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NOISE EFFECTS UPON A SIMPLE TIMING CHANNEL

1 Introduction

We take as our area of interest a multi-user computer system. Of special interest are
two users called high and low. We assume that security procedures have been set up
so that low may not read high's files and high may not write its files to low. These
are the no read-up, no write-down requirements of the Bell-La Padula model [1] of
security. However, it is possible for high to interfere with the system response time
to low's input. We will only be interested in delays to low's input of a specific query
designated by ?. The interference that high is causing might not be a conscious act of
the high user. It may be attributable to a surreptitious act performed by a program
referred to as a Trojan Horse. The Trojan Horse has the ability to instigate the
delaying procedure to low, read high's file. code it and pass it through this delaying
procedure.

Such a means of communication between high and low, with or without the Trojan
Horse in place, will be referred to as a Covert Timing Channel, or more succinctly,
a Timing Channel. In [5] Millen discusses a simple timing channel where a reply
takes one tick (time unit) if high is not interfering with low, and two ticks if high is
interfering. One tick tells the low user to interpret the message as a 0 and two ticks
as a 1. Millen restricted his investigations to noiseless chanr-els. We will look at a
similar situation as his, except that noise will be introduced into the transmission
process.

The noise effects in our model are envisioned as being due to the time sharing of
the CPU and I/O delays in our system. The noise effects are not viewed as being
attributable to disk read or write delays as in [3].

The noise that we will be looking at will not affect the value of the output as in [6].
The noise will only affect the timing of the output. Instead of exactly knowing when
the signal will arrive at the low user, the users will have knowledge only of the arrival
times in a probabilistic sense. (We are assuming, for the sake of simplicity, that a
Trojan Horse having knowledge of arrival times is synonymous with the users having
that knowledge also.) We feel that this is a realistic model in light of response time
degradation due to many users being on the system simultaneously. We will refer
to this as contention induced noise. Wittbold and Johnson t9] have also looked at
contention for resources as a noise effect but not in this manner. We will use the
exponential distribution to model the uncertaintv in arrival times of signals to the
low user. Let us recall the definition of the exponential distribution.
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Definition 1 The exponential random variable, with parameter A > 0, has the
probability density function

{,e - - if X >0
if W>0 otherwise.

If our system were noiseless there would be no degradation of the arrival time of a
signal. In this case we could say that a signal arrives exactly at time 0. (Wit.hout
loss of generalit-," we can view 0 as the arrival time when the input was sent at some
"negative time". However, if there is contention for resources, which is the case that
we are interested in, then we will model the output signal to arrive exponentially
distributed in time with parameter A. This will be the major assumption in this
paper.

Now we will slightly modify our probability distribution by a change of variable, to
have the arrival time be more physically realistic. Suppose that low does his/her input
query ? at time 0. In Millen's noiseless system the output will arrive at time 1. In
our noisy system the output will arrive via an exponential distribution starting 1 tick
after ?. If high is interfering with low then the output will arrive via an exponential
distribution starting 2 ticks after ?.

This leads us to formalize these ideas with the following definition.

Definition 2 If high is not interfering with low then the response to ?, inputted at
time 0, is given by the distribution with probability density function

f,() Ae-A(-1) if t>lI
f 1(t) = 0 otherwise

and if high is interfering with low ihen the response to ? is given by

-2 - Ae( 2) if t > 2
f 2(t) = 0 otherwise.

This is a noisy version of what Millen did in [5]. By letting the parameter A approach
oc we can arrive at the same situation that Millen set up. The parameter A can
be adjusted for the amount of noise in the system to demonstrate different possible
scenarios with regard to contention induced noise.

The expectation of a random variable with density function

Ae-A0-) if t > T

0 otherwise
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is given by

E.= tf, (t) dt = Ate - (t- ) dt

The expectation can be interpreted as the average time that the output signal will
arrive at the low users terminal. By integration by parts we see that

1
E=r +

which is not surprising. This shows that as A approaches oo that the average waiting
time for a response to ? is r. We can also see that the expectation, up to an additive
constant, is directly proportional to the noise and is inversely proportional to A. This
relationship is important as we will see later when we discuss mutual information and
channel capacity.

2 Strategy

Both the high and low user have knowledge of the stochastic processes that are
involved in the timing channel. The users have to decide upon a strategy [8] to
exploit the communication channel that now exists.

The high user wishes to send a binary file to the low user across the covert commu-
nication channel. (Again this may be intentional on high's part or due to the action
of a Trojan Horse.) If a 0 is to be sent, then high will not interfere with low and
the arrival time of the output from ? is given by the probability density function
fl. If high wishes to send a 1, then it will interfere with low and the arrival time of
the output in response to ? will be given by the probability density function f 2. Of
course the way things stand now, high must have some feedback to know whether
or not low received the output. So it is necessary to have some sort of high level
auditing going on [4, 9]. Due to the probabilistic nature of the response time to ? we
have an unbounded possible response time. Of course by adjusting A we can lower
the proLability that the output will arrive after some given finite amount of time.
But we can never say with certainty that the output will not arrive after the above
mentioned finite time. We must make some adjustments in the strategy so that a
feasible and realistic communication channel is, in fact, set up between the high and
low users.

Let x represent the time that the signal arrives after ? is inputted. Without any
restrictions we have that 1 < r. < oo. As discussed above this can lead us into a
situation where !ow has an infinite wait for output to ?.
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Strategy: Low will input ? every 2 ticks. High will either interfere or not. If
1 < K < 2 then low will interpret K to be a 0. If 2 ticks have gone by on low's clock.
then low will automatically assume that the message is a 1 and issue an interrupt to
its previous query ? before inputting its next query ?.

A pleasing aspect of this strategy is that high does not have to audit low's signal.
However, high does know the strategy that is being used and can code its message
accordingly. So high. or the Trojan Horse, codes the file that it wants to send and
every 2 ticks it will either interfere with low or not. Low, or the other part of the
Trojan Horse, will interpret the signal that it gets according to the strategy. We see
that it takes 2 ticks for a symbol to be transmitted over the channel. We refer to this
as a cycle. Even though high need not be able to audit low it is necessary for both
high and low to know when low will be inpiitting its query. It is possible that the
Trojan Horse is designed to work at certain times or that high has a limited audit
ability to know when low will start inputting ? and how many cycles low will keep
doing this for.

The reason that low must issue an interrupt, if it has not yet received a response
to ?, is to prevent a response from "leaking" over into the next cycle of query and
reply. Say for example that low inputs ?, 2 ticks go by and no response is given by
the system, and then low again inputs ?. How is low to know when it finally does
receive a response if it is the response to the first ? or the second ?? The issuance of
an interrupt after 2 ticks will preclude this situation. We assume that the interrupt
stops the response to ? from reaching the low user.

The same strategy without the interrupts is an interesting and complicated problem.
In fact, the channel is still memoryless. We hope to address this situation in future
work.

3 Transmission Errors

There are obvious transmission errors in our strategy which result in signal noise.
There are no errors if high sends a 1 because 2 < r, . The low user is watching his/her
clock and as soon as 2 ticks have gone by low interprets the message as a 1. However,
if high wishes to send a 0, then errors can be introduced. If r arrives before 2 ticks
have elapsed there is no transmission error; however, if 2 < rK then we do have an
error because low will interpret the signal as a 1 when it in fact is a 0. The probability
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of a 0 being sent and a 0 being received is

P(A I 0.) = Ae-(t-1) dt = 1 - e- (1)

The probability of a 0 being sent and a 1 being received is

P(O, 10,) = j 2e- t-)dt - (2)

As discussed above we also have that

P(1, I 1) = 1 and P(O 1,) = 0. (3)

We will use equations (1), (2), and (3) to calculate the channel capacity of the covert
timing channel.

4 Information Theory

4.1 Shannon's Work

We will use Shannon's (7] information theory to investigate how much "information"
can be sent over the covert channel in question. Let us review some of the concepts
of information theory. The channels in this paper are memoryless, meaning that each
occurrence of inputting a symbol is independent from the previous occurrences.

PCHANNEL I  '

We have a communication channel and we let Q stand for the input random variable
and T represent the output random variable. In our example X, the signal that high
is trying to pass to low will be the input variable, and Y the signal that low actually
receives, will be the output variable. The alphabet of both X and Y is the set {0,1}.
We are assuming that high is trying to send a binary file that has an equal distribution
of O's and l's. This leads us to the fact that P(X = 0) = P(X = 1) = 1/2. We will use
the shorthand notation P(X = i) = P(x,) = P(i,) and P(Y = i) P(y,) = P(i7 ).

If Q and ;P are discrete random variables taking values in the alphabets {w,} and
{ij,}, respectively, we may define the entropy of l to be E(I(Q)). (Note that all logs
are base 2, and I is self-information.)
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Definition 3 The entropy of Q is H(Q) - -- P(-,)log -,)

The entropy measures the amount of information that Q. is conveying on the average.
When we view Q as a random variable in a communication channel we measure the
entropy in bits per (transmission) rymbol. So we see that H(X) = -P(0 5 ) log P(O) -

P(1.)logP(I.) = -(1/2logl/2 + 1/2 log 1/2) = 1. It is not a surprising result that
X "sends" 1 bit of information, on the average, each time it transmits either a 0 or
a 1. In fact for a Bernoulli random variable it is easily shown that the maximum of
the entropy is 1.

We wish to find out how much information is transmitted (on the average) across
the communication channel. In other words, how much information is the low user
receiving from the high user? One cannot use H(T) alone to answer this if we
have a noisy channel. We have to see how the output to %I depends on what Q is
inputting and how the noise induced by the probabilistic uncertainty influences the
receiver's (low's) output. In Shannon's words [7], the equivocation "measures the
average ambiguity ot the :cceived signal". Formally:

Definition 4 Define the equivocation to be

HT (Q) = -Z P(Vj)P(w, I 0b)log P(wi

We still have to define a term that measures the average information sent over the
channel - this is given by the mutual information:

Definition 5 Define the mutual information between Q and TI to be

I(fl,J) = I = H(Q) - H (Q). (4)

Both the equivocation and the mutual information are measured in bits per symbol.
By symbol we mean the process of Q inputting a signal and T in turn receiving a
signal.

We wish to find out how much information is being sent over the communication
channel. This gives a measurement of how the channel behaves over a long period
of time, this long period of time being when the process - of low inputting ?, high
interfering or not, and low receiving output - is repeated many times. The measure-
ment that we are looking for is the channel capacity. The channel capacity in its most
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general form involves looking at the limiiiting behavior of the mutual information as we
try to maximize over different probability distributions associated to input random
variables with identical alphabets. For a memoryless channel we do not have to worry
about the limiting behavior as long as we measure this channel caPacity in terms of
bits/symbol because the past history of the channel does not influence the capacity
calculation.

Definition 6 The channel capacity, or simply the capacity, of a mrn,moryless corn-
munication channel is givei, by

C = sup I(Q',T)

IWhere a are the different probability measures associated to adf random variablcs that
have the same alphabet as fQ.

To be precise we are actually taking the supremum ovei the different random variables
with alphabets identical to that of fQs. So the notation I(Q, TI) is actually incorrect
in the definition of capacity. But it is a common abuse and we will be consistent with
(some) history. In other words, for the purposes of the definition , f c. pacity we are
actually viewing Q as a tamily of random variables.

The interested reader can see the "noisy example" in [6] for a simple example involvialg
a binary symmetric channel with a cross-over probability.

4.2 Analysis

We will compare this to a noiseless situation whe-e if high wishes to send a 0, low

receives the signal after one tick and if high wishes to send a 1, low receives the signal
after two ticks; thus whatever symbol that is passed the cycle time is 2 ticks. The
channel capacity in this example is 1 bit per 2 ticks or just simply .5 bits/tick.

Now we are considering the noisy case where 0 < A. As discussed earlier H(X) = 1.
The equivocation is

HY(X) = -{P(0,)P(O, f 0.)logP(O, f0,.) + P(O,.)P(1, j 0,.)ogP(lI 0,)

+ P(,)P(O, I 1,.)log P(O I1,.) + P(1,.)P(1, I 1,)log P(1, I1,).
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By u-ing our assumption that P(O ) = P(I) = .5 and Bayes' formula we may
calculate all of the probabilities required for the equivocation. Let us summarize
all of the probability values below.

P(0) = .,5

P(1,) = .5

P(Ori O,) = 1

P(IrI o) = I-'

P(17 I1 ) = I

P(O, I1 ) = 0

P(O ) (I -F-)/2

P(Ir) = (I +-)/2

P(IO 0) = 1

P(11Or) = 0

P(O, ir) = -'\/(1 +C-')

P(1, 1') = 1/(1 + -')

Therefore, the equivocation is

I)(X) = -[-Alog - - (i + e-)log(i + C-')].

It is easy to see that

lim Hy (X) = 1 and lim Hy(X)= 0.
A--O

+  
A-oc

Consider these facts in light of (4). These facts corresponds to the fact that, as
A increases the noise is decreasir-. The situation where A = oc is the case of no
contention induced noise and we can view the probability distributions for fl(t) and
f 2(t) as the Dirac functions 6(t - 1) and b(t - 2). respectively. This is the exact
situation that Millen described. (Remember that his channel capacities are in terms
ot bits/tick, ours are, at this point, being expressed in terms of bits/symbol.) As
A - 0 the noise is increasing and the arrival time for the symbol 0 at the receiver is
moved more and more away from I tick towards 2 ticks. This is due to the fact that
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as A diminishes the maximum of fl(t) diminishes but its rate of asyi:iptotic approach

to 0 as x -- x slows.

The mutual information is

J(X, Y)= 1 + [K.\log A - (1 + log(1 + C-:)]. (5)

Figure 1 is a plot of I(X,Y)

We see that I(X, Y) is a, ymptotic to 1 as A - oc. We must remember that the
mutual information I is less than the channel capacity. However, the information is
passed at a rate equal to I if no coding is done. Shannon's theorem tells us that we
can acLieve a transmission rate within c of I by the proper coding [7]. This does not
tell us what the cod-- is. So if our Trojan horse does not know the code then it is
restricted to a transmission rate equal to I.

The mutual information acts as a lower bound for the channel capacity C. A natural

question arises as to how much "faster" C is than I. If the difference is negligible
than we might as well just restrict our attention to I and not get into ccding issues.
However, if 1 << C, then we should do some analysis involving C because then I
would give the person interested in security too optimistic a view as to the leakage
capabilities of the covert timing channel that exists in the system.

Let us calculate the actual channel capacity. To do this we will recalculate I(X, Y)
for a general value of P(O,) instead of just 1/2. We will then view I as a function
of p. The mutual information function I(p) is concave down (2, Thin. 5.2.5] with
respect to the variable p. Hence, it suffices to find a critical point. IP other words we
will solve

I'(p) = 0. (6)

Let us list the various probabilities that will be needed to solve for I:

P(0.) = p

P( .) = -p

P(O 0,) = -

P(1,0) = 1-)

P(O, 1,)= 0

P(O,) = - e-)p

P(I) = (c-1 - l )p+l

9



P(OO,) = 1
P(1 I0,) = 0
P(O, 1,) = e-'p/(1 - p + e-p)

P(1,1 1) = (1 - p)/(1 - p + e-p)

The input entropy H(X) is -plogp- (1 - p) log(1 - p).

The mutual information I(p) is now:

- plogp + c-Xploge-Xp- (1 - p + e-(p) log(1 - p + e-Xp7)

Thus we see that

I'(p) = -log p + e- x log eC-p + (1 - Ce- ) log(1 - p + -Ap). (8)

Therefore the zero of I'(p) is when:

1
p= 1 + A/(e - 1) e-A

which we will set equal to C. It is easy to show that:

lir = 1/2.
A-oo

In fact from Figure 2 we see that the zero of P(p) quickly becomes asymptotic to 1/2.

This tells us that for relatively moderate choices of A that I(X, Y) is maximized for an
input probability distribution where both O's and l's are sent with equal probabilities
of 1/2. So using I(X, Y) as we calculated it in (5) gives a very good approximation
to the actual channel capacity.

The actual channel capacity is:

- Clog C + e-1( log e-X( - (1 - C + e-AC)log(1 - C + C-AO. (9)

Figure 3 is a graph of the channel capacity (9). We can see how similar it is to figure
1. In fact, Figure 4 is a comparison of the two functions for small A. Also Figure
5 is the graph of the difference C - 1(1/2). From these figures we see how good an

approximation I is to C.
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4.3 Security Consideraticns

How does the above analysis help us in trying to make our computer system secure?
If it is possibie to quantify the parameter A then we may be able to get a handle on
how bad our covert timing channel is. If we know that during peak usage time of
the computer system that A is very small then we do not have as large a channel as
perhaps at night when there are minimal users on the system and A is high. At least
the above gives us a way of measuring relative insecurities due to the timing channel.

Another approach may be to monitor system usage and when A rises above a certain
level, automatic processes may be started to lower A. Of course this degiades over-
all system performance but in many cases computer security may not come without
the additional burden of diminished performance. By adjusting the background con-
tention to modify A we have a parameter that we can fine tune. If we are specifying
a system that has channels below a certain capacity we can use the above ideas to
make sure that our system matches these claims.

5 Conclusion

We have given a model of a noisy timing channel that shows how high can interfere
with low through the timing of the output to low's input of a certain query ?. When
the noise is too high the communication channel is effectively shut down. When the
noise is minimal it behaves as the noiseless situation. Furthermore, we have shown
that it is not necessary for high to use the most effective coding of its message. A
simple equiprobable coding will suffice to effectively pass the message at a rate very
rlo. e to the actual channel capacity. This gives us a strategy that can be used in all

situations without high having to constantly adjust its coding algorithm in response
to new values of A.

It is hoped in future work to give a model where a cycle is no longer 2 ticks but is
the length of time that low actually has to wait for a response, provided it is less
than 2 ticks. This of course says that we have to allow a high level audit. We would
then like to compare these results to Millen's [5] concerning channel capacity and the
golden mean. Also, as discussed earlier, we would like to remove the necessity of low

issuing an interrupt.

11



6 Acknowledgements

We wish to thank Jim Gray and John McLean for their comments.

12



References

[1] D.E. Bell and L.J. La Padula. Secure Computer System: Unified Exposition and
Multics Interpretation, MTR-2997. MITRE Corp., Bedford., MA, March 1976.

[2] Richard E. Blahut. Principles and Practice of Information Theory. Addison-
Wesley, Reading, Massachusetts, 1987.

[3] B.D. Gold, R.R. Linde, R.J. Peeler, M.Schaefer, J.F. Scheid, and P.D. Ward. A
security retrofit of vm/370. In AFIPS Conference Proceedings, 1979 National
Computer Conference, volume 48, pages 335-344, Montvale, NJ, 1979.

[4] John McLean. Security models and information flow. In Proc. 1990 IEEE Sym-
posium on Security and Privacy, pages 180-187, Oakland, CA, May 1990.

[5] Jonathan K. Millen. Finite-state noiseless covert channels. In Proc. The Computer
Security Foundations Workshop II, pages 81-86, Franconia, NH, June 1989.

[6] Ira S. Moskowitz. Quotient states and probabilistic channels. In Proc. The Com-
puter Security Foundations Workshop III, pages 74-83, Franconia, NH, June 1990.

[7] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communi-
cation. University of Illinois Press, Urbana, IL, 1949.

[8] J. Todd Wittbold. Controlled signalling systems and covert channels. In Proc.
The Computer Security Foundations Workshop II, pages 87-104, Franconia, NH,
June 1989.

[9] J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic
systems. In Proc. 1990 IEEE Symposium on Computer Security and Privacy,
pages 144-161, Oakland, CA, May 1990.

13



bits/symbol I (X, Y)
1.2

1

0.8.
0.6

0.4

2 4 6 8 10 A

Figure 1

14



0.48,

0.46,

0.44

0.42,

0. V 2 4 6 8 2.0A

Figure 2

15



0.8

0.61

0.4

2 4 6 8 1.0 A

Figure 3

16



bits/ symbol

0.5 C vs. 1

0.4

0.3

0.2 0.4 0. 6 0.8 2

Figure 4

17



bits/symbol C 1 (..5)
0. 012f
c.01

0.008

0.006

0.004

0.002

1 2 3 4 5 6

Figure 5


