, (3) cold eddies are usually south
point crossover can he viewed as combining the of the Gulf Stream. and (4) warm eddies are
teft hand side of one organism chosen with the usually north of the Gulf Stream. To these one
right hand aide of the other, and conversely, must add the trivial (yet necessary) relationships
Tis creates two offspring. The crossover point. such as the south wall is at a lower latituade than
,iat point where the crossover takes place, is the north wall and the known geophysical

-randomly determined, coordinates of continental shelves.

The mutation operator usas a minimal change A scene consisting of classification categnries
strategy. it takes a selected organism, and (cat1 , cat 2.. . ..... catn) and relationshipm
changes the value at one randomly determined expressed as truth functions (rfl). pt2).
pos It !on This corresponds to a tight local between categories can be modelle as a semnantic
search. The offspring produced is identical to not (or, more precisely, an association list). A
the parent except at the mutation point, generic one ia shown in ]rig. 2. Segments are

IJ -T

e. sgmented image b. O riginal Infr red Image , T '

F i ro I. Oceanic Fit- irs (N4orth At I intcic)

.80
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Figure 2. Generic Semantic Net for Oceanic Features

attached to the categories via the INST (instance)

relation. An allele (or gene) is a category name. ( INSTal (el) if si E (Skl, succ(skl),

An organism is a list of categories, one allele INSTo, (a)= ... , pred (Sk2))

for each segment. For example, given six segments [ INST0 2 (si) otherwise

then (NW, NW, SW, CS, CE,O) and (CE, SW, CE, 0, 0,
CS) are representative organisms. Formally, let Varying Multiple Point Crossover. For parent

an association list be defined as A - <V,P> where organisms 01 and 02, create an offspring 0' such

V = Icatl, cat 2 . . . . cat,) is a set of that
categories, and P = (Pij (g ) I i,J < m, g -
1,2,..., ri ) is a set of binary predicates. ( INSTal (91) with probability 0.5

These preicates describe the relationships INST O, (si) =
between categories and the ideal relationship l INST 0 2 (si) with probability 0.5

between segments assigned to these categories.
Let an organism for spatial labeling is defined as

Q = <S, INST>, where S = Sl, 2 ..... .. n) is a

set of segments, and INST: S -> V is a function. Mutation Operator

Crossover Operators Our mutation operator selects one segm-.t randomly
and assigns it to a randomly determined category.

There are three applicable crossover operators. Choose two random integers kl, 1 < kl < n, and k2,
These include single point crossover, two point 1 < k2 < m. Remove skl from its current category

crossover, and varying multiple point crossover in organism 0 and attach it to catk 2 (i.e., set

(BO87]. Crossover operators require the INSTO(Skl) -. catk2).
imposition of a total order on the segments in S.
Let Si < 9 if i < J; Si sO if i - J; s > aj if fitness runction
i > J. Denote by INSTi the instance mapping for
organism Oi. For the model, the fitness function is the sum of

Single Point Crossover. Given < S,, 82, ...,Sn>, all satisfied predicates in the semantic net. Let

choose a random integer k, 1 < k < n. for parent E denote the function. Let VI(g, be defined as
organisms Ol and 02 create an offspring, 0', such above, with m possible categories. Then
that

IMm ri

INSTal (si) if i Sk
INST o, - 4 z - I E I 1 Pj(g))

INST0 2 (ei) if i > k , g.(1

Two Point Crossover. Let < ' "2, . s,> be a Pi4 
( ) is a predicate for a relationship between

Circular list. formally, succ(si) - @I+, :U*7orles, I and J. Each predicate Pi1  has a

(pred(si+,) a si) if i < n and succ(Sn) a a, corresponding derived predU',te, Fr4dij 1)( k , 1).

' prod (9) a dn) . Choose two random integers, kl for an analogous relationship between segments sk
end k2. for parent organisms 01 and 02 create an and a,, where Sk is in category i and s, is in
Offspring, 0 such that category j 1 () is interpreted based on the
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normalized truth value of the derived predicate. Such relationships can be considered as ordinary
Specifically, propc¢itional truth values.

E Predij(g,) ( 1 if sk and sl are so related
S (2) pred (k,l) = (5)

Pij (g )  icatiJ X JcatjJ ij 0 otherwise

0 otherwise If there is a measure X associated with the

relationship and Xk > X1 when the condition is
where Icatil and Icatjl are the number of segments --at, the derived predicate of formula (5) can be
classified as category i and category J, represented by the ceiling function
respectively. Because all such predicates are not
defined between all possible pairs of segments, r ()
the normalizing factor (the denominator) is .pre - F(XY-Xl)/(IXk-Xl+')l (6)
subject to redefinition on a case by case basis. i
Alternatives to (2) are described following the
description of dowtved predicates below. FOr P(Mij, each object attached to cati cequires

Acatj[ evaluations of pred(g) The multiple
example of a fuzzy predicate Pij ( )  evauation are combined to a single value using

domain is the relat! nship "is near", where fuzzy OR
category I "is ne t." category j. The
corresponding derived predicate predij (g) (k,l)
describes the relationship between two segments, max pro k,1)]: for each sk in cati (7)

k in category I and s, in category j. The sum of 51
predi (g) (k,1) for all possible pairs of segments
sk and sI is normalized by the maximum possible. This corresponds to finding the best segment, sl,

that matches the relationship for a given segment
Definitions of predij(g)(k,l) are dependent on the sk. By contract, the combination rule
underlying semantics of the problem domain. One
approach is to define them propositionally as
(0,1) if a measurable relationship between sk and mi (pro kl)]; for each sk in cati (8)
a, is within or beyond some threshold. A second al
approach preferred here is to define them as fuzzy
truth functions on the interval (0,11. Invsrse corresponds to fuzzy AND. The heuristic implied
exponential truth functions are commonly used in by the formula (2) is
fuzzy iet theory to measure the "nearness" of two
concepts. An alternative nearness measures are in
(ZISS]. For example, if the description of Pi4 (g) pre Ag) k,l)/Icatjl; for each sk in cat i (9)
contains a nominal value (e.g., the SW is s8
approximately 50 kilometers from the NW) then let
XO represent the nominal value and which corresponds to the average truth functional

value of sk with all a, segments in catj.(g)
predi ((k,l) e a -PIXo-X1 (3) Let f(g)ij(k) stand for the segment level

combination rule, (7), (8), or (9) . Possible

aggregation rules to compute rij(9) arewhere

X is the observed value corresponding to the
same measure (distance, curvative, angle of 1 g)

declination) between sk and s, sk I

is a constant contrast factor in (0,1]
which emphasizes the magnitude of the 1g)
difference between the observed and nominal max k) (1)
value when increased k

There are many situations for which the nearness
measure is not bounded by an ideal but the closer me
to sk the better. In such cases, X. can be . ij
replaced by zero in formula (3). k

which correspond to average, best, and worst
"Not near" or "as distant as possible" may be match, respectively. The aggregation rule of
measured by the fuzzy complement of (3). formula (10) is the one implied by formula (2).

predA (k,l) - I - f() (4)

Ii rig. 3 is a reproduction of Fig. l(a) with most

segments labelled (correctly). Eight segments are
where f() is the right side of formula (3). labelled as a,, '2. ..... s and are used below in

an example. Table 1 lists and defines all
Some relationsnips such a3 "above" or "smaller" predicates and Arrived predicate- ;equired f-r th-
are not easily modelled as nearness i-'.. . semanoic net of Fig. 2. The notation Icathl
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Table 1. Predicate Descriptions

Predicate Functional (Pred(k.l)1/normulizer Description

p max aX'p(-O.5 a)]/)coorj near known CS coordinates (distance i x)

p ma (sap(-0.5 X)l/(Icatc l-1) near other CS segment (distance = a)
c'c x where kol

P(1) (1/)oat.,I)lt5Wp(_0.S100-xl)|/Icat.eI  W diameter near 100 k- (distance - a)

p(2) max (oNp(-0.5 X)Mj/()catl-1) near other WE seqwent (distance = x)

wewe a where k*l

P 1) (1/ioatnvj) f(Xk-Xl)/(lXk-Xll+l)l ]/Icat.*
I  

W north of W (Xk and X, are latitudes)

weew a
1

p() max [eap(-0.5 a)]/Icstnwi-1) near other NW segment (distance - x)
nv, nw a where kol

P(1) (1/icatswIE
2

exp(-0.5150-xi)]llcatnw I  NW 50km from SW (distance = a)
nw,sw x

P(2) (1/(cat5 |) L [(Xk-Xl)I(IXk-Xl1+1)1 ('(cathy) NM north of SW Xk and X, are latitudes)
nw,su, a

1

p(1) max (exp(-0.5 a)]/icatwl-1) near other SW segment (distance = x)
ew, a where kal

(1/catc'OE r ((Xk-xl)/(Ixk-Xll+1)l ]/Icat*,) SW north of CZ (Xk and are iatituds)
ow,ce

1

P (/Icatce) [(eXp(-0 51100-at)]/Icatco I  CZ diameter near 100 Ian (distance x)
cace X

p(2) max exp(-0.5 a)]/l(catc.l-i) near other CE segment (distance = x)

cce a where kel

P(1) max [Oxp(-0.5 )1/1(catol-1) near other 0 segment (distance a a)
o,o a where kRd

P M (1/catl)E(1-erp(-0.S)]/Icatl not near CS, WE, C1, NW, or Sw

refers to the number of segments that are an of formulas (3) and (4) except "north of", which
instance of category h. The value 0.5 is chosen is represented by formula (6) with the requisite
arbitrarily for P in all derived predicates. The measure being latitude. Organism O1 has no
exponential form of derived predicates is used for segments labelled incorrectly. 02 has two
all relationships except "north of" where formula segments. labelled incorrectly. 03 'hrough 06 have
(6) is substituted. The default value for any 3, 3, 5, and 8 incorrectly labelled segments,
predicate or derived predicate is zero should a respectively. The fitness function values
denominator evaluate to zero. correspond roughly to the correctness of the

4 labelling. Additional predicates (i.e., a more
The eight segments distinguished in Fig. 3 are complex semantic net) would improve upon the
characterized in Table 2. For this example, we ordering and separation in most cases.
need only the geophysical coordinates, the
distances between segment centroids, and the CONCLUSION
distances between the closest points of segments.
A larger, more complete description might also A model for labelling complex scenes via genetic
contain the length and degree of curvature of each algorithms with fuzzy fitness functions evaluated
segment. over semantic nets and GAs is possible. Truth

functionals indicating the degree to which
Table 3 lists six organisms together with their specific interfeature relationships are fulfilled
fitness function values which are computed using are combined at the segment level then aggregated
the predicates in Table 1. The fitness function at the category level using fuzzy set operators.
is given by formula (2) . The combination and
aggregation rules are formulas (7) and (12), We are currently investigating such issues as the
respectively. Derived predicates are variations effect of many predicates clustered on one or two
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Figure 3. Segmented fmage With Correct Labels

Table 2. segment Descriptors

a. Cantaid Position in fractions of Latitude and Longtusde b. oiatances 3t~en centraids (kilo-ters)

S&qmnt Latitude Lornqitude 31 $2 33 9, 9 
5  

5

9139.40 70.06

3233.32 63.69 9,* 0.00 127.50 237.55 293.03 342.93 315,45 343.63 411.74

4 30.57 $6,6 83 257.5s 164.40 0.00 113.9 219.21 247.96 247.54 159.20

91 37.33 46.72 54 293.03 149.39 115.11 0.00 104.08 93.13 75.67 194.73
94 37.32 44.04 35 342.93 217.12 219.21 104.00 0.00 39.36 104-29 294.94

9 7  38.07 49.81 9, 37S.43 241.96 209,90 99.13 56.36 0.00 59.61 223.14

Be 39.34 64.36 S7 1.64 243.35 161.14 75.V 104.29 38.17 0.00 165.51

so 416.76 316.35 159.20 18.73 266.14 223.06 165.51 0.00

C. Closest Proximitlie (kilometers)

91 92 4 s f8 37 of

3
1  

0.00 127.13 - - -

9 2  
121.13 0.00 - 00.42 -

33 - - 0.00 31.26 - - 42.10 -

9 - 0.42 31.26 0.00 12.72 19.39 14.93 35.00

i3 - - - 12.72 0.00 0.00 - -

2 s  
- - - 13.39 0.00 0.00 - -

27 - - 42.30 16.93 - - 0.00 20.92

at - 33.00 - 20.92 0.00

6"



(TEB86] Thomason, Michael G. and Richard E. 
Blake,

Table 3. Fitness Function Values for 
,Development of An Expert 

System for

Interpretation of Oceanographic Images",

Selected Organisms 
NORDA Report 148, June 1986.

[YA75] Yager, Ronald R. "Decision Making with

0 - a0 SW NW SW CZ CR CE C> K(O3 - 2.-096 Fuzzy Sets", Decision Sciences. 77ol 6, 3,

July 1975, pp. 590-600.

02 - <Sw 5 Nl %W CS C'a C3 CR, 110 2) - 2.2511 (ZA881 Zadeh, Lotfi A., "Fuzzy Logic" Computer,

Vol 21, 4, April 1988, pp. 83-93.

03 - -aM SW NW NW CS CE NW SW> 2(O - 2.1251
[ZI85] Zimmnermann, Hans -J., Fuzzy Set Theory and

.Its Apolications, Kluwer Nijhoff

04 m <SW SW NW CZ NW CZ CZ C> 2(04) - 1.4731 Publishing, Dordrecht, The Netherlands,

1985.

05 . 'aim NW CE CZ SW NW SW CE> 9(O - 1.6757

0, - <SW = SW CE SW NW (W NW> 9(o6) - 0.9235

categories, alternate forms for the truth

functionals themselves, and the crossover rules.

Our image set consists of six segmented infrared

photographs of the North Atlantic, each photograph

having a different degree of observation. Our

testhed will consist of a GA algorithm capable of

manipulating the alleles' correspondence to the

semantic net.
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