‘Jz,k,“d' ’.";" b
A LR AP, 1418 sbesbe, ok <o gu. 8 rhss o
AN EMPIRICAL EVALUATION OF
ANALYTICAL MODELS FOR PARALLLEL
RELATIONAL DATABASE QUERIES

THL ST
Mark €. Dendinn

Captane, USAY

AFIT/GCS/ENG/90-1)-02

AFIT/GCS/ENG/90-D-02

AN EMPIRICAL EVALUATION OF
ANALYTICAL MODELS FOR PARALLEL
RELATIONAL DATABASE QUERIES

'~ THESIS

Mark C. Denham
Captain, USAF

AFIT/GCS/ENG/90-D-02

Verria ve o ot o

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90-D-02

AN EMPIRICAL EVALUATION OF
ANALYTICAL MODELS FOR PARALLEL
RELATIONAL DATABASE QUERIES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

DTIC

Air University

cepy
INSPECTE®D

In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Computer Systems)

AoGession For N

NPIS GRAXI g

DTIC TAB
Unannounced O
Mark C. Denham, B.S Justification..
Captain, USAT Py
Distribution/

Availability Codes

' Avail and/or
December, 1990 Diat Special

Y

Approved for public release; distribution unlimited

Acknowledgments

I would like to sincerely thank my advisor, Dr. Thomas Hartrum, for the guidance
provided over the course of this thesis effort. I would also like to thank my committee
members, Maj Mark Roth and Maj Paul Bailor. Their inputs on the first draft were very
helpful as they provided many long hours of “head banging” during my final weeks at

AFIT. On the serious side, they added greatly to the quality of the final paper.

I would also like to thank my fellow “parallel” students whom I have spent many
hours with in room 240 over the last nine months. We have laughed together and we have
been frustrated together, but most of all we have become good friends. I would like to
thank my brothers and sistc.s in Christ for the Friday bible studies. It was a great time

to get away from school work and spend some time growing spiritually.

Finally, I would like to thank my {amily for supporting me through the this whole
ordeal. Thanks to my parents for 2ll of /e trips they made to Dayton when I was too busy
to drive home for the weekend. Thanks to my sons, Christopher, Jared, and Daniel, for
the hugs and smiling faces even when I was too busy to smile back. Most of all, I thank my
wife, Leslie, for her love and understanding during all of those times when school interfered

with our lives.

Mark C. Denham

ii

Table of Contents

Page

Acknowledgments o i i e e e e e i

Tableof Contents e e e c jii

Listof Figures o v v v i it i e i e e vii

Listof Tables 0 oo it i e ix

Abstract . . o o e e e e e e X

L. Introduction e e e e 1-1

1.1 Problem Statement. 1-2

1.2 Assumptionsand Scope oo, 1-2

1.3 Approach e e e e e e e e e e e e 1-2

14 Background oo 1-3

1.4.1 Conventional Back-End Systems 1-4

1.4.2 Intelligent Controllers 1-4

1.4.3 Multiprocessor Systems 1-7

1.44 Special lHardware Designs 1-10

14.5 Conclusion e e e e e e 1-10

1.5 Organization e e e e e 1-11

II. Parallel Database Machine Design Methodology 2-1
2.1 ‘The Feasibility of Relational Operators with Partitioned Rela-

BIONS « v v v v v e s e e e e e 2-1

2.1.1 Data Fragmentation 2-2

2.1.2 Conclusions b e e Ve e 2-2

2.2 Single Step Query Models o 2:3

iii

2.21 Model Structureo oo

222 ModelResults

9.3 Multiple Step QUEIES .+ « o v v v v e e
2.3.1 Combined Operators v . oo v v v v v v v v

2.3.2 Process Allocation

2.3.3 Data Distribution

234 Conclusions v v v v it e

2.4 Database Machine Architecture
24.1 RetrievalLayer v

242 Processing Layer

2.4.3 Physical Mapping 0 e

25 SUmMmMAary . . v v vt e e e e e e e
III. Single Step Query Model Design and Implementation
3.1 Imtroduction0 .0,
3.2 iPSC/1 Hypercube Architecture
3.3 Physical Mapping oL,
3.3.1 ProcessorNodes,

332 DiskNodeso viv vt

3.3.3 Disk Node Response Time

3.4 Join Algorithms,

3.4.1 Parallel Nested-Loop Join Implementation.

3.4.2 Parallel Bucket Join Implementation

IV. Single Step Implementation Analysis C e
4.1 Paralle] Performance Measures . . .o v o v v v v v v v v ...

4.2 Nested Loop Join Analysis

4.2.1 Nested Loop Model Analysis

4-1
4-1
4-2
4-2

4.2.2 Nested-Loop Runtime Analysis 4-4

4.3 Bucket Join Analysis.0t 4-13

4.3.1 Bucket Join Model Analysis 4-13

4.3.2 Bucket Join Runtime Analysis 4-15

4.3.3- Bucket Join Sensitivity Analysis 4-22

44 SUMMATY + v v v v v e e v o e e e e e e e 4-23

V. Multiple Step Query Model Design, Implementation, and Analysis . . . 5-1
5.1 Physical Mapping i .. 5-1

5.2 Multiple Step Bucket Join Implementation 5-3

52.1 Select Partition L 5-5

522 Hash Partition 5-5

523 JoinPartition. o oL, 5-7

5.3 Multiple Step Bucket Join Model Analysis. 5-7

5.4 Multiple Step Bucket Join Runtime Analysis 5-8

VI. Conclusions and Recommendations 6-1
6.1 Conclusions . . .« . v v v v vt it e e e e 6-1

6.2 Recommendations, 6-2

Appendix A. SingleStepModels A-1
A.1 Model Performance Parameters A-1

A2 Nested-Loop Join., A-3

A3 BucketJoin............. S e e A-4

Appendix B. Multiple Step Low Level Models B-1
Appendix C. Test Data oo ot i e e C-1
Cl Test N-1. v v v it i ot it it et e e e e C-1

C2 Test N-2. . v ittt i e et i et e C-3

C3 Test B-1. vv it ity e e C-5

Cd Test B-2 . .. i i i i it e e C-6

Cbh Test B-3. .. oo it i i i i i e e e C-8

Cb6 Test M-1 .o o v i it ittt i e e C-9

Appendix D. User'sGuide oo v v v v v v v v e e e D-1
D.1 Functional Overview b e e e e D-1

D2 FileSummary. . . o v v v v i v vttt o it et e D-1

D.3 Setting the Parameters S e e D-2

D.3.1 RuntimeInputs. D-2

D.3.2 Pre-Compile Parameters D-2

D.4 Compilation Instructions, D-3

Appendix E. Date Generation o i i it E-1
Bibliography v it i s e e e BIB-1
1 L .. VITA-1

vi

Figure Page
1.1. Processor-per-track Architecture (12:10). v . v v v v vt v 1-5
1.2. Processor-per-head Architecture (12:11) v 1-6
1.3. Processor-per-disk Architecture. o o L, 1-7
14, Query Tree . & v v v v i v e s e e e e e e e e e e e e 1-9
2.1, Relational Table v i i 2-1
2.2, Horizontal Fragmentation oo i v oL 2-2
2.3. Vertical Iragmentation i 2-3
24, Query Tree . . v v v e e e e e e e 2-9
2.5. Kearns’ Logical Architecture (12:282) 2-13
2.6. Kearns’ Physical Architecture (12:284) 2-15
3.1. Single Step Query Architecture o oo 3-2
3.2. Dimension 3 Hypercube v i i i it i i 3-3
3.3. Ring and Tree Topologies i 3-4
3.4, Nested-Loop Communication Structures. 3-11
4.1. Nested-Loop 48 Blocks x 48 Blocks 4-5
4,2. Nested-Loop 96 Blocks x 96 Blocks 4-6
4.3. Nested-Loop 144 Blocks x 144 Blocks v v v v v v v vt v v . 41 |
4.4, Graph of teomm and degle « v v v v v v e e e e e // /4-8
4.5, Nested-Loop Speedup 48 Blocks x 48 Blocks 4/ 4-9
4.6. Nested-Loop Speedup 96 Blocks x 96 Blocks / . 4-10
4.7. Nested-Loop Speedup 144 Blocks x 144 Blocks 4-11
4.8. Theoretical Speed for Very Large N, 4-12
4.9. Broadcast Modcl Speedup Versus Ring Model Speedup 4-13

List of Figures

vii

Figure

4.10. Ring Model Speedup Versus Observed Speedup (48 blocks x 48 blocks)
4.11. Bucket Join 144 Blocks x 144 Blocks o
4.12. Bucket Join 192 Blocks x 192 Blocks
4.13. Bucket Join 240 Blocks x 240 Blocks
4.14. Bucket Join Speedup 144 Blocks x 144 Blocks
4.15. Bucket Join Speedup 192 Blocks x 192 Blocks
4.16. Bucket Join Speedup 240 Blocks x 240 Blocks
4.17. Theoretical Performance Impact of Increased Disk Response Time .
4.18. Observed Performance Impact of Increased Disk Response Time
4.19. Theoretical Performance Impact of Increased Join Selectivity Factor . .

4.20. Observed Performance Impact of Increased Join Selectivity Factor . . .

5.1. Multiple Step Query Architecture (12:282)
5.2. Architecture Data Flow for Multiple Step Query
5.3. Overlapping of Multiple Step Query
5.4. Muitiple Step Query Results

Page
4-14

_ SRS B R

List of Tables

Table Page
2.1. TFeasiblity of Relational Operators with Fragments 2-3
2.2. Summary of Kearns’ Results (12:222) 2-8
4.1. Model Performance Parameters.o oo v i oL 4-3
Cl. Test N-1, Trial 1 Data v v v v v e e e e e e e e et e s e o C-1
C2 Test N-l, Trial 2Data.o v i i i et s s C-1
C.3, Test N-1, Trial 3 Data« . v v v i i et it e e s e e e C-2
Cd. Test N-2, Trial 1 Data . . o v v v v v v i it it et e et e et e e C-3
Ch. Test N-2,Trial 2 Data v v v v i i it e et e e et e e C-3
C6. Test N-2, Trial 3Data o v v v i ittt et i e it e e e C-4
C.7. Test N-2, Trial4 Data.. e e C-4
C8 Test B-1,Trial 1 Data i i i i C-5
C9. Test B-1,Trial2Data i it i i C-5
C10.Test B-1,Trial 3 Data ot i i C-5
CllTest B-2, Trial 1 Data v i it it et e i e e e C-6
Ca2Test B-1,Trial 2 Data o i it e i e C-6
Cl13Test B-2, Trial3Data oo v v i i oot e e, C-7
Cil4.Test B-2, Triald Data oo, C-7
Ca5Test B-3, Trial 1 Datao i it ittt i i e C-8
Ci6.Test B-3, Trial2 Data v vt i it i i C-8
Ca7Test M-1, Trial 1 Data o i i it it i i e s e o e us C-9
E.1. Result Relation Sizes (jsf =.001) E-1

ix

i AFIT/GCS/ENG/90-D-02

h\@;‘ < Abstract

This peper documents the design and implementation of three parallel join algorithms
to be used in the verification of analytical models developed by Kearns. Kearns developed
a set of analytical models for a variety of relational database queries. These models serve
as tools for the design of parallel relational database systems. Each of Kearns’ models
is classified as either single step or multiple step. The single step models reflect queries
that require only one operation while the multiple step models reflect queries that require
multiple operations. Three parallel join algorithms were implemented based upon Kearns’
models. Two are based upon single step join models and one is based upon a multiple step
join model. They are implemented on an Intel iPSC/1 parallel computer. The single step
join algorithms include the parallel nested-loop join and the bucket (or hash} join. The
multiple step algorithm that was implemented is a pipelined version of the bucket join.
The results show that within the constraints of the test cases run, the three models are
all at least accurate to within about 8.5 % and they should prove useful in the design of

parallel relational database systems.

AN EMPIRICAL EVALUATION OF
ANALYTICAL MODELS FOR PARALLEL
RELATIONAL DATABASE QUERIES

I. Introduction

As people depend more on computers to store and manage information, the need for
larger databases increases. Due to the large amounts of data that must be accessed in
these large databases, future database management systems must provide faster means for
accessing the data to insure that system users enjoy sustained performance levels. This
is especially critical for database applications that are dependent on fast access to meet
user requirements. In the late 1960s it was recognized that the conventional von Neumann
architectures were not able to meet the growing non-numeric processing requirements. The
conventional architectures are sequential in nature, their arithmeticlogic units are designed
for numeric computation, and their memory hierarchies have a “passive role in the orga-
nization (10:1).” The set related operations involved in relational database processing, on
the other hand, lend themselves naturally to parallel implementations. Database systems
also require frequent access to secondary storage, resulting in bottlenecks in the storage

systems.

Researchers in the early 1970s began to develop specially designed architectures that
would directly implement database functions in hardware and software. These implemen-
tations became known as database machines (10:1). A database machine is a dedicated
backend processor whose function is to perform database queries requested by the host
processor. Some of the advantages of this approach are that the database operations do

not have to compete with other system functions for machine resources, specialized hard-

ware can be used for performing the database queries, and a degree of parallelism will be

inherent in the design (12:1-2).

In his PHD disseration, Kearns (12) developed a methodology for the design of
parallel database machines. A set of analytical models for a variety of operations serve as

the tools used with this methodology.

1.1 Problem Statement

This thesis documents the design, implementation, and evaluation of a set of parallel
relational database operations in a manner similar to that proposed by Kearns (12). The
objective is to show that database query performance can be improved on a commercially
available parallel computer using this approach. Kearns examined the relational operators
theoretically and determined the optimal methods for implementing them on a multipro-
cessor system. He then analytically modeled the relational operators, as well as various
retrizval and update algorithms, over a range of data structures. The results of his efforts
were a multiprocessor database machine architecture and a metl;odology to be used to

design a parallel relational query processor. Kearns’ work is addressed in more depth in

Chapter 2.

1.2 Assumptions and Scope

Operational database management systems require a number of features in addition
to the basic database operations. They require concurrency control features to control
concurrent user access to data values. They also require data backup and system recovery
methods to avoid loss of data in case of system failure. As the goal of this research is to
measure the performance of the actual database retrieval operations, these other features
will be ignored. In an operational system they would have to be considered as they will

impact performance.

1.8 Approach

This research was done in four iterative phases; problem analysis, design, implemen-
tation, and evaluation. Kearns' models range from simple single step retrieval operations to

complex multiple step queries in which the outputs from the retrieval operations are further

processed. The work began with the design, implementation, and evaluation of selected

single step functions and then progressed to the more complex multiple step functions.

The initial problem analysis phase involved the anaiysis of Kearns’ models, the al-
gorithms used in them, and his proposed architecture. It resulted in the selection of two

single step join operations to be implemented and evaluated.

The initial design phase involved the mapping of Kearns’ single step model architec-
ture to the Intel iPSC/1. As Kearns’ architecture required a disk drive for each processor
in the configuration, a disk simulator program was designed to-run on specific processors
on the hypercube. This phase also included the design of the initial join operations to be

implemented,

From this point, the implementation, evaluation, and subsequent design phases oc-
curred in an iterative fashion. The initial join operations and the disk simulator were first
implemented on the iPSC/1 computer in the C programming language. The evaluation of
these functions involved a performance analysis, based on test data, and the comparison of
the results of that analysis with the performance projected by Kearns’ models. The results

of this analysis served as input into the design of one multiple step join operation.

The design of the multiple step join included mapping the multiple step model ar-
chitecture to the iPSC/1. The selected multiple step join operation was then implemented

on the iPSC/1 and was evaluated against Kearns’ multiple step model for that operation.

1.4 Background

Researchers have applied a number of different approaches to the development of
database machines. There have also been many different schemes developed for classifying
the different implementations of database machines. For this discussion the classification
scheme used by Kearns (12:6) will be used. The classification areas include conventional
back-end systems, intelligent controllers, multiprocessor systems, and specialized hardware

systems.

1-3

1.4.1 Conventional Back-End Systems The conventional back-end system is the
simplest type of database machine to implement. It consists of a general purpose computer
system running as a back-end to a host general purpose system. The host system runs
the application program and passes a message to the back-end - * ~essnr when a database
operation must be performed. The back-end prover - runninga .. . 7715 package,

executes the operation and returns the result to ... t procassor.

According to Kearns this configuration should provide increased performa..ce because
the DBMS has a dedicated system and does not have to compete for system resources.
The expected performance gain will be realized if the time saved by running the database
operation in a dedicated environment is greater than the communication overhead incurred

due to the message passing between the two processors (12:7-8).

1.4.2 Intelligent Controllers According to Kearns the goal of intelligent controller
architectures is to improve database performance by improving the performance of data
retrieval from secondary storage. By moving the data retrieval functions onto some type of
intelligent controller, we can decrease the amount of data that is actually brought into the
DBMS and therefore improve its performance. There are three basic types of intelligent

controller architectures; processor-per-track, processor-per-head, and filters (12:9).

The processor-per-track architectire was one of the first database machine architec-
tures proposed. It was originally proposed by Slotnick in 1970 (3:12). This design creates
an associative disk by associating a processor with each head on a disk as shown in Figure
1.1. This approach allows certain seaich operations, such as a select, to be processed “on
the fly,” hence limiting the amount of data that is actually brought in from the disk (3:12).
With the ability to search the entire database in one revolution of the disk, the need for
structures such as indices was eliminated as a means for improving performance. RAP.2

is an example of a processor-per-track architecture (16).

This approach showed promise initially; however, it had some problems. This ar-
chitecture depended on the ability to search an entire database in one revolution of the
disk; however, this limited the size of the databases that could be implemented using this

approach. In 1970 a single track on a disk was limited to about 15,000 bytes. With this

Host

Processor Track
; ; . ; ; Processors
Data
Tracks
System | |
Files '
Database

Figure 1.1, Processor-per-track Architecture (12:10)

storage limit it would have taken approximately 10,000 tracks and processors to support
a medium-sized database. Because of these limits imposed by the use of disk devices,
researchers also looked at the use of bubble memories and charge coupled devices (3:12).

However, these technologies were never commercially viable on a large scale (3:17).

Another type of intelligent controller architecture that has been explored is the
processor-per-head architecture. In this architecture a microprocessor is associated with
each head of a movable head device as shown in Figure 1.2. The processor-per-head func-
tions in much the same manner as the processor-per-track in that it reduces the amount
of data that is actually passed to the DBMS. The difference is that the processor-per-head
must read the data into a buffer and the processor must then perform the selection opera-
tion (12:10). In this configuration an entire cylinder of a disk can be read in one revolution.

An example of a processor-per-head architecture is the DBC (1).

Performance testing performed by Dewitt has shown that the processor-per-head
architecture yields very good performance for the data retrieval operations for which it was
designed. He showed that with the use of a suitable index, this design performed almost as
well as the processor-per-track architecture, even with significantly fewer processors (3:15).
When processing complex queries such as joins, however, the processor-per track and

the processor-per-head architectures both result in worse performance than conventional

Host
Processor

Controller

— Database

>
i
S;sltem -<__<>
€ 1> |

Cell
Processors

Figure 1.2. Processor-per-head Architecture (12:11)

architectures (3:15). Another drawback to this design is the need for readout disk drives.
The parallel readout is required in order to read an entire cylinder at a time. With
the current changes in disk technology, however, the feasibility of developing dependable

parallel readout drives at a reasonable price is questionable (3:19).

The final type of intelligent controller architecture is the filter, or processor-per-disk.
This architecture associates a processor with each of a number of standard disk drives as
shoewn in Figure 1.3. All of the data from the disk is read into the processor memory and
the processor performs the selection operation on the data (12:10). The selected data is
then passed to the DBMS for further processing. SABRE is an example of a system that
utilizes filtering (7).

Data filters, like the other intelligent controller designs, provide good performance
for the basic selection type functions. They do not improve the performance of other
functions such as join processing. Othez techniques must be combined with the data filters

to provide performance improvements over the entire spectrum of database functions.

1-6

Interconnection
Network

Controller

Interconnection
Network

500 6

Figure 1.3. Processor-per-disk Architecture

1.4.3 Multiprocessor Systems Multiprocessor systems implement parallel process-
ing techniques to improve database performance. There are many different approaches that
can be taken to provide parallel database processing. Possible approaches range from im-
plementing the multiple processors as data filters in a SIMD type environment, to providing
a number of asynchronous processors that perform database operations in a true MIMD
fashion (12:11-12). The later approach provides the possibility of implementing dataflow
database architectures. In addition to the multiple processors, the multiprocessor systems
also provide the capability for the processors to communicate with each other. This inter-
processor communication can be provided through a bus architecture or through some type
of network structure . Different interconnection schemes provide different opportunities for
partitioning the data across the various processors (12:12). The remainder of this section

addresses these various approaches to implementing parallel database processing.

As described in the previous section, a data filter is a type of intelligent controller

that associates a processor with each disk in a database system. All of the data is read in
from the disk and a selection criteria is applied to it by the associated processor. A data
filter would be implemented on a multiprocessor system by connecting each of the disks
to one of the processors. The selection algorithms would then be implemented in software
and synchronously run on each of the multiple processors. The “filter” processors would
then send the results to other processors or to another system for further proucessing. In
this architecture, one of the processors not being used as a filter would concrol the other
processors. The Multibackend Database System (MDBS) is an example of a raultiprocessor
system that utilizes this approach (9)(19). MDBS consists of a number of query processors,
each connected to a string of disk devices. The select operations are performed in these
query processors. The query processors are connected, via a broadcast bus, to each other

and to a backend controller (9:302-303).

The data filter approach utilized multiple processors in a synchronous SIMD manner.
MIMD machines, on the other hand, consist of multiple processors that are utilized asyn-
chronously. DIRECT is an example of a MIMD database architecture (5). The DIRECT
system architecture consists of a host general purpose processor, a backend controller, a
set of query processors, a set of charge coupled devices that act as a cache, a set of mass
storage devices, and an interconnection matrix (crossbar switch) which ties the query pro-
cessors, the cache memory, and the mass storage devices together (5:123). User queries are
sent from the host computer to the DIRECT backend controller. The backend controller
determines the number of query processors that are required and then is responsible for
paging needed non-resident relation pages in from the mass storage devices to the cache
memory (15:266-268). Multiple queries can be processed simultaneously as the different
queries can be assigned to different processors at any one tiine. The backend controller uses
two different methods for allocating the queries to the query processors. One approach
calculates the optimal number of processors needed to process the query and the other

uses a dataflow approach (5:128-129).

MIMD architectures, such as DIRECT, provide the opportunity to implement dataflow
control in database systems. In conventional program control flow, the programmer speci-

fies the order in which operations will occur. lowever, in dataflow computation the order

in which operations are executed is determined by the availability and interdependency of
resources. The order of execution can be driven either by the availability of data or the de-
mand for output (10:366). To understand the concept of data driven control in a database

system, consider the idea of a query tree. In Figure 1.4, a complex relational query is

M, o
R S T
Figure 1.4, Query Tree

represented as a qrery tree. A query tree is composed of leaf nodes which represent the
initial input relatic as, and inner nodes which represent operations to be perfomed on the
relations. The arcs linking the nodes represent the passing of intermediate relations from
the lower nodes to the higher nodes. In this example, the project operation on relation
R and the select operation on relation S must both be executed before the join on the
intermediate relations produced can be executed. As soon as the project and select are

finished and have passed their data to the higher level node, it can be executed.

In a multiprocessor architecture, the operations in a particular node of the tree
can be processed by one or more processors. On a conventional sequential computer the
operations in this query would be executed serially. The project and select operations on
the R, S and T relations would occur first. The join of the R and S relations would occur

next. Then the final join and select would be executed. On a parallel machine, however,

1-9

the project and select operations on the R, S, and T relations would occur in parallel.
Then the join and select operations on the R and S relations would be executed. Tinally,
the last join and select would also be performed. The performance gain would result from
the various operations being run in parallel, and also from the individual operations being

implemented with parallel algerithms.

Performance testing performed by Boral and Dewitt with DIRECT has shown that
one of the major problems that exists with data driven computation is the overhead as-
sociated with interprocessor communication. They also state that other researchers have
documented the same problem (2:373). Communication overhead is a common problem

with many multiprocessor systems.

1.4.4 Special Hardware Designs Many of the database machines that have been
developed by researchers have included specialized hardware to speed up database pro-
cessing. According to Kearns the two main approaches that have been used include asso-
ciative memories and specialized processors (12:15). Associative memory is addressed by
content rather than by location. It has been applied to the retrieval of data to speed up
search type operations. Specially designed processors have been implemented to perform
sorting functions, join functions, and aggregate functions (12:15). Boral and Dewitt state,
however, that with the gains that have been realized in processor performance, there is
no need to use specialized hardware (3:21). The real bottleneck that exists in database
processing is input/output bandwidth. Data can currently be processed as fast or faster

than it can be read from disk.

1.4.5 Conclusion This section has documented many of the different approaches
that have been taken in the development of database machines. Most of the recent research
has centered on the use of multiprocessors to improve database processing performance.
Two of the main problems that still exist are the lack of secondary storage input/output

bandwidth and excessive interprocessor communication overhead.

1-10

1.5 Organization

The organization of this thesis follows the approach taken in accomplishing the work.
Chapter II provides an overview of Kearns’ work (12). It discusses the theoretical feasibility
of implementing relational database operations on parallel computers, provides a summary
of the model structures and model results for both the single step and multiple step models,
and presents a database machine architecture proposed by Kearns. Chapter III documents
the design and implementation of the single step models. Chapter IV provides a discussion
of the single step implementation analysis. Chapter V presents the design, implementation,

and analysis of one multiple step query.

1-11

II. Parallel Database Machine Design Methodology

In his PhD dissertation (12), Kearns documents a methodology and tools to be
used to design a multiprocessor database machine that will improve the performance of
database queries (12:4). He first examines theoretically the feasibility of implementing
relational operators on partitioned relations. He then develops analytical models of the
select, project, join, and update operations over a range of data structures and logical
machine architectures. After evaluating the initial model results, he combines them to
form models for evaluating multi-step query performance. He addresses the combinalion
of multiple operators and their performance in various multi-step query approaches as well
as methods for controlling resources and task allocation. Utilizing the output of these
models, Kearns proposes a parallel database machine architecture. This chapter addresses

each of the areas of Kearns’ research.

2.1 The Feasibility of Relational Operators with Partitioned Relations

Since its introduction by Codd in 1970, the relational data model has become the
most popular model to be used in the development of database systems. This is because
of its logical interface and its strong mathematical foundation (10:39). In this model, data

is represented in tables as shown in Iigure 2.1. Eaci row in a table shows a relationship

Emp
name addr phone
Bell 4123 Lake St | 539-8741
Johnson | 1345 Oak St | 345-3281
Jones | 345 Poplar St | 421-8976
Smith | 2367 Main St | 549-7610

Figure 2.1. Relational Table

between the values in the row. These tables in the relational data ™odel correspond very
closely to the concept of a relation in mathematics. Because of this close correspondence,

tables are referred to as relations, and rows are referred to as tuples (13:45).

2-1

When implementing a problem on a parallel computer, the problem must be parti-
tioned across the multiple processors. This can be accomplished by either assigning differ-
ent functions to the available processors, or by distributing the data across the available
processors. Since most database machines have experienced bottlenecks in retrieving data
from secondary storage, Kearns investigates the partitioning of relations across multiple
data stores to allow the parallel retrieval and processing of the relations. He proves, using
the mathematical principles of relations, that relational operators are capable of executing

with partitioned data (12:21).

2.1.1 Data Fragmentation There are three ways that relations can be distributed
for processing. The first is storing them as complete relations, i.e not distributing them at
all (12:21). The other two methods are horizontal fragmentation and vertical fragmenta-
tion. Horizontally fragmented relations are split into fragments, each of which contains a
subset of complete tuples from the original relation. Horizontal fragmentation is illustrated
in Figure 2.2 (12:22). The sets of tuples produced by a horizontal split should be disjoint.

If they are not, duplicate tuples will have been introduced into the relation.

Empl Emp2
name addr phone name addr phone
Bell 4123 Lake St | 539-8741 Jones | 345 Poplar St | 421-8976
Johnson | 1345 Oak St | 345-3281 Smith | 2367 Main St 549-7610 |

Figure 2.2. Horizontal Fragmentation

Vertical fragmentation, on the other hand, splits the relation between attributes.

Vertical fragmentation is illustrated in Figure 2.3 (12:23).

2.1.2 Conclusions Kearns’ results show that most relational operators are capable
of processing fragmented data. The feasibility for each of the considered operations to

process horizontally and vertically fragmented relations are shown in Table 2.1 (12:48).

As stated above, one of the primary motivations for considerh{g fragimented relations
is to allow the data to be distributed across multiple storage devices to be retrieved and

processed concurrently. As illusirated in Table 2.1, enly half of the considered operators

2-2

Emp Addr Emp Phone

name addr name phone
Bell 4123 Lake St Bell 539-8741
Johnson | 1345 Oak St Smith | 549-7610

Jones | 345 Poplar St Johnson | 345-3281
Smith | 2367 Main St Jones | 421-8976

Figure 2.3. Vertical Fragmentation

Table 2.1. Feasiblity of Relational Operators with Fragments

Operator | Horizontal | Vertical
Select Yes Yes
Project Yes No
Join Yes Yes
Product Yes Yes
Union Yes No
Difference No No

can process vertically fragmented data and produce the desired result. The horizontal frag-
ment ation of data, on the other hand, shows much more potential. All of the considered
operators, except for difference, can produce the desired results from horizontally frag-
mented data. As an example, we can examine the select operator and see that if a relation
is distributed across n disks which are connected to n different processors, a speedup of
n can theoretically be obtained by concurrently reading the fragments from the disks and

then performing the selzct operations on the n fragments in parallel.

Kearns concludes that lorizontal partitioning of the relations shows greater promise
for improving the performance of the relational operators. Ile therefore selects horizontal

partitioning as the method for the remainder of his work (12:49).

2.2 Single Step Query Models

When comparing database systems, there are many criteria that can be used. These
criteria may include the number of features or the type of user interface provided. However,

the most used, and possibly most important comparison, is the performance provided by

the systems (12:50). The performance time to process a relational database query is
composed of the time to compile the query, the time to retrieve the desired data through
the implementation of the relational operators, and the time to send the data to the desired
location. Assuming that the result will be sent to a local user and not transferred over
a slow LAN, retrieval time contributes the largest percentage to the overall performance

time (12:50).

Data retrieval is performed by reading data from some secondary storage device,
such as a disk, and evaluating it using the relational operators to determine if it meets the
retrieval criteria. The performance of a retrieval operation depends on the structure used
to store the data on the storage device, the algorithm used to read the data, the amount
of data that must be retrieved, the number of storage devices used to store the data, the
number of processors used to retrieve and process the data, the performance characteristics

of the hardware devices, and the number of users on the system (12:50).

2.2.1 Model Structure Kearns develops analytical models to address data retrieval
performance and also to address database update performance. The purpose of these mod-
els is “to determine the effects and performance of various algorithms with different storage
structures (12:51).” The models consist of performance time equations expressed in terms
of hardware performance parameters. These hardware parameters can then be changed
to account for different hardware devices. The relational operators that Kearns actually
models are the select, project, and join. For each of these he models the performance time

for various architectures, data storage structures, and algorithms.

2.2.1.1 Machine Architectures Kearns’ models evaluate the various relational
operators over four different machine architectures. They are single processor-single
disk, single processor-multiple disk, multiple processor-single disk, and multiple processor-
multiple disk (12:51). For the multiple processor cases he varies the number of processors
to evaluate the effect on runtime. He makes the assumptions that there is no disk con-
tention-in the single disk environments and that the multiple processors can communicate
directly in the multiple processor environments. Therefore the models do not includ~ any

time delay for disk contention or processor communication (12:51).

2-4

2.2.1.2 Data Storage Structures The relations in a relational database system
are stored in the form of tables. These tables can then be stored on disk in a variety of
manners. They can be sorted and stored in some logical order, or they can be stored at
random. Therefore a relation can be referred to as ordered or unordered. A relation can
also have one or more associated indices with entries that point to particular locations in a
relation. For a data storage structure to be considered indexed for a particular operation,
it must contain an index on the attribute of the relation that is being evaluated for that

operation.

For the single disk cases, Kearns examines four data storage structures. They are un-
ordered, unindexed; unordered, indexed; ordered, unindexed; and ordered, indexed (12:52).
For the multiple disk cases, there are other aspects of the data storage structure that must
be addressed. The first is fragmentation method. As stated earlier Kearns assumes hor-
izontal fragmentation based on his analysis of the feasibilty of relational operators with
fragmented relations. The fragmented relations can also be ordered or unordered. Another
aspect of fragmented relations is the distribution method used to partition the relation
across the multiple disks. The three primary methods are round robin, ordered distribu-
tion, and hashing. The round robin method evenly distributes the tuples in an unordered
manner. The ordered distribution method evenly distributes the tuples in an ordered
manner. This method may require extra reads and writes from the disks to maintain the
sorted order. The hashing method involves hashing the tuples to particular disks based on

satic boundries. This method will result in an ordered relation; however, it may not be
uniformly distributed across the disks (12:53). The final aspect that can be considered for
the multiple disk cases is indexing. With fragmented relations, local indices can exist for

each disk or a global index may be maintained for the entire relation (12:54).

2.2.2 Model Results Kearns concludes that the model results cannot be used to
prove definitively the algorithm and storage structure that is “best” for a given application.
They can, however, point to the expected results with certain workload parameters(12:199).
As it would require the implementation and evaluation of more than 200 models to prove

them correct, Kearns opted instead to compare his results with those of Ilawthorn and

DeWitt (8). Their results have been validated through benchmarking. The following

sections summarize the model results for the select, project, join, and update operations.

2.2.2.1 Select The basic function of the select operator is to retrieve tuples
that meet a specific selection criteria from a relation. There are two basic categories of
selection function that Kearns modeled. The first occurs when only a few tuples meet
the selection criteria (12:200). An example of this type of select operation is a selection
based on a specific social security number from a company’s personnel database. Because
social security number is a unique key, only one tuple will be selected. The other category
of the select operation is the many tuple selection (12:200). An example is the selection
of employees, from the same personnel database, based on the department in which they
work. Assuming that many people work in each department, a large number of tuples will
be selected. Kearns classifies his select models on these two categories. His model results
show that the performance of the select operation, for both the few tuple and many tuple
cases, is highly dependent upon the data structure used. He concludes that the best data
structure to be used for the select must be determined by the designer based upon the
specific workload and the impact of the data structures on the other database operations

(12:202).

2.2.2.2 Project The project operator creates a result relation that is com-
posed of a subset of the attributes in the original relation. Since the result relation will
contain a portion of each of the tuples from the input relation, each tuple in the input
relation must be accessed. Therefore, the projection operation is independent of the input
relation data structure (12:203). The model results show that the main performance im-
pact is the removal of duplicate tuples that may be produced from the projection operation
when the key attribute is eliminated. When this occurs, some method for comparing the
tuples to identify and eliminate the duplicates is required. This may require a sort merge
operation in a multiprocessor environment (12:100). The performance is greatly decreased

when duplicate removal is introduced.

2-6

2.2.2.3 Join The join operation requires that tuples from two input relations
be compared and joined to produce a new result relation tuple if the join criteria are
met. Kearns’ models addressed only the equi-join operation. The most straight forward
approach is to compare each tuple of one relation with each tuple of the other relation.
This is known as the nested-loop join algorithm and requires » * m compare operations.
The number of compares can be significantly reduced through the use of algorithms which
group the tuples of each relation based upon the join attribute. The join operation can
then be performed by comparing fewer tuples. Two algorithms of this type that Kearns

modeled are the sort-merge join and the bucket join (12:205,208).

The model results show that parallel processing can be used to improve the perfor-
mance of all of the join algorithms. It is especially effective for the grouping algorithms
as each processor can perform the join operation on a specific group of tuples in parallel
with the other processors. The bucket join is potentially the fastest algorithm. It achieves

its best performance when the relation fragment sizes are constant across all processors

(12:206,207).

Kearns concludes that the join operation is sensitive to the data structure used
(12:205). To implement the grouping algorithms, the relations must be sorted on the join
attribute and must be spread evenly among the processors. This implies that the relations
must either be stored in sorted order and spread uniformly across the disks, or they must be
sorted and redistributed across the processors before the join operation is performed. The
results show that the most efficient approach in a I;arallel environment is to redistribute
«he relations and then perform a bucket join algorithm. When implemented in this manner
the join operation performance is not dependent upon the actual data storage structure
used on disk (12:220). Relation indices were found to actually decrease the performance

of these algorithms (12:205).

2.2.2.4 Update The update operations modeled were insertion, modification,
and deletion. These are the only operations Kearns modeled that do not actually retrieve
data from the database and send it to the user. They instead retrieve data from the

database, alter it, and rewrite it to the database (12:215). The assumption was made that

2-7

Table 2.2. Summary of Kearns’ Results (12:222)

OPERATION BEST CASE GENERAL CASE
Select (few tuples) | Indexed-Unordered | Unindexed-Unordered
Select (many tuples) | Indexed-Ordered | Unindexed-Unordered
Project N/A N/A
Insert Indexed-Unordered | Unindexed-Unordered
Delete Indexed-Unordered | Unindexed-Unordered
Modify Indexed-Unordered | Unindexed-Unordered
Join Bucket-Join Undetermined
Product Nested-Loop Nested-Loop

all updates are required to be done immediately. The alternative to immediate updates
is that the multiple updates could be collected and performed at one time in a batch
operation. If the updates are performed in a batch operation, the requirements are similar
to those of the select operation. Otherwise the best data structure is the unordered,
unindexed which provides acceptable performance for a mixed environment. The size of
this type of data structure can also be increased by adding more disks without requiring

any reorganization of the existing data (12:220).

2.2.2.5 Conclusions The model results show that the use of multiple disks
to allow parallel data retrieval is definitely desirable for all operations. In many cases the
specific data storage structure to be used is dependent upon the specific user requirements.
Through the use of this methodology, 2 designer should be able to identify the desired data
storage structures and algorithms to best suit his specific requirements. Table 2.2 shows
the data storage structure or algorithm that produces the best case and general case
performance based on Kearns’ particular model inputs. The best case algorithm or data
storage structure refers to the algorithm or data storage structure that provides the best
performance for a particular best case operation scenario. The general case algorithm or
data storage structure is the algorithm or data storage structure that provides the best

performance over a range of operation scenarios.

2-8

2.3 Multiple Step Queries

The models described to this point have dealt with single operation or single step
queries. Most queries performed in an operational relational database system, however,
require multiple relational operations to be performed to produce the desired result. Figure

2.4 represents one such query in the form of a binary tree. The leaves of the tree represent

R S T
Figure 2.4. Query Tree

the initial input relations and the inner nodes represent the operations to be performed
on the data. Progressing up the tree, each arc represents the passing of an intermediate
relation from a lower level operation to the next level operation. The final result of the

query is produced by the root node of the tree.

The primary multiple step query issues that Kearns addresses are process allocation,
data distribution, and processor interconnection (12:239). He assumes a fully connected
system which simplifies the processor interconnection issue. The actual queries that he
models include select, project, and join operations, For the join operations he utilizes the

bucket join algorithm as it proved to be the most efficient in the initial models.

2.3.1 Combined Operators A large percentage of the time required to perform mul-
tiple step queries is spent storing and retrieving intermediate relations to and from disk
(12:228). To reduce the size of these intermediate relations and to reduce the number
of operation nodes in the query tree, Kearns investigates the combining of the relational
operators. These combined functions would perform multiple operations on the same data
while it is in memory. An example is the combination of the select and the project op-
erations. If the operations are not combined, a relation would have to first be read into
memory, the select operation performed on it, and the result written to disk. The result
of the selection would then be read back into memory for the project operation to be per-
formed. If the operations were combined, the initial relation could be read in just once.
In one pass over the data, the tuples that meet the selection criteria could be selected and
any attributes not specified for the project operation discarded before the tuple is inserted
into the result relation. If duplicate removal is required for the project operation, a second

pass over the result tuples may also be required.

Kearns’ model results show that the select and project operation performance can
be improved significantly through the implementation of a combined sel-proj operation
(12:228). The sel-proj combined operation requires just one pass over the input relation
to perform both the select and the project operations. He also concluded that the sel-proj
operation can also be combined with any binary operation, such as the join operation

(12:230).

The result of combining operations is a normal form query tree that contains two
types of nodes. The bottom level nodes are the retrieval nodes. They retrieve relations
from disks and perform only sel-proj operations. The higher level nodes are the processing
nodes (12:231). They perform join operations on two input relations. In the case of the
bucket join algorithm processing, which is the algorithm that was modeled, the processing

nodes perform hash and join functions.

2.3.2 Process Allocation Process allocation can be either static or dynamic. Static
allocation entails assigning the available processors to specific tasks when a query is com-

piled. This approach allows for data-flow control of the query. Data-flow processing is

2-10

where the order of execution is determined by the availability of data (12:270). In the case
of a join operation that recieves its input relations from two select operations, the join
operation will be performed when the processors assigned to it receive the input relations

from the select processors.

Dynamic allocation, on the other hand, dynamically allocates tasks to the processors
as the query is executed. The purpose of the dynamic method is to balance the work
across the available resources throughout to entire execution of the query. The dynamic
allocation process may be controlled by a central controller, which may tend to become a

bottleneck, or through some form of distributed control function.

In addition to pure static or dynamic allocation, Kearns also addresses a hybrid con-
trol scheme in which the available processers are partitioned into groups which perform
specific operations; however, the work is balanced across the processors within a partic-
ular partition (12:270-271), This scheme is able to balance the work across the available

resources to some extent, without the bottleneck of one centralized controller.

2.8.3 Data Distribution In his models Kearns evaluates two schemes for storing
the input relations on the disks. The first scheme spreads both input relations across all
available disks. The second spreads each relation across half of the available disks. He
found that if the sizes of the input relations are about the same, the schemes will result in
similar performance. However, if one of the relations is significantly larger than the other,

the first scheme will outperform the second (12:265).

2.3.4 Conclusions The model results show that performance is improved by imple-
menting combined operators to reduce the size of the intermediate relations. They also
showed that assigning groups of processors to perform specific operations and then spread-
ing the processing load among the processors in the group provides some of the benefits
from dynamically spreading the work among processors but avoids the bo tleneck of a cen-
iralized controller. Kearns concludes that the existence of two types of iical operations
to be performed, initial retrieval and binary operations, results in a lo, ~ mapping to a

two stage query processor architecture (12:271).

2-11

2.4 Database Machine Architecture

Kearns’ final chapter presents a logical database machine architecture, based upon
the analytical model analysis documented previously. This architecture is not presented
as the perfect machine, but is presented and discussed to illustrate the use of the models

in the systematic design of a database machine architecture.

The architecture that Kearns proposes is a backend processor that recieves optimized
queries from a host processor, performs the query processing, and either returns the result
to the host processor, or stores the result on disk. As discussed in the previous chapter, the
processor nodes in the multiple step model can be divided into two types, retrieval nodes
which read and write relations from disk and perform sel-proj operations and processing
nodes which perform binary operations such as joins (12:274). Therefore, each node in the
database machine architecture is either a part of the retrieval layer or the processing layer
as shown in Figure 2.5. The following sections summarize the retrieval and the processing
node Jayers. The final section discusses considerations for mapping the architecture to a

physical machine.

2.4.1 Retrieval Layer ‘The function of the retrieval layer is to perform data retrieval
and update operations on the data residing on disk. The retrieval function involves reading
data from the disk, filtering it, and passing it to the binary layer nodes for further processing
(12:278). The filtering process entails performing the combined sel-proj operation to reduce
the volume of data passed to the binary layer. The update functions simply involve writing
the updated relations back to the disk. The functionality of the retrieval layer nodes is
intentionally limited to aid in reducing the I/O bottleneck to the disks. By not utilizing
these nodes in performing the binary operations, they are free to perform I/O operations
while the processing nodes are performing more complex operations (12:278). The decision
was also made to let the processing layer nodes handle their own intermediate relation
storage rather than passing the data to the retrieval layer. This avoids the reverse flow of
data from the binary layer to the initial layer and also aids in I/O bottleneck reduction

(12:279).

2-12

Processing Layer

Retrieval
Layer

........

b e sedeese /
Controller Interconnection A
Network E :

Interconnection
Network

-

Figure 2.5. Kearns’ Logical Architecture (12:282)

2-13

2.4.2 Processing Layer The function of the processing layer is to perform the binary
operations required to perform a database query. The binary operations are those such
as join, that require more than the sel-proj processing at the retrieval layer (12:280).
The processors at this layer perform either bucket or nested loop operations. The bucket
operations are performed by grouping the input tuples into disjoint sets, or buckets, and
then distributing the buckets among the available processors. The processors then sort
the buckets and perform the required binary operation. If the buckets are larger than
the available memory of the processors, some type of secondary storage is required to
store portions of the buckets (12:280). The result of the retrieval is then passed to the

appropriate location.

2.4.3 Physical Mapping The final step of the database machine design process is
the mapping of the higa level logical design to an actual physical architecture (12:283). As
the various functions t» be performed by the database machine will probably not perform
optimally in the same processing environment, design decisions must be made that may
result in op*imal performance for some functions, and less that optimal performance for
others. The user requirements should drive the performance priorities given to the various
functions. Thisis the point . t which Kearns incorporates the use of his models. The models
provide a means to vary the performance of system param.eters in order to determine the

impact on the performance of the different functions.

Figure 2.6 shows a possible physical architecture proposed by Kearns. It consists of
the processing layer processors, the retrieval layer processors, and a back-end controller.
Disks are located at both the retrieval layer and the processing layer. The disks at the
retrieval layer are used to store the database relations and the disks at the processing
stage are used to store intermediate rei:tions during binary query operation processing.
He also shows an interface memory to facilitate communication between the retrieval and

processing layers.

The function of the retrieval layer processors is to read input relations from disk and
perform the sel-proj combined operation. Kearns used the model results to conclude that

at the retrieval layer,

2-14

Processing Layer
ry==—=-- Tom———- e Tl pos———- q
! ! | 1)
! + + } !
: | I Il 1 -1 1
1
!
1
: 1] L L
I
|
|
|
}
I
|
Output I
I
Processor |
Fim——- Sataidebate qmems e ———— po-=--- A
/ t 1 1 |
’ } : : 1
’ | I 1 1] 1
V4
/
/
/
L L L L
Backend
Controller
AY
\ x
\
\
\
\ Interface Memory
3
\
\
\
\
Leme-— Fo———-- e r=-=-==-= 9
...... ?-'lo.on:t--oooo--or--.-o---no i -ooo.'ooooc
; } } I
I 1 (]] l i
Retreival
Layer ; L ! {

Figure 2.6. Kearns’ Physical Architecture (12:284)

2-15

o all relations should be evenly distributed.across all disks.
e a single processor should be associated with each disk.
o certain data structures could provide optimized retrievals for certain operations.

¢ optimized retrieval performance could also be obtained utilizing an unordered-unindexed

data structure with additional hardware (12:285).

After performing the sel-proj operation, the retrieval layer processors may pass their
results to the processing layer for further processing. It is obvious that a fully connected
communication interface between the layers would provide the cest performance. Kearns
includes a shared memory as the interface between the layers. Because this memory can
be read by all processors, it is logically a fully connected interface. It also provides the ca-

pability for broadcast communication as all processors can read the same memory location

(12:287).

The processing layer consists of the processors that are to perform the binary opera-
tions and disks that are used to store intermediate relations. In Kearns’ architecture a disk
is associated with each processor. Another configuration considered associates a disk with
a group, or partition, of processors. This would, however, degrade performance as there

would be contention for the disk between the multiple processors in a partition (12:290).

The final two components of the architecture are the coutroller and the output pro-
cessor. The controller is a processor that serves as the input interface between the host
computer and the database machine. The controller is responsible for receiving queries
from the host and then assigning the tasks to the database machine processors (12:291).
The output processor, on the other hand, serves as the output interface to the host proces-
sor. When there is a requirement to provide query result relations to the host processor,
this is the responsibility of the output processor. This may include the merging of frag-
ments of the result relation as they are received from the processing or retrieval layer

processors.

2-16

2.5 Summary

This chapter has discussed Kearns’ methodology for the design of a parallel database
machine. The initial section discussed the feasibility of performing relational database
operations on distributed data. This capability is essential if the relational query processing
is to be parallelized. Next, a summary of Kearns’ single step and multiple step query
models was provided. These models comprise the tools to be used in the design of the
database machine. The final section presented Kearns’ proposed parallel database machine
architecture. This architecture was proposed to demonstrate some of the aspects of the

system that can be addressed with the models.

In his analysis, Kearns spent the most time discussing the different join processing
methods. This is because join processing is the most resource intensive operation performed
by a-relational database system and hence provides the greatest potential for performance
improvement. Based on these facts, the implementation portion of this thesis will also

concentrate primarily on join processing.

2-17

III. Single Step Query Model Design and Implementation

3.1 Introduction

As stated in Chapter 1, the purpose of this thesis is to design, implement, and
evaluate parallel relational database operations based on the analytical models developed
by Kearns (12). His models are divided into single step models and the more complex
multiple step models. This chapter describes the overall design and the implementation of
the single step query models. As stated in Chapter 2 this implementation concentrates on

equi-join processing.

Kearns’ single step query models are based upon a hardware architecture in which
each of th' nrocessors, in a multiple processor system, is associated with a secondary
storage device such as a disk. The database relations are then assumed to be horizontally
partitioned and spread uniformly across the available disks. This allows for the relation
fragments to be read in parallel, reducing the I/O bottleneck. The processors are assumed
to be able to communicate either directly, or indirectly, with any other processor. The
system also has a controller that receives an optimized query from the host processor and
broadcasts the required operation to the processors. The query result relation may either
be stored to disk or merged and returned to the host processor. Such an architecture is

shown in Figure 3.1.

3.2 iPSC/1 Hypercube Architecture

The machine selected to host this implementation was the Intel iPSC/1 Hypercube.
The iPSC/1 is a multiple instruction, multiple data (MIMD) computer. It is composed of
the cube and the cube manager. The cube used for this project consists of 32 identical cube
nodes which are connected via high speed channels to form a parallel computer. Each node
consists of an Intel 80286 microprocessor and associated memory. The nodes communicate
with each other by sending messages over the high speed channels. There is no shared
memory between the cubes. The cube manager is also an Intel 80286 microprocessor. It

serves as the user interface to the nodes in the cube. The cube manager is the only processor

3-1

Backend
Controlloer

Interconnection Network

/TIL T3
h655 &

Figure 3.1. Single Step Query Architecture

in the iPSC/1 that has associated secondary storage. The cube manager communicates

with the cube nodes via a standard Eithernet connection (11:2-1).

The nodes in the iPSC/1 cube are arranged in a “hypercube” interconnection topol-
ogy. A 32 node hypercube is said to have 5 dimensions as it has 2% nodes. The hypercube
nodes are not fully connected as each node cannot communicate directly with every other
node in the cube. Iowever, the nodes can all communicate with each other indirectly by
passing messages through intermediate nodes. Nodes that are directly connected are said
to be nearest neighbors. Each node in a dimension d cube has d nearest neighbors (11:2-3).
Figure 3.2 illustrates a dimension 3 hypercube. It has 22, or eight, nodes, and each node
has three nearest neighbors. We can use this cube to illustrate how other communication
topologies are implemented on a cube connected computer. Figure 3.3 (a) shows the cube

configured into a ring structure and Figure 3.3 (b) shows it configured into a tree topology.

K

Figure 3.2. Dimension 3 Hypercube

3.3 Physical Mapping

For the most part, the architecture assumed by Kearns in his single query step models
maps nicely onto the iPSC/1 architecture. The cube manager serves as the database
machine controller and hence is responsible for initializing the operations on the processor
nodes and merging the query results as they are received from the nodes. The cube
nodes are not fully connected physically through shared memory. However, they can
all communicate indirectly through intermediate nodes. The only inconsistency with the
iPSC/1 architecture is that the nodes in the cube do not have direct access to secondary
storage devices. Kearns’ models assumed that each processor was connected to a unique
disk to avoid disk contention and to allow concurrent disk access by all of the processors.
This problem is solved by designating 16 of the cube nodes as disk nodes and 16 as processor
nodes. Each of the disk nodes runs a disk simulation process and is associated with one of
the processor nodes. The processor nodes read from and write to the disk nodes by passing
messages. One of the advantages of the simulated disks is that they allow the disk access

times to be varied to investigate the impact on the entire query performance.

3-3

0 \Y &/ 2
4 O—© ¢
(2) Ring

(b) Tree
Figure 3.3. Ring and Tree Topologies

3.3.1 Processor Nodes The function of the processor nodes is to read in ble . o:
the input relations from the disk nodes and perform a specified parallel relational query.
Fach of the processor nodes is associated with one disk node which is one of its nearest
néighbors. Several system attributes can be varied in order to investigate their effect on
query performance. The variable processor node attributes are the number of processors
and the processor memory size. The number of processors can vary from 4 to 16. Although
the physical memory resident on the nodes of the iPSC/1 is large enough to hold both input
relations of the test database, the actual amount of memory used will be limited to allow

investigation of the performance impact of varying memory sizes. The memory size can

3-4

be specified as a multiple of the input blocksize. The hypercube topology of the iPSC/1
allows the nodes to communicate in various ways, depending on the particular parallel
algorithm being implemented. A different process is loaded onto the processor nodes to
perform each operation. The specific algorithms implemented on the processor nodes are

discussed later.

8.3.2 Disk Nodes The function of the disk nodes is to generate input data for the
operations to be performed and to provide a simulated secondary storage capability to the
processor nodes. They provide the processor nodes the capability to read fixed blocks of
tuples from the generated relations and also to store and retrieve intermediate relations as
needed during query execution. The response time for disk node operation . can be varied
based upon specified disk performance characteristics. The number of disk nodes may vary

from 4 to 16 and is always equal to the number of processor nodes.

3.3.2.1 Data Generation When initialized, the disk nodes automatically gen-
erate data for two input relations which are horizontally partitioned and spread uniformly
over the specified number of disk nodes in an unordered fashion. This simulates a round
robin method of placing the tuples into the relations. ‘Che number of blocks in the rela-
tions and the blocksize can be varied, but each *disk” contains the same number of blocks.

Possible ranges are from a 16 block relation (1 per disk) to a max of 1536 (96 per disk).

The tuples in each of the relations have a simple schema consisting of two integer
fields, with one specified as the join field for equi-join processing and the other being
a random integer. While this simple schema serves the purposes of this research, more
elaborate general purpose test database schemas have been developed as demonstrated by
Strawser (17). It may be noted that the relations do not have a unique key field. A unique
key is required for relations in operational relational database systems, however, this is not
an operational system. The tests run for this work do not require a unique key field. If a
unique key field is required, the random integer field can be assigned a unique integer for

each tuple.

The domain of the join field is the set of positive integers from 0 to some specified

3-5

range value. The assignment of join field values to the tuples in the relations is a three
step process. The first step is to established the size of the desired result relation produced
when the two input relations are joined. This size is calculated using the desired join
selectivity factor (jsf). The jsf specifies the size of the result relation as a fraction of the
size of the cross product of the input relations (12:119). So, given two input relations with
10 tuples each and a jsf of .1, the cross product will contain 100 tuples and the join result
will contain 10 tuples. Once the desired size of the result relation is established, the next
step is to determine the the number of common join values that will satisfy the equi-join
criteria and place them in the relations. Eight common join field values are identified that
are uniformly distributed across the join field domain. These eight common join values
are repeatedly assigned across the relations at uniform intervals until the desired number
of common join values have been assigned to each relation. This results in an unordered,
uniferm distribution of the join values across each relation. The final step is to assign join
field values to the tuples that have not been assigned the common join values. These tuples
receive a uniform distribution of the rest of the values from the finite integer domain in
an unordered fashion. To avoid inadvertent joins, all of the non-common join values for
one of the relations are even, and for the other relation they are odd. The actual number
of result tuples produced from this data may only be an approximation of the specified
jsf. Appendix E contains further discussion of the actual result relation sizes produced

different values of the jsf.

The disk nodes allow the processor nodes to read the generated relations in multiples
of the generated blocksize. A processor node requests a read operation by sending a read
message to a disk node. The read message specifies the relation to be read from, if the
read is to begin from the current location of the read pointer or from the beginning of the
relation, and the number of blocks to be read. The processor node then waits for a return
message from the disk node. The disk node returns one message containing the specified

number of blocks to the pracessor node.

3.3.2.2 Temporary Relation Storage In addition to generating the initial in-

put relations, the disk nodes also provide the processor nodes with the capability to tem-

3-6

porarily store intermediate relations during query processing. For the single step models,
the schema of the intermediate relations will be the same as for the initial relations. The
processor nodes write to the disk nodes by sending write messages which may contain
either one or multiple blocks of tuples to be stored on the disk nodes. The write message
type specifies the particular relation the tuples are to be stored in. The receiving disk
node then blocks the written tuples into as many complete blocks as possible and places
remaining tuples into an incomplete block. When stored, an incomplete block requires
the same amount of space as a cormplete block. It contains an end of block pointer after
the last tuple. The intermediate relations may be read from the disk nodes in the same
manner that the initial relations are read. The read message will specify the particular
intermediate relation rather than an initial relation to read from. The data blocks returned
for an intermediate relation may or may not be complete, depending on how they were

written to the disk nodes.

3.3.8 Disk Node Response Time Kearns’ models include three disk performance
parameters that can be varied to evaluate query performance with different types of disks.
These are the average disk access time (seek and rotational delay), the track-to-track seek
time for one track on the disk, and the time to transfer one block of data to or from the
disk. The disk nodes provide the capability to vary these performance characteristics in
order to simulate the response times for various types of disks. To change the performance
characteristics of a disk node the disk simulation code must be recompiled. When a read
or write operation is requested, the disk node calculates the proper delay time based upon
the performance characteristics, the number of blocks of data that are being transferred,
and the required transfer time between the disk node and the processor node. It then

invokes a delay routine which provides the required delay.

3.4 Join Algorithms

A number of different sequential algorithms have been developed for performing
relational joins. Three of the most common are the nested-loop, the sort/merge, and

the hashed, or bucket, join (14). These approaches either use brute force and compare

3-7

all tuples of both relations, or use some method to group the tuples in a manner which

reduces the total number of compares.

The nested-loop algorithm is the simplest and least efficient method as it involves
the comparison of all tuples of one input relation to all tuples of the other input relation.
As the titleindicates, it is implemented in a nested-loop control structure that is of order
O(nm), where n is the size of one input relation and m is the size of the other. Although
the nested-loop is a very inefficient algorithm for equi-join processing, it is the only join

algotithm that is insured to work for all possible join criteria (12:117).

The sort/merge algorithm uses one of the grouping methods to decrease the number
of compares that are required to perform the join operation. The sort/merge first sorts
both of the input relations on the join field. It then uses a merge operation to compare
the tuples of the relations. If the input relations are already ordered on a field other than
the join field, the relations must still be sorted as unozdered relations. The sort/merge is

the most eflicient sequential method for performing equi-join operations (12:121).

The bucket join algorithm also groups the tuples from the input relations to decrease
the number of compares that must be performed. It accomplishes the grouping by per-
forming a common hash function on the join field of the input relations. The result of the
hashing process is a number of corresponding buckets from each of the relations that can
then be joined to produce the result relation. The same hash function must be applied
to each of the tuples in each of the relations to insure that joining of the corresponding

buckets will result in the entire result relation. (12:208).

Kearns’ models include many variations of the parallel versions of each of these
algorithms, as well as other algorithms. Tor this thesis one variation of the parallel nested-
loop join algorithm and one variation of the parallel bucket join algorithm were selected

for implementation and analysis.

3.4.1 Parallel Nested-Loop Join Implementation The implementation of any paral-
lel algorithm involves the composition of a set of sequential algorithms on the nodes and a
communication structure that allows the nodes to communicate. The parallel nested-loop

join algorithm consists of a sequential nested-loop algorithm running on the nodes which

3-8

performs the required comparisons on multiple fragments of the input relations concur-
rently. This approach is referred to as data parallelism as the same operation is applied to
different sets of data on the various processors. This implementation employs a ring com-

munication structure to allow the relation fragments to be passed among the processors.

3.4.1.1 Node Processing The algorithm applied on each of the nodes is a
simple sequential nested-loop join which compares all of the tuples from a fragment of
one relation to all of the tuples from a fragment of the other relation. Ullman shows in
(18) that the most efficient way to perform the nested-loop join is to first fill the available
memory with blocks of the smaller relation. Then read blocks of the larger relation one
at a time, joining each with the memory resident blocks from the smaller relation. Each
of the blocks of the smaller relation will only be read once, however, if the entire relation
will not fit into memory, multiple memory fills will be required. Each of the blocks of the
larger relation, on the other hand, will be read every time memory is filled with blocks of

the smaller relation.

This approach is easily implemented in the parallel environment. Each processor first
fills its memory with local blocks of the smaller relation. Local blocks are those resident on
a processor node’s associated disk node. Each processor then reads one local block from
the larger relation and joins it with the blocks resident in memory. When each processor
finishes the join operation, it passes the current larger relation block to the next node in
an embedded ring structure. Here the block is joined with the memory resident smaller
relation blocks and then passed on to the next ring node. This process continues until the
larger relation blocks have been processed by all of the nodes in the ring. At this point,
each processor refills its memory with local blocks from the smaller relation. This continues
until all of the blocks from the smaller relation have been loaded into memory and joined
with all of the blocks from the larger relation. Another block of the node memory is also
used to collect the result relation tuples as they are generated. When the result buffer fills

up, its contents are sent to the host processor to be merged into the final result.

3.4.1.2 Communication Structure Different communication structures can be

implemented to allow the processor nodes to exchange blocks of the larger relation. Cloud

3-9

(4) presents a discussion and comparison of the ring structure and the broadcast struc-
ture structure for the MARK III hypercube. In his models, Kearns assumed a broadcast
communication structure for the nested-loop algorithm. The iPSC/1, however, does not
provide an efficient broadcast capability between the nodes in the cube. It is possible to
simulate a broadcast through the use of a spanning tree however. When implemented using
broadcast communication, the nested-loop join algorithm is slightly different than when the
ring communication structure is used. For the broadcast algorithm, each processor node
fills its memory with local blocks from the smaller relation in a manner similar to the ring
algorithm. To disseminate the blocks of the larger relation, however, the processor nodes
must broadcast one at a time. Therefore, a join operation performed on n processor nodes
with m larger relation blocks will require m * n x logn communications. The nested-loop
utilizing the ring structure, on the other hand, will only require mx(n—1) communications.
Therefore the ring structure was selected for this implementation. The ring structure is
implemented for different numbers of nodes as shown in Figure 3.4. Each of the neighbors
of a particular node in this configuration passes data only to nearest neighbor nodes and

hence avoids multiple hop communications.

3.4.2 Parallel Bucket Join Implementation Unlike the parallel nested-loop algo-
rithm which uses the brute force method to join the input relations, the implemented
parallel bucket join algorithm first groups the data in order to decrease the actual number
of compares that must be performed. The bucket join is actually performed in two sepa-
rate steps. The first step performs a hash function u.. cach of the input relations and the
second step performs the join processing. All of the specified number of nodes are used to
perform both the hash step and the join step. Both of these functions are performed using

data parallelism.

3.4.2.1 Hash Step The purpose of the hash step is to group the tuples from
each of the input relations into a number of buckets equal to the number of processors
available to perform the join operation. This will allow each processor te petforin one se-
quential join operation on corresponding buckets from each of the relations. To accomplish

this grouping, the same hash function must be applied to the join attribute of both input

3-10

a) 4 Node Ring
b) 8 Node Ring

12 13> 15 14

12 13 15 14

10 11 9 =<8

¢) 12 Node Ring
d) 16 Node Ring

Figure 3.4. Nested-Loop Communication Structures

relations. The best performance in the join step will be achieved when the hash function
uniformly distributes the tuples across the available buckets. Kearns’ models make the
assumption that this uniform distribution is always achieved by the hash step. The hash
function chosen for this implementation simply divides the value of the join field by the
number of processors to be used for the join operation. Assuming that input data is equally
distributed across a given range and that the number of processors will divide evenly into

that range, this function will result in a uniform distribution.

The hash program that runs on each node sets aside a memory buffer for each of the

buckets. It then loads the remainder of memory with blocks of tuples from the relation

3-11

being hasli;d. It then processes the tuples sequentially, performing the hash function on
the join attribute of each tuple and then writing it to the proper bucket buffer. Wlen a
bucket buffer fills up, it is immediately sent to the prov.er processor node and stored to
the associated disk node. This process logically assur s a fully connected communi¢ation
structure which allows direct communication between all processers. However, the cube
structure will actually require some of the hash messages to pass through intermediate

nodes to reach the desired destination.

3.4.2.2 Join Step In the join step of the bucket join algorithm, each processor
simply performs a sequential join operation on the intermediate telations that were previ-
ously stored on the corresponding disk node during the hash.step. Any of the sequential
methods can be applied to accomplish this step. Kearns’ bucket join models included using
the nested loop algorithm and also the sort/merge algorithm during this step. The imple-
mented version of the bucket join contains only the nested loop join. It is implemented in
much the same manner as it was for the parallel nested loop algorithm. However, there is

no communication between the nodes during the join step.

3-12

IV. Single Step Implementation Analysis

The analytical models developed by Kearns provide a means for predicting the per-
formance of parallel relational database queries for a variety of machine architectures and
dala storage structures. To attempt to validate these models, they must be implemented
and tested, with the results being compared with the model projections. The approach
chosen to evaluate the nested-loop and bucket join models was to develop a series of test
cases to be run on both the models and the actual implementations on the iPSC/1. The
following sections first present in detail Kearns’ models for the algorithms. They then doc-
ument the application of standard parallel analysis techniques to both the modeled and
the measured runtime data, giving insight into possible inconsistencies between the two.
Based upon the results of the runtime analysis, the models are then examined further in
an attempt to identify the reasons for the inconsistencies. A brief description of all of the

test cases and the associated data is documented in Appendix B.

4.1 Parallel Performance Measures

When analyzing the performance of programs on concurrent computers, there are
some basic measures that provide insight into the performance improvement achieved
through parallelization of the process, The first of these is speedup (S). Speedup is defined
as the ratio of the time required to perform a given function on a single processor to the
time required to perform the same function on multiple processors (6:55). Given a time

T(N), where N is equal to the number of processors, speedup is expressed as

Another performance measure that is closely related to speedup is concurrent effi-
ciency (¢) (6:55). Concurrent efficiency is a measure of how well the concurrent implemen-
tation is utilizing the total processing capability of the parallel architecture. Concurrent

efficiency is expressed as

™
I
=z

where N is equal to the number of processors. A parallel implementation that yields a

speedup of N has a concurrent efficiency equal to 1.

Ideally, the speedup realized when a process is spread over N processcrs should be N.
In reality, hevover, a speedup of N is difficult to achieve unless some hueristic is applied
to actually reduce the amount of processing that must be performed. This reduction must
be realized in both the serial portion of the code as well as the additional code required to
parallelize the process. There are overhead costs that are associated with the parallelization

of a process. Overhead (f) can be expressed as
1
f=2-1

According to Fox (6:55-56) there are four factors that limit the ability to achieve « speedup
of N. They are algorithmic overhead, software overhead, load balancing, and communica-
tion overhead. Algorithmic overhead results when it is impossible to find a parallel algo-
rithm that can solve a problem as efficiently as the sequential algorithm. Software overhead
may result when an equivalent parallel algorithm is found, but it requires additional pro-
cessing when it is split among multiple processors. Load balancing involves spreading the
amount of processing evenly among the concurrent processors. The process can only run
as fast as the slowest node. If the processing cannot be spread perfectly across all proces-
sors, overhead time results. Communication overhead is the time spent in communication
between processors. Auy time during the execution of the concurrent versicn of a program

that a process.r must stop to communicate with another processor, overhead time results.

4.2 Nested Loop Join Analysis

4.2.1 Nested Loop Model Analysis The nested loop-join algorithm is examined first.
The performance parameters for the models are listed in Table 4.1. For this model Kearns
assumes that the input relations, R and S, are both spread uniformly across the available
disks and that each disk can broadcast a block of data to all processor nodes in a constant
time T3,. This broadcast capability provides the means for ecach node to send each block

of the smaller input relation, S, to all other nodes. Each processor is then able to join its

4-2

Table 4.1. Model Performance Parameters

T. | query compile time (0 ms)

T | time to send a message between backend and host (0 ms)
Tu | average disk access time (variable)

ps | memory blocks per processor (variable)

p | number of processors (variable)

d | number of disks (variable)

b | blocks per track on disk (10)

T, | seek time of one track on disk (10 ms)

Ti | transfer time from disk for one block of data (variable)

R | number of blocks in R relation (variable)

S | number of blocks in S relation (variable)

Jp | number of blocks in join result relation (variable)

Ty | time to send one block of data between backend and a node (16 ms)
Tsc | time to scan one block of data (7.5 ms)

T, | time to process a block with a join operation (145 ms)
jsf | join selectivity factor (variable)

local fragment of the R relation with the entire S relation. This second assumption is not
consistent with the implementation on the iPSC/1. The iPSC/1 implementation organizes
the processor nodes into a logical ring structure that is used to pass the blocks of the larger
relation to all of the processor nodes. This inconsistency provides the opportunity to ex-
amine the accuracy of the general model for a case where the hardware implementation
does not exactly match the assumptions made for the model. Based upon Kearns’ assump-
tions of the uniform distribution of R and S across the available disks and the capability
to broadcast the S relation from the disks to the processing nodes, the performance model

for the nested-loop join algorithm is (12:160):

Te+ T + [Ta+ (((po # p)/) /0) % Ts + (((ps * p)/d) * T30)) * (R/ (ps * p))
H((R/p) * S+ To) + (S * () (ps * p))) * Lio] + {(7B/ d) * Tud] (4.1)

Based upon the assumption that the number of disks is always equal to the number of

processors, this equation can be simplified to:

4-3

Te+ T+ [Ta + (po/0) % Ts + po * Tio) * (R/(p6 * p))
+((R/p) * S *) + [(S * (R/(ps *))) * Tio] + [(4B/ &) * Te] (4.2)

A more indepth discussion of the model parameters and the single step models is provided

in Appendix A.

4.2.2 Nested-Loop Runtime Analysis The first step in the comparison of Kearns’
nested-loop join model to the implementation on the iPSC/1 is to consider the overall
runtime of the two. Tests were run for three different problem sizes in order to expose any
sensitivities that may exist with respect to problem size. For these initial runtime mea-
surements, all other performance parameters were held constant while the input relation
sizes were set at 48, 96, and 144 blocks. Figures 4.1, 4.2, and 4.3 show graphically the
theoretical runtimes versus the observed runtimes. Each of the figures illustrates that the
difference between the theoretical and observed runtimes is smaller for smaller numbers of
nodes than for larger numbers of nodes. Comparing the figures shows that the difference
botween the theoretical and observed runtimes is also smaller for larger problem sizes than
for smaller problem sizes. The lines representing the theoretical and observed runtimes
get closer together as the problem size increases from Figure 4.1 to Figure 4.2 to Figure
4.3. The average difference between the theoretical and observed runtimes for the 48 block
input relation case was about 8.5 %. The average difference for the 144 block input relation

case was 1 %.

4-4

90 I T T
Theoretical —
Observed —
80 + -
70 -
60 -
Total
Query
Time
(sec) S0 M= 14 1
Ty=35
40+ T;, =20 _
T, =10
30 - jsf =.00001 -
20 |- ~
1 I)
0 5 10 15 20
Number of Nodes

Figure 4.1. Nested-Loop 48 Blocks x 48 Blocks

300

250

Total
Query
Time
(sec) 200

150

100

Theoretical —
Observed —

Figure 4.2. Nested-Loop 96 Blocks x 96 Blocks

- pb = 14 -
Ty=35
T =20
T, =10
jsf =.00001
! 1 i
0 5 10 15
Number of Nodes

20

T T T
Theoretical —
Observed —
700 -
600 - -
Total 500 - pp = 14 i
Query
Time -
(sec) Ty=35
Tio =20
400 - .
Ts =10
jsf = .00001
300 |~ -
200 - 1 ! 1]
0 5 10 15

Number of Nodes

Figure 4.3. Nested-Loop 144 Blocks x 144 Blocks

4-7

20

Further insight can be gained through examination of the speedup (S) achieved as
the number of processor nodes is increased for each problem size. Figures 4.5, 4.6, and 4.7
graphically show S for each problem size. The speedup graphs show that the model predicts
virtually linear speedup for each of the three problem sizes. The observed runtimes, on
the other hand, reflect close to linear speedup up to a point at which time the measured
curve begins to level off. It has been documented that when the number of concurrent
processors applied to solve a fixed size problem is continuously increased, a point will be
reached when the amount of overhead begins to dominate speedup (6:59). When this
occurs, the speedup realized with each additional node actually decreases. This point is
often specified in terms of the ratio of communication time to calculation time (tcomm [£cate)-
Figure 4.4 illustrates this point. The graph shows that as the number of processors, N, is
increased, 1cq;, decreases. At the same time, {,omm is increasing at some rate . As the two
curves begin to converge, the speedup curve will begin to flatten and then the speedup will

eventually begin to decrease.

teale

Time

tcomm

N
Figure 4.4. Graph of tcomm and teqyc

4-8

20] T T
Theoretical —
Observed —
15 |- -
S 10 -
pp=14
Ty=35
5L T =20 a
jsf = .00001
0 ~ | | !
0 5 10 15

Number of Nodes

Figure 4.5. Nested-Loop Speedup 48 Blocks x 48 Blocks

4-9

20

20

15

10

Theoretical —
Observed ——

=14
Ty=35
! Tio = 20 |
Ts =10
jsf = .00001
1 I !
5 i0 15

Number of Nodes

Figure 4.6. Nested-Loop Speedup 96 Blocks x 96 Blocks

4-10

20

20 T T T
Theoretical —
Observed —
15 -
10 |- _
pp =14
Ta=35
5 - T =20 i
Ts =10
jsf = .00001
0 1 1 1
0 5 10 15

Number of Nodes

Figure 4.7. Nested-Loop Speedup 144 Blocks x 144 Blocks

4-11

20

Further investigation of the nested-loop model reveals that it does not actually predict
linear speedup for all values of N. There is-a point at which the modeled speedup curve
begins to flatten. The value of N at which this occurs, however, is significantly greater

than 16. This is illustrated in Figure 4.8. This graph shows the modeled speedup with the

3000 - 1 T T T ; -
Linear Speedup —
2500 }- Broadcast Model - i

2000

S 1500

1000

500 - .

0 ! 1 1 1] 1

0 500 1000 1500 2000 2500 3000
Number of Nodes

Figure 4.8. Theoretical Speed for Very Large N

value of N increasing to 3000 nodes. Even with N equal to 3000, the speedup curve has

not flattened significantly. However, it does show that the curve is beginning to flatten.

The difference in the speedup curves of Kearns’ model and the iPSC/1 implementa-
tion suggests that as N is increased, the communication overhead is actually growing at
a faster rate than the model predicts. As staled earlier, Kearns assumed that the blocks
of the smaller relation could be disseminated to the processor nedes through a series of
broadcasts from the disks. The broadcast could -not be done efficiently on the iPSC/1,
however, and so the ring communicalion structure was implemented instead. The time
to perform the ring communication during the nested-loop algorithm can be expiessed

analytically as

[(p = 1) % [2/(py * p)] * (5/p) * Tio) + [([B/(pe # p)] + (S/p)) * (Ta + Tio)) (4.3)

600 F T] T T]
Broadcast Model — '
500 - Ring Mode] — /

400

S 300

200

100 |- .

0 ! 1 | i 1 !

0 100 200 300 400 500 600
Number of Nodes

Figure 4.9. Broadcast Model Speedup Versus Ring Model Speedup

Figure 4.9 illustrates the speedup curve of the nested-loop model with the ring communi-
cation expression as opposed to Kearns’ original model containing the broadcast commu-
nication expression. The speedup curve of the ring model flattens out with N well under
100. However, it does not flatten quite as soon as the measured speedup from the iPSC/1
implementation, as shown in Figure 4.10. This is because there are additional nondeter-
ministic overheads that are not accounted for in the model. The average difference between
the theoretical and observed runtimes using the ring communication model is about 6 %

for the 48 block input relation case and about 1 % for the 144 block input relation case.

4.8 Bucket Join Analysis

4.8.1 Bucket Join Model Analysis The bucket join implementation on the iPSC/1is
very similar to the algorithm modeled by Kearns. Kearns assumes that the input relations
are both uniformly spread across the available disks. The bucket join is then performed in
two distinct steps. The first step is the hash step. During the hash step, each node applies
a common hashing function to all tuples of each local relation fragment. Based upon the
the results of the hash function, the tuples are grouped into buckets and each bucket is

sent to the proper node. As the bucket blocks are recieved by the nodes they are saved

4-13

I T T] T
25 . N
Ring Model —
20 + Observed — N
15 - N
S
°l poi]
_ T8 =20]
5 =10
3sf =.00001
0 |] | | 1
0 5 10 15 20 25

Number of Nodes

Figure 4.10. Ring Model Speedup Versus Observed Speedup (48 blocks x 48 blocks)

to disk. When the hash step is completed, each node performs a local nested-loop join on
the buckets that it has written to disk. The results of the join operation are then sent
to the backend processor where they are merged into the complete result relation. The

performance model for the bucket join algorithm with the nested-loop is (12:170):

(Tse * (R/p))
+2 % [((R/p)+ 1) *(p— 1)) Tht
Te+ T+ Ta + Tio + maz or
2% ((R/d) * Tio) + (((R/d)/b) x Ts)
+((R/p) +1) * (Ta + Tio)

(Tsc * (S/p))
+(2x[((5/p) + 1) (p - 1)) Th2)
+T1y + Tio + maz or
2% ((S/d) * Tio) -+ (((S/d)]b) + Ts)

+((S/p) + 1) * (Tu + To)
H((Ta + (pb * Tio)) * (R/p) + 1)/pe)) + (/) + 1) * (($/p) + 1) * Th)

(((S/p) + 1) » (R/P) + 1)/p)) * Tio) + i % Tt (4.4)

4-14

4.8.2 Bucket Join Runtime Analysis As with the nested-loop runtime analysis,
the first swep in tl;e comparison of Kearns’ bucket join model with the iPSC/1 bucket join
implementation is to consider the overall runtimes, With all other performance parameters
held constant, tests were run for three different problem sizes with the number of processors
varying from 4 to 16. The input relation sizes for the tests were 144, 192, and 240 blocks.
The theoretical versus observed runtimes are represented graphically in Figures 4.11, 4.12,
and 4.13. The graphs show that the measured runtimes and the runtimes predicted by
the model are very close for all cases. The average difference between the theoretical and
the observed runtimes for the 144 block input relation case is about 3 %, and the average
difference for the 240 block input relation is about 2 %. These results are consistent with
the fact that the methods used to implement the bucket join on the iPSC/1 match closely
with those modeled by Kearns.

‘The speedup curves for the bucket join implementation versus the model for the
different problem sizes are shown in Figures 4.14, 4.15, and 4.16. The graphs show that in-
creasing the number of processors for this algorithm results in greater than linear speedup,
where increasing the number of processors for the nested-loop algorithm resulted in less
than linear speedup. This is because the bucket join uses-a grouping method to reduce the
actual number of compares that must be performed. As the number of processors increases,
the size of the buckets decreases and the number of compares decreases. The nested loop,
on the other hand, always compares all of the tuples from one input relation with all of
the tuples from the other input relation. As expected, the modeled speedup curves and
the measured speedup curves match much more closely for the bucket join algorithm than

those of the nested-loop algorithm.

4-15

I I 1
200 | Theoretical —
Observed —
150 - -
Total
Query
Time - - R
(sec) 10v P’ =25
Ts=35
Tio =20
50 - -
T, =10
jsf = .00001 ~—
0] | 1
0 5 10 15

Number of Nodes

Figure 4.11. Bucket Join 144 Blocks x 144 Blocks

4-16

20

7 T T
350 |- Theoretical —— -
Observed —
300 y- -
250 - -
Total
Query 200 |- pp =25 -
Time
(Sec) Td = 35
150 F T =20 -
T, =10
100 + jsf = .00001 -
50 |- _
] [} ‘l
0 5 10 15

Number of Nodes

Figure 4.12. Bucket Join 192 Blocks x 192 Blocks

4-17

1] }
Theoretical —
Observed —
500 |- .
400 |- -
Total
Query 300 - py = 25 .
Time
(sec) Ty =35
T, =20
200 |- -
T, =10
jsf = .00001
100 -
I 1 !
0 5 10 15 20

Number of Nodes

Figure 4.13. Bucket Join 240 Blocks x 240 Blocks

4-18

50

45-

40

35

30

25

20

15

10

Theoretical —
Observed —

Py =25
Tyg=35
Tio=20
T, =10

jsf = .00001

10 15
Number of Nodes

(41

Figure 4.14. Bucket Join Speedup 144 Blocks x 144 Blocks

4-19

20

50 -

40

30

20

10

Theoretical —

Observed — -
Py =25
» o 35 .
Tio=20
B T, =10 i
jsf = .00001
1 | 1
5 10 15

Figure 4.15

Number of Nodes

. Bucket Join Speedup 192 Blocks x 192 Blocks

4-20

20

60 T] T
Theoretical —
Observed —
50 |- _
40 - -
30 - -
o =25
Ta=35
20 - o -
io = 2V
Ts =10
10 + jsf = .00001 -
0 1 I 1
0 5 10 15

Number of Nodes

Figure 4.16. Bucket Join Speedup 240 Blocks x 240 Blocks

4-21

20

4.3.3 Bucket Join Sensitivity Analysis The analysis to this point has concentrated
on the comparison of the total query time predicted by the models versus the measured
total query time over a range of problem sizes and node configurations. An area that has
not been addressed is the ability of the models to predict the impact of varying system
performance parameters. Tests were first run to evaluate the impact of changing the disk
performance parameters. The next set of tests were run to evaluate the impact of changing
the join selectivity factor. Both sets of tests were run for relatively small problem sizes

and then for relatively large problem sizes with the number of nodes fixed at eight.

For the base performance case, the disk access time, Ty, was set at 35, the block
transfer time to disk, T;, was set at 20, and the join selectivity factor was set at .00001.
These disk performance parameters are hypothetical and do not reflect any particular disk
system. The first parameters to be varied were Ty and T;,. Ty was set to 70 and T;, was
set to 40. This simulates a change in the actual disk device and also the communication
between the disk and the processor. The result in an increase in average disk I/O response
time. Figure 4.17 illustrates the theoretical runtimes and Figure 4.17 illustrates the ob-
served runtimes for the two disk performance levels when measured for relatively small
input relations. The theoretical data predicts a virtually constant increase in total query
time of about 9 % over this range of problem sizes. The observed data reflects this con-
stant change, although the observed amount of increase in the query runtime is about 13
%. This is slightly greater increase than the model predicted. The analysis of the results

of the tests run with relatively large relation sizes yield similar results.

Next the jsf was changed from .00001 to .001. This significantly increased the
number of result tuples produced and also increased the time required to process the
result blocks. The join of two relations with 104 blocks each, and jsf equal to .00001 will
produce about 1180 results. When the jsf is changed to .001 for the same join operation,
about 108160 results will be produced. Figure 4.19 illustrates the theoretical runtimes
and Tigure 4.20 illustrates the observed runtimes for the small problem set sizes. The
theoretical data shows that the total query time is increasing at a slightly greater than
constant rate as the the size of relation 2 is increased. Examination of the observed data

reveals that the trend in the difference between the curves is the same, however, the curve

4-22

40 i T T] T T I J J
Ty=235T; =20 —
35| Ta=70T,=40 — .
Total 30]
Query
Time
sec - h
(sec) 25 Relation 1 = 104 Blocks
Db =25
20 |- Ts =10 7
jsf = .