
NRL Report 9296

Creation, Validation, Testing, and Data
Management of a Knowledge Base Designed for a
Technician's Assister System for the AN/SQS-53B,

Unit 26, Using a Fault Isolation System Shell

JOSEPH A. MOLNAR

Communications System BranchoInformation Technology Division

December 17, 1990

DTIC
S ELECTE

JAN 3 01991 DE

91 1 050
Approved for public release; distribution unlimited.

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-088

PuOli reporting burden for this coiiection of information rs estlmateo to average hour per response,, ocling the time toe review ng instruction%, searching existing data Sources
gathering and maintaining the data ne-ded. and completing and reviewing the collection of informatiOn Send comments rerandinng ths bu(den estiniate o" any Other aspect Of ths
collectinon of Information. Including Suggestions for reducing this burden to Washington Headouarters Services. Directorate or information Operations and Reports. 1215)etferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office Of Management and Budget Paperwork Reduction Project (0704-0188). Washington, DC 20 503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 17, 1990 Interim
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Creation, Validation, Testing, and Data Management of a Knowledge Base
Designed for a Technician's Assister System for the AN/SQS-53B, Unit 26, PE-25620N
Using a Fault Isolation System Shell TA-

6. AUTHOR(S) WU-L .57-139

Molnar, J.A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory NRL Report 9296
Washington, DC 20375-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Naval Oceanographic & Atmospheric Research Lab
Stennis Space Center, MS 39529-5004

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

- A system using the Fault Isolation System (FIS) shell was designed for Unit 26 of the SQS-53B Sonar System.
The sonar system unit has a mixture of analog and digital components. Over 100 replaceable modules are in Unit 26.
The knowledge base created to describe the circuit topology of Unit 26 contains over 3,000 rules and was ten times
larger than any other system modeled for FIS. A methodology is described for creation of large knowledge bases and of
the data management requirements. A format of the data management structure is presented in this report. Software
written in C for data manipulation is described in this report. The diagnostic, compilation, verification, and validation
process for the creation of a viable FIS knowledge base is also presented in this report. Knowledge base manipulation
software was written in LISP or in C interfaced to LISP on a SUN 3/110. Validation was performed at the Naval
Underwater Systems Center, New London, CT.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Knowledge engineering Verification 151
Expert systems Validation 16. PRICE CODE
Artificial intelligence Maintenance aid

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Pi"-scrIbed bi ANSI Std 139-10

CONTENTS

INTRODUCTION ... I

KNOW LEDGE DATABASE .. 2
Knowledge Acquisition .. 2

Causal Rule File ... 5
Testlist File ... 15
Precondition File ... 20
Order Information .. 21
Instruction File ... 22

Coihversion of Knowledge Database from Human Data Management Format to LISP
Compiled Database .. 23

Rule Conversion ... 23
Testlist Conversion .. 27
Testlist Conversion for Function Instructions ... 32
Accessing Instructions with the "Print-Instructions" Function During Execution 33
Summary ... 33

Fortdilation and Modification of the FIS Compatible Knowledge Base by Using the
Editor Function ... 34

Formulation of the FIS Rulebase Using the FIS Editor Exclusively 34
Compilation ... 38

M iscellaneous ... 39
Addition of Instructions .. 40

VERIFICATION AND VALIDATION .. 40
Verification of Data Connectivity .. 40

Verification of Rule Continuity .. 40
Verification of the Ambiguity Sets .. 41

Validation of the Knowledge Database .. 41
Validation Through Fault Simulation ... 41
Validation Through Field Testing .. 44

SUMMARY .. 45

REFERENCES .. 46

GLOSSARY .. 46

APPENDIX A - Sample Rule Set Data Format ... 49

APPENDIX B - Sample Testlist Data Format ... 59

APPENDIX C - Sample Precondition Data Format .. 63

APPENDIX D - Sample Order Data Format .. 65

APPENDIX E - Sample Instruction Data Format ... 67

iii

APPENDIX F - Automatic Conversion Program for Rule and Testlist Databases 71

APPENDIX G - Conversion Program Rule Database ... 79

APPENDIX H - Automatic Conversion Program for Test Database .. 85

APPENDIX I - Semiautomatic Conversion Program for Test Database ... 97

APPENDIX J - Test Database Instruction Index Program ... 107

APPENDIX K - Conversion of Instruction Database Program ... 115

APPENDIX L - Conversion Program to Restore Database Format .. 119

APPENDIX M - Sample Data Output Format From Rule Verifier ... 127

APPENDIX N - Sample Data Output Format From Ambiguity Set Verifier.. 139

Aocess-iOu For
NTIS GRA&I

DTIC TAB
Unannoanced 0
Justification-

By

Distribution/

AvailabilitY Codes

'Avail and/or

Dist special

iv

CREATION, VALIDATION, TESTING AND DATA MANAGEMENT
OF A KNOWLEDGE BASE DESIGNED FOR A TECHNICIAN'S

ASSISTER SYSTEM FOR THE AN/SQS-53B, UNIT 26,
USING A FAULT ISOLATION SYSTEM

INTRODUCTION

FIS (Fault Isolation System) is a model-based expert system shell developed to aid in the diagnostics of
systems containing analog components. The shell written in LISP contains numerous functions that calculate the
diagnostic testing sequence based on probabilistic algorithms. The shell acts on a knowledge database developed
specifically for each unit under test (UUT). This report outlines the process required for the formation of the
knowledge database.

The largest knowledge database, to date, has been for Unit 26, the CP Processor of the AN/SQS-53B sonar
system. This unit consists of 12 channels that process the left, center, and right beams of the sonar system. A
mixture exists of analog and digital functions, with over 100 replaceable modules in the unit- A knowledge engineer
constructed rules for the system from the schematic diagrams after considering the designed test points to be the only
real test points in the system. The result was a database containing over 3000 rules and 600 tests with test
instructions that describe the operation of Unit 26.

During the development of the database for the whole system, a determination was made that by creating a
hierarchy of knowledge databases, based on the system functionality, the fault isolation would improve. The
resulting hierarchy was named the Technician's Assister System (TAS). During fault isolation, TAS loads
individual knowledge databases for each functional area. This effort resulted in 12 distinct knowledge databases that
describe the 12 functional areas of the system. Each knowledge database required the same construction techniques.
FIS includes several software utilities for developing a knowledge database; they are all incorporated within the FIS
editor. The editor facilitates the creation of a syntactically correct knowledge database, however its sequential
structure of data entry is time consuming. Therefore, enhancements were made to the FIS editor to permit
transformation of data structures from a data file format to structures that are syntactically correct for FIS. The
enhanced version of FIS used in TAS is referred to as TA/FIS. Also, several auxiliary programs were created to aid
in the process. This report focuses on techniques used to make the transformations from the standard data structures.
The data structures and the software developed are described in this report.

The process used in developing a viable knowledge database is knowledge acquisition, data structuring,
compilation, and validation. Several methods used for creating the FIS knowledge database are described '. this
report. The appropriateness of each method is discussed. The compilation and validation processes are prescnted to
instruct users on all processes required to obtain a functioning FIS knowledge database. The techniques useJ for each
are described, as well as the types of errors and methods required to resolve them.

Finally, the knowledge database is not a static entity. Through the service lifetime of a naval warfare system
such as the AN/SQS-53B, numerous changes are made to the hardware to rectify deficiencies or enhance performance.
An Al system used in the maintenance of such systems must be continually updated to remain a viable entity for
system maintenance. Thus, this report also provides information on how the available ;criniques, contained in FIS
or subsequent FIS enhancements, can be used in configuration management of the kno.wledge database. The report
provides the user, program managers, and defense contractors with information on flow to maintain FIS knowledge
databases within the structure of a changing warfare system configuration.

Manuscript approved September 5, 1990.

J. MOLNAR

KNOWLEDGE DATABASE

Three stages exist in the formation of a UUT knowledge database. The first stage consists of performing
knowledge acquisition. For Unit 26 of the AN/SQS-53B this entails using schematics. (Future approaches may use
information provided by computer aided engineering workstations that require minimal human intervention in the
actual process of knowledge acquisition.) The intended result is to form a database that facilitates the validation and
configuration management. This is an important requirement because fielded systems regularly require engineering
changes or entire upgrades to correct system deficiencies or problems. Therefore, the original knowledge databases
would require alterations to reflect changes in system software and hardware. The use of a database structure is an
added feature in the development performed for the AN/SQS-53B application. Previous methods used only the
structure that resulted from direct entry of data by using the FIS editor.

The second stage involves conversion of the initial knowledge database structure into a similar structure
compatible with consumption by a LISP program. At this stage, units of "like" information are grouped into LISP
lists. Primarily there are five forms of data: rules, tests, preconditions, orders, and instructions. Other forms of
information related to graphics presentation may also be included. In this sonar unit application, the graphics
information was unnecessary. Reference to the creation of knowledge database graphics information is available
elsewhere [1]. All five data types used by the FIS sonar system application require a unified data format. The FIS
format requires that all of the information in the separate data structures be grouped to foem the knowledge database.
To obtain a functioning knowledge database requires several steps; they are conversion, editing, error checking,
compilation, and structure addition.

The third stage involves using a LISP function to add information to the FIS knowledge database and to
properly structure the file for input into the FIS compiler. The result of these steps is a single file with a .lisp
suffix.

Knowledge Acquisition

Knowledge acquisition is the first step in preparing a FIS knowledge database. The two types of information
acquired during this stage are causal information and auxiliary information. Causal information describes the cause-
effect relationship of the modules. Auxiliary information describes information related to a specific condition, state,
or test. All the information is obtained by a knowledge engineer. The process examines a schematic and constructs
the information in a compatible format. Figure 1 shows an example of the schematic that is an excerpt of the
schematics for the whole unit. Several things should be noted in this figure; first, the large block located roughly at
the right-hand side near the center of the figure is labeled Multiplex Gates (3LA23) A16. This is an example of what
is later referred to as a module. The terminals for this module are labeled with numbers. The numbered terminals are
normal input or outputs from the module and are not generally available to technicians for testing purposes, but for
purposes of FIS these terminals are useful in defining rule relationships. However they are not useful as test points.
Test points, on the right-hand side of the figure, are also defined with large round dots such as the one labeled AIIJ7.
The others can also be readily seen. Information on the type of measurement and the expected value for the test
appears next to the test point. Another type of test point that is also displayed is a Performance Monitoring Fault
Locator (PMFL) test point, shown roughly in the center of the figure. It appears as a pentagon with the number 297
inside. This type of test point is used in the TAS system hierarchy to provide functional isolation. Also, the lines
connecting the modules have arrowheads to indicate the direction of signal flow. From this information terminals
are able to be defined as input or output terminals.

When collecting information for the knowledge database, most items are available from the schematics or
elsewhere within the DATOM [2] for the sonar system. The knowledge engineer must extract all of the useful
information and organize it into rules, tests, instructions, preconditions or orders, as appropriate. The format for
these items is described in the following sections. All of the information must eventually be available in computer
files. In the development of the TA/FIS for the AN/SQS-53B an ASCII text file format was created and used. These
formats are described in the text, and examples are available in the appendices. Other formats could also be created.
Currently, all of the information used in the sonar system application has been converted to a database format to

2

UNIT 26

MOD - AMPL

RTN "2 MULTIPLEXER

4.95 HZ I A58-A63j

CARRIER FROM -f (SAM AS [1 A6S
4 24>

XA70- 5 ANOII I~J
THIS SHEET

0-0.5 SEC4-4 6 .5

~~~~~~1 ~ XA58-XA63
0.8±0.12V v -. 5SEC1

2 -
FLI -CL6 0

20 M%

1.0

+0l.154rM ~OIV 2 F 7 .5SEC..

Ho.5 SEC~ 1 33X~~tt

6

A
:P BEAM 7OR 88/TCK CTR BM XA64

d QTN (2 I MOD

MOD -AMPL- MULTIPLEXER f3MAi3)A64

3 4 REFER TO TABLE IN SERVICING
MONITOR BEARING To CHECK BE

-XA*64 SHOWN ARE TYPICAL FOR SEAM

4.95 KH 1

CARRIER TO

XA58BTHRU XA63-3 AND 4 _F_---_

CP BEAMS 8-10,.11 OR SS/TCK RGT. 12 THIS SHEET K P BEAMS B-12
e -

RTN R TN

4.0 + 0.65 V P-P~ 7.8, 8 V P7P

F----, E13( R

>I XA7t XA70 
x *3X70

XTAL OSC 9 \.Lr.L( 9 (1L~I

4.95 xHZ 25'' ' ' I

(3SG056) J2- J4 >B

V7 CARRIER PWR AMPL (3AM7) A7OW

GTA41600A- - - - - - - -- - - --

CP Signal Processing Channel



NRL REPORT 9296

( BEAM SEQUENCE - 1,5.9,2,6.10.3,. ,4.8. 2

AMPL aSHEET 46

PLEXERMULTI PLEX4
j3) GATES ToA9

A63 16 XA1

AS A64) 24

3.70
5 ~~~0 6+6 * IV.IIUE LM2

ii117 USE LSC I
0.50E. S.L USEOITVCX

5 ECI

4M

X AM6

.8-<3

MULTIPLEX

GATE GATE 7

DRIVER 2 4>-L--4 3

MOD -AMP,-MULTPLEX ER (3 MAIN A64 TO A19

QEFER 10 TABLE I N SERVICING NOTE 12 F')R SONAR SHEET 4.3
YONITCRQ BEARING TO CHECK BEAMS 1-12. WAVEFORMS I
SHOWN ARE TYPICAL FOR BEAM SELECTED BY SONAR MONITOR 5

__ I 95 K ARRER1-0X44-14 AND '5
4 o SHEET 46 XA65- 144 M9

91-2 XA65-xA69 XA69 1

MOD-AMPLI I
2 IMULTPLEXER I MULTIPLEX 14 40 4

310A 3) I GATES 8 -12I

78.88P P 5 6 6 24)
R5 I (SAME AS A64)I

E13 4 1 M1l

E3A0E14 15 -

5 2946 5I
2 94XA65-XA69 

-

3 39
8 FL -~12 TO A19

3AM71 A70O SHEET 46 M L L'

CODED SIGNAL PROCESSORELECTRICAL RACK Al-

CODED SON AR SIGNAL PROCESSOR UNIT 26-

Fig. I -Schematic diagram for Unit 26 of the AN/SQS-53B displays general interconnection relationships (prli
pllaced on module A16) [21

3



SE31 3-TP-MVMC4O

-~ .--0 -S -E- ------------

j SE POSITIVE
____;LO x T SYNCk-1 ~- -- POM AI1

34

27)XA16 yXAI AllOMX1 
-54

7 I SHEET 32

uSE PASSIVE PROBE
S LL I LOGIC LEVEL ONE :+2.0 To -4 5 V
I .LO~ LOGIC LEVEL ZERO : + 00 rO +-0.6 V

LL

7L4 ----JL i LO
8.~ -SEuSE

(TP13) 3 4 I uSEC

ILI

AIIJ14[( P 4 _______

1) 4 > . GATE4A'D A1 83

SHEET 3

'JUL~~~~'EE P33G'E L23

1~~ l-a4oshp (prEmaT 0.cs 
i



NRL REPORT 9296

facilitate data management. The current format and the database program used in data management will be described
in a later publication. The format described here is presented as a viable example of an implemented format and
contains the essence of the information that is required by any format. Numerous references will be made to Fig. I to
exemplify the process of knowledge acquisition.

Causal Rule File

During fault isolation, the assumption is that the system is acting irregularly and/or that a fault indicator is
present and indicates a system malfunction. Given these conditions, the human performing the troubleshooting will
use the technician's assister version of FIS (TA/FIS) to isolate the fault. TA/FIS will indicate which replaceable
units (modules) have failed based .n the test results of a fault isolation session that consists of the computer
providing suggestions on the most efficient tests to be made by the technician. The session starts with the
assumption that a module has failed, resulting in an abnormality in the system. This form of causal reasoning
provides the basis for the contents of the causal rule file.

One of two states can be present to incur a fault indication at the module output. One state results when an
input to the module is faulty, thus indicating a failure upstream of the tested module. The other state occurs when
the module itself is bad. An upstream module is a module that connects to the test point, but occurs in the electrical
signal flow before the test point. In Fig.1, following the signal flow from terminal 13 of module A16, it is evident
that the module A16 is upstream of the MOD-AMPL-MULTIPLEXER (3MA13) A64 module. Downstream is then
defined as all modules whose test results rely upon the integrity of the modules before it in the signal path.
Conversely, module A64 is downstream of module A16.

An example of the first state occurs when a poor signal enters module A16 and propagates through the module
to output terrrinal 13. In this case module A16 is not faulted but it presents a fault at its output, thus implicating it
as a possible fault. To exemplify the second state, if module A16 was faulted in such a way that results in a poor
signal from terminal 13, its effect propagates downstream to module A64. In this case module A16 is directly
responsible for the presentation of a faulty signal at terminal 13. The causal rules define this relationship as a given
module failure, or cause that produces an effect at an output terminal, provided the conditions of the UUT test are
consistent. The causal rule is the statement of the cause and effect relationship that exists between interconnected
modules in an electronic circuit-

The different individual components of the causal rule file are now defined along with the format. The
essential format elements of the causal rule file are the module name, a rule number (for accountability purposes), a
cause, an effect, a type (optional), and a precondition. Other optional items included are titles, headers and footers,
dates, headings, and descriptive comments. An example of the format used for the causal rule file is included in
Appendix A.

Module Name

The format for the module name, within the rule database, must be descriptive and distinctive for the UUT.
The designation of a module may occur anywhere within the file, but must be before the first rule for that module.
It may be of any length, but must have a letter, between A and Z, as its first character. The format defines the
module name by placing the word module and a colon followed by one or more spaces before the actual module
name, as indicated by the example in Fig. 1.

Module: A26AIA16

In this example, and for most module names used for the AN/SQS-53B Unit 26, the leading A acts as an
alphabetic place holder. The 26 following the leading A is indicative of the subsystem unit, as seen at the bottom
center of Fig.l. The next two characters, Al, designate the electrical rack location of the module, seen also at the
bottom center of Fig. 1, just above the unit designation. The final characters, A and a group of numbers (in this
case 16), indicate the specific module within the unit as noted in the figure.

5



J. MOLNAR

No other characters may occur on the line in which the module name occurs unless it is a comment and
adheres to the comment format.

Rule Number

Figure 2 shows that each rule consists of a cause, an effect, type (optional), and precondition. A number, as
the first character on a line, denotes that a rule follows. One or more spaces separate the number from the
components of the rule. The number acts to order the rules of each module, so that humans may account for their
presence or absence. A rule, once created, maintains a numbered place in the rule list. The user removes the rule
that is no longer appropriate, but the rule number should remain to mark its place. The rule has no relation to the
schematics of the sonar system; it is purely a construction of knowledge database creation.

In management of the database the number provides a place for the knowledge engineer to account for
deletions of rules from previous versions by allowing space for comments relating to the deletion. Additional
information, if needed, resides in the comments that follow the modules rule set. A descriptive comment such as the
date and appropriate rationale should replace deleted rules. The rule number allows the creators of the knowledge
database to identify rules within a unit. The number also announces that the remainder of the line is a rule. The
software converts the database to a format compatible with FIS and uses this convention to identify rules. Numbers
may also have comments that follow and conform to the format for comments. Other extraneous items that follow a
comment either produce an immediate error when converted, or are processed, thus producing an undefined rule for
the knowledge database. Undefined rules produce syntax errors during compilation.

Rules

Rules consist of elements such as cause, effect, type (optional) and precondition. The following sections
describe each of these elements.

Several strategies are used in the creation of the rule database. The first strategy uses a point-to-point internal
module network structure. This means that each input point of a module connects directly to the module output
point through the use of a logical construct. Figure 2 (rules 1-36) shows this first strategy. This strategy uses the
input terminal of the module being examined or the output terminal of the module immediately upstream to define
the cause. Either terminal is allowable in this definition, provided other rules maintain the logical connection. A
pseudonode allows the use of both the input and upstream output terminal by providing the logical interconnection
between them. A pseudonode is a node that has physical existence over a connection length, not at a single point, as
for real terminals.

Out of necessity for pseudonodes, virtual modules were created; modules that have ambiguous boundaries in
the physical system but that are necessary because of a requirement to assure system connectivity. Often virtual
modules describe physical entities such as backplanes that have no definite terminals or boundaries. Each
interconnection then becomes part of a virtual module. This increases the total number of rules, but has the positive
effect of defining all interconnections.

Beside upstream faults producing effects at output terminal, the module can produce a faulty output, as Fig. 2
shows in rules 37 to 48. The knowledge database requires that for every module at least one rule must be present
that identifies the module as the producing source of improper effect at an output terminal. A warning occurs during
compilation to indicate an error in knowledge database syntax.

A second strategy, similar to the first, attempts to reduce the number of rules. This strategy uses
pseudoterminals, terminals that are not physically present but are logical creations that possess a central location
between any two physical terminals, input and output, within a module. Rules 61 to 80 show this type of strategy,
since the terminal a26a1a16 is a logical creation as is the parameter mplxr_gates. These are extremely useful in
describing highly parallel systems, because they allow the knowledge engineer to describe the physical system in
fewer rules. In the example of module A16, four gates exist that control the path of 12 separate signals. The use of
the pseudoterminal reduces the number of rules from 48 to 16, rules 73, 75, 77, and 79 do not relate direct) o the

6



NRL REPORT 9296

Module: a26a'al6_mplx-gates

No Cause Effect Type Precondition

1 a26alallJ7 waveform bad a26ala58J7 gateselect bad s t
2 a26al all J7 waveform bad a26ala59J7 gate-select bad s t

3 a26alallJ7 waveform bad a26ala60J7 gateselect bad s t
4 a26alallJ7 waveform bad a26ala6lJ7 gateselect bad s t
5 a26alal"7 waveform bad a26ala62J7 gate sect bad s t
6 a26alallJ7 waveform bad a26ala63J7 gate-select bad s t

7 a26alallJ7 waveform bad a26ala64J7 gate-select bad s t
8 a26alallJ7 waveform bad a26ala65J7 gate-select bad s t
9 a26alallJ7 waveform bad a26ala66J7 gate-select bad s t
10 a26alallJ7 waveform bad a26ala67J7 gate-select bad s t
11 a26al all J7 waveform bad a26ala68J7 gate-select bad s t

12 a26alal 1J7 waveforn bad a26ala69J7 gate-select bad s t
13 a26ala16-2 gate-a bad a26ala58J7 gate-select bad s t
14 a26ala16-2 gate-a bad a26ala59J7 gate-select bad s t
15 a26ala16-2 gate-a bad a26ala60J7 gate-select bad s t
16 a26ala16-2 gate-a bad a26ala61J7 gate-select bad s t
17 a26alal1J13 gateb bad a26ala62J7 gate-select bad s t

18 a26alal 1J13 gateb bad a26ala63J7 gate-select bad s t
19 a26alal1J13 gateb bad a26ala64J7 gate-select bad s t

20 a26alallJ.3 gateb bad a26ala65J7 gate-select bad s t
21 a26ala16-28 gatec bad a26ala66J7 gate-select bad s t
22 a26ala16-28 gatesc bad a26ala67J7 gate-select bad s t
23 a26ala16-28 gatec bad a26ala68J7 gate-select bad s t
24 a26ala16-28 gatec bad a26ala69J7 gateselect bad s t

25 a26ala16-16 gateI bad a26ala58J7 gate-select bad s t
26 a26ala16-16 gate_1 bad a26ala6217 gateselect bad s t
27 a26ala16-16 gate_1 bad a26ala66J7 gate-select bad s t
28 a26ala16-17 gate_2 bad ak--,a59J7 gate-select bad s t
29 a26ala16-17 gate_2 bad a26ala63J7 gate-select bad s t

30 a26ala16-17 gate_2 bad a26ala67J7 gateselect bad s t
31 a26ala16-41 gate_3 bad a26ala60J7 gateselect bad s t
32 a26ala16-41 gate_3 bad a26ala64J7 gateselect bad s t

33 a26ala16-41 gate_3 bad a26ala68J7 gateselect bad s t
34 a26alal 1J14 gate_4 bad a26ala6lJ7 gateselect bad s t
35 a26alal 1J14 gate_4 bad a26ala65J7 gateselect bad s t

36 a26alal 1J14 gate_4 bad a26ala69J7 gate-select bad s t
37 a26alal6mplx-gates a26ala58J7 gate select bad s t
38 a26alal6_mplx-gates a26ala59J7 gate..select bad s t
39 a26alal6_mplx-gates a2', -1 a60J' gate select bad s t

40 a26ala16_mplx.gates a26ala6lj/ gate select bad s t
41 a26ala16_mplx-gates a26ala62J7 gate select bad s t

42 a26alal6_mplx-gates a26ala63J7 gate select bad s t
43 a26al al 6 mpixgates a26ala64J7 gate select bad s t
44 a26ala16_mplx-gates a26ala65J7 gate select bad s t
45 a26alal6mplx-gates a26ala66J7 gate select bad s t

46 a26alal6_mplxgates a26ala67J7 gate select bad s t

Fig. 2 - Sample list of rules for module A 16

7



3. MOLNAR

47 a26alal6_mplx.gates a26ala68J7 gateselect bad s
48 a26alal6_mplx-gates a26ala69J7 gate-select bad s t
49 a26ala77J4 volts bad 14.5v supply] a26ala58J7 gateselect bad s t
50 a26ala77J4 volts bad a26ala59J7 gate-select bad s t
51 a26ala77J4 volts bad a26ala607 gateselect bad s t
52 a26ala77J4 volts bad a26ala61J7 gate select bad s t
53 a26ala77J4 volts bad a26ala62J7 gate..select bad s t
54 a26ala77J4 volts bad a26ala63J7 gate select bad s t
55 a26ala77J4 volts bad a26ala64J7 gate-select bad s t
56 a26ala77J4 volts bad a26ala65J7 gate-select bad s t
57 a26ala77J4 volts bad a26ala66J7 gate-select bad s t
58 a26ala77J4 volts bad a26ala67J7 gate-select bad s t
59 a26ala77J4 volts bad a26ata68J7 gate-select bad s t
60 a26ala77J4 volts bad a26ala69J7 gate-select bad s t
61 a26ala58J7 gate-select bad a26ala16 mplx.r_gates faulted s t
62 a26ala59J7 gateselect bad a26ala16 mplxrgates faulted s t
63 a26ala60J7 gate-select bad a26ala16 mplxxgates faulted s t
64 a26ala61J7 gateselect bad a26a1al6 mplxrgates faulted s t
65 a26ala62J7 gate-select bad a26ala16 mplxr-gates faulted s t
66 a26ala63J7 gate-select bad a26ala16 mplxrgates faulted s t
67 a26ala64J7 gate_select bad a26ala16 mplxrgates faulted s t
68 a26ala65J7 gateselect bad a26ala16 mplxrgates faulted s t
69 a26ala66J7 gateselect bad a26ala16 mplx.r.gates faulted s t
70 a26ala67J7 gateselect bad a26ala16 mplxr-gates faulted s t
71 a26ala68J7 gateselect bad a26ala16 mplxr-gates faulted s t
72 a26ala6917 gateselect bad a26ala16 mplxr_gates faulted s t
73 a26ala15-13 not-gate-1 bad a26ala20J2 gatel bad s t
74 a26ala16 mplxr.gates faulted a26ala20J2 gate)1 bad s t
75 a26ala15-15 not-gate_2 bad a26ala2OJ3 gate_.2 bad s t
76 a26ala16 mplxr-gates faulted a26ala20J3 gate_2 bad s t
77 a26ala15-6 not-gate_3 bad a26ala20J4 gate_3 bad s t
78 a26alal6 mplxr_.gates faulted a26ala20J4 gate_3 bad s t
79 a26ala15-7 not-gate_4 bad a26ala20J5 gate_4 bad s t
80 a26alal6 mplxr gates faulted a26ala20J5 gate_4 bad s t

Fig. 2 (cont) - Sample list of rules for module A16

pseudoterminal concept For some modules within the sonar system, all of the input terminals may have effect at a
majority of the output terminals. For modules with many terminals and that have parallel effect at the output
terminals, the equation for the number of rules becomes:

R =TixT o

R is the number of rules resulting
Ti is the number of input terminals, and
To is the number of output terminals

If, however, pseudoterminals are used, the relationship of the number of rules to terminals is additive: R = Ti + To

The savings become evident when at least two input terminals exist and the sum of the number of input and
output terminals is _5. Considerable savings in the number of rules can result from this strategy. Those savings
translate into reduced loading and running time for FIS.

8



NRL REPORT 9296

The format is the same as the one developed for the first strategy. However, the terminal name of either the
cause or the effect will be a pseudoterminal, depending on whether an input or output related rule is being considered.
While the pseudoterminal name can be any combination of characters, provided the first character is a letter, it is best
to choose a descriptive terminal name as in Fig. 2, where a26ala16 is used. Also, a parameter and malfunction must
accompany the pseudoterminal. This completes the cause or effect expression. The parameter used with the
pseudoterminal can be any group of alphanumeric characters (provided an alphabetical character leads the group), but
a descriptive, yet not real, parameter is preferred such as mplxrgates as shown in Fig. 2. "Bad" is the preferred
description of the malfunction state, although other descriptions such as faulted, in the example, are acceptable. For
the sonar system, the convention used for naming the pseudoterminal was to abbreviate the module name. The
parameter conventionally chosen is the word "function," and the malfunction condition was bad. The pseudoterminal
cannot use the whole module name since there would be a conflict of a module name being defined as a terminal
name, an unacceptable FIS syntax. In that case a syntax error results during compilation by using the FIS compiler.
In the example, the terminal name is a26ala16, which is an abbreviation of the entire module name
a26alal 6mpLx_gates.

The third strategy implemented in the knowledge database formation is rules that express an abnormal
functioning condition as the state of the normal function, i.e., a "false good." This strategy is used for modules that
display status information. For the sonar system, the modules included are indicator lights, built-in-test (BIT),
displays, and other lighted indicators. For these types of modules a bad input will not always result in the effect
being bad, since there is ambiguity resulting from the effect of a faulted module or display. In either, a good or bad
indication could occur independent of the actual fault state in the monitored area. Figure 3 contains an example of
this situation, where an error light, CORRELATOR TEST ERROR XDS8, malfunction can express a "false good."

The result is that it becomes necessary to define a rule in which several causes will provide the same effect.
This requirement prompted the development of "and" rules. "And" rules take their name from the connector & used
to link the causes. "And" rule constructs have several causes complete in themselves, but separated by spaces and
the connective &. A single effect follows the compound cause, and all other attributes of a rule remain the same.
While this is an effective method for displaying the logic of the occurrence, it is not an accepted format for the
expression of a FIS rule. FIS does not accept this format structure. To express this condition in actual
implementation, a single rule or shallow sequence of rules replaces the compound rule. This directs the ultimate
cause to a local module whose malfunction will produce a false indication. The compound condition requires a test
to link the rule to a measurable state. The example displays such a replacement:

I a26ala27 driver ADS8 logicgate open
2 ADS8 logic-gate open ADS8 light on.

In this example a shallow sequence (two levels) of rules describes the logic. The a26ala27_driver for the
indicator light ADS8 is bad, which results in the logic gate being open. With the logic gate open, the light is on
when it should be off. This situation requires care during rule description to allow consideration of all relevant
causes. For comparison, the "and" rule to describe the relationship is:

I a26ala27_driver & ADS8 logicgate open ADS8 light ok

where the & provides the logical connection of causal states resulting in a malfunction. The localized effect is
unrelated to the signal fault. Also "ok," defined as a state free of malfunctions, is used as the state descriptor, thus a
false good. This is a syntactically improper rule state for FIS. In the shallow sequence of rules, which replaces the
compound rule, a syntactically correct expression "on" replaces "ok." "On" expresses the intent to the user, while at
the same time expressing to FIS that a malfunction state is occurring. FIS only recognizes "ok" as a functional
condition.



J. MOLNAR

Cause - The cause has one of three formats in database: atom, triple, or compound (where the implementation
replaces compound causes).

The atom is the simplest form, since it is just the name of the module to which the rule refers. In Fig. 2,
rules 37 through 48 express this type of cause. The format for the name is the same as the format for the module
name defined earlier. These must be exactly the same as the module name, or a syntax error will result when the FIS
compiler is used. The atom form describes a faulty module producing any number of bad effects. The module is
identified as faulty because the input is within specification, but the resulting output is out of specification.

The triple form is the most common type of cause used in FIS rules. It consists of three elements: a
terminal, a parameter, and a condition. These three elements define a form used by FIS to identify the cause "list" in
LISP. The terminal name defines either a physical terminal that exists at a spatial location, such as an edge
connector, or it may be a logical creation, such as pseudoterminals or pseudonodes. The format used for the terminal
name is the same as the module named for all physical terminals, except that a terminal designation is appended:

xxxxxxxxJ1 6

as the J16 does in this example. In the convention for the sonar system a J denotes a terminal designed as a test-
point, as seen in rule 1 of Fig. 2. In other cases, a "-," seen in rule 13 of Fig. 2, indicates that the terminal could be
an edge or pin connection that would not readily be testable. The relationship of these rules, in Fig. 2, relates to
their physical counterpart in Fig. 1. Finally, a pseudonode or pseudoterminal has an abbreviated module name or
module name with a suffix, which can have significance related to the type of rule. This type of terminal was
exemplified by rule 74 in Fig. 2. Whether the suffix is added to the module name or the module name is abbreviated
depends on the module name and rule being described.

The cause parameter is either a measurable physical parameter or a logical creation that links the pseudo
element in a set of rule constructs. Typical parameters relate physical quantities such as volts or frequency; others
refer to system quantities such as a signal type, while others refer to more general quantities such as logic levels.

The parameter is a single group of characters separated from the terminal and state by spaces.

The state of the system parameter at a terminal can be in either fully functional or malfunctional. In analog
systems, it is common for multiple degrees of a malfunction state to exist. Conditions to express the degree of each
malfunction state must exist in the rules.

The state expression has one of two possibilities, either "ok" or any other state. The only acceptable reference
to an unfaulted condition is "ok." Any condition other than "ok" identifies a fault. However, due to the syntax FIS
requires, "ok" conditions are not a part of the rule set. The rules therefore only contain conditions for the
malfunctioning state. The "ok" condition is relevant for the compound cause however. Common faulty conditions
are: bad, high, or low. However, any other name for a faulty condition is permitted to express the degree of the
malfunction state, such as: very-high, marginally-high, marginally-low, and very-low. The condition is a group of
characters beginning with a letter of the alphabet, and it is separated from the parameter and the effect by spaces.

The compound form uses a group of causes separated by spaces and &. The individual causes may be either
atom or triple type causes, or a mixture of both types. At present, the number of compound cause elements has no
limit, but appears unlikely that more than one atom element would apply in a single compound rule. There could,
however, be a very large number of triples present in a single compound rule. The compound cause with its
associated effect and precondition must later be restructured to conform to syntax conventions. The restructuring
entails replacing the compound rule with a series of simple rules to be compatible with the FIS format. The
compound rules are useful in maintaining the thought process involved in the development, and to check the logic
for the series of rules that replace the compound rules.

10



LL-- - - - -- --A -15 -2 -q Z -

-K1 -41. 2'<4

6 g!17, ,e e-1 TS T

I AI0 6 UZAC

J1 LL-0 -r7ANPSMITrMPE,
41 354 O-rl.4ERL.ISE

u sF- FAFvbDtM PArrSpjj
V#ZIC U, O piTIvE

4bx r: 
IA 

c 
I

4g~ 2-") y ,fET ROM AIIJI/ 2
'rP,4)

I /, (Z

L-~, A I

I* <

4? /J //l-

22'

AZ.OJ2l (-rP/Z)P

31-

uSF6 &i6CqAT/V6 i( *

of6~~~~~~~ /0/e ssv' l/3E cuu
I-U LC(./C Ljv6L o#,E' -- 2. 0 o'. . - L'tJ. '-~

u&C - rV 6L ZVO - 0.0 709 4 V

GrA4 16I 14 A

CP Signal Processing Channel



E2Q

NOTE'
THE M.AJOR BOaRD CrMPOAEVTS

__________________ 4RE~ IDENIV7FED FOR m~rJ.L)C OAAL

PURPOSES ONL.

El

C Lx

AJ6

r~r M~vTi~ 8(jr,Io) AZ7



SE313-TP4MWC4o

XA Z17 CoekEL4rOR 7-rr

15-ro )xAl- Zo

joR SOA 4 D ClmPOAEVTS I I
*'AjriF/ED FOR v~SrjPL)C704AL I
FS ONLY. I

I II

I I0kL70

IIALL z rIP r 6EAMS'

MOA) I TVOtED

5 10 VO7A VS

q-1z

S& ~ 4fJDSC >

*-4.I v ve

S " eCTR 5VA/C FOM
x4itl-Z7, SN-- 44

that would result in a "false



NRL REPORT 9296

Effect - Only one format is allowed for the effect. It is the same format as the triple format for the cause. All
three elements - the terminal, parameter, and state are indistinguishable from the cause structure. This is reasonable,
since for several modules connected together the effect in one module becomes the cause for the next module. The
effect and cause relationship provides a link to express the relationship of the physical connections between system
modules. This linking effect can be seen in the example of the pseudoterminal in Fig. 2. The triple relating the
effect of rules 61 through 72 becomes the cause of rules 74, 76, 78 and 80. This linking relationship becomes more
evident whcn examining the rules for several modules that are physically linked.

Type - The type is presently just a place holder in the current implementation of the FIS database. In
previous implementations two possible types existed; sometimes s, and always a. "Sometimes" type rules indicate a
degree of fuzziness for a rule, so that the bond between the cause and effect are weakened. "Always" type rules
indicate that a specific cause would be certain to produce a given effect. Because of the probabilistic nature of FIS, it
was later determined that only "sometimes" rules would be viable, since "always" rules would produce direct
implications on module viability. Therefore, the present knowledge database can have either s or a as the type.
During the conversion to a LISP compatible format only type s is a valid default state for all rules. Later
implementations of the knowledge database will not contain the type designation.

Precondition - The precondition is a single descriptive atom that describes the condition the UUT should be
in while the test is being made. The default value is t, which occupies the remaining space in the FIS database
format. This form can be seen in Fig. 2. The default state is generally the most common condition of the system
during testing. Other than the default, any group of characters can act as a precondition, provided the first character is
a letter. Figure 4, which is an excerpt from the rules for the s9 module, displays an example of a precondition other
than the default. Since t is the assumed default, later data structures may choose to eliminate the precondition item
and default to t, unless a unique precondition exists.

Module: a26alS9

No Cause Effect Type Precondition

1 a26alS9-1 timeslot_1_volts hi a26ala2411 time-slot_1 _volts hi s a26alS9set-to-oper
2 a26alS9-1 timeslotI _volts lo a26ala24J1 timeslot _volts lo s a26alS9set-to-oper

Fig. 4 - Excerpt from rule list for module a26alS9 exemplifying a nondefault precondition

Optional Items

All text items that follow either a rule number or the word "module" are considered to be information
necessary to FIS. If other information that is only for human consumption is present in these locations then that
information is considered optional and may only be included if delimited on the left by a I or f, and on the right by a
I or), respective of matching the first delimiter. A comment closing delimiter must occur on the same line as the
beginning comment delimiter to identify the item as a comment.

Other optional items desired in the file may occur without delimiters provided they are not in a module or rule
location. Several types of this information are found to be useful in the rule database for the sonar system.

13



J. MOLNAR

For the purposes of data management the following items provided valuable optional information:

a. A data title to describe the file information;
b. The date of the rule set version;
c. Column headers, such as No (Number), Cause, Effect, Type, and Precondition increase the readability;
d. If a rule is deleted, replacement of the rule with a comment, such as [deleted, date];
e. Page numbers;
f. Any other comment about the state of the file.

Each of these features are found in Fig. 5, except the page number that would be in a standard location such as at the
bottom center of each page.

Left Correlator Rule Base
July 1989

Module: a26ala58_mod-.amp-mpx

No Cause Effect Type Precondition

1 a26J3_beams volts hi a26ala5811 volts hi s
2 a26J3_beams volts to a26ala5811 volts lo s
3 a26J3_beams uniformity bad a26ala58J1 volts hi s
4 a26i3_beams uniformity bad a26ala5811 volts to s
5 a26J3_beams waveform bad a26ala58J1 waveform bad s
6 a26ala58Jl volts hi a26ala5813 volts hi s
7 a26ala58J1 volts lo a26ala5833 volts lo s
8 a26ala58Jl waveform bad a26ala58i3 waveform bad s
9 a26a1 a7OJ3 reference-.signal bad a26ala58J3 volts hi s
10 a26ala7033 reference-signal bad a26ala58J3 volts lo s
11 a26ala7OJ3 reference-signal bad a26ala5813 waveform bad s
12 [Deleted 21 July 1987. Moved to a26alFLl.l
13 [Deleted 21 July 1987. Moved to a26alFLl.j
14 [Deleted 21 July 1987. Moved to a26alFLl.]
15 [Deleted 21 July 1987. Moved to a26alFLl.]
16 [Deleted 21 July 1987. Moved to a26alFLljl
17 (Deleted 21 July 1987. Moved to a26alFLljl
18 a26ala58J4 volts hi a26alS9-l rime-slotI _volts hi s t
19 a26ala58J4 volts lo a26a159-l time-slotI _volts lo s
20 a26ala5834 waveform bad a26alS9-l time-slotI-waveform bad s
21 a26ala58_mod-amp-mpx a26a1S9-1 time-slot_1_-volts hi s
22 a26ala58_mod-amnp-mpx a26alS9-l time-slotI -volts lo s
23 a26ala58_mod-amp-mpx a26alS9-1 time -slot_-I _ waveformn bad s
24 a26ala58J7 gate_select bad a26a1S9-1 time-slot_1 -volts hi s
25 a26ala58J7 gate-select bad a26alS9-l time-slot_1_-volts lo s
26 a26ala58J7 gate-select bad a26a159-l time-slot_1 _waveform bad s
27 a26a76J3 volts bad 1+12v supply] a26alS9-l time-slotI _volts hi s
28 a26a76J3 volts bad a26alS9-1 time-slotI _volts lo s t
29 a26a7613 volts bad a26alS9-l time slotI _waveform bad s
(Modified 21 July 1987. a26ala58-mod-amp-mpx: Moved rules 12-17 to a26alFLljl

Fig. 5 - Excerpt from rule list for a26ala58 module displaying the format for comments

14



NRL REPORT 9296

Testlist File

While the causal rule file defines the interrelation of all of the modules, it does not contain useful information
for the technician or automated test equipment. The testlist file contains all the basic information necessary to
perform a test, except explicit instructions. FIS uses the information contained in the testlist file to suggest to the
user which tests will provide the greatest amount of information about the system's state; the best test. With the rule
information, FIS correlates the information so that each real test provides implications on the health of modules.
The testlist, when converted to an FIS format, then provides the information necessary for the inference engine to
calculate the effect of performing a test.

For the sonar system, the information contained in the testlist was obtained from the actual tests in the
troubleshooting process, as given by the sonar system manuals [2,3]. The tests defined are based on the use of real
test points designed into a system and that are readily accessible. In addition to measurable test points, tests that
include reading indicator lights, displays, or monitors are visual tests, and their interpretations provide the test result.
Figure 2, from Ref. 2, displays an example of general test information that is available from the module level
schematiLs. If additional information to complete the test definition is needed, the knowledge engineer should refer
to a detailed schematic such as is found in Fig. 6 [3]. Figure 6 provides a descriptive procedure in addition to detailed
schematics. This information should be sufficient to describe tests in the correct information format and will give
sufficient detail in creating the instruction information for FIS.

Again, as in the causal rule file, two types of information exist. One type is information that becomes
functional for FIS. The other type is optional information that is used in the management of the data. The
following description of the required information is listed in the order in which the information should appear as
columns across the page. The appropriate column header defines the column of information. The section on
"optional information" presents a description of the header information.

Figure 7 shows an example of the format used for the sonar system test information with a more extensive
example appearing in Appendix B.

Name

The name should be descriptive of the test. This item is created by the knowledge engineer and should be
tailored to his needs. It must be an atom that has a letter as the first character. The convention used for the sonar
system was to abbreviate the name of the test point, or to abbreviate the test point and add a suffix for cases that
require additional identification. Such a convention allows the user, who will not be able to remember all of the test
names, to more easily make tests in FIS by using the make test name (mtn) command. If the user wishes to by-
pass the best test information, an intuitive naming structure simplifies the function of making a test. If, however,
the name is not intuitive, the make test (mt) command still allows the user to enter the terminal. FIS then prompts
the user for the parameter and setup.

Other strategies have created names that are just test numbers led by the letter "t." These strategies have
primarily been conceived for Test Program set generation or use with automatic test equipment. If this strategy is
used for technician aid applications, a method must be developed for the user to identify the name.

Test point

The test point should follow the same format as the terminal used in the causal rule file. A correlation must
exist between the terminal name used in the causal rules and the terminal identified in the test information file; they
must be exactly the same names.

If the test points do not correspond, FIS will signal that syntax errors exist. If the knowledge engineer
ignores the syntax errors, FIS will compile the knowledge database, but it will lack of logical connection between
tests and rules. Errors will result when using the knowledge database. Therefore, it is important that the knowledge
database be cross-checked for such occurrences of syntax errors.

15



J. MOLNAR

Parameter

The parameter also should relate to the causal rule file and have the same format. The purpose is to name the
physical parameter that the user would measure in the performance of a test. Again, if the parameter does not match
the parameter as expressed in the rule, then the elements of the knowledge database will not maintain their
continuity.

Units

The unit item is similar to the parameter, but it defines precisely the parameter unit to measure. For
example, the units for the parameter voltage (or volts) could be volts, millivolts, microvolts, etc. The "unit"
indicates that a quantitative value has a unit that must be consistent with the test procedure. Primarily, the format
requires units so that the technician when using FIS will enter an appropriate quantitative value to provide an
accurate test result.

Qualitative Values

At least two qualitative values are presumed, one naming the functional state and all others defining a
malfunction. The only qualitative functional value acceptable to FIS is "ok." All other qualitative values represent
malfunctioning states. The qualitative values would also correlate with the conditions described for the causal rule
file. Thus, for example, if five different types of malfunction exist, then there should exist five types of rules with
the appropriate states identified. The malfunction states arise from the levels of performance variation.

The format for the qualitative values is that they must occur in a column with no line spaces between the
entries in the column. It is not necessary that "ok" always be at the head of the column, but it is a good practice.

Minimum Quantitative Value

This number defines the minimum value that is acceptable as a functional "ok" reading. By definition, any
value less than the minimum quantitative value corresponds to a malfunction and relates to the relevant qualitative
value. The range then defined extends from negative infinity to the minimum quantitative value; this will always be
the case. If various levels of malfunction exist then the minimum will define the absolute lowest limit functionality,
and the other states will fall outside the defined bound extending to negative infinity. Relating the value in Fig. 7 to
the actual test point in module A70 of Fig. 1, the minimum value can easily be seen to correspond.

Maximum Quantitative Value

This number defines the maximum value that is acceptable as a functional "ok" reading. By definition any
value greater than the maximum quantitative value corresponds to a malfunction and relates to the relevant qualitative
value. The range defined extends from the maximum quantitative value to positive infinity. If various levels or
malfunctions exist, then the maximum value will define the upper limit of functionality, and other states will fall
beyond the defined bound to extend to positive infinity. Similarly, the relationship of the physical measurement of
Fig. 1 can be correlated with the value of the maximum value given in Fig. 7.

Cost

The cost is a value defined in terms that assume an approximate cost of the actual performance of the test. In
an earlier version, FIS uses cost as one of the criteria for selecting a test as a "best test." The cost item is not used
in the present version. If implemented, the cost value is generally a simple number, but it may be an equation for
computing the value.

16



CIRCUIT DESCRIPTION
•. ) . - --

The network coupler accepts logic levels and provides

output alarms when any of the inputs are absent. The network -0. 3-1

coupler consists of six circuits. Input levels for the cir- ' :84 uSEc

cuits are 2.0 to 4.0 vdc (high level) and 0 to 0.6 vdc (low '2: 8 .SE

level). Circuits 1, 2, and 5 contain a mixer network with a

long time constant that determines the duty cycle. The out-

put voltage levels are a function of the duty cycle of the
corresponding input signal. The normal inputs must be con-

tinuously present for the outputs to remain less than +150

my. In circuit 1, logic signals are applied through finger 3.5V

contact 4 and diodes CR1 through CR3 to the base of inverter 3

01. Q1 collector output is applied through a long time con-

stant network (C1, and RI through R6) to finger contact 29.
The output at finger contact 29 is a function of the average

dc voltage at 01 collector and the input duty cycle. The T:4 r U

output increases at finger contact 29 above the alarm level T2:354 USE

of +150 mv when the input duty cycle drops below approxi-
mately 17 percent (20-usec positive mv width out of a 118-

usec period), and decreases below the alarm level of -150 my

when the input duty cycle raises above approximately 85 per-

cent (140-usec positive pulse width out of a 1416-usec

period). Any steady state input of a logic low level or hig and 06 cuts off. With Q6 cut off, emitter follower 07 co

level causes an alarm voltage which exceeds +150 my. d U2 is set Woth a6 su t and te followe at fo

Except for duty cycles, circuit 2 functions are similar ducts, U2 is set to the alarm state and the voltaoe at f

to circuit 1. The logic levels applied to finger contact ger contact 4 drops to below -150 my.

operate the circuit of inverter Q2 in a similar manner to The fault locator transmit pulse at finger contact
that of Q1. occurs at a slow rate compared with the multiplexer sign

The output increases at finger contact 30 above the rates. The pulse (a logic high level) is coupled through t

alarm level of +150 mv when the input duty cycle (1416 usec) inverters in Ul to sharpen the waveshape. The output of U1

drops below approximately 10 percent (140-usec positive is directly coupled to U2-10 which is the clear input a
width), and decreases below the alarm level of -150 mv when resets the flip-flop periodically, so that the alarm le\

the input duty cycle rises above approximately 35 percent will not remain when the fau]t condition is only temporar,

(500-usec positive width). Any steady state input of a logic In circuit 4, a logic level is applied to finc
high or a logic low causes an alarm voltage that exceeds contact 18, through diode CR35 and voltage divider R41.P

+150 mv. to finger contact 43.

Circuit 3 combines 12 input multiplexer gates at a 12- In circuit 5, a 4-MHz squa-e wave is applied to finc

input NOR gate (CR7 through CR32) and applies them to the contact 19. The output at finger contact 44 is a nominal
base of inverter 03. The inverted composite of the inputs volt if the input is 0.3 to 3.5 vdc. When the input is
appear at 03 collector and J3. Under normal conditions, the continuous high or low level, the output of mixer netwo
inverted composite waveform is a continuous uniform logic (R43 through R46, and C6) changes to a + 500 my ala

signal. The inverted composite waveform is coupled to U1, output.

through diode CR33, to integrator R28 and C3 to the base of Circuit 6 consists of an input at finger contact
emitter follower Q4. The inverted composite waveform from Ul which is applied to inverter U1. The inverted signal outp

is coupled through CR34 to integrator R30, C4, and C5 and from Ul is applied to finger contact 45.

applied to the base of Q5. With normal inputs, both integra-

tor voltages remain below +3 volts and emitter followers

(used as OR gates) 04 and Q5 are cut off. When a fixed low
level is applied, the collector of 03 becomes more positive, NOTE

C3 charges to a level greater than +3 volts, Q4 conducts
more heavily, 06 cuts off and the emitter of Q7 goes down to This unit may have part number 77060222761 or
near grouno potential. This sets U2 to the alarm state and 77D61197961. Both units are electrically and

output mixer R37 through R39 at finger contact 42 drops to physically identical, although component differ-
below -150 my. When a continuous high level is applied, the ences do exist. If repair of the unit is required,

collector of Q3 goes less positive and the output of U1-2 the proper replacement component can be selected
goes more positive. As a result, capacitors C4 and C5 charge from the parts list given in DATOM Manual 8

to a level greater then +3 volts, Q5 conducts rmore heavily, SE313-TP-MMC-110.



NRL REPORT 9296

T 2

-0. --V 700 04
* 3. 

.v2-

:j84 USEC 62
T 2 : 1 ,I U S E C \ \ \IC2 K C R 2 C P3

• 0. 7V€ "' V

S ET S IG N A"2 N 2 4 B ,

R7
- 3. 5 v 2 2K P 2.

P9-0. IV __- 7 
4700 

P 90,

CR4 CR5c 6 0... .

T I: 14 16 USE C 0 ,. 4V

0. 7;v :NVT2-354 USEC GATE 4 5
,F. 2N2481

R,3 i I
22 K 

R58

c68C
I CP? Cn87"

off, emitter follower Q7 con- 6 6
r state and the voltage at fin-

-150 my.
PI4

nit pulse at finger contact 17 22
ed with the multiplexer signal 

-P9 
cRIO

h level) is coupled through two
E! waveshape. The output of U1-3 1 4 ,L4- '-- 

- - -

I which is the clear input and 12 
T 2

,ally, so that the alarm level
t condition is only temporary. 5 uS1  

- ,
level is applied to finger

35 and voltage divider R41,R42 C1 R,2I

lua'e wave is applied to finger MULTIPLEXEP 3 7
riqer contact 44 is a nominal 0 1T E, ... c ,

3.5 vdc. When the input is a
the output of mixer network "22

-hanges to a + 500 my alarm
I - , I CP 14

in input at finger contact 20
U1. The inverted signal output 4 _ . " " '

,ontact 45.

22x

)TF C

-t number 77D602227Gl or
9 are electrically and Q 4

though component differ- 770613285-1
of the unit is required,

-omponent can be selected
iven in DATOM Manual 8

Fig. 6 - Detailed schematic diagram for Unit 26 of the AN/SQS-53B, which displays component level informati
and detailed test procedure information (primary focus is placed on module 26AIA19) [31

17



SE313-TP-MMC-090

GANI
OC
ALI

5 2 T29 4 FL SENSE PT

-, .v, ,-70 MV NORMAL Tt:96 USEC)
I *220 "V ALARM 'LOGIC 0'

!N -+--- P-200 MV ALARM LOGIC i
INV Cl R 5 i Q6

JNN 8 'OuF 2370 26'
Jr NZN24BII GPNIO N--48 

-2r.' tE CGAN)

OC2
L- 5V A _F 1

RIO

30. 3(

909K30 PL SENSE PIT

-30 MV NORMAL T2:954 USECI
0.4IV , BLK) 280 MV ALARM T:0)

-r . 4V GRND -470 M V ALARM T2:708 uSECd

c NV I 1 2
, Z -," - I Our f K , <1 261 KY' jr 2N248' I 6I" '=

2 
'-25V REF

26 GNO

-25v ,EF T 22 25

- .4, 4VRE

Y4. 5VV

GriN'

KP - 3 <26 I P35
P27 or

.... 220 coo

@ , ~~JON2N, '',i

Sj -- 2•7

* SH? -2. 3. '" 2SN D6 2ONE I6 ' N2N2905

0 13 E EMs ' 3 E4

47 ~ -"N2N2905
T -IN 4 '00 [ OLLOWER

-" 0. 6, 4-k 0SE7P

3 1- 7- °" 2N 90

0.. 33 Y

13~ 53K
T , IjS F:

6 V

SCHEMATIC DIAGRAM Diaqram is provided for information only, The
assembly is not repairable onboard ship.

)nent level information
JA19) (31



NRL REPORT 9296

S3
$1 POSS
TEST $2 QUAL $4 $5 COST, INSTR 1W

NAME POINT PARAMETrE UNITS RES NN MAX SECOND)S PREREQUISITES NAME PARAMlEfiS

A70J7scope a26alA70i7 volts volts hi 6.8 8.4 20 unit-26-door open v-dif-scope $6=26A1701S

Io a26aldrawer open S7=peak to peak

ok diff-scope ready
probe on a26alA70J7

Fig. 7 - Excerpt from testlist, displaying the format of optional and required information

Prerequisites

This column of values defines the default state the system must be in for the test cost to be of the value stated
in the cost column. The format is that a prerequisite must have two sets of characters separated by a space. In
general, the purpose of the prerequisites is to display the state of the system or test instrument. FIS does not use
this item; the sole purpose is to define "like tests" for the knowledge engineer to use in managing the data.

Instruction Name

FIS uses items in this section and the next section to display operational instructions to the technician.
These items provide the means of correlating the tests that contain specific information with the general instructions.

The "Instruction Name" is a single set of characters beginning with a letter and relating to a test instruction
procedure that occurs in the instruction file. The instruction name identifies with several tests because the
instruction provides general information for a class of tests. By relating the test to the instruction several advantages
can be realized, such as reduced disk usage, reduced RAM requirement, and reduced loading time for the knowledge
database. Also, in the knowledge database format the knowledge engineer can readily relate tests to instructions.

Text Parameter

The text parameters also relate to the instruction file and provide specific test instruction information to the
instruction command of FIS to tailor the generic instruction to a specific test. The purpose is to reduce the number
ot instructions needed in the file. The text parameter can be of any format. A $ and numbers identify the field,
which relates to a $ and number in the instruction. During operation the fields, identified as text, fill into the
instruction blanks for each test.

Column Headings

Column headings occur above the columns containing the data. The actual column heading can have any
name, but at least one space must separate the headings. Overlapping column headings are not allowed. The
complete heading consists of four lines. As Fig. 7 shows, the first line may only include the characters $3 (where
$3 indicates a column field that provides information to the instruction file) and spaces. The format uses $3 to
identify that the following three lines are lines of the header and, secondly, to mark the qualitative value column.
This is just one of the columns marked with a $ followed by a number. These columns contain information that
passes to the instruction file when processing an instruction for a test. While the numbers relating to the column
information are not rigid they must correspond to the information required for a corresponding $ numbered space in
the instruction file. Therefore, the format used for the sonar system has the following $ numbers corresponding to
the column information stated:

19



J. MOLNAR

$1 - Test point

$2 - Parameter
$3 - Qualitative value
$4 - Minimum quantitative value
$5 - Maximum quantitative value
$6, $7, $8, $9 and $0 - Contained in the text parameter column.

Setup

The setup consists of a single field of characters used primarily to differentiate tests made at a common test
point. It can also identify a unique testing condition that would be common for several tests. This item was not in
the original format as seen in Fig. 7. It was added through the FIS editor before compilation. Th- format was later
revised to include a column for the setup.

Test Type

The two types of tests may be either performance or diagnostic. Performance tests determine if the system is
working, if it is out of specification or has some parameters misaligned. Performance tests "P" isolate to the
functional unit where the fault is occurring. Diagnostic tests "D" are those tests used once a fault has been
determined to exist. This occurs only after a performance test has failed. Diagnostic tests isolate to the faulty
module. This item was not in the original format as seen in Fig. 7. It was added through the FIS editor before
compilation. The format was later revised to include a column for the test type.

FIS uses the test type to prioritize the best tests. FIS first selects performance tests as the best test. This
continues until the performance tests are exhausted, or a performance test has provided a result out of specification.
Upon completing a performance test that indicates a malfunction, diagnostic tests become available for FIS to
suggest as best tests. If a "bad" performance test occurs, then FIS has the ability to select the appropriate best test
from the combined set of all performance and diagnostic tests. In this case, the heuristic search criterion determines
which best test FIS will provide.

Optional Items

An optional item may appear anywhere in the file. They are delimited on the left by I and on the right by ],
or they must have an * as the first character. Anything appearing in the file that is not part of a column heading is
data. Thus, page numbers, dates, tides, page headers, comments, etc. must appear as optional items.

Remaining Notes on the Testlist File Structure

Data for a particular test do not have to appear on consecutive lines, i.e., comments and blank lines may break
up a block of data. This is useful, for example, if information of a column extends onto the next page. However, a
new column header may not occur to break up the block of data.

Precondition File

The precondition file links the preconditions established in the causal rule file with specific tests. The
specific precondition will apply when preparing to perform a test, since it implies that a particular condition exists
to allow the rule to fire. The precondition file also defines if any particular sequence is required to perform a test.
Because of the simplicity of this file, direct preparation in the LISP format becomes possible, and eliminates the
need for conversion from a human-readable format. However, should direct preparation of this file become
inconvenient, a conversion could be developed. The two essential elements of the precondition file are the file title
and the precondition definitions. The precondition file is created by the knowledge engineer from the available
information used to create the rule preconditions. In general, these arise out of unique switch states that must exist
in the system to allow a different signal to pass or a connection to exist. An example of a precondition file is
supplied in Appendix C.

20



NRL REPORT 9296

The File Title

The name of the file should coincide with the name for the causal rule and the testlist files, and it must have
the .prec suffix instead of the respective .rule and .test suffixes. This title appears only in the naming of the file and
not in the file itself.

Precondition Definitions

The preconditions that appear in the causal rule file apply to a set of tests identified by the test name. Also,
since the precondition is a switch state, then the reverse switch state definition becomes a default by producing the
negative precondition, or not precondition. The precondition should be a lisp atom, or, if necessary, more than one
lisp atom. The following indicates the contents of the structure:

((PreconditionA (TestName_I TestName_2 TestName_3))
(Precondition_A Off (Not PreconditionA))
(PreconditionB (TestName_3 TestName_4 TestName_5))
(PreconditionC (TestName_6 TestName_7))).

If the precondition definition is unnecessary because of the nature of the system being analyzed, then it is appropriate

to define the information set as NIL.

Order Information

The order information identifies tests that must be performed before other tests can be made. An example of
such a test is when the system must be in a different functional state for two separate tests. Subsequent tests branch
out of each of the tests performed, while the system is in different functional states. Thus, if the first test is
omitted, the system is not in the correct state to perform subsequent tests. Two elements are provided; the file title
and the order definition. An example of the structure and format is supplied in Appendix D.

The File Title

The name of the file should coincide with the name for the causal rule, testlist, and precondition files, but should
have the .ordr suffix.

Order Definitions

The order required for testing defines branches -how certain tests must follow other tests in order of execution.
The following indicates the contents of the structure:

((TestNameA (TestNameB TestName_C))
(TestName_D (TestNameE TestNameF TestNameG)))

In this example, two lists of orders exist for performing tests. The first is (TestNameA (TestNameB
TestNameC)). Within this list, TestNameA is the name of a test that must be selected and performed before FIS
allows TestNameB and TestNameC to become available to the user. Thus the order of performing TestNameA
before the other two is important because TestName A produces a state that affects the performance of the other
tests. The requirements for ordering tests did not appear in the sonar system application. It could, however, have
been implemented to require all of the tests with the same precondition to be performed in some order at the same
time. In essence, the order list allows the knowledge engineer to have a means of defining a test sequence that
should be performed by the technician. Similarly, in the example, TestNameD must be performed before
TestNameE, TestNameF, and TestName_G become available tests. Whole sequences of tests can be defined by
nesting the following test in parentheses after the test which should precede it.

21



J. MOLNAR

If the order information is unnecessary because of the nature of the system being analyzed, then it is
appropriate to define the information set as NIL.

Instruction File

The instruction file provides textual instructions to the technician during a test sequence. Three primary
elements are in this file: the instruction name, instruction text, and string inputs acquired from the testlist file.
Figure 8 shows an example of an instruction file. A more extensive excerpt is available in Appendix E.

Instruction Name: A45J5_a

Instruction Text:

"Connect oscilloscope to ",$1,".

Observe modulated pulse with duration of approximately 50 msec.
Measure the peak to peak amplitude of the pulse.
The correct range is,"$4", to, "$5"."

Fig. 8 - Excerpt of an instruction from that instruction file

Instruction Name

This item must appear as the words Instruction Name followed by a colon (:). The actual name of the
instruction (that should be correlated with an instruction name in the testlist file) follows after any number of spaces,
as shown in Fig. 8.

Instruction Text

This item must appear as the word Instruction Text followed by a colon (:). The actual text must follow after
at least one space and a right quotation mark ("). Items following the quotation mark are part of the text until
encountering the second quotation mark ("). Subsequent text enclosed in quotation marks may follow until the
instruction text is complete. A break in quoted material usually is where string information from the testlist file
occurs. In Fig. 8, all the generic text for several tests is enclosed by quotation marks, and the specific information
for each test is supplied in the unquoted area marked by the string number.

String Input

The string input is a number, 1,2,4,5,6,7,8,9 and 0, led by the dollar sign $, as in the example, $1. The
testlist information provides FIS with information to complete the instruction, permitting instructions to appear as
complete text, with the addition of the linking test information.

During conversion to the LISP format, comments and any other optional information entered in the file are
ignored. Only information in quotations or string variables identified by $, or the instruction name identifier
instruction name are converted.

22



NRL REPORT 9296

Conversion of Knowledge Database from Human Data Management Format to LISP Compiled
Database

The information described in the previous chapter on knowledge database formation provides the substance
that the FIS shell needs to act as a technician's assister. It is not, however, in a format that the FIS can use, except
for the unaltered precondition and order files. FIS is written in LISP, therefore, it is necessary to translate the
information from a format that is understood by humans to the language that the FIS can understand.

To perform this conversion, several programs were written in the C language. The computer used was a VAX
11/780 with a VAX/VMS 4.6 operating system. A version with slight modifications for UNIX was also created. It
was convenient to select this machine for data management. Since FIS is implemented in a UNIX operating system
environment, the files, once converted, were transferred to the computer running FIS. The conversion programs in
Appendices F, G, H, I, J and K were portable to other computer and operating systems. Appendix F provides the
automated procedure for rule and test conversions. Appendix G provides the semiautomated procedure for rule
conversion. Appendix H provides the automated procedure for testlist conversion. Appendix I provides the
semiautomated procedure for testlist conversion. Appendix J provides the procedure for extracting test instruction
information from the testlist file. Appendix K provides the procedure for formation of instruction information. This
Section provides the information on how to use these procedures.

The four conversion programs used provide a LISP consumable form for the rulelist, testlist, and instructions.
The reason for the four conversion programs is that the testlist contains information that is required by both the
UUT file and LISP instruction function of FIS. Therefore, two of the conversions provide the information, the
testlist and instructions, to two different respective parts of the FIS palatable knowledge database. Once converted,
the user appends the resulting files into a single file. This file is compiled to the executable FIS Knowledge Base.

Rule Conversion

Three types of rule conversion exist. One generates the rules into a FIS format, readable through the FIS
editor. This type of procedure adds new modules and corresponding rules to an existing knowledge database, and is
semiautomated. Another type of procedure is automated and results directly in the correct FIS format, with default
values given for certain data items. This was the primary method used in the sonar system application. The third
type of conversion enters the data manually by using the FIS editor. This last method was used to make minor
changes.

In each method of conversion the rule database stores the essential information in a file accessible by FIS.
All conversions eventually result in the same information existing in the knowledge database. The first type,
however, demands a second step that requires human interaction with the FIS editor to arrive at a final format. The
second type of conversion produces a final format, but some information, such as failure rates for modules, is given
a default value that can be modified to an actual value. The third type is directly formulated as the user enters the
information through the editor.

Semiautomated Rule Addition

In the first type of conversion, the module name, defined in the rule database, is stripped during the conversion
process and an output file is generated with its name. The program contained in Appendix G is used to perform the
conversion. When the program executes it uses the rule data file as the input file. Each of the module names, in the
rule data file, is given to an output file opened with the same name. The output file generated contains all of the
rules associated with that module.

The conversion generates a separate file for each module within the UUT, with the file name being the module
name. The format of the output file is the precondition (defaulted at t in the example), the cause, and the effect

23



J. MOLNAR

associated with each rule. The following is an example of the contents of the file generated from this conversion:

t power (a26.cabinet pwr volts bad)

t (a26_cabinetpwr volts bad)(a26ala74j volts bad)

t (a26.cabinetpwr volts bad) (a26ala74j3 volts bad).

where t represents the precondition for each of the three rules. In the first rule, power represents the cause. In the
second rule, the list (a26-cabinet-pwr volts bad) represents the cause. In the third rule, the cause of the second rule is
repeated. The effect of the first rule is the list (a26-cabinet-pwr volts bad). The effect of the second rule is
(a26ala74j1 volts bad). And the effect of the third rule is (a26ala74j3 volts bad). The cause may be either a module
name or a triple in the form of a list, enclosed in parentheses, that consists of a test point, a parameter, and an
abnormality. The effect is always a triple.

The conversion program prompts the user for the name of the file to convert. After entering this information,
the conversion will occur resulting in new files, one for each module in the rule database. Thus, after the
conversion, the working directory will contain as many new files as there were modules in the rule base. When
entering a Is command in UNIX, the directory listing will include all of the files existing before the conversion and
the new files generated in the conversion. If the converted file is not in a proper format, as described in the previous
section, then the conversion will occur, but an error message will indicate lines where the format is inappropriate.

Once converted, the user invokes the FIS editor to include knowledge database rules in the file. Prerequisites
are that a shell knowledge database file has been created and exists in the application memory of the FIS application.
The user chooses the editor function within FIS. When entering the editor, the user selects the module editor menu
item. The module editor then allows the user to add, delete, or change all of the information associated with modules
and rules through two viable options, manual and automatic.

Manual Rule File Addition to FIS - The manual procedure requires that you choose the add-module
command. FIS prompts the user for the module name, the failure rate, and the rules. The module name is evident.
The failure rate is the normalized value of the System (in this case the AN/SQS-53B) component's mean time to
failure. If this is not available, then a default value is used. Finally, the user may add individual rules as he would
for adding small numbers of rules. If the rule files are already prepared, then the user provides a NIL as default when
prompted by FIS to enter the rules for each module. This completes the setup of the file. Now the user adds the
rules by invoking the rule-file command in the FIS editor menu. This requests the name of the file containing the
rules and the index number of the module, in the FIS knowledge database, to which the rules will be added. The user
should exercise caution to ensure that the index used matches the name of the module rules. Since only the index
number - not the actual name - is used, confusion could occur. To obtain the proper index, the user may invoke the
show-module command in the module editor. A module index must be used to access the rule files for each module.
The process continues until all rules are added.

The following example illustrates the process involved in using the semiautomated/manual procedure for rule
addition. In the following example these notes apply:

a. Each new step is boxed. This may be an entire display screen or just the relevant change from the

previous screen. This method of presentation is used to conserve space and to clarify the actual action that occurred.

b. User responses are in bold text.

c. Explanatory comments are in italics between boxed text areas.

24



NRL REPORT 9296

The example follows:

This menu resuls from selecting the editor selection at the top level of FIS.
INSPECT MISC.

me: module-editor q: quit
te: term-editor
pe: prec-editor
oe: order-editor

Enter command or ? --> me
The me option is used to enter the rules.

INSPECT MODIFY 1/0 MISC.

sm: show-module am: add-module r. read ii: lisp
sms: show-modules din: del-module w: write q: quit
srs: show-rules drs: del-rules

ar add-rule
ef: edit-field
df: del-field
rf: rule-file
mm: modulemaker

Enter command or ? -->am
A module mustfirst be added to thefile.

Creating a MODULE entry
Enter NAME -->modl
The user must enter the name of the module.

Enter FRATE -->.1
A failure rate is entered that may be a default or a result of normalizing the reliability information for the system. A
number less than one is reasonable.

Enter CAUSAL-RULES -->nil
Entering nilfor the causal rules completes the module information, otherwise manual rule entry would be required at
this point.

INSPECT MODIFY 1/0 MISC.

sin: show-module am: add-module r. read li: lisp
sms: show-modules din: del-module w: write q: quit
srs: show-rules drs: del-rules

ar add-rule
ef: edit-field
df: del-field
rf: rule-file
mm: modulemaker

Enter command or ? -->sms
The sins command is selected so that the module names and their indices will be displayed.

25



J. MOLNAR

The terminals and their indices are displayed below in groups of 14. When the "more" appears at the bottom of the
list a return will cause the next group to display. These are identified by the dots and the boxed screen indication.
1. POWER
2. A26A1SI0
3. A26A1S8_ENDTESTSWITCH
4. A26AIS9
5. A10_DELAYLINE
6. A17_AMPLCONTROL
7. AIDELAYLINE
8. A22_SIGNCONTROL
9. A23_ATOD
10. A24_AMP
11. A26_REFERENCECONTROL
12. A29_DELAYLINE
13. A2_DELAYLINE
14. A30_DTOA
more

30. MODI

When the user is familiar with the indices he invokes the rf (rule-file) command.
Enter command or ? -->rf

Enter file name -->"modl"
The name of the file is entered. It must be surrounded by double quotation marks.

Enter MODULE id -->30
The appropriate index is supplied.

Enter command or ? -->
The procedure can be repeated until all modules and rules have been entered.

Automated Rule File Addition to FIS - The automatic method of preparation uses the command
modulemaker. When the user invokes this command, FIS prompts him for a file name whose contents include a list
of all the module names separated by spaces, or on separate lines. To prepare this file in a simple way the UNIX
command is used,

Is > modulenames

where the only contents of the directory are the module rule files whose names are the modules' names. If other files
exist, the user can invoke a text editor to remove extraneous information from the modulenames file.

Following the prompting for the file name of the modules, the command prompts the user for an output file
name. FIS adds a .v suffix to the name. When the function executes, it produces a file whose contents are exactly
the same as the manual process, using a default failure rate of 0.1 (this can be edited later if necessary). From this
point, the process of adding the rule is exactly the same as the semiautomated/manual process. All parts of the
example for the semiautomated/manual-rule file addition procedure apply after the initial module addition. For the
semiautomated/automated procedure the modulemaker command replaces it and the user is prompted to the name of
the file that contains the module names. This process is named semiautomated because a significant level of human
involvement is required to create the rules. The automated procedure, which minimizes human interaction, is
described in the next section.

26



NRL REPORT 9296

Automated Rule Addition

In the automated conversion, the data file converts directly from the rule database format to the format
compatible with FIS. The listing of the program that performs this conversion is shown in Appendix F. This
program constructs a complete .v file with the rule and test information, if the rule and test data files are provided as
input. If just the rule part of the .v file must be created, then a dummy input file must be provided as the name of
the testlist file. Conversely, if only the test information is to be entered, a dummy file is provided for the rule file
input. Originally the procedures used in this program were separate programs, but they were joined to make a fast
cohesive method for constructing the knowledge database contained in the .v file.

This conversion, when executed, first asks for the rule data file's name, then the name of the testlist file.
Next the program prompts the user for the name of the output file. A .v suffix is added to the file name
automatically. The conversion occurs resulting in a file whose name has a .v suffix. The result is a complete .v fide
in the correct format. This means that the rule and testlists are constructed in the proper place within the file, and
NILs are supplied for the lists not yet entered such as orders and preconditions. This is exactly the same as the result
of the first method of conversion, except that the first method does not account for adding tests. In the first method a
NIL is supplied in place of the testlist. If a dummy file is supplied for the name of the testlist file, the two produce
exactly the same .v file. As in the semiautomated/automated rule addition procedure, the automatic conversion
routine supplies a default failure rate of 0.1 for modules, which may later be edited as necessary. The .v file prepared
in this manner, with rule and test information provided, is in a form that will permit a successful compilation to a
working knowledge database.

Manual Rule Addition

The all manual method requires that FIS be loaded, a knowledge database .v file loaded, and the knowledge-
editor command selected. Within the knowledge editor, the user should select the module-editor command and then
select the command to add modules. FIS prompts the user to enter the module name and all the individual items
composing the module. Each module is added separately. The manual entry of rules with the FIS editor is discussed
in this report.

Testlist Conversion

The user may perform the conversion of the testlist manually, semiautomatically, and automatically in a
manner similar to the conversion of the rulelist. Only the functional test information from the testlist file such as
test name, test point, parameter, units, qualitative and quantitative values, the cost, type, setup and precondition
information is used to construct the FIS testlist item.

As in the converted rule file, the parentheses enclose all elements of the file. Assuming a successful
conversion without format errors, then a file is generated as the one below:

27



J. MOLNAR

(Test-point (Test-name-I Param
Setup
((Quaval-) ((Quant-1 Quant-2))
(Qualval-2 ((Quant-O Quant-1))
(Qualval-3((Quant-2 Quant-3))))
units
testtype
cost
focalmodule)

(test-name-2

The entire quantity is enclosed in parentheses to define, in LISP terms, that the information is a list of the
tests. This quantity is then incorporated into the appropriate position within the .v file, replacing a NIL that held
the place. The actual format and manner that results after the conversion depends upon the type of conversion used.
Each provides a slightly different format because the whole process using that procedure must be considered. The
processes are discussed in the following sections.

Automated Test Addition

The automated conversion of the testlist file is preferred in large databases to simplify and reduce the effort
involved. Both the automated conversion process, contained in Appendix F and described in the automatic rule
conversion, and the independent automatic testlist conversion, listed in Appendix H, accomplish the conversion
automatically with similar amounts of effort. As stated for the rule data conversion, the automated conversion can
incorporate both the rule and test information without further effort. The independent automatic testlist conversion
deals only with the testlist file, and some slight amount of editing is required to arrive at the final format. The
independent automatic testlist conversion is basically incorporated as a procedure within the automated conversion.

The independent automatic testlist conversion, when invoked, uses the testlist file as the input. The output of
the conversion produces a file in the correct format as shown:

((Test-point (Test-name-) Param
Setup
((Qualval-) ((Quant-1 Quant-2))
(Qualval-2 ((Quant-O Quant-1))
(Qualval-3((Quant-2 Quant-3))))
units
testtype
cost
focalmodule)

(test-name-2

)

28



NRL REPORT 9296

This format has no connection, at this point, with the .v file. The user must append the file generated in the testlist
conversion to the .v file, however this cannot be performed immediately. The testlist is a list within the .v file, just
as the rulelist is a list. If it is not present, a NIL is there to hold its place. There are other items required in the .v
file, and if any are not available, a NIL is supplied. At this point, after adding the rules, three NILs are at the
beginning of the .v file, and four NILs at the end. The place for the testlist is immediately after the rules, as
indicate

NIL
NIL
NIL
(RULELIST)
(TESTLIST)
NIL
NIL
NIL.

To append the converted tesdist the user must remove the NILs at the end of the file. The user then appends the two
files. The three remaining NILs can then be added, or the remaining information to fill those NIL spaces may be
supplied. The .v file, after this process, may be compiled.

The automated procedure is the preferred method of entering testlist information. The manual conversion and
construction of the FIS tesflist are preferred only for small amounts of data; for large amounts of data the automatic
method is preferred. The fully manual or the semi-automated method become tedious for large amounts of data.

Manual Test Addition

The fully manual method requires that FIS be loaded, a knowledge database .v file loaded, and the knowledge-
editor command selected. Within the knowledge editor the user should select the terminal-editor command. The user
then selects the command to add tests. FIS prompts the user to enter the terminal identification number for all the
individual items composing the test. Each test is added separately. This method is discussed further in this report.

Semiautomated Test Addition

The semiautomated method of test addition is an improvement over the manual method since it eliminates
adding each component of every test. However, for knowledge databases with a large number of terminals it is still
somewhat tedious. The program in Appendix I is executed to perform the semiautomated method of test addition.
The testlist file becomes the input to the program. The user is prompted for the name of the output file, or if the
output should be at the screen. The output file, named in this process, will contain only the list of errors and line
numbers that occur during the conversion. The other form of output creates files named for each terminal in the list.
The contents of these files are the tests associated with each of these terminals. The file contents are in the form
shown below:

Testname, parameter, setup, specifications, units, test type, cost, focal-module;

An example of the contents of a file is:

t100 freq sI ((OK) (hi) (to)) hz perf 1.0 NIL
2(X freq s2 ((OK) (0 1) (bad ((-inf O)(l inf)))) hz diag 0-5 (modl)
t0 freq si ((OK) (hi) (to)) hz perf 0.3 NIL.

Having generated the test information files, the user may use the test-file command in the terminal editor.
Again, as for the rule construction, the user must be certain that the index of the terminal is correct and matches the
test information. By using the wrong index, the user enters the test information for one terminal into the data slot
assigned to another terminal. This process continues until all test information has been entered. For large numbers

29



J. MOLNAR

of terminals, as is generally the case when constructing an entire knowledge database, this method and the manual
method take considerable time.

The following example is designed to illustrate the process involved in using the semiautomated procedure for
test addition. In the following example these notes apply:

a. Each new step is boxed. This may be an entire display screen or just the relevant change from the
previous screen. This method of presentation is used to conserve space and to carify the actual action that occurred.

b. User responses are in bold text.

c. Explanatory comments are in italics between boxed text areas.

The example follows:

This menu results from selecting the editor selection at the top level of FIS.

INSPECT MISC.

me: module-editor q: quit
te: term-editor
pe: prec-editor
oe: order-editor

Enter command or ? --> te
The te option is used to enter the tests.

INSPECT MODIFY I/O MISC.

sun: show-term at add-term r read li: lisp
suns: show-terms dt: del-term w: write q: quit
sts: show-tests dts: del-tests

ats: add-test
ef: edit-field
df: del-field
tf: test-file

Enter command or ? -->at
A terminal must first be added to the file.

Creating a Terminal entry
Enter NAME -->terml
The user must enter the name of the terminal.

30



NRL REPORT 9296

Enter TESTS -->nil
Entering nil for the TESTS completes the module information, otherwise manual rule entry would be required at this point.

INSPECT MODIFY I/O MISC.

stm: show-term at add-term r read li: lisp

stns: show-terms dt del-term w: write q: quit
sts: show-tests dts: del-tests

ats: add-test

ef: edit-field
df: del-field
tf: test-file

Enter command or ? -->stms
The stms command is selected so that the terminal names and their indices will be displayed.

The terminals and their indices are displayed below in groups of 14. When the "more" appears at the bottom of the list, a
return will cause the next group to display. These are identified by the dots and the boxed screen indication.

1. A78J5
2. A20J5
3. A1J4
4. AIJ5

5. AIJI
6. AIJ3
7. A1J7

8. Al 1J6
9. AIJ6
10. AIJ8

11. A77J4
12. A76J3
13. AIJ9
14. AIOJ9
more

30. TERMI

When the user is familiar with the indices he invokes the tf (test-file) command.

Enter command or ? -->tf

Enter file name -->"terml"
The name of the file is entered. It must be surrounded by double quotation marks.

Enter MODULE id -->30
The appropriate index is supplied.

Enter command or ? -->
The procedure can be repeated until all modules and rules have been entered.

31



J. MOLNAR

If errors have occurred in the conversion, they may actually be in the file format or may be a result of
misaligned information in the file's columns. The conversion program is sensitive to column structure as well as
format. If errors occur, they must be eliminated in order to obtain all of the test information for the appropriate
terminal files. They can usually be eliminated by examining the data file at the point of the error and identified by
the line number; then any column misalignment of the data must be corrected. This can be performed with a
standard text editor such as vi. If errors persist, the user should review the format for data exceeding column
allocations. However, if this occurs in only a few cases, the knowledge engineer may choose to enter the data with
the manual editor. If the number of errors is more extensive, the user should revise the data file to meet the
established format guidelines.

Testlist Conversion for Function Instructions

In the implementation of the TAS, a feature was added to FIS to display instructions, which required an
addition to the data structure expressed in the .v and .lisp files. The additional data required are contained in two
parts. The first is a test index that is appended to the .lisp file. The other data are in an .instruction file that
contains the general instructions for all tests. The index information relates the special tests to the general
instructions and contains information to specialize an instruction for a specific test. Each general instruction is
stored as a multiple of a 512-byte block. The index identifies the record block in the .instruction file that relates to a
specific test. FIS uses the information from both data parts to display a specific instruction.

Two conversion programs are used to create the two data items. One conversion program, listed in Appendix
K, uses the instruction text file (exemplified in Appendix E) and converts it to an .instruction file used by TAS
during instruction display. The input text file contains data in the following format:

Instruction name: xxx

Instruction Text:
"general text" specialprint integer

"general text" special print integer "general text"
specialprintinteger....

In this format the Instruction-name: xxx identifies the name of a generalized instruction that the other conversion
uses in the indexing process. The Instruction Text: is used by the first conversion to identify that the body of the
instruction follows. General text indicates that this portion of text enclosed in quotation marks will appear each
time this instruction is called in a FIS troubleshooting session. The special_printinteger is denoted by a $ and an
integer from 0 to 9. During instruction display, the specific value is supplied by the index data structure.

During the conversion, the instruction_name, the general text and specialfprintintegers are placed into an
appropriate number of records within the instruction file. The integer 0 delimits the end of each instruction.
Prompted by the large size of the input files, a linked list was used, thereby minimizing necessary memory. This
instruction file exists separately from the knowledge database, since several knowledge databases use the same
general instruction file. This was demonstrated in the application to the TAS hierarchy, where several knowledge
databases all used the same general instructions.

The other conversion program, listed in Appendix J, creates the index for the instructions. The testlist file
and the .instruction file (created with the first conversion) are the input files for this conversion. The format for the
testlist file is the same as that required to create the FIS testlist. However for the conversion to create the index, two
additional columns from the testlist file are recognized. Column 10 is the instruction name and column 1 I relates
additional text parameters. The LISP function generated, called instr-list, has the following format:

32



NRL REPORT 9296

(defun instr-list 0

(testpoint-I
(Parameter Instructionname (Min Max) record location ftxtOj..(txt9J)

(Parameter...))
)

(testpoint-2 ...
)

In the output structure the following items are all used to fill in the specialprint integer items within the
general instruction: test_point, parameter, min, max, and text items. The text parameters (txtO and txe9 in the above
example) are optional and appear only if provided by the input file. If the input file does not provide the values for
Min and Max, then (NIL NIL) will be substituted for the minimum and maximum values. The instruction name is
used by the conversion process to correlate with the other input file, the .instruction file. The correlation with the
.instruction file provides the recordlocation that is equivalent to the offset, in bytes, from the beginning of the data
file, divided by the size of each instruction record block (512 bytes).

The index is arranged so that all test data with the same test point are grouped as sublists under that test point.
This allows for a quicker look-up in the LISP searching routines.

Program flow and execution are very similar to the conversion of the testlist, exc pt in the creation of the data
file. After each data block is read it must be stored within the process memory rather than being written to an output
file because of the ordering required for the data structure.

Accessing Instructions with the "Print-Instructions" Function During Execution

The command Print-Instructions was added to FIS specifically for the technician maintenance application. It
is only used in the display of instructions during a maintenance application. It uses the LISP function instr-list, the
index created in the previous section, to find the correct location of the instruction in the data file. This prints the
generalized instruction along with any specified text parameters associated with the specific test point. The
generalized instruction converts to a specific instruction that the technician can follow to perform the necessary test.

The .instruction file, described in the previous section, is opened by the Print-Instructions function whenever
a test is presented to the user. The Print-Instructions function correlates the test with the instruction by calling the
instr-list function and by using this function to index the appropriate record number. Print-Instructions moves the
file pointer to the correct position in the .instruction file.

The file containing the instructions in record format should be placed in a file named instruction, in the user's
working directory. The purpose of having separate files is to reduce the requirements for RAM memory. These
instructions are not elements that are actively used by FIS to operate properly, but rather an item accessed when
necessary. Error checking is built into FIS to prevent the two files from being separated. The result is that only
when instruction information is required, it is necessary to access the .instruction file.

Summary

The section "Knowledge Acquisition" described the data required by FIS. It also described the format that this
data must conform to if automated conversion to a LISP format is to occur.

The process of converting to the LISP format is discussed in the section "Conversion of Knowledge Database
from Human Data Management Format to LISP Compiled Database." The result is the formulation of a .v file.
Also, the creation of the instruction file that contains general instruction information, and the instruction index were
discussed. At this point (with a .v file, an instruction file, and an instruction index function, inst-list), the FIS

33



J. MOLNAR

knowledge database is in a format that is not easily interpreted by humans, since it is in a !LISP compatible format.
FIS cannot use the data at this point either. The user must invoke the FIS compiler to create an executable
Technician's Assister System for a specific UUT.

Before and after compilation it may become necessary to modify the knowledge database in the .v file format
to correct minor problems. The process of editing and that of compilation are also discussed in this report.

Formulation and Modification of the FIS Compatible Knowledge Base by Using the Editor
Function

Two approaches exist to formulate the FIS compatible rulebase. The first relies on manual entry of module,
terminal, precondition, and order information in an interactive session with the FIS Editor. A more detailed
description of this process can be found in Ref. 1. The second approach uses the FIS Editor only in a semiautomated
mode, and only to create a shell for the appending of the rulebase whose LISP conversion has already been described.
For large knowledge databases the use of the FIS editor is minimal. The majority of the effort is performed in the
conversion process by using UNIX editing tools and functions.

Formulation of the FIS Rulebase Using the FIS Editor Exclusively

FIS has two types of editors that are supplied as standard features of FIS, a graphical editor and a knowledge
database editor. No graphics were included in the TAS for the AN/SQS-53B application; therefore, this report does
not describe the graphical editor.

Only the editor for the knowledge database is described. Once the user chooses the knowledge database editor
from the main FIS menu and supplies an UUT name (the knowledge database for the UUT), then the user has four
possible utilities that he can use in editing the knowledge database. The utilities and corresponding elements are
module editor (for modules and rules), terminal editor (for test information), precondition editor (for precondition
information), and order editor (for order information). All four editor utilities have a similar structure. The
following sections briefly describe each structure.

Module Editor

Once the user selects the module editor, FIS presents the following menu:

INSPECT MODIFY I/O MISC.

sm: show-module am: add-module r. read li: lisp
sms: show-modules dm: del-module w: write q: quit
srs: show-rules drs: del-rules

at add-rule
ef: edit-field
df: del-field
rf: rule-file
mm: modulemaker

Inspect - Show-module: FIS prompts the user for the module index. When the user provides the index
number (one to module total), all of the information for the module is then supplied; the name of the module, the
failure rate, and the list of rules.

Show-modules: FIS presents a list of all the modules and their numeric index, in groups of 14-line lists.
Pressing the rcturn key presents the next 14 lines in the list.

34



NRL REPORT 9296

Show-rules: FIS prompts the user for the module index. When the index is supplied, all the rules for that
module are presented.

Modify - Add-module: This function allows the user to establish new modules. Once the user enters a
module name, FIS prompts the user for the failure rate. After supplying the failure rate, FIS prompts the user for a
list of rules. NIL is convenient to enter as the temporary value for the rule set. Actual rules can be entered later
with the add-rule function or the rule-file function, for a group of rules.

Delete module: This function deletes all the information in the module, as well as the module name and its

index.

Delete-rules: This function deletes a rule or rules from the module's information set.

Add-rule: This function adds a rule to the information for a specified module.

Edit-field: This function allows modification of defined fields.

Delete-field: This function deletes defined fields.

Rule-file: This function allows the user to add rules to a module's information set by supplying a file name to
read the rules from. FIS prompts the user for the module's index number and the name of tl-ie file where the rules are
stored.

Modulemaker: This function initializes the .v file to a form that initializes all of the modules with a default
failure rate of 0.1 and no rules. FIS prompts the user for the file's name that contains the module names and the
output file names for the UUT's .v file. The function supplies the .v suffix. This function is most efficiently used
with the rulefile function.

I/0 - Read: Read into memory a .v file

Write: This function writes changes to the .v file that is currently being edited.

Misc - LISP: This function allows the user to escape to LISP to execute LISP functions.

Quit: This function exits at the level where the element editor is selected.

Terminal Editor

Once the user selects the terminal editor, FIS presents the following menu:

INSPECT MODIFY I/O MISC.

stm: show-term at: add-term r read li: lisp
stms: show-terms dt: del-term w: write q: quit
sts: show-tests dts: del-tests

ats: add-test
ef. edit-field
df: del-field
tf: test-file

The terminal editor is similar to the module editor. The function for I/O and MISC. are identical. The other
functions are similar.

35



J. MOLNAR

Inspection - Show-term: FIS prompts the user for the terminal index. When the user supplies the index
number, from I to terminal total, FIS displays all the information for that terminal such as the terminal name, and
the test (test name, parameter, setup, qualitative and quantitative values, units, type (performance or diagnostic),
cost, and focal module).

Show-terms: FIS presents a list of all the terminals and their numeric index, in groups of 14-line lists.

Show-tests: FIS prompts the user for the terminal index. When the index is supplied all the tests for that
terminal are presented.

Modify - Add-term: This function allows the user to establish tests for new terminals. Once the user enters
a terminal name, FIS prompts him for the tests. This must be supplied in precise format without prompting. For
users unfamiliar with the test format required, it is more efficient to enter tests individually with the add-test
function, where the user is prompted for information. If add-test is to be used, then NIL should be entered when
prompted for tests.

Del-term: This function deletes the terminal and all information associated with the terminal, including the
index.

Del-tests: This function deletes the test information for a given terminal.

Add-tests: This function adds a test to the information for a specified terminal. FIS prompts the user for each
item of information.

Edit-fields: This function allows modification of defined fields.

Del-field: This function allows deletion of defined fields.

Test-file: This function allows the user to add tests to a terminal's information set by supplying a name to the
file to which the tests will be read. The user is prompted for the terminal's index number and the name of the file
where the tests for that terminal are stored.

Precondition Editor

Once the user selects the precondition editor, FIS presents the following menu to the user

INSPECT MODIFY I/O MISC.

sp: show-prec ap: add-prec r read li: lisp
sps: show-precs dp: del-prec w: write q: quit

ef: edit-field
df: del-field

The precondition defines states which must exist to perform groups of tests. Note the similarity with the module
editor. The functions for 1/0 and MISC. are identical. The other functioiis are similar in form.

Inspection - Show-prec: FIS prompts the user for the precondition index. When the user supplies the index
number, from I to precondition total, FIS displays all of the information for that precondition - the label and
definition.

Show-precs: FIS presents a list of all preconditions and their numeric index, in groups of 14-line lists.

36



NRL REPORT 9296

Modify - Add-prec: This function allows the user to establish the preconditions for the UUT. First, FIS
prompts the user for a label; this is the precondition name. Once the label is provided, the user is prompted for a
definition that must be in the form of a LISP list.

Del-prec: This function deletes the precondition and the definition of the precondition.

Edit-field: This function allows modifications of defined fields.

Del-field: This function allows deletion of defined fields.

Order Editor

Once the user selects the order editor, FIS presents the following menu to the user

INSPECT MODIFY I/0 MISC.

so: show-order at: add-order r read li: lisp
sos: show-orders do: del-order w: write q: quit

ef: edit-field
df: del-field

The order defines the requirement for test procedures. The similarity with the module editor is noticeable. The
functions for IA) and MISC. are identical. The other functions are similar.

Inspection - Show-order: FIS prompts the user for the order index. When the user enters the index number,
from 1 to order total, FIS displays all the information for that order - the successor and predecessor, or predecessors.

Show-orders: This function displays a list of all the orders and their numeric index.

Modify - Add-order: This function allows the user to establish the order of testing required when testing the
UUT. The user is first prompted for a successor; this is the name of the order. Then FIS prompts the user for a
single predecessor, or a list of predecessors in a LISP list.

Del-order This function deletes the order.

Edit-field: This function allows modifications of defined fields.

Del-field: This function allows deletion of defined fields.

Formation of the Knowledge Base for Large UUTs

The formation of the knowledge database for the AN/SQS-53B was performed as already described by using
the data in text format and individually converting each item to a modified format. In this manner, rules and tests
were added to the knowledge database by module and terminal name respectively. The preconditions and orders were
each formulated in the LISP format and appended separately to the knowledge database.. Since the capability was
already available (through the early stages of development) to transform data to a knowledge database format, the
individual components were combined into a single program, as listed in Appendix F. In this case, by invoking this
program the user is prompted for all the names of each type of information. Thus, the user is asked for files that
contain the rule, test, precondition, and order information. The function performs all of the required conversions and
produces a complete knowledge database. If the data files contain data that are not in the correct format, a message
will appear indicating that an error has occurred in reading the data file. A line number identifies the error location.
Errors indicate that a particular line in the data file has data that do not conform to the format defined.

37



J. MOLNAR

To correct errors, one must examine the data file and modify the data to conform to the format. Upon
modifying the data file, the function to create the knowledge database should be executed again. If errors that are not
readily explained persist, modification and reforming may be tried again. If the data that cause the errors are not
extensive, the user may choose to enter it manually by using one of the knowledge database editors. Assuming that
the user is not aware of the intricacies of the data format, it may be appropriate to use the FIS editor.

Once the knowledge database of the UUT is complete, a function that converts the information back to the
data format is also available (the program listing is found in Appendix L). Even if no data files had existed
previously, and all the knowledge had been entered with the knowledge editor, the data files can be created with this
program. The purpose of maintaining or creating the data file is to ensure the integrity of the data, through data
management of a format that a user can easily view. In this manner, changes made after the compilation and
validation can be incorporated into the database. Similarly, if changes occur as a result of engineering changes made
to the UUT, the data changes can more easily be traced from data file to knowledge file. Ultimately, information in
the knowledge database relates directly back to the circuit topology of the UUT. The data files exist to ensure the
integrity of the data for the TAS.

Although the programs discussed in this section, and listed in Appendices F and L, are written in the C
programming language and not presently part of FIS, they will be incorporated as functions within the knowledge
editor. In the next updated release the functionality of the program in Appendix F will be contained in a single
function within FIS called ckb: create-knowledge-base. Also in the updated release, the functionality of the program
in Appendix L will be contained in a FIS function called ctd: convert-to-data. The addition of these functions will
consolidate the programs used to convert information in a data format to information in the knowledge database
format of FIS.

Compilation

After assembling all the component parts of the knowledge database, they must be compiled into a format that
FIS can execute. To compile the knowledge database in the .v format into a functional .lisp file, the process begins
by entering FIS and choosing the compiler command. The FIS compiler will prompt the user for the file name.
This file name is entered without suffixes, i.e., .v. FIS then compiles the information into a file with a .lisp suffix.
FIS will reply with several messages to indicate that it is working, and several diagnostic messages will appear. The
messages are to indicate to the user that simple diagnostic precompilation tests are being performed. These tests
check the syntax of the .v file contents. Errors in syntax can be symptomatic of more critical errors within the file.
The compiler provides a message that indicates testing of each item. Primarily, FIS informs the user that it is
checking the syntax of modules and terminals. Duplicate module and terminal names are indicated during the initial
check. After the initial check, a full diagnostic report is provided with the information that triggered the warning
flag.

The following is a list of the diagnostic messages that FIS presents to the user, and an explanation of each.
The actual message is presented in italics.

a. The rules contain the following modules that have not yet been defined - This diagnostic provides a list
of module names. The module names are those that appear as causes in the rules. It is required that if a module is a
cause, it should be defined as a module and must contain a set of rules. The solution is to create a module and add
the rules that apply. Otherwise, if the indicated item is not a module, a triple should replace the atom in the cause,
of the rule triggering the diagnostic message.

b. The following modules are not mentioned in the rules - This diagnostic provides a list of module names.
The module names listed are structured properly; however, they do not possess a rule in their rule set, nor does a rule
appear elsewhere in the knowledge database that identifies the module as a cause. This condition does not allow for
closure of the knowledge. There must be at least one rule to identify each module as a possible cause for bad output
signals from the module. The knowledge engineer must create a rule to identify the module as a cause to a valid
effect.

38



NRL REPORT 9296

c. The rules contain the following terminals that have not yet been defined - This diagnostic provides a list
of terminal names. The terminal names in the list identify those terminals that have no tests. This can be a result
of no test existing for that terminal, or a terminal that has a test but has not been identified in the terminal list. The
second cause is a condition that should be corrected by adding a terminal and a test. The first condition is not
necessary to correct since it is not required that all terminals have tests. In the application, terminals with J in the
name are to indicate testable point. Other terminals do not require tests.

d. The following terminals are not mentioned in the rules - This diagnostic provides a list of terminals.
The terminal names in the list identify conditions where terminals exist with no relation to the rule. This can be a
symptom of an extraneous terminal test or an error in the rules. If the terminal test is extraneous it can be
eliminated. If it is a result of an error in the rules, then the rules must be created or modified to use the terminal as a
test point for knowledge database.

e. The following labels are used for both terminals and modules - This diagnostic provides a list of names
that have dual definitions as modules and terminals. This state should not exist, and those names with dual
definitions should be modified in all appropriate places in the rule set to read either as a module or a terminal. If not
corrected, linkage of the knowledge database elements could be affected.

f. A rule's effect must be a triple of the form (terminal parameter qualitatives-value). The following atomic
effects were found -- This diagnostic provides a list of improper effects that exist in rules. The solution is to
provide a triple of the correct form.

g. The following terminals have no performance or diagnostic tests - This diagnostic provides a list of
terminals. One of the items required for the definition of a terminal test is an indication of whether it is a
performance or diagnostic test. Performance tests are performed first to determine functional abnormalities.
Diagnostic tests are performed to isolate and correct a functional abnormality.

h. The following modules were defined twice -- This diagnostic provides a list of modules. This indicates
that a module and rule occur in two different locations within the knowledge database. This condition provides
contradictory information for the knowledge database, and linkage of the knowledge database elements is threatened.
The solution is to move the rules from one location to the other and eliminate the second definition of the module.

i. The following terminals are defined twice - This diagnostic produces a list of terminals. 'he diagnostic
points out effects similar to the case of diagnostic Item h for modules. The information, by duplicating a definition
of the terminal, confuses the information in the knowledge database. The solution is to remove the duplicate
definition and place the additional test information into the single terminal definition.

Miscellaneous

As the FIS compiler produces all of the above diagnostics, additional diagnostics exist that may result from an
error that is handled by the LISP debugger. In general, this type of error is a result of a breach in the LISP format.
Usually an error will occur that will be a segmentation violation or some very similar error. These types of errors
are not predictable, so it is impossible to define all the possible error messages that may occur. The user should
reference the SUN LISP manual for an explanation of errors that result in entry to the LISP debugger. In the case of
knowledge database compilation, the majority of errors result from misplaced parentheses. This condition can be
diagnosed and corrected by removing, replacing, or repositioning the parentheses.

The result of all but miscellaneous diagnostics is a warning, during compilation, that syntax errors exist. FIS
prompts the user for an answer as to whether compilation should continue. If the user answers "no," compilation
will stop. If the user answers "yes," compilation will continue. Additional messages will appear to indicate that the
compiler is still working. Next, the compiler asks the user whether to remove the rules or not. Removing the rules
saves some storage space, but disables the ability to trace the causal network. Whether the rules are removed or not,
the next indication is that the compiled version is being written to a file. The file writes to a file with the same

39



J. MOLNAR

UUT name as the .v file, and the suffix now becomes .lisp to indicate that compilation has occurred. Compilation
ends with a return to the main menu.

Addition of Instructions

Once compilation of the file has occurred, the process used to create the instructions is invoked to create a
viable .lisp file incorporating the instruction information used in the TAS/FIS. This is performed by creating the
instruction file .instruction and appending the instruction index to the bottom of the lisp file. Without the index
added and the .instruction file existing, an error warning will occur. The .lisp file is complete for the TAS/FIS with
the instruction index appended to it.

VERIFICATION AND VALIDATION

Although the diagnostics within the compiler are capable of detecting obvious faults in the knowledge
database, they are incapable of detecting more subtle errors that produce major impacts. A major impact of an error
occurs when the knowledge database appears to act properly in a procedural sense, but has errors in the rule
continuity, thus preventing proper functionality. That means that the system will not converge to a system fault
regardless of the amount of testing performed.

To verify and validate the data, FIS includes software to perform some of the testing of the system. There are
basically three forms of verification performed. The first is to examine the connectivity of the data by examining the
rules and ambiguity set information. The second is to use a logic simulator, resident in FIS, to test for convergence.
And finally, if the actual hardware system is available, the technician's assister system should be validated against
tests made on the system. This will determine whether the knowledge database converges by using real test data.
The following sections will explain each of these methods.

Verification of Data Connectivity

Two types of verifiable data exist. Each provides its own diagnostic information. Verification tests are
performed on the rules and ambiguity sets. At the main FIS menu the user chooses the Hard-copy option. The
menu for hard copy is as follows,

SLgram,

1. Generate graphical description of UUr
2. Generate ambiguity set output
3. Generate cost code information output
4. Generate rule set output
5. Generate history list
6. Exit

The user selects the desired option. The selected option from this menu results in data files suitable for printing.
Since the data is extensive printing is preferred. The printed data is used for verification analysis. The only items
used for verification are Item 2 (generates ambiguity set output) and Item 4 (generates rule set output).

Verification of Rule Continuity

This verification tool, as well as the others mentioned, are implemented after compilation. The user uses the
output from this tool to examine the continuity of the rules. From this information the knowledge engineer may
determine the continuity from any point in an upstream and downstream direction. An example of the form is secn
in Appendix M. By using this data, the knowledge engineer logically traces the connections in a point-to-point
manner through the knowledge database and determines whether they conform to the relationship represented in the
system schematics.

40



NRL REPORT 9296

Verification of the Ambiguity Sets

The verification tool (an example output is provided in Appendix N) examines the ambiguity sets arising as a
result of all tests. It indicates for each test the modules that could be at fault if a failure occurs. This information is
important since it allows the knowledge engineer to examine each ambiguity set. By doing this he is able to
determine whether modules are correctly identified as suspects. Also, blank spaces demarcate places where tests exist
but the knowledge database does not properly use them. This results in modules being absent from an ambiguity set
for these tests. The knowledge engineer must then determine which rules are missing that would use these tests, or
if the tests are useless. In general, the assumption is that rules should be added that would use these tests. The
reason for this assumption is that the equipment design (for the AN/SQS-53B) is stable. The knowledge database
constructed from this design must use a limited number of test points provided by the designer uf the system. Since
a limited number of test points exist, and consequently tests, it is advantageous for the knowledge engineer to use all
of the test points available. This optimizes the inclusion of test points, and allows efficient fault isolation.

At present, the ambiguity set list must be examined in conjunction with the test list, since tests without
ambiguity sets are not identified. Only a double separation line appears to demarcate these tests. By using the
testlist, the knowledge engineer can identify the test and verify its utility. This is possible since the ambiguity set
command lexically orders the occurrence of tests. After identifying the test, the knowledge engineer must determine
whether the rules properly use them. Otherwise, the knowledge engineer should remove the knowledge database
representation of the test terminal.

Validation of the KnowledgE Dotabase

Once the knowledge database has been constructed, compiled, and verified for consistency, the only remaining
step is to validate the operation. That means that the computer based technician's assister should isolate faults and
assist a technician in maintaining the system. Two assertions in the preceding statement should be noted. First, the
Al system must be able to isolate faults. This entails singling out the module that is bad in a system, or if multiple
faults exist, finding all the failures. Secondly, the technician must find the Al system useful. It must allow the
technician to isolate faults quickly (faster than he may have done on his own). It must also act in a manner that is
consistent with the technician's training and reasoning ability. Both of these assertions are important to the creation
of a viable expert system for fault isolation.

Presently, two methods of conducting the validation process exist. First, FIS has a fault simulation
capability that allows the user to set faults and then go through a troubleshooting session. The second method is to
test the system in an operational environment to determine if the computer based technician's assister acts properly
and efficiently in isolating faults.

Validation Through Fault Simulation

FIS has two modes of simulating a troubleshooting session. Each has its advantages, and both should be
performed for all or most modules. Both methods must be accessed by invoking the demonstration mode from the
main menu. Once invoked, the user loads the appropriate UUT's knowledge database, the lisp file. After loading,
the command used to set faults should be chosen. Setting a fault allows the knowledge engineer to set a fault to a
module or node (a local effect) and further allows him to simulate the action of testing. The control should then be
returned to the main demonstration menu. The following sections explain the automatic and manual modes.

41



1. MOLNAR

Automatic FIS Validation

The user begins the fault simulation process by first initializing the simulation with a fault condition. The
fault condition is used by the simulator to tracc the logical result of simulated tests. The knowledge engineer enters
the fault condition by invoking the set-fault function. Once the set-fault function is entered the user is prompted for
the type of fault to set and the name of that module or effect. This menu is displayed below:

Fault Options

c: clear
m: module
i: imm-eff
s: show
q: quit

Enter fault option?-->

A list of faults can also be entered to simulate multiple fault conditions, if either the "module" or "imm-eff'
(immediate effect) options are selected. If the "module" option is selected then the module names are displayed as seen.

Modules: (POWER A26AISIO A26A158_ENDTESTSWITCH A26A1S9 AlODELAYLINE
A17_AMPLCONTROL AlDELAYLINE A22_SIGNCONTROL A23_ATOD A24_AMP
A26_REFERENCECONTROL A29_DELAYLINE A2_DELAYLINE A30_DTOA A31IDTOA A32_DTOA
A33_DTOA A3_DELAYLINE A4_DELAYLINE A5_DELAYLINE A7_DELAYLINE A9_DELAYLINE
CORRELATORREF DOWNSTREAMSONARUNITS MODREFER MUXREF PMFL TIMING
UPSTREAMSONARUNITS)

Enter module to be faulted -->

If the "imm-eff' option is selected then the list of terminals is presented to the user:

Terminals: (A78J5 A20J5 A114 AIJ5 AIJl AlJ3 AIJ7 Al 116 AIJ6 AIJ8 A77J4 A76J3 A119 AlOJ9 AIOJI
AIQJ5 AIOJ4 AIOJ8 AIOJ6 A1017 A1013 Al 115 AlIJ2 A1012 A21J13 A21J14 Al 113 A2J6 A]IIJ16 A7J4
AlIJ14 A24J2 A20J8 AIIJ12 AllJIO AlIllI A20J6 A24JI A24.15 AIIJ15 AIIJ18 A21.18 A29J8 A29J6
A29.17 A3J6 A3J8 A3J7 A30J4 A30JI A30J2 A30J3 A20J2 A79.16 A77J7 A31J4 A31JI A31J2 A3IJ3 A20J3
A32J4 A32JI A32J2 A32J3 A20J4 A33J4 A33JI A33J2 A33J3 A4J4 A419 A4J5 A4Jl A4J3 A4J16 A4J7 A418
A5J6 A5J8 A7J9 AMJ A7J1 A7J3 A7J7 A7J6 A7J8 A9J8 A13JI AlIIJ4 AlIIJ8 Al 119 Al 117 A58J7 A59J7
A6017 A61J7 A24J4 A43JI A43J3 A70J7 A75J2 A70J5 A71Il A70J3 A74JI A20J9 A20JIlI A21I lI A20J13
A21J5 A26A1DS8 PMFLJ A42J5 A45J5 A46J5 A47J5 A48J5 A45J4 A46J4 A47J4 A48J4 A45J3 A46J3
A47J3 A48J3 A45J2 A46J2 A47J2 A4812 A59JI DISPLAY A98J2 A98JI A42J3 A26A1J9 A26A 1110)

Select terminal or (guit -- >

Upon setting the fault, the function is exited by entering "quit" and the simulator function is selected from the
demonstration menu. After entering the simulation, the system automatically generates all of the tests that would be
performed and the anticipated results. This is done by using default logic; special logic reasoning can be supplied in
file form when the simulator queries whether default reasoning should be used, as seen in the following example.:

42



NRL REPORT 9296

The simulator is selected from the demonstration menu.

Enter command or ? -->s

Default reasoning is selected to use in the simulation.

Use default simulator reasoning (y or n)?. y

FIS performs the logical sequence of test and supplied results consistent with the fault being simulated.

Making test = (G-IF PWR SI) with result(s) = (HI LOW).
The results (HI LOW) are ambiguous - choosing HI
Making test = (M-IF PWR S1) with result(s) = (HI LOW).
The results (HI LOW) are ambiguous - choosing HI
Making test = (G-IF PHASE SI) with result(s) = (LOW HI).
The results (LOW HI) are ambiguous - choosing LOW
Making test = (SORT-CONT LOGIC S 1) with result(s) = (BAD).
Making test = (F-AGC LOGIC S1) with result(s) = (BAD).
No best test available
The simulation continues until a termination is reached.

The path generated from the simulation is presented to the user, the simulator function is terminated, and the user is returned
to the main demonstration menu to request an additional command.

TRAIL

(G-IF PWR SI HI)
(M-IF PWRS1 HI)
(G-IF PHASE SI LOW)
(SORT-CONT LOGIC SI BAD)
(F-AGC LOGIC SI BAD)

Enter command or ? -->

This process generates the most efficient path for testing the system, assuming that all system faults would display
physical characteristics that are consistent with the logical representation. The simulation anticipates this
consistency. This mode is useful in determining that each module can be fault isolated. It is a useful test of
convergence.

FIS Assisted Manual Validation

The FIS assisted manual validation is achieved by setting a fault using the above process and performing a
manual troubleshooting session or sessions. In this mode, the knowledge engineer sets the module fault. As the
FIS system suggests each test, it displays a logically simulated result that would appear during that test The person
performing the simulation in this manner can then examine the probabilities and the ambiguity sets after each test.
This mode gives the sense of an actual troubleshooting session and the process involved; it indicates the times
involved in the troubleshooting sessions and the correlation with the automatic FIS validation mode. With this
information, modifications can be made to the TAS. An example of the display is shown below. This is the
standard best test display, except that the SIM column contains the simulation value that will be logically consistent
with the rules in the knowledge database.

43



1. MOLNAR

TEST QUALVAL SPEC SIM
- - - - - - - - --- - - - -

DISPLAY OK NIL (BAD)
CPBEAM_4_WAVEFORM BAD NIL
SI
SS1
DISP_4_WAVE

Back to (t)erminals, (p)arameters or (s)etups, (q)uit or select measured value/qualval -- >

Two items should be considered when performing the manual simulation. First, all modules that are not
faulted receive a certification factor that they are good. Conversely, the probability of failure increases only for the
modules in the ambiguity set of the faulty module. Secondly, after each failed test, the ambiguity set should be
examined to determine whether the testing is resulting in convergence. The knowledge engineer should examine
whether the "faulted" module is a member of the ambiguity set. As testing increases during the simulation, the size
of the ambiguity set should decrease, but should continue to contain the "faulted" module.

A convenient way to record the manual simulation process is by opening a UNIX script file. This can be
done while still in the UNIX shell, before entering FIS. From that moment until the user closes the script by
entering control D or "exit," all information that passes through the terminal will be recorded to a file. The file can
then be further examined for weaknesses in the process of fault isolation.

Validation Through Field Testing

Once the knowledge engineer is satisfied with the performance, field testing should be performed. This allows
technicians familiar with the hardware and troubleshooting to examine the operation of the Al system.

Testbed Testing

The first test in actual field exposure should be at the factory, testbed, or other site where hardware engineers
are present. The testing of the AN/SQS-53B, Unit 26, technician's assister was performed at the Naval Underwater
Systems Center (New London, CT). The purpose of testbed tests is to obtain information on how the sonar system
works, its BIT capabilities, and the troubleshooting process. The knowledge engineer obtains the best exposure by
reviewing the BIT to determine its effectiveness. This allows him to determine how well the expert system utilizes
the available information. It is often difficult for the knowledge engineer to realize the capabilities of BIT from the
technical description.

In the validation process for the sonar system technician's assister, for example, it was determined that an
indicator light for the correlator functions as a more powerful test than was originally anticipated. Although the
TAS acted properly, the power of this single test enhanced its operation.

Full Field Test and Technician Exposure

The final test in the validation process is to perform a full field test with technicians using the TAS. One
purpose of the TAS is to aid inexperienced technicians in the entire troubleshooting process. Another is to aid
experienced technicians in isolating difficult faults. The technician's assister system needs to be tested in situations
with both types of technicians. This determines the accuracy of fault isolation, the veracity of the fault isolation
process, and the ease of human interaction. These should be evaluated during the field testing process, with the
greatest emphasis placed on the human interaction with the computer. The technician's assister system should aid
the technician, not frustrate him with the process, the interaction, the communication, or the language. It may be
useful to compare the operation of the system with an expert technician troubleshooting a problem. This should

44



NRL REPORT 9296

provide a baseline for performance and not as an absolute evaluation criterion, since the system will not compete
with experts, but assist those without expertise.

The prototype expert system developed for the AN/SQS-53B, Unit 26 has not yet been evaluated and validated
in a field testing environment. This form of validation is to be performed independently by the Naval Sea Systems
Command. The field validation may be conducted at an AN/SQS-53B technician training center. The results from
the independent validation process may influence further developments of the system as they become available to
NRL.

SUMMARY

The process of creating a knowledge database that together with the FIS shell forms an artificial intelligence
based technician's assister system takes several steps. The steps are knowledge acquisition - obtaining the cause-
effect rules, tests and testing instruction - from schematics or design information. Information obtained is then
converted from human data management form to a LISP language format. Compilation follows by placing the
knowledge database in a form that the computer can operate on efficiently. Verification then ensures the integrity of
the knowledge database. Finally, validation assures the developer that the system constructed from the knowledge
database acts properly. At each stage there is recourse to revert to previous steps to make knowledge database
modifications.

The process of going from knowledge acquisition to a technician's assister system may require several
iterations to achieve a valuable expert system. The development of the TAS knowledge database stressed the
importance of data management. The transition from a data management form to the form used in the executable
expert system was extensively developed and simplified to expedite the process of knowledge database creation. All
information for the TAS should be available in the knowledge database. Any modifications made to the prime
system should also be made in the knowledge database to maintain the configuration. If this is done, a new version
for the expert system can be generated at any time.

The appendices contain samples of the development of the sonar system's knowledge database. They are
meant to be a guide to the structure and format required for configuration management. They are also intended to
display the format required for conversion to a knowledge database the computer can understand.

As a final note, the sonar system was much larger than any other system previously constructed with FIS.
By increasing the size of the system modeled, speed degradation was observed. As a result, a modified architecture
(TAS) was developed to improve performance. This architecture consisted of breaking the sonar system up into
functional units that were much smaller, and as such, allowed fault isolation speeds comparable to smaller systems.
The parts of the system were then organized by a top level information gathering system. The top level made bulk
acquisition of indicator light and BIT test information possible. Its primary purpose was to isolate to the functional
area. At the same time, the top level then selected which technician's assister knowledge database to examine for
faults. Subsequently, it loaded the knowledge database for that functional unit in the system, and acted as a typical
FIS technician's assister [4]. The entire system was na ned the Technician's Assister System, which was composed
of two layers of software functionality. The expert system to perform the analysis to the functional level was named
the local area expert (LAE). The analysis to the module level was performed with the software layer based on FIS.
This layer was named the fault isolation layer (FIL), a name chosen to indicate that the software was based on FIS
and also to indicate that enhancements were made to the basic FIS shell to accommodate the application. It is
generally believed that large systems with BIT tests can be adequately handled in this manner. The testing
architecture for entire systems could be developed by incorporating thes: techniques of knowledge acquisition and
validaion.

45



J. MOLNAR

REFERENCES

1. F. Pipitone, K. A DeJong, and W. Spears, "An Artificial Intelligence Approach to Analog Systems
Diagnosis," NRL Report 9219, Sept. 1989.

2. Servicing Diagrams Manual, Receive Subsystem for Sonar Detecting - Ranging Set, AN/SQS-53B(V) 4(1),
SE313-TP-MMC-040, 4-39 & 4-53, Department of the Navy-Naval Sea Systems Command and General
Electric Company-Avionics and Electronic Systems Division, DATOM Contract #N00024-84-C-6232,Oct.
1985.

3. Maintenance Data Diagrams Manual for Sonar Detecting - Ranging Set, AN/SQS-53B(V) 7(2), SE313-TP-
MMC-090, 3-193, Department of the Navy-Naval Sea Systems Command and General Electric Company-
Avionics and Electronic Systems Division, DATOM Contract #N00024-84-C-6232, Oct. 1985.

4. J. A. Molnar and G. Moss, "A Hierarchical Artificial Intelligence Maintenance Advisor," Proceedings of
American Defense Preparedness Association Symposium and Workshops on Artificial Intelligence
Applications for Military Logistics, Williamsburg, VA, March, 1990.

GLOSSARY

Ambiguity set - A set of all modules that could be faulty as a result of a failed test. This is based on the set of
causal rules that are used to describe the UUT.

Abnormality - The manner in which a physical parameter at a termina! deviates from its specified value. Also
referred to as the state of the test [1].

ATE - Automatic Test Equipment is a system characterized by a computer controller and an assortment of test
making equipment. They are guided by software to assess the functionality of a unit under test, without human
intervention. The ATE is a separate system developed specifically for the purpose of performing diagnostic tests. It
is separate from the unit under test, but connected to the unit under test with a test fixture.

Best test - A standard test selected by FIS automatically. Such a test is found by a combination of heuristic
screening of possible tests and maximization of the expected information gain divided by the cost (primarily in time)
of making the test [I].

BIT. Built-in-test is the subsystem of a system; its specific function is to perform diagnostic tests to assess the
functionality of the system without connecting separate test equipment to the system. The BIT performs testing
either while the system is operating in its normal capacity, or in a mode in which only controlled testing is
occurring. The BIT in either case does not interfere with the designed functionality of the system; its only function
is to perform system diagnostic analysis.

Cause - The upstream portion of a causal rule. It can represent an abnormality at a terminal - in which case it
has the same form as an effect - or it can be the name of the module. The latter is used in a rule asserting that a
module can be faulty so as to cause some problem (that problem is the effect of the rule) [ 11.

Causal rule - This is a qualitative description of a causal relationship between two terminals of a module, or
between a module and one of its termin,.s. Each rule has the form (If <precondition> then <cause> <type>
<effect>). Each rule is associated with a particular module whose behavior it partially describes. TA/FIS does not
use the type. The cause is either the name of a module or an abnormality of a physical parameter at a terminal. The
effect is an abnormality of a physical parameter at a terminal. The precondition (optional and often absent) is a
binary function of the current state of FIS. For example, in the case of a multiplexer, we might have a rule (in
English paraphrase) "If the select line is 'logic high' then input2 frequency high causes output frequency high." The

46



NRL REPORT 9296

precondition here enables FIS to not follow the path from cause to effect if the multiplexer is currently believed to
be switched off with respect to input2 11].

Connectivity - This is the logical interrelationship of the rules that describe the physical relationship of the
electronic system being modeled by the FIS knowledge database. Rules should exist which link together to create
the same logical path that is seen in the physical interconnections of a circuit.

Convergence - The ability of the of FIS to use the knowledge database to correctly isolate faults. If FIS cannot
converge on any faulty module this indicates a format error or an error in the logical connectivity of the rules within
the knowledge database.

Downstream faults - A fault in a module whose test results rely upon the integrity of the modules before it in
the signal path.

Effect - This the downstream part of a causal rule. It has the form (<terminal> <parameter> <abnormality>). An
example is (input] voltage low) [1].

Entropy - This is the sum of p*log(1/p) over the fault states of the unit under test. P is the probability of a state.
The sum is not computed directly, but by an efficient polynomial time algorithm [I].

FIS - Fault Isolation System is an Al software system designed to provide system diagnostic information in testing
applications, based upon heuristics and entropy calculations. A knowledge database is required for the system to
operate upon. FIS also contains editing functions available to assist the knowledge engineer in the creation of a
syntactically correct knowledge database. Assorted functions are also available to assist the knowledge engineer in
validating the accuracy of the knowledge database. Primarily FIS provides an inference engine to assist humans in
performing the most efficient diagnostics on system hardware for which a knowledge database exists.

Module - This is a replaceable component in a UUT. FIS describes a UUT as a fixed set of modules. Each
module has various data associated with it after UUT knowledge acquisition. This includes a set of causal rules, an
a-priori relative probability, and a replacement cost [1].

Pseudonode - A logical construct used in the causal rules of the knowledge database to present the capability of
analyzing the connection between modules and the backplane of a system. These nodes do not exist, nor can they be
tested directly. Instead, their existence is defined as all points between any two real terminals, not at any single
point. As with other terminals, they are part of some module, usually the backplane module. They are used in the
causal rules as part of a triple, with a parameter and state as the other two elements of the triple.

Pseudoterminal - A logical construct used in the causal rules to reduce the total number of rules. The
pseudoterminal is defined as existing within a real module, and always connected to two real modules also defined in
the same module: an output and an input terminal to the module. The goal of pseudoterminal is to provide an
additive factor for multiple interconnections between input and output terminals within a module. This is an
improvement over the multiplicative factor that would exist if the input and output terminals were directly
connected.

Qualitative values - The coarse values given to a parameter at a given terminal. The abnormality states are
defined for it, plus the special value of "ok." A typical set of qualitative values is (ok low high).

Quantitative values - The numerical equivalent of the qualitative values. FIS equates ranges of numerical
values to the qualitative values.

Rulebase - This is the database that contains all of the causal rules for the z knowledge database.

Rulelist - This is another name for the rulebase.

47



J. MOLNAR

Segmentation violation - An error occurring in LISP that usually results from a misplaced parenthesis.

Sonar system - The hardware consisting of several different functional units organized and controlled to perform
the single task of monitoring perturbations in liquids. Primarily these systems are used on ships to detect and
identify objects in water and monitor their movements. Acoustic waves propagating through the water are processed
to provide information on their emanation or reflection point. The AN/SQS-53B is a specific sonar system used in
this research.

TAFIS - Technician Assister/Fault Isolation System is an e;nhanced FIS version developed to provide an Artificial
Intelligence System to assist technicians in the diagnostic testing of the AN/SQS-53B. Primarily TA/FIS is the
model-based part of the two level system hierarchy. TA/FIS (or FIL) provides isolation to the module level, while
the Local Area Expert provides isolation to the functional area. Some enhancements found in TA/FIS are textual
presentation of test instructions, recommendation of replacement, histogram of module probabilities, and a touch
interface for communicating with the computer.

Terminal - This is a connection between two modules. Some terminals are test points. Terminals can represent
any causal conduit between modules. For example, wires, cables, optical paths, waveguides and mechanical linkages
can all be terminals. These terminals may represent only a slice of space separating two parts of some conductor [ 11.

Testbed - Any system whose primary purpose is to act as an experimental equipment for examining how an
operational s:ystem reacts to changes internally or externally.

Testlist - The database that contains all of the test information for the FIS knowledge database.

Test point - This is a terminal in a module where a diagnostic test can be performed.

Upstream faults - This is a fault in a module innected to the module test point at a location that acts on the
signal at some time prior to the time it passed twne test location.

UUT (unit unc r test) - This is the hardware system or subsystem that is being diagnostically examined.

Virtual module - or pseudomodule - A module which exists as a logical construct of a causal rule in the
knowledge database. This is composed solely of pseudonodes. In general, it represents interconnections between real
modules that have their physical manifestation usually as the backplane in a system. In the knowledge database it
must obey the format of the causal rules. It must be defined as a module. It has at least one rule which uses the
pseudomodule as a cause.

48



Appendix A

SAMPLE RULE SET DATA FORMAT

*****************start left-channels downstream left corr**************
******************start upstream

Module: upstram sonar-units

No Cause Effect Type Precondition

1 upstream-sonar-units a26J3_-beams volts hi s t
2 upstream-sonar-units a26J3_ beams volts lo s
3 upstream-sonar-units a26J3_-beams uniformity bad s t
4 upstream-sonar-units a26J3_beams waveform bad s t

[Modified 22 July 1987. upstream-sonar-units: Removed Failure Rate and Replacement Cost fields from header.]
[Modified 22 July 1987. upstream-sonar-units: Removed - from space between column labels and rule 1.]

Module: a26alFLl

No Cause Effect Type Precondition

1 a26ala58J3 volts hi a26ala5814 volts hi s t
2 a26ala58J3 volts lo a26ala5814 volts lo, s t
3 a26ala58J3 waveform bad a26ala58J4 waveform bad s t
4 a26alFLl a26ala58J4 volts hi s
5 a26alFLl a26ala5814 volts to s
6 a26alIFLlI a26alIa58J4 waveform bad s t

Module: a26alFL2

No Cause Effect Type Precondition

I a26ala5913 volts hi a26ala59J4 volts hi s
2 a26ala5913 volts lo a26ala59J4 volts to s t
3 a26a Ia591 3 waveform bad a26ala5914 waveform bad s t
4 a26aIFL2 a26ala5914 volts hi s
5 a26alIFL-2 a26ala59J4 volts lo s t
6 a26alFL2 a26ala59J4 waveform bad s

49



I MOLNAR

Module: a26alFL3

No Cause Effect Type Precondition

1 a26ala60J3 volts hi a26ala60J4 volts hi s t
2 a26ala60J3 volts lo a26ala60J4 volts lo s t
3 a26ala60J3 waveform bad a26alIa60J4 waveforrm bad s t
4 a26alFL3 a26ala60J4 volts hi s
5 a26alFL3 a26ala60J4 volts lo s t
6 a26alFL3 a26ala60J4 waveformn bad s t

Module: a26alFL4

No Cause Effect Type Precondition

I a26ala61J3 volts hi a26ala6l34 volts hi s t
2 a26ala6lJ3 volts lo a26ala6lJ4 volts lo s
3 a26ala6lJ3 waveform bad a26ala6lJ4 waveform bad s
4 a26alFL4 a26ala6lJ4 volts hi s t
5 a26alFL4 a26ala61J4 volts lo s t
6 a26alFL4A a26ala6l14 waveform bad s

Module: a26a1 58-mod-amp-mpx

No Cause Effect Type Precondition

I a26J3_beams volts hi a26ala58Jl volts hi s t
2 a26J3_beams volts lo a26ala58J1 volts lo s t
3 a26J3_beams uniformity bad a26ala58Jl volts hi s
4 a26J3_beams uniformity bad a26ala58J] volts lo s
5 a26J3_beams waveform bad a26ala58Jl waveform bad s t
6 a26ala58J1 volts hi a26ala58J3 volts hi s t
7 a26ala58JI volts Jo a26ala58J3 volts lo s t
8 a26ala58J1 waveform bad a26ala58J3 waveform bad s t
9 a26ala70J3 reference-signal bad a26ala5813 volts hi s t
10 a26al1a70J3 reference signal bad a26ala58J3 volts Jo s t
I1I a26al1a70J3 reference-Signal bad a26ala58J3 waveformn bad s
12 [Deleted 21 July 1987. Moved to a26alIFL1. 1
13 (Deleted 21 July 1987. Moved to a26alFLl.]
14 [Deleted 21 July 1987. Moved to a26alIFl .]
15 [Deleted 21 July 1987. Moved to a26alIFL1. ]
16 [Deleted 21 July 1987. Moved to a26alFLl.]
17 [Deleted 21 July 1987. Moved to a26alIFL1. ]
18 a26ala58J4 volts hi a26alS9-l time-slot_ I-volts hi s t
19 a26ala58J4 volts lo a26a1S9-1 time-sot_ I-volts Jo s
20 a26a 1 a58J4 waveform bad a26a IS9- I time-slotI-waveform bad s t
21 a26ala58_mod-amp-mpx a26a1S9-1 time -slot_1_ -volts hi s
22 a26a Ia58_mod-.amp-mpx a26a1S9-1 time -slot_1_ -volts lo s
23 a26a Ia58_mod-amp mpx a26a1S9-1 time-slotI-waveformn bad s t
24 a26ala58J7 gate-select bad a26a1S9-1 time-slot_1_ volts hi s
25 a26ala58J7 gate-select bad a26a1S9-1 time-slotI-volts lo s t
26 a26ala5817 gate_select bad a26a1S9-1 time-slotI-waveform bad s t

50



NRL REPORT 9296

27 a26a76J3 volts bad [+12v supply] a26a1S9-1 time slot_1_ -volts hi s
28 a26a76J3 volts bad a26a1S9-1 time slot_1_ -volts lo S
29 a26a76J3 volts bad a26alS9-1 time-slot_1_waveformn bad s t
30 a26a57-23 volts bad [-12v supply] a26alS9-l time slotIvolts hi s
31 a26a.57-23 volts bad a26alS9-1 time slot_1_volts lo s
32 a26a57-23 volts bad a26alS9-1 time-slot_1_waveform bad s t
33 a26a77J4 volts bad [+4.5v supply] a26alS9-1 time-slotI -volts hi s
34 a26a77J4 volts bad a26a1S9-l time-slot_1_volts lo s
35 a26a7714 volts bad a26a1S9-1 time-slotI-waveform bad s t
36 a26a77J7 volts bad [-2v supply] a26a1S9-1 time-slot_1_ volts hi s
37 a26a77J7 volts bad a26a1S9-1 time-slot_ I-volts lo s t
38 a26a77J7 volts bad a26a1S9-1 time-slotI-waveform bad s t
39 a26a75J2 volts bad [+25v supply] a26a1S9-1 time-slotI -volts hi s t
40 a26a7532 volts bad a26alS9-1 time-slot_1_ volts lo s
41 a26a75J2 volts bad a26a1S9-1 time-slotI-waveform bad s t
42 a26a78J5 volts bad [-25v supply] a26a1S9-1 time-slot_1_ volts hi s
43 a26a78J5 volts bad a26a1S9-1 time-slotI -volts lo s
44 a26a78J5 volts bad a26a1S9-l time-slot_1_waveform bad s t

[Modified 21 July 1987. a26ala58_mod-amp-mpx: Moved rules 12-17 to a26alFLl.]

Module: a26ala59_modanpmpx

No Cause Effect Type Precondition

I a26ala.591l volts hi a26ala59J3 volts hi s t
2 a26ala59J1 volts lo a26ala59J3 volts lo s t
3 a26a1I a.59J 1 waveform bad a26ala59J3 waveform bad s t
4 a26ala70J3 reference-signal bad a26ala59J3 volts hi s t
5 a26ala7013 reference-signal bad a26ala59J3 volts lo s
6 a26ala70J3 reference-Signal bad a26ala59J3 waveform bad s
7 [Deleted 21 July 1987. Moved to a26alFL2.1
8 [Deleted 21 July 1987. Moved to a26a IFL2.I
9 [Deleted 21 July 1987. Moved to a26alFL2.]
10 [Deleted 21 July 1987. Moved to a26alFL2.]
IlI [Deleted 21 July 1987. Moved to a26a IFL2.)
12 [Deleted 21 July 1987. Moved to a26alIFL2.]
13 a26ala59J4 volts hi a26a1S9-1 time-slot_4_volts hi s
14 a26ala.59J4 volts lo a26a1S9-1 time slot 4 volts lo s
15 a26ala5914 waveform bad a26a1S9-1 time slot_4_waveform bad s t
16 a26a Ia59_mod-amp-mpx a26alS9-l time -slot_-4_-volts hi s
17 a26a Ia59_mod-amp-mpx a26a1S9-1 time -slot_-4_-volts lo s
18 a26a Ia59_mod-amp-mpx a26a1S9-1 time-Slot_-4_-waveform bad s t
19 a26ala59J7 gate-select bad a26a1S9-1 time -slot_-4_-volts hi s t
20 a26ala59J7 gate-select bad a26a1S9-1 time -slot_-4_-volts lo s
21 a26ala59J7 gate-select bad a26alS9-1 time-slot_4_waveform bad s t
22 a26a76J3 volts bad [+12v supply] a26a1S9-1 time slot_4_volts hi s
23 a26a76J3 volts bad a26a1S9-1 time slot_4_volts lo s
24 a26a76J3 volts bad a26a1S9-l time-slot_4_waveformn bad s t
25 a26a57-23 volts bad [412v supply] a26alS9-1 time-slot_4_volts hi s
26 a26a57-23 volts bad a26alIS9-1 time-slot_4_volts lo s
27 a26a57-23 volts bad a26alS9-l time slot 4 waveform bad s t
28 a26a7714 volts bad [+4.5v supply] a26alS9-1 time-slot_4_volts hi s

51



J. MOLNAR

29 a26a77J4 volts bad a26a159-1 time-slot_4_volts lo, s t
30 a26a77J4 volts bad a26a1S9-l time-slot_4_waveform bad s t
31 a26a77J7 volts bad [-2v supply] a26a159-l time-slot_4_volts hi s
32 a26a77J7 volts bad a26a159-1 time-slot_4_volts lo s t
33 a26a77J7 volts bad a26a1S9-1 time-slot_4_waveform bad s t
34 a26a75J2 volts bad [+25v supply] a26a1S9-1 time-slot_4_volts hi s
35 a26a75J2 volts bad a26a1S9-1 time-slot_4_volts Jo s
36 a26a75J2 volts bad a26a159-l time-slot_4_waveform bad s t
37 a26a78J5 volts bad [-25v supply] a26a159-l time-slot_4_volts hi s t
38 a26a78J5 volts bad a26a159-1 time-slot_4_volts Jo s t
39 a26a7835 volts bad a26aIS9-1 time-slot_4_waveform bad s t

[Modified 21 July 1987. a26ala59_mo amp mpx: Moved rules 7-12 to a26alFL2.]
[Modified 21 July 1987. a26ala59_mod-ampmpx: Removed failure rate ane replacement cost fields from heading.]

Module: a26ala6Ojnodamp-mpx

No Cause Effect Type Precondition

1 a26J3_beams volts hi a26ala6OJl volts hi s
2 a26J3_beams volts Jo, a26ala6OJl volts Jo s t
3 a26J3_beams uniformity bad a26ala6OJl volts hi s t
4 a26J3_beams uniformity bad a26ala6OJl volts Jo s t
5 a26J3_beams waveform bad a26ala6OJl waveform bad s t
6 a26ala60J1 volts hi a26ala60J3 volts hi s
7 a26ala6OJl volts Jo a26ala60J3 volts Jo s
8 a26ala60Jl waveform bad a26ala60J3 waveform bad s t
9 a26ala70J3 reference-Signal bad a26ala60J3 volts hi s t
10 a26ala70J3 reference-Signal bad a26ala6033 volts Jo s
I1I a26a Ia70J3 reference-Signal bad a26a Ia60J3 waveform bad s t
12 [Deleted 21 July 1987. Moved to a26alIFL3.]
13 [Deleted 21 July 1987. Moved to a26alFL3.]
14 [Deleted 21 July 1987. Moved to a26alFL3.]
15 [Deleted 21 July 1987. Moved to a26alFL3.]
16 [Deleted 21 July 1987. Moved to a26alFL3.]
17 [Deleted 21 July 1987. Moved to a26alIFL3.
18 a26ala60J4 volts hi a26a159-1 time-slot_7_volts hi s t
19 a26ala60J4 volts Jo a26a159-l time-slot_7_volts Jo s t
20 a26a1I a60J4 waveform bad a26a 159-1 time-slot_7_waveform bad s t
21 a 'i Ia6O mod amp-mpx a26a159-1 time -slot_-7_-volts hi s
22 a26ala60_modampmpx a26a159-1 time -slot_-7_-volts Jo s
23 a26ala60_modamp-mpx a.26a1S9-1 time-slot_7_waveformn bad s t
24 a26alIa60J7 gate-select bad aI1S9-1 time-slot_7_volts hi s t
25 a26ala60J7 gate-select bad a/z6a1S9-1 time-slot_7_volts Jo s t
26 a26a Ia60J7 gate-select bad a26a159-1 time-slot_7_waveformn bad s t
27 a26a76J3 volts bad [+12v supply] a26a1S9-1 time-s!ot_7_volts hi s
28 a26a76J3 volts bad a26a159-1 time-slot_7_volts Jo s
29 a26a76J3 volts bad a26a1S9-1 time-slot_7_waveform bad s t
30 a26a57-23 volts bad [-12v supply] a26a159-1 time-slot_7_volts hi s
31 a26a57-23 volts bad a26a159-1 time-slot_7_volts Jo s t
32 a26a57-23 volts b4i a26a1S9-1 ime-slot_7_waveform bad s t
33 a26a77J4 volts bad [+4.5v supply] a26alS9-1 time-slot_7_volts hi s t
34 a26a77J4 volts bad a26a159-1 time-slot_7_volts Jo s

52



NRL REPORT 9296

35 a26a77J4 volts bad a26alS9-1 time -Slot -7 -waveform bad S L
36 a26a7717 volts bad [-2v supply] a26a1S9-1 time -slot_-7_-volts hi s
37 a26a77J7 volts bad a26alS9-1 time-slot_7_volts lo s
38 a26a77J7 volts bad a26a1S9-1 time-slot_-7_-waveform bad s t
39 a2&-75J2 volts bad [+25v supply] a26alS9-l time-slot_7_volts hi s t
40 a26a75J2 volts bad a26a1S9-1 time -slot_7_volts lo s t
41 a26a7512 volts bad a26a1S9-1 time -slot -7 -waveform bad s t
42 a26a78J5 volts bad [-25v supply) a26a159-1 time slot_7_volts hi s t
43 a26a78J5 volts bad a26a1IS9-1 time slot_7_volts lo s t
44 a26a78J5 volts bad a26a1S9-1 time-slot_7_waveform bad s t

[Modified 21 July 1987. a26ala60_mod-amp mpx: Moved rules 12-17 to a26alFL3.]
[Modified 21 July 1987. a26ala60_mod-ampmpx: Removed failure rate ane replacement cost fields from heading.]

Module: a26ala61_mod amp mpx

No Cause Effect Type Precondition

1 a26J3_beams volts hi a26ala6JI volts hi s t,
2 a26J3_beams volts lo a26ala6lJl volts lo s
3 a26J3_beams uniformity bad a26ala6lJl volts hi s t
4 a26J3_beams uniformity bad a26ala61J1 volts lo s t
5 a26J3_beams waveform bad a26alIa6l J Iwaveform bad s t
6 a26ala6IJl volts hi a26ala61J3 volts hi s
7 a26ala6lJl volts lo a26ala6lJ3 volts lo s t
8 a26ala6lJl waveform bad a26ala61J3 waveform bad s t
9 a26ala70J3 reference-Signal bad a26ala6lJ3 volts hi s
10 a26ala70J3 reference-Signal bad a26ala6133 volts lo s
11I a26a Ia70J3 reference-signal bad a26ala61J3 waveform bad s
12 [Deleted 21 July 1987. Moved to a26alFL4jJ
13 [Deleted 21 July 1987. Moved to a26alIFL4.]
14 [Deleted 21 July 1987. Moved to a26a IFLA.]
15 [Deleted 21 July 1987. Moved to a26alIFLA.]
16 [Deleted 21 July 1987. Moved to a26a IFL.]
17 [Deleted 21 July 1987. Moved to a26a IFLA.]
18 a26ala61J4 volts hi a26a1S9-1 time slot_10_volts hi s
19 a26ala61J4 volts lo a26a1S9-1 time slot 10 volts lo s t
20 a26a Ia6lIJ4 waveform bad a26a1S9-1 time-Slot_-10_-waveform bad s t
21 a26ala61_mod-amp-mpx a26a1S9-1 time slot_10_volts hi s t
22 a26a Ia61Imod-arnpmpx a26a159-1 time slot_10_volts lo s t
23 a26a Ia61Imod-amp-mpx a26a1S9-1 time-slot_-10_-waveform bad s t
24 a26ala61J7 gate select bad a26a1S9-1 time slot_10_volts hi s
25 a26ala61J7 gate-sclect bad a26a1S9-1 time slot_10_volts lo s
26 a26ala6117 gate-select bad a26a1S9-1 time-Slot_-10_-waveform bad s t
27 a26a76J3 volts bad [+12v supply] a26a1S9-1 time -slot_-10_-volts hi s
28 a26a76J3 volts bad a26a1S9-1 time-sht_10_volts lo s 1
29 a26a76J3 volts bad a26a1S9-1 time slot_10_waveform bad s t
30 a26a57-23 volts bad [- 12v supply] a26a1S9-1 time slot_10_volts hi s t
31 a26a57-23 volts bad a26a1S9-1 time slot_10_volts to s
32 a26a57-23 volts bad a26a1S9-1 time-Slot_- 10_-waveform bad s t
33 a26a77J4 volts bad [+4.5v supply] a26alIS9-1 time slot_10_volts hi S
34 a26a7714 volts bad a26alS9-1 time slot_ 10_volts to s
35 a26a77J4 volts bad a26alS9-l time-slot_ 10_waveform bad s t

53



1. MOLNAR

36 a26a77J7 volts bad [-2v supply] a26a1S9-1 time-slot_10_volts hi s
37 a26a77J7 volts bad a26a1S9-1 time-slot_10_volts lo s t
38 a26a77J7 volts bad a26a1S9-1 time-slot_10_waveform bad s t
39 a26a75J2 volts bad [+25v supply] a26a1S9-l time-slot_10_volts hi s
40 a26a75J2 volts bad a26a1S9-1 time-slot_10_volts lo s
41 a26a75J2 volts bad a26a1S9-1 time-slot_10_waveform bad s t
42 a26a78J5 volts bad [-25v supply] a26a1S9-1 time-slot_10_volts hi s
43 a26a78J5 volts bad a26a1S9-1 time-slot_10_volts lo s
44 a26a78J5 volts bad a26a1S9-1 time-slot_10_waveform bad s t

[Modified 21 July 1987. a26ala61_mod-amp-mpx: Moved rules 12-17 to a26alFL4.J
[Modified 21 July 1987. a26ala61_mod-amp mpx: Removed failure rate ane replacement cost fields from heading.]

***********start downstream
Module: a26ala45-doppler-det

No Cause Effect Type Precondition

1 a26ala30J4 amplitude hi a26ala45J2 amplitude hi s t
2 a26ala45J2 amplitude hi a26ala45J3 amplitude hi s
3 a26ala4533 amplitude hi a26ala4515 amplitude hi s
4 a26ala45J5 amplitude hi a26J2-f CP-beam_1Iamplitude hi s
5 a26ala3014 amplitude lo a26ala45J2 amplitude lo s t
6 a26alIa4512 amplitude lo a26ala45J3 amplitude lo s t
7 a26ala45J3 amplitude lo a26ala45J5 amplitude lo s
8 a26ala45J5 amplitude lo a26J2-f CP_beam_I -amplitude Io s
9 a26ala30J4 waveform bad a26a Ia45J2 waveform bad s t
10 a26a Ia4512 waveform bad a26ala45J3 waveform bad s t
11I a26ala4513 waveform bad a26ala45J5 waveform bad s
12 a26a Ia45J5 waveform bad a26J2-f CP-beam_1_-waveform bad s
13 a26ala42J5 carrier bad a26ala45J4 carrer bad a t
14 a26ala45J4 carrier bad a26ala45J5 amplitude hi s
15 a26alIa45J4 carrer bad a26ala45i5 amplitude lo s t
16 a26alIa45J4 carrier bad a26ala45i5 waveform bad s
17 a26ala45 fil-det-functions bad a26ala45J2 amplitude hi s
18 a26alIa45-doppler-det a26ala45J3 amplitude hi s t
19 a26ala45 mod-ampifuncions bad a26ala45J5 amplitude hi s t
20 a26a Ia45 mod-ampjfunctions bad a26J2-f CP -beam_1_ amplitude hi s
21 a26ala45 fil-det-functions bad a26a Ia45J2 amplitude lo s
22 a26alIa45-doppler-det a26ala4513 amplitude lo s t
23 a26a Ia45 mod-ampjfunctions bad a26ala45J5 amplitude lo s t
24 a26ala45 mod-ampjfunctions bad a26J2-f CP-beam_1_amplitude lo s
25 a26ala45 fil-det-functions bad a26ala45J2 waveform bad s
26 a26a Ia45 doppler-det a26ala45J3 waveform bad s
27 a26ala45 mod-ampjfunctions bad a26ala45J5 waveform bad s t
28 a26a Ia45 mod-ampjfunctions bad a26J2-f CP-bean_1_waveform bad s
29 a26ala45 doppler-det a26ala45 fil-det-functions bad s
30 a26a Ia45-doppler-det a26ala45 mod-ampjfunctions bad s t
31 a26a Ia74JlI volts bad [25v supply]I a26a Ia45 fil-det-functions bad s t
32 a26al a74J1I volts bad [25v supply] a26ala45 mod-ampjfunctions bad s
33 a26ala7916 volts bad (-6v supply] a26ala45 mod amp functions bad s

54



NRL REPORT 9296

Module: a26a Ia46_doppler-det

No Cause Effect Type Precondition

1 a26a Ia31I14 ampl itude hi a26ala46J2 amplitude hi s
2 a26alIa46J2 amplitude hi a26ala46J3 amplitude hi s
3 a26ala46J3 amplitude hi a26ala4635 amplitude hi s t
4 a26ala4635 amplitude hi a26J2-Q CPbeam_2_amnplitude hi s
5 a26ala46J5 amplitude hi a26ala46-22 amplitude hi s
6 a26ala3lJ4 amplitude lo a26ala46J2 amplitude lo s
7 a26ala46J2 amplitude lo a26ala46J2 amplitude lo s
8 a26ala46J3 amplitude lo, a26ala46J5 amplitude lo s
9 a26a Ia46J5 amplitude lo a26J2-Q CPIeam_2_amplitude lo s
10 a26ala46J5 amplitude lo a26ala46-22 amplitude lo s
I1I a26a Ia3lI14 waveform bad a26a Ia46J2 waveform bad s
12 a26a1I a46J2 waveform bad a26a Ia46J3 waveform bad s
13 a26ala46J3 waveform bad a26ala46J5 waveform bad s
14 a26ala46J5 waveform bad a26J2-Q CP -beam_-2_-waveform bad s
15 a26a Ia46J5 waveform bad a26a Ia46-22 waveform bad s
16 a26a Ia4215 carnier bad a26a Ia46J carrier bad a
17 a26alIa46J4 carrier bad a26ala46J5 amplitude hi s
18 a26a Ia46J carrier bad a26ala46J5 amplitude lo s
19 a26alIa46J carrier bad a26ala4.6J5 waveform bad s
20 a26ala46 fil-det-functions bad a26ala46J2 amplitude hi s
21 a26ala46-doppler-det a26ala46J3 amplitude hi s
22 a26ala46 mod-amnpjunctions bad a26ala46J5 amplitude hi s t
23 a26a Ia46 mod-am'_ functions bad a26J2-Q CP - eam_2_amplitude hi s t
24 a26ala46 mod-ampjfunctions bad a26ala46-22 amplitude hi s
25 a26ala46 fil-det-functions bad a26ala46J2 amplitude lo s t
26 a26alIa46-doppler-det a26ala46J3 amplitude lo s
27 a26ala46 mod-ampjfunctions bad a26ala46J5 amplitude lo s
28 a26a Ia46 mod_ampjfunctions bad a26J2-Q CP -beam_2_amplitude lo s t
29 a26a Ia46 mod-ampjfunctions bad a26ala46-22 amplitude lo s
30 a26a Ia46 fil-det-functions bad a26ala46J2 waveform bad s
31 a26ala46 doppler-det a26ala46J3 waveform bad s
32 a26a Ia46 mod-ampjfunctions bad a26ala46J5 waveform bad s t
33 a26a Ia46 motamnpjunctions bad a26J2-Q CPJbeam_2_waveform bad s t
34 a26a Ia46 mod-ampjfunctions bad a26ala46-22 waveform bad s t
35 a26ala46Aoppler-det a26ala46 fil-det-functions bad s
36 a26alIa46-doppler-det a26a Ia46 mod-amp-functions bad s
37 a26ala74J1 volts bad [25v supply] a26a Ia46 fil-det-functions bad s
38 a26ala7411 volts bad [25v supply] a26a Ia46 mod-ampjfunctions bad s
39 a26ala79J6 volts bad [-6v supply] a26a Ia46 modampjfunctions bad s

Module: a26a Ia47_doppler-det

No Cause Effect Type Precondition

I a26ala32J4 amplitude hi a26ala4712 amplitude hi s
2 a26ala4712 amplitude hi a26ala4713 amplitude hi s
3 a26ala47J3 amplitude hi a26ala4715 amplitude hi s
4 a26ala4715 amplitude hi a2612-K CP-beam_3_amplitude hi s
5 a26a Ia32J4 ampl itude lo a26a Ia4712 amplitude lo s

55



I MOLNAR

6 a26ala47J2 amplitude lo, a26ala47J3 amplitude lo s t
7 a26ala47J3 amplitude lo a26ala47i5 amplitude lo s
8 a26a~a47J5 amplitude lo a26J2-K CP-beam_3_amplitude lo s
9 a26ala32J4 waveform bad a26ala47J2 waveform bad s
10 a26ala47J2 waveform bad a26ala47J3 waveform bad s t
I1I a26al a4713 waveform bad a26ala4735 waveform bad s t
12 a26a Ia47J5 waveform bad a26J2-K CP-beam_3_waveform bad s
13 a26a Ia42.15carrer bad a26ala47i4 carrier bad a
14 a26ala47J4 carrer bad a26ala47J5 amplitude hi s
15 a26ala47J4 carrier bad a26a~a47J5 amplitude lo, s t
16 a26ala47J4 carrier bad a26ala47J5 waveform bad s
17 a26ala47 filudet-functions bad a26ala4712 amplitude hi s
18 a26alIa47-dopplerjdet a26ala47J3 amplitude hi s t
19 a26ala47 mod-ampjfunctions bad a26ala47J5 amplitude hi s t.

20 a26ala47 mod-ampjfunctions bad a26J2-K CP-beam_3_amplitude hi s t
21 a26ala47 filudet-functions bad a26ala47J2 amplitude lo, s
22 a26a Ia47 - oppler del a26a Ia4713 amplitude lo s
23 a26a Ia47c; mdampjunctions bad a26ala47i5 amplitude lo, s t
24 a26ala47 mod-ampjfunctions bad a26J2-K CP -beam_3_amplitude lo s t
25 a26ala47 fiiidet-functions bad a26ala47J2 waveform bad s
26 a26ala47-doppler-det a26ala47J3 waveform bad s
27 a26ala47 mod-ampjfunctions bad a26ala47J5 waveform bad s t
28 a26ala47 mod-ampjfunctions bad a26J2-K Cl'_ beam_-3_-waveform bad s
29 a26alIa47-doppler-det a26ala47 filudet-functions bad s
30 a26ala47Ldoppler-dci a26ala47 mod-ampjfunctions bad s t
31 a26ala74J1 volts bad [25v supply] a26ala47 fil-det-functions bad s
32 a26a Ia74JlI volts bad [25v supply] a26ala47 mod-amp-functions bad s t
33 a26ala79J6 volts bad [-6v supply] a26a~a47 mod..amp..junctions bad s

Module: a26ala48_doppler.det

No Cause Effect Type Precondition

I a26a Ia3 3A ampl itude hi a26ala4832 amplitude hi s t
2 a26ala4812 amplitude hi a26ala48J3 amplitude hi s
3 a26ala48J3 amplitude hi a26ala48J5 amplitude hi s t
4 a26a Ia4815 amplitude hi a26J2-S Cl'_beam_4_amplitude hi s t
5 a26ala33J4 amplitude lo a26ala48i2 amplitude lo s
6 a26a Ia4832 amplitude lo a26ala48J3 amplitude lo s t
7 a26ala4833 amplitude lo a26ala48J5 amplitude lo s t
8 a26ala48J5 amplitude lo a2612-S CP-beam_4_amplitude lo s t
9 a26ala33J4 waveform bad a26ala48J2 waveform bad s t
10 a26a Ia48J2 waveform bad a26ala48J3 waveform bad s
I I a26a Ia48J3 waveform bad a26ala48i5 waveform bad s
12 a26a Ia48J5 waveform bad a26J2-S Cl'_beam_4_waveformn bad s t
13 a26ala42J5 carrier bad a26ala48J4 carrier bad a t
14 a26a Ia4814 carrier bad a26ala48i5 amplitude hi s
15 a26a Ia484 carrier bad a26ala48i5 amplitude lo s
16 a26alIa48J4 carrier bad a26ala48i5 waveform bad s
17 a26ala48 fil-det-functions bad a26ala48J2 amplitude hi s
18 a26a Ia48 -doppler-det a26ala4813 amplitude hi s t
19 a26a Ia48 mod-ampjfunctions bad a26ala48J5 amplitude hi s t
20 a26a Ia48 mod-ampjlunctions bad a2612-S Cl'_beam_4_amnplitude hi s

56



NRL REPORT 9296

21 a26ala48 filudci-functions bad a26ala48J2 amplitude lo s
22 a26a Ia48-doppler-dci a26ala48J3 amplitude lo s t
23 a26ala48 mod-ampjfunctions bad a26ala48J5 amplitude lo s
24 a26ala48 mod-ampjfunctions bad a26J2-S CP -beam -4-amplitude lo s t
25 a26ala48 filudet-functions bad a26ala48J2 waveform bad s
26 a26ala48Adoppler_dci a26ala48J3 waveform bad s t
27 a26ala48 mod-ampjfunctions bad a26ala48J5 waveform bad s t
28 a26ala48 mod-ampjfunctions bad a26J2-S CP-beam_4_waveform bad s
29 a26ala48jloppler-det a26ala48 fil-dci~functions bad s t
30Oa26ala48jloopler-dci a26ala48 mod-ampjlunctions bad s
31 a26ala74J1 volts bad [25v supply] a26ala48 fl_dci~functions bad s t
32 a26ala74J1 volts bad [25v supply] a26ala48 mod-ampjfunctions bad s t
33 a26ala7916 volts bad [-6v supply] a26ala48 mod...mp-functions bad s t

Module: a26ala80_relay- board

No Cause Effect Type Precondition

I a26J3_beams volts hi a26ala59J1 volts hi s
5 a26J3_beams volts lo a26ala59JI volts lo s
9 a26J3_beams uniformity bad a26ala59J1 volts hi s
13 a26J3_beams uniformity bad a26ala59Jl volts lo s t
17 a26J3_beams waveform bad a26ala59Jl waveform bad s t

[Note 1: Relay is active when it is not supposed to be. a26ala63J1I and a26ala65J1I are open circuited, but a]
[signal is expected.]
[Note 2: Relay is inactive when it is supposed to be active. We expect a26ala6311I and a26ala65J1I to be open]
[circuited, but they have signals. Signal level is normal for not_BB/TRK mode, but is too high for BB/TRKmodej

[Modified 23 June 1987. a26ala80-relay~board: ]
[Modified 23 June 1987. a26ala8(Lrelayjboard: Changed preconditions, rules 3 1-33 and 40-42, from]
[BB/TRK_mode to L]
[Modified 23 June 1987. a26ala8(L-relay-board: Changed preconditions, rules 34-39. from not -BB[FRK-mode to L]

[note that this was appended to rules.all in the ju12287 directory and that this module is the only one that has]
[[been changed]
[this was performed on august 21, 1987]
[modified september 21, 1987. a26a 1a80_relay-.board: changed lo to bad, cause of rules; 29 and 30.]
[modified september 21, 1987. a26ala80_relay~board: removed spurious character from "26ala80" incause of rules]
[21,22,25 and a26.1

Module: downstream-sonar-units

No Cause Effect Type Precondition

I a26J2-f CP-beaml-amplitude hi display CP beam- amplitude hi s t
2 a26J2-f CP-beamLI amplitude lo display CP -beam- Iamplitude lo s
3 a26J2-f CP-beamI waveform bad display CP..beamI_waveform bad s t
4 a26J2-Q CP-beanu2_amplitude hi display CP -beamn2-amplitude hi s t
5 a26J2-Q CP-beam.2_amplitude lo display CP beam-2-amplitude lo s t
6 a26J2-Q CP-beam_2_waveform bad display CPbeam_2_waveform bad s
7 a26J2-K CP-beam-3amplitude hi display CP -beamn-3amplitude hi s
8 a26J2-K CP-beam-3amplitude lo display CP-beam-3amplitude lo s

57



1. MOLNAR

9 a26J2-K CP-beam_3_waveform bad display CP...beam_3._wavefoim bad s t
10 a26J2-S CP -beam -4amplitude hi display CPJbeam_4_amplitude hi s
I1I a26J2-S C? _beamj&...amplitude lo display CP -beam_-4_-amplitude lo s t
12 a2612-S CP _beam_4_waveform bad display CPJbeam_4_waveform bad s
37 downstream_sonar-units display CP...bcam_1_ amplitude hi s t
38 downstream-sonar-units display CPJbeam_1_amnplitude lo s t
39 downstram-sonar-units display CPbeamI- waveform bad s t
40 downstream-sonar-units display CP_cam_2_amplitude hi s t
41 downstream-sonar-units display CPJbeam_2_amplitude lo s t
42 downstreamn_sonar-units display CP,.beam_2_waveform bad s t
43 downstream-sonar-units display CP-beam_3_amnplitude hi s t
44 downstream-sonar-units display CPJbeam_3_-amplitude lo s t
45 downstream_sonar-units display CPbeamr_3_-waveform bad s t
46 downstream-sonar-units display CPjeam_4_-amplitude hi s t
47 downstreamsoar-units display CPJeam_4_amplitude lo s t
48 downstream-sonar-units display CPjeam_4_ waveform bad s t

58



Appendix B

SAMPLE TESTLIST DATA FORMAT

59



J. MOLNAR

z
>

~C -- :-z

0

00 - 0 -0 1rl c 0"

.82. E

9:6 Pw 9:

- ,'

'0 N0

z'

60



NRL REPORT 9296

EE

€40!

NO 0 :7 0 0

.2 . . .

r -: -o -. -

5r- r r -C.C 0 0 %46

.0~ r- O C O

C- 2 C4 ~ S 2 ~ 822
d Z 0.C

00

000 0

00

>N >

00 IT O

00 v en0

CO<

CO COCO COCO6C



J. MOLNAR

'0

oo

c4000. 0  
0 -0 -

0- 02 2l 0 co 8

o0Er- 10 0 1 0 0 0

00

CD0 .

0 00 -02 10

IIn

It 10

62



Appendix C

SAMPLE PRECONDITION DATA FORMAT

((IFCOMBO
(A26A I A8JO A26A I A8J2

A26A1A8J4
A26A1A8J6
A26A 1A8J8
A26AIA8J1O

A26A1IA8112
A26A1A8J14
A26AIA8J16
A26A1A8J18
A26A1 A8J20
A26A IA8J45
A26A1 A8J24
A26A1A8J26
A26A1A8J28
A26A I A8J28- I
A26A1A8J30
A26A1 A83O4))

(TDATTNON (A26A1 A57J8))
(VFOSEL
(A26A IA5J36 A26AlIA5J40

A26A1A5142
A26A1A5J44
A26A1IA5146
A26AI1A5J48
A26A IA5J50
A26A1 A5J52
A26A1 A5J54
A26A1A5i56
A26A1 A5J58
A26AIA5J60
A26A1 A5J62
A26A1 A5J64
A26A 1 A5J66
A26A 1 A5168
A26AI1A5J70
A26A IA5J72
A26AI1A5J74
A26AI1A7J36
A26A IA7J38
A26AI1A8i32
A26A1A13-1
A26A1A13J2
A26AIA13J4O
A26A IA1I3J44
A26A I A69J40- 1))

63



J. MOLNAR

(BLANK
(A26A1A7-1 A26A1A7J6

A26AIA7J8
A26A1IA7J 10
A26A1A7JI2
A26A1 A7J 14
A26A1A7J16
A26A IA7J 18
A26A1 A7J20
A26AI1A7J22
A26A1 A7J24
A26AI1A7126
A26AI1A7J28
A26A1A7J30
A26A1A7J32
A26A1A7J34
A26AI1A7J36
A26A1A7J38
A26AIA1300
A26AI1l3J2
A26A IA 14J8))

(NOTBLANK (NOT BLANK))
(TDATITNOFF (NOT TDATIfNON))
(REFSEL (NOT VFOSEL)))

64



Appendix D

SAMPLE ORDER DATA FORMAT

((A26A I A70J4 A26A 1A70J6)
(A26A1 A7016

(A26A 1A70J8 A26A1IAV1 10
A26A1IA71 12
A26A1IA7J 14
A26A1A7J16
A26AIA7JI8
A26A1 A7J20
A26A1A7J22
A26A1 A7J24
A26AIA7J26
A26AI1A7J28
A26AIA7J30))

(A26A 1 A80J4 A26A 1 A80J6)
(A26A I A80J6 A26A I1A8J 10)
(A26A1IA8J 10 A26A1IA8J 12)
(A26A1A8J12 A26A1A81 14)
(A26AIA8J14 A26A1A8J16)
(A26A1IA8J 16 A26A1IA81 18)
(A26A1I A8J 18 A26A1I A8J20)
(A26A IA8J24 A26A 1A8J26)
(A26A1IA1IOJ2 A26A1IA1I0J42)
(A26A1 A 104 A26A1A10J42)
(A26A1AIOJ6 A26A1A10142)
(A26A1AIOJ8 A26A1A 10142)
(A26A1A10110 A26A1A10J42)
(A26A1IA1I01J12 A26A1IA1I0J42)
(A26A1IA1IOJI14 A26A1IA1I0J42)
(A26A 1 A 101J16 A26A 1 A 101J42)
(A26A1IA1IOJ 18 A26A1IA1I0J42)
(A26A IA 101J20 A26A1IA1I0142)
(A26A A 10122 A26AIA 10142)
(A26A I A 101J24 A26A 1 A 101J42)
(A26A1IA1I0126 A26A1IA1I0J42)
(A26A1IA1I0J28 A26A1IA1I0J42)
(A26A1IA1I0130 A26A1IA1I0142)
(A26A1A10132 A26A1A10J42)
(A26A I A I 0134 A26A I A I 0J42)
(A26A IA1I0136 A26A1IA1I0J42)
(A26A1A10138 A26A1A10J42)
(A26A I A I 0140 A26A 1 A 101J42)
(A26A1IA1I2J8 A26A1IA 12J32)
(A26AI A1I2JI10 A26A1IA 12J 32)
(A26A1IA1I2J 12 A26A1IA1I2J32)
(A26A1A12J14 A26A1A12J32)
(A26A1IA1I2J 16 A26A1IA1I2J32)

65



J. MOLNAR

(A26A1A12J18 A26A1A12J32)
(A26A IA I2J20 A26A IA1I2J32)
(A26AIA12J22 A26A1A12J32)
(A26A1IA I2J24 A26A IA 12J32)
(A26A1A12J26 A26A1A12J32)
(A26A1A12J28 A26A1A12J32)
(A26A1A12J30 A26A1A12J32)
(A26A1A13J4 A26A1A13J6)
(A26A1A13J4 A26A1A13J8)
(A26A IA I3J 10 A26A1IA I3J 12)
(A26A1A13J10 A26A1A13314)
(A26A1A6JI9 A26A1A57J1OA)
(A26AI1A6J20 A26A 1A57J20A)
(A26A1 A6J22 A26A1A57130A)
(A26A1 A6J24 A26A1A57J40A)
(A26A IA6328 A26A1 A57J50A)
(A26A 1A6J30 A26A1A57J60A)
(A26AI1A6J32 A26AI1A57J70A)
(A26A IA6J34 A26A1A57180A)
(A26A1A8J4 A26A1A84J50))

66



Appendix E

SAMPLE INSTRUCTION DATA FORMAT

Instruction Name: A30J4_w

Instruction Text:

"Connect loX scope probe to ",$I,".

Use positive external sync from 26A1A1 1J18.

Set TARGET CONTROL - INITIAL BEARING control 34A3B 1
to ",$7," relative.

Observe analog pulses.

Verify the following:

Pulse repetition rate = 1416 microseconds.
Pulse width = 354 microseconds.
Pulse starts 708 microseconds after sync.

Instruction Name: A45J3_a

Instruction Text:

"Connect oscilloscope to ",$1,".

Use direct coupling.

Observe CP target pulses superimposed on approximately
150 mv of noise.

Estimate the average 0 to peak amplitude of the CP target
pL 3.

Correct range is 530 to 710 millivolts, zero to peak.

67



J. MOLNAR

Instruction Name: A45J3_w

Instruction Text:

"Connect oscilloscope to ",$1,".

Use direct coupling.

Observe CP target pulses superimposed on approximately
150 my of noise.

Verify the following:

CP target pulse width is approximately 30 milliseconds,
to the 50% points.

CP target pulse peaks are approximately 4 time noise
level.

Instruction Name: A45J5_a

Instruction Text:

"Connect oscilloscope to ",$1,".

Observe modulated pulse with duration of approximately
50 milliseconds.

Measure the peak to peak amplitude of the pulse.

The correct range is ",$4," to ",$5".

(",$3,"} "

Instruction Name: A45J5_w

Instruction Text:

"Connect oscilloscope to ",$1 ,".

Observe modulated pulse with amplitude of approximately
21 volts peak to peak.

Verify that the average pulse duration is approximately
50 milliseconds.

68



NRL REPORT 9296

Instruction Name: A4J6

Instruction Text:

"Connect XIO scope probe to ", $1,,.

Use positive internal sync.

Observe square wave.

Verify the following:

Period = approx 1.0 microseconds.
Pulse Width = approx 0.5 microsecond.
Logic Level One = +2.0 to +4.5 volts.
Logic Level Zero = +0.0 to +0.6 volL

{",$3,"}"

69



Appendix F

AUTOMATIC CONVERSION PROGRAM FOR RULE AND TESTLIST

DATABASES

This program is made to read in uut data from the format made by a generic text editor and convert to a FIS ".v"
file.

/*declarations:*/

#include <stdio.h>;
#include <sys/file.h>;
#include "string.h"
#define LINELENGTH 145

struct lines
I
char info[LINE LENGTH];
Idataf 10000];

char response[301, answer, answerl [51, *temp, module[30], cause[.501,
effectf 50], precondition [301, name[30], testpoint[30], parameter[30],
units[20], okreadin [10], okreadin2[ 10], okreadin3[ 101,
min[lO], maxilO], lilnum[lO];

int ch, chi, i, ii, filelength, counter2, length, space, numone,
column[LINE LENGTH], col, storenum, nextone, place;

FILE *fopeno, *fpl, *fp2, *fp3;

maino

/*open input file*/
do

printf("What is the name of your rule file? )

scanf("%s", response);
if ((fp I=fopen(response, 'r')) ==NULL)

printf("File doesn't exist.\n");
Iwhile (fplI == NULL);

do

printf("What is the name of your test file? )

scanf("%s", response);
if ((fp3=fopen(response, "r")) == NULL)

printf("File doesn't exist.n");
Iwhile (fp3 == NULL);

71



1. MOLNAR

/*~open output file*/
do

printf("What is the name of the output file? )

scanf("%s", response);
if (ch=access(response, 0) ==0)

printf("The file already exists. Overwrite YIN? )

scanf("%s", answerl);

if ((ch=1 && (answerl [0I=-'y' II answerl [0]='Y')) 11 ch !1)
fp2--fopen(response, "w");

while (ch = 1 && (answerl [0]='N 11 answerl [0]=='n')); /*write & read*/
filelength=O;
numone=O;
while (answer--fgets(data[filelength].info, LINELENGTH, fpl) ! NULL)

++filelength;

i=O; /*filelength is how long file is*/
do

if ((temp--strpbrk(data[i].info, "W")) != NULL)
if (strncmp (temp, "WORKING", 7) = 0) /*skip 2 lines if W is found*/

if (((temp--strpbrk(data[i].info, "M")) != NULL) &&
(strncmp (temp, "Modu", 4) =0)) /*look for the letter M*/

if (numone != 0)

numone=-O; /*Print control*/
fprintf(fp2," )))\,n");

for (counter2=0; counter2<=30; -.+counter2)
module[counter2]='\O';

for (ii=8; temp[iil != Nri'; ++ ii)
module[ii-81=temp[ii];

fprintf(fp2, " ((NAME %s) (FRATE 1 )\n (CAUSAL-RULES\n", module);

else

ii=0;
place=3;
if ((length=strlen(data[i].info)) > 15)
if (((strpbrk(data[iI.info, "[")==NULL) && (datafi].info[ii]!= N')) 11

(((temp=strpbrk(data[iI .info, "["))!=NULL) && (strlen(datafiJ.info)-strlen(temp)>5)))
P'is the line [deleted) ? *

for (counter2--85; data[i].infofcounter2J != V.n; ++counter2)
if (data[ iI.info~counter2l != '')
precondiuion[counter2-iiJ=datalil.info[counter2J;
else

space=O;

72



NRL REPORT 9296

for (counter2=3; counter2<=length && space != 5; ++counter2)
if ((cause[counter2-3]=datafi].info[counter2J)

++space;
space=O;
for (counter2=40; counter2<=dength && space != 4; ++counter2)
if ((effect[counter2-40]=data[i] .infolcounter2]) ='

+.+space;
if (numone = 0)

++numone;
fprintf(fp2," On"V);

/*rmnd if the cause is the same as the module*/
if (strlen(strpbrk(cause, " ")) < 5)

fprintf(fp2," (%s %s\n (%s))\n",precondition,
cause, effect);

else
fprintf(fp2," (%s (%S)\n (%s))\n",precondition,

cause, effect);

/*'clean up the variables*/
for (counter2=-O; counter2<=50; ++counter2)

cause[counter2='Y;
effect~counter2l=W;
I
for (counter2=0O; counter2<=30; ++counter2)

precondition[counter2=VO';

while (i<=filelength);
fprinftf(fp2," )))\n\n");

/*rules database*/
filelength=0O;
while (answer--fgets(data[filelengthl.info, LINELENGTH, fp3) != NULL)

++filelength;
fprintf(fp2, " )
i=O;
ch=4;
if (ch<filelength)
find-col(datalchl.info, column); /*sets up the columns into mnt array column*/
do

if ((strpbrk(datai].info, "*) =NULL) /*~skip over any line with **'s*

else

ii=0;
anuwer--data[i].info[iij;
if (((length=strlen(data~i ].info)) > 55)1 && (answer !

N~oes it begin with a character?*/
col=I; /*this is the column number*/
storenum= -1,

73



J. MOLNAR

for (counter2=O; counter2<=length && col < 6; counter2.-.)
if (data[iI.infolcounter2I 11'I

(data[iI.infoilcounter2] = && column[counter2] != 0))
switch(col)

/*set up var'ables depending on columnn*/
case 1: if (storenum == -1) storenum=counter2;

namellcounter2-storenum]=dAatal.info[counter2];
nextone= 1;
break;

case 2: if (storenumn == -1) storenum=counter2;
test~point[counter2-storenuml=data[i] .info[counter2];

nextone= 1;
break;

case 3: if (storenumn == -1) storenum=counter2;
parameter[counher2-storenuml=data[iI.info[counter2];

nextone= 1;
break;

case 4: if (storenumn == -1) storenum=counter2;
unitsfcounter2-storenum]=data[iI .info[counter2];
nextane= 1;
break;

case 5: if (storenurn == -1) storenum=counter2;
okreadin[counter2-storenum]=data[iJ .info[counter2l;

nextone=l;
break;

else
if (nextone =1

++col; /*~increment the column number*/
nextone=-O; /*skip over spaces between columns without

incrementing col */
storenum= -1; /*the starting place for indivdual variables*/

*hi lo ok value (ok (min max) lo (-inf min) hi (max inf))
* hi lo ok naval (ok lo hi)
*ok bad value (ok (min max) bad (-inf min) (max inf))
* ok bad naval (ok bad)

/*the following method is used instead of the above column method because sometimes the data doesn't exist and the
program looks for nothing or misinterprets data found*/

ch=63;
if (data [i). infofch] = ' /*there's s.t. there!!!*/

for (counter2--63; data[iI.info[caunter2l !=';++counter2)

min[counter2-63I--data[iI .infalcaunter2l;
if (strlen (min) < 6)
for (counter2--69; datalil.info[counter2l 11' I counter2<70; ++counter2)
max [counter2-691=data[iI .info[counter2l;

74



NRL REPORT 9296

else
I
chl=67;

for (counter2=67; data[i+1I.info[counter2l 11 'I
counter2<70; ++counter2);

I
max[counter2-671=-data[i+ 1 I.info[counter2];

/*the data[i+l] is used above because if the qual val is to long,
there's no space for the second on the same fine, and it's
located underneath*/

else
if (data[i].info[ch+lI ='

for (counter2=64; data[i].info[counter2l !='' .+counter2)
min[counter2-64]=data[iJ .infollcounter2l;
if (strlen (min) < 6)
for (counter2=70; data[i].info[counter2j 11 'I counter2<71; -.-icounter2)
max [counter2-70]=data[i] .info[counter2];

else

chl=68;
if (data[i+lI.infofchll != WfI)
for (counter2=68; data[i+ I].info[counter2] 11'I

counter2<7 1; ++counter2)
max [counter2-68]=datafi+ I1I.infolcounter2];

if (atof(min) > atof(max))
printf("Problem with min max values in %s %s.\n", name, test-point);

/*if the min is greater than the max, there's a problem.*/
fi=58; /*this is done because sometimes the data's in the wrong space*/
for (counter2=58; counter2c60; ++counter2)

if (data[i+11.info[counter2] != '')
okreadin2[counter2-ii]=data[i+1] .info[counter2];
else

if (strlen(data[i+2].info) >58)
for (counter2=58; datalli+2].info[counter2] !''&&

counter2<strlen(data[i+2] .info); ..+counter2)
okreadin3[counter2-58]=data[i+21.info[counter2l;

ii=77;
for (counter2--77; Lounter2<8O; ++counter2)

if (data[ i].info[counter2] != '')
lilnum[counter2-iil=data[iJ .info[counter2l;
else

75



1. MOLNAR

Sprinting time
fprintf(fp2, " (%s (%s %s\n S in",

name, test-point, parameter);
if ((okreadin[O] =--f') && (okreadin2lO] ='o))

fprintf(fp2, " ((ok) (fauhted))\n");
if ((okreadin[O] ='a') && (okreadin2[OI = 'o))

fprintf(fp2, " ((absent) (ok))Nn");
if ((okreadin[O] ='p) && (okreadin2OJ ='o'))

fprint~ffp2, " ((ok) (present))\n");
if ((okreadin[OJ = '6) & & (okreadin2[0j ='o')

fprintf(fp2, " ((ok) (on))\n");
if ((okreadimfO = 'b) && (okreadin2[I1 = V)

if (min[O] = WO)
fprintf(fp2,' ((olc) (bad))VI");
else
fprintf(fp2," ((ok (%s %s)) (bad (-inf %s) (%s inf)))Nn", min, max, min max);

if ((okreadinlO] ='h') && (okreadin2[0l = 1))
if (min[0] = V')

fprintf(fp2, ((ok) (1o) (hi))\n");
else
fprintf(fp2,

11 ((ok ((%s %s))) (Jo ((-inf %s))) (hi ((%s inf))))\n", min, max, min, max);

fprintf(fp2," %s\n D\n", units);
fprintf(fp2," %s\n NIL))\n", lilnum);

for (counter2=O; counter2<=30; +-.counter2)

name[counter2=NO;
test_point[counter2]=VO; /*cleaning up the variables*/
parameter[counter2]=VO;

for (counter2=O; counter2<=20; ++counter2)
units[counter2j=V'';

for (counter2=-O; counter2'e=10; ++counter2)

IkedncutrjN'
okreadin~fcouner2l=V;

okreadin3[counter2I=%)Y;
inum fcountwr2J=VO;

min[couater2]=VO;
max[counter2J='\O';

while (i<=filelength);
fprintf(fp2,")\,n");
fprintf(fp2,"NWL\nNIL\,nNL\,n");
close(fp 1);
close(fp3);
close(fp2);

76



NRL REPORT 9296

*************************** FUNCTIONS ******************************

findcol (string, coiumns)

char *string;
int columns[];

int k=O, num=O;

while (string[k] ==' ') columns[k++[= 1;
if (k==O) columns[k++]= 1;
while (string[k] != V)

if (string[k]==' ') columns[k]=O;
else
if (string[k-1! !=' ) columns[k] = num;
else
columns(k] = ++num;

k++;

while (k < LINELENGTH) columns[k++]=O;
return;

* This function looks at a header and develops column fields:

* Headerl H2 Head3 Header4
* 11111111110002200333330000000444444400000

* as such, to find out what column a specific pic" of data
is ii..

77



Appendix G

CONVERSION PROGRAM RULE DATABASE

**** * *** *** *** * ****** ** *** ** **** ** **** ** *

* Program CONVERT *

* This program converts causal rule data given in tabular form to data in a *
* LISP format that may be used as input to the Fault Isolation System (FIS) *
* package. The tabular input file consists of cause-effect relationships *
* for a given module, and any number of modules may be specified. CONVERT*
* allows much flexibility with regard to the format of the input file, but *
* several restrictions are necessary: *

* 1. Each set of cause-effect relationships for a module must be *
* sepcrated by a linc: *
* Module: <modulename> *
* Note any number of spaces and tabs is allowed before, within, and after *
* the line. *
* 2. Each cause-effect relationship for a module must be numbered and *

* given in the following form: *
* <no.> <cause> <effect> <type> <precondition> *
* <effect> is a triplet of the following form: *

* <terminal> <parameter> <abnormality> *
* <cause> is either a triplet as above or an atom of the form: *
* <modulename> *
* Again, any number of spaces and tabs is allowed within the line: each *

* parameter field is determined by its position on the line relative to *
* the others, not by its columnar location. *
* 3. The <cause> field given above may also be a conjunction of causes. If *
* so, the cause-effect relationship may appear on one or more lines: *
* <no.> <causel> & <cause2> & ... & <causen> <effect> <type> <pre. *
* or: *

* <no.> <causel> & ... & <causem> & *
* <causem+l> & ... & <causek> & *

* <causei> & ... & <causen> <effect> <type> <precondition> *
* Note that each cause must be seperated by & and that, if the list of *
* causes continues to the next line, the last character on the line (other *
* than a space or tab) must be &'. Each cause may be either an atom or a *
* triplet as describe above. *
* 4. Parentheses may not appear anywhere in the input file. *
* 5. Comments may appear anywhere in the file. They are delimited on Lhe *
* left by either [ or ( and on the right by I or ). Mixing of delimiters *
* is not allowed: comments started with a bracket must end with a *
* bracket, and those started with a brace must end with a brace. Both *
* delimiters must occur on the same line. *
* 6. The maximum number of characters allowed on an input line (including *
* spaces and tabs) is MAXLENGTH (specified in the C program). *

79



J. MOLNAR

* Any line appearing in the file that does not follow the format described *
* above is simply ignored. Thus headers, page numbers, spices, etc. are *
* permitted anywhere and will have no effect (as long as they cannot be *
* interpreted in one of the ways described above). *

* The output of the program is a series of lists in which the head is the *
* module name and the tail is a list of cause-effect relationships: *

* (module-name *

* ( *
* (cause effect [precondition]) *

* (cause effect [precondition]) *
, )) ,
* (module-name *

. )) ,

* 'effect' is always of the form '(terminal parameter abnormality)' and *
* 'cause' is either in this form or a non-parenthesised atom: 'modulename' *
* The precondition is printed only when it is given as something other than *
* "t". Thus for the input line *

* 4 terml parl effectl term2 par2 effect2 s t *

* the output will be *
* ((terml parl effectl) (term2 par2 effect2)) *
* And for the input line *
* 5 module term3 par3 effect3 s precondl *
* the corresponding output line will be *
* (module (term3 par3 effect3) precondl) *
* For the case when 'cause' is a conjunction of causes, the ouput will look *
* as follows: *
* ; (causel & cause2 & ... & causen effect type [precondition]) *

* Each cause is either a triplet (in parentheses) or an atom. Note that this *
* line is commented out (a semicolon in LISP indicates a comment) *
* because the the FIS package is not yet able to handle this case. *

**** ********* ********************* *** ***

*/

#include <stdio.h>
#define MAXLENGTH 200 /* maximum length of input line */
#define TRUE 1
#define FALSE 0
#define MAXMODULENUM 200

FILE *fpl, *fp2[MAX_MODULE NUM]; /* pointers to input, output files */

maino

char string[MAXLENGTH]; /* array into which input line is placed */
char c[61;
char namel [30], name2[30]; /* file names of input, output files */
int num, k, k 1, a, i;

do (
printf("Enter the name of the file to be converted... ");
scanf("%s ",name 1);

80



NRL REPORT 9296

if (ffpl=fopen(namel,"r")) == NULL)
printf("No such file exists.\n");

while (fpl = NULL);

Read in lines until the first module identification is found.

numn = gets -I(string);
while (stmcmp("Module:",&string[num],7) != 0)

num = getsj (string);
/* Disregard spaces or tabs before module name. ~
for (k=num+7: string[j==- 11 string[k]==\.t; k++);
/* Place a NUL character at end of module name. */
for (kl=k; stzing[kl]!=' && string[kl]!=Nt && string[kl]!=VO'; kl++);
string[kl = V
S= 0;

strcpy (name2, &stringllk]);
fp2fi] = fopen(name2,'w+");

This is the main loop in the program. Each line is read until EOF is
encountered. If the first character in the line (other than a space or
tab) is a digit, then routine 'sep' is called to print the output line if
it is in the proper format. If the first character is not a digit, then
a check is made to see if the line is a module identification. If so, the
module name is printed, otherwise no output is given for this line. The
routine 'strncmp(s l,s2,n)' compares the first n characters of strings si
and s2 and returns 0 if they are the same.

while((num=getsl(stri'; g)) != 999)
if (string~num>='O' &&A string~num]<='9') /* digit check */

sep(&stringfnum] ,i),
else if (strncmp("Mcdule:",&stringfnuml,7) == 0) [ /* New module found *

fcose (fp2[i.-.]); /*close the last module file */
for (k=num-.7; string[kI==''I11 string[k]==%z; k++);
for (kl=k; string[kl]l'=' ' && string[kl]!=\t' && string[kl]!=VY;

string[kI]I = W~; f/' Place NUL character at end of module name. ~
strcpy (name2, &string[j);
fp2[i] = fopen(name2,"w+"); f* open the new module file *

P* Close input and output files. *
fclose(fp 1);

SEP(STRING,I)*

*Routine SEP receives an input line beginning at location STRING. This *

*input will be recognized (i.e. output wil be genera"x) if given in the *

form descibed previously, that is:
* <no.> <cause> <effect> <type> <precondition>

81



J. MOLNAR

* where <effect> is a triplet and <cause> is either a triplet or an atom and *
* may be a conjunction of several causes. *
* SEP performs character by character examination of the input string, *

* during which it is always in one of four possible states (or MODEs): *
* MODE = 0: An input parameter is being read. *
* MODE = 1: Spaces or tabs are being read. *

* MODE = 2: A comment is being read (bracket delimeters). *
* MODE = 3: A comment is being read (brace delimeters). *
* The array of pointers DATA stores the locations of the parameters on the *
* input line. After the string has been processed, a check is made to see if *
* the input is in the correct format. If so, the appropriate output line is *

* printed. *

*/*

sep(stringi)
char *string;
int i;{

int mode = 1, m = 0, nl = -1;
int n, k, num, kl, k2, OK, LOOP;

char *loc;
char *strrchr0;
char data[50][50]; /* stores a max of 50 parameter fields */
char sl [MAXLENGTH]; /* array in which an input line following a

conjunction of causes is placed */

do (
n=-1;
while (string[++n] != 0)

if (mode == 0) f
if (string[n] != && string[n] != Nt')
data[nl][m++] = string[ni; /* update current parameter field */

else { /* end of current parameter field */
mode = 1;

data[nl][m] = 0; /* place NULL character at end of string */

else if (mode == 1) {
if (string[n] == '[') mode = 2; /* start of a comment */
else if (string[n] == '(') mode = 3; /* start of a comment */
else if ((string[n] !=' ') && (string[n] != Nt'))

mode = 0; /* new parameter field encountered */
m = 0;
datal++nllim++] = string[ni;

else if (mode==2 && string(n]=='I') mode = 1; /* end of a comment */
else if (mode==3 && string[n]=')') mode = 1; /* end of a commert /

if (mode = 0) data[nl ][m] = 0; /* place NULL chr at end of string */
LOOP = FALSE;

82



NRL REPORT 9296

/*

Exit the main loop only if the last character on the input line (other
than a space or tab) is not &. If it is, then read the next input line
and repeat the loop, updating array DATA.
Routine 'strrchr(st,ch)' returns the address of the last appearance of
the character chr in string st (it returns 0 if ch does not appear in
the string).

*/

if ((loc=strrchr(&string[0],'&)) != 0) {
for (++loc; *loc=--'' II *loc==V; loc++) ;/* disregard spaces and

tabs after '&' */
if (*loc = 0) ( /* last chr on line was '&'; read in new line */

num = getsl(sl);
string = &sl[num];
mode = 1;
LOOP = TRUE;}

I
I while (LOOP = TRUE);

/*

Check the input to make sure it is in the correct form. That is, the
the cause must have either one or three fields, and there must be exactly
six other fields present (three for effect, and one each for no., type,
and precondition). If the cause is a conjunction, then each '&' must be
seperated by one or three fields. If any of these restrictions does not
hold, then set OK to FALSE. Note that NI indicates the total number of
input fields, and the array DATA points to those fields.

*/

OK = TRUE;
num = 0;
for (kl=l; (kI < nl-4) && (OK = TRUE); kl++)

if (data[kl][0] ='&)
if (num != I && num != 3) OK = FALSE;/* must have I or 3 fields */
else num = 0; /* between each '&' */

else num = num + 1;
if (num!=l && num!=3) OK = FALSE;

/*
Generate output only if input was found to be in correct form. First the
appropriate cause output will be given, followed by the effect, and then
by the prcondition (if not equal to "t").

*/

if (OK = TRUE)
fprintf(fp2[iI," %s ",data[nil); /* precondition field */
if (ki = 2) fprintf(fp2[i]," %s ",data[l]);/* I field, no '&' present */
else if (kl==4 && data[21[0]!='&') /* 3 fields, no '&' present */

fprintf(fp2[i]," (%s %s %s) ",data[l Idata[2,data[3]);
else { /* there is at least one '&' present */

k2= 1;
fprintf(fp2[i]," ; ("); /* print a semicolon to comment out the line */

83



J. MOLNAR

while (k2 < nl-4)
if (data[k2+1][0] == '&I) { /* 1 field, followed by '&' */

fprintf(fp2[i],"%s & ",data[k2]);
k2 = k2 + 2;

}
else if (data[k2+3][0] == '&) /* 3 fields, followed by '&' */

fprintf(fp2[i],"(%s %s %s) & ",data[k2],data[k2+1],data[k2+21);
k2 = k2 + 4;

else if (k2+2 < n 1-4) (/* last cause, 3 fields */
fprintf(fp2[i],"(%s %s %s) ",data[k2 ],data [k2+ 11 ,data[k2+2]);

k2 = k2 + 3;I
else [ /* last cause, 1 field */

fprintf(fp2[i],"%s ",data[k2]);
k2 = k2 + 1;

}
}
/* print rest of output line. */
fprintf(fp2[i],"(%s %s %s)\n",data[n 1-4],datan 1-3],data[nl-2]);

return;

1*** * **** *** *** ****** ***** *** *** *** *** ** *

* GETSI(STRING) *

* This routine reads a line of input and places it into the character array *
* STRING, replacing the newline charcater with a NULL character. The *
* function returns the index of the first array element that is not a space *
* or a tab. It returns 999' on end-of-file. *

**** ****** ************************ *** ***

*/

gets I(string)
char *string;

int k; /* number of spaces and tabs before first character */

if (fgets(stringMAX_LENGTH,fpl) = NULL) return(999);
for(k=0; string[k]=' I1 string[k]==%'; k++);
*(&string~strcspn(sting,"'n")I) = ;

return(k);

84



Appendix H

AUTOMATIC CONVERSION PROGRAM FOR TEST DATABASE

1*********************************************************

* Program CON2 *

* This program converts FIS test data given in tabular form to data in a *

* LISP format that can be used as input to the FIS package. The *

* restrictions for the format of the input file are as follows: *

* 1. Nine columns of data are recognized. They are (in order): module name, *

* test point, parameter, units, possible qualitative values, maximum *

* value, minimum value, cost, and prequisites. Any column after these *

* nine is ignored. *

* 2. Before the data are given, a column header must appear in order to *
* establish the column locations. This header should have the following *

* form: *

* $3 *
* $1 POSS *

* TEST $2 QUAL $4 $5 COST, *

* NAME POINT PARAMETER UNITS RES MIN MAX SECONDS PREREQUISITES *

* Although preferable, the header does not have to look like this. CON2 *

* simply looks at the lowest line in the header, and establishes column *

* locations by searching for groups of characters seperated by one or *

* more spaces. However, there must be exactly four lines in the header, *

* and the first line must contain only the characters "$3" (other than *

* spaces). If other columns are desired, there must be appropriate *

* column headers for them. *

* 3. Comments may appear anywhere in the file. They are delimited on the *

* left by '[' and on the right by ']'. Anything appearing in the file *

* that is not part of a header is considered as data. Thus page numbers, *

* dates, page headers, etc. must be bracketed. *

* 4. Data for a particular module do not have to appear on consecutive lines. *

* That is, comments and blank lines may break up a block of data. This is *

* useful, for example, if you would like to extend a prerequisite list *

* onto a next page. NOTE: A new column header may not break up a block *

* of data.
* 5. The maximum number of characters allowed on an input line is *

* MAX-LENGTH (specified in the C program). *

* The output of the program is a series of lines in the foolowing form: *

* (<name> <testpoint> <parameter> <qual> *

* p <unit,> (Icostl Iprereqll Iprereq21 ... Iprereq 131)) *

85



J. MOLNAR

* <qual> may take several forms, depending on what is in the possible *

* qualitative values column and what is in the min and max columns. This *

is summarized in the following chart: *

* MIN and
* POSS QUAL MAX given <qual> *

* hi lo ok YES (ok (min max) hi (max inf) lo (-inf min)) *

* hi lo ok NO (hi lo ok) *

* good lo ok YES (good (min max) hi (max inf) lo (-inf min)) *

* good lo ok NO (good lo ok) *

* ok bad YES (ok (min max) bad (-inf min) (max int)) *

* ok bad NO (ok bad) *

* good bad YES (good (min max) bad (-inf min) (inf max)) *

* good bad NO (good bad) *

* qI q2 q3 YES ERROR *

* qlq2q3 NO (ql q2q3) *

* qI q2 YES ERROR *

* qI q2 NO (qI q2) *

* (qI, q2, and q3 indicate other qualitative descriptions) *

* For each block of test data there are thirteen prerequisites that must be *

* specified (see routine 'printpre' for a list of them). Each is assumed to *

* have two parts: the prerequisite identifier and the variable descriptor *

* (for example, 'active_mode on'). If the identifier is not found in the *

* prerequisite list in the input, then that prerequisite will be given as Izi *

* on the output. *

* When an error is encountered on the input, an error message will be *

* printed at the line in which the error occured. *

*/*

#include <stdio.h>
#define MAXLENGTH 200 /* maximum length of input string */
#define ERMSG "***Error on this line***"
#define ERROR ERI = TRUE
#define ASSIGN(X) if (X[0] )') strcpy(X,word); else ERROR; break
#define TRUE 1
#define FALSE 0

struct

char terminal [301;
char test 1501[301;

terminal name[3001;

int N, ER I;
FILE *fpl, *fp2,*fp3;

mainO

86



NRL REPORT 9296

char string[MAX..LENGTH]; f* array into which input line is placed *
char infile[301. outfilet3Ol; 1* input, output files *1
int columns[MAX-LENGTHI; f* column identification array *
char word[ 100], c[61;
f* The following character arrays store the nine data fields for each block

of test data. Note that prelI is the is the first prerequisite field (the
identifier) and pre2 the secound (the variable descriptor).

char name[30], test-point[30], parameter[30], min[l0], max[1OJ, cost[301,
prelI[ 15][301, pre2[151[301, qual [3 [ 10I, units[301;

mnt qual-num, pre-num; /* array indexers for qual and prel and pre2 *
mnt num, L, FIRST, i, k, a, j, error-line-count=0;

/* initalize the array *
= 0;

j =0;
for (i=0;i<300;++i)

strcpy (termninal_nanelii].terminal,"");
for 0=0; j<=50; ++j)
strcpy (termninal_name[i].test,"");

ER I = FALSE; /* ERl=TRUE when an error on the input occurs ~
do ( /* Read in the input file name */

printf("Enter the name of the input file... )
scanf("%s",infile);
if ((fp1=fopen(infile,"r")) - NULL)

printfC'No such fie exists.\n");
while (fplI == NULL);

printf("Do you wish the error file to be sent to the screen (s) or a file (f)")
scanf(."%s",c);
if (c[0]='f 11 c[O]=F)

fp3= fopen("ERROR_FILE","w");
else

fp3 = stdout; /* stdout is the screen *
printf("\aiM");

f* Read in the output file name ~
printf("Enter the name of the output file... )
scanf("%s",outfile);,

printfQ'\ft~");

FIRST = 1;

This is the main loop (highest level) loop in the program. A line of input
is read and stored in 'string'. L indicates the length of the string and N
is the current point in the string that is being examined. Note that N is
global and is updated in routine 'get-word', which returns the next word

87



J. MOLNAR

(group of characters) to 'word' and the column header number under which the
word is located.

*/

while (fgts(string,200,fpl) != NULL)
error_linecount++;
string[strcspn(string,"\n")] = '0';
L = strlen(string);
N =0;
while (N < L)
if (string[0]='*')
break; /* line begins with an * and should be ignored */
num=get-word(word,string,columns);
switch(num) {

case 1: /* The current word is a module name. Print out data for
previous test data block, initialize pre-num, qual-num,
and FIRST, and set name equal to the current word.
*/

print-data(name,test-point,parameter,units,qual,min,max,
cost,pre 1 ,pre2,prenum,qual-num,FIRST,error linecount);

pre-num = -1;
qual_num = -1;
FIRST = 0;

strcpy(name,word);
break;

case 2: ASSIGN(testpoint); /* current word is testpoint */
case 3: ASSIGN(parameter); /* current word is parameter */
case 4: ASSIGN(units); /* current word is units */
case 5: /* Current word is one of the descriptors in the POSS QUAL

column. Increment the qaulnum index and store word
in the qual array.

,/

if (++qual num > 2) ERROR;
else strcpy(qual[qual_num],word);

break;
case 6: ASSIGN(min); /* current word is the min value */
case 7: ASSIGN(max); /* current word is the max value */
case 8: /* The current word is in the cost field. Since several

strings in a test data block may be assigned to this
field (because of constructs such as "10 + pingcycle_
time") each word must be appended to the previous value
of cost with a space in between (unless, of course, the

current word ends with an underscore, in which case the
rest of that word is on the next line and the two must
be ippended without the space).
*/

if (cost[01 = )' strcpy(cost,word);
else (

k = strlen(cost);
if (cost[k- 11 != '_') cost[k++] =
for (i=0; wordli]!=\0'; i++, k++)

cost[k] = word[i];
costlki = V';

break;

88



NRL REPORT 9296

case 9: /* The current word is the first part of a prerequisite
field. Increment the prenum index and store it in the
prel array. Then get the next word. It should be the
second part of the prerequisite field; store it in pre2.
*/

strcpy(prel [++pre-num],word);
if (get word(word,string,columns) != 9) ERROR;
else strcpy(pre2[pre-num],word);
break;

case 99: /* 99 indicates that the first row of a column header was
encountered. Read in the next three rows and call
routine 'find_col' to set up the column fields.
*/

for (k=l; k<=3; k++) fgets(stringMAXLENGTH,fp1);
findcol(string,columns);

default:;
I

}

/* The output for the last test data block has not been given yet. */
print data(name,test-point,parameter,units,qual,min,max,cost,prel ,pre2,

pre num,qualnum,FIRST,error line count);
makebigfile(outfile); /* concatenates all the little files */

1*********************************************************

* GETWORD(WORD,STRING,COLUMNS) *

* This routine receives an input line STRING, and it stores in WORD the *
* first group of characters (the first word) at or after location N (N is the *
* global variable indicating the position in the input line currently being *
* examined). It also returns the number of the column in which the word *
* appears. If the end of the string is reached then it returns -1, and if *
* a column header is reached 99 is returned. COLUMNS is an array storing *
* the locations of each of the columns. *

*/

getword(word,string,columns)
int columns[];
char *word, *string;

char c;
int k, kI, k2, m;
int begin, end; /* begin is the location of the beginning of the word, and

end is the location of the end of the word. */

/* Disregard all spaces and comments before the first character.
*/

89



J. MOLNAR

while (string[N]=' 11I string[N=T[)
while (stringliN] N++;
if (string[INl ='[')

while (string[N] !=1)N++;

N++

if (stringiN] = W0) return(-1); /* Return -1 if NIJL character reached *

begin = N;
k = 0;

while (string[N]!=' ' && string[N]!=-0) /* Store group of characters *

word[k++] = string[N++I; /* in word. *
end= N- 1;
word[k] = WU; /* Place NUL character at end of word. ~
if (strcmp(word,"$3") == 0) {/* Return 99 if column header found. *

for (klI=N; string [kI]I == k I kl++i);
if (string[kI] =OV) return(99);

/*~ The rest of the code in this routine determines in which column the word
is locv-ted. That column number is then returned.

if (columns[endl = columns[beginl)
if (columns[endl != 0) return(columnsfendJ);
k = begin;
while(columns[k]==columns[end] && k!=end) k++;
if (k ! = end) return(columnslik]);
for (kl=begin,k2--end; col~mns[k1]==columns[k2J; kl--,k2++);
if (columros[k1I I = columns[end]) return(columns[k2]);
else return(columnsfkl]D;

for (k=begin; (colurnns[kI==columns~beginl 11 columnslk]==columns[end] 11
columns[k]==-0) && k!=end; k++);

if (k != end) return(columnsflk]);
if (columnsfbeginl = 0) return(columns[end]);
if (columns[endl = 0) return(columns[begin]);
for (k I =begink2=end; columnsk I 1 =-colum- .[begin] && columns[k2]==

columns[end]; kl++,k2--) ;
if (columns[k2] = columns[endl) return(columns[end]);
else- retur(columns[beginl);

FINDCOL(STRING,COLUMNS)*

" This routine receives STRING, the lowest row in a column header, as input.*
" It computes COLUMNS, an array in which each element contains a number*
" corresponding to the appropriate column that is loacted there. Columns are*
" given increasing numbers starting at one, and those locations between*

90



NRL REPORT 9296

* columns are filled with O's. For example, the following column header *

* (STRING) generates COLUMNS as shown: *

* STRING=" Headerl H2 Header3 Head4" *

* COLUMNS = "1111111111002200000333333300444440" *

* Note that leading spaces are filled with l's. *

*/*

fimd col(string,columns)
char *string;
int columns[];
I

int k = 0, num = 0;

while (string[k] == ") columns[k++] = 1;
if (k = 0) columns[k++] = 1;
while (string[k] != ')

if (string[k] = '') columns[kl = 0;
else if (string[k-li != ') columns[k] =num;
else columns[k] = ++num;
k++;

I
while (k < 200) columns[k++] = 0;
return;

91



J. MOLNAR

* IN(ST,QUALNUM) *

* This predicate function returns TRUE if the string ST is one of the strings *

* stored in the array of strings QUAL. There are NUM+1 strings in QUAL. *

in(st,qual,num)
char *st, quall 10];
int num;
(

int i;

for (i=0; i<=num; i++)
if (strcmp(qual[i],st) == 0) return(TRUE);

retum(FALSE);

* PRINTDATA *

* This routine prints the output for one block of test data and initializes *

* all test data variables. The format of the output is described in previous *
* documentation. If an error '-.s found on the input (ERI=TRUE), then an *
* eror message is printed. On the first call to PRINTDATA (FIRST=TRUE), *

* no data are printed. *

*/*

printdata(name,tesLpoint,parameter,units,qual,min,max,cost,prel ,pre2,
pre_num,qualnum,FLRST,error line count)

char *name, *test point, *parameter, qual[[10], *min, *max, prelI0 [30],
pre2[][30, *cost, *units;

int prenum, qual_num, FIRST,errorline count;
I

int knatch=0,i=0, j, valid-test;
char filename[30];
if (!FIRST && !ER1)

while (strcmp(terminalname[i].terminal,"") != 0)
if (strcmp(testpoint, terminal name[i++I.terminal)=0)

match =1;
break;

92



NRL REPORT 9296

if (strcmp(tespoint,")!O0)

strcpy(filename,testpoint);
fp2 = fopen (filenaine,"a+");

else
return(- 1);

if (match ==0)

strcpy (terminai..name[i++I.termiflal,testj)oilt);
if (fp2 ! = NULL)

fprintf(fp2," (%s\,n',testpoint);
else

printf ("FP2 IS NULL\n");

/* check to see if unique test ~
valid-test = 1;
j=O;
while (strcmp(tenminal name[i-l ].testU],"") !=0)

if (strcmp (terminaLnamneli- I .testU++,nane)=0)

valid test = 0;
break;

if (valid-test)

strcpy(terminal-nameli-I ].testUji,name);
if (!FIRST&& !ER1 )[

fprintf(fp2,' (%s %s\,n",name,paraxneter);
fprintf(fp2,- SAW'n); /*~just a guess ~
if (qualnum=l && min[0]=--V')

fprintf(fp2," ((%s) (%s))\n",qual[l,qual[JO); /* get into format (ok bad) *

else if (qua]lnum==2 && min[0]==VO')
fprintf(fp2," ((%s)(%s)(%s))\n,qual[21 ,qual[I1J,qual[0]); /*ok lo, hi *

else if (quaL-nun=1)
if (in("bad",qual, 1) && in("ok",qual,1))

fprintf(fp2," ((OK (%s %s)) (BAD (-11-F %s) (%s !NF))) \n", min,max,min,max);
else if (in('bad",qual, 1) && in("good",qual, I))

fprintf(fp2," ((GOOD (%s %s)) (BAD (-INF %s) (%s IF)\"
min,max,min, max);

else ERROR;
else if (qual-num==2)

if (in("hi",qual,2) && inQ'lo",qua],2) && in("ok",qual,2))

fprintf(fp2," ((OK ((%s %s))) (LO ((-inf %s)))\n",
min,max,min);

fprintf(fp2," (HI ((%s inf))))\n",
max);

93



J. MOLNAR

else if (in("hi",qual,2) && inC'lo",qual,2) && in("good",qual,2))
I

fprintf(fp2," ((GOOD (%s %s))) (LO ((-INF %s)))\n",
min,max,min);

fprintf(fp2," (HI ((%s INF))))\n",
max);

e
else ERROR;

else ERROR;

fprintf(fp2," %s\n",units);
fprintf(fp2," DWn);
fprintf(fp2," lOW');
fprintf(fp2," NIL)\n");

/* Print error message if ERI=TRUE. */
if (ER I)

fprintf(fp3,ER_MSG);
fprintf(fp3,"#%dn",errorlinecount);
ERI = FALSE;

I

/* Initialize test data variables */

test-point[O] = ;
parameter[0] = ;
units[01 = VO;
min[0 = \0';
max[0] = VY;
cost[0] = WY;
for (k=O; k<=2; k++) qual[k] [0] = 'V';
for (k=O; k<=14; k++)

prel[k][0] = W0';
pre2[k][0] = W0';

fclose (fp2);
return;

* PRINTPRE *
* *)

* This routine prints the preconditions and cost field (format described in *
* previous documentation). The thirteen preconditions are defined in array *
* strings (note the zeroth element is a dummy string) *

*/*

print-pre(pre I .pre2,prenum,cost)
char prel [1[30]. pre2[][30], *cost;
int prenum;

94



.NRL REPORT 9296

nt n, n I, LOOP;
static char strings[ 14] [151

"zz", "active-mode", "uni t-26_door", "26A 1_drawer", "unit-34", "scope",
"unit-34j- rg", "probe-on", "ac-diff-mtr", "counter","diff-scope".
"diff-counter", "PMEFLC', "PMFL-s"

1;

I"' Print the cost field *

if (cost[OI != V\O)
fprintf(fp3,"(I%sI",cost);

else
fprintf(fp3,"(IzI");

f* Print each of the thirteen preconditions *

for (n--1; n<=13; n++)
LOOP = TRUE;
/* Find a precondition that matches strings[n] *
for (nI =0; n I<=pre~num && LOOP=TRUE; nlI ++)

if (strcmp(prelI[nlIJ,strings[n]j) = 0) LOOP = FALSE;

if (n==2 11 n==6 11 n==10)
fprintf(fp3,"\n ");

if (LOOP = FALSE) /* A precondition was found that matches stfing[n] *
fprintf(fp3," I%s %sI",prel [n I I,pre2[n 1]);

else /* LOOP = TRUE; a precondition was not found *
fprintf(fp3," Wz");

make-big-file(outfile)
char *oudtfile;

char narnes2[50],string[1000J,old-file[501;
mnt i=Oone=O;

while(strcmp(terminal-naie[i.terminal," ")!=NULL)

if (one)
stxcpy(narnes2,"HUMNP TY");
else
strcpy(narnes2,"dumpty");
strcpy(string,"");
strcpy(string,"cat")
strcat(sbring,old~file);
strcat(string," ");
strcat(string,terminalname[i ].terminal);
strcat(string," > ");
strcat(stjring, names2);

95



J. MOLNAR

stftcpy(old - ilenames2);
system(string);
if (one ==O)

one =1;
else

one = 0;

/* copy to the user defined outfile name ~
strcpy(string,"");
strcpy(string,"cp")
if (!one)

strcatostring," HUMPITY )

else
strcat(string," dumpty )

strcat(string,outfile);
system(string);

96



Appendix I

SEMIAUTOMATIC CONVERSION PROGRAM FOR TEST DATABASE

#include <stdio.h>
#define MAX_-LENGTH 200 /* maximum length of input string ~
#define ERMSG "***Error on this line***-
#define ERROR ERI = TRUE
#define ASSIGN(X) if (X[O] V ~O) strcpy(X,word); else ERROR; break
#define TRUE I
#define FALSE 0

Struct
I
char terminal [30];
char test [501[30];

terminal name[300];

int N, ER I;
FILE *fpl, *fp2,*fp3;

maino

char string[MAXLENGTHJ; I* axfay into which input line is placed *

char infile[301, outfile[30j; /*' input, output files */
int columns[MAX LENGTH]; f* column identification array *
char word[ 1001, c[61;
f* The following character arrays store the nine data fields for each block

of test data. Note that prel is the first prerequisite field (the
identifier) and pre2 the sec'ound (the variable descriptor).

char nanie[30], test..point[301, parameter[30], min[l0], max[I], cost[30],
prel[151[301, pre2[15]130]. qual[3][10], units[30];

mnt qual-num, pre-num; /*' array indexers for qua] and prel and pre2 ~
mnt num, L, FIRST, i, k, a, j, error-line-count=0;

I* initalize the array *
= 0;

j =0;

for (i=0;i<300;++i)
strcpy (term inalnamef i ].termninal,-');
for 0j=0; j<=50; ++j)

strcpy (term inalnamefi ].test," ");
ERI = FALSE; f* ER I=TRUE when an error on the input occurs ~

97



J. MOLNAR

do ( /* Read in the input file name */
printf("Enter the name of the input file... ");
scanf("%s",infile);
if ((fpl=fopen(infile,"r")) = NULL)

printf("No such file exists.\n");
while (fpl == NULL) ;

printf("Do you wish the output to be sent to the screen ks) or a file (f) ");
scanf("%s",c);
if (c[O] = 'f')

do ( /* Read in the output file name */
printf("Enter the name of the output file... ");
scanf("%s",outfile);
if ((a=access(outfile,O)) == 0)

printf("The file already existsMn");
printf("Do you wish to write over it (y or n)? ");
scanf("%s",c);

if ((a==0 && (c[0]=='y' II c[0]='Y')) II a!--0)
fp3= fopen(outfile,"w");

I while (a==O && (c[Ol'n' II c[0]-='N3);
else fp3 = stdout; /* stdout is the screen */
printf('Nn");

FIRST = 1;

/*

This is the main loop (highest level) loop in the program. A line of input
is read and stored in 'string'. L indicates the length of the string and N
is the current point in the string that is being examined. Note that N is
global and is updated in routine 'get-word', which returns the next word
(group of characters) to 'word' and the column header number under which the
word is located.

*/

while (fgets(string,200,fpl) != NULL)
error_linecount++;
string[strcspn(string,'n")] =\';
L = strlen(string);
N= 0;
while (N < L)

if (string[O] ==
break; /* erroneous line */

num=get_word(word,string,columns);
switch(num) (

case 1: /* The current word is a module name. Print out data' for
previous test data block, initialize pre num, qual_num,
and FIRST, and set name equal to the current word.
*/

printdata(name,test point,pa-arneter,units,qual,min,max,
cost,pre 1 ,pre2,pre-num,qual_num,FIRSTerrorlinecount);

pre_num = -1;
qual_num = -1;
FIRST = 0;

strcpy(name,word);
break;

98



NRL REPORT 9290

case 2: ASSIGN(testpoint); /* current word is test-point */
case 3: ASSIGN(parameter); /* current word is parameter */
case 4: ASSIGN(units); /* current word is units */
case 5: /* Current word is one of the descriptors in the POSS QUAL

column. Increment the qaulnum index and store word
in the qual array.

*/ if (++qual-num > 2) ERROR;
else strcpy(qual[qual-numlword);

break;
case 6: ASSIGN(min); /* current word is the min value */
case 7: ASSIGN(max); /* current word is the max value */
case 8: /* The current word is in the cost field. Since several

strings in a test data block may be assigned to this
field (because of constructs such as "10 + ping-cycle_
time") each word must be appended to the previous value
of cost with a space in between (unless, of course, the

current word ends with an underscore, in which case the
rest of that word is on the next line and the two must
be appended without the space).
*/

if (cost[0] == ') strcpy(cost,word);
else (

k = strlen(cost);
if (cost[k-1] != '') cost[k++] = '

for (i=0; word[i]!=''; i++, k++)
cost[k] = word[i];

cost[k] = W;
}

break;
case 9: /* The current word is the first part of a prerequisite

field. Increment the prenum index and store it in the
prel array. Then get the next word. It should be the
second part of the prerequisite field; store it in pre2.
*/

strcpy(prel [++pre-numl,word);
if (get.word(word,string,columns) != 9) ERROR;
else strcpy(pre2[pre-numl,word);
break;

case 99:/* 99 indicates that the first row of a column header was
encountered. Read in the next three rows and call
routine 'findcol' to set up the column fields.
*/

for (k=1; k<=3; k++) fgets(string,MAXLENGTHfpl);
find_col(string,columns);

default:

/* The output for the last test data block has not been given yet. */
print-data(name,test-point,parameter,units,qual,min,max,cost,prel ,pre2,

pre-num,qual_num,FIRSTerrorlinecount);

99



J. MOLNAR

1*** ***** *** *** *** *** *** ********* *** ***** *** *** *** ***

* GETWORD(WORD,STRING,COLUMNS) *

* This routine receives an input line STRING, and it stores in WORD the first *

* group of characters (the first word) at or after location N (N is the *

* global variable indicating the position in the input line currently being *

* examined). It also returns the number of the column in which the word *

* appears. If the end of the string is reached then it returns -1, and if *

* a column header is reached 99 is returned. COLUMNS is an array storing the *
* locations of each of the columns. *

*/*

get.word(word,string,columns)
int columns[];
char *word, *string;

char c;
int k, kl, k2, m;
int begin, end; /* begin is the location of the beginning of the word, and

end is the location of the end of the word. */

/* Disregard all spaces and comments before the first character.
*/

while (string[N= 'II string[N]='[) {
while (string[N] == ") N++;
if (string[N] = '[')

while (string[N] != '') N++;
N++;

if (string[N] = ') return(-1); /* Return -1 if NUL character reached */

begin = N;
k = 0;

while (string[N]!= && string[N]!=0) /* Store group of characters */
word[k++] = string[N++]; /* in word.

end= N - 1;
word[k] = VY; /* Place NUL character at end of word. */
if (strcmp(word,"$3") == 0) ( /* Return 99 if column header found. */

for (kl=N; string[kl] == kl++)
if (string[kl] = 0) return(99);

/* The rest of the code in this routine determines in which column the word
is located. That column number is then returned

*/

if (columns[end] = columns[begin])
if (columnsfendl != 0) return(columns[endl);

100



-I

NRL REPORT 9296

k = begin;
while(columns[k]==columns[end] && k!=end) k++;
if (k != end) return(columns[k]);
for (kl=begin,k2=end; columns[kl]=columns[k2]; kl--,k2++);
if (columns[kl] = columns[end]) retum(columns[k2]);
else return(columns[kl]);

}
for (k=begin; (columnslk]==columns[beginj 11 columnsfkl==columnsfend] II

columns[k]=--0) && k!=end; k++);
if (k != end; return(columns[k]),
if (columns[begin] = 0) retum(columns[end]);
if (columns[endj = 0) retum(columns[begin]);
for (k I =begin,k2J=end; columns[k I ]=columns[begin] && columns[k2]=

columns[end]; kl++,k2--) ;
if (columns[k2] = columns[end]) return(columns[end]);
else return(columns[begin]);

*** ***** ******** *** *** *** *********** ******* ** ****

* FINDCOL(STRING,COLUMNS) *

* This routine receives STRING, the lowest row in a column header, as input. *
* It computes COLUMNS, an array in wbich each element contains a number *
* corresponding to the appropriate column that is located there. Columns are *
* given increasing numbers starting at one, and those locations between *
* columns are filled with O's. For example, the following column header *
* (STRING) generates COLUMNS as shown: *

* STRING =" Headerl H2 Header3 Head4" *
* COLUMNS = "1111111111002200000333333300444440" *

* Note that leading spaces are filled with l's. *

*/*

findcol(string,columns)
char *string;
int columns[];

int k = 0, num = 0;

while (string[k] == ") columns[k++] 1;
if (k = 0) columns[k++] = 1;
while (string[k] != V')

if (string[k] ='') columns[k] = 0;
else if (string[k-l] != '') columns[k] =num;
else columns[k] = ++num;
k++;

while (k < 200) columns[k++] = 0;
return;

101



J. MOLNAR

1* * *** ** *** *** ** * * ** *** *** *** *** * **** *** *** * * ** ** ***

* IN(STQUAL,NUM) *

* This predicate function returns TRUE if the string ST is one of the strings *
* stored in the array of strings QUAL. There are NUM+1 strings in QUAL. *

****** ***** ***** *** ****** * ** ****** ******** * ** *** ***

*/

in(st,qual,num)
char *st, qual[][10];
int num;

int i;

for (i--O; i<=num; i++)
if (strcmp(quali],st) == 0) retum(TRUE);

retum(FALSE);

*** **** ** *** *** *** *** *** *** ****** *** ** *** *** ** ** * ****

* PRINTDATA *

* This routine prints the output for one block of test data and initializes *
* all test data variables. The format of the output is described in previous *
* documentation. If an error was found on the input (ER I=TRUE), then an *
* error message is printed. On the first call to PRINTDATA (FIRST=TRUE), no *
* data are printed. *

* ** * ******** *** *** ****** *** *** *** *** * **** *** * ** * ***

*/

printdata(name,testpoint,parameter,units,qual,min,max,cost,prel,pre2,
pre-num,qual-num,FIRST,error line count)

char *name, *testpoint, *parameter, qual[10], *min, *max, prel [301,
pre2[][301, *cost, *units;

int prenum, qualnum, FIRSTerror linecount;

int k,match=0,i=0, j, valid-test;
char filename[30];
if (!FIRST && !ER1)

while (strcmp(terminalname[il.terminal,"") 0)
if (strcmp(testpoint, terminal_namcr , +].terminal)=0)

match =1;
break;

if (strcmp(test point,""!--0)
I
strcpy(filename,testpoint);

102



NRL REPORT 9296

fp2 = fopen (filename,"a+");

else
return(- 1); if (match == 0)

I
strcpy (terminal..name[i++I.terminal,test-point);
if (fp2 = NULL)

printf ("FP2 IS NUJLL%n");

/* check to see if unique test ~
valid_test =1;

while (strcmp(terminal-name[i-1]J.test~j],'-) != 0)
if (strcmp (terminal-name[i- 1].testUj++],name)=O)

valid test = 0;
break;

if (valid test)

strcpy(terminal-name[ i-1I ].testU ],name);
if (!FIRST && !ERI ) (

fprintf(fp2,"%s %s si ",name,paramneter);
if (qua] .num=1 && min[0]=WY)

fprintf(fp2,'((%s) (%s)) " ,qual(I],qual[O]);
else if (qua]num==2 && min[O]=='O')
fprintffp2,"((%s)(%s)(%s)) ',qual[2] ,qual[ 1 ],qua] [0]);
else if (qualnum=1)

if (in("bad",qual,1) && in('ok",qual,l))
fprintf(fp2,"((OK (%s %s)) (BAD (-INF %s) (%s INF))) ",min,max,min,max);

else if (in("bad",qual,1) && in("good",qual,1))
fpri ntf(fp2," ((GOOD (%s %s)) (BAD (-INF %s) (%s INF)))"

min,max,min, max);
else ERROR;

else if (qua]-num=2)
if (irn("hi",qual,2) && in('Io",qual,2) && in("ok',qual,2))

fprintf(fp2,"((OK ((%'rs %s))) (LO ((-inf %s))) "

fprintf(fp2,'(HI ((%s inf)))) "

max);

else if (iri("hi",qual,2) && in("lo',qual,2) && in('good",qual,2))

fprintf(fp2,"((GOOD (%s %s))) (LO ((-INF %s)))",
m in,max ,min);

fprintffp2,"(HI ((%s INF)))) "

max);

else ERROR.

103



J. MOLNAR

else ERROR;
fprintf(fp2,"%s ",units);
fprinff(fp2,"diag 10 nil\n");

/* Print error message if ERI=TRUE. */
if (ER1) I

fprintf(fp3,ER_MSG);
fprintf(fp3," #%df",errorlinecount);
ERI = FALSE;

/* Initialize test data variables */

test-point[O] = W,0;
parameter[0] = ;
units[0] = '0';
min[0] = V';
max[0] = W';
cost[01 = W0';
for (k--O; k<=2; k++) qual[k][0] = *';
for (k=0; k<=14; k++)

pre I [k][0] = '*0';
pre2[k][0] = ';

I
fclose (fp2);
return;

****** ******** *** ****** *** *** ******** *** *** *** *** ***

* PRINTPRE *

* This routine prints the preconditions and cost field (format described in *
* previous documentation). The thirteen preconditions are defined in array *
* strings (note the zeroth element is a dummy string) *

* *** *** *** *** *** *** *** *** *** *** *** ***** * *** *** *** ***

*/

print-pre(prel ,pre2,pre-num,cost)
char prel[1[301, pre2[][30], *cost;
int prenum;

int n, n I, LOOP;
static char strings[14][151 =

"zzz", "activemode", "unit-26_door", "26A I -drawer", "unit-34", "scope",
"unit-34_brg", "probe-on", "acdiff_mtr", "counter", "diffscope",
"diffcounter", "PMFL f", "PMIFLs"

1;

/" Print the cost field */

104



NRL REPORT 9296

if (,Cst[O] != VO')
fprintf(fp3,"(Q%sl",cost);

else
fprintf(fp3,"(IzI");

/* Print each of the thirteen preconditions */

for (n=1; n<=13; n++) (
LOOP = TRUE;
/* Find a precondition that matches strings[n] */

for (nI=0; nl<=prenum && LOOP=--TRUE; nl I++)
if (strcmp(pre I [n I ],strings[n]) = 0) LOOP = FALSE;

nl--;

if (n==2 II n==6 II n==10)
fprintf(fp3,n ");

if (LOOP = FALSE) /* A precondition was found that matches string[n] */
fprintf(fp3," I%s %sl",prel[nl],pre2[nlI);

else /* LOOP = TRUE; a precondition was not found */
fprintf(fp3," Iz");

105



Appendix J

TEST DATABASE INSTRUCTION INDEX PROGRAM

/,

CON3

This program converts test data given in tabular form to a LISP list defined
by the LISP function 'instr-list'. The format of the input file is the same
as that described in CON2, except that two more columns are recognized.
Column ten is the instruction name and column l Ithe text parameters. The
headers should look as follows:

... INSTR TEXT
NAME NAME PARAMETERS

The LISP function generated has the following format:

(defun instr-list 0

(test-pointl
(parameter instrname (min max) record [textparl] [text-par2])
(parameter instrname (min ma, ) record [text-parl] [textpar2])

(test_point2

Note that the text parameters are optional and appear only if given on the
input. If min and max are not given on the input, then '(nil nil)' will
substitute min and max.
The list is arranged such that all test data with the same test point are
grouped as sublists under that test point. This allows for a quicker lookup
in the LISP searching routines.
Program flow and execution are very similar to CON2, except that after each
data block has been read in, it must be stored instead of immediately being
printed out because of the ordering as described. Because of the possible
size of the input file, a linked list structure is used, thereby minimizing
necessary memory.

NOTE: this program needs two input files. One which he describes and
another which lists all of the testnames (testlist.all).

*/

107



J. MOLNAR

#include <stdio.h>
#define TRUE 1
#define FALSE 0
#define MAXLENGTH 200 /* maximum length of input string *
#define ERMSG "***Error on this line***\n"
#define ERROR ER I= TRUE
#define ASSIGN(X) if (XIIO] = V't) strcpy(X,word); else ERROR; break
#define STR_-CPY(S) strcpy((S)->paraineter,parameter); strcpy((S)->min,min);\

strcpy((S)->max,max); strcpy((S)->textl ,&texii [3]); \
strcpy((S)->text2,&text2[3]),strcpy((S)->instr,inst); (S)->p2 = NULL

#define RECSIZE 512
/* the following 3 constants indicate the maximum size of a parameter to a

test instruction. */
#define INSTNAMIESIZE 30
#define MINMAXSIZE 10
#define TEXTSIZE 30
struct sI

char test point[INSTNAMESIZE];
struct sl *pl;
struct s2 *p2;

struct s2 I
char parameterIIINSTNAMESIZE];
char min[MINMAXSIZE];
char max[IMINMAXSLZE];
char texti [TEXTSIZEI;
char text2IITEXTSIZEJ;
char instr[INSTNAMIESIZE];
struct s2 *p2;

/* This structure keeps track of all the instruction names ~
struct inst-name struct {

char instr[INSTNAMESIZE];
mnt position;
struct inst-name-struct * next;
*test-name -head; f* the head of the instruction list. Used by get-record ~

mnt N, ERI;
FILE *fpl, *fp2, *fp3;
char infile[301, outfile[30), instruction[30l; /* input, output, instruction files *

maino

char string[MAXLENGTH]; /*' array into which input line is placed *
int columns[MAX_LENGTH],; f* column identification array
char word[133], c[MINMAXSIZE];
char test-point[INSTNAMESIZE], parameter[INSTNAMESIZE], min[MMINMAXSIZE],
max [MINMAXSIZE], instrIIINSTNAMESIZE], texti [TEXTSIZEI, text2[TEXTSIZE];
mnt num, L, FIRST, LOOP, i, k, a, CONT;
struct si *head, *tp, *tpl, *tp2;
struct s2 *Par, *parl;,

test-name-head=NULL;

ER I = FALSE; f* ER I=TRUE when an error on the input occurs ~

108



NRL REPORT 9296

do I P* Read in the input file name */
printf("Enter the name of the input file... )
scanf('%s",infile);
if ((fpl=fopen(infile,"r")) = NULL)

printf("No such file exiss.\n");
Iwhile (fplI == NULL);

do ( /* Read in the instruction file name ~
printf("Enter the name of the instruction file... )

scanfQ' %s",instruction);
if ((fp3=fopen(instruction,'r")) == NULL)

printf("No such file exists.\.n');
while (fp3 == NULL);-

printf("Do you wish the output to be sent to the screen (s) or a file (f) )

scanfC"%s",c);
if (C[O] =T)

do [ /* Read in the output file name ~
printf("Enter the name of the output file... )

scanf('%s",outfile);,
if ((a=access(outfile,O)) == 0)

printf("The file already exists.\,n');
printf("Do you wish to write over it (y or n)? )

scanf(f%s",c);

if ((a=0O && (c[OI=='y'11 c[OI='Y')) 11 a!=0O)
fp2 = fopen(outfile,'w");

while (a--=0 && (c[O=n'1 c[ii '')
else fp = stdout; / stilout is the screen ~

FIRST = TRUE;
bead = NULL;
CONT = TRUE;
while (CONT = TRUE)

if (fgets(string>MA&LElNGTIH-,fpl) ==NULL)

strcpy(string,"** *LAST*~**");
CONT = FALSE;

string[strcspn(string,"\n")I W4;
L =surien(string);

N =0;

while (N < L)
num=get..word(word,string,colurnns);
switch(num) (

case 1: if (!FIRST)(
tpl = head;
LOOP = TRUE;

for (tp--head, tp!=NULL && LOOP==TRUE; tp--tp->pl)
if (strcmp(tp->test-.point,test..point) = 0) 1

for (par--tp->p2; par->p2 ! = NULL;, ppr--par->p2);
parl =(struct s2 *) malloc (sizeof (struct s2));
par-->p2 = panl;
STRCPY(parl);

109



J. MOLNAR

LOOP = FALSE;

eletp p
if (~LOOP)

tp2 = (struct s I *)mall1c (sizeof (struct si1));
if (tplI = NULL) head = tp2;
else tplI->plI = tp2;
strcpy(tp2->test-point,test-point),
tp2->pl = NULL;

par = (struct s2 *)malloc (sizeof (struct s2));
tp2->p2 = par;
SThCPY(par);

parameter[0I = W
min[OJ = W
max [01 = VO;
textl[3] = NO'%
text2[3] = NO';
instrlO] = V
test-point[OI = W0;
FIRST = FALSE;
break;

case 2: ASSIGN(test point); /* current word is test-point ~
case 3: ASSIGN(Jparameter); /* current word is parameter *
case 6: ASSIGN(min); /* current word is the min value *
case 7: ASSIGN(max); I"' current word is the max value *
case 10: ASSIGN(instr);
case 11: if (textl[(3] == VO) strcpy(texti,word);

else strcpy(text2,word);
break;

case 99: /* 99 indicates that the first row of a column header was
encountered. Read in the next three rows and call
routine 'find-col' to set up the column fields.

for (k= 1; k<=3, k++) fgets(string,MAX_.LENGTH,fp 1);
find-col(string,columns);

default:

fprintf(fp2,"(defun instr-list O\n '(\n");
for (tp=head; tp != NULL; tp=tp->pl)[

fprintf(fp2," (%s",tp->testpoint);
for (par--tp->p2; par != NULL; par--par->p2)

fprintffp2,'\N (%s %s ",par->parameter, par->instr);
if (par->min[0j=NO') fprintf(fp2."(nil nil)");
else fprintf(fp2,"(%s %s)",par->min,par->max);
fprintf(fp2," %d",getrcord(par->instr)); [* indicates where the ~

/* instruction text is ~
if (par->textl[OJ V='0) fprintf(fp2,' %s",par->textl);
if (par->text2[OI V=NO) fprintf(fp2," %s",par->text2);
fputc(')jp2);

110



NRL REPORT 9296

fprintf(fp2,")n'");
fprintf(fp2,") )");

****** ***** *** *** *** *** *** *** *** *** ** ** **** * **** ****

* GETWORD(WORD,STRING,COLUMNS) *

* This routine receives an input line STRING, and it stores in WORD the first
* group of characters (the first word) at or after location N (N is the *
* global variable indicating the position in the input line currently being *
* examined). It also returns the number of the column in which the word *
* appears. If the end of the string is reached then it returns -1, and if *
* a column header is reached 99 is returned. COLUMNS is an array storing the *
* locations of each of the columns. *

* *** *** *** *** *** *** **** ** ***** ** ***** *** *** ** *** ****

*/

getword(wordstringcolumns)
int columns[];
char *word, *string;

char c;
int k, kl, k2, m;
int begin, end; /* begin is the location of the beginning of the word, and

end is the location of the end of the word. */

/* Disregard all spaces and comments before the first character.
*/

while (string[N]=' ' II string[N]=='[) f
while (string[N] == N++;
if (stringN] = '[')

while (string[N] != '1') N++;
N++;

if (string[N] = V4) return(-l); /* Return -I if NUL character reached */
begin = N;
k = 0;

while (string[N]!=' && string[N]!=0) /* Store group of characters */
word[k++] = string[N++]; /* in word. */

end= N - 1;
word[k] = '; /* Place NUL character at end of word. */
if (strcmp(word,"$3") == 0){ /* Return 99 if column header found. */

for (kl=N; string[kl] == "; kI++);
if (string[k I VO') return(99);

if (strcmp(word,"* **LAST***") == 0) return(1);

111



J. MOLNAR

/* The rest of the code in this routine determines in which column the word
is located. That column number is then returned.

if (columns[endl = columns[begin]){
if (columnslendl != 0) relturn(columns[endl);
k =begin;
while(columnsllkl=columns[endl && k!=end) k++;
if (k ! = end) return(columnslk]);
for (kl=beginJk2--end; columns[klI=columnslk2l; kl.-,k2++);
if (columns[kl I = columns[endl) return(columnslk2]);
else return(columns[kl I);

for (k=begin; (columns[k]==columns[beginl 11 columns[kj==columns[end] 11
columnslkl==O) && k!=end; k++);

if (k != end) retumn(columnsikl);
if (columns[begin] = 0) return(columns[endi);
if (columnsljendj = 0) return(columnsllbeginl);
for (k I =begink2=end; columns[k 1 ]==columns[beginj && columns[k2]=

columnsfend]; kl++,k2--) ;
if (columns[k2J = columns[end]) return(columns[endJ);
else retur(columns[beginl);

FIND-COL(STRING,COLUMNS)*

*This routine receives STRING, the lowest row in a column header, as input*
It~ computes COLUMNS, an array in which each element contains a number*

*corresponding to the appropriate column that is located there. Columns are
*given increasing numbers starting at one, and those locations between*
*columns are filled with 0's. For example, the following column header*
(STRING) generates COLUMNS as shown:*

*STRING =" Headeri H2 Hcader3 Head4"
COLUMNS = "I1111111111002200000333333300444440"

*Note that leading spaces are filled with I's.*

fine-col(string,columns)
char *string;
mnt columns[];

int k = 0, num =0;
while (string[k] == '') columnsfk+.J 1;
if (k = 0) colurnns[k.-.- = 1;
while (stringpc] != V)(

if (stringiki = '') columns[kJ = 0;
else if (stringrk-1I = ' columnsrk] = num;

112



NRL REPORT 9296

else columnsl = +-+num;,

while (k < 200) colurnns[k++j 0;
return;

IN(ST,QUAL,NUM)

*This predicate function returns TRUE if the string ST is one of the strings
*stored in the array of strings QUAL. There are NUM+1 strings in QUAL.*

in(st,qual,num)
char *st, qualflf 10];
mnt num;

mnt i;

for (i=-O; i<=num;. i++)
if (strcmp(qual[ii,st) == 0) returni(TRUE);

return(FALSE);

*getjinst- location does a search for a given instruction number, inst name,
*and returns it's record number in the instructions file. If it
* does not exist, a message is printed indicating so. Record numbers
* start at zero.

mnt getjinst-location(instnamc)
char *instnac;

int inst-rec;
char read-inst-narneINSTNAMESIZE];
inst_rec=O;
do

fseek(fp3,inst -rec*RECSIZE,O);
inst-rec++;
while ((fscanf(fp3,"%s",rad instnrane)!=EOF, && (strcmp(inst-nan.,,read_inst_narne)!=0O));
if (strcmp(readinst-naini,inst-name)!-0) (

printf("The instruction to %s, a test in %sM\,",inst -namc,infilc);
pnintf("has no corresponding instruction in %sAn" ,instruction);

--inst-rec;
return(instrec);

113



J. MOLNAR

*get-record returns the record number of a given instruction name inst-name.
It~ builds a list of instructions that it has found, so that it doesn't

* have to search the disk twice for the same instruction number.
* The list is built as each new instruction comes along.

int get-record(inst-name)
char *inst-name;

struct inst -name -struct *list; 1* current instruction pointer *
int rec-num;, /* returned value from get -inst -location *

/* this test is true if this is the first time this routine is called *
/* if it is the first time, search the disk for the instruction num. ~
if (testrname -head =- NULL)
test-naine-head=(struct inst-name-struct *

malloc (sizeof (struct inst -name -struct));
strcpy(test-namne-head->instr,inst-name);
test_name_head->next=-NULL;
test-name-head->position=get-jnstjlocation(inst-namne);
retum(test name-head->position);

/* look for the instruction in the list *
list=test- name_head;
while ((strcmp(inst name,list->instr)!=O) && (list->next != NULL))

list=list->next;
if (strcmp(inst name,list->instr)==-O) return (list->position);

/* not in list, add it to the end */
list->next=(struct inst-name struct *

malloc (sizeof (struct inst-name-struct));
rec~num=get nst -location(inst-name);
list=list->next;
list->position=rec-num;

list->next=NUTLL,
return(list->posifion);

114



Appendix K

CONVERSION OF INSTRUCTION DATABASE PROGRAM

/*

CON4

This program converts an instruction file into a direct access file named
'instructions.' This file is used by 'print-instruction',
a function written by M. Erdly. The function was modified in 10/88 to
generate a direct access file. The input file has the following format:

Instruction Name: instrnamel
"instructions..." $N "instruction..." $2 ...
Instruction Name: instrname2
"instructions..." $3 ...

$N denotes variable number N. ($2 and $3 are just examples above). Anything
else in the file is ignored. The output list has the following form:

instr_namel "instructions..." N "instructions..." 2..
--512 byte boundry--
instrname2 "instructions..." 3 ...
--512 byte boundry--

For a description of the meaning of N, see the external documentation.

CON4 does recognize and delete the following line:

t",$3 ,"U

Note that anything in the input file that does not appear within quotes is
ignored, except for variable strings (identified by '$') and the instruction
name identifier (Instruction Name: instrname').

*/

#include <stdio.h>
#define TRUE 1
#define FALSE 0
#define MAXLENGTH 200 /* maximum length of input string */
#define ERMSG "***Error on this line***\n"
#define RECSIZE 512

FILE *fpl, *fp2;

115



J. MOLNAR

maino

char string[MAXLENGTHI; /* array into which input line is placed *
char infile[301, outfile(30]; /* input, output files *
char c[61;
int PP, FIRST, mode, a, tab, n, length, num, k, k I, k3;
long int numchar; /* to handle files longer than 32k bytes *
do ( P' Read in the input file name *

printf("Enter the name of the input file... )

scanf("%s",infile);
if ((fpl~fopen(infile,"r")) = NULL)

printf("No such file exists.\n");
while (fpl == NULL);

printf("Do you wish the output to be sent to the screen (s) or a file (f) )

scanif("%s,c);
if (c[O] =T)

do (/* Read in the output file name *
printf("Enter the name of the output file... )
scanif("%s",outfile);

if ((a=access(outfile,O)) == 0)
printf("The file already exists\ni");
printf("Do you wish to write over it (y or n)? )

scanf("%s",c);

if ((a=0O && (c[0]=='y' II c[O]='Y')) 11 a!=0O)
fp2 = fopen(outfile,"w");

I while (a-=0 && (c[O]=='n'l c[]II ')
else fp2 = stdout; t/ stdout is the screen ~

numchar=0; f* the number of characters already put in file. Used to
do record formatting. Instructions begin on 512 byte boundries. *

mode = 0;
FIRST = TRUE;
tab = 0;
while ((num=ges_1(sting)) != 999) 1

PP = FALSE;
if (mode--=0 && strncmp("Instruction Name: %&string [num, 17)=0)

for (k=num+17; stringlk]==- 11 stfing[kj==V\; k++);
for (kl=k; string[klI!=- '&& string[kl]!=VO'; kl++);
string[kl] V%
if (FIRST)

fprintf(fp2,"%s ",&string[k]);
numchar+=kl1-k+ I;
FIRST = FALSE;

else
for (k3=0; k3.cRECSIZE - numchar % RECSIZE; k3++) fputc (- ,fp2);,
printf("%d characters were printed; filled at end with %d chars.\n",

nuruchar, RECSIZE - numchar % RECSIZE);
fprintf(fp2,"%s ",&stringlki);
numchar--kl-k+l;

116



NRL REPORT 9296

tab = num;

else if (strncmp(" \"',$3Nj\'',&stringnuml,9) == 0) mode = 0;
else if ((length=strlen(string))<=tab 11 strspn(string," \C)==length);
else

if (mode==l1)
fputcCY",p2);
numchar+= 1;

for (n=tab; n<=length-1; n++)
if (string[n] == V") [

if (mode == 1) mode =0;
else mode = 1;
fputc(*\!,fp2);
numchar+= 1;
PP = TRUE;

else if (mode==0O && string[n]==' $)
fprintf(fp2," %c %,string [n+I]);
numchar+=3;
PP =TRUE;

else if (mode == 1
fputc(sting[nI ,fp2);
numchar+= 1;
PP = TRUE;

if (PP && mode==l)
numchar+=-4;
if (numchar > RECSIZE)

fprintffp2,N -l ");
nunichar--numchar-RECSIZE+ 1;

else fprintffp2,7V 0 )

else if (PP)
fprintf(fp2,"")
nurnchar+= I;

clse;p)
close(fp2);

gets-l(string)
char *string;

mnt k;
if (fgets(stfingNMX_LENGTIl,fpl) =NULL) retum(999);
for (k=0; string[kj==''11 string[kl=%C; k++);
stringlstrcspni(string,'Nn')] = "W0;
return(k);

1 17



Appendix L

CONVERSION PROGRAM TO RESTORE DATABASE FORMAT

f*declarations:*/

#include <stdio.h>;
#include <syslflle.h>;
#include "string.h"
#define LINELENGTH 145

struct lines

char info[LINE LENGTH]l;
Idata[100001;

char responsef 30], answer, answerl 15), *wemp, modulef3O], cause[501,
effect[ 50], precondition [301, name[30], test-point[30], parameter[30],
units [20], okreadin 111], okreadin2[ 101, okreadin3 [101,
minfl~j, max[10], Iilnum[10];

int ch, cl I, i, ii, filelength, counter2, length, space, numone,
column[LINE LENGTH], col, storenum, nextone, place;

FILE *fopeno, *fpl, *fp2, *fp3;

maino

/*open input file*/
do

printf("What is th'e name of your rule file? )

scarif(%s", response);
if ((fpl=fopen(response, 'Y')) == NULL)

printf("File doesn't exist.\n");
while (fplI == NULL);

do

printf('What is the name or your test file? )

scanf("%s', response);
if (fp3=fopen(response, 'r')) == NULL)

printf("File doesn't exist.\n");
while (fp3 ==NULL);

119



J. MOLNAR

/*open output file*/
do

printf("What is the name of the output file?")
scanf("%s". response);
if (ch=access(response, 0) == 0)

printf("The file already exists. Overwrite YIN?")
scanf("%s". answerl);

if ((ch=1l && (answerl [OI=='y'l Ianswerl[0]='Y)) 11ich =1)
fp2--fopen(response, "w");

while (ch = I && (answerl [0)='N 11 answerl [O]=='n'));

/* write & read*/
filelength=-O;
numone=O;
while (answer--fgets(data[filelength].info, LINE LENGTH, fp1) ! NULL)

++filelength;
fprintffp2, "NIL\nNIL\iNIL~jn(");

1 ; /*filelength is how long file is*'/
do

if ((temp=strpbrk(data[i].info, "W")) != NULL)
if (strncmp (temp, "WORKING", 7) = 0) /*skip 2 lines if W is found*/

i=i+2;
if (((temp=strpbrk(data[i].irfo, "M")) != NULL) && (strncmp (temp, "Modu", 4) ==0))

/"look for the letter M*/

if (numone != 0)

numone=0: /*print control*/
fprintf(fp2," )))\,n");

for (counter2=0;, counter2<=30; -'--'counter2)
module[counter2]&=0';

for (ii=8: temp[iil != Nn'; ++ ii)
module[ii-81=temp[ii];

i=i+3;
fprintf(fp2, " ((NAME %s) (FRATE 1)\,n (CAUSAL-RULES\ii", module);

else

ii=0;
place=3;
if ((length=strlen(data[i].info)) > 15)
if (((strpbrk(data[i].info, "[")==NUJLL) && (dataIi.info[ii]!='N')) 11

(((temp--strpbrk(datafii .info, "["))!=NULL) && (strlen(datai] .info)-strlen(temp)>5)))
/*~is the line [deleted] ? ~

ii=85;
for (councer2=85; datafiJ.info[counter2j != Vn; ++counter2)

if (data[i].info[counter2j !='')
precondition [counter2-i i]=data [i f.info[counter2];
else

120



NRL REPORT 9296

space=O;
for (counter2=3; counter2<=length && space != 5; -.+counter2)
if ((cause [counter2-31]=data [i ]Anfo[counter2]) ='

++4space;
space=O;
for (counter2=-40; counter2<=length && space! =4; ++counter2)
if ((effect [counter2 -40]=data[ i].i nfo [counter2])=

++space;
if (numone == 0)

++numone;
fprintf(fp2, o)

* find if the cause is the same as the module*/
if (strlen(surpbrk(cause, " ")) < 5)

fprintf(fp2,' (%s %s\1n (%s))\n",precondition,cause, effect);
else
fprintf(fp2," (%s (%s)\n (%s))\n",precondition, cause, effect);

/*clean up the variables*/
for (counter2=0; counter2<=50; ++counter2)

cause[counter2=VY;
effect[counter2]=MY;

for (counter2=0O; counter2<=30; +-.counter2)
precondition [counter2]=WO;
++j.
while (i<=filelength);

fprintf(fp2," )))\.n)\.n";

/*rules database*/
filelength=0;
while (answer--fgets(dataffilelengthl.info, LINELENGTH, fp3) != NULL)

++filelength;
fprintf(fp2,"()
i=O;
ch=-4;
if (ch<filelength)
fitnd_col(data[chl. info, column); /*sets up the columns into int array column*/
do

if ((strpbrk(data[ij.info, "*) =NULL) [*skip over any line with **'s *

else

answer--datafi].infoliil;
if (((length=strlen(data [i ]info)) > 55) && (answer != ')

/*does it begin with a character?*/
col=1; [*this is the column number*/
storenum= -1;

121



J. MOLNAR

for (counter2=-O; counter2<=length && col < 6; counter2++)
if (data[iI.info[counter2] 11'I

(datafiI.info[counter2] "&& column [counter2j != 0))
switch(col)

/* set up variables depending on column*/
case 1: if (storenum, == -1) storenum=counter2;

name[counter2-storenuml=data[i].info[counter2];
nextone=1;
break;

case 2: if (storenum == -1) storenum=counter2;
test point[counter2-storenuml=datal].info[counter2];

nextone= 1;
break;

case 3: if (storenum == -1) storenum=counter2;
parameterllcounter2-storenum]=data[iI.info[counter2];

nextone= 1;
break;

case 4: if (storenurn == -1) storenum=counter2;
units[counter2-storenum]=data[i] .info[counter2];

nextone= 1;
break;

case 5: if (storenum == -1) storenum=counter2;
okreadin[counter2-storenum]=data[i.infolcounter2];

nextone-- 1;
break;

else
if (nextone = 1)

++col; /*'increment the column number*/
nextone=-O; /*'skip over spaces between columns without

incrementing col */
storenum= -1; /* the starting place for indivdual variables */

*hi lo oA value (ok (min max) lo (-inf min) hi (max in)
* hi lo ok noval (ok lo hi)
*ok bad value (ok (min max) bad (-inf min) (max inn)
* ok bad noval (ok bad)

/*the following method is used instead of the above column method because
sometimes the data doesn't exist and the program looks for nothing or
misinterprets data found*/

ch=63;
if (data[i].infofchl !=')/*there's s.t. there!!!*/

for (counter2=63; datafil.infolcounter2l !" ++counter2)
min[counter2-631=data[iI.info[counter2l;
if (strien (min) < 6)
for (counter2=69; data~i].infollcounter2] 11"I counter2<70; ++counter2)
max [counter2-691=data[iI.info[counter2l;

122



NRL REPORT 9296

else
I
chl=67;
if (datafi+1I.info[chl] != N0')
for (counter2=67; data[i+1J.info[counter2] 11 'I counter2<70; ++counter2);

max[counter2-67]=data[i+l1].info[counter2];
/*~the datafi+1] is used above because if the qual val is to long,

there's no space for the second on the same line, and it's
located underneath*/

else
if (data[iIjinfo[ch+l]!''
I
for (counter2=64; data[iJ.info[counter2] !=';-..counter2)

min[counter2-64]=data[iI.info[counter2l;
if (strlen (min) < 6)
for (counter2-=70; data[iI.info[counter2l 11 'I counter2<71; ++counter2)
max fcounter2-701=datal.infotcounter2];

else
I
chl=68;
if (data~i+1].info[chljl != V0'
for (counter2=68; data[i+lI].info[counter2j 11'I

counter2<7 1; ++counter2)
max [counter2-68]=data[i+ IlJ.info[counter2j;

if (atof(min) > atof(max))
printf("Problem with min max values in %s %sM\,", name, test point);

/*if the min is greater than the max, there's a problem.*/
ii=58; /*'this is done because sometimes the data's in the wrong space*/
for (counter2=58; counter2<60; ++counter2)

if (data[i+1I.info[counter2] != '')
okreadin2[counter2-ii]--dai+1 ].info[counter2];
else

if (strien(data[i+21. ifo) >58)
for (counter2=58; datafi+2].info[counter2] =' &&

counter2<strien(data [i+2]. info): -+-.counter2)
okreadin3[counter2-581=datafi+2] .info[counter2l;

ii=77;
for (counter2--77; counter2<80; ++counter2)

if (data[ i].in fo[coun ter2] != '')
lilnum[counter2-ii]=datafi] .info[counter2];
else

/* ******* printing time
fprintf(fp2, " (%s (%s %s\,n Sl\n",

name, test-point, parameter);
if ((okrcadinlOl = 'C) && (okreadin2[OI ='o'))

fprintf(fp2, " ((ok) (faulted))Nn");
if ((okreadin[OJ = 'a') && (okreadin2O] =V'o))

123



J. MOLNAR

fprintf(fp2," ((absent) (ok))\n');
if ((okreadin [0] ='p') && (okreadin2 [0] =o)

fprintf(fp2, " ((ok) (present))\Nz");
if ((okreadin[0] = 'o3 && (okreadin2[0] ='o')

fprintf(fp2, " ((ok) (on))\n");
if ((okreadin[0I = b1) && (okreadin2[0I =o''))

if (min[0I = W
fprintf(fp2," ((ok) (bad))\ni");
else
fprintf(fp2," ((ok (%s %s)) (bad (-inf %s) (%s inf)))\n",

min, max, min, max);
if ((okreadin[0] ='h') && (okreadin2[0] = 1))

if (min[0] = WO)
fprintf(fp2, " ((ok) (Jo) (hi))Nn");
else
fprintf(fp2,

((ok ((%s %s))) (lo ((-inf %s))) (hi ((%s inf))))\n",
min, max, min, max);

fprintf(fp2, " %s\n DWn, units);
fprintf(fp2, " %s\n NIL))\n", hilnum);

I

name[counter2=';
tesLpoint[counter2j=V\'; /*cleaning up the variables*/
parameter[counter2=VL;

for (counter2=0; counter2<=20; ++counter2)
units[counter2]=VY;

for (counter2=O; counter2<=l0; ++counter2)

okreadin[counter2]='\Y;
okreadin2[counter2]=&4Y;
okreadin3[counter2]=V0;
lilnum [counter2I=VY;
min[counter2l=V\';
max[counter2j=';

while (i<=filelength);
fprintf(fp2,")\ai");
fprintf(fp2,"NILnELiNIL\hn");
close(fp 1);
close(fp3);
close(fp2);

1"' ~ ~ ~ ~ FUNCTrIONS ***************

findscol (string, columns)

char *string;

124



NRL REPORT 9296

int columns[];

{
int k=O, num--O;

while (string[k] == ) columns[k++]=l;
if (k==O) columns[k++]= 1;
while (string[k] != \0)

if (string[kI==' ') columns[k]=O;
else
if (string[k-1] !=' ')columns[k] = num;
else
columns[k] = ++num;

k++;

while (k < LINE-LENGTH) columns[k++]=O;
return;

* This function looks at a header and develops column fields:

* Header 1 H2 Head3 Header4
* 11111111110002200333330000000444444400000

* as such, to find out what column a specific piece of data
* is in.

125



Appendix M

SAMPLE DATA OUTPUT FORMAT FROM RULE VERIFIER

NODE PARENT PRE CHILD PRE

(A10JI CIRCULATE BAD) (A26-35 CIRCULATE BAD) T (AI09 RE1 BAD) T
A1AIOJ1

(AIOJ2 LOGICLEVELS BAD) (A77J4 VOLTS BAD) T (AIOJ2 RE2 BAD) T
AI0_DELAYLINE T

(AIOJ2 RE2 BAD) (A26-15 RE2 BAD) T (AIOJ9 RE1 BAD) T
(A10J2 LOGICLEVELS BAD) T AIAIOJ2

(A 10J3 ENDCLEAR BAD) (A26A 1 S8-3 ENDCLEAR BAD) ENDCLEARUSED (A 10J9 RE I BAD) T
AIAIOJ3

(AIOJ4 LOADENDREF BAD) (A26-5 LOADENDREF BAD) T (A10J9 REI BAD) T
(A IOJ4 LOGICLEVELS BAD) T A1A1OJ4

(A10J4 LOGICLEVELS BAD) (A77J4 VOLTS BAD) T (A IOJ4 LOADENDREF BAD) T
A10_DELAYLINE T

(AJIO.5 LOADENDADVANCE BAD) (A26-32 LOADENDADVANCE BAD) T (A10J9 REI BAD) T
A1AIOJ5

(AIOJ6 STI BAD) (A10-9 STI BAD) T (A1019 REI BAD) T
AIA10J6

(A10J7 NOTCLI BAD) (AI0-21 NOTCLI BAD) T (AIOJ9REI BAD) T
AIAIOJ7

(AI0J8 DSTI BAD) (A29-9 DSTI BAD) T (AIOJ9 REI BAD) T
AIAI1J8

(Ai0J9 LOGICLEVELS BAD) (A77J4 VOLTS BAD) T (A10J9 REI BAD) T
A10_DELAYLINE T

(A10J9 LOGICLEVELS BAD)

127



J. MOLNAR

(A10J9 RE1 BAD) (AIOJI CIRCULATE BAD) T (A26-13 REI BAD) T
(A10J5 LOADENDADVANCE BAD) T(AI0-10 NOTREI BAD) T
(AIOJ4 LOADENDREF BAD) T A1AIOJ9
(A1OJ8 DSTI BAD) T
(A10J6 STI BAD) T
(AIOJ7 NOTCLI BAD) T
(AIOJ3 ENDCLEAR BAD) T
(A77J4 VOLTS BAD) T
(A76J3 VOLTS BAD) T
A10_DELAYLINE T
(A10J2 RE2 BAD) T
(A10J9 LOGICLEVELS BAD) T

(Al lIlO ATODCLEAR BAD) (A14-23 ATODCLEAR BAD) T (A23 AMPLITUDE BAD) T
(A 18-22 ATODCLEAR_AMPL BAD) TADCLEAR

(A 11J11 ATODSETSIGN BAD) (A14-24 ATODSETSIGN BAD) T (A23-3 INVERTEDSIGN BAD) T
(A23-6 SIGN BAD) T
ADSETSIGN

(AI1J12 ATODCLOCK BAD) (A14-7 ATODCLOCK BAD) T (A23 AMPLITUDE BAD) T
ADCLOCK

(AllJ14 GATE_4 BAD) (A15 FUNCTIONS BAD) T (A15-38 SIGNAL FAULTED) T
(A61J7 GATESELECT BAD) T
(A22 GATESORPWRORMODULE

BAD) T
AIA1IJI4

(AIJ15 NOTLOADREF BAD) (A15-14 NOTLOADREF BAD) T (A26-5 LOADENDREF BAD) T

AAII1J15

(Al 1J15 NOTLOADREF BAD)

(AI IJ16 STORELEFTBEAM BAD) (A15-3 STORELEFTBEAM BAD) T (A7J4 SIGNLEFTBEAMS BAD)
T

(A17-OUT AMPLLEFTBEAMS BAD)
T

STLEFTBM

(A l J18 SYNC BAD) (A15-2 SYNC BAD) T (A26E3-Q ENDSYNC BAD) T
A1AIIJ18

(A1 IJ2 CLI BAD) (A14-10CLI BAD) T (A7-20 CLI BAD) T
(A 10-20 CLI BAD) T
AIAIIJ2

(AIl 1J3 CL2 BAD) (A 14-35 CL2 BAD) T (A4-20 CL2 BAD) T
(A2-22 NOTCL2 BAD) T
AIAIIJ3

128



NRL REPORT 9296

(A 114 ST3 BAD) (A14 FUNCTIONS BAD) T (A15 FUNCTIONS BAD) T
(A18 CONTROLFUNCTIONS BAD) T
AIAIIJ4

(AIJ5 NOTSTi BAD) (A14-4 NOTSTI BAD) T (A7-8 NOTSTI BAD) T
(A10-8 NOTSTI BAD) T
A1AIIJ5

(A 1J6 NOTST2 BAD) (A 14-5 NOTST2 BAD) T (A4-9 ST2 BAD) T
(A 1-9 ST3 BAD) T
AIAI1J6

(AIIJ7 WAVEFORM BAD) (A14-15G1 BAD) T (A58J7 GATESELECT BAD) T
(A59J7 GATESELECT BAD) T
(A60J7 GATESELECT BAD) T

(A l J7 WAVEFORM BAD) (A61J7 GATESELECT BAD) T
A1AllJ7

(Al 1J8 G2 BAD) (A14 FUNCTIONS BAD) T (A15 FUNCTIONS BAD) T
(A18 CONTROLFUNCTIONS BAD) T
(A27J4 G2 BAD) T
AIAlJ8

(Al119 WAVEFORM BAD)(A14 FUNCTIONS BAD) T AIA11J9

(Al3Jl FREQUENCY HI)(AI3J1 WAVEFORM BAD) T AIA13JI_F

(A13J1 FREQUENCY LO)(AI3JI WAVEFORM BAD) T AIA13JIF

(A I3J I LOGICLEVELS BAD) (A 13J 1 WAVEFORM BAD) T AIA13JIL

(Al3Jl WAVEFORM BAD) TIMING T (A13J1 LOGICLEVELS BAD) T
(A77J4 VOLTS BAD) T (AI3JI FREQUENCY HI) T
(A77J7 VOLTS BAD) T (AI3JI FREQUENCY LO) T
(A76J3 VOLTS BAD) T (A14 FUNCTIONS BAD) T

(A 197 SIGNAL FAULTED) T

(AIJI NOTMTSGATE BAD) (A15-5 NOTMTSGATE BAD) T(AI-13 BIT_0_LEFTBEAMS BAD) T
AIAIJI

(AIJ3 ENDCLEAR BAD)(A26A1S8-3 ENDCLEAR BAD) ENDCLEARUSED (Al-13 BIT_0_LEFTBEAMS
BAD) ENDCLEARUSED

AIAIJ3

129



J. MOLNAR

(A1J4 BIT_0_LEFT_INPUT BAD) (A22_A17-OUT BEAM_1_WAVE BAD) T (Al-13 BIT_0_LEFTBEAMS
BAD) T

(A22_A17-OUT BEAM_2_WAVE BAD) T
(A22A 17-OUT BEAM_3_WAVE BAD) T

(A1J4 BIT_0_LEFTINPUT BAD) (A22_A17-OUT BEAM 4_WAVE BAD) T (A1J4 LOGICLEVELS BAD) T

(A IJ4 LOGICLEVELS BAD) (A77J4 VOLTS BAD) T (A1J4 BIT 0 LEFTINPUT BAD) T
AIDELAYLINE T A1AIJ4

(AIJ5 MTSGATE BAD) (A15-4 MTSGATE BAD) T (Al-13 BIT_0_LEFTBEAMS BAD) T
A1A1J5

(AIJ6 ST3 BAD) (A1-9 ST3 BAD) T (Al-13 BIT_0_LEFTBEAMS BAD) T
A1AIJ6

(AIJ7 NOT_CL2 BAD) (A2-22 NOTCL2 BAD) T (A]-13 BIT_0_LEFTBEAMS BAD) T
AlAIJ7

(A1J8 DST3 BAD) (A3-9 DST3 BAD) T (Al-13 BIT_0_LEFTBEAMS BAD) T
AIAIJ8

(A1J9 LOGICLEVELS BAD) (A77J4 VOLTS BAD) T (A 1-13 BIT 0 LEFTBEAMS BAD) T
AlDELAYLINE T A1A1J9

(A20J I I NOTPC BAD) (A 18 CONTROLFUNCTIONS BAD) T (A27-34 SIGNAL FAULTED) T
(A20J12 PC BAD) T
A1A20JI1

(A20J 13 SIGNAL FAULTED) (A17 AMPLCORRELLEFTBEAMS BAD) T (A27-15 SIGNAL FAULTED) T
(A18 LEFT_TEST BAD) T (A27-34 SIGNAL FAULTED) T
(A21J5 SIGNAL FAULTED) T AIA20J13

(A20J2 GATE_I BAD) (A15-13 NOTGATEI BAD)I T (A30 FUNCTIONS BAD) T

TIMING T A1A20J2

(A20J2 GATEI BAD)

(A20J3 GATE_2 BAD) (A15-15 NOTGATE_2 BAD) T (A31 FUNCTIONS BAD) T
TIMING T A1A20J3

(A20J4 GATE_3 BAD) (A 15-6 NOTGATE_3 BAD) T (A32 FUNCTIONS BAD) T
TIMING T A IA2OJ4

(A20J5 GATE_4 BAD) (A 15-7 NOTGATE_4 BAD) T (A33 FUNCTIONS BAD) T
TIMING T Al A20J5

130



NRL REPORT 9296

(A20J6 ATODCLEARSIGN BAD) (A 18-25 ATODCLEARSIGN BAD) T(A23-3 INVERTEDSIGN BAD) T
(A23-6 SIGN BAD) T
AD_CLR_SIGN

(A20J8 ATODSET BAD) (A 18-45 ATODSET BAD) T (A23-3 INVERTED_-SIGN BAD) T
(A23-6 SIGN BAD) T
(A23 AMPLITUDE BAD) T
ADSET

(A2019 NOTPE BAD) (A18 CONTROLFUNCTIONS BAD) T (A2OJ 10 PE BAD) T
Al A2019

(A21I1ENDSYNC BAD) (A26-18 ENDSYNC BAD) T (A 18 CONTROLFUNCTIONS BAD) T
AlA21JII

(A21J13 RE3 BAD) (A26-29 RE3 BAD) T (A 17 AMPLCORRELLEFTBEAMS
BAD) T

Al A21I3

(A21IJ 14 NOTRE3 BAD) (A26-30 NOTRE3 BAD) T (A 17 AMPLCORRELLEFTBEAMS
BAD) T

Al A2 1J14

(A21J5 LEFTTESTNOTSIGN LAD) (A22-3 LEFTTESTNOTSIGN BAD) T LFT TSTSGN

(A21J5 SIGNAL FAUT.Tj) (A22-3 LEFTTESTNOT..SIGN BAD) T (A20J13 SIGNAL FAULTED) T

(A21J8 REF bAD) (A26-9 REF BAD) T AlA2IJ8

(A24J1I TESTVOLTS BAD) (A26A1I5S10-2 VOLTS BAD) A26A1I59_NOTSETTOOPER (A24J1I
TIM~E_SLOT_1_ VOLTS HI) A26A159_NOTSETTOOPER

(A26A1I5S10-2 VOLTS BAD) A26A1I59_NOTSETTOOPER (A24J1I
TIMESLOT_4_VOLTS HI) A26A159_NOTSETTOOPER

(A24-10 VOLTS BAD) A26A159_NOTSETTOOPER (A2411
TIMESLOT_7_VOLTS HI) A26A159_NOTSETTOOPER

(A24-8 VOLTS BAD) A26A I1S9_NOTSETTOOPER (A24J1I
TIMESLOT_10_VOLTS I) A26A 1S9_NOTSETTOOPER

(A24-6 VOLTS BAD) A26A I1S9_NOTSETTOOPER (A24J1I
T'IMESLOTI_-VOLTS LO) A26A 159_NOTSETTOOPER

(A24-13 VOLTS BAD) A26A159_NOTSETTOOPER (A24J1
TIMESLOT_4_VOLTS LO) A26A 1S9_NOT_-SET_-TO_-OPER

(A24-10 VOLTS BAD) A26A159_NOTSETTOOPER (A24JI
TIMESLOT_7_VOLTS LO) A26A 1S9_NOTSETTOOPER

(A24-8 VOLTS BAD) A26A159_-NOT_-SET_-TO_-OPER (A24J1I
TIMESLOT_10_VOLTS LO) A26A1S9_NOTSETTOOPER

(A24-6 VOLTS BAD) A26A I1S9_-NOT_-SET_-TO_-OPER
(A24-13 VOLTS BAD) A26A159_NOTSETTOOPER

131



I. MOLNAR

(A24J1 TIMESLOT_10_VOLTS HI) (A26AIS9-1 TIME_SLOT_10_VOLTS HI) A26A1S9_SETTOOPER
(A24J2 TIMESLOT_10_VOLTS HI) T

(A24J 1 TESTVOLTS BAD) A26A1S9_NOTSETTO OPER (A24J 1 VOLTS HI)
T

(A24J2 TIMESLOT 10 VOLTS HI) T
(A24J 1 VOLTS HI) T
MUXAMPJI_10

(A24JI TIMESLOT_10_VOLTS LO) (A26A1S9-1 TIMESLOT_10_VOLTS LO) A26A1S9_SETTOOPER
(A24J2 TIMESLOT_10_VOLTS LO) T

A26A1S9 A26A1S9_SETTO OPER (A24J1 VOLTS LO) T
(A24J1 TESTVOLTS BAD) A26A1S9_NOTSETTO OPER (A24J2

TIMESLOT_10_VOLTS LO) T
(A24J 1 VOLTS LO) T
MUX_AMPJ1_10

(A24J1 TIME_SLOT_ 10_WAVEFORM BAD) (A26A1S9-1 TIMESLOT_10_WAVEFORM BAD)
A26A1S9_SETTOOPER (A24J2 TIMESLOT_10_WAVEFORM BAD) T

(A24J2 TIMESLOT_10_WAVEFORM
BAD) T

(A24JI TIMESLOT_10_WAVEFORM BAD)

(A24J1 TIME_SLOT_ 1 VOLTS HI) (A26A1S9-1 TIMESLOT_I_VOLTS HI) A26A1S9_SETTOOPER
(A24J2 TIMESLOTIVOLTS HI) T

(A24J1 TESTVOLTS BAD) A26AIS9_NOTSETTOOPER (A24JI VOLTS HI)
T

(A24J2 TIMESLOT _ VOLTS HI) T
(A24J 1 VOLTS HI) T
MUXAMPJ1_I

(A24J1 TIMESLOT_1_VOLTS LO) (A26A1S9-1 TIMESLOT I VOLTS LO) A26A1S9_SETTOOPER
(A24J2 TIMESLOTIVOLTS LO) T

A26A1S A26A1S9_SETTO OPER (A24J1 VOLTS LO) T
(A24J1 TESTVOLTS BAD) A26AIS9_NOTSETTO OPER (A24J2

TIMESLOT I VOLTS LO) T
(A24J VOLTS LO) T
MUXAMPJI1

(A24J1 TIMESLOTIWAVEFORM BAD) (A26AIS9-1 TIMESLOT_1_WAVEFORM BAD)
A26AIS9_SETTOOPER (A24J2 TIMESLOT_1_WAVEFORM BAD) T

(A24J2 TIMESLOT_1_WAVEFORM
BAD) T

(A24JI TIMESLOT 4_VOLTS HI) (A26AIS9-1 TIMESLOT_4_VOLTS HI) A26AIS9_SETTOOPER
(A24J2 TIMESLOT_4_VOLTS HI) T

(A24JI TESTVOLTS BAD) A26AIS9_NOTSETTO-OPER (A24JI VOLTS HI)
T

(A24J2 TIMESLOT_4_VOLTS HI) T
(A24J 1 VOLTS HI) T
MUXAMPJ 1_4

132



NRL REPORT 9296

(A24J1 TIMESLOT_4_VOLTS LO) (A26AIS9-1 TIMESLOT_4_VOLTS LO) A26A1S9_SETTOOPER
(A24J2 TIMESLOT_4_VOLTS LO) T

A26A1S9 A26A 1S9_SET_TO_OPER (A24J 1
VOLTS LO) T

(A24J 1 TESTVOLTS BAD) A26A1S9_NOTSETTOOPER (A24J2
TIMESLOT_4_VOLTS LO) T

(A24J I VOLTS LO) T
MUXAMPJ1_4

(A24J1 TIMESLOT_4_WAVEFORM BAD) (A26AI$9-1 TIMESLOT_4_WAVEFORM BAD)
A26A1S9_SETTO OPER (A24J2 TIMESLOT_4_WAVEFORM BAD) T

(A24J2 TIMESLOT_4_WAVEFORM
BAD) T

(A24J1 TIMESLOT_7_VOLTS HI) (A26A1S9-1 TIMESLOT_7_VOLTS HI) A26A1S9_SETTOOPER
(A24J2 TIMESLOT_7_VOLTS HI) T

(A24J1 TESTVOLTS BAD) A26A IS9_NOTSETTOOPER (A24J1 VOLTS HI)
T

(A24J2 TIMESLOT_7_VOLTS HI) T
(A24J I VOLTS HI) T
MUXAMPJ1_7

(A24J1 TIMESLOT_7_VOLTS LO) (A26A1S9-1 TIMESLOT_7_VOLTS LO) A26A1S9_SETTOOPER
(A24J2 TIMESLOT_7_VOLTS LO) T

A26AIS9 A26AIS9_SET TO OPER (A24JI VOLTS LO) T
(A24J I TESTVOLTS BAD) A26A 1S9_NOTSETTOOPER (A24J2

TIMESLOT_7_VOLTS LO) T
(A24J I VOLTS LO) T
MUXAMPJ1_7

(A24J 1 TIMESLOT_7_WAVEFORM BAD) (A26A 1 9-1 TIMESLOT_7_WAVEFORM BAD)
A26A1S9_SETTO OPER (A24J2 TIMESLOT_7_WAVEFORM BAD) T

(A24J2 TIMESLOT_7_WAVEFORM BAD) T

(A24JI VOLTS HI) (A24J1 TIME_SLOTI VOLTS HI) T MUX_AMPJIAV
(A24J1 TIMESLOT_4_VOLTS HI) T
(A24J 1 TIME_SLOT_7_VOLTS HI) T
(A24J1 TIMESLOT_10_VOLTS HI) T
(A24JI TIMESLOT_1 VOLTS HI) T
(A24J1 TIMESLOT_4_VOLTS HI) T
(A24JI TIME_SLOT_7_VOLTS HI) T
(A24J1 TIME_SLOT_ 10 VOLT.- HI) T

(A24JI VOLTS LO) (A24J1 TIMESLOT_ IVOLTS LO) T MUXAMPJIAV
(A24J I TIMESLOT_4_VOLTS LO) T
(A24JI TIMESLOT_7_VOLTS LO) T
(A24JI TIMESLOT 10 VOLTS LO) T
(A24J TIMESLOT_ IVOLTS LO) T
(A24JI TIMESLOT_4_VOLTS LO) T
(A24J I TIMESLOT_7_VOLTS LO) T

133



J. MOLNAR

(A24JI VOLTS LO) (A24J1 TIMESLOT 10 VOLTS LO) T

(A24J2 TIMESLOT 10 VOLTS E) (A24J1 TIME_SlOT_10_VOLIS HI) T (A24J2 VOLTS HI) T
(A24 FUNCTIONS BAD) T (A24J2 VOLTS HI) T
(A2411 TIMESLOT_10_VOLTS HI) T (A23_OUTPUT TIMESLOT_10_AMPL

HI) T
(A24 FUNCTIONS BAD) T MUXAMPJ2_10

(A24J2 TIMESLOT_10_VOLTS LO) (A24JI TIMESLOT_10_VOLTS LO) T (A24J2 VOLTS LO) T
(A24 FUNCTIONS BAD) T (A24J2 VOLTS LO) T
(A24JI TIMESLOT 10 VOLTS LO) T (A23_OUTPUT TIMESLOT 10_AMPL

LO) T
(A24 FUNCTIONS BAD) T MUX_AMPJ2_10

(A24J2 TIME SLOT 10 WAVEFORM BAD) (A24J1 TIME_SLOT_10_WAVEFORM BAD) T (A23_OUTPUT
TIMESLOT_10_WAVE BAD) T

(A24 FUNCTIONS BAD) T
(A24J1 TIMESLOT 10_WAVEFORM BAD) T
(A24 FUNCTIONS BAD) T

(A24J2 TIMESLOT_I_VOLTS HI) (A24JI TIMESLOT 1 VOLTS HI) T (A24J2 VOLTS HI) T
(A24 FUNCTIONS BAD) T (A24J2 VOLTS HI) T
(A24J 1 TIME_SLOT_1 VOLTS HI) T (A23_OUTPUTTIME_SLOTIAMPL

HI) T
(A24 FUNCTIONS BAD) T MUXAMPJ2_I

(A24J2 TIME_SLOT_I_VOLTS LO) (A24J1 TIME_SLOT_ I VOLTS LO) T (A24J2 VOLTS LO) T
(A24 FUNCTIONS BAD) T (A24J2 VOLTS LO) T
(A24J I TIMESLOT I VOLTS LO) T (A23_OUTPUTTIMESLOT_1_AMPL

LO) T
(A24 FUNCTIONS BAD) T MUX_AMPJ2 1

(A24J2 TIMESLOT_1_WAVEFORM BAD) (A24Jl TIME_SLOT_I_WAVEFORM BAD) T (A23_OUTPUT
TIMESLOTIWAVE BAD) T

(A24 FUNCTIONS BAD) T
(A24J1 TIMESLOT_1_WAVEFORM BAD) T
(A24 FUNCTIONS BAD) T

(A2412 TIMSLOT_1_WAVEFORM BAD)

(A24J2 TIMESLOT_4_VOLTS HI) (A24JI TIMESLOT_4_VOLTS HI) T (A24J2 VOLTS HI) T
(A24 FUNCTIONS BAD) T (A24J2 VOLTS HI) T
(A24J I TIMESLOT_4_VOLTS HI) T (A23_OUTPUT TIMESLOT_4_AMPL

HI) T
(A24 FUNCTIONS BAD) T MUXAMPJ2 4

(A24J2 TIMESLOT_4_VOLTS LO) (A24JI TIMESLOT_4_VOLTS LO) T (A24J2 VOLTS LO) T
(A24 FUNCTIONS BAD) T (A24J2 VOLTS LO) T
(A24JI TIMESLOT_4_VOLTS LO) T (A23_OUTPUTTIMESLOT_4_AMPL

LO) T
(A24 FUNCTIONS BAD) T MUXAMPJ2_4

134



NRL REPORT 9296

(A24J2 TIMESLOT_4_WAVEFORM BAD) (A24J1 TIMESLOT_4_WAVEFORM BAD) T (A23_OUTPUT
TIME_SLOT_4_WAVE BAD) T

(A24 FUNCTIONS BAD) T
(A24J1 TIMESLOT_4_WAVEFORM BAD) T
(A24 FUNCTIONS BAD) T

(A24J2 TIMESLOT_7_VOLTS HI) (A24J 1 T IE_SLOT_7_VOLTS HI) T (A24J2 VOLTS HI) T
(A24 FUNCTIONS BAD) T (A24J2 VOLTS HI) T
(A24J1 TIMESLOT_7_VOLTS HI)T (A23_OUTPUT TIMESLOT_7_AMPL

HI) T
(A24 FUNCTIONS BAD) T MUX_AMPJ2_7

(A24J2 TIME_SLOT_7_VOLTS LO) (A24J1 TIMESLOT_7_VOLTS LO) T (A24J2 VOLTS LO) T
(A24 FUNCTIONS BAD) T (A24J2 VOLTS LO) T
(A24J1 TIMESLOT_7_VOLTS LO)T (A23_OUTPUT TIMESLOT_7_AMPL

LO) T
(A24 FUNCTIONS BAD) T MUXAMPJ2_7

(A24J2 TIMESLOT_7_WAVEFORM BAD) (A24J1 TIMESLOT_7_WAVEFORM BAD) T (A23_OUTPUT
TIMESLOT_7_WAVE BAD) T

(A24 FUNCTIONS BAD) T
(A24JI TIMESLOT_7_WAVEFORM BAD) T
(A24 FUNCTIONS BAD) T

(A24J2 VOLTS HI) (A24J2 TIMESLOT_1_VOLTS HI) T MUX_AMPJ2_AV
(A24J2 TIMESLOT_4_VOLTS HI) T
(A24J2 TIME_SLOT_7_VOLTS HI) T
(A24J2 TIMESLOT_10_VOLTS HI) T
(A24J2 TIMESLOT_1 VOLTS HI) T
(A24J2 TIME_SLOT_4_VOLTS HI) T
(A24J2 TIMESLOT_7_VOLTS HI) T
(A24J2 TIMESLOT_10_VOLTS HI) T

(A24J2 VOLTS LO) (A24J2 TIME_SLOT IVOLTS LO) T MUXAMPJ2_AV
(A24J2 TIMESLOT_4_VOLTS LO) T
(A24J2 TIMESLOT_7_VOLTS LO) T
(A24J2 TIMESLOT_10_VOLTS LO) T
(A24J2 TIME_ST OT IVOLTS LO) T
(A24J2 TIMESLOT_4_VOLTS LO) T
(A24J2 TIMESLOT_7_VOLTS LO) T
(A24J2 TIMESLOT_10_VOLTS LO) T

(A24J4 DELTICKEF BAD) (A43J3 DELTICREF BAD) T (A24J5 DELTICREF BAD) T
CORRELATORREF T (A24J5 DELTICREF BAD) T

Al A2414

(A24J5 DELTIC_REF BAD) (A24J4 DELTICREF BAD) T (A26-4 DELTICREF BAD) T
CORRELATORREF T A 1A2415

135



1. MOLNAR

(A76J3 VOLTS BAD) T
(A57-21 VOLTS BAD) T
(A24J4 DELTICREF BAD) T
A24_AMP T
(A76J3 VOLTS BAD) T
(A57-21 VOLTS BAD) T

(A26AIDS8 ALLBEAMSERR BAD) (A27-2 ALLBEAMS_-ERR BAD) T NIL
PMFL T
kA77J4 VOLTS BAD) T

(A26Air'S8 ALLBEAMS_ ERR ON) (A27-2 ALLBEAMSERR ON) T DS8_ALL

(A26A1IDS8 BEAMS_1I-4_ERR BAD) (A27-2 BEAMS_1-4_ERR BAD) T NIL
PMFL T
(A77J4 VOLTS BAD) T

(A26A1DS8 BEAMS_1-4_ERR ON) (A27-2 BEAMS_1-4_ERR ON) T DS8_1-4

(A26A1IDS8 LIGHT OFF) (A27-2 OFFPOSITION BAD) T NIL
PM]FL T
(A77J4 VOLTS BAD) T

-A--A-----TOAPOWE- HI)-(A---- - -- - -- - - --T-APOWER--HI)--T---A------SC

(A26A1JIO DTOAPOWER LO) (A42-10 DTOAPOWER l) T 26AIJ10_SC

(A26AIJ9 DTOA_INHIBIT HI) (A42-5 DTOAINIKBIT HI) T 26A1J9_SC

(A26A 119 DTOAINHIBIT LO) (A42-5 DTOAINHIBIT LO) T 26A 119_SC

(A2916 STI BAD) (A10-9 STI BAD) T A1A29J6

(A29J7 NOTCLI BAD) (A10-21 NOTCLI BAD)T A IA29J7

(A29J8 DSTI BAD) (A29-9 DSTI BAD) T AIA29J8

(A2J6 ST3 BAD) (AI-9 ST-3 BAD) T A1A2J6

(A301 1 SIGN BAD) (A22-2 SIGNBEAM I BAD) T (A30 FUNCTIONS BAD) T
AIA30JI

136



NRL REPORT 9296

(A30J2 BITI BAD) (A17 AMPLBEAM_1 BAD) T (A30 FUNCTIONS BAD) T
(A30J2 LOGICLEVELS BAD) T

(A30J2 LOGICLEVELS BAD) (A30J2 BIT.! BAD) T AIA3OJ2

(A30J3 BIT_0 BAD) (A17 AMPLBEAMI BAD) T (A30 FUNCTIONS BAD) T
(A30J3 LOGICLEVELS BAD) T

(A30J3 LOGICLEVELS BAD) (A30J3 BITO0 BAD) T A1A3013

(A30J4 AMPLITUDE HI)(CORRELATOR-OUT BEAMIAMPL HI) T (A4512 AMPLITUDE HI) T
(A42-10 DTOAPOWER HI) T (A30J4 P05_PEAK HI) T
(A30 FUNCTIONS BAD) T (A30J4 NEGPEAK HI) T

(A30J4 TEST_188_VOLTS HI)
A26A159_NOTSETTOOPER

(A30J4 TEST_212_VOLTS HI)
A26A159_NOTSETTOOPER

(A30J4 TEST_424_VOLTS HI)
A26AIS9_NOTSETTOOPER

(A30J4 TEST_636_VOLTS HI)
A26A159_NOTSETTOOPER

(A30J4 AMPLITUDE LO)(CORRELATOR-OUT BEAM_1_AMPL LO) T (A45J2 AMPLITUDE LO) T
(A42-10 DTOAPOWER LO) T (A30J4 POSPEAK LO) T
(A30 FUNCTIONS BAD) T (A30J4 NEGPEAK LO) T

(A30J4 TEST_188_VOLTS LO)
A26A159_NOTSETTOOPER

(A30J4 TEST_212_VOLTS LO)
A26A159_NOTSETTOOPER

(A3034 TEST_424_VOLTS LO)
A26A159_NOTSETTOOPER

(A30J4 TEST_636_VOLTS LO)
A26AIS9_NOTSETTOOPER

--A --- ---N-G--PEAK--HI)----- -----AMPLITUDE-- --HI)--T-A- ------ --N-G

(A30J4 NEGPEAK LO) (A30J4 AMPLITUDE LO) T AIA3OJ4_NEG

(A30J4 NE5_PEAK HI) (A30J4 AMPLITUDE HI) T AIA3OJ4_P05E

(A30J4 POSPEAK L) (A30J4 AMPLITUDE LM) T AIA30i4_P05

(A30J4 TEST_1I88_VOLTS HI) (A30i4 A MPLITUDE HI) A26A I1S9_NOT_-SET_-TO_-OPER AD_1_ -188_-P

137



J. MOLNAR

(A30J4 TEST_1I88_VOLTS LO) (A30J4 AMPLITUDE LO) A26A1I59_NOTSETTOOPER AD_1_1 I88_P

-------- TEST_212_VOLTSHI) --------A--ITUDE-HI)----A---NOT-S-T-TO--ER-AD_1_212_

(A30J4 TEST_212_VOLTS LO) (A30J4 AMPLITUDE L) A26A19_NOTSETTOOPER AD1212P

-A--- ET_2_V LS-I--334A PLT D I-- ---------- -I--)----------NOT -SET -TO ---E --AD_ -_424_P

(A30J4 TEST_24_VOLTS LO) (A30J4 AMPLITUDE LO) A26A I S9_NOTSETTOOPER AD_1_412_P

(A30J4 TEST_636_VOLTS HI) (A30J4 AMPLITUDE HI) A26A159_NOTSETTOOPER AD_1_636_P

(A30J4 TEST_636_VOLTS LO) (A30J4 AMPLITUDE LO) A26A1I59_NOTSETTOOPER AD_1_636_P

138



Appendix N

SAMPLE DATA OUTPUT FORMAT FROM AMBIGUITY SET VERIFIER

Test No. Abnormality Module Immediate Effect

26AIJ10_-SC HI1 MODREFER (A42-10ODTOAPOWER H)
26AIJ10_-SC HI POWER (A26_-CABINET_-PWR VOLTS BAD)
26AIJ10_-SC LO MOD_-REFER (A42-10 DTOAPOWER LO)
26AIJ10_SC LO POWER (A26_CABINETPWR VOLTS BAD)

26A 11J9_-SC HI MOD_-REFER (A42-5 DTOAINHIBIT HI)
26A1J9_SC LO MODREFER (A42-5 DTOAINI-IIBIT LO)

AIAlOJI BAD A26_-REFERENCE-CONTROL (A26 FUNCTIONS BAD)
AlAIOJI BAD POWER (A26_ICABINETPWR VOLTS BAD)
AIAIOJI BAD TIMING (A] 3J I WAVEFORM BAD)
AIAIOJI BAD TIMING (A14 FUNCTIONS BAD)
AlAIOJI BAD TIMING (A15 FUNCTIONS BAD)
AIAIOJI BAD TIMING (A21J9 END_-BEAM_-STORE BAD)

AIAIOJ2 BAD AIODELAYLINE (AIOJ2LOGICLEVELS BAD)--------------
AIAIOI2 BAD A10ODELAY-LINE (AIOJ2 LOGICLEVELS BAD)

AlAlOJ2 BAD A10ODELAY-LINE (A 10-21 NOT_-CLl BAD)
AlAIOJ2 BAD A10ODELAY-LINE (A 10-9 STIBAD)
A1AIOJ2 BAD A10ODELAY-LINE (AIOJ4 LOGICLEVELS BAD)
AlAIOJ2 BAD A10ODELAY-LINE (A1O-10 NOTREl BAD)
AIAIOJ2 BAD A10ODELAY_-LINE (AIOJ9 RE1 BAD)
AlAIOJ2 BAD A24_-AMP (A24J5 DELTICIREF BAD)
AlA 1012 BAD A26_-REFERENCE-CONTROL (A26 FUNCTIONS BAD)
AlAIOJ2 BAD A29_-DELAY-LINE (A29-21 NOTSTI BAD)
AIAlOJ2 BAD A29_-DELAY_-LINE (A29-9 DST1 BAD)
AIAlOJ2 BAD CORRELATOR REF (A70J5 FREQ BAD)
AlA 10J2 BAD CORRELATOR -REF (A7017 FREQ BAD)
AIAIOJ2 BAD CORRELATOR -REF (A70,J5 VOLTS LO)
AlAIOJ2 BAD CORRELATOR REF (A70J7 VOLTS LO)
AIAlOJ2 BAD CORRELATOR REF (A70J5 VOLTS HI)
AIAlOJ2 BAD CORRELATOR REF (A70J7 VOLTS HI)
AIAIOJ2 BAD CORRELATOR REF (A43J1I DELTICREF BAD)
AIAIOJ2 BAD CORRELATOR REF (A43J3 DELTICREF BAD)
AIAIOJ2 BAD CORRELATOR REF (A24J4 DELTICREF BAD)
AIAIOJ2 BAD CORRELATOR -REF (A24J5 DELTICAREF BAD)
AlAIOJ2 BAD MUX_-REF (A70J7 FREQ BAD)
AIAIOJ2 BAD MUX_-REF (A70J7 VOLTS LO)
AIAIOJ2 BAD MUX_-REF (A70J7 VOLTS HI)
AlA1OJ2 BAD POWER (A26_CABINET_-PWR VOLTS BAD)
AIAIOJ2 BAD TIMING (A 1311 WAVEFORM BAD)
AIAIOJ2 BAD TIMING (A14 FUNCTIONS BAD)
AlA 1012 BAD TIMING (A15 FUNC TIONS BAD)
AIAIOJ2 BAD TIMING (A2IJ9 ENDBEAMSTORE BAD)

139



J. MOLNAR

AlAIOJ4 BAD A10ODELAY-LINE (AIOJ4 LOGICLEVELS BAD)
AlAIOJ4 BAD AlO_-DELAY LINE (A1019 LOGICLEVELS BAD)
A1AlOJ4 BAD A10ODELAY-LINE (A10J2 LOGICLEVELS BAD)
AlAlOJ4 BAD ATODELAY LINE (A10-21 NOTCLI BAD)
AIAlOJ4 BAD AlODELAY LINE (A10-9 STI BAD)
AIAlOJ4 BAD AlO_-DELAY-LINE (AIOJ9 REI BAD)
AIAlOJ4 BAD AlODELAY LINE (AlO-10 NOTREI BAD)
AIAlOJ4 BAD A24_AMP (A24J5 DELTICREF BAD)
A1A1OJ4 BAD A26_REFERENCECONTROL (A26 FUNCTIONS BAD)
A1A1OJ4 BAD A29_-DELAY-LINE (A29-21 NOTSTI BAD)
AIAIOJ4 BAD A29_DELAY-LINE (A29-9 DST1 BAD)
A1A1014 BAD CORRELATOR&REF (A7015 FREQ BAD)
AlA 1014 BAD CORRELATOR-REF (A70J7 FREQ BAD)
A1A10J4 BAD CORRELATOR REF (A70J5 VOLTS LO)
AA1O4 BAD CORRELATOR REF (A70J7 VOLTS LO)
AIAI0J4 BAD CORRELATOR-REF (A70J5 VOLTS HI)
AlAIOJ4 BAD CORRELATOR-REF (A70J7 VOLTS HI)
A1A1014 BAD CORRELATOR-.EF (A43J1I DELTICREF BAD)
AIAIOJ4 BAD CORRELATOR-REF (A43J3 DELTICREF BAD)
A1A1OJ4 BAD CORRELATOR REF (A24J4 DELTICREF BAD)
AIA1OJ4 BAD CORRELATOR..REF (A24J5 DELTICREF BAD)
AlA 1014 BAD MUXREF (A70J7 FREQ BAD)
AIAlOJ4 BAD MUXREF (A70J7 VOLTS LO)
A1AlOJ4 BAD MUXREF (A70J7 VOLTS HI)
AIA1OJ4 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AlA 1014 BAD TIMING (A2IJ9 ENDBEAMSTORE BAD)
AIAIOJ4 BAD TIMING (A 13J I WAVEFORM BAD)
AIAIOJ4 BAD TIMING (A14 FUNCTONS BAD)
AIAlOJ4 BAD TIMING (A15 FUNCTONS BAD)

AIAIOJ5 BAD A26_REFERENCECONTROL (A26 FUNCTIONS BAD)
AIAlOJ5 BAD POWER (A26_-CABINETPWR VOLTS BAD)
AIAlOIS BAD TIMING (A13JI WAVEFORM BAD)
A1AIOJ5 BAD TIMING (A14 FUNCTIONS BAD)
AlA 1015 BAD TIMING (A15 FUNCTIONS BAD)
AlAlOIS BAD TIMING (A2lJ9 ENDBEAMSTORE BAD)

AIA1OJ6 BAD AIODELAY LINE (A10-9 STI BAD)
A1A1OJ6 BAD POWER (A26_ICABINETPWR VOLTS BAD)
AIAI0J6 BAD TIMING (A13Jl WAVEFORM BAD)
AlA 1016 BAD TIMING (A14 FUNCTIONS BAD)

AlA 1017 BAD A10ODELAY-LINE (A10-21 NOTCLI BAD)
AIAlOJ7 BAD POWER (A26_ICABINETPWR VOLTS BAD)
AIAIOJ7 BAD TIMING (AI3JI WAVEFORM BAD)
AIA1OI7 BAD TIMING (A14 FUNCTIONS BAD)

A1AIOJ8 BAD A10_DELAY LINE (A10-9 STIBAD)
A1AIOJ8 BAD A29_DELAY-LINE (A29-21 NOTSTI BAD)
A1AIOJ8 BAD A29_DELAY-LINE (A29-9 DSTI BAD)
AIAIOJ8 BAD POWER (A26_-CABINETPWR VOLTS BAD)
AlAIOI8 BAD TIMING (A13J1 WAVEFORM BAD)
AIAIOJ8 BAD TIMING (A14 FUNCTIONS BAD)

AIAIOJ9 BAD AIODELAYLINE (AIQT9 LOGICLEVELS BAD)--------------
AIAIOJ9 BAD AlODELAY LINE (A10J19 LOGICLEVELS BAD)

AIAIOJ9 BAD AlODELAY LINE (A10-21 NOTCLI BAD)
AIAIOJ9 BAD AIODELAY LINE (A10-9 STIBAD)

140



NRL REPORT 9296

AlAIOJ9 BAD A10ODELAY_-LINE (A1014 LOGIC_-LEVELS BAD)
AlAIOI9 BAD AlO_-DELAY-LINE (AIO-lO NOTREI BAD)
AlAlOJ9 BAD AIO_-DELAY_-LINE (AIOJ9REI BAD)
AlAIOJ9 BAD A24_-AMP (A24J5 DELTIC_-REF BAD)
AlAIOJ9 BAD A26_-REFERENCE_-CONTROL (A26 FUNCTIONS BAD)
AlAIOJ9 BAD A29_-DELAY_-LINE (A29-21 NOTISTI BAD)
AIAlOJ9 BAD A29_-DELAY_-LINE (A29-9 DSTl BAD)
Al A1019 BAD CORRELATOR-REF (A70J5 FREQ BAD)
AlAIOI9 BAD CORRELATOR-REF (A70J7 FREQ BAD)
A1AIOJ9 BAD CORRELATOR&REF (A701J5 VOLTS LO)
AlAIOJ9 BAD CORRELATOR REF (A70J7 VOLTS LO)
A1A1019 BAD CORRELATOR REF (A7015 VOLTS HI)
AlAIOJ9 BAD CORRELATOR REF (A70J7 VOLTS HI)
AlAIOJ9 BAD CORRELATOR REF (A4311I DELTICREF BAD)
AIAlOJ9 BAD CORRELATOR.3EF (A4313 DELTIC_-REF BAD)
AIAIOJ9 BAD CORRELATOR - EF (A24J4 DELTIC_-REF BAD)
AIAlOJ9 BAD CORRELATOR. EF (A2415 DELTICAREF BAD)
AlA 1019 BAD MUX_-REF (A7017 FREQ BAD)
AIAIOJ9 BAD MUX_-REF (A70J7 VOLTS LO)
AIAIOJ9 BAD MUX_-REF (A7017 VOLTS HI)
AIAIOJ9 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AlAIOJ9 BAD TIMING (A]1311 WAVEFORM BAD)
AIAlOJ9 BAD TIMING (A14 FUNCTIONS BAD)
AlAlOJ9 BAD TIMING (AI5 FUNCTIONS BAD)
AIAIOJ9 BAD TIMING (A21J9 ENDBEAMSTORE BAD)

AlAIIJ14 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AAlIJ14 BAD TIMING (AIMJI WAVEFORM BAD)
AlAIIJ14 BAD TIMING (A14 FUNCTIONS BAD)
AIAI 1114 BAD TIMING (A]I5 FUNCTIONS BAD)

AIAIIJIS BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AIAII1115 BAD TIMING (Al3Jl WAVEFORM BAD)
AIAII1J15 BAD TIMING (A14 FUNCTIONS BAD)
AlAIIJ15 BAD TIMING (AI5 FUNCTIONS BAD)

AIAI 1118 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AlAII1118 BAD TIMING (A1311 WAVEFORM BAD)
AIAI 1118 BAD TIMING (A14 FUNCTIONS BAD)
AlAIIJ18 BAD TIMING (A15 FUNCTIONS BAD)

AIA1112 BAD POWER (A26_ICABINET_-PWR VOLTS BAD)
AIAI 112 BAD TIMING (A1311 WAVEFORM BAD)
AIAIIJ2 BAD TIMING (A14 FUNCTIONS BAD)

AIAI 1J3 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AlAIIJ3 BAD TIMING (A13jI WAVEFORM BAD)
AIAI 113 BAD TIMING (A14 FUNCTIONS BAD)

AIAI 114 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AIAI 114 BAD TIMING (AI13J I WAVEFORM BAD)
AIAI 114 BAD TIMING (A14 FUNCTIONS BAD)

AIAI 115 BAD POWER (A26_CABINETPWR VOLTS BAD)
AIAIIIS BAD TIMING (Al 3J1IWAVEFORM BAD)
AIAIIJ5 BAD TIMING (A14 FUNCTIONS BAD)

AIAI 116 BAD POWER (A26_CABINETPWR VOLTS BAD)

141



J. MOLNAR

AIAl 116 BAD TIMING (A13JI WAVEFORM BAD)
AlAI 116 BAD TIMING (A14 FUNCTIONS BAD)

AIAI 117 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AIA1IJ7 BAD TIMING (Al3Jl WAVEFORM BAD)
AlA1IJ7 BAD TIMING (A14 FUNCTIONS BAD)

AlAl 118 BAD POWER (A26_ICABINET_-PWR VOLTS BAD)
AIAl 118 BAD TIMI1NG (AlIlI WAVEFORM BAD)
AlAl 118 BAD TIMING (A14 FUNCTIONS BAD)

AIAIIJ9 BAD POWER (A26_ICABINET_-PWR VOLTS BAD)
AIAlIJ9 BAD TIMING (AIM1I WAVEFORM BAD)
AIAl1J9 BAD TIMING (A14 FUNCTIONS BAD)

AIAl3JI_-F LO POWER (A26_ICABINET_-PWR VOLTS BAD)
AIA13JI_-F LO TIMING (A131I WAVEFORM BAD)
AIA13JI_-F HI POWER (A26_ICABINET_-PWR VOLTS BAD)
A1A13JIF HI TIMING (A13JIWAVEFORM BAD)

AIA13JI_-L BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AA13JIL BAD TIMING (AIM1I WAVEFORM BAD)

AIAIJI BAD POWER (A26_ICABINET_-PWR VOLTS BAD)
AIAIJl BAD TIMING (AIN1I WAVEFORM BAD)
AIAIJI BAD TIMING (A14 FUNCTIONS BAD)
AIAIJI BAD TIMING (A15 FUNCTIONS BAD)

AIAIJ4 BAD AlDELAYLINE (AIJ4 LOGIC-LEVELS BAD)
AIAlJ4 BAD POWER (A26_CABINETPWR VOLTS BAD)

A1AIJ5 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
A1AIJ5 BAD TIMING (AI3JI WAVEFORM BAD)
AIA1J5 BAD TIMING (A14 FUNCTIONS BAD)
A1A115 BAD TIMING (A15 FUNCTIONS BAD)

AIAI16 BAD AlDELAYLINE (Al1-9 ST-3 BAD)
AIAIJ6 BAD POWER (A26_ICABINETPWR VOLTS BAD)
AIAIJ6 BAD TIMING (A1311 WAVEFORM BAD)
AIAIJ6 BAD TIMING (A14 FUNCTIONS BAD)

AIAlJ7 BAD A2_DELAYLINE (A2-22 NOT-CL-2 BAD)
AIAIJ7 BAD POWER (A26_ICABINET_-PWR VOLTS BAD)
AIAIJ7 BAD TIMING (AINJI WAVEFORM BAD)
A1AIJ7 BAD TIMING (A14 FUNC TIONS BAD)

A I - -l - -8 - B AD- -A l_ D E L A Y _ L INE-- - - - ( I- 9 5 1 3 B A D )- - - - - - - - - - - - -
AIAIJ8 BAD A3_DELAYLINE (A3-9 ST3 BAD)

AIAlJ8 BAD POWER (A26_ICABINET_-PWR VOLTS BAD)
AIAIJ8 BAD TIMING (AIM I WAVEFORM BAD)
AIAIJ8 BAD TIMING (A14 FUNCTIONS BAD)

AIAIJ9 BAD AlDELAY_-LINE (AI19 LOGICLEVELS BAD)
AIAIJ9 BAD POWER (A26_CABINETPWR VOLTS BAD)

AlIA20JI I BAD AIODELAY LINE (A1039 LOGICLEVELS BAD)
AIA20JI I BAD AIODELAY LINE (A1012 LOGICLEVELS BAD)

142



NRL REPORT 9296

Al A20J1II BAD A10_DELAY_-LINE (A10-21 NOT_-CLI BAD)
A IA20J II BAD AlO DELAY_-LINE (A10-9 ST1 BAD)
AIA2OJl I BAD A10_DELAY_-LINE (A IQJ4 LOGIC_-LEVELS BAD)
A1IA20J1I1 BAD AIODELAY_-LINE (AIOJ9 RE1 BAD)
A1IA20JI1I BAD AIODELAY_-LINE (AI1O-10 NOT_-REI BAD)
AIA2OJII BAD A24_AMP (A2415 DELTIC_-REF BAD)
A1IA20OJI I BAD A26_REFERENCE-CONTROL (A26 FUNCTIONS BAD)
A1IA20J1I I BAD A29_-DELAY_-LINE (A29-21 NOT_-STi BAD)
A1A2OJI I BAD A29_-DELAY_-LINE (A29-9 DSTI BAD)
AIA20JI 1 BAD CORRELATOR REF (A70J5 FREQ BAD)
AIA20JI 1 BAD CORRELATOR REF (A7017 FREQ BAD)
AIA20J I 1 BAD CORRELATOR REF (A70J5 VOLTrS LO)
A IA2OJ1 1 BAD CORRELATOR REF (A70J7 VOLTS LO)
AIA20JI 1 BAD CORRELATOR REF (A70J5 VOLTS I)
AIA20JI 1 BAD CORRELATOR REF (A70J7 VOLTS HI)
A IA2OJI I BAD CORRELATOR REF (A43J1I DELTICREF BAD)
AIA20JI 1 BAD CORRELATOR REF (A4313 DELTICREF BAD)
A IA20J1 1 BAD CORRELATOR -REF (A24J4 DELTIC_-REF BAD)
A1IA20J I 1 BAD CORRELATOR -REF (A24J5 DELTIC_-REF BAD)
A IA20J I I BAD MUX_-REF (A70J7 FREQ BAD)
A IA20J I I BAD MUX_-REF (A70J7 VOLTS LO)
A]IA20JI I BAD MUX_-REF (A70J7 VOLTS HI)
A1IA20J1I I BAD PMFL (A18 CONTROLFUNCTIONS BAD)
A IA20J I I BAD POWER (A26_ICABINET_-PWR VOLTS BAD)
AIA2OJ1 I BAD TIMING (AI3J1 WAVEFORM BAD)
A IA20J I I BAD TIMING (A14 FUNCTIONS BAD)
AIA20JI I BAD TIMING (A15 FUNCTIONS BAD)
AIA20JI I BAD TIMING (A21J9 ENDBEAMSTORE BAD)

AIA2OJI3 FAULTED AIODELAYLINE (A1039 LOGICLEVELS BAD)------------
AIA2OJI3 FAULTED A10_DELAYLINE (AIOJ2 LOGICLEVELS BAD)
A1A20JI3 FAULTED AIODELAYLINE (AIO21 NOTCLLS AD)
AIA2OJI3 FAULTED AIODELAYLINE (A1O-951 BAD)I AD

AIA20113 FAULTED AIODELAYLINE (AIOJ4 LOGICLEVELS BAD)
AIA2OJI3 FAULTED A1ODELAYLINE. (A1O-lO NOTREl BAD)
AIA2OJI3 FAULTED AIODELAYLINE (AIOJ9 REI BAD)
AIA2OJI3 FAULTED A17_AMPLCONTROL (A17 AMPLCORRELLEFTBEAMS BAD)
AIA2OJI3 FAULTED A22_SIGNCONTROL (A22 GATESORPWRORMODULE BAD)
AIA2OJI3 FAULTED A22_SIGNCONTROL (A7J4 LOGICLEVELS BAD)
AlI A20J 13 FAULTED A22_SIGNCONTROL (A7J4 SIGNLEFTBEAMS BAD)
Al A2OJ 13 FAULTED A24_AMP (A24J5 DELTIC_-REF BAD)
A IA2OJ 13 FAULTED A26_REFERENCECONT-ROL (A26 FUNCTIONS BAD)
AIA20113 FAULTED A29_DELAYLINE (A29-21 NOTSTI BAD)
A1A20J13 FAULTED A29_DELAYLINE (A29-9 DSTl BAD)
AIA2OJI3 FAULTED A7_DELAYLINE (A7-9 STl BAD)
AIA2OJI3 FAULTED A7_DELAYLINE (A7-21 NOTCLI BAD)
AIA2OJI3 FAULTED A7_DELAYLINE (A7J9 LOGICLEVELS BAD)
AIA2OJI3 FAULTED A7_DELAYLINE (A7i4 LOGICLEVELS BAD)
AIA2OJ13 FAULTED A7_DELAYLINE (A7-13 SIGNLEFTBEAMS BAD)
AIA2OJ13 FAULTED A9_DELAYLINE (A9-9 DSTI BAD)
AIA2OJI3 FAULTEL' CORRELATOR REF (A70J5 FREQ BAD)
AlI A201 13 FAULTED CORRELATOR REF (A70J7 FREQ BAD)
AlI A20i 13 FAULTED CORRELATOR REF (A70i5 VOLTS LO)
Al A2OJ 13 FAULTED CORRELATOR REF (A7037 VOLTS LO)
Al A2OJ 13 FAULTED CORRELATOR REF (A70J5 VOLTS HI)
Al A2OJ 13 FAULTED CORRELATOR REF (A70J7 VOLTS HI)
Al A20J 13 FAULTED CORRELATOR REF (A431 I DELTICREF BAD)
Al A2OJ 13 FAULTED CORRELATOR REF (A43J3 DELTICREF BAD)

143



J. MOLNAR

AIA.2OJ13 FAULTED CORRELATOR-REF (A24J4 DELTICREF BAD)
A1A2OJ13 FAULTED CORRELATORREF (A24J5 DELTICREF BAD)
A IA20Jl13 FAULTED MUXREF (A70J7 FREQ BAD)
AIA2OJI3 FAULTED MUXREF (A70J7 VOLTS LO)
A1A20J13 FAULTED MUXREF (A70J7 VOLTS III)
AIA2OJI3 FAULTED PMFL (A 18 TESTFUNCTIONS BAD)
AIA2OJl3 FAULTED POWER (A26_ICABINET_-PWR VOLTS BAD)
AlA2OJl3 FAULTED TIMING (AINJI WAVEFORM BAD)
A IA20J 13 FAULTED TIMING (A14 FUNCTIONS BAD)
AIA2OJI3 FAULTED TIMING (A15 FUNC TIONS BAD)
AIA20J13 FAULTED TIMING (A2IJ9 ENDBEAMSTORE BAD)

A1A2012 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AlA.2OJ2 BAD TIMING (Al 3J1 WAVEFORM BAD)
AlA2OJ2 BAD TIMING (A14 FUNCTIONS BAD)
AlA2OJ2 BAD TIMING (A15 FUNC TIONS BAD)
A1A20i2 BAD TIMING (A2OJ2 GATE1I BAD)

AlA2OJ3 BAD POWER (A26_ICABINET_-PWR VOLTS BAD)
AIA2OJ3 BAD TIMING (A 13J1 WAVEFORM BAD)
AIA2OJ3 BAD TIMING (A14 FUNCTIONS BAD)
AlA2OJ3 BAD TIMING (A15 FUNCTIONS BAD)
A1A20J3 BAD TIMING (A20J3 GATE 2 BAD)

AlA2OJ4 BAD POWER (A26_ICABINETPWR VOLTS BAD)
A IA2OJ4 BAD TIMING (A13JI WAVEFORM BAD)
AIA2OJ4 BAD TIMING (A14 FUNCTIONS BAD)
AIA2OJ4 BAD TIMING (A15 FUNCTIONS BAD)
AIA2OJ4 BAD TIMING (A20J4 GATE 3 BAD)

AIA20J5 BAD POWER (A26_-CABINETPWR VOLTS BAD)
A1A20J5 BAD TIMING (AI3JI WAVEFORM BAD)
A1A20J5 BAD TIMING (A14 FUNCTIONS BAD)
AIA2OJ5 BAD TIMING (A15 FUNCTIONS BAD)
AIA2OJ5 BAD TIMING (A20J5 GATEA4 BAD)

A1IA.2OJ9 BAD AIO_-DELAY -LINE (AIOJ9 LOGICLEVELS BAD)
AIA2OJ9 BAD AIODELAY-LINE (AIOJ2 LOGICLEVELS BAD)
AIA2OJ9 BAD AIODELAY-LINE (A10-21 NOTCLI BAD)
AIA2OJ9 BAD AIODELAY LINE (A10-9 STI BAD)
A IA2OJ9 BAD AIODELAY LINE (AlOJ4 LOGICLEVELS BAD)
A IA2OJ9 BAD AIODELAY LINE (AIOJ9 RE] BAD)
A IA2OJ9 BAD AlODELAY LINE (A1O-lO NOTREI BAD)
AIA2OJ9 BAD A24_AMP (A24J5 DELTICREF BAD)
A1A2OJ9 BAD A26_REFERENCECONTROL (A26 FUNCTIONS BAD)
A 1A2OJ9 BAD A29-DELAYLINE A29-21 NOT STI BAD)
A IA2019 BAD A29_DELAY-LINE (A29-9 DSTI BAD)
AIA2OJ9 BAD CORRELATOR REF (A70J5 FREQ BAD)
AI1A2OJ9 BAD CORRELATOR REF (A70i7 FREQ BAD)
AIA2OJ9 BAD CORRELATOR REF (A70J5 VOLTS LO)
A 1A2OJ9 BAD CORRELATOR REF (A70J7 VOLTS LO)
AIA2OJ9 BAD CORRELATOR REF (A70J5 VOLTS HI)
AIA2OJ9 BAD CORRELATOR REF (A70J7 VOLTS HI)
A1A20J9 BAD CORRELATOR REF (A43J I DELTIC_-REF BAD)
A 1A20J9 BAD CORRELATOR REF (A43J3 DELTIC_-REF BAD)
AIA2OJ9 BAD CORRELATOR REF (A24J4 DELTIC_-REF BAD)
AI1A2OJ9 BAD CORRELATOR REF (A24J5 DELTIC_-REF BAD)
A 1A2OJ9 BAD MUXREF (A7037 FREQ BAD)

144



NRL REPORT 9296

AIA2OJ9 BAD MUX_-REF (A70J7 VOLTS LO)
AIA2039 BAD MID(_ REF (A70J7 VOLTS H)
A1A2039 BAD PMFL (A18 CONTROLFUNCTIONS BAD)
AlA2OJ9 BAD POWER (A26 ICABINET_-PWR VOLTS BAD)
AlA2OJ9 BAD TIMING (Al33JI WAVEFORM BAD)
A1IA2OJ9 BAD TIMING (A14 FUNCTIONS BAD)
AIA2OJ9 BAD TIMING (A15 FUNCTIONS BAD)
AI1A2OJ9 BAD TIMING (A2 119 ENDBEAMSTORE BAD)

AIA21I BAD A26_-REFERENCE-CONTROL (A26 FUNCTIONS BAD)
AIA21J1 1 BAD POWER (A26 ICABINETPWR VOLTS BAD)
AIA21JI I BAD TIMING (Al3J1 WAVEFORM BAD)
A1A2lJI 1 BAD TIMING (A14 FUNCTIONS BAD)
AlA21JI1 BAD TIMING (A15 FUNCTIONS BAD)
AIA21JI I BAD TIMING (A2IJ9 ENDBEAMSTORE BAD)

AIA21J13 BAD A10ODELAY-LINE (A1I039 LOGICLEVELS BAD)
Al A2 1313 BAD A10ODELAY_-LINE (A1012 LOGIC_-LEVELS BAD)
AIA21J13 BAD AlO_-DELAY-LINE (A10-21 NOTCLI BAD)
AIA2lJl3 BAD A10ODELAY-LINE (AI0-9 STI BAD)
AIA2lJl3 BAD AIO_-DELAY-LINE (AIOJ4 LOGICLEVELS BAD)
A1A21J13 BAD A10ODELAY_-LINE (AIO-IONOT_-REl BAD)
AIA2IJI3 BAD AlO_-DELAY_-LINE (AIOJ9 REI BAD)
A1A21JI3 BAD A24_-AM1P (A24J5 DELTIC_-REF BAD)
Al A2 1313 BAD A26_-REFERENCE-CONTROL (A26 FUNCTIONS BAD)
AIA21JI3 BAD A29_-DELAY_-LINE (A29-21 NOT_-STI BAD)
AIA2 1313 BAD A29_-DELAY-LINE (A29-9 DST1 BAD)
AIA21J13 BAD CORRELATOR_-REF (A70J5 FREQ BAD)
AIA21Il3 BAD CORRELATOR_-REF (A70J7 FREQ BAD)
AIA21313 BAD CORRELATOR_-REF (A7OJ5 VOLTS LO)
A1A21J13 BAD CORRELATOR_-REF (A7QJ7 VOLTS LO)
AIA21JI3 BAD CORRELATOR_-REF (A70J5 VOLTS HI)
Al A2 1313 BAD CORRELATOR_-REF (A70J7 VOLTS HI)
AIA21Il3 BAD CORRELATOR_-REF (A43J I DELTIC_-REF BAD)
AIA21J13 BAD CORRELATOR_-REF (A43J3 DELTIC_-REF BAD)
AIA21Il3 BAD CORRELATOR_-REF (A24J4 DELTIC_-REF BAD)
AIA21J13 BAD CORRELATORREF (A24J5 DELTICREF BAD)
Al A2 1313 BAD MliX_-REF (A7017 FREQ BAD)
AIA21JI3 BAD MUX_-REF (A70J7 VOLTS LO)
AIA21JI3 BAD MUXREF (A7017 VOLTS HII)
AIA21JI3 BAD POWER (A26 ICABINETPWR VOLTS BAD)
AIA21JI3 BAD TIMING (A1331 WAVEFORM BAD)
AIA21JI3 BAD TIMING (A14 FUNCTIONS BAD)
AIA2IJI3 BAD TIMING (A15 FUNCTIONS BAD)
AIA21J13 BAD TIMING (A2IJ9 ENDBEAMSTORE BAD)

Al A2 1314 BAD AIODELAYLINE (AIOJ9 LOGICLEVELS BAD)------------
A1A21J14 BAD A10ODELAY_-LINE (AIOJ2 LOGIC_-LEVELS BAD)
AIA21JI4 BAD AIO_-DELAY-LINE (AIOJ21 NOTCLL AD)

AIA21Il4 BAD AlO_-DELAY-LINE (A10-9 STI BAD)
AIA21Il4 BAD A10ODELAY_-LINE (AlOJ4 LOGIC_-LEVELS BAD)
AIA2IJI4 BAD AIO_-DELAYLINE (A1O-lO NOT_-REl BAD)
A1A21J14 BAD A10ODELAY_-LINE (AlOJ9 REI BAD)
AIA21JI4 BAD A24_-AMP (A24J5 DELTIC_-REF BAD)
Al A2 1314 BAD A26_-REFERENCE-CONTROL (A26 FUNCTIONS BAD)
AIA21JI4 BAD A29_-DELAY_-LINE (A29-21 NOT_-STl BAD)
AIA21114 BAD A29_-DELAY_-LINE (A29-9 DSTI BAD)
AIA21J14 BAD CORRELATORREF (A70J5 FREQ BAD)

145



J. MOLNAR

A1A21J14 BAD CORRELATOR -REF (A7017 FREQ BAD)
A1A21JI4 BAD CORRELATOR -REF (A7035 VOLTS LO)
A1A21J14 BAD CORRELATOR -REF (A70J7 VOLTS LO)
AIA2lJI4 BAD CORRELATOR -REF (A7015 VOLTS HI)
A1A21J14 BAD CORRELATOR -REF (A70J7 VOLTS HI)
A1A21J14 BAD CORRELATOR. REF (A43J I DELTIC_-REF BAD)
A1A21J14 BAD CORRELATOR. REF (A43J3 DELTIC_-REF BAD)
AIA21Il4 BAD CORRELATOR -REF (A24J4 DELTIC_-REF BAD)
A1A21114 BAD CORRELATOR REF (A24J5 DELTICREF BAD)
A1A21J14 BAD MUXREF (A70J7 FREQ BAD)
AIA21JI4 BAD MU XREF (A7017 VOLTS LO)
A1A21J14 BAD MUXREF (A70J7 VOLTS I-H)
AlA2iJI4 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
A1A21J14 BAD TIMING (Al3JlI WAVEFORM BAD)
A1A21J14 BAD TIMING (A14 FUNCTIONS BAD)
A1A21J14 BAD TIMING (A15 FUNCTIONS BAD)
AIA21J14 BAD TIMING (A21J9 EN])_BEAMSTORE BAD)

AIA21J8 BAD AlODELAY LiNE (A1019 LOGICLEVELS BAD)--------------
AIA2lJ8 BAD AIODELAY LINE (A1012 LOGICLEVELS BAD)

AIA2IJ8 BAD AlODELAY.LINE (A10-21 NOTCLI BAD)
A]IA21 J8 BAD AlODELAY LINE (A10-9 STI BAD)
AIA21J8 BAD AIODELAY LINE (A1OJ4 LOGICLEVE! S BAD)
A1A2118 BAD AlODELAY LINE (AIOJ9 REl BAD)
A1A2118 BAD A10ODELAY -LINE (A1O-lO NOT_-RElI BAD)
A1A2lJ8 BAD A24_-AMP (A24J5 DELTIC_-REF BAD)
AlA2IJ8 BAD A26_-REFERENCE-CONTROL (A26 FUNCTIONS BAD)
AIA21J8 BAD A29_DELAY-LINE (A29-21 NOTSTI BAD)
AlA2118 BAD A29_DELAY-LINE (A29-9 DSTI BAD)
AIA2lJ8 BAD CORRELATOR REF (A70J5 FREQ BAD)
AlA2 118 BAD CORRELATOR REF (A70J7 FREQ BAD)
A1A2lJ8 BAD CORRELATOR REF (A70J5 VOLTS LO)
A1A2lJ8 BAD CORRELATOR -REF (A70J7 VOLTS LO)
AlA2lJ8 BAD CORRELATOR. REF (A70J5 VOLTS HI)
AlA2IJ8 BAD CORRELATOR. REF (A7017 VOLTS HI)
AIA2IJ8 BAD CORRELATOR -REF (A43J I DELTICREF BAD)
AlA2118 BAD CORRELATOR REF (A43J3 DELTICREF BAD)
AlA2 118 BAD CORRELATOR REF (A24J4 DELTICREF BAD)~
A1A2118 BAD CORRELATOR REF (A2415 DELTICAREF BAD)
AlA2I18 BAD MUX_-REF (A70J7 FREQ BAD)
AIA2 118 BAD MUXREF (A70J7 VOLTS LO)
AlA2lJ8 BAD MUXREF (A70J7 VOLTS HI)
AlA2118 BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AlA2118 BAD TIMING (A1311 WAVEFORM BAD)
A1A2118 BAD TIMING (A14 FUNCTIONS BAD)
A1A2lJ8 BAD TIMING (A15 FUNCTIONS BAD)
AlA2lJ8 BAD TIMING (A2IJ9 ENDBEAMSTORE BAD)

A1A2414 BAD CORRELATOR REF (A7015 FREQ BAD)- --- ---- --- ---- ---
A IA24J4 BAD CORRELATOR -REF (A7017 FREQ BAD)
A A24J4 BAD CORRELATOR -REF (A 705 VOLTS LAD)
A1IA24J4 BAD CORRELATOR -REF (A7017 VOLTS LO)
AlI A24J4 BAD CORRELATOR -REF (A7015 VOLTS HI)
AlI A24J4 BAD CORRELATOR. REF (A70J5 VOLTS HI)
AlI A2414 BAD CORRELATOR. REF (A43J7 VODLTSICE)BD
A1IA24J4 BAD CORRELATOR -REF (A4313I DELTIC_-REF BAD)
A1A24J4 BAD CORRELATOR -REF (A414 DELTIC_-REF BAD)

AlI A24J4 BAD MUXREF (A70J7 FREQ BAD)

146



NRL REPORT 9296

A1A24J4 BAD MUX_-REF (A70J7 VOLTS LO)
A1A24J4 BAD MUXREF (A70J7 VOLTS HI)
AIA24J4 BAD POWER (A26 CABINETPWR VOLTS BAD)

A1A24J5 BAD A24_-AMP (A24J5 DELTICAREF BAD)
A1A24J5 BAD CORRELATORREF (A70J5 FREQ BAD)
A1A24J5 BAD CORRELATORREF (A70J7 FREQ BAD)
A1A24J5 BAD COF.RELATORREF (A70J5 VOLTS LO)
A1A24J5 BAD CORRELATORREF (A70J7 VOLTS LO)
A1A2415 BAD CORRELATORREF (A70J5 VOLTS HI)
A1A2415 BAD CORRELATORREF (A70J7 VOLTS HI)
AIA2415 BAD CORRELATORREF (A43J I DELTICREF BAD)
A1A24J5 BAD CORRELATOR_ REF (A43J3 DELTIC_-REF BAD)
A1A24J5 BAD CORRELATORREF (A24J4 DEL-ICREF BAD)
A1A24J5 BAD CORRELATORREF (A24J5 DELTICREF BAD)
A1A24J5 BAD MUX_-REF (A70J7 FREQ BAD)
A1A24J5 BAD MUX_-REF (A70J7 VOLTS LO)
A1IA24J5 BAD MUX_-REF (A70J7 VOLTS HI)
A1A24J5 BAD POWER (A26 CABINETPWR VOLTS BAD)

AIA2916 BAD AIO_-DELAY-LINE (A10-9 STI BAD)
A1A29J6 BAD POWER (A26..I.CABINETPWR VOLTS BAD)
A1A2916 IRAD TIMING (A13JI WAVEFORM BAD)
A1A29J6 BAD TIMING (A14 FUNCTIONS BAD)

A1A29J7 BAD A10ODELAY-LINE (A10-21 NOTCLi BAD)
A1A29J7 BAD POWER (A26 ICABINETPWR VOLTS BAD)
A1A29J7 BAD TIMING (Al3JI WAVEFORM BAD)
A1A2917 BAD TIMING (A14 FUNCTIONS BAD)

A1A29J8 BAD A10ODELAY_-LINE (A10-9 STI BAD)
AlA29J8 BAD A29_-DELAY_-LINE (A29-21 NOTSTl BAD)
A IA29J8 BAD A29_-DELAYLINE (A29-9 DST] BAD)
A1A29J8 BAD POWER (A26 ICABINETPWR VOLTS BAD)
A1A29J8 BAD TINMING (AI3JI WAVEFORM BAD)
A1A29J8 BAD TIMING (A14 FUNCTIONS BAD)

A1A2J6 BAD Al_-DELAYLINE (AI-9 ST-3 BAD)
AlA2J6 BAD POWER (A26 -CABINETPWR VOLTS BAD)
AIA2J6 BAD TIMING (A13JI WAVEFORM BAD)
A1A2J6 BAD TIMING (A14 FUNCTIONS BAD)

AIA3OJI BAD AIODELAYLINE (AIOJ9 LOGICLEVELS BAD)--------------
AIA30JI BAD A10ODELAYLINE (AIOJ2 LOGICLEVELS BAD)

AIA30Jl BAD A10ODELAY-LINE (A1-21 NOTCLI BAD)
AIA30JI BAD A10ODELAY-LINE (A10-9 STl BAD)
AIA30JI BAD A10ODELAY-LINE (A IOJ4 LOGIC_-LEVELS BAD)
AIA30JI BAD A10O-DELAY_-LINE (AIO-10ONOT-REI BAD)
AIA30JI BAD A10ODELAYLINE (AIOJ9 REI BAD)
AIA30JI BAD A22_-SIGN_-CONTROL (A22 GATESORPWRORMODULE BAD)
Al A30J 1 BAD A22_-SIGN_-CONTROL (A7J4 LOGIC_-LEVELS BAD)
AIA30JI BAD A22_-SIGN_-CONTROL (A7J4 SIGN_-LEFT_-BEAMS BAD)
AIA30JI BAD A24_-AMP (A2415 DELTICREF BAD)
AIA30JI BAD A26_-REFERENCE_-CONTROL (A26 FUNC TIONS BAD)
AIA30JI BAD A29_-DELAY_-LINE (A29-21 NOTISTl BAD)
AIA30JI BAD A29_-DELAY-LINE (A29-9 DSTI BAD)
AIA30JI BAD A7_-DELAY_-LINE (A7-9 STI BAD)
AIA30JI BAD A7_DELAYLINE (A7-21 NOTCLI BAD)

147



J. MOLNAR

AIA30JI BAD A7_DELAY_-LINE (A719 LOGIC_-LEVELS BAD)
AlA30JI BAD A7_DELAY_-LINE (A7J4 LOGIC_-LEVELS BAD)
AIA30JI BAD A7_DELAYLINE (A7-13 SIGN LEFT_-BEAMS BAD)
AIA3OJI BAD A9_DELAYLINE (A9-9 DSTl BAD)
AIA30JI BAD CORRELATOR REF (A70J5 FREQ BAD)
AIA30JI BAD CORRELATOR REF (A70J7 FREQ BAD)
AIA30JI BAD CORRELATOR REF (A70J5 VOLTS LO)
AlIA30J I BAD CORRELATOR REF (A70J7 VOLTS LO)
AIA30JI BAD CORRELATOR REF (A70J5 VOLTS HI)
AIA30JI BAD CORRELATOR REF (A70J7 VOLTS HI)
AIA30JI BAD CORRELATOR -REF (A43J1I DELTIC_-REF BAD)
AIA30JI BAD CORRELATOR -REF (A43J3 DELTIC_-REF BAD)
AIA30JI BAD CORRELATOR -REF (A24J4 DELTIC_-REF BAD)
AIA30JI BAD CORRELATOR -REF (A24J5 DELTICRFF '-Ab)
AIA30JI BAD MUX_-REF (A70J7 FREQ BAID)
AIA30JI BAD MUXREF (A70J7 VOLTS LO)
AIA30JI BAD MIJXREF (A70J7 VOLTS HI)
AIA30JI BAD POWER (A26_-CABINET_-PWR VOLTS BAD)
AIA30JI BAD TIMING (A21J9 END_-BEAM_-STORE BAD)
AIA30JI BAD TIMING (A13JI WAVEFORM BAD)
AIA30JI BAD TIMING (A14 FUNCTIONS BAD)
AIA30JI BAD TIMING (A 15 FUNCTIONS BAD)

AIA3OJ2 BAD AlODELAYLINE (AlOJ9 LOGICLEVELS BAD)--- -------------
AIA3OJ2 BAD A10ODELAY-LINE (AlOJ2 LOGICLEVELS BAD)
A 1A3OJ2 BAD A10ODELAY-LINE (AO-21 NOTCLLS AD)

AIA3OJ2 BAD A10 _DELAY_-LINE (A10-9 STI BAD)
A1A3012 BAD AIO_-DELAY_-LINE (AlOJ4 LOGICLEVELS BAD)
AIA3OJ2 BAD A10 _DELAY_-LINE (AIO-lO NOT_-REl BAD)
AI1A30J2 BAD AIO_-DELAY_-LINE (AIOJ9 REI BAD)
AIA3OJ2 BAD A 17_-AMPL_ -CONTROL (A17 AMPL_ -CORRELLEFTBEAMS BAD)
Ai1A3OJ2 BAD A24_-AMP (A24J5 DELTIC_-REF BAD)
Al1 A30J2 BAD A26_-REFERENCE-CONTROL (A26 FUNCTIONS BAD)
A1A3012 BAD A29_-DELAY-LINE (A29-21 NOTSTI BAD)
A1A30J2 BAD A29_-DELAY_-LINE (A29-9 DSTI BAD)
AIA3OJ2 BAD CORRELATOR REF (A70J5 FREQ BAD)
AIA30J2 BAD CORRELATOR REF (A70J7 FREQ BAD)
A1A30J2 BAD CORRELATOR REF (A70J5 VOLTS LO)
Al A30J2 BAD CORRELATOR REF (A70J7 VOLTS LO)
AIA3OJ2 BAD CORRELATOR REF (A70J5 VOLTS I)
AIA3OJ2 BAD CORRELATOR REF (A70J7 VOLTS HI)
AlA 3012 BAD CORRELATOR REF (A43J 1 DELTICREF BAD)
A1IA3012 BAD CORRELATOR REF (A43J3 DELTICREF BAD)
A1A3012 BAD CORRELATOR-REi, (A24J4 DELTICREF BAD)
A1A30J2 BAD CORRELATOR REF (A2415 DELTICREF BAD)
AIA3OJ2 BAD MUXREF (A70J7 FREQ BAD)
AIA3OJ2 BAD MUXREF (A70J7 VOLTS LO)
AIA3OJ2 BAD MUXREF (A70J7 VOLTS HI)
AIA3012 BAD POWER (A26_ICABINET_-PWR VOLTS BAD)
A1A3012 BAD TIMING (AlI3J1 WAVEFORM BAD)
AI1A30J2 BAD TIMING (A14 FUNCTIONS BAD)
AIA3OJ2 BAD TIMING (A15 FUNCTIONS BAD)
AIA3OJ2 BAD TIMING (A2 119 ENDBEAMSTORE BAD)

AIA3OJ3 BAD A10 _DELAY_-LINE (AI1J9 LOGIC_-LEVELS BAD)
AIA3013 BAD AIo_-DELAY_-LINE (AIOJ2 LOGIC_-LEVELS BAD)
A1A3013 BAD AIo_-DELAY_-LINE (A10-21 NOTCLI BAD)
AIA3OJ3 BAD AIoDELAYLINE (A10-9 STl BAD)

148



NRL REPORT 9296

AIA3OJ3 BAD A10ODELAY-LINE (A1014 LOGICLEVELS BAD)
AIA3OJ3 BAD A10ODELAY_-LINE (AlO-lO NOTREI BAD)
AIA3OJ3 BAD AlO_-DELAY_-LINE (AIOJ9 REI BAD)
A1A30J3 BAD A17_-AMPL_-CONTROL (A 17 AMPL_-CORRELLEFTBEAMS BAD)
AIA3OJ3 BAD A24_-AMP (A2415 DELTICREF BAD)
AlA3OJ3 BAD A26_-REFERENCE-CONTROL (A26 FUNCTIONS BAD)
A1A3OJ3 BAD A29_-DELAY_-LINE (A29-21 NOTISTi BAD)
A1A30i3 BAD A29_-DELAY_-LINE (A29-9 DSTI BAD)
A1A3OJ3 BAD CORRELATORREF (A7015 FREQ BAD)
AIA3OJ3 BAD CORRELATORREF (A70J7 FREQ BAD)
A1A30J3 BAD CORRFLATORREF (A70J5 VOLTS LO)
A1A3OJ3 BAD CORRELATORREF (A70J7 VOLTS LO)
AIA3013 BAD CORRELATORREF (A70J5 VOLTS HI)
A1A3013 BAD CORRELATORREF (A70J7 VOLTS HI)
A1A30J3 BAD CORRELATORREF (A43J I DELTIC_-REF BAD)
A1A3OJ3 BAD CORRELATORREF (A43J3 DELTICREF BAD)
AIA3OJ3 BAD CORRELATORREF (A24J4 DELTICREF BAD)
AIA3OJ3 BAD CORRELATORREF (A24J5 DELTIC_-REF BAD)
AIA3OJ3 BAD MUX_-REF (A7017 FREQ BAD)
A1A3013 BAD MUX_-REF (A70J7 VOLTS LO)
A1A3013 BAD MUX_-REF (A70J7 VOLTS HI)
AIA3013 BAD POWER (A26_ICABINETPWR VOLTS BAD)
AlA3OJ3 BAD TIMING (Al3Jl WAVEFORM BAD)
AlA3OJ3 BAD TIMING (A14 FUNCTIONS BAD)
AlA3OJ3 BAD TIMING (Al5 FUNCTIONS BAD)
AIA3OJ3 BAD TIMING (A21IJ9 END_-BEAM_-STORE BAD)

AI1A3OJ4_NEG LO AlODELAYLINE (AIOJ9 LOGIC_-LEVELS BAD)
A1A3014_NEG LO AlODELAYLINE (AIOJ2 LOGICLEVELS BAD)
"A1A3OJ4_NEG LO A10ODELAY-LINE (A10-21 NOTCLI BAD)
AI1A3OJ4_NEG LO AIODELAYLINE (A10-9 STI BAD)
AI1A3OJ4_NEG LO AIODELAYLINE (A10J4 LOGIC_-LEVELS BAD)
A 1A3014_-NEG LO AJO_-DELAYLINE (A10-l10 NOTRE I BAD)
A A30J4_NEG LO AIODELAYLINE (AIOJ9 REl BAD)
A '3014_NEG LO A17_-AMPL_-CONTROL (A]17 AMPL_-CORRELLEFTBEAMS BAD)
AI1A3OJ4_NEG LO A17_-AMPL_ -CONTROL (A17-OUT AMPL_ -LEFTBEAMS BAD)
AI1A3OJ4_-NEG LO Al_ -DELAY_-LINE (AI1-9 ST-3 BAD)
AI1A3OJ4_-NEG LO Al_ -DELAY_-LINE (A119 LOGIC_-LEVELS BAD)
AI1A3OJ4_-NEG LO Al_ -DELAY_-LINE (A IJ4 LOGIC_-LEVELS BAD)
AI1A3OJ4_NEG LO AlDELAYLINE (A1-13 BIT_0_LEFTBEAMS BAD)
AI1A3OJ4_NEG LO A22_SIGNCONTROL (A22 GATESORPWRORMODULE BAD)
A 1A30J4_NEG LO A22_-SIGN_-CONTROL (A714 LOGICLEVELS BAD)
A 1A30J4_NEG LO A22_-SIGN-CONTROL (A7J4 SIGN_-LEFFBEAMS BAD)
AlA3OJ4_NEG LO A23_ATOD (A23 AMPLITUDE BAD)
AI1A3QJ4_NEG LO A23_ATOD (A23-6 SIGN BAD)
A1IA3034_NEG LO A23_ATOD (A23-3 INVERTED_-SIGN BAD)
A IA3OJ4_-NE%-, LO A24_-AMP (A24 FUNCTIONS BAD)
A IA3OJ4_-NEC LO A24_-AMP (A2415 DELTIC_-REF BAD)
AlA30J4_NEG LO A26_REFERENCECONTROL (A26 FUNCTIONS BAD)
A1IA3014_NEG LO A29_DELAYLINE (A29-21 NOTSTI BAD)
A IA30J4_NEG LO A29_DELAYLINE (A29-9 DSTI BAD)
Al1 A 30J4_NEG LO A2_DELAYLINE (A2-22 NOT_-CL2 BAD)
AI1A3OJ4_NEG LO A30_DTOA (A30 FUNCTIONS BAD)
A 1A30J4_NEG LO A3_DELAYLINE (A3-9 DST-3 BAD)
AI1A3OJ4_NEG LO A4_DELAYLINE (A4-9 ST2 BAD)
A1IA3014_NEG LO A4_DELAYLINE (A4-21 NOTCL2 BAD)
A1A3014_NEG LO A4_DELAYLINE (A419 LOGIC_-LEVELS BAD)
AlI A3OJ4_NEG LO A4_DELAYLINE (A4i4 LOGICLEVELS BAD)

149



J. MOLNAR

AIA3OJ4_NEG LO0 A4_-DELAY_-LINE (A4-13 BIT -_ILEFT_-BEAMS BAD)
AIA3OJ4_-NEG LO A5_-DELAY-LINE (A5-9 DST2 BAD)
A 1A3OJ4 -NEG LO A7_-DELAY_-LINE (A7-9 STI BAD)
A1A30J4_-NEG LO A7_-DELAYLINE (A7-21 NOTCLI BAD)
AIA3OJ4_ NEG LO A7_-DELAY-LINE (A7J9 LOGICLEVELS BAD)
A1A3OJ4 -NEG LO A7_-DELAY-LINE (A7J4 LOGICLEVELS BAD)
A1A3OJ4_-NEG LO A7_-DELAY-LINE (A7-13 SIGNLEFTBEAMS BAD)
AIA3OJ4_-NEG LO A9_-DELAY-LINE (A9-9 DSTI BAD)
A1A3OJ4_-NEG LO CORRELATOR-REF (A24 FUNCTIONS BAD)
A1A3OJ4_-NEG LO CORRELATOR. REF (A70J5 FREQ BAD)
AIA3OJ4_-NEG LO CORRELATOR. REF (A70J7 FREQ BAD)
A1A3OJ4_-NEG LO CORRELATOR&REF (A70J5 VOLTS LO)
AI1A3OJ4_-NEG LO CORRELATOR -REF (A70J7 VOLTS LO)
AIA3OJ4_ NEG LO CORRELATOR -REF (A70J5 VOLTS HI)
AIA3OJ4_ NEG LO CORRELATORYREF (A70J7 VOLTS HI)
AIA3OJ4_-NEG LO CORRELATOR -REF (A43J1I DELTICREF BAD)
A1A3OJ4_-NEG LO CORRELATOR -REF (A43J3 DELTICREF BAD)
A1A30J4_-NEG LO CORRELATOR. REF (A24J4 DELTIC_-REF BAD)
A1A30J4_-NEG LO CORRELATOR. REF (A24J5 DELTIC_-REF BAD)
Al1A3OJ4_-NEG LO MOD_-REFER (A42-5 DTOAINHIBIT HI)
AlA3OJ4_-NEG LO MOD_-REFER (A42-5 DTOAINHIBIT LO)
AIA3OJ4_-NEG LO MOD_-REFER (A42-10 DTOA_-POWER LO)
AI1A3OJ4_-NEG LO MUX_-REF (A70J7 FREQ BAD)
Al1A3OJ4_-NEG LO MIJX_-REF (A70J7 VOLTS LO)
A 1A30J4_-NEG LO MUX_-REF (A70J7 VOLTS HI)
AlA3OJ4_-NEG LO PMFL (A 18 CONTROL_-FUNCTIONS BAD)
AlA3OJ4_-NEG LO POWER (A26_-CABINETIPWR VOLTS BAD)
A 1A30i4_-NEG LO TIMING (A2OJ2 GATEl1 BAD)
AIA3OJ4_-NEG LO TIMING (A21IJ9 END_-BEAMSTORE BAD)
AlA3OJ14_-NEG LO TIMING (AI3JI WAVEFORM BAD)
AI1A3OJ4_-NEG LO TIMING (A14 FUNCTIONS BAD)
AIA3OJ4_-NEG LO TIMING (A15 FUNCTIONS BAD)
A 1A3OJ4_-NEG HI AIO_-DELAY_-LINE (AIOJ9 LOGICLEVELS BAD)
AIA3OJ4_ NEG HI A10ODELAY_-LINE (AIOJ2 LOGIC_-LEVELS BAD)
AIA3OJ4_-NEG HI AIO_-DELAY-LINE (A10-21 NOT CLI BAD)
AI1A3OJ4_-NEG HI A10ODELAY_-LINE (A10-9 STI BAD)
AI1A3OJ4_-NEG HI AlO_-DELAY-LINE (AIOJ4 LOGICLEVELS BAD)
Al1A3OJ4_-NEG HI A10ODELAY-LINE (AIO-lO NOT REI BAD)
AI1A3OJ4_-NEG HI A10ODELAY_-LINE (AIOJ9 REI BAD)
AIA3OJ4_NEG HI A17_AMPLCONTROL (A17 AMIPLCORRELLEFTBEAMS BAD)
A 1A3OJ4_-NEG HI A17_AMvPLCONTROL (A1I7-OUT AMPLLEFTBEAMS BAD)
AI1A3OJ4_-NEG Hi Al_ -DELAY_-LINE (Al1-9 ST3 BAD)
A1A3OJ4_-NEG HI Al_ -DELAY_-LINE (AlJ9 LOGIC-LEVELS BAD)
AIA3OJ4_-NEG HI Al_ -DELAYLINE (AlJ4 LOGICLEVELS BAD)
AI1A3OJ4_-NEG HI Al_ -DELAY_-LINE (AI-13 BIT_0_LEFTBEAMS BAD)
AlIA3OJ4_-NEG HI A22_-SIGN_-CONTROL (A22 GATESORPWRORMODULE BAD)
Al1A3OJ4_-NEG HI A22_-SIGN-CONTROL (A7J4 LOGICLEVELS BAD)
AI1A3OJ4_-NEG HI A22_-SIGN_-CONTROL (A7J4 SIGNLEFTBEAMS BAD)
AI1A3OJ4_-NEG HI A23_-ATOD (A23 AMPLITUDE BAD)
AI1A3OJ4_-NEG HI A23_-ATOD (A23-6 SIGN BAD)
A IA3OJ4_-NEG HI A23_-ATOD (A23-3 INVERTED_-SIGN BAD)
Al1 A30J4_-NEG HI A24_AMP (A24 FUNCTIONS BAD)
AlA3OJ4_-NEG HI A24_-AMP (A2415 DELTIC_-REF BAD)
A IA3OJ4_-NEG HI A26_-REFERENCE_-CONTROL (A26 FUNCTIONS BAD)
AI1A3OJ4_-NEG HI A29_-DELAY-LINE (A29-21 NOT -STI BAD)
A IA3OJ4_-NEG HI A29_-DELAY_-LINE (A29-9 DSTl BAD)
A IA3OJ4_-NEG HI A2_-DELAY_-LINE (A2-22 NOTCL-2 BAD)
A IA3OJ4_NEG HI A30_DTOA (A30 FUNCTIONS BAD)

150



NRL REPORT 9296

A1A30J4_NEG HI A3_DELAYLINE (A3-9 DST-3 BAD)
AIA3OJ4_NEG HI A4_DELAYLINE (A4-9 ST 2 BAD)
A1A30J4_NEG HI A4_DELAYLINE (A4-21 NOTCL2 BAD)
AIA3OJ4_NEG HI A4_DELAYLINE (A4J9 LOGICLEVELS BAD)
AIA3OJ4_NEG HI A4_DELAYLINE (A4J4 LOGICLEVELS BAD)
A1IA30J4_NEG HI A4_DELAYLINE (A4-13 BIT_1_LEFTBEAMS BAD)
AIA3OJ4_NEG HI A5_DELAYLINE (A5-9 DST2 BAD)
AlA3OJ4_NEG HI A7_DELAYLINE (A7-9 STI BAD)
AlA3OJ4_NEG HI A7_D!LLAYLINE (A7-21 NOTCL I BAD)
AIA3OJ4_NEG HI A7_DELAYLINE (A7J9 LOGICLEVELS BAD)
AIA3OJ4_NEG HI A7_DELAYLINE (A7J4 LOGICLEVELS BAD)
AIA3OJ4_NEG HI A7_DELAYLINE (A7-13 SIGNLEFTBEAMS BAD)
A1A3OJ4_NEG HI A9_DELAYLINE (A9-9 DSTI BAD)
A1A30J4_NEG HI CORRELATOR_-REF (A24 FUNCTIONS BAD)
Al1A3OJ4_-NEG HI CORRELATORREF (A70J5 FREQ BAD)
AIA3OJ4_NEG HI CORRELATORREF (A70J7 FREQ BAD)
AIA3OJ4_NEG HI CORRELATORREF (A70J5 VOLTS LO)
AlI A30J4_NEG HI CORRELATORREF (A70J7 VOLTS LO)
AI1A3OJ4_NEG HI CORRELATORREF (A7015 VOLTS HI)
AlA3OJ4_NEG HI CORRELATORREF (A70J7 VOLTS HI)
AlA3OJ4_NEG HI CORRELATORREF (A43J I DELTICREF BAD)
AIA3OJ4_NEG HI CORRELATORREF (A43J3 DELTICREF BAD)
AlA3OJ4_NEG HI CORRELATORREF (A24J4 DELTICREF BAD)
AIA3OJ4_NEG HI CORRELATORREF (A24J5 DELTICREF BAD)
A1IA3014_NEG HI MODREFER (A42-5 DTOAINHIBIT HI)
A1A3014_NEG HI MODREFER (A42-5 DTOAINHIBIT LO)
Al1 A30J4_NEG HI MODREFER (A42- 10 DTOAPOWER H1I)
AIA3OJ4_NEG HI MUXREF (A70J7 FREQ BAD)
AlA3014_NEG HlI MliXREF (A70J7 VOLTS LO)
AIA3OJ4_NEG HI MUXREF (A7OJ7 VOLTS HI)
A1A3014_NEG I PMFL (A18 CONTROLFUNCTIONS BAD)
AIA3OJ4_NEG HI POWER (A26 CABINETPWR VOLTS BAD)
AIA3OJ4_NEG HI TIMING (A20J2 GATEI BAD)
AlA3OJ4_NEG HI TIMING (A21I9 ENDBEAMSTORE BAD)
AIA3OJ4_NEG HI TIMING (A13JI WAVEFORM BAD)
A 1A30J4_NEG HI TIMING (A14 FUNCTIONS BAD)
A 1A3OJ4_NEG HI TIMING (A15 FUNCTIONS BAD)

A 1 A 3 0 1 4 _ P O S L O A I O _ D E L A Y _ L I N E ( A I O J9 L O G I C _ L E V E L S B A D )- -- ----------
AIA3OJ4_POS LO AIODELAYLINE (AIOJ2 LOGICLEVELS BAD)
AI1A3OJ4_POS LO AlODELAYLINE (AIO21 NOTCLLS AD)

A1A3014_POS LO AIODELAYLINE (A10-9 STI BAD)
A 1A30J4_POS LO AIODELAYLINE (AIOJ4 LOGIC_-LEVELS BAD)
A 1A3OJ4_POS LO AIODELAYLINE (AIO-lO NOT_-REl BAD)
A IA3OJ4_POS LO AIODELAYLINE (AIOJ9 REI BAD)
A 1A30J4_PK'S LO A 17_AMPLCONTROL (A 17 AMPLCORRELLEFTBEAMS BAD)
A IA3OJ4_POS LO A1I7_AMPLCONTROL (Al17-OUT AMPLLEFTBEAMS BAD)
A1IA30J4_POS LO AlDELAYLINE (Al1-9 ST3 BAD)
A 1A30J4_POS LO AlDELAYLINE (AlJ9 LOGICLEVELS BAD)
AI1A3OJ4_POS LO AlDELAYLINE (AIJ4 LOGICLEVELS BAD)
AI1A3OJ4_POS LO, AlDELAYLINE (A 1-13 BIT_0_LEFTBEAMS BAD)
AI1A3OJ4_POS LO A22_SIGNCONTROL (A22 GATESORPWRORMODULE BAD)
AI1A3OJ4_POS LO A22_SIGNCONTROL (A714 LOGICLEVELS BAD)
A1IA3014_POS LO A22_SIGNCONTROL (A7J4 SIGNLEFTBEAMS BAD)
A IA3OJ4_P0S LO A23_ATOD (A23 AMPLITUDE BAD)
A IA3OJ4_POS LO A23_ATOD (A23-6 SIGN BAD)
A IA30J4_POS LO A23_ATOD (A23-3 INVERTEDSIGN BAD)
A1IA30J4_POS LO A24_AMP (A24 FUNCTIONS BAD)

151



J. MOLNAR

A1A3OJ4_-POS LO A24_-AMP (A24J5 DELTICREF BAD)
A 1A3OJ4_-POS LO A26_-REFERENCE_-CONTROL (A26 FUNCTIONS BAD)
AI1A3OJ4_-POS LO A29_-DELAY_-LINE (A29-21 NOT -ST1 BAD)
AI1A3OJ4_-POS LO A29_-DELAY-LINE (A29-9 DSTl BAD)
AIA30J4_-POS LO A2_-DELAY_-LINE (A2-22 NOT_-CL2 BAD)
A1A30J4_-P05 LO A30_-DTOA (A30 FUNCTIONS BAD)
AI1A3OJ4_-POS LO A3_-DELAY_-LINE (A3-9 DST3 BAD)
AIA3OJ4_-POS LO A4_-DELAY_-LINE (A4-9 ST2 BAD)
AIA3OJ4_-POS LO A4_-DELAY_-LINE (A4-21 NOT_-CL2 BAD)
AIA3OJ4_-POS LO A4_-DELAY-LINE (A4J9 LOGICLEVELS BAD)
A1A30J4_-POS LO A4_-DELAY-LINE (A4J4 LOGICLEVELS BAD)
A1A3014_-POS LO A4_-DELAY_-LINE (A4-13 BITILEFTBEAMS BAD)
AI1A3OJ4_-POS LO A5_DELAY_-LINE (A5-9 DST12 BAD)
AI1A3OJ4_-POS LO A7_-DELAY-LINE (A7-9 STI BAD)
A1A3OJ4_-POS LO A7_-DELAY_-LINE (A7-21 NOTCLI BAD)
A1A3OJ4_-POS LO A7_DELAYLINE (A7J9 LOGICLEVELS BAD)
A1A3OJ4_-POS LO A7_-DELAY-LINE (A7J4 LOGICLEVELS BAD)
AlA3OJ4_-POS LO A7_-DELAY_-LINE (A7-13 SIGN_-LEFTBEAMS BAD)
AlA3OJ4_-POS LO A9_-DELAY-LINE (A9-9 DSTl BAD)
AlA3OJ4_-POS LO CORRELATOR REF (A24 FUNCTIONS BAD)
AlA3OJ4_-POS LO CORRELATOR -REF (AM0J FREQ BAD)
A1A3OJ4_-POS LO CORRELATOR. REF (A70J7 FREQ BAD)
AlA3OJ4_-POS LO CORRELATOR -REF (A70J5 VOLTS LO)
AIA3OJ4_-POS LO CORRELATOR -REF (A70J7 VOLTS LO)
A1A30J4_-P05 LO CORRELATOR -REF (A70J5 VOLTS HI1)
AIA3OJ4_-POS LO CORRELATOR -REF (A70J7 VOLTS HI)
AIA3OJ4_-POS LO CORRELATOR -REF (A43J I DELTICREF BAD)
AIA3OJ4_-POS LO CORRELATOR -REF (A43J3 DELTICREF BAD)
AlA3OJ4_-POS LO CORRELATOR -REF (A24J4 DELTICREF BAD)
AIA3OJ4_-P05 LO CORRELATOR REF (A24J5 DELTICREF BAD)
AIA3OJ4_-POS LO MOD REFER (A42-5 DTOA_-INHIBIT HI)
AIA3OJ4_-POS LO MOD_-REFER (A42-5 DTOA_-INHIBIT LO)
A 1A3OJ4_-POS LO MOD_-REFER (A42-10 DTOA_-POWER LO)
AI1A3OJ4_-P05 LO NMXREF (A70J7 FREQ BAD)
AIA3OJ4_-POS LO MUXREF (A70J7 VOLTS LO)
AI1A3OJ4_-POS LO MUXREF (A70J7 VOLTS HI)
A1A3OJJ4_-POS LO PMFL (A 18 CONTROL_-FUNCTIONS BAD)
AlA3OJ4_-POS LO POWER (A26_ICABINETIPWR VOLTS BAD)
AlA36J4_-POS LO TIMING (A20J2 GATE I BAD)
AI1A3OJ4_-POS LO TIMING (A21J9 END_-BEAMSTORE BAD)
AIA3OJ4_-POS LO TIMING (A13JI WAVEFORM BAD)
AIA3OJ4_-POS LO TIMING (A14 FUNCTIONS BAD)
AI1A3OJ4_-POS LO TIMING (A15 FUNCTIONS BAD)
AI1A3OJ4_-POS HI AIO_-DELAY-LINE (A1OJ9 LOGICLEVELS BAD)
A 1A3OJ4_-POS HI A10ODELAY-LINE (A1OJ2 LOGICLEVELS BAD)
AI1A3OJ4_-POS HI A10ODELAY-LINE (AIO-21 NOT-CLI BAD)
A 1A30J4_-POS I A10ODELAY-LINE (A10-9 STI BAD)
AIA3OJ4_-POS HII A10ODELAY_-LINE (AIOJ4 LOGICLEVELS BAD)
A 1A30J4_-POS HI AIO_-DELAY-LINE (AIO-lO NOT REl BAD)
AIA34 MS HI AIO_-DELAY_-LINE (AIOJ9 REI BAD)
A 1A3014_-"fS HI A 17_-AMPL_ -CONTROL (A17 AMPLCORRELLEFTBEAMS BAD)
AI1A3OJ4_POS HI A17_-AMPLCONTROL (A I7-OUT AMPLLEFTBEAMS BAD)
A1A30J4_PO5 HI Al_ -DELAY_-LINE (A 1-9 ST3 BAD)
A 1A30J4_P05 HI Al_ -DELAY_-LINE (AlJ9 LOGIC_-LEVELS BAD)
AI1A3OJ4_POS HI Al_ -DELAY_-LINE (A114 LOGIC_-LEVELS BAD)
AIA3OJ4_POS HI Al_-DELAY_-LINE (A]-13 BIT_0_LEFTBEAMS BAD)
Al1A3OJ4_POS HI A22_-SIGN_-CONTROL (A22 GATES_-OR_-PWRORMODULE BAD)
A1A3014_P05 HI A22_SIGNCONTROL (A7J4 LOGICLEVELS BAD)

152



NRL REWIRT 9296

AIA3OJ4_P05 HI A22_SIGNCONTROL (A7J4 SIGNLEFTBEAMS BAD)
AIA3OJ4_P05 HI A23_ATOD (A23 AMPLITUDE BAD)
AIA3OJ4_POS HI A23_ATOD (A23-6 SIGN BAD)
AIA3OJ4_POS HI A23_ATOD (A23-3 INVERTEDSIGN BAD)
AlA3OJ4_POS HI A24_AMP (A24 FUNCTIONS BAD)
AIA3OJ4_POS HI A24_AMP (A24J5 DELTICREF BAD)
AIA3OJ4_P05 HI A26_REFERENCECONTROL (A26 FUNCTIONS BAD)
A IA3OJ4_POS I A29_DELAYLINE (A29-21 NOT_-STI BAD)
A1IA3OJ4_ POS HI A29_-DELAY_-LINE (A29-9 DST] BAD)
AIA3OJ4_POS HI A2_DELAYLINE (A2-22 NOTCL-2 BAD)
AIA3OJ4_POS HI A30_DTOA (A30 FUNCTIONS BAD)
AIA3OJ4_POS HI A3_DELAYLINE (A3-9 DST3 BAD)
A1A3014_-POS HI A4_-DELAY_-LINE (A4-9 ST2 BAD)
A1A3014_POS HI A4_DELAYLINE (A4-21 NOTCL2 BAD)
A1A3OJ4_POS i A4_DELAYLINE (A4J9 LOGICLEVELS BAD)
AIA3OJ4_POS HI A4_DELAYLINE (A4J4 LOGICLEVELS BAD)
AIA3OJ4_POS HI A4_DELAYLINE (A4-13 BIT_1_LEFTBEAMS BAD)
AIA3OJ4_POS HI A5_DELAYLINE (A5-9 DST2 BAD)
AIA3OJ4_POS HI A7_DELAYLINE (A7-9 STI BAD)
AIA3OJ4_POS HI A7_DELAYLINE (A7-21 NOTCLI BAD)
A IA3OJ4_POS Hi A7_DELAYLINE (A7J9 LOGICLEVELS BAD)
AIA3OJ4_POS HI A7_DELAYLINE (A7J4 LOGICLEVELS BAD)
AIA30J4_POS HI A7_DELAYLINE (A7-13 SIGNLEFTBEAMS BAD)
AIA3OJ4_P05 HI A9_DELAYLINE (A9-9 DST1 BAD)
A1A3OJ4_POS HI CORRELATORREF (A24 FUNCTIONS BAD)
A1A3QJ4_POS HI CORRELATORREF (A70J5 FREQ BAD)
A 1A3OJ4_-POS HI CORRELATORREF (A70J7 FREQ BAD)
AIA3OJ4_-POS HI CORRELATORREF (A70J5 VOLTS LO)
AlA3OJ4_POS HI CORRELATORREF (A70J7 VOLTS LO)
A 1A3OJ4_-POS HI CORRELATORREF (A7QJ5 VOLTS HI)
AIA3OJ4_-POS HI CORRELATORREF (A70J7 VOLTS HI)
A1A3OJ4_-POS I CORRELATOR_-REF (A43J1I DELTIC_-REF BAD)
A 1A3OJ4_-POS HI CORRELATOR_-REF (A43J3 DELTIC_-REF BAD)
AIA3034_-POS HI CORRELATORREF (A24J4 DELTICREF BAD)
AIA3OJ4_POS HI CORRELATORREF (A24J5 DELTIC_-REF BAD)
AIA3OJ4_POS HI MODREFER (A42-5 DTOAINHIBIT HI)
Al1 A30J4_POS HI MODREFER (A42-5 DTOAINIUlBIT LO)
A IA3OJ4_POS HI MODREFER (A42-10 DTOAPOWER HI)
A1A30J4_POS HI MUXREF (A70J7 FREQ BAD)
A1A30J4_P05 HI MIJXREF (A70J7 VOLTS LO)
AIA30J4_POS HI MUXREF (A70J7 VOLTS HI)
AIA3OJ4_POS HI PMFL (A 18 CONTROL_-FUNCTIONS BAD)
A1A3OJ4_POS HI POWER (A26_CABINETPWR VOLTS BAD)
AIA3OJ4_POS HI TIMING (A20J2 GATEI BAD)
AIA30J4_POS HI TIMING (A21J9 ENDBEAMSTORE BAD)
A1A30J4_POS HI TIMING (AI3Jl WAVEFORM BAD)
A IA3OJ4_POS HI TIMING (A14 FUNCTIONS BAD)
A IA3OJ4_POS HI TIM1ING (A15 FUNCTIONS BAD)

A1A30J4_WAV BAD AwuDELAYLINE (A1OJ9 LOGICLEVELS BAD)
AIA3OJ4_WAV BAD AIODELAYLINE (A10J2 LOGICLEVELS BAD)
AIA3O.J4_WAV BAD AIODELAYLINE (A10-21 NOTCLI BAD)
AIA3OJ4_WAV BAD AIODELAYLINE (A10-9 STl BAD)
A1A3014_WAV BAD AIODELAYLINE (A0IO4 LOGICLEVELS BAD)
A1A30J4_WAV BAD AIODELAYLINE. (AIOJ9 REI BAD)
A1A30J4_WAV BAD A1ODELAYLINE (AIO-lO NOTREI BAD)
AIA3OJ4_WAV BAD A 17_AMPLCONTROL (A 17 AMPLCORRELLEFTBEAM S BAD)
A1A30i4_WAV BAD A1I7_AMPLCONTROL (A1I7-OUT AMPLLEFTBEAMS BAD)

153



J. MOLNAR

AlA3OJ4_-WAV BAD AlDELAYLINE (Al-9 ST-3 BAD)
AIA3OJ4_-WAV BAD Al_-DELAYLINE (A~I9 LOGICLEVELS BAD)
AIA3OJ4_-WAV BAD AlDELAYLINE (AlJ4 LOGICLEVELS BAD)
A1A30,J4_-WAV BAD Al_-DELAY_-LINE (Al-13 BIT_0_LEFTBEAMS BAD)
A1A30i4_-WAV BAD A22_SIGNCONTROL (A22 GATESORPWRORMODULE BAD)
AlA3OJ4_-WAV BAD A22_-SIGN-CONTROL (A7J4 LOGICLEVELS BAD)
AlA30J4_-WAV BAD A22_-SIGN_-CONTROL (A7J4 SIGNLEFFTBEAMS BAD)
AlA30J4_-WAV BAD A23_-ATOD (A23 AMPLITUJDE BAD)
AlA30J4_-WAV BAD A23_-ATOD (A23-6 SIGN BAD)
AlA3OJ4_-WAV BAD A23_-ATOD (A23-3 INVERTED_-SIGN BAD)
AIA3OJ4_-WAV BAD A24_-AMP (A24J5 DELTIC_-REF BAD)
AIA30J4_-WAV BAD A24_-AMP (A24 FUNCTIONS BAD)
A1A30J4_-WAV BAD A26_-REFERENCE-CONTROL (A26 FUNCTIONS BAD)
Al1A30J4_-WAV BAD A29_DELAYLINE (A29-21 NOT STI BAD)
AIA30J4_-WAV BAD A29_DELAYLINE (A29-9 DST1 BAD)
AIA3OJ4_-WAV BAD A2_-DELAY_-LINE (A2-22 NOT_(12 BAD)
AlA3OJ4_-WAV BAD A30_-DTOA (A30 FUNCTIONS BAD)
A1A3OJ4_-WAV BAD A3_-DELAY_-LINE (A3-9 DST-3 BAD)
AlA3OJ4_-WAV BAD A4_-DELAY_-LINE (A4-9 ST2 BAD)
A1IA3OJ4_-WAV BAD A4_-DELAY_-LINE (A4-21 NOTCL2 BAD)
AlA3OJ4_-WAV BAD A4_-DELAY_-LINE (A4J9 LC'31ICLEVELS BAD)
AlA3OJ4_-WAV BAD A4_-DELAY_-LINE (A4J4 LOGIC_-LEVELS BAD)
A 1A3OJ4_-WAV BAD A4_-DELAY-LINE (A4-13 BIT_1_LEFTBEAMS BAD)
A1A3034_-WAV BAD A5_-DELAY_-LINE (A5-9 DST2 BAD)
A1A3OJ4_-WAV BAD A7_-DELAY_-LINE (A7-9 STI BAD)
AIA3OJ4_-WAV BAD A7_DELAYLINE (A7-21 NOTCLI BAD)
AIA3OJ4_-WAV BAD A7_-DELAY_-LINE (A7i9 LOGICLEVELS BAD)
AIA3OJ4_-WAV BAD A7_-DELAY_-LINE (A7J4 LOGIC_-LEVELS BAD)
AIA30J4_-WAV BAD A7_-DELAY_-LINE (A7-13 SIGN_-LEFTBEAMS BAD)
AIA3OJ4_-WAV BAD A9_-DELAY_-LINE (A9-9 DSTI BAD)
AIA3OJ4_-WAV BAD CORRELATOR -REF (A70J5 FREQ BAD)
AIA3OJ4_-WAV BAD CORRELATOR -REF (A70J7 FREQ BAD)
A1A30J4_-WAV BAD CORRELATOR -REF (A70.15 VOLTS LO)
AIA30J4_-WAV BAD CORRELATOR -REF (A70J7 VOLTS LO)
AIA3OJ4_-WAV BAD CORRELATOR -REF (A70J5 VOLTS HI)
A1A3OJ4_-WAV BAD CORRELATOR -REF (A70J7 VOLTS HI)
A1IA3OJ4_-WAV BAD CORRELATOR -REF (A43J1I DELTICREF BAD)
A1A3034_-WAV BAD CORRELATOR -REF (A43i3 DELTICREF BAD)
AIA3OJ4_-WAV BAD CORRELATOR -REF (A24J4 DELTICREF BAD)
A1A3OJ4_-WAV BAD CORRELATOR -REF (A24J5 DELTICREF BAD)
AIA3OJ4_-WAV BAD CORRELATOR -REF (A24 FUNCTIONS BAD)
A IA3O.J4_-WAV BAD MOD_-REFER (A42-5 DTOAINHIBIT 1-1)
AI1A30J4_-WAV BAD MOD_-REFER (A42-5 DTOAINHIBIT LO)
A1A3034_-WAV BAD MUX_-REF (A70J7 FREQ BAD)
A1IA3034_-WAV BAD MUX_-REF (A70J7 VOLTS LO)
A1A30J4_-WAV BAD MIJX_-REF (A70J7 VOLTS HI)
A1A30J4_-WAV BAD PMlFL (A 18 CONTROL_-FUNCTIONS BAD)
AIA3QJ4_-WAY BAD POWER (A26_ICABINETIPWR VOLTS BAD)
Al1A3OJ4_-WAV BAD TIMING (A20J2 GAT-E I BAD)
A1A3034_-WAV BAD TIMING (A2119 END_-BEAM_-STORE BAD)
A1A30J4_-WAV BAD TIMING (A13JI WAVEFORM BAD)
A 1A3014_-WAV BAD TIMING (A 14 FUNCTIONS BAD)
AIA30.J4_WAY BAD TIMING (A15 FUNCTIONS BAD)

154


