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Introduction

The demands for higher performance and a more flexible design system require the airfoil and turbomachinery blade designer
to be more innovative and to design beyond the limits of experimental data. Iterative procedures in which an optimum is
obtained by a comparison between the results of different designs are being replaced by new computational methods in which
the objective is defined by a direct calculation. Such methods use a minimum of empiricism. are better suited to profit from
modem computational tools, and are more easily integrated into modem manufacturing systems.

Blade or airfoil designs are normally made in two steps, and the lectures are accordingly grouped into two parts. - -

In the first part, optimisation of the target pressure and velocity distributions ar,: discussed taking into account the required
performance and the loss mechanisms in the boundary layer. Both direct optimisation resulting from an inverse boundary layer
calculation, and an iterative optimisation by minimisation of the losses are presented. It is clear from both procedures that
inclusion of off-design operation is one of the greatest difficulties involved in blade or airfoil optimisation.

The second part of the course gives an overview of the numerous inverse blade design methods that have been developed both
for turbomachinery and aeronautical applications. This ranges from simple parameter definitions of two-dimensional cross-
sections to the full three-dimensional definition of wings and blade channels. The more academic interest of a detailed
numerical definition of arbitrary shapes conflicts here with the mechanical constraints imposed by the industrial manufacturer.

The methodology to account for a large number of constraints, as required in inverse designs and optimisations, is also
discussed and is illustrated by results from numerous applications discussed in the last group of lectures.

One of the objectives of this short course is to exchange views and to promote a discussion between turbomachinery and
aeronautical designers. Most designers are active only in one field of application and are not aware of publications by the other
group. However, boundary layer calculation methods, potential flow and Euler solvers are almost directly applicable to both
single blades and multiple blade rows. It is therefore surprising that this kind of discussion is not more frequent.

R.Van den Braembussche
Lecture Series Director



Introduction

Face ii la volonte des constructeurs d'amcliorer 1c., performances des profits a~rodynamiqlues et des aubes des turbomachines.
et d'adopter une methodologie dc conception plus %ouple, le concepteur devient plus innovatcur. en placant le concept de son
prototype au-claii des limites des donn~es exp~rimentales.

Les procedures it&ativcs. o6i le resultat optimal est obtertu par comparaisort entre les r~sultats de diff~rentes projets. c~de la
place de nouvellcs, methodes infornsatique%. o6i Iobjctif est defini par calcul direct. D~e teltes m~thodes, qui ne font appell qu'a
on minimum dcempirisme. sont plus susceptiblcs de ben~ficicr des outils informatiques modernes. et de svint~grcnt aux systi~mcs
de fabrication modernes.

Les profits at~odynamiques et les aubes des turbomachines sont g~n~ralement ddlinis en deux 6tapes et le cours est. par
consequent. divise en deux parties.

La preni~re pantic examine loptimisation de la rt~partition des pressions ct des vitesses. en tenant compte des performances
souhait~es et du processus des pertes au nivcao de la couche timite. Loptimisation directe qoi r~sutte du calcul inverse de la
couche timite est d&crite, ainsi que Coptimisation itirative obtenue par minimalisation des pertes. Les deux approehes
demontrent clairement Clue la prisc en compte do fonctionnement hors-autde reste t'une des plus grandes. difficultes
surmonter pour r~ussir t'optimisation des profits a~rodynamiques et des aubes des turbomachines.

La deoxieme partic do cours est consacr~e a un expose des differentes m~thodes inverses qui ont 6e developpees pour Ia
conception des aubes des turbomachines et pour d'autres applications ad&ronautiques. Ccci va des simples. &uinition%
parami~riques de coupes bidimensionnelle% la di~Iintion complite d'auhes ct de cannaux d'aubL. Lintcrt plut6t vptkufatif
present par des d&finitions nom~riques diftaillkes. se heurte. ici, aux contraintes m~caniques impos 6es par t'industriel.

Une methodologie qoi tient compte d'un grand nombre de contraintes. comme c'est le cas pour toptimisation el la conception a
['aide des mcthodes inverses. est examin&c et misc en lomi~re par tes; resultats de nombreoses applications qui sont traitees lors
de la derniire session de Coors.

L'un des object ifs de cc coors est de permettre on &hange de vues et de dlveloppcr le debat entre concepteors de
turbomachines et concepteurs d'adronefs. La plupart des concepteors travaitle dans on scot domaine dapptication et ne sont
pas inform~s des communications pubti~es, par tcurs confrirecs actifs dlans d'autres domaines. Cependant. le% mi~thodes de
calcul de la cooche timite. les r~sotvcurs decoolements a potentiel. ct cvs resolvcurs d*Euler s'appliqoent plus ou ntoin\
directement aux grilles d'aubes simples et multiples. 11 est done surprenant que cc type de d~bat Wait pas lieu plus souvent.

RA'an den Braembovsche
Directeur dc Cycle de Conferences
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AERODYNAMIC SHAPE DESIGN

George S. Dulikravich
Department of Aerospace Engineering

Pennsylvania State University
University Park, PA 16802, USA

1. SUMMARY geometry of the flying object is given. In thecase of a design (inverse problem) we are asked

Design of aerodynamic shapes can be to predict the detailed geometry of the flying
accomplished by using the methodologies from object so that it is compatible with specified
computational fluid dynamics and optimization. features of the flow field.
Two basic categories of the inverse (design)
formulations are surface flow design and flow Depending on the prescribed desired features of
field design. A number of methods in both the flow field, the design (inverse) can be
categories have been discussed and critically divided into two general categories: surface flow
evaluated. Open questions remain to be design and the flow field design [5,61. Surface
specification of a more appropriate surface flow design is achieved by specifying a certain
pressure, acceleration of iterative algorithms, flow parameter (pressure, Mach number, etc.) on
increased versatility of the design methods, the surface of the flying object and finding the
direct use of the existing and future flow field shape that will generate these surface conditions
analysis software, without regard for the rest of the flow field. The

flow field design, on the other hand, enforces
2. PREFACE certain global flow field features (shock-free

flow, minimal entropy generation, etc.) at every

The field of aerodynamic shape design involves point of the flow field by finding the shape that
the ability to determine the geometry of an will satisfy these global constraints at every
aerodynamic object that will satisfy the point of the flow field. A large number of
governing flow field equations -,id specified methods for performing the surface flow design
boundary conditions. For example, it is possible have been developed, while only a few methods
to determine the coordinates of an airfoil if a for the flow field design are known to exist.
surface pressure distribution is specified. The
resulting designs can be subject to certain Mathematical models used in the design are
specified constraints. Examples include finding based on partial differential equations, integral
aerodynamic configurations compatible with equations, and algebraic equations. For example,
entirely shock-free transonic flow fields, Zhukovski conformal mapping is actually a
obtaining shapes of objects that produce flow technique for designing a class of airfoil shapes
fields with minimum entropy generation. having specified surface distribution of pressure
minimum noise generation, etc. that corresponds to a flow around a rotating
One of the first meetings on the general topic of circle. Although we are dealing here with a
shape design was the International Conferences simple algebraic expression, it is based on an
on Inverse Design Concepts and Optimization in integral equation formulation (a point-dipole and
Engineering Sciences (ICIDES). The first ICIDES a point vortex) which resulted from the Laplace
was organized and held Octooer 17-18, 1984, at operator (a partial differential equation)
the University of Texas at Austin, while ICIDES- governing the flow field. Thus, any global
II was held October 26-28, 1988, at the conformal mapping can be viewed as a very
Pennsylvania State University. They were special method for disigning certain simple
followed by an AGARD Specialists' Meeting on shapes in a steady, planar, irrotational, inviscid
Computational Methods for Aerodynamic Design flow field. Moreover, global conformal mapping
(Inverse) and Optimization held in Loen, Norway, is the only example that comes to mind as a
on May 22-23, 1989. method which combines the surface flow design

concept and the flow field design concept by
In the general field of aerodynamics as well as in guaranteeing that the resulting shapes will have
any other field theory, we are basically faced the specified surface distribution of the flow
with two problems: analysis and design. In the parameters while the flow field will be
case of an analysis (direct problem) we are irrotational.
asked to predict the details of a flow field if the
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rather than range-designs. In other words, an
In a more general situation, arbitrary aerodynamic shape (Fig. 2) designed by using a
distribution of the surface flow parameters or surface flow design method will have the desired
the flow field distribution of the flow parameters
could result in shapes that do not have to be [7] characteristics only at the design conditions.
physically meaningful and manufacturable. For If the operating conditions (angle of attack, free
example, the lower surface and upptr surface of stream Mach number, etc). are changed, the
an airfoil could either cross over ("fish tail performance of the designed configuration can
shapes") or never meet (open trailing edge deteriorate rapidly. Moreover, when designing
shapes) although these solutions are transonic shock-free shapes with any of the
mathematically acceptable (Fig. 1). Obviously, surface flow design methods, the resulting
the problem is in choosing an appropriate configuration could have a mildly concave
surface distribution of the flow parameters. On surface (Fig. 3) that is covered by the supersonic
the other hand, when performing the flow field
design by minimizing the entropy generation at -1.-

every point in the field, the resulting shape will
most likely have zero thickness and no -0.8-
stagnation points, that is, the optimal shape will
most likely be a flat plate. Certain constraints on -0.3

0.2-

0.7 O. RIGIWL T-GCT

-NOIFRECT SOLUTION

1.2

Fig. 3 An example of a "shock-free" surface
pressure distribution with
a concave suction surface [8]

Fig. I Different configurations resulting from / /
the unconstrained surface flow design

the acceptable final geometry are needed
especially since the final aerodynamic design is
often incompatible with the minimum
acceptability criteria posed by heat transfer,
structural dynamics and vibrations, acoustics.
and manufacturing, just to name a few [5,6].

The main objection raised by the designers when
discussing the inverse (design) methodologies is
that these methods create strictly point-designs

Fig. 4 Iso-Mach distribution for the shock-free
c p M.72 surface designed airfoil;

_ZX .73notice the hanging shock [81

.74 flow. As a result, a "hanging shock" or a "loose-

.75 foot shock" will form (Fig. 4) even at the design
conditions [8]. The aerodynamic efficiency of

.6 such a configuration will not be satisfactory even

.77 at the design operating point. At off-design
values for the Mach number or the angle of

.78 attack, the hanging shock will violently re-attach
itself to the airfoil surface thus causing rapid

input . increase in drag due to the boundary layer
separation. Consequently. it is more appropriate

Fig. 2 Shock-free airfoil shapes having same to design an almost shock-free shape even at the
surface pressure distribution; [71 vertical design conditions. Such shapes would have a
axis magnified five times weak family [9] of shocks that would not
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increase in strength appreciably at the off- '

design.

3. SURFACE DATA SPECIFICATION 0.5

This brings us to the question of what is the
appropriate surface pressure distribution. The
most desired feature of an aerodynamic design is 0.

to prevent flow separation over a wider range of
angles of attack, Mach numbers, and Reynolds
numbers. The answer to the question as to what t.5.

is the optimal surface pressure distribution is
not known. It might be an altogether wrong
question to ask in light of the fact that the -
surface pressure distribution alone is not . . . ..-1.0 0500 . .
indicative of potentially hazardous flow field

features as is the case of an unexpected hanging Fig. 5 Convergence history from a slit to a
shock. Nevertheless, a number of researchers circle using panel code
[10-141 have entertained this problem by using
a classical approach based on the information undergoing design can become irregular very
from the boundary layer. A somewhat quickly if some sort of control over the motion of
speculative approach using a concept of minimal surface points is not enforced. The concept of
kinetic energy rate [151 has been reported treating such a surface as an elastic membrane
recently. A fast method capable of detecting which moves according to a simple linear time
laminar and turbulent flow separation from the dependent damped model 1191 is quite effective
prescribed surface pressure distribution would in enforcing a relatively smooth convergence of
certainly be very useful. These relatively simple the surface geometry. A more thorough study
methods can help eliminate those surface on the stability of the surface motion model is
pressure distibutions that would separate the necessary, since the choice of coefficients in the
flow. Besides, these methods leave the designer model [19,201 can seriously affect the
with a psychologically important feeling that he convergence rate and the stabilit. of the entir;
is still in command, although knowing that all of iterative process.
his experience is still inadequate when compared
to a true mathematical optimization. 5. STREAM FUNCTION BASED METHODS

Among a large number of publications using A very interesting concept, termed Stream-
various surface flow designs, applications have Function-as-a-Coordinate (SFC), is based on a
been reported to single airfoils 116-241, multi- transformed flow field governing equations
component airfoils [251, cascades of airfoils [26- where the vertical coordinate of each stream line
321, ducts [34], rotors [35-461, isolated wings is treated as an unknown. Thus, the SFC
147-481, wing-body combinations [49-501, formulation 132-331 solves directly for the
nozzles and inlets [51-52], and axisymmetric unknown geometric coordinate which is the
bodies [531. Some of the methods have received coordinate of a stream line (Fig. 6). A similar
wider acceptance than the others. The general concept derived from the boundary element
conclusion is that these methods which are more integral method [18) gives a fully converged
versatile, easy to comprehend and implement, solution in 10-20 iterations.
are the more widely used. Since a number of
flow field analysis codes are quite reliable,
versatile, and efficient, most designers would
like to make use of this software directly in the " /,
design process.

4. MODIFIED GARABEDIAN'S METHOD

Methods like Garabedian [191 and the modified /
Garabedian [201 are becoming quite popular INN
since they require an extremely simple master
code which can call any available flow field
analysis code simply as a subroutine. Thus, as
more sophisticated analysis codes become
available, they can be directly substituted in the
master code that computes corrections (Fig. 5) to
the input geometry. The main drawback of the Fig. 6 Design of a tandem cascade using SFC
method is that it converges relatively slowly, formulation [32]
The iterative motion of the surface which is
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Another method that is based on the interplay of
stream function and potential function in "
irrotational subsonic inviscid flows is due to "
Stanitz 1341. He has obtained fascinating
configurations of channels and ducts subject to
specified surface pressure along the duct walls -
(Fig. 7). N

Fig. 8 Radial diffusor vanes designed using

Taylor series expansion

turbomachinery inviscid flow field design. The

Fig. 7 Air intake scoop designed using Stanitz main drawback of these approaches is the
method 1341 absence of viscosity and turbulence in the basic

model.

The general concept of having a small master
6. TAYLOR SERIES EXPANSION METHOD code and being able to utilize any available

analysis code as a subroutine in the process of

An extremely efficient and simple, although surface flow design has been successfully
approximate method has been developed in applied by Takanashi 1471 in transonic wing

China 137-391 and can be reportedly used on a design. The method converges extremely fast

pocket programmable calculator. The method is since he used a small perturbation integral

based on prescribing , say, Mach number formulation to evaluate geometry corrections of

distribution along the mid-passage streamline the wing surface.

and then deducing values of the Mach number
on the top and the bottom of the passage by Surface flow inverse designs of wings 148.501

expanding the prescribed data in the vertical and a wing-body combination 1491 have been

direction using Taylor series. With more terms successfully accomplished recently using full

in the Taylor series, the larger gap-to-chord potential transonic equation solvers 148.491 or

cascade can be designed. Since the analyticity is higher order surface panel method 1501 and

carried to an extreme, very little work needs to fictitious surface transpiration concept.

be performed iteratively. As a consequence, the
method converges very fast. Errors in this Inverse designs of supersonic nozzles 1511.

method will be rapidly increasing towards the supercritical jet engine inlets 1521 and

stagnation points especially if they are blunt. axisymmetric bodies in incompressible potential

The method is applicable to radial flow 1531 have been accomplished. The approach
turbomachinery as well (Fig. 8). of Ives [521 is especially innovative and unique.

8. TRANSONIC SHOCK-FREE DESIGN

7. NEW THREE-DIMENSIONAL FORMULATIONS Pribably the best known method for the flow
field design is a hodograph based method 154-

Highly sophisticated and computational', 571 for designing transonic shock-free shapes
complex computer codes have been develped Actually, the method is a unique combination of
and successfully applied in the design of three- both surface flow design (surface Mach number
dimensional coaxial nozzles 14U1 and can be specified on a point-by point basis) and
turbomachinery blading 141). The governing flow field design formulations (no shocks are
model is a complete set of thr, -dimensional guaranteed to occur in the flow field).
Euler equations of gas dynamics. Consequently, the method suffers from the

known problems (open trailing edges and fish-
Analytically novel and interesting are several tail shapes) associated with both general
new ormulations 142-461 for quasi three- approaches to design. The method has been well
dimensional and fully three-dimensional publicized in the seventies and the resulting



software 1181 found its use in industry. Moreover, the system becomes linear if
Nevertheless, any method based on the transformed to a rheograph plane characterized
hodograph transformation is inapplicable to by the Prandtl-Meyer function and the local
three dimensions. Since Garabedian's method is velocity vector angle. The new shape
based on elliptic continuation approach [561 it coordinates will be determined from the
requires two real and two imaginary condition that the stream function should
characteristics. Needless to say, it is a highly maintain its constant value at every point of the
complicated method and the resulting software airfoil surface. This method is fairly simple to
is not easy to modify. The entire method is well comprehend and implement in the existing full
described in a textbook by Schrier 157]. potential codes. Nevertheless, the fictitiou gas

method does not give us freedom to specily
An alternative method is known in the West as surface values of flow parameters. It only
Sobieczky's 158,591 fictitious gas or as guarantees that if our choice for the fictitious gas
Nakamura's gas (601 in Japan, since both density - Mach number relation is not too
researchers have developed and published the restrictive, the supersonic bubble will become
method independently. The concept is based on shallow and stretched along the surface (Fig. 9)
the basic fact that the shocks can form only if resulting in an entirely shock-free flow field.
there is a supersonic flow, that is, if the The method is suitable for redesigning of the
governing partial differential equation is locally existing airfoils [58-62], cascades (Fig. 10) of
of a hyperbolic type. Consequently, if the airfoils 163-65J, quasi three-dimensional rotors
conditions for possible shock formations are to [66], wings 167-69] without having to worry
be eliminated, the governing partial differential about surface cross-over, fish-tail shapes, and
equation should never be allowed to become hanging shocks.
hyperbolic. Sobieczky and Nakamura
accomplished this by switching from an
isentropic expression for density to an ... '....... ... ,
appropriate analytical fictitious density relation ...

at every point in the field and on the boundary
where the flow would like to become supersonic.
Thz: resulting computations are acceptable in the
subsonic regions (where the isentropic relations
were used), but are not acceptable in the
supersonic regions (where the fictitious gas
relations were used). Nevertheless, the resulting
sonic line which now separates the two regions is
acceptable by both the isentropic and by the
fictitious gas relations (Fig. 9). If we now decide
to use the isentropic relations in the previously
fictitious gas domain, the governing equations
will be locally strictly hyperbolic. Hence, the (-.
sonic line values of the stream function can be .___........__

used as initial data for a straight forward
integration of the locally hyperbolic system. Fig. 10 Lifting choked shock-free cascade

designed using fictitious gas 1641

-- 8*SaLTw 9. OPTIMIZATION

iEe to the fact that aerodynamic shape design
represents only a part of the overall design of a
flying vehicle, the need for an interdisciplinary

/ optimization is arising 14-61. Simultaneously, the
7optimization algorithms are finding a rapidly

growing applicability in the pure aerodynamic
/ design 170-84]. The optimization algorithms are

/presently used mainly to minimize a difference
between the specified and the computed surface
flow data . This is obviously not a very
imaginative use of the computational resources,
since optimization codes are known to require a
large number of flow field analysis solutions.
Since the present use of the optimizers is largely
not to minimize certain global measure of

Fig. 9 Sonic line shape before and after the use aerodynamic inefficiency but to enforce the

of fictitious gas 1661 surface flow data, such use of an optimizer has

• -j



nothing to do with actually optimizing the shape. especially interdisciplinary optimization should
The noteworthy exceptions involve maximizing play a more prominent role in the near future.
lift-to-drag ratio for a multicomponent airfoil
[741, minimization ot the total pressure loss 12. ACKNOWLEDGEM._NTS
across the shock waves in a supersonic inlet 1771.
minimization of the total pressure loss in an S- I would like to expre's my deep appreciation to
shaped duct 1781, and optimization over a range Prof. Helmut Sobieczky whose pioneering
of operating conditions 1791. Recent publication research on transonic shock-free flow field
[801 exposes an interesting and potentially design has sparked my interest in the general
promising new formulation for the fast field of aerodynamic shape design. Mr. Robert
evaluation and optimization of off-design Kampia and Ms. Suzanne Condon have helped me
conditions. The appioach of Rizk 181-831 is generously during the final preparation of the
especially welcone since it allows for a stable manuscript. My thanks to them and to Apple
iterative algorithm where an optimizer is used Computer, Inc.. for the donated equipment that
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flow field has converged on the new geometry.
As a consequence, a typical airfoil design
involves the equivalent of 5-10 fully converged 13. REFERENCES
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ARrflThARY BLADE SECTION DESIGN BASED ON VISCOUS CONSIDERATIONS

by

K.D.Papailiou and B.Bouras
Thermal Turbomachinery Lab.

National Technical University of Athens
PO. Box 64069, 15710 Athens

Greece
constraints such as a desired low lossI. Introduction incidence interval (in order to ensure
enough margin for stall) or an adequate

The material presented in this work blade thickness it, the proper placescan be used for different types of and a convenient position of the centerdesign. Furthermore, a design process is of gravity of the blade section (inone full of constraints and compromises, order to ensure the desired mechanicalso that one cannot pretend that any one properties) are considered separately,of the present day theories may produce once a blade section shape is estab-
the optimum optimorum. What the designer lished. Consequently, two differentdesires to possess, however, is a computing tools are necessary, in orderreliable and flexible tool, which can to do the job. One, which deals with thehelp him evaluate the situation at hand. viscous effects and another one whichIn addition, it is necessary that this deals with the inviscid external flow.
tool be rapid enough with a reasonably
fast response, when an interactive People are familiar with thecomputing procedure is used. inviscid external flow computational

tool. We shall adopt here an inverse
The objective of the work presente one, which produces the blade sectionhere, was to create a tool for opti- shape, given the velocity distribution

mizing the viscous behaviour of the along the two blade surfaces. Contraryflow, particularly in view of designing to other practices, we shall adopt anarbitrary compressor and turbine blade inverse viscous flow methodology. itsections for Mach numbers, which may will give us, as we shall see, thereach the transonic regime. possibility to optimize, at the same
time, the viscous behaviour.

The requirement of computing speed
rules out for the moment design tools, The inverse procedures will allowwhich compute directly unsteady flow. On us a maximum possible flexibility.
the other hand, although inverse methods However, it is necessary to stress thatutilizing the Navier-Stokes equations a direct (analysis) method is necessary,start making their appearance, still the in order to complete an optimizationtwo-zone hypothesis, which divides the procedure, both inviscid and viscous. Inflow into an inviscid (external) and a fact, coupling of the two (inverse andviscous part, is by far the most direct) gives, in our opinion, the best
practical. This fact will be made more results.
explicit and explained further in the
present lecture. The two-zone hypothesis Considering the viscous flowwill be employed here and the flow will problem, it is essential to state frombe considered for a purely two- the very beginning that the inversedimensional case, as presented procedure relies heavily upon theschematically in figure (1.1). In capability of the corresponding direct,addition, it will be considered steady in order to reproduce accurately theand the approximation presented in Lock, various practical situations. InFirmin and East's [1.1], (1.21, [1.3) addition, all semi-empirical Information
papers will be adopted. This required to ensure the mathematicalapproximation seems to be a good closure of the computational procedurecompromise, allowing the computation of is common to both the "direct" and
relatively extended separated flow "inverse" viscous calculations.
regions, without important additional
computational labor. Details may be Unfortunately, because of spacefound in the cited references. A general limita~ions, It is impossible to givedescription will be presented in Chapter all the details of the method. However,
2 and some details will be given, when an extended version has been,the equations will be presented, fortunately, presented in ref.(3.231.

Reference will be continuously made
The importance of centrifugal and there. Only more recent developments

Coriolis force effects on turbulence is will be mentioned as extensively asvital in turbomachinery applications, possible. These developments, althoughThe same goes for the variation of the other people from the Lab have assistedstreamtube width along meridional as well, have been essentially achieved
distance. The corresponding effects will by Kellas3.3a1 and, especially,
be taken into account in the present Bourasl.321,
theory. In addition, one may remark
that not taking into account these Finally, for economy of space, alleffects, would rule out application of explaining of symbols is presented Inthis methodology to radial machines, the corresponding list, in Appendix Al.
while, for axial machines, there would
be too much room left for
interpretation. 2. Description of the Two-Zone Model

Regardless of how the optimization The separation of the flow into anproblem is set and what constraints are inviscid and a viscous part will followimposed, two parameters are playing the the model described, as sald above, inmost important role. The section the paper of Lock and Firmintl.33, This
circulation (or t~e peripheral force) model relies heavily on the theoreticaland the total pressure losses. Then, development performed by East[tiJ). A



short description of the model follows. pe -P

The model is schematically -- K*(6 1 +6 2) (2.6)
presented in figure (2.1a). The 2
coordinate system used (s,n) is the one pe Wse
described in the same figure. The w
external inviscid flow (it is called
Equivalent Inviscid Flow by Lock and P, -P.
Firmin) quantities are allowed to vary 6 5

across the shear layer (see figures - K-6 (2.7)
(2.1b) and (2.1c)). This variation is 2
caused by both the solid wall curvature Pe Wse
K. and the additional curvature due to
the shear layer presence.

from equations (2.6) and (2.7) follows
Within this model, there exist two that

possibilities for obtaining at distance
8 the matching of the External Inviscid PwP.
(EIF) and the Real Viscous Flow (RVF). 6

The first one consists of displacing the - = K*(8-5 1 -52 ) (2.8)
solid surface by 61B, when 

8
1s is 2

defined by the equation Pe WS

6 8
The viscous shear layer

peWs dn pWadn (2.1) computational procedure, which will be
I described later, utilizes as external

0 velocity distribution the one given by
Wsev(s). What the present flow model

tells us, up to now, is that, in order

The line n-619 is, then, a to obtain Wsew(s), we have to perform
streamline. The second one stems from the external inviscid flow calculation,
distributing sources along the solid introducing at the wall a normal
surface, of strength velocity component We w expressed by

equation (2.2). Once the computation has
d converged, then comparison with

pe Wn, f - (p. Ws. 5z ) (2.2) experimental results will be made using
. w ds w w A the pressure distribution Pw(s), which

will be issued from P.w(s) utilizing

The definition of the corresponding equation (2.6). On the other hand, the
displacement thickness 

8
1A is model tells us that, in order to compare

the results of a shear layer calculation
5 method with experiment, one has to

deduce Ws..(s) starting from PW and Pte,

Pe Ws. 61 = (p.W.-pWs)dn (2.3) deduce P.. from equation (2.6) and
5 5 j e utilize Wnew in order to deduce from

0 Pte, Pew, Tte and Wnew the value of
Wse.

In practice the difference between
SA and 61s is negligible, expressed by To the above remarks one has to add
the following relation that terms containing the curvature K

*

appear in the equations, as we shall see
61 -61 later, and that the corresponding

A 5 1 2 expression for the integral
. - (l-Mew)K*81  (2.4) 6

1 2 r
5J (PO-P)dn is given as

where K. Is the total (effective) 0
curvature due to both the solid wall and
the shear layer presence. It Is 8
expressed as I

2 (P.-P)dn .- . Ws. R*(6'+6j)2+
d3zWn02 w w

d 61 W, 0
A d *•

KIK. + - - Kw + - (- ) (2.5) 6
2 do W.

d ds W + J pWA 2
dn (2.9)

In the following, we shall use only 0

61A, adopting the second flow model and
we shall drop the suffix A. noting that its influence is of lesser

significance to that due to the pressure
Looking at figure (2.1c), it is differences introduced above.

possible to express the various static
pressure differences, appearing there, A second and equally important
utilizing the flow equations. The effect is introduced, when the present
accepted approximate expressions for model is applied to the wake, as well as
these differences [1.21 are listed below in the region of the trailing edge. This

effect is described below, considering
the schematic representation of figure



2-3

(2.1d). We shall apply our model, now, the Kutta condition for viscous flow.
considering the dividing streamline,
which is issued by the inviscid flow An alternative way of imposing the
field. In the theoretical development Kutta condition is to respect the
underlying the model it was only following equality
assumed that W0.-O, so that the same
expressions are valid when the dividing Pe I -(Po 3 (2.13)
streamline is considered. Applying ns61+62 upper n,1+8 lower
equation (2.2) for the upper and lower
part of the dividing streamline, one can This condition is more convenient
get the following simplified expression when the displaced by 

8
1s surface is

for the jump in Wee across it utilized during the inviscid
calculation. In this last case, when the

I d _ _ inviscid static pressure must be imposed
a = - - (P. Ws, 6, ) at distance 61 from the solid surface,

5.. Pe ds w . w the following equation may be used

where P, - P. -K'p. Wee 
6
2 (2.14)

h-61 a-61 nS1

1 I Having related tne inviscid
WS. -- (Ws. +Ws. ); P =-(P, +Po ); external flow field with the viscous

- 2 Vu S1 5 2 *u .1 part, we shall now proceed in describing
the methods used for calculating each

61 =61 +61 (2.10) one of them. When these calculations
* u I have been established, we shall return

back to examine how the matching
The suffix w here denotes together is done, utilizing what has

conditions at the diving streamline, been said in this section.
Applying the situation described in
figure (2.1c) to the wake region, we get
a static pressure distribution 3. The Development of the
presented schematically in figure Canonical Equations
(2.1e). Following the same reasoning one
can get the jump in the velocity The basic equations are the same
component We across the dividing for both direct and inverse
streamline as computations. The additional relations,

which take the form of a semi-empirical
frame and ensure the mathematical

AW -[K5 WS (61 +62 ) KiWs (51 +6B 13= closure of the problem, are, as well,
e eu a u el I I the same for both direct and inverse

formulations.

- -K.W& (61 +62 ) (2.11) In this Chapter a brief description
es . s of the development of the equations will

be presented. Details may be found for
or, for the static pressure, the development of the method upto 1981

in references [3.1] to (3.23]. The last
S 2 reference summarizes the work performed

Apo -Pe -Pe - [Kepo We (61 +62 ) + until then. Additional work that has
* su .1 Vs eu u U been done since 1981 may be found in

references [3.24] to (3.32].
* 2

+ KIp. W: (81 +62 )] (2.12) The basic equations are considered
.1 1 I in a rotating frame of reference. It is,

then, easy to deduce from them the
The above wake analysis tells us equations valid for a stationary frame.

that the inviscid calculation used must They will be considered for turbulent
be capable of introducing combined flow. For laminar flow, Stewartson's
source and vortex sheets along the transformation[3.351 is used in order to
dividing streamline. It also provides place the problem on an equivalent
the corresponding jump conditions in incompressible plane. It can be proved
static pressure and velocity components, that this transformation is valid for a
as well. rotating frame of reference, as well.

On the other hand, at the trailing An axially symmetric orthogonal
edge itseli, provided that it is not curvilinear system of coordinates is
rounded, the static pressure of the RVF used (see figure (3.1)). It is assumed
must be the same for both the upper and that the m-lines of the system coincide
lower surfaces, or the upper and lower with the streamlines of the real flow.
sides of the dividing streamline (that The continuity equation, the two
is whether the trailing edge is momentum equations and the energy
approached from upstream or from equation are written in this system. In
downstream). This situation presented addition to those, the turbulent kinetic
schematically in figure (2.1f) and energy equation is written, in order to
implied, also, in figure (2.1e), results be used for turbulent flow.
in a smaller circulation value, than the
one which corresponds to the equality of The above mentioned equations are
inviscid static pressures (and simplified in the following way: (a) The
velocities) at the trailing edge, stress terms containing the coordinate
applied usually. In fact, this replaces system curvatures, as well as the terms
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containing the derivatives of stresses d
in the m-direction (parabolization) are In the above Ddn is the dissipa-
neglected. However, all normal tion integral. 10
fluctuation terms are conserved.
(b) Some simplifications are applied, During the development, the
concerning the inertia terms of the following relation has been deduced from
normal momentum equation. However, the the normal momentum equation, which
main effect of these terms which describes, the difference between the
contributes to the variation of the real and inviscid static pressures
static pressure in the normal to the
flow direction is retained. S
(c) Following Lock and Firmintl.

2
) a 1 2

representative curvature is taken into j(p.-p)dn= - p. WSe K*(6 1 +62 )2+
account for each position (m). It is 2 0w
partly to this curvature that the so
variation of the static pressure along a
normal to the flow direction is pW 2dn+H.O.T

'
s (3.3)

accounted for. (d) The pressure term in
the turbulent kinetic energy equation The above relation was introduced
is neglected. into the streamwise momentum equation in

order to render it in the form of
At this level, the production term equation (3.1). The same goes for

in the streamwise momentum equation for equation (2.2), which was used and
turbulent flow is substituted by the accounts, as well, for the coupling of
corresponding terms appearing in the the external inviscid and the real
turbulent kinetic energy equation. This viscous flow.
last equation is not used any further.

We shall introduce now the
When these simplifications are dissipation factor Co

performed, the equations are written for
the external inviscid and the real flow. 6
They are then subtracted from each I
other, forming the corresponding deficit CDJ Ddn (3.4)
equations and are integrated along the 1 3
normal to the streamwise direction. - -P Wse 0

2 w w

After some rearrangement, the
following equations are formulated: and the skin friction coefficient

(a) The streamwise momentum integral 2tsn.
equation Cf = - (3.5)

Pe Woe
d 2 dWs., S w
- (pe R.Ws. 62)+ p. RwWse 61 -
ds w w V 5 ds We shall incorporate, as well, for

convenience, the normal fluctuation
terms in the shear layer thicknesses in

w2R! R. d 2 the following way
R.p.S 65 d(--)- - -(pWs. K*(6 1 +63)21]+

5 2 2 ds - w 6 SpW 2-pW 2

d6 
52. = 6 dn (3.6)

+- (p. R.Wse dn] + 0 P. Wse
ds w 5! Po W5*2 S S

do I P. W0

+ Rwis. + H.O.T.'$ (3.1) pWs(3W8 2-W 2+W;2)

63' - 63-J P* Ws. dn (3.7)

(b) The energy integral equation 0 w 5

2 Consequertly, our equations,
d 3 dWs.w leaving out the Higher Order Terms
-(pe RwWs. 53 )+P. RWWs* (61-61k) (H.O.T's) become for compressible flow
ds w S S w ds

I d 2 61 dWse.
2 - (P. R.Ws 62*)+ -

d w
2
R 2 ds Ws. ds

-2p. R.WSe (81-61 )-(-)2R.J Ddn + peR. Wse w

w * kds 2 1
0

6 sp d sR. Cr I
d 3 r pWs(3Wj 2

-Wj
2
+W;

2
) - - (- )+ - -

+ - [p. R.Wse sr 2 ds 2 2 2
ds w p. Wse

3  
Ws. 2 p. Ws.

+ H.O.T. 's (3.2) d
-1 P. We* X'(6 1 +62 )]) (3.8)
ds 5



1 d 3 assumptions will be made. The reason for
( e R.Wse 63*) + introducing these new variables will be

3 ds * * seen clearly later, while the
p. R.Ws assumptions will be justified when

* S discussing the semi-empirical frame.

2 Our starting point will be
(61-61k) dWsew equations (3.10) and (3.11) with the

+ last term neglected in equation (3.10).
2 ds We may introduce as a first step the

Ws. kinetic energy dissipation

3 2

2W.. We.
2(51-6lk) d w3Rw2R

- (-) + CD  (3.9) E = P
6
3 - = pyRe 3 - (3.13)

2 ds 2 s 2 2
Ws

The part P
6
3K Ws../2 of the above

and for the incompressible flow variable is an increasing function of
distance, as the losses are increasing,

I d a 61K dWs.. when the shear layer is developing.
- (R.Ws. 62 ) + - Then, the energy integral equation

2 ds K K Wse ds (3.11) becomes
R,.Wse V

• dE ds
- . CD - (3.14)

Ct I d 2 E 53'
- [Ws. K*(6 1 +62 )2] (3.10) K

2 2 ds • K K
2Ws. Taking 

6
3K-H32K

6
2K and introducing it

5 to equation (3.13), differentiating and
combining with the momentum integral

I d 3 equation (3.10) and using the definition
- - (R.Ws.63 *) = CD (3.11) H 12*'6 1*/6 2

*
, one gets

3 do k
RWs0 dH32 * H32* Cf

* 1 k I K
____________=[1- --

The above equations hold for H1 1 * -1 H3* H1 2 * -1 2CD
turbulent flow. The corresponding K k k
equations for laminar flow are derived
easily by dropping the normal dWs.
fluctuation terms and considering that dE
Cf corresponds to the laminar shear (3.15)
stress. Note, that the inviscid pressure E Ws.
at the wall Is given by the following o

equation:
For unseparated shear layers the

dWse dWsI normal fluctuation terms influence in
9i i dp, the energy equation can be neglected so

WS - + Wn d-- -- +- the H32kH323. On the other hand, for
Sds dn p. do unseparated flow the ratio (H12k-l)/w (H1a|-1) can be taken constant and will

d(w2R2/2) be denoted as K. Finally, with a very
+ - + Curvature Terms (3.12) good approximation H12k will be taken to

do be a unique function of H32 k (the

influence of the Reynolds number is
neglected), so that one may introduce a

We are ready, now, to develop the new form factor Lk, as
equations in their final form. To
conserve printing space without losing I dH3 Lk
the steps of this development, we shall dLk - (3.16)
describe below in some detail the Ht2k-I H32k
development of the equations for the
Incompressible attached case. Then, we remarking that the right hand side of
shall give the results for the general equation (3.16) with the above mentioned
compressible case. Details of how these assumption becomes a total differential.
developments are realized may be found We shall introduce a new Reynolds number
In reference (3.23). Re4 as

The Development of the Re, . Re3 e2Lk (3.17)

Attached Incompressible and Its n,perian logarithm
Boundary Layer Equations

X = lnRe, - lnRe 3+2Lk (3.16)
We shall formulate our development

neglecting the last term of equation We shall introduce, as well, the
(3.10). For this development new velocity logarithm q instead of the
variables will be introduced and certain velocity as
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Wse. 1

q . In - (3,19) dQ dRe, (3.27)
W e f  

(+2KM)CD12Lk

and the position Reynolds number 0, which relate the physical variables
instead of the arc length s, as (q,f) to the intrinscid variables

(Lk,X). Of course for laminar flows K=I.
S These are the canonic equations.
Wseds* s. s (3.20) We shall regroup the shear layer

v properties in a slightly different
0 manner for laminar and turbulent flows

and we shall have:
We shall, finally, introduce a grouping
coefficient M, as • (a) For the laminar case

1 H3 2 kCf Mj(Lk,X)
M - (I- -- 1 (3.21) Pl(Lk) = - (3.28)

H1 2 t-1 2CD 1+2MI(Lk,X)

and, with the above definitions and CI(Lk) = CDI(Lk,X)
assumptions, we shall rewrite equations 2L
(3.15) and (3.14) in the following form (l+2Ml(Lk,X))Rese k (3.29)

dE The corresponding equations will be
KdLk = +dq + KM - (3.22)

E dq = dLk+pldX
2 (3.30)

dE dt d(Re4)
- = CD - (3.23) df = -
E Re 3  2C1

Differentiating equation (3.13) and (b) For the turbulent case
using equation (3.22) in order to
eliminate dq, one gets kMt(la, X)

Pt(Lk,X) = - (3.31)
dE dRe 3  l+2kMt(Lk,X)

(1+2KM) - = + 2dLk (3.24)
E Re 3  Ct(Lk,X) = Cot(Lk.X)

Using the definition (3.18), one finally (l+2Mt(Lk,X))e2Lk (3.32)
gets

The corresponding equations will be
dE

(1+2KM) - = dX (3.25) dq = LdLk+ptdX
E

dRe4
We have developed above various dt = - (3.33)

forms of equations, which will be used Ct
later in order to reveal some general
properties of the shear layers. Before The advantage of this formulation
obtaining the final form of the for laminar shear layers is that the
equations, called sometimes canonical, coefficients depend upon only the form
it will be helpful to make some factor Lk, as follows from the semi-
additional remarks. In the next Chapter empirical frame. An attractive feature
the semi-empirical frame will be of equations (3.26), (3.27), (3.30) and
examined briefly. It is important to (3.33) is that for the case of the
note that the semi-empirical frame will inverse problem, for which q(O) is
provide us not only with expressions for calculated when l.s(X) is given, the
the variables appearing in our integration procedure is reduced to two
equations, but, also, with enough quadratures.
information to obtain closure. That Is
to say, as we have two equations The Form of the General
available, the independent variables of Compressible Shear Layer
our problem must be, as well, two. From Equations for the Calculation
the development made above it is of the Attached and Detached
apparent that the two independent Shear Layers
variables chosen (fe' reasons which will
be clear later) to characterize each The same anelysis can be performed
shear layer section are Lk (as a form for compressible turbulent flow (for
factor) and X (as a Reynolds number). laminar flow the equations for
Then M-M(Lk, X) and CDCD(Lk,X), so that incompressible flow are ufficient, as
eliminating dE/E between equations Stewartson's transformation is
(3.22) and (3.25) and between (3.23) and utilized). The corresponding equations
(3.25) we get the following two are derived following a similar
equations development as the one presented in

reference (3.23]. They are
KM(Lk ,X)

dq - KdLk - dX (3.26) CDM
1+2KM(Lk,X) F dLk-F32 dq+ - dt +

Re 3
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it was realized that, when strong flow
F 3 3  W

2
R! separation exists, the value of K

* -d(- )-A.=O (3.34) reflecting the normal fluctuation terms
Ws2 2 presence, was not constant.

CDd#
dX-2dLk+F44dq- - + 4. The Semi-Empirical Frame

Re3
In order to obtain closure of the

system of integral equations used for
FsS W2Rw the calculation of the development of a

+ - d(- ) - A. - 0 (3.35) shear layer, it is necessary to express
2 2 the various flow parameters at an

WSeW arbitrary cross section in terms of a
number among them. This number

where designates the number of the independent
H12k-1 variables of the problem and, at the

F1  (3.36) same time, equals the number of the
2 available differential equations. For

(H1 2 -1)-r(y-l/2)Me, the present case this number equals to
two. Details concerning the semi-

F2 = 1 - empirical background for work done
2 2 before 1981 can be found in reference

(l+(v-l/2)Me.)(2KIMe.+3K2 Me.)Ne. [3.23]. Here, we shall briefly outline
(3.37) how this semi-empirical frame is

2 2 3 constituted and give the necessary
(H1 2 -l-r(V-/2)Me.)(l+KjMe.+K 2Me.) background for understanding the

present lecture. In addition,
2 information will be given concerning

r(y-l)Me.-Hp2  developments realized after the work of
F3 = (3.38) reference (3.23] was reported.

2
(H12-1)-r(y-1/2)Me, It might seem strange that one

wants to establish a semi-empirical
V-I 3 frame for laminar layers, for which

F4 = 211+(r-w) - Me.) (3.39) mathematically the problem is well
2 defined and doesn't need additional

information. For our case, however,
2 information was lost when integration

F5 - (r-w)(y-l)Me. (3.40) along a normal was performed (in order
to obtain the integral equations) and

2 this lost information must be
F 2 2 =Fa+ [(2-w(y-1)Me. reconstituted in order to solve the

(Hj 2 -1)-r(V-l/2)M2 problem.

After this remark, we may state
Rej. 2 Rei. that the basis for constituting the
- -(l-w(y-l)Me ) -] (3.41) semi-empirical background of both
Re3  * Re 2  laminar and turbulent shear layers is

the fact that the profiles of the
Re . ReA. 2 various shear layer properties at each

F3 3 = F3 + [ - ]w(v-l)Me. (3.42) station can be described by profiles
Re3  Re2  corresponding to a station of an

equilibrium shear layer. Consequently,
2 Ren, it is necessary to obtain the properties

F.4 - F4-[2-w(y-l)Me.] (3.43) of all equilibrium shear layers, in
Re3  order to establish our semi-empirical

frame.
Re;* 2

F5 5 
- F 5+w(y-l) - Me, (3.44) For laminar incompressible shear

Re3  layers Falkner and Skan'sC4.11 similar
solutions are used. For these solutions,

dRej. dReg, Re,. Reps dR. when the shear stress at the wall rsaw
As - - - - ]--(3.45) and the shear layer thickness 6 are

Re3  Re2  Re3  Re2  R, given, then the velocity profile can be
specified, for each station. Then, the

dRene ReA, dR, various thicknesses, form factors, as
As - + (1+ -) - (3.46) well as the shear stress profile and

Re 3  Re2  Rw corresponding dissipation factor can be
obtained.

In the above equations note the k,
and k2  are constants and that F1 and F2  For these laminar equilibrium shear
are function of the Mach number reducing layers, it Is easy to prove that, at the
to unity for M.=O. same time, the parameter

The above equations differ from 61 dp.
those presented in ref.[3.23]. A 11 = - (4.1)
restructuring was performed, when it was tSaswi ds
realized what was needed in order to
march more deeply (than it was done in conserves its value for each individual
refs [3.12] and (3.13]) into the layer.
separated flow region, as well as when Note that the way the expression for II



is written, it accounts for both and H 3 2
k. For laminar incompressible

attached and separated shear layers. shear layers there exists a unique
This value is known, together with the relationship H3 2k(Hlk) for unseparated
velocity profile of the corresponding as well as for separated flow. It is
similar solution, presented in figure (4.1). As said

above, for turbulent incompressible
For turbulent incompressible shear shear layers, the experimentally

layers it was proved experimentally established relation H3 2k(H12k) depends
(Clauser(S] , Bradshaw[4.

33
, among slightly upon the Reynolds number. The

others) that the external part of the maximum deviation of the curves for,
velocity profile, as well as the mixing say, a range of Reynolds numbers based
length profile are unique under a on boundary layer thickness from 5000
certain similarity law for each to 500000 is of the order of 3%. This
equilibrium shear layer. The inner and relation is presented in figure (4.2).
outer parts of the turbulent shear Different calibrations using different
layers obeying different laws (see representations of the velocity profile
Coles[4.4].[-.

5
]), makes it impossible have resulted to the same curve. For

to demand complete similarity for compressible turbulent shear layers the
turbulent shear layers. However, for curves H3 2 (H1 2 ) depend strongly upon the
reasonably high Reynolds numbers, the Mach number. If one considers, however,
error involved is relatively small, the curves H3 2 k(Hi2k), then one comes

very close to the established curve
In the present case, Kuhn and H32k(H 1 2 k) of figure (4.2).

Nielsen'sI4 61 velocity profile family
was used, which defines the velocity We can remark that both curves
profile when a free parameter nj and the H3 2k(H,2 k) for laminar and turbulent
shear layer thickness 6 are given. At shear layers present a minimum. This
the same time, the velocity profile minimum is found very close, for both
expression provides the wall shear laminar and turbulent flow, to the point
stress Tssw. The unique mixing length for which the wall shear stress is zero
profile for all equilibrium shear (Ts

5
=f0). For us this is the condition

layers, or, alternatively, the method for flow separation. For turbulent flow,
presented in reference [4.7], gives the in particular, this minimum coincides
possibility to obtain the dissipation with the disappearance of the semi-
factor CD. The two procedures give quite logarithmic region of the semi-
comparable results (Papailiou[4.]). empirical velocity profile we are using.

The above applies to both attached Coming back to the definition of
and separated shear layers (see our new form factor Lk (equation
Papailiou[

3
.

3  
for detailed (3.16)), we can remark that in order to

information). The relation between n complete it we need the constant of
(defined by equation (4.1)) and "I in integration. We take Lk to be zero at
this case is established experimentally, the point of the (H12)-curve, where
In the present work the relation deduced H32k is minimum. Consequently, for
by Papailiou[l.sl is used, which practical purposes, separation is
coincides with that given by Nash[4.s9. reached when Lk=O for both laminar and

turbulent compressible shear layers.

For compressible flow the
generalized velocity of van Driest

1 5
'10

1  
Thus, one can derive the Lk(Hl2 k)

is used. Mathews, Childs and curves for laminar and turbulent flow.
Paynter .l4ll and Albert.12

1  
have These are presented correspondingly in

established that, by using it, the semi- figures (4.3) and (4.4). Accuracy may be
empirical incompressible expressions are improved for turbulent flow by obtaining
verified. This fact is in agreement with each time an Lk(H 1 2 k) curve for Re 3
Morkovin's(4131 hypothesis, according constant and using, during the
to which the turbulence properties are calculation, not a single Lk(H, 2 k )
not influenced by compressibility, as curve but all curves in the form of a
long as the Mach number based on the grid. This has been done and found
velocity fluctuations remains small. particularly important near separation.
This hypothesis has been confirmed
repeatedly and has been used for In deriving the basic equations, we
practically all methods of calculation have conserved the normal fluctuation
of turbulent compressible shear layers. terms. These become very important near
It gives the possibility to use separation and in the separated flow
turbulence properties established in region. Details can be found in
incompressible flow for calculations up Papailiou[3.

2 3
1 and Huo

3
.81, who have

to a Mach number of approximately 3. The described in this respect, Le Foll's
turbom3chinery range of application is, work. Experimental results have been
thus, largerly covered. This same used to calculate the value of the
hypothesis has been used in order to coefficient K, defined in the previous
enable us to state that there exists a chapter as
class of turbulent equilibrium shear
layers for incompressible as well as for Hj2 k-I
compressible flow (see, also, K = (4.2)
Alber(4--14), unseparated or separated,
which are completely defined at each H1 2 k -1
station of their development, once two
properties along with the external Mach and of the ratio H12k/H 32 k. These
number have been specified, results plotted in figure (4.5), which

were taken for unseparated turbulent
It is important to consider more shear layers, demonstrate that H5k/H3 2 u

particularly the relation between HNik can be taken equal to unity and that the



2-9

value of K can be taken equal to 0.85. the considered section. For establishing
the corresponding curves for

Accounting of the normal compressible flow, the external flow
fluctuation terms gave the possibility Mach number must be known,
to predict separation accurately and additionally. Once these curves are
march correctly within the separated established, it is easy to calculate the
flow region (see references [3.13] and coefficients appearing in equations
[3.8]). (3.36) to (3.46), when the external flow

Mach number is specified.
For extended separated flow

regions, however, it was found that K
was not constant and that H52 k/H32k 5. The Direct Shear Layer
could not be taken equal to unity. Calculation and its Prediction
Reference (3.27] establishes the semi- Capability
empirical relations needed for the
calculation of the fluctuation terms The calculation of the development
appearing in equations (3.1) and (3.2) of laminar or turbulent shear layers can
for unseparated and separated be performed utilizing the canonical
compressible (including shock/turbulent equations established in Chapter 3 and
shear layer interaction) flow. At the the semi-empirical frame described in
same time, similarity laws are Chapter 4. For such a calculation the
established for the normal fluctuation initial conditions of the shear layer
profiles. Figures (4.6), (4.7), (4.8) must be known as well as the external
and (4.9), which present this new flow velocity (or Mach number)
information, were taken from reference distribution at the solid wall. In
[3.271. The possibility to find addition, the total conditions of the
similarity laws for the normal external flow must be specified and the
fluctuation terms, allow us to avoid angular velocity, if a rotating system
using the turbulent kinetic energy of reference is considered. The wall
equation, as it is pointed out in the geometry and its orientation in respect
same reference. On the other hand, one to the rotating axis must, also, be
may remark that local similarity is given, in order to evaluate the
obtained in particularly extreme necessary second order terms and the
conditions, as it is the case for the influence of Coriolis force and
shock/turbulent shear layer streamline curvature. This last
interaction, influence will be examined later.

From the information presented The canonical equations have been
above, it can be deduced that, for set up in a form convenient for the
laminar flow, the coefficients P, (Lk) solution of the inverse problem. The way
and C1 (Lk) appearing in equations the present formulation has been set up,
(3.26) and (3.27) and defined by it is possible to pass the separation
equations (3.28) and (3.29) can be point (and the singularity existing
established once for all for laminar there) in a direct mode. However,
incompressible flow. The corresponding looking at equations (3.34) and (3.35)
compressible flow values are not needed it can be seen that in the inverse mode
in view of the fact that Stewartson's their integration reduces to a simple
transformation Is utilized. Figure quadrature. Furthermore, everywhere
(4.10) presents the curves CI(Lk) and (separated and unseparated flow), it has
MI(Lk), from which Pj(Lk) can be been found out that the inverse mode
computed according to (3.28). solution behaves better than the direct

one. It has been decided, then, when
For turbulent flow the values of dealing with the direct problem, to

CDt(Lk,X) and Mt(Lk,X) are established solve the equation in the inverse mode.
once and for all. Mt(Lk,X) is computed
from equation (3.44) for compressible In order to assess the capability
flow, or from (3.21) for incompressible of the present method the following
flow. For Cot(Lk,X) the following remarks are made.
expression is utilized

I. Although sone transport terms
CDt(l+r.(V-l)/2 M.2) have been retainel in the equations, the

method reposes upon the hypothesis of
H 32P../pwcf/2 local similarity for turbulent flows. In

reference [3.23] information is
51 (H1 2 -l)-r(V-l)M*2 presented which suggests that this

f - F2fn + 1 (4.3) hypothesis, within the present context,
61k Ht2 gives good results for engineering

applications. In addition the
Details for its development can be found comparisons that are presented there
in ref. [3.23). The corresponding between theoretical predictions and
incompressible flow expression reads experimental results including mildly

separated flow, give evidence of its
CDt H12k-I good predictive capabilities. Concerning

- I + - n (4.3a) the prediction of non-equilibrium flows
H32kCt/3 Ht2k with equilibrium data, it is important

to note the remark of Albert5.1), who
The corresponding curves for suggests that, for doing this, it is

turbulent attached and separated necessary to "unhook" the pressure
incompressible shear layers are gradient dp/dx appearing in n from the
presented in figure (4.11). For each rest of the shear layer properties. The
point of these curves it is necessary to minimum number of integral equations
know any two sheer layer properties of required for this is two. The same
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conclusions can be reached following the distribution around the blade, using the
work of Tani[

5
-
2
1 and Lees and external iniscid flow calculatior, This

Reevest5-31 for laminar layers. computation is initiilly performed with
Opposirg the present method, there are zero shear layer blockage.
some others (for instance Felpch[5.1]
and Nash.5-11) that, in order to compute STEP 2 Use the result of the previous
correctly non equilibrium flows (and inviscid fl calculation and perform
take into account correctly the history tie calculation of the two sthear layers
effects), need a third equation, usually (suction and preisure sides). The
called the "lag equation". These utilize approximate viscous/ irrviscid intera(t ion
as well local equilibrium (similarity) procedure is used in this calc lation.
data for their prediction. The main
objection that one may raise, is that STEP 3 Use the results of tie
this "lag equation" is empirical and not previous shear layer calculation in
derived from the basic flow equations, order to specify the boundary conditions
Otherwise, such methods perform very (normal velocity at the solid wall and
wellt5.1). No conclusion can be made at difference in suction and pressure sides
this stage as to which one of the two pressures at the trailing edge) of the
classes of methods is preferable. next inviscid flow calculation. The

information outlined in Chapter 2 is
2. From simple numerical utilized for this purpose.

calculations one may see that the shear
layer development calculation is STEP 4 Calculate the pressure
influenced much more by the value of the distribution around the blade, using the
derivative dWs,./ds than from the value external inviscid flow calculation. This
of the velocity itself. This influence computation utilizes the results of STEP
becomes critical when separation is 3.
approached, as well as inside the
separated flow region. Small changes in STEP 5 If convergence is achieved,
this derivative may induce failure of then tie calculation procedure is
the calculation itself. Besides, at the completed. If riot, steps 2 to 5 are
singularity point at separation, this rtpeated. I he final pressure
aspect is still valid and this has distribution around the blade must be
resulted in published worf of issued utilizing the corrections
considerable volume, around the theme of presented in Chapter 2.
"viscous/inviscid interaction". To
account for this problem, the present The approximate viscous/inviscid
direct method employs a simple but interaction procedure outlined above was
efficient approximate viscous/inviscid utilized for the calculation of
interaction procedure, which is secondary flows cdscades by
described below, in brief. Comtel

5  
4) a 'ap, i ic5.

9
l.

Subsequently. t r utilized by
The two (pressure and suction Douvik-- 'J .[5.6] and

sides) shear layers are computed Ko',e-;1s
5 

. 7.51 for the calculation
simultaneously. In addition, an equation I secondary flows it radial and axial
is written for global mass conservation flow compressors. For the case of shear
across the whole chanel passage. This layer computation, it was first utilized
equation requires that the flow passes hy 1. ;1,[*.-? r3.26i. Finally, a
through the reduced (by the two shear detailed ue-Li'tion not only for
layers blockage) chanel width. The internal flow cases but for external
approximation lies in the fact that the flow ones, as well, is presented by
inviscid external flow velocity-density Bourasr

3
.
3 2

1.
profile is allowed to be displaced,
freezing its first derivative. In this 3. The information outlined in
way, the external velocity applied to Chapter 2 must be used when predicting
each of the two (pressure and suction measured shear layers. It pneumatic
sides) shear layers is modified probes have been used, one has to note
according to the total blockage, that the total velocity value is given

at the edge of the shear layer, while
This procedure implies that five the componen parallel to the wall of

equations are solved simultaneously, two the inviscid external flow is required.
(momentum and energy integral equations) The same happens when a laser
for each shear layer and the global velocimeter is used. However, in this
continuity equation, which is satisfied last case some precsure measurements may
at each station. It protects In a very be missing and the reconstitution of the
efficient manner each shear layer complete external flow field may be more
computation near separation and in the difficult.
separated flow region. Of course it
cannot substitute the external inviscid It is better anyway, to pet-form
computational procedure, but results in the calculation inside the complete
reducing the number of iterations domain, when possible, using an external
required between the inviscid and the flow calculation method and Letting it
viscous flow calculations. Finally, as interact with the one dealing with
the procedure is incorporated within the viscous shear layer.
viscous flow calculation method, the
corresponding viscous computations can 4. Evidence of the predictive
be performed by themselves, capabilities of the method is given in
independently of the external inviscid references (3.31, (3.51, (3.81, (3.281
ones. The complete algorithm reads as and [3.12] and summarized in ref.[3.231.
follows: Here, we shall reproduce, in figure

(5.1), the transitional flow predictions
STEP I Calculate the pressure of Bario3.14l, which are base on the
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work of Narashima. In order to give layer will develop. Depending upon the

evidence of the capabilities of the device we consider (here, a cascade), it

method to predict separation and reduced is possible to compute the corresponding
separated flow regions, we present some solid boundaries, by use of an

results (figure (5.2)) for appropriate inviscid inverse calcula-

shock/turbulent shear layer interaction tion method. These solid boundaries will

with flow separation and reattachment ensure that the velocity field will have

produced by Kallas(
3
.
3 0
] .3.'.1s and the necessary boundary values, which

comparisons of theoreti ' and will ensure that the desired shear layer

experimental results for flow with mild will develop along the walls. This way

separation, produced by Assassa[
3
.131 of looking at things is specified as

and Bouras(3-
3 21  

(figures (5.3) and inverse (or design) problem.
(5.4)). The capability of the method to
reproduce the loss versus incidence From what was said above, it is

curve is demonstrated in figures (5.5) essential to establish on the (Lk,X)-
and (5.6). The viscous flow calculations plane (called image plane) as many
were realized by Bouras[

3
.
3 2
] and general shear layer properties as

Katramatos[3.
3 5
]. The extend of the possible. Le Foll[3.1l developed the

separated flow region, which has been idea described above and the properties
indicated by the calculation procedure of the image plane for incompressible
is presented in figure (5.7). attached layers, along with his boundary
Stamatis3.

3 2 9
1 has developed the method layer calculation method. This idea of

for laminar separation bubble prediction Le Foll is not new. The representation
and some results are presented in figure of general properties on a plane along
(5.8). We mention, as well, that with the individual processes has been
Bouras[3.

3 31  
and Katramatos[3.

3 5
1 has done before in several domains.

proved that the method can . be Mollier's diagram is one example.
successfully extended to calculate Schlichtings.1I has, as well, used a
unsteady shear layers and that plane, the coordinates of which were the
Lytras[

3
.3

4 1 
has extended the method for Pohlhiusen form factor A and Ra1 . On

predicting the development of an this plane he traced the neutral
asymmetric wake. stability curve An=An(R5 1 ), dividing the

plane into a stable and an unstable
part. In this way, tracing on the same

6. The Inverse Shear Layer plane individual shear layers in the
Problem and the General form of A(Res)-image curves, he could
Properties of the Image Plane identify the point from where each

individual layer became unstable. This
Le Foil's Idea point was, of course, the intersection

between the neutral stability and the

According to what has been said individual shear layer image curve.
above, all quantities characterizing the
state of a shear layer at a cross We shall consider, in the
section can be specified, once two of following, separately the laminar and
them are known. Assuming that these, as turbulent image planes (Lk,X) in the
already said, are Lk and X, one may incompressible attached or detached case
consider the canonical equations, and discuss their properties. Then, we
derived in Chapter 3, in the form shall discuss the compressible case and

consider a unique image plane for
Fj(Wws,Lk,X) . 0 laminar and turbulent flow. At that

(6.1) point we will develop a way to produce
F2 (WeW,s,Lk,X) = 0 optimized individual shear layer image

curves.
The usual way of utilizing these

equations is to specify the velocity
distribution W,.(s) and compute the The Laminar Image Plane
properties of the shear layer developing
under it in the form Lk(s), X(s) (direct The laminar image plane is
problem). It is, of course, possible to presented in figure (6.1). On it we have
compute the solution in the following traced the Mliconst and the CDIconst
intrinscid form curves. The Ml=const curves (as MI

depends only on the value of Lk and
Lk = Ls(X) (6.2) Lk=const defines a laminar equilibrium

shear layer) are, as well, image curves
It is also possible, however, to of laminar equilibrium shear layers.

start by specifying Lk(X) and, using the The particular equilibrium shear layer
same equations, compute the distribution Lk.fO is by definition one, which is
W.5 (s). In other words it is possible, constantly on the verge of separation,
given the same equations, to select the so that the image plane is devided into
desired shear layer and, then, calculate two. The upper part (lk>O) which
the velocity distribution, which is contains all unseparated laminar shear
necessary to produce it. Either the layers and the lower part (Lk<0), which
computed or the selected Lk(X) curve can contains the separated ones.
be traced on the (Lk,X)-plane. It is
then quite evident that, if on the same Then, the following reasoning can
plane general shear layer properties are be done. For all equilibrium shear
available, one can select a curve Lk(X) layers (at successive stations), the
with desired properties and produce, velocity profiles are similar in the
using equations (6.1), the velocity laminar case. As the corresponding skin
distribution ensuring that such a shear friction coefficient Is constant, the



form factors Hi2k,H 3 2 k and Lk are cuts the laminar separation line, Lk.0,
constant, when the varius Reynolds at X=3.2.
numbers Rej, Re2 and Re3 are increasing.
Consequently, for all equilibrium shear The Turbulent Image Plane
layers X is an increasing quantity with
distance and dX is a positive quantity. The turbulent image plane is
As dE/E is a positive quantity, as presented in figures (6.2a) and (6.2b).
explained in Chapter 3, then, from On figure (6.2a) we hdve traced the
equation (3.25) it can be seen that Mt=const curves and on figure (6.2b) the
(1+2MI) is a positive quantity for all Cnt-const curves. Here, as well, the
laminar equilibrium shear layers. locus Lk=0 defines turbulent shear layer
Considering all the stations of all the separation and is the dividing line
equilibrium shear layers, we have betwecn unseparated and separated flow.
considered, according to our basic The same remarks concerning the sign of
hypothesis of local equilibrium, all Lk in the separated llow region as for
possible stations of any laminar shear the laminar case are salid here, as
layer. Consequently for the general case well. On this plane, the upper limit for

turbulent shear layers (KMt=-0.5) has
(1+2M,) > 0 or M1 > -0.5 (6.2) been placed, as well. The turbulent

equilibrium shear layers are presented
Inversely, now, if equation (6.2) separately in figure (6,3) for attached

is true and dE/E is a positive quantity and detached flow. The limiting case of
for the general case, then dX must be the separated constant external flow
always positive. Consequently, X is an pressure appears in this figure and has
increas~ng function with distance, which been presented, also, in figure (6.2a),
allows a monotonic representation of an as it designates the limit of the
individual shear layer on the image separated turbulent shear layers. The
plane. This reasoning justifies our same reasoning as in the laminar case
chosing X as one of the independent has been used here.
variables of our problem. On the other
hand the same reasoning can be applied Consider, now, equation (3.22),
for turbulent flows, if the quantity with K constant and equal to 0.85. This
(l+2KMt) is considered positive. The equation tells us that, if we desire to
limit M1=-0.5 under which all shear decelerate the flow (dq<0), this may be
layers exist has been placed on the done either by requiring dLk to be
image plane, figure (6.1). For the negative or by requiring dE to be
laminar separated shear layers, the positive. The part of the deceleration,
limit is posed by the laminar which is done by increasing dE is the
equilibrium shear layer, for which one which is realized by consuming
dp/dx=0. This can be found in kinetic energy. The part which is done
Schlichtingt6.11, who reports that two by decreasing dLK is one, which is
similar solutions exist for each value realized without losses. During this Lk
of n in the interval between the flat decrease, the velocity profile is
plate laminar shear layer (Mi=0) and the deformed and the outer layers transfer
one corresponding to separation kinetic energy to the inner ones, which
(Mi=0.327). He states that this is the need it in order to overcome the
sole domain of similar solutions, for pressure gradient. For this reason Lk
which a double solution exists. One was named by Le Foll deformation
branch of these covers the unseparated potential.
cases, which are well known, and the
other the separated ones. It follows, Whether or not one may he able to
consequently, that the other side of decelerate without consuming kinetic
separation (for Lk(0), we can reach as a energy (that is, without losses), must
limiting case the flat plate equilibrium be examined in coon ction to the limit
laminar shear layer, which consititutes negative value of the derivative dLk/dX.
at the same time the lower limit of the Anyway, even if we could decelerate
laminar image plane. It can be added without losses, equation (3.22) would
that, as it happens, the separated flat tell us that this is possible according
plate (Mi=0) shear layer itself is not to the relation
included in the set of existing
solutions. Consequently, it constitutes K,th = dq
a case, which cannot be reached.

It we c:onsidelr such a deceleration
Lastly, it is possible to transfer up to sepldttionM and integrate we get

Schlichting's[6 11] neutral stability (if "I" indicates initial conditions)
curve on the image plane. It is known
that disturbances of any frequency are Wse' -KLki
damped fcr a R.:ynolds number shaller-.... = e for turbulent flow
than the critical one. It is presented W5e2
in figure (6.1) as Ln(X)-curve. Below (6.3)
this curve the laminar shear layer is WSe2 -Lkj
unstable in the Tollmien-Schlichting -- = e for laminar flow
mode. Note that this curve cuts the Wsei
limit l=-0.5 at X=10.2. Consequently,
for higher X, stable laminar layers do The domain of definition of Lk
not exist. The corresponding q(0)-curve indicates that this part of the
for the laminar stability curve LI(X) deceleration (considering that
has been given in ref.[3.23). We can separation is to be avoided), although
report here that for low enough Reynolds not negligible, is rather small compared
numbers, the laminar stability curve is with the demands of the current
compatible with decelerating flow. We applications. Consequently, one is
can also see, from figure (6.1), that it obliged to spend kinetic energy in order
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to decelerate. Then, it is better to leaves the middle layers and it is
consume it in the most efficient way. directed towards the outer layers. At
Looking again at equation (3.22), we can the same time, as it can be seen from
see that for a certain increase in the limit of each profile (and this is
losses, we have the maximum deceleration the second important fact), the mass
realized when the coefficient N is flow inside the boundary layer
maximum, as K is constant. decreases. This means that the kinetic
Consequently, the locus of maximum N is energy going outwards is given finally
at the same time the locus of the to the free stream flow.
optimum deceleration. For unseparated
laminar shear layers, such a locus Up to now, our knowledge concerning
doesn't exist, because MI(Lk) (as can be the behaviour of shear layers tends to
seen from figure (4.10)) is a monotonic rule out the possibility of negative
function, increasing continuously up to entrainment, although this question is
separation. For turbulent unseparated still open. Accepting as limit the
shear layers, however, such a locus possibility of zero entrcinment (the
exists, as can be seen from figure mass flow inside the shear layer remains
(4.11), in the attached region. On the constant), then, the shear layer
contrary, a minimum exists in the represented by the image curve X-const
separated flow region (see figure is unrealistic. It is instructive to
(4.11)), which indicates that along the look at an experimental case, which
corresponding locus, a deceleration is comes close to the one we are discussing
realized with the maximum of kinetic now. We have presented in figure (6.5)
energy loss. Stratford's

5
.21 two experiments. We can

see that before attaining equilibrium,
The locus of optimum deceleration there is a part of the shear layer

Lt(X) is presented on the image plane of development to which corresponds a very
figure (6.2) for turbulent shear layers, steep Lk(X) image curve. In figure
along with the curves of constant Mt and (6.5) we have presented the
constant CDt. corresponding mass flow rate inside the

boundary layer, as it changes with
We shall come now to discuss the distance. It can be seen that it is

maximum possible deceleration. In terms imost constant, although still
of the intrinsic properties of the slightly increasing. This experimental
boundary layer, to demand the maximum evidence confirms the physical
possible deceleration, starting from possibility of suddenly deforming shear
some initial conditions, is equivalent layers. At the same time it confirms the
to ask for the maximum negative value existence of equilibrium shear layers
that the slope dLk/dX may assume. Le near separation. Incidentally, in
Foll answered this question empirically. ref.(6.3) experimental evidence of
Consider, as he did, the velocity turbulent equilibrium separated shear
profiles corresponding to various layers is presented.
stations of a vertical image curve
X=const. This image curve decelerates We shall avoid talking here about
the boundary layer without losses, by the positive limit of the derivative
deforming the velocity profile. In dLk/dX (limit acceleration). This has
order to examine what happens in this not yet been fully investigated, along
extreme case, Le Foll considered such a with the phenomenon of relaminarization,
deceleration along the image curve which is associated to it. Le Foll,
X=10.4, starting from the value of however, on the basis of a trial and
Lkf0.28, which corresponds to dp./dx=O error investigation established as limit
conditions. Instead of plotting the rate of deformation the value
velocity profiles in the usual form, he
plotted them in terms of energy deficit dLk
(Wsjs2-W..2) against the stream function (-) - - 0.5 (6.5)
W, where dX max

y As he points out and as Stratford's
experiment shows, higher rates areiWsdy (6.4) possible. However, from an engineering
point of view, the practical

0 consequences of using higher values are
very limited and we shall content

Non dimensional representations ourselves with the value -0.5.
based on initial conditions of energy
profiles against the stream function Before closing this discussion, we
value are given in figure (6.4). In this may make a final remark for the
representation the pressure increase was incompressible case, which will help us
taken into account in order to render it understanding the behaviour of separated
meaningful. Two important facts are shear layers. For this, assume that we
revealed in this manner. The first one are found at some point of the image
is that the energy deficit curves plane in the unseparated region near
intersect at two points, showing that separation and we apply flat plate
the kinetic ei..rgy i;, the middle part of conditions to our shear layer (dp/dx=0).
the profile decreases, while the Then, from equation (3.22), we can see
corresponding kinetic energy in the two that the sign of dLk will be the same as
extreme parts increases. This means that the one taken by KM, in viw of the fact
kinetic energy from the middle part is that dE is positive. From figure (b.2d)
directed towards the inner layers, where we can see that M is positive, so that
It is needed in order to help these Lk will be moving away from separation
layers overcome the Adverse pressure towards the flat plate case. Assume,
gradient. Kinetic energy, however, now, that we are found at some point of



the image plane in the separated flow line indicating separation remains
region, near separation, and we apply unchanged.
the same external conditions, as
previously. Following the same Before considering the construction
reasoning, it can be seen that Lk will of an optimum image curve, some more
more again towards the (unseparated) comments shall be made concerning the
flat plate case. part of the deceleration realized by the

deformation potential. In practice,
This behaviour may be explained in situations of rapid deceleration are

the following way: if a line of constant found in the presence of forward facing
Lk is followed, then the corresponding steps or when a shock interacts with a
velocity distribution comes out to be a turbulent boundary layer. It might be
decelerating one. If one relaxes the interesting to examine whether the
corresponding negative velocity notions established in this lecture may
derivative value, then the image curve help to understand better their physical
starts to move towards separation. If aspects.
one increases the negative velocity
derivative value, then the image curve For both cases referred to above,
moves towards the separated that plate the turbulent shear layer not having
layer. The more, however, one approaches time to absorb kinetic energy from the
the separated flat plate layer, the free stream, uses its proper kinetic
smaller the negative derivative value energy transfering it from the outer
needed to move the image curve towards layers to the inner layers which are in
more negative values of I.. When the need in order to overcome the adverse
flat plate shear layer is reached, if pressure gradient. The velocity profile
this is possible, then the corresponding is thus deforming itself accordingly,
derivative reaches the value zero. until separation and beyond.

The Compressibility Effects We shall examine this situation
using equation (6.7). When the pressure

An investigation was made, increase takes place in a small
concerning compressibility effects on distance, the dissipative term can be
the image plane, when the compressible neglected so that, for a stationary
counterpart of the method was case, equation (6.7) reads
established, as described in Chapters 3
and 4. Results concerning the turbulent Lk2

shear layers indicate that the f KF1
equilibrium shear layers and the locus - dLk
of maximum Mt conserve approximately F2
their position, provided that instead of Wsei Lk,
X, the quantity Xk, defined as -- = e (6.8)

Ws.'
Xk = ]nRe3k+2Lk (6.6)

where I and 2 are the initial and final
is used as abscissa for the compressible stations of the rapid deceleration.
image plane.

The theoretical predictions of this
Some of these results are presented in simplified equation and experimental
figure (6.6), where we can see that the results for incompressible and
initial image plane remains practically compressible flow, for the cases
unchanged for practical applications for mentioned above, are presented in figure
Mach numbers up to 2.5. (6.7). These results show scatter and

uncertainty. They are, however,
On the other hand, the equation sufficiently precise for the present

corresponding to (3.22) for compressible analysis purpose, which is to examin
rotating flow reads whether equation (6.8) can roughly

describe such situations.
dE I w

2
R
2

KFldLk=Fdq+KM--+M2---d(- ) (6.7) Through this analysis it is
E 2 2 demonstrated that the pressure increase

W, up to separation depends upon the
e initial value of the form factor Lk (or

We can see that the reasoning that was Hx2 k) and the initial value of the Mach
advanced above concerning the optimum number M51 , before the interaction. The
deceleration, utilizing equation (3.22) existing experimental results, performed
is valid here as well, in spite of the under controlled conditions (see
presence of the functions Fj and F2 . The references [6.4] and (6.5], where the
term M 2 .(I/Ws.)d(w2R2/2) acts as a present investigation is reported in
moderator, more detail) concerned essentially flat

plate cases. For this the velocity free
The assumption is made that the parameter ,1 is constant and the value

transformed (through Stewartson's of H1 2 k depends upon the Reynolds
transformation) laminar image plane number. Thus, there exists a slight
conserves its properties for comressible dependence of the experimental results
flow and, especially, the laminar on Reynolds number. For our data,
stability curve. An investigation is in consequently, the pressure rize up to
progress, in order to establish in the separation must be characterized by the
transformed plane the laminar stability upstream Mach number only, as H112 is
curves for various Mach numbers. Thus, almost constant. This is demonstrated in
the image plane will be more accurately figure (6.7). Note that this theory
specified, without, however, changing applies to the incompressible case,
its use. Of course, by definition the as well, of Bradshaw and
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Galea[
6
.al. Note, also, that the favorable conditions before any

capacity of the shear layer to sustain a calculation has been carried out. For
rapid deceleration decreases as the Mach instance, staying above the line Lk0,
number increases. In terms of pressure we ensure that no separation occurs.
rise, however, the deceleration at high Staying above Schzichting's curve,
Mach numbers is advantageous as the laminar instability is avoided and
density variation comes into play. following the line Lt(Xk) an optimum
Lastly, note that such a deceleration is deceleration Is ensured.
performed with negligible losses,
resulting in a situation, where in the Once we have selected our image
outer "inviscid" flow a drop in the curve, equations (3.26), (3.27) and
total pressure takes place (accross the (3.34), (3.35) may be used in order to
shock), while in the viscous flow this arrive at the corresponding velocity
total pressure drop is much less (see distribution.
the measurements of Seddon16.7).

In the following we shall give a
detailed description of how an optimum

7. Individual Shear Layers and suction side image curve can be
the Optimum Image Curve established. The optimization will be

based on the following principle. The
In Chapter 5 we have given evidence dissipation factor is an order of

that Le Foil's method compared with magnitude higher for turbulent than for
experimental results can handle a laminar layers. Whereas, the rate of
considerable number of cases with dissipation, which is represented by
adequate accuracy for engineering I/N, has a minimum about three times
applications. We may say, then, that smaller for turbulent layers, which has
this method can be used for the analysis been established far from separation.
of situations (existing or at the design The turbulent flow should, therefore, be
stage) in order to inform us about the restricted to the decelerated flow
behaviour of shear layers developing region, and the deceleration adjusted to
under imposed external velocity be the optimum one, or at least these
distributions. condition should be approximated as

closely as possible.
In the previous Chapter we have

examined Le Foll's idea and the general The rest of the flow, starting from
properties of the image plane. In this the leading edge must be laminar. Near
Chapter we shall examine how it is the leading edge, as Ws->O, W... becomes
possible to select an optimum image proportional to the arc length, since
curve for the most critical shear layer this is the form of the potential flow
of the blading, that is the suction side close to a cylinder stagnation point.
for the axial flow machines and the This is achieved with Lks.0436 for
pressure side for the radial flow ones. X->- . For the laminar boundary layer
We shall consider axial machines, first, Schlichting's curve presents an optimum
and comment on radial machines later. image curve, because, as already has

been pointed out, M takes its maximum
value at separation and, so, on that

The Conception of an Optimum curve M takes its maximum possible value
Suction Side Velocity Distribution as long as laminar instability has to be

avoided.
The theory outlined so far, helps

us to deal with the problem of designing Before considering the complete
an optimum velocity distribution in the laminar optimum image curve, it will be
following manner. We have constructed a proved useful to find out what happens
plane, called the image plane, on which to a segment of Schlichting's laminar
all possible shear layers can be stability curve, when we change the
represented by curves, increasing Reynolds number based on the final arc
monotonically with its abscissa. On this length (Res)l and keep unchanged the
plane appear the general properties of non dimensional form of the velocity
the shear layers which can be summarized distribution Wss/Wresgf(s/srsr).
briefly as follows:

Considering an incompressible flow,
Lo(Xx) - Schlichting's curve for we can see immediately that a direct

neutral stability of the consequence of this change of the
laminar shear layers. The physical plane, is that the position
region above this curve is Reynolds number # increases
stable. proportionally to the ratio that forms

the new Reynolds number (Reof) 2 with the
Lt(Xk) - The locus of maximum M. Along initial Reynolds number (Rear),. We have

this line the optimum then
deceleration is obtained.

#C1 (Rear),
Lk-0 - The line corresponding to - (7.1)

separation in laminar and 9f2 (Reef)2
turbulent flows.

We shall come now to the image
- The established upper and plane and consider a small segment of

lower limits of the attached the image curve dX, dLk and the
and separated laminar and corresponding segment of the (qO)-
turbulent shear layers. curve, dq, dt.

It is possible to select an image The situation we are examining Is
curve for the shear layer ensuring presented schematically for convenience



in figure (7.1). After this remark we may come back
to the construction of the laminar part

The following equations establish of our optimum image curve. We have
the correspondence of the image and the presented it as OABCI in figure (7.2).
physical planes for incompressible flow After the initial stagnation point

region, a part with 01=0 (flat plate) is
dq - dLk + PI(Lk)dX (7.2) being used, if necessary, in order to

avoid the deceleration part of
d(W42) e2xdX Schlchting's curve (see ref.[3.23[), and

dt - - (7.3) the corresponding velocity pick.
2CI(Lk) Cj(Lk)

The segment (BC) that follows
Consider now that every d# is corresponds to a displaced Schlichting's

increased by a factor a=#f/4fi. As dq neutral stability curve by a distance
rust be the same for all points of the depending on the range of Reynolds
(q,t)-curve, in view of equation (7.2), number of operation, as discussed above.
Lk, dX and dLk must remain constant .I" represents the point where
during the inverse transformation from instability (in the Tollmien-
the (q,t)-plane to the image plane. Schlichting 2D mode) is first introduced
During the direct transformation we had for the larger Reynolds number of

operation. The distance between the
2x point ot instability and the region,

e idX where the actual transition takes
(d)l = place, depends, at least, on the

CI(Lik) turbulence level of the external flow as
well as on the pressure gradient. A

and during the inverse transformation we crude criterion which depends only on
shall have the level of the external turbulence

utilizes by the value taken by the
21 integral

e 2dX
(d#) 2 - X

Cj (Lk) r
or I j [Ln(X) - Lk(X)] dx (7.5)

(d#)2  #f2 2(1 -X X Xx

(df)1  9t This criterion, proposed by T.S.
Wilkinson, agrees well enough with the

and finally available data to predict the order of
magnitude of XT-Xi.

1 #r2
X3 - X- - In - (7.4) This criterion is applied to the

2 #*u situation where the transition region is
reduced to a point (as it is described

Consequently, a change in Reynolds in reference [6.1]). Transition, then,
number, keeping the same velocity takes place (see figure (7.3) which
distribution, results to a displacement presents schematically the corresponding
of the image curve, expressed by part of the image curve), when the
equation (7.4). An increase in Reynolds integral I takes a certain value, which
number displaces the image curve to the depends upon the external turbulence
right, while a decrease displaces the level.
image curve to the left. When a suction
side boundary layer Is chosen, it is This criterion has been described
interesting for us to be able to keep in more detail in references
our layer laminar for a chosen interval, [3.2],[3.3],[3.7] and [3.10]. The values
not only for one Reynolds number but for of I have been deduced from Granville's
the whole Reynolds number range of (7.1] experimental results. Direct proof
operation. In order to do this, it is of the validity of this criterion has
convenient to realize the design for the been given in ref.(7.2).
minimum Reynolds number of operation,
which is the most critical for the The work of Bario[

3
.14 , some

turbulent layers. We know now that an results of which have been presented in
increase in Reynolds number displaces figure (5.1), opens the possibility to
the image curve of a laminar layer by replace the present transition criterion
0.5 In(#j2/*fo). We can, thus, take Into with a transitional calculation. This
account the maximum possible shift, 0.5 matter is actually under investigation
In(fe.s/Ofeis), of the image curve to by Leoutsakos[7.

3 1
. The problem there,

the right, by considering as laminar in view of the results of Bario, is to
stability curve for our design, model the distance between the
Schllchting's stability curve Ls(X) instability point and the appearance of
displaced by 0.5 ln(#f..s/#fsin) to the turbulence spots. Of course, in
left. For such a situation, if we turbomachines (see SchlichtinglS.l1),
Increase the overall Reynolds number, other modes of instability are present
the Image curve we have selected will (Goertler vortices creating 3D
move to the right but will never exceed disturbances, for instance) and the
the actual Schlichting's curve, as the point of instability is, anyway,
actual displacement of it will never influenced by Mach number (see
exceed the value 0.5 ln(#j.xif/jsn), Arnal[7,l' ). On the other hand, inverse
which already has been taken into transition (relaminarization) starts to
account, be tractable now (see Simandirakis17.53)

with the present calculation method, so
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that the old criterion of transition of Among the general properties that
Wilkinson will be replaced in the near Le Foil had initially established for
future by other more reliable methods, turbulent boundary layers was the locus
However, at the present moment, the of s-wise stability. This locus
designer, having no alternative, may coincides with the optimum deceleration
resolve this problem by inducing curve Lt(X). Boundary layers that are
transition in an as short distance as found over this curve have the ability
possible, avoiding laminar separation. to damp with distance disturbances,
This can be done by increasing the value which were created accidentally at some
of the integral I, following a path position upstream.
parallel to the separation line l-=O
before admitting transition. Le Foil established this property

on the basis of an infinitesimal
Assuming, now, that transition has perturbation theory, (see references

taken place at T, we shall examine the (3.1) and (3.2)), which lacks
turbulent part of the image curve. This generality. It was thought at the
part must realize an optimum beginning that it represented what
deceleration and starts with a segment happens in reality as Clauser(4.

2 1 
had

of a straight line with a slope which reported having observed such a
ensures the continuity of the phenomenon experimentally.
derivative dq/df at transition. Then,
according to the principles established Ever since, various investigators
above for the optimum turbulent have worked experimentally in the region
deceleration, the locus Lt(X) is found between this locus and separation
followed. In the last part of the image (among others StratfordtS.2

3
) and not

curve, the limit deceleration is one reported having observed any
employed until the locus Lk=O is instability effects.
reached, if separation is to be avoided.
We can profit thus as much as possible This is the reason why the present
from the part of the deceleration which author has not mentioned this properly.
can be realized without losses. Of Various workers (among others Le Foll
course, this part can continue in the himself) have used a safety margin
separated flow region, if incidence between the supposed s-wise stability
considerations permit it. We shall come, locus and the chosen optimum image curve
in fact, back to this point later. to account for manufacturing

inaccuracies. When this is done we shall
We have said that the delay XT-XI report it, having in mind the comments

between instability and transition we have made just now.
depends on the level of turbulence,
which is only roughly estimated in most Before establishing some more
practical cases. Therefore, to a fixed features of the image curves, it will be
velocity distribution and a fixed value useful to give an example for the
of Of, corresponds, in fact, a one- incompressible case and thus summarize
parameter family of turbulent boundary our results. We shall suppose that the
layers, and therefore of image curves, ratio of the maximum to minimum Reynolds
depending on the actual position of number Qt...,/$g..jn, at which the
transition. In general, these urves profile is to be operated is 2.71. The
have completely different shapes, and design of the image curve will start
the differences Increase with the from the displacement of Schlichting's
interval of Xt, so that, at first sight, curve by 1/2 In 2.71=1/2 to the left.
it is necessary that the delay in The whole design is represented in
transition corresponding to the lowest figure (7.2). The next parameter to be
possible turbulence levels should be considered is the abscissa X1 of the
reduced as much as possible, and point I where the laminar image curve
therefore, for X>XI,Lk(X) should leaves the curve Lk-Ln(X) and the value
decrease very quickly to a small selected here is X1I7.7. This point I
positive value, so as to increase the corresponds to incipient transition,
value of the integral I as quickly as i.e. when the laminar boundary layer
possible. first becomes unstable.

It has been found that, in the case The first design image curve, shown
of a laminar variation of Lk(X) for X > by the dashed curve of figure (7.2),
X1 , it is possible to select its slope consists of segments of straight lines,
in order to obtain a family of turbulent which are selected as follows:
boundary layers which end with nearly
the same value of LK although their OA corresponds to the flow in the
shapes are different. In addition, the neighborhood of the leading edge
least steble of all is that for which Wse s, which Is given by
corresponding to the latest transition. P-i and Lk=.0436.
Thus, although the posttiI 'f
transition is not so closely fixed In AB a straight line joining OA to
this case, and the turbulent boundary segment BC
layers which result from variations of
It are different, their final properties BC a curve corresponding to P=O to
are the same, and this is of course all avoid the region of decelerated
what is required. flow which is associated with

Schlichtng's curve (Xs-5.2,
The corresponding slope of the Xc-5.8).

image curve in the unstable laminar flow
region is about -0.20 for usual design CS the curve Lks L&(X+.5)
conditions and ly-X1  Is then smaller
than 0.15.
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IS a line defined by the slope turbulent boundary layer which is
dL/dX=-.2 which is such that for increasingly stable and even beyond this
levels of free stream turbulence limit, it can separate only in the case
greater than 1 1/2 %, transition of a very early transition. If, on the
will occur between I and S. contrary, *f is only slightly smaller

than 1.07x106, the turbulent boundary
SD a segment whose slope is defined by layer will separate.

the condition that the derivative
dq/df of the velocity distribution Summarizing, we may say that we
should be continuous at the have established the form of an optimum
transition point, image curve to be used for suction side

boundary layers of blade sections
DE the curve Lk-L(X)+.03, where .03 (compressor or turbine) for the

represents a safety margin above incompressible case. From what has been
tl'e turbulent instability curve said in Chapter 6, it can be easily
Xg=8.3 deduced that the same principles apply

for the compressible case.
EF a final drop to close the

separation with the maximum This general optimum image curve
deceleration not taking into form takes into account the desired
account stability, overall Reynolds number range of
i.e. dLdX--.5. operation (although it will be optimum

for only one value of the overall
The velocity distribution corresponding Reynolds number), as well as the
to this initial image curve, obtained by uncertainty of the external flow level
integration of equations (3.26), (3.27) of turbulence on the transition point
and (3.30), (3.31) from F with qf=-0.16 position.
and V4O (i.e. X-06) is shown by the
dashed curve in fig.(7.4) with the Looking at this optimum image curve
corresponding points marked with the we may see that once the abscissas XT
same letters, and XF have been defined (transition and

final points), the whole optimum image
A smoother velocity curve can be curve has very closely been defined

obtained by rounding off the corners of completely. This last property may help
the first image curve, and is plotted as us to solve the next problem, which is
a full curve on fig.(7.4). This smooth how the choice of one particular image
curve will be used as the basic image curve may be done, once the general
curve from now on. Fig.(7.5) represents requirements of a particular design
the velocity distribution Was/Wret , have been imposed. These requirements
against the fractional arc length. The are usually imposed in the physical
most striking features of this curve are plane, hence the necessity to relate the
the steep final deceleration and also general properties of the two planes.
the very short length of segment IS in This will be done in what follows.
which transition has been located.

The most interesting properties of
Now, transition certainly takes a velocity distribution destinated for a

place before S and after I, so that it suction side are:
is nec-.sary to check that turbulent
separation is avoided for any position a) The overall Reynolds number of
of transition T on the segment IS. To operation, which is imposed.
demonstrate this, the shape of the image
curves for the given velocity b) The maximum velocity appearing on
distribution have been drawn as curves the suction side. Mach number or
1, 2, 3 and 4 of fig.(7.2) for noise considerations may demand it
transition at T1 , T 2 , T3  and T4. The to be as low as possible.
last point T4  is outside the possible
range, but it is included to show that c) The mean velocity appearing on the
by advancing the laminar transition suction side. Its value expresses
point further, turbulent separation the contribution of the suction
really does occur. It can be seen that side to the blade circulatior.
T 3 is Just critical in that it brings
the final image point to incipient d) The losses or some other property
turbulent separation. The energy of the shear layer.
dissipation is, also, presented on
fig.(7.4) and has a final value of 3.7%. Supposing that we consider the
The final position Reynolds number, losses, these are the absolute losses of
Of-l.07xl0, corresponds, since the the suction side. To these, the pressure
chord of the profile is shorter than st, side losses have to be added and then
to a chord Reynolds number based on the the sum of the two has to be compared
reference velocity, which is less than with the circulation per blade before an
1.07/1.22x106. The value 1.22 comes from estimate of the mass averaged loss can
the fact that the mean velocity W5 *.m* 5  be made. We shall consider the first
equals 1.22W.. a . three properties and we shall try to

relate them to the two "independent"
Now, if Of is increased for the variables XT and Xp, which define the

same velocity distribution against s/st, optimum image curve.
the laminar part of the image curve is
shifted to the right and when this shift An interesting property of any
exceeds 0.5, transition is no longer (Lk,X)-curve, which will help us to do
controlled. But up to this limit, the this, is the following. For any such
velocity distribution against arc length curve, there exists (see equations
represented on fig.(7.4), gives a (3.26), (3.27) and (3.30), (3.31)) a
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unique velocity distribution curve in decreasing. It is in our interest to
the form Wss/Wse.a-f(s/sref). In this choose X7 -Xr values in the region of a
way, all velocity distributions start maximum Ws...sea/W... 2.
with the value 0 at the leading edge and
end with the value 1 at the trailing Once the three essential design
edge. factors have been correlated to boundary

layer parameters, some remarks are in
This property gives us the order, before we proceed in giving a way

possibility to construct universal of using them.
curves for all optimum shear layers in
order to use them for blade or airfoil a) The given diagram concern
design. Let us consider first equations unseparated shear layers. That is
(3.27) and (3.31) for the velocity to say that, in the measure of the
potential #, which are the following approximation of Le Foil's theory,

the velocity distributions, which
dRe42 will result, will correspond to

dt i -- unseparated shear layers.
CjI(Li)

b) The given diagrams are independent
dRe4 of inlet and outlet velocities,

d# - inlet and outlet air angles and
Ct(Lk) generally cascade properties, when

the cascade blade case is
We can see that the potential 0 considered.

increases as the square of Re4(-e
x
) for

laminar layers, while it increases as c) Once, a particular problem is
Re 4 for turbulent layers. As the considered (the design, for
coefficients C1  and Ct for the range instance, of a cascade) further
considered are of the same order of restrictions are imposed by the
magnitude (see ref.[3.231) we can potential flow calculation which
deduce that the Reynolds number of the are independent of the diagrams
resulting velocity distribution will established. For example, once
depend principally on the interval in X We./We.2 has been accepted, the
occupied by the laminar part, that is by ratio Wa..X/W...2  must
the position of the transition point XT. necessarily be larger than
A plotting of the logarithm of the W. 1 /W, 2 . The minimum level of
Reynolds number Reef based on the final Ws. 5s 5x/WsG. 2 will be fixed then by
value of the arc length and the exit the thickness of the blade and the
velocity Ws.2 against XT is given in amount of turning and these are
fig.(7.6). We can see that in fact XV problems that can be solved only
plays a secondary role. considering inverse potential

methods for the calculation of the
Considering now the maximum profile shape.

velocity appearing on the suction side,
we can make the following remark. The d) The choice of an optimum boundary
maximum velocity in respect to the final layer for the suction side does not
velocity W5 0. 2 will depend essentially necessarily give the optimum
on the extension of the turbulent part, profile. The combination of the
as this is the part used to realize the deduced velocity distribution from
required deceleration. A plotting of the point of view of closure
Wee.sax/Wse.2 against Xp-Xy is given in conditions, will finally define
figure (7.6). It can be seen that we the circulation, which combined
obtain a quasi-unique curve. An with the absolute losses, will give
explanation for this behaviour can be the performance. However, from the
found in reference (3.6). experience acquired up to now, we

can say that the obtained profiles
Returning now to the third property are good.

Wse.nean/Ws.5 2 we have decided to plot
it against XF-XT and the results are e) The range of operation of the
presented in fig.(7.6). We can see that blade, incidence-wise, is not taken
there exists an envelope imposing an into account in the choice. It is
upper limit. Additionally for XFgconst., possible, however, to design for
the curve passes from a maximum. This the maximum incidence, accepting
can be understood from the following boundary layer separation only for
remark. By fixing the XF, we the limit of operation and knowing
practically fix the level of the losses, from experience that in the range
Now, for small XT all the loss is given between positive and negative stall
to obtain a turbulent deceleration and the profile behaves, normally,
consequently high Ws..s&%/Ws. 2 - In without separation.
moving the transition point to the right
we allow the development of a laminar f) The curves presented in figure
part which creates a plateau on the (7.6) concern the specific
velocity distribution and, so, at the application. If the optimum image
beginning, the Ws*.865 5 /W., is curve changes (for instance, if
Increased in spite of the decrease in diffusers are considered), then the
Woo.saX/We... If we move X1 further to curves will change. On the other
the right, there comes a moment when the hand the same happens, if,
laminar boundary layer is "too tired" to generally, the image curve form
accept high decelerations and the changes for any of a number of
turbulent deceleration which fixes the reasons. Some of these may be
level of the plateau becomes so small compressibility effects, admission
that the ratio W.o

5
./W

5
s.2 starts of a separated region on the
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suction side or curvature and frame of reference.
Coriolis force effects, about which
we shall talk later. An axially symmetric coordinate

system (m,d) is used in respect to which
Remarks on these will be made in the equations to solve are the following

Chapter 10.

We can now proceed with an example (pRAGWm) + b (pRAW u )=0 (8.1)
of design, giving at the same time a am R68
demonstration of the use of the
established curves. Assume that we want 1 (RWu+wR

2
) aW.

to design a blade which operates at a - (8.2)
Reynolds number of 3x0

5
. We can see R am Rad

immediately that for a given XF, the
value of XT is fixed and vice verse, We consider the coordinate
although we can also see the transformation m-m(#,W) and 8(9,1),
impossibility to find solutions for an where # and V are the potential and
XF higher than a certain value. We stream functions, defined as
obtain thus the points A,B,C,D (see
figure (7.6)), which are transferr-d to V.# = (W+wxr) (8.3)
the mean and maximum velocity curves. We
can see now that optimum solutions are xV.W - p(As); (8.4)
obtained around A, but at the same time
the maximum velocity risks to be too n is the unit vector normal to the
high and the losses may increase axisymmetric surface and Y.( ) is the
considerably. The final choice will be surface gradient operator. In this way,
given by the particular problem we we have transferred our problem from the
consider (inlet and outlet air angles) physical to the (9,V)-plane (see figure
and a trading between maximum velocity, (8.2)). Writing, also, the velocity
mean velocity and losses. In this components in terms of the velocity
respect two or three distributions have magnitude W and the flow angle P as
to be calculated and used as input to
the inverse potential calculation before W.= W cosP ; W.= W sinp (8.5)
a final choice can be made.

so that it is possible to write
equations (8.1) and (8.2) in the

8. The Inverse Invisci", following form
Calculation Method

2
The present inverse i. iscid flow Al(lnW),9 +A2(InW)#+A3(InW)9 +A4(InW)vy+

calculation method iF P '.essing the
rotating cascade case tying on an 2
arbitrary axisymmetric surface with +A5(lnW)+A6(InW)v+A7(InW)oy+
varying streamtube ,dth. It makes use
of Schmidt's equations (refs (8.1], +A8(lnW)#(lnW)V+A9=0 (8.6)
[8.2],[8.31,[8.4j) but it diverges, as
will be seen, in the formulation of the P pAnW Ucoso
solution, tbc numerical techniques used, -- (nW)y--------+(lnW)# - -
as well 's the closure conditions. 9 W+Usinp W+UsinP
Although not addressed directly in the
present lecture, the isolated airfoil
case can be treated as well. Again, alnR Wsinp+2U
because of space limitations, only the (8.7)
essential features of the method will be am W(W+Usinp)
presented.

ap I W2+U2+2UWsino
Position of the Problem and - - (lnW)s - [
Development of the Equations aw pAnW W+Usinp

It is assumed that the axially 2W2(W+Usinp) UcosP
symmetric stream surface on which the ] (InW)T - +
calculation will be performed is (y-i)(2cpTT.-W

2
+U2) W+Usinp

specified (see figure(8.1)). The
streamtube width variation with
meridional distance, the approximate )lnR I cosP(W2-2U

2
) 2U2cosP

number of blades N, the inlet stagnation * - [ -- I
conditions (Pti,Ttj) and velocity vector am pAnW W(W+Usinp) (y-I)(2cpTTs-W2+U

2
)

W1 , the meridional position of the inlet
stagnation point mI, the rotational aInAn cosp
speed and the outlet flow angle are + (8.8)
specified as well. Finally, assumed am pAnW
given are the pressure and suction side
velocity distributions versus arc The expressions of coefficients At
length, with the condition that the to A, are given in ref.(8.51. In the
pressure side velocity distribution will above form # and V have been introduced
change during the computational as independent variables, while the
procedure as little as possible. velocity modulus and the flow angle are

the dependent ones. During the
The flow is considered steady, calculation procedure only one of

Inviscid, compressible subsonic at the equations (8.7) and (8.8) may be
inlet and irrotational in the absolute utilized, as they are completely

equivalent.
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The Boundary Conditions on the the most sensitive, the pressure side
(#,V)-Plane velocity distribution must be chosen to

satisfy this value of r.

Having performed a first
transformation from the physical to Considering, again, figure (8.2),
the(#,W)-plane (see figure (8.2)), we periodic conditions are imposed along
shall examine in this plane the the (AB), (EZ) and (rA), (HO) pairs of
corresponding boundary, as well as, some boundaries. W(f) is specified along the
additional relations. We consider: suction and pressure side solid

boundaries and the corresponding value
(a) The integral mass flux conservation of 0 is calculated from the following

equation, which reads relation

2nRl 2cR 2  dQ = Wds + wR2d8 (8.12)
-iWIcospiA.i1------paW2cosP2An2(8.9)
N N Consequently, differences in potential

from a station v to a station p may be
so that calculated as

R1  cosPI A01
p2 W2 - pIW - (8.9a) P P P

R2  cosP2  An 2  At = Wds + WR2dG (8.13)
V Jv

(b) The integral momentum equation in
the following form The way the (f,W)-plane has been built,

we have

r. ,Vds Wds+ wR2d8i B Z ; Z A 8
at At At +A4 r; A# A# (8.13u)

blade blade blade A IE H r H

2w The magnitudes of Atl and At| are
= - (R1Vu1 -R2 Vu 2 ) (8.10) specified in our formulation. Their

N value must, however, be such, so that
upstream and downstream uniform

where conditions must be reached with
sufficient accuracy. In this way, the

rl wR~de (8.1Oa) upstream and downstream positions in the
blade physical plane are not specified.

(c) The isentropic flow relations, From equation (8.4) we may get
along with the energy conservation
equation (conservation of the total dW f p(An)WcosRd8
relative enthalpy) along a
meridional streamline so that the corresponding stream

function differences are described by
W
1
2-Ui2 W

2
2-U

2
2 the following relation at the inlet and

Tt -Tt or T1 + -T2 + - (8.11) the outlet stations
RI R2 2.c' 2.cp

P Pl
from which we get the following AW = p(An)WcospRd (8.14)
expression I IV

P2 W 1 2-U2 W2 2-U2
2 /Vl Along the inlet and outlet stations the

- . (1+ - ) (8.11a) flow is uniform with velocities and flow
P1 2cpTI 2.c5 T angles, correspondingly, W1 , W2  and P1,

P2. Consequently, if 1PE fz=Wis=Ve=O is
From the above written equations, the stream function value characterizing

it is possible to calculate the the lower boundary, then the one
conditions at the exit (p2 ,W2 ), characterizing the upper boundary is,
utilizing the data of the problem, which according to equation (8.14)
were specified in the previous
paragraph. It is not possible, using the Affio1W1  2nR1
same data and equation (8.10), to A- cosp 1 -(An) 1 =

specify the value of the circulation, if E N
a rotating cascade is considered. For
this, the integral r must be known, 2-R 2  A
which, in our case, will be computed = p2 W2 cosP- (An)2 =AW (8.14a)
once tze cascade geometry is known. N I
This fact introduces one of the
difficulties of the inverse method Then, the upper boundary being a
applied to arbitrary rotating cascades. streamline, VA=We-r-ga.
During the computational procedure the
integral r, will be given an initial
plausible value and corrected The Numerical Integration of
accordingly, each time a blade shape is the Equations
computed. In any case, the value of r
must be compatible with the imposed In order tj solve equations (8.6)
value of the outlet flow angle P2, so and (8.7) or (8.8), a new transformation
that, if the suction side velocity is performed from the (4,V)-plane to an
distribution must be maintained, being orthogonal (k,n)-plane with square cells

(see figure (8.2)). This transformed
plane is constructed following a body-



fitted coordinate transformation, which procedure involved in this step, the
maps the (4,W)-plane to the ( ,n)-plane. values of W at the periodic boundaries

have been modified along with the
T-,en, tile elliptic type equation complete velocity field.

(8.6) on W is discretized by use of
second order accurate finite-difference STEP 5 : The flow angle field p(9,W) is
schemes and the resulting quasi-linear computed after numerical integration of
system of algebraic equations is solved equations (8.7) and (8.8) in the manner
iteratively for using the MSIP [8.6], described in the previous section. New
[8.71 approximate factorization angle values are computed at the
procedure, which has been developed for boundaries, as well.
non-symmetric 9-diagonal banded
matrices. STEP 6 : The blade section shape 8=8(m)

is computed using the following
Once the velocity field is geometrical relations

computed, the flow angle field is
obtained by the numerical integration of
the ordinary differential equation (8.7) m cospds = m(s) (8.15)
or (8.8) along the iso-n (iso-W) or the
iso- lines, respectively. A second
order Runge-Kutta method is used during r sino
that step. In fact, equation (8.7) is f - ds = 8(s) (8.16)
first integrated along the cascade mean- R
streamline and the computed P-mean-
streamline values are used as boundary Utilizing the above relations, the
conditions for the integration of values of m and 8 are computed along
equation (8.8) along the iso-4 lines, streamlines for the whole flow field. An
This procedure provides the whole interpolation procedure is used in order
p(.8,) field in the most accurate way. to estimate the new set of values

R(m(s)) and An(m(s)), which will be
used, along with the updated values of

The Computational Algorithm the angles.

A computational algorithm was The exit conditions are calculated
constructed, which possesses the at station (2), using the same procedure
following steps (without considering as in 6TEPI. The integral r, is computed
conditions for the profile closure, and its new value is used to update r.
which will be examined later). The pressure side velocity distribution

is modified in order to satisfy the new
STEP I : The exit plane flow quantities value of the circulation. The boundaries
are calculated through equations (8.9a) and associate conditions can be
and (8.11a). A value of the integral F, established for a new (#,8)-plane. A new
is assumed and a velocity distribution grid is established in the (#,W)-plane,
for the pressure side compatible with moving along W-lines and computing each
the value of the circulation r issued time the value of 0 corresponding to the
from equation (8.10) is established, previously updated values of the

velocity field.
STEP 2 : A first approximation of the
(#,8)-plane is constructed and the STEP 7 : STEPS 3 to 6 are repeated
boundary conditions for the velocity until convergence is achieved.
(through equations (8.13a) and (8.14a))
are specified, utilizing plausible angle As observed before, the blade
distributions. The interior (#-8)-nodes section shape issued from the above
are determined after a linear procedure. described computational procedure is not
In the upstream (ABZE) ind downstream necessarily closed.
(rAOH) regions, the points on the
boundary are chosen and the grid
constructed, so that periodic conditions Results and Discussion
can be checked without interpolation.
The complete velocity and flow angle Even before starting discussing
fields are initialized making use of the various aspects of the method it will be
values at the boundaries. An initial useful to show some calculation results.
estimate for the values of (An) and R It is easier to perform this
for each node is made, as well. demonstration for a plane two-

dimensional cascade. Figure (8.3)
STEP 3 : The coefficients A(il,9) presents the physical plane and the
appearing In equation (8.6) are corresponding velocity distributions
calculated through the derived in along the lower and upper boundaries. In
ref.[8.5] expressions. figure (8.4), the generated grid is

shown along with the fields of W(0,W)
STEP 4 : Equation (8.6) is solved for and P(O,8). In figure (8.5) the
W(#,V) using the numerical procedure and calculation results are presented in the
technique described in the previous (t,n)-plane. One may remark the zero
section. At this point, an iterative velocity value at the inlet stagnation
procedure is performed involving the point, as well as the reaecceleration of
previous step, that is updating the the flow behind the rear stagnation
values of the coefficients Aj. This point.
updating is performed, utilizing the
values of the velocity field of the Several stationary cascade and
previous iteration, isolated airfoil test cases were used in

order to validate the accuracy and
At the end of the computational capabilities of the present inverse
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calculation method. The considered cases the inverse method and take it up again
were selected in order to cover as many in the following Chapter.
geometrical configurations as possible
and the complete Mach number range of
application of the method. Exact cases 9. The Effects of "Centrifugal" Forces
were used where possible, while a direct
method of calculation was used when the As "Centrifugal" forces will be
velocity distribution was not known, denoted non-conservative forces and more
given a blade shape. Of course, slight particularly their components normal to
inaccuracies in the results of the the mean flow direction. As will be
direct calculation method resulted in seen, their effects are particularly
slight inaccuracies of the computed large for turbomachinery applications
blade shape by the inverse method. All and for this reason, a separate Chapter
test cases are reported by has been dedicated to them.
Bonataki[8.

5
1. Here, in order to

demonstrate the capability of the Dimensional analysis shows that for
method, some cases were chosen and flows with velocity gradients, non-
presented in figure (8.6). These contain conservative body forces have marked
the Hobson[B.81 exact case (high Mach effects, when acting normal to the flow
number, high turning, low pitch to chord direction, even in the case where these
ratio), a radial inflow turbine case forces are small compared to the inertia
[8.9] (strong variation of R(m), forces. Such non-conservative forces are
rotational, variation of An(m)) and a the Coriolis forces, the forces created
hub wind turbine case [8.10] (high pitch by the presence of a curved wall and the
to chord ratio, high stagger). Good buoyancy forces created by a stratified
results are obtained for all cases density field.
demonstrating that the present inverse
calculation procedure is numerically Before going any further some
sound. However, for the tip section of examples will be given to demonstrate
the wind turbine case which was tested these effects:
but not presented here (for which the
value of the pitch to chord ratio was 1. for B/Rli/300 a change of I0% in
63) difficulties were encountered, as mixing length results[9.1l (Re is
important numerical errors were the radius of the wall curvature).
introduced during the integration. The
problem was finally solved as a single 2. For a radius of curvature R5
airfoil case and gave satisfactory corresponding to a turning of 350,
results [8.11]. a 10% change in distance to

separation occurs (Bradshaw[9-2 ).
It was already pointed out that, if

this procedure was applied using two 3. The calculation results for the
arbitrary suction and pressure side boundary layer developing along the
velocity distributions, it would not suction side of an optimized
necessarily produce a closed blade compressor blade presented in the
section. This question is discussed next Chapter are given in
immediately below. fig.(9.1). It can be seen that the

presence of curvature causes
The conditions for blade section boundary layer separation (detected

closure have been expressed in various also experimentally), for a case
ways up to now. Generally speaking, which would be considered rather
three integral or global conditions must far away, if curvature was absent.
be satisfied in order to obtain a closed When this blade was designed,
shape (see, among others ref.[3.2]). curvature effects were not very
One of these conditions, ensuring that well known. Thus, they were not
the correct mass flow rate is passing taken into account in the design
through the cascade, is automatically process. The design having been
satisfied in the present case, where the realized slightly on the
stream function limit values have been conservative side, separation
correctly imposed. Following an appeared finally at the trailing
extensive Investigation, it was decided edge.
for the present work to employ
appropriate overall parameters in order 4. Reversed transition is taking place
to control closure, rather than (observed experimentally) in the
utilizing the usual integral presence of strong Coriolis forces
conditions. The chosen parameters are (Johnstont9.

31
).

the ratio of the pressure to suction
side arc length and the pitch to chord In order to understand the
ratio. This last parameter can be stabilizing effects of such forces
controlled by either modifying the consider the case of the Coriolis force
number of blades or the blade chord. For acting on a radial flow with a velocity
initializing the first parameter a good gradient in the circumferential
first guess can be made using an direction (fig.(9.2)). Let us consider
existing blade section shape, which has also for simplicity the Navier-Stokes
the desired maximum thickness and, for equations written for incompressible
the same inlet, produced the desired inviscid flow in a rotating frame of
outlet flow angle. On the other hand, reference, which read
when changing the number of blades, it p
is necessary to bear in mind that the W.V4 + 2x0 = - V( -) (9.1)
corresponding modification cannot be P
continuous.

where p*/p is the reduced static
We shall end here the discussion on pressure.
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We can see that an additional 2116
static pressure gradient is present to Ro 6 - - (9.3)
balance the Coriolis acceleration. If, W.0
now, for some reason, particles of a
layer (1-i) with lower velocity Wrl 6
arrive at an adjacent layer (2-2) where Cue = 2 -
higher velocity W,3 prevails, they will R.
be faced with an increased pressure
gradient (due to the increased Coriolis Values for 0 in terms of Roe and Cu6
force caused by the higher velo(ttv have been deduced from experimeit by
Wr2 ). Consequently, they will tend to be PapailiouL3.

2 2
) and van de,

pushed back to their original position. Brambusche[9.61. The relation of P (Ro6
In this crude sense the situation or Cue) of Papailiou is presented in
described in fig.(9.2) is said to be figure (9.3). Experimental values from
stable and the effects of the Coriolis both Curvature and Rotation have been
force are said to be stabilizing. Such a used and it seems that a unique curve
pressure gradient is caused also by the can describe both effects. The value P-7
presence of wall curvature and buoyancy of Bradshaw corresponds to values of Cu6
forces with the same results. The term or Roe of the order of 1/100. On the
"stabilizing" characterizes, thus, other hand Patel'sf

9
.
7
l experiment

situations for which the turbulent suggest a value of 0 as low as 2.5 for
intensities tend to reduce. The same Cue or Ro6 of the order of 0.05. Note
goes for the other turbulent stresses, that for radial machines the value of
The shear layer, consequently, becomes Ro6 exceeds 0.1.
more "laminar" and tends to support less
adverse pressure gradients without Using the above introduced
separating. The opposite situation is dimensionless parameters, we shall try
termed "destabilizing", where the shear and describe the effects of
layer becomes more "turbulent". "Centrifugal" forces.

Considering the situation in the Although the laminar separation is
radial part of the impeller (fig.(9.2)) not influenced by the effects of
in this way, we can see that the rotation (9.8] or surface curvature
Coriolis force induces a pressure [9.9], "centrifugal" effects influence
gradient that intensifies the one the laminar stability limit (see review
created by aerodynamic forces (that is, on the subject in references [9.5] and
it is positive from suction to pressure [6.1]. Along curved surfaces or where
side). It stabilizes the suction side Coriolis forces exist, instability
shear layers, while it destabilizes the introduced by three-dimensional
pressure side ones. Considering, now, disturbances leading to the Taylor-
the direction of the centripetal Goertler cellular vortices may become
acceleration, we can see that the effect predominant (concave surface for surface
of longitudinal (in the main flow curvature or leading surface for
direction) surface curvature is rotation) over the Tollmien-
stabilizing for convex surfaces and Schlichting one. The effect of surface
destabilizing for concave ones. curvature on stability for a concave

wall is shown in fig.(9.4). One may note
In order to account for these that the calculations show an

"centrifugal" effects, Bradshawf9.4] amplification of the disturbance
considered the ratio of "centrifugal" to amplitude for all wave lengths for
.nertla forces, that is the
corresponding Richardson number and, W. 5  61
finally (see for more details ref.(3.23) - > 16 (9.5)
or the original references), established Rc
the following correction formula for the
mixing length I or, in view of equation (9.4), for

l 0"'
- - (I-PRI)-r for the stable side Re. -- > 16 (9.6)
I 2

(9.2)
- I-PR1  for the unstalbe side Similar calculations by Conrad for

a flat plate show that, for rotation,
with p.7 for Rt>0 and 0=4 for Rj<0. the stability limit is established by

the relation
Johnston(9.

5
1, working n Coriolis

force effects and the corresponding Re6 JRoe > 8.8 (9.7)
ratio of Coriolis to inertia forces
(called Rotation number Ro), came to the From the above discussion one may
same conclusion, conclude that on a leading or concave

surface, instability will be provoked
Analysis of experimental results earlier when strong "centrifugal" forces

demonstrated that the value of p doesn't are present. The opposite effect will be
remain constant across the shear layer, observed on a convex or suction surface,
but that a constant value, as where the Tollmien-Schlichting mode of
indicated above, may produce good Instability may be predominant. Once
results. On the other hand, this instability is introduced, then, the
"constant" value is influenced by the whole region of transition is influenced
value of the overall Curvature Cu and by the stabilizing or destabilizing
Rotation Ro numbers, which are defined effeccs. No reliable method exists today
as for reproducing the effects of
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"centrifugal" forces to transition. 2
Again, may we observe that the only B . 0.467Pl.Bk (9.12)
existing alternative for the designer is
to provoke transition as quickly as In order to evaluate the effects of
possible. the Coriolis forces it is necessary to

know 0. It is given (see also
Papailiou, Nurzia and Satta Johnston(9.121) as follows

(refs. [3.6] ,[3.17], [3.18],
[3.20],[3.22], or the summary presented Ai = 1WVsinVycosw (9.13)
in ref.[3.23]), have developed, using
Bradshaw's formulation, the appropriate where the angles V and W are presented
correction for r'-.,ature effects in fig.(86). In other words, in order to
adapted to an i.tegral method of know fl, one must know the projection of
turbulent shear laytr calculation. the Coriolis force onto the normal to

the blade surface. Johnstonl9.1
2
1 gives

The formulation developed by the following expression for the angle v
Papailiou, Nurzia and Satta for the
correction due to longitudinal wall sin

2
p

curvature is applicable to integral Isinyl = IsinAl cos
2
P + - (9.14)

methods using the energy equation. The cos2A
development of the correction was done
in relation to the present calculation Details for developing the
method. The correction is applicable to expression for cosw can be found in
the value of the dissipation factor CD ref.[3.23]. The resulting formula is
(for details see the cited references)
in the form

cosW=±-(sincos-sinsin2sin6)(9.15)
CD = CDo+(Ccorr)c+(Ccorr)S (9.8) sine

where CD. is the uncorrected value and When V=
0
, we have also 0=0 and so

(CDcorr)c, (CDcarr)s are the
corresponding corrections for curvature (cosg)1 0 = ± sinA (9.16)
and Coriolis force effects.

Finally, introducing expression (9.14)
The expressions for (CDcorr)c and and (9.15) to (9.13) we get

(CDcsrr)s are given below (for details
see ref.[3.23]) 11 = ± w~sinAcos.-sin2psin~cosAI (9.17)

5 For a purely axial blade, A=0 and
(CmDcrr)C=-P-Ac(H1 2k)+ so

Q) = ± w sin
2
p sinS (9.18)

6 3
+ 02(-) Bc(H1ak) (9.9) It is seen, thus, that the blade

Rc twist (8=0) implies the existence of a
Coriolis force component normal to the

80 blade, even for a purely axial flow
(CDcorr)R=--An(Hzk)+ machine (cylindrical stream surfaces).

wee For purely radial blades

25 2 A = 900 and so
+ P

2
(-)B(H1k) (9.10) (9.19)
WS. a - ± W cos8

The values of Ac, Bc. AR, 8 are If additionally the inclination 6 of the
presented in figure (9.5). Note that, in blade is zero, then Q=ft. The sign of
addition to what was presented in the relation (9.15) depends on the blade
ref.[3.23], here the values of the surface considered. If the projection of
coefficients are given, as well, for the vector normal to this surface on the
separated turbulent shear layers. The peripheral direction coincides in
study has been performed by direction with the peripheral speed,
Leoutsacosl

9
.10], and has resulted in then the sign (+) is applied.

slightly modified values for the
coefficients Ac, Bc , Aj and Pg. It is, finally, interesting to

demonstrate how the present theory
The present formulation has been compares with experiment. Besides the

completed by Huo[
3
.sl for the effects of comparisons presented here, several

Mach number. Huo based his correction on comparisons can be found in references
Rotta's(9.1l1 formula for the Mach [3.3],[3.6],[3.7],[3.8],[.9],[3.10],
number effects given below [3.12],[3.151,[3.161,[3.171, [3.18),

[3.20],[3.22J,[3.23].
f-1 a

-- ff I+Ri(+ - M.) (9.11) Figures (9.7), (9.8) and (9.9)
to 2 present three comparisons of theoretical

predictions with experiment for cases,
Utilizing this formula, it results where wall curvature was present. Figure

that the coefficients Ac, An are (9.7) concerns the case of an erofoil
practically independent of Mach number, (experiments performed In ONERA). Only
while the coefficients Bc, Ba depend on the turbulent suction and pressuxe side
it in the following way parts have been plotted. Figure (9.8)

concerns again the case of an airfoil
suction side (experiments performed in
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the Ecole Central of Lyon), where, this shape there (and vice versa), while the
time, separation is present. The wedge angle at the trailing edge (as the
influence of curvature effects is quite theory tells us) depends upon the
large. In figure (9.9) theoretical admitted local value of the velocity at
predictions of the experiment of So and the trailing edge. This information may
Mellor are presented. Finally, in figure be used in 'the design of blade shapes
(9.10) a comparison between theory and with the inverse method.
experiment is presented for the Coriolis
force effects. Moore's experimental Secondly, the leading edge shape
results have been used. influence upon the velocity distribution

is studied in figure (10.2). Only a
small part of the blade near the leading

10. Results and Discussion edge is deformed, in order to adjust it
to various radii of curvature arouni the

We have been discussing above inlet stagnation point. The suction and
various aspects of the design of pressure side velocity distributions for
arbitrary blade ' sections for the four cases studied are presented in
turbomachinery applications. For this, the figure. The same general observation
various aspects of an inverse approach can be made as to the local effects of
were described and we shall make, now, the shape change upon the velocity
an attempt to demonstrate how these may distribution. On the other hand,
be used. One has to state from the very although it cannot be clearly seen from
beginning that each application has its the figure, the linearity of the
own peculiarities and constrains so that velocity profile near the inlet
no unique way may be traced for the stagnation point, when the radius of
design procedure. It is important, curvature is constant there, is
consequently, that the designer is assessed. One may, recognizing the well
acquainted, performing an investigation, known fact that the shape of the leading
about the order of magnitude of the edge influences the off design behaviour
various design parameters and the shape of the blading in subsonic flow, proceed
and level of the various distributions in investigating for the blade leading
of the input quantities. The inverse edge shape that will give him
methodology offers a considerable satisfaction for this particular problem
flexibility, giving to the geometric (or why the NACA combined thickness and
shape no constrains at all, but, on the camber distribution gives better off
other hand, _t cannot take into account design performance than the C-4 circular
in a direct manner all the important arc distributions). Such studies result
parameters and constrains of the in giving 

t
he designer the necessary

problem. In this respect, it may be information, which will permit him to
stated from the very beginning that the obtain the desired leading edge shape
inverse tool alone doesn't provide the during the inverse (design) phase.
best solution. It is the combination of Concerning the leading edge problem, we
an inverse and a good direct methodology may state, additionally, that the
that may provide the best possible corresponding changes near the leading
results. edge do not appreciably change the shear

layer behaviour. They can also be
The above being quite general, we transferred on the image plane, so that

shall try below to explain in more they can be included in the choice of
detail what we mean. the appropriate image curve.

In figures (10.1), (10.2) and Thirdly, the blade thickness
(10.3) the computational results are influence is studied in figure (10.3).
presented from a numerical study on the For this, the mean camber line of the
geometry of a straight cascade. Although blade and the non-dimensional thickness
a particular geometry is addressed, the distribution has been kept unchanged.
conclusions that will be drawn are quite Only the maximum thickness value has
general. Firstly, the trailing edge been changed.
shape influence upon the velocity
distribution is studied in figure The general observation that can be
(10.1). Only a small part of the blade made here is that for an increase in
near the trailing edge is deformed. The blade thickness both levels of the
specified deformation is, however, quite pressure and suction side velocity
important resulting to a blade angle at distributions increase. The approximate
the trailing edge ranging from 0o to increase may be estimated taking into
450. Our first observation is that, account the increase of the relative
besides the trailing edge part of the blockage effect in the passage. This
velocity distribution, the rest of it estimation can be done for compressible
has remained totally unchanged, In flow, as well. On the same figure one
spite of the importance of the may identify the previously two studied
perturbation induced to the blade shape. effects, as, simultaneously with the

thickness, the inlet radius and the
Our second observation is that the outlet wedge angle were modified.

larger the wedge angle near the trailing
edge, the lower the velocity value The above described study may, as
indu,!ed at the trailing edge and thq one can see, give us information as to
higher the reacceleration of the flow how we may deal with the choice of the
from the trailing edge to infinity leading and trailing edge velocity
downstream, distributions, as well as, how to deal

with certain aspects of the mechanical
We can conclude that the velocity constrains imposed upon the blade

field in the vicinity of the trailing design. As one example we present in
edge is locally dependent upon the blade figure (10.4) a turbine blade which we
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used as starting point and the thicker maximum velocity requirements (for a
blade that we obtained by increasing the more or less thick blade) and the
level of the suction and pressure side requirement to get the V...,/V2 as high
velocity distributions keeping, at the as possible, a good first compromise
same time, the same inlet and outlet could be achieved with XF 8.2 and
conditions. This particular design is XF-XT-2.2.
quite revealing, because changes in the
velocity distribution were introduced in It can be seen from figure (7.6)
such a way, so that the maximum velocity that the choice of the (XF-XT)-value
was not increased. On the other hand the doesn't correspond to the maximum of the
linear part of the inlet velocity was (W..Mea./W 5.. z)-curve for XF=8.2. One
kept intact, so that the radius of has to remark, however, that, as long as
curvature at the inlet was conserved, we keep ourselves near the maximum,

which is the case here, the
Up to now, we have talked about corresponding loss in cizculation is not

closed profiles and we have given the important. Figure (10.5) presents
parameters, which may help us to obtain different aspects of this case. Once the
closure. No theoretical background may overall intrinsic values of the image
be found as to how one can play with curve were specified, the optimum image
them, in order to obtain closure. We curve for the blade suction side was
have found out empirically how, and we constructed and is presented in figure
can state that it is possible to obtain (10.5(a)). The corresponding suction
closure with around five iterations, side velocity distribution was then
During these iterations the suction side calculated and is presented in figure
velocity distribution may be kept (10.5(b)). A pressure side velocity
unchanged or, if the absolute distribution was matched to it and,
necessesity to change it partly or on using the conformal mapping inverse
the whole arises, then an optimum one method of A. Goldstein, a blade shape
can be chosen again. During the was issued. It is presented in figure
computational procedure aiming for (l0.b(c)). The image curve corresponding
closure, the parts of the velocity to the pressure side velocity
distributions near the leading and distribution is traced on the image
trailing edges can remain unchanged, in plane, figure (10.5(a)). It was tried
order to ensure the desired blade to obtain an as extended as possible
section shape locally, laminar shear layer.

When the Lock and Firmin model is One may find quite a few
applied, the inviscid flow calculation deficiencies in this first design, the
(direct or inverse) considers the most important one being that the
effective blade section surface, which influence of curvature effects on
includes the displacement thickness, turbulence was not included. When the
Consequently, during the complete blade was tested in the VKI cascade wind
inverse design procedure, including tunnel, it was found that, due to the
viscous effects, it will be necessary to high loading, lateral flow convergence
subtract from the obtained blade was important and, although it was
section shape the displacement thickness assessed that transition was located
both from the pressure and the suction were it was introduced theoretically.
sides. The target will be then to obtain the velocity distribution was diverging
a closed blade after the suction and from the theoretical one and so were the
pressure side displacement thicknesses losses. This situation is described in
have been subtracted. Obtaining an open figure (10.5(b)). Subsequent tests
profile with a definite distance between conducted in Pratt and Whitney in 2-D
the trailing edge suction and pressure conditions, however, demonstrated that
sides doesn't constitute a problem for the experimental velocity distribution
the inverse method. On the other hand, was very close to the theoretical one
in Chapter 2, the condition concerning and so were the losses. Experimental
the static pressure difference of the results presented in figure (10.5)
inviscid flow at the trailing edge has obtained in Pratt and Whitney,
been specified (equivalent Kutta demonstrate that the level of losses of
condition). It is possible to express it the optimized blade is quite below that
in, a velocity differen-e and utilize it of the NACA series and that its off
during the inverse procedure. designed behaviour is quite remarkable.

Before going any further, let us When the curvature effects on
apply the design procedure to a specific turbulence were incorporated in the
case, in order to make a demonstration. method, calculations were performed for
An old design [3.211 of a compressor the suction side velocity distribution
blading will be considered. The and were reported here in figure (9.1).
compressor blading was imposed to have a It can be seen, there, that, without
45 degrees inlet air angle and an axial curvature effects, the suction side
discharge. The desired blade chord shear layer is far from separation (a
Reynolds number was approximately 3x105 conservative design was adopted). When
and no additional constraint was curvature effects are taken into
imposed, other that that the blade ought account, separation is reached near the
to be maiiufacturable. It was taken that trailing edge. This separation was
the velocity ratio V1 /V2 .0.707 and, observed, also, experimentally.
considering that V..x/Vi-l.3 was a
reasonable value, we came to the The case of a wind turbine blading
conclusion that V.aX/V2 should be of the is examined in figure (10.6). This was
order of 1.84. Considering figure (7.6), actually a redesign of the hub blade
it is possible to see that combinity the section, which is presented in figure
Reynolds number requirements, the (8.6.3). The redesign was undertaken,



because it was found that considerable new version of a radial compressor
separation was present for the existing 110.1], (10.2] was done utilizing the
case. The same overall target was present calculation method. The aim of
maintained (as far as number of blades the design was to reduce the axial
and circulation per blade were length of the compressor for the obvious
concerned). The aim was to get as low advantages of a multistage arrangement.
lusses as possible. It was also decided The compressor pressure ratio was v-2
to avoid turbulent separation for the and its mass flow rate m..=kg/s. Some
design point. In figure (10.6) the results of the calculations are
optimum velocity distribution is given presented in figure [10.10]. They
and the corresponding blade shape. concern the blade suction and pressure
Already, one can see that the shape is side velocity distributions along the
not conventional and cannot be easily mean stream surface. The variation of
represented by a mean camberline and a the streamtube width and radius was
thickness distribution. On the other taken into account along with the
hand, the theoretical calculation tells effects of compressibility and those due
us that the losses were reduced by a to the wall curvature and Coriolis
factor of four in respect to the force. The shear layer calculation
existing blading. More details for this penetrated inside the reverse flow
case can be found in references [3.25] region.
and (3.261.

It can be seen from figure (10.10)
In order to demonstrate the that the chosen velocity distributions

capabilities of the method, a redesign are such that the deceleration is rather
of the blade presented in figure (10.5) mild on the suction side and severe on
was done. This time, however, all the pressure side. The "centrifugal"
effects were included in the force influence finally provokes
computation, while in addition the inlet separation near the suction side
Mach number was taken to be Me1w0.7 and trailing edge, while it suppresses it
a thicker blade was targeted. The all together on the pressure side.
calculation results are presented in
figure (10.7). It can be seen that the Details on the radial compressor
blade is thicker, the local Mach number and the test results that were
is over unity and the circulation is performed in ECL can be found in
higher than in the previous case reference (10.2]. It can be seen there
resulting to a higher pitch to chord that the overall efficiency of the
ratio. The calculated level of losses, compressor (including the scroll) at the
thus obtained, remains still quite low design point was 0.84, a figure which
and comparable to the previous case. can be considered rather satisfactory.

The impeller efficiency at design point
The inclusion of curvature and was found to be 0.90 and equal to the

Coriolis force effects in the design computed one. This figure, however,
procedure must be discussed somewhat alone cannot explain the good overall
further. One has to observe that these efficiency. We believe that it was the
effects have as a consequence to limited separation admitted for the
displace the optimum deceleration curve Impeller that provided the diffuser with
(which is the locus of the maximum Mt- good initial flow conditions that gave
values). In figure (10.8) calculation this interesting result. We can also
results are presented that demonstrate remark the hub shape, which was found to
that the locus of maximum Mt-values for be necessary during the design, in order
turbulent flow is displaced when these to obtain the pressure side
effects are present. On the other hand deceleration, where the Coriolis force
some calculation results concerning the effects were effective.
Coriolis force effects are presented in
figure (10.9). A velocity distribution
is considered with very high decele- 11. Conclusions
ration. Using this velocity distri-
bution, image curves are calculated for The present course tried to propose
various values of the Rotation number, theoretical tools that may help the
The velocity distribution and the sign designer in his work. In fact, a
of the Rotation number are assumed to complete (viscous and inviscid) inverse
correspond to the radial part of the procedure was proposed, but, it was
pressure side of the blading of a pointed out, that in order to obtain
centrifugal compressor. It can be seen results, it has to be combined with a
from figure (10.9) that the initial sound direct (analysis) one. Various
deceleration is quite high and that examples were chosen In order to
early flow separation appears. The demonstrate the use of the proposed
Coriolls force effects, however, tend to tools. Of course, these examples do not
delay separation, or even suppress it cover all cases, but rather converge to
altogether. The results of similar the conclusion that the proposed tools
calculations performed for the suction may prove to be quite useful, while,
side of the blade radial part of a each design must be considered as a
centrifugal compressor demonstrate that, separate case.
In the presence of strong Coriolis
forces, the deceleration that this part
of the bldde can sustain is very
limited.

It can be seen, from the evidence
given above, that the design of radial
machines is influenced considerably by
these effects. In fact, the design of a
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APPENDIX Al Re, Reynolds number based on
displacement thickness

Nomenclature
Re 2  Reynolds number based on

(x,y) or mainstream and normal momentum thickness
(m,n,a) directions

Re3  Reynolds number based on

V (uv) absolute velocity vector energy thickness
having components u,v in the x
and y directions Re Reynolds number defined by

equation (1.91)

(W.,W.) relative velocity rector

having components in the m and Rex Reynolds number based on
n directions distance

M(Ls,X) semi empirical functions for ReA. Reynolds Number defijed as
P,(Lk) laminar and turbulent flows (see eq.3.6)
CI(Lk) Wssw.(Sz-Si)
Pt1(Lk,X)
Pt2(Lk,X)
Pt3(Lk,X)
Ct,(Lk,X) Ree Reynolds Number defined as
Ct2(LkX) (see eq.3.7)
Ct3 (Lk ,X) W.w(63-

5
3*)

Cp specific heat coefficient for
constant pressure or pressure
recovery coefficient Ri local Richardson number

A,B semi-empirical coeffiecients R radius
used for the calculation of
the curvature and Coriolis R5  longitudinal surface
effects curvature

cD dissipation factor R06 overall rotation number

cf skin friction coefficient r recovery factor

Cus overall Curvature number S stability parameter of
PrandtlI

E kinetic energy dissipation

T temperature

G Clauser's or Rotta's form

factor u, friction velocity

H12=51/52 momentum thickness from u. reduced velocity used in

factor compressible flow theory

H3 2 =53 /63 energy form factor U,V,W velocity

Hp2 =Sp/62 density form factor X abcissa of Le Foil's plane

I integral used for the o angle
calculation of the transition
point (equation (7.5)) - "constant" used in the

calculation of curvature
K - factor introduced in order and Coriolis effects

to take into account the - angle
normal fluctuation terms

- curvature y ration of specific heats

kc constants of law of the wall w(y/5) Coles' wake function

I mixing length 5 boundary layer thickness

L length 51 displacement thickness
defined as

Lk ordinate of Le Foil's plane pew.WseRw5 f
5

m power characterizing the
equilibrium boundary layer R(p.Wse-pWO)dn
velocity distribution

0
M, free stream Mach number

52 or 6 momentum thickness defined as
p static pressure pew.w .w-Rw.525

p reduced pressure

q external velocity logarithm 
IRw.p(Ws,-W.)dn

Re Reynolds number
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83 energy thickness defined as
pew.a. =- = w wall

6
22 o reference

IRw.P(Ws.-W.)dn corr correction
0

e external flow
61k or 61 kinetic displacement

thickness defined as ref,r reference
pe.. .RwWs0.6k =
5 s - separation

- tangent to the wall
R.pe(Ws.-W.)dn direction

o k kinematic

6P density thickness defined as t - total
Pe.'R.'Sp w - turbulent
6

max maximumIR(p.-p)dn
min minimum

0

f or F final
Sh enthalpy thickness

I instability
A Le Foil's velocity profile

family free parameter T transition

p coefficient of viscosity n normal to the wall direction

v kinematic viscosity I - lower

- laminar
turbulent kinematic viscosity

u upper
"I Cole's velocity profile

family free parameter in initial

r circulation #,W partial derivatives

Ti, n boundary layer equilibrium _ and

parameters

p density
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OPTIMIZATION OF TARGET PRESSURE DISTRIBUTIONS

by

R.F. van den Dam, J.A. van Egmond and J.d. Slooff

National Aerospace Laboratory NLR

P.O. Box 90502
1006 BN AMSTERDAM, THE NETHERLANDS

Summary

An overview is presented of the possibilities and problems associated with the use of numerical optimlza-

tion techniques in aerodynamic design.
First, an inventory is made of the alternative aerodynamic design methods, the numerical optimization approach
being one of them.'The development of optimizing design methods is outlined and a short exposition of the
state-of-the-art in numerical optimization is given. This is followed by a discussion on the practical use of
numerical optimization techniques in aerodynamic design, in particular the inverse numerical optimization
approach. An important step in this approach is the optimization of target pressure distributions, which are
used by inverse methods to find the corresponding geometry. The procedure for finding target pressure distri-

butions is explained, illustrated by some examples.

1. Introduction

Traditionally, aerodynamic theory distinguishes between two different formulations of the problem of

computing the flow past a body. In the analysis problem, one seeks to find the flow and aerodynamic character-
istics of a body of give shape at give free-stream conditions. In the design problem, the objective is to find

the shape and angle-of-attack of a body that has to satisfy given aerodynamic characteristics.

In the aerodynamic design problem the designer wants to have. most of all, control over the aerodynamic
quantities such as lift, pitching moment or pressure distributions. In fact, he usually has to deal with
aerodynamic requirements at multiple design points (cruise flight, high lift conditions, etc.). However, the
designer wants to have explicit control over the geometry as well, at least to a certain extent. He wants to
be sure, for instance, that the aerodynamic shape is also acceptable from the point of view of the structural
engineer. Another aspect where the aerodynamic designer is confronted with is the question whether the design

problem as formulated really has a solution (existence requirement) and whether there is one solution only
(uniqueness). The design-problem can also be an ill-posed one in the mathematical sense. And last but not

least, the computational effort of the procedure to solve the design problem, which generally is a number of

times of that of an analysis method, must he acceptable in order to work with it on a routine basis.

In literature, various computational procedures for aerodynamic design can be found, each havng its own

abilities and/or inadequacies with respect to meeting the requirements just described. Five different classes

of computational procedures for aerodynamic design may be distinguished (Ref. i):
I. Indirect methods : Indirect methods are characterized by the fact that, in principle, the designer has

direct control over neither aerodynamic quantities nor over the geometry. Rather than specifying such
quantities directly, the designer has to manipulate a number of (generally non-physical) parameters and
sees what comes out of it. The hodograph method (e.g. Ref.2) and the fictitious gas method (e.g. Ref. 3)

are in this category.
2. Inverse methods. This category contains methods for solving the classical inverse problem of aerodynamics,

i.e. that of determining the detailed shape of a body that will produce a given pressure distribution (and
hence given lift, pitching moment, etc.). The most serious limitation of pure inverse methods is that no
direct control can be exercised on the geometry (may lead to unrealistic geometries). In residual cnrrec-

tion type of inverse methods (e.g. Ref.4) it may be possible to impose constraints on the geometry. The
specification of the target pressure distribution, however, puts a heavy burden on the aerodynamicist. As
an example, for transport aircraft, the target pressure distribution must be chosen such that, at least at
the design condition, boundary layer separation is avoided and that drag is minimized while obtaining an
acceptable geometry. At the same time the choice should lead to acceptable off-design characteristics.

3. Optimal control methods (Ref. 5). Such a design method may be creatf'd by integrating a control function
Into an analysis method, and inserting a variation procedure based on control theory to reach a minimum of
a certain cost function. The control is the shape of the serodynamic surface, and the cost function may be,

for Instance, the deviation from a desired surface pressure distribution, but could also represent other
minsures of performance such as lift or drag. So, the method allows control over the aerodynamlcs, while the
computational effort is still within reasonable bounds (approximately slightly more than pure inverse
methods). The numerical implementation of these rather new design methods, however, remains still to he
explored.

4. Direct numerical optimization methods. This category is characterized by the use of automated design proce-
dures In which a numerical optimization algorithm and a fluid dynamics solver are linked together to,
directlv, minimize a given aerodynamic object function (such as drag) by iterating on the geometrv. These

methods essentially have the same advantages as optimal control methods (control over aerodynamics, multi-
point design capabilities, some control on the geometry). The direct numerical optimization procedure, how-
ever, becomes exremelv expensive as the number of geometry parameters is Increased.

5. Inverse numerical optimization methods. In the inverse numerical optilmzacion approach the design variables
are parameters describing the pressure distribution rather than the geometry. The optimization algorithm Is
used to minimize the drag and subject to constraints on lift and pitching moment. With the target pressure
distribution established a corresponding geometry can be determined by means of an inverse code. The pro-
cess is repeated antill a geometry is obtained having acceptable off-desIgn performances and satisfing the

geometry constraints. This procedure avoids most if not all of the limitations of the pure inverse method,

while requiring considerable less computational effort than the direct numerical optimization method.

The paper will especially be focussed on design techniques based on numerical optimlzatlon. A'ter explal-

ring the principles of numerical optimization, a brief review of its ar ''ations In the put and present will
be given. Subsequently, the application of nurerical optimization techni

0  
In the inverse numerical optiml-

zation procedtre will he worked out, and illustrated by some examples.
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2. Opcimizirg design methods

The growth in speed and capacity of digital computers has opened the way to the application of theoreti-

cal methods to aerodynamic design problems to an extent which was almost unimaginable thirty years ago. At

that time, the basic tools at the disposal of the aerodynamic designer were analytical tools and physical

experiments. Analytical methods forced him to make very restrictive and idealized assumptions, and allowed him

to consider simple configurations only. These limitations were largely removed by windtunneltests. Through

physical experiments with scaled of actual (parts of) design configurations, the characterfistc behaviour can

be determined. Windtunnel-experiments. however, are costly and can take up a lot of time, especially if a sub-

stantial number of design parameters is involved. Besides, the experimental potentialities are often restric-

ted by the limitations in test conditions and test equipment, and results can be affected by the test environ-
ment itself (for example, by wall interference).

With the developments in the field of digital computer technology and numerical methods, it became feas-

ible to use numerical simulation methods in aerodynamic design processes. Using well-developed simulation

methods, it is possible to treat complicated designs with, in principle, less restrictive simulation condi-

tions than is the case with windtunnel experiments. Besides mathematical simulation methods are inherently

more flexible with respect to changes in the design parameters, and are usually more cost-effective to work
with. At first, the computer was almost exclusively used for the theoretical analysis of a proposed design.
In fact, any designer wants to achieve the design that is best according some properties. Very probably, his

first attempt will lack some essential characteristics or violate some of the imposed design constraints. The

designer then modifies the aerodynamic design by changing some of the design parameters. Analysis of the

effects of these changes on design characteristics must yield the information he needs in order to decide how

to change the parameters to achieve an improvement.

A logical extension of this classical way of designing using computers, is one in which the computer

drives the design parameters towards a satisfactory ultimate design (Ref. 6). The simulation methods are then

interfaced with an Iterative control system (the optimizer), which interprets the analyis results in the light

of previous iterations and subsequently decides how to vary the design parameters in order to better meet the

design objectives and constraints. Also in this automated procedure, the simulation method is of vital impor-

tance.

In fact, the iterative process control system does not function differently from the human optimizer.

Both start with an estimate of the design in view and then subsequently iterate to a final solution. When a

suitable mathematical optimization technique is used, however, this way of designing will generally be more

efficient. Besides, mathematical optimization is applicable to a higher dimensional space than a designer can

manipulate. Of course, the restrictions of a particular optimization algorithm must also be realized. Moreover,

the use of optimization algorithms and their coupling to simulation methods ask for more programming effort.

For example, design criteria and constraints have to be formulated in an explicit way, which is not necessa-

rilv needed in inverse methods or indirect methods.

3. Numerical optimization

The application of numerical optimization has been made possible by the development of numerical techni-

ques for obtaining maxima and minima. Though the history of numerical optimization is relatively short, a

variety of useful optimization techniques is already available nowadays (see e.g. Ref. 7). Host of these tech-

niques, such as linear and dynamic programming methods, have been developed to deal with specific classes of

optimization problems. For most technical applications, however, methods for solving constrained nonlinear

optimization problems are more relevant. In recent years, iesearch in this particular field has resulted in

a number of efficient and reliable computer codes. Comparltive studies (see e.g. Ref. 8) can support the

designer In choosing the most appropriate one for solving his particular problem.

The constrained nonlinear program (NLP) problem concerns the determination of design parameters that

minimize an objective function, while satisfying a finite number of constraints. In standard notatation:

min (F(x)fb i F (x) i b
5 

, j - I,m2
ii - i

Here, b and bu, respectively, are the lower and upper bounds on the constraint functions F J(x). Tn a NLP

problem, one of more of the functions appearing in the notation are nonlinear in x.

In general, methods for solving these kind of optimization problems can be subdivided into:

- methods in which the necessary conditions for an optimum are derived and subseqently solved;

- methods based on an iterative search strategy.

The first category of methods is restricted to well-behaved functions only, and even then the algebraic pro-

blems that arise from it may be rather complicated and difficult or impossible to solve, even with the numeri-

cal metbods and computers of the present day.

Optimization methods based on an iterative search strategy operate on the objective function directly and

there is no formal intermediate step of specifying necessary conditions for an optimum. In the lest decennia,

a large number of iterative optimization methods has been developed. Usually, these methods consist of two

separated subprocedurea, one for the determination of the search direction, and the other to move In this

direction in order to find an optimum that is satisfying the constraints. In order to illustrate this process,

an example is given in Figure 1. The process is initiated at a starting design x0. Then an optimum is approac-

hed in a sequence of successive steps. In the figure, the choices of the directions are chosen somewhat arbi-

trarily, however, such that the value of the object function F decreases in each iteration step while not vio-

lating the constraints. In general, search methods stop at the first local optimum that is reached.
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Two different types of search methods can be distinguished: gradient methods (using gradient information
one way or the other) and pattern- and random methods (not using any gradient information). In the latter,
the search pattern Is determined a priori, or is determined on the ground of experience from previous iterated
points and perhaps coincedence. In case of highly nonlinear optimization problems, these methods may be more
robust than gradient methods, the rate of convergence to a solution, however, usually is lower than that of
gradient methods.

From a mathematical point of view, gradient methods are more sophisticated and, as gradient methods use
first (and possibly second) derivatives, this search strategy may be expected to be more efficient. The lite-
rature is mainly concerned with this particular class of optimization methods. The following categories of
g.idient methods may be distinguished:
o First order methods using first derivatives only (e.g. the steepest-descent method);
o First order method- using first derivatives, but having second order characteristics (e.g. conjugated

gradient methods);
o Second order methods using approximated second derivatives, the so-called Quasi-Newton methods

(variable-metric methods);
o Second order methods using exact second derivatives, the so-called Newton methods.

There are various ways of handling constraints in the optimization procedure; for instance by:
o moving along a constraint boundary when that constraint threatens to he violated during the iteration pro-

cess (the so-called boundarv-following methods such as Zoutendijk's method of feasible directions);
o adding the constraints to the objective function using penalty terms, thus performing a conversion to an

unconstrained optimization problem (the so-called penalty-function methods such as SUMT).

In the last decade, developments In the field of constrained nonlinear optimization have especially been
focussed on improvements of existing methods. These developments concern, among others, the determination of
efficient search steps (e.g. the doglep-step method, Ref. 9), procedures for specifying a starting solution
(often difficult to find by hand), and convergence improvement in the initial phase of the search process
(e.g. the thrust method, Re. is, 11).

The difficulty faced by the practitioner is in choosing which optimization method is the most appropriate
one for solving the problem on hand. Several criteria (see Figure 2) may be relevant here:
- Applicabilitv. It is important to realize for which type of problem a particular method has been developed

(unconstrained problems, linearly constrained problems, etc.);
- Efficiency. A logical criterium to measure optimization efficiency is the total number of analyses typi-

cally required to obtain a near-optimum design. If gradient information is calculated by finite differ-
ences, the number of analyses re-ared at each iteration point equals at least the number of design varia-
bles pIus one, which may lead to unacceptable computer time;

- Convergence characteristics. For instance, rate of convergence and degree of convergence;
- Robustness. Does the method, under various circumstances, always lead to a reliable arswer?
- Simplicity of use. The amount of effort necessary to use the method or computer code;
- General applicability. The possibililty to apply, without much extra effort, the method to other problems;
- Flexibility. The possibility to use the code in different ways for the problem on hand;
- Requirements from the size of the problem (number of design parameters, constraints, etc.);
- Capacity. flow much computer core storage does it use?
- Time and effort that is required to learn to use the method or program code.

It is clear that, in order to make a justified choice, it is necessary to know the possibilities and the
limitations at each optimization method or code. In fact, the selection of an optimization algorithm can it-
self be a major optimization task.

4. Aerodynamic design using numerical optimization

The past decade has seen repeated efforts, some (partlv succesfull, other less so. to directly address
the problem of aerodynamic design by combining computer codes for aerodynamic (drag) analyses (flow solvers)
with numerical optimization algorithms (see e.g. Ref. 12). The optimization algorithm then controls variations
of a number of independent variables, such as parameters defining the geometry, with the purpose of finding
the particular combination of parameters that, subject to given constraints, leads to an optimum value of the
oh ect function (e.g. minimum drag). In this process, the fin" qolver is used to provide values of the object
function for each combination of values of the independent vat ibles that is considered to be feasible and
"interesting" by the algorithm.

Generally speaking aerodynamic design using numerical optimization requires:
a choice of object function (drag, lift, etc.)

- a flow solver (aerodynamic analysis code)
- a choice of independent variables
- a choice of constraint functions defining that part of the solution space that Is considered to be feasible

from the engineering or another (e.g. numerical) point of view
- an optimization algorltm.

With respect to the choice of independent variables one may distinguish two different approaches. One,
and indeed the most common choice is to use parameters defining the geometry as the independent variables.
This requires a direct or analysis type of flow solver only. The approach is generally referred to a as
direct numerical optimization.

The approach, pioneered bs Hicks et ai (Ref. 13) owns its existence entirely to the availability of large
and fast computer systems. Because of the excessively large computational requirements, at least in 3D, the
approach is sometimes referred to as "design by brute force". Nevertheless It holds great potential for the
future. A reappraisal of the technique has been given by Hicks (Ref. 14).



3-4

A generalized flow diagram of the numerical optimization technique is presented In figure 3. The process
is initiated by the choice of an aerodynamic object function F that is to be minimized (for example, the drag)
a number of quantities to be constrained G and a set of design variables. The constraints can be of aerody-
namic or geometric nature; e.g. CL and/or 4/c greater than a specified value. The design variables are gene-
rally taken to be the coefficients A, of a number of shape functions

n
Z - Z° +E A f

0 1- I * I

describing (!odifications to) the (starting) geometry.
The process begins by perturbing, in sequence, each of the shape function coefficients A . The reoulting

n shapes are analyzed by means of the aerodynamic program (determination of F and G 'a) and die derivatives
3F . aG , or rather the difference quotients AF , AG are determined. The next Atep is the formation,

i I i I
by the optimization program, of the gradient VF and the determination of the direction of steepest descent of
F. in the n-dimenslonal space formed by the basis vectors A , while satisfying the constraints. The optimiza-
tion program then executes a number (typically 3) of steps In this direction, with another aerodynamic analy-
sis performed at each step, until either a constraint is met or F attains a minimum. In the first case, or
when the minimum of F is lower than the previous m-nimum, the process is repeated; new gradients are deter-
mined, etc. When the latest minimum of F is equal to or higher than the previous one the process is termina-
ted.

The optimization process described above requires typically 10 complete cycles or, in other words, 10
(n+3) analysis calculations (Ref. 15). This immediately illustrates the weakest point of the numerical opti-
mization approach. In order to keep the computational effort resulted within reasonable bounds one has to put
severe limitations on the number n of design variables, In particular in 3D flow. The problem is enhanced by
the fact that for acceptable convergence of the optimization process it is necessary to avoid "numerical
noise" in the partial derivatives of the object function (Refs. 16, 171. This requires that the relaxation
process in each analysis calculation must be continued until the residual has reached a level beyond that
which is often customary in "normal" analysis calculations, it also appears to ex lude the use of analysis
codes with simple boundary laver corrections (Ref. 14). The reason for the latter is that the air'oil aero-
dynamic quantities do not vary consistently enough when boundary layer and potential flow are coupled in the
weak interaction sense.

One way to reduce the number of analysis calculations in 3D applications is to evolve the design variab-
les In a series of steps (Ref. 18). For example by first designing the upper surface, section by section,
going from root to tip and then the lower surface. Clearly it is also important to select a starting geometry
having aerodynamic characteristics which are already close to the target. This asks for an information system/
data base approach. With previous experience stored in the data base, the latter can be searched for the most
suitable starting solution. As described in Ref. 15 the data base approach can also be used to speed-up the
convergence of numerical optimization by at least a factor two. With the results of all preceding geometry
perturbations stored it is possible to construct higer partial derivatives of the object function and utilize
higher order gradient methods.

With the severe limitations on n, the choice of the shape function is of utmost importance. The choice
should be directed towards describing a sufficiently wide class of practical solutions. While simple polyso-
minal expressions were used In early applications (Ref. 13, 19) of the numerical optimization concept, a more
sophisticated class of shape functions describing more local geometry modifications was used in later appli-
cations (Refn. 16, 17, 19). However, as discussed in Ref. 18 there is a need for still better shape functions
with even more localized curvature variations. In fact it can be argued that while curvature based shape func-
tions are suitable for areas with subcritical flow, slope based shape functions might be more appropriate in
areas with locally supersonic flow.

An interesting choice for the shape functions is discussed by Aidala et al. (Ref. 20). They consider
shape functions generated by means of feeding certain pressure distribution modifications into an inverse
program. The result is a set of design shapes that are (almost) orthogonal in an aerodynamic sense, that is,

affect only one specific pessure distribution characteristic and no other ones. Another choice for shape
functions can be found in Ref. 21.

While the choice of the design variables is of great practical significance, the precise choice of the
object function, In conjunction with the choice of the aerodynamic and geometric constraints, is of both more
fundamental and practical interest. In two-dimensional transonic applications (Refs. 13, 15, 16, 19) it has
been custom to minimize the wave drag subject to constraints on, e.g., airfoil thickness or volume, lift
and/or pitching moment. Although it is clear that constraints are necessary in a .aeaningful drag minimization
problem it is by no means clear how exactly the problem should be formulated in order to guarantee A unique
solution. The problem is illustrated by figure 4, taken from Ref. 15. Shown are the results of two drag mini-
mization runs with identical free stream conditions and identical constraints on lift and airfoil volume. Only
the starting solutions differ. As illustrated by the figure the two resulting airfoils are totolly different
in shape. Clearly the problem, as formulated, has more than one, local minimum and neither of the two
necessarily represents the absolute minimum. An interesting discussion on crirerla for suitable aero-
dynamic object functions can be found in Ref. 20.

Figure 4, the second airfoil in particular, also illustrates another potential problem of direr (lnvis-
rld) wave drag minimization. In the absence of (direct) control over the pressure distribution the solution
may acquire unrealistically high pressure gradients, such as near the upper surface trailing edge.

A strong point of the numer
4
cal optimization approach is the possibility of selecting object functions

and constraints suitable for mltipoint designs. An example of a two-point design problem directed towards
the design of airfoils with low drag creep can be found in Ref. (9. low speed air'nil design applications are
considered in Refs. 22, 23. It is also entirely possible to consider, e.g. transonic drag minimization and
low-speed stall requlrements simultaneously.

Although a number of different numerical optimization algorithms have been applied in aerodynamic design
(see e.g. Refn. 24, 25, 26), the feasible dlrections/gradilent optimization algorithm COiMIN/COpES. developed

bm Vanderplaats (Ref. 27), seems to be used almost exclusively in the direct numerical optimization approach,
in particular in combination with transonic flow codes.

. . . . .. .. . 5-
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While the direct minimization of drag is feasible in two dimensions, it is hardly so, at present, in the

case of three-dimensional wings. Several unsuccesful attempts in this direction can be found in the litera-

ture, (Refs. 17, 18, 28). The main reason for this failure is the lack of accuracy in the determination of the

drag with the currently available 3D codes and the limited number of mesh points. Another problem would seem

to be that the problem of uniqueness in three dimensions is even more severe than in two dimensions. The accu-

rac" problem may be overcome when more efficient algorithms and/or more computer power (vector/parallel mach-

ines) allows the number of mesh points to be increased. The uniqueness problem would probably require the

introduction of more constraints or more sophisticated object functions.
Summarizing the discussion on direct numerical optimization, it may be said that the potential possibili-

ties of the approach are enormous with, at present, unique capabilities such as multi-point and constrained

design. However, the approach Is also unique in terms of required computer resources. Substantial improvements

in both flow optimization code algorithms and/or computer efficiency, relative to current general standards,

are required before numerical optimization in 3D wing design can be used on a routine basis.

An alternative possibility for computational drag minimization is to use aerodynamic (load and pressure

distribution) rather than geometric shape functions as independent variables. In this approach the first step

is creating a starting point for the specification of "target" pressure distributions. This starting point

could be obtained using a method for constrained spanload optimization (see e.g. Ref. 29). Subsequently, an

optimization algorithm is used to optimize the pressure distribution, hereby using a boundary laver code and
a wave drag routine. The objective may be the minimization of drag, hereby providing the prescribed spanloads.

With the targe C -distribution established the new geometry can he determined by means of an inverse code.

Subsequently thepoff-design characteristics can be determined using an analysis code. The process is repeated
when the new geometry differs significantly from the previous one or when a geometry or off-design constraint

Is met. In the latter cases (new) constraints will have to be imposed on the values of the parameters descri-

bing the pressure distribution. A flow chart of the procedure, which is called inverse numerical optimization

(Ref. 30), is given by figure 5.

The first step in the inverse numerical optimization approach, i.e. the determination of optimal span-
loads is described in Ref. 29. The second step, i.e. the optimization of target pressure distribution, will be

described in the following section.

5. Optimization of target pressure distribution

The approach of saing aerodynamic (pressure distributions) rather than geometric shape functions as inde-

pendent variables in Lhe optimization procedure offers the following advantages:
- it matches the "inverse numerical optimization" design philosophy as described In the preceding section.

- Only boundary lay: calculations are needed during the iterative optimization procedure. So, a large

number of iterations is less a problem, allowing a larger number of design variables.

Of coirse there are so-me disadvantages too e.g.
- Care is needed to tay within feasible pressure distributions,

- Curvature effects n the boundary laver development are taken into account for the starting geometry only

and might be diffe-ent for the new design.
Nevertheless, from a 'ractical point of view, optimization of the (target) pressure distribution Is
promising and could 1, very useful as part of the inverse numerical optimization approach.

In order to ma; 'he definition of 2D target pressure distributions accessible for numerical optimization

techniques, the pre, ire distribution has to be described by a limited nurber uf characteristic parameters.

The problem faced is" define a large class of possible pressure distribution shapes by means of as few as
possible design pararpters. Once the pressure distribution defined, only boundary layer calculations are

needed to judge the - ality of it (drag, transition location, etc.).

Roughly speakir:, the velocity distribution on the airfoil upper- and lower surface can be characterized

by three specific rekons (see Ref. 31):
(T) Stagnation po!rt, immediately followed by a rapid acceleration.

(IT) A region with slightly accelerating, slightly descelerating or constant velocity, for transonic condi-

tions often e led by a shock wave.

(III) The pressure . covery region where the velocities decrease to the trailing edge value. For the lower

surface of rear loaded airfoils completed by a small region with accelerated flow.

Figure 6 presen
t
s a -iaracteristlc pressure distribution defined by eight points and linear interpolation be-

tween these points. Ithout shock, points 2 and 2' coincide. With shock, the jump between 2 and 2' is deter-

mined by the local ' ch number at 2. For a given free stream mach number the points 4 (stagnation pressure)
and I and 8 (trailir, edge pressures) are considered to be known and fixed. This leaves level and position of

the points 2, 3, 5, and 7 (ten design variables) free to represent a large class of (simplified) pressure
distributlons. Refin nent of this model would be possible by increasing the number of "characteristic" points.

Soon, however, large iumber of points will be needed to represent more realistic shapes, resulting In a prohi-

bitive large number ra design variables. Other wavs for refinement are, e.g. non-lfnear interpolation between

the points; adding w ,e functions with amplitudes as design variables to a starting pressure distribution etc.
Several of these opt ns have been investigated at NLR and so far, best results have been obtained by a set

of "interpolation ruj-s", taking into account the char-'teristic behavi ar of the specific part of the pres-

sure distribution to ',e represented. Each of these so-call, aerodynamic shape functions has been derived from
well known aerodynami. theory. It is beyond the scope of the present paper to describe the derivation of thes-

functions in detail. It has to be sufficient to present the relations and to note that for certain combina-

tions of the design variables (coefficients and exponents), approximations are possible of the typical clas-

sical flow characteristics. The following functions have been defined, with reference to figure 6.

A. Stagnation flow region (3-4-5)

Rather then suggested in figure 6, the stagnation point (4) will usually not occur exactly at the airfoil nose

but somewbat downstream on the lower surface. In order to maintain physically realistic pressure distributions

in this region. a stagnation flow shape function has been defined, approximating the potential flow velocity
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distribution for elliptic cylinders (for small x/c and small incidence):

(IK)/K +Q + K. K -u (l+KI) a ± (Ka 2  3 K4 c c

a3 + I .
(N.R. + sign for upper surface; - sign for lower surface)

Here K represent the design variables to be adjusted by the optimization procedure. Refering to
the elliptic cylinier nose radius and (local) incidence at the nose may be estimated from:

.5 05 2 (IM 'Radians!

anose - Ka'

B. "High velocit,." regions (from 3 to 2 and from 5 to 6, fig. 6)

These regions often exhibit small pressure gradients at design conditions. So, a relatively simple represen-
tation can be chosen. In order to be able to represent also laminar flow condition the following function has
been chosen:

l - KbI + %b2{c - bc)bo}

which, for (.. and (
5
)b approaching zero, approximates the well knon Falkner-skan solution for similar

laminar boundary layers ndex bO refers to the start of the region). KbI to Kb3 are the design variables to
be adjusted by the optimization procedure.

C. Turbulent pressure recovery region (from 2 (2') to I and from 6 to 7)

The family of functions for this region should resemble concave and convex shapes, Including the Stratford
solution for turbulent zero skin friction pressure recovery (Ref. 32). The Stratford solution exhibits two
branches. The main branche, transformed from Stratford's canonical pressure coefficient to the ordinarv Cp
definition, can be generalized as follows:

~ ~~c0 + K + -(H)co /5 - c3

Index cO indicates the start of the recovery region and K • to K are the design variables. ThIs function

represents a wide class of shapes, including an approximailon of Itratford s pressure recovers solution.

D. Rear loading region (from 7 to 8)

For so called rear loaded airfoils, the lower surface velocity usually accelerates from the end of the pre -
sure recovery region to the traling edge. For this region, a simple polynomial was defined reading:

fd ! - ( ))do)+ { 1Cp . K dI c K dO d2 c cdO pdO
Again index dO indicates conditions at the start of the region and Kdl and Kd2 are design variables.

F. Shock relations (possibly at points 2 and/or 6)

Cood transonic design conditions usually incorporate weak shocks at tipper and/or lower surface. So, a proper
shock description is needed. In viscous airfoil flow, the pressure jump measured at the foot of the shock is
less than the Rankine Hugonlot pressure jump. Besides, the shock will be "smeared out" in the boundary layer.
So. in order to describe shocks directly in the pressure distribution some empirical relations are needed.
From a compilation of experimental data (see fig. 7, taken from Ref. 33) it Is seen that the following modi-
fication of the Rankine Hugoniot relation is a reasonable approximation for weak two- dimensional shocks
(MI 1.3):

p s 7 M
2  

_-I 7(M
2  
-1)

0.7 + us + o.3 C - C + 0.7 (C + I ( { US)

us Pds us Pus 0.7 M 2 ,

(us and ds for upstream and downstream of shock).

An empirical rule for the shock thickness is presented by Delery (Ref. 34) for weak 2 dimensional shocks:

-7 70 (HIus-) with Mius< 1.3

us *
Here 6. and His represent displacement thickness and kinematic boundary layer shape parameter,

us 'i
respectively, lust in front of the shock. The shock representation becomes active only if HnesI exceeds 1.1
at point 2 and/or point 6.

Characteristic points and functions presented above represent a rather large class of airfoil design
pressure distributions. Note that not all of the design variables indicated above are independent. Some of
them are directly detrrmlned by the requirement of a continuous presstre distribution. With properly selected
basic airfoil geometr and design requirements, a boundary layer calculation method and an optimizer as driver
for defining the pressure distribution almost all ingredients are available for a system for designing airfoil
target pressure distributions. However for transonic conditions with shock waves boundary laver calculations
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only do not account for the momentum loss through the shock, So, the evaluation of the pressure distribution
has to be completed with an evaluation of the wave drag. A convenient relation to estimate the magnitude of
the wave drag has been prgposed by Lock (Ref. 35):

C dw -0 .243 a  
0 .2 P42 1 [ (2-M 1) (m i- 1) 4]

d  
- 1 - -- (1+0.2 2)

Where R is the radius of curvature of the airfoil geometry at the shock position. Lock found an accuracy
betweenS-10 and +301 of the wave drag for weak shocks (1.1< Ml < 1.5), which seems sufficient for the present
application.

Finally some remarks concerning the parametrization described above:
- It becomes obvious that the aerodynamic design problem is strongly non linear and it is likely that non-

continuous derivatives will occur as well as for object function(s) as for constraint functions.
- Sometimes a step by step approach is possible by splitting the design problem in several optimization

problems of reduced size, e.g. deal with upper- and lower surface separately.

6. Examples

In the following examples the drag and boundary layer characteristics have been computed with an integral
method, comprising:
- Laminar boundary layer according to Thwaltes
- Prediction of transition locatio according to Granville
- A fast integral method (lag entrainment) for the turbulent boundary r-ar
- Drag calculation according to Squire & Young formula

Low speed high lift condition

The design of single element, high lift airfoils by R.H. Liebeck is well known (see e.g. Refs 36, 37).
A.M.O. Smith (Ref. 37) published some of Liebeck's results for the so-called turbulent roof-top. The airfoils
meet the additional constraints for the flow to remain attached (and subsonic) everywhere on the airfoil. Then
the following design problem is formulated:

free stream condition: % = 0.10, Re - 5.106

transition : upper surfacecx/c . 1%
(lower surface: x/c : 0.51)

maximize : C
subject to : no separation

This problem has been solved by changing only the upper surface pressure distribution for a fixed, arbitrarily
chosen, lower surface distribution. Two solutions have been generated, both depicted in fig. 8.

a. With a fixed, approximated Stratford type pressure recovery the flat rooftop solution is found (full
line). This compares reasonably well with Liebeck's optimal solution presented in Ref. 37,
indicating max. lift for C 2 - 2.6 and pressure recovery point at x/c 2 0.30.

Pmin

b. With the upper surface entirely free, the broken line is found, representing a slightly better solution
than the roof top solution.

Airfoil geometries, inversely calculated, for these two solutions have also been given in fig. 9. The geome-
tries have been computed with the method described in Ref. 38.
Note: keeping in mind the approximations made for the present representation (for example, only one branch of
the Stratford solution is considered), the above results are not considered to proof that Liebeck's flat roof
top solution can he improved. However, it may be concluded that, from a practical -Iint of view, both solu-
tions exhibit comparable high lift capabilities, while solution b has the advantage of a somewhat less
"excotic" geometry.

From this example it Is concluded that the aerodynamic shape functions are applicable for low speed high
lift design.

Transonic low drag solution

A typical transonic pressure distribution Is shown in fig. 9 (full line). In order to find out to what
extent this pressure distribution can be represented by the aerodynamic shape functions, the optimization
procedure wan used. With ACp being the difference between the real and the shape function distribution, the
functional I AC di was minimized. The result, designated best fit, Is shown in fig. 9
as a broken Ito4. c

Apparently, the shape functions lack refinement around the shock and in the nose region. To find out how
sertous a problem thin is, for the practical design situation. A design study has been performed to improve
the drag coefficient at the design lift coefficient. With the best fit as starting point the following optimi-
zation problem was defined:

free stream condition : H - 0.77 Re - 10.10 6

transition fixed at : (x/c)us - 0.05 (x/c)s - 0.10

minimize C

subject to : C >0.60

C -0.125

thichness (- -0.1 C / I-l4 "
tic - 0.:) p 

)  
0.10, being the same value as for the best fit (actual starting aitfoil

The optimized pressure distribution is shown In fig. 10, together with the start ("best fit") indicating a
drag improvement of 5 counts.



Then two possible ways are open to continue the design study.
l. Define a new target pressure distribution by adding the differences between best fit and optimized dis-

triution to the actual airfoil pressure distrib-tion.
. Define the optimized pressure distribution directly as the target for a new geometry design. Here, the
latter approach was followed In order to find out whether a less refined target will result in an acceptable
airfoil design. Using the inverse airfoil design system INTRAFS (Ref. 39), a new geometry has been generated.

The new geometry differs only slightly from the original one. Analyses of both airfoils with the VGK program

Iref. 40) indeed shows an improved drag coefficient for the new airfoil (see fig. 11). The drag reduction is
less than expected from the calculations depicted in fig. 

1 0
; three counts versus 5 counts. this maybe due to

the relative poor representation of the original pressure distribution. Nevertheless this example illustrates

the ability of the present approach to improve transonic airfoil design.

7. Concluding remarks

An overview has been presented of the possibilities and problems associated with the use of numerical optimi-
zation in aerodynamic design. It may be stated that aerodynamic design by using direct numerical optimization
techniques is hardly feasible in current engineering environments, at least for three dimensional problems,
because of the lack of accuracy in the available 3D flow analysis codes in combination with the limited com-

puter power available. The alternative to use numerical optimization for designing "target" pressure distri-
butiors and to use inverse methods to find the corresponding geometry, seems to be a good alternative. How-
ever, despite the fact that a large number of iterations is not a serious drawback for the present approach,

the procedure is still far from "stand alone" applications on routine basis. It is worth to consider improve-
ments such as the implementation of smoothing options (to prevent problems with numerical irregularities),

the application of more efficient algorithms, and the scaling of the independent variables. In this way,

numerical optimization may have good prospects for being a useful tool in aerodynamic design.
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GEOMETRIC AND SURFACE PRESSURE
RESTRICTIONS IN AIRFOIL DESIGN

G. Volpe
Senior Staff Scientist

Grumman Corporate Research Center
Mail Stop A08-35

Bethpage, New York 11714
U.S.A.

SUMMARY The usefulness of the Mangler and Lighthill methods
obtaining practical designs was debatable, and

;n order to design a physically-acceptable airfoil understandable given the computational resources of
that corresponds to a prescribed surface pressure or the time, but their presentation of this "inverse" problem
speed distribution, various restrictions have to be met of airfoil theory was sound and laid the groundwork for
by the imposed target and by the contour. It is shown many practical methods that followed.6-13

that the need to meet geometric prerequisites and a
specified free-stream value imposes constraints on the The work of Mangler and Lighthill assumed
prescribed surface values which, unless satisfied, incompressible flow and could thus use potential theory
inhibit the existence of a solution. In this classical to describe it. In the inverse problem, the connection
problem of airfoil design, the prescribed surface between the desired pressure distribution and the
distribution must contain enough degrees of freedom in ordinates of the corresponding airfoil profile could be
order that it may be modified sufliciently to satisfy the expressed in closed form, just as in the "direct" problem,
constraints. The nature of the constraints is discussed, where one seeks the pressure distribution
and they are expressed in forms which are amenable to corresponding to a given airfoil profile. The actual
numerical solution procedures in transonic as well as computation of a profile was not always feasible,
incompressible flows. The discussion is accompanied leading to problems of practicality, but the existence of
by a description of the general characteristics of airfoil closed form expressions describing the "connection"
geometries and surface flows, revealed the existence of certain constraints that had to

be satisfied by the desired pressure distribution for a
corresponding airfoil to exist. In particular, it was shown

1. INTRODUCTION that the average speed of the desired surface
distribution should be equal to the free-stream speed. In

The problem of designing airfoil profiles is older addition, it was shown that the thickness of the trailing
.ian aviation itself. The Wright Brothers built a wind edge is itself a function of the prescribed speed. Since
tunnel to test new airfoil profiles that would give them trailing edge thickness has to be within some obvious
greater lift. It was obvious that by changing the profile physical and geometrically--ealisti- limits, additional
the characteristics of the flow could be altered. Quite constraints are imposed on the ,rescribed surface
early the idea took hold that the airfoils could, or should, pressure. Thus, for an arbitrarily prescribed distril jtion,
be designed to produce specific pressure distributions an airfoil protile with a specific trailing edge thickness
on them. This was the rationale behind the design of the exists only if the distribution satisfies these constraints.
NACA 1-series wing sections.' The development of this Fortunately, within the context of potential theory, the
series of airfoils, which represents the first family of above-mentioned constraints can be expressed in
NACA low drag high-critical-speed wing sections, was integral form. As a result, by allowing some freedom in
also one of the first recorded attempts to design sections the imposed distribution (e.g., through adjustable
having a desired type of pressure distribution. The go,-l parameters whose values are chosen to satisfy the
of this early design project was to produce airfoils with integral expressions), an airfoil profiL can always be
extensive laminar boundary layers. If was felt that the obtained. This approach forms the basis of the methods
laminar flow run could be controlled by having a small, described in Refs. 6-13.
continuously-favorable pressure gradient all the way to
the point of minimum pressure, whose location identifies Woods 7 extended the theory of inverse airfoil
and characterizes the several members of this airfoil design to subcritical compressible flow. Assuming a
family. Lack of adequate theoretical tools made this pre- Karman-Tsien type gas, he derived expressions similar
1939 design exercise extremely difficult, and the design to those of Mangler and Lighlhill for incompressible
goals were achieved only over a very limited range of flows. The formulation of an inverse method at
lift coefficients. Few sections in this family ever proved supercritical speeds has been problematic because of
useful. the impossibility of expressing the constraints in closed

form. The existence of constraints for the transonic
Better theoretical tools (at least for design problem was intuitively true because the

incompressible flow) were being developed during the incompressible problem was a subset of the more
time during which the NACA 1 and its immediate general compressible problem. The main obstacle
successor-families (NACA 2-to 5-series) were concerned the constrain' reflecting the connection
designed. The NACA 6- and 7-series were designed between free-stream and surface s'eed. Volpe and
using new and improved approximote methods 2 which Melnik 14 finally offered a formulation of the problem
were derived from the Theodorsen-Garrick 3 method of which was valid through the compressible regime. In
analyzing the potential flow about arbitrary airfoil their formulation, the constraints are satisfied through an
sections. To obtain these sections, a symmetrical iterative procedure in the absence of closed-form
section was designed first, and this 'as then cambered expressions.
using linear theory. The first true airfoil design method
had been reported in tht meantime by Mangler 4 , and a It is the purpose of this paper to describe these
similar approach was later independently developed by constraints in more detail, as well as .the means by
Lighthill.5 A sound theoretical basis for the design of which they might be satisfied to produce a practical
airfoil profiles corresponding to a specified pressure (or, inverse airfoil design method. The discussion will
equivalently, velocity) distribution was finally available, include the restrictions on the prescribed pressure



distributions which are due to physical requirements Reentrant airfoils are clearly non-physical. Obviously a
and to the achievement of certain flow characteristics, non-reentrant airfoil exhibits a positive thickness from
as well as the restrictions imposed by the requirement leading edge to trailing edge. Structural requirements
that the airfoil geometry have specific characteristics, impose some limitations on the minimum acceptable
In addition to the above-mentioned restriction on the thickness, though. As such, the airfoil that is shown in
thickness of the trailing edge, an airfoil should Pave Fig. le is likely undesirable from a practical .'ewpoint,
other obviously desirable features, such as a rounded since its th -kness just upstream of the trailing edge is
leading edge and non-crossing upper and lower very small, even though positive. In short, structural as
surfaces. The discussion will cover both the well as operational requirements (e.g., need for fuel
incompressible and compressible regimes, and the volume) will place restrictions on the acceptable
connection between imposed pressure distributions and thickness distribution on the airfoil.
geometry will be illustrated by several examples. As in
the preceding discussion, in what follows the Certain features of the leading edge and trailing
assumption is made that the airfoil is to be designed in edge regions of an airfoil and their relation to the
an inviscid flow. Viscosity wtil be called on in velocity distribution should be mentioned. Most airfoils
discussing the prescription of the imposed pressure have rounded leading edges. A rounded leading edge
distribution. To a first approximation, the pressure allows operation over a wide range of angle of attack. A
distribution can be assumed to be the one impressed on sharp leading edge would cause the flow to separate at
the boundary layer and the corresponding airfoil to be the comer outside a severely, more limited range of flow
the contour from which a "displacement thickness" incidence. The exception would be offered by airfoils
should be subtracted to achieve a profile operating in a designed for supersonic applications, in which case it is
real viscous environment, desirable to keep the shock waves attached to the

leading edge via a sharp nose. The rest of this paper
will be concerned only with subsonic/trL.isonic free-

2. GEOMETRICAL CHARACTERISTICS stream Mach numbers, however. Since both the upper
and lower surfaces of the airfoil must be streamlines of

All physically realistic airfoils share certain the flow, a stagnation point must be present on t,.,
obvious characteristics. Most obvious are the surface in the in3ding edge region (see Fig. 2). Tnat
constraints that the contour be closed and non- stagnation point is also a branch point, since the flow
reentrant. A closed contour is described by a splits into two downstream of it. When designing for an
continuous line whose end points coincide. Taking the airfoil, the speed distribution that is prescribed must
end points of this line to be the points corresponding to include a stagnation point in the leading edge region.
the lower and upper trailing edge points and the line to
run from the former to the latter in a clockwise direction, In the case of an inviscic stream, two possibilities
airfoil "closure" means that the two trailing edge points arise for the flow at the trailing edge. If the included
coincide. Thus the airfoil in Fig. la is closed and the angle of the trailing edge is zero (a cusp), it is sufficient
one in Fig. Ib is not. In practice some trailing edge that the pressure at the upper and lower surfaces have
thickness, usually on the order of one percent of the the same magnitude at that point. For an isentropic flow,
chord, is desirable for structural integrity. In such a the velocities on the two sides are also identical. In
case the definition of closure is expanded to include the such a case, the velocity has a non-zero value, usually
case in which the trailing edge points are separated by slightly less than the free-stream value. If the included
some small distance. angle is not zero, the only way for the pressure and the

total velocity at the upper and lower trailing edge points
A non-reentrant airfoil is one for which the line to match is for the velocity to be zero. In this case, the

describing the contour never cr'nsses over itself. An trailing edge point is a stagnation point. These two
airfoil may be closed but not necessarily non-reentrant. possibilities are illustrated in Fig. 3a and 3b, which,
Thus, the airfoil depicted in Fig. 1c is closed but along with the trailing edge geometry, depict the typical
reentrant; the one in Fig. 1d is open and reentrant. speed distribution of the flow fro,, either side of the

airfoil and downstream of the trailing edge. It should be
noted that the gradients of the speed distribution in the

,Z - vicinity of the trailing edge are dependent on the
magnitude of the trailing edge angle (see Fig. 3a and

a ) CLOSED TRAILING EDGE 3c). In a viscous flow, the presence of a boundary
layer blurs the two distinct possibilities (see Fig. 3d). If
one were to design for a speed distribution to be
achieved outside the boundary layer (by whatever
method), one has to demand only that the velocities on

b) OPEN TRAiIING EDGE opposite sides of the trailing edge (and outside the
boundary layer) match; they do not vanish even for a
non-zero included angle. As a consequence, the

, shape of the trailing edge region is highly dependent on
the local distribution of speed in the region.

c) RE-ENTRANT AIRFOIL If one is seeking to generate a contour with
specific leading and trailing edge characteristics, these
requirements will impose specific restrictions on the
prescribed speed restrictions which have to be taken
into accou'it in the calculation procedure.d)OPEN ANT) ttE-ENJhN'T ,AfltOTh

------------ ------- ---- S A I ON

Sl TRUCFURALLY UNFIT AIRFOIL u'

Fig. 1 Airfoil types Fig. 2 General features of flow near airfoil
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assumed to be located at the lower surface trailing edge
point, and s is assumed to run clockwise around the
contour (see Fig. 2). Without loss of generality, the

- perimeter of the airfoil can be normalized to one. The lift
• !ucoefficient, CL, of an airfoil is given by

1.01 ~ - 1.01CL= 2 I

P-M -C

0.0 0.0
a) FINITE ANGI E b) CUSP

where L is the lift, c is the airfoil chord and p_ and u.
jz ...... ::::5::: are the free-stream values of the density and the. ..... velocity, respectively. In potential flows, the lift can be

U uexpressed as a function of the circulation, r, around the
airfoil

and F in turn is obtained by integ"-ting around the
0.0- __ V 0.0 __contour

() LARGE FINITE ANGLE d) viscouS FLow r = Ju(s)ds. (3)

Fig. 3 Possible flow conditions near trailing edge

Hence, the lift coefficient is given by

3. FLOW CHARACTERISTICS cL = u[s-4  (4)

Certain characteristics of the pressure C U_=
distribution on an airfoil, such as the presence of a
stagnation point at the leading edge and possibly
another at the trailing edge were mentioned in the The value of the chord c is not known until the shape ofp.evuu section. Other featres are dependenton the the contour is determined. However, for most
particular design exercise. In .:Il cases, the objective is aeronautical profiles, it will have a value not much
to obtain a certain lift coefficient w, ,-s low a level of drag different from 0.5. As a result, for all practical purposes,
as possible. In the context of an inverse airfoil design CL is known once u(s)/uu- is specified.
procedure, these goals can be achieved by tailoring
the surface pressure, or speed, distribution to the In incompressible flow, the pressure drag will be
application. zero for all possible surface speed distributions. At

supercritical speeds, wave drag will be present if a
The lift coefficient of an airfoil is known to a good shock wave is present in the flow field. Unfortunately,

degree of accuracy once the surface speed is its value is not known until the contour is computed.
prescribed even though the shape is not known yet. The goal, as always, is to minimize this value, but the
Figure 4 depicts the general form of an airfoil surface absence of a discontinuity in the pressure distribution
speed distribution, u, expressed as a function of the arc (which translates into the absence of a shock wave on
length along the airfoil surface, s. The origin of s is the airfoil surface) is no guarantee that there is not a

shock wave in the flow. An example is offered in Fig. 5,
which shows an airfoil profile and, above it, thet.5

/-l.a "
UPPER SURFACE

I -0.8 /

0.5- --

0.1) 0.2-1
LEADING EDGE
STAGNATION POINT

-0.5 0,7-
LOWER SURFACE

1.2 -J  _____________

-t.0 r

0.0 0.2 0.4 0'O.6 Of 1 0
I MAX Fig. 5 "Shockless" target pressure distribution

Fig. 4 General form of airfoil speed distribution and corresponding airfoil
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corresponding pressure distribution. In Fig. 6, the Mach This solution, however, is at odds with the other goal of
number contours of the flow around the airfoil are trying to maximize lift. The latter objective can be
depicted. In this picture, the existence of a shock wave achieved by having the flow undergo the required
is borne out by the clustering of contours above the recompression to trailing edge values in the shortest
airfoil. Compression lines generated on the concave distance possible. The optimum solution is to achieve
mid-region of the airfoil converge off the surface into a the shortest possible distance while still avoiding
shock. This figure points out a geometrical feature of separation. Liebeck

9 addressed this problem, and the
airfoils that should be avoided at transonic speed, solution was found in the use of pressure distributions,
namely, a region on the upper surface of the airfoil with proposed by Stratford, 15 

which avoid separation by a
a curvature concave to the flow. constant specified margin (solid line in Fig. 7). Stratford

developed an analytical form for such a pressure
In the absence of shock waves, drag is due to distribution. In principle, a flow described by a

viscous effects, and some amount of control over these Stratford-type pressure distribution achieves a given
can be retained by proper design of the imposed recompression in the shortest possible distance or,
surface pressure distribution, even within the context of alternatively, the maximum possible pressure recovery
an inviscid airfoil design procedure. By tailoring the in a given distance. This type of pressure recovery
pressure distribution, one can control the growth of the distribution was checked experimentally by Stratford

16

boundary layer, delay transition to turbulence and, and was found to exhibit a good margin of stability."
hopefully, avoid flow separation. All of these effects
tend to lower drag levels. The pressure distributions in Fig. 7 have been

drawn with a "rooftop" region preceding the Stratford
Flow separation is clearly a disastrously recovery region. The level and extent of the rooftop

deleterious flow feature. In airfoil-type flows, it can be region are clearly designed to maximize lift. Liebeck9

brought about by high adverse pressure gradients as studied this class of pressure distributions at
they might occur on the upper surface as the flow is incompressible speeds and showed through a
recompressed to stagnation or near-free-stream values variational analysis that the level and extent of such a
at the trailing edge -- for sharp or cusped geometries, rooftop can be combined with the Stratford canonical
respectively. Separation can be avoided by imposing distribution to maximize the lift on an airfoil. It is to be
pressure distributions with gentle gradients (see Fig. 7). remembered that maximizing lift can be at odds with the

structural requirements of an airfoil. The airfoil shown in
Fig. 8 may exhibit very high lift characteristics but is
hardly practical. Regarding such rooftop pressure
distributions, it is worth recalling that at compressible
speeds, there is a lower limit on the minimum pressure
that one can specify in the flow field. The limit is
obviously zero, and all practical airfoils will have a
pressure minimum well above this limiting value. In a

similar vein, lift can be increased by increasing theIprescribed pressure levels on the lower surface of the
SI airfoil or by equivalently decreasing the speed

distribution there. Clearly, the maximum amount of lift is
obtained if the speed is identically zero everywhere on
the lower surface. Obviously, such a flow is impossible,
and all practical airfoils will have values of the speed on
the lower surface well above the stagnation value.

The drag of an airfoil can be significantly lowered
by delaying the transition of the flow from laminar to
turbulent. Considerable effort has gone into the design
of such natural laminar flow airfoils over the past halft-

Fig. 6 Ieomach contours computed on airfoil
designed to "shockless" pressure -4.5-

-4.5 distribution -3.-

" Cp

-3.0 '-.

-1.5- , 0.0 -

0.0 - 1.5 - .

j.. GENTLE GRADIENT
1.5 --_ SMRATFORD-TYPE RECOVER "

- - STEEP GRADIENT

Fig. 7 Types of pressure dtstrbutions with
various recovery patte following Fig. 8 Maximum Ift pressure distribution and
"rooftop" region corresponding contour
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century. The above-mentioned designs of the NACA 1- -t. -
to 7-series airfoil sections, which constituted some of
the earliest efforts of generating contours corresponding
to prescribed pressure distributions, all had as a goal -. ,
the achievement of extensive runs of laminar flow on
both the upper and lower surfaces. The criterion of
lowering drag by inducing long laminar flow runs
through appropriate surface pressure distributions was -0.3- 1
followed by Liebeck. In these studies, transition was
delayed by prescribing a continuously frvorable Cp
pressure gradient from the leading edge stagnation . - r
point to the position of minimum pressure, This
acceleration region modifies the ideal rooftop which
tends to maximize lift (see Fig. 9). Similarly,
Pfenninger 17 , 18 used careful tailoring of the surface 0.7 - 1
pressure distribution to control the growth of instabilities
that bring about transition of the flow to design a number
of 66tural laminar flow airfoils for transonic applications. 1.21
An example of such an airfoil is given in Fig. 10. _ _..........

The shape of a pressure distribution to which an
airfoil contour is to be designed depends on the Fig. 10 Designed contour and pressure
particular application. In this section, some general distribution; case LFC1 M=0.766,
characteristics of the distribution and certain possible (X = 0 , CL = 0.5166, CD = 0.0001
features to design for have been described. In the
previous section, the characteristics of physically
acceptable -- and practical -- airfoils were indicated,
and certain connections between the geometry and the
pressure distribution were mentioned. The question of point. The airfoil's coordinates, x,y, can be
the existence of an airfoil for an arbitrarily prescribed parameterized as functions of s. In Section 2 it was
surface pressure distribution (containing some or all of mentioned that a feature of practical airfoil contours is
the above-discussed features), whether physically that the trailing edge be either closed or have a very
acceptable or not, has to be addressed now. This will small gap. Thus, a requirement on the to-be-determined
be taken up in the following sections, along with the airfoil is that the upper and lower surface trailing edge
relationship between prescribed pressures and the points be separated by prescribed distances Ax and Ay.
airfoil geometry. The horizontal gap, Ax, is usually set to zero, while the

vertical gap, Ay, is set to zero or to a small positive
4. FORMULATION OF THE INVERSE DESIGN number. The free stream is also defined by prescribing

PROBLEM values for the free-stream velocity q-, temperature, and

The problem that will be addressed now is the pressure (or density). These in turn determine the free-

construction of the airfoil profile, which has a surface stream Mach number, MA. In incompressible flow, of
speed distribution, qo, equal to some desired function, course, it is necessary only to specify the velocity in
F, everywhere along its arc length, s. As mentioned order to identify the free stream uniquely. Our
earlier, this is to be measured clockwise around the formulation applies in its entirety if we specify a surface-
airfoil contour, starting at the lower surface trailing edge pressure distribution instead of a surface speed since

the two are uniquely related. Formally, then, the
problem is to determine the airfoil profile of a specified
trailing edge thickness corresponding to the speed
distribution

7o-19-q = F(s /sm.) (5)
1.0 - q

0.5 Again, without loss of generality, smacan be set equal
to one; q0 is taken as positive in the clockwise directions"RATFORD around the airfoil. As shown by Theodorsen. 3 

any

DISTRIBUTION airfoil contour can be mapped into the unit circle by the
0.0 unique conformal transformation

OPTIMUM DISTRIBUTION ACCORDING dz i
-0.5 TO VARIATIONAL ANALYSIS d- = I e(r"O

)  
(6)

MODIFICATION TO OBTAIN AIRFOIL

-1.0 - F r - -r -
0.0 0.2 0.4 0. Ott 1.0 where z = x + iy and = rei (a are the coordinates in the

S/SAX physical and mapped planes, respectively, and ex is
Fig. 9 Optimum speed distribution and the included trailing edge angle. This transformation

mod0fk1a0ton reeded to obtain airfoil leaves the far field, C -4 - , unchanged, except for a
contour possible rotation (see Fig. 11). Equation 6 can be
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Obviously, the total speed in the two planes are

q_ 8similarly related.

In the case of incompressible flow, the complex
potential, w, for the incompressible flow past the circlea) z - PLANE is given by

/w=q4 (e -a Ie+ ITrog C (1)

where a is the angle of attack of the free stream and r is
q_~ the circulation around the circle. Since the far field is

'\not altered by the transformation, q. is also the value of
the free stream in the physical plane. The conjugate of

b) ¢-PLANE the velocity is given by d, and the value of r is

Fig. 11 Mapping of airfoil to circle
obtained by requiring that this - be zero at the point

on the circle corresponding to the airfoil's trailing edge.separated into its real and imaginary parts. Thus, on The velocity in the physical plane (around the airfoil) is
r = 1, then given by

"sdw dw(d l=[2,i2± (7) (1 - "i2)

(t+e) (K-W)- 1 + Q (8) Thus, the calculation of the flow about any airfoil can be

2 reduced to the computation of the two factors on the

right hand side of Eq. (12), which can be computed from
Eq. (6) and (11), respectively. Moreover, Eq. (12) can

where 8 is the local slope of the airfoil. 0 is the Fourier be used to generate an airfoil profile by re-arranging it in
series the form

N
Q = (A., sin no -B. cos nw) (9)

0 = (13)

and P is its conjugate series. Because 0 is known as a
function of s, the coefficients of the series can be found
by standard Fourier analysis as described in Ref. 10.

With this mapping procedure, the leading terms of the IMb
distribution that the airfoil profile is prescribed to have,series are related to the trailing edge gap (Ar. Ay) by the expression can be used to obtain the arc length and
the slope of the airfoil as a function of o, and hence the
ordinates of the airfoil. Assuming q0 is prescribed as a

Al = 4AI)sW B0- (L) o + ( - function of the (a, then the right hand side of Eq. (13) is
X 2 x completely known as a function of a. Using Eq. (7) and

(9), the coefficients of the series of the transformation(10)

2x) 2x s can be evaluated. Once has been expressed as a
trigonometric series in co, the airfoil coordinates, z. are
found by integration.

The transformation the airfoil profile into a circle
simplifies the problem of constructing a solution for the If q0 is prescribed as a function of arc length, s.
flow about the airfoil. Generating a solution for the flow
about a circle ib a relatively straightforward process. In ldwI
fact, for incompressible flow. it can be expressed some iteration would be required since which is
analytically. For transoric flows, it can be computed
numencally by a number of methods (see, for example, needed in Eq. (13). will not be known as a function of o)
Ref. 19). The velocity components at any point on the until after s(w) is found. However. the design of the
airfoil or in the flow field can be obtained by dividing the airfoil is still a straightforward process.
respective components of the flow at the corresponding
point in the circle plane by the metric of the For compressible flow of a perfect gas, the flow

past the circle cannot be expressed in closed form, Itf&5 can be computed numerically, though, and a similar
transformation. , evaluated at the point in question, iterative procedure can be formulated for compressible

flow.
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Specifically, the procedure could be as follows.
An initial airfoil contour is mapped into the unit circle, 2X os
and the flow around the circle is solved subject to the flog Hq -d.= 0. (16)
conditions on the circle boundary that the tangential o lq-,lsino)J
speed be the required total speed. The passage from
qo (s) to qo((o) is done using the current s(wo). In this These are the three integral constraints that the
flow, the circle boundary is not necessarily a prescribed speed distribution must satisfy for an airfoil
streamline, and the departure of the boundary from a solution to exist. These three constraints have arisen
streamline can be used to find a correction to the airfoil from the requirements that the airfoil be closed and fromcontour, sn the new metric, the process can then becon ,Using the imposition of a value on the free stream. It can berepeated. safely assumed that similar constraints exist also at

supercritical speeds. The above discussion indicates
5. CONSTRAINTS; IN INCOMPRESSIBLE FLOW that the prescribed speed distribution should contain, ingeneral, three adjustable parameters to guarantee that

the constraints may be satisfied. Thus, the surface
The question that must be asked at this point is r-eddsrbto hud epecie ntefr

whether an airfoil solution exists for an arbitrarily peed distribution should be prescribed in the form
prescribed speed distribution. For incompressible flow,
Mangler and Lighthill showed that, in fact, a solution q0 = F(s/smax;pl, p2, P3) (17)
exists only if certain integral constraints are satisfied by q-
qo' and this can be demonstrated as follows.

Since a lifting flow over a circle can be reduced where ,l, p2, and p3 are the three parameters that are
to the nonlifting, symmetric flow as shown in Ref. 5 and found as part of the solution.
20, it is sufficient to consider the nonlifting case in order
to simplify the discussion. The mapping between the z The above discussion has not dealt with the
and planes must have the form possibility of the contour oeing reentrant. The constraint

that the thickness of the airfoil be always positive, or
even always greater than some minimum value cannot
be expressed in a simple relation, as Eq. (16). It could
be accounted for, and satisfied, through a numerical

z='+ _a procedure by the introduction of additional parameters
in Eq. (17). Such parameters could be adjusted to
guarantee that the thickness at selected chord locations
have values above specified values. The particular

if the flow in the far field is to remain unscaled. Here, the functional forms chosen to introduce the parameters in
an's are complex constants. Therefore, Eq. (17) will, of course, affect the class of airfoil

solutions that can be obtained.

dz - _, -(n+l)
d n, "6. AN ALTERNATIVE LOOK AT THE
-I] CONSTRAINTS

Differentiating Eq. (11) gives For compressible flow (M_ #0), Eq. (16) is no
longer valid. In order to formulate a well-posed inverse

dw q(!I design procedure which would be valid at compressible
d; -speeds, the nature of the constraints must be re-

examined, and they must be expressed in a form useful
for a design procedure. It is logical to do this in the
context of the computational method that has been

Hence, by combining the last two equations, one outlined. The two constraints that arose because of the
obtains required trailing edge gap are of a geometrical nature.

Hence, one can set up a procedure in which, by
dw ~ monitoring the trailing edge gap size, the target speed
- = q- I, j b. (14) can be modified in order to drive the gap's dimensionsdz 2

to its specified values. The first constraint creates a
problem because there is no single, physical quantity
that reflects the constraint. This first condition is a

Since (dw /dz)=qo
- '

O
, it follows that stateme"' of "compatibility" between the prescribed

surface speed and the free-stream speed. If the latter is

also being prescribed, as is usually the case, the
surface speed prescription has to be modified for the

qlg -. constraint to be satisfied. If the free-stream speed is not
logq_ = b ' (15) specified, in the case of incompressible flow its value

q- -can be found from Eq. (16). In the absence of a closed-
form expression, which would be valid at compressible
speeds, the problem is to define a procedure whereby

As pointed out by Lighthill and Thwaites, either the surface speed or the free-stream speed might
log k, I q-I is an analytic function in the domain outside be changed to bring about "compatibility.*

the circle. (It fails to be analytic at stagnation points on Consider the incompressible flow over a circle
the circle where qo = 0.) Therefore, it can be expended again. As mentioned earlier, it will be sufficient to
in a Fourier series on the circle itself. However, from consider the nonlifting symmetric flow. The general
Eq. (15) it ca', be seen that the series cannot have terms solution for the flow on the outside of a circle of unit
of zero or first oroer. In fact, qo must be such that radius can be represented in the form
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N b Since the first part on the right-hand side of this
G = a0 + a os + "b expression represents the solution for the flow over the

n=r unit circle, the expression in brackets formally gives the
mapping PdC/dz, which generates the airfoil

G represents corresponding to q=qo(co) (assuming q. satisfies theN. being a sufficiently large number. Hera constraintn).

the potential function of the flow. constraints).

This is the most general solution to Laplace's It is also obvious that an integration of Eq. (22)
equation that yields a uniform free-stream flow in the far around the perimeter of the circle yields
field (r -). Hence

2x

.b Jqo(a)d = 2xq.. (24)

r n =2 rR

This means that the average speed on the surface of the
and circle must be equal to the free-stream speed, a

conclusion that could have been made from Eq. (16)
rN - also. This interpretation of the first constraint was used

rna- s o- r"n--- .n (19) by McFadden 2l in the formulation of his airfoil designr do r procedure.

At this point the reader should be reminded from
It follows that the total velocity the discussion in Section 2 that a proper speed

distribution for an airfoil should contain at least one zero
corresponding to the leading edge stagnation point, and
two zeroes if the trailing edge is not cusped. A result of

q = G,- -G. Eq. (23) is that a design procedure utilizing the circleplane must ensure that the zeroes of q match the zeroes
of the flow over the circle if the metric is to be free of

must be of the form singularities, with the possible exception of the trailing
edge.

N The stagnation, or branch, points of the
q=a,_- Yx; C' (20) prescribed flow must necessarily be at specific

n=q locations on the circle. It can be shown that requiring
that the branch points be on the circle forces the first
constraint to be satisfied. In fact, as with q in Eq. (21),
Eq. (22) can be factored into

In the far field, as C - -,q = q.. Hence, and a= q. and

N qo.)=C 1-- 1c.
(21) R

For simplicity, the expression in brackets will be called
which reflects the result expressed in Eq. (15). Thus, if h. As before, this represents a mapping of the flow. The
the flow over the circle is determined with the condition other factors,
that q = qo((o) on the boundary r = 1, it can be seen that
if qo(m) is expanded in a series

Nqo(W) = co + 1"c. e-ino (22)
= 1 can be interpreted as the flow over a circle imbedded in

a stationary fluid and moving in the negative x
direction with a speed equal to cc. Adding to this a free

restrictions on qo immediately arise, echoing the stream moving in the positive x direction with a speed

constraints described by Lighthill and Mangler. In equal to (q. -c) gives the velocity field
particular, one sees that c0 = q_, the first constraint
Also, c, must vanish, implying two additional Q2= _. (25)
restrictions on the speed, since c1 is a complex
constant.

It is interesting to note that Eq. (21) can be This represents the flow over a unit circle moving with a
factored into the form speed equal to co in the negative x direction within a

stream moving at a speed equal to q- in the opposite
direction. The speed of this flow in the far field is q.,

q q- J [I J (23) naturally. On the unit circle it is
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[-I . requested the numerical procedure to generate the
h (26) airfoil corresponding to this scaled distribution. A one

degree of freedom was introduced in the form of a
scaling factor, pl. Thus, Eq. (17) was given the specific
form

If q- = c, the speed on the circle is exactly the
prescribed speed. Moreover, the stagnation points of g = P1 [p!(s)]. !28)

the flow are exactly on the circle, since setting q2 = 0 in q,
Eq. (25) gives

2 (27) Since f(s) was computed for a closed airfoil, the
distribution in Eq. (28) satisfies the other two constraints

automatically and, as a result, P2 and P3 can be set to
zero. An application of the integral relation expressed

Analogously, requiring that the stagnation points be on in Eq. (16) quickly reveals that an L.rfoil solution can
exist only if pIp = 1. Of course, the re ,Lfting airfoil is in

the circle ( =1) means that c. = q_, and, again, the each case the Korn airfoil. The scheme used by Volpe
speed on the circle is the prescribed speed. The and Melnik found a value for pi using the condition that
requirement that the branch points of the flow must be on the normal velocity component vanish at the leading
the circle boundary is equivalent to the requirement that edge point where the tangential velocity is prescribed to
the first constraint expressed in Eq. (16) be satisfied, be zero. In other words, the stagnation points of the flow
Either condition can be used in a design procedure to are forced to be on the circle boundary. (The
find the value of the appropriate free parameter in introduction of a mass flow term is used in the procedure
Eq. (17) reflecting this requirement. to force the trailing edge stagnation point to be on the

circle.) In the numerical scheme, regardless of theThe equivalency of the two conditions was initial value of D, the resulting value found for P, was
proved numerically by Volpe and Melnik. 14 They such that their product was unity, as required by the
described a procedure to generate an airfoil integral relation. This is shown in Fig. 13. The total
corresponding to a given speed distribution by scaling of the speed distribution (p1 p) is driven toward
successive modifications of an initial airfoil profile. In one very quickly. Here, flow field sweeps mean the
the procedure, which is valid at compressible speeds, number of iterations required by the procedure to
the initial profile is mapped into a circle, and the flow cutethe flow field over the initial airfoil contour, and
around the circle is solved subject to the boundary compute s id ve the nerl airfoil upda

conditions that the tangential speed on the circle be the design cycles indicate the number of airfoil updates.
required value. Since this is a Dirichlet problem, the The advantage of using the stagnation point
normal speed on the circle boundary is not necessarily condition over the integral relation to enforce the first
zero. It would be if the airfoil contour were exactly the condtin oer the int rat toerce th irst
required airfoil. The normal velocity component is used constraint lies in the fact that the former can in principle
to modify the initial contour and the process is repeated.
The procedure converges rapidly in the sense that the
computed normal velocity component goes to zero quite
fast, and the modifications to the airfoil contour become
progressively smaller. In their test, Volpe and Melnik
took the speed distribution, f(s), computed on a Korn
airfoil at M=0.100 and an angle of attack of 1.70 (see 2.0 1.00
Fig. 12 for the corresponding pressure distribution) and
multiplied it by an arbitrary factor, p. They then

1.6 0.99 -- -- -- -- J
- 1 3 0 2 4 6 8

-0.8 1 S-'.DESIGN CYCLES

P . . 0.994
-0.3 .'

0.8 1

0.2- I/,'

0.7 . 04 /

12:

0.0 - 1 ~ ~
0 20 40 60 80

Fig. 12 Pressure distribution on Korn airfoil; FLOW FIELD SWEEPS
M-=0.100, a = 1.7 C -0.5262,
C a 0.100, L Fig. 13 Convergence history of scale factor for

D Korn airfoil design; M_ = 0.100
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be used at transonic speeds, as it was, in fact, done in -2.0
Ref. 22. It is worth mentioning again that this constraint
arises from the imposition of a value for the free stream.
If this were to be left free, the constraint apparently
disappears. In reality, it does not. The removal of the -1.2- ----------------------

need for a pl in Eq. (17) is obtained at the cost of

making q. a free parameter; P, has now really become

q.. In incompressible flow, the value of q- is found by -0.4
an application of the integral constraint, and it can befound, for compressible flows, by applying thet ....4.....
stagnation point condition. Letting q. float is equivalent 0.4

to introducing the parameters Pi in the form of a scaling

factor as in Eq. (28). In this expression, whether q- is 1.2
fixed and pi is free to float, or vice versa, the ratio - -----------

(qo/q.), which is the quantity of interest, is the same.
As a final point, it must be noted that if a speed
distribution does not satisfy the first constraint, the Fig. 15 Effect of pressure distribution near
incompatibility between the surface speed and the free leading edge on airfoil shape; in-
stream renders the flow mathematically impossible, and compressible flow; solid line: CL = 1.07;
no airfoil solution, no matter how unrealistic a shape it dashed line: CL = 1.05
may have, is possible. Failure to satisfy the trailing
edge constraints, however, does not preclude a
solution, but the resulting shape may be unrealistic or
unacceptable. extending the region of favorable pressure gradients on

the upper surface is depicted in Fig. 16. It should be
noted that enforcement of the constraints alters the

7. SENSITIVITIES OF GEOMETRIC ideally prescribed distributions. As a result, the
CHARACTERISTICS TO PRESCRIBED SURFACE modified imposed pressure distributions for which the
DISTRIBUTIONS airfoils are found differ by more than the changes that

would be expected by the single parametric change.
Families of airfoils have been designed by This Is true for all such studies regardless of the

various authors by varying some parameters that particular procedure to generate the contours. The
characterize an otherwise similar surface speed additional differences in the pressure distributions
distribution to examine the effect on the parameter on depend on the particular functional form chosen for
the resulting geometrical contour. In some cases, the Eq. (17).
pressure distributions were chosen and the airfoils were
designed with the purpose of achieving certain lift and Liebeck

9 also performed studies which examined
drag characteristics. These results can be used to the relationships between airfoil shapes and imposed
perform sensitivity studies. pressure distributions. As mentioned earlier, Uebeck

concentrated on formulating the optimal shape for a

Nonweiler
8 desigoed a series of low drag airfoils velocity distribution with which boundary layer could be

using Ughthill's procedure. The prescribed pressure controlled (e.g., transition location could be delayed,
distributions were 'ystematically altered, and the flow separation avoided) in addition to maximizing the
differences in the resulting shapes can be observed. In lift. The general appaarance of the Liebeck velocity
Fig. 14, two airfoils designed to distributions that differ distribution is depicted in Fig. 9. The extent of the
basically in the trailing edge region are shown. As a rooftop region and, as a result, that of the Stratford
result of the differences in the imposed pressures, the recovery region depend on the level of the rooftop. In
trailing edge angle of the resulting airfoils increases with Fig. 17, various airfoils corresponding to different levels
increased local loading. Slight differences in the (e.g., maximum velocity) are depicted. The contours
distributions in the leading edge region generate airfoils were computed using a numerical procedure due to
of dramatically different leading edge radii and
thickness, as can be seen in Fig. 15. The effect of -2.0-

- 0 .8 - ---------- ---------
-1.2-

-0.4-
-0.4-

0 .0 -------- -------

0.44
1.2-

0.8 . .

Fig. 16 Effect of extent of favorable upper

Fig. 14 Effect of pressure distribution near surface pressure gradient on airfoil
trdling edge on airfoil shape; In. shape; solid line: C, = 1.28; dashed
compressible flow; CL = 0.24 line: CL a 1.22; Ino wmpreslbl flow
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The first example examines the sensitivity of the
solution to changes in the target pressures in the
forward portion of the lower surface, as shown in Fig.
19. In this figure, the pressures are plotted as a function
of arc length, around a flat plate with a chord length

a) V x = 1.6, t = 0.12 equal to 0.5. The two pressure distributions are different
only between 23% and 47% of the arc length.
Otherwise they are identical, even in the stagnation
point region. As in all the other examples that will be
shown in this section, the angle of attack is chosen to
be zero and the free stream Mach number is 0.800. The
flow is thus supercritical on both the upper and lowerb) V.~ 1.8 , t = .19

surfaces, as can be seen in Fig. 19 (C; denotes the
value of the critical pressure coefficient). The resulting
Sairfoils corresponding to these two target distributions
are shown in Fig. 20, along with the pressure
distributions that are computed by a direct analysis of
the contours. It should be pointed out that in each case,

0) VAX = 2.0, t = 025 the result of the analysis is identical to the target for the
inverse problem. The target distribution is scaled from

Fig. 17 Effect of maximum rooftop velocity on the originally defined distribution because usually q,
airfoil shape; incompressible flow turns out to be some value other than one, as in this

case. The abscissas of the results of the two cases are
James.

23 The effect of increasing design lift on airfoil lined up in such a way that the lower surface trailing
thickness is demonstrated in Fig. 18. In this example. edge points coincide. The differences in pressure
laminar flow over the entire rooftop region was assumed distributions are due to the very different scaling factors
in the prescription of the pressure distribution. (q) resulting for the two cases. The shapes of the

original targets are both retained. The vertical gap size

8. EFFECTS OF PRESCRIBED DISTRIBUTIONS (Ay) is also dramatically different for the two examples,
ON CONSTRAINTS AT TRANSONIC SPEEDS while only a slight difference in the horizontal gap is

present. Note also the different chord lengths of the two
A study which indicates how Eq. (17) could be airfoils.

formulated at transonic velocities was performed by
Volpe.

24 The study was done by designing airfoils to The effect of changing the pressure distribution in
pressure distributions which were systematically the aft section of the lower surface can be seen for the

cases shown in Fig. 21, whose results are shown in Fig.
changed. The numerical procedure was that described 22. Lowering the pressure coefficient in this area again
in Ref. 14. In the study, trailing edge closure was not
enforced. As a result, the airfoils were generally open. increases q- substantially, causing the different levels
Therefore, the designed airfoils present a view of the in computed pressure. Ay is now greatly increased
sensitivity of the trailing edge closure to particular
characteristics in the pressure distribution and, also,
give an indication of the changes in the latter needed to
bring about closure. In the study, the parameter P, is
identified with a floating value of q- , as discussed

earlier. Thus, the effect of the pressure variations on q-
can also be examined.

*66A64A6---0 CASE 731

I ~---- -N - - -0CASE A31

a ) C L = 2 .4 , t 0 .10 0 4

F~ eP

,b) CL=2.0,t= 0.16

c)CL 15. t 0.22

o6 0; 08 09 a

o0 03 03 0 0 Ol 00

CL 1.0 t = 023 Sc

Fig. 19 Target pressure distributions to study
Fig. 18 Effect of design lift on airfoil shape; effect of forward loading on design;

incompressibte flow cases 731, A31; M_= 0.800

V
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while the change in Ax is small. Figure 23 shows two Finally, the effect of the location of the stagnation
velocity distributions near the stagnation point. Except point on the solution is examined. The two speed
for the difference shown in this region, they are distributions in Fig. 25 are identical except in a region
otherwise identical and, in fact, correspond to the extending approximately 5% on either side of the
pressure distribution given as a dashed line in Fig. 19. stagnation point. In fact the dashed line is only a lateral
The location of the stagnation point itself is unchanged. movement of the curve locally. As can be seen in Fig.
The solutions for these two cases are shown in Fig. 24. 26, their corresponding solutions differ only minutely in

q. and Ay, but substantially in Ax. In the pressure plot,
the dashed pressure distribution represents the solutionfor the dashed airfoil which is drawn by makirg the
lower surface trailing edge points line up with the
corresponding points on the other airfoil. This accounts

. .... for the differences in the pressures seen on the upper
surface. If the upper surface trailing edge points are
different chord lengths of the airfoils, which are the

0: " abscissas, account for the remaining differences.

CE-
-04 / ;*, ,

00

88

04

CASE CL CD Ax a " "

0 R .+... .731 0. 39 0.04"5 0

A31 0 4390 0.0310 0.9707 -1 76 3 33- 00

I.4. ,

Fig. 20 Effect.1t forward loading: CAS CL C
designed airfoil contours and direct 0 3 681004 63 3104
solutions; cases 731, A31; M: 0.800 +688 634 0360 00245 0993 ,73 040

.----- 034 03052 00186 10656 46 214

Fig. 22 Effect of aft loading:
designed airfoil contours and direct
solutions; cases A34, B34; M_ = 0.800
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Fig. 21 Targ pressure distribution to study I Fig. 23 Target speed distribution to study effect
effect of aft loading on design; cams of stagnation point region on design;
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Fig. 26 Effect of stagnation point location:
designed airfoil contours and direct

Fig. 24 Effect of stagnation point location: solutions; cases 728, 731; M_ = 0.800
designed airfoil contours and direct
solutions; cases A34, A34A; M_ = 0.800 sections must *blend" into each other. Therefore, the

sections' chord lines have to adhere to a specific
distribution, which is at least piecewise continuous.

- -- ...... The spanwise thickness distribution and the location of
the point of maximum thickness are also required to vary
continuously and -- in most cases -- monotonically. The
wing should also close at the tip, of course. These
physical requirements translate into restrictions on the
pressure distribution to be specified on the wing.

It is safe to assume that a constraint expressing a
compatibility condition between some average of the
surface speed and the free stream exists It should be
possible to express such a constraint in closed form for

, .. .. '' incompressible flows, It is yet to be determined it any
analytical relationships between imposed pressures
and wing geometry exist in three dimensions. It is not
clear if even a general description of such relationships
is possible. Because of this difficulty, 3-D wing design

. I 'at present is limited to the re-design of certain portions ofs, it. This particular re-design usually involves the use of
Fig. 25 Target speed distribution to study effect 2-D surface modification techniques applied in each of

of stagnation point location on design; the cross sections in question. The imposed target
cases 728, 731; M, = 0.800 speed distributions are perturbations of the flow

computed over the wing to be modified using an

In designing airfoils to prescribed pressure appropriate 3-D analysis program. A designer must
distributions, the contour generated is highly dependent interact with the design procedure in order to guarantee
on the particular form assumed for Eq. (17) if the ioeal an acceptable shape
distribution (the one for which Pl, P2 and P3 in Eq. (17)
vanish). The results of studies such as this, as well as The existence of the various restrictions on
those of Liebeck, Nonweiler and others, can be used as geometry and the atsociated constraints on the
a guide to select proper ways of altering the ideal imposed pressure distributions have made airfoil design
distribution in order to satisfy the constraints an interesting and fertile field of research. Because of

the practical implications, the field of 3-D wing design is
just as rewarding. Because of the inherent difficulties of

9. CONCLUDING REMARKS thA problem, it is unlikely that the above-mentioned
user-interactive procedure for design will ever be

In three dimensions, the problems associated supplanted. Probably, it is not eva desirable.
with designing a physically acceptable structure are Progress in understanding the relationships between
magnified. The earlier discussion associated with the 3-D wing flow characteristics and geometric features
2-U airfoil is pertinent to the cross section of the wing at will contribute substantially to the development of
any station alorg its span. In addition, the several cross numerical tools to be used in the design procedure.

4,
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SUMMARY The various algorithms available for the design of
airfoil sections can be placed in one of several classes

The problem of constructing wing profiles that of methodologies. Whereas in the case of subcritical
yield specified pressure distributions and/or flows all methods developed for that purpose could be
performance characteristics is discussed. A practical categorized as inverse methods, a number of "alternate"
solution to the problem, which consists of a physically methods have been developed for transonic flows
acceptable profile, exist only if certain constraints are because of the difficulty of extending the incompressible
satisfied by the prescribed characteristics and by the flow approach to the supercritical regime. Some of
profile itself. These constraints are addressed in these alternate methodologies demonstrated certain
various manners by the several methodologies that advantages over the original inverse technique. In
have been proposed. The various approaches are practice,defining a section for a particular application
discussed along with the relative advantages and entails the use of various methods. In an inverse-type
disadvantages of each. The inverse approach is method of airfoil design, the speed -- or, equivalently,
considered in detail to provide a link to the classical pressure -- distribution (throughout the paper both terms
incompressible design problem and to establish a raison will be used and they will be interchangeable) one
d'etre for the other methodologies, desires on the surface of the profile is specified along

with the magnitude and direction of the free stream.
Mangler' and Lighthill 2 discussed this "inverse"

1. INTRODUCTION problem of airfoil theory for the case of incompressible
flow and proposed various analytical solutions. Their

The design of wings and wing sections is a methodology was refined and adapted for application
problem of considerable interest not only to the on large and small computers by successive
aerodynamic configuration engineer but also to the researchers. 3 -7 However, the difficulty in extending the
developer of methods for achieving such designs. The methodology developed for incompressible flow to the
reasons are obvious. The aerodynamic and economic transonic regime eventually gave rise to a number of
efficiencies of an aircraft are highly dependent on the alternate methods. In a pure inverse-type method of
layout of the wing and the shape of its profile. The best airfoil design -- such as those of Mangler and Lighthill --
possible aircraft (whether commercial or military) is the the speed (or pressure) distributions desired on the
one that meets its design goals in an optimal manner surface of the profile are specified along with the
(assuming one has established a definition for magnitude and direction of the free stream. In contrast
optimality). The degree to which a design team will to the direct problem in which the shape of the airfoil
come to obtaining the best possible configuration for a profile is specified and the surface speed is computed
given set of design parameters (e.g., range, speed, through a solution of a Neumann-type problem, the
volume) is. of course, a function of the skills of its inverse problem does not necessarily have a solution.
members and the theoretical tools they have available. A solution to the inverse problem exists only if a certain
The time constraint plays a major role in the design constraint between the free-stream speed and the
cycle, also. Missing the best gives rise to inferior surface speed is satisfied. In incompressible flow,
performance which can be translated into lower cruise which can be described by Laplace's equation, this
speeds, decreased range, insufficient carrying can easily be shown and the constraint can be
capacity, etc. The penalties involved in missing the expressed in closed form. If, in addition, it is required
best design have always been well known facts. As that the airfoil profile be closed (or have a particular
aircraft started operating routinely in the transonic range trailing edge thickness), two additional constraints
the penalties became larger because of the deleterious appear. They can also be expressed in closed form for
effects of the shock waves on the flow field around the incompressible flow. The existence of these constraints
aircraft. As a consequence, the avoidance of these has been known since the work of Mangler and
penalties has a bigger payoff for supercritical designs. Lighthill, and Woods has extended the analysis to
It is a small wonder, then, that a lot of effort has gone, subcritical compressible flows of a Karman-Tsien-type
and is still being put, into the development of techniques gas. The work of these authors indicated that a
for designing shockless wings. specified surface speed distribution had to be altered in

such a manner as to satisfy the three constraints in
The design of a wing begins with the selection of order to guarantee a solution. In their methods, as in the

its section profile (or profiles). Some deformation of the refinements that followed, 4-7 the approach was to
two-dimensional section may occur in the course of prescribe the surface speed distributions with three free
performing the three dimensional design, but this first parameters whose values were to be adjusted to satisfy
step is currently indispensable. Tailoring of the airfoil the three constraints.
profile to the specific requirements of the wing as
opposed to selecting one from a stockpile may be highly The formulation of an inverse method at
desirable. This paper will be mainly concerned with supercritical speeds has been problematic because of
airfoil design, since theoretical tools are most highly the lack of closed-form expressions for the three
developed for such a problem. In addition at present, constraints. The existence of constraints for the
such tools are the most easily portable, because three- transonic design problem was intuitively true because
dimensional methods, in large, reflect the design t
philosophy of the developer. the incompressible design problem was a subset of the



more general compressible problem. The lack of a clear addition, in many applications one can use the
understanding of the nature of the first constraint was distribution over a known profile as a baseline on which
the main source of the difficulties. A formulation of the desired characteristics are injected, This "modification"
inverse problem for transonic speeds was finally given approach to the definition of surface characteristics is
by Volpe and Melnik,8.9 

who devised a numerical one of the major reasons for the practical success of
procedure to guarantee satisfaction of the three indirect methods. The definition of a surface speed
constraints. The procedure is based on the discovery distribution can be avoided entirely if the differences in
that the first constraint would be satisfied if the branch some other parameters -- such as lift, drag, maximum
points of the flow were enforced to be on the airfoil, thickness and combinations thereof -- are used as

drivers of the design process. In fact, by assigning
An obvious advantage of inverse methods is the appropriate weighting factors to the various parameters

control the designer has over the force characteristics being taken into account some optimal configuration
of the airfoil profile and over the boundary layer could be attained. This is the idea underlying the
development on its surface, a control gained through method described by Hicks et al., 1 8 in which
the pressure (speed) distribution that is specified. This optimization techniques are the vehicles for performing
control can still be retained when making the changes the design. In a similar vein Jameson19 has used
that might be necessary to satisfy the Constraints. The control theory as the vehicle for the design.
introduction of the three free parameters can be
arranged such that an "ideal" speed distribution is Optimization techniques can be used to generate
modified only over selected segments of the airfoil designs that satisfy multiple design points. A
surface. Desired characteristics of a speed distribution shortcoming of inverse and many indirect methods is the
(e.g., "rooftops,* Stratford-type pressure recovery, rear fact that the resulting shapes are "point" designs, whose
or front loading) can be retained with little or no off-design performance may be unsatisfactory. At times,
modifications. Indeed, the satisfaction of three this shortcoming is of little consequence. For example,
constraints does not necessarily guarantee a realistic a transport aircraft which spends most of its time at a
airfoil. Re-entrant shapes, where the upper and lower prescribed speed and altitude is essentially a point
surfaces cross before the trailing edge, are not ruled out design. If better off-design performance is desired,
by this formulation. However, additional parameters however, it could be attained (at the expense of trading
could be introduced in an inverse design procedure to away some of the best at the design point) by defining
prevent this from occurring. additional design points with associated weighting

factors in the optimization process. It should be
Th. problems created by the constraints can be realized, however, that such a design exercise

avoided by the use of so-called indirect methods of becomes progressively longer and more difficult as the
design, such as those of Hicks et al., 10 Davis,' I number of design parameters grows. Such an
McFadden 12 and others. In these methods the approach, while possible in principle, may be
solutions (pressure and/or force characteristics) for the unrealistic in practice. The use of an optimization
flow over some arbitrary initial airfoil contour are technique used to refine a design obtained by an
compared with a desired set of values for the pressure inverse technique might offer the most efficient solution
distribution or forces. The differences between the in such a case.
'target* and "current" characteristics are used in some
rational way to modify the airfoil profile in the hope of The paper will discuss at some length an inverse
reducing these differences. The process obviously has approach to transonic airfoil design because of its roots
to be iterated. One advantage of such methods is that a in the classical incompressible problem, and because it
realistic airfoil profile is always obtained at every step of is the technique by which desired flow characteristics
the iteration. The biggest disadvantage, however, is the can be attained most closely. It will be followed by
lack of a guarantee that the iteration will converge with some discussion of indirect methods and optimization
the differences between computed and target values techniques.
reduced to arbitrarily small levels. The question of the
existence of an airfoil solution for a particular "target"
pressure distribution is skirted in these methods and, in 2. THE INVERSE DESIGN PROBLEM
fact, they will not converge for arbitrarily prescribed FORMULATION
pressure distributions that do not satisfy the three
constraints. This approach to airfoil design is best The problem that will be addressed now is the
suited to applications where the target pressure construction of the airfoil profile, which has a surfacedistribution is a small modification of the one computed speed distribution, q0 , equal to some desired function,
over the initial profile. F, everywhere along its arc lengths. This is to be

measured clockwise around the airfoil contour starting
Another approach pioneered by Sobieczky

13 is at the lower surface trailing edge point. The airfoil's
built around the concept of the fictitious gas in regions coordinates, x,y, can be parameterized as functions of
of supercritical flow. This approach is ideally suited to s. A feature of practical airfoil contours is that the
the redesign of an existing contour in a way that the new trailing edge be either closed or have a very small gap.
contour will have shock-free flow. This technique is Thus, a requirement on the to-be-determined airfoil isthat the upper and lower surface trailing edge points bemuch easier to implement than hodograph methods for
the design of shock-free airfoils such as those of separated by prescribed distances Ax and Ay. The
Garabedian and Korn (see Ref. 14) and Boerstoel,15  horizontal gap, Ax, is usually set to zero, while the
whose mathematical elegance is unfortunately offset by vertical gap, Ay, is set to zero (a closed airfoil) or to a
the need of a highly-skilled user. In neither of these small positive number. The free stream is also defined
classes of methods does the user have control of the by prescribing values for the free-stream velocity q-,
pressure distribution. Such control can be exercised
only with an Inverse method. temperature, and pressure (or density). These, in turn,

determine the free-stream Mach number, M.. In
The implementation of an inverse, or even an incompressible flow, of course, it is only necessary to

indirect, method of design involves the all-important task specify the velocity in order to identify the free stream
of defining the pressure distribution. This is not uniquely. It is to be reminded that speed and pressure
impossible (see Ref. 16 and 17, for example). In distributions will be used interchangeably. Formally,
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then, the problem is to determine the airfoil profile of a Satisfaction of the first constraint is guaranteed
specified trailing edge thickness corresponding to the by adjustment of P1. By definition, fl causes a scaling
speed distribution of surface speed (qo/q,). In scheme 1, f, is set equal

to pl. This results in a scaling that is uniform along the

q = F(s/s..) (1) airfoil. In this case one could consider p 1 as a scaling
q_ on either q. or qw. In the latter case, q. is essentially

floating, and it would be determined as part of thesolution. As mentioned above, the value of P1 is
Without loss of generality, Smax can be set equal to one; costo Arante a the f leding edg

chosen to guarantee that the specified leading edge
qo is taken as positive in the clockwise direction around stagnation point will truly be a branch point of the flow.
the airfoil.

Control over Ay, the vertical separation between
As shown by Mangler1 and Lighthill, 2 for the upper and lower surface trailing edge points, can be

incompressible flow and by Volpe and Melniks for exercised by defining
supercr tical flows the problem, as stated, does not
have a solution unless the function F(sSmax) satisfies
three constraints. Volpe 2

0 discusses these constraints f2 p2 si ) (3)
in some detail. The constraints are due to requirements \3 ) 4

that, at the trailing edge, Ax and Ay have specified
values and, that the specified surface flow be
compatible with the flow in the far field where it Outside this range f 2 is zero. Here, the ordinate is
approaches a uniform Tree stream plus a circulatory substituted for the ordinate a) in the computational plane
component, as discussed by Ludford.21 In for the arc length s. All airfoil flows can be mapped into
incompressible flow, these three constraints can be flows about the unit circle. The ordinate o (running from
expressed in closed form. Unfortunately, this is not 0 to 2n), then identifies the length along the airfoil
possible at transonic speeds. surface from the trailing edge point along the lower

surface to the corresponding point on the upper surface.
As a consequence of the constraints, an airfoil It is more convenient to use (o rather than s, and the

solution will be found only if F contains three free formulation of the problem is not affected by this
parameters. The most general speed distribution that substitution. The function f3 is the hardest to define. The
can be specified is, therefore, horizontal separation between the two trailing edge

points, Ax, is affected primarily by the location of the
leading edge stagnation point. As shown in Ref. 22, a

= F(s; p, p'2, p3), small shift in this stagnation point along the surface of
q_ the airfoil, on the order of 2% of the chord length, can

alter the horizontal gap by 5-6%. It should be pointed
out that a 2% shift in the stagnation point along the

where p1, P2, P3 are the three adjustable parameters surface is hardly noticeable when viewed as a shift
where values are to be found together with the airfoil along the chord. In order to maintain a loose coupling
contour. In this paper it will be assumed that the target among P.' P2. and P3' the shift must be accomplished
speed is of the form without altering the local velocity gradients. This can

be accomplished by shifting the functional dependence
of qo on s locally, near the leading edge. Thus, one

q'Q-=fj(s;pi fo(s)+f2(s;p2)+f3(s;p3)] (2) can define
q-

f3(s) = fo(s')- Ms)

where fo(s) represents the ideal target speed distribution with

that, in practice, is usually a tabulated function. The
functions f1 f2 , and f3 are introduced to modify the s'= s - P3h(s)

ideal target in order to satisfy the three constraints. In
general, it is desirable to localize the effect of ft' f2 ' and where

f3 so that the resulting surface speed will be close to the tI
ideal speed distribution, f,(s), over most of the airfoil h(s) = - l - Co-(, ST + 2As)Jj ,T - 2&s S s ST- AS

surface. Since in transonic flow it is not possible to
relate PI. P2. and P3 to the three constraints in closed As

form, a numerical search for the parameters must be
made. The search is greatly facilitated by choosing ff,

f21 and f3 in such a way that each significantly affects r I +cos(-(,-,/-A))l
only one of the constraints. We would then have three 2L AcS()J
one-dimensional searches for P1 I P2. and P3. In Ref. 22
the sensitivity of a designed airfoil contour to various
changes in the speed distribution is reported. This and Elsewhere, h(s) is zero. The point sT denotes the
other studies (see Ref. 16 and 23, for example) can be
used to define the forms for f I f2 , and f3 in Eq. 2. Three location where fe(s) is zero in the leading edge region

separate schemes will be described here. and As is some appropriate distance, typically 2.5% of



the total arc length. This form for 13 shifts the leading where z - x + iy and = re 
iW are the coordinates in the

edge stagnation point smoothly without introducing any physical and mapped planes, respectively, and ex is
.wiggles' in the target speed distribution and, in the included trailing edge angle. This equation can be

addition, has hardly any effect on the values of p1 and separated into its real and imaginary parts. Thus, on r =

P2. This form for f3 is common to all the three schemes

described here. ds[ sinw e (2sin- C(6)

A second scheme for modifying the target 2

distribution uses a different definition for f2 in Eq. (2).

The expression given in Eq. (3) alters the target speed
distribution only on the lower surface of the airfoil. It O=2 (1+ e)(zr- a)- r + Q (7)

would, therefore, be unsatisfactory if one were trying to
design a symmetric airfoil. An alternative form for f2 is

where 0 is the local slope of the airfoil. Q is the Fourier
series

f2 = P2t-- I E. W91 N
Q = , (A. sin no) - B. cosn n) (8)

= P21-2 1] , ( > 2Jr- (4 and P is its conjugate series. Because 0 is known as a
function of s, the coefficients of the series can be found
by standard Fourier analysis as described in Ref. 4.

This function alters the magnitude of the speed in the With this mapping procedure, the leading terms of the

neighborhood of the trailing edge symmetrically. In this series are related to the trailing edge gap (Ax. Ay) by
computational scheme, the speed takes on opposite
signs on the upper and lower surfaces, accounting for
the sign difference between the two parts of Eq. (4); w, A, {A - (AY-

is typically taken as x/3. A third scheme can be 2z cosB2+1(1-)
formulated by substituting for fl = Pi in scheme I the

function B1 =A!)cosB - (A) 'in B0  (9)

2( For convenience the infinite flow field around a unit
circle can, in turn, be transformed into the finite region
inside the circle. The modulus of the transformation of

which concentrates the scaling in the front half of the the physical plane. z, to the inside of the circle is then
airfoil, written as

As discussed by Volpe, 2 0 the first constraint of
the inverse airfoil design problem is a statement of H= Idz
compatibility between the prescribed surface speed and 7=-2" d41
the prescribed free-stream speed. The constraint can
be satisfied if the surface speed is prescribed with an

adjustable parameter (pi in this case) or if q_ is allowed In the inverse design problem dz/dC is, of course, the
to float. If Pl is introduced as a scaling parameter, as in quantity to be found since it describes the

schemes I and 2, one could interpret P, as being q- transformation of the unknown airfoil profile into the
circle. It should be recalled that the transformation is

and use the latter as the free parameter. q_ can at any conformal everywhere except at the airfoil's trailing
time be scaled to any desired value without altering the edge where the metric h=JdzfdQI vanishes.
formulation of the problem by simply scaling qo by an
equal amount. This operation would leave the pertinent The mapping of the airfoil into a circle simplifies

ratio, qo/q-, unchanged. the computation of the flow field around the contour. In
an analysis problem, where the shape of the contour is
given, q. is usually set to unity and the flow is

2-1 Airfoil Desion Scheme computed subject to the boundary conditions that the

velocity component normal to the surface, v, be ze' .
The shape of the airfoil which gives rise to the For incompressible flow, which can be described cy

speed distribution represented by Eq. 2 can be obtained Laplace's equation, this solution can actuali be
by iteratively modifying some initial contour, as shown expressed in closed form. For transonic flow, the
by Volpe and Melnik.

9 This initial contour need not be solution must be determined numerically. Whether one
close to the sought-after profile for the iteration to assumes the potential equation or the Euler equations to
converge. As described in Ref. 9, this initial contour is be descriptive of the flow, the flow field can be
mapped into the unit circle by the unique conformal computed by a number of numerical ,chemes. The
transformation schemes described by Jameson,

24 ," for example, are

-'I-el) widely used for these classes of computations.

-= -1j (P(6) Flow fields with no shocks, or only weak ones.
(and inviscid, of course) cin be described adequately



by the potential equation. In such a case the flow in the For the inverse design prohlem the boundary
circle plane is described by the continuity equation conditions at r=1 are imposed on u rather than v. Using

the known functional relation between s and co for the

current contour, the target speed distribution qo can
(pU)+r (pV)=0 (10) then be expressed as a function of w. Then, at the

dr boundary in the circle plane one can set uo=u(o)) equal

to qo(s{o)). Of course, this would be true if h were the

U and V are the transformed circle plane velocity true mapping metric; in general, it is not. Hence, the
components in the r and o) directions, respectively. For boundary is not necessarily a streamline of the flow. In
irrotational flow they can be expressed as gradients of a other words, v is not necessarily zero at the boundary.
potential function op; thus The flow field is computed subject to the boundary

condition uo=qo(s(O)) at r=1 by a numerical scheme
identical to the one used for the direct problem. The

U=qp9. V=rp, (11) Dirichlet boundary conditions are implemented by
integrating qo around the airfoil to find the reduced
potential G at the boundary points. A constant of

Using the energy equation the density p is integration Go can be prescribed arbitrarily. The
evaluated from u and u, the velocity components in the
physical plane. These are related to the components in numerical problem that has boundaries at both r=0 and

the circle plane by r=1 is well posed since the value at the inner boundary,
G_, is determined as part of the solution. The
circulation constant is determined by integrating u0

U=-, V= (12) around the full boundary. In general, in the Dirichlet
h h problem there is a net mass flow emitted from the

boundary. To allow for this, a source term a log r is
subtracted from the potential leading to a new reduced

Clearly the flow within the circle cannot be computed if potential, G defined by
h is not known; the assumed initial shape for the airfoil
provides the initial estimate for h. In the limit of M_
going to zero, Eq. (10) reduces to Laplace's equation. G = G - alog r

The mapping introduces singularities at infinity,
but they can be removed by subtracting from the The far-field boundary condition will then have the
potential its behavior in the far field. As discussed by additional term
Ludford, 2 1 the solution in the far field is made up of a
uniform stream plus a circulatory component. The
potential functions describing these terms are known. M2 1

Thus, one can define a reduced potential function. sin((0+ a]

G=Oq r+ _ cos(&)+a)_Etan-'[(tM-2tan(w+a)l In this Dirichlet problem the normal velocity

rJ- - component, V, computed on the circle boundary will not
be zero, in general. There is also no guarantee, at this
point, that an airfoil-like shape corresponding to qo(w)

where c is the flow incidence and E is a circulation exists. The above mentioned constraints on F(s) have
constant. This reduced potential is continuous and not been satisfied. The constraints are satisfied by
single valued everywhere, adjusting P1, P2, and P3 in Eq. 2. Two of the

parameters, p2 and P3, can be reset by monitoring the
At infinity (r=O)G=G_, a constant that can be trailing edge gap values, Ax and AY. Pi is reset by

set at zero in direct (Neumann) problems, but which monitoring the value of q. As shown in Ref. 8 and 20
must be determined as part of the solution in inverse the first constraint can be satisfied if the branch points of
(Dinchlet) problems by extrapolating from the interior of the flow are forced to be on the circle itself. This can be
the flow field. accomplished if V can be made to vanish at points

where U vanishes. U is zero at the leading edge
For the direct (analysis) problem, q. is usually stagnation point where qo is zero, and at the trailing

set to unity and the boundary conditions demand that edge where the metric, h, and possibly, q0 , are zero. V
v-0 at the surface. The solution for the flow field is can be set to zero at these two points by adjusting two
computed numerically by discretizinq the flow field in parameters. One parameter is the source flow term, a,
conservation form along a polar co. -nate mesh. The which has a role similar to that of the circulation term fro
set of difference equations that approximates Eq. (10) is the Neumann problem. The other parameter is q., the
solved for the discrete values of the reduced potential, free-stream speed. As discussed earlier this can be
G, at the nodes of the computational mesh by an allowed to float to satisfy the first constraint. It can be
approximate factorization multigrid scheme similar to the returned to its original value by subsequently adjusting
one described by Jameson. 2 4 The value of the
circulation constant, E, is determined from the Kutta P1.
condition, which requires that u be finite at the trailing Because of the definition of the reduced potential
edge. Since h-0 at the trailing edge, U must be made to V I directly proportional to a and to -q- cos (w+a).
vanish at this point. In this direct problem the surface
speed qo(s)mu(s) is computed from the potential New values of a and q. can then be found by solving
function G. simultaneously two equations of the type



Aq. cos(w, +a)-Aa=V, The value of the normal component of velocity at the
leading edge stagnation point, v, goes to zero quite fast
(due to the continuous resetting of pl). When v is below

where col are the two branch points where U=0 and Vi a given tolerance (typically 10-5 - 10"6), estimates are
are the computed values of the normal velocity made of the values that A, and B I, the first-order terms

components. The corrections Aq_ =q,. -q.,d and of the series in Eq. (8), would have if the airfoil were
are the values that are required to modified at that stage. These values are compared with

.- the values they should have for the airfoil to have the
drive V1,2 to zero, desired trailing edge gap dimensions, as given by Eq.

(9). The differences between the current and desired

2 2 Contour Modification values, 8A1 and 8B1, are then used to change P2 and
P3 , respectively. The change in P2 is made

The solution to the Dirichlet problem, in general, proportional to 8A 1 and the change in P3 is proportional
will give a non-zero normal velocity at the circle to (-8B1). Since p, is introduced as a multiplier, a
boundary except at the enforced branch points, change in the surface boundary conditions due to a

A non-zero normal velocity V implies that the new P1 can be transmitted through the entire flow field
actual streamline is (to first order) rotated from the by scaling the entire potential field. Using this
boundary by an angle of magnitude procedure p, can be updated after each multigrid

sweep of the flow field without seriously affecting the
convergence rate of the numerical scheme. This

30= tan-|| (13) procedure is not possible with P2 and p3 ; therefore,
Uthey are updated infrequently. However, the method of

false position can be used to accelerate convergence

This equation is used to modify the initial slope of P2 and P3. The flow field is assumed to be converged

distribution expressed by Eq. 7. New Fourier series for when all the residuals at all the flow field node points
are below a specified tolerance, and v at the leading

Sand P can then be computed, as well as a new ds edge stagnation point together with 8A1 and Of are
dw' below their respective tolerances. At this point the

from Eq. 6, and finally airfoil Contour is modified and another Dirichlet problem
is set up. There is no need to analyze the new airfoil
contour with this procedure. A direct analysis can be

dx dx o, d =_s since made at the very end of the calculation just to check the
d - d= do) doi results.

To ensure convergence of the design process
The actual ordinates of the new airfoil contour are only a fraction of the changes suggested by Eq. (13) is

then obtained by integration. This new airfoil provides a actually taken in the early design cycles. After several
new approximation for the metric h and a new relation contour modifications the factor can be increased. The
s(o)), which are needed to set up a new Dirichlet tangential velocity u(oa) at the boundary, which is
problem in the circle plane. This process can be interpolated from the desired qo = F(s), is also under-
repeated until a desired tolerance in the maximum value relaxed when a new design cycle is started.
of V/U is reached. It should be noted that the ratio
expressed in Eq. 13 is finite at all times since V=0 where At convergence, the mass flow term a goes to
U-0. zero, as it should, since there cannot be any sources in

the flow field. As a final note, the angle of incidence, a,
of the free stream is free to be specified. The final airfoil

2.3 Iteration Procedure shape is Independent of a, however; only its orientation
will vary according to the value of at. As a result, the

The procedure for iteratively modifying some incidence can simply be set at zero.
initial airfoil into the shape that generates the surface
speed distribution expressed by Eq. 2 can be made to
converge regardless of the assumed initial shape by 3. EXAMPLES OF INVERSE DESIGN
under-relaxing the changes suggested by Eq. 13. The
values of Pt, p2, and P3 are found as part of the In this section airfoil design using the procedure
solution. A convergent Iteration process is described described above is illustrated. All the examples that will
as follows. A Dirichlet problem for the flow inside the be presented have been computed on a mesh
circle is set up using the metric of the initial assumed containing 192 points in the circumferential direction
contour, and, as boundary condition the requirement and 32 points in the radial direction.
that the tangential velocity u be equal to the total speed
distribution, qo. (This is actually true only at At supercritical speeds, 'shockless" airfoils are
convergence.) The Dirichlet problem is solved usually the goal. A reasonable target speed distribution
numerically through sequential sweeps of the flow field might be the distribution depicted by the symbols in Fig.
computational mesh, as In the technique described In 1. This distribution represents the function f0(s) in Eq. 2.
Ref. 24. The free-stream Mach number is 0.800. In order to

satisfy the three constraints, the target distribution must
At the end of every sweep of the flow field, q be modified Into the distribution depicted by the solidAt he nd f ver swepof he lo fi;dtq- line. This modification was achieved automatically

and a are determined by forcing v to be zero both at the using the above-mentioned scheme 1.
leading edge point where u Is zero and at the trailing
edge. The factor p1 is then adjusted to scale q, back The shift in the location of the stagnation point
to its specified value, and the flow field is swept again, should be noticed in this figure. The shift is achieved
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Fig. 2 Designed contour, original target and
computed pressure distribution; "shockless"
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Fig. I Original and modified target speed .
distributions; "shockless" case, M_, = 0.800,

= 00

b) FINAL. PROFILE AND NACA 0012

smoothly and makes it possible to close the x-gap in the
airfoil. The designed airfoil is depicted in Fig. 2 along ... .
with the computed pressure distribution. This pressure
distribution is the result of a direct solution of the flow
field over the designed airfoil contour, and it agrees to C) FINAL PROFILE AND NA) 0002

three decimal places with the pressure distribution that - _ ....
corresponds to the target speed distribution (the solid
line in Fig. 1). This airfoil solution is obtained regardless
of the airfoil contour initially prescr',ed to start the
iteration procedure. In Fig. 3 the designed airfoil (1) FINAL PROFILE AND 'NEEDLE'
contour is compared with four different starting shapes:
the Korn airfoil, the NACA 0012, the NACA 0002, and,
finally, a 'needle" -- two straight lines joined at the Fig. a Final airfoil profile (solid line) compared with

trailing edge and at the leading edge tangent to a starting proffles (dashed line)
semicircle of radius equal to 0.25% of the chord.

The pressure distribution depicted in Fig. 2
It is satisfying to note that the values of pt, P21 appears to have very desirable features; in particular,

and P3 are identical regardless of the starting shape the "plateau' region on the upper surface suggests the

(i.e., the modified target speed distribution is the same in absence of a shock. However, a very large drag (CD =
all cases). Apparently, by decoupling the three 0.0232) is present even at the design point. A look at
parameters, it can be ensured that only a single set of the Mach number contours in Fig. 5, reveals that, while
values exists that satisfies the three constraints. It is there is no shock at the airfoil surface itself, a very
possible that, if the three parameters had been coupled, strong shock is present off the surface. The contours
more than one set of values might exist that would represent increments of 0.01 in Mach number, and only
satisfy the constraints. Even though there is no formal contours for values greater than the free stream are
proof of this, decoupling appears to guarantee a unique shown. At off-design conditions, the shock reaches the
solution as well as making the search simpler and faster, surface. Several authors have observed this feature. A
The convergence rate of the method for the various smooth recompression along the surface does not
"starter* profiles is given in Fig. 4, which depicts the necessarily mean that the flow field is shockless. Thus,
maximum value of Iv/uI as a function of design cycles, the airfoil shown in Fig. 2 is impractical because of its
Again, after 10-12 cycles it is difficult to distinguish any high drag.
changes in the airfoil shape. Typically, the code is run
to a level where the maximum Iv/uI is 0.001 or smaller. A truly shockless closed airfoil is depicted in Fig.
A converged solution generally requires 4-5 min. on a 6, along with the computed pressure distribution (i.e.,
Cray-IM computer and about 20 min. on the IBM 3081 modified target) and the original, unmodified target.
machine. Note the low computed drag (CD = 0.0005) of this airfoil.
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Fig. 4 Convergence history of maximum surface
velocity ratio for various starter profiles;
"shockless" case, M.o = 0.800, = 0' -
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Fig. 7 Design point isomach$; case 2, M = 0.800,
. = 0 ; contours shown at 0.01 intervals
beginning witi. 4 = 0.810

Fig. 5 Design point Isomach,; "shocktess' case,
M.= 0.800, . = 0*; contours shown at

0.01 intervals beginning with M = 0.810 A very interesting profile designed to an unusual
pressure distribution is depicted in Fig. 9. The airfoilwas designed for laminar flow (remember that this

method is purely inviscid) to a distribution devised by
The computed isomach pattern in Fig. 7 shows that the Pfenninger17 for M_ = 0 /66. It is only one of a series
flow over this airfoil is truly shock free, and at oft-design of airfoils designed for such purposes. The scheme
points only a weak shock develops. This case was used was scheme 1. Since the ideal pressure
computed using scheme 2 described above. It should distribution was based on the considerable personal
also be noted that in this case the modifications made to experience of its designer, minor modifications were
the ideal target pressure distribution are considerably needed to generate the airfoil solution. The computed
larger than those that resulted in the previous case. The Mach number contours are depicted in Fig. 10. Notice
changes on the lower surface reflect mostly the effect of the shallowness of the supersonic region as compared

2 as given by Eq. (4). An example of an airfoil to its length. This airfoil exhibits very low drag for a
designed using scheme 3 is shown in Fig. 8. Note, in Considerable range of flow conditions around its design
this case again, the very low value for the drag and the point. As mentioned earlier, the method will generate
considerable lift coefficient. The modifications to the airfoil contours of arbitrary trailing edge thickness. The
ideal target that should be noticed apart from the scaling Contour shown in Fig. 11 has a trailing edge thickness
are concentrated near the trailing edge. equal to 2% of its chord. Like the previous example, this
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Fig. 8 Designed contour, original target and Fig. 11 Designed contour, original target, and
computed pressure distribution; case LFC1, computed pressure distribution; case LFC2,

= 0.766, = 00, CL  = 0.5166, CD =2% trailing edge thickness; M = 0.775,
0.0001 = 0', CL = 0.4805, CD = 0.0001

represents an interesting design that, in addition to front metoloading, has a long and shallow supersonic flow metioned that in such an approach to design, the, procedure for computing the flow field is completely
divorced from the shape modification step.

4. INDIRECT METHODS In this class of methods the issue of constraints is
avoided. The set of rules controlling the shape changes
can always be defined in such a way as to yield a

The design of win;g sections can be realistic airfoil, It is also true, however, that by such a
accomplished by a procedure in which the changes to technique the differences between computed and target
Some initial contour are driven by the difference distributions will not necessarily be driven to an
between the pressure distribution computed over the arbitrarily low value, and, in fact, the obtainable
given profile and the target pressure distribution. The minimum value may be quite high. Nonetheless,
shape changes are made according to some specified methods in this class are quite useful, especially when
Set of rules and the procedure is iterated in order to "small' design changes are involved, It is not
drive the differences between computed and target uncommon in practice to specify the target pressure
distributions toward zero. Such methods are often distribution to be a modification of the distribution
referred to as direct methods since they involve computed over a known airfoil profile. in such a case
repeated calculations of the flow field over a known (in)direct methods work quite well. A pair of techniques
Contour -- a direct, or Neumann problem, as opposed to illustrating this type of approach will be described
the inverse, or Dirichlet problem, It should be briefly.
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4. descriptive of the relationship between the twoquantities. Similarly at subsonic points a new curvature

Within the context of small disturbance theory is proposed by
(see Ref. 26) the value of the pressure coefficient (Cp)
over a wavy-wall is given by an expression of the type d ( c ~ C )

CP =g (MA )-) 4 (14)

The gradient of the curvature with respect to Cp is to be
computed from Eq. 17. With these new distributions of

if M_ is greater than 1, and by slope and curvature a new airfoil contour can be
constructed by integration and the procedure can be

d2y (15) repeated. It should be ncled that the changes
C __T (15) suggested by Eq. 18 and 19 are under-relaxed since&i Eq. 16 and 17 are only approximations.

This technique can be used to re-design only
if M_ is less than one. Davis1 

I suggested that part of an airfoil contour. This is actually the preferred
expressions of this type could be used to guide the mode of operation. The accuracy of the technique in
shape changes needed to achieve a target pressure the leading edge region is low since the integration for
distribution. This could be done by interpreting Eq. 14 the new shape is performed in the physical plane where
and 15 as being expressive of the sensitivity of the the curvature is very high. An example of an airfoil
"local" pressure coefficient to the "local" surface shape, design using this method is given in Fig. 12. Here an
and vice versa. Based on the work of Spreiter and airfoil contour is iteratively modified on the uppqr
Alksne, 27 who used local linearizations of the transonic surface starting from a location 0.6% of the chord away
equation to develop separate expressions for the from the leading edge. The lower surface was kept
supersonic and subsonic regions of flow over an airfoil, fixed. The target pressure distribution represented by
Davis proposed variations of Eq. 14 and 15 above, the symbols in Fig. 12 was a modification of the
which are more accurate and are compatible with a distribution computed on the initial contour (the dashed
potential assumption for the flow field. While the forms of line). The latter distribution featured a shock which was
the expressions are changed, their basic nature is not, to be weakened by the prescribed target. The final
however. Thus, at supersonic points the local pressure modified section, which is pictured in Fig. 12, differed
coefficient is still related to the local slope of the surface only slightly from the initial contour, but the target
by an expression of the type pressure distribution was in large part achieved, as can

be seen. Slight differences between the target and the
final arhieved result can be noticed, especially in the

y 213) ITrailing edge region. It is to be recalled that this
Cp=g3 M, , (16) technique does not necessarily drive these differences

( (dxto zero.

where M is the local Mach number.

At subsonic points it is related to the local
curvature of the surface by

Cp=g4 ,M".( 2/3 (17)

Cp

where M" is a reference value that ensures smooth
switching between subsonic and supersonic regions.

In the "wavy-wall" method of design the flow over
some initial airfoil is first computed (by the method
proposed in Ref. 24, for example). At points on the
airfoil where the flow is locally supersonic a new slope CASE SVMROL Cr Cd
is proposed. This new slope is computed by ,N,..^l I . - - - 1 0n94

2n1InT 1 -  on(~L = + ( )Or(CT -c) (18) _-d .dx o dC p d~x )o

St)SFACE MODIrICATIrON,

Here Cp is the pressure distribution computed over the

airfoil and CT is the target distribution. The gradient ofP
the slope with respect to the pressure coefficient is Fig. 12 Airfoil re-design with wavy-wall technique;
computed from Eq. 16, which is interpreted as being M_ = 0.680



An approach similar to the one described above Taverna 3
' in designing propellers for general aviation

has been developed by Fray et al. 2
8 who combined the applications. Jameson also interprets the left-hand side

wavy-wall concept in supersonic zones with the of Eq. 21 as the new metric. V. on the right-hand side is
subsonic thin wing inverse code of Fray and Sloof.29 In the product of the speed computed over the starting
the formulation of Ret. 29 the design of entire airfoil can airfoil, q0 , and the old metric. Thus, one can write
be tackled in a practical manner, since better control
over the design of the leading edge region -- which can
be safely ,:ssumed to be subsonic -- is obtained through
the use of an inverse approach there. Through the h c = b-hc,
inverse approach trailing edge closure is also q0
addressed by Fray et al., a goal that can be achieved
only through a trial-and-error process of modification of and finally
the target distribution in the Davis technique.

log (,.)= tog(hid)+ log , (22)

4,2 Modified Mapoing TechniQue

It was mentioned earlier that the flow over any
airfoil and the flow over the unit circle are related by the The second term on the right-hand side in Eq. 22
transformation, h, that maps the airfoil into the circle, provides the sought-after airfoil modification. In practice
Specifically one car write it is multiplied by an under-relaxation factor.

d I .d I.1I In this type of technique special care has to beh = !L = (20) taken to ensure that the zeroes (i.e., stagnation points)dwc d dz in the computed speed distribution ((p' or q) and the

target distribution match in order to avoid unwanted

singularities in the new metric. McFadden and
'dwi Jameson apply modifications to the target distribution to

and, in the physical plane, L( = 
q, the speed on the bring this about. In addition, at any step in the iteration

dzl process qo may develop shock waves even though qc
airfoil surface. For incompressible flow the solution for may be shockless. Scme smoothing of the gradients
the flow over the circle can be expressed analytically near these shocks must be provided to prevent the
as a function of , In this case the metric, and thus the airfoil from developing corners. The issue of constr:n,s
airfoil, can be constructed immediately. In fact, this is (which is ignored in the Davis method) is addressed
the basis of all inverse methods for incrmpressible indirectly in these methods. Specifically, the issue of
design. For compressible flows, where the solution in compatibility between free stream and surface speed
the circle plane is not known a priori and can be (the first constraint) is resolved by letting q- float. The
computed numerically only if some value of the metric
(i.e., an initial contour) is provided, this is not possible. value of q- is obtained by first calculating the average
Equation 20 can be used to provide the mear ' hv value of qclq_ over the airfoil (or circle to which it is
which an airfoil profile can be iteratively altere. w mapped). For incompressible flow this value is zero, as
achieve a desired speed distribution, q0 . This was the shown by Mangler, 1 Lighthill,2 

and Volpe.' 4 For the
approach proposed by McFadden. 12 In this method Eq. target distribution, qo/q_, the average should be zero if20 on the unit circle is written as a solution is to exist. McFadden chooses for q- a value

that minimizes a functional expressing the difference (in
ds 1 a mean-square sense) between these two average
dw --- s , (21) values. In the Jameson method q- is chosen to

equalize the averages. In either case the r oionale is
based on the fact that since the direct solution over the

Here, qo is the prescribed speed distribution expressed starting airfoil necessarily satisfies the first constraint,
as a function of (a. The mapping of the starting airfoil keeping the average value of the target speed "close'
contour into the circle is used to provide a functional to the initial average will modify the target distribution in
relationship between s and w as was done above in the such a way that it always satisfies the convtraint. The

case of the inverse method. ip. is the speed on the re-setting of q- results in a scaling of qo/q- which is
analogous to the scaling introduced in schemes I and 2circle computed numerically using, again, this same ,I, Volpe's met.hod discussed earlier.

mapping function. The solution for the flow is obtaine Vd
subject to the boundary condition that the velocity
normal to the cirule is zero (the Neumann problem), so In the McFadden and Jameson methods trailing
that (p. is the total speed. Equation 21 is basically a re- edge closure is not addressed explicitly. As in the
writing of the first of Eq. 12. The new twist is to interpret wavy-wall method, if an airfoil has an undesirable
the left-hand side of Eq. 21 as the new metric. Then, as trailing edge, a new design problem can be set up with
shown in Section 2, the ordinates of the airfoil, x and y a modified distribution. Trailing edge closure can also
can be generated by integration. In practice the metric be brought about by an a-posterori resetting of the
changes are under-relaxed. As in the Davis approach Fourier coefficients of the new metric. Choosing the first
the procedure for computing the flow over the circle can order terms, At and B1, according to Eq. 9 instead of
be used as a 'black box." and the c'3sign process assigning to them the values suggested by Eq. 21 or 22,
involves the sequential analyses of airfoil profiles will result in a contour which always has the correct
iteratively modified by the rule provided by Eq. 21. trailing edge gap, Ax and Ay. I he speed computed

over this airfoil is no lcnger the target speed, however,
An approach similar to McFadden's was and the differences from the target are not necessarily

developed by Jameson 30
and has been used by small.



5. OPTIMIZATION PA HQp It should be mentioned that trailing edge closure could
be satisfied at all times by appropriate choices of theIn another class of design techniques, which has polynomials fi in Eq. 23. independently of the value ofbeen proposed, successive modifications to some the at's. Other constraints to be imposed might includeinitially prescribed contour are performed in such a way minimum values of thickness and curvature at variousas to minimize the value of some chosen object stations along the airfoil, maximum pressure coefficient,function, or of a combination of several such functions, off-design drag rise limits and minimum (or maximum)The object function might be the difference between the values of force and moment coefficient at various flowpressure distribution over the initial profile and a conditions.

prescribed target distribution. It could also be the valueof the total drag. Multi-point design can be addressed The design process begins by perturbingby such methods by defining several functions separately e. _h of the N design variables, aj, in Eq. 23,encompassing different flow conditions. As in the case and analyzing the corresponding N different contours.of indirect methods, this class of techniques uses a The flow solutions will yield N separate values for theseries of direct analyses of the current airfoil shape to object function, IN, and for each of the constraints,determine the necessary modifications. Most methods GiN. These values together with the values for theuse classical optimization techniques (see Ref. 32, for object and the constraint functions pertinent to theexample) to determine the changes, and the procedure original configuration (ai=O) are used to estimate valuesfor analyzing the airfoil is truly a "black box." A more of the derivatives of the functions with respect to therecent approach, proposed by Jameson, 19 
borrowsideas from control theory to formulate an adjoint dGequation, which embodies the object function, and design variables I I The critical step, whichwhose structure reflects the nature of the direct solver. Oa} d T a

follows and is to be performed by the selected5.1 Design via Numerical otimization optimization procedure, is to determine, now, the
direction of steepest descent of I in the N-dimensionalThe technique described by Hicks and space. In other words, the optimization procedure is toVanderplaats 18 

is typical of an optimization approach assign new values to the ai's such that the resultingand will be described briefly since it contains the contour will have an object function closer to theconcepts common to all such techniques. In this sought-after minimum. In the N-dimensional space eachtechnique the ordinates, z, of the airfoil are expressed of the constraints is represented by a surface and theparametrically in the form space on one side of this surface denotes the region
where thp particular constraint is satisfied and the other
side the region where it is not. When all constraints areN considered there will be -- hopefully -- a region whereZ = zo + Xa i fi (23) all the constraints are satisfied, Such a region is termed
the feasible region. Care has to be taken to begin the
design process in the feasible region and to remainthere. CONMIN, the optimization program developedwhere zo denotes the shape of the initial contour, fi by Vanderplaats 3

3 is used in the design procedure of
some specified shape functions (typically polynomials Ref. 18 and in others.in x, the abscissa), and ai are coefficients to be found,whose values will determine the new airfoil contour. Having found the direction of steepest descentThe design problem consists of defining an object
function, 1, whose value is to be minimized (or, incertain cases, maximized) subject -- possibly -- to a from the estimates of the dL/ (usually through one-number of constraints, Gi, on desired quantities. The tu oobject function, I, might be the drag of the airfoil, or the sided differences) all the a,'s are modified along thatlift, or the pitching moment. The design problem may try direction in an amount proportional to some givento achieve a specified speed distribution, q-, in which factor, K. Then, the flow at various points, typicallycase the object function could be described by three, along this direction, corresponding to variousvalues of X, is computed and the object and constraint

functions are obtained at each point. Movement (i.e.,
2 variation of the ai's) along that direction is continued(q-qT)2  

1S (24) until the object function starts to increase or until one or
more of the constraints should be violated. The formercase might occur because of non-linearities in the
design space. In either case the procedure forwhere q is the speed over the initial contour and the determining a direction for minimizing I is repeated, byintegral is performed over this contour. Regardless of sequentially and separately varying the ai's to obtainhow it is defined, I is assumed to be a function of thedesign variables, aj.. new derivatives, ) -a/. In the case where a constraintThe constraints may be of a geometric or an do1aerodynamic nature and they are assumed to be surface is crossed, a "feasible" direction, which keepsfunctions of the design variables, also. A constraint the design variables within the feasible region, ismight be the requirement that the enclosed volume of

the airfoil, V, be greater than or equal to a specified determined using the gradients -L. If no constraintvalue VMn, in which case, the constraint could be da,expressed as surfaces are crossed the direction of steepest descent

V is again used. The design process is terminated when
movement along the gradient (or the feasible) directionVMM leads to an increase in the object function.



By appropriate choice of the shape functions in 16 -
Eq. 23 the procedure can be used to re-design only a
portion of an airfoil, as it is done in the example shown 1.2 - - -

in Fig. 13. Here, the upper surface of a 13 percent thick ,.

NACA 6-series airfoil - the initial contour - is to be " /-.8 / /C,- .
reshaped to weaken the shock it exhibits at M_=0.7, (p /
a=O*. The object function is defined by a minimum of 0.4. /
the (drag/as computed by an inviscid potential flow . /
program) which in this case is entirely due to shock 0.0_ __/

losses. The design was performed subject to a lower
limit on the value of the cross-sectional area (or volume)
of the airfoil (a constraint). The design objective was 0.4 :':AL OF':L 2.7'! ].23 -2. :79
attained in this case. It is not certain, however, that this ---- -NL . . ' , 2.2t -2,S
might be the best possible design, even if subject to the
given constraint. An optimization procedure will drive -.
the design toward a local minimum of the object function
with no assurance that the local minimum will be an
absolute one. It is even possible that a different local
minimum is obtained when the design process is started Fig. 13 Inviscid drag minimization; M = 0.70, ui = 0
from different initial conditions.

Design by optimization is a costly process.
Typically, 10 to 15 cycles involving new estimates of Here, the integral over the circle boundary is
the gradient directions are needed to attain the substituted for the integral over the airfoil surface.
minimum. Each cycle in turn requires N analyses of the
flow field corresponding to the N separate variations of Jameson

19 
shows that this integral can be put in the

the ai's, plus -- usually -- three analyses of the flow form
along the newly-estimated direction. Thus, the total
number of flow analyses grows linearly with the number 2z
of design variables. One would have to keep the ./ = Jg 8f do (25)
number of design variables low to keep program running 0
times within desirable limits. However, the number of
attainable designs will be limited by the number of
design variables. This number should be as large as where 3f= 8h/h and g is a gradient function
possible, regardless of the choice of shape functions, in
order to make available a wide design space. The need
to express the airfoil in terms of parameters (design .P
variables) appears to be the most serious limitation of g=- -(q-qT)q (26)
this technique. dr

5.2 Desicn via Control Theory P is obtained by solving a Poisson equation whose
forcing term is the product of the gradient of the potential

An interesting technique recently proposed by and the gradient of an auxiliary function '.
Jameson 1 9 

obviates the need for a parametric
representation of the shape of the airfoil, and cuts down
substantially the number of flow solutions needed to Ap=pM 2Vp.V(
estimate the direction of the changes to the contour (27)
needed to drive the object function toward the minimum.
The technique regards the design problem as a contro!
problem in which the airfoil profile is the control. The function V is calculated by solving an adjoint

equation
The process, again, begins with a definition of an

object, or cost function, I. This might be given as in Eq. Ly=0 (28)
24, for example. In the procedure, the variation in the
cost function, 8.5 is expressed as a product of the whose operator L is the same operator which would be

obtained for the potential if Eq. 10 were to be expanded
variation in the shape, 8z, and some appropriately for (p and terms containing derivatives of the mapping
chosen function, g. The choice of g is dependent on functions were to be dropped.
the particular equations assumed to govern the physics
and geometry of the flow. In the illustration of the The key element in this design procedure is to
method given in Ref. 19, the two-dimensional flow about make modifications to the airfoil through changes in the
the airfoil is analyzed in the circle plane and is mapping function. These changes are given by
described by the potential equation, as in Section 2.
The metric h is descriptive of the airfoil shape in this
case and 3h can be substituted for 3z. A variation in f= h(29)
the metric results in a variation in the potential, the h
speed on the surface, etc. In turn, it will cause a
variation in the cost function, which, when defined as in
Eq. 24, can be expressed as where X is a small positive number. If this expression is

substituted in Eq. 25 one notes that the change in the
2x cost function resulting from the selected modifications to

the airfoil is necessarily negative. This means that the
J~q-qT) q dw new airfoil has a cost function which is smaller than that
o corresponding to the previous contour. The airfoil



modification process converges in a direction which speed distribution has to be imposed in addition to the
tends to minimize the cost, as desired. zero drag requirement to prevent the procedure from

generating a flat plate at zero angle of attack. The
The design cycle begins by first solving for the imposed distribution forces the lift of the designed profile

flow field. This yields the potential, (p, the velocity to be close to the prescribed one. After six cycles the
components and the density. The adjoint Eq. 28 is then design is essentially frozen. The final airfoil has a drag
solved for V, and P is subsequently obtained by coefficient of 0.0016, as compared to a value of 0.0170
solving Eq. 27. The function g is computed from Eq 25 for the initial profile. In the drag minimization mode the
and the mapping function is corrected according to Eq. technique converges faster than it does in the "design
29. to pressure" mode, in which case it requires 15 to 25cycles, typically.

The constraints, which concern compatibility of
surface speed and the free stream and trailing edge The procedure can be formulated in a similar

closure, and which were discussed earlier, can be fashion for the case where the flow is to be described by
accommodated in this procedure by using on the right- a different set of governing equations. A set of adjoint

and auxiliary equations can be found by a similar
hand side of Eq. 29 a modified function j which is analysis. The basic idea, as before, is to express the
obtained by subtracting from g terms that force the variation in the cost function as a product of a gradient
constraints to be satisfied. As in the case of methods
using the modified mapping modulus approach, the function, g, and the variation of the shape. 3f, as in Eq.
appearance of shock waves might cause numerical 25.
problems, since in such a case (q-qT) would not be
differentiable and, consequently, 8h might develop This technique avoids the need for, and the
"spikes." This can be avoided by a more sophisticated restrictions accompanying, a parametric representation
choice of the cost function, a choice which in effect of the shape.In addition it offers considerable savings in
entails using a smoothed distribution of (q-qT). The cost computing costs over the classical constrained
function could be defined in a way that could account optimization approach. Each iteration cycle basically
for additional design constraints. These constraints involves the solution of the equivalent of two flow fields,
could call for specific lift values at several flow one for 4 and one for V, since the adjoint equation is
conditions, and a minimization of the drag. This could "close' to the potential equation. The solution of the
be done by taking as the cost function the sum of the auxiliary equations, and in particular Eq. 27, is
cost functions separately defined for each design goal. relatively fast. As a result, the cost per cycle is slightly
It should be noted that the secoid part of the gradient more than two flow field solutions as opposed to the
function g in Eq. 26 reflects the variation of the cost approximately (N+3) solutions required for the
function and thus changes with the definition of the optimization methods. The technique does suffer from
latter. some of the same problems as the latter method,

however. In particular, if more than one local minimum
The example in Fig. 14 illustrates the method in exist in the solution space, the method will not

the drag minimization mode. In this case the target necessarily converge to the absolute minimum, and
speed is taken to be the speed actually computed over might, in fact, reach different minima from different initial
the RAE 2822 airfoil at M. = 0.730, a 20

. A target conditions. Also, as in the optimization methods, the

-1.2. . ...... ....-1.2.........

-0.8 -0.8

-0.4 - .4Cp C
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a) Initial profile, CIL 1.0468, CD z 0.0170 b) Profile after six design cycles; CIL 1.0368,
CD = 0.0016

Fig. 14 Re-de.ign of RAE 2822 airfoil to reduce drag; M. = 0.730
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success of the technique is dependant on the accuracy the design philosophy of the designer(s). The various
of the numerical procedures. If the gradients which design techniques described above provide the tools
determine the direction in which the shape is to be with which the procedure will perform Its task.
changed are not computed accurately enough,
convergence might be impaired or prevented.
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A STREAM-FUNCTION-COORDINATE (SFC) CONCEPT
IN AERODYNAMIC SHAPE DESIGN

George S. Dulikravich
Penn State University

Department of Aerospace Engineering
University Park, PA 16802, USA

1. UMMARY

A new approach to the inverse design of two- which transforms (1) into the SFC equation
dimensional aerodynamic shapes has been developed. This
formulation is based on a Stream-Function-Coordinate ( 2 2 _ xI 2 )Y 0 (3)

(SFC) concept for steady, irrotational, compressible, x 2 Y, X9 YX 0 99

inviscid, planar flows. It differs from the classical streamfunction formulation in that it treats the y-coordinate of where the Y-coordinate of each streamline is treated as an
funcionforulaion n tat t teat they-cordnat of unknown and x and € are known. Here, the compressibility

each point on a streamline as a function of the x-coordinate uown 
a x and a

and the stream function 0, that is, Y = Y(x,). This new coefficient K' is defined as

formulation is especially suitable for the computation of K2 2" 2 2 (4)
stream line shapes, and therefore, for determination of ( (a)
aerodynamic shapes subject to specified surface pressure P* .
distributions. An additional advantage of this new where p is the local density and a is the local speed of
formulation is that it requires the generation of only a one- sound. Details of the derivation and evaluation of K2 are

dimensional grid in the x-direction. The grid in the y- soun Dei of the Ft aormuation has are

direction is computed as a part of the solution since y- given in Appendix A. The SC formulation has significant

coordinates of the streamlines are treated as the unknowns advantages over the classical stream function formulation

in the SFC formulation. In addition, the SFC method is where , = #(xy). For two-dimensional problems SFC

equally suitable for the analysis of the flowfields around requires only a one-dimensional grid in the x-direction. Thegiven shapes. A computer code has been developed on the other family of grid lines is determined as a part of the
basis of SFC formulation. It is capable of performing solution where Y are the unknown coordinates of the

streamlines i = constant. Because of the SFC
flowfield analysis and inverse design of airfoil cascade formualation, true upwind differencing could be achieved
shapes by changing a single input parameter. without the complexity of determining the direction of the
2 INTRODUCTION local velocity vectors since one family of the grid lines

corresponds to the streamlines. This simplifies the

In a recently published article, Huang and extension of the code to transonic flows [2]. Huang and

Dulikravich [1) gave detailed derivations of the new Stream Dulikravich (1] clearly pointed out that the SFC formulation

Function Coordinate (SFC) concept for inviscid, steady, where Y = Y(x,) is singular at all locations where the x-

two-dimensional and three-dimensional compressible flows, component of the velocity vector becomes zero. These

The SFC concept reflects the main objective of the inverse singularities are nonphysical since they are created by the

design where the ultimate goal is to determine the shape, transformation and cannot be eliminated simply by using

that is, the coordinates of a surface contour which is grid clustering within the regions of singular points [l].
compatible with the desired surface pressure distribution. Thus, strictly speaking, the SFC formulation is suitable for
Thus, it is logical to solve for the coordinates directly. the flow field analysis and shape inverse design of objects
Recently, Chen and Zhang [2] have published a paper on having cusped leading and trailing edge points where there
inverse design of multiple cascade shapes. They used a are no stagnation points. In practice, leading and trailing
special form of the SFC formulation suitable for edges are often [5) modified when using the SFC
axisymmetric surfaces of turbomachinery and they have formulation by adding artificial cusps to them.
successfully computed shapes of simple cascades as well as
shapes of multiple cascades with splitter blades inside the When the SFC method is used in the forward
flow passages. Oven and Pearson [3] have developed a (analysis) mode, solid portions of the upper and luwer
complete threedimensional formulation based on a general airfoil boundary from the leading to the trailing edge
concept by solving directly for the coordinates. They have remain fixed since they represent the given airfoil surface.
applied their formulation to different duct flows and to free Since these Y coordinates are prescribed, the SFC equation
jet flows [4]. is not solved on the solid boundaries in the analysis mode.

In the inverse (design) mode, the input geometry of the
3ANALYSIS airfoil surface is used only as an initial guess. The

evolution of the upper and lower boundary shape is driven
Instead of using the standard formulation where the by the specified surface Mach number, critical Mach

stream function , is a function of the x and y coordinates number, or coefficient of pressure distribution which
(292 2 uniquely determines the local value of the compressibility

- Y2) x , coefficient K on the surface (Appendix A). Second order
Y Y 2central difference expressions with variable grid size were

(I - K2 
0x2

) 9 0) used throughout the domain (Appendix B). Rather than
SYY transforming the SFC equation to a uniform grid, all

Huang and Dulikravich [1 performed a transformation computations were performed in the actual physical (9,x)
plane. The resulting algebraic finite difference equations

0 - t(x,y) .. Y - Y(X,9) (2) were solved using artifically time-dependent SLOR in
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conjunction with the Generalized Non-Linear Minimal 6 ACKNOWLEDGMENTS
Residual Method (GNLMR) [6] which significantly
accelerates the convergence rate. Details of the GNLMR The author would like to thank Ms. Amy Myers for
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periodic boundaries are free to move vertically since they University where this work was performed.
represent stagnation streamlines and their shape is not
known in advance. They are subject only to the periodicity 7REF, S
constraint that the gap between the upper and the lower
stagnation streamline remains constant (Appendix E). In I. Huang, C. Y. and Dulikravich, G. S., 'Stream
the design mode, the leading edge point of the airfoil must Function and Stream-Function-Coordinate (SFC)
remain fixed in order to keep the entire cascade from Formulation for Inviscid Flow Field Calculations,"
moving within the domain. Due to the similarity of the Computer Methods in App. Mechanics and Eng.,
boundary conditions for the two modes of operation, Vol. 59, 1986, pp. 155-177.
switching between the analysis mode and the design mode
is accomplished by means of a single input parameter. 2. Chen, N.-X. and Zhang F.-X., 'A Generalized

Numerical Method for Solving Direct, Inverse and
4 RESUL Hybrid Problems of Blade Cascade Flow by Using

Streamline-Coordinate Equation," ASME Paper No.
Based on the formulations presented in this paper, 87-GT-29, Anaheim, CA, 1987.

.i computer code was developed on VAX 3550 computer.
The code was exercised in both forward (analysis) and 3. Oven, D. R. and Pearson, C. E., "Numerical Solution

inverse mode on periodic channel flows. Each domain was of a Class of Steady-State Euler Equations by a
discretized with a fixed clustered grid having 20 grid cells Modified Streamline Method," AIAA paper 88-0625,
on the bottom and on the top surface, 20 cells upstream, Reno, NV, Jan. 1988.
and 20 cells downstream of the object, with 20 streamtubes 4 Pears
across the channel. First objective was to evaluate the error on, C. E., 'Extension of a Numerical Streamline
resulting from the SFC transformation singularity at Method,'Communications in AppI. Num. Meth., Vol.
stagnation points. Steady, incompressible, irrotational, 1, 1985, pp. 177.
inviscid flow through a cascade of dipoles has a known
analytic solution [7] and was chosen to be the first test 5. Singhal, A. K., "Flow in Axial Turbomachinery
geometry. When using the SFC code in an analysis mode Cascades," Ph.D. Dissertation, Dept. of Mech. Engr.,
the initial streamlines (Fig. I) converged within 50 iterations University of London, UK. May 1977.
to their correct shapes (Fig. 2). The resulting pressure field
(Fig. 3) compares well with the analytical solution (Fig. 4). 6. Huang, C. Y. and Dulikravich, G. S., 'Fast iterative
The computed surface C. distribution indicates very narrow Algorithms Based on Optimal Explicit Time-
regions of locally high error (Fig. 5) due to the the Stepping,'Computer Meth. in App]. Mech. and Eng..
singularity arising from the SFC transformation. Since this Vol. 63, 1987, pp. 15-36.
is an extreme example of a blunt leading edge, it can be
concluded that the singularities generate only very local 7. Milne-Thompson, L M, 'ltheoefical Hydrodynamics,'
errors. Consequently, by using grid clustering, no need is 4th Edition, McMillan & Co., 1962, pp. 229.
perceived for the use of artificial extensions (cusps) at the
leading and trailing edges. When the SFC code was 8. Ives, D., 'Approximate Inversion of the Stream-Tube-
exercised in its inverse design mode, free stream coefficient Area Relations," Grumman Research Dept. Memo.,
of pressure distribution was specified along the top and RM-452, July 1969.
bottom surface of the circle. Evolution history of the entire
lower boundary is depicted in Fig. 6. The corresponding
convergence history (Fig, 7) indicates that only 200
iterations were needed to achieve the correct shape (Fig. 8) APPENDIX A. Derivation of the Compressibility
of the channel. When running a high subsonic test case CoefficientK
(M., = 0.62) with a non-staggered cascade of 12% biconvex
airfoils having sharp edges (Fig, 9), practically no error at Notice that
the stagnation points could be detected (Fig. 10 and Fig, T 2 T (A. I
II). By specifying the wall C.-distribution to be the same T o - ) ,
as that of the freestream, a straight channel was obtained o
(Fig. 12) very rapidly (Fig. 13). The iterative process can
be further enhanced by using our GNLMR method (Fig, 14) where T is the absolute temperature, T. is stagnation
explained in the Appendix C. temperature and T. is the critical temperature. In terms of

local Mach numbers this becomes
* 2 - - M21

5 CONCLUSIONS Y 1-- 4~
2

1 +rI 2 2 (~I A.2)

The SFC formulation is straightforward to perform This can be rewritten as
analytically and simple to implement computationally. It is -  

-1
very fast and could be formulated for multidimensional and Y + Y '
multiply connected domains. It is equally applicable to the Y .- I _ - I M 2
analysis of the flow around the existing configurations and 2 2
to the inverse shape design.

1t L2 .1 M A.3)
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Nevertheless Y 2
2 . 2 . 2 F.l 2 I x(K

2
1 2 _ 20

M _' _ __ __ (A.4) - 2 Yi ---- 1t_2/_,2 _ I_ Y - I M.2_
N - 2 y,52 - 2 (

Hence. A.3 can be rewritten as (A13)

Y - I Thus, at every point in the flow field for the given
Y + 1 N

2  
Y + 

I instantaneous values of Y. and Yp we can iteratively
2 2 determine the corresponding instantaneous local values ofM. [ - I .- 2 I the compressibility coefficient K. Second order (modified)

2 2 Newton's iteration yields

Y- I M2 (A.5) - 3 1 .y 22 0-(A.5)0dF .2 1Y I2 - 2f - ( ') s l (A. (4)

Since
-4 2-2F Y - ~ 3 * +I I

_ ____ l + I -
2  

Y I (A.6) 2 - 2 - x )I tA.5)
e* 2 2 M*d.1

it follows that A.5 becomes
so that

2 (n-i) Wn Fd dF 2 2! A.6
Y + I M

2  
Y I Y 1 2 K K F, - F (A.16)

-)-t{ __ - 2 t -0 dK
2

( ) . 2  
(A.7) where the superscript n is the iteration counter.

An approximate relation between the mass flow rate and
the local Mach number is given by Ives [8] and can be used

Notice now that instead of the iterative procedure.

N
2 . (_) 2  ( 2

APPENDIX B: Finite Difference FormulasK, (A.8)

2(P*) ( . Second order accurate central differencing for x
derivatives was used throughout the domain.

The central differences for the derivatives in 0 directionSince the compressibility coefficient K is defined as have an entirely analogous form. The difference

2 (Y 1) expressions were substituted into the SFC equation (3).
K2 l -___i2___-

2 2 2 2
(P.) ( (A.9) C GNLMR Method Applied to the

it follows that A.7 divided with (--i1) becomes Iterative Solution of the SFC Eouation

Let the non-linear operator governing SFC formulation be
2 - 2 2 designated as N, that is,

Y + ! (K)Y 
+  

[ + I _-Y - 1 *21
2  

2 (Y ) 2 2 22" --- (g2 K- H= -g) Yx - 2YxY [O'xO * (1 + Yx
2 ) 

Y wo 
= 
0

(C.1)

2 o (A.1cO)
- - o A one step iterative algorithm for solving (C.I) can be

defined by calculating the new value of the Y coordinate of

At the same time notice that a streamline from a simple relaxation algorithm

2 2 Y (t. ) (t) (t) (C.2)
2 v .) )2_ 29, + 2

* a. " (L ) (e) where superscript t designates the iteration level, . is the
relaxation factor and 6" ) is the correction at the t-th

1 2 1 Y 2 iteration level based on some basic iteration method.

v )  
2 An M-step method can be defined for advancing the

iterative algorithm from iteration level t to iteration level

t+I with M steps combined. That is,Finally, A.10 becomes M~~).yt M W u (M) )

M--

V . Y 2 where 61*1 are the corrections evaluated at intermediate
(K 2) V ( 2  - -  

2 2 steps. They are obtained by successively applying M simple
- V relaxation (w = 1) iterations to the solution of C.1.

(A. 12)
The optimal values of w." can be found [6] by

Since Y, and Y# will be changing during the iterative solving a matrix problem
process, this means that
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I ( (n) M - t (m ( PSI(ijmin-l) = PSI(ijmax-l) - PSITOT (E.6)
r-I n- MI I PSI(ijmax+l) = PSl(ijmin+ 1) + PSITOT (E.7)

where the residual at iteration level t is wherePSOT PSI(ijmax) -PS|(idmin)
(t) =Y (C. 5) m GAP/CHORD (E.8)

and Here, M., is the x-component of the critical Mach number
a W a '(. I W -- 6(m) and CHORD is the chord length of the airfoil.

a 6(m) aN (W) Inlet and exit boundary conditions were enforced by
ay x* a $ (C.6) specifying the vertical variation of 0 between the lower and

Thus0 for example. the upper stagnation streamline and enforcing the inlet flow
Ths foK2) exaxle 2 () angle a, and the exit flow angle aO in design mode. In the

a 1a2(-Y Yx Y V l(
) 

- y a analysis mode, the Kutta-Zhukovskii condition was enforcedat the trailing edge instead of the angle a2 at the exit. Solid
2  I) wall tangency boundary conditions were enforced by

+[2(-Y Yxx Vx Yx Y xi $ (C.7) evaluating Y at the wall points via one-sided second order
differencing and then deducing the appropriate values at the

(1) 2 ( imaginary points Ojmin-l and jmax+ 1) from the second
* IY- K

2
]6. + 1-2YXY j a II + Yx a order central difference formula for Y at the wall.

x * io
where the values for o(Kz)/aY, and a(K2)/aY, are given in
Appendix D.

APPENDIX D, Derivatives of the Compressibilitv
Coefficient

When evaluating derivatives aN/aY. and aN/aY it
is important to notice that the compressibliity coefficient K
is a function of Y. and Y This can be shown by
combining A.13, A.11 and A. The result is that

2 "t -
I x (1 .1) (K+) -2 

I

2 Y 2 Fig. I nitial Y-x grid consisting of (20+20+20SV-x 20 cells for the flow through a cascade
of dipoles

Taking a partial derivative of both sides of D.1 with respect
to Y, gives

;(K2 (Y - 1) . (K 
2
)

SY- I (D.2)

Yo [l - (K
2
) I

Similarly, partial derivative of D.l with respect to X, gives
(after maing an additional use of D.I) the followiiig

2)

a(K ) 2(K
2 ) 

- (Y + I) (K 
2
) 1 .3

1Y $ Y - t
Y$ 2 (K 

2) Y  
I Fig. 2 Final streamline shapes for the flow

through a cascade of dipoles

APPFNDIX I-- Boundar Conditions

The periodic boundary conditions were enforced
upstream and downstream of the airfoil as follows

Y(idmax+l) = Y(ijmin+l) + GAP (E.l)
Y(ijinn-1) = Y(ijmax-l) - GAP (E.2)
YMID = (Y(ijmin) + (Y(ijmax))/2 (E.3)
Y(ijmin) = YMID + GAP/2 (E.4)
Y(ijmax) = YMD - GAP/2 (E.5)

where GAP is the y-distance between the leading edges of " 1
two airfoilst

The values of 0 at the overlapping layers of points
(jmin-l) and (jmax+ I) were set according to the similar Fig. 3 Computed isobars for the k,= 0.05 flow
expressions through a cascade of dipoles
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H-2,

-3,

Fig. 4 Analytic values for isobars for an
incompressible flow through a cascade of
dipoles -4,

50 100 150 2Mf
Cp NLU'ER OF ITERATIONS

Fig. 7 Convergence history for the inverse design

from a cascade of dipoles to a straight
channel

Fig. 5 Superimposed analytic and computed surface
C values for the M= 0.0 and Mi- 0.05

flow through a cascade of dipoles

Fig. 8 Streamlines for the inversely designed
straight channel when starting from a
cascade of dipoles

Fig. 6 Intermediate shapes of the bottom wall
during the inverse design from a cascade
of dipoles to a straight channel

Fig. g Streamlines for the converged analysis
of the cascade of 12% thick biconvex
airfoils at l'0 0.62.
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-2.0

Fig. 10 Computed isobars for the analysis of -4.0
a flow through the cascade of 12% thick
biconvex airfoils at Mo 0.62.

50 100 50

NLIER OF ITERATIONS

Fig. 13 Convergence history for the inverse design
from a cascade of 12% biconvex airfoils
to a straight channel at M= 0.62.
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Fig. 12 Intermediate shapes of the bottom wall Fig. 14 Typical convergence histories for SFC

during the inverse design from a cascade compressible flow with SLOR and DMR method

of 12% biconvex airfoils to a straight
channel at Mw- 0.62.
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ABSTRACT subscripts

Two iterative methods for blade design, using direct flow n normal component
solvers and a blade geometry modification algorithm, are t tangential component
presented. Both procedures start with the analysis of a ti tangential component, inside
given cascade geometry using an existing flow solver. The to tangential component, outside
difference between the calculated velocity distribution and 1 cascade inlet
the required one is used to calculate a flow distorsion. In 2 cascade outlet
the first method, this flow distorsion is produced by sin-
gularities while in the second method the distorsion is de- superscript
rived by imposing the required velocity distribution as a a equation number
boundary condition. This flow distorsion is used by the new value at the time n l
modification algorithm a nd results in a new blade shape old value at the time n
for wich the calculated velocity is closer to the desired one. req required value

* intermediate value
Examples for both subsonic and transonic flows are pre-
sented and show a rapid convergence to the geometry re-
quired for the desired velocity distribution. The main ad-
vantage of the proposed method is that existing analysis 1. A CLASSIFICATION OF INVERSE METH-
codes can be used, for the design and for the off-design ODS.
analysis.

Some restrictions which have to be imposed on the required In a Direct Method, the computing task consists in de-
velocity distribution are also discussed. termining the aerodynamic performances of a given blade

section shape. A designer specifies an arbitrary cascade
geometry which is then analysed with a computer code

LIST OF SYMBOLS to define its performances. Based on the results, the de-
signer modifies the blade shape in accordance with his ex-

a speed of sound perience. This is essentially equivalent to the wind tunnel
C chord length design method of "trial and error", but with a computer
H coupling factor instead of the wind tunnel.
I left eigenvector
M isentropic Mach number An alternative way to achieve an aerodynamic design is
n normal coordinate the Inverse Method, where the geometry of the blade
n., n, normal vector components results from the calculation and is supposed to give the re-
N number of vortices quired performances. Inverse methods can be categorized
pO total pressure according to various criteria, for example the flow regime
p static pressure (subsonic, transonic or supersonic) for which the methods
3 curvilinear coordinate are valid, the way the problem is solved (analytical or nu-
t time coordinate merical), the modification method, the assumptions made.
T

°  
total temperature

U vector of unknowns Two main families of inverse methods can be distinguished:
u, v velocity components the methods in which the problem can be solved analyti-
V velocity cally, resulting directly in the geometry of the blade, and
zy geometry coordinates these for which a numerical procedure is necessary.

greek symbols Methods of the first class have been widely developed be-

,3 slope of the blade contour fore computer facilities were available, in order to find a
13 inlet flow angle (with reap. aw) solution to the inverse problem that could be calculated
or outlet flow angle (with reap. 37) manually. They therefore need severe assumptions to for-
7 vortex strength mulate the equations in a simple enough form to allow
r circulation an analytical solution. Although they are very restrictive,
A eigenvalue they permit to develop a complete theory for the inverse
p density problem, including the constraints that the required veloc-
if cascade solidity ity distribution has to verify in order to obtain a physical
(, / vortex coordinates solution (Lighthill, 1945, Woods, 1955).
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Analytical methods make use of the conformal mapping have been proven many times, the first idea is therefore
of the cascade plane into a circle (or a row of circles) and to use these solvers just as a black box. The boundary
solve the incompressible potential flow equations (Lighthill, conditions implemented in these direct solvers provide a
1945, Schwering, 1970, Murugesan and Railly, !969, Ubaldi, velocity field tangent to the blade wall. A supplementary
1984). With the need of higher performances, resulting in algorithm is required to provide a correction of the veloc-
transonic flow regimes, their limits have been exceeded and ity field from the difference between the imposed and the
other less restrictive methods have been sought, resulting calculated velocity distributions.
in the second family.

Another idea is to modify the boundary conditions inside
The second class of methods has been developed in parallel the solver in order to impose directly the prescribed pres-
with the classical direct solvers which calculate the flow for sure distribution. The converged velocity field resulting
a given geometry. A numerical scheme is used to solve the from the iterative calculation will therefore include the dis-
non linear equations. Some of these methods make use of tortion with respect to the tangential situation, and the
a tranformation to uncouple the calculation domain from blade geometry can be directly modified.
the initially unknown blade geometry. No first guess of
the blade geometry is necessary if the potential equation
is solved; the potential stream function plane may be used
for the calculation (Stanitz, 1953, Schmidt, 1980). Another 2. MODIFICATION OF THE GEOMETRY.
possibility is to solve the potential equation in the hodo-
graph plane which also allows to lineraize the equations
(Bauer, Garabedian and Korn, 1972, 1795 and 1977, Sanz, As said previously, the choice has been made to imple-
1983, 1984, 1988). ment the concept of iterative inverse methods, starting

from classical direct solvers Any modification of the pres-
If non potential flow fields are considered, the Euler equa- sure distribution on the blade wall will induce a distorsion
tions must be integrated. Since the flow is computed in of the complete flow field and therefore a displacement of
the physical plane, a first guess of the geometry is neces- the streamlines.
sary to start the calculation. This initial geometry may
be modified during the flow calculation, adapting it step The geometry modification algorithm that is used is there-
by step to achieve the imposed pressure or velocity dis- fore based on the calculation of the new streamlines po-
tribution (Meauze, 1980 and 1982, Giles and Drela, 1985 sition, starting from the initial blade wall which is not a
and 1987, Zannetti, 1984 and 1988) and at the same time streamline any more. This calculation makes use of the
verifying the slip condition on the blade wall. velocity component normal to the initial blade, produced

from the difference between the initial and the required
At the other hand, the initial geometry can be modified pressure distributions. The calculation of the normal ye-
after convergence of the flow calculation which has been locity component will be discussed in details in the next
performed by the solver. The blade is then modified to sat- chapter.
isfy the boundary condition which has not been respected
during the flow calculation. This procedure results in the As the new streamlines can intersect with the old blade
so-called Iterative Inverse Methods. shape, wherein the flow quantities are not defined, the po-

sition of the new streamlines must be 7alculated from the
The blade modification can be performed using a physical old ones, namely from the old blade wall.
model which relates the displacement of each point of the
geometry to the difference between the current pressure dis- In the transpiration model, the old blade wall is consid-
tribution and the required one, or by means of a mathemat- ered as porous with a normal velocity going trough it. The
ical algorithm minimizing an object function defined by the mass balance is applied in the cell defined by the points
user, and subject to some constrains. Although these lat- (i)

r4
, (i - 1)'"J , (i)- and (i - l)- as shown in fig. 2.

ter methods should lead to a solution, even if the required
pressure or velocity distribution does not correspond to a This results in:
physical geometry, they still have the disadvantage to be d(pVAn) = pV.ds (1)
very expensive in terms of CPU time (Vanderplaats, 1979
and 1984, Hicks, 1981). or in discretized form:

An"pVI,-i + ZsPV I' +p'V,,!, = - ssp"'jt, (2)

This paper deals with iterative inverse methods using a 2

physical algorithm to modify the blades. The main feature
of these iterative inverse methods is the modification of the The ingoing velocity V1,-1 is taken as the mean value of
blade geometry based on a velocity field which verifies the the tangential velocity along the normal direction at the
prescribed velocity or pressure distribution but does not
respect any more the slip condition on the blade wall. By
resetting the blade wall parallel to the flow or by using the V V I + V1-,
concept of transpiration, the blade is modified and a new - 2 (3)

direct calculation is performed by the flow solver. This
procedure is repeated until the difference between required The outgoing velocity V41, is calculated in the same way.

and calculated velouty is small enough (see the flow chart Expression (2) allows the calculation of the shift Ani if
on figure 1). An, 1 is known. The modification starts at the stagnation

point, where the value An, is set to zero. The modifica-
These methods may differ by the way the velocity field tion of the pressure side and the suction side are calculated
around the blades is derived from the prescribed distribu- separately and it is hoped that both contours do not cross,
tion, and two different approaches will be discussed here. which would result in an unphysical blade shape. This

depends on the accuracy of the numerical integration pro-
Since the main advantage of these methods is that they reduce and on the accuracy of the normal velocities calcu-

make use of direct solvers, whose accuracy and reliability lation.

mmm~m~rmmm L--mm m lation.
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The streamline model calculates the position of the new as vortices, on the blade contour, in order to increase or

blade wall by setting this wall parallel to the local velocity to decrease locally the velocity on the blade and to set it

V 17, + V, as illustrated in fig. 3. equal to the required value (Murugesan and Railly, 1969,
Van den Braembussche et al., 1989).

This results in:

dn V The first effect of a vortex distribution is to create a differ-
An() = = ads (4) ence between the tangential velocity at the outer and the

inner part of the contour:

The discretized form of (4) is: 3=V. -,V (6)

d d z + {d
n  

dn} this difference being equal to the local vortex strength.

2 -di-i 
+ 
di Moreover, the flow field induced by the vortices must be

(5) defined in such a way that zero tangential velocity inside
the contour is obtained as a kinematic condition. ThereforeAs dn dnowh..

I,,~~/.- =~ -h~i+- ,d od j s n. we have: 14 3" = v (7)

If we want to increase or decrease locally an already exist-

The closer the new blade contour follows a real streamline, ing velocity at the outer side of the blade, a vortex can be

the smaller are the chances that pressure and suction sides placed on the blade contour with its strength defined as:

cross each other.
"I = A (8)

Both models have given good results; they reduce to the or
same expression for incompressible flow fields. After the = - V

"'  
(9)

modification, a new discretization of the flow field must be
done for the new blade geometry, and another flow calcu-

lation is performed. A second effect of this vortex distribution is the creation of
a velocity normal to the blade contour, which for a cascade

The modification algorithms that are proposed imply that of blades at a pitch t is given by:

the velocity at the blade wall has a component normal to 1 sinh X cos 0 + sin Y sinlld
the blade wall due to the fact that the required pressure t 7 cosh X - cos ' (10)

or velocity does not correspond to the current geometry.

However, any direct solver (potential or Euler) provides with: 2r

a velocity field which is tangent to the actual blade wall, X = -(X
due to the slip condition that is imposed as the boundary 2

condition on the blade wall, and which does not necessarily "= -w(y - r/) (II)
satisfy the required pressure distribution.

where t, ilare the vortex coordinates and x, y is the location

Moreover, the well-posed problem theory prohibits that where the value of 1V, is calculated.
both boundary conditions (slip condition and required pres-

sure) could be imposed together on the blade wall. Two The discretization of (10) for N intervals results in:

possibilities are then offered: N

t.4(i) = Y H(i,j)t(j)As(j) (12)

" either the direct solver is kept with the classical slip

condition, and a supplementary algorithm is imple- with inhXcos 3+sinYsin (3
mented in order to calculate the distorsion of the flow H(i, j) cosh X - cos Y

field due to the required pressure; the method pre-

sented here makes use of vortices to modify the flow
field;

Calculation of the normal velocities V. at the N positions
" or the boundary condition imposed at the blade wall is where the vortices are located results in the following linear

modified inside the flow solver (that cannot be called system of N equations:
direci solver any more!) and the resulting flow field
will respect the required pressure but not the slip con-
dition; the walls are supposed to be permeable. .

The first option has the advantage that existing direct V. : =(2) _ (2, H(2, N)

solvers can be used as black boxes, but the second option V : : o N
may be theoretically more correct, as will be shown later. , H(N,1)
Both ideas have been developped and will be discussed in (14)
the next chapters.

with
73) W3)ASO) (15)

3. NORMAL VELOCITIES CALCULATED BY
VORTICES. Unfortunately the matrix H has a zero diagonal since a

vortex has no contribution to the local normal velocity.
This system of equations is ill-conditioned and can give rise

The velocity field resulting from the direct solver repects to a wavy velocity distribution since two adjacent vortices
the slip condition but does not agree with the required 7(i - 1) and y(i + 1) of the same sign and equal strength
velocity. The basic idea is to distribute singularities, such induce zero normal velocity at the point i.
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Since a vortex cannot create flow, the total mass flux in- the flow acceleration around the thick circular trailing edge
duced by each vortex across the closed profile must be equal and cannot be avoided with potential flow calculations.
to zero. Therefore we have:

The second example demonstrates the procedure in the re-fVds = 0 for each vortex (16) design of a turbine rotor hub section. The velocity dis-
tribution on the initial blade is compared to the desired
one in figure 5a. The last one has a considerably larger

N loading than the initial blade and the pitch-chord ratio has
_ H(i,j-y(j)As(i) = 0 j=I,..,N (17) been increased proportionally to obtain the same outlet

flow conditions.

In order to correct the numerical error introduced by tle
discretization, a normal velocity ib calculated by (17) for The new blade shape, obtained after only 10 modifications,
each vortex and added, at the point where the vortex is is compared to the initial shape on figure 5b. Also shown
located, to the one calculated using (12). This correction are the initial and new cascade parameters. Figure 5c
reduces the chances that the new suction and pressure sides shows the comparison between the required velocity dis-
intersect or diverge from each other. tribution and that corresponding to the final blade shape.

Discrepencies are observed at the leading edge pressure side
As this method is based on the superposition principle, it where the calculated velocity is higher than the required
is therefore correct only for incompressible potential flows; one, because the mean value of the required pressure and
however, also for a compressible flow, it gives a blade cor- suction side velocity at the leading edge is lower than the
rection which is in the right direction, and which anyway inlet velocity. This would imply a negative blade thickness
vanishes as the velocity distribution converges to the re- (negative blockage). The discrepency does not disappear
quired one. Another weakness of the method is that the when the number of modifications is increased.
correction calculated using the vortices is incorrect if a su-
personic pocket is present in the flow field, since a vortex A code solving the Euler equations has been developped
from this zone induces a normal velocity upstream, which in order to serve as a basis of the different steps of the
is not in agrement with the hyperbolic character of the development of the inverse method. The code is bsed on
flow. However, experience has shown that it can also be a Time Marching procedure, a finite volume approach, and
efficiently used for transonic flows, on a scheme investigated by Arts (1982).

The method has the great advantage of simplicity, allowing The numerical domain is represented on fig. 6. It is made
the use of accurate and efficient direct solvers which have up of several pseudo streamlines and pitchwise lines. The
been developed in the past and are well documented in the control surfaces used in the finite volume approach are hi.
literature. Another advantage of the use of a direct solver trapezoidal.
is that, once the blade geometry has been determined, the
off-design analysis can be carried out using the same flow The time derivative is discretized by means of a corrected
solver and input file. viscosity scheme:

This method has been used together with two different
direct solvers, an incompressible potential code (Van den At
Braembussche, 1984) and a Time Marching procedure solv- U.k, - -(transport terms)

ing the Euler equations (Arts, 1982). Two examples will U +U .. .
illustrate each code. + - i.., I

- ' ["_,i -, +, IT-+, f,
The first example demonstrates the procedure in the de- 4 ' "-
sign of a compressor blade for incompressible flow with the
required velocity distribution shown in figure 4a. The cal- The terms superscripted by an asterisk are updated every
culations use as a first guess a NACA-65(18A0)1O blade 20 iterations; o is a numerical viscosity coefficient which is
at zero stagger (fig. 4b). The ratio of local velocity over function of the density gradient:
inlet velocity obtained from a first analysis at )31 = 30 deg.
and a pitch-chord ratio of 0.9, is shown in figure 4c. o = VC I - P. 

+ 
Pj -i + P l+j " Pi+" 4p 4 (19)

4

For the same inlet air angle and pitch-chord ratio a new
blade shape, shown in figure 4d, is obtained after 40 mod- where VC is an empirical coefficient (typically 0.98)
ifications. With a blade definition of 40 points, the CPU
time on a VAX 780 for this example is 55 sec.. This new ge- Using this flow solver, the iterative method was first demon-
ometry is very different from the first guess (fig. 4b). The strated with a required velocity distribution calculated from
stagger angle has increased from 0 to 4.6 deg. and the new a classical NACA-65 (12Asls)10 blade. The first guess
blade is much thicker. This large trailing edge thickness re- was a NACA-65 (12A 0)10 blade. The geometries of both
suits from the required velocity distribution and accounts blades are compared in Egure 7a. The velocity distribution
for both the geometrical blade thickness and the boundary on the initial blade and the required velocity distribution
layer displacement thickess on the pressure and suction are shown on fig. 7b.
side

The flow conditions are: p_ 1.33 bar, T
° 

= 341 5 K, /3,
The potential flow calculation method does not account 45 deg, pi = 1.173 bar. The cascade geometry is defined
for wakes and the blade contour is therefore closed by by a stagger angle of 31 deg and a solidity of I for both
rounding-off at the trailing edge. The blade velocity dis- blades.
tribution agrees very well with the required one as shown
in figure 4e. Discrepencies are observed only at the last Figures 

7
c and 7d show the convergence of the calculated

two points on the pressure and suction side, at the trailing velocity Good agreement with the prescribed velocity dis-
edge round-off. The local overshoot of the velocity is due to tribution is evident in fig. 7d, except for the leading edge
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and the trailing edge regions. This can be due to the fact 4.1. Characteristic Surfaces and Wave-like Solu-

that the discretization with a H-type grid is not suited to tions.
describe accurately the flow field in these regions. The com-
parison between the final blade geometry and the NACA- Boundary conditions connect the calculation domain with
65 (12A216)10 is shown in figure Te. The calculations are the surrounding flow field and should express correctly the
made with 71 stations in the streamwise direction and 21 propagation of the information which is discribed by the
points in the pitchwise direction. The CPU time on a VAX equations. Especially the boundary conditions and the cal-
780 was about 5 hours for 12 modifications. culation of the unknowns at the blade wall have to be dis-

cussed in more detail, since the information propagating
The fourth example demonstrates the procedure in the de- along the streamlines doesn't propagate any more along
sign of a turbine blade. The starting geometry is that of the blade wall. The way the information is propagated is
the workshop VKI-LS 82-05 (Arts, 1982). The flow condi- discussed here for first order systems of equations.
tions are: p = 1 bar, Tn = 278 K, 81 = 0 deg, M2 = 1.2.
The cascade geometry is defined by a stagger angle of -60 A system of two first-order equations can be written in
deg and a solidity of 1.25. the form:

Osu 8u 8v
Problems have been encountered modifying the suction and a - + 2b + c- 0

pressure surfaces at the same time, since there is a strong + Cy

interaction between both surfaces in the throat region. The (20)

expansion waves starting from the pressure side trailing OV auL

edge interact with the suction side. ax y

To work around this problem, only the pressure side ve- or in the matrix form:
locity was imposed during the first modificationss. This
reduces the expansion in the trailing edge region. Figures A,U A,- = 0 (21)
8a shows the starting velocity distribution and the required Oz 

+
(

velocity distribution, while figure 8b shows the velocity dis- with
tribution after 2 modifications.

Once the required velocity distribution has been obtained U = [ A, [ 1 A, = [(
on the pressure side, a similar procedure has been applied
on the suction side, in which we impose simultaneously
the suction and pressure side velocity distributions. Six Since these equations describe a convection process, infor-
modifications were needed to obtain the required suction mation may propagate like waves under some conditions.
side velocity distribution. Figure 8c shows the final velocity If a simple wave solution is sought, propagating in the di
distribution while the comparison between the initial and rection K, it has the form:
the final blade geometry can be seen in figure 8d. U = Ue

q
"s
+

i (23)

Using the same Time Marching solver, an off-design a'al-
ysis has been made for this final blade. Results are shown This solution for U can be substituded in equation (21),
on figures 9a for M2 = I and 9b for M2 = 0.8. One can and the condition to obtain such solutions is that the de-
see that a blade which has been optimized for one out- terminant of the matrix (Aln. + A~n,) vanishes:
let Mach number does not necessarily give a good velocity
distribution at other outlet Mach numbers.

an, + 2bn, cn 0 (24)

4. PERMEABLE WALL.
Hence from the roots of

The problems encountered using the vortices for transonic a + 2b n t) c 0 (25)
blade designs have led to the idea of developing a theorit- +) n,(5
ically more correct modification method, which would ac-
count for compressibility and respect the hyperbolic char-
acter of the unsteady Euler equations. This can be achieved the conditions defining the type of the quasi-hnear differen-
by imposing directly the required pressure distribution on tial system ofequations are obtained. If(b-4ac) > 0 there
the blade wail, inside the Time Marching calculation, are two wave-like solutions and the system is hyperbolic,

while for (b - 4ac) < 0 the two solutions are complex con-
Imposing simultaneously the pressure and the slip condi- jugate and the equation is elliptic. When (b'- 4ac) = 0 the
tion on a wall leads to a ill-posed problem in a mathemati- two solutions are reduced to one single direction of propa-
cal point of view since the problem is over-determined; this gation and the equation is parabolic.
means that the inverse problem has no solution in general.
If the required performances correspond to a physical ge- A wave front surface may be defined, which separates the

ometry, one of the two boundary conditions drops out and points already influenced by the propagating disturbance
the design is possible. from the points not yet reached by the inlormation. If

S(z, y) = S. (where So is a constant) is such a surface, the
Since it was chosen to impose the reqired pressure as the propagation direction IV is normal to the surface S:
boundary condition on the wall, the velocity is allowed to n = 17S (26)
have a component normal to the blade wall which therefore
has to be considered as permeable. This normal velocity The surfaces S(x, y) which satisfy equation (25) for real
component will be used for the geometry modification after values of s. and n. are called characteristic surfaces, which
convergence of the Time Marching calculation transport certain properties of the flow.
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The general definition for a system of n partial differ- This matrix has real eigenvalues and a complete set of
ential equations, containing n unknowns u

3 in the m- eigenvectors.
dimensional space z, written in the quasi-linear form, is:

=i zk= m () Eigenvalues of Cg are: Vn, Vn-, VE + a and V' - aA FZA = 0 i, j = 1,.., n k = 1, .., i (27)

or in the matrix form:
4.2. Boundary Conditions.

A 0 k= 1,.,m (28) The information necessary for the initial and boundary

The (n x n) matrices A' can depend on z' and U but not conditions to be imposed with a given system of differen-

of the derivatives of U. A plane wave solution will exist if tial equations, in order to have a well-posed problem, can

the system be gained from the preceding considerations. A solution of

(Ahn,]( = 0 (29) the system of first-order partial differential equations can
be written as a superposition of wave-like solutions cor-
responding to the n eigenvalues of the matrix K. For an

has non-trivial solutions. This will be the case if the deter- hyperbolic problem, all the eigenvalues are real and expres-
minant of the system vanishes, that is, if sion (23) shows that no amplified mode are generated (an

IA"n.h = 0 (30) amplified mode is not physically acceptable). Therefore n
boundary conditions have to be given to determine com-

pletely the solution. These boundary conditions have to be
There are, at most, n solutions and therefore, at most, n distributed along the boundaries at all values of t, accord-
characteristic surfaces. The system is said to be hyperbolic ing to the direction of propagation of the corresponding
if all the n normals are real and if the solutions of the n waves.
associated systems of equations are linearly independent.
If all the characteristics are complex, the system is said to If the information propagated by one wave front is imping-
be elliptic and if some are real and some are complex, the ing a boundary point, coming from the inside of the calcu-
system is considered as hybrid. If the matrix (.4A'n] is not lation domain (positive eigenvalue if W is the outgoing nor-
of rank n, then the system is said to be parabolic. mal vector), the value of the corresponding unknown must

be calculated from this information and not from a bound-

If one space variable, say z-, is singled out and the cor- ary condition. At the other hand, if the the information
responding Jacobian matrix A- is the unit matrix, this comes from the outside of the calculation domain (nega-
variable is called a time-like variable. The system (28) is tive eigenvalue), the value of the unknown at this bound-
written as ary point must be imposed by a boundary condition. These

OU + O =0( considerations have to be applied in the different boundary
-+ = 0 (31) problems of a blade-to-blade calculation.

The charateristic condition, equation (30), becomes For the inlet boundary (and if a subsonic axial velocity
is considered), only VWE + a is positive and three boundary

nl + Akn,l = 0 k = 1,.., in - 1 (32) conditions must be imposed, usually the total conditions
(p' and T*) and the inlet flow angle.

Equation (32) is therefore an eigenvalue problem where the
characteristic normals are obtained as the eigenvalues of If the slip condition is -imposed on the blade wall, only

the matrix the eigenvalue VfF - a is negative and therefore only one
boundary condition must be imposed, i.e. the velocity di-

Kjj = A rns k = 1, ..,m - 1 (33) rection at that point.

If the n eigenvalues are real there are n characteristic sur-
faces which transport information in the WE direction. At the other hand, if the static pressure p is imposed

on the blade wall, a component of velocity normal to

If the unsteady two-dimensional Euler equations are the blade will appear and depending upon its sign, 2 or

considered, their quasi-linear form can be written as: 0 additional conditions must be imposed. Three problems
have to be solved:

OU OU OU-- i 
+

A-+B- =0 .(34)
0. Oz 9 how to calculate the sign of the normal velocity com-

ponent ?
If the primitive variables p,V and p are used, we have a which boundary conditions to apply in addition to the

static pressure ?

5 p 0 01ahow to calculate the value of the unknowns that are

U = A 0A= 
1  I not imposed by the boundary conditions ?

[p [0 p
2
0 u s 0

par 0 u These problems can be solved by introducing the compat-

0 p 0 1ibitity relations.
B 10 0 0

0 v iip

0 0 pa v 4.3. Compatibility Relations.

Since the system is hyperbolic, a matrix Cor may be defined An alternative definition of characteristic surfaces and hy-
as perbolicity can be obtained from the fact that wave front

Cw = An. + Bns VW (35) surfaces carry certain properties and that a complete de-
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scription of the physical system is obtained when all these The compatibility relations become:
properties are known. This implies that the original system d
of equations, if hyperbolic, can be reformulated as differen- (/ )dd (P _ p.) + ()1) (V- _V)
tial relations written along the wave fronts (characteristic + (1,)"d (p- - p-) = 0 (46)
surfaces) only. The original system of equations can be
transformed, through a linear combination, into an equiva-
lent system of equations containing only derivatives along where the superscript asterisk means the this variable is
the characteristic surfaces S, For any equation of the sys- estimated from the discretization of the Euler equations;
tem (31) we have: then the new value of the unknown is computed using the

compatibility relation, if the corresponding eigenvalue is

I + A = 0 (36) positive. The four compatibility relations and the corre-
Ot Oz J sponding eigenvalues are:

o u eigenvalue compatibility relation
1iO + A j] =0 (37) V-a(p - p) + (p- - p') = 0Oxh ' =]. I'll".. v- = 0

or V, - a -pa(V' 4- -) + (p, -p-)-

bi,~ =t+ IA '_ i-0 (38) V,,-+ a pa(V,-' - 1".)±+(p-~' - p-)=Otl i tj

where the tj are n arbitrary coefficients, where the values of the density p and the speed of s,und a
are taken at the old time level.

For a two-dimensional system (k=l,2), we can define a set
of n vectors Z, such as The first problem evoked in the section 4.2. can be soived

by the fact that the eigenvalue 1, + a is always positive, if
the assumption is made of a subsonic normal component.

z, = , + li (AU. + Bij.T) (39) This means that the corresponding compatibility relation
may be used to calculate the value and the sign of , since
the information propagating with this wave comes from the

and the linear combination (36) can be written as interior of the calculation domain. The pressure p- in the
relation is obviously the required pressure.

Z 0V (40)= 0() If the normal velocity is positive, one boundary condition

(the required static pressure) must be imposed, since only
one eigenvalue V - a is negative. If the normal velocity

This expression can be interpreted as a sum of derivatives is negative, two additional boundary conditions must be
along curves which are tangential to vectors Z,. The coef- imposed, since V is negative as well. It has been found
ficients 1, are chosen such that equation (36) contains only that the best solution is to impose the total pressure and
derivatives in a two-dimensional subspace of the (z,y,t) total temperatures at that point.
space, namely the characteristic surface S whose normal is
Ws. The condition for that is given by A summary of the different cases at the blade wall is pro-

T W = 0 Vj (41) posed now. In the following examples, CR means that
the compatibility relation is used, and BC that a bound-

or ary condition is imposed. The compatibiliy relation corre-

l _,n + Ii (Aiin. + Bijn,) = 0 V (42) sponding with V - a is never used since this eigenvalue is
always negative.

example: impermeable wall

The relation can be written using the definition of the ma-

trix C (35):
1 BC: V " = 0

ljn, + t. [C-].i = 0 Vi (43) 3 CR: p- = p + (pa)V,
i=1 p- = p" + (P * - p)/

ve- =v.
which expresses that I is an eigenvector of the matrix C;-, example: subsonic inlet
with -nt = A the corresponding eigenvalue.

If the unsteady two-dimensional Euler equations are con- 1 CR: V;- = V; + (p-" _ p')/(pa)
sidered, the discretized form of the compatibility relations 3 BC: p- = p7'
(36) is, for the equation a: p-' = F(To,ps,p )

V,- F(T0, p,p-)
(w) ( P + .d)+ - - e) xample: subsonic outlet

(I - p + : 0 (44) 3 CR: V:4"= V' + (p ' -p)/(pa)
p- = p" + (- p)/a'
v,-= v-

The terms Y" denote numerical approximations of the 1 BC: p"
divergence terms; they can be estimated from the Euler
equations. For the density we have:

From the four variables p", p, V' ' and 17' the sew

P" - P, + '-d = 0 (45) value of the primitive variables or of the conservative ar-
At ables can be calculated.
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4.4. The Euler Flow Solver.

A code solving the Euler equations has been developped Ut = U
a 

- At RHS
5

/4
in order to serve as a basis of the different steps of the U

2 
= Uc - At RHS

1
/3 (54)

development of the inverse method. The code is based on U
s  

= U
°

d - At RHS'/2
a Time Marching procedure, a finite volume approach, and U4
on a scheme investigated by Jameson (1981). = U

' 
- At RHS3

U" U'

For the space discretization, non-intersecting finite volumes
are used together with a cell-vertex approach. The physical This four-stage scheme is second order accurate for nonlin-

domain is shown in figure 10. C-grids are used for a better ear problems and allows a maximum CFL number of 2v/2.

leading edge modelisation.

For the time discretization, both second order and fourth 4.5. Results.

order Jameson viscosities are used. In order to preserve the
conservation form of the scheme, the artificial dissipative The method has first been tried starting from the NACA-65
terms are introduced by adding dissipative fluxes. For the (12Aio)10 blade geometry in a cascade defined by a stagger
cell ij the equilibrium is written: angle of 31 deg and a solidity of 1. A new blade geometry is

calculated by imposing a Mach number distribution slightly

A. ( +U) + E 'j = D*j (47) different from the result of the direct calculation having a
lower value of the maximum Mach number on the suction
side. The Mach number distribution on the initial blade

and the required Mach number distribution are shown on
The dissipative operator is defined by: fig. Ila. The flow conditions are: pP = 1.33 bar. TO =

Di~j = dj+j - di.ij + djj+j - di (48) 341.5 K, 01 = 45 deg, p2 s 1.173 bar.

Figures tlb and llc show the convergence of the calculated

where the dissipative flux d,+Ij is given as velocity. A good agreement with the required velocity is

obtained after 2 geometry modifications only.

The advantages of the method have been demonstrated
- aj+ - 3Ui++, + 3U., - Ui-. 1 ) by solving the same example used previously for vortices,

namely the Mach number distribution of an existing geom-
etry (the NACA-fi5 (12A21sb)10 blade) has been imposed as

Here e
5  

and r+ are adaptative coefficients designed the required Mach number distribution, starting from the

to switch on enough dissipation where it is needed: NACA-65 (12A 1 o)10 blade geometry. The flow conditions

C2kI= V mx(vj+2jsj+ijPj,&,'.ij) (50) and the cascade geometry are the same as for the previousZ + 
s

mxv+jv+jvju_,.) 50 example.

+j= max( k' - ' (51) The figure l
2
a shows the original and the required Mach

number distributions. Because of the big difference be-
where v, is defined as tween both distributions, an under-relaxation factor of 0.5

has been introduced into the first geometry modification,
Vi p = .pj+sj - 2pij + pi+.jI (52) results of which are shown in fig. 12b. The final results

p +ij + 2pij + p,+ijj (fig. 12c) show a good agreement between the calculated

and the prescribed Mach number distribution, except for

and k
2

, k' are constants (typically 0.5 and 0.015). the trailing edge, because the discretization does not allow
to impose a Mach number value at that point.

The coefficient C
2 

is proportional to the second derivative

of the pressure and therefore in smooth regions of the flow The third example concerns the redesign of a transonic
proportional to the square of the mesh size, while e' is of compressor blade. The NACA-65 (12A3I6t)10 is the origi-
the order one. The dissipative fluxes in the smooth regions nal geometry, for which a shock is present on the suction
are then of third order in comparison to the convective side (fig. 13a and 13b). The flow conditions are: p =
fluxes. However, in the regions where the pressure changes 1.33 bar, 7 = 341.5 K, = 45 deg, p2 = 1.136 bar. The
rapidly, the sensor vi, is of order one and with the help of cascade geometry is defined by a stagger angle of 31 deg
formula (51) the third order difference operator is switched and a solidity of 1.
off. The dissipation is then of second order and the finite
volume scheme behaves like a first order accurate scheme. The shocklest transonic Mach number distribution shown

in fig. 13c has been imposed. Figures 13d and 13e show the
The coefficient o+14 is chosen to give the dissipative term convergence of the calcusted Mach number distribution to

the proper weight: the required one. The original and final geometries are

I (A_ + A, (53) compared in fig. 13f.

o. 1 , At~ 4 aThe fourth example demonstrates the procedure in the de-

sign of a turbine blade. The starting geometry is that of
where At~j is an estimate of the time step for a unit CFL the workshop VKI-LS 82-05 (Arts, 1982). The flow condi.

number. tions are: 9, = I bar, T7* = 278 K, ,s = 0 deg, M. = 1.0.
The cascade geometry is defined by a stagger angle of -60

A fourth order Runge-Kutta scheme is used for the time- deg and a solidity of 1.25.
stepping, requiring a minimum of computer storage:
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A shockless transonic Mach number distribution has been Taking into &count these limitations there may be no ge-
imposed on the suction side (fig. 14a). The calculated ometry that corresponds to the required velocity distribu-
mach number distribution converges as close a possible to tion. If vortices are used, the calculated velocity will not
the required one (fig. 14b and 14c) but not completely, converge to the required one from one modification to the
probably because this required distribution does not corre- next. If the required pressure distribution is directly im-
spond to a physical geometry. This problem of existence of posed during the normal velocities calculation, the Time
a solution will be discussed in details in the next chapter. Marching procedure will not converge to the required pre-

cision since this would imply crossing or diverging stream-
lines, and it may not be possible to define a geometry where
the normal velocity compontent vanishes. However these

5. RESTRICTIONS ON THE REQUIRED methods have the advantage to converge as close as possi-
VELOCITY DISTRIBUTION. ble to the required pressure distribution.

Experience has shown that some simple restrictions on the
Blade designs in which the required velocity is obtained desired velocity distribution can be defined. The block-
from the analysis of an existing cascade do not show any age created by the non zero blade thickness requires the
particular problem. 13nder-:claxation is sometimes needed average prescribed velocity at the leading and the trailing
if the required velocity distribution is far from the initial edge to be higher than the free stream velocity upstream
one, but the method rapidly converges to the correct blade and downstream of the cascade. Violation of this condi-
shape. tion will prevent the method from converging. Increasing

or decreasing the average of the required velocity at lead-
However, solutions for blade designs to be derived from ing and trailing edges allows the local blade thickness to
arbitrary suction and pressure side velocity distributions be increased or decreased. Similar restrictions also apply
do not always converge. This is related to the problem to the velocity distribution between leading and trailing
of the existence of a solution. The required velocity dis- edges. These are more difficult to formulate because they
tribution must be compatible with the free stream condi- depend on the local flow direction which is not a priori
tions upstream and downstream of the cascade and must known.
result in a realistic blade profile (closed with a positive
thickness). These constraints generate restrictions on the If an inviscid solver is used, the trailing edge thickness will
required velocity distribution, analytical expressions for also include the boundary layer displacement thickness.
which are available only for incompressible potential flows This boundary layer displacement thickness can be calcu-
over isolated airfoils and cascades (Ligithill, 1945, Woods, lated in advance since the required velocity distribution is
1955). Expressions for the constraints cannot be derived known. A Navier-Stokes solver can be used together with
for the compressible flow of a perfect gas, but their exis- vortices, for incompressible and non separated flow calcu-
tence can be inferred from the fact that the incompressible lations. Since the velocity at the wall is zero, the vortices
flow case is a subcase of the more general compressible flow should be defined as to correct the free stream velocity, and
problem. therefore located outside the boundary layer. In the case

of viscous calculations, no displacement thickness has to be
A solution can be obtained by introducing some freedom removed from the resulting geometry.
into the prescribed velocity distribution, expressed by some
parameters relating the velocity distribution to the free Other problems arise from the fact that Time Marching
stream flow conditions. These parameters are then modi- Euler solvers require as downstream boundary condition
fled until the prescribed velocity distribution corresponds the static pressure, velocity or Mach number. These ,,ut.

to a physical solution (Volpe and Melnik, 1984). let conditions can be calculated Liun the required velocity
distribution and the continuity equation before starting the

Another way to obtain a solution is to modify some geo- inverse calculations.
metrical parameters of the blades and the cascade such as
pitch, stagger and trailing edge thickness. The circulation around the blades is calculated from

The modification method presented here should theoret- r = J l-d (55)
ically not suffer from problems with contour intersection
because the blade is defined by streamlines. However con-
tour intersections can occur for different reasons: and is related to the inlet and outlet tangential velocities

by r =(vis.inO - vi sin u)t (56)
a the flow distorsion is not correctly calculated, due to

the incompressible approximation when vortices are

used; The downstream axial velocity component is derived from
the continuity equation:

a the numerical errors introduced when integrating the

streamlines. P, Vi cos i = P2 V cos (57)

The density at the outlet is a function of the outlet static
One may like to impose some limitations to the cascade pressure and therefore is a function of the unknown out-
such as: let velocity V. For this reason, an iterative procedure is

used to solve equations (55) to (57). The procedure just
a a minimum trailing edge thickness in order to avoid described is valid only for irrotational flows and is therefore

unrealistic blade geometries, not exact if shocks are present.

a a fixed pitch resulting from a given number of blades
on the circumference of a stage.

The stagger angle is free and results from the calculation.
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6. CONCLUSION. MEAUZE, G., 1980, "Mithode de calcul aerodynanique
inverse pseudo-instationnaire", La Recherche Aerospatiale,
No. 1, pp 23-30.

Two iterative inverse methods, based on existing direct
solvers and on a separeted geometry modification algo- MEAUZE, G., 1982, "An Inverse Time Marching Method
rithm, have been presented. The first one makes use of for the Definition of Cascade Geometry", Journal of Engi-
vortices to calculate the flow distorsion which is necessary neering for Power, Vol. 104, pp 650-656.
to respect the required velocity distribution. This method
is strictly correct for incompressible flow calculations only, MURUGESAN, K. and RAILLY, J.W., 1969, "Pure De-
but experience has shown that it can be used succesfully sign Method for Airfoils in Cascade", Journal Mechanical
for compressible subsonic and even transonic designs. This Engineering Science, Vol. 11, No. 5, pp 454-465.
method, when coupled with a incompressible direct flow
solver, is very fast and allowed the accumulation of ex- SANZ, J.M., 1983, "Design of Supercritical Cascades with
perience about the problems related to the existence of a High Solidity", AIAA Journal, vol. 21, No. 9, pp 1289-
solution. A fast convergence to the required velocity distri- 1293.
bution is observed and the method has proven to be robust.
The method has also been succesfully tested, coupled with SANZ, J.M., 1984, "Improved Design of Subcritical and
an Euler direct solver, since the correction is in the right Supercritical Cascades Using Complex Characteristics and
direction and vanishes when the calculated velocity distri- Boundary Layer Correction", AIAA Journal, vol. 22, No.
bution has converged to the required one. 7, pp 950-956.

The second method has been developped for subsonic and SANZ, J.M., 1988, "Automated Design of Controlled Dif-
transonic blade design. The required Mach number distri- fusion Blades", ASME paper 88-GT-139.
bution is imposed, in terms of static pressure, directly on
a permeable blade wall during the flow calculation. This SCHMIDT, E., 1980, "Computation of Supercriticl Coin-
method is much faster than the previous one since the pressor and Turbine Cascades with a Design Method for
correction is calculated in an more accurate way. Sub- Transonic Flows", Journal of Engineering and Power, Vol.
sonic and transonic designs have been performed and shock 102, pp 68-74.
free blade@ have been designed starting from geometries for
which a shock was present in the Mach number distribu- SCHWERING, W., 1970, "Design of Cascades for Incom-
tion. pressible Plane Potential Flows with Prescribed Velocity

Distribution", ASME paper 70-CT-57.
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Abstract

The objective of this paper is a numerical method for design-
ing three-dimensional ducts and blade rows. The method ap- x

plies to inviscid compressible rotational flow, and it is based D
on the time-dependent technique. The walls where the de- C
sign pressure is prescribed are considered as flexible and inm- etct
permeable. Starting from some initial guessed configuration, iuriire rwrCe
the computation follows the transient which occurs while tile
flexible walls move and finally reach a steady shape.

Atf b 8

I Introduction

This report describes a nethodology to solve inverse design
problems for channels and blade rows, assuming the flow to
be multidimensional and the fluid inviscid, compressible and Figure 1: the physical model
ideal. The methodology is based on the procedures described
in [1) for the solution of inverse problems in 2D channels,
in [21 for 2D inverse cascade problems, in [4] for 3D inverse Fig. I does not represent the only possible configuration,
blade rows problems. An updated version of the methodology but both impermeable walls may be movable, or be partly
is described in [5] for both 2D and 3D inverse problems in movable and partly solid, or be each other constrained by pe-
channels and blade rows. riodicity as in cascade problems. In order to show tie way

The basic idea is described in [1]. Briefly, a time-dependent the solution is gained in time, we report here one of the ex-
computation is performed in a duct, where a distribution of amples of [1]. The Ringleb flow [8] was taken as benchmark
pressure is prescribed on a wall, the geometry of which is un- case. A set of streamlines 0 = cons of the Ringleb flow are
known and has to be determined. Such a wall is a boundary of plotted in fig. 2. Once two streamlines are selected, they may
the flow field and it is assumed as a flexible and impermeable be regarded as the solid walls of a channel, and, from the
surface. Some initial configuration is guessed for the shape point of view of an inverse problem, the theoretical pressure
of the wall and for the internal flowfield. During the follow- acting on these may be taken as the design input datum. The
ing transient the flexible wall move in a wavy fashion and, chosen channel is inn tire transonic region, and is confined by
at tihe end, it will assume the steady shape required by the the streamlines 4, = 0.8, 4, = 1.0 and by the radial coordinate
prescribed pressure on it and in agreement with the steady lines 0 = 40", 0 = 90".
internal flow. Fig. 3 shows tire shapes of tire walls during tire transient.

A coordinate transformation is used in order to map the Both of themr are assumed to be movable. Their shapes at tire
physical region, whose shape depends on time, into a con- beginning of the computation (K = 0)are taken far from the
putational domain, whose shape is independent of tiime. The theoretical ones, while the pressure acting on them is assuned
Euler equations are integrated in time by a finite difference to be the same as the theoretical one and is prescribed as
iethod ir the tirse-dependent, body fitted, grid defined by function of tIre angle 6 in the polar frame of reference. At
tIre mapping. the time step K = 500 tire walls finally reach the steady

Fig. I shows one of the possible problems that car be location. The solid lines in fig. 3 denote the computed shape
solved. The domain is bounded by the solid wall AB, the of the walls, while the dots are tire theoretical locations. The
flexible wall CD, the entry permeable surface AC, and the relative error of the computed shape of the walls is plotted in
exit permeable surface BD. The flexible wall is constrained fig. 4, while the relative error of the computed Mach nmber
at tie point C, while the point D can move along the exit is shown as isolevel curves in the flowfield,ir fig. 5. This
srface BD. example was perfoosed using a 19X47 mesh.
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i Since [1] was published, several improvements have been
' ' ~done. Upwind numerical schemes have been adopted to attain

* 3 2 5 0 consistency with the wave propagation phenomena described

by the Euler equations, as a consequence the computation
Figure 2: Ringleb flow at the boundaries has been improved; the extension to 3D

problems has been shown feasible; different formulations have
been attempted. The path of the evolution we followed runs
from [1] to [5].

We describe in section 2 the physical model that we use to
solve the inverse problem for 2D cascades of airfoils; we dis-
cuss briefly the well posedness of the problem, the boundary
conditions, and we show souse numerical examples. In sec-

tion 3 the genaral numerical procedure to integrate the 3D
time-dependent Euler equations is described. In section 4 we
show the algorithm that we use to compute the boundaries in

the case a 3D duct has to be designed. In section 5 the pro-
cedure to design 3D blade rows is presented, and in section 6

CO-rED WLL LOCATIONS numerical examples are shown.
T5 0" ETICAL

2 The cascade problem

For a 2D cascade of airfoils, the inverse problem consists of
finding the geometry of a cascade producing a flow of which
some parameters are prescribed. There is a certain freedom
in the formulation of the problem. For example, in addition
to suitable condition at infinity one may:

i) prescribe the distribution of thickness and load along the

chord of a profile, and inquire for the geometry of the
K' camber line,

ii) prescribe the distribution of thickness and pressere on

one side of the profile, and again inquire for the geometry
of the canmber line, or

Figure 3: time evolution of the movable walls iii) prescribe the pressure distribution around the profile and

inquire for its geometry.

Novak and Haymann-Haber [13] have given a solution to
problem i), based on the Taylor expansion of the equations of
the steady motion for a compressible inviscid flow. We solve
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given there cannot be applied to the present cases, due to the
peculiar formulation of the inverse problems.

We address the subject with a different attitude. We use a
physical time-dependent technique. If the design data which

we impose violate the constrains needed by the sieady well
posed problem, we expect the computation never to become
steady. Moreover, the well-posedness of a time-dependent

Figure 5: Mach number error formulation also depends on the upstream and downstream
boundary conditions, as discussed in [17]. In fact, instabilities
can be generated by upstream and/or downstream conditions

the problems i), ii), iii) by a different technique as briefly that, together with conditions prescribed along the blade sur-
outlined in the previous section: a tinte-depent computation faces, do not allow the flow to get stabilized but, on the coil-
is performed, in which the boundary conditions are imposed trary, amplify its unsteadiness until the computations blows
according to the formulation of the inverse problem, until up. In particular, as discussed in [2), having prescribed a cer-
a steady state is reached asymptotically. The contours of tain downstream pressure, there are two possible solutions to
the blades are considered as impermeable but perfectly de- problem i), only one of which is stable from the viewpoint of
formable. Anr initial geometry is assumed. Since such a ge- a time-dependent technique.
onetry incompatiitle with a steady motion, consistent with Formulation ii) also presents an ambiguous feature which is
the prescribed conditions, a transient is generated. During discussed in [2). When the pressure distribution is prescribed
the transient, the walls of the blades change in shape, in or- on one side of the blade, together with its thickness, it cannot
der to, satisfy the condition of impenetrability as well as the be said a priori whether that side has to play the role of a
bindary conditions, compatible with problem i), ii), or iii) suction side or of a pressure side. The computation itself will
above The solution of the inverse problem is given by a ge- select the role of the side on which the pressure distribution
onmetry obtained asymptotically. has been assigned. According to the numerical results shown

Other approaches to the inverse problem, similar in some in [2], the computation selects that side as the pressure side.
aspe'ts to the one described here, have been developed in- We confine the discussion in the present report to problem
,ipe.idently in [61 e [7, However, the formulations of the i) for the 2D and 3D cases. The reader may refer to Ref.[21
pr,,blem are different from the present one and the methods and Ref.[6 for the discussion of the 2D ii) and iii) problems.
im,,,,, seem to couverge to a solution only if the initial
t,,.fir.ration is very close to the solution itself. 2.1 The physical problent
A v, rv important point has to be discussed when dealing

with verse problems: tire well-poseduess of the problem. We proceed now to describe the process, in particular the
'r-,hi.. ii is is, issed in the case of a single airfoil in [14], boundary conditions, that we have chosen to generate the

wher, it is sthowi that the design data cannot be prescribed solution, confining ourself to the physical viewpoint. A more
with complele freedom. In fact they must satisfy some con- detailed description of our method, based on the theory of
strunts which are dictaded by the consistency of the data with hyperbolic systems, is given in the sections 3, 4 and 5, where
the fi,,w conditions at infinity and by tile requirements that the 3D problem is discussed.
the contoior of tIme airfoil umust be closed, The number of con- Figs. 6a) aid 6b) show typical initial and final configu-
straits depends on the way the inverse problem is formulated. rations. The flow is assumed to be confined between two
This matter is anlytically clear for incompressible potential consecutive blades, the arcs BC, and two parallel limes issn-
flow [15].[16]. (Tufortunatly, there is not an exhaustive the- ing from the leading edge and the trealing edge of tIme blades.
ory capable of prescribing the constrains that lead to a well The lines in front of the blades are denoted by AB. The lines
posed problem for compressible rotational flow. lit [14] a way behind the blades are denoted by CD. Such boundaries are
is provided to circumvent such difficulties, but time suggestion assumed to be impermeable and perfectly deformnable; there-
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at each point. Since the blade is impermeable, the two flow
velocities and the blade velocity must have the same normal
component. From fig.8 we see, thus, that:

I-cos - cos,, (
A

In addition, the thickness is constant in time; therefore:C

) Yrr = y21 (2)

iThe pressure jump, Ap(x), is constant in time; consequently:

Figure 7: Opt _ Op2ot ot(3)
at at

Equations (2) and (3) are the boundary condition that allow
the geometry and the the flow to be updated at each conmpu-

tational step.
At the inlet boundary AA (figs.6) we prescribe the total

-- pressure, the total temperature and the flow angle, if the flow
is subsonic, whereas all the flow quantities are prescribed if

the flow is axially supersonic.
At the exit boundary DD no boundary conditions are

needed if the flow is axially supersonic, while in the case of
subsonic flow, the kind of boundary conditions to be enforced

.. has to be selected carefully, in fact, as it is discussed in the
0next section, the inverse problem i) has not an uniquely de-

Figure 8: fined solution. The kind of boundary conditions that is used
selects one solution among the possible ones.

lore, we can think in terms of a flow within a channel, the 2.2 Flow deflection and force acting on a
geometry of which may change in time, although its width
(measured parallel to the y-axis) is independent of time. The blade
channel is confined by the permeable boundaries AA and DD, With reference to fig.9, let us consider a subsonic cascade with
upstream and downstream, respectively. The inlet boundary inlet and outlet boundaries located sufficiently far upstream
AA is considered fixed in time, whereas the exit boundary and downstream, so that the flow at such boundaries does
DD can slide upwards and downwards, maintaining a con- not depend on y.
stant pitch. A time-dependent computational grid, which fits For the sake of semplicity the flow is considered honmoen-
the boundaries, is defined inside the channel. tropic, so it is sufficient to prescribe the total temperature,

The design data are prescribed, according to problem i), by El, and the flow angle, ai, at the inlet boundary. Let us
giving the distribution of thickness r(z) and pressure jump now choose to prescribe the static pressure p, as downstream
between the two sides of the blades, Ap(r). Since the flow boundary condition. In a steady state configuration, the tan-
is periodic, the upper and lower boundaries of figs. 6 can be gential force F acting on one blade is related to the upstream
reduced to a single boundary for a single blade, as in fig. 7. and downstream y-components of the flow velocity:
Note that the upper part of the ABCD line in figs.6 is the
lower boundary in fig.

7
, and viceversa. F = ti (v, - v,1 (4)

The arcs, AB and CD are deformable and impermeable
interfaces, across which the pressure is continuous but the On the other hand, F can be determined as a function of
tangential velocity component may be discontinuous. In for- the exit flow angle, a,, as follows:
mulating the boundary conditions, the whole ABCD arc can
be treated homogeneously. The interfaces can be considered a) Tire exit velocity, q,. is a known function of 0" and p,:

as surfaces of blades for which a vanishing thickness and a
vanishing pressure jump are prescribed. With this conven- q, = p, ,("' )
tion in mind, we procede to describe the technique for any
blade surface.

Sit fig. 8 we show two grid points on two different sides b) Assume a value of r,, the velocity components t.. and my

of the blade, at the saute abscissa. The velocity vector is are:
decomposed along tle tangent and the normal to the blade m- 

=
q, cosa, v. = 9, sil 0,
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Ue

Figure 9: Figure 11:

the previous considerations, two different geometries of the
blade may satisfy the problem, or none. The force F results

as

F F pz)d

- - -with the integral carried over the z-axis between leading and

trailing edge. If F > F,,, or F < F,,... no solution exists,
but if F.... < F < F,,,, two different cascades may be

obtained, providing the same force (such as A and B, for

example). The same force, thus, may be balanced, according

to eq. (4), by a lower mass flow and a larger deflection at

point A, or by a higher mass flow and a smaller deflection at
B. However, if we prescribe the downstream pressure p,. as

Figure 10: exit boundary condition, only the configuration described by
point B can be reached.

Let us, indeed, consider a cascade providing an exit angle,

c) The mass flow can thus be evaluated: c,, slightly smaller than (cr)A, and a steady flow through it,

which acts on the blades with a force slightly smaller than
mh = su,p, with p, - FA. Let us now increase the pressure jump of this initial

configuration so that the force reaches the value FA and, at
d) p, and the inlet velocity components are obtained by solv- the same time, let the blade adjust itself to the new condi-

ing tion. Since FA is larger than the initial force, the curvature
Th = s qj cos ai, of the blade must increase and re decreases, instead of in-

where creasing towards (O',)A. Thus, the blade geometry tends to

move farther and farther away from A. The opposite motion

of the blade occurs if the initial value of a, is slightly larger
, p, q. = 2c,,(E - p, ) than (a,)A, and the force, originally grater than FA, is de-

creased. In this case, however, the geometry of the blade will
and t is thme satme as obtained in c). eventually reach point B. In conclusion, B represents a stable

e) Now the force F is computed, according to eq. (4) configuration and it is the unnlv one which can be reached us-

ing the numerical procedure and the exit boundary condition,

From a prescribed set of values for E'l, cr,. and p.., one can as formulated above.
compute F(a, ). This relationship is plotted in fig. 10. We In order to succeed in obtaining a geometry of the A-type,

see that the F vanishes for three values of a,. At a, = ±90', one should try to make the function F(..) single valued. All

because u, ad, consequently, rh, vanish. In these two points, difficulties, indeed, seem to arise front the fact that different

the blades are so deflected at the trailing edge, that the flow mass flows can provide the same force with different deflec-

has to axial velocity component. In addition, F vanishes for tions. To achieve our goal, we replace the downstream bound-

,, = a,, that is, when the blade does not deflect the flow. ary condition (constant static pressure p,) by al exit surface

The force is positive when a, < C',, and vice versa. modeled in the spirit of Ref. [181. As shown in fig. 11, a

Assume now thet the inverse problem has to be solved with discontinuity is located at the exit boundary, which simulates

a set of boundary conditions (0,), a,, and p,) and a prescribed a guide forcing the flow to be discharged to the right at the

distribution of load over one blade (Ap(z)). On the basis of prescribed static pressure, p_, and with the givei angle, a,.
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2 F,

Figure 13:

-u 1

Figure 12:
Figure 14:

We assume that the mass flow and total pressure are the same
on both sides of the discontinuity: effectiveness and limitation of the second kind of exit bound-

ary conditions on producing high cambered airfoils is shown.
pU,. - Pq.. Cos 6.-f Briefly, we suggest the following recipe: if the desigh point

is located on the stable branch of fig. 10, then it is safe and
(5)psimple to enforce the downstream pressure, p., as exit bound-

p, - " , P'. = . (5 ) ary condition; whereas, if the design point is in the unsteable
- ,I X ' 12 branch, the second kind of exit boundary condition has to be

p, , + i-(u'+ V.) = p. + i-q2~
S+, ( ) + - used, but some instability may still be experienced, as shown

Eqs. (5), p,_, a,. are the downstream boundary conditions in [21, especially when dealing with strongly cambered blades.

that define a unique solution to the inverse problem. In fact,
once the steady state is reached, the relationship F(a) can 2.3 2D numerical example
be found: Two numerical examples are here presented according to for-

a) fron p,_ and a_, the mass flow is computed: mulation i) and prescribing the static pressure p, as exit

boundary condition. Further examples are shown in Ref. [21.

?h = p. , ,q- coso,,, with q_, jt2 c,,(p ' Fig. 13 shows the initial configuration and fig. 14 the
steady solution to the inverse problem for the case corre-

b) and from the computed values of u, and ,,, we get: sponding to

a= arctan .025[1 - cos(2r)( (0< T < 1)

u, Ap = .1 [I - cos(2rx)] (0 < X < I)

The function F(c, ) is now monotonic, as shown in fig. 12. The ratio p./p" between downstream pressure and total pres-
The curve is limited by two points, M and N. For a, < crM sure is 0.8, the upstream flow angle a, is 20", and the up-
and a, > a. N it is no longer possible to maintain the same stream total temperature E)' is 1. Both this case and the
mass flow required by p. and a. If a force is prescribed, following one have been computed using 40 intervals in and
such that FM < F < FN, there is only one acceptable ge- 10 in y.
onietry which can be shown to be stable, using an argument A check on the accuracy of the computation is shown in
similar to the one employed above, fig. 15, where the theoretical behavior of the y-momentun is

A more detailed discussion and several numerical examples compared with the numerical result. The maximum error is
on this matter are presented in Ref.(2. In particular, the less then 1%.
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equations, avoiding the need for spurious additional numneri-
cal boundary conditions. This point is crucial for the success

uf -tir inethodin fact the computation in a domain sehose
physical shape depends on the solutier i very sensitive to

the way the boundary condition are enforced and arty in.)
treatment may produce catastrophic instabili ties. Details oil
thtis mlatter can be found itt [11].

- *t5.*IMoreover, the inverse problems that generall v one asks to
be solved are slnockless antd the teed for sltock-capt' in ing Ca-

0 ~pability is rare; if this capability is requested. tlte scheme canl

be easily converted in a conservative Flux Vec tor Splitting

si-hertte.'as described in [12[.

-I I. . Let Ins take into consideration tile more general 31) case. wt-
denote by y" (no I, ... 4), the cartesian coordinnate in the
Eutclideant space-time four-dimnentsional space, E4. reserving

Figure IS: ~ the apex 4 to dentote tnme. Let uts dentote by x. in( - 1, ... 4I).
a cunrvilinear framne o~f referetnce in E

4 
- wlnose trtnusfruatioln

from bhe ('artesiatt coordintates has thne formi:

x"(y' ) (ct I..3) (it _ . 1)i

Tile nmapping (6) is sufficiently general to definec tlnc cnr vi-
lintear. time-dependent, body-fitted gridl we uise c i. et, ,,-

the physical domoaitn itt our intverse ttethIod.- Moreo~ver, we
define a vector Q in E', whose (cotntravariant) connminennts

Figure I16: Q (0 = 1,.-.,3) coincide witht tlte comnnpotnents 4~ tine flcwn

velocity q and whnose timne comnpontent is coistaunt aind c,jtWa

['Ile case of fig. 16 Inns thne samte r. c,_ annd 0" as in thne t n'Q _IWt uhasmtos le qain
can be writtent itn a formu insariut (ot ttan~snslormatouv witI.

pnecccirng case.- but thne fortm (6). According to tentsor inotationts, thne 3D[ timne-

A = .15(1 - cos(2,rx)] (0 < X depeindent Euler equations caln be written as:

,and p /p' 0.71.aQ",,+6 
': 0

Thne resulting cascade is supercritical but uncltoked and Q' Q, + a (1!- s. sn) g "" 0 (7

shockless. It cain be seen front the isoMach lines of fig. 16Q:'s
that a supersonic bubble appears on the upper side of the = 0
blade, but the lower side is entirely subsonic. The pressure where latin indexes run fromt I to 4, greek indexes run froms

cannot be discontintuous on the subsonic side; therefore, it I to 3, "," denotes tensor derivative, a is the speed of sound,

nmust be continuous on the supersonic side as well, since Ap 6 2/(j -I), in =o/(2-yd), -y is the specific heats ratio alnnl
is prescribed as a conttinruonts funtction of x. g'"" is tine tnetric tentsor and all thne variables are tnortmalized

withn respec t to suitable refereince Values.
Following Ref. I11 . eqIs. (7) calt be rearrangedl itt a fotnnt

3 The general numerical procedure snuitable for ntpwitnd discretirratiot, by deconnpnsing thne 31)

rhe iniricl prces weuseis avaratin o thelaob nt"ntsteaclv mnotiott as due to waves froants parallel to tine co-

Fcneinn i 1nerical prcse sey its cal vaitit conine as belng- o rdinn. ate snurfaces; the resulting set of eqtuationts pronr 1ts ann
sc nnnn in~ard- tt~regeterll. i cnt e oinidrel a blotg-nnpwiil isc retization Itat preserves thne 3D natusre of Ih Inc a-

inix tnt tine SCM (101 family. It exploits the hyperbolic tnatunre tual flow antd that is partic ularly coivetnietit fron t he point
of rthe Eldnter equations, whtich are discretized accordinng to att of view of thne treatttntt of tite boutndariesr
nninwind finnite dlifferetnce schtemte. Thte schemte we use approx-
inttates tle govertting equtations writtett in quasi-linear fortt+n. +<' +6
as a connsevfntennce it is ttot conservative and weak solutions are 2
not captutredl spotaneusly. but they ineed somte special trea t-I
tett. 'rlts shtortcottittg is tire price to be paid for the mrain Q n4  1 - +tt
snlvaitage thtat ounr tnnumerical process offers: the capability of 2 t

cnnnptng thne botundaries in a way consistent with domain -/i + ~± ~
4f iepeurnce due to tines htyperbolic nature of the governing VY+ 1
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(8) The terms , Y,,, roughly speaking, express quantities
carried by the waves in the unsteady motion, in a numerical

4 +2process they have to be approximated by an upwind uumeri-
9 cal scheme to preserve correctly the domain of dependence of

(I + K ) the compute points. A more rigorous analisys about our nu-Sg sgmerical approximation of hyperbolic equations is attempted

- z~/~' j2, + (4, - +i) + The numerical scheme we use is explicit, second order ac-
-67 curated in time and space. Let us describe the scheme we use

2
, 2 +, + , - + V/93 [ - for the case of a scalar advection equation, being obvious the

9 22 extension to eqs.(8):

s 4 + ", + (. ut = with -A (10)

The terms 4 o., ,. in eqs. (8) are relative to waves fronts The scheme is s two step predictor-corrector scheme:
parallel to ' = const.,X2 = conSt.,X

3 
= coast. surfaces,

propagating with the speeds A,,4,, g,, respectively: o:

(, r2\.s \. ' u+/,"( I I)
a

-" I A"Q1+a/i ,. 2 -

, Q / with o =--

with 4 1= k"+

f , In order to semplify the computation and to improve the
4, - 4, Q2 accuracy, we prefer to avoid explicit evalutation of Christoffel

symbols when computing the tensor derivatives of the vector

Q. In fact, a tensor derivative has the general form:

IN= *d 5,2 + 414-' 4 Q +0Va
The balancing in (12) of the partial derivative, approximated

by one-sided diffrences, and the Christoffel symbol r,,,,, evai-

= -4, - . - Q2 a ,5/; uated on nodes, is quite delicate. We prefer to ba our ap-
proximation on the formula:

-9,,8.3 U" Q3 
(13)

where U' are the Cartesian components of Q and the deriva-

(9) tives P are approximated by finite differences, according to
• , , -:, , Q

3  
the integration scheme (11).

It is also convenient to integrate in time tie Cartesian com-

ponents of Q, getting their derivatives in time from eqs. (8)
,+ 0i , (- s ) P= Q3 

+V-932 and the formula:

aut of. (14)
= - avoiding agin the evalutation of C hristoffeI symbols.
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The design pressure distributions p = p'(y', y) are pre-
scribed over the flexible walls; total temperature, entropy and
flow direction are prescribed at the inlet surface, static pres-

. sure is prescribed at the exit surface in case of subsonic flow,
while all the flow propierties are prescribed at thle inlet surface
and nothing is prescribed at the exit surface when the flow

0 /is supersonic; the vanishing of the normal component of the

flow velocity is imposed on solid walls. With such boundary
conditions a time dependent computation is performed over

, , the ;x' grid, according to the numerical scheme described on
the previous section. Fig. 17b), for instance, shows the shape

4 ' that the channel has at the end of the transient, solving the

inverse problem for the prescribed pressure distributions over

the flexible walls.
Figure 17: As mentioned above, the enforcement of tire boundary con-

ditions is the nost delicate operation of the numerical pro-

4 The computation at the bound- cess. We use the sae general idea of IlI: at each boundary
a certain number of 4. or r?, or <. expresses the propaga-aries tion of signals coming inward from tine boundary, such ternis

'rite nunrerical process that we follow to soive 3D inverse pro- depend on the boundary conditions and are indipendent of

blerirs is based on physical models that are straight forward the internal flow field. In the numerical process, they cannot

extenisioi of the 2D model of Ref. 1], for the case of ducts, be computed according to ens. (11), bitl they must beiroi-

ad of Ref. 21 briefly describedsome boundary conditions. The number of
of blade rows. Te idea is shown in figs. 

t
a) and 17b) for boundary conditions needed by the finite difference equations

tIre case of a 3D duct: a channel is considered whose side (FDI) does not necessarily match the nuiber of boundary

walls are partly (or entirely) flexible and impermeable and condt ions needed by tre partial differential euations (PDE):

partly solid. For instance, the walls ABCD and EFGH of fig. f the boundary conditions needed by the FDE outnumber the

la) are solid, tire walls BFGC and AEHD are flexible and fig boundary conditions needed by the PDE sone additional un-17a ae sli, he als BGCan AED re leibe and '

impermeable, ABFE is a permeable inlet surface and DHGC nercal bouidary conditions must be enforced. It is quite
obvious that an algorithm that asks always the saute boundi-

is a permeable exit surface. 'The inlet and the exit surfaces areobiutatn lrth htas;awysteau nud

y' aconst. plane surfaces, the equations of the solid surfaces yar conditions for the FDE as for time PDE is optimal, this is

a.: sesthe case of the scheme (11) applied to eqs. (8).
Let us consider, for instance the ABCD surface of Figs.

17a), 17b). At this boundary, the e. related to positive speeds

ABCD : y' = b(y
2
, y') od propagation, A, > 0, have to be computed enforcing tire

boundary conditions. The ABCD surface is a solid wall, the
physical boundary condition is the vanishing of the normal

EFGH : y = c(y, tY3) component of the flow velocity, that is:

The equations defining the flexible walls are: Q1 = 0 (18)

AEHD: y
2 
= d(yy

3
,

4
) There is one positive speed of propagation in z' direction:

(16) .X,j, as a consequence there is one term, 4,1, to be evaluated
enforcing eq. (18). Let us differentiate in time eq (18) arid

B FGC i " 
= 

eb ,U' ,Y ) then integrate it numerically in time, with the same time

Thile coordinate transfornmation: step, , which is used by tIre schlnee i1i) at the predictor

and corrector step. With this process in mind. tIre boundary

r
t  

( b) condition (IR) is given by the eqnuation:

air, I (19)

dh
2

-d) 2l' D )orx
where the contravariant component of tile velocity, Q' has

X17) been expressed by means of tire cartesian components 1U'.

x.
3 

:= 13 By substituing eqs. (14) and (8) in eq. (19) we obtain

one algebraic equation in one unknown, j,, which satisfies eq.

X4 = Y4 (18) in both predictor and corrector steps of tIme integration

scheme (I1).
is used to define a tine-dependent grid that fits the walls arid Any boundary can be computed following tine same idea:
adapts itself to time motion of the flexible walls, differentiate in time the boundary conditions, integrate them
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T P

in the governing equations (8), and get as many equations
as many are the ., ?7,, (, unknown at the boundary. In I
[II it is shown that this procedure is consistent with the
characteristic theory for ID flow and, more generally, with
the wave reflection concept in multidimensional flow. D

Let us consider now a moveable wall, for instance the I
AEHD surfaces of Figs. 17a),17b). At this boundary the Y1,
with positive 4'. have to be assumed as unknowns to be eval-V
uated by means of the boundary conditions. There is again
one unknown, ?, and one boundary condition: the pressure is
prescribed as a given function of time, p = p(x

4
), (generally it A

is prescribed to be constant in time). We satisfy the boundary ,
condition by enforcing, in the predictor and corrector steps,
that at each boundary point: Figure 18:

( Os Ax
4  

( 
A .

4

± ( -0- =pr + -- ) (20) The inlet and outlet boundaries are computed followinga O_ j OW' I 2 \ 2 / the same general idea: the boundary conditions are written in

where numerical integral forms, as eq. (19) for solid walls or eq. (20)
vYp ( ca I Os cp for m.oveable walls, the resulting set of algebraic equations,
a \ Or' 6 0 5

4 
] 

=
.

4  
obtainet by substituting eqs. (8), allows the proper unknown

By substituing eqs. (8) in eq. (20), we get one equation that terms , to be determsined.

allows the unknown ,j to be computed.
At each predictor and corrector step we update the geom- 5 Design of 3D blade rows

etry of the wall, given in general form by eq. (16), by means
of the eq.: The method for designing 3D blade to blade channels is sire-

4 Od A
4  

ilar to the method for designing 3D ducts. We use the same
d y3, + -) + d(y', y3, ) + - (21) set of equations (8) and we formulate the problem in the same

2) 2 way: as shown in Figs.18a) and 18b), we take into consider-

where the derivative A,, is expressed by the condition of im- atio a chanel whose wails GLTQ and CFPM are ingperte-

permeability of the wall: at a moving wall, as well as at a able and deformable, with DEON and HISR representing the

fixed wall, the contravariant component normal to the wall of suction and pressure sides of the blades, respectively. The

the vector Q has to be zero, Q2 = 0. In fact, let us consider surfaces GCFL and QMPT are the annulus solids walls, the

the wall AEHD, whose geometry is defined by the first of eqs. surface GCMQ is the inlet surface and LFPT is the outlet

(16). This wall is the coordinate surface x' = 0, as it can surface. Fig. 18a) shows a tipical initial configuration and

be deduced from the second of eqs.(17). Because of the im- Fig. lgb) the shape of the channel solving a given inverse

permeability of the wall and because of the continuity of the problem.

fluid, a fluid particle which is on the wall, has to move without There are two differences between the method of solution of
leaving the wall, that is preserving its coordinate r

2 
= 0, that inverse problems in ducts and in blade to blade channels, the

is with Q
2 

= 0. By definition of contravariant component, it first one concerning the mathematical model and the second
is: one concerning the formulation of the inverse problem:

Q., = Q (22)fr 0( d
-Q (e 

- 
d) (22) 1. Because of the geometry of blade rows, it is more

convenient to use as physical frame of reference a
Enforcing Q

2 
= 0 and considering that f' = 1, from eq. (22) sort of 4D cylindrical coordinates instead of Carte-

it follows: sian coordinates, therefore the equations of section

3 and 4 have now to be read considering y' as ra-
Od O - " Od Ox" = 1,3) = (23) dius. y12 as tangential angle, y3 as axial coordinate,
OU= 1", ,-- (ny4 as time, and IT' as the contravariant components

of the vector Q in this frame of reference. Therefore
In computing eq. (23), cOdiax" are approximated by finite the relationship (13) is now:
differences.

The other solid o moveable walls are computed in the same gxl0 O+ , 0ay, =.
way, once the proper unknown terms 4, or i?, are detected. , IT, = yj a a '- k or,'+

The corner lines common to solid and moveable walls, as (24)
for instance the line AD of Figs. la),Ib), are computed by where r. are the Christoffel symbols in the cylin-
using both the boundary conditions (19) and (20). drical frame of reference.
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We base the numerical approximation of (24) on the that is
formula: Od )Oe

ay 4- 44(29)Oy
4  0

y
4

= \O~t"
+ 

u" r'",,"- (25) Again according to the general treatment of boundaries, eq.
-I aim O' 1 W9~ (29) is replaced by:

by replacing the derivatives by finete differ- Od a
2
d Ay

4  
Oe o"x A",

ences, according to the integration scheme (11). y
" 

+ 5j y4) - = + o) "2

2. Inverse problems for blade to blade flows are con- and substituting eq. (23) into eq. (30) we obtain:
strained by tire periodicity or by the requirement,
identical from the geom..etrical viewpoint, that the a9d ax'" 0U

2  a1" Od 0,r" A,
4

blade profiles must be closed: in fact, the pitch is U - + 2 7i7 - " T," "J,,
a geom.etrical parameter that is known a priori as ae ax " u Ox' Ao

4

function of t.e radius and that mtrust be satified by j !r- - 9e -- - +- X 0- " ' - ) a

the solution of the inverse problem. As discussed in a
4  

2 a "

section 2 for the 2D case, different formulations of (31)
the inverse problem are possible: one may a) pre-
scribe pressure distributions on pressure and suc- where the cross derivatives are neglected, vanishing at the

tion sides and look for the blades shape or b) pre- steady state, and where o = 1,2,3; it = ,3, and Od/0)',

scribe the pressure on one side and the thikiness of ae/O" are approxilnated by finite differences.

the blades and look for the camber distribution or Eq. (28) and eq. (31), combined with eqs. (8), allow il,

c) prescribe the loading and the thikness and look unknown at the pressure side boundary, and ). , unknown at

for camber distribution. Problem a) reduces to a the suction side boundary, be valuated satisfying the bound-

problem identical to the duct problem, but does ary conditions (26).

not satify a priori the closure condition, problem b) The geometry of the pressure and suction sides are updated

shows the same arnbuguities of the 2D case, cast- as in the duct case, integrating in time the derivatives .

ing doubts on its well posedness; the only problem a, according to eq. (23).
that seams well posed satisfying tite periodicity con- The inlet and exit boundary conditions are the same as

dition is problem c), within the limits discussed in those of the inverse problem for a 3D duct, briefly described

section 2 and Ref [2]. We choose to formulate the in section 4.
3D inverse problem for blade to blade flows as a
problem c): we prescribe a design pressure jump
between pressure and suction sides Ap and design 6 Numerical examples
thikness r:

We present here three numerical results, the first one refers to

Ap f y, y3) = (y, y) (26) the design of a 3D rotational, transonic, convergent-divergent
nozzle, while the other two refer to tire design of turboina-

The whole flexible surfaces CFPM and GLTQ are com- chinery bladings.

puted satisfying eqs. (26): in the CDNM, EFPO, GIHRQ and
ILTS surfaces in front and behind the blades eqs. (26) reduce 6.1 Example 1
to:

P = 0, r 0 (27) In order to test the capabilities of the present inverse teclii-
que, we choose an example with a distorted geometry, quite

Eqs. (26) are the boundary conditions that allow the flex- far from the guessed initial one. Fig. l9a) shows the 3D view

ible walls to be computed. Following the same general idea of the initial configuration and Fig. 19b) the final one that

expressed in section 4 for the boundary treatment, the first solves the inverse problem. The solid walls are planes, whose

of eqs. (26), is replaced by: equations are:

j p a ni I s &S x) i 9= 0; y!=19 + k
a 

4  
0x4] 2 , The design pressure distribution on the lower moveable wall

a 0  as~~x4 is

p(x4) + P n o I - K)5 2 -s=,p (26) pj 
= .8 - .7: 3

a ( 54 j ." 2 1p on the upper wall:
with "P" and "S" denoting pressure and suction sides, re-
spectively, and d,e are defined by eqs. (16). The second of p, = .8 - .3511 - coslsesO)]
eqs. (26) can be written as:

On the inlet boundary we impose that the total tempera-
d - e = r + pitch ture is uniform and constant in time 9" = 1, that the flow



Figurt 22:

Figure 19:

Figure 23:

velocity has the direction of the X
3 

coordinate lines and that
the total pressure obeys the law:

p=-Api(tYI - Y"/,- Y!); Ap' =.

I The resulting flow is rotational and non homoentropic.

Figg.20a), 20b) show the isoMach lines over the left and
right solid walls, Figg. 21a), 21b) over the upper and the lower

mnoveable walls and Figg. 22a), 22b) over the inlet and exit

Figure 20: surfaces, respectively. Figg. 23a), 23b) show the constant-
entropy lines on the inlet and exit surfaces, respectively.

8.2 Example 2

The second example refers to the design of the blades of a
stator. Figg. 24a), 24b), show the initial and final 3D view,

\\\ \\ \respectively. The tip and hub solid annulus walls are cylin-

with r,/r,, = I.S.
The design thickness is:

\\\.\\r =\\\ \4.\- .07 sin [I.r Y1 I
with y

3 
- y,3 -axial chord.

The design loading is:
Figure 21:

AP = .08 sin~eYi



t- 13

210/ 3i7

,' >/08

Figure 24: ("
At the, inlet boun~dary the flow is axial. 'IThe total temper-

atur 1s k lept conlstanlt 0" 1, while thle tototal pressure is

witht g -1/(/F, - 'H) h = 1. - gV'rj. Figure25

At thle exit surface, a distribution of pressure, in agreemlent
witht all approximate solution based onl the radial equilibrium
thleory, is given as boundary condition, with ph = .7 at hub ~ .'

radius.-____
Figg, 25a), 25b) show the isoMach lines oit the blade to 'N"

blade surfaces at tlte hub and tip radii, Figg. 26a), 26b)
ott the pressure aitd suction sides of the blades, respectively.
Figg. 2

7
a) and 27b) show the constant entropy lines at tlte

inlet artd exit surfaces.
The constant entropy surfaces coincide with streami- ~

surfaces; as it has been pointed out in Ref. (41, looking at
Figg. 2

7
a) and 27bo) one would expect to see the typical ro--I

tation of such surfaces as consequence of tlte secondary flows '

generated in 3D rotational flow. Actually, a streantwiue coml-
pollent of the vorticity is correctly genserated, it does not re-
veal itself as a rotation of the streamitubes, but rather as a Figure 26:

peculiar twisting of the blades: the loading is prescribed as
design datum and it cannot be decreased as a consequence
o~f secondary flows, but the lower is the total pressure (and
density) the higher the deflection to provide such loading.

Fin~ally, two integral checks have been done onl the continu-
ity and, anlgular mtomentumi of thle comrputed flow field: Fig.5
28 shlows the mass flow computed on cross sections along tte 1 = 1
blade to blade channel; Fig. 29 comtpares the angular niomen-
Wuinl evaluated onl cross sections alonsg the channel withl thle
(orrispounlhg theoretical torque due to the design loadinlg. j

6.3 Exanii)Ie 3

In the third exampjle thle annulus walls form a conical su~r-
face at huh radius, and a cylindrical surface at tip radius.
The~ flow at entry is assumed to have axial direction, withl
constant total temlperature and a parabolic distribution of
total 1 ressiire the smiallest being at houo radius. A certain
dlistribution of thickness and pressure jumup as functions of Figure 27:
the radial ands axial coordiniates are assumed, r = g(y', l"),
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.2 Figure 30:

-5 -3 - . 3 .5 .9 ii 12 14 V1

Figure W1

Figure 28:
Ap : f(y', y

3
). At the exit surface, a distribution of pres-

sure, in agreement with an approximate solution based on the

radial equilibrium theory, is given as boundary condition, as
well as in the previous example.

The initial configuration of the blade row is shown in fig.
18a). T"he blades are without camber and twist. Fig. 18b)
shows tie final configuration of the blade row. Figg. 30 and
31 represent the isoMach lines of the initial and final config-
uration of blade to blade section at hub radius, respectively.
Figg. 32-37 represent the final configurations of the interme-
diate and tip blade to blade sections. The threedimensional

nature of the flow field and the twisting of blades is shown in
AM (,.RdadR)(X.) these results.A ' The flow is transonic, in fact a supersonic bubble extends

- As'CLY IC I L from hub to tip on the section side. Figg. 38 and 39 show

0 NUMO RICAL the isoMach lines on the projection on the meridional plane
I of the suction and pressure sides of the blades, respectively.

Finally, figg. 40a) and 40b) show constant entropy lines on
the sections normal to the axis, corresponding to the trailing
edges and the exit of the streamntube.

The constant entropy surfaces coincide with stream-
surfaces. Figg. 40a) and 40b) show the absence of the typical
rotation of such surfaces and the peculiar twisting of the blade
to blade channel, as well as in the previous example.

-3 - 1 3 .5 . I0 12 1A lV

Figure 29:

Figure 32:

.. .. .. I / 1 S ' - I I I I I I I M. . .
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Fiigure 38:

Figure 34: 1Fgr38
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Figure 36:

Figure 39:

Figure 37:
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Summary

Recent developments in design/analysis methodology for erated by an inviscid inverse method. A useful feature of an
airfoils and cascades are presented. Shortcomings of stan- inverse method, therefore, is the ability to account for this
dard inverse methods in flows involving shock waves are viscous displacement effect. In principle, one can subtract
overcome by a modal geometry perturbation inverse method from the airfoil contour a displacement thickness calculated
driven by a least-squares pressure mismatch minimization, separately from the specified pressure distribution. In prac-
The method is incorporated into an existing viscous/inviscid tice, this may lead to irregularities in the calculated air-
zonal method. Simultaneous solution of the flowfield equa- foil shape, since the displacement thickness always changes
tions and the pressure mismatch minimization equations is rapidly at the transition or shock location. This irregular-
obtained by a full Newton method. This leads to very large ity will then be directly transferred to the airfoil contour.
computational savings compared to traditional minimiza- Also, this approach cannot be used for low Reynolds num-
tion methods. The method is also applicable to viscous flows ber flows (Re < 10P), in which some flow separation is in-
with or without separation regions present. variably present and a displacement thickness distribution

The Newton-based solution scheme, which yields sensi- cannot be generated from a specified pressure distribution.

tivity information as a by-product, also allows very efficient The few viscous inverse methods reported to date, such as

solution of general optimization problems. Perturbation of those of Giles at al [91 and Hirose et al [101, have not ad-
the geometry and flowfield is specified outside of the New- dressed these more general inverse problems. The transonicton solver so as to drive any aerodynamic and/or geometric viscous mixed-inverse case presented in reference 19[, for ex-tont olverto ats tomrivem an ayaiand/tyofre gsensitiv- ample, uses a specified pressure distribution which is shock-
quantity to its minimum. The availability of fee free, and the transition point is outside the inverse part of
ity information and the rapid reconvergenre property of the the p
Newton method after each optimization cycle again gives the airfoil. As a result, the resulting modified airfoil geome-

very large computational savings over traditional optimiza-

lion techniques. Examples are given for drag minimization a small amount of separation occurs. The viscous inverse

of transonic and low Reynolds number airfoils, and loss min- solutions presented in reference [101 also appear to have dif-
imiato ina transonic c Reynompsrness r acad , aplabil- ficulty in dealing with flow separation, and shocked casesimizstion in a transonic comprssor cascade. The applicabil- aentpeetd

ity of drag optimization methods to airfoil design is assessed. are not presented.
Although it might seem pointless to design for shock

waves and flow separation, the fact is that transonic flows
1 Introduction involving weak shock waves and low Reynolds number flows

involving small separation bubbles frequently represent op-
Inverse methods developed to date for airfoil and cas- timum airfoil design solutions. Also, shock waves are some-

cade design have employed a wide variety of formulations, times inevitable, as in the case of flow through a transonic
For incompressible or linearized compressible flows, Eppler compressor cascade. Hence, an inverse method which can
and Somers [11 have employed a complex-mapping method readily handle such flows has substantial engineering inter-
initially treated by Mangler [21 and Lighthill 131. Tran- est.
sonic inverse problems have been approached by solving the The inverse viscous formulation presented here is aimed
full potential equation with Dirichlet boundary conditions, at generating airfoil shapes which are guaranteed to be smooth
Volpe and Melnik 141 transform the exterior flow problem even if flow separation and/or shocked flow occurs, and the
into the interior of the unit circle, while Daripa and Sirovich displacement thickness distributions have strong irregulari-
[5) solve the problem in the potential-streafunction plane. ties. The technique is to limit the airfoil geometry change
Bauer et al 161 use the alternative approach of solving the generated by an inverse solution to a relatively small number
compressible potential equation via complex characteristics. enerte by an i ers eti to r mal erPhysical-plane inverse methods have also been reported, em:- (ten or less) of smooth geometric modes. Such a modal ge-
Phyical n e itere llmetiae i als n repted me d ometry perturbation formulation has been commonly used
ploying either the full potential equation as in the method in optimization-based inverse methods, such as those of Van-of Carlson 171, or the Euer equations as in the method of drlas 11 ik ta 11 n oetn n os 11derplsats [1U], Hicks et al [121, and Cosentino and Host [13).
Giles and Drela (8]. The present method is novel in that it uses a Newton so-

A very useful feature of a compressible inverse method lution technique to solve the flowfield equations simultane-
is the ability to accept surface pressure distributions con- ously with a set of least-squares srface pressure mismatch
taining shock discontinuities. The difficulty with any such constraints which govern the geometric mode amplitudes.
method 14,81 is that such a distribution will in general pro- Each Newton iteration produces the sensitivities of all the
duce an airfoil surface slope discontinuity at the foot of the least-squares constraints to each geometric mode amplitude.
shock. Although the discontinuity can be minimized by These sensitivities are then used to update the geometric
specifying surface pressures which are consistent with the mode amplitudes within each Newton iteration.
correct shock pressure jump, such a requirement is a nui- The advantage of the present technique of generating the
sance to the practicing airfoil designer, sensitivities of the surface pressures (or any other flow quan-

For a majority of design problems, treating the flow as tity) from the Newton solver is that it leads to very large sav-
inviscid is adequate and entirely appropriate. In certain ings in computational effort. Standard optimization-based
cases, however, especially those involving transonic and/or methods normally obtain the sensitivities by sequentially
low Reynolds number flow, the boundary layer displacement perturbing each mode and recalculating a direct solution by
effects can very significantly alter the effective geometry gen- the 'black-box" direct solver - a very expensive process
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even if only a few modes are used. The no-overhead gener- 2.1 Interior flowfleld equations
ation of these sensitivities by the Newton method results in
the entire modal inverse solution requiring about the same The ability of the ISES code to handle both direct and
CPU time as one direct or one full- or mixed-inverse calcu- inverse problems stems from its streamline-based discretiza-
lation - typically 5 minutes or leas on a VaxStation 3200 tion of the steady Euler equations. This discretization is
machine. This is a substantial improvement over the pure similar to the older streamline curvature methods (181 com-
optimization-based methods which only deal with the di- monly used in turbomachinery applications. A number of
rect solver as a 'black-box", and may require tens or even key differences, however, allow the ISES code to handle tran-
hundreds of direct solutions to perform one inverse solution, sonic flows, and to easily accept inverse or direct boundary
Furthermore, the inclusion of viscous effects into the present conditions with or without boundary layer effects included.
inverse solver via a simultaneously-coupled integral bound- Streamline curvature codes typically discretized the non-
ary solution has little effect on the overall calculation time. e
Again this represents a large cost advantage over previously- conservative Euler equations expressed in local intrinsic s- n

reported viscous inverse solvers [101 which are based on the coordinates. In contrast, ISES discretises the Euler equa-
tions in conservative form. A conservation cell is defined

Navier-Stokes equntions and require hours of supeomputer by two streamlines and three 'quasi-normals" (they do not
need to be normal to the streamlines) as shown in Figure 1.

The Newton solution procedure allows economical im- The standard Euler variables of density p, pressure p, veloc-
plementation of general optimization procedures, such as ities u, v, are located at the center of the quasi-normal cell
minimization of profile drag at fixed angle of attack or fixed face. There is no convection across the streamline faces, so
lift. The modal-inverse method is a particular optimization that only the pressure p and the streamline node position
method which incidentally can also be incorporated implic- z y are needed as unknowns there. The lack of convec-
itly into the flowfield Newton solution. More general opti- tion across the streamline faces of each cell also allows the
miation must be performed outside of the flow solver, but continuity and energy equations to be replaced by simple
is able to make full use of the "free" sensitivity information algebraic statements of constant mass flux and stagnation
available from the Newton method. The result is that any enthalpy in each streamtube. This reduces the number of
well-posed optimization problem can be solved with a very equations and the number of unknowns per cell to only two.
modest computational effort - comparable to that needed Only the normal position n of each grid node, and the den-
for several direct solutions. sity p on each quasi-normal cell face remain as variables.

The present modal-inverse and optimization methods The streamline grid is thus determined as part of the solu-
have been implemented as additional options to the success- tion. This permits a very simple extension of the method
ful ISES airfoil/cascade code [9,14,8,151. This code already to inverse problems, where the airfoil is determined by the
has two standard inverse mode capabilities - a full-inverse calculated shape of its two bounding streamlines.
mode where the pressure is prescribed over the entire air- In supersonic regions, ISES adds a speed-upwinding dis-
foil surface, and a mixed-inverse mode where the pressure sipation term to the streamwise component of the momen-
is prescribed over only a part of the airfoil surface and the tum equation. This has the appearance of the physical bulk
geometry is prescribed over the remainder. Inverse solu- viscosity term, and mainly comes into effect in steep speed
tion examples have been presented in references [9,81. The gradients, allowing shock waves to be captured. More de-
new modal-inverse variant presented in this paper is simi- tails are available in references [16,17).
lar to these two existing inverse formulations, except that
the airfoil contour change is restricted to the smooth geo-
metric modes as mentioned above. The smooth geometric
modes in the present formulation can represent either the p X y
perturbation of one airfoil side or the perturbation of the conservation
airfoil camber line. Allowing only one surface to change is cell7
most useful in isolated airfoil design, where the two surfaces t n-
are typically tailored separately at two different operating streamline j. ( \ .

conditions. Allowing only the camber line to change (which lt
preserves the airfoil thickness) is most useful in turboma- quaSi-normal
'linery compressor blading design applications, where the line \ e P U v

aifoil thickness is more or less fixed by draconian structural

requirements. Flow Variables

This paper will give a summary of the ISES code for-
mulation into which the present modal-inverse method is
incorporated. The Newton solution method unique to the
method will be addressed in more detail. An extension of
the method to optimization problems involving drag mini-
mization will lo be presented. Design examples for airfoils
and turbomachinery blading will be presented to illustrate
the usefulness of the modal inverse method. The role of op-
timization techniques in airfoil design will also be assessed.

2 Numerical Formulation of ISES Code

The ISES code has been extensively documented in the
literature 116,17,8,15,14). Here, only a brief description of
the basic method will be given. The boundary conditions Newton Variables
pertinent to the various direct, inverse, and optimization
options are central to the present work, however, and will Figure 1: Euler grid node and variable locations.
be presented in more detail.
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2.2 Newton solution method

A key feature of ISES is the global Newton solver which node density Lo
is used to solve all the governing equations as a fully-coupled position n
system. This system contains all the interior equations,
as well as all the airfoil and farfield boundary conditions
(described later). An initial streamline grid corresponding
to incompressible flow, and a uniform density equal to its
freestream value, are used for the initial guess. The vari- - p:
ables determined by each Newton iteration are the stream-
line node movement 6n along a specified direction (typically
normal to the streamline), and the density change 6p at each
quasi-normal face. The linear system which governs these Figure 2: Six streamline nodes and two density variables
changes for each Newton iteration has the form determininK surface pressure pi.

6] } -R 2.4 Direct ard inverse surface boundary condi-i~p (1) tions

6G
The farfield boundary conditions described above distin-

where 3 is the known Jacobian matrix and R is the vector guish between cascade and airfoil cases, and between sub-
of all residuals. Because each variable 6n and bp affects sonic and supersonic flows. However, whether a particular
only the nearby residuals, the matrix is tightly banded for case is viscous or inviscid, or is of the direct or inverse type,
the most part. However, the system also typically contains is only determined by the boundary conditions on the air-
several "global" variable changes 6G which affect L large foil surface. At each streamline node on an airfoil surface,
number of residuals. Examples of these are the changes in one boundary condition is required to close the entire equa-
the inlet and outlet flow angles 0 which enter the boundary tion set. In an inviscid direct problem, the position of the
conditions in cascade cases, and the change in the circulation streamline adjacent to the airfoil is ixed, and hence the
r which affects the farfield boundary conditions in isolated movement 6iti of the node is simply set to zero.
airfoil cases (the boundary conditions will be discussed in
more detail in the next section). The additional variables n = 0 (5)
are implicitly constrained by equations such as the Kutta In an inverse problem, the pressure at a surface grid node
condition, which appear as additional residuals in the (explicitly related to the neighboring density and streamline
vector R. The large, sparse, linear system (1) resulting from node position variables shown in Figure 2) is set to a speci-
each Newton iteration is solved by a custom banded solver, fled value. With si being the arc length position of surface
For even the largest two-dimensional problems encountered node i, the pressure is enforced by the following expression.
in actual applications - approximately 10000 variables -
this is faster and much more reliable than iterative solvers. p, = P. (s) + Ai fl(sj) + A, 1(s) (6)

The present streamline Euler formulation allows the surface
2.3 Farfield boundary conditions node pressure pi to be explicitly related to the neighboring

streamline nodes and density values as shown in Figure 2.
The two interior variables n and p and the two inte- The linearization of equation (6) which is incorporated into

rior momentum equations are unchanged for all the types the Newton system ( ) therefore has the form
of flow problems handled by ISES. Cascade and airfoil cases
are distinguished only by the farfield boundary conditions, apO nk pi - 6A f(s,) - 6A2 M80

which also depend on whether the flow at the boundary is + inS -op -

subsonic or supersonic. Typically, the streamline angle 0
and the stagnation density p. are imposed at the domain = Aj l(si) + A, fl(s) + A2 f?(si) - pi (7)

inflow boundary. The flow angle is either prescribed or cor- where the summations are carried over the local n and p
rected for the solution farfield behavior obtained from the variables which influence pi.
Prandtl-Meyer function u,(M) or an asymptotic compress- Note that the specified pressure distribution pw (s has
ible potential expansion, added terms which consist of specified modes f]l() and fl(s)

t= 1.P_ subsonic cascade (2) weighted by unknown free parameters A, and Ai. These

cl ± io(M) = opf supersonic cascade (3) two parameters are additional "global" variables implicitly
±,. supesonic airfoi (3) determined during the Newton solution to satisfy two ge-

tant = / subsonic airfoil (4) ometric airfoil closure conditions. In full-inverse problems
where the pressure is imposed over the entire airfoil surface,

The Prandtl-Meyer boundary condition prevents spurious it is appropriate to specify that the leading be closed, and
reflection of waves back into the domain, and automatically
returns the unique-incidence condition of supersonic cas- the trailing edge gap be equal to some specified value

cades 1191. The airfoil farfield potential O(z, y; r) depends
on the circulation constant 1, which is implicitly determined = 0 (8)
by imposing a Kutta condition. It can also optionally in-
clude airfoil doublet terms for more accuracy. In addition to = h,. (9)
giving the inflow angle, this potential also gives the farfield The corresponding linearized equations are then
pressure which is imposed on the outermost streamlines in
the airfoil case. This high-order boundary condition treat- 6nt' - bn'" -ai, (10)
ment allows the outer boundary to be placed within a few

chords of the airfoil. References 114,8] give more details on 6 -n hr. -e (11)
the airfoil farfield boundary conditions.
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In mixed-invers problems, geometric closure must be spec- P Pp.. ° 
A, fs) A. f,(s)

ified at the left and right blend points iL and i. joining the
direct and inverse segments of the airfoil (Figure 3).

An?, = 0 ani. = 0 (12) 11

6nL = -Ani, 6ni, = -anj, (13)

The actual surface pressure distribution p(s) which re-
suits from an inverse solution will differ from the prescribed
distribution p.,(s) by the additional terms in equation (6).
This must of course be accepted in any inverse method as
originally proved by Lighithill [3] for incompressible cases.
Volpe and Meinik [41 have argued that the same must be S

true for compressible cases. Note that it is possible to ob-
tain the exact specified pressure over a part of the airfoil Figure 3: Mixed-inverse problem with two geometry conti-
by setting the mode shapes fi(s) and fz(s} to be zero there, nuity constraints.

and nonzero elsewhere. This is rarely necessary, however,
and simple linear mode functions (shown in Figure 3) have The key teature of the ISES code which enables the wide
proved to be effective in practice. variety of inverse problems to be specified is the global New-

Woods [201 has treated the incompressible mixed-inverse ton solution method and the associated direct banded ma-
problem by using a conformal mapping into the compex po- trix solver. The solver sees a boundary condition as simply
tential plane. His method required three integral constraints another equation in the Newton system - the particular
on the specified surface speed, which is inconsistent with the form of that equation is immaterial (it only needs to produce
present scheme needing only two constraints. This inconsis- a sufficiently well-conditioned linearized system). Thus, any
tency is somewhat puzzling, particularly since the present well-posed boundary condition can be easily implemented
scheme gives reliable convergence with any specified pres- with no change to the remainder of the overall solution pro-
sure distribution, and hence is likely to be well posed. It cedure. An iterative solution strategy would strongly de-
is suspected that the discrepancy between Woods's result pend on the boundary condition equation stencil as well as
and the present method is somehow related to regularity in the magnitudes of the stencil elements. Particularly trouble-
the pressure gradient distribution. The geometry regularity some would be the determination of the global variables Ai
condition at each blend point (12) still allows a disconti- - A4 which influence all the surface nodes where the pressure
nuity in the surface curvature, which in turn produces a is specified. The influence of these variables on the closure
Va behavior in the local surface pressure on the prescribed- constraints (9,12) cannot be easily obtained, especially for
geometry side of the blend point. Woods's analytic flow- transonic flows. They would therefore be difficult to incor-
field description precluded such behavior, and hence an ad- porate into a relaxation scheme.
ditional constraint naturally arose. In the present mixed-
inverse method, pressure gradient regularity can be enforced
by adding an additional free parameter term to equation (6). 2.5 Specified thickness and loading

Woods's requirement of only one additional constraint sug- For turbomachine binding calculations, it is often highly
gests that if regularity is obtained at one blend poiut, the advantageous to strongly constrain the structural properties
other point will be regular as well. However, this would of a thin cascade airfoil during an inverse calculation. The
only be true if no discretization error were involved. To simplest approach is to preserve the thickness and modify
allow perfect control at each blend point, two additional the camber line by imposing the loading Ap across the air-
terms A fsC() and A4 f4s) can be added to equation (6) as foil. Note that this allows only partial control of the pressure
indicated in Figure 3. The additional unknowns As and 4 distribution on one particular surface, but this concession
are then determined by enforcing the second derivative in
pressure at the blend points to be equal to a fixed values
stored from the seed airfoil solution. In discrete form, this In any direct or inverse problem, two boundary cond-
is expressed - tions are needed at each surface node position - one for

each airfoil side. In the thickness/loading inverse problem,
Pi-i - 2A, + P -- (pi-I - 2^, + Pi~)q, (14) these two conditions are

where i is the index of a blend point. This equation is lin-
earized in terms of the local Euler variables 6n, fip , and t w = . ais (15)
added to the Newton system. Instead of constraining the &p -- _ pi = Pp. )
second derivative in the pressure, it is of course possible to + A, ais) + A, f(sl (16)
directly specify the curvature at the blend points. However,
the surface premure is the relevant aerodynamic quantity, where t, is the airfoil thickness at node i. Equation (15) in
and constraining it instead of the curvature has been found linearized form is
to be more effective. The mode shapes Ja(s) and f.:s) for
these additional constraints are again arbitrary, but the best 6n7

PP' - 6n ' = t.,eil - (17)
results are obtained if each mode is restricted to be nonzero
only in the vicinity of the corresponding blend point to be while the linearized form of equation (6) has the same form

constrained. Finally, it must be mentioned that the V- be- as equation (7). These linearized equations are then in-

havior in the surface pressure is often imperceptible, and cluded into the Newton "stem as usual.

becomes apparent only if severe changes in the surface pres- The appropriate constraints on the free parameters A,
sure distribution are specified. For most cases, only the two and As in equation (16) are the usual geometry continuity
leading additional terms added to the specified surface pres- constraints at the left and right blend points i,, i. joining
sure are adequate, the direct and inverse airfoil segments.



9-5

6n"
p'
" + 6n = 0 (18) equation (6) which were set to obtain geometric closure atthe two blend points.

6n, '  + 6n,' = 0 (19) Figure 7 shows the new calculated airfoil shape to have
The one exception to this is the special case where the in- a slope discontinuity at the shock location, and the local
Teoe emepiont ts i the say cssthe r ede in- geometric angle 9 and normalized curvature xc to have oe-
verse segment extends all the way to the trailing edge, and cillations there. These features arise from the specified C,
the trwilng edge is left free to move up and down. In this surface values within the smeared shock being inconsistent
csse, the two extra terms in equation (16) are not used, with the vaiues which would be obtained on a smooth sur-
Correspondfingly, two equations must be discarded to retain ft.I atclr oseilatninwspi oesr

aface. In particular, no special attention was paid to ensur-
equation (19) and the trailing edge Kutta condition. The ing that the surface C, near the shock was consistent with

ied t the correct Rankine-Hugoniot jump condition and the post-
latter is taken care of by equation (16) being applied at shock Zierep pressure singularity. This consistency is not
the trailing edge. Only the remaining left geometry closure easily achieved, a the Zierep pressure singularity depends

equation (18) Is imposed, and this now implicitly constrains on the curvature of the final airfoil which is not known a
the airfoil circulation in airfoil cases, or the exit flow angle priori, and the numerical structure of the smeared shock
or exit pressure in cascade cases. is difficult to predict. If there is no shock within the in-

verse segment, such problems of course do not arise, but
2.6 Leading edge geometry considerations here the geometric disturbance at the shock is a continual

nuisance when many redesigns are performed. Elimination
The full-inverse formulation in the ISES code has not of this problem is one of the primary motivations behind the

found to be particularly effective for blunt leading edge ge- maodal-inverse method described in the next section.
ometries. Difficulties arise near the stagnation point, where
the surface contour is extremely sensitive to the local im-
posed pressures. This is to be expected of any inverse method /' /.
which requires pressures rather than surface speeds to be
specified, as the pressure variation near the stagnation point \ // // / ,/
is quadratic while the speed variation is linear. If the pre-
scribed pressure even slightly exceeds the stagnation pres-
sure, the method must fail. The mixed-inverse formulation
circumvents this difficulty by allowing the geometry to be
imposed near the stagnation point, and hence is a much
more effective and robust design tool for airfoils with blunt
leading edges.

For airfoils with very small leading edge radii, such as -

turbomachinery compressor blades, it is often advantageous
to not resolve the leading edge, especially in preliminary
design stages. This lack of resolution eliminates the stagna- -
tion point in the numerical solution, making the full-inverse
method practical for these cases. 09

2.7 Inviscid Inverse example: Transonic airfoil '' .

Figure 4 si iws a NASA supercritical airfoil from refer-
ence [21] operating at M = 0.75 , CL = 0.8. Ten Newton
iterations were required for this direct calculation, which
consumed a total of 12 minutes CPU time on a VaxStation
3200 for the typical 132 x 32 grid. A fairly strong shock wave
occurs at this condition on the suction side of the airfoil, pro-
ducing the unacceptably high wave drag of Co = 0.01095.
This shock can be weakened via a mixed-inverse redesign
of most of the upper surface. Figure 5 shows the origi-
nal and new specified C, distributions. Although the shock -. .. s
wave could be replaced by an isentropic recompression, the , ,, • ,,

resulting airfoil would likely have undesirable off-design per- ,.s .
formance. Also, a smooth recompression often results in a C' -- ,,• s
stand-off shock 122,81 which still carries a significant wave ;
drag penalty. For these reasons, specifying a weak shock at
the design point usually produces a better overall airfoil. -0.5

Figure 6 shows the final surface C, and geometry of the o
new airfoil resulting from the inverse calculation. The angle
of attack a was left as a free variable in the overall Newton 0.5
problem to allow the design CL = 0.8 to be maintained ex- -

actly. This also caused a slight change in the lower surface
C. distribution. Four additional Newton iterations (5 min-
utm CPU on a VaxStation 3200) were needed to converge
this case starting from the direct solution. The small and Figure 4: 132 x 32 grid, Mach contours, and surface C.
certainly acceptable discrepancy between the specified and distribution for inviscid supercritical airfoil.
final surface C, distributions is the two additional terms in

---- -
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3 Modal-Inverse Formulation

The modal inverse formulation implemented in ISES is
actually more closely related to a direct than an inverse

.... ... method. The boundary condition applied at a modal-inverse
........ ntw swif .3" surface node is

v. 1. 1 L = 5t gdeso (20)
-0.0 1.0 t=1

which is equivalent to perturbing the airfoil contour by the
-.... . . L geometric modes ge(a). The same perturbation condition

.. can also be applied to opposing points on the two airfoil
0.4 0.7 surfaces. This preserves the airfoil thickness distribution,
OA 0.6 and is equivalent to perturbing the airfoil's camber line. The

-wG segmifet o.s mode shapes specified in the ISES code are shown in Figure
. ------ ... 0. 8. Since the modes are smooth, the perturbed geometry is

./.c also guaranteed to be smooth.

Xm/C

Figure 5: Calculated C. on original airfoil, and specified C, : %( s)
for mixed-inverse redesign.

- clculated C, on now airfoil C b-n pfturbgtion

C;,i .... 1' r8n = E55j , s)

-0.2 0.5 Single-surface perturbation
0.0 0.7

0.4 o 9, g, # g g,

0..

Figure 6: Specified and new calculated C, distributions ons

Figure 8: Camber-line and single-surface modal geometry
perturbations.

The mode amplitudes ui6 are determined by minimizing
redesignsd sho5Cl the integrated mismatch between the specified and result-

0 \ iigi5l ing surface pressure distributions. The discrete form of this
mismatch integral I is defined as,

' -0( -p.,.(ts)' (21)

X_//

S"" " ig where the summation is taken only over the inverse segment.

30 The L minimization constraints with respect to all the mode
NT mod amplitudes are obtained by setting the integral variations to

Ii ~-- ~u.p())pi =o 1< </L (22)

-,o ... ... , <o,:, :, , '"Z . 00;: Linearizing this about the current solution, one obtains L
s,c 8 Newton equations for the L mode variable chahges o.

Figurempitde 7:e Comtarneo betee original and mixed-nvers var88p iaoslt

redesigned airfoil. surface angle and curvtu distributions th at t c u, o ei/

on redesigned airfoil. (2
Teqniintsqrbrkti o an e n(3)

The quantity in the square brackets is therefore an element
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of the Hessian matrix for the pressure-mismatch integral the modal constraints (24) are not the exact linearized forms
1. It is necessary in practice to neglect the second term of the least-squares constraints (22). The overall conver-
inside the brackets, since calculation of the cross-sensitivity gence rate is therefore no longer quadratic, but degrades to
of pi with respect to i, and h- is impractical. The Newton linear. However, the discarded linearization terms are so
equations actually used are therefore the following, small that an order of magnitude decrease in the residuals

per iteration is typically obtained in practice. Four or five
L aps6a iterations therefore suffice to converge a modal-inverse case.

= - ( p p 3.1 Specified thickness and loading with Modal-
1 L (24) Inverse

Fortunately, the neglected term has a minor impact on the As mentioned in the previous section, turbomachinery
terminal convergence rate of the global Newton procedure, blading airfoils lend themselves well to inverse calculations
since pi - Ppi ) becomes small and api/lf, rapidly tends with a specified thickness and loading Ap. This same ap-
to a constant as convergence is approached, making the en- proach can also be easily incorporated into a modal-inverse
tire term a higher-order quantity. method. In this case, the geometry perturbation modes are

Even if the second term in equation (24) is discarded, used to equally change each surface rather than the single
it is still not possible to immediately incorporate the s surface. This naturally preserves the airfoil thickness and iste is stinothe osibl to n medite inorp e the ay- equivalent to only perturbing the airfoil's camber line. The
tern (24) into the global Newton system in the usual man-
ner, since the sensitivities api/ah, are normally known only discrete pressure-mismatch integral now takes the form
after the global Newton system is solved. This problem is 1 (8
circumvented by the following modified Newton procedure. I - E (Api - Apw, lj) (28)

The L columns corresponding to the Newton variables where the summation is performed only over the part of
bht are placed on the righthand side, to obtain a Newton the airfoil where the camber line is being perturbed. The
system of the form remainder of the solution algorithm is essentially identical

6n to the one-surface modal-inverse method described above.

J 6p ++ 6f g" + g' 3.2 Inviscid Modal-inverse example: Tfransonic
I I I I II I airfoil

(25) The transonic airfoil inverse example presented in the
where the unknown vector on the lefthand side contains all previous section is an obvious candidate for a modal-inverse
the flowfield Euler unknowns 6n, 6p, 6G, and R is the vector calculation. Using the same specified C, distribution shown
of all the interior flowfield equation, boundary condition, in Figure 5, a modal-inverse calculation is performed using
and global constraint residuals. Since J is now a square non- the five geometric perturbation modes shown in Figure 8.
singular matrix, the system (25) can be solved by Gaussian Again, a is left as a free variable to allow the design CL = 0.8
elimination to obtain a partially-determined solution, to be maintained. Five Newton iterations (7 minutes CPU

on the VaxStation 3200) are required for convergence, start-
ing from the converged original airfoil case. The final sur-

6p : + 6St J . } (26) face Cp is shown in Figure 9, and the new airfoil geometry
6G 1 6p is compared with the original geometry in Figure 10. As ex-pected, the new geometry is smooth, and the match between

The vectors 6fl, 6, and &, are now known, and the geomet- the specified and resulting surface pressures is certainly ac-
ric mode amplitude changes 6bf are still undetermined. The ceptable. A better match could naturally be obtained by in-
surface pressure at any node is a known function p(n, p) of corporating more geometry perturbation modes. The corn-
the neighboring streamline node positions and density vari- putational effort increases by only about 3% for each addi-
ables (see Figure 2), so one can explicitly determine the sen- tional mode, so using many modes is very attractive. The
sitivity of each surface pressure pi to each geometric mode low cost per mode is due to each mode only adding a right-
amplitude ie as follows, hand side to the Newton system. This righthand side is a

trivial additional burden for the direct banded matrix solver__, = ___, .. ap, apsap, = x na + t p ; 1 < I < L (27) used in ISES. For iterative solvers, the cost per mode would
A ank ahe ak anaturally be higher.

where the summations are carried over the nodes adjacent to clculeted Cp on new airfoit
node i, shown in Figure 2. As discussed earlier, api/anh and ....... -ciflsd r,
a pi/ap are explicitly calculated by differentiating p(na, ph), f
and aNsfi/e and ap,/a.i. are simply the known elements of _ _._ 1.0
the column vector & in the vector equation (26). With all -. 0.
the sensitivities 8i/8iii thus determined, the L equations -.
(24) become an L x L linear system for 

6
fi ... 6fL which is

easily solved. Substituting the resulting 6t values into the 0.o
vector equation (26) then fully determines all the remaining 06
Newton changes 6n and 6p at all the flowfield grid nodes.1
The Newton update can then proceed as usual. The stream- 0..
line adjacent to the modal inverse segment will move during 0 0.3
this update, thus automatically adjusting for the change in u
the airfoil geometry. x,,./c

As mentioned earlier, this modified Newton solution pro- Figure 9 Specified and now caLulatcd U. distributions on
cedure does not constitute a 'proper* Newton method, as airfoil redesigned using modal-inverse.

a,- - _



-redsisgnsd shock dl
\,origsi Y(9,6 u.) (31)

d[H'(,6",u,)j = 7I(0 6OuC) (32)

- -so ----------- W (33)

c Like the surface pressure pi in Figure 2, the boundary layer
0 edge velocity is a known function u.(nk, ph) of the neighbor-

20 ing Euler variables n and p, and hence does not constitute

30 an additional unknown. In laminar flow regions, a maxi-

0 mum disturbance amplitude variable R replaces C,, and an

0: C amplification equation of the form

Figure 10: Comparison between original and modal-inverse d(34)

redesigned airfoil. Surface angle and curvature distributions replaces the lag equation (33). The transition point is de-

termned by the variable R exceeding a specified critical

value ji/cA. The result is roughly equivalent to the e
9 

tran-
The ISES code is structured so that the specified Ce dis- sition prediction method of Smith and Gamberoni (24) and

tributions can be easily edited and the solution reconverged stn e p 25).

at any time. The relatively quick execution, particularly for

subcritical cases which converge in 2-3 iterations, allows the The boundary layer equations are discretized using two-

designer to efficiently determine the most effective solution point central differencing and their linearized forms are

to a particular airfoil design problem. added to the global Newton system. The Newton changes
6(6) , 69, 6C, needed to update the boundary layer solution

4 Viscous Inverse Solutions are thus calculated simultaneously with the Euler solution

in both direct and inverse caes. Because the viscous and in-

The ISES code can optionally incorporate viscous effects viscid solutions are fully coupled in this solution procedure,

into any direct or inverse Euler solution by modifying the flows involving separation can be readily computed.

airfoil (and wake) surface boundary conditions via the dis-
placement surface concept. In the direct and modal-inverse

modes, the condition of the surface streamline being fixed
to the airfoil is replaced by the requirement that the stream-

line be displaced from the airfoil surface by a distance equal

to the viscous displacement thickness. Referring to Figure Direct

11, the linearized boundary condition which replaces equa- .pQ .I K
tion (5) in direct viscous problems is An

6,n, - 6(6) = 6,' - an (29)

where 6 is the displacement thickness, and an is the stream-

line offset distance. On the trailing wake, the gap between
the two streamlines bounding the wake is likewise driven

to the wake displacement thickness, and also the pressure P P -
jump acrow the wake is specified to be zero. More details
are given in references (15,231. In modal-inverse solutions,
the boundary condition which replaces equation (20) is Iner e

6nj - 6(6i*) = 6"i - A4 + 6it, gj() (30) An/
7

L\j

so that the streamline is still offset from the airfoil by 6 ,

but the airfoil surface itself can be displaced by the geometry
modes. The wake displacement condition is unaffected.

The boundary conditions modified for the displacement
effect have introduced the new variable 6(6') at each airfoil

surface and wake node into the Newton system. Two ad- Modal
ditional viscous variables are further added to describe the jrys N+

viscous layer, these being the Newton changes of the mo- gahA

mentum thickness 69 and the max shear stress coefficient T. an

6C,. To obtain a closed system, three new equations must .. K
therefore be introduced at each node to govern the three

new variables. As described in reference 1151, ISES employs
the standrd von Karman integral momentum equation, the Z46n 9, gkinetic energy shape parameter equation, and a dissipation

lag equation. In turbulent flow regions, these equations have

the following fnrm. Figure 1p: Viscous wall boundary conditions at direct andinverse points.



For full- or mixed-inverse cases with boundary layer cou- all camber line can increase with the inlet flow angle fixed.
ping included, the specified-pressure boundary condition Since the geometric perturbation modes pictured in Figure 8
(6) is unchanged. The boundary layer equations are still cannot allow the trailing edge to move, an additional mode
solved as part of the global Newton system, but on the of the form g = s-sin(s) has been added to the system. The
specified-pressure portions of the airfoil, 6 no longer affects result of the modal-inverse calculation is shown in Figure 14.
the position of the streamline nearest the airfoil surface. In- The turning angle has been increased by 16". The specified
stead, the airfoil contour is simply offset from the inviscid and resulting loading distributions match closely, although
streamline by a distance equal to P" as shown in Figure 11. the pressure distribution on an individual surface cannot be
In full-inverse cases, this is essentially equivalent (except controlled independently - an unavoidable feature of the
for the wake displacement effect) to performing a standard thickness/loading inverse formulation.
specified-u. boundary layer calculation and correcting the U 2

airfoil shape by " as a post-processing step. In mixed- 
2 .0T' , • o.

inverse viscous calculations, the direct boundary condition -u.,
(29) is used at the fixed-geometry portion of the airfoil, and C c O.l1
hence there is a two-way coupling between the boundary C -
layers and the inverse solution flowfield.

As discussed in the Introduction, if transition or a shock -0.5

wave occurs within the inverse segment, the displacement
thickness will change rapidly, and this change will be trans- 00
ferred to the calculated airfoil shape as a geometric irreg- S

ularity. This is a nuisance in viscous inverse calculations, 's
and is one the motivations for the modal-inverse method.
A far more serious problem in both full- and mixed-inverse
problems is that the overall solution will fall outright if the
boundary layer separates anywhere the surface pressure is
imposed. At such locations the boundary layer is effectively
being solved in the conventional specified-u, mode, which Figure 12: Calculated and experimental C, distributions on
is known to allow unconstrained perturbations in P" at sep- low-speed compressor cascade.
aration (the cause of the well-known Goldstein separation
singularity). This in turn produces a singular Jacobian ma-
trix in the global Newton system and results in solution -0.61 SEs
failure. The direct and modal-inverse boundary conditions C-,;0.
(29,30) sidestep this problem by directly constraining the lo-
cal P perturbations. The modal-inverse method can thus be .2
safely used with limited separation regions present. One in- speciied loading
stance where the modal-inverse method is expected to fail,
however, is when one or more of the geometry perturba- 0.2
tion modes gi(s) in equation (30) is confined to an entirely- o* riginal C, - C

separated region. This geometry mode will then have al- 0. ....
most no influence on the surface pressure distribution, since . -..-

it cannot affect the inviscid streamline pattern and pres- O~e M

sure field through the "soft" separated boundary layer. As o.s -,
a consequence, api/o8it in equation (24) will nearly vanish,---------------- - - - - - --.... .
and an ill-conditioned system for all the mode amplitude
changes 8fi will result. In practice, this problem can be eas- Figure 13: Specified surface loading Ap for modal-inverse
ily avoided by selecting broadly-distributed modes such as redesign.
those pictured in Figure 8.

-o~e~o, ..................

4.1 Viscous modal-inverse example: Low-speed -specified loading
compressor cascade -0.3:

Figure 12 shows the calculated and experimental pres- 0.0 resultant loading
sure distributions for a low-speed compressor section tested
at UTRC and reported in reference 1261. Transitional sep- 0.3
aration bubbles are predicted on both surfaces due to the 0.4 .
relatively low Reynolds number. In order to increase the 0..
flow turning and the stage work of this cascade, a thick- U .
ness/loading modal-inverse calculation can be performed with 0. / M
an increased specified loading. Figure 13 shows the calcu- -_g_____ "___,__

lated and new specified surface loading. The airfoil cam- x5/C
ber line has been allowed to deform everywhere with the
leading edge point being fixed. For commonality with the r section
usual single-side inverse mode, the pressure p on each sur- resultant section
face rather than the loading Ap is input by the user. For
the thicknes/loading inverse option, however, the program
only makes use of the difference Ap _= pi- - PPW.

In order for the cascade to achieve its higher loading, Figure 14: Result of modal-inverse redesign of low-speed
its trailing edge must be set free to move so that the over- compressor section.
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6 Optimization Applications Here aq,/p., is obtained directly by differentiating rela-
tion (38). The mode amplitude sensitivities 0./afie and

The present solution scheme based on the Newton method 8p.,a/8
t are obtained directly from the appropriate ele-

lends itself well to embedding in a global optimization scheme. ments in vectors &t in the partially-determined Newton so-
Because gradient information on any aerodynamic quantity lution (26). The fundamental difference between the drag
is a nearly "free" by-product available after each Newton minimization constraints (39) and the pressure-mismatch
iteration, that quantity can be readily driven towards a minimization constraints (22) is that the latter can be ap-
desired optimum. Jameson [27J has recently reported an proximately linearized into the form given in equation (24)
optimization-type inverse technique which employs an inex- and incorporated into the overall Newton system. Equa-
pensive perturbation sensitivity calculation employing the tions (39), in constrast, must be solved outside of the New-
same operator as the full-potential equation which governs ton system by using classical minimization methods such as
the flowfield. This is similar to the present method in that steepest-descent or conjugate-gradient. The two different
the sensitivity vector for each flow variable can be cacu- formulations are illustrated in Figures 15,16. In general, any
lated in parallel with the flow solution, and hence repeated type of cost function in least-squares form can be included
perturbation of a direct solution is avoided, implicitly into the Newton solution, while more general cost

The geometry perturbation modes used in the modal- definitions must be treated explicitly. The simple steepest-
inverse method can be included in the inviscid or viscous descent method, for example, is implemented by explicitly
solid wall boundary conditions (20,30) at any time. To re- setting
cover the standard direct or viscous problem, the trivial 6dit I < I < L (40)
Newton system constraints

outside of the Newton iteration cycle, with e an empirical
6he = 0 (35) constant. These mode amplitude changes are then used

to generate the new airfoil geometry, which will decrease
can be used in lieu of the modal-inverse pressure mismatch the cost I for a sufficiently small c. An important advan-
minimization constraints (22). A more interesting case re- tage of the present streamline-based method is the flowfield
suits, however, if the amplitudes 6h, are specified so that can be updated together with the airfoil geometry, with the
the airfoil shape and flowfield are altered to obtain desired streamline grid moving to accomodate the new airfoil shape.
aerodynamic or geometric properties. The modal-inverse Specifically, the flowfield is updated by the changes 6n, Sp,
problem described earlier is a specific example of such a 6G, calculated directly by inserting the mode amplitude
method, with the required aerodynamic property being a changes 6fk into the inverted Newton system (25) available
least-squares fit to the specified surface pressure distribu- from the last Newton iteration, as indicated in Figure 16.
tion. In the general case, the required property is that an This update, corresponding to the linearized response of the
arbitrary cost function I be minimized. For airfoil design, a flow to the geometry perturbation, is effectively one "free"
typical goal is to minimize drag at a fixed lift, hence Newton iteration for the next estimate of the flow which

I =_ CD (36) minimizes I. A few additional Newton iterations are then
performed to converge the flow with the airfoil geometry

with the undt..tanding that any variation of I is at a fixed frozen to ensure that the sensitivities aI/Bli are sufficiently
CL. accurate for the next optimization step.

In ISES, the airfoil profile drag or cascade profile los are Although for the drag minimization problem the modal
determined from the viscous momentum thickness 8_ at the geometry perturbations are incorporated explicitly outside
last wake point, and from the shock wake momentum defect of the global Newton solution, this approach is still very ef-
at the domain exit plane, much like in an experimental wake ficient compared to the brute-force optimization technique,
survey, since the cost sensitivities Wl/'fit are obtained cheaply as

. 2 by-products of the Newton solution. The present method
CD - - - E (q- - qi) m, (37) also lends itself well to multi-point optimization, since the

c poe~l external geometry perturbation indicated in Figure 16 can
in fact receive contributions to the cost function I from any

The summation is taken over all the streamtubes with mi number of parallel solutions, which may correspond to dif-
being the mass flux in strearatube j, and qj corresponding ferent specified CL, Reynolds number, and/or Mach number
to the streamtube speed which would result if the flow isen- values. The geometry perturbations 6lit would then be sent
tropically reached the freestresm pressure (or inlet pressure to each solution which would then be reconverged indepen-
for cascades). This isobaric speed qj is readily obtained from dently until the next optimization step.
the wake total pressure profile p.,. and the known freestrean i tant ontemthat te a

static pressure p_ and total enthalpy h.. It is important to note that the solution to any optimis-
tion problem is influenced by the global constraints imposed
on the flow problem. For example, the sensitivities aof-/afil

= 2h 1- (38) will take on different values if the airfoil a is held fixed, or
P., Jthe CL is held fixed. Each instance will clearly lead to a

different optimal airfoil solution. In actual applications, it
Formally, the equations governing all the L geometry may also be necessary to add geometric constraints to the

mode amplitudes are obtained by setting the variations of cost function I, such as a prescribed maximum thickness or
I Co to zero, enclosed area. In this case, these geometric terms will add

al 2 a*. 2 a aq, contributions to the sensitivities al/8l'k which can be ob-

o 
-  _ - F - tained in a straightforward manner using the known mode

5W, o ; 4 ()shapes.
=0 1<1!5L (39)
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Current Solution r
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Figure 15: Newton method with embedde .,pimization
(modal-inverse). Figure 16: Newton method with external optimization.

5.1 RAE 2822 airfoil optimization example lre 18. Figure 19 shows the final calculated surface Cp
distribution on the new airfoil and a comparison between

Figure 17 shows the calculated solution for the RAE 2822 the old and new geometries. A rather drastic drag decrease
airfoil Case 10 experiment reported in reference 1281. The from CD = 0.0229 to CD = 0.0129 has been obtained, with
freestream Mach number of 0.75 and the specified exper- most of this reduction coming from a decrease in wave drag
imental CL = 0.743 produce a shock-induced separation as indicated in Figure 18. While the drag decrease appears
over about 10% of the chord, which was also observed in very attractive, it is in fact largely illusory. Figure 20 shows
the experiment. The airfoil is well past the drag-divergence Mach-sweep calculations for the two airfoils. Apparently
point, as evide-.ed by the rather high Ie.Al of computed the drag reduction obtained by the optimization procedure
drag C0 = 0.0. -9. In an attempt to reduce the drag (or at M = 0.75 carries a severe drag penalty at lower Mach
equivalently increase the drag-divergence Mach number), a numbers, which in actual applications would probably be
viscous optimization calculation was performed to minimize unacceptable. Clearly, the optimization approach must be
the simple cost function I C CD. The five geometric per- used with great caution.
turbation modes pictured in Figure 8 were specified to act
on most of the upper surface from 1.5% chord to the trail- -2.0 .R,, CR 2622 EMx OPT
ing edge. For simplicity, no constraints were placed on the , a 0.0 , 0. 7s0

enclosed area or maximum thickness, these being unable to -F 2.72 1 , . Is
-I-$; C L 0. 743 0 .7430change drstically anyway due to the leading edge radius c o.o0s o.oo

being fixed. C, 
C  

-0 092 -0.10o0

The internal Newton loop illustrated in Figure 16 was

-xecuted with the original CL = 0.743 being specified, ef- -O.5j
fectively giving an L/D maximization problem. Five opti-
mization passes were performed, with the geometry mode
amplitudes calculated from equation (40) using c = 0.002,
with the mode shapes themselves having unit amplitude. A
significantly larger step size would result in erratic changes 0. 5:
in the cost function from one optimization step to the next.
Two or three Newton iterations were used between each
optimization step for a total execution time of 15 minutes
CPU on the VaxStation 3200 computer - roughly the time
needed for two isolated direct solutions. The evolution of Figure 17: RAE 2822 airfoil calculation and experimental
the cost function CD during this process is shown in Fig- data.
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0743 find a more effective camber shape, an optimization calcu-

i-RAE 0.75 Optimied lation can be performed to minimize the cascade loss. A

R. =6.2-AO' RAE 2822 suitable definition of this loon is CD as defined by equa-

0 02, lfions (37,38). With this definition, the first term in equa-

"Ca tion (37) represents the blade profile loss, while the second
* ___term represents the total pressure loss of the bow shock and

main passage shock.

-.... -C 0 , To preserve the inlet Mach number, incidence, and mass

flow, which are typically imposed by the specifications on

the overall turbomachine, it is necessary to preserve the ge-
0 1 2 3 4 e

5  
ometry of the front supersonic portion of the blade. This
portion, which determines the inlet incidence and Mach

Figure 18: Reduction in total and wave CD during RAE number via the upstream-running waves 191, is therefore
2822 airfoil optimization. left fixed during the optimization. Specifically, only the rear

75% of the blade is allowed to be deformed by the geometric

original roptimized modes. Both sides are specified to be perturbed equally, so

ethat the airfoil thickness and hence structural properties are

.- - ___ - --- affected as little as possible. As with the low-speed inverse
cascade example presented ealier, camber-changing modes

A..2522 all were added to those shown in Figure 8 to allow the trailing

S edge to move.

Figure 19: Calculated Ce on optimized RAE 2822 airfoil and

geometry comparison.

0.03j C=.4

CO, Re 6.2O

0.02 -Optmizad RAE 2822

0.01j
RAE 2822

0.5 .7 M 0.75

Figure 20: Drag-divergence behavior for original and opti- --
-

,

mized RAE 2822 airfoils.

5.2 Transonic compressor cascade optimization "

example

Figure 21 shows a calculated viscous solution for a typ-

ical transonic compressor tip section cascade. The inlet

Mach number is 1.3, and the stage pressure ratio is 1.95.

The fairly fine 132 x 32 grid used in the calculation is nec-

essary to capture the total pressure los of the small leading

edge bow shock, whose wake is visible in the Mach contours

in Figure 21. A massive shock-induced separation region ex-

tends over nearly the entire suction surface past the shock,

and the total stage losses are correspondingly high. Exami-

nation of the fiowfield reveals that the cascade has excessive Figure 21: Final 132 x 32 grid and calculated Mach contours

rear camber which aggravates the separation problem. To (AM = 0.05) for transonic compressor cascade.
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Five optimization cycles were performed for this case,
using e = 0.01 in equation (40). Figure 22 shows the re- 5.3 LA2OSA airfoil optimization example
suiting flowfield and compares the old and new geometries.
The evolution of the loss during the optimization process The LA203A is a low Reynolds number Liebeck airfoil
is shown in Figure 23. A very substantial 50% los reduc- reported in reference (29]. Figure 24 shows the calculated
tion has been achieved, this resulting entirely from a reduc- and experimental C, distributions at a Reynolds number of
tion in the blade profile loss - the shock loss has not been 250 000. The large transitional separation bubbles visible in
changed significantly. Although the optimum has clearly not the calculated and experimental surface pressure distribu-
yet been reached, it was necessary to halt the optimization tions are typical for this Reynolds number regime. As in
cycle to prevent the passage shock from being expelled from the previous transonic airfoil example, an optimization cal-
the inlet and 'unstarting" the cascade. As Figure 22 shows, culation was carried out allowing the entire upper surface
the passage shock is now closer to the inlet, indicating that from stagnation point to trailing edge to deform. Eight op-
the maximum pressure ratio sustainable by the cascade has timization cycles were needed to minimize drag with the lift
in fact decreased. The exit flow angle has also decreased coefficient fixed at its original value of 1.08. For this case,
by 4.50. The loss reduction has therefore been attained at it was possible to use the relatively large steepest-descent
the price of reduced stall margin and reduced stage work. step size i = 0.02 compared with the transonic airfoil case
Whether this tradeoff is favorable can probably only be an- above.
swered by considering the characteristics and specifications Figure 25 shows the final calculated C, distribution on
of the entire compressor. the new airfoil together with the geometry comparison be-

A tween the new and original airfoils. The optimization has
changed the airfoil so that a weak adverse pressure gradi-
ent is now imposed over most of the upper surface ahead of
the transition location. This causes increased disturbance
amplification and forces transition to occur earlier in the
bubble. The resulting reduction in the bubble's size has de-
creased the overall drag coefficient by 18.5% from 0.01485
to 0.01210. A similar optimization has been performed at

CL =1.5, with the results shown in Figure 26. Again, a sub-
stantial reduction in drag has been achieved, although the
optimized airfoil shape is quite different from the CL = 1.08
case.

-2 . o .L 03 0 R. '

/ i ' -1.l.5 'Al, .oo
, - -oC 

- owt; .o 0,

- o 07f 00 . 0.0 i S"0, I

optimied

-,-original

/ j

/ /, Figure 24: Calculated and experimental surface C, for
/LA203A airfoil.

geom etry fixed CL-1.0 e PT

Figure 22: Calculated flow for optimized compressor cascade -

and geometry comparison. CC.

Co 

W

C10 . .. total losoo. .... . . ..

005

shock loss

0 i 2 3 o 5
optimizaion cycle Figure 25: Calculated C, distribution for airfoil optimized

Figure 23: Reduction in total and shock loss during com- at CL = 1.08.
pressor cascade optimization.
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timization that included the drag contribution at some Mach
number below the design value. Knowing which other Mach

-2.0:.,, CL-I.O OFT number to use is certainly not clear a priori. In any case,

O thee examples strongly suggest that even with optimiza-
- CL •. S"' tion design techniques available, a designer-driven iterative

CP c .o approach to airfoil design is still necessary, with each suc-
-o. Lo .joo.s cessive design stage being a response to the problems un-

covered in the previous design stages. On a more positive
note, the single-point optimized airfoils do clearly indicate

.what qualities are needed in a low Reynolds number airfoil
0.0 _-_to achieve low drag. The features of the two-point optimized

airfoil indicate how the conflicting requirements at different
.. i operating points might be reconciled.

2.0 RFOIL

Figure 26: Calculated C, distribution for airfoil optimized C L - LA203A
-- CLffi 8 OPT

at CL = 1.50 .. CLi.50 OPt ..

To investigate the effect of the optimizations on the over- ------- 2 P0NT OPT V
all airfoil performance, a polar sweep was calculated over the
entire usable a range of each airfoil. The polars are plot- (
ted in Figure 27, together with the polar for a two-point 1. 0\
optimized airfoil described below. It is clear that the drag
advantage gained through a single-point optimization proce-
dure is realized only in the vicinity of the design CL. In fact,
the two single-point "optimized" airfoils can be considered 0.5
inferior to the original airfoil in an overall sense.

This optimization study serves to illustrate the pitfalls
which can befall a simple optimization approach to airfoil
design. The two-point optimization, as suggested in refer- 0.0 00 50 200

ence 130], was intended as a possible solution to this prob- 50

lem. The cost function was defined as a weighted sum of 1 gN. C,

the CD values at the two CL operating points used in the Figure 27: Calculated polars for original LA203A, sin-
single-point optimizations. gle-point, and two-point optimized airfoils.

1 
2

I = (CD)C,=,.OO + 2 (Cn)c=IoO (41)3 P3 T

A larger weight was placed on the CL = 1.50 point since 2 POINT O T

the single-point polars in Figure 27 suggest that the CL = -. 67 .

1.08 point might cause excessive loss in CLm., if allowed to 0.0355

strongly influence the optimization. Over one optimization C,, -. S.5

cycle, the two solutions were independently converged in -0. L0 ".73

parallel. The sensitivities from each solution were then used 0.
together to determine the mode changes needed to drive the
cost function (44) to its minimum. The changes were then o.0-
sent to each solution and the cycle was repeated. The final
optimized C, distributions at the 'wo "sampled" points are 0. 5.
shown in Figure 28. Interestingly, the two-point optimiza-
tion produced a weaker adverse pressure gradient ahead of 1 0
the separation bubble than either of the single-point opti-
mizations. The geometry of all three new airfoils is com-
pared with the original LA203A geometry in Figure 29. -o.o,. 2 POINT PT

Figure 27 shows that the two-point airfoil is fairly satis- 1. as .,,0
factory, with an attractive reduction in minimum CD gained cD .
at the expense of a small but still significant los in CL_ ,P ,. -0.,,.,l 

LID 4.00+

CI/Co has not changed significantly, while the endurance
parameter CL/2/CD has decreased slightly. Overall, the new
airfoil may be slightly better or slightly worse than the orig-inal LA203A depending on the application.

It may be possible to further improve the two-point op- 05
timization result by a better choice of the CL values where
the cost function is to be evaluated. However, these points
are uncertain at the outset, and suitable weights for the

CD values at the different points must be guessed. For the
RAE 2822 optimization cane, the excessive drag created at Figure 28: Final C, distributions at the two sampled CL
lower Mach numbers might be alleviated by a two-point op- values for two-point optimization calculation.
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LA203A The inverse options in the method allow specification of

presure distributions on any portion of the airfoil surface.
Alternatively, the loading ad airfoil thickness distributions

can be specified if strong structural constraints are present.

The geometry changes can be arbitrary, or can be restricted
to relatively few smooth geometric modes. It is shown that

the latter option is more effective, and may even be nec-

emary, if shock waves or separation regions are present in

the flow. Inverse calculation examples involving a transonic

airfoil and a low-speed cascade illustrate the advantages of

the modal geometry representation.

The Newton-based sensitivity calculation technique has

Figure 29: Geometry comparison between optimized airfoils been shown to allow extremely inexpensive optimization cal-

and original LA203A airfoil. culations. The optimization examples presented consisted of

drag minimization of a viscous transonic airfoil with shock-

induced separation, and drag minimization of a low Reynolds

5.4 The role of optimization in airfoil design number airfoil with transitional separation bubbles. Two-

point optimization of the low Reynolds number airfoil was
It is the opinion of this author that any working airfoil shown to be necessary to partially overcome severe problems

optimization method is unlikely to represent a Isolution inherent in single-point optimization.

to the general airfoil design problem. Most real airfoil de-

sign problems are far too complex to be quantifiable as a

cost function which is to be minimized. Often, constraints Acknowledgment
or requirements either cannot be reliably quantified (e.g.

manufacturability, roughness sensitivity, etc.), or the best Support for this work was provided by the NSF Pres-

numerical weight to place on a particular cost function term idential Yotng Investigator program, and the MIT Dean

is not known a priori. Such factors in the design problem of Engineering Office through the Carl Richard Soderberg
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ONE POINT AND MULTI-POINT DESIGN OPTIMIZATION FOR AIRPLANE
AND HELICOPTER APPLICATION

JJ. THIBERT, Aerodynamics Department
ONERA - BP 72 - 92322 Chhtillon Cedex - FRANCE

SUMMARY

The paper describes numerical optimization techniques and shows how these techniques can be used in
aerodynamic design. Emphasis is put on the applications with various optimization cases described in details. One
point optimization cases for airfoil and wing designs with different objective functions, constraints and design
variables are presented as well as multiple design points cases for helicopter blade airfoil applications.

LIST OF SYMBOLS

A General augmented Lagrangian - Also matrix of the gradients of the active constraints
a Displacement in the search direction. Also angle of attack
a, 0, c, r scalars
B Matrix of the gradients of the equality constraints
c Chord
C, D SubmatricesofB
C, H Equality constraints
CD Drag coefficient
CL Lift coefficient
Cp Pressure coefficient
F, OBJ Objective function
G Inequality constraints
H Hessian matrix
K Coefficient in the analytical polar drag
I/D Lift to drag ratio

A Lagrangian multiplier
M Mach number
P Penalty function - Also power coefficient and parameter
Pi Legendre polynomials
* Function
T Azimuth angle
R Blade radius
Re Reynolds number
S Direction of displacement
s Curvilinear abscissa
T Temperature
t/c Thickness to chord ratio
0 Momentum thickness of the boundary layer
X Vector of the design variables
x, y, z Coordinates

SUBSCRIPTS

i incompressible
i,j, k integers
Max - iximum value
Min -nimum value
o first iteration value or value for CL 0
RP reference plane

SUPERSCRIPTS

q iteration number
* optimum value

1. INTRODUCTION

The different design tools which are available can be classified in three categories:
indirect methods
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-inverse methods
- numerical optimization methods

Each of these methods has its advantages and its shortcomings and so they have to be considered as
complementary and not competitive. Each offers a different way of finding efficient aerodynamic shapes without
resorting to expensive cut and try wind tunnel testing. However, the challenge of designing practical transport or
fighter aircraft or helicopter which also demanding higher performance levels is one of the most difficult tasks
facing the aerospace designer. For these aircraft, designs must satisfy somewhat different and conflicting
aerodynamic objectives. Other considerations, such as radar cross-sectional area, wing or blade bending moment or
wing thickness are becoming increasingly important in the final design. Clearly an automated system which is
capable of finding the "best compromise" to the problem of aircraft design would be very useful. In that way
numerical optimization techniques appears to be a rational, directed design procedure. They give an ordered
approach to design decisions where before aerodynamicist relied heavily on intuition and experience.

A CFD analysis program is coupled with a numerical optimization algorithm in such a way as to create a
design tool. Aerodynamic quantities such as lift, drag, pitching moment, pressure distribution are computed by the
CFD algorithm for a certain configuration and are used in defining an objective function to be minimized by the
optimizer. This objective function must relate changes in geometry to improvements in the aerodynamic quality of
the design.

Minimization of this objective function through proper choice of the geometric design variables should then
correspond to a configuration that is "optimal" in some sense. While this is true only for a given flight condition, it
is possible to find a design which will most nearly satisfy optimal requirements for a range of flight regimes by the
use of multiple design points.

In addition to the merits of multiple point designs, numerical optimization also allows a great deal of control
over both the aerodynamic qualities and the physical shape of the final configuration design. However, a great deal
of user expertise may be necessary to take advantage of this high degree of flexibility.

The design process is not reduced to a few computer runs and the intuition and experience are still very
important. The most persistent criticism of numerical optimization procedures is the large amount of computer
time required for the optimization algorithm to "sort out" and decide which configuration is best. The computer
time being largely due to the CFD algorithm used, current improvements in computer and CFD algorithm speed
may soon eliminate this shortcoming.

The purpose of this paper is to give in a first part a rapid but basic knowledge of numerical optimization
algorithms, to present in a second part the optimization techniques i.e. how to choice the objective function, the
constraints and the design variables, and finally to present in a third part a large variety ofdesign applications.

Since it is not the objective of this paper to describe in details all the possible minimization algorithms, only
*he most widely used are presented. More details can be found in [1] where various algorithms are presented. It is
hoped that the paper will encourage practicing engineer to use this powerful tool in design.

2. NUMERICAL OPTIMIZATION TECHNIQUES

2.1. General problems statement

Assume we wish to find the minimum value of the following algebraic function:

(I) F(x = 10 X1
4 
-20x1

2 
x2 + 10X2

2 
+ x12-

2
xi -5

F (x) is referred to as the objective function which is to be minimized and we wish to determine the combination of
the variables x1 and x2 which will achieve this goal. The vector x contains x1 and x2 and we call them the design
variables. Fig. l is a graphical representation of the function where lines of constant value ofF (x) are drawn. Fig. 1
is referred to as a two variable design space where the design variables x1 and x2 correspond to the coordinate axis.
If no limits are imposed on the values of xl and x2 and no additionnal conditions must be met for the "design", F (x)
is said to be unconstrained and the solution is represented on Fig. I by the point A.

Now assume that for some reasons the design variables xi and x2 have to meet some requirements for
example:

(2) Xt  S 1, X2  ; 2,

and assume also that we add the additionnal condition

(3) G(x) j 3X2 + 5xi -2 0

Now the minimum value ofeq. (11 subject to the additionnal conditions given by eq. (2) and (3) is represented on Fig.
2 by the point B. Eq. (2) and (3) define the constraints on the design problems. The constraints given by eq. (2) are
often referred to as side constraints because they directly impose bounds on the values of the design variables;
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The portion of the design space of Fig. 2 inside the constraint boundaries defined by the hatched lines is
referred to as the feasible design space.

In general a design space will be n dimensional and we can write the nonlinear constrained optimization
problem mathematically as follow:

(4) Minimise F (X) objective function
subject to

(5) gj s X) j 1. m inequality constraints
(6) hk(x) = 0 k 1, 1 equality constraints
(7) xil Z X, S xi

u  i 1.n side constraints

X I
here X = { design variables

The above form of stating the optimization problems is not unique and various other statements equivalent to this
are presented in the literature.

2.2. The iterative optimization Procedure

Most optimization algorithms require that an initial set of design variables, XO, must be specified. Beginning
from this starting point, the design is updated iteratively. Probably the most common form of this iterative
procedure is given by

(4) X
q 
= X

q-l + o*Sq

where q is the iteration number and S is a vector search direction in the design space. The scalar quantity o* defines
the distance that we wish to move in direction S.

To see how the iterative relationship given by Eq. (4) is applied to the optimization process, consider the two-
variable problem shown in Fig. 3.

Assume we begin at point X' and we wish to reduce the objective function. We will begin by searching in the
direction S' given by

(5) S '= 
-1

}0

The choice of S is somewhat arbitrary as long as a small move in this direction will reduce the objective function
without violating any constraints. In this case, the S' vector is approximately the negative of the gradient of the
objective function, that is, the direction of steepest descent. It is now necessary to find the scalar o* in Eq. (4) so that
the objective is minimized in this direction without violating any constraints.

We now evaluate X and the corresponding objective and constraint functions for several values of a to give

2.0

6ai Flo)= 10.0 g(.)= -1.0

x 2 1+10l 1 11 1
1=. = 0 -5 =0.5

(6bi F()= 8 4 g( )= - 0.2

2,0 I.,  {-I1  0510
o=15 X=010 -0. 025

(6c F(o)=76 g(a)=02

1 20 . -1.0 10.750 1

S0 1  05 0.375

r6d) F(* = 8 gb*) = 0.0
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where the objective and constraint values are estimated using Fig. 3. In practice, we would evaluate these functions
on the computer, and, using several proposed values of a, we would apply a numerical interpolation scheme to
estimate a*. This would provide the minimum F (X) in this search direction which does not violate any constraints.
Note that by searching in a specified direction, we have actually converted the problem from one in n variable X to
one variable a. Thus, we refer to this as a one-dimensional search. At point X , we must find a new search direction
such that we can continue to reduce the objective without violating constraints. In this way, Eq. (4) is used
repetitively until no further design improvement can be made.

From this simple example, it is seen that nonlinear optimization algorithms based on Eq. (4) can be separated
into two basic parts. The first is determination of a direction of search S, which will improve the objective function
subject to constraints. The second is determination of the scalar parameter a* defining the distance of travel in
direction S. Each of these components plays a fundamental role in efficiency and reliability of a given optimization
algorithm.

2.3. Optimization algorithms

It is not the objective of the paper to describe in detail all the possible algorithms. However the main features
of the more widely used will be described in the following chapters. We will first begin by the techniques available
to find the search directions.

2.3.1. Unconstrained function of n variables

Fig. 4 provides a general flowchart for multivariable unconstrained minimization. As seen from the figure, an
actual optimization programs consists of three major components:

1. Determine the direction in which to search
2. Perform the actual one-dimensional search
3. Determine when the process has converged to an acceptable soluti.n.

2.3.1.1. Zero-order methods

Optimization techniques which require function values only are called zero-order methods. These methods are
considered most useful for problems in which the function evaluation is not computationnallly expensive. The
random search method and the Powell's method [2] are the most popular methods.

Powell's method is based on the concept of conjugate directions, where directions Si and S1 are conjugate if

(7) (S)THS =0

where H is the Hessian matrix (i.e. the matrix of the second partial derivatives of the objective with respect to the
design variables).

The basic concept of Powell's method is to first search in n orthogonal directions, S', i = 1, n being the
coordinate directions, where each search consists of updating the X vector according to Eq. (4). These directions are
not usually conjugate but provide a starting point from which conjugate directions are built. Having complemented
the n unidirectional searches, a new search direction is created by connecting the first and last design point. This
becomes the n + I search direction. The process is shown geometrically in Fig. 5.

The first search is in the X1 direction, followed by a search in the X 2 direction. Note that the ai* in Eq. (4) is
negative, assuming the S' vector is in the positive X1 direction. In practice, we may first search in the positive X1
direction and, failing to improve the design, then search in the negative X1 direction. This allows for writing a
one-dimensional search algorithm which only searches in the positive a domain.

At the end of the second iteration the n + 1 search direction S3 is found by connecting the initial design X
with the current design X2 as shown.

The method of Hooke and Jeeves [3] and the somewhat more complicated method of Rosenbrock [41 utilize
exploratory searches conceptually similar to Powell's univariant searches, followed by acceleration steps. In each
case, the idea is to gain useful information about the shape of the design space which cLn be used to accelerate
convergence.

2.3.1.2. First-order methods

First-order methods, those which utilize gradient information, are usually more efficient than zero-order
methods. The price paid for this efficiency is that gradient information must be supplied, either by finite-difference
computations or analytically, and that these methods often perform poorly for functions which have discontinuous
first derivatives. However, for the majority of problems, first-order methods can be expected to perform better than
zero-order methods because the user is providing more information on which to base optimization decisions.

In the following section, two basic first-order approaches are presented, steepest-descent and conjugate-
directions.
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Steepest descent

The steepest descent method is probably the best known and yet the worst performing of the first-order
methods. The principal importance of the method is that it usually forms the starting point for the more
sophisticated first-order methods.

In the steepest descent method, the search direction S is taken as the negative of the gradient of the objective
function. That is, at iteration q

(8) S
q 

= -VF(XM)

The S vector is used in Eq. (4) to perform the one-dimensional search. The optimization algorithm for the steepest
descent method is shown in Fig. 6.

Figure 7 shows the sequence of one-dimensional search. As seen from the figure, the convergence rate of the
method is very poor. This is principally due to the fact that the steepest descent method does not utilize information
from previous iterations in order to accelerate the convergence. Therefore, the steepest descent algorithm is not
recommended for general application, although the steepest descent direction will be used as an initial search
direction in the more powerful algorithm of the following section.

The conjugate direction method

The conjugate direction method of Fletcher and Reeves [5] requires only a simple modification of the steepest
descent algorithm and yet dramatically improve the convergence rate of the optimization process.

The basic approach is to pick search directions which are conjugate by the definition of Eq. (4). This is
accomplished by specifing an initial search vector as the steepest descent direction defined by Eq. (8). On
subsequent iterations a conjugate direction is defined as:

(9) S1 =VF(
) 

A9 + 0,S"

when the scalar Aq is defined as:

(10) Pq IVF (Xq)I
2

IVF (xq- 1)12

Fig. 8 shows the iteration history of the algorithm.

2.3.1.3. Second-order methods: Newton's method

Newton's method, together with various modifications to improve efficiency, is the classical second-order
method. This technique begins with a second-order Taylor series expansion given by:

F) = F (X
q) 

+ VF (X
q
) .X + I 6X. H

2
where
(lib) BX = X

q~ l 
- X

q

Solving Eq. ( a) for the stationary conditions gives:

11 8X=- [H (Xq)]-'VF (XI)

Rearranging Eq. (i 1b), we have, using'Eq. (12):

13) Xq* I 
= X q 

, 8X

= X
q 

- [H (Xq) ~ 
'VF (X

q)

Comparing the last term in Eq. (13) to the S vector in Eq. (4) (with a* = 1), we have

( 14) Sq = - IH (xq)]- t VF ¢Xq)

Therefore, Eq. (14) provides us with a search direction to use in a general one-dimensional search. We will not
actually invert H but will instead solve the set of simultaneous equations HS = - VF.

Here we must provide not only function values and gradient information, but the second-derivative matrix H
as well. If the function being minimized is a true quadratic in the design variables, the use of this search direction
with a move parameter a* = I will provide the solution in only one iteration. In practice, because we wish to
minimize a general function, we can modify the algorithm to improve efficiency. First, we can actually search in
direction Sq 

, noting that a = 1 should be an excellent first estimate for o<1". A second modification is to only
calculate the H matrix every few iterations, but calculate the VF vector on each iteration. This assumes that the
second derivatives of the function do not change too rapidly and so need not be determined as often as the first-
derivative information. If the calculation of the Hessian matrix is expensive, this can markedly improve overall
optimization efficiency without significantly affecting the final result.
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If we are fortunate enough to be able to calculate the matrix of second derivatives easily, Newton's method is
almost always the preferred approach. While most engineering problems do not lend themselves to easy calculation
of the second derivatives, it is often possible through the use of approximation techniques to convert the problem to
a form ideally suited for solution by this method.

2.3.2. Constrained functions ofn variables

2.3.2.1. Linear programming

Undoubtedly, the most thoroughly developed and understood optimization problem is the one in which the
objective and constraints are linear functions of the design variables X. Such problems are referred to as linear
programming (abbreviated LP) problems. Most engineering problems of practical interest are not of this form.
Therefore, in the study of numerical optimization techniques, linear programming is often overlooked in favor of
proceeding directry to the problem at hand. However, the discussion of linear programming is important because it
is often possible to simplify a nonlinear optimization problem by linearization and then to solve it using these
techniques.

The most common method for the solution of LP problems is referred to as the simplex method. This method is
attributable to Dantzig and was developed in the late 1940s [61. Computer codes based on this method are available
on most computer systems. These have usually been extensively tested and are highly reliable.

Standard linear programming form

The standard form of the LP problem is defined by

Minimize:
(15) F(X) C X

,=1

Subject to

(16) a 
X , 
=b, j= l,m

(171 XR!0 i=l,n

This is an equality-constrained problem with nonnegative design variables. Most problems of interest are not
of this form. However, all LP problems can be converted to this form.

Equation (17) appears at first glance to be a major restriction to the method. However, this restriction can be
conveniently overcome by replacing variable Xi by two positive variables and taking their difference; that is,

(Isa) X = X-X "

(lab) X.' O X,"aO i=l,n

Now for any finite value of Xi, either positive or negative, there must exist two variables Xi' and Xi" such that their
difference will equal Xi. Therefore, by using Eq. (18) in Eqs (15) and (16) and solving with respect to the new
variables, the problem can be solved directly. After solution, the values Xi corresponding to the optimum can be
determined using Eq. (18a). Note, however, that this transformation has been expensive. We have doubled the
number of design variables which must be considered in the optimization problem

An alternative approach would be to add a constant to each of the design variables Xi so that

(19) X, = X" - Q

where Qi is a large positive number. Eq. (19) can be substituted into Eq. (15) to (17) without increasing the number
of design variables in the problem.

The simplex method proceeds in two phases : Phase I finds an initial basic feasible solution which has only m
nonzero variables Xi, and these variables are positive (or zero). Phase I1 moves from one basic feasible solution to
another until the optimum is found.

2.32.2. Sequential unconstrained minimization techniques

Here we deal with the more general design optimization problem where both the objective function and
constraint functions are nonlinear. This general problem statement is defined by Eq. (4) to (7) repeated here:

Minimize:
(20) F (X)

JL . . . .
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Subject to:

(21) gJ(X)10 j=l,m

(22) hk (X= 0 k=1,l

note that the side constraints are included in the inequality-constraint set.

The general approach will be to minimize the objective function as an unconstrained function but to provide
some penalty to limit constraint violations. Because the way in which this penalty is imposed often leads to a
numerically ill-conditioned problem, a method is devised whereby only a moderate penalty is provided in the initial
optimization stages, and this penalty is increased as the optimization progresses. This requires the solution of
several unconstrained minimization problems in obtaining the optimum constrained design ; thus the term
sequential unconstrained minimization techniques or SUMT to identify these methods.

The classical approach to using SUMT is to create a pseudo-objective function of the form

(23) (P(X, rp) = F(X) + rpP(X)

where F X) is the original objective function. P (X) is an imposed penalty function, the form of which depends on the
SUMT being employed. The scalar rp is a multiplier which determines the magnitude of the penalty, and rp is held
constant for a complete unconstrained minimization. The subscript p is the unconstrained minimization number.

The first and easiest to incorporate into the design algorithm is referred to as an exterior penalty function
method becausk it penalizes the objective function only when constraints are violated.

The penalty function P (X) is typically gien by

(24) P(X) = {maxlO,g,(X)]}
2 

+ - [h,(X)?
jffi k=l

From Eq. (24), we see that no penalty is imposed if all constraints are satisfied [all gj (X) s 0 and all hk (X) = 0], but
whenever one or more constraints are violated, the square of this constraint is included in the penalty function.

The second approach, known as the interior penalty function method, penalizes the objective function as the
design approaches a constraint, but constraint violations are never allowed. Therefore, a sequence of improving
feasible design is produced.

Probably the most common penalty function used in the interior method is

(25) P X =
j "' l(X)

However the numerical ill-conditioning often encountered in the two previous techniques can be substantially
reduced by using another method known as the augmented Lagrange multiplier method (ALM).

In that method the objective function is replaced by the general augmented Lagrangian.
f261 A(X, Ar)= F(X) + +rpW

2 
1 {"k - hk (X)+ rPh, (X

)12

where

(27 ) = ma.Ix je1 MX).2r

The update formulas for the Lagrangian multipliers are now

(28) X\"' = N'p , 2rp I 
{ 

ma Ig M rA'j m

(29) XP+,. 
=
.. + 2rph, W k 1 1,

The general algorithm is given in Fig. 9. In summary, the method has several attractive features.
1. The method is relatively insensitive to the value of rp. It is not necessary to increase rp to
2. Precise gj(X) = 0 andhk(X) = 0 is possible.
3. Acceleration is achieved by updating the Lagrange mulipliers.
4. The starting point may be either feasible or infeasible.
5. At the optimum, the value of)Lj* * 0 will automatically identify the active constraint set.

km m m im m I l ~ m m m mm I
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2.3.2.3. Direct methods

Techniques dealing with the constraints directly in the search for the optimum are numerous. We can list for
example:

- the random search technique
-the sequential linear programming
- the method of centers
- the generalized reduced gradient method.
- the feasible direction methods.

Only the last one will be described briefly. The optimization algorithm associated to the method begins with
the determination of the search direction, then considers the one-dimensional search and finally address the
problem of initially infeasible designs.

The search direction

Assume that at iteration q there are J active constraints. We now wish to find a usable-feasible direction
which will reduce the objective function as rapidly as possible. For now we will consider inequality constraints only,
dealing with equality constraints later as a special case. Now, instead of finding a direction slightly away from the
constraint boundaries, we will find a direction S which will follow the constraints but will allow for the design to
leave a constraint boundary if such a direction will reduce the objective most rapidly. In other words, we wish to
find a "constrained steepest descent" direction. This is easily done by considering the following problem:

Maximize:
(30) - VF (X). S
Subject to:

(31) VgJ(X)S5 0 j(J

(32) S.S 1

Solving this problem gives a search direction which is tangent to the critical constraint boundaries, unless the
objective can be reduced more rapidly by moving away from one or more constraints. We can identify the case where
the search direction is away from a currently active constraint by taking the scalar product of the gradient of each
critical constraint with the S vector. If the result is less than zero within a small tolerance [it will never be greater
than zero by virtue ofEq. (31)] we omit this from our set of active constraints. Another possible solution is that S is a
null vector (say numerically all ISiJ < 0.001, i = 1, n).

Assuming an S vector is found for which one or more Vgj (X) . S = 0, j ( J, we will choose a set of dependent
variables as in the generalized reduced gradient method. We then perform a one-dimensional search with respect to
the independent variables, updating the dependent variables using Newton's method. For example, in Fig. 10 we
may pick X 2 as the independent variable and update X1 as the dependent variable at each step in the one-
dimensional search.

Equality constraints

In that special case the direction finding problem becomes:

Maximize:

(33) - VF (X). S

Subject to:

(34) AS s 0
(35) BS = 0
(36) S S 51

where now the rows of A contain only the gradient of the active constraints, The rows of matrix B contain the
gradient of the equality constraints L-VTh

1 
(x)]

[VT 
h, 

X)

(37) B = VTh2 X)]

VTh (X)j

Now, for each equality constraint, we can choose one of the design variables (and the corresponding
component of S) as a depei. ent variable. Thus, we partition Eq. (35) as

(38) BS = IC D)} 0
Sto
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where Si are independent variables, SD are dependent variables, and C and D are the corresponding submatrices of
B. There are I terms in SD and they need not be the last terms in S. We simply partition the equations this way for
clarity. We can now solve forSv in terms of SI, substitute this into Eqs. (33), (34), and (36) and solve for the reduced
set of components Si, just as for inequality constraints.

Equation (39) SD - D CS 1 is then used to obtnin the components of S corresponding to the dependent
variables.

Initially infeasible designs

If an initial design X1 is specified such that one or more constraints are violated, the first priority is to find a
feasible design.

We begin by treating all violated constraints as if they are inequality constraints. Any equality constraints
which are satisfied (or nearly satisfied) are used to define dependent variables to give a reduced direction-finding
problem similar to the one described in the previous section.

Therefore, we can treat constraint violations in the same manner as in the method of feasible directions to
provide a search direction which points toward the feasible region,

Having determined the S vector, we define dependent variables associated with all equality constraints, but
not inequality constraints, and then search in the S1 direction. Here we search to overcome the constraint violations
associated with inequality constraints but do not necessarily stop at the constraint boundary. During the search we
use Newton's method w drive the equality constraints to zero so, ideally, at the end of the one-dimensional search,
the equality constraint are satisfied precisely and the inequality constraints are at least satisfied. In practice, this
may require several iterations, so that during each search we reduce the infeasibility as much as possible. This is
because the problem may be so nonlinear that we cannot overcome the co.straint violations in one iteration.

Infrequent gradient calculations

The cost of optimization in practical design is usually directly proportional to the number of function
evaluations needed to reach the solution. This is particularly true when finite-difference gradients are calculated
because n function evaluations are needed, in addition to the nominal design, to compute the gradient information.
Therefore, we should consider the possibility that it may not be necessary to compute gradients at each iteration of
the optimization process.

Consider now the first-order Taylor series expansion of a general function f(X):

(40j f(xq
) 
= f(X

q - 
1) + vr (X

q -
1). 6X

q

where f(X) may be any objective or constraint function, and

(Ml 6Xq = xq _ xq-
I

Now if we have completed iteration q and we evaluate the true function f (Xq), we can compare this to its
approximation f(xq), If they agree within an acceptable tolerance, we can use Vf(X q

-) again. We can identify the
situation where the gradient is changing rapidly if the approximate and precise objective and constraint function
values do not agree within a specified tolerance or if Newton's method for determining the values of dependent
variables fails to conver,-e or converges slowly. In either case, or when some new constraint becomes active for
which we do not have the gradient, we would caleilate new gradient information.

Note that the technique of infrequent gradient calculations is not limited to the method discussed here but
may be incorporated into other methods.

To summarize, we again emphasize the importance of making the best use of whatever information is
available at each step in the optimization process. The algorithm of the feasible direction method described above is
given Fig. 11.

2.3.3. One-dimensional search techniques

In the previous chapters, various techniques for finding the direction in which to search have been described,
As said at the beginning ofchapter 2.3.1. The second step of the optimization process is to perform the displacement
in the search direction which provide the minimum F (X) which does not violate any constraints. The solution of
this problem will give n* in Eq. (4). This problem is called the one-dimensional search since the only variable isa.

Several techniques can be used to treat the problem:
- polynomial interpolation
golden section method

For each of these methods the objective function F is calculated for several values of a in order to find a*.
Several other techniques can be found in [1] for the cases where the one variable function is subject to constraints.

When using the feasible direction method described in section 2.3.2.3., the following method can be used.
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Considering the matrix Q defined by:

VT g, (X)

(42 Q = VT gj (X)(42) Q LT h, ]
VT hi MX J

From here, using Gaussian elimination with pivot search, we identify the set of dependent variables. Having done
this, we partititon the S vector as:

(43) S = {SI

where now the set of dependent variables includes those associated with inequality constraints as well as equality
constaint-.

We now perform the one-dimensional search with respect to the independent variables as:

(44) Xq = X
q - I 

+ of, Sq

For each proposed al, we update the values of the dependent variables using Newton's method, just as in the
generalized reduced gradient method. A first estimate for the dependent variables is obtained using Eq. (43) to
give:

(4s5) x = x +-' + a1SD

where this is precise for linear constraints. For nonlinear constraints, we use Newton's method to ensure precise
satisfaction of the constraints.

If we have only calculated the gradient of the J active constraints, our first proposed a in the one-dimensional
search is a somewhat arbitraty one. However, if adequate computer storage is available, we can also calculate the
gradients of some subset K of nearly active cosntraints to give Vgj (X),j K. Now we can obtain a reasonable first
estimate for oI from:

(46) a, ril aj 5 1 s KEI

In Eq. (46) any negative aj is not used because the search direction is actually away from that constraint.

By calculating the gradients of only a few additional constraints, we can expect to improve the efficiency of the
one-dimensional sea, .n since this will usually provide a good initial estimate to of*. It is recognized that some other
constraint not contained in the set K may actually limit the search or that ui* will correspond to an unconstrained
minimum with respect to X1. However, this approach usually provides significant efficiency ;n thc ,ne-dimensional
search.

2.3.4. Convergence criteria

Concerning the convergence of the optimization algorithms, the most widely criteria used are:
- the maximum number of iterations.
-some prescribed value for the absolute or the relative change in the objective function.

The summary of the main optimization algorithms is presented Fig. 12. Some of these algorithms are included
in the most widely used numerical optimization codes which are:

- CONMIN [71
- COPES [8]
- QNMDIF 19]
- E04 [101

2.4. Optimization techniques

The formulation of the optimization problem is of great importance because it will play a major role in the
optimization process. This 'ormulation includes the choice ofthe objective function, the selection of the constraints
as well as the selection of the design variables. Concerning the objective function, its choice depends on the
aerodynamic code which will be used with the optimization code while the constraints will be selected regarding
both the performance of the aerodynamic and of the optimization codes.



Since the solution of the optimization problem will be a combination of the design variable, it is obvious that
their selection has to be made carefuly.

2.4.1. Selection of the objective function

It is very attractive to choose as objective function the main performance which has to be improved like the
drag or the CL max. However, these two coefficients suffer from the questionable accuracy of thecr evaluation with
current methods. However if their gradients with respect to each design variable and constraint ai L accurately
determined the optimization will give some improvement even if the absolute values of these coefficients are not
accurate.

However, taking the drag or L/D as objective function can give no design improvement since they do change
with angle of attack and may mislead the optimiser. To avoid this problem, the lift coefficient value for which the
drag has to be improved can be put as a side constraint but a more efficient solution is to use for the objective
function an analytical representation of the drag polar [11] [121. For example in [121 the drag polar is expressed as:

(47) CD = CD-~n +C K(C L - CLrnn)
2

If the optimization drag result is evaluated as a change in drag relative to a baseline drag polar, then a simple lift
change in angle of attack will not mathematically appear as a design improvement. The baseline drag polar would
be given by equation (47). The parameters CD rain, K and CL in can be determined by three numerical analyses
and the baseline drag problem is actually a curve fit to the results. Equation (47) becomes

1481 Cob- = C D - K(CL, - CL )2

where the nomenclature is changed to indicate a local curve fit to a baseline polar. A new drag result would be
evaluated as

(49a) AC D = CD - CDb-

(49b) aC D = Co - (CD + K (CL _ CL)
2

)

within the accuracy of the curve fit, this results in ACD = 0 for an angle of attack change with the baseline
geometry. Thus the optimizer does not have a bias towards reducing lift in order to reduce the drag.

Eq. (49) can be manipulated to yield several different objective functions that can be used as part of the
optimization criteria. The objective function could be expressed as a change in K:

(50) Knew = (C D - CD*)/(CL - CL-)2

where a smaller Knew is a better design. Alternatively, the objective function could be expressed as a change in Ci *.

51 CL- = CL- (CD - CD/K

and the optimization seeks to maximize CL*new.
Finally, the optimizer may be used to minimize CD*new:

52) CD'ne, = CD - K (CL - CL*)2

As applied to an optirr.zation problem, the following factors will influence the success of the particular
objective function used:

* Analysis inaccuracies may change the baseline drag polar or the increment. due to geometry changes.

" The lift changes (with the baseline geometry) may exceed the range that is accurately modeled by the
curve fit drag polar.

" As the design progresses (i.e. the geometry changes), the original baseline drag polar curve fit will become
inappropriate.

However as the design progresses, the cua've fit can be revised to more accurately represent the drag polar of
the current geometry.

Another objective function which is widely used is a target pressure distribution prescribed by the designer. In
that case the optimization problem is furmulated in the form of:

(53) I -(C
T - 

C )21/2

NB: t P, P

OW=L C



that is, minimization of the "error" between target and analysis pressures. The optimization procedure is then used
to obtain essentially the same results as the inverse methods. The success of this type of objective function is due to
the fact that the aerodynamicist is comfortable with pressure distributions and the analysis codes are generally
easier to use than the inverse methods. However, an advantage of wing optimization procedure in that way is that it
is easy to control the geometry of the design through constraints while it is not the case with most of the existing
inverse methods. An extension of the previous objective function can be found in [13] where a non-linear least
squares minimization is formulated as follows:

let the rcsiduals ri (PI... PM), i = 1, 2...N, be functions of !A design parameters. To minimize ri, in the least-
squares sense, value for the parameters, Pj, are found which minimizes:

(54) N
(P__P2..PM) , [riP1 P2..PM

where ri denotes the difference between the N specified reference plane quantities and corresponding N computed
quantities associated with the M parameters. The reference plane fluid state variables are the total pressure PT, the
total temperature TT, the directional Mach number Mx, My, M.

Eq. (54) can be written in vector form R (p) R (P) where R (P) is a vector with components ri. Variable
constants are imposed by addition of barrier functions, added to the objective function..

Thus the expression RTR becomes:

N
r

OrR [ (PT - P) + (TT - TT)q + (M, - M.)' .. (, -
rp rprpp

N

'rp

where Nr is the number of geometrical distinct reference plane points, 4ij represents the barrier functions, and Nc is
the number of parameter constraints.

The non linear least square form of Eq. (54) is then minimized using an extension of the Gauss-Newton
method.

The examples presented above show that various objective functions, simple ones or complex ones can be used.
However complex objective functions in which several aerodynamic coefficients are present can lead to the
following problems:

* very long optimization process
" great probability to go to a "relative" optimum during the optimization process
* no guarantee that the value of all terms appearing in the objective function decreases during the

optimization procedure.

In most cases it is so recommended to use a simple objective function and to complete the objective function
with the constraints.

2.4.2. Selection of the constraints

The constraints can be used to control the design shape or to complete the objective function or to discipline
the modification during the optimization process.

In the first case constraints are put for example on the thickness to chord ratio or on the thickness for
several prescribed locations for an airfoil or a wing design. For bodies of revolution or wing design volume
constraints are sometimes taken into account.

In the second case when optimizing the drag, constraints on the lift range for which we want to have a drag
reduction can be used.

Another example is the CL mal optimization. Since this coefficient is generally not directly given by must
of the codes it cannot be chosen for the objective function so the problem can be formulated as follow:

Objective: CDat high angle of attack
constraints: ICpJ level limit coming from experimental data on airfoils of the same type.

In the third case the constraints are used in order to take into account some other aerodynamic
performance than the one(s) included in the objective function. For example when optimizing the drag or
the CL max, a constraint on the pitching moment coefficient can be used or when several design points are
to be considered, the optimization can be performed for one point with constraints put on some
aerodynamic coefficients on the second point for example:
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Obi: C D (M 1, a,) first design point
constraint. CD (M 2 , Q2) second design point

The gradient of the constraints being computed by the optimization code, generally increasing the number of
constraints will increase the computing time. Moreover some optimization codes are not very efficient when
constraints are included and some parameters have to be adjusted in order to force the convergence. This is
illustrated by the following example which compares the performance of the CONMIN code and of the EO4VAF
code (from the NAG library) for the Rosen and Suzuki problem.

The problem is formulated as follow:

" The function to be minimized is:

OBJ(X) = X 12 + X 2 2 + 2X 32 +X
4
2- 5XI -5X 2 - 21X

3 + 7X
4

* The constraints are:

-X1
2 
-X22. X32 -X42 -X, + X2 -X3 + X4 + 8 - 0

-X2 2X2- X32 -2X42 + X1 + X4 - 10 0
-2X12 X

2
2 -X 3

2 
-2X + X2 - X4 + 5 L 0

The initial conditions are Xi = (0, 0, 0, 0).

The CONMIN code uses a feasible direction method from Zoutendijk when the constraint are active while in
the EO4VAF code constraints are included in the objective function through the use of a Lagrangian function as
follow:

OBj' = 08.j + , (A C + pIC.]2)

Ci being equality constraints which are formulated from the inequality constraints.

Fig. 13 shows the convergence history of the CONMIN code for two values of the parameters ALPHAX and
ABOBJI which control the initial displacement for the one-dimensional search. The exact solution (OBJ = -44 for
X (0, 1, 2,- 1)) is obtained after 43 objective function and constraints evaluations.

Fig. 14 shows the con-iergence history of the EO4VAF code with several values of the p parameter which
controls the weight of the comstraints. For p = I the convergence is fast but in final solution the constraints are
violated. For p = 100 the convergence is very slow.

This example shows the necessity for the designer to know in details the optimization code he wants to use
especially if constrained optimizations are to be performed.

Some authors (141 use the constraints to force the optimization process to Fo rapidly towards the solution. In
that cas.- a constraint (initially violated) is put on the same parameter than the one included in t'e objective
function.

2.4.3. Selection of the design variables

The final result of the optimization process being a combination of the design variables their choice is very
important.

The design variables must be selected to converge the optimization process quickly and generate a wide
variety of geometries. The functional relations well-adapted to this problem can be described mathematically in
many ways. Numerical tests are needed to determine the value of the mathematical model proposed. Two types of
shape functions exist: analytical functions and shape functions of aerodynamic origin.

2.4.3.1. A nalyltcal shape functions

o Legendre polynomials.

When the Legendre polynomials or other orthogonal expressions are used, the optimization algorithm
becomes highly effective and the initial airfoil is modified regularly.

The coordinates of the modified area are expressed as a function of reduced abscissa X = x/x 0, where x is the
real abscissa and [0, xo] is the modified area:

Y = Y. + [I - X? VoK / + 2 (P2 + 1) + as W3 - I)-

+ U4(P4 + +) Y sPs - 1) + asPs+ 1)
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where P2 , P3, P4, P5 and P6 designate the Legendre polynomials over (0, 1] and a1 , a2, a3, a4, a5 and a6 are the
design variables:

P2 
= 

2X - 1,
P3 

= 6 X
2 - 6X + 1,

P4 = 20X
3 

- 30X2 + 12X - 1,

P, = 70X4 - 140X' 
+ 

90X2 - 20X + 1,

P6 = 252X' - 630X
4  

560X' - 210X
2 

+ 30X - 1,

The square root term is introduced to modify the leading edge of the airfoil, and factoring by (1 - X)3 ensure the
continuity ofthe radius of curvature at the point X0 .

Figure 15 shows the six corresponding shape functions.

This approach is used in modifying the part of the upper or lower airfoil surface upstream of a given abscissa
x61C.

* Other polynomial functions.

Some other functions can be selected to address the modification qualitatively. These functions are added
linearly to the starting geometry.

Wagner functions may be used (Fig.16a), which permit a fairly large variation as far as the shape of the airfoil
upper and lower surface are concerned. However, they cannot be used at the highest harmonics (n > 7) because
they can cause waves in the geometry (changes in the sign of the slope over a small part of the chord). These
functions are unsuitable to modify the camberline significantly (starting, for instance, from a symmetrical airfoil).

The Hicks-Henne (H.H.) functions (Fig. 16b) and the polynomial functions (Fig. 16c) have a simpler form,
which makes them particularly suited for even substantial changes of the camberline ; hence they are mainly used
for this purpose. They are characterized by different curvature towards the trailing edge : H.H. functions are
concave, polynomial functions are convex. The use of these functions during the optimization permits, in general
the attainment of the desired behavior in the upper surface portion just forward of the trailing edge : both concave
and convex geometries are thus obtained, according to the requirements. Other functions have been derived from
the need to reproduce other geometrical behaviors typical of the transonic design " such as lower surface cusp for
rear loading, and deflection of leading edge and trailing edge flaps.

All mentioned functions could be used concurrently in the modification of the airfoil, but this would give rise
to some problems. A first advice contrary to such a use comes from the expansion of the computation time. In the
design of an airfoil required to operate at high CL, starting for instance from a symmetrical profile, functions for the
refinement of the thickness distribution should be used only when the geometry has already been cambered
enough. Moreover, a modification using all variables at the same time, "masks" the impact that each type of
function has on the geometry. To have a knowledge of such an impact is on the other hand important because it may
suggest the introduction of new, complementary functions. The only shortcoming associated to the sequential use of
sets of functions is, this being a non-linear problem, that the sequence in which these functions are used influence
the final result. Once again, design experience must give indications on the most adequate sequence.

* Analytical definitions of an airfoil

Instead of using perturbation functions to be added to an initial airfoil, it is very attractive to deal directly
with the airfoil coordinates. However it is not easy to define an airfoil contour with only a few parameters. An
example is given however by the Boudigues formulation.

S. Boudigues'formulation is particularly well-adapted to representing existing airfoils in analytical form. The
point at coordinates x(t), y(t) describes the airfoil starting at the leading edge, as t varies from 0 to 2n. The
expressions are established as a function of the (xk, Y) coordinates of 2n points on the airfoil. xk is given by the law:

xk =- (I -coil- ), k=50,...,2n

Then:

x (t= (- cost),
2

,, - - -



or:

x(t) = - 1 - Wst),
2

A0 +A noS(nt)
y (t) = 2

2

+ (A o s(qt) + B sin(qt)).

q=

where:

S2n-

Aq= Y Ok( 0 ),
Bq= I n -Z_ 1 YkCsin- -k

eq =n k'0Y m-

The number 2n points to be retained depends on the initial geoemtry. The parametric expressions are
generally obtained with a good precision for n = 18. The result can be smoothed by canceling the high-order
harmonics, and in this case the definition includes some twenty coefficients.

This parametric formulation, which is also an advantageous smoothing method, considers the Aq, Bq
coefficients as so many decision variables.

2.4.3.2. Shape functions of aerodynamic origin

There are two advantages to using shape functions of aerodynamic origin, having a physical meaning. Firstly,
the user can choose those best adapted to the problem at hand and, in this case, the small number of design
variables reduces the calculation time. Secondly, the airfoil and pressure distributions are more realistic.

These advantages are put to use in the two approaches explained below, one using an airfoil library [8] [111
1151 [161 and the other the concept of aerofunctions 111)1121

2.4.3.2.1. Airfoil library

The numerical optimization algorithm is associated with an airfoil library. The airfoil is defined by a linear
combination of basic airfoils, and the optimization program determines the relative importance of the various
shapes in defining the optimum airfoil.

The possibility remains of modifying the upper and lower surface independently and imposing geometric
constraints in the airfoil, as long as the basic airfoils stay within the properties demanded of the optimized airfoil.

Using airfoils as a set of shape functions in the optimization process produces realistic solutions at a relatively
low cost. This is an easy way of modifying existing airfoil or defining new ones.

2.4.3.2.2. Aerofunctions

It is easier to choose airfoil shape functions for a particular problem if these functions are of aerodynamic
origin. Shape functions can then be defined by an inverse program, to change a given pressure distribution as
desired. These shape functions are called "aerofunctions".

Ref. [12] presents several aerofunctions shapes which are reproduced Fig. 17.

These modifications were chosen as follows:

" SHAPE1 (Fig. 17a) -control leading edge expansion

* SHAPE2 (Fig. 17b)- smooth upper surface shock

* SHAPE3 (Fig. 17c) -control airfoil thickness with lower surface modifications

* SHAPE4 (Fig. 17d) -control upper surface supersonic plateau

" SHAPE5A (Fig. 17e) -move upper surface shock forward

" SHAPE5B (Fig. 17f - move upper surface shock aft.
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When used in a design optimization, the aerofunction shapes would be added to a baseline geometry by a
scaling factor. The scaling factor would be the design variable controlled by the optimizer.

2.4.3.3. Other possible design variables

Van Egmond ref. [17] uses a parametrization of the pressure distribution to optimize a target pressure
distribution directly.

The pressure distribution over the airfoil is divided in several regions (Fig. 18). For each region the pressure
distribution is described by an analytical function with some parameters which are the design variables.

2.4.4. Multi design points

A great advantage of the optimization methods over the inverse methods is that several design points can be
taken into account. Several examples will be presented in the chapter 3.2. which concerns propeller -r helicopter
blade airfoils design.

In that case the objective function is formulated as follows in the case of the drag minimization.

oB = K1 CE (MI, al - K2C0 (M2, 021

where (Mi, 01) represents the first design point and (M2 , Q2) the second one. The coefficients K1 and K2 can be
used as weighted coefficients in order to put more emphasis on one design point.

Since the objective function is more complex, the optimization process is longer than for a one point
optimization. However it allows the designer to find a good compromise between several design points which are
generally conflicting.

2.5 Advantages and limitations of numerical optimization

Some advantages and limitations of numerical optimization techniques are listed here [ I].

2.5.1. Advantages of using numerical optimization

" A major advantage is the reduction in design time -this is especially true when the same computer
program can be applied to many design projects.

" Optimization provides a systematized logical design procedure.

" We can deal with a wide variety of design variables and constraints which are difficult to visualize using
graphical or tabular methods.

" Optimization virtually always yields some design improvement.

" It is not biased by intuition or experience in engineering. Therefore, the possibility of obtaining improved,
nontraditional designs is enhanced.

" Optimization requires a minimal amount of human-machine interaction.

2.5.2 Limitations of numerical optimization

• Computational time increases as the number of design variables increases. If one wishes to consider all
possible design variables, the cost of automated design is often prohibitive. Also, as the number of design
variables increases, these methods tend to become numerically ill-conditioned.

" Optimization techniques have no stored experience or intuition on which to draw. they are limited to the
range of applicability of the analysis program.

* If the analysis program is not theoretically precise, the results of optimization may be misleading, and
therefore the results should always be checked very carefully. Optimization will invariably take
advantage of analysis errors in order to provide mathematical design improvementf.

* Most optimization algorithms have difficulty in dealing with discontinuous functions. Also. highly
nonlinear picblems may converge slowly or not at all. This requires that we be particularly careful in
formulating the automated design problem.

• It can seldom be guaranfeed that the optimization algorithm will obtain the global design optimum.
Therefore, it may be necessary to restart the optimization process from several different points to provide
reasonable assurance of obtaining the global optimum.

" Because many analysis programs were not written with automated design in mind. adaptation of these
programs to an optimization code may require significant reprogramming of the analysis routines.



In order to reduce the computing time, two techniques can be used:

- The first one is to use Taylor approximations for the objective function and the constraints [14].

For the initial design variables X7 the objective function F and the constraint functions Gj are approximated
by a second order Taylor series:

F(X) = F4+ AxT VF
q 

+ I AXT Hq AX

2

G(X) = Gq+ &xTVG q 
+ I AXTH-iAX

J J 2 J

Using these Taylor approximations instead of the correct analysis calculation, an improved design is found by
the optimization procedures described before. Thereby the step width has to be limited in order not to move too far
away from the centre of the Taylor series. Finally now the correct analysis has to be done for this approximately
improved design. These exact objective and constraint function values together with the preceeding ones are used to
determine the Taylor approximation at the new initial design. By this procedure only one exact calculation is
necessary per optimization step and the approximation gets better and better. Only the "starting procedure" at the
very beginning of the optimization needs more calculations because the complete 2nd order Taylor series requires 1
+ n + n(n + 1)/2 points ofsupport. The COPES code uses a starting procedure which improves the design already
during building up the initial Taylor series. The starting procedure can be influenced by prescribing the starting
design variable sets. It can be drastically shortened by the input of already known results, e.g. from an interrupted
optimization or from similar optimization with different constraints.

-The second one developed by Rizk [18 is based on the idea of updating the flow variable iterative solutions
and design parameters iterative solutions simultaneously.

To conclude this chapter, another approach due to Jameson [191 has to be mentionned.

The method determines the configuration (e.g. shape of an airfoil) satisfying the given design objective (e.g. a
desirable pressure distribution). Such a design method might be created by integrating a variation function into an
analysis method, and inserting an iteration procedure to minimize the design objective function following the
steepest descent. A. Jameson [19] illustrates this "design via control theory" by three applications in aerodynamic
design.

3. APPLICATIONS OF NUMERICAL OPTIMIZATION

In this chapter are presented some applications of numerical optimization techniques for aerodynamic design.
The large variety of design problems which are described will show how powerful can be the numerical optimization
technique.

In the first section, airfoil design with various objective functions are described while in the second section
some 2 design points optimization are presented. In the third section some 3D designs have been selected and in the
last section unsteady optimization process for helicopter blade Pirfoil design is described.

3. 1. Airfoil design

3.1.1. Drag minimization

o The first example is described in 1111. The CONMIN code is used for an optimization of a transport aircraft
wing airfoil.

The PV39GEO airfoil used to generate transport aircraft wings was optimized for a Mach number of 0.76 to
decrease the drag coefficient CD with a CL between 0.5 and 0.6 and to delay the upper surface separation that
develops at high CL. To take structural constraints into account, the PV39GEO airfoil was optimized with the
constraint of prercribed values of the airfoil thickness in the area of the spar box, at 15 and 60 % chord.

The polar graph CL = f (CD) is approximated by a parabola and the objective function used expresses the
improvement of the overall aerodynamic coefficient CD and CL

(CD - 0 0095
0B0 - x 10(CL -025)2

Figure 19 gives the geometry of the PV39GEO airfoil and the pressure distribution at the design point, with
Mach number 0.76, = 0.2* and Re = 4 X 106. The boundary layer is calculated with a transition fixed at 7 %.

The numerical optimization algorithm uses the set of'airfoils presented in figure 20. The five basic airfoils are
supercritical, with a thickness law modified by affinity to stay within the thickness constraints at 15 and 60 % of



the chord. The minimization program determines the relative participation of the various shapes, to define the
optimum airfoil.

Four iterations were run, occuping the CRAY 1-S for 1,000 seconds. The convergence history is given in
figure 21. The variation of the objective function shows a major improvement in the aerodynamic characteristics
starting at the first iteration.

The pressure distributions of the PV39GEO and optimized PV39GEO airfoils are compared at the
optimization point in figure 22. The optimized airfoil exhibits a delayed upper surface shock, of lesser intensity, a
more regular lower surface pressure distribution and a slightly higher rear loading. The pressure distribution of the
optimized airfoil is shown at a lower angle of attack in figure 23.

The aerodynamic characteristics of the airfoils in figure 24 show a decrease in the drag coefficient CD of the
optimized PV39GEO airfoil for CL values above 0.35. This decrease is approximately 15 % for a CL of 0.6.

On the other hand, the modification of the PV39GEO airfoil slightly increases the absolute value of the
moment coefficient from 0.095. The CD variation as a function of the Mach is plotted in figure 25 for a CL of 0.55. It
seems that the improved aerodynamic characteristics at high CL are maintained over a large Mach number
domain,

* The second example concerns the optimization of a propeller airfoil [201 with CONMIN.

The specifications for an airfoil located at 70 % of the blade span can be stated as:
- high maximum lift coefficient at moderate Mach number M = 0.47 to 0.63, for high static thrust

requirements at take-off conditions;
- high lift/drag ratio CL/CD for Mach numbers ranging from 0.54 to 0.67 and lift coefficients between 0.65 and

1.05 corresponding to climb conditions;
- high drag divergence mach numbers for CL between 0.38 and 0.65, corresponding to cruise conditions;
- thickness to chord ratio = 7 %.
The numerical optimization method was used to improve the aerodynamic characteristics of the HOR07

air oil which previously was designed using a direct method.

The precise purpose of the optimization presented here was to increase performance at high CL for take-off
(M = 0.55) and to reduce the drag under cruise conditions (M = 0.70).

The corresponding computed results for the HOR07 airfoil are presented in Fig. 26 and Fig. 27.
Shocks wave are present on the suction side under take-off conditions and on the pressure side under cruise

conditions.
The upper and the lower surfaces of the initial airfoil have been successively modified using analytical shape

functions.

- The suction side was optimized to reduce CD at M = 0.55 and CL = 1.35, with the constraint on suction side
maximum expansion Cpmin > - 3.

- The pressure side was optimized to reduce CD at M = 0.70 and CL = 0.38.

Moreover, a geometric constraint was imposed on the thickness to chord ratio : 6.5 % s t/ce t/7.5 %.
The computed pressure distributions on the optimized HORO7 show improvements for the two optimization

points:
- under the climb conditions at M = 0.55, the intensity of the suction side shock is reduced due to an upstream

isentropic pressure recovery and the leading edge expansion is decreased by 10 %. The drag coefficient CD is
reduced by 24 % at the take-off optimization point.

- under the cruise conditions at M = 0.70, the lower surface shock wave is suppressed and the maximum
expansion decreases by 12 %. The CD is reduced by 9 % at the cruise optimization point.

The 2-D tests on the HOR07 and optimized HOR07 airfoils in the S3MA wind tunnel confirmed these
predicted aerodynamic characteristics (Figs. 28-29).

For these two first examples the aerodynamic code associated with the optimization code is a direct viscous
transonic flow method developed by Bousquet 1221.

* The third example from [21) is the optimization of the GAW 1 airfoil with polynomials functions (spline)
used for the geometry description. Two coordinates at x/c = 65 % and 85 % constitute the design variables, The drag
minimization is performed at M = 0.25, o = u and Re = 6.106 and the aerodynamic code is DOFOIL, a viscous.
steady. compressible flows computer program developed by Dornier.

Figure 30 shows the results of the optimization, where open symbols denote values of approximations from
COPES to CD. Closed symbols denote the corresponding exact values from DOFOIL. Note that the first two airfoils
(A and B) were generated for the purpose of building the Taylor series approximations. The next 10 iterations show
little further improvement in CD. with the actual effort being placed on increasing the value of the constraint CL to
a value greater then 0.52. Figure 31 shows the variation of CL, Cm and of the two design parameters for the 10
iterations.
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Figure 32 shows that the upper surface curvature has somewhat decreased, and the start of recompression has
been moved rearwa, d;

One danger of optimizing at a particular flight condition is that off-design performance can become worse, As
is seen in figure 33, this is not the case in this example. Indeed, for Mach numbers other than 0.25 and non-zero
angles of attack, the improvement in performance is the same if not greater than that at the design point.

- As it has already been mentioned, the accuracy of the aerodynamic code in evaluating the objective function
must be good enough to be sure than the optimization will improve the design. For example in [16] using a 3D
inviscid code for the drag minimization of a high aspect ratio rectangular wing gives unsatisfactory result when the
pressure drag is taken for the objective function while good results are obtained with the wave drag (Fig. 34). This is
due to the fact that the wave drag which is computed by the integration of the momentum equation along a surface
surrounding the supersonic zone as suggested in [23] is more accurate than the pressure drag obtained by the
pressure integration on the wing surface;

The last example of drag minimization is taken from [24]. Aerofunctions like those presented Fig. 17 are used
as design variables. The FLO-36 analysis code is the aerodynamic code.

Design conditions for the design were M = 0.75, CL = 0.5, Cm = - 0,02, and t/c = 0.12. Viscous analysis of a
previously designed airfoil (optimization using polynomial shapes) for these conditions is shown in Fig. 35 and the
airfoil in Fig. 36. The airfoil showed unacceptable trailing edge flow separation, 0.83 chord, at the design point, did
not meet the Cm requirement, and had leading and trailing edge shapes that were considered unacceptable. The
leading edge exhibited a double nose radius and the upper surface of the trailing edge was concave.

A TRO-2D optimization was run using drag as the objective function with inequality constraints on lift,
moment, and thickness. Side constraints on leading and trailing edge camber design variables were set so as to
preclude any upper surface concavity.

The TRO-2D designed airfoil is compared to the original design in Fig. 37. Note the more conventional nose
shape and trailing edge for the TRO-2D design. Analysis of the TRO-2D airfoil at the design Mach and lift
coefficient, as shown in Fig. 38, shows that the moment constraint has been met, no flow separation is predicted,
and a 30% reduction of drag is predicted compared to the original airfoil. CONMIN required four cycles to reach a
final solution in approximately one minute of CPU time on the CRAY-1M computer.

3.1.2 Flow field characteristic as objective function

Ref. [131 described an interesting optimization case with a prescribed velocity field used as the objective
function in a reference plane. The problem is formulated as described in section 2.4.1.

A NACA0012 airfoil was used as a simple example to illustrate aerodynamic optimization in the presence of
separated flow. This is a common airfoil which has been extensively analyzed and is defined by:

y () 5t (0.2969x 1/
2 

- 0.126 x - 0.3516 x
2 

+ 0.2843 x
3 

- 0.1015 x
4
)

where the parameter, t, determines the maximum airfoil thickness. For the NACA0012 airfoil, the thickness
parameter is specified as 0.12.

The PARC CFD code was used to define the target RP properties by computing the laminar flow field about
this airfoil, subject to the indicated boundary conditions indicated in Fig. 39. A Reynolds number, based on chord
length, of 106 was specified which produced a flow field with an attached boundary layer (Fig. 40). Defining the
target profile numerically assured that do absolute global minimum existed within the design space. The RP was
located at the airfoil trailing edge and extended to the boundary of the computational domain, although the
influence of the body was minimal approximately two chord lengths into the domain. The desired RP properties
were then used to form the nonlinear least-squares objective function, which was minimized by application of
Broyden's algorithm.

The design parameter (airfoil thickness) was doubled as an initial guess to begin the optimization. This value
was selected since the contour subject to the stated boundary conditions produced a flow field which was highly
separated (Fig. 41) in constraat to the attached target solution (Fig. 40). As noted, the reference plane was placed at
the trailing edge of the airfoil passing through the region of separated flow.

For this example the correct optimum was located, by Broyden's algorithm, within 0.1 percent in six iterations
requiring seven function evaluations. Figure 42 compares the target geometric profile with the initial guess profile,
the first iteration profile, and the optimal profile as determined by Broydev's algorithm. Figure 43 and 44 show the
reduction of the objective function and the convergence history of the design parameter, t, versus iteration number.
respectively. As evidenced by these figures, the Broyden's algorithm isolated the global minimum quite efficiently.
The optimum was located within 1 percent in four iterations and was isolated within 0.1 percent in six iterations.

K -, __m~m ma wu w em
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3.1.3. Pressure distribution optimization

Van Egmond in (17] presents different cases of pressure distribution optimization. As an example, the case
presented here concerns the definition of the max. lift contribution that can be obtained with stable laminar over
the first 60 % of an airfoil. Stable with respect to the instability criterium for Tollmien Schlichting waves;
instability occurs if Reg/Rei > 1. With the requirement of just sonic conditions at s/c = 0.60 for M. = 0.65 and
Rec = 15.106. Then the problem definition reads : find the Cp-distribution between s/c = 0 ; MI, = 0 and

0.6
s/c =0.60; M1oc = I such that °'Cp ds/c is maximum while everywhere Reg/Reei approaches I as close as

possible; or minimize = 'Cp ds/c + °max (0, Reg/Reoi -1) d a/c. After a few attempts with different relations
0 0

for Cp = f(s/c) it was observed that reasonable results could be obtained with the following relation for the pressure

gradient:

dCp A

- + B
d_ - s C

c c

where c is a small value, to prevent the singularity at s/c = 0.

Then, by integration:

Cp Cp., + A( + B ( }

Where A, B, c (> 0) and N are design variables and Cpst is pressure coefficient at stagnation point. Three of the
design variables are independent, the fourth follows from the requirement of sonic flow at s/c = 0.60. Fig. 45 shows
the results of the above problem. The Cp distribution for stable laminar flow over the whole region is depicted in
Fig. 45a, while Fig. 45b shows that indeed Ree and Reei nearly coincide over the largest part of the region. These
results were relatively easily obtained.

3.1.4. Ci, - optimization

-The first example of CL max optimization is taken from 18]. It has been done using the approximation concept.
The design variables are 4 NACA airfoils and 2 linear functions which are used to impose the closure of the trailing
edge. The analysis code [25] is used to perform the computation at M = 0.1, a = 6'

Figure 46 shows the results of optimization of an airfoil for maximum lift. The design constraints are listed on
the figure. This optimization required 19 aerodynamic analyses. Although it may be argued that this airfoil is
impractical, it must be remembered that this airfoil mathematically satisfies the design constraints. The lift
coefficient obtained here is CL = 1.144.

The quality of the approximation to the lift coefficient may be judged from figure 47. Because there are four
independent design variables, the full second-order Taylor series expansion of the functions requires 15 analyses. It
is intriguing to note that on the sixteenth analysis and beyond, the approximation for this case is quite precise.

-The second example from [20] concerns an airfoil for an ultra light aircraft; A first design called OAULM01
was defined with a set of airfoils in order to obtain a high CL with low upper surface maximum expansion and a
moment coefficient less than 0.04.

The tests in the $10 wind tunnel of the CEAT in Toulouse showed that the aerodynamic characteristics were
ofintere-t for the application considered, except that the stall was too steep.

To remedy this, the airfoil was optimized to reduce the rise in the boundary layer shape parameter between 30
and 50 % clord, to avoid a leading edge type of stall. The OAULM02 airfoil is the result of this second optimization.

Figure 48 shows the calculated boundary layer shape factor along the upper surfuce of the OAULM01 and
OAULM02 airfoils, for a lift coefficient CL = 2.

The geometry of the two airfoils and their pressure distributions for CL = 1 and CL = 2 are presented in
Fig. 49. The presmure recovery of the OAULM02 airfoil is smoother up to 35 % of the chord length. The computed
transition location is about x/c = 15 %.

The experimental lift and moment coefficient of the OAULM01 and OAULM02 airfoils ae presented in

Fig. 50 for a Mach number M = 0.12 and a Reynolds number Re = 1.4.106.

The stall behaviour of the OAULM02 airfoil is better.
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3.1.5. High lift systems optimization

Since the optimization of the relative locations of a multi-element airfoil needs a high number of analysis
calculations, an optimization process will save computer time. In [26], such an optimization is performed for a two.
element airfoil using COPES coupled with a subsonic multi-element airfoil analysis code PSM developed by
K. Jacob.

Figure 51 shows the starting design and the best design of a flap position optimization. The contour geometry
of the two-element airfoil DOAS is kept constant. The specifications are:

Design objective: CL should become a maximum.
Design variables: x, y-coordinates of a flap fixed point in main coordinate system.
Constraint: • slot width s/c a 0.01
Constantvalues: M = 0.1,Ree = 5.106,a = 10',flap deflection = -40'

.

As the design objective CL in this case depends on only two design variables, the optimization procedure can
be graphically illustrated. Figure 52 shows the lift coefficient CL in the area of interest for the flap fixed reference
point. It can be seen that the reference point has to move from the starting position (starting design of figure 51) to
the constraint line s/c = 0.01 nearer to the main element.

The same situation is shown again in figure 53 but now in form of iso-lift lines, The optimization path found
by the COPES code is also indicated. After the first 3 analysis calculations (to find the initial gradient) COPES was
free to find its way to the optimum which was reached after totally 30 analysis calculations (plotting the iso-lift
lines of course needed much more). The lift coefficient was improved from CL = 2.5 to 3.6 (45 %).

3.2. Examples of multi-design points optimization

3.2.1. Airfoils for helicopter blade

Specificatizns for the design of an helicopter blade airfoil concern generally the conditions which are
encountered by the airfoil during a revolution of the rotor that is to say advancing blade condition and retreating
blade condition. To find the best compromise between these two flight conditions it seems particularly interesting to
use numerical optimization techniques [1l].

-The first example concerns a 7 % thick airfoil called OA207. The CONMIN code is coupled with the analysis
code [221. The problem is formulated in order to reduce the drag:

-under advancing blade conditions:
M = 0.85 and CL = 0

with the aerodynamic constraint limiting the absolute value of the moment coefficient:

0 01 S C S 0.01

-under retreating blade conditions:

M = 0.40 and CL = 0,8.

with a limiting constraint on the upper surface expansion:

Cpmin . 315

Figure 54 shows the two optimization points considered on the aerodynamic polar curves of the OA 207 airfoil.

The objective function is represented by a linear combination of the CD at the two design points:
04 = OBCD, + 0 2CD2

Six shape functions, constructed from the Legendre polynomials were used to modify 50 % of the airfoil upper
surface;

Figures 55 and 56 show how the pressure distributions were modified at the two desigA points. For he
configuration corresponding to a Mach number of 0.85, the local Mach number decrease in front of the shock
obtained by an isentropic recompression reduces the intensity of the upper surface shock. This same modification
decreases leading edge expansion on the upper surface by 10 % at a Mach number of 0.40 and a CL of 0.83.

For the advancing blade conditions (CL = 0), CD is reduced by 16 % at the design point. The gain is smaller for
Mach numbers less than 0.85, since the reduction of CD mainly affects the wave drag. For the second design point
(M = 0.40 and CL = 0.83), the improvement in the aerodynamic characteristics is a 6 % decrease in the drag
coefficient CD.
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- The second example concerns a 12 % thick airfoil design for the inner blade sections [20]. The initial airfoil is
called OA 213 and was designed, reviously using an inverse method.

The design conditions are

M = 0.75 CL=0
M = 0.4 CL = 1.5

The objectiw function is the sum of the drag for the two design conditions and two constraints were laid down
to control the pitching moment for zero lift and the maximum expansion level for M = 0.4 and high CL.

The tests performed on this new airfoil OA312 in the S3MA wind tunnel have demonstrated the efficieny of
the design process.

As shown in figure 57 the OA312 airfoil has lower drag under advancing blade conditions due to a large
reduction of the leading edge lower surface pressure peak level which also leads to a reduced nose down pitching
moment coefficient. The Mach drag divergence is 0.78 for the OA312 airfoil which gives AMdd = 0.03.

For M = 0.4, the maximum lift coefficient measured in the S3MA wind tunnel was 1.5, whereas it was 1.54 for
the OA312 airfoil under the same cnnditions.

As shown in figure 58, the drag level is better with the new airfoil at high lift levels.

The shapes of the two airfoils and their total performances are compared in figure 59.

- The third example from [20] concerns an airfoil for a shrouded tail rotor.

The purpose was to design an airfoil having a large range of angles of attack with a drag level lower than 0.02
in order to minimize the power required for the shrouded tail rotor. The optimization has been applied for a Mach
number of 0.62 and a Reynolds number of 1.1.106.

The range of angles of attack corresponding to the different flight conditions is - 5° 
r Qp s 12, op being

referenced to the zero lift angle of attack. Within this range, the drag level of the airfoil should remain lower than
0.02. Moreover, the nominal value for the angle of attack is Cp = + 60 (design point) and for this point the drag level
should be lower than 0.01. For this Mach number, shock waves are present on the initial airfoil for large positive
and negative values of the angle of attack. So a first optimization was carried out in inviscid flow under the
following conditions:

Objective function : wave drag 1 + wave drag 2
wavedrag I corresponding to M = 0.62, ap = - 6
wave drag 2 corresponding to M = 0.62, op = + 7.5

For the second point, a constraint was laid down in order to control the camber of the airfoil.

This constraint expressed in the form 10.3 ° 
< ap < 10.8' was computed using the CL obtained for the two

points.

In this first optimization, a library of airfoils having the same thickness to chord ratio (tic = 10.2 %) was used.
Having minimized the wave drag for a lare -ange of angles of attack, a second optimization was performed in

viscous flow in order to obtain a sufficient range of angles of attack beyond the design point with a drag level lower
than 0.02.

The corresponding objective function is:
(Q2 - I)CL2

P CL2 -CL I

with al = - 40
a2 = 540

.

The Mach number being 0.62 and the Reynolds number 1.1.106. These values of angle of attack have been
kept lower than those for the first optimization in order to stay within the limits of the viscous transonic
aerodynamic code. For the second point, the constraint CD < 0.02 has been given. Eight design variables acting on
the camber line of the airfoil were used and two cycles were performed.

The optimized airfoil OAF102 has been tested in the S3MA wind tunnel. The tests were carried out for three
values of the stagnation pressure. The corresponding Reynolds numbers are 1, 2 and 3.106 for M = 0.62 The CLmax
values plotted in figure 60 show that the highest performances were obtained for the design Mach number
M = 0.62.

The curves also show an important Reynolds number effect up to high Mach number values. The performances
ofthe airfoil are plotted in figure 61 for M = 0.62 and Re = 1.106.
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It can be shown from Fig. 60 that the best results have been obtained for the Mach number used for the

optimization which demonstrate the efficiency of the process.

3.2.2. Helicopter blade design

To conclude this section devoted to examples of multi-design points, an example of a spanwise blade section
distribution optimization taken from [27] is presented. The problem is to find the spa,,wise distribution of two
airfoils which will minimize the power of the rotor under different flight conditions. Two flight conditions are
considered:

Point I M = 8t z = 0 v = 250 krIh
PointI M = 8t z = 3000m v = 360km/h

The objective function is:
OBJ = (I -n)P, + nP2

P1 and P2 being the power needed respectively for the flight conditions and n being a coefficient which is used
in order to privilege one flight condition.

The design variables are the span locations of two airfoils sections (OA312 and OA309) noted RI/R and R2/R.
Fig. 62 shows the power reduction obtained for the two fight conditions versus the n coefficient. In Fig. 63 are
plotted the optimized airfoils locations versus the n coefficient. For the best compromise corresponding to n = 4 the
rotor performance are compared to the ones of the initial rotor (RI/R = 0.8, R2/R = 0.9).

3.3. Examples of 3D optimization

3.3. 1. Wing drag optimization

The first example from [28] concerns the various wing drag components minimizations. The CONMIN code is
coupled to the 3D inviscid flow analysis code (29]. The DLR F4 wing is used for the optimization (Fig. 65). Four
spanwise sections are used to define the wing. The twist distribution is linear between the sections. The flow
conditions taken for the optimization are M = 0.75 - CL 

= 
0.67. Four objective functions were successively used for

the optimization of the twist distribution with a constraint on the lift coefficient C. 0.67.

The objective functions chosen were:
1) lift-induced drag
2) wave drag
3) lift-ir.duced drag + wave drag
4) pressure drag.

A, additional unconstrained calculation was also done aiming at an elliptical load distribution. The drag was
computed using "farfield" techniques as described in [301 and [31].

Fig. 66 sommarizes the results. Minimizing the lift-induced drag loads the wing in the outer part IFig. 67)
while minimizing the CDw term loads the inner part. Minimizing CDi + Cw drag or CDp drag gives results which
are very close (Fig. 68). In that case the twist distribution is somewhat different of the one of the real F4 wing.
However Fig. 69 shows that changing the conditions from M = 0.75 to M = 0.785 gives a twist distribution closer to
the F4 one.

16000 grid points are used for these computations which might be considered not sufficient for accurate drag
prediction. However this number of grid points has been selected after a parametric study of the accuracy of the far
field computed drag versus the number of grid points. This mesh realizes the best compromise between the
computer time and the drag accuracy. However it is clear that different values of the various drag components will
be obtain, d with a finer grid but the results will exhibit the same tendencies which means that the conclusions will
be the same. Each optimization requirss between I H and 2.30 H computing time on a CRAY X-MP computer.

The second example of wing drag minimization has been done by Cosentino and al. [32]. It concerns the
CESSNA model 650 wing used on the new citation M aircraft. The design was made at M = 0.81 and CL = 0.57.
The objective fuciction is the wing L/D which is computed by the TWING code which is coupled to the quasi-Newton
QNMDIF code.

The geometry, as shown in Fig. 70, has a fairly high leading-edge sweep of 37
° 

before the break, and 27' after.
The aspect ratio is 9.0, and no wing dihedril is present. This wing is defined by different airfoil sections at the root,
break, and tip stations, and the twist distribution is incorporated in the airfoil coordinates. These three airfoils,
along with the locations of the fixed and the th -ee movable spline support points are shown in Fig. 71. As can be
seen. three movable points were chosen at each defininZ- station for this case.

The results of this design case are presented in Fig. 72 at three span stations. Again, reasonably smooth
pressure distriuiutions and airfoil shapes are observed, with reduced shock strengths at every station (the 48.5 %
span station is nearly shock-free). The slight rressure peak at the root station at about 6 % of chord might be
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eliminated by redistributing spline support points and reinterpolating. The remaining stations are quire well
behaved. Note that actually very little modification to the shape of thickness of any section was required to achieve
the desired result. This is an indication that the wing was very well designed and highly efficient before any
optimization redesign. Some data summarizing this design are presented in Fig. 73.

This design required only six optimization iterations and was completed in just under 1 hr of CRAY X-MP
CPU time (about 90 % of the improvement required about 20 min of CPU time). The inviscid drag-to-lift ratio of this
wing has been increased by over 85 % at the expense of just over 10 % of the lift, yielding a reasonable and efficient
design at nominal computational expense. Figure 73 displays the drag-rise characteristics of the original and
optimized wings at fixed lift coefficient. The coefficient o.drag (scalled by a factor of 100) is plotted at several Mach
numbers for both wings. As can be seen, the optimized wing displays superior drag-rise characteristics as the mach
number is increased, yet does not suffer any undesirable off-design behavior at the lower Mach numbers. Note that
the drag divergence mach number has been increased by approximately 0.03.

Other examples of wing optimizations can be found in the literature [33] [34].

3.3.2. Complete confiluration optimization

At the present time there is no examples of complete configuration optimization using 3D potential or Euler
codes due to the large computer time associated with these methods and the poor reliability of the aerodynamic
coefficients which are computed with the coarse grids generally used.

An interesting approach of this complex problem is given by Vai den Dam in [35]. The aircraft is projected
onto a plane normal to the flight direction and is approximated by a number of straigth line segments representing
the various elements of the configuration. The contributions of the various elements to the lift and the lift induced
drag are computed in the Trefftz-plane while the viscous drag is computed using DATCOM's formulae.

An induced drag minimization case including propeller slipstream is presented here as an example.

In order to examine the effects of the propeller slipstream on the aircraft induced drag, the axial and
tangential velocities in the propeller slipstream have to be given. For a particul., example design condition, the
distribution of propeller induced velocities of figure 74 has been used (advance ratio of J = 0.13 and a thrust
coefficient ofCT = 0.12).

For a wing configuration with two "up-inboard" rotating propellers, located at 25 % of the semispan with a
diameter-to-span ratio of 13 %, the optimal spanwise bound circulation distribution is shown in figure 75. This
distribution greatly differs from the optimal "clean wing" distribution that is also shown in figure 75. With this
distribution, the wing is capable of restoring much of the loss associated with slipstream swirl.

In figure 76, the effects of the horizontal propeller position for different rotating concepts of the propellers on
the minimum induced drag coefficient have been plotted. As can be seen clearly from this figure, two up-inboard
rotating propellers lead to a most favourable configuration with respect to the minimum induced drag. If the
location of the propeller-centre is moved outboard, induced drag will decrease for two up-inboard rotating propellers
and will be a minimum when the propellers are located at the wing tips.

3.3.3. Wing-engine interference reduction

Optimization of a wing + engine configuration should aim at reducing the drag increment created by the
interference. However reliable estimation of this drag increment is still beyond the reach of analysis methods, let
alone such inexpensive methods as might be incorporated into an optimization procedure. The example presented
here from [281 uses the following simplified methodology. The engine effect on the wing is balanced by an opposite
perturbation obtained through wing shape modifications (Fig. 77). So the modified wing with the engine will
exhibit the same pressure distribution than the original clean wing.

Fig. 78 shows the perturbation of the wing pressure distribution due to the engines. Four successive
optimizations for each side of the pylons have been successively performed. The objective functions are defined by
target pressure distributions in the wing sections where the perturbations are maximum. The CONMIN code was
coupled with the analysis code 129] of Bredif. Eight aerofunctions for the lower side and three for the upper side
were designed with inverse 2D computations in order to modify the pressure distribution at the prescribed span-
wise locations (Fig. 79).

Fig. 80 shows the results of the optimizations in term of ACp between the modified motorized wing and the
initial clean wing. Comparing to Fig. 78 it is clear that the perturbations have been greatly reduced which
demonstrates the efficiency of the process.

3.3.4. Inviscid 3D nozzle design

The last 3D example is the design of a 3D rectangular nozzle (13] presented Fig. 31. The nozzle geometry and
interior grid were defined by a 3D Bezier polynomial.
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Four control points were specified at each of five axial planes such that each axial cross section was
rectangular. The design parameters were two coefficients, P1 and P 2, which implicitly determined the distance
between the control points in the 'y' and z directions at the mid-plane (Fig. 81). The target geometry corresponded
to values of unity for each parameter which produced a nozzle with a nominal exit to throat area ratio of 2.5. Total
conditions were specified at the nozzle inlet and a static pressure below second critical was selected at the nozzle
exit which provided supersonic flow development in the divergent portion of the nozzle. This geometry and these
boundary conditions produced a flow with a nominal exit Mach number of 2.5 when analyzed by application of the
Euler version of the PARC code.

For an initial guess, the design parapeter PI and P 2 were set equal to 2.0 and 2.5, respectively, which produced
a high area ratio nozzle with a nominal exit Mach number of 5.8. Unlike the target nozzle, which was square at each
axial cross section, the initial guess geometry had a square cross section at the inflow plane, which transitioned to a
rectangular cross section at the mid-plane, and then transitioned again to a square at the exit plane. The large
difference in exit flow conditions for the initial guess was imposed to illustrate that the initial guess flow field does
not necessarily need to closely resemble the desired optimum to obtain acceptable results. The difference in the flow
fields for the target and initial guess nozzles is illustrated by comparing the centerline Mach number profiles for the
two designs (Fig. 82).

A sensitivity analysis on the geometric design parameters indicated that the objective function partial
derivatives were very sensitive to parameter step size because of nonlinear effects and numerical error inherent in
the objective funtion evaluations. Although the most stable step size determined was applied, Broyden's algorithm
did not converge to the global minimum. However, the Gauss-Newton algorithm was successfully applied and the
optimum was reached in six iterations requiring eighteen function evaluations. Figure 89 illustrates the RP
convergence by comparing RP Mach number profiles along the y-axis for various iterations. The achieved reduction
in objective function and the design parameter convergence is depicted in Figs. 84 and 85, respectively.

3.4. Unsteady optimization

In order to design new helicopter blade airfoils, an optimization technique has been developed at ONERA by
H. Bezard.

The method results from the association of:

an unsteady full potential code [36]

a 3D unsteady boundary layer code from R. Houdeville and J. Cousteix of the ONERA-CERT/DERAT
department

the CONMIN optimization code.

The design variables are 4 airfoils with a thickness to chord ratio of 0.12 presented Fig. 86, the first one the
NACA0012 airfoil being used as the initial design.

-The first optimization case has been done under the following conditions:

" Mach number
M = 0.67 + 0 18sinp

" Angle of attack
o* = am* - 3*25 sinq

W being the azimuth angle (0 -s 'p 360' and am the 5e design variable).

Objective function
OBJ =Co wave + CD viscous

CD are the mean values of the drag components given by:

360 0.67)
3

0

CD, and M being the drag and the Mach number at each time (azimuth) step. CDwave is obtained through the
integration of the unsteady momentum equation over a contour surrounding the shock at each time step while
CDvisus is obtained by applying the squire and Young formulae.

*One constraint on the mean value of the CL
CTL - 0r3

The optimization history is presented Fig. 87. After 8 optimization cycles the objective function has decreased
by 24 % and the constraint is not active. 55 unsteady aerodynsmic computations have been performed. On the
figure are also drawn the evolutions of the design variables during the optimization process. The overall computing
time is I H 37 mn on a CRAY-2 computer.
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- The second optimization case is the same than the previous one with a second constraint applied on the
maximum unsteady pressur: coefficient value:

]C,.1i 5 2

The objective function has been modified in order to obtain some penalty when a separation appears on the
airfoil. 

B

X being the maximum location of the separation (from the trailing edege) computed during one cycle.

For that case, the optimization history presented Fig. 88 is less smooth than for the first case due to boundary
layer separation apparing during the optimization. After 8 optimization cycles, the constraint n' 1 (CIl) is non active
while constraint n' 2 (ICp) isjust active.

On Fig. 89 are plotted the design variables. The additional constraint influences greatly the final solution as it
can be shown by comparirg Fig. 89 and Fig. 87.

The airfoils contour obtained with these two optimizations are plotted on Fig. 90. The airfoil from case n' 2
exhibits more camber which is confirmed by the pressure distribution computed for two azimuth angles plotted
Fig. 91.

Fig. 92 compares the unsteady aerodynamic coefficients of the two airfoils versus the azimuth angle,

The viscous and the wave drag mean values of airfoil n' 2 are higher than those of airfoil n' 1 which has been
optimized without the constraint on the ICp mnirk ; however, a separation occurs on the airfoil upper and lower
surfaces for a large rax -e of azimuth angles which is not the case for airfoil n' 2.

This design method which is presently under development will certainly in the near future become a powerful
and valuable design tool for unsteady designs.

4. CONCLUSION

Through the various examples presented in the paper it has been shown that numerical optimizations may be
used for solving a lot of design problems. Even if the computing time is somewhat higher than the one of other
design techniques, numerical optimization provides generally a reduction in total design time. The major
advantage of numerical optimization is the possibility to deal with a wide variety of design variables and
constraints and yield improved, efficient and economical designs.

However it is important to understand the limitations of optimization techniques and use these methods as
only one of many tools which are available. It can seldom be guaranteed that the optimization algorithm will obtain
the global design optimum. Therefore it may be necessary to restart the optimization process from several different
points or with different design variables to provide reasonable assurance of obtaining the global optimum.

As it is said in (1], expectations of achieving the absolute "best" design will invariably lead to "maximum"
disappointment.
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CONSTRAINED SPANLOAD OPTIMIZATION
FOR MINIMUM DRAG OF MULTI-LIFTING-SURFACE CONFIGURATIONS

N.F. van den Dam

National Aerospace Laboratory NLR
P.O. Box 90502 Amsterdam The Netherlands

SUM1ARY

This paper presents a practical method for the determination of optimal spanloads for
mu'ti-lifting-surface configurations. It comprises algorithms for choosing the spanwise distributions
of lift, pitching moment, chord and thickness-to-chord ratio of lifting elements. The choices are
optimal in that they minimize induced plus viscous drag while satisfying constraints of aerodynamic,
flight-mechanical and structural nature. The configuration that can be dealt with, may consist of a
number of segments representing, for instance, wings or parts of wings, horizontal tails or canards,
winglets, flaprail-fairings, etc. Also the interaction between propellers and lifting elements may be
included in the procedure.

The induced drag is computed using the Trefftz-plane integral (farfield-analysis), while the
viscous drag fol'-s from form factor methods. Novel mathematical formulations of the constrained
optimization problem are used,- that are based on the calculus of variations. The method can be
used as ai first step in the inverse numerical optimization approach to provide a starting point
for the specification of target pressure distributions. These target pressure distributions are

then used by an inverse code to determine the corresponding geometry. This paper presents the
theoretical models and methods underlying the analysis and optimization capability, comparisons
with other theories, and some examples of application.

I INTRODUCTION

The succms of an aircraft design depends largely upon finding an optimal balance between the

contributions of the disciplines involved. Moreover, many of the benefits from emerging technologies
can only be fully exploited through their interactions with other disciplines. Good examples of these
are the technologies of active control and composites which make it possible to design aircraft with
forward swept wings and relaxed static stability. In order to find an optimal balance between the
contributions of the disciplines and to take maximum advantage of technology advances, the
interactions should be identified and quantified before the main decisions concerning the overall
configuration design are made. This implies the necessity of developing the analysis and design
capability to a suitable breadth and depth for earlier application in the design process. Increased
breadth means the inclusion of the appropriate spectrum of disciplines and new technologies early in
the design. Increased depth in the early design stage is required to assure that the interactions are
correctly quantified before the main decisions are made. An example of developing methods of this
nature is the method for drag minimization studies described in the paper.

Minimization of (aerodynamic) drag is an important goal in aircraft configuration design studies
as It helps to improve upon fuel efficiency. In these studies, it has been common practise to
decompose the aircraft drag in components that are to a large extent independent. Computational Fluid
Dynamics have created possibilities for drag breakdown that Is based on physical principles (Sect. 2.3
of Ref. I). In such a breakdown it is convenient to distinguish between viscous (boundary layer) drag,
induced (or vortex) drag and wave drag.

With respect to the choice of independent variables in drag minimization problems one may
distinguish different approaches. One is to use parameters defining the geometry as the independent
variables (direct numerical optimization). While this approach is feasible in two dimensions (see e.g.
Ref. 2) it is hardly so, at present, in the case of three-dimensional configurations because of the
lack of accuracy in the available three-dimensional codes In combination with the limited computer
power available (Ref. 3).

Yet an alternative approach may be adopted, namely the use of aerodynamic (load and pressure
distributions) rather than geometric shape functions as independent variables (Ref. 4). This approach,
called inverse numerical optimization (see Fig. I), involves the successive determination of optimal
target spanloads (using methods as described in the paper), target pressure distributions (optimal
with respect to the specified drag characteristics and providing the prescribed spanloads), and
corresponding lifting-surface geometries (using an inverse code). This process Is repeated until a
geometry is obtained having acceptable performances for all flight conditions.

This paper concerns the first step in the inverse numerical optimization approach: the
determination of optimal spanloads. In literature, various theoretical methods can be found for
determining spanloade for minimum drag. Almost all of them consider induced drag only in determining
optimal spanloads (see e.g. Ref. 5, 6, 7). Inclusion of other drag components in the optimization
procedure can produce substantially different minimum drag spanloads compared with Induced-drag-only
results.
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Methods that extend the induced drag minimization theory to include other components as well, and can
be used in preliminary aircraft design, are the subcrltical design -ode of Kuhlman (Ref. 8) and the
transonic optimization scheme of Mason (Ref. 9).

The method described in this paper provides capabilities for choosing the spanwise distributions
of lift, pitching moment, chord and thickness-to-chord ratio of lifting elements of an aircraft
configuration. The choices are optimal in the sense that they minimize induced plus viscous drag, or
induced drag only, while satisfying constraints on, for example, pitching moment and section lift
coefficients. Determining minimum drag spanloads, also the interaction between propellers and lifting
elements may be included in the procedure. With an optimal spanload, the wing can restore much of the
(rotational) energy loss associated with propeller swirl (Ref. 10. 11). The method may provide direct
input for more detailed aerodynamic design (e.g. the inverse numerical optimization procedure), but
may also be used for parametric airplane configuration design studies. In these parametric design
studies, the method is used to quickly assess the consequences of changes in the configuration of
(complex) aircraft.

In the following sections, an outline of the analysis and minimization technique developed is pre-
sented. Comparisons with other theories are given and the capabilities of the method will be illustra-

ted by some examples of application.

2 FORMULATION OF THE PROBLEM

It is assumed that the projection of the aircraft configuration onto a plane perpendicular to
the flight direction can be approximated by a number of straight line segments, representing the
various elements of the configuration. An example is shown in figure 2(s). The geometry description
can include wings (or parts of wings), tailsurfaces, pylons, winglets, etc. The planform geometries of
the configuration lifting elements can be described by the spanwise distributions of chord-length,
together with the coordinates of the 1/4-chord point locations, defining the planform sweeps (see Fig.
2(b)). The vortex sheets aft of the configuration are assumed to remain undistorted. The latter can be
argued to be a reasonable approximation in the case of planar optimal spanloads. It is assumed that
this also holds for optimal spanloads of non-planar configurations. The airplane lift and drag are
thought of as being composed of wing, tall and/or canard, fuselage and nacelle contributions, as
illustrated in figure 2(c). The lift of the fuselage is modelled using the principle of lift carry-
over from the wing, resulting in a constant distribution of bound circulation of the fuselage width.

If the interaction between propellers and lifting elements has to be considered as well, each
propeller is assumed to shed a helical vortex sheet that is not Influenced by the presence of the wing
(Ref. 12), and that Is confined inside a cylindrical "stream" tube parallel to the flight direction.
The velocity distribution inside the slipstream has to be known for a specified propeller and required
thrust.

The following problems are to be addressed:
- determination of optimal spanwise lift-distributions plus, if applicable, spanwise pitching

moment distributions that result in either minimum induced drag or minimum induced plus viscous
drag. In this procedure, constraints may be imposed on total pitching moment (trimmed aircraft).
section liftcoefficients (feasible airfoils), rolling moment and, if applicable, bending moment.
A part of the total spanwise lift-dlstribution may be specified in advance. In that case, the
induced (plus viscous) drag is to be minimized by adjusting the remaining part of the lift-
distribution.

- computation of the induced (plus viscous) drag for given (non-optimal) spanwise lift
distributions. For instance, to quickly quantify the penalties that arise from the use of non-
optimal loadings, to determine the performance under off-design conditions, or to estimate the
induced drag associated with flap deflection.

3 DETERMINATION OF DRAG AND LIFT

The aircraft is assumed to fly with a constant velocity in a uniform, inviscid and irrotational
medium. An expression for the induced drag in the Trefftz-plane can be derived by applying the
momentum theorem to a control surface enveloping the aircraft (Ref. 4, 13). Consider a control surface
S of the type as indicated in figure 3. Several subsurfaces of S can be distinguished: the Treffrz
plane (S ). a similar plane far upstream (S ), the top and bottom plane (S). the body surface (Si),
the shociave surface (S ). the vortex sheel surface (S ), the propeller surface (S ) and the sl p-
stream surface (ii). Rpplication of the conservation laws of momentum leads Vo the integral
expression:

{ ( pnx + ouqn I dS - 0, (1)
S

whrt S + 1 + +S +1 + S s
where S S u + ST + S. +B + Sp v SSt s

p is the (local) static pressure, q is the total velocity vector, o is the density, n Is the Vnit
outward normal to the control surface, and u is the component In the free-stream (x-)directlon of q.

t



Splitting-off the body pressure integral and realizing that q - 0 on S leads to the following

expression for the total pressure drag of the aircraft:

D - 0 pn
x 

dS - - ( (pn
x 

+ oUq) dS. (2)

SB S-SB

Working out this expression and splitting-off the wave drag integral the following Trefftz-plane

integral for the induced drag can be derived (see Ref. 14):

f ~ ~(H-H-)uI n

D - I P-p) + o(u-u )u- u dS P i3)

T 
-1 I D

H represents the stagnation enthalpy. D Is the slipstream diameter, J is the propeller advance ratio
(- u /D, where w is the propeller angular velocity), Q Is the propeller torque and n is the number

of propellers. P

Assuming small perturbations in the Trefftz-plane. the flow being isentropic, and using the law
of Rlot-Savart, equation (3) may be worked out further to obtain (see again Ref. 14):

1l * 2li/c - I / r(n)Vn (Odn + J r(,)0 p)dn + 1 C s (4)

S v S T  
Sv S T +II III

)

where

c* 2 { f - dS- P L 2)
Sref 

T

r is the bound circulation, v is the velocity induced in the Trefftz-plane normal to the vortex sheet

segment, and - (u ,v ,w )n 1s the (fixed) perturbation velocity in the slipstream of an isolated
propeller. n d~notes PrhY distance (spanwise parameter) along Svy

5
S . The last term in equation (4)

represents the magnitude of the "swirl loss" of the propeller. TIn the first right-hand term of
equation (4) the integration is performed over all lifting elements, in the second term the
Integration is performed over the lifting elements in the slipstream only. The local trailing vortex
sheet strength is equal to the derivative of the bound circulation at that spanwise position; so,
using the law of niot-Savart, the following expression for v can be derived:

n

v L dr( (n).( ex),n) d

Again, the line integral is taken over the projections of - lifting configuration elements
onto the Trefftz-plane. n(fl) is the unit vector normal to the position n, and e is the (downstream
directed) unit vector along the x-axis. The vector r(T,t,) denotes the vector from the spanwlse
position T to the spanwise position n. Integrating by part with resne' to T. equation (5) can be

rewritten into:

0n(n) - Sre 
2 

f f(r,) r T) do (6)

where

f(,n) I d (().(rf,") x ex) (7)2r S refU2 I r(T.n) I
z

The other term at the right side of (6) has disappeared since F 0 at the tree end of a lifting
element. Substitution of (6) in (4) yields:

CD rr f(r,') r(o) r(n) dTdn + 2 f(n)(Vp(r).(o))dr + * (8)

1 SrefU2

Thus, the optimal circulation distribution may be computed with the propeller and wing located
both far upstream, eliminating the 3D-computation of velocities induced by the wing on the propeller
and by the propeller bound vorticity on the wing. In fact, this expression underlines the correctness
of the postulation of reference 10 concerning the generalisation of the stagger theorem of Munk. The
generalized version of the stagger theorem allows the farfleld computation as It states that also for

propeller-wing combinations the "net force In the streamwise direction is independent of the

strearwise position of lifting surfaces with a given circulation distribution".

V
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Viscous drag

The viscous drag is derived for given airfoil characteristics. These airfoil characteristics
define the viscous drag at each spanwise station as a function of the local section lift coefficient.
An expression for the viscous drag can be derived using the (21), incompressible) DATCOM/Hoerner
formulae:

C S I + k(r/c) + 100 (t/c) Swet (9)dvisc F / Sref

C denotes the flat plate friction ,etilcient (depends on location of transition point and
local 1eynolds number, see Ref. 14) and , is the thickness location factor (depends on location of
maximum thickness), t/c represents the thickness-to-chord ratio. For common airfoils, the wetted
surface S is about twice the reference surface S

Applying thin airfoil theory and considering the velocity distribution and the drag contribution
of both the upper surface and lower surface Individually (hereby assuming the same class of pressure
distributions, see Fig. 4), expression (9) can be written in the form:

Cd - CF 1 + kup(Ut + u ) + 10' ( t + )4

+ C u t{I + kko(ui - u) + 100 (ut - u9)4 (

u and uz represent average perturbation velocities as a result of airfoil thickness and lift,
respectively:

1 and t (t/c) cos
--- A-

n

where 8 - Vr1 - MTcos
2
A (12)

A denotes the sweepback and M. denotes the (3D) undisturbed Mach number. C denotes the (3D-) lift
coefficient that is linked, according to the Kutta-Joukowski theorem, to the bound circulation (see
eq. 15). Substitution of (11) in (10) leads to an expression for the viscous drag as function of Ci
and t/c. It is plausible to assume, on the basis of DATCOM's formulae, that k varies continuously with
the position of the pressure recovery starting point xg (see Fig. 4):

k - 2 x-R - 8.26 ( R- 0.3 "2.5 - 1.6 x-R

Using this formula, k - 2 for xR /c - 0.3 and k - 1.2 for xR/c - 0.8, which corresponds with DATCOM's
formulae.

In the Cf-range of interest, the viscous drag function (10) is approximated by a polar of the
form

Cdvsc 9£(r(,))) - Cvis + K*(C,- C*)2, (13)

where the factors C IsI K and Ci follow from a least square fit to the function. Integration results
in the total viscous profile drag:

Cd (F(n),n) c(n)

C Dv fs c Sref  d. (14)

Expressions for lift and moments
An expression for the local lift follows from the Kutta-Joukowski theorem applied in the lift
direction:

* * 2 cos(9(n1))
CiYn) - gl(n) r(n) where gl

in) 
- c(.) (15)
I u(fl)c(fl) (

u(n) is the local upstream velocity for a lifting element at the position n. If (a part of) the
lifting element is situated in the slipstream, u(n) differs from the undisturbed velocity. V(n)
denotes the dihedral angle. The total lift of the configuration follows from integration:

CL - f g1 (r) r(n) dn where gl(n) - 2 cos(tin)) u(n) (16)

ref u-



If the section pitching moment distribution is not given, it can be deduced from the pressure
recovery point locations. For the class of pressure distributions given in figure 4, the next
expression for the section pitching moment Cm w.r.t. the quarter chord point x 1/4 can be derived:

C(C) C: - A* Ct (17a)

where

m I ( 4 (t/c) cos A 1)(ala4 '273

a, + a 2A- m
2

(al- ) (17c)

and

1 1 1 1 1 2
a , a 24 6xR + ; R u"

u u u
+ 1 1 12

a2 -= -+ R, x5
2 2R ~24 24 Ri 6 Ri.

Cz follows from (15). m and m are known constants. With the section pitching moment defined with
respect to the quarter-cbord polnt, the total contribution of the lifting elements to the aircraft
pitching moment w.r.t. the centre of gravity then follows from:

c - f g2(rn) r(n) dn 1 2 C:0) c
2
(n) u2(n) dn (18a)

SrefCrefU

where

22 0) - 2 u(n)A(xcg - A(n)c(n)) cos((n)) (18b)

SrefCrefU!

c denotes the length of the reference chord, and xc.g. is the longitudinal coordinate of the
coniguration centre-of-gravity.

If the aircraft configuration is asymmetrical, (e.g. a configuration with propellers all rotating in
the same direction), a rolling moment constraint CR w.r.t. the point n - 0 (in the plane of symmetry)
may be imposed:

C I g3 (n) r(n) dn (I9a)

where

g(
0
) 2 2u)2 fy(') - y(O)) cos (W(t)) + (() - z(O)) sin (4(n)) (19b)

refbrefU.

b is the reference span. Note that the rolling moment coefficient CR equals 0 if the aircraft
configuration is symmetrical.

Limitation in design ci, t/c. c. and M

In order t, ensure that the computer program works wi-h feasible airfoil characteristics, a
relation defining feasible combinations of (design) lift coefficient. (design) Mach number, wing
thickness-to-chord rario and pitching moment coefficient may be formulated. For supercritical
airfoils, a graphical representation of such a relation between t/c, ci and N is given in figure 5 for
c - -.110. Data tor other c -levels follow from the relation 6(t/c)/ic - -0.6. The relation can be
considered to represent a nondensed" section characteristics data base for a feasible class of
supercritlcal airfoils. This class is described by a relation between allowable combinations of design
c1 , M, t/c. c . The data base holds for 2D-airfoils. If a sweep angle A is applied, the 3D-values have
to be calculated from the 2D-values using the relations:

Ct(3D) - c1 (2D) cos
A  

Cm (3D) - c (2D) coo
2
i,

tt (3D) - t (2D) cos
A  

N (3D) - N (2D)/cosi.

The data base is used when imposing (local) lift coefficient constraints in drag minimization
procedures. In the case that the user provides pitching moment coefficient distributions, the
combination of tic, N and c directly leads to the upper limit of the allowed range for the (design)
lift coefficient. If the plching moment coefficients are not directly specified, the combination of
t/c and N only results in a feasible cm-cl area. In that case, the pitching moment coefficient

Fmmanlll~liljmnm~ limmlmm~J



distribution may be defined by relation (12), which further restricts the possible combinations of c
and c In this feasible ates. Both cm and c, are then found as part of the solution. m

It is emphasized that the "data base" of feasible characteristics is representative for a
certain class of airfoils. The user should check whether this data base is compatible with his own
experience. If required, the relation may be modified to his own experience.

4 DRAG MINIMIZATION

General

The numerical optimization of drag is based on an approach, In which the evaluation of double
integrals (see eq. 8) Is avoided. TLls is realized by first deriving analytically the necessary
optimality equations before doing any discretization. Discretization of the bound-circulation
distribution In the (single) integrals is perfonsed starting from these analytical necessary
optimality equations.

Analytical necessary optimality equations

The drag minimization problem can be stated as follows: determine the function r(n) that mini-
mizes the functional C D + CD vis subject to constraints imposed on CL, CM and, if required, on CR:

GI = L  L de

G - C  - 0 (20)

G - C - C Q 0

Also C (n) may be constrained:

Gd(n) - C1 (n) - C1de(n) 1 0 , n. (21)

4 E tdes

C Ldes CMdes and the (dimensionalized) propeller torque CQ are prescribed values for CL (eq. 16),

CM (eq. 18) and CR (eq. 19). C des(n) follows from the relation between c', t/c, cm and M as

described in the preceding section. Expression (8) and (14) specify the induced drag CD and viscous

drag CDvs c , respectively.

The problem may be solved through the introduction of Lagrange multipliers. That is, the
augmented integral

3
" C~i C~lc iZ Ai Gi f I(A)G4(n) dn)I C + C + . 1 +

is formed, where the Lagrange multipliers i Ci - 1,3) and P(O) are to- be determined. The next step
towards the solution of the optimization problem is to write I(n) . r(n) + 6r(n), and to form the
first variation I1 of I with respect to variations of r(n),

6i- f [2 f f(,,) r(,) d, + 2 ( ).n(n) +

SrefU2

*2 ,r, 3 (
+ 2 K (n) g, 

(
n) r(n) - 2 K (n)gl(n)Ct(n) + I Algi(n) + u(n)gln) ]r(n) dn (22)

In this variation, the parameters Vp, K and C,, and all geometry-related parameters, have fixed
values.

The necessary condition for the minimization of I is that the first variation vanishes. This
condition holds for any arbitrary function ir(n), hence the term between brackets in (22) must vanish
at all spanwise positions. In fact, this necessary condition for the minimization of I is nothing else
but the Euler-Lagrange equations of variational calculus. Upon substitution of the expression (6) for
f(T,n), the condition can also be written in the form:

2 ** 3 a

22 (Vn(n) + + 2Ka(n)gI (n)r(n) - 2Kn)g*(n)C*(n) + E Aig (n) + V(n~gl(1) - 0

SrefU p g n(23)

that must hold for all n. In combination with the constraint relations (20) for CL , C and C., and the
constraint for C (n) written in the form
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( des Vn 
(24)

0(,) 10,

the optimal bound circulation is determined.

It may be noted that, if only the induced drag is minimized (K - 0) in a flow without propeller
slipstreams (V - 0) and imposing the total lift constraint only, the necessary condition reduces to
Munk'a criterigm for minimum induced drag (Ref.15)

2 vn() + I(CL -C ) 0 Vn
2n CL

t
des

refU.

In words, "the induced drag will be a minimum when the component of the induced velocity normal
to the lifting element at each point is proportional to the cosine of the dihedral angle of the
lifting element at that point (vn - w0 cos V)".

Numerical approach

The necessary optimality conditions (23) for the drag minimization includes an Integral
expression for v . Direct integration can be done analytically only for the most simple bound
circulation distrfbutions. Thus, to solve the integral equation (23) by approximation, it is necessary
to assume a priori a convenient shape of the bound-circulation distribution function r(n). The
discretization model adopted here is the same as that utilized by Kuhiman (Ref.7) viz. a plecewise
quadratically varying bound circulation:

dr i(0) P + hi ( h S P 0 h
- + 2 -di = i-i 2h- i (Y - i-I)' -h hi (25)

where h is the half-width of the panel i. P is the panel coordinate: P - 0 coincides with the panel
midpolnd, while 0 is positive if located outboard of this point. Y and Y denote the trailing
vortex sheet strength at the panel ends. Using this discretization model and asuitable panel-spacing
technique, sufficiently accurate solutions can be obtained with a relatively small number of panels.

The integral expression (5) for the normal velocity v can be written as a summation of panel
integrals. Upon substitution of the discretization model, te following expression for vn induced at
panel j and at a distance T from its midpoint can be derived from (5) and (25):

2k1  Y I+Yi- +hI A(P,)dP+Y-Y1-1+
I

(T) - i 2 f A(,T)dP,)d (26)Vnj~
z  

' 2" i~ hi "i -h
i

h I I
where

n() . (r(o
T
) a )

A(0,
T

) - Ir(p,T)12 and T - (-hi hi

The summation is performed over all (2k) panels at both sides of the (xz-) plane of symmetry.
The integrals in equation (26) over each individual panel are evaluated analytically.

From equation (25) follows

Yl+31i Yi+Yi-I Yi-i-I 32

r(t) r(h l) .- h + I + _ -h2 S T h ) (27)
i 4 2 4h I(- I i

where
r(hi (Y.l

+ 
Y- 

) 
hmi

m

The summation is performed over all panels located outboard panel i.
Application of the necessary condition (23) at all panel midpoints, using expressions (26) and (27)
for v and r respectively, then results in 2k relations for the unknown trailing vortex sheet strength
valueD YI and Lagrange multipliers Ii and P

2k 3
B Y + g A + ug

5  
-bj, - 1,2k (28)

i I J I t pt i

where the Index j Indicates the panel at the midpoint of which the necessary condition Is Imposed.



Substituting the discrete bound-circulation model (25) in the equations (16), (18), (19) and (15) for
CL, C, C and C (n), respectively, these equations can be integrated analytically and can be

expressed In terms od the trailing vortex-sheet strength values 1" Together with the 2k-relations

(28) and the constraints (20) and (24) they form a system of linear equations for the unknown trailing

vortex-sheet strengths and Lagrange multipliers. This system determines the optimal spanwise

bound-circulation distribution that results in minimum drag.

The method developed automatically takes care of satisfying Helmholtz' theorem at configuration

element intersections, which is manifested by jumps in the bound circulation distribution. If a

symmetrical aircraft configuration is considered (no propellers, or a counterrotating pair of

propellers) this results In k unknown vortex sheet strengths YI and the range of j In equation (28)

reduces to J - l,k. In addition, the rolling moment constraint may be deleted.

In order to avoid rather complicated and computationally expensive integrals the drag components

are calculated using a numerLal integration rule, instead of integrating anlvtically. Using a panel

arrangement method with properly increased panel density in regions with comparatively large
v -variations, use of the midpoint rule already results in a sufficiently accurate approximation with

a relatively small number of panels. An alternative might be the Simpson rule.

Knowing the spanwise bound-circulations also other quantities of interest can be determined.

Examples are trimdrag, bending moment distribution, and the overall forces acting on the aircraft

components.

5 EXAMPLES OF APPLICATIONS

In this section, a number of typical examples is presented that demonstrate some of the
capabilities of the method developed. The examples do not represent actual design studies.

Induced drag only
Obviously, the accuracy of numerical induced drag methods is affected by the discretizatlon

model of the bound circulation distribution. It has been shown for a planar wing (Ref. 7), that

methods using piecewise quadraticalty varying bound circulations, are approximately fo,,r to five times

as accurate in computing the induced drag as a vortex-lattice method with the same equal-sized panel

arrangements. In figure 6, the present method is compared, for a planar wing, with the method of

Kuhlman (Ref. 7), in which also quadratically varying bound circulations are used. Although the

present method is less time-consuming than Kuhlman's method, it can be seen that the differences in

accuracy and convergence are very small; both methods approach the exact value of the induced drag
rapidly as the number of panels increases. Using 10 wake panels per semi-span, the mininum induced

drag of the planar wing is computed with an accuracy of about 0.2 percent.

For an non-planar configuration, the present method is compared with a result obtained by Lundrv

using a conformal-mapping technique (Ref. 16). In figure 7, the optimal bound circulations are compared

for a wing configuration with vertical endplates (or winglets). In figure 8, the induced drag values

are compared. As can be seen, the results of both methods agree well.

In figure 9, some of the system capabilities with respect to trimmed Induced drag minimization

are demonstrated for a transport-aircraft type configuration, a sketch of which is given. The minimum

induced drag as function of the centre-of-gravlty location for three different vertical positions of

the horizontal tail is shown In figure 9a. The spanwise C -distribution was specified (C-(n) - -. 106 I
0 n : b/2) and for the body pitching moment coefficient C - + 0.007 was adopted. TWIs figure

shows that for (conventional) cases of negative tail loads,' he minimum Induced drag increases with

increasing height 'f the horizontal tall. Note that the lowest values of minimum induced drag are

obtained for high-tall configurations with positive tall loads. This suggests that, from the point of

view of induced drag, there might be a preference for high-tail positions for configurations combining

relaxed static stability with active control technology.

In figure 9b, the influence of the tail-to-wing span ratio and the vertical position of the

horizontal tail on the minimum Induced drag is displayed for two different positions of the

centre-of-gravlty. It can be seen that, for a fixed height of the horizontal tail, the minimum induced

drag increases with decreasing tail-to-wing span ratio.

The inclusion of C (n)-constraints in the optimization procedure is realized using a relation

between c (des), c (des), M and t/c (see section 4). As an example, the same configuration of figure 9

is cons Idered formMl - .735 The limitations in design c , tic, c and M of figure 5 (supercritical

airfoils) are used. Instead of giving a specified spanwilse C -dls~ribution, now the pressure recovery

point locations have been given (x (n) - .5 1 0 1 bh). With this, a relation between C and

Ci Is specified (see eqw(17), (tho o 15.5 7 0 1 v 6 b/2). In figure I0, the ophimal

Cm-distribution Is compared with those of the "no wing-thickness constraint" option (x at 30 2

MAC). The figure shows that, in this particular example, the C9 -distribution has changed F69A constant

C over a portion of the wing. The inclusion of wing-thickness constraints results in an induced-drag

increase of about 2 2.
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Induced drag minimization including propeller slipstreams

in order to examine the effects of the propeller slipstream on the aircraft induced drag, the
axial and tangential velocities in the propeller slipstream have to be given. For a particular example
design condition, the distribution of propeller induced velocities of figure ii has been used (advance
ratio of J - 0.13 and a thrust coefficient of CT - 0.12).

For a wing configuration with two "up-inboard" rotating propellers, located at 25Z of the
semispan with a diameter-to-span ratio of 13Z, the optimal spanwise bound circulation distribution is
shown In figure 12. This distribution greatly differs from the optimal "clean wing" distribution that
is also shown in figure 12. With this distribution, the wing is capable of restoring much of the loss
associated with slipstream swirl.

In figure 13. the effects of the horizontal propeller position for different rotating concepts
of the propellers on the minimum induced drag coefficient have been plotted. As can be seen clearly
from this flgt e, two up-inboard rotating propellers lead to a most favourable configuration with
respect to the minimum induced drag. If the location of the propeller-centre is moved outboard,
induced drag will decrease for two up-inboard rotating propellers and will be a minimum when the
propellers are located at the wing tips (see also Ref. 11).

It is apparent from the results above that favourable lifting-element/propeller interference
resulting In lower induced drag or, equivalenty, induced thrust, may be produced by appropriate wing
design. The required C -distribution may be realized by, for instance, adjusting twist, thickness,
camber and chord distrfh'tions. The results obtained agree with those of Kroo (Ref.i0), who showed
that In some cases all of the swirl loss can be recovered.

Also proper design of the engine nacelle/pylon may possibly contribute to swirl loss recovery.
Figure 14 presents the optimum span loads for two configurations (with up-inboard rotating propellers)
one utilizing passive (streamline) shaping of the pylon and the other having an active loading on the
pylon. In this particular example, a 9 % reduction of the minimum induced drag is realized. Of course,
this is not an actual design case and the benefit can be realized only at the cost of a more
complicated detailed design, but it may be interesting to investigate the possibilities of a more
active role of the nacelle/pylon.

Induced + viscous drag minimization

The importance of including the viscous drag component in the minimization procedure is
illustrated by the next example. This example concerns a wing-canard configuration. In this example,
the pressure recovery point locations have been given ((x/c) - .5; (x/c) - .4), while for the
thickness-to-chord ratio (t/c) a constant value of 12 X has beeadopted.

In figure 15, the drag as function of the centre-of-gravity location is displayed. The upper set
of drag curves represent the sum of induced + viscous drag (only the viscous drag of wing and canard
is considered), while the lower curves are for the induced drag alone. By optimizing the sum of the

induced and viscous drag, the total drag is less than it would have been if only the Induced drag was
minimized and the viscous drag added afterwards. Of course, the induced drag alone is greater when the
sum of the drags is minimized than when induced drag alone is optimized. In addition, the total drag
minimum is located about 10% b/2 ahead of the minimum induced drag alone position, stressing the
importance to include (estimation of) viscous drag in configuration design studies.

In figure 16. the section C 'a for both minimum Induced-drag and minimum induced plus viscous
drag are given for the minimum (inuced + viscous) drag c.g.-position. As can be seen, the inclusion
of profile drag results in a reduction of peak section C, and an inboard shift of the spanloading for
the main wing.

The results agree with those of Mason (Ref. 9), who showed that a drag reduction of about 5%
could be achieved by including the profile drag in the optimization procedure.

Configuration design studies

The method developed can also be used for parametric preliminary design studies, for instance.
to assess the effect of changes in size, location, dihedral and sweepback of wing, tail or canard,
winglets, etc. The configuration may be of the conventional type (tail-aft) or nonconventional type
(canard, three-surface configuration, forward swept wing, etc.).

A typical example of a nonconventional aircraft configuration is the three-surface aircraft
(canard, wing and aft tail) given in figure 17. For the canard-wing and wing-tall configuration, the
specification of the centre-of-gravity position (static margin) and the trim condition are most
decisive to fix the balance of lift between the wing and control surface, but for the canard-w ng-tall
configuration the lift distribution among the surfaces can be chosen to reduce the total induced drag
while retaining trimmed conditions at a specified static margin. The three-surface circulation
distributions of figure 17 are only presented to illustrate the capabilities of the system and are not
meant to represent an actual configuration design study.



In the past couple of years, there has also been a renewed interest in aircraft configurations
with forward swep wings (FSW). According to reference 17, the application of forward swept wings may
result in, among others, lower induced drag and higher maximum lift coefficient as compared with an
aft swept wing (ASW). The problem of aero-elastic problems for forward swept wings may nowadays be
solved by using an aero-elastically tailored wing using composite mat-rials. Figure I8 shows that in
the case of forward swept wings, the tendency of spanwIse loading for minimum trimed induced drag is
to move inboard.

Configuration design studies may concern the composition of the total aircraft lay-out as well
as local alterations of the aircraft configuration as is the case, for instance, when the effective-
ness of winglers is investigated.

6 CONCLUSIONS

An induced (plus viscous) drag analysis and minimization method has been developed that provides
a low cost and useful tool, that can be used both for preliminary aircraft design purposes, and for
providing direct input to detailed aerodynamic design procedures. In the latter function, the method
provides bound-circulatlon distributions that may be used in specifying target pressure distributions
for inverse aerodynamic design codes.

Complementary to the determination of optimal spanloads, the method can also be used to support
selection of spanwise distributions of pitching moment, chord and thickness-to-chord ratio. In the
procedure, the interaction between propellers and lifting elements may be included. Compared to other
methods in this spirit, the present method is less time-consuming than near field methods and more
accurate than vortex-lattice methods. Comparisons with known solutions of other theoretical methods
have proven excelle-it agreement.

The examples shown In this paper Illustrate the importance of considering, early in the design,
all aspects that may influence the drag characteristics. The inclusion of, for instance, viscous drag
and/or propeller slipstreams may lead to other choices for the spanwise distributions of lift,
pitching moment, chord, and thickness-to-chord ratio than when only the induced drag without
propeller-slipstream is considered.

The method is fast and easy to use, and therefore very suitable for interactive design purposes
in which rapid configuration trade-offs have to be made. It has a wide field of application and may be
especially usefull to support the assessment of unconventional design concepts in which lack of
experience precludes good design decisions. Examples of unconventional concepts are three-surface
configurations, relaxed static stability, "active" nacelles/pylons. forward swept wings, etc. The
capabilities of the method are exploited more efficiently when used in a multidisciplinary d,,ign
environment,
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AERODYNAMIC OPTIMIZATION BY SIMULTANEOUSLY UPDATING
FLOW VARIABLES AND DESIGN PARAMETERS

M. II. Rizk
Sverdrup Technology, Inc./TEAS Group

P.O. Box 1935
Eglin Air Force Base, Florida 32542-5000

U.S.A.

SUMMARY
.11 unit vector along the P1 axis with

The application of conventional optimization schemes components definec' relative to the rotated
to aerodynamic design problems leads to inner-outer design parameter coordinate system
iterative procedures that are very costly. In this
paper, an alternative approach is presented based on L number of design parameters
the idea of updating the flow variable iterative
solutions and the design parameter iterative solutions Le measured model lift coefficient
simultaneously. Several schemes based on this idea
are applied to problems of optimizing advanced LF computed lift coefficient for model in free air
propeller designs and correcting wind tunnel wall
interference. Computations are performed to test the LT computed lift coefficient for model in wind
schemes' efficiency, accuracy, and sensitivity to tunnel
variations in the computational parameters.

M Mach number; also number of problems
SYMBOLS solved in parallel by the optimization scheme

c5  incrementing factor for optimization scheme na  number of iterations required for the
[.see Equation (9)] convergence of the analysis problem's

solution
c2  decrementing factor for optimization scheme

[see Equation (9)] 10 number of iterations required for the
convergence of the optimization problem's

C positive constant for chord method solution
[see Equation (7)] vector of design parameters

Cp power coefficient; also pressure coefficient P vector of design parameters relative ..

CpO desired power coefficient rotated coordinate system

D propeller diameter Pl 1'h componenet of design parameter vector

el unit vector along the P1 axis Pi 11h component of design parameter vector
relative to rotated coordinate system

E objective function
r radial coordinate

f constraint function
R blade tip radius

S solution of the flow governing equations
RE residual Euclidean norm

G 1h component of Vrelative to rotated

coordinate system Rna maximum residual

h tunnel height o angle of attack

I1 unit vector along the P1 axis with 00314 03/4 which corresponds to the power
components defined relative to the unrotated coefficient CPO
design parameter coordinate system

83/4 SR-3 blade angle at 75% blade span

Fr __lm aemal



-0 unperturbed blade angle distritbion 1. INTRtODUClION

3 1 blade angle dliri bution pert u catiott N ulieri -i opt imiization i attn of I he tool t,i-t aIII
aerodynaic des~gn. Tlie solutio otttf thte opt irtlizat i,

6P iticremtental vector used to uipidate tile vector problej ittettipts tio let erine i th h-sictor of designt

of design parameters par~aintiers P that iimoi z' lthe objecti futttetot
,4') P; ) sublject to ivi ottrailt s. where -I is thle

tPoitar mtaximoum incremental value allowed in -Atioit of tile flow e(ijiat iois. InI airfoil atid wing
updating the design parameters design ptroblems, P' cotaainis lii- cotfficitt oi lie

ptolytnotmials or the slhape fiintiius tused to (frileie

.1Al Mach number correction Iliftitig surface, whtili- tiay Ite chioseni to be, the
itittititizedt drag, sublject to tilentinut ,tf a

AN tnutmber of iterative steups at which P is iiziiiin allowalile lift valint he [lii-tli- 1 14 14.ioni

pueriodically tipdate(] E iiav also be chioseni to belx a ii .a~iiri- of tie
difference bit weei tile lsre",uire olttile lift intg uitrfai-

An, angle-of-attack correctiotn sidt a de-siri-i pressture (l ist ribluit ion.

smtall positive inicrementtal value usedi to CoietItI*oti al opi iiitzat oili i Intitils (e.g.,- iLt, teett
perturb the desigin paratmeters dlescent itiet toil and tilie roitjulae gradietttnt Iethil

are it erat ive lritci-ilri-s Ihat titeriiii, a veiliieice of
71 piropeller efficieticy solti onsPI f , p2 . ,t hat cittivrges to the opitoiuti

slitioti I . These mtethoidits reqiire the ivalitatioi of

1, paramteter determitnintg the allowable regioti ti'e oblject ive fuitnctioi atid conistrainlt fituntion imanty

iii designt parameter space for searching for times before thle opt tuitii soluiitioni iv dete-rinted.
the optimum solution [see Fqitioa (26)1 Sintie E is dlepentdenit oii tile soltutiotn - te flow

govering equiatiotis mtust be solvedl eachi timen E is
V cost of solving an optitmizationi problemt' evaliuate(]. 'Therefore, atty of the cotnventional

cost of solving L analysis probletts opt ittizatiott schiemiies bicotine a two-cycle (itnner-

ote r) iteirative procediire. 'The inn ter iterative c t( 11

Iv no, / na sit
1

ves theii atnaIsysis problemt for it-erat ively for a
giveit ite-rativi soltin tt, while tOle outter iterative
eve le dleterinits lit( optuni iiitii! iteratki l-I. lin tile

t- flow 'Iterative solutin iii ier-cat t r itet tiv e approach for sol vintg the (](-signt
pirolemi (Rehferentce-s I-5), the usual proce-duire is to
coupthle n existitng analsvsis code- ( wtitli solves d i, fuow

Superscripts tiquat ionis iiratisels for I giveti 1) ito ati op~timiization
code (which finds the opiut otiti iterat iseIy). The

n iteration number repietitive es,cuniiit of I time-consuiniig atna
1 

sis Cois

is (lie esottrce tif thle high cost oif this ajiproat It.
a optimumt value

Aui alti-ritat isi to the costl Isonveni-itionital twit-vs-rh
apptlroachi is tie siigle-cNycle applroach . 'This applroachi

Subscripts is biase-d ott tile idia of iudatintg lie flow stiiable
iiirtie si olut itits anid tile desigit parmite 11li-ratii

e ne-asiured ttipiel cotitition solti n itki n iditancoutsly. [lie ite-rative jirticitltre for
siolvintg (lie now- giovirnintg eqin ts (tile antalslis

F cotmipited free-air cotiditioti proll) is Iliodifteil so t hat tltu soltio jot oif thle
flow equiatins atitl thle dlesignt paramters 1) ar-

f corrected condition i upl~tte i-i- i toi-ncously. Thiiis resuilts itt the
suiccessively t itpritt-i aptprioximiatioits ( . P')

Af coordi nate system rotated by Itle ttod ifiel is-I iti-i = 1. 2 - t that conIisrg- to te si- oluion
scemne I I hits sat isft iig Ilit, optitiizat ion irihldeti.

W'itlIi t his aipplroaich, the tieit I for thle c-ostlIs itnnir-
S lboly sturface oiitir iti-ratisve pirice-idure :s elimuintuaed. Scheeis

biased il thIis appjroachi ar- pri-setnted belotw. [lie

T cottputted ttttntel cottdition ri-stilts tif apiilyintg thlesi sclie-s to aerots itatinic
probilemus are alsoi pri-si-tedi.

frie-streati cond
1
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rotated coordiniate systemt
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2. OPTIMIZATION PROBLEM determined by choosing a set of closely spaced points,
P = P, m = 1. 2 .... , M, and evaluating the

In the optimization problems considered here, the function E at these points. A curve showing the
optimum design parameter vector, P*, is determined variation of E with P may then be plotted and the
so that value of P* at which E is a minimum, E 1, can be

determined (see Figure 1). The objectivenPunction
E(P*; j) = ain E(P; j) (1) E(Pg; m) is dependent on the flow solution im- To

P evaluate E for a given Pm it is therefore necessary to
subject to the constraint choose an initial iterative guess for , which is

assumed to be the free stream flow, then the flow
f (P. i) = 0 (2) equations are solved iteratively so that im evolves v,

time until convergence occurs. The iterative flow
with the flow variable vector satisfying the flow solutions are therefore evaluated along M paths as
governing equation shown in Figure 2, with N iterative solutions

evaluated at each path where N is a number large
D( ) = 0 (3) enough to allow the solutions on all paths to reach

convergence. The iterative solutions E(PM; im)
subject to the boundary condition along those paths define a valley shaped surface, S

9 ,

as shown in Figure 3. The minimum value of the
B(o; P) = 0 (4) olbjective function is time dependent and is given by

E 9(1). The path of thispoint is given by P g(t). As
The flow governing equation, Equation (3), may be the solution converges, P g(t) and Eog(t) converge to
the Navier-Stokes, Euler, potential flow equations or P* and Emin'
an approximation of any of these equations. The
boundary conditions given by Equation (4) include 3.2 Steady-State Approach
boundary conditions applied at the body surface as
well as far-field boundary conditions. Schemes are This is the conventional approach to solving
presented below for solvirg the single equality optimization problems. It is a two-cycle (inner-outer)
constraint problem defined by Equations (1)-(4). iterative procedure. An optimization scheme is used
Extensions of these schemes to other constrained and to determine a sequence of successive approximations,
unconstrained problems are also presented. Pns, rn = 1, 2 ... , which converge to the optimum

value P*. This is the outer iterative process. Like the
3. OPTIMIZATION APPROACHES graphical approach, E is evaluated at different P

values as shown in Figure 1, however, the use of an
Different approaches may be used to solve the optimization scheme to choose these values leads to a
optimization problem defined by Equations (1)-(4). significant reduction in the number of these
In this section, a discussion of several of these evaluations in coM I Lrison to the graphical approach.
approach- s is presented. The discussion is limited to For each P value (P =Pm

s s
) the flow equations are

the one-design-parat.-ter problem, governedby solved iteratively (inner iterations) along
Equations (1), (3), and (4) with the vector P replaced P = constant paths, similar to those shown in
by the scalar P. This special problem allows the use Figure 2. However, it is possible to reduce the
of graphical illustrations to complement the discussion number of iterative solutions obtained on a particular
and is chosen for that reason. However, many aspects path by using the last converged outer iterative flow
of the discussion may be extended to the general solution as an initial guess for the present outer
problem defined by Equations (I)-(4). iteration. The conventional approach is labeled here a

steady-state approach because the design parameter.
The iterative procedure used to solve the flow P, is held fixed while the flow solution evolves in
governing equations determines a sequence of time. It is updated only after the flow solution is
successive approximations, in, where n = I, 2. converged to a steady state. In other words, P is
The flow solution therefore evolves gradually with n. updated on the basis of information obtained from the
It is possible to replace the n coordinate by a time-like steady-state curve shown in Figure 1. Information
coordinate I and to view the evolution of 4 as a time from the surface shown in Figure 3 is not used in this
dependent p.ocess. However, the time here is not process.
real. The time coordinate I will be used inter-
changeably with the n coordinate in discussi ns given 3.3 Time-Dependent Approach
here. For example, in which denotes the n' iterative
flow solution may be replaced by i(i), where I = n. In the time-dependent approach, the iterative

procedure for solving the flow governing equations is
3.1 Graphical Approach modified so that j and P are updated simultaneously.

In this case the multiple iterative paths, P =P,5
s ,

Th. point P* at which E is a minimum can be in = 1, 2,..., used in the steady-state approach are
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replaced by a single time varying path P = ptd(t). schemes here serves two purposes. They provide
The solutiyn E (t) aloyg this path is embeded in the additional examples of schemes that update the design
surface S'

d given by Et "(1. P). It is defined by the parameters and the flow variables simultaneously.
iterative solutions along time-dependent patbs parallel Moreover, results obtained from applying these
to Ptd(t). These paths are given by P=- P (t) + S schemes to optimization problems provide additional
I = 1, 2, .•., where SI is a constant for a given path. sets of data for determining the effects of updating the
The minimum value of the obkctive function is time
dependent and is giveji by E° (t). The path of this design parameters while tihe flow solution is
poit is given by Pot (1). As the solution converges, developing.
Ptd(t), ptd(t), Etd(t), Eold(t), and Etds(t, P)
converge respectively to P*, P*, ErI, Em , and 4.1 Scheme I (Parallel Scheme)
E(P). This approach updates P as g evolves in time.
It is a single-cycle approach, since it eliminates the This scheme is first presented for the single equality
need for the two-cycle (inner-outer) iterative constraint problem defined by Equations (1)-(4). It is
procedure. then extended to other problems.

Before developing a time-dependent scheme, it is 4.1.1 Single Equality Constraint
important to recognize some of the main differences
between the steady-state and the time-dependent The goal of the optimization scheme is to determine
formulations. In the steady-state formulation, the the values of the design parameters that minimize the
search is performed for a fixed target, P*, for which objective function, E, subject to an equality
E(P*) is the minimum of the fixed curve E(P). In constraint. A search must therefore be conducted in
the time-dependent formulation, however, the search the design parameter space P for the optimum
is performed for a moving target, potd(t), and the solution, P*. This optimization problem is most
objective function Etds(t, P) is a continuously conveniently solved in the rotated design parameter
evolving function. While the use of higher order space P, with the P1 coordinate normal to the
schemes which depend on information from a number constraint surface and the P1 coordinates, where
of iterative solutions may be advantageous in the I = 2.3 .... L, parallel to the constraint surf.ce.
steady-state formulation, iterative schemes should be For fixed values of the comnponents of P, let
limited to lower order schemes in the time-dependenf
formation, since diff "ent iterative solutions are not P ( n. P), n 0, 1, 2 .... (5)
obtained at the same time 1. Another important
difference between both formulations is that the be the iterative solution for the analysis problem,
iterative i and P solutions are noninteracting in the where 4, denotes the solution obtained by applying the
steady-state formulation, while they are mutually iterative scheme for solving the flow governing
interacting in the time- ependent formulation. In the equations once using gn as an initial guess. As for
latter case, the path P

t
d(t) should be chosen so that the analysis solution, obtaining the optimization

the flow solution converges in a number of iterations solution requires the repeated application of
comparable to that required for solving an analysis Equation (5) to update ihe flow field. While P is
problem with P held fixed. Large corrections applied held fixed in the former case, it is allowed to vary in
to P can cause the flow solution to be nonconvergent, the latter.
while extremely small corrections applied to P can
lead to a slow convergence of the optimization The vector of design parameters _ is updated every
solutions. Figures 4a, 4b, and 4c show cases in which AN iterations. Therefore,
the corrections applied to P are too small, acceptable,
and too large respectively, The actua path used in
the computations is that given by P (). -n+1 - _fn + 6En+l (6)
Computations are not performed for the path poId(t); where
however, that path miny be found if desired by
computing surface ST . 6P

n  
= 0, (n+l)/AN 1, 2, 3 ....

4. TIME-DEPENDENT SCHEMES In the iterative steps that satisfy the relation
(n+1)/AN = I, 2, 3 .. the incremental values for

The basic idea of updating both and P tIhe design parameters are given by
simultaneously can be used to develop a family of p =
efficient optimization schemes. Three of these -P[min - L -r[mn (C If" , 6 Pmaz)] (7)
schemes are presented here. The first, scheme I, is a
general scheme which can be used to solve problems pn I Pma n+
with different constraint conditions. The second and P1 = min/ '"'_+ A - t

third schemes (11 and 111) are applicable to a limited \ 1
class of problems. Nevertheless, including the last two I = 2, 3 ... , L (8)
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where

in i ) I 11 + +
1  (12)

are also computed. Here c is a small positive constant

A 2 1c1(rn+1+1)+c2 (r I+l 1)6P I+1-aN and 7: 1 1- 1,2 ..... L, are the set of orthogonal
(9) unit vectors along the axes of the rotated coordinate

s 1 P2 . -L . In Equation (10)
n+ - _ AE -

"a N  
AE' is given by

n1=-- 1 -1 (10)
I AE ,p+1ANi AE = E(P + , ; in) - E(pn; i n ) (13)

The purpose of AE' appearing in Equation (10) is to Scheme I is referred to as a parallel scheme becausedetermine the sign of OE/8P ,.which in turn the sign of the incremental change 6P n+1  of
determines the sign of the new incremental step along Equation (8) is chosen on the basis of comparing the
the P' direction, main iterative solution E(n; i) with a perturbed

solution E(P
1 + ( -1; i) " 

The paths along which
The incremental displacement in the design parameter these solutions are computed in the P-1 plane are
space introduced so that the constraint may be paralled to each other, as shown in Figure 5.
satisfied is taken in the direction normal to the
constraint surface and is determined by the chord While the optimization procedure is most suitably
method in Equation (7). The constant 6

Pma x sets an conducted in terms of the transformed parameters P11
upper limit on the magnitude of this incremental I = 1, 2 .... L. the flow solution is computed in
displacement. The incremental displacements given terms of the physical design parameters P 1
by Equation (8) are introduced along the coordinate I = 1, 2 -.. , L. To express the transformed design
axes, which are parallel to the constraint surface with parameters in Equations (11) and (12) in terms of the
the purpose of reducing the value of the objective original design parameters, it is necessary to use the
function. The sign of the incremental correction transformation equation, which relates these two sets
6Pn+l where 6Pn+lis the I

th 
component of the of parameters.

vector 6En+,, is cfosen to be opposite to that of
8E/OPT. The magnitude of the increment 6P"+ is -n+1 = 7A+1 pn+1
given by

where the orthogonal transformation matrix Tn+
1 is

= c (P1 i given by

with an upper limit given by 6Pm where C > 0. If Te+1 = 7+1 -n+ -n+1]

the signs of bP I  and P are in in+

agreement, then the last two iterative solutions P" he unit vector: ; is normal to the constraint
and P n-AN fall to one side of the point along the P1  surface At P = P and is given by-[
direction at which E is a minimum. In this case, c is
set equal to the constant cl, which is greater than 1. ;f+1 Vpn; ;n) / VKpn; hi 1

Increasing the magnitude of the step size in this

manner accelerates the approach toward the point where an estimate for G_, the P4 component of Vf, is
along the P1 direction at which E is a minimum. On given by

the ,ther hand, if the signs of 6P ,+1 and
bn- 1-,AN 4 thnP--dG 4 n n6P' 1 are not in agreement then pfland G_ IE1P + c n) - ipn;)]/(

p" "N fall on opposite sides of the point along the 1
P direction at which E is a minimum. In this case, c The Grami-Schmidt orthogonalization process, which
is set equal to the constant c2 , which is less than 1. uses a set 

of L linearly independent vectors to
Decreasing the magnitude of the step size in this construct a set of L orthonormal vectors, is used to
manner is necessary for convergence to the point along construct the unit vectors i , = 2, 3. .

the PI direction at which E is a minimum, along the rotated axes pn' , = 2, 3 . L. The
following equation is used for this purpose:

The updated components of the design parameter 1n+ 1

vector P are used to calculate the new flow -n+ , I I= 2, 3, L
iterative solution, a+ given by I

where
-n+1 = (,; .n+l) (11) .

\' J1n+1 = -n In T 1 ni+' i (6
In addition to the main solution given by Equation "I I k= ' k

(11), the perturbed solutions g , I = 1, 2 . L, In the initial iterative stLp, the vectors 1 are given by
given by " = 1I= 1,2 . , L, where 1 I = 1, 2. L,
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is the set of orthogooal unit vectors along the axes of scheme. Therefore, the modified scheme may be
the coordinate system P1 , P2 ..... PL" While the viewed as the original scheme with the exception that
flow variable vector j is updated each iterative step, the exact value for : I is replaced by an approximate
the coordinate system in the design parameter space is estimate in which the gradient of fin the direction of
rotated every AN iterations. The unit vectors i p like tile P1 axis, G1 , is not calculated but is estimated
the vector of design parameters P, are updated only using the same proportionality constant used in the
in the iterative steps that satisfy the relation chord method of Equation (7). Thus,
(n+l)/AN = 1, 2, 3 .....

The optimization scheme described above requires c
that L + I iterative problems be solved in parallel. In This is applicable for both the two-design parameter
addition to the main solution, L perturbed solutions problem and the general multi-design-parameter
are computed in which each of the design parameters problem.
in the transformed space El, E2 .... IPL is
perturbed. The computational costs and the In the optimization scheme developed here, corrective
computer memory requirements are therefore increments are applied to the design parameter
proportional to L + 1. A modification to this scheme solutions every few iterations of updating the flow
requires that only L iterative solutions be obtained, solutions. For convergence to occur, the signs of the
In the modified procedure, the perturbation solution increments must be chosen correctly to allow the
associated with the perturbed design parameter in the iterative solution to approach the desired solution.
direction of the P 1 axis, normal to the constraint The magnitudes of the increments are depen, nt on
surface, is not computed. This solution was used in the computational constants cl, e2, and C. Because
Equation (15) to compute G'" which is required for the design parameters are updated frequently during
the calculation of the vector i +

, which determines the iterative process, we are not concerned with
the direction normal to the constraint surface in determining the incremental step sizes that lead to the
Equation (14). In the absence of this solution, a new highest short-term convergence rate. In fact, this may
procedure for rotating the design parameter space be difficult to define, since the flow variable solutions
must be defined. The procedure is first explained for are continuously changing during the iterative process.
the case of a two-design-parameter problem, and then Our aim is to achieve design parameter convergence
it is extended to the general multi-design-parameter over a long term defined by the number of iterations
problem. required for the flow solution convergence. A wide

range of incremental step sizes should produce the
Figure 6 shows the design parameter space for a two- desired convergence properties over many iterations,
design-parameter problem. In the figure, the even though convergence properties over a few
constraint function values ., j, j are defined as iterations may differ. These comments apply to both
follows: of the schemes described above for determining the

design parameter space rotation. The direct
on= -_n; ) procedure for determining the design parameter space

rotation in the original scheme is replaced by an
fn ( n + n n) iterative procedure in the modified scheme. Since thisrotation is updated frequently during the iterative

+ _2; 2) process, this replacement should have no substantial
effect on the overall convergence of the solution.

In the modified procedure, the chord method, used in
Equation (7) to satisfy the constraint condition, is A potential problem exists when the modified scheme
used to rotate the design parameter space. The is used for rotating the design parameter axes. In the
rotation angle 69' 1 given by first AN - 1 iterative steps of solving the problem,the coordinate system in the design parameter space

ta~ qf r) 17 coincides with the original unrotated design parameter
M (17) space P1, P2, ."-' PL. At the ANI

A iterative step, a0 =new rotated coordinate system is determined. When
is used to rotate the coordinate system, where the Equation (15) for determining G N-lis used, we are
subscript M indicates that the modified scheme is guaranteed that the vector sfpoints in the direction
used. The angle 60,

n+l is now compared to the in which the constraint function increases.

corresponding rotation angle 6,n+ used in the Consequently, the use of Equation (7) will cause the
original scheme and given by iterative solution to approach the constraint surface.

n ~When Equation (1.5) is replaced by Equation (19) for
=,n

+ , L an-1  J0 W (18) determining G6 ,1 there is a possibility that the
computed vector i 1Nwill point in the direction in

This comparison shows that the term in - . in the which the constraint function decreases. In this case,
original scheme is replaced by /Cin the modified the assumption that C is positive is wrong, and using
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it will cause the solution to diverge. This occurs if the 1 = 2, 3, K
vector ;, is nearly in the direction of -VfaN-1; that
is, if the quantity n+l (p

V Nl and 7 was defined in Equation (16).

is close to unity. The probability of this occurring is In the case of an unconstrained problem, the problem
approximately 1:4 in a two-design-parameter problem is solved in the original, unrotated design parameter
and is reduced further as the number of design space. In this case Equation (7) is not used and
parameters increases. There are two suggested Equation (8) is applied for I values given by
approaches for overcoming this problem. In the first I = 1, 2., L.
approach, the initial few iterations are performed
using the original scheme for determining GY by In the case of a problem with inequality constraints,
Equation (15) in order to determine the correct initial the solution procedure at a given iterative step is
directions for the P1 axis. This may then be updated equivalent to that of an unconstrained problem, if
using the modified scheme, Equation (19), in the rest none of the constraints are effective, and it is
of the computation. Realizing that the probability for equivalent to that of a problem with K e equality
the potential problem to occur is smail, the second constraints, if Ke of the constraints are effective. For
approach uses the modified scheme from the the problem with inequality constraints, Equation (2)
beginning of the computation. If divergence does is replaced by
occur, then the constraint function is redefined to be
equal to the negative of the original constraint /k (P ;) < 0, k = 1, 2, . K
function, and the problem is solved again.

At the iterative step n + 1, the k'
h 

constraint is
4.1.2. Extensions of Scheme I effective if either of the following conditions is

satisfied:
Scheme I is applicable to optimization problems with fk (pn; in) > 6
a single equality constraint. However, this scheme
may be extended to more general problems such as where 6 is a small positive number, or
multiple constraint problems and problems with
inequality constraints. These extensions are now (pf . n)
briefly presented. Ifk (pfn; n), < 6, aE - n n)< 0

-k
In the case of multiple constraints, the set of Otherwise it is not effective.
equations

4.2 Scheme II (Branch Scheme)........................................ K
The perturbed solutions 4 are used only once every

replaces Equation (2), where K is the number of AN iterative steps to compute the perturbed objective
constraints. For this problem, Equation (7) is functions appearing in Equation (13). It is therefore
replaced by possible to modify scheme I so that it becomes

n+l Iunnecessary to compute to flow solutions along paths
P- "

,
Pma , parallel to that of the main solution. In this modified

scheme, Equation (13) is replaced by
1=1,2...K

Equation (8) is applied for values of I given by +

I = K+I, K+2. L and the unit vectors 1 are where
given by =

- (" P) (2,)
V~, ifP+, / ,, =;,((n; 2 +. (,22

'n+1 ~ K (22)
S= / IIn this formulhtion, Equation (12) is no longer used toln~l/7n~l, u+l

=-K+l, K+2. L calculate g1 a d Equations (21) and (22) are used
to compute H an I + only once every AN

where iterations. If AN is greater than or equal to five,~substantial savings in computational costs may occur.
+-I n+1 _ n(l- .1"n~t.-n+1 The paths along which computations are performed

I FrIe 7r ) rM I are shown in Figure 7.



12-5

It should be noted that scheme 1I will be successful as defined by
long as the signs of AE' predicted by Equations (13)
and (20) are in agreement. The magnitudes of AE- ( - En _)(en -
given by the two equations will not be in agreement,

even as the flow solution converges. For that reason where
scheme II may not be used in general for solving
constrained optimization problems. In these probllenis E" = E ( Pain)
Vf is used to determine the direction normal to the
constraint surface. Correct results are obtained only if en =e. (n; n)
the computed Vfconverges to the exact VJ. This f (M
does not occur for scheme II. The use of scheme II is e = f - MT$) ds

therefore limited to unconstrained problems solved in f MTS ds

the original (unrotated) design parameter space. An Because AE n is evaluated at two different time steps
exception to that is the constrained problem in which the sign of AE

n may not always agree with that of
the direction of the normal to the constraint is known (E/P . As tlong as the frequency at which this

(Reference 6). In this case the constrained problem is disagreement occurs is below a certain limit the
solved in the original (unrotated) design parameter scheme converges to the correct solution. The
space. Further discussions about schetne 11 are coordinate system in design parameter space is not
found in Reference 7. rotated. Therefore, the search for the minimum

objective function is conducted along constant P1

A possible variation of scheme 11 is shown in Figure 8. lines. In general, this will not lead to accurate
It combines elements from both schemes I and I1. determination of the optimum solution, however, in

the particular problem considered here the constant

4.3 Scheme Ill (Special Scheme) P1 lines are nearly parallel to the constraint curve.
The resulting error is therefore negligible. Further

This scheme is applicable to a limited class of two.- discussions about scheme III are found in Reference 8.
design-parameter problems with an e(qiiality
constraint. The objective function is assunied to be of 5. RESULTS
special fori and the constraint line is assumed to be
normnal to the P, axis in design parameter space. The optimization procedures described above were
Therefore, the solution is obtained in the orig ial applied to propeller design problems and wind tuniel
(unrotated) design parameter space. wall interference problems. The computations were

performed on the Cray X-M|P computer. The results
The scheme was developed for application to a of these computations are presented below.
particular problem arising from a transonic wind
tunnel wall interference correction procedure. In this 5.1 Propeller Design
procedure the free-air flowfield around the model is
computed. The design parameters are the model The optimization procedure I described above.
angle of attack a. and the free-air Mach num er rombined with the Euler analysis code developed by
M_., so that P = (OF, MwF). Their optinmm Yaiiainoto et al. (Reference 9), was used in
values are determined so that Equation (I) is satisfied Reference 10 to find the twist distribution for the
with Iblades of I lie eight-bladed SR-3 propeller with the

E= MFS - Mh) 2 
6 objective of maximizing its efficiency under the

f M  2 (23) constraint of a desire(] power coefficient given by
TS ds ('p = 1.7. The computations were performed for a

subject to the constraint free-stream Mach number of U.8 and an advance ratio
of 3.106. Let 3o3/4 be the blade angle at the 75%

f= LF - Le = 0 (24) blade span corresponding to the desired power
coefficient. We take the blade angle distribution,

where MFS is the computed Mach number 3,(r), correspomnding to this propeller as our base
distribution on the model surface in free-air aid 1!s 'ifiguration. A perturbation, 3(r), to the blade
is the corresponding Mach number distribution in the % ist dis ribut ion, .i ,,(r). was computed so that the
wind tininel. This is obtained from a wind runnel propeller efficiency would be maximized subject to the

flow computation which is performed prior to the free- power consitraint. The perturbation twist, distribution
air computation. The integrals in Equation (23) are is given by
taken over the model surface. / P1 P ((25)

In scheme Ill a single solution given by Equation (11) R/2 R/2

is computed. To determine the sign of OEn/ Pn it is where P1, P2, and P3 are the components of the

therefore necessary to use values of Eat differend vector (if design parameters P and R is the propeller
iterative steps. In this scheme AN = I and AE" is radius.
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Experimentation with the propeller analysis code for computing the performance. These results are
indicated that the flow iterative solution diverges presented first. They are then followed by results
when the blade tip angle exceeds a certain limit. To obtained by using an accurate formulation for
exclude the region leading to the divergence from our computing the performance. While there may be no
search in the design parameter space, the following interest in the first set of solutions for the purpose of
redefinition of the objective function was introduced: improving the propeller design, these results are valid

100 11(1 for the purpose of testing the optimization scheme. InE = - + ma 0.1 P (26) this case, -i is viewed as an objective function

without attaching a physical meaning to it. In the
where p determines the allowable search region. As second set of results it was necessary to use an
the value of p increases, the allowable search region accurate formulation for computing the performance
also increases. The value of p was taken to be equal in order to show the required blade shape modification
to 5.0 unless otherwise specified, for improved perfor: zance and the corresponding

increase in performance obtained by optimization.
The mesh used in the following computations consists
of 45 points in the axial direction, 21 points in the The iterative histories of the design parameters are
radial direction, and 11 points between adjacent shown in Figure 9, while the iterative histories of the
blades in the circumferential direction. Computations power and efficiency are shown in Figure 10. From
are initialized by the SR-3 flow solution, which these figures two distinct stages in the convergence
corresponds to a 54.9' angle at the 75% blade span. process of the solution may be identified. In the first
This initial solution was intentionally chosen not to stage, relatively rapid changes in the values of P, Cp,
be a close approximation of the desired solution. In and q occur as they approach the converged values of
all of the following computations, the modified the solutions. At the end of this stage, these para-
coordinate rotation scheme, which determines G, by meters are close to their final values. In the second
Equation (19) instead of Equation (15), is used unless stage, minor adjustments take place as the parameter
otherwise specified. Also, unless otherwise specified, solutions converge to their final values. The residual,
the initial iterative guesses for the design parameters RE, is a measure of the convergence of the flow field
are set equal to zero and the computational para- solution. Figure II compares the residual history for
meters c1 , c2 , C, 6P 2, 6PO3, 6 Pmar, e, and AN are the design problem, in which i is updated in addition
given, respectively, by 1.2, 0.6, 3.0, 0.5, 0.5, 1.0, to P, to the residual history for the regular anaiysis
0.0001, and 40. problem, in which only is updated while P is held

fixed. The figure indicates that modifying the pro-
The optimization procedure was applied to two- pellet geometry in the design problem as the iterative
design-parameter problems and to three-design- solutions for the flow variables are updated does not
parameter problems. For the two-design-parameter negatively affect the rate of convergence of the flow
computations, the values of P3 in Equations (25) and field solution in comparison to the analysis problem.
(26) are set equal to zero. Results for the two-design- In fact, the following results of our computations show
parameter problem are presented, followed by those that the convergence of the flow field solution is
for the three-design-parameter problem. For the accelerated when the design parameters are updated
initial flow solution, which corresponds to a 03/4 to satisfy the power constraint or to satisfy the the
value of 54.9', the value of Cp was I.I. Also the conditions of the optimization problem. For a regular
value of 8.3/4 was determined to be 58.067" The analysis problem with P set equal to P*, the number
design parameters predicted by the optimization of iterations required for convergence was 4710.
scheme are given by P*t = -2.83, P2 = 5.51'. The Hereafter, convergence is assumed to be achieved
predicted solution does satisfy the power constraint, when the magnitude of the residual, R E, is reduced to
The value of Cp corresponding to this solution is the value of 10 -. For a constrained solution in which
1.6999. The objective function, E, was reduced from the second component of the design parameter vector,
the value -0.839 in the case of the original design, P2, was set equal to the value P.2, while the first
with P1 = P2 = 0.0, to the value -0.908 in the case component was updated throughout the iterative
of the optimized design. The value of the efficiency process so that the constraint Cp = CPo would be
was increased from 0.839 for the original design to satisfied, convergence was attained after 4040 iterative
0.910 for the optimized design. steps, indicating an increased convergence rate relative

to tlhe regular analysis problem. For the design
The computed value of efficiency, which corresponds problem in which both P, and P2 were updated in a
to the optimized design, is approximately 5%6 higher manner that allows the constraint Cp = Cpo to be
than expected. Towards the end of this study it was satisfied and the objective function E to be min-
discovered that an approximate formulation used in imized, the number of iterative steps required for
the analysis code to integrate the aerodynamic forces convergence was further reduced to 3250.
near the blade base was the cause of this over-
prediction. The main portion of the results presented On the average, 0.972 cpu second was required for the
here was obtained using the approximate formulation iterative step in the design problem, while 0.403 cpu
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second was required for the iterative step in the parameters causes the value of the objective function
analysis problem. Therefore, the average design to increase. Therefore, the design parameters
iterative step required slightly more than double the predicted by the optimization scheme do indeed
cpu requirements for the analysis iterative step. In minimize the value of the objective function.
the design problem, two analysis problems are solved
in parallel. The additional cpu requirement for the Table 1. The Objective Function at the Optimum
design problem is mainly due to generating a new Solution and Perturbed Solutions for the
computational mesh whenever the design parameters Two-Design-Parameter Problem
are updated.

For a regular analysis problem, the computational Pi P2
mesh is generated only one time at the beginning of
the computation. For a design problem, however, it
is necessary to regenerate the computational mesh -2.83 5.51 -0.90773
whenever the design parameters are updated. In the -2.73 5.31 -0.90730
present computations, this was done once every 40 -2.93 5.71 -0.90728
iterative steps. The cost of mesh generation relative
to the cost of solving the flow equations was
acceptably low. As the value of AN decreases,
however, a point may be reached at which the cost of The sensitivity of the scheme's convergence to the
generating the mesh becomes excessively high, and it initial iterative guesses of the solution and to the
may represent a substantial fraction of the total computational parameters was tested by recomputing
computational cost. In this case, a possible the problem defined above with perturbed initial
alternative to regenerating new meshes, whenever the conditions and computational parameters. Table 2
design parameters are updated, is the use of shows the number of iterative steps, n., required for
approximate meshes that are generated by linearly convergence when different values are used for the
combining L+I reference meshes. The reference initial iterative solutions and the computational
meshes may be updated every J AN iterative steps, parameters. It is clear from the table that the
where J > 1. The need for making this convergence properties of the scheme are weakly
approximation does not arise here, as the propeller sensitive to the values of the initial conditions and the
analysis code used here has relatively slow computational parameters. Needless to say, there is
convergence properties and, therefore, the appropriate an optimum set of values for these parameters that
AN value is relatively large. However, the use of maximizes the convergence rate of the scheme for a
accelerating schemes, such as the multigrid scheme, given problem. However, within a relatively wide
would allow the AN value to be sufficiently low to range of these parameter values, good convergence is
require the use of the mesh approximation discussed achieved. This is due to the frequent updating of the
above. design parameters in the course of solving the

problem. The cpu requirement for the average
We have performed a single computation using the iterative step is approximately the same for all the
exact formulation for calculating i 1 , as given by cases solved, except for the case in which AN = 25.
Equation (14), with G, computed by Equation (15).
This formulation requires solving L+1 problems in Table 2. Effect of Perturbing the Initial Conditions
parallel instead of L problems, in the case of the and the Computational Parameters on the Scheme's
approximate formulation given by Equation (19). Convergence, for the Two-Design Parameter Problem
The average iterative step for this computation
required 1.474 cpu second. The number of iterations
required for convergence was 3425. Comparing these "1 P02 AN C eI  c2
values to the corresponding values for the
approximate formulation indicates that there is a
strong advantage in using the approximate 0.0 0.() 40 3.0 1.2 0.6 3250
formulation over the exact formulation. 3.0 -5.0 40 3.0 1.2 0.6 3690

0.0 0.0 25 3.0 1.2 0.6 3376
To verify that the computed solution is indeed the 0.0 0.0 40 4.5 1.2 0.6 3252optimum solution, solutions were computed that were 0.0 0.0 I40 6.0] 1.2 0.6 3250

slightly perturbed from the optimum predicted 0.0 0.0 40 3.0 1.5 0.6 3333
solutions but that satisfied the power constraint. 0.0 0.0 40 3.0 1.2 0.4 3120
Table I compares the values of the objective function 0.0 0.0 40 3.0 1.5 0.4 3281
for the solution predicted by the optimization scheme, -

shown in the first row, to those for the perturbed
solutions, shown in the second and third rows. It is The cpu requirement for the average iterative step in
apparent from the table that perturbing the design this case is given by 1.078 seconds, in comparison to
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approximately 0.972 second for the other cases. This scheme do indeed minimize the value of the objective
is due tq the increased frequency of generating the function.
computational mesh in the case with AN = 25.
Figures 12 through 14 show the iterative histories for Table 3. The Objective Function at the Optimum
P1, P2 , n, Cp and RE for the case in which the initial Solution and Perturbed Solutions for the Three-Design
iterative guesses for the design parameters, P

0 
and Parameter Problem

P0, were perturbed. Among all the perturbed
computations, the rate of convergence for this case
was affected the most.

P1  P 2  P3  E

The computations performed above for the two-
design-parameter problem were performed with a
value of 5.0 for I. To perform computations that -2.77 4.50 -1.20 -0.90026
allow both parabolic and linear modifications to the -2.87 4.50 -1.45 -0.90011
blade angle distributions, it was necessary to reduce -2.87 4.69 -1.20 -0.89986
the value of p to 4.0. The three-design-parameter -2 67 4.50 -0.93 -0.90012
optimization computations were solved using this -2.67 4.30 -1.20 -0.89988
value for p. The main two-design-parameter
computation was also repeated using this value for p
to allow a comparison between the two-design- Computations were performed using the accurate
parameter and the three-design-parameter results. formuiation for computing the propeller performance.
The optimum values of the design parameters for the In these computations it was found that p responds to
two-design-parameter problem with p = 4.0 were changes in the design parameters at an iteratively
found to be given by P* = -2.35" and P7* = 4.56'. much slower rate than that associated with the first
The value of (p corresponding to this solution is set of computations. For that reason it was necessary
1.6999. The objective function E was reduced from to reduce the value of c1 to 0.98. All other
the value -0.839 in the case of the original design, computational parameters were set equal to their
with P1 = P2 = 0.0, to the value -0.897 in the case same values used in the first set of computations. In
of the optimized design. The value of q was increased this set of computations, it was determined that
from 0.839 for the original design to 0.900 for the )303/4 = 57.648. The value of Cp for the initial
optimized design. As expected, the magnitudes of flow solution, which corresponds to a #3/4 value of
both E and r determined with p = 4.0 are less than 54.9', was 1.2. By optimizing the blade shape for the
those determined with p = 5.0. As the value of p two-design-parameter problem, the value of the
decreases, the restriction on the allowable search efficiency was increased from 0.8229 for the original
region in the design parameter space increases. In the design to 0.8233 for the optimized design. For a
two-design-parameter problem, 3235 iterative steps regular analysis problem with P set equal to P* the
were required for convergence. The cpu requirement number of iterations required for convergence was
per iterative step was 0.972 second. The optimum 4320. A comparison of this number with the number
values of the design parameters for the three-design- of iterations required to solve the optimization
parameter problem with p = 4.0 were found to be P7 problem, 3260, shows that the cost of solving the
= -2.77', P= 4.50', and P -1.20'. The optimization problem is approximately twice the cost
corresponding values of Cp, E, and ) are given by of solving a regular analysis problem.
1.6999, -0.900, and 0.905, respectively, indicating a
superior design to that achieved by using only two In the computations presented above, the effect of
design parameters. The number of iterative steps varying the linear term of Equation (25) on the
required for convergence was 3228, while the cpu propeller efficiency was investigated. To investigate
requirement per iterative step was 1.459 seconds. The the effect of varying the quadratic term in Equation
iterative histories for P1, P2 , P3, q, Cp, and RE ae (25) on the propeller efficiency, a computation was
shown in Figures 15 through 17. performed in which P3 was allowed to vary while P2

was set equal to zero. !n this case, the design
To verify the accuracy of the computed solution, parameters predicted by the optimization scheme were
several solutions were computed that were slightly given by P7I = -0.79', P_' = -2.07'. The value of
perturbed from the optimum predicted solution but Cp corresponding to this solution was 1.7000, and the
that satisfied the power constraint. Table 3 compares value of I was 0.82549. The number of iterations
the values of the objective function for the solution required for convergence was 3980. A comparison of
predicted by the optimization scheme, shown in the the values of q for the two cases in which (P-' P-*)
first row, to those for the perturbed solutions shown and (P7, P7) were the design parameters shows that
in the following rows. It is apparent from the table the introduction of a quadratic perturbation to the
that perturbing the design parameters causes the twist distribution is more effective in increasing the
value of the objective function to increase. Therefore, efficiency than the introduction of a linear
the design parameters predicted by the optimization perturbation.



Finally, the optimum values of tire design parameters optimization problem, the flow is compu,-. around
for the three-design-parameter problem were found to the model in free air. The design parameters P, and
be P1 = -3.34% '2 = 3.92', and P3 = -3.23*. The P2 are the model angle of attack, oF, and the free-
corresponding values of Cp and rl are given by 1.7000 stream Mach number, MF, respectively. They are
and 0.83291, respectively. It is apparent that using a deemined so that the objective function given by
combination of linear and quadratic perturbations in Equation (23) is minimized subject to the constraint
tire blade angle distribution is much more effective for given by Equation (24). The Mach number
improving the efficiency than using only one of these correction, AM, and the angle-of-attack correction.
distributions. Relative to the original SR-3 design, Aa, are given by
using both perturbed distributions increased the
propeller efficiency by 0.0100. This is compared to a AM= MaF - Mt ; An = n_ - T
value of 0.0026 for the quadratic distribution alone
and a value of 0.0004 for the linear distribution alone, and the corrected Mach number and angle of attack
The number of iterative steps required for convergence are then found from the relations
was 4380 in comparison to 4460 for the regular
analysis problem. M ,f = M_, + AM ; of = a, + Au

The iterative histories for P, 1, Cp. and R; in the The flow was assumed to be governed by the Euler
second set of computations, not presented here, are equations. The flow solver used was based on a finite
similar to those of the first set of computations volume discretization. A rmultigrid strategy together
(Figures 9 through 17), and may be found in with a multistage time-stepping scheme were used to
Reference 11. advance the flow solution to a steady state as rapidly

as possible. Details of the dissipative terms, the
Figure 18 compares the optimum blade angle multistage scheme and the riultigrid methrd. are
perturbations from the SR-3 baseline design predicted given in References 14-16. Some results of applying
for the cases of linear, quadratic, and combined linear the optimization procedures to the wall interference
and quadratic shape functions. Curve C, which gives problem in References 12 and 13 are presented below.
the blade angle perturbation distribution for
maximum improvement in efficiency, shows that the The correction procedure was applied to a wing/body
efficiency of the SR-3 propeller can be improved by combination consisting of an ONERA M6 wing, with
reducing the blade angle distribution both at the hub a wing span and maximum chord of 2.4 and 0.6737
and at the tip. This explains the observed weak unit lengths, respectively, mounted on a cylindrical
sensitivity of the propeller efficiency to linear body of a 0.2-unit-length radius. The model was
variations in the blade angle distribution. The use of assumed to be tested in an open jet with zero pressure
a linear shape function allows an increase in the blade perturbations along its boundaries. The tunnel height
angle at either the tip or the hub positions and a and width considered were 2.0 and 4.0 unit lengths,
decrease in the blade angle at the other position, respectively. The computational domain consisted of
Therefore, the positive effect on efficiency resulting half the flow field by including the plane of synnietry
from the perturbed blade angle distribution at one of as one of its boundaries. The computational
these positions tends to cancel the negative effect parameters 6e, c. c2. C, and bPmax were assigned
resulting from the perturbed blade angle distribution the values 0.005, 1.2, 0.6, 0.3, and 0.2 respectively.
at the other position leading to the apparent The initial guess for the flow solution was set equal to
insensitivity of the efficiency to linear variations in free-stream conditions. A 72x24x12 mesh was used
the blade angle distribution. The maximum for the tunnel computation. while a 72x32x12 mesh
improvement in efficiency obtained here resulted from was used for the free-air computation. The free-air
the use of linear and quadratic shape functions, mesh and the tunnel mesh were identical in a region
Further improvement may be obtained by using other bounded by the tipper and lower tunnel walls and the
shape functions, wing tip. Beyond the wing tip, the meshes did not

coincide. The experimental conditions were given by
5.2 Wind Tunnel Wall Interference Corrections

Mo = 0.84 and L, = 0.20.
References 12 and 13 present a wall interference
correction procedure which is divided into two main In the first step of the correction procedure, the tunnel
steps. In the first step the flow is computed around flow is computed and the angle of attack, a T' is
the model in the wind tunnel subject to measured determined. It was found to be given by
boundary conditions at the tunnel walls. The model a T = 2.777. In the second step of the correction
angle of attack, enT, that causes the computed model procedure, the free-air flow is computed and the
lift, LT , to match the measured lift, Le, is determined parameters P1 and P2 are determined by using
by the chord method. The Mach number distribution scheme II, where
on the model surface, MTS, is also determined in this
step. In the second step, which is formulated as an P1 = sF and P2 = MF -
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Their values were found to be given by aF - 2.468 of M=F is essentially converged. Only minor
Id M -F = 0.833. The angle-of-attack and Mach variations are observed in the value of MoF beyond

numbe. corrections are, therefore, given by the initial stage. The iterative history of MF
An = -0.309', and AM = -0.007. Figure 19 shows resulting from using scheme IllI is shown in Figure
the iterative histories for aF and LF, while the 22b. An initial stage of about 60 iterative steps of
iterative history for MoF is shown in Figure 20. rapid variations is observed in this figure. The
Figure 21 compares Rinaz for the second step in the solution beyond this point seems to be essentially
correction procedure, in which is updated in converged. However, at approximately the 80

t 
and

addition to a F and M F, to Rmaz for the regular the 2 3 0 1A iterative steps, a rapid departure from the
analysis solution, in which only i is updated while 

0
F apparently converged solution takes place. Within

and MF. are held fixed. The figure indicates that about 25 iterative steps in both cases, an essentially
the convergence rates for the analysis and the converged solution is observed again. Many
correction schemes are comparable. The high- computations were performed using scheme I11, for
frequency oscillations apparent in the curve associated different test conditions. The appearance of local
with the correction procedure are due to the spike-shaped deviations is a common feature among
introduction of perturbations in the flow field as MoF these solutions. However, the size of these spikes and
is updated. The computational requirements for the the frequency of their occurrence depends on the
free-air correction scheme and the analysis scheme are particular problem being solved. In scheme I, the

1%, .. e. The first of these computations incremental value 6P 2 is determined by comparing
required 153 cpu seconds, while the second required two objective functions at the same time step. In
150 cpu seconds. For the uncorrected free-air flow scheme III, this value is detemined by comparing two
(MooF = 0.84, ay = 2.777"), the values of LF and E objective functions at different time steps. Scheme III
are given by LF 0.235, E = 5.2x10- 6

. For the functions properly as long as the dependence of the
corrected free-air flow (MooF - 0.833, 0

F = 2.468'), objective function on the parameter MooF is stronger
these values are given by LF - 0.200, E = 6.92x10- . than its dependence on time. As its dependence on
The corrections therefore achieved the goal of time becomes comparable or stronger than its
satisfying the lift constraint and of reducing the value dependence on M-oF, the computed 6P2 values no
of the objective function. longer lead to convergence to the optimum solution.

The local divergence shown in Figure 22b is due to
Scheme Ill was applied to different three-dimensional the solution's weak dependence on MooF as the values
configurations with success. However, problems of 6P 2 become small. As the local divergence occurs,
developed when applying 't to two-dimensional the value of 6P 2 increases, causing a stronger
configurations, as the supersonic bubble size increased dependence on MwF and causing reconvergence. In
beyond a certain limit. To demonstrate this problem other words, the process that takes place at the spikes
the procedure is now applied to a NACA 0012 airfoil is self-stabilizing. It is, theretore, possible to use
tested in an open jet of height h = 3.6. The airfoil is scheme III to determine a solution by simply ignoring
assumed to have a chord of unit length and to be the local solutions at the spikes. However, as the
located in the middle between the upper and lower supersonic region increases in size, the size of the
boundaries. A 72x64 mesh is used for the tunnel spikes also increases. Eventually, it becomes no
simulation and a 72x96 mesh is used for the free-air longer possible to use scheme Ill for determining valid
simulation. The airfoil lift coefficient and the tunnel solutions. Figure 22c shows the iterative history of
Mach number are given by Le = 0.35 and M-,. resulting from . -ing scheme III in the same
M-e =0.7. problem solved above, but with a value of Moe of

0.75 rather than 0.7. It is apparent that a converged
In the first step of the correction procedure, the wind solution in this figure is no longer identifiable.
tunnel flow is computed and the angle of attack a T is Therefore, scheme IlI is no longer useful in
determined. In the second step of the correction determining a solution.
procedure, the free-air flow is computed and the
parameters oeF and MoF are determined. The initial Figure 23 shows the history for the maximum
iterative values of crF and M=F are chosen to be residual, Rmaz, for the three cases corresponding to
equal to aT and M=e, respectively. The initial flow Figure 22. While the effect of the spikes is seen to be
field solution is set equal to free-stream conditions. local and limited to a few time steps in Figure 22b,
The parameters 0 '2, c1, c2, C, 6Pmax , AN, and f the recovery to the pre-spike level is seen to take a

are given, respectively, by 0.005, 1.2, 0.6, 0.3, 0.2, 4, relatively longer time interval in the case of the
and 10-S .  

maximum residual, as indicated in Figure 23b, which
shows that, beyond 300 time steps, the maximum

The iterative history of M F resulting from using residual oscillates about a fixed value. The
scheme I is shown in Figure 22a. In this figure, an computation was continued to 800 time steps, and the
initial stage of about 150 iterative steps is identified oscillatory behavior was found to continue. This
in which relatively rapid variations in the value of behavior is due to the same process that leads to the
M . take place. At the end of this stage, the value local divergence observed above. As indicated above,
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at certain stages of the computation, the signs and scheme Ill. This is due to the requirement of
values of 6P 2 are no longer chosen in a manner that computing two solutions in parallel when scheme I is
causes MooF to approach its optimum value. If used. While scheme Ill updates o F and M_ F each
conditions are such that the sign of 6P2 remains iterative step, scheme 1, through the parameter AN,
unchanged for a large number of steps, then the local allows the user to specify the frequency of updating
divergence observed above will occur. On the other these parameters. In the present computations, these
hand, if the positive and negative signs of 6P2 are parameters were updated every four iterative steps.
reasonably well balanced, then the oscillatory We did not attempt to determine the value of AN

behavior observed in Figure 23b occurs. It should be that maximizes the rate of convergence. Therefore,
noted that, even though the maximum residual may there is a good possibility that the efficiency of

no longer converge, the level at which this occurs in scheme I can be improved over that indicated.
Figure 23b does indicate that, for practical purposes,
the solution is converged. The uncertainty caused by Table 5. A Comparison of the Efficiency of the
scheme Ill in this particular problem should be of no Optimization Schemes
practical concern.

Table 4 compares the accuracy of the schemes I and analysis scheme I scheme III
Ill. The exact solution was obtained by solving a
series of problems with different values of Moo F . In Number of 92 268 174
each problem the value of aF, which satisfies he lift Iterations
constraint, was determined by the chord method. In CPU Seconds 23 137 44
each of these problems, the objective function was
computed. The exact solution is the solution that
results in the minimum value for the objective
function. It does appear from the table that the The above computations were performed for a ca-se in
results obtained by each of the two schemes are which scheme Ill functions properly to allow
accurate and the errors are within acceptable levels, comparison between that scheme and scheme I in the

range in which it is valid. Scheme I was applied

Table 4. A Comparison of the Accuracy of the successfully to cases at high Mach numbers
Optimization Schemes (Reference 12) in the range where scheme Ill cannot

be used. An example of these cases is defined by the
test conditions h = 4.6, M, = 0.8 and L. = 0.35. A

exact scheme I scheme Ill 72x80 mesh was used for the tunnel simulation and a
72x 112 mesh was used for the free-air simulation.

Ac - 1.6000" - 1.5999* - 1.5981' The first step of the correction procedure determined
AM -0.0062 0.0062 -0.0065 an a. value of 2.8296'. Figure 24 shows the iterative
error in 0.0% 0.0% 0.1% histories for M_ F, o F , LF and Rmar in the second

Ac step of the correction procedure. This step
error in 0.0% 0.0% -4.8% determined an a F value of 1.6488' and an AIF value

AM of 0.7871. A comparison between the solution
E 8.97x10

- 4  8.97x10-
4  8.98x10

-4  obtained in the second step and a regular analysis
solution indicates that 246 iterations and 143 cpu
seconds are required for the present solution to
achieve convergence, while 66 iterations and 19 cpu

To compare the efficiency and relative costs of the seconds are required for the analysis solution to
two schemes, it is necessary to set a convergence achieve convergence. The correction results are given
criterion. The convergence criterion used here by
assumes that convergence is attained when
Rma z = 10-

4 . At this value of the maximum Ac = - 1.1808', AM = -0.0129, EM = 3.54 X 10
- 4

residual, it is found that the values of Ao, AM, and
E are all essentially converged. Based on this '1 hese values are identical to the exact solution.
convergence criterion, Table 5 compares the number Figure 25 presents a comparison between the pressure

of iterations and the computational time required for on the airfoil surface for the wind tunnel flow
convergence for the different schemes and for a regular (MT = 0.8, aT = 2.8296"), the free-air flow at the
analysis solution. It is clear from the table that uncorrected conditions (M-F = 0.8, OF , = 2.8296")
updating the angle of attack and the Mach number in and the free-air flow at the corrected conditions

addition to the flow variables resulted in reduced (M~, F = 0.7871, OF = 1.6488'). As indicated from
convergence rates relative to that of an analysis the figure, the correction procedure does accomplish
problem in which only the flow variables are updated. the goal of determining the free-air corrected

The table also indicates that the computational time conditions (OF, MoF) with aerodynamic properties

per iteration required for scheme I is double that of nearly matching the corresponding properties for the
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tunnel conditions (aT, M The value of E is where n' is the number of iterations required for
reduced from 384.36 x 0- for the free-air flow at the convergence, when solving the optimization problem,
uncorrected conditions to 3.54 x 10-4 for the free-air and na is the corresponding number of iterations

flow at the corrected conditions, required for convergence, when solving the analysis
problem. A a value of one indicates that updating

Scheme III was applied in References 8 and 17 to the the design parameters while the iterative flow solution
problem of wall inteference correction. There, evolves has no effect on the convergence of the flow
however, the transonic small disturbance equation was solution, while a values which are less than one and
assumed to be the flow governing equation and the greater than one indicate accelerating and decelerating
solution was obtained by successive line convergence effects, respectively. To compare the
overrelaxation. efficiency of different schems, it is convenient to define

the parameter v, which is the ratio of the cost of

5.3 Efficiency of Optimization Schemes solving the optimization problem to the cost of
solving L regular analysis problems. It is given by

Schemes I and II were applied in this paper (P) and in
Reference 6 to propeller design problems (PD). =

Schemes I, II, and III were applied in this paper in
References 7, 8, and 17 to wall interference correction where
problems (WIC). Scheme II was applied in
Reference 18 to airfoil design problems (AD). In these fMIL for scheme I
applications the Euler equations, the potential flow A = (AN + L + Z) / (LAN) for scheme II
equation and the transonic small disturbance (TSD) 1/L for scheme [Il
were assumed to be the flow governing equations.
The potential flow and TSD equations were solved by M is the number of problems solved in parallel for
successive line overrelaxation (SLOR), while the Euler scheme I; Z takes the values of I and 0 for
equations were solved by method A, described in unconstrained and constrained problems, respectively.
References 9, method B described in Reference 16, or
the multigrid method C based on the schemes of Table 6 compares the parameters v and a for different
References 14-16. One-, two-, and three-design- problems solved in this paper and in References 6, 7,
parameter problems were solved. 8, 17, and 18. All problems satisfy a single equality

constraint, except those of References 7, 8, and 18,
The effect of updating the design parameters while the which are unconstrained. The table shows that good
iterative flow solutions evolve, on the convergence of convergence rates for the flow iterative solutions are
the flow solution, is measured by the parameter a possible even if the design parameters are allowed to
given by vary as the flow solutions evolve. The table also

no shows that it is possible to solve an L-design-
c-- parameter optimization problem at a cost equal to L

times the cost of solving the analysis problem. It

Table 6. Efficiency of Solving Optimization Problems

Flow Method of
Problem Eqs. Solution Scheme L N (7 Ref.

PD Euler A I 2 2 0.7-0.8 0.7-0.8 P
PD Euler A 1 2 3 0.7 1.1 p
PD Euler A 1 3 3 0.7-1.0 0.7-1.0 P
PD Potential SLOR 1I 3 - 1.1 2.2 6
WIC Euler B I 2 2 2.9-3.7 2.9-3.7 P
WIC Euler B Ill 2 1 1.0-1.9 0.5-1.0 P
WIC TSD SLOR II I - 0.7-0.8 1.1-1.2 7
WIC TSD SLOR I 2 0.8-1.5 0.7-1.4 7

WIC TSD SLOR II 3 1.4-1.6 0.9-1.1 7
WIC TSD SLOR III 1 1 0.9-1.1 0.9-1.1 8

WIc TSD SLOR 111 2 I 0.9 0.5 17
AD Euler C I 3 - 2.9 1.3 18
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