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Introduction

The demands for higher performance and a more flexible design system require the airfoil and turbomachinery blade designer
to be more innovative and to design beyond the limits of experimental data. Iterative procedures in which an optimum is
obtained by a comparison between the results of different designs are being replaced by new computational methods in which
the objective is defined by a direct calculation. Such methods use a minimum of empiricism. are better suited to profit from
modern computational tools, and are more easily integrated into modern manufacturing systems.
IR A el ¥ A
> Blade or airfoil designs are normally made in two steps, and the lectures are accordingly grouped into two parts. =", - ~

In the first part, optimisation of the target pressure and velocity distributions are discussed taking into account the required
performance and the loss mechanisms in the boundary layer. Both direct optimisation resulting from an inverse boundary layer
calculation, and an iterative optimisation by minimisation of the losses are presented. It is clear from both procedures that
inclusion of off-design operation is one of the greatest difficulties involved in blade or airfoil optimisation.

The second part of the course gives an overview of the numerous inverse blade design methods that have been developed both
for turbomachinery and aeronautical applications. This ranges from simple parameter definitions of two-dimensional cross-
sections to the full three-dimensional definition of wings and blade channels. The more academic interest of a detailed
numerical definition of arbitrary shapes conflicts here with the mechanical constraints imposed by the industrial manufacturer.

The methodology to account for a large number of constraints, as required in inverse designs and optimisations, is also
discussed and is illustrated by results from numerous applications discussed in the last group of lectures.

One of the objectives of this short course is to exchange views and to promote a discussion between turbomachinery and
aeronautical designers. Most designers are active only in one field of application and are not aware of publications by the other
group. However. boundary layer calculation methods. potential flow and Euler solvers are almost directly applicable to both
single blades and multiple blade rows. It is therefore surprising that this kind of discussion is not more frequent.

R.Van den Braembussche
Lecture Series Director
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Introduction

Face ala volonté des constructeurs d'amcliorer les performances des profils aérodynamiques et des aubes des turbomachines,
¢t d'adopter une méthodologie de conception plus ~ouple, le concepteur devient plus innovateur. en placant le concept de son
prototype au-dela des limites des donndes expérimentales.

Les procédures itératives, ol e résultat optimal est obtenu par comparaison entre les résultats de différentes projets, cede la
place 2 de nouvelles méthodes informatiques, o Uobjectif est défini par caleul direct. De telles méthodes, qui ne font appel qu'a
un minimum d'empirisme. sont plus susceptibles de bénéficier des outils informatiques modernes et de s'intégrent aux systémes
de fabrication modernes.

Les profils aérodynamiques et les aubes des turbomachines sont généralement définis en deux étapes et le cours est, par
conséquent, divisé en deux parties.

La premicre partic examine 'optimisation de la répartition des pressions et des vitesses, en tenant compte des performances
souhaitées et du processus des pertes au niveau de la couche limite. L'optimisation directe qui résulte du calcul inverse de la
couche limite est décrite. ainsi que optimisation itérative obtenue par minimalisation des pertes. Les deux approches
demontrent clairement que la prise en compte du fonctionnement hors-étude reste Fune des plus grandes difficultés a
surmonter pour réussir l'optimisation des profils aérodynamiques et des aubes des turbomachines.

La deuxieme partie du cours est consacrée a un exposé des différentes méthodes inverses qui ont été développées pour la
conception des aubes des turbomachines et pour d'autres applications aéronautiques. Ceci va des simples définitions
paramétriques de coupes bidimensionnelles a la défintion complete d'aubes et de cannaux d'aube. Lintérét plutot spéculatif
présenté par des définitions numériques détaillées, se heurte, ici, aux contraintes mécaniques imposées par l'industriel.

Une méthodologie qui tient compte d'un grand nombre de contraintes, comme c'est le cas pour l'optimisation et fa conception 4
l'aide des méthodes inverses, est examinée et mise en lumiere par les résultats de nombreuses applications qui sont traitées lors
de la derniére session de cours.

L'un des objectifs de ce cours est de permettre un échange de vues et de développer le débat entre concepteurs de
turbomachines et concepteurs d'aéronefs. La plupart des concepteurs travaille dans un seul dJomaine d'application et ne sont
pas informés des communications publiées par leurs confréres actifs dans d'autres domaines. Cependant. les méthodes de
calcul de la couche limite. les résolveurs d'écoulements a potentiel, et les résolveurs d'Euler s'appliquent plus ou moins
directement aux grilles d'aubes simples et multiples. H est donc surprenant que ce type de débat n'ait pas lieu plus souvent.

R.Van den Bracmbussche
Directeur de Cycle de Conférences
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AERODYNAMIC SHAPE DESIGN

George S. Dulikravich
Department of Aecrospace Engineering
Pennsylvania State University
University Park, PA 16802, USA

1. SUMMARY

Design of aerodynamic shapes can be
accomplished by using the methodologies from
computational fluid dynamics and optimization.
Two basic categories of the inverse (design)
formulations are surface flow design and flow
field design. A number of methods in both
categories have been discussed and critically
evaluated. Open questions remain to be
specification of a more appropriate surface
pressure, acceleration of iterative algorithms,
increased versatility of the design methods,
direct use of the existing and future flow field
analysis software.

2. PREFACE

The field of aerodynamic shape design involves
the ability to determine the geometry of an
aerodynamic object that will satisfy the
governing flow field equations 2nd specified
boundary conditions. For example, it is possible
to determine the coordinates of an airfoil if a
surface pressure distribution is specified. The
resulting designs can be subject to certain
specified conmstraints. Examples include finding
aecrodynamic configurations compatible with
entirely shock-free transonic flow fields,
obtaining shapes of objects that produce flow
fields with minimum entropy generation,
minimum noise generation, etc.

One of the first mectings on the general topic of
shape design was the International Conferences
on Inverse Design Concepts and Optimization in
Engineering Sciences (ICIDES). The first ICIDES
was organized and held Octooer 17-18, 1984, at
the University of Texas at Austin, while ICIDES-
Il was held Ocilober 26-28, 1988, at the
Pennsylvania State University. They were
followed by an AGARD Specialists’ Meeting on
Computational Methods for Aerodynamic Design
(Inverse) and Optimization heild in Loen, Norway,
on May 22-23, 1989,

In the general field of aerodynamics as well as in
any other field theory, we are basically faced
with two problems: analysis and design. In the
case of an analysis (direct problem) we are
asked to predict the details of a flow field if the

geometry of the flying object is given. In the
case of a design (inverse problem) we are asked
to predict the detailed geometry of the flying
object so that it is compatible with specified
features of the flow field.

Depending on the prescribed desired features of
the flow field, the design (inverse) can be
divided into two general categories: surface flow
design and the flow field design [5,6]. Surface
flow design is achieved by specifying a certain
flow parameter (pressure, Mach number, etc.) on
the surface of the flying object and finding the
shape that will generate these surface conditions
without regard for the rest of the flow field. The
flow field design, on the other hand, enforces
certain global flow field features (shock-free
flow, minimal entropy generation, etc.) at every
point of the flow field by finding the shape that
will satisfy these global constraints at every
point of the flow field. A large number of
methods for performing the surface flow design
have been developed, while only a few methods
for the flow field design are known to exist.

Mathematical models used in the design are
based om partial differential equations, integral
equations, and algebraic equations. For example,
Zhukovski conformal mapping is actually a
technique for designing a class of airfoil shapes
having specified surface distribution of pressure
that corresponds to a flow around a rotating
circle.  Although we are dealing here with a
simple algebraic expression, it is based on an
integral equation formulation (a point-dipole and
a point vortex) which resulted from the Laplace
operator (a partial differential equation)
governing the flow field. Thus, any global
conformal mapping can be viewed as a very
special method for dzsigning certain simple
shapes in a steady, planar, irrotational, inviscid
flow field. Moreover, global conformal mapping
is the only example that comes to mind as a
method which combines the surface flow design
concept and the flow field design concept by
guaranteeing that the resulting shapes will have
the specified surface distribution of the flow
parameters wkhile the flow field will be
irrotational.
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In a more general situation, arbitrary
distribution of the surface flow parameters or
the flow field distribution of the flow parameters
could result in shapes that do not have to be
physically meaningful and manufacturable. For
example, the lower surface and upper surface of
an airfoil could either cross over ("fish tail
shapes”) or never meet (open trailing edge
shapes) although these solutions are
mathematically acceptable (Fig. 1). Obviously,
the problem is in choosing an appropriate
surface distribution of the flow parameters. On
the other hand, when performing the flow field
design by minimizing the entropy generation at
every point in the field, the resulting shape will
most likely have zero thickness and no
stagnation points, that is, the optimal shape will
most likely be a flat plate, Certain constraints on

Fig. 1 Different configurations resulting from
the unconstrained surface flow design

the acceptable final geometry are needed
especially since the final aerodynamic design is
often incompatible with the minimum
acceptability criteria posed by heat transfer,
structural dynamics and vibrations, acoustics,
and manufacturing, just to name a few [5,6].

The main objection raised by the designers when

discussing the inverse (design) methodologies is
that these methods create strictly point-designs

a1y P

-

input

Fig. 2 Shock-free airfoil shapes having same
surface pressure distribution; {7] vertical
axis magnified five times

rather than range-designs. In other words, an
aerodynamic shape (Fig. 2) designed by using a
surface flow design method will have the desired
[7]1 characteristics only at the design conditions.
If the operating conditions (angle of attack, free
stream Mach number, etc). are changed, the
performance of the designed configuration can
deteriorate rapidly. Moreover, when designing
transonic shock-free shapes with any of the
surface flow design methods, the resulting
configuration could have a mildly concave
surface (Fig. 3) that is covered by the supersonic

1.3+

-0.8
+Co
~0.34
Ce
9.2 1
0.7 4 o000 DRIGINAL TARGET
———~ MOOIFIEQ {SCHEME () TRRGET
ANO GIRECT SOLUTION
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Fig. 3 An example of a "shock-free™ surface
pressure distribution with
a concave suction surface (8]

Fig. 4 Iso-Mach distribution for the shock-free
surface designed airfoil;
notice the hanging shock (8]

flow. As a result, a "hanging shock” or a “loose-
foot shock” will form (Fig. 4) even at the design
conditions {8]. The aerodynamic efficiency of
such a configuration will not be satisfactory even
at the design operating point. At off-design
values for the Mach number or the angle of
attack, the hanging shock will violently re-attach
itself to the airfoil surface thus causing rapid
increase in drag due to the boundary layer
separation. Consequently, it is more appropriate
to design an almost shock-free shape even at the
design conditions. Such shapes would have a
weak family [9] of shocks that would not




increase the off-

design.

in strength appreciably at

3. SURFACE DATA SPECIFICATION

This brings us to the question of what is the
appropriate surface pressure distribution.  The
most desired feature of an aerodynamic design is

to prevent flow separation over a wider range of
angles of attack, Mach numbers, and Reynolds
numbers. The answer to the question as to what
is the optimal surface pressure distribution is
not known. It might be an altogether wrong
question to ask in light of the fact that the
surface pressure distribution alone is not
indicative of potentially hazardous flow field
features as is the case of an unexpected hanging
shock.  Nevertheless, a number of researchers
[10-14] have entertained this problem by using
a classical approach based on the information
from the boundary layer. A somewhat
speculative approach using a concept of minimal
kinetic energy rate ([15) has been reported
recently. A fast method capable of detecting
laminar and turbulent flow separation from the
prescribed surface pressure distribution would
certainly be very useful. These relatively simple
methods can help eliminate those surface
pressure distributions that would separate the
flow. Besides, these methods leave the designer
with a psychologically important feeling that he
is still in command, although knowing that all of
his experience is still inadequate when compared
to a true mathematical optimization.

Among a large number of publications using
various surface flow designs, applications have
been reported to single airfoils [16-24], multi-
component airfoils {25], cascades of airfoils [26-
32), ducts {[34), rotors [35-46], isolated wings
[47-48], wing-body combinations [49-50],
nozzles and inlets [51-52), and axisymmetric
bodies {53]. Some of the methods have received
wider acceptance than the others. The general
conclusion is that these methods which are more
versatile, easy to comprehend and implement,
are the more widely used. Since a number of
flow field analysis codes are quite reliable,
versatile, and efficient, most designers would
like to make use of this software directly in the
design process.

4. MODIFIED GARABEDIAN'S METHOD

Methods like Garabedian [19) and the modified
Garabedian {20] are becoming quite popular
since they require an extremely simple master
code which can call any available flow field
analysis code simply as a subroutine. Thus, as
more sophisticated analysis codes become
available, they can be directly substituted in the
master code that computes corrections (Fig. $) to
the input geometry. The main drawback of the
method is that it converges relatively slowly.
The iterative motion of the surface which is

Fig. 5 Convergence history from a slit to a
circle using panel code

undergoing design can become irregular very
quickly if some sort of control over the motion of
surface points is not emforced. The concept of
treating such a surface as an elastic membrane
which moves according to a simple linear time
dependent damped model [19] is quite effective
in enforcing a relatively smooth convergence of
the surface geometry. A more thorough study
on the stability of the surface motion model is
necessary, since the choice of coefficients in the
model [19,20] can seriously affect the
convergence rate and the stability of the entirc
iterative process.

5. STREAM FUNCTION BASED METHODS

A very interesting concept, termed Stream-
Function-as-a-Coordinate (SFC), is based on a
transformed flow field governing equations
where the vertical coordinate of each stream line
is treated as an unknown. Thus, the SFC
formulation [32-33] solves directly for the
unknown geometric coordinate which is the
coordinate of a stream line (Fig. 6). A similar
concept derived from the boundary element
integral method {18} gives a fully converged
solution in 10-20 iterations.

Fig. 6 Design of a tandem cascade using SFC
formulation [32]
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Another method that is based on the interplay of
stream function and potential function in
irrotational subsonic inviscid flows is due to
Stanitz {34]. He has obtained fascinating
configurations of channels and ducts subject to
specified surface pressure along the duct walls
(Fig. 7).

- Fig. 7 Air intake scoop designed using Stanitz

method [34)

6. TAYLOR SERIES EXPANSION METHOD

An extremely efficient and simple, aithough
approximate method has been developed in
China [37-39] and can be reportedly used on a
pocket programmable calculator. The method is
based on prescribing , say, Mach number
distribution along the mid-passage streamline
and then deducing values of the Mach number
on the top and the bottom of the passage by
expanding the prescribed data in the vertical
direction using Taylor series. With more terms
in the Taylor series, the larger gap-to-chord
cascade can be designed.  Since the analyticity is
carried to an extreme, very little work needs to
be performed iteratively. As a consequence, the
method converges very fast Errors in this
method will be rapidly increasing towards the
stagnation points especially if they are blunt.
The method is applicable to radial
turbomachinery as well (Fig. 8).

7. NEW THREE-DIMENSIONAL FORMULATIONS

Highly sophisticated and computationall,
complex computer codes have been developed
and successfully applied in the design of three-
dimensional coaxial nozzles 140) and
turbomachinery blading [41]. The governing
model is a complete set of thr::-dimensional
Euler equations of gas dynamics.

Analytically novel and interesting are several
new Jormulations [42-46] for quasi three-
dimensional and fully three-dimensional

Fig. 8 Radial diffusor vanes designed using
Taylor series expansion

turbomachinery inviscid flow field design. The
main drawback of these approaches is the
absence of viscosity and turbulence in the basic
model.

The general concept of having a small master
code and being able to utilize any available
analysis code as a subroutine in the process of
surface flow design has been successfully
applied by Takanashi [47] in transonic wing
design. The method converges extremely fast
since he wused a small perturbation integral
formulation to evaluate geometry corrections of
the wing surface,

Surface flow inverse designs of wings [48.50)
and a wing-body combination [49] have been
successfully accomplished recently using full
potential transonic equation solvers [48.49] or
higher order surface panel method [S0] and
fictitious surface franspiration concept.

Inverse designs of supersonic nozzles [51],
supercritical jet engine inlets [52], and
axisymmetric bodies in incompressible potential
flow {53} have been accomplished. The approach
of Ives [52] is especially innovative and unique.

8. TRANSONIC SHOCK-FREE DESIGN

Probably the best known method for the flow
field design is a hodograph based method [54-
57] for designing transonic shock-free shapes

Actually. the method is a unique combination of
both surface flow design (surface Mach number
can be specified on a point-by point basis) and
flow field design formulations (no shocks are
guaranteed to occur in the flow field).
Consequently, the method suffers from the
known problems (open trailing edges and fish-
tail shapes) associated with both general
approaches to design. The method has been well
publicized in the seventies and the resulting




software [18] found its wuse in industry.
Nevertheless, any method based on the
hodograph transformation is inapplicable to

three dimensions. Since Garabedian's method is
based on elliptic continuation approach [56] it
requires two real and two imaginary
characteristics. Needless to say, it is a highly
complicated method and the resulting software
is not easy to modify. The entire method is well
described in a textbook by Schrier {57].

An alternative method is known in the West as
Sobieczky's [58,59] fictitious gas or as
Nakamura's gas [60] in Japan, since both
researchers have developed and published the
method independently. The concept is based on
the basic fact that the shocks can form only if
there is a supersonic flow, that is, if the
governing partial differential equation is locally
of a hyperbolic type. Consequently, if the
conditions for possible shock formations are to
be eliminated, the governing partial differential
equation should never be allowed to become
hyperbolic. Sobieczky and Nakamura
accomplished this by switching from an
isentropic expression for density to an
appropriate analytical fictitious density relation
at every point in the field and on the boundary
where the flow would like to become supersonic.
The resulting computations are acceptable in the
subsonic regions (where the isentropic relations
were used), but are not acceptable in the
supersonic regions (where the fictitious gas
relations were used). Nevertheless, the resulting
sonic {ine which now separates the two regions is
acceptable by both the isentropic and by the
fictitious gas relations (Fig. 9). If we now decide
to use the isentropic relations in the previously
fictitious gas domain, the governing equations
will be locally strictly hyperbolic. Hence, the
sonic line values of the stream function can be
used as initial data for a straight forward
integration of the locally hyperbolic system.

-- BASELTNE
NEWBL O0E

Fig. 9 Sonic line shape before and after the use
of fictitious gas [66]
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Moreover, the system becomes linear if
transformed to a rheograph plane characterized
by the Prandtl-Meyer function and the local
velocity vector angle. The new shape
coordinates will be determined from the
condition that the siream function should
maintain its constant value at every point of the
airfoil surface. This method is fairly simple to
comprehend and implement in the existing full
potential codes. Nevertheless, the fictitious gas
method does not give us freedom to specity
surface values of flow parameters. It only

guarantees that if our choice for the fictitious gas
density - Mach number relation is not too
restrictive, the supersonic bubble will become

shallow and stretched along the surface (Fig. 9)
resulting in an entirely shock-free flow field.
The method is suitable for redesigning of the
existing airfoils [58-62], cascades (Fig. 10) of
airfoils [63-65], quasi three-dimensional rotors
[66]), wings [67-69] without having to worry
about surface cross-over, shapes. and
hanging shocks.

fish-tail

.000
9
\‘0":. ” ':.’
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Fig. 10 Lifting choked shock-free cascade
designed using fictitious gas [64]

9. OPTIMIZATION

1yue to the fact that aerodynamic shape design
represents only a part of the overall design of a
flying vehicle, the need for an interdisciplinary
optimization is arising {4-6]. Simultaneously, the
optimization algorithms are finding a rapidly
growing applicability in the pure aerodynamic
design [70-84). The optimization algorithms are
presently used mainly to minimize a difference
between the specified and the computed surface
flow data This is obviously not a very
imaginative use of the computational resources,
since optimization codes are known to require a
large number of flow field analysis solutions.
Since the present use of the optimizers is largely
not to minimize certain global measure of
aerodynamic inefficiency but to enforce the
surface flow data, such use of an optimizer has



-6

nothing to do with actually optimizing the shape.
The noteworthy exceptions involve maximizing
lift-to-drag ratio for a multicomponent airtoil
[74], wminimization ot the total pressure loss
across the shock waves in a supersonic inlet |77},
minimization of the total pressure less in an S-
shaped duct |78]. and optimization over a range
of operating conditions {79]. Recent publication
|80] exposes an interesting and potentially
promising new formulation for the fast
evaluation and optimization of off-design
conditions. The appioach of Rizk (81-83] is
especially welcome since it allows for a stable
iterative algorithm where an optimizer is used
on each updated configuration even before the
flow field has converged on the new geometry.
As a consequence, a typical airfoil design
involves the equivalent of 5-10 fully converged
solutions (Fig. 11).

4
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Fig. 11 Convergence history of a surface design
using Rizk optimization [81]

10. EMERGING CONCEPTS

Recently, several researchers have looked into
using control theory concepts [84-87] in order to
achieve an inverse (design) algorithm, The
approach is certainly novel and mathematically
challenging since most of the fluid flow theory is
based on partial differential equations, while the
control theory is usually formulated via ordinary
differential equations.  Preliminary formulations
{87] reconfirm earlier observations (84| that this
type of formulation might not be efficient.

1. CONCLUSIONS

A survey of a vast number of different inverse
(design) concepts and algorithms has been
performed with an attempt to classify them,
Positive and known negative characteristics of
cach of the more prominent methods have been
outlined. Future research should concentrate on
the use of Navier-Stokes equations and three-
dimensionality of the problem. Optimization and
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especially interdisciplinary optimization should
play a more prominent role in the near future.
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ARBITRARY BLADE SECTION DESIGN BASED ON VISCOUS CONSIDERATIONS

by
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Nationa! Technical University of Athens
PO.Box 64069, 15710 Athens

1. Introduction

The material presented in this work
can be used for different types of
design. Furthermore, a design process is
one full of constraints and compromises,
so that one cannot pretend that any one
of the present day theories may produce
the optimum optimorum. What the designer
desires to possess, however, is a
reliable and flexible tool, which can
help him evaluate the situation at hand.
In addition, it is necessary that this
tool be rapid enough with a reasonably
fast response, when an interactive
computing procedure is used.

The objective of the work presente
here, was to create a tool for opti-
mizing the viscous behaviour of the
flow, particularly in view of designing
arbitrary compressor and turbine blade
sections for Mach numbers, which may
reach the transonic regime.

The requirement of computing speed
rules out for the moment design tools,
which compute directly unsteady flow. On
the other hand, although inverse methods
utilizing the Navier-Stokes equations
start making their appearance, still the
two-zone hypothesis, which divides the
flow into an inviscid (external) and a
viscous part, is by far the most
practical. This fact will be made more
explicit and explained further in the
present lecture. The two-zone hypothesis
will be employed here and the flow will
be considered for a purely two-
dimensional case, as presented
schematically in figure (1.1). In
addition, it will be considered steady
and the approximation presented in Lock,
Firmin and East’s [1.1}, (1.2}, [t.3]
papers will be adopted. This
approximation seems to be a good
compromise, allowing the computation of
relatively extended separated flow
regions, without important additional
computational labor. Details may be
found in the cited references. A general
description will be presented in Chapter
2 and some details will be given, when
the equations will be presented.

The importance of centrifugal and
Coriolis force effects on turbulence is
vital in turbomachinery applications.
The same goes for the variation of the
streamtube width along meridional
distance. The corresponding effects will
be taken into account in the present
theory. In addition, one may remark
that not taking into account these
effects, would rule out application of
this methodology to radial machines,
while, for axial machines, there would
be too much room left for
interpretation.

Regardiess of how the opiimization
problem is set and what constrainta are
imposed, two parsmeters are playing the
most important role. The section
circulation (or t'e peripheral force)
and the total pressure losses. Then,

Greece

constraints such as a desired low loss
incidence interval (in order to ensure
enough margin for stall) or an adequate
blade thickness in the proper places
and a convenient position of the center
of gravity of the blade section (in
order to ensure the desired mechanical
properties) are considered separately,
once a blade section shape is estab-
lished. Consequently, two different
computing tools are nec~ssary, in order
to do the job. One, which deals with the
viscous effects and another one which
deals with the inviscid external flow.

People are familiar with the
inviscid external flow computational
tool. We shall adopt here an inverse
one, which produces the blade section
shape, given the velocity distribution
along the two blade surfaces. Contrary
to other practices, we shall adopt an
inverse viscous flow methodology. 1t
will give us, as we shall see, the
possibility to optimize, at the same
time, the viscous behaviour.

The inverse procedures will allow
us a Max imum possible flexibility.
However, it is necessary to stress that
a direct (analysis) method is necessary,
in order 4to complete an optimization
procedure, both inviscid and viscous. In
fact, coupling of the two (inverse and
direct) gives, in our opinion, the best
results.

Considering the viscouys flow
problem, it 1is essential to state from
the very beginning that the inverse
procedure relies heavily upon the
capability of the corresponding direct,
in order to reproduce accurately the
various practical situations. In
addition, all semi-empirical information
required to ensure the mathematical
closure of the computational procedure
is common to both the “direct” and
"inverse" viscous calculations.

Unfortunately, because of space
limita*ionse, it is impossible to give
all the details of the method. However,
an extended version has been,
fortunately, presented in ref.[3.23].
Reference will be continuoualy made
there. Only more recent developments
will be mentioned as extensively as
possible. These developments, although
other people from the Lab have assisted
as well, have been essentially achieved
by Kallas(d.301] and, especially,
Bouras(3.321,

Finally, for economy of space, all

explaining of symbols is presented in
the corresponding 1ist, in Appendix Al.

2, Description of the Two-Zone Model

The separation of the flow into an
inviscid and a viscous part will follow
the model deacribed, as said above, in
the paper of Lock and Firminti.3), This
model relies heavily on the theoretical
development performed by Rast(1.J), A
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short description of the model follows.

The model is schematically
presented in figure {(2.1a). The
coordinate system used (s,n) 1is the one
described in the same figure. The

external inviscid flow (it 1is called
Equivalent Inviscid Flow by Lock and
Firmin) quantities are allowed to vary
across the shear layer (see figures
(2.1b) and (2.1c)). This variation is
caused by both the solid wall curvature
Ky and the additional curvature due to
the shear layer presence.

Within this model, there exist two
possibilities for obtaining at distance
5 the matching of the External Inviscid
(EIF) and the Real Viscous Flow (RVF).
The first one consists of displacing the
solid surface by B&8;p, when &;p is
defined by the equation

5 &
I peWs dn = I pWsdn (2.1)
51 : [}
B
The line n=bip is, then, a

streamline. The second one stems from
distributing sources along the solid
surface, of strength

d
Pe Wne = — (pe Wse 61 ) (2.2)
L) » ds - w A

The definition of the corresponding
displacement thickness 6;4 is

8
Pe Wse B, = I (peWs —pWs)dn (2.3)
(] LI Y e
o

In practice the difference between
514 and 8;p is negligible, expressed by
the following relation

5y -5,

A B 2
= — (1-Mey )K*5y (2.4)
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where K* is the total (effective)
curvature due to both the solid wall and
the shear layer presence. It is
expressed as

3
d &, Wa
A d ey
2 Ky + —
2 ds W,
ds ey

K* =Ky +

Yy (2.5)

In the following, we shall use only
814, adopting the second flow model and
we shall drop the suffix A.

Looking at figure (2.1c), it ie
possible to express the various static
pressure differences, appearing there,
utilizing the flow equations. The
accepted approximate expressions for
thegse differences [1.2) are listed below

Po -P
- L]
————— = K*"(B,+563) (2.6)
2
Pa Wse
A -
Pe -Pe
L &
— = K*5 2.7)
2
Pe Wse
- »

from equations (2.6) and (2.7) follows
that

Py -Pe
5
= K*(6-6,-6;3) (2.8)
2
Pe Wee
L]
The viscous shear layer

computational procedure, which will be
described later, utilizes as external
velocity distribution the one given by
Wiew(s8). What the present flow model
tells us, up to now, is that, in order
to obtain Wsce(s), we have to perform
the external inviscid flow calculation,
introducing at the wall a normal
velocity component Wpee expressed by
equation (2.2). Once the computation has
converged, then comparison with
experimental results will be made using
the pressure distribution Pg(s), which
will be issued from Pey(s) utilizing
equation (2.6). On the other hand, the
model tells us that, in order to compare
the results of a shear layer calculation
method with experiment, one has to
deduce Waeyu{(s) starting from Py, and Pt.,
deduce Poyn from equation (2.6) and
utilize Wneey in order to deduce from
Pres Pew, Tte and Wnew the value of
WSeyw -

To the above remarks one has to add
that terms containing the curvature K*
appear in the equations, as we shall see
later, and that the corresponding
expression for the integral

(Pe—-P)dn is given as

1 2
(Pe-P)dn = — p, Wsq K" (B;+53)2+
2 - »

Qe O ——

3
+ I p¥Wn2dn (2.9)
0

noting that its influence is of lesser
significance to that due to the pressure
differences introduced above.

A second and equally important
effect is introduced, when the present
model is applied to the wake, as well as
in the region of the trailing edge. This
effect is described below, considering
the schematic representation of figure




(2.1d). We shall apply our model, now,
considering the dividing streamline,
which is issued by the inviscid flow
field. In the theoretical development
underlying the model it was only
assumed that Wpey=0, 80 that the same
expressions are valid when the dividing
streamline is considered. Applying
equation (2.2) for the wupper and lower
part of the dividing streamline, one can
get the following simplified expression
for the jump in Wype across it

1 d - -
AWy = —— — (pe WBe 61 )
. w Pe ds L] L] w
-

where

_ 1 - 1
Wse =—{(W8g +Wse )i pa =—{(Pe +Pe )i
wl v 2

w2 wu wu wl
8§y =&y +5; (2.10)
L] u 1
The suffix w here denotes

conditions at the diving streamline.
Applying the situation described in
figure (2.1c) to the wake region, we get
a static pressure distribution
presented schematically in figure
(2.1e). Following the same reasoning one
can get the jump in the velocity
component Wyey ACross the dividing
streamline as

AW, =[KyWs (61 +83 }+Ki¥s (8; +53 )]=
e eu L] L'} el 1 H

= ‘Kvia (6, +83 ) (2.11)
- L

ew

or, for the static pressure,

* 3
Ape =Ps -Ps = [Kape We (51 453 ) ¢+
[ ] (A} wl wu en u ]

» 2
+ Kipe We (61 453 )] (2.12)
wl el 1 1

The above wake analysis tells us
that the inviscid calculation used must
be capable of introducing combined
source and vortex sheets along the
dividing streamline. It also provides
the corresponding jump conditions in
static pressure and velocity components,
as well.

On the other hand, at the trailing
edge itself, provided that it is not
rounded, the static pressure of the RVP
must be the same for both the upper and
lower surfaces, or the upper and lower
sides of the dividing streamline (that
is whether the trailing edge is
approached from upstream or from
downstream). This situation presented
schematically in figure (2.1f) and
implied, also, in figure (2.le), results
in a smaller circulation value, than the
one which corresponds to the equality of
inviscid static pressures (and
velocities) at the trailing edge,
applied usually. 1In fact, this replaces

2-3

the Kutta condition for viscous flow.

An alternative way of imposing the
Kutta condition is to respect the
following equality
(P

=[P, 1 (2.13)

L)
az81+4832 upper .n-51+82 lower

This condition 1is more convenient
when the displaced by &;p surface is
utilized during the inviscid
calculation. In this last case, when the
inviscid static pressure must be imposed
at distance 8&; from the solid surface,
the following equation may be used

2
Py = Pg ~K* pe Wee 63 (2.14)
LET 3% n=81 n=s1
Having related tne inviscid
external flow field with the viscous
part, we shall now proceed in describing
the methods used for calculating each
one of them. When these calculations
have been established, we shall return
back to examine how the matching
together is done, utilizing what has
been said in this section.

3. The Development of the
Canonical Equations

The basic equations are the same
for both direct and inverse
computations. The additional relations,
which take the form of a semi-empirical
frame and ensure the mathematical
closure of the problem, are, as well,
the same for both direct and inverse
formulations.

In this Chapter a brief description
of the development of the equations will
be presented. Details may be found for
the development of the method upto 1981
in references [3.1} to (3.23]. The last
reference summarizes the work performed
until then. Additional work that has
been done since 1981 may be found in
references ([3.24] to {3.32].

The basic equations are considered
in a rotating frame of reierence. It is,
then, easy to deduce from them the
equations valid for a stationary frame.
They will be considered for turbulent
flow. For laminar flow, Stewartson's
transformationt3.35} is used in order to
place the problem on an equivalent
incompressible plane. It can be proved
that this transformation is valid for a
rotating frame of reference, as well.

An axially symmetric orthogonal
curvilinear system of coordinates is
used (see figure (3.1)). It is assumed
that the m-lines of the system coincide
with the streamlines of the real flow.
The continuity equation, the two
momentum equations and the energy
equation are written in this system. In
addition to those, the turbulent kinetic
energy equation is writtem, in order to
be used for turbulent flow.

The above mentioned equations are
simplified in the following way: (a) The
stress terms containing the coordinate
system curvatures, as well as the terms
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containing the derivatives of stresses
in the m-direction (parabolization) are
neglected. However, all normal
fluctuation terms are conserved.

{(b) Some simplifications are applied,
concerning the inertia terms of the
normal momentum equation. However, the
main effect of these terms which
contributes to the variation of the
static pressure in the normal to the
flow direction is retained.

(c) Following Lock and Firminii.2) a
representative curvature is taken into
account for each position (m). It is
partly to this curvature that the
variation of the static pressure along a
normal to the flow direction is
accounted for. (d) The pressure term in
the turbulent kinetic energy equation
is neglected.

At this level, the production term
in the streanwise momentum equation for
turbulent flow 1is substituted by the
corresponding terms appearing in the
turbulent kinetic energy equation. This
last equation is not used any further.

When these simptifications are
performed, the equations are written for
the external inviscid and the real flow.
They are then subtracted from each
other, forming the corresponding deficit
equations and are integrated along the
normal to the streamwise direction.

After some rearrangement, the
following equations are formulated:

(a) The streamwise momentum integral

equation
d 2 dWseyw
-— (pe RuWse 53)+ pe RuWs, &; -
ds ] L] L] v ds
2
w3Ry Ry d 2
Repe Bpd( )= — —[peWse K" (81453)3]+
w 2 ds = ]
5
d P PWg3—pW,2
+ — [pe RyWse ——— dn) +
ds v . Pe W8e3
- L]
+ Rytep ¢+ H.O.T.'s (3.1}
L]

(b) The energy integral equation

3
d 3 dWsey
—{(pe RuWsy 53)+pe RuWsy (51-8;x)——
ds - - - w ds
2 5
d wiRe
-2pe RuWsqe (853-8:1 )—( )=2Ry Ddn +
- L} X ds
8
d 3 PWe (IWg2-Wp24Wg2)
+ — [pe RuWse _— 87\0
ds L] » Pe WBe3
- -
+ H.O.T.'s (3.2)

(]
In the above [ Ddn is the dissipa-
tion integral. V]

During the development, the
following relation has been deduced from
the normal momentum equation, which

describes, the difference between the
real and inviscid static pressures

&
1 2
(Pe-p)dn= — po Wee K"(86;+53)2+
2 ] L ]
50
jp"ﬁidn+H.0.T's (3.3)
0 The above retlation was introduced

into the streamwise momentum equation in
order to render it in the form of

equation (3.1). The same goes for
equation (2.2), which was used and
accounts, as well, for the coupling of

the external inviscid and the real
viscous flow,

we shall introduce now the
dissipation factor Cp
]
t

Cp .____Indn (3.4)

1 3

— -pe Wse 0

2 L] L]

and the skin friction coefficient

2¢gn,
Ct = —-— (3.5)

Pe Wse
- L

We shall incorporate, as well, for
convenience, the normal fluctuation
terms in the shear layer thicknesses in
the following way

[
oW 2—pWy 2
52* = 53 - —— dn (3.6)
2
0 pe Wse
» L]

P (IN;2-Wi24W,3)

63* = b3~-| —————————— dn (3.7)
Pe Wse
L] L]

Consequer.tly, our equations,
leaving out the Higher Order Terms
(H.0.7T’s) become for compressible flow

1 d 2 &; dWsey
—(Pe RuWse B52%)+ =
2 ds L] L Wse ds
PeRaWs,e .
L]
&p d w3 Ry Ce 1
— )+ — -
2 ds 2 2
Wge 2 pe Ws,
- L] -
d 3
—1 pe Wae K*(5,453)2)] (3.8)
ds L} L



1 d 3

— { Pe RuWse B3°) +
3 ds » w

Pe ReWse

L] L]

3
(81-51x) dWsey
+ —_—

2 ds
Wse
-

2
2(8;-8:x) d wiRe
= — —
2 ds
Wse
L

) + Cp (3.9)

and for the incompressible flow

1 d 2 . Sy dWsew
— (RyWse 652 ) +
3 ds v K Wee ds
RaWse v

C¢ 1 d 2
=— - —(Wse K*(6; +82 )2] (3.10)
2 2 ds » K X
2Ws
L]
1 d 3
— (RaWse83*) = Cp (3.11)
3 ds k
ReWse
L]

The above equations hold for
turbulent flow. The corresponding
equations for laminar flow are derived
easily by dropping the normal
fluctuation terms and considering that
C¢ corresponds to the laminar shear
stress. Note, that the inviscid pressure
at the wall is given by the following
equation:

dWs,e dWs,
L4 1 dpw

Wa, + Wn, - —_—+

. ds b dn pe ds

v ]

d(w2R2/2)

+ —————— 4 Curvature Terms (3.12)
ds

-

We are ready, now, to develop the
equations in their final form. To
conserve printing space without losing
the steps of this development, we shall
describe below in some detail the
development of the equations for the
incompressible attached case. Then, we
shall give the results for the general
compressible case. Details of how these
developments are realized may be found
in reference {3.23].

The Development of the
Attached Incompressible

Boundary Layer Bquatione

We shall formulate our development
neglecting the last term of equation
(3.10). For this development new
variables will be introduced and certain
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assumptions will be made. The reeson for
introducing these new variables will be
seen clearly later, while the
assumptions will be justified when
discussing the semi-empirical frame.

Our starting point will be
equations (3.10) and (3.11) with the
last term neglected in equation (3.10).
We may introduce as a first step the
kinetic energy dissipation

3 2
Wae Wse
. w ]

E = pb8;
K

(3.13)

2
The part pbix Wsew/2 of the above
variable is an increasing function of
distance, as the losses are increasing,
when the shear layer is developing.
Then, the energy integral equation
(3.11) becomes

dE ds
— = Cp — (3.14)
E 53

K

Taking 63x=H32x83x and introducing it
to equation (3.13), differentiating and
combining with the momentum integral
equation (3.10) and using the definition
Hy2*=6,*/62", one gets

dH3;* Hya* Ct
1 x 1 x
= f1- ]
Hy2* -1t Hia* Hiz® -1 2Cp
K Kk x
dWse
dE -
—_ (3.15)
E Wse

For unseparated shear layers the
normal fluctuation terms influence in
the energy equation can be neglected so
the Hazx=H3z2&. On the other hand, for
unseparated flow the ratio (Hyzx-1)/
(Hy3f-1) can be taken constant and will
be denoted as K. Finally, with a very
good approximation Hyzx will be taken to
be a unique function of Hiazx (the
influence of the Reynolds number is
neglected), so that one may introduce a
new form factor Lx. as

1 dHaax
dLx =

(3.16)
Hpax-1  Haax

remarking that the right hand side of
equation (3.16) with *he above mentioned
assumption becomes a total differential.
We shall introduce a new Reynolds number
Rey as

Res = Rejellk {3.17)
and its nc.perian logarithm

X = InRey = InRej+2Ly (3.18)
We shall introduce, as well, the

velocity logarithm q instead of the
velocity as
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Wsew
q = ln

(3.19)
Wret

and the position Reynolds number ¢,
instead of the arc length s, as

s
Wseuds
? = _

v

(3.20)
0

We shall, finally, introduce a grouping
coefficient M, as -

1 H3axCr
Me — [1- —}
Hyzx-1 2Cp

(3.21)

and, with the above definitions and
assumptions, we shall rewrite equations
(3.15) and (3.14) in the following form

dE
KdLx = +dq + KM — (3.22)
E
dE de
— = Cp — (3.23)
Rej
Differentiating equation (3.13) and
using equation (3.22) in order to
eliminate dq, one gets
dE  dRej
(L+42KM) — = + 2dLy (3.26)
E Res

Using the definition (3.18), one finally
gets

dE

(1+2KM) — = dX (3.25)
E

We have developed above various
forms of equations, which will be used
later in order to reveal some general
properties of the shear layers. Before
obtaining the final form of the
equations, called sometimes canonical,
it will be helpful to make some
additional remarks. In the next Chapter
the semi-~empirical frame will be
examined briefly. It is important to
note that the semi-empirical frame will
provide us not only with expressions for

the variables appearing in our
equations, but, also, with enough
information to obtain closure. That is
to say, as we have two equations

available, the independent variables of
our problem must be, as well, two. From
the development made above it is
apparent that the two independent
variables chosen (for reasons which will
be clear later) to characterize each
shear layer section are Lx (as a form
factor) and X (as a Reynoids number).
Then M=M(Lx, X) and Cp=Cp(Lkx,X), so that
eliminating dE/E between equations
(3.22) and (3.25) and between (3.23) and
(3.25) we get the following two
equations

KM(Lx ,X)
dg = KdLy - ——— _ dx
142KM(Ly , X)

(3.26)

1
d¢ = —————— dRey
(1+2KM)Cpl2Lk

(3.27)

which relate the physical variables
{q,®) to the intrinscid variables
(Lx,X). Of course for laminar flows K=1.
These are the canonic equations.

We shall regroup the shear layer
properties in a stightly different
manner for laminar and turbulent flows
and we shall have:

(a) For the laminar case

My (Lx, X)
B1(lx) = - —————— (3.28)
142M; (Lg  X)
Ci(Lkx) = Cp1(Lx.,X)
2L
(1+42M; (Lx ,X))Rese k (3.29)

The corresponding equations will be

dq = dLx+B)dX

2 (3.30)
d(Rey )
d¢ = ———
2y
{b) For the turbulent case
kM (L . X)
Pt (Lx,X) = - ————— (3.31)
1+2kMe (Lx , X)
Ce(Lk,X) = Cpt(Lk.,X)
(142Mg (Lx ., X))e2Lk (3.32)

The corresponding equations will be
dq = LdLx+B¢dX

dReg

de (3.33)

Ct

The advantage of this formulation
for laminar shear layers 1is that the
coefficients depend upon only the form
factor Lyx, as follows from the semi-
empirical frame. An attractive feature
of equations (3.26), (3.27), (3.30) and
(3.33) is that for the case of the
inverse problem, for which q(¢®) is
calculated when Lyx(X) 1is given, the
integration procedure is reduced to two
quadratures.

The Form of the General
Compressible Shear Layer
Equations for the Calculation
of the Attached and Detached

Shear layers

The same anelysis can be performed
for compressible turbulent flow (for
laminar flow the equations for
incompressible flow are sufficicnt, as
Stewartson's transformation is
utilized). The corresponding equations
are derived following a similar
development as the one presented in
reference (3.23]). They are

CpM
FidlLx-~Fz3dq+ — dé +
Rejy

..... USSR



2
Fas w2 Ry
+ d( )-Ag=0 (3.34)
Ws2
ew
Cpde
dX-2dLx +Fysdg- +
Re3
3
Fss w2Ry
+ d( ) - A = 0 (3.35)
2 2
Wsow
where
Hpax-1
F, = (3.36)
2
(H13-1)-r(y-1/2)Mey
Fz = 1 -

2 2
(1+(y-1/2)Mey) (2K Men +3K;Mey )Mey

(3.37)

3 2 3
(Hya-1-r(y-1/2)Mey) (14K Mey+K3Mey )

2
r(y-1)Mex~-Hpa
F3 = (3.38)

2
(Hy3-1)-r(y=-1/2)Mey

y-1 3
Fa = 2[14(r-w) — Mey} (3.39)
2
3
Fy = (r-w)(v-1)Mey (3.40)
1 2
F32=F3+ [(2~w(y-1)Mey

(Hi2-1)-r(y-1/2)M2
ow

Rene 1 Reaa
-(1-~w(y-1)Me )

Rej » Rez

] (3.41)

Rene Reps

2
F3z = F3+ [ Jw(y~-1)Mey (3.42)

Rej Rey
3 Rene
Faa = Fa-[2~w(y-1)Mey]) (3.43)
Rej
Rese 2
Fss = Fs+w(y-1) Mey (2.44)
Rej
dRege dReps Repe Reps dRy
Ag= - ——( - 1—(3.45)
Rej Re; Res Rez Ry
dReq ¢ Repe dRy
Ag = + (1+ ) — (3.46)
Rej; Rej; Ry

In the above equations note the k;
and k3 are constants and that F; and F;
are function of the Mach number reducing
to unity for Mg=0.

The above equations differ from
those presented in ref.[3.23]. A
restructuring was performed, when it was
realized what was needed in order to
march more deeply (than it was done in
refs [3.12} and [(3.13]) into the
separated flow region, as well as when
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it was realized that, when strong flow
separation exists, the value of K
reflecting the normal fluctuation terms
presence, was not constant.

4. The Semi-Empirical Frame

In order to obtain closure of the
system of integral equations used for
the calculation of the development of a
shear tayer, it is necessary to express
the various flow parameters at an
arbitrary cross section in terms of a
number among them. This number
designates the number of the independent
variables of the problem and, at the
same time, equals the number of the
available differential equations. For
the present case this number equals to
two. Details concerning the semi-
empirical background for work done
before 1981 can be found in reference
[3.23]. Here, we shall briefly outline

how this semi-empirical frame is
constituted and give the necessary
background for understanding the
present lecture. In addition,

information will be given concerning
developments realized after the work of
reference [3.23] was reported.

It might seem strange that one
wants to establish a semi-empirical
frame for laminar layers, for which
mathematically the problem is well
defined and doesn’t need additional
information. For our case, however,
information was lost when integration
along a normal was performed (in order
to obtain the integral equations) and
this lost information must be
reconstituted in order to solve the
problem.

After this remark, we may state
that the basis for constituting the
semi-empirical background of both
laminar and turbulent shear layers is
the fact that the profiles of the
various shear layer properties at each
station can be described by profiles
corresponding to a station of an
equilibrium shear layer. Consequently,
it is necessary to obtain the properties
of all equilibrium shear layers, in
order to establish our semi-empirical
frame.

For laminar incompressible shear
layers Falkner and Skan’'s(4.1) similar
solutions are used. For these solutions,
when the shear stress at the wall rtsny
and the shear layer thickness & are
given, then the velocity profile can be
specified, for each station. Then, the
various thicknesses, form factors, as
well as the shear stress profile and
corresponding dissipation factor can be
obtained.

For these laminar equilibrium shear
layers, it is easy to prove that, at the
same time, the parameter

8¢ dpe
n —_— (4.1)

) l‘s,.' ds

conserves its value for each individual
layer.
Note that the way the expression for 0
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is written, it accounts for both
attached and separated shear layers.
This value 1is known, together with the
velocity profile of the corresponding
similar solution.

For turbulent incompressible shear
layers it was proved experimentally
(Clauseris.23, Bradshaw(s .23}, among
others) that the external part of the
velocity profile, as well as the mixing
length profile are unique under a
certain similarity law for each
equilibrium shear layer. The inner and
outer parts of the turbulent shear
layers obeying different laws (see
Colesfs.4).14.51), makes it impossible
to demand complete similarity for
turbulent shear layers. However, for
reasonably high Reynolds numbers, the
error involved is relatively small.

In the present case, Kuhn and
Nielsen’st4 61 velocity profile family
was used, which defines the velocity
profile when a free parameter n; and the
shear layer thickness 8§ are given. At
the same time, the velocity profile
expression provides the wall shear
stress Tsyw.- The wunique mixing length

profile for all equilibrium shear
layers, or, alternatively, the method
presented in reference [4.7], gives the

possibility to obtain the dissipation
factor Cp. The two procedures give quite
comparable results (Papailioul#.71).

The above applies to both attached

and separated shear layers (see
Papailiouf3.13] for detailed
information). The relation between I

(defined by equation (4.1)) and m in
this case is established experimentally.
In the present work the relation deduced
by Papailiouls.8) is used, which
coincides with that given by Nashi+.91.

For compressible flow the
generalized velocity of van Driestl(4.10]
is used. Mathews, Childs and
Paynter(s.111 and Alberts.12] have

established that, by using it, the semi-
empirical incompressible expressions are
verified. This fact is in agreement with
Morkovin’s{4.13) hypothesis, according
to which the turbulence properties are
not influenced by compressibility, as
long as the Mach number based on the
velocity fluctuations remains small.
This hypothesis has been confirmed
repeatedly and has been used for
practically all methods of calculation
of turbulent compressible shear layers.
It gives the possibility to use
turbulence properties established in
incompressible flow for calculations up
to a Mach number of approximately 3. The
turbomachinery range of application is,
thus, largerly covered. This same
hypothesis has been used in order to
enable us to state that there exists a
class of turbulent equilibrium shear
layers for incompressible as well as for
compressible flow (see, also,
Alber(4.181), unseparated or separated,
which are completely defined at each
station of their development, once two
properties along with the external Mach
number have been specified.

It is important to consider more
particularly the relation between Hj;x

and H3zx. For laminar incompressible
shear layers there exists a unique
relationship Hazx(Hij3x) for unseparated
as well as for separated flow. It is

presented in figure (4.1). As said
above, for turbulent incompressible
shear layers, the experimentally

established relation H3zx(H;3x) depends
slightly upon the Reynoldas number. The
maximum deviation of the curves for,
say, a range of Reynolds numbers based
on boundary layer thickness from 5000
to 500000 is of the order of 3%. This
relation is presented in figure (4.2).
Different calibrations using different
representations of the velocity profile
have resulted to the same curve. For
compressible turbulent shear layers the
curves H3z(Hy3) depend strongly upon the
Mach number. If one considers, however,
the curves Hiazx(Hiz2x), then one comes
very close to the established curve
Hiax (Hyax) of figure (4.2).

We can remark that both curves
Hyzx (H12x) for laminar and turbulent
shear layers present a minimum. This
minimum is found very close, for both
laminar and turbulent flow, to the point
for which the wall shear stress is zero
(vsnw=0). For us this is the condition
for flow separation. For turbulent flow,
in particular, this minimum coincides
with the disappearance of the semi-
logarithmic region of the semi-
empirical velocity profile we are using.

Coming back to the definition of
our new form factor Lx (equation
(3.16)), we can remark that in order to
complete it we need the constant of
integration. We take Lk to be zero at
the point of the (H;3x)}-curve, where
Haax is minimum. Consequently, for
practical purposes, separation is
reached when Lg=0 for both laminar and
turbulent compressible shear layers.

Thus, one can derive the Lix(Hpax)
curves for laminar and turbulent flow.
These are presented correspondingly in
figures (4.3) and (4.4). Accuracy may be
improved for turbulent flow by obtaining
each time an Lyx(Hi3x) curve for Rej
constant and using, during the
calculation, not a single Lx(Hpzx)
curve but all curves in the form of a
grid. This has been done and found
particularly important near separation.

In deriving the basic equations, we
have conserved the normal fluctuation
terms. These become very {mportant near
separation and in the separated flow
region. Details can be found in
Papailiouf3.23} and Huol3.8), who have
described in this respect, Le Foll's
work. Experimental results have been
used to calculate the velue of the
coefficient K, defined in the previous
chapter as

Hpax-1
Ks —— (4.2)
N

Hiax-1

and of the ratio HY83x/Haax. These
results plotted in figure (4.5), which
were taken for unseparated turbulent
shear layers, demonstrate that H$3;x/Hazx
can be taken equal to unity and that the



value of K can be taken equal to 0.85.

Accounting of the normal
fluctuation terms gave the possibility
to predict separation accurately and
march correctly within the separated
flow region (see references [3.13} and
[3.81).

For extended separated flow
regions, however, it was found that K
was not constant and that HY;x/Hazx
could not be taken equal to wunity.
Reference {3.27]) establishes the semi-
empirical relations needed for the
calculation of the fluctuation terms
appearing in equations (3.1) and (3.2)
for unseparated and separated
compressible (including shock/turbulent
shear layer interaction) flow. At the
same time, similarity laws are
established for the normal fluctuation
profiles. Figures (4.6), (4.7), (4.8)
and (4.9), which present this new
information, were taken from reference
[3.27]). The possibility to find
similarity laws for the normal
fluctuation terms, allow us to avoid
using the turbulent Kkinetic energy
equation, as it is pointed out in the
same reference. On the other hand, one
may remark that local similarity is

obtained in particularly extreme
conditions, as it is the case for the
shock/turbulent shear layer

interaction.

From the information presented
above, it can be deduced that, for
laminar flow, the coefficients B; (Lx)
and C, (Lx) appearing in eguations
(3.26) and (3.27) and defined by
equations (3.28) and (3.29) can be
established once for all for laminar
incompressible flow. The corresponding
compressible flow values are not needed
in view of the fact that Stewartson's
transformation is utilized. Figure
(4.10) presents the curves C;(Ly) and
My (Lx), from which g1 (Lx) can be
computed according to (3.28).

For turbulent flow the values of
Cpt (Lx,X) and My (Lg,X) are established
once and for all. M¢(Lx.,X) is computed
from equation (3.44) for compressible
flow, or from (3.21) for incompressible
flow. For Cpt (Lx .X) the following
expression is utilized

Cpt (14r- (y-1)/2-Me?)

Hiapew/pPuct/a

6; (Hia-1)-r(y-1)Me2
z — —_— P30+ 1 (4.3)
81k Hia

Details for its development can be found
in ref. [3.23}. The corresponding
incompressible flow expreassion reads

Coe Hizx-1
———— el + —— (4.3a)
H3axCr/3 Hyax
The corresponding curves for
turbulent attached and separated
incompressible shear layers are

presented in figure (4.11). Por each
point of these curves it is necessary to
know any two shear layer properties of
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the considered section. For establishing

the corresponcding curves for
compressible flow, the external flow
Mach number must be known,

additionally. Once these curves are
established, it is easy to calculate the
coefficients appearing in equations
(3.36) to (3.46), when the external flow
Mach number is specified.

5. The Direct Shear Layer
Calculation and its Prediction
Capability

The calculation of the development
of laminar or turbulent shear layers can
be performed wutilizing the canonical
equations established in Chapter 3 and
the semi-empirical frame described in
Chapter 4. For such a calculation the
initial conditions of the shear layer
must be known as well as the external
flow velocity (or Mach number)
distribution at the solid wall. In
addition, the total conditions of the
external flow must be specified and the
angular velocity, if a rotating system
of reference 1is considered. The wall
geometry and its orientation in respect
to the rotating axis must, also, be

given, in order to evaluate the
necessary second order terms and the
influence of Coriolis force and
streamline curvature. This last

influence will be examined later.

The canonical equations have been
set up in a form convenient for the
solution of the inverse problem. The way
the present formulation has been set up,
it is possible to pass the separation
point (and the singularity existing
there) in a direct mode. However,
looking at equations (3.34) and (3.35)
it can be seen that in the inverse mode
their integration reduces to a simple
quadrature. Furthermore, everywhere
(separated and unseparated flow), it has
been found out that the inverse mode
solution behaves better than the direct
one. It has been decided, then, when
dealing with the direct problem, to
solve the equation in the inverse mode.

In order +to assess the capability
of the present method the following
remarks are made.

1. Although some transport terms
have been retained in the equations, the
method reposes upon the hypothesis of
local similarity for turbulent flows. In
reference {3.23] information is
presented which suggests that this
hypothesis, within the present context,
gives good results for engineering
applications. In addition the
comparisons that are presented there
between theoretical predictions and
experimental results including wildly
separated flow, give evidence of its
good predictive capabilities. Concerning
the prediction of non-equilibrium flows
with equilibrium data, it is important
to note the remark of Alber(5.11, who
suggests that, for doing this, it is
necessary to "unhook” the pressure
gradient dp/dx appearing in 1l from the
rest of the shear layer properties. The
minimum number of integral equations
required for this is two. The same
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conclusions can be reached tollowing the
work of Tanifs.2) and Lees and
Reeves[5.01 for laminar layers.
Opposing the present method, there are
some others (for instance Felscht5.1]
and Nash(5.11) that, in order to compute
correctly non equilibrium flows (and
take into account correctly the history
effects), need a third equation, usually
called the “"lag equation®. These utilize
as well local equilibrium (similarity)
data for their prediction. The main
objection that one may raise, 1s that
this "lag equation" is empirical and not
derived from the basic flow equations.
Otherwise, such methods perform very
welll3.1}, No conclusion can be made at
this stage as to which one of the two
classes of methods is preferable.

2. From simpie numerical
calculations one may see that the shear
layer development calcutation is
influenced much more by the value of the
derivative dWsew/ds than from the value
of the velocity itself. This influence
hecomes critical when separation is
approacheq, as well as inside the
separated flow region. Small changes in
this derivative may induce failure of
the calculation itself. Besides, at the
singularity point at separation, this
aspect is stil! wvalid and this has
resulted in published work of
considerable volume, around the theme of
“viscous/inviscid interaction”. To
account for this problem, the present
direct method emplovys a simple but
efficient approximate viscous/inviscid
interaction procedure, which is
described below, in brief.

The two (pressure and suction
sides) shear layers are computed
simultaneously, In addition, an equation
is written for global mass conservation
across the whole chanel passage. This
equation requires that the flow passes
through the reduced (by the two shear
layers blockage) chane! width. The
approximation lies in the fact that the
inviscid external flow velocity~density
profile is allowed to be displaced,
freezing its first derivative. In this
way, the external velocity applied to
each of the +two (pressure and suction
gsides) shear layers is modified
sccording to the total blockage.

This procedure implies that five
equations are solved simultaneously, two
(momentum and energy integral equations)
for each shear layer and the global
continuity equation, which is satisfied
at each station. It protects in a very
efficient manner each shear layer
computation near separation and in the
geparated flow region. Of course it
cannot substitute the external inviscid
computational procedure, but results in
reducing the number of 1iterations
required between the inviscid and the
viscous flow calculations. Finally, as
the procedure is incorporated within the
viscous flow calculation method, the
corresponding viscous computations can
be performed by themselves,
independently of the external inviscid
ones. The complete algorithm reads as
follows:

8TEP 1 Calculate the pressure

distribution around the biade, using the
external inviscid flow calculation. This
computation is initially performed with
zero shear layer blockage.

STEP 2 Use the result ot the previous
inviscid flow «calculation and perform
the calculation of the two shear layers
(suction and pressure sides). The
approximate viscous/inviscid interaction
procedure is used in this calculation.

STEP 3 Use the results f the
previous shear layer calculation in
order to specify the boundary conditions
(normal velocity at the solid wall and
difference in suction and pressure sides
pressures at the trailing edge) of the
next inviscid flow calculation. The
information outlined 1in Chapter 2 is
utilized for this purpose.

STEP 4 Calculate the pressure
distribution around the blade, using the
external inviscid flow calculaticau. This
computation utilizes the results of STEP
3.

STEP_ 5 If convergence is achieved,
then the calculation procedure is
completed. If not, steps 2 to 5 are
repeated. The final pressure
distribution around the blade must be
issued utilizing the correct ions

presented in Chapter 2.

The approximate viscous/inviscid
interaction procedure outlined above was
utilized for the calculation of
secondary flows casrades by
Comtels. 4] a . Papeiiiouls. 91,
Subsequentlv. it waa utilized by
Douvikre®t. 0. [5.6] and

Ka weli1sl5.7).15.8) for the calculation
»4 secondary flows in radial and axial
fiow compressors., For the case of shear
layer computation, it was first utilized
by T oFasit.rr 13,281, Finally, a
detailed ue, i, tion not only for
internal flow cases but for external
flow ounes, as well, 1is presented by
Bouras(3.321.

3. The information outlined in
Chapter 2 must be used when predicting
measured shear layers. 1f pneumatic

probes have been used. one has to note
that the total velovity value is given
at the edge of the shear layer, while
the componen. parallel to the wall of
the inviscid cxternal flow is required.
The same happens when a lLaser
velocimeter is used. However, in this
last case some pressure measurements may
be missing and the reconstitution ot the
complete external flow field may be more
difficult.

It is better anyway, to pecform
the calculation inside the complete
domain, when possible, using an external
flow calculation methad and letting it
interact with the one dealing with
viscous shear layer.

4. Evidence of the predictive
capabilities of the method 1is given in
references (3.3], (.51, (3.8}, (3.28]
and (3.12] and summarized in ref.[3.23].
Here, we shall reproduce, in figure
(5.1}, the transitional flow predictions
of Bariol3.14), which are base on the




work of Narashima. In order to give
evidence of the «capabilities of the
method to predict separation and reduced
separated flow regions, we present some
results (figure (5.2)) for
shock/turbulent shear layer interaction
with flow separation and reattachment
produced by Kallasl3.301.13.2817 and
comparisons of theoretir and
experimental results for flow with mild
separation, produced by Assassald.13)

and Bourasft3.321) (figures (5.3) and
(5.4)). The capability of the method to
reproduce the loss versus incidence

curve is demonstrated in figures (5.5)
and (5.6). The viscous flow calculations
were realized by Bouras[3.32) and
Katramatosf3.35)1, The extend of the
separated flow region, which has been
indicated by the calculation procedure
is presented in figure (5.7).
Stamatis{3.293 has developed the method
for laminar separation bubble prediction
and some results are presented in figure
(5.8). We mention, as well, that
Bouras!(3.33} and Katramatos{3.351 has
proved that the method can . be
successfully extended to calculate
unsteady shear layers and that
Lytras(3.341 has extended the method for
predicting the development of an
asymmetric wake.

6. The Inverse Shear Layer
Problem and the General
Properties of the Image Plane

Le Foll's Idea

According to what has been said
above, all quantities characterizing the
state of a shear layer at a cross
section can be specified, once two of
them are known, Assuming that these, as
already said, are Lx and X, one may
consider the canonical equations,
derived in Chapter 3, in the form

Fy(Wew,s,Lx,X) = 0
(6.1)
Fz (Way,s,Lk.X) = O

The wusual way of utilizing these
equations is to specify the velocity
distribution Wgge(s) and compute the
properties of the shear layer developing
under it in the form Lx(s), X(s) (direct
problem). It is, of course, possible to
compute the solution in the following
intrinscid form

Lk = Lx(X) (6.2)

It is also possible, however, to
start by specifying Lx(X) and, using the
same equations, compute the distribution
Wew(s). In other words it is possible,
given the same equations, to select the
desired shear layer and, then, calculate
the velocity distribution, which is
necessary to produce it. Either the
computed or the selected Lx(X) curve can
be traced on the (Lk,X)-plane. It is
then quite evident that, if on the same
plane general shear layer properties are
available, one can szlect a curve Ly{X)
with desired properties and produce,
using equations (6.1), the velocity
distribution ensuring that such a shear
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layer will develop. Depending upon the
device we consider (here, a cascade), it
is possible to compute the corresponding
solid boundaries, by use of an
appropriate inviscid inverse calcula-
tion method. These solid boundaries will
ensure that the velocity field will have
the necessary boundary values, which
will ensure that the desired shear layer
will develop along the walls. This way
of looking at things is specified as
inverse (or design) problem.

From what was said above, it is
essential to establish on the (Lx.X)-
plane (called image plane) as many
general shear layer properties as

possible. Le Foll(3.11 developed the
idea described above and the properties
of the image plane for incompressible
attached layers, along with his boundary
layer calculation method. This idea of
Le Foll is not new. The representation
of general properties on a plane along
with the individual processes has been
done before in several domains.
Mollier’s diagram is one example.
Schlichtingt6.1] has, as well, wused a
plane, the coordinates of which were the
Pohlhausen form factor A and Re;. On
this plane he traced the neutral
stability curve Ap=Apn(Re; )}, dividing the
plane into a stable and an unstable
part. In this way, tracing on the same
plane 1individual shear layers in the
form of A(Rej:)-image curves, he could
identify the point from where each
individual layer became unstable. This
point was, of course, the intersection
between the neutral stabitity and the
individual shear layer image curve.

We shall consider, in the
following. separately the laminar and
turbulent image planes (Lgx,X) in the
incompressible attached or detached case
and discuss their properties. Then, we
shall discuss the compressible case and
consider a unique image plane for
laminar and turbulent flow. At that
point we will develop a way to produce
optimized individual shear layer image
curves.

The Laminar Image Plane

The laminar image plane is
presented in figure (6.1). On it we have
traced the Mp=const and the Cp;=const
curves. The Mj=const curves (as M
depends only on the value of Lx and
Ly=const defines a laminar equilibrium
shear layer) are, as well, image curves
of laminar equilibrium shear layers.
The particular equilibrium shear layer
Lx=0 is by definition one, which is
constantly on the verge of separation,
so that the image plane is devided into
two. The upper part (Lx>0) which
contains all unseparated laminar shear
layers and the lower part (Lx<0), which
contains the separated ones.

Then, the following reasoning can
be done. For all equilibrium shear
layers (at successive stations), the
velocity profiles are similar in the
laminar case. As the corresponding skin
friction coefficient is constant, the
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form factors Hjpax,Hazx and Lx are
constant, when the vari-us Reynolds
numbers Re;, Rez and Rej are increasing.
Consequently, for all equilibrium shear
layers X is an increasing quantity with
distance and dX is a positive quantity.
As dE/E is a positive quantity, as
explained in Chapter 3, then, from
equation (3.25) it can be seen that
(1+2My) is a positive quantity for all
laminar equilibrium shear layers.
Considering all the stations of all the
equilibrium shear {ayers, we have
considered, according to our basic
hypothesis of 1local equilibrium, all
possible stations of any laminar shear
layer. Consequently for the general case

(142M;) > 0  or M; > -0.5 6-2)

Inversely, now, if equation (6.2)
is true and dE/E is a positive quantity
for the general case, then dX must be
always positive. Consequently, X is an
increas’ng function with distance, which
allows a monotonic representation of an
individual shear layer on the image
plane. This reasoning justifies our
chosing X as one of the independent
variables of our problem. On the other
hand the same reasoning can be applied
for turbulent flows, if the quantity
(1+2KM¢) is considered positive. The
1imit M;=-0.5 wunder which all shear
layers exist has been placed on the
image plane, figure (6.1). For the
laminar separated shear layers, the

limit is posed by the laminar
equilibrium shear layer, for which
dp/dx=0. This can be found in

Schlichtingt6.1), who reports that two
similar solutions exist for each value
of B in the interval between the flat
plate laminar shear layer (M;=0) and the
one corresponding to separation
(M1=0.327). He states that this is the
sole domain of similar solutions, for
which a double solution exists. One
branch of these covers the unseparated
cases, which are well known, and the
other the separated ones. 1t follows,
consequently, that the other side of
separation (for Lx<0), we can reach as a
limiting case the flat plate equilibrium
laminar shear layer, which consititutes
at the same time the lower limit of the
faminer image plane. It can be added
that, as it happens, the separated flat
plate (M;=20) shear layer itself is not
included in the set of existing
sclutions. Consequently, it constitutes
a case, which cannot be reached.

Lastly, it 1is possible to transfer
Schlichting’'sté. 1) neutratl stability
curve on the image plane. It is known
that disturbances of any frequency are
damped fcr a Reynolds number shaller
than the critical one. 1t is presented
in figure (6.1) as La(X)-curve. Below
this curve the laminar shear layer is
unstable in the Tollmien-Schiichting
mode. Note that this curve cuts the
limit M;=-0.5 at X=10.2. Consequently,
for higher X, stable laminar layers do
nat exist. The corresponding gq(®)~-curve
for the laminar stability curve Ly(X)
has been given in ref.[3.23]. We can
report here that for low enough Reynolds
numbers, the laminar stability curve is
compatible with decelerating flow, We
can also see, from figure (6.1), that it

cuts the laminar separation line, Lxs=0,

at X=3.2.

The _Turbulent Image Plane

The turbulent image plane is
presented in figures (6.2a) and (6.2b).
On figure (6.2a) we have traced the
My =const curves and on figure (6.2b) the
Cpt=const curves. Here, as well, the
locus Lg=0 defines turbulent shear layer
separation and is the dividing line
between unseparated and separated flow.
The same remarks concerning the sign of
Ly in the separated 1tlow region as for
the laminar case are valid here, as
well. On this plane, the upper limit for
turbulent shear layers (KMy=-0.5) has
been placed, as well. The turbulent
equilibrium shear layers are presented
separately in figure (6,3) for attached
and detached flow. The limiting case of
the separated constant external flow
pressure appears in this figure and has
been presented, also, in figure (6.2a),

as it designates the iimit

of the

separated turbulent shear layers. The
same reasoning as in the laminar case

has been used here.

Consider, now, equation

(3.22),

with K constant and equal to 0.85. This
equation tells wus that, if we desire to
decelerate the flow (dg<0), this may be
done either by requiring dLx to be

negative or by requiring dE

to be

positive. The part of the deceleration,

which is done by increasing dE
consuming
kinetic energy. The part which
which s

one which is realized by

by decreasing dLx is one,

is the

is done

realized without losses. During this Ly
decrease, the velocity profile is
deformed and the outer layers transfer
kinetic energy to the inner ones, which
need it in order to overcome the
pressure gradient. For this reason Ly
was named by Le Foll deformation

potential.

Whether or not one may he able to

decelerate without consuming

kinetic

energy (that 1is, without losses), must
be examined in conn ction to the limit
negative value of the derivative dLyx/dX.
Anyway, even if we could decelerate
without losses, equation (3.22) would
tell us that this is possible according

to the relation

Kdly = dq

1t we consider such a deceleration

up to separation and integrate

we get

(if "t" indicates initial conditions)

WSe 1 -KLk1

- = e for turbulent flow
Wse2

Wse2 -lx1

— =z e for laminar flow
Wse

The domain of definition

indicates that this part
deceleration (considering
separation is to be avoided),
not negligible, is rather small
with the demands of the
applications. Consequently,
obliged to spend kinetic energy

(6.3)

of Ly
ot the
that
although
compared
current
one is
in order



to decelerate. Then, it is better to
consume it in the most efficient way.
Looking again at equation (3.22), we can
see that for a certain increase in
losses, we have the maximum deceleration
realized when the coefficient M is
maximum, as K is constant.
Consequently, the locus of maximum M is
at the same time the locus of the
optimum deceleration. For unseparated
laminar shear layers, such a locus
doesn't exist, because M) (Lx) (as can be
seen from figure (4.10)) is a monotonic
function, increasing continucusly up to
separation. For turbulent unseparated
shear layers, however, such a locus
exists, as can be seen from figure
(4.11), in the attached region. On the
contrary, a minimum exists in the
separated flow region (see figure
(4.11)), which indicates that along the
corresponding locus, a deceleration is
realized with the maximum of kinetic
energy loss.

The locus of optimum deceleration
Le (X) is presented on the image plane of
figure (6.2) for turbulent shear layers,
along with the curves of constant My and
constant Cpt.

We shall come now to discuss the
maximum possible deceleration. In terms
of the intrinsic properfies of the
boundary layer, to demand the maximum
possible deceleration, starting from
some initial conditions, is equivalent
to ask for the maximum negative value
that the slope dLx/dX may assume. Le
Foll answered this question empirically.

Consider, as he did, the velocity
profiles corresponding to various
stations of a vertical 1image curve

X=const. This image curve decelerates
the boundary layer without losses, by
deforming the velocity profile. In
order to examine what happens in this
extreme case, Le Foll considered such a
deceleration along the image curve
A=10.4, starting from the value of
Lxy=0.28, which corresponds to dpe/dx=0
conditions. Instead of plotting the
velocity profiles in the usual form, he
plotted them in terms of energy deficit
(Wsin2-Wae2) against the stream function
y, where

y
W = [W,dy (6.4)
i

Non dimensional representations
based on initial conditions of energy
profiles against the stream function
value are given in figure (6.4). In this
representation the pressure increase was
taken into account in order lo render it
meaningful. Two important facts are
revealed in this manner. The first one
is that the energy deficit curves
intersect at two points, showing that
the kinetic en.rgy i, the middle part of
the profile decreases, while the
corresponding kinetic energy in the two
extreme parts increases. This means that
kinetic energy from the middle part is
directed towards the inner layers, where
it {8 needed in order to help these
layers overcome the adverse pressure
gradient. Kinetic energy, however,
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leaves the middle layers and it s
directed towards the outer layers. At
the same time, as it can be seen from
the 1imit of each profile (and this is
the second important fact), the mass
flow inside the boundary layer
decreases. This means that the kinetic
energy going outwarde is given finally
to the free stream flow.

Up to now, our knowledge concerning
the behaviour of shear layers tends to
rule out the possibility of negative
entrainment, although this question is
stitl open. Accepting as limit the
possibility of zero entrcinment (the
mass flow inside the shear layer remains
constant), then, the shear layer
represented by the image curve X=const
is wunrealistic. It is instructive to
loock at an experimental case, which
comes close to the one we are discussing
now. We have presented in figure (6.5)
Stratford’s[6.2]1 two experiments. We can
see that before attaining equilibrium,
there is a part of the shear layer
development to which corresponds a very
steep Lx(X) image curve. In figure
{(6.5) we have presented the
corresponding mass flow rate inside the
boundary layer, as it changes with
distance. It can be seen that it is

wimost constant, although still
slightly increasing. This experimental
evidence confirms the physical

possibility of suddenly deforming shear
layers. At the same time it confirms the
existence of equilibrium shear layers
near separation. Incidentally, in
ref.(6.3) experimental evidence of
turbulent equilibrium separated shear
layers is presented.

We shall avoid talking here about
the positive limit of the derivative
dLg /dX (limit acceleration). This has
not yet been fully investigated, along
with the phenomenon of relaminarization,
which 1is associated to it. Le Foltl,
however, on the basis of a trial and
error investigation established as limit
rate of deformation the value

(—) = - 0.5 (6.5)

As he points out and as Stratford’'s
experiment shows, higher rales are
posrible. However, from an engineering
point of view, the practical
consequences of using higher values are
very limited and we shall content
ourselves with the value -0.5.

Before closing this discuasion, we
may make a final remark for the
incompressible case, which will help us
understanding the behaviour of separated
shear layers. Por this, assume that we
are found at some point of the image
plane in the unseparated region near
separation and we apply flat plate
conditions to our shear layer (dp/dx=0).
Then, from equation (3.22), we can see
that the sign of dLy will be the same as
the one taken by KM, in view of the fact
that dE is positive. From figure (o.2a}
we can see that M is positive, so that
Lx will be moving away from separation
towards the flat plate case. Assume,
now, that we are found at some point of
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the image plane in the separated flow
region, near separation, and we apply
the same external conditions, as
previously. Following the same
reasoning, it «can be seen that Lx will
more again towards the (unseparated)
flat plate case.

This behaviour may be explained in
the following way: if a line of constant
Ly is followed, then the corresponding
velocity distribution comes out to be a
decelerating one. If one relaxes the
corresponding negative velocity
derivative value, then the image curve
starts to move towards separation. If
one increases the negative velocity
derivative value, then the image curve
moves towards the separated that plate
layer. The more, however, one approaches
the separated flat plate layer, the
smaller the negative derivative value
needed to move the image curve towards
more negative values of Ly. When the
flat plate shear layer is reached, if
this is possible, then the corresponding
derivative reaches the value zero.

The Compressibility Effects

An investigation was made,
concerning compressibility effects on
the image plane, when the compressible
counterpart of the method was
established, as described in Chapters 3
and 4. Results concerning the turbulent
shear layers indicate that the
equilibrium shear layers and the locus
of maximum M¢ conserve approximately
their position, provided that instead of
X, the quantity Xx, defined as

Xk = lnResy+2Lg {6.6)

is used as abscissa for the compressible
image plane.

Some of these results are presented in
figure (6.6), where we can see that the
initial image plane remains practically
unchanged for practical applications for
Mach numbers up to 2.5.

On the other hand, the equation
corresponding to (3.22) for compressible
rotating flow reads

dE 1 w2R2
KF;dLg =Fzdq+KM—+M3 ——d( ) (6.7)
E 2 2
Ws

e

We can see that the reasoning that was
advanced above concerning the optimum
deceleration, utilizing equation (3.22)
is valid here as well, in spite of the
presence of the functions F; and F2. The
term My. (1/Wse )d(w2R2/2) acts as a
moderator.

The assumption is made that the

transformed (through Stewartson's
transformation) laminar image ptlane
conserves its properties for comressible
flow and, especially, the laminar

stability curve. An investigation is in
progress, in order to establish in the
transformed plane the laminar stability
curves for various Mach numbers. Thus,
the image plane will be more accurately
specified, without, however, changing
ite wuse. Of course, by definition the

line indicating separation remains
unchanged.

Before considering the construction
of an optimum image curve, some more
comments shall be made concerning the
part of the deceleration realized by the
deformation potential. In practice,
situations of rapid deceleration are
found in the presence of forward facing
steps or when a shock interacts with a
turbulent boundary layer. 1t might be
interesting to examine whether the
notions established in this lecture may
help to understand better their physical
aspects.

For both cases referred to above,
the turbulent shear layer not having
time to absorb kinetic energy from the
free stream, wuses 1its proper kinetic
energy transfering it from the outer
layers to the inner layers which are in
need in order +to overcome the adverse
pressure gradient. The velocity profile
is thus deforming itself accordingly,
until separation and beyond.

We shall examine this situation
using equation (6.7). When the pressure

increase takes place in a small
distance, the dissipative term can be
neglected so that, for a stationary

case, equation (6.7) reads

Lx2
KF,
— dLx

Fa
Wse1 Lkg
= e (6.8)

Wse

where 1 and 2 are the initial and final
stations of the rapid deceleration.

The theoretical predictions of this
simplified equation and experimental
results for incompressible and
compressible flow, for the cases
mentioned above, are presented in figure
(6.7). These results show scatter and
uncertainty. They are, however,
sufficiently precise for the present
analysis purpose, which is to examin
whether equation (6.8) can roughly
describe such situations.

Through this analysis it is
demonstrated that the pressure increase
up to separation depends upon the
initial value of the form factor Lx (or
Hy,x) and the initial value of the Mach
number Mg1, before the interaction. The
existing experimental results, performed
under controlled conditions (see
references [(6.4]) and {6.5), where the
present investigation 1is reported in
more detail) concerned essentially flat
plate cases. For this the velocity free
parameter ny is constant and the value
of Hyzk depends upon the Reynolds

number. Thus, there exists a slight
dependence of the experimental results
on Reynolds number. For our data,

consequently, the pressure rize up to
separation must be characterized by the
upstream Mach number only, as Hyzx is
almost constant. This is demonstrated in
figure (6.7). Note that this theory
applies to the incompressible case,
as well, of Bradshaw and




Galeals.6], Note, also, that the
capacity of the shear layer to sustain a
rapid deceleration decreases as the Mach
number increases. In terms of pressure
rise, however, the deceleration at high
Mach numbers 1is advantageous as the
density variation comes into play.
Lastly, note that such a deceleration is
performed with negligible losses,
resulting in a situation, where in the
outer “inviscid" flow & drop in the
total pressure takes place (accroas the
shock), while in the viscous flow this
total pressure drop is much less (see
the measurements of Seddon{6.71}),

7. Individual Shear Layers and
the Optimum Image Curve

In Chapter 5 we have given evidence
that Le Foll’s method compared with
experimental results can handle a
considerable number of cases with
adequate accuracy for engineering
applications. We may say, then, that
this method can be used for the analysis
of situations (existing or at the design
stage) in order to inform us about the
behaviour of shear layers developing
under imposed external velocity
distributions.

In the previous Chapter we have
examined Le Foll's idea and the general
properties of the image plane. In this
Chapter we shall examine how it is
possible to select an optimum image
curve for the most critical shear layer
of the blading, that is the suction side
for the axial flow machines and the
pressure side for the radial flow ones.
We shall consider axial machines, first,
and comment on radial machines later.

The Conception of an__Optimum
Suction Side Velocity Distribution

The theory outlined so far, helps
us to deal with the problem of designing
an optimum velocity distribution in the
following manner. We have constructed a
plane, called the image plane, on which
all possidble shear layers can be
represented by curves, increasing
monotonically with its abscissa. On this
plane appear the general properties of
the shear layers which can be summarized
briefly as follows:

La(Xx) =~ Schlichting's curve for
neutral stability of the
laminar shear layers. The
region above this curve is

stable.
Lt (Xx) - The locus of maximum M. Along
this line the optimum

deceleration is obtained.

Lx=0 - The line correaponding to
separation in laminar and
turbulent flows.

- The established upper and
lower limits of the attached
and separated laminar and
turbulent shear layers.

It is possibie to select an image
curve for the shear layer ensuring
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favorable conditions before any
calculation has been carried out. For
instance, staying above the line Lx=0,
we ensure that no separation occurs.
Staying above Schiichting’s curve,
laminar instability is avoided and
following the line Le(Xx) an optimum
deceleration is ensured.

Once we have selected our image
curve, equations (3.26), (3.27) and
(3.34), (3.35) may be used in order to
arrive at the corresponding velocity
distribution.

In the following we shall give a
detailed description of how an optimum
suction side image curve can be
established. The optimization will be
based on the following principle. The
dissipation factor is an order of
magnitude higher for turbulent than for
laminar layers. Whereas, the rate of
dissipation, which 1is represented by
1/M, has a wminimum about three times
smaller for turbulent layers, which has
been established far from separation.
The turbulent flow should, therefore, be
restricted to the decelerated flow
region, and the deceleration adjusted to
be the optimum one, or at least these
condition should be approximated as
clogely as possible.

The rest of the flow, starting from
the leading edge must be laminar. Near
the leading edge, as w4->0, Wyey becomes
proportional to the arc length, since
this is the form of the potential flow
close to a cylinder stagnation point.
This is achieved with Lyx=.0436 for
X->— . For the laminar boundary layer
Schlichting’s curve presents an optimum
image curve, because, as already has
been pointed out, M takes its maximum
value at separation and, so, on that
curve M takes its maximum possibie vaiue
a8 long as laminar instability has to be
avoided.

Before considering the complete
laminar optimum image curve, it will be
proved useful to find out what happens
to a segment of Schlichting's laminar
stability curve, when we change the
Reynolds number based on the final arc
length (Resr)1 and keep unchanged the
non dimensiconal form of the velocity
distribution Wee /Wret=f(8/8rer).

Considering an incompressible flow,
we can see immediately that a direct
consequence of this change of the
physical plane, is that the position
Reynolds number L] increases
proportionally to the ratio that forms
the new Reynolds number (Reg¢); with the
initial Reynolds number (Reyt);. We have
then

LIE (Regtr )
— . —— (7.1)
3 (Reqgf )3

We shall come now to the image
plane and consider a small segment of
the image curve dx, dLy and the
corresponding segment of the (q.®)-
curve, dq, de.

The situation we are examining is
presented schematically for convenience
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in figure (7.1).

The following equations establish
the correspondence of the image and the
physical planes for incompressible flow

dq = dLx + B)(Lx)dX (7.2)
d(¥a2) ez2xdX

d¢ = ——— & —— (7.3)
2C) (Ly) Ci (Lx)

Consider now that every de is
increased by a factor a=®¢3/%¢1. As dq
rust be the same for all points of the
(q,®)-curve, in view of equation (7.2),
Ly, dX and dLx must remain constant
during the inverse transformation from
the (q,®)-plane to the image plane.
During the direct transformation we had

2x

e tdx
(de) = ———
Cy(Lx)

and during the inverse transformation we
shali have

(de); =
or
(de); LI 2¢x -X

(de), L{3}

(7.4)

Consequently, a change in Reynolds
number, keeping the same velocity
distribution, results to a displacement
of the image curve, expressed by
equation (7.4). An increase in Reynoids
number displaces the image curve to the
right, while a decrease displaces the
image curve to the left. When a suction
side boundary layer is chosen, it is
interesting for us to be able to keep
our layer laminar for a chosen interval,
not only for one Reynolds number but for
the whole Reynolds number range of
operation. In order to do this, it is
convenient to realize the design for the
minimum Reynolds number of operation,
which is the most critical for the
turbulent layers. We know now that an
increase in Reynolds number displaces
the image curve of a laminar layer by
0.5 In(#¢;/8¢,). We can, thus, take into
account the maximum possible shift, 0.5
In(®taax/®ta1n): of the image curve to
the right, by considering as laminar
stability curve for our design,
Schlichting’s stability curve Ly (X)
displaced by 0.5 In(®reax/®rain) to the

left. For such a situation, if we
increase the overall Reynolds number,
the image curve we have selected will

move to the right but will
the actual

never exceed
Schlichting’s curve, as the

actual displacement of it will never
exceed the value 0.5 In(®rgax/®tain),
which already has been taken into

account.

After this remark we may come back
to the construction of the laminar part
of our optimum image curve. We have
presented it as OABCI in figure (7.2).
After the initial stagnation point
region, a part with g,=0 (flat plate) is
being used, if necessary, in order to
avoid the deceleration part of
Schichting’'s curve (see ref.{3.23}), and
the corresponding velocity pick.

The segment (BC) that follows
corresponds to a displaced Schiichting's
neutral stability curve by a distance
depending on the range of Reynolds
number of operation, as discussed above.
"I represents the point where
instability (in the Tollmien-
Schlichting 2D mode) is first introduced
for the larger Reynolds number of
operation. The distance between the
point ot instability and the region,
where the actual transition takes
place, depends, at least, on the
turbulence level of the external flow as
well as on the pressure gradient. A
crude <criterion which depends only on
the level of the external turbulence

utilizes by the value taken by the
integral
X
1= [ [Ln(X) - Lx(X)] dx (7.5)
X1
This criterion, proposed by T.S.

Wilkinson, agrees well enough with the
available data to predict the order of
magnitude of Xy-Xj.

This criterion is applied to the
situation where the transition region is
reduced to a point (as it is described
in reference [(6.1)). Transition, then,
takes place (see figure (7.3) which
presents schematically the corresponding
part of the image curve), when the
integral 1 takes a certain value, which
depends upon the external turbulence
level.

This criterion has been described
in more detail in references
{3.21,{(3.3]1,[3.7] and [3.10). The values
of 1 have been deduced from Granville's
[7.1] experimental results. Direct proof
of the validity of this criterion has
been given in ref.(7.2).

The work of Bariol3.141, some
results of which have been presented in
figure (5.1), opens the possibility to
replace the present transition criterion
with a transitional calculation. This
matter is actually under investigation
by Leoutsakos{?7.31, The problem there,
in view of the results of Bario, is to
model the distance between the
instability point and the appearance of

turbulence spots. Of course, in
turbomachines (see Schlichtingté.11),
other modes of instability are present
(Goertler vortices creating 3D
disturbances, for instance) and the
point of instability is, anyway,
influenced by Mach number (see

Arnalt7.41), On the other hand, inverse
transition (relaminarization) starts to
be tractable now (see Simandirakisi{7.%1)
with the present caiculation method, so



that the o0ld criterion of transition of
Wilkinson will be replaced in the near
future by other more reliable methods.
However, at the present moment, the
designer, having no alternative, may
resolve this problem by inducing
transition in an as short distance as
possible, avoiding laminar separation.
This can be done by increasing the value
of the integral I, following a path
parallel to the separation line lx=0
before admitting transition.

Assuming, now, that transition has
taken place at T, we shall examine the
turbulent part of the image curve. This
part must realize an optimum
deceleration and starts with a segment
of a straight 1line with a slope which
ensures the continuity of the
derivative dq/d® at transition. Then,
according to the principles established
above for the optimum turbulent
deceleration, the locus Le (X) is
followed. In the last part of the image
curve, the limit deceleration is
employed until the locus Lx=0 is
reached, if separation is to be avoided.
We can profit thus as much as possible
from the part of the deceleration which
can be realized without losses. Of
course, this part can continue in the
separated flow region, if incidence
considerations permit it. We shall come,
in fact, back to this point later.

We have said that the delay Xr-X|
between instability and transition
depends on the level of turbulence,
which is only roughly estimated in most
practical cases. Therefore, to a fixed
velocity distribution and a fixed value
of ¢, corresponds, in fact, a one-
parameter family of turbulent boundary
layers, and therefore of image curves,
depending on the actual position of
transition. In general, these «curves
have completely different shapes, and
the differences increase with the
interval of X¢, so that, at first sight,
it is necessary that the delay in
transition corresponding to the lowest
possible turbulence levels should be
reduced as much as possible, and
therefore, for X>Xy, Ly (X) should
decrease very quickly to a small
positive value, so as to increase the
value of the integral 1 as quickly as
possible.

It has been found that, in the case
of a laminar variation of Lx(X) for X >
X1, it is possible to select its slope
in order to obtain a family of turbulent
boundary layers which end with nearly
the same value of Lg although their
shapes are different. In addition, the
least steble of all is that
corresponding to the latest transition.
Thus, although the positiva of
transition {is not 8o closely fixed in
this case, and the turbulent boundary
layers which result from variations of
it are different, their final properties
are the same, and this is of course all
what is required,.

The corresponding slope of the
image curve in the unstable laminar flow
region is about -0.20 for usual design
conditions and Xr-X; 1is then smaller
than 0.13.
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Among the general properties that
Le Foll had initially established for
turbulent boundary layers was the locus
of s-wise stability. This locus
coincides with the optimum deceleration
curve L¢(X). Boundary layers that are
found over this curve have the ability
to damp with distance disturbances,
which were created accidentally at some
position upstream.

Le Foll established this property
on the basis of an infinitesimal
perturbation theory, (see references
(3.1) and (3.2)), which lacks
generality. It was thought at the
beginning that it represented what
happens in reality as Clauser(4.21 had
reported having observed such a
phenomenon experimentally.

Ever since, various investigators
have worked experimentally in the region
found between this locus and separation
(among others Stratfordf{6.21) and not
one reported having observed any
instability effects.

This is the reason why the present
author has not mentioned this properly.
Various workers (among others Le Foll
himself) have used a safety margin
between the supposed s-wise stability
locus and the chosen optimum image curve
to account for manufacturing
inaccuracies. When this is done we shall
report it, having in mind the comments
we have made just now.

Before establishing some more
features of the image curves, it will be
useful to give an example for the
incompressible case and thus summarize
our results. We shall suppose that the
ratio of the maximum to minimum Reynolds
number Ot . max/Pf.min at which the
profile is to be operated is 2.71. The
design of the image curve will start
from the displacement of Schlichting’'s
curve by 172 In 2.71=1/2 to the left.
The whole design tis represented in
figure (7.2). The next parameter to be
considered is the abscissa X; of the
point I where the laminar image curve
leaves the curve Ly=lL, (X} and the value
selected here is X;=7.7. This point I
corresponds to incipient transition,
i.e. when the laminar boundary layer
first becomes unstable.

The first design image curve, shown
by the dashed curve of figure (7.2},
consists of segments of straight lines,
which are selected as follows:

OA corresponds to the flow in the
neighborhood of the leading edge
for which Wge =, which is given by
Pi1=1 and Ly=.0436.

AB a straight 1line joining 0A to
segment BC

BC a curve corresponding to B;=0 to
avoid the region of decelerated
flow which is associated with
Schlichting's curve (Xp=5.2,
Xc=3.8).

cs the curve Lgs La(X+.5)




18 a line defined by the slope
dL/dX=-.2 which is such that for
levels of free stream turbulence
greater than 1 1/2 %, tramsition
will occur between 1 and 8.

S a segment whose slope is defined by
the condition that the derivative
dq/d¢ of the velocity distribution
should be continuous at the
transition point.

DE the curve Lg=L(X)+.03, where .03
represents a safety margin above
tre turbulent instability curve

Xg=8.3

EF a final drop to close the
separation with the maximum
deceleration not taking into

account stability,
i.e. d%/dx-—.s.

The velocity distribution corresponding
to this initial image curve, obtained by
integration of equations (3.26), (3.27)
and (3.30), (3.31) from F with qr=-0.16
and Wa20 (i.e. X=-00) is shown by the
dashed curve in fig.(7.4) with the
corresponding points marked with the
same letters.

A smoother velocity curve can be
obtained by rounding off the corners of
the first image curve, and is plotted as
a full curve on fig.(7.4). This smooth
curve will be used as the basic image
curve from now on. Fig.(7.5) represents
the velocity distribution Wgae/Wret:
against the fractional arc length. The
most striking features of this curve are
the steep final deceleration and also
the very short length of segment I8 in
which transition has been located.

Now, transition certainly takes
place before § and after I, so that it
is necessary to check that turbulent
separation is avoided for any position
of transition T on the segment 18. To
demonstrate this, the shape of the image
curves for the given velocity
distribution have been drawn as curves
1, 2, 3 and 4 of fig.(7.2) for
transition at Ty, Ti, T3 and T,. The
last point T4 1is outside the possaible
range, but it is included to show that
by advancing the laminar transition
point further, turbulent separation
really does occur. It can be seen that
Ta is just critical in that it brings
the final image point to incipient
turbulent separation. The energy
dissipation is, also, presented on
fig.(7.4) and has a final value of 3.7%.
The final position Reynolds number,
®r=1.07x106, corresponds, since the
chord of the profile is shorter than sg,
to a chord Reynolds number based on the
reference velocity, which is less than
1.07/1.22x106. The value 1.22 comes from
the fact that the mean velocity Wae,gean
equals 1.22Wgq . 3.

Now, if ®¢ 1is increased for the
same velocity distribution against s/sa¢,
the laminar part of the image curve is
shifted to the right and when this shift
exceeds 0.5, transition is no longer
controlled. But up to this Ilimit, the
velocity distribution against arc length
represented on fig.(7.4), gives a

turbulent boundary layer which is
increasingly stable and even beyond this
limit, it can separate only in the case
of a very early transition. If, on the
contrary, ¢ 1is only slightly smaller
than 1.07x106, the turbulent boundary
layer will separate.

Summarizing, we wmay say that we
have established the foram of an optimum
image curve to be used for suction side
boundary layers of blade sections
(compressor or turbine) for the
incompressible case. From what has been
said in Chapter 6, it can be easily
deduced that the same principles apply
for the compressible case.

This general optimum image curve
form takes into account the desired
overall Reynolids number range of
operation (although it will be optimum
for only one value of the overall
Reynolds number) , as well as the
uncertainty of the external flow level
of turbulence on the transition point
position.

Looking at this optimum image curve
we may see that once the abscissas Xy
and Xy have been defined (transition and
final points), the whole optimum image
curve has very closely been defined
completely. This last property wmay help
us to solve the next problem, which is
how the choice of one particular image
curve may be done, once the general
requirements of a particular design
have been imposed. These requirements
are usually imposed in the physical
plane, hence the necessity to relate the
general properties of the two planes.
This will be done in what follows.

The most interesting properties of
a velocity distribution destinated for a
suction side are:

a) The overall Reynolds number of
operation, which is imposed.

b) The maximum velocity appearing on
the suction side. Mach number or
noise considerations may demand it
to be as low as possible.

c) The mean velocity appearing on the
suction side. Its value expresses
the contribution of the suction
side to the blade circulatior.

d) The losses or some other property
of the shear layer.

Supposing that we consider the
losses, these are the absolute losses of
the suction side. To these, the pressure
side losses have to be added and then
the sum of the ‘wo has to be compared
with the circulation per blade before an
estimate of the mass averaged loss can
be made. We shall consider the first
three properties and we shall try to
relate them to the two "independent”
variables Xr and Xp, which define the
optimum image curve.

An interesting property of any
(Lx,X)-curve, which will help us to do
this, s the following. For any such
curve, there exists (see equations
(3.26), (3.27) and (3.30), (3.31)) a
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unique velocity distribution curve in
the form Wee/Wae.2=f(S8/5ref). In this
way, all velocity distributions start
with the value 0 at the leading edge and
end with the value 1 at the trailing
edge.

This property gives us the
possibility to construct universal
curves for all optimum shear layers in
order to use them for blade or airfoil
design. Let us consider first equations
(3.27) and (3.31) for the velocity
potential ¢, which are the following

dRey 2
4 = —
Cy (Lx)

dRe,
4@ = —
Ce (Lx)

We can see that the potential ¢
increases as the square of Re,(=eX) for
laminar layers, while it increases as
Rey for turbulent layers. As the
coefficients C; and C¢ for the range
considered are of the same order of
magnitude (see ref.[3.23]) we can
deduce that the Reynolds number of the
resulting velocity distribution will
depend principally on the interval in X
occupied by the laminar part, that is by
the position of the transition point Xr.
A plotting of the logarithm of the
Reynolds number Res¢ based on the final
value of the arc length and the exit
velocity Wse,2 against Xr is given in
fig.(7.6). We cen see that in fact Xg
plays a secondary role.

Considering now the maximum
velocity appearing on the suction side,
we can make the following remark. The
maximum velocity in respect to the final
velocity Wge,2 will depend essentially
on the extension of the turbulent part,
as this is the part used to realize the
required deceleration. A plotting of
Woe.nax/Woe.2 against Xg-Xy is given in
figure (7.6). It can be seen that we
obtain a quasi-unique curve. An
explanation for this behaviour can be
found in reference (3.6).

Returning now to the third property
Wse.mean/Wae.2 we have decided to plot
it against Xp~Xr and the results are
presented in fig.(7.6). We can see that
there exists an envelope imposing an
upper limit. Additionally for Xg=const.,
the curve passes from a maximum. This
can be understood from the following
remark. By fixing the Xg . we
practically fix the level of the losses.
Now, for small Xy all the loss is given
to obtain a turbulent decelersation and
consequently high Weo.nax/Wge.2.- In
moving the transition point to the right
we allow the development of & leminar
part which creates a plateau on the
velocity distribution and, 8o, 8t the
beginning, the Wee.noan/Wee.2 is
increased in spite of the decrease in
Wee.aax/Wee,2- If we move Xy further to
the right, there comes a moment when the
laminar boundary layer is "too tired” to
accept high decelerations and the
turbulent deceleration which fixes the
level of the plateau becomes 80 small
that the ratio Wee.mean/Wse.2 starts
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decreasing. It is in our interest to
choose Xp-Xr values in the region of a
maximum Weo.mean/Wee.2-

Once the three essential design
factors have been correlated to boundary
layer parameters, some remarks are in
order, before we proceed in giving a way
of using them.

a) The given diagram concern
unseparated shear layers. That is
to say that, in the measure of the
approximation of Le Foll’s theory,
the velocity distributions, which
will result, will correspond to
unseparated shear layers.

b) The given diagrams are independent
of inlet and outlet velocities,
inlet and outlet air angles and
generally cascade properties, when
the cascade blade case is
considered.

c) Once, a particular problem is
considered {the design, for
instance, of a cascade) further
restrictions are imposed by the
potential flow calculation which
are independent of the diagrams
established. For example, once
Wee.1/Wse.2 has been accepted, the
ratio Wseo.nax/Wsa.2 must
necessarily be larger than
Wae.,1/Wse.2. The minimum level of
Wse.max/Wee.2 will be fixed then by
the thickness of the blade and the
amount of turning and these are
problems that can be solved only
considering inverse potential
methods for the calculation of the
profile shape.

d) The choice of an optimum boundary
layer for the suction side does not
necessarily give the optimum
profile. The combination of the
deduced velocity distribution from
the point of view of closure
conditions, will finally define
the circulation, which combined
with the absolute losses, will give
the performance. However, from the
experience acquired up to now, we
can say that the obtained profiles
are good.

e) The range of operation of the
blade, incidence-wise, is not taken
into account in the choice. It is
possible, however, to design for
the maximum incidence, accepting
boundary layer separation only for
the limit of operation and knowing
from experience that in the range
between positive and negative stall
the profite behaves, normally,
without separation.

£) The curves presented in figure

(7.6) concern the specific
application. If the optimum image
curve changes (for instance, if

diffusers are considered), then the
curves will change. On the other
hand the same happens, if,
generally, the image curve form
changes for any of a number of
reasons. Some of these may be
compressibility effects, admission
of a separated region on the
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suction side or curvature and
Coriolis force effects, about which
we shall talk later.

Remarks on these will be made in
Chapter 10.

We can now proceed with an example
of design, giving at the same time a
demonstration of the use of the
established curves. Assume that we want
to design a blade which operates at a
Reynolds number of 3x105. We can see
immediately that for a given Xg, the
value of Xr is fixed and vice verse,
although we can also see the
impossibility to find solutions for an
Xr higher than a certain value. We
obtain thus the points A,B,C,D (see
figure (7.6)), which are transferred to
the mean and maximum velocity curves. We
can see now that optimum solutions are
obtained around A, but at the same time
the waximum velocity risks to be too
high and the losses may increase
considerably. The final choice will be
given by the particular problem we
consider (inlet and outlet air angles)
and a trading between maximum velocity,
mean velocity and 1losses. In this
respect two or three distributions have
to be calcuiated and used as input to
the inverse potential calculation before
a final choice can be made.

8. The Inverse Inviscic
Calculation Method

The present inverse 1. iscid flow
calculation method if & '_essing the
rotating cascade case 1ying on an
arbitrary axisymmetric surface with
varying streamtube width. It makes use
of Schmidt’s equations (refs [8.1],
{8.2],([8.3},(8.4)) but it diverges, as
will be seen, in the formulation of the
solution, thc numerical techniques used,
as well 18 the closure conditions.
Although not addressed directly in the
present lecture, the isolated airfoil
case can be treated as well. Again,
because of space limitations, only the
essential features of the method will be
presented.

Posjition of the Problem and
Development of the Equations

It is assumed that the axially
symmetric stream surface on which the
calculation will be performed is
specified {see figure(8.1;). The
streamtube width variation with
meridional distance, the approximate
number of blades N, the inlet stagnation
conditions (Puy,Tet1) and velocity vector
Wi, the meridional position of the inlet
stagnation point my, the rotational
speed and the outlet flow angle are
specified as well. Finally, assumed
given are the pressure end suction side
velocity distributions versus arc
length, with the condition that the
pressure side velocity distribution will
change during the computational
procedure as little as possible.

The flow is considered steady,
inviscid, comwpresgsible subsonic at the
inlet and f{rrotational in the absolute
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frame of reference.

An axially symmetric coordinate
system (m,8) is used in respect to which
the equations to solve are the following

2 (oRagWa) + 2 (pRaaWa)=0  (B.1)
dm RS
1 3(RW,+wR2) Ve
—_,— e —— =0 (8.2)
R dm R34
We consider the coordinate

transformation m=m{(®,¥) and 08=8(¢,¥),
where & and ¥ are the potential and
stream functions, defined as

Ve# = (Wiuxr) (8.3)
V¥ = p(An)W (8.4)

n is the wunit vector normal to the
axisymmetric surface and V4( ) is the
surface gradient operator. In this way,
we have transferred our problem from the
physical to the (¢,¥)-plane (see figure
(8.2)). Writing, also, the velocity
components in terms of the velocity
magnitude W and the flow angle P as

Wa= W cosp ; Wy= W sinB (8.5)
so that it is possible to write

equations (8.1) and (8.2) in the
following form

2
AL(lnW)g e +A2(1nW)3+A3(InW)y+A4(InW)yy+

2
+A5(1nW)y +A6(InW)y +A7 (InW)yr+

+AB(1InW)y (InW)y +A9=0 (8.6)
pAnW Ucosf
—==(1nW)y +(1nW), -
® W+Usinp W+UsinB

dnR WsinB+2U

_ (8.7)
dm W(W+UsinB)

1 W2+U2+2UWsing

3B
— = (InW), {
v pAnW W+Usinp

2W3 (W+Usinp) Ucosf
—]= (loW)y ——— +
(y—1)(2cpTra-Wa+U2) W+Using

3lnR 1 cosP(W2-2U2) 2U2cosp

m PARW  W(W+Using) Ey—l)(?cpTrl-W2+Ul)

dlnAn cosfp

+ (8.8)

om pARW

The expressions of coefficients A,
to A9 are given in ref.(8.5]. In the
above form ¢ and ¥ have been introduced
as independent variables, while the
velocity modulus and the flow angle are
the dependent ones. During the
calculation procedure only one of
equations (8.7) and (8.8) may be
utilized, as they are completely
equivalent.

SO S



The Boundary Conditions on the

(#,¥)-Plane

Having performed a firast
transformation from the physical to
the(#®,¥)-plane (see figure (8.2)), we
shall examine in this plane the
corresponding boundary, as well as, some
additional relations. We consider:

(a) The integral mass flux conservation
equation, which reads

2nR, 2nR3
—p1W1cosPiAny =—p3W3co8f24n32(8.9)
N N

so that

Ry cosPy Ang

PaWz = Py Wy — —
Rz cosPz  Anz

(8.9a)

(b) The integral momentum equation in
the following form

= ¢Vvds = évdsd‘(ﬁw}ﬂdﬂ =

blade blade blade

2w
= — (RyVup-R3Vuz) (8.10)
N
where
r -@uR’dB (8.10a)
blade

(c) The isentropic flow relations,
along with the energy conservation
equation (conservation of the total
relative enthalpy) along a
meridional streamline

Wia-U;2 wz2-U32
Ty =Ty or Ty+ Ta+ (8.11)
R1  R2 2.cp 2:cp

from which we get the following
expression

P W12-Uy2 W22-U32 4,4-1
— = (1y — = ——) (8.11a)
P 2-¢cpTy 2:¢cpTh

From the abhove written equations,
it is possible to calculate the
conditions at the exit (p2.¥W3),
utilizing the data of the problem, which
were specified in the previous
paragraph. It is not possible, using the
same data and equation (8.10), to
specify the value of the circulation, if
a rotating cescade is considered. For
this, the integral Iy must be known,
which, in our case, will be computed
once the cascade geometry 1is known.
This fact introduces one of the
difficulties of the inverse method
applied to arbitrary rotating cascades.
During the computational procedure the
integral T; will be given an initial
plausible value and corrected
accordingly, each time a blade shape ie
computed. In any case, the value of I'
must be compatible with the imposed
value of the outlet flow angle B3, so
that, if the seuction side velocity
distribution must be maintained, being
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the most sensitive, the pressure side
velocity distribution must be chosen to
satisfy this value of T.

Considering, again, figure (8.2),
periodic conditions are imposed along
the (AB), (EZ) and (I'A), (HB) pairs of
boundaries. W(¢) 1is specified along the
suction and pressure side solid
boundaries and the corresponding value
of & is calculated from the following
relation

d¢ = Wds + wR2d6 (8.12)

Consequently, differences in potential

from a station v to a station g may be

calculated as

- H H

A% = Wds + wR2d6 (8.13)
v

v v

The way the (¢,¥)-plane has been built,
we have

B
=Ad
A

zZ
; A
E

A ]
=A¢| (8.13a)
H

r

2
=I'; A¢
H

r
+A%®
B

A

The magnitudes of A% and AQ{ are
specified in our formulation. heir
value must, however, be such, so that
upstream and downstream uniform
conditions must be reached with
sufficient accuracy. In this way, the
upstream and downstream positions in the
physical plane are not specified.

From equation (8.4) we may get
d¥ = p(An)WcosPRdS
80 that the corresponding stream
function differences are described by

the following relation at the inlet and
the outlet stations

H [
Ay s I p(An)WcospRdé (8.14)
v v

Along the inlet and outlet stations the
flow is uniform with velocities and flow
angles, correspondingly, W:, W; and By,
fz. Consequently, if Wp=W;=Wyu=¥Wg=0 is
the stream function value characterizing
the lower boundary, then the one
characterizing the upper boundary is,
according to equation (8.14)

A 2nRy
A¥| =p;Wjcosf (An); =
E
2nR; A
= paWacosP; (An) 3 =A¥ (8.14a)
a

Then, the upper boundary being a
streamline, WoaWyxWr=W¥,.

The Numerical Integration of
the Equations

In order to solve equations (8.6)
and (8.7) or (8.8), a new transformation
is performed from the (¢,¥)-plane to an
orthogonal (%,n)-plane with square cells
(see figure (8.2)). This transformed
plane is constructed following a body-




fitted coordinate transformation, which
maps the (#,¥)-plane to the (%,n)-plane.

Tuen, the elliptic type equation

on W is discretized by use of
accurate finite-difference
schemes and the resulting quasi-linear
system of algebraic equations is solved
iteratively for wusing the MSIP [B8.6],
{8.7) approximate factorization
procedure, which has been developed for

(8.6)
second order

non-symmetric 9-diagonal banded
matrices.

Once the velocity field is
computed, the flow angle field is

obtained by the numerical integration of
the ordinary differential equation (8.7)
or (8.8) along the iso-n (iso-¥) or the
iso-% lines, respectively. A second
order Runge-Kutta method is used during
that step. In fact, equation (8.7) is
first integrated along the cascade mean-
streamline and the computed P-mean-

streamline values are used as boundary
conditions for the integration of
equation (8.8) along the iso-E lines.

This procedure provides the whole
p(®.,¥) field in the most accurate way.

The Computational Algorithm

A computational algorithm was

constructed, which possesses the
following steps (without considering
conditions for the profile closure,
which will be examined later).
STEP 1 : The exit plane flow quantities
are calculated through equations (8.9a)
and (8.11a). A value of the integral I'y
is assumed and a velocity distribution
Eor the pressure side compatible with
the value of the circulation T issued
from equation (8.10) is established.

STEP 2 : A first approximation of the
(¢.,¥)-plane is constructed and the
boundary conditions for the velocity

(through equations (8.13a) and (8.14a))
are specified, utilizing plausible angle
distributions. The interior (#-¥)-nodes
are determined after a linear procedure.
In the upstream (ABZE) and downstream
(F'ABH) regions, the points on the
boundary are chosen and the grid
constructed, so that periodic conditions
can be checked without interpolation.
The complete velocity and flow angle
fields are initialized making use of the
values at the boundaries. An initial

estimate for the values of (An) and R
for each node is made, as well,
STEP 3 : The coefficients Aj (i=1,9)

appearing in equation
calculated through the
ref.[(8.5) expressions.

(8.6) are
derived in

STEP 4 : Equation (8.6) is solved for
W(#,¥) using the numerical procedure and

technique described in the previous
section. At this point, an iterative
procedure is performed involving the

previous
values of the
updating is performed,
values of the velocity
previous jteration.

step, that is wupdating the
coefficients A;. This
uytilizing the

field of the

At the end of the computational

procedure involved in this step, the
values of W at the periodic boundaries
have been modified along with the
complete velocity field.

STEP 5 :
computed after
equations (8.7)
described in the
angle values are
boundaries, as well.

The flow angle field p(e,¥) is
numerical integration of
and (8.8) in the manner

previous section. New
computed at the

STEP 6 : The blade section shape 38=38(m)
is computed using the following
geometrical retations

m = I cospds = m(s) (8.15)
sinf

8 = I ds = 8(s) (8.16)
R

Utilizing the above relations, the
values of m and 8 are computed along
streamlines for the whole flow field. An
interpolation procedure is used in order
to estimate the new set of values

R(m(s)) and An(m(s)), which will be
used, along with the updated values of
the angles.

The exit conditions are calculated

at station (2), using the same procedure
as in §TEP1. The integral Iy is computed
and its new value 1is used to update TI'.
The pressure side velocity distribution
is modified in order to satisfy the new
value of the circulation. The boundaries
and associate conditions can be
established for a new (#,¥)-plane. A new
grid is established in the (&,¥)-plane,
moving along W¥-lines and computing each
time the value of @ corresponding to the
previously updated values of the
velocity field.

STEP 7 : STEPS 3 to 6 are repeated
until convergence is achieved.

As observed before, the blade
section shape issued from the above

described computational procedure is not
necessarily closed.

Results and Discussion

Even before starting discussing
various aspects of the method it will be
useful to show some calculation results.

It is easier to perform this
demonstration for a plane two-
dimensional cascade. Figure (8.3)
presents the physical plane and the
corresponding velocity distributions

along the lower and upper boundaries. In

figure (8.4), the generated grid is
shown along with the fields of W(e,¥)
and p(e,v). In figure (8.5) the

calculation results are presented in the
(§,n)-plane. One may remark the zero
velocity value at the inlet stagnation

point, as well as the reacceleration of
the flow behind the rear stagnation
point.

Several stationary cascade and

isolated airfoil test cases were used in
order to validate the accuracy and
capabilities of the present inverse



calculation method. The considered cases
were selected in order to cover as many
geometrical configurations as possible
and the complete Mach number range of
application of the method. Exact csses
were used where possible, while a direct
method of calculation was used when the
velocity distribution was not known,
given a blade shape. Of course, slight
inaccuracies in the results of the
direct calculation method resulted in
slight inaccuracies of the computed
blade shape by the inverse method. All
test cases are reported by
Bonatakil8.5) . Here, in order to
demonstrate the capability of the
method, some cases were chosen and
presented in figure (8.6). These contain
the Hobson(8.8) exact case (high Mach
number, high turning, low pitch to chord

ratio), a radial inflow turbine case
[(8.9) (strong variation of R(m),
rotational, variation of An(m)) and a

hub wind turbine case {8.10] (high pitch
to chord ratic, high stagger). Good
results are obtained for all cases
demonstrating that the present inverse
calculation procedure is numerically
sound. However, for the tip section of
the wind turbine case which was tested
but not presented here (for which the
value of the pitch to chord ratio was
263) difficulties were encountered, as
important numerical errors were
introduced during the integration. The
problem was finally solved as a single
airfoil case and gave satisfactory
results [8.11]).

It was already pointed out that, if
this procedure was applied using two
arbitrary suction and pressure side
velocity distributions, it would not
necessarily produce a closed blade
section. This question is discussed
immediately below.

The conditions for blade section
closure have been expressed in various
ways up to now. Generally speaking,
three integral or global conditions must
be satisfied in order to obtain a closed
shape (see, among others ref.[3.2]).
One of these conditions, ensuring that
the correct mass flow rate is passing
through the cascade, is automatically
satisfied in the present case, where the
stream function limit values have been
correctly imposed. Following an
extensive investigation, it was decided
for the present work to employ
appropriate overall parameters in order
to control closure, rather than
utilizing the usual integral
conditions. The <chosen parameters are
the ratio of the pressure to suction
side arc length and the pitch to chord
ratio. This 1last parameter can be
controlled by either modifying the
number of blades or the blade chord. For
initializing the first parameter a good
first guess can be made wusing an
existing blade section shape, which has
the desired maximum thickness and, for
the same inlet, produced the desired
outlet flow angle. On the other hand,
when changing the number of blades, it
is necessary to bear in mind that the
corresponding modification cannot be
continuous.

We shall end here the discussion on
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the inverse method and take it up again
in the following Chapter.

9. The Effects of "Centrifugal" Forces

As "Centrifugal" forces will be
denoted non-conservative forces and mora
particularly their components normal to
the mean flow direction. As will be
seen, their effects are particularly
large for turbomachinery applications
and for this reason, a separate Chapter
has been dedicated to them.

Dimensional analysis shows that for
flows with velocity gradients, non-
conservative body forces have marked
effects, when acting normal to the flow
direction, even in the case where these
forces are small compared to the inertia
forces. Such non-conservative forces are
the Coriolis forces, the forces created
by the presence of a curved wall and the
buoyancy forces created by a stratified
density field.

Before going any further some
examples will be given to demonstrate
these effects:

1. for 8/Rc=1/300 a change of 10% in
mixing length results(?.1) (Re is
the radius of the wall curvature).

2. For a radius of curvature R
corresponding to a turning of 350,
a 10% change in distance to
separation occurs (Bradshawi9.21),

3. The calculation results for the
boundary leyer developing along the
suction side of an optimized
compressor blade presented in the
next Chapter are given in
fig.(9.1). It can be seen that the
presence of curvature causes
boundary layer separation (detected
also experimentally), for a case
which would be considered rather
far away, if curvature was absent.
When this blade was designed,
curvature effects were not very
well known. Thus, they were not
taken into account in the design
process. The design having been

realized slightly aon the
conservative side, separation
appeared finally at the trailing
edge.

4. Reversed transition is taking place

(observed experimentally) in the
presence of strong Coriolis forces
{(Johnstont9.31),

In order to understand the
stabilizing effects of such forces
consider the case of the Coriolis force
acting on a radial flow with a velocity
gradient in the circumferentiatl
direction (fig.(9.2)). Let us consider
also for simplicity the Navier-Stokes
equations written for incompressible
inviscid flow in a rotating frame of
reference, which read

- p*
WoUd o+ 20xW = - V( —) (9.1)
o

where p'/p is the reduced static
pressure.
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We can see that an additional
static pressure gradient is present to
balance the Coriolis acceleration. If,
now, for some reason, particles of a
layer (1-1) with lower velocity Wr;
arrive at an adjacent layer (2-2) where
higher velocity Wra prevails, they will
be faced with an increased pressure
gradient (due to the increased Coriolis
force caused by the higher velocity
Wr2). Consequently, they will tend to be
pushed back to their original position.
In this crude sense the situation
described in fig.(9.2) is said to be
stable and the effects of the Coriolis
force are said to be stabilizing. Such a
pressure gradient is caused also by the
presence of wall curvature and buoyancy
forces with the same results. The term
“stabilizing" characterizes, thus,
situations for which the turbulent
intensities tend to reduce. The same
goes for the other turbulent siresses.
The shear layer, consequently, becomes
more "laminar"” and tends to support less
adverse pressure gradients without
separating. The opposite situation is
termed "destabilizing", where the shear
layer becomes more "turbulent”.

Considering the situation in the
radial part of the impeller (fig.(9.2))
in this way, we can see that the
Coriolis force induces a pressure
gradient that intensifies the one
created by aerodynamic forces (that is,
it is positive from suction to pressure
side). It stabilizes the suction side
shear layers, while it destabilizes the
pressure side ones. Considering, now,
the direction of the centripetal
acceleration, we can see that the effect
of longitudinal (in the main flow
direction) surface curvature is
stabilizing for convex surfaces and
destabilizing for concave ones.

In order to account for these
“centrifugal” eftects, Bradshaw(9.41
considered the ratio of "centrifugal"” to
.nertia forces, that is the
corresponding Richardson number and,
finally (see for more details ref.(3.23)
or the original references), established
the following correction formula for the
mixing length 1

1o
— = (1-pRy)-1 for the stable side
1

(9.2)
= 1-8Ry for the unstalbe side
with f=7 for Ry>0 and fi=4 for Ry<O.

Johnston(?.51, working 'n Coriolis
force effects and the corresponding
ratio of Coriolis to inertia forces
{called Rotation number Ro), came to the
same conclusion.

Analysis of experimental results
demonstrated that the value of P doesn't
remain constant across the shear layer,
but that a constant value, as
indicated above, may produce good
results. On the other hand, this
"constant” value is 1influenced by the
value of the overall Curvature Cu and
Rotation Ro numbers, which are defined
as

208
Rog = - (9.3)
Wse
8
Cug = 2 —
Re

Values for P in terms of Ros and Cus
have been deduced from experimeunt by
Papailioul3.22} and van deuw
Brambuschef{?.6!, The relation of B (Ros
or Cus) of Papailiou is presented in
figure (9.3). Experimental values from
both Curvature and Rotation have been
used and it seems that a unique curve
can describe both effects. The value Ba7
of Bradshaw corresponds to values of Cug
or Rosg of the order of 1/100. On the
other hand Patel’'s(9.7) experiment
suggest a value of B as low as 2.5 for
Cus or Ros of the order of 0.05. Note
that for radial machines the value of
Ros exceeds 0.1.

Using the above introduced
dimensionless parameters, we shall try
and describe the effects of

"Centrifugal" forces.

Although the laminar separation is
not influenced by the effects of
rotation {9.8]) or surface curvature
[9.9], ‘"centrifugal” effects influence
the laminar stability 1imit (see review
on the subject in references [9.5] and
{6.1]. Along curved surfaces or where
Coriolis forces exist, instability
introduced by three-dimensional
disturbances leading to the Taylor-
Goertler cellular vortices may become
predominant (concave surface for surface
curvature or leading surface for
rotation) over the Tollmien-
Schlichting one. The effect of surface
curvature on stability for a concave
wall is shown in fig.(9.4). One may note
that the calculations show an
amplification of the disturbance
amplitude for all wave lengths for

Wsebd 5
— > 16 (9.5)
v Re

or, in view of equation (9.4), for

Cus
- - > 16 (9.6)
2

Similar calculations by Conrad for
a flat plate show that, for rotation,
the stability 1limit 1is established by
the relation

Res 'Rob > 8.8 (9.7)

From the above discussion one may
conclude that on a leading or concave
surface, instability will be provoked
earlier when strong "centrifugal" forces
are present. The opposite effect will be
observed on a convex or suction surface,
where the Tollmien-Schlichting mode of
instability may be predominant. Once
instability is introduced, then, the
whole region of transition is influenced
by the stabilizing or destabilizing
effeccs. No reliable method exists today
for reproducing the effects of



"centrifugal" forces to transition.
Again, may we observe that the only
existing alternative for the designer is
to provoke transition as quickly as
possible.

Papailiou, Nurzia and Satta
(refs.[3.6),(3.17}),[3.18)},
{3.20],[3.22), or the summary presented
in ref.[3.23]), have developed, using
Bradshaw’'s formulation, the appropriate
correction for crz,ature effects
adapted to an integral method of
turbulent shear lay:r calculation.

The formulation developed by
Papailiou, Nurzia and Satta for the
correction due to longitudinal wall
curvature is applicable to integral
methods wusing +the energy eguation. The
development of the correction was done
in relation to the present calculation
method. The correction is sapplicable to
the value of the dissipation factor Cp
(for details see the cited references)
in the form

€p = Cpo+{Cocorr)c+(Cpcorr)r (9.8)

where Cp, 1is the uncorrected value and
(Cpcorr)c, (Cpcorr)r are the
corresponding corrections for curvature
and Coriolis force effects.

The expressions for {(Cpcorrlc and
(Cpcorr)r are given below (for details
see ref,[3.23])

5
(Cpcorrle=-B—Ac (Hizx)+
Re
& a3
+ P3(—) Bc(Hjax) (9.9)
e
80
{Cocorr)r=-p Ar (H12x )+
se
5 3
+ PI(—)Bp(Hyax) (9.10)
Wae

The values of Ac, B¢, Ar, B are
presented in figure (9.5). Note that, in
addition to what was presented in
ref.{3.23), here the values of the
coefficients are given, as well, for
separated turbulent shear layers. The

study has been performed by
Leoutsacost9.101, and has resulted in
slightly modified values for the

coefficients Ac, Bc, Ar and Py.

The present formulation has been
completed by Huo!3.8) for the effects of
Mach number. Huo based his correction on
Rotta’st9.111 formula for the Mach
number effectas given below

1 y-1 2
— = 1+BRy (1+ — M,) (9.11)
1o 2

Utilizing this formula, it results
that the coefficients Ac, Ag are
practically independent of Mach number,
while the coefficients Bc, By depend on
it in the following way

3
B = 0.467MgBy (9.12)

In crder to evaluate the effects of
the Coriolis forces it is necessary to
know Q. It is given (see also
Johnston(9.121) as follows

= lw)-)siny]cosw (9.13)

where the angles y and y are presented
in fig.(86). In other words, in order to
know 2, one must know the projecticn of
the Coriolis force onto the normal to
the blade surface. Johnston!9-12) gives
the following expression for the angle y

sin2fp
|siny| = |sinA| cos2p + (9.14)
cos2A
Details for developing the

expression for cosy can be found in
ref.[3.23]. The resulting formula is

cosy=% (sinAcos8-sindsin2Psinb)(9.15)

siny
When y=0, we have also B=0 and so
(cosy), o = % sina (9.16)

Finally, introducing expression (9.14)
and (9.15) to (9.13) we get

= t w|sindAcosb-sin2Bsinbcosd| (9.17)

For a purely axial blade, A=0 and
80

R =t w sin2p sind (9.18)

It is seen, thus, that the blade
twist (8=0) implies the existence of a
Coriolis force component normal to the
blade, even for a purely axial flow
machine (cylindrical stream surfaces).
For purely radial blades

A = 900 and so
(9.19)
Q@ = £t w cosbd

1f additionally the inclination & of the
blade is =zero, then Q=tw. The sign of
the relation (9.15) depends on the blade
surface considered. If the projection of
the vector normal to this surface on the
peripheral direction coincides in
direction with the peripheral speed,
then the sign (+) is applied.

It s, finally, interesting to
demonstrate how the present theory
compares with experiment. Besides the
comparisons presented here, several
comparisons can be found in references
[3.31,13.6]1,(3.7],[3.8],(%3.9],[3.10],
[3.121,(3.15},13.16},{3.17}, {3.18},
[3.20},(3.22],[3.23).

Figures (9.7), (9.8) and (9.9)
present three comparisons of theoretical
predictions with experiment for cases,
where wall curvature was present. Figure
(9.7) concerns the case of an aerofoil
(experiments performed in ONERA). Only
the turbulent suction and pressure side
parts have been plotted. Figure (9.8)
concerns again ithe case of an airfoil
suction side (experiments performed in

e o i

e
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the Ecole Central of Lyon), where, this
time, separation is present. The
influence of curvature effects is quite
large. In figure (9.9) theoretical
predictions of the experiment of So and
Mellor are presented. Finally, in figure
(9.10) a comparison between theory and
experiment is presented for the Coriolis
force effects. Moore’s experimental
results have been used.

10. Results and Discussion

We have been discussing above
various aspects of the design of
arbitrary blade sections for
turbomachinery applications. For this,
various aspects of an inverse approach
were described and we shall make, now,
an attempt to demonstrate how these may
be used. One has to state from the very
beginning that each application has its
own peculiarities and constrains so that
no unique way may be traced for the
design procedure. It is important,
consequently, that the designer is
acquainted, performing an investigation,
about the order of magnityde of the
various design parameters and the shape
and level of the various distributions
of the input quantities. The inverse
methodology offers a considerable
flexibility, giving to the geometric
shape no constrains at all, but, on the
other hand, .t cannot take into account
in a direct manner all the important
parameters and constrains of the
problem. In this respect, it may be
stated from the very beginning that the
inverse tool alone doesn’t provide the
best solution. 1t is the combination of
an inverse and a good direct methodology
that may provide the best possible
results.

The above being quite general, we
shall try below to explain in more
detail what we mean.

In figures (10.1), (10.2) and
(10.3) the computational results are
presented from a numerical study on the
geometry of a straight cascade. Although
a particular geometry is addressed, the
conclusions that will be drawn are quite
general. Firstly, the trailing edge
shape influence upon the velocity
distribution is studied in figure
(10.1). Only a small part of the blade
near the trailing edge is deformed. The
specified deformation is, however, quite
important resulting to a blade angle at
the trailing edge ranging from 0° to
45¢. OQur first observation 1is that,
besides the trailing edge part of the
velocity distribution, the rest of it
has remained totally unchanged, in
spite of the importance of the
perturbation induced to the blade shape.

Our second observation is that the
larger the wedge angle near the trailing
edge, the lower the velocity value
induced at the trailing edge and the
higher the reacceleration of the flow
from the trailing edge to infinity
downstream.

We can conclude that the velocity
field in the vicinity of the trailing
edge is locally dependent upon the blade

shape there (and vice versa), while the
wedge angle at the trailing edge (as the
theory tells wus) depends upon the
admitted local value of the velocity at
the trailing edge. This information may
be used in lhe design of blade shapes
with the inverse method.

Secondly, the leading edge shape
influence upon the velocity distribution
ise studied in figure (10.2). Only a
small part of the blade near the leading
edge is deformed, in order to adjust it
to various radii of curvature around the
inlet stagnation point. The suction and
pressure side velocity distributions for
the four cases studied are presented in
the figure. The same general observation
can be made as to the local effects of
the shape change upon the velocity
distribution. On the other hand,
although it cannot be clearly seen from
the figure, the linearity of the

velocity profile near the inlet
stagnation point, when the radius of
curvature is constant there, is

assessed. One may, recognizing the well
known fact that the shape of the leading
edge influences the off design behaviour
of the blading in subsonic flow, proceed
in investigating for the blade leading
edge shape that will give him
satisfaction for this particular problem
(or why the NACA combined thickness and
camber distribution gives better off
design performance than the C-4 circular
arc distributions). Such studies result
in giving the designer the necessary
information, which will permit him to
obtain the desired leading edge shape
during the inverse (design) phase.
Concerning the leading edge problem, we
may state, additionally, that the
corresponding changes near the leading
edge do not appreciably change the shear
layer behaviour. They cen also be
transferred on the image plane, so that
they can be included in the choice of
the appropriate image curve.

Thirdly, the blade thickness
influence 1is studied in figure (10.3).
For this, the mean camber line of the
blade and the non-dimensional thickness
distribution has been kept unchanged.
Only the maximum thickness value has
been changed.

The general observation that can be
made here is that for an increase in
blade thickness both levels of the
pressure and suction side velocity
distributions increase. The approximate
increase may be estimated taking into
account the increase of the relative
blockage effect in the passage. This
estimation can be done for compressible
flow, as well. On the same figure one
may identify the previously two studied
effects, as, simultaneously with the
thickness, the inlet radius and the
outlet wedge angle were modified.

The above described study may, as
one can see, give us information as to
how we may deal with the choice of the
leading and trailing edge velocity
distributions, as well as, how to deal
with certain aspects of the mechanical
constrains imposed upon the blade
design. As one example we present in
figure (10.4) a turbine blade which we
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used as starting point and the thicker
blade that we obtained by increasing the
level of the suction and pressure side
velocity distributions keeping, at the
same time, the same inlet and outlet
conditions. This particular design is
quite revealing, because changes in the
velocity distribution were introduced in
such a way, so that the maximum velocity
was not increased., On the other hand the
linear part of the inlet velocity was
kept intact, so that the radius of
curvature at the inlet was conserved.

Up to now, we have talked about
closed profiles and we have given the
parameters, which may help us to obtain
closyre. No theoretical background may
be found as to how one can play with
them, in order to obtain closure. We
have found out empirically how, and we
can state that it is possible to obtain
closure with around five iterations.
During these iterations the suction side
velocity distribution may be kept
unchanged or, if the absolute
necessesity to change it partly or on
the whole arises, then an optimum one
can be chosen again. During the
computational procedure aiming for
closure, the parts of the velocity
distributions near the leading and
trailing edges can remain unchanged, in
order to ensure the desired blade
section shape locally.

When the Lock and Firmin model is
applied, the inviscid flow calculation
(direct or inverse) considers the
effective blade section surface, which
includes the displacement thickness.
Consequently, during the complete
inverse design procedure, including
viscous effects, it will be necessary to
subtract from the obtained blade
saction shape the displacement thickness
both from the pressure and the suction
sides. The target will be then to obtain
a closed blade after the suction and
pressure side displacement thicknesses
have been subtracted. Obtaining an open
profile with a definite distance between
the trailing edge suction and pressure
sides doesn’t constitute a problem for
the inverse method. On the other hand.
in Chapter 2, the condition concerning
the static pressure difference of the
inviscid flow at the trailing edge has
been specified (equivalent Kutta
condition). It is possible to express it
in a velocity differenre and utilize it
during the inverse procedure.

Before going any further, let us
apply the design procedure to a specific
case, in order to make a demonstration.
An old design (3.21) of a compressor
blading will be considered. The
compressor blading was imposed to have a
45 degrees inlet air angle and an axial
discharge. The desired blade chord
Reynolds number was approximately 3x10%
and no additional constraint was
imposed, other that that the blade ought
to be manufacturable. It was taken that
the velocity ratio V,;/V3=0.707 and,
considering that Vaax/V1=1.3 was a
reasonable value, we came to the
conclusion that Vgaax/V2 should be of the
order of 1.84. Considering figure (7.6),
it is possible to see that combinity the
Reynolds number requirements, the
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maximum velocity requirements (for a
more or less thick blade) and the
requirement to get the Vgean/Va as high
as possible, a good first compromise
could be achieved with Xg 8.2 and
Xp~X1r=2.2.

It can be seen from figure (7.6)
that the choice of the (Xp-Xr)-value
doesn't correspond to the maximum of the
(Wse.nean/Wse.z2)-curve for Xp=8.2. One
has to remark, however, that, as long as
we keep ourselves near the maximum,

which is the case here, the
corresponding loss in circulation is not
important. Figure (10.5) presents

different aspects of this case. Once the
overall intrinsic values of the image
curve were specified, the optimum image
curve for the blade suction side was
constructed and is presented in figure
(10.5(a)). The corresponding suction
side velocity distribution was then
calculated and 1is presented in figure
(10.5(b)). A pressure side velocity
distribution was matched ta it and,
using the conformal mapping inverse
method of A. Goldstein, a blade shape
was issued. It is presented in figure
(10.b(c)). The image curve corresponding
to the pressure side velocity
distribution is traced on the image
plane, figure (10.5(a)). It was tried
to obtain an as extended as possible
laminer shear layer.

One may find quite a few
deficiencies in this first design, the
most important one being that the
influence of curvature effects on
turbulence was not included. When the
blade was tested in the VKI cascade wind
tunnel, it was found that, due to the
high loading, lateral flow convergence
was important and, although it was
assessed that transition was located
were it was introduced theoretically,
the velocity distribution was diverging
from the theoretical one and so were the
losses. This situation is described in
figure (10.5(b)). Subsequent tests
conducted in Pratt and Whitney in 2-D
conditions, however, demonstrated that
the experimental velocity distribution
was very close to the theoretical one
and so were the losses. Experimental
results presented in figure (10.5)
obtained in Pratt and Whitney,
demonstrate that the level of losses of
the optimized blade is quite below that
of the NACA series and that its off
designed behaviour is quite remarkable.

When the curvature effects on
turbulence were incorporated in the
method, calculations were performed for
the suction side velocity distribution
and were reported here in figure (9.1).
It can be seen, there, that, without
curvature effects, the suction side
shear ltayer is far from separation (a
conservative design was adopted). When

curvature effects are taken into
account, separation is reached near the
trailing edge. This separation was

observed, also, experimentally.

The case of a wind turbine blading
is examined in figure (10.6). This was
actually a redesign of the hub blade
section, which is presented in figure
(8.6.3). The redesign was undertaken,
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found that considerable
present for the existing
case. The same overall target was
maintained (as far as number of blades
and circulation per blade were
concerned). The aim was to get as low
lusses as possible. It was also decided
to avoid turbulent separation for the
design point. In figure (10.6) the
optimum velocity distribution is given
and the corresponding blade shape.
Already, one can see that the shape is
not conventional and cannot be easily
represented by a mean camberline and a
thickness distribution. On the other
hand, the theoretical calculation tells
us that the losses were reduced by a
factor of four in respect to the
existing blading. More details for this
case can be found in references [3.25]
and [3.26].

because it was
separation was

In order to demonstrate the
capabilities of the method, a redesign
of the blade presented in figure (10.5)
was done. This time, however, all
effects were included in the
computation, while in addition the inlet
Mach number was taken to be Mey=0.7 and
a thicker blade was targeted. The
calculation results are presented in
figure (10.7). It can be seen that the
blade is thicker, the local Mach number
is over wunity and the circulation is
higher than in the previous case
resulting to a higher pitch to chord
ratio. The calculated level of losses,
thus obtained, remains still quite low
and comparable to the previous case.

The inclusion of curvature and
Coriolis force effects in the design
procedure must be discussed somewhat
further. One has to observe that these
effects have as a consequence to
displace the optimum deceleration curve

(which is the locus of the maximum M-
values). In figure (10.8) calculation
results are presented that demonstrate

that the locus of maximum Mg-values for
turbulent flow is displaced when these
effects are present. On the other hand
some calculation results concerning the
Coriolis force effects are presented in
figure (10.9). A velocity distribution
is considered with very high decele-
ration. Using this velocity distri-
bution, image curves are calculated for
various values of the Rotation number.
The velocity distribution and the sign
of the Rotation number are assumed to
correspond to the radial part of the
pressure side of the blading of a
centrifugal compressor. It can be seen
from figure (10.9) that the initial
deceleration is quite high and that
early flow separation appears. The
Coriolis force effects, however, tend to
delay separation, or even suppress it

altogether. The results of similar
calculations performed for the suction
side of the blade radial part of a

centrifugal compressor demonstrate that,
in the presence of strong Coriolis
forces, the deceleration that this part

of the blade can sustain is very
limited.

It can be seen, from the evidence
given above, that the design of radial

machines is influenced
these effects.

considerably by
In fact, the design of a

[V

new version of a radial compressor
{10.1]), [10.2] was done utilizing the
present calculation method. The aim of
the design was to reduce the axial
length of the compressor for the obvious
advantages of a multistage arrangement.

The compressor pressure ratio was n=2
and its mass flow rate my=8kg/s. Some
results of the calculations are
presented in figure [10.10]). They
concern the blade suction and pressure
side velocity distributions along the

mean stream surface. The variation of
the streamtube width and radius was
taken into account along with the
effects of compressibility and those due

to the wall curvature and Coriolis
Eorce. The shear layer calculation
penetrated inside the reverse flow
region.

It can be seen from figure (10.10)
that the chosen velocity distributions

are such that the deceleration is rather
mild on the suction side and severe on
the pressure side. The “centrifugal"
force influence finally provokes
separation near the suction side
trailing edge, while it suppresses it
all together on the pressure side.

Details on the radial compressor
and the test results that were
performed in ECL can be found in
reference {10.2]. It can be seen there
that the overall efficiency of the
compressor {(including the scroll) at the
design point was 0.84, a figure which
can be considered rather satisfactory.
The impeller efficiency at design point
was found to be 0.90 and equal to the
computed one. This figure, however,
alone cannot explain the good overall
efficiency. We believe that it was the
limited separation admitted for the
impeller that provided the diffuser with
good initial flow conditions that gave
this interesting result. We can also
remark the hub shape, which was found to
be necessary during the design, in order
to obtain the pressure side
deceleration, where the Coriolis force
effects were effective.

11. Conclusions

The present course tried to propose
theoretical tools that may help the
designer in his work. In fact, a
complete (viscous and inviscid) inverse
procedure was proposed, but, it was
pointed out, that in order to obtain
results, it has to be combined with a
sound direct (analysis) one. Various
examples were chosen in arder to
demonstrate the use of the proposed
tools. Of course, these examples do not
cover all cases, but rather converge to
the conclusion that the proposed tools
may prove to be quite useful, while,
each design must be considered as a
separate case.



APPENDIX Al

Nomenclature

(x,y) or mainstream and normal

(m,n,q) directions

V (u,v) absolute velocity vector
having components u,v in the x
and y directions

W(W.,Wn) relative velocity rector
having components in the m and
n directions

M(Lx,X) semi empirical functions for

B1{(Llx) laminar and turbulent flows

C1(lx)

Bea (L, X)

Bra (Lx,X)

Be3(Lk.X)

Cea(lx,X)

Cea(Lx,X)

Cea(lx,X)

cp specific heat coefficient for
constant pressure or pressure
recovery coefficient

A,B semi-empirical coeffiecients
used for the calculation of
the curvature and Coriolis
effects

cp dissipation factor

cy skin friction coefficient

Cus overall Curvature number

E kinetic energy dissipation

G Clauser’s or Rotta’'s form
factor

H;2=58,/5; momentum thickness from
factor

H32=63/86; energy form factor

Hp3=56, /6; density form factor

I integral used for the

calculation of the transition
point (equation (7.5))

K ~ factor introduced in order
to take into account the
normal fluctuation terms

- curvature
k,c constants of law of the wall
1 mixing length
L length
Lx ordinate of Le Foll's plane
m power characterizing the

equilibrium boundary
velocity distribution

layer

Me free stream Mach number

P static pressure

p* reduced pressure

q external velocity logarithm

Re Reynoids number

Re3s

Rey

Reyx

Repa

Reqe

Ri

Re

Ros

w(y/8)

5,

§; or @

Reynolds number based on
diaplacement thickness
Reynolds number based on
momentum thickness
Reynolds number based on
energy thickness

Reynolds number
equation (1.91)

defined by

Reynolds number based on
distance
Reynolds Number dJdefined as

(see eq.3.6)
Weew: (52-51")

Vew

Reynolds Number defined as

(see eq.3.7)
Woew (83-53")
Vew
local Richardson number
radius

longitudinal surface

curvature
overall rotation number
recovery factor

stability
Prandtl

parameter of

temperature
friction velocity

reduced velocity used in
compressible flow theory

velocity

abcissa of Le Foll's plane

angle

- "constant” used in the
calculation of curvature
and Coriolis effects

- angle

ration of specific heats

Coles’ wake function

boundary layer thickness

displacement thickness

defined as
pew"enw'RI'SI =
JR(DeWse'DWg)dn
o
momentum thickness defined as
Pew  Wadw Ry 63 =
5
JR'ap(wae—ws)d"

[e]

S
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53

§1x or Sf

5

&n

Vv

m

u,.m

energy thickness defined as
Pew Wadw - Re: 863 =
]
2 3
Rwgp(Wse-Wg )dn
o
kinetic displacement
thickness defined as
Pew Ruwsouw-B1x =
5
]R'Da(wse‘wl)dn
o
density thickness defined as
Pew-Ru-8p =
5
JR(po-p)dn
o
enthalpy thickness

Le Foll’s velocity profile
family free parameter

coefficient of viscosity
kinematic viscosity
turbulent kinematic viscosity

Cole’'s velocity
family free parameter

profile

circulation

boundary layer
parameters

equilibrium

density

convergence/divergence or
rotation parameter

shearing stress
angle

velocity potential Reynolds

number

stream function

normal to the profile
component of the rotating
speed rector

rotational speed

constant in Sutherland’s

equation

Superscr.pts

)
« e

mean value

value which takes into
account the fluctuating
quantities

turbulent fluctuations

Subscripts

c

curvature

rotation

corr

ref,r

in

¢,9

wall

reference

correction

external flow

reference

~ separation

- tangent to the wall
direction

kinematic

- total
~ turbulent

maximum
minimum
F final
instability
transition
normal to the wall direction

- lower
- laminar

upper
initial

partial derivatives

2 ama 2
P73 Jdv
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OPTIMIZATION OF TARGET PRESSURE DISTRIBUTIONS

by
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1006 BM AMSTERDAM, THE NETHERLANDS

Summary

An overview is presented of the possibilities and problems associated with the use of numerical optimiza-
cion techniques in aerodynamic design.
First, an inventorv is made of the alternative serodynamic design methods, the numerical optimization approach
being one of them.‘'The development of optimizing design methods is outlined and a short exposition of the
state-of-the-art in numerical optimization is given. This is followed by a discussion on the practical use of
numerical optimization techniques in aerodynamic design, in particular the inverse numerical optimization
approach. An important step in this approach 1s the optimization of target pressure distributions, which are
used by inverse methods to find the corresponding geometry. The procedure for finding target pressure distri-
butions is explaiuned, illustrated by some examples.

1. Introduction

Traditionally, aerodynamic theory distinguishes between two different formulations of the problewm of
computing the flow past a body. In the analysis problem, one seeks to find the flow and aerodynamic character-
istics of a body of give shape at give free-stream conditions. In the design problem, the objective is to find
the ghape and angle~cof-attack of a body that has to satisfy given aerodynamic characteristics.

In the aerodynamic design problem the designer wants to have, most of all, control over the aerodvnamic
quantities such as 1ift, pitching moment or pressure distributivns. In fact, he usually has to deal with
aerodvnamic requirements at multiple design points (cruise flight, high 1ift conditions, etc.). However, the
designer wants to have explicit con.rol over the geometry as well, at least to a certain extent. He wants to
be sure, for instance, that the aerodynamic shape 1s also acceptable from the point of view of the structural
engineer. Another aspect where the aerodynamic designer is confronted with is the question whether the design
problem as formulated really has a solution (existence requirement) and whether there is one solution only
(uniqueness). The design-problem can alsc be an ill-posed one in the mathematical sense. And last but not
least, the computational effort of the procedure to solve the design problem, which generally is a number of
times of that of an analysis method, must be acceptable in order to work with it on a routine basis.

In literature, various computational procedures for aerodynamic design can be found, each having {ts own
abilities and/or inmadequacies with respect to meeting the requirements just described. Five different classes
of computational procedures for aerodynamic design may be distinguished (Ref. 1):

1. Indirect methods : Indirect methods are characterized by the fact that, in principle, the designer has
direct control over nefther aerodynamic quantities nor over the geometry. Rather than specifying such
quantities directly, the designer has to manipulate a number of (gererally non-physical) parameters and
sees what comes out of 1t. The hodograph method (e.g. Ref.2) and the fictitious gas method (e.g. Ref. 3)
are in this category.

2. Inverse methods. This category contalns methods for solving the classical inverse problem of aerodynamics,
{.e. that of determining the detailed shape of a bodvy that will produce a given pressure distribution (and
hence given 1ift, pitching moment, etc.). The most serious limitation of pure inverse methods is that no
direct control can be exercised on the geometry (may lead to unrealistic geometries). In residual correc-
tion type of inverse methods (e.g. Ref.4) it may be possible to impnse constraints on the geometrv. The
specification of the target pressure distribution, however, puts a heavv burden on the aerodvnamicist. As
an example, for transport aircraft, the target pressure distribution must be chosen such that, at least at
the design condition, boundary laver separation is avoided and that drag is minimized while obtaining an
acceptable geometryv. At the same time the choice should lead to acceptable off-design characteristics.

3. Optimal control methods (Ref. 5). Such a design method mav be created by integrating a control function
into an analysis method, and inserting a variation procedure based on control theory to reach a minimum of
a certain cost function. The control is the shape of the aerodvmamic surface, and the cost function may be,
for instance, the deviation from a desired surface pressure distribution, but could also represent other
maasures of performance such as lift or drag. So, the method allows centrol over the aerodvnamics, while the
computational effort is sti1ll within reasonable bounds (approximatelv slightly more than pure inverse
methods). The numerical implementation of these rather new design methods, however, remains still to he
explored.

4. Direct numerical optimization methods. This category is characterized by the use of automated design proce-
dures in which a pumerical optimization algorithm and a fluid dynamics solver are linked together to,
directly, minimize a given aerodynamic object function (such as drag) bv iterating on the geometrv. These
methods essentially have the same advantapes as optimal control methods (control over aerodvynamics, multi-
point design capabilities, some control on the geometrv). The direct numerical optimization procedure, how-
ever, becomes ex.remely expensive as the number of geometry parameters is {ncreased.

5. Inverse numerical optimization methods. In the Inverse numerical optimization approach the design varfables
are parameters describing the pressure distribution rather than the geometrv. The optimization algorithm ts
used to minimize the drag and subject to constraints on 1ift and pitching moment. With the target pressure
distribution established a corresponding geometry can be determined by means of an inverse code. The pro-
cess is repeated untill a geometrv {s obtained having acceptable off-design performances and satisfving the
geometry constraints. This procedure avoids most if not all of the limitations of the pure inverse method,
while requiring considerable less computational effort than the direct numerical optimization method.

The paper will especially be focussed on desipgn techniques hased on numerical optimization. After explai-
ning the principles of numerical optimization, a brief review of its ar *‘catfons in the pa:t and present will
be given. Subsequentlv, the app!ication of numerical optimization techniy i{n the inverse numerical optimi-
zation pracedure will he worked nut, and {llustrated by some examples.




2. Optimizirg design methods

The growth in speed and capacitv of digital computers has opened the way to the application of theoreti-
cal methods to aerodypamic design problems to an extent which was almost unimaginable thirty years ago. At
that time, the basic tools at the disposal of the aerodynamic designer were analytical tools and physical
experiments. Amalytical methods forced him to make very restrictive and idealized assumptions, and allowed him
to consider simple configurations only. These limitations were largely removed by windtunneltests. Through
physical experiments with scaled of actual (parts of) desigm configurations, the characteristic behaviour can
be determined. Windtunnel-experiments, however, are costly and can take up a lot of time, especially if a sub-
stantial number of design parameters Is involved. Besides, the experimental potentialities are often restric-
ted by the limitations in test conditions and test equipment, and results can be affected by the test environ~
ment itself (for example, bv wall interference).

With the developments in the field of digital computer technology and numerical methods, f{t became feas-
ible to use numerical simulation methods in aerodynamic design processes. Using well-developed simulation
methods, it is possible to treat complicated designs with, in principle, less restrictive simulation condi-
tions than is the case with windtunnel experiments. Besides mathematical simulation methods are inherently
more flexible with respect to changes in the design parameters, and are usually more cost-effective to work
with. At first, the computer was almost exclusively used for the theoretical analysis of a proposed design.
In fact, any designer wants to achleve the design that 1s best according some properties. Very probablv, his
first attempt will lack some essential characteristics or violate some of the imposed design constraints. The
designer then modifies the aerodynamic design by changing some of the design parameters. Analysis of the
effects nf these changes on design characteristics must yield the information he needs in order to decide how
to change the parameters to achleve an improvement.

A logical extension of this classical way of designing using computers, is one in which the computer
drives the design parameters towards a satisfactory ultimate design (Ref. 6). The simulation methods are then
interfaced with an iterative control system (the optimizer). which interprees the analyls results in the light
of previous iterations and subsequently decides how to vary the design parameters in order to better meet the
design objectives and constraints. Also in this automated procedure, the simulation method is of vital impor-
tance.

In fact, the {terative process control gystem does not function differently from the human optimizer.
Both start with an estimate of the design in view and then subsequently iterate to a final solution. When a
suitable mathematical optimization technique is used, however, this way of designing will generally be more
efficient, Besides, mathematical optimization is applicable to a higher dimensional space than a designer can
manipulate. Of course, the restrictions of a particular optimization algorithm must also be realized. Moreover,
the use of optimization algorithms and their coupling to simulation methods ask for more programming effort.
For example, design criteria and constraints have to be formulated in an explicit wav, which {s not necessa-
rilv needed {n inverse methods or indirect methods.

3. Numerical optimization

The application of numerical optimization has been made possible by the development of numerical techni-
ques for obtaining maxima and minima. Though the history of numerical optimization is relatively short, a
variety of useful optimization techniques 1s already available nowadays (see e.g. Ref. 7). Most of these tech-
nigues, such as linear and dynamic programming methods, have been developed to deal with specific classes of
optimization problems. For most technical applications, however, methods for solving constrained nonlinear
optimization problems are more relevant. In recent yvears, regsearch in this particular field has resulted {n
a number of efficient and reliable computer codes. Comparitive studies {see e.g. Ref. 8) can support the
designer in choosing the most appropriate one for solving his particular problem.

The constrained nonlimear program (NLP) problem concerns the determination of design parameters that
winimize an objective function, while satisfying a finite number of constraints. In standard notatation:

1 u
mén !F‘(g)’bj < Fj(l) < bj » 4= t,ml

Here, b1 and bu, respectively, are the lower and upper bounds on the constraint functions ijg). In a NLP
problem; one c; more of the functions appearing in the notation are nonlirear in x.

In general, methods for solving these kind of optimization problems can be subdivided into:
- methods in which the necessary conditions for an optimum are derived and subsegently solved;
- methods based on an {terative search strategy.
The first category of methods is restricted to well-behaved functions only, and even then the algebraic pro-
blems that arigse from it may be rather complicated and difficult or impossible to solve, even with the numeri-
cal mettods and computers of the present day.

Optimization methods based on an iterative search strategy operate on the objective function directlv and
there is no formal intermediate step of specifying necessary conditions for an optimum. In the last decennia,
a large number of iterative optimization methods has heen developed. llsually, these methods consist of two
separated subprocedures, one for the determination of the search direction, and the other to move in this
direction in order to find sn optimum that {s satisfving the constraints. In order to illustrate this process,
an example is given in Figure 1. The process is initiated at a starting design %0, Then an optimum 1s approac-
hed in & sequence of successive steps. In the figure, the choices of the directions are chosen somewhat arbi-
trarily, however, such that the value of the object function F decreases in each iteration step while not vio-
lating the constraints. In general, search wmethods stop at the first local optimum that is reached.
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Two different tvpes of search methods can be distinguished: gradient methods (using gradient information
one wav or the other) and pattern- and random methods (not using any gradient information). In the latter,
the search pattern is determised a priori, or is determined on the ground of experience from previous iterated
points and perhaps coincedence. In case of highly nonlinear optimization problems, these methods may be more
robust than gradient methods, the rate of convergence to a solution, however, usually {s lower than that of
gradient methods.

From a mathematical point of view, gradient methods are more sophisticated and, as gradient methods use
first (and possibly second) derivatives, this search strategy mav be expected to be more efficient. The lite-
rature is mainly concerned with this particular class of optimization methods. The following categories of
g:adlent methods may be distinguished:

o First order methods using first derivatives only (e.g. the steepest-descent method);

o First order method- using first derivatives, but having second order characteristics (e.g. conjugated
gradient methods);

o Second order methods using approximated second derivatives, the so-called Quasi-Newton methods
{variable-metric methods);

o Second order methods using exact second derivatives, the so-called Newton methods.

There are varfous wavs of handling constraints in the optimization procedure; for instance by:
o moving along a constraint boundary when that constraint threatens to be violated during the fteration pro-
cess (the so-called boundary-following methads such as Zoutendiik's method of feasible directions);
o adding the constraints to the objective function using penalty terms, thus performing a conversion to an
unconstrained optimization problem (the so-called penalty-function methods such as SUMT).

In the last decade, developments in the field of constrained nonlinear optimization have especially been
focussed on improvements of existing methods. These developments concern, among others, the determination of
efficient search steps (e.g. the doglep-step method, Ref. 9), procedures for specifving a starting solution
(often difficult to find by hand), and convergence improvement in the initial phase of the search process
(e.g. the thrust method, Ref. 10, 11).

The difficulty faced by the practitioner is in choosing which optimization method is the most appropriate
one for solving the problem on hand. Several criteria (see Figure 2) may be relevant here:

- Applicability. It is important to realize for which type of problem a particular method has been developed
(unconstrained problems, linearly constrained problems, etc.);

- Efficlency. A logical criterium to measure optimization efficlencv is the total number of analyses typi-
cally required to obtain a near-optimum design. If gradient information is calculated by finite differ-
ences, the number of analyses re-uired at each iteration point equals at least the number of design varia-
bles plus one, which may lead to unacceptable computer time;

- Convergence characteristics. For instance, rate of convergence and degree of convergence;

- Robustness. Does the method, under various circumstances, always lead to a reliable arswer?

- Simplicity of use. The amount of effort necessarv to use the method or computer code;

- General applicability. The possibililty to apply, without much extra effort, the method to other problems;

- Flexibility. The possibility to use the code i{n different wavs for the problem on hand;

~ PRequirements from the size of the problem (number of design parameters, constraints, etc.);

- Capacitv. How much computer core storage does it use?

- Time and effort that is required to learn to use the method or program code.

Tt is clear that, in order to make a justified choice, 1t is necessarv to know the possibilities and the

limitations at each optimization method or code. In fact, the selection of an optimization algorithm can it-
szlf be a major optimization task.

4. Aerodvnamic design using numerical optimization

The past decade has seen repeated efforts, some (partly) succesfull, other less so, to directly address
the problem of aerodynamic design bv combining computer codes for aerodynamic (drag) analyses (flow solvers)
with numerical optimization algorithms (see e.g. Ref. 12). The optimization algorithm then controls variations
of a number of independent variables, such as parameters defining the geometry, with the purpose of finding
the particular combination of parameters that, subject to given constraints, leads to an optimum value of the
ob,ect function {(e.g. minimum drag). In this process, the flo. solver is used to provide values of the object
function for each combination of values of the {independent var 1bles that 1is considered to be feasihble and
"interesting” bv the algorithm.

Cenerallv speaking aerodynamic design using numerical optimization requires:

choice of object function (drag, }ift, etc.)

flow solver (aerodvnamic analysis code)

choice of independent variables

- a choice of constraint functions defining that part of the solution space that i{s considered to be feasible
from the engineering or another (e.g. numerical) point of view

- an optimization algoritm.

1
[

With respect to the choice of independent variables one may distinguish two different approaches. One,
and indeed the most common choice 18 to use parameters defining the peometrv as the independent variables.
This requires s direct or analvsis type of flow solver only. The approach is generally referred to a as
direct numertcal optimization.

The approach, pioneered bv Hicks et al (Ref. 13) owns {ts existence entirely to the availabilitv of large
and fast computer svstems. Because of the excessivelv large computational requirements, at least in 3D, the
approach 1s sometimes referred to as "design bv brute force”. Nevertheless 1t holds great potential for the
future. A reappraisal of the technique has been given by Hicks (Ref. 14).
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A generalized flow diagram of the numerical optimization technique is presented in flgure 3, The process
is initiated by the choice of an aerodynamic object function F that is to be minimized (for example, the drag)
a pumber of quantities to be comstrained G, and a set of design variables. The constraints can be of aerody-
namic or geometric nature; e.g. C, and/or é/c greater than a specified value. The design variables are gene-
rally taken to be the coefficients A1 of a number of shape functions

n
2=z + L A.Lf
) 1=1 1774
describing (nodifications to) the (starting) geometry.

The process begins by perturbing, in sequence, each of the shape function coefficients A ,. The resulting
n shapes are analyzed by means of the aerodynamic program (determination of F and G, 's) and the derivatives
. or rather the differerce quotients AF , AG. are determined. The next étep is the formation,

aF L a6, a6,
BAi aAi AAi AAi

bv the optimization program, of the gradient VF and the determination of the direction of steepest descent of
F. in the n-dimensional space formed bv the basis vectors A,, while satisfving the constraints. The optimiza-
tion program then executes a number (tvpically 3) of steps in this direction, with another aerodynamic analy~
sis performed at each step, until either a constraint is met or F attains a minimum. In the first case, or
when the minimum of F is lower than the previous m“nimum, the process is repeated; new gradients are deter-
mined, etc. When the latest minimum of F is equal to or higher than the previous one the process is termina-
ted.

The optimization process described above requires typically 10 complete cycles or, in other words, 10
(n+3) analysis calculations (Ref. 15). This immediately illustrates the weakest point of the numerical opti-
wmization approach. In order to keep the computational effort required within reasonable bounds one has to put
severe limitations on the number n of design variasbles, in particular in 3D flow. The problem is enhanced bv
the fact that for acceptable convergence of the optimization process it is necessarv to avoid "numerical
noise" in the partial derivatives of the object function {Refs. 16, 17}, This requires that the relaxation
process in each analysis calculation must be continued until the residual has reached a level bevond that
which {s often customary in “normal” analysis calculations. It alsc appears to ex lude the use of analysis
codes with simple boundary layer corrections (Ref. 14). The reason for the latter is that the airfoil aero-
dynamic quantities do not vary consistently enough when boundary layer and potential flow are coupled in the
weak interaction sense.

One way to reduce the number of analvsis calculations fn 3D applications is to evolve the design variab-
les Iin a series of steps (Ref. 18). For example by first designing the upper surface, section by section,
going from root to tip and then the lower surface. Clearly it is also important to select a starting geometrv
having aerodynamic characteristics which are already close to the target. This asks for an Information svstem/
data base approach. With previous experience stored in the data base, the latter can be searched for the most
suitable starting solution., As described in Ref. 15 the data base approach can also be used to speed-up the
convergence of numerical optimization by at least a factor two. With the results of all preceding geometrv
perturbations stored it is possible to construct higer partial derivatives of the object function and utilize
higher order gradient methods.

With the severe limitatlions on n, rthe choice of the shape function is of utmost fmportance. The choice
should be directed towards describing a sufficlently wide class of practical solutions. While simple polyno~
minal expressions were used in early applications (Ref. 13, 19) of the pumerical optimization concept, a more
sophisticated class of shape functions describing more local geometrv modifications was used in later appli~
cations (Refs. 16, 17, 19). However, as discussed in Ref. 18 there is a need for still better shape functions
with even more localized curvature variations. In fact 1t can be argued that while curvature based shape func-
tions are suitable for areas with suberitical flow, slope based shape functions might be more appropriate in
areas with locally supersonic flow.

An interesting choice for the shape functions is discussed bv Aidala et al. (Ref. 20). Thev consider
shape functions generated bv means of feeding certain pressure distribution modifications into an inverse
program. The result is a set of design shapes that are (almost) orthogonal In an aerodvrnamic sense, that is,
affect onlv ome specific pfessure distribution characteristic and no other ones. Another cheice for shape
functions can be found in Ref. 21.

While the choice of the design variables is of great practical significance, the precise cholce of the
object function, in conjunction with the choice of the aerodynamic and geometric constraints, is of both mere
fundamental and practical interest. In two~d{mensional tramsonic applications (Refs. 13, 15, 16, 19) it has
heen custom to minimize the wave drag subject to constraints on, e.g., airfoil thickness or volume, lift
and/or pitching moment. Although it is clear that constraints are necessarv in a .eaningful drag minimization
problem it 1s by no means clear how exactly the problem should be formulated in order to guarantee A unique
solutfon. The problem i{s {llustrated by fipure 4, taken from Ref. 15. Shown are the results of two drag mini-
mization runs with identical free stream conditions and identical constraints on 1ift and airfoil volume. Only
the starting solutions differ. As {l1lustrated bv the figure the two resulting airfoils are totallv different
in shape. (learly the problem, as formulated, has more than one, local minimum and neither of the two
necessarily represents the absolute minfmum. An Interesting discussfon on criteria for suitahble aero-
dynamic obiect functions can be found in Ref. 20.

Figure 4, the second airfoil in particular, also {1llustrates another potential problem of direct (invis-
cid) wave drag minimization. In the absence of (direct) control over the pressure distrihution the solution
may acquire unrealistically high pressure gradients, such as near the upper surface trailing edge.

A strong point of the numerfcal optimization approach Is the possibility of selecting object functions
and constraints suitable for multipoint designs. An example of a two-point design problem directed towards
the design of sirfoils with low drag creep can be found ip Ref. '€, low speed air“nil design applications are
considered in Refs. 22, 23. It is also entirely possible to consider, e.g. transonic drag minimizat{on and
low-apeed stall reguirements simultaneously.

Although a number ~f different numerical optimizstion algorithms have been applied in aerodvnamic design

(see e.g. Refs. 24, 25, 26), the feasible directions/gradient optimization algorithm CONMIN/COPES, developed

bv Vanderplaats (Ref. 27), seems to be used almost exclusively In the direct numerical optimization approach,
in particular in combination with tramsonic flow codes.




While the direct minimization of drag is feasible in two dimensions, it is hardly so, at present, in the
case of three-dimensional wings. Several unsuccesful attempts in this direction can be found in the litera-
ture, (Refs. 17, 18, 28). The main reason for this failure is the lack of accuracy in the determination of the
drag with the currentlv available 3D codes and the limited number of mesh points. Another problem would seem
to be that the problem of uniqueness In three dimensions is even more severe than in two dimensions. The accu-
racv problem may be overcome when more efficient algorithms and/or more computer power (vector/parallel mach-
ines) allows the number of mesh points to be increased. The uniqueness problem would probablv require the
introduction of more constraints or more sophisticated object functioms.

Summarizing the discussion on direct numerical optimization, it may be said that the potential possibili-
ties of the approach are enormous with, at present, unique capabilities such as multi-point and constrained
design. However, the approach is also unique in terms of required computer resources. Substantial {mprovements
in both flow optimization code algorithms and/or computer efficiency, velative to current general standards,
are required before numerical optimization in 3D wing design can be used on a routine basis.

An alternative possibility for computational drag minimization is to use aerodynamic (load and pressure
distribution) rather than geometric shape functions as independent variables. In this approach the first step
is creating a starting point for the specification of "target" pressure distributions. This starting point
could be obtained using a method for constrained spanload optimization (see e.g. Ref. 29). Subsequently, an
optimization algorithm is used to optimize the pressure distribution, herebv using a boundary laver code and
a wave drag routine. The objective mav be the minimization of drag, hereby providing the prescribed spanloads.
With the targe C ~distribution established the new geometry can be determined by means of an inverse code.
Subsequentlv thepoff-design characteristics can be determined using an analvsis code. The process is repeated
when the new geometry differs significantlv from the previous one or when a geometry or off-design comstraint
is met. Tn the latter cases (new) constraints will have to be imposed on the values of the parameters descri-
bing the pressure distribution. A flow chart of the procedure, which is called inverse numerical optimization
(Ref. 30), is given by figure 5.

The first step in the inverse numerical optimization approach, i.e. the determination of optimal span-
loads is described in Ref. 29. The second step, 1.e. the optimization of target pressure distribution, will be
described in the following section.

5. Optimization of target pressure distribution

The approach of using aerodynamic (pressure distributions) rather than geometric shape functions as inde-
pendent variables in (he optimization procedure offers the following advantages:
- 1t matches the "inverse numerical optimization" design philosophy as described in the preceding section.
- Onlv boundary laye: calculations are needed during the iterative optimization procedure. So, a large
number of iterations is less a problem, allowing a larger number of design variables.
0f course there are scme disadvantages too e.g.
- Care is needed to rtay within feasible pressure distributions.
- Curvature effects ..n the boundarv laver development are taken into account for the starting geometry onlv
and might be diffe-ent for the new design.
Nevertheless, from a »ractical point of view, optimization of the (target) pressure distribution is
promising and could ». very useful as part of the inverse numerical optimization approach.

-

In order to mal *~he definition of 2D target pressure distributions accessible for numerical optimization
techniques, the pres-ure distribution has to be described by a limited number of characteristic parameters.
The problem faced is* Jefine a large class of possible pressure distribution shapes by means of as few as
possible design parareters. Once the pressure distribution defined, onlv boundary layer calculations are
needed to judge the - alfty of it (drag, transition location, etc.).

Roughlv speakir:. the velocity distribution on the airfoil upper- and lower surface can be characterized
bv three specific re.fons (see Ref. 31):
() Stagnation po!rt, {mmediately followed by a rapid acceleration.
(1n A reglon with slightlv accelerating, slightly descelerating cr constant velocity, for transonic condi-

tions often e led by a shock wave.
(TI1) The pressure . :covery region where the velocities decrease to the trailing edge value. For the lower
surface of resr loaded airfoils completed by a small region with accelerated flow.

Figure 6 presen’s a ~haracteristic pressure distribution defined by eight points and linear interpolation be-
tween these points., {ithout shock, points 2 and 2' coincide. With shock, the jump between 2 and 2' is deter-
mined by the local w ch number at 2., For a given free stream mach number the points 4 (stagnation pressure)
and | and 8 (trafilin, edge pressures) are considered to be known and fixed. This leaves level and position of
the points 2, 3, 5, and 7 (ten design variables) free to represent a large class of (simplified) pressure
distributions. Refin mnent of this model would be possible by increasing the number of "characteristic"” points.
Soon, however, large number of points will be needed to represent more realistic shapes, resulting in a prohi-
bitive large number r“ design varfables. Other ways for refinement are, e.g. non-lfnear interpolatinn between
the points; adding w re functions with ampiitudes as design var.ables to a starting pressure distribution etc.
Several of these opt 'ns have been investigated at NLR and so far, best results have been obtained by a set
of "interpolation ruis”, taking into account the chars -teristic behavi uar of the specific part of the pres-
sure distribution to e represented. Each of these so-calls aerodynamic shape functions has been derived from
well known aerodynami. theory. It is beyond the scope of the present paper to descrihe the derivation of thess
functions in detail. it has to be sufficient to present the relations and to note that for certain combina-
tions of the desfgn variables (coefficients and exponents), approximations are possible of the typical clas-
sical flow characteristics. The following functions have heen defined, with reference to figure 6.

A. Stagnation flow region (3-4-5)

Rather than suggested in figure 6, the stagnation point (4) will usuallv not occur exactly at the airfoil nose
but somewhat downstream on the lower surface. In order to maintain physically realistic pressure distributions
in this region, a stagnation flow shape function has been defined, approximating the potential flow velocity
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distribution for elliptic cylinders (for small x/c and small incidence):

X Xy V- x

u (1+Kal) Ka3 -t (KaZ + KaB . K34 ° c) ! KaB ‘e
u, x Y4
“ &a3z+zKal

(N.B, + sign for upper surface; - sign for lower surface)

Here K_., ..., K represent the design variables to be adjusted by the optimization procedure. Refering to
the elilptic cvliaéer nose radius and (local) incidence at the nose may be estimated from:

R 0.5 2 2 [ N

(c)nose Ka3 . Kal (l—Mm) 2] Kaz Y1-M_ {Radians:

B. "High velocitw” regions (from 3 to 2 and from 5 to 6, fig. 6)

These regions often exhibit small pressure gradients at design conditions. So, & relatively simple represen-
tation can be chosen. In order to be able to represent also laminar flow condition the following function has
been chosen:

u X X
E'Kbl”(bz{z‘ @

which, for (Kbl and ('-;)b approaching zero, approximates the well knoun Falkner-skan solution for =imflar
laminar boundary lavers ?Index b0 refers to the start of the region). Kbl to Kb3 are the design variables to

be adjusted by the optimization procedure,

bo}“"u_

€. Turbulent pressure recoverv region (from 2 (2') to 1 and from 6 to 7

The familv of functions for this region should resemble concave and convex shapes, fncluding the Stratford
solution for turbulent zero skin friction pressure recoverv (Ref. 32). The Stratford solution exhibits two
branches. The main hranche, transformed from Stratford's canonical pressure coefficient to the ordinarv Cp
definition, can be generalized as follows:

X X Kc]
= - (= 1/5

C =¢C RSP RS E__.ES_SQ -1

P Peo ¢ c?

Index c0 indicates the start of the recoverv region and K to KC are the design variables. This function
represents a wide class of shapes, including an approximaglon of etratfnrd's pressure recoverv solution.

D. Rear loading region (from 7 to 8)

For so called rear loaded airfoils, the lower surface velocity usually accelerates from the end of the pres~
sure recovery region to the traling edge. For this region, a gsimple polvnomial was defined reading:

c =k, 2.

2 X Xy 4
o a1 ‘T Z) +x,, % - (E)dOA +C

d0 d2 ‘¢

Pao
Again index d0 indicates conditions at the start of the region and Kdl and Kd? are design variables.

F. Shock relations (possibly at points 2 and/or 6)

Cood transonic design conditions usually incorporate weak shocks at upper and/or lower surface. So, a proper
shock description is needed. Tn viscous airfoil flow, the pressure jump measured at the foot of the shock is
less than the Rankine Hugoniot pressure jump. Besides, the shock will be "smeared out” in the houndarv laver.
So, in order to describe shocks directly in the pressure distribution some empirical relaticns are needed.
From a compilation of experimental data (see fig. 7, taken from Ref. 33) it {s seen that the following modi-
fication of the Rankine Hugoniot relation is a reasonable approximation for weak two- dimensional shocks
M, < 1.3):

1

”
3 7 M . 700 -1
L2 .07 (U8 40 c  =C +0.71c + } (=88,
P 6 P P 2 f

us ds us us 0.7 M

{us and ds for vpstream and downstream of shock).
An empirical rule for the shock thickness is presented by Delery (Ref. 34) for weak 2 dimensioral shocks:

é% D70 (HL -1) with Mi < 1.3
I us us-~

us
3
Here ﬁus and H&s represent displacement thickress and kinematic boundarv layer shape parameter,

respectively, {ust in front of the shock. The shock representatjon becomes active onlv {f M1 1 exceeds 1.1
at point 2 and/or point 6. oca

Characteristic points and functions presented above represent a rather large class of airfoil design
pressure distributions. Note that not all of the design vartables indicated above are independent. Some of
them are directly determined by the requirement of a continuous pressure distribution. With properlv selected
basfc airfoil geometrv and design requirements, a boundary layer calculation method and an optimizer as driver
for defining the pressure distribution almost all ingredients are availlable for a svstem for designing airfoil
target pressure distributions. However for transonic conditions with shock waves boundarv lTaver calculations




3-7

only do not account for the momentum loss through the shock. So, the evaluation of the pressure distribution
has to be completed with an evaluation of the wave drag. A convenient relation to estimate the magnitude of
the wave drag has been prgposed by Lock (Ref, 35):

0.2 2] [ 2w o0

. hS M, (140.2 1)
Where Rs 15 the radius of curvature of the airfoil geometry at the shock position. Lock found an accuracy
between -102 and +30% of the wave drag for weak shocks (l.l«< Hl < 1.5), which seems sufficient for the present

application.

Rs
c, =0.24332

Finallv some remarks concerning the parametrization described above:

- It becomes obvious that the aerodvmamic design problem is strongly non linear and it is likely that non-
continuous derivatives will occur as well as for object function(s) as for constraint functions.

- Sometimes a step by step approach is possible by splitting the design problem in several optimization
problems of reduced size, e.g. deal with upper- and lower surface separately.

6. Examples

In the following examples the drag and boundary layer characteristics have been computed with an Integral
method, comprising:
- Laminar boundary laver according to Thwaites
- Prediction of transition location according to Granville
- A fast integral method (lag entrainment) for the turbulent boundarv I: ar
- Drag calculation according to Squire & Young formula

Low speed high lift condition

The design of single element, high 1ift airfoils by R.H. Liebeck is well known (see e.g. Refs 36, 37).
A.M.0. Smith (Ref. 37) published some of Liebeck’s results for the so-called turbulent roof-top. The airfoils
meet the additional constraints for the flow to remain attached (and subsonic) everywhere on the airfoil, Then
the following design problem is formulated:

free stream condition: M = 0,10, Re = 5.106

transition : upper surface x/c I 1Z
(lower surface: x/c¢ I 0.51)

maximize : Cl

subject to : n0 separation

This problem has been solved bv changing only the upper surface pressure distrihution for a fixed, arbitrarily
chosen, lower surface distribution. Two solutions have been generated, both depicted in fig, 8.

a. With a fixed, approximated Stratford type pressure recovery the flat rooftop solution is found (full
line). This compares reasonably well with Liebeck's optimal solution presented in Ref. 37,
indicating max. 11ft for C I - 2.6 and pressure recovery point at x/e I 0.30.

min

b. With the upper surface entirely free, the broken line is found, representing a slightlv better solution
than the roof top solution.

Afirfoil geometries, inversely calculated, for these two solutions have also been given in fig. 9. The geome-
tries have been computed with the method described in Ref. 38,
Note: keeping in mind the approximations made for the present representation (for example, onlv one branch of
the Stratford solution 1s considered), the above results are not considered to proof that Liebeck's flat roof
top =olution can he improved. However, it may be concluded that, from a practical ,.int of view, both solu-
tions exhibit comparable high 11ft capabilities, while solution b has the advantage of a somewhat less
"excotic" geometrvy.

From this example it {s concluded that the aerodvnamic shape functions are applicable for low speed high
11ft design.

Transonic low drag solution

A tvpical transonic pressure distribution fs shown in fig. 9 (full line). In order to find out to what
extent this pressure distribution can be represented bv the aerodynamic shape functions, the ovptimization
procedure was used, With ACp being the difference between the real and the shape function distribution, the
functional / AC 45 was minimized. The result, designated hest fit, {s shown in fig. 9
as a broken ItnB. ©

Apparently, the shape functions lack refinement around the shock and in the nose regfon. To find out how
sertous a problem this is, for the practical design situation. A design studv has been performed to improve
the drag coefficient at the design 11ft coefficient, With the best fit as starting point the following optimi-
zatfon problem was defined:

free stream condftfon : M_ = 0.77 Rec - IO.[O6
transition fixed at (x/c)lls = 0.05 (X/C)1s = 0.10
minimize : C
subject to : C1 > 0.60

Cm > =0,125

= o .
thicknesg (= -0.5 Cp v l-Mm ) 1 0.10, being the same value as for the best fit (actual starting airfofl

t/c = 0.11)

The optimized pressure distrihution s shown in fig. 10, together with the start ("best fit") indicating a
drag improvement of 5 counts.
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Then two possible ways are open to continue the design studv.

1. Define a new target pressure distribution by adding the differences between best fit and optimized dis-
tribution to the actual airfofl pressure distrib-tion,
. Define the optimized pressure distribution directly as the target for a new geometry desigr. Here, the

latter approach was followed 1n order to find out whether a less refined target will result in an acceptabhle
airfoi! design. U'sing the inverse airfoll design svstem INTRAFS (Ref. 39), a mew geometrv has been generated.
The new geometrv differs onlv slightlv from the original one. Analvses of both airfoils with the VGK program
(ref. 40) indeed shows an improved drag coefficient for the new airfoil (see fig. 11). The drag reduction is
less than expected from the calculations depicted in fig. 10; three counts versus 5 counts, this maybe due to
the relative poor representation of the original pressure distribution. Nevertheless this example illustrates
the ability of the present approach to improve transonic airfoil design,

7. Concluding remarks

Ap overview has been presented of the possibilities and problems associated with the use of numerical optimi-
zation in aerodynamic design. It mav be stated that aerodvnamic design by using direct numerical optimization
techniques is hardlv feasible in current engineering environments, at least for three dimensional problems,
because of the lack of accuracy in the available 3D flow analysis codes in combination with the limited com-
puter power available. The alternative to use numerical optimization for designing "target" pressure distri-
butiors and to use inverse methods to find the corresponding geometry, seems to be a good alternative. How-
ever, despite the fact that a large number of iterations is not a serious drawback for the present approach,
the procedure is still far from "stand alone" applications on routine basis. It is worth to consider improve-

ments such as the implementation of swmoothing options (to prevent problems with numerical irregularities),
the application of more efficient algorithms, and the scaling of the independent variables. In this way,
numerical optimization mav have good prospects for being a useful tool in aerodynamic design.

Slooff, J.W.

Roerstoel, J.W.
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EXPERIMENTS ON VARIOUS TYPES OF AIRFOILS
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SUMMARY

in order to design a physically-acceptable airfoil
that corresponds to a prescribed surface pressure or
speed distribution, various restrictions have to be met
by the imposed target and by the contour. It is shown
that the need 1o meet geometric prerequisites and a
specified free-stream value imposes constraints on the
prescribed surface values which, unless satisfied,
inhibit the existence of a solution. In this classical
problem of airfoil design, the prescribed surface
distribution must contain enough degrees of freedom in
order that it may be modified sutiiciently to satisty the
constraints. The nature of the constraints is discussed,
and they are expressed in forms which are amenable to
numaerical solution procedures in transonic as well as
incompressible flows. The discussion is accompanied
by a description of the general characteristics of airfoil
geometries and surface flows.

1. INTRODUCTION

The problem of designing airfoil profiles is older
tian aviation itself. The Wright Brothers built a wind
tunnel to test new airfoil profiles that would give them
greater lift. It was obvious that by changing the profile
the characteristics of the flow could be altered. Quite
early the idea took hoid that the airfoils could, or shouid,
be designed to produce specific pressure distributions
on them. This was the rationale behind the design of the
NACA 1-series wing sections.! The development of this
series of airfoils, which represents the first family of
NACA low drag high-critical-speed wing sections, was
also one of the first recorded attempts to design sections
having a desired type of pressure distribution. The goct
of this early design project was to produce airfoils with
extensive laminar boundary layers. it was felt that the
laminar flow run could be controlled by having a small,
continuously-favorable pressure gradient all the way to
the paint of minimum pressure, whose location identifies
and characterizes the several members of this airfoil
tamily. Lack of adequate theoretical tools made this pre-
1839 design exercise extremely difficult, and the design
goals were achieved only over a very limited range of
lit coefficients. Few sections in this family ever proved
usetful.

Better theoretical tools (at least for
incompressible flow) were being developed during the
time during which the NACA 1 and its immediate
successor-families (NACA 2-to 5-series) waere
designed. The NACA 6- and 7-series were designed
using new and improved approximote methods? which
were derived from the Theodorsen-Garrick® method of
analyzing the potential flow about arbitrary airfoil
saections. To obtain these sections, a symmetrical
saction was designed first, and this ‘as then cambered
using linear theory. The first true airfoil design method
had been reported in the meantime by Mangler4, and a
similar approach was later independently developed by
Lighthill.5 A sound theoretical basis for the design of
airfoil profiles corresponding to a specified pressure (or,
equivalently, velocity) distribution was finally available.

The usefulness of the Mangler and Lighthill methods
obtaining practical designs was debatable, and
understandable given the computational resources of
the time, but their presentation of this "inverse” problem
of airfoil theory was sound and laid the groundwork for
many practical methods that followed.6-13

The work of Mangler and Lighthill assumed
incompressible flow and could thus use potential theory
to describe it. In the inverse problem, the connection
belween the desired pressure distribution and the
ordinates of the corresponding airfoil profile could be
expressed in closed form, just as in the “direct” problem,
where one seeks the pressure distribution
corresponding to a given airfoil profite. The actual
computation of a profile was not always feasible,
leading to probtems of practicality, but the existence of
closed form expressions describing the "connection”
revealed the existence of certain constraints that had to
be satisfied by the desired pressure distribution for a
corresponding airfoil to exist. In particular, it was shown
that the average speed of the desired surface
distribution should be equal to the free-stream speed. In
addition, it was shown that the thickness of the trailing
edge is itself a function of the prescribed speed. Since
trailing edge thickness has to be within some cbvious
physical and geometrically--ealisti~ limits, additional
constraints are imposed on the prescribed surface
pressure. Thus, for an arbitrarily prescribed distrii ution,
an airfoil profile with a specific trailing edge thickness
exists only it the distribution satisfies these constraints.
Fortunately, within the context ot potential theory, the
above-mentioned constraints can be expressed in
integral form. As a result, by allowing some freedom in
the imposed distribution (e.g., through adjustable
parameters whose values are chosen to satisly the
integral expressions), an airfoil profil. can always be
obtained. This approach torms the basis of the methods
described in Refs. 6-13.

Woods? extended the theory of inverse airfoil
design to subcritical compressible flow. Assuming a
Karman-Tsien type gas, he derived expressions similar
to those of Mangier and Lighthill for incompressible
flows. The formulation of an inverse method al
supercritical speeds has been problematic because of
the impossibility of expressing the constraints in closed
form. The existence of constraints for the transonic
design problem was intuitively true because the
incompressible problem was a subset of the more
general compressible problem. The main obstacie
concerned the constrain: reflecting the connection
between free-stream and surface speed. Volpe and
Melnik14 finally offered a formulation of the problem
which was valid through the compressible regime. in
their formulation, the constraints are satisfied through an
iterative procedure in the absence of closed-form
axpressions.

it is the purpose of this paper to describe these
canstraints in more detail, as well as the means by
which they might be satisfied to produce a practical
inverse airfoil design method. The discussion will
include the restrictions on the prescribed pressure
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distributions which are due to physical requirements
and to the achievement of certain flow characteristics,
as well as the restrictions imposed by the requiremant
that the airfoil geometry have specific characteristics.
In addition to the above-mentioned restriction on the
thickness of the trailing edge, an airfoil should rave
other obviously desirable features. such as a rounded
leading edge and non-crossing upper and lower
surfaces. The discussion will cover both the
incompressible and compressibie regimes, and the
connection between imposed pressure distributions and
geometry will be illustrated by several examples. As in
the preceding discussion, in what follows the
assumption is made that the airfoil is to be designed in
an inviscid flow. Viscosity wi' be called on in
discussing the prescription of the imposed pressure
distribution. To a first approximation, the pressure
distribution can be assumed to be the one imprassed on
the boundary layer and the corresponding airfoil to be
the contour from which a "displacement thickness”
should be subtracted to achieve a profile operating in a
real viscous environment.

2 GEOMETRICAL CHARACTERISTICS

All physicaily realistic airfoils share certain
obvious characteristics. Most obvious are the
constraints that the contour be closed and non-
reentrant. A closed contour is described by a
continuous line whose end points coincide. Taking the
end points of this iine 1o be the points corresponding to
the lower and upper trailing edge points and the line to
run from the former to the latter in a clockwise direction,
airfoil "closure” means that the two trailing edge points
coincide. Thus the airfoil in Fig. 1a is closed and the
one in Fig. 1b is not. In practice some trailing edge
thickness, usually on the order of one percent of the
chord, is desirable for structural integrity. In such a
case the definition of closure is expanded ‘o include the
case in which the trailing edge points are separated by
some small distance.

A non-reentrant airfoil is one for which the line
describing the contour never crnsses over itself. An
airfoil may be closed but not necessarily non-reentrant.

Thus, the airfoil depicted in Fig. 1c is closed but
reantrant; the one in Fig. 1d is open and reentrant.

S
a) CLOSED TRAILING EDGE
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%) OPEN TRAILING EDGE

T TS
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¢) RE~ENTRANT AIRFOIL

d) OPEN AND RE-ENTRANT AIRFOIL

«) STRUCTURALLY UNFIT AIRFOIL

Fig. 1 Airfoil types

Reentrant airfoils are clearly non-physical. Obviously a
non-reentrant airfoil exhibits a positive thicknass from
leading edge to trailing edge. Structural requirements
impose some limitations on the minimum acceptable
thickness, though. As such, the airfoil that is shown in
Fig. 1e is likely undesirable from a practical ;ewpoint,
since its th ckness just upstream of the trailing edge is
very smail, even though positive. In shor, structural as
well as operational requirements (e.g., need for fuel
volume) will place restrictions on the acceptable
thickness distribution on the airfoil.

Certain features of the leading edge and trailing
edge regions of an airfoil and their relatiun to the
velocity distribution should be mentioned. Most airtoils
have rounded leading edges. A rounded leading edge
allows operation over a wide range of angle of attack. A
sharp leading edge woulkd cause the flow to separate at
the corner outside a severely, more limited range of flow
incidence. The exception would be offered by airfoils
designed for supersonic applications, in which case it is
desirable to keep the shock waves attached to the
leading edge via a sharp nose. The res® of this paper
will be concerned only with subsonic/tre.1sonic free-
stream Mach numbers, however. Since both the upper
and lower surtaces of the airfoil must be streamiines of
the flow, a stagnation point must be present on .o
surface in the irading edge region (see Fig. 2). That
stagnation point is also a branch point, since the flow
splits into two downstream of it. When designing for an
airfoil, the speed distribution that is prescribed must
include a stagnation point in the leading edge region.

In the case of an inviscicC stream, two possibilities
arise for the flow at the trailing edge. If the included
angle of the trailing edge is zero (a cusp), it is sufficient
that the pressure at the upper and lower surfaces have
the same magnitude at that point. For an isentropic flow,
the velocities on the two sides are also identical. in
such a case, the velocity has a non-zero value, usually
slightly less than the free-stream value. If the included
angle is not zero, the only way for the pressure and the
total velocity at the upper and lower trailing edge points
o match is for the velocity 1o be zero. In this case, the
trailing edge point is & stagnation point. These two
possibilities are illustrated in Fig. 3a and 3b, which,
along with the trailing edge geometry, depict the typical
speed distribution of the flow fror: either side of the
airfoil and downstream of the trailing edge. it should be
noted that the gradients of the speed distribution in the
vicinity of the trailing edge are dependent on the
magnitude of the trailing edge angle (see Fig. 3a and
3c). In a viscous flow, the presence of a boundary
layer bilurs the two distinct possibilities (see Fig. 3d). If
one were to design for a speed distribution to be
achieved outside the boundarty layer (by whatever
method), one has to demand only that the velocities on
opposite sides of the trailing edge (and outside the
boundary layer) match; they do not vanish even for a
non-zero included angle. As a consequence, the
shape of the trailing edge region is highly dependent on
the local distribution of speed in the region.

if one is seeking to generate a contour with
specific leading and trailing edge characteristics, these
requirements will impose specific restrictions on the
prescribed speed restrictions which havo to be taken
info account in the calculation procedure.

STAGNATION
POINT

Fig. 2 General features of flow near airfoil
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Fig. 3 Possible flow conditions near trailing edge

3. FLOW CHARACTERISTICS

Certain characteristics of the pressure
distribution on an airfoil, such as the presence of a
stagnation point at the leading edge and possibly
another at the trailing edge were mentioned in the
p.evious section. Other features are dependent on the
particular design exercise. In =l cases, the objective is
to obtain a certain lift cosefficient a: as low a level of drag
as possible. In the context of an inverse airfoil design
procedure, these goals can be achieved by tailoring
the surface pressure, or speed, distribution to the
application.

The lift coefficient of an airfoil is known to a good
degree of accuracy once the surface speed is
prescribed even though the shape is not known yet.
Figure 4 depicts the general form of an airfoil surface
speed distribution, u, expressed as a function of the arc
length along the airfoil surface, s. The origin of s is

L5 ;
10 \UPPER SURFACE
u
U,
0.5 - e
0.0 ]
. ~LEADING EDGE
/! STAGNATION POINT
-0.5 ;
-1.0 r = T 1 -
0.0 0.2 04 0.8 0.8 10

Fig. 4 General form of airfoil speed distribution
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assumed to be located at the lower surface trailing edge
point, and s is assumed 1o run clockwise around the
contour (see Fig. 2). Without loss of generality, the
perimeter of the airfoil can be normalized 10 one. The lift
coefficient, C, of an airfcil is given by

L M

where L is the lift, c is the airfoil chord and p., and «,
are the free-stream values of the density and the
velocity, respectively. In potential flows, the lift can be
e_)xr?rgalssed as a function of the circulation, I', around the
airfoi

L=plte )

and T in turn is obtained by integ~~ting around the
contour

T = [u(s)ds . 3
Hence, the lift coefficient is given by

CL= 2]%%4; (4)

The value of the chord ¢ is not known until the shape of
the contour is determined. Howsever, for most
aeronautical profiles, it will have a value not much
different from 0.5. As a result, for all practical purposes,

Cy is known once u(s)/ u,, is specified.

In incompressible flow, the pressure drag will be
zero for all possible surface speed distributions. At
supercritical speeds, wave drag will be present it a
shock wave is present in the flow field. Unfortunately,
its value is not known until the contour is computed.
The goal, as always, is to minimize this value, but the
absence of a discontinuity in the pressure distribution
{which translates into the absence of a shock wave on
the airtoil surface) is no guarantee that there is not a
shock wave in the flow. An example is offered in Fig. 5,
which shows an airfoil profile and, above it, the

-l..’i—;

Cp ' 2
0.2 \

0.7

T T

Fig. 5 "Shockless” target pressure distribution
and corresponding airfoil
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corresponding pressure distribution. In Fig. 6, the Mach
number contours of the flow around the airfoil are
depicted. In this picture, the existence of a shock wave
is borne out by the clustering of contours above the
airfoil. Compression lines generated on the concave
mid-region of the airfoil converge off the surtace into a
shock. This figure points out a geometrical feature of
airfoils that should be avoided at transonic speed,
namely, a region on the upper surface of the airfoil with
a curvature concave to the flow.

In the absence of shack waves, drag is due to
viscous effects, and some amount of control over these
can be retained by proper design of the imposed
surface pressure distribution, even within the context of
an inviscid airfoil design procedure. By tailoring the
pressure distribution, one can control the growth of the
boundary layer, delay transition to turbuience and,
hopefully, avoid flow separation. All of these efiects
tend to lower drag levels.

Flow separation is clearly a disastrously
deleterious flow feature. In airfoil-type flows, it can be
brought about by high adverse pressure gradients as
they might occur on the upper surface as the flow is
recompressed to stagnation or near-frae-stream values
at the trailing edge -- for sharp or cusped geometries,
respectively. Separation can be avoided by imposing
prassure distributions with gentle gradients (see Fig. 7).

Fig. 6 Isomach contours computed on airfoil
designed to "shockless” pressure

distribution
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Fig. 7 Types of pressure distributions with

various recovery patterns following
“rooftop” region

This solution, however, is at odds with the other goal of
trying to maximize litt. The latter objective can be
achieved by having the flow undergo the required
recompression to trailing edge values in the shortest
distance possible. The optimum solution is to achieve
the shortest possible distance while still avoiding
separation. Liebeck? addressed this problem, and the
solution was found in the use of pressure distributions,
proposed by Stratfurd,'S which avoid separation by a
constant specified margin (solid line in Fig. 7). Stratford
developed an analytical form for such a pressure
distribution.  In principle, a flow described by a
Stratford-type pressure distribution achieves a given
recompression in the shortest possible distance or,
alternatively, the maximum possible pressure recovery
in a given distance. This type of pressure recovery
distribution was checked experimentally by Stratford6é
and was found to exhibit a "good margin of stability.”

The pressure distributions in Fig. 7 have been
drawn with a "rooftop” region preceding the Stratford
recovery region. The level and extent of the rooftop
region are clearly designed to maximize fift. Liebeck®
studied this class of pressure distributions at
incompressible speeds and showed through a
variational analysis that the level and extent of such a
rooftop can be combined with the Stratford canonical
distribution to maximize the iift on an airfoil. It is to be
rememberad that maximizing lift can be at odds with the
structural requirements of an airfoil. The airfoil shown in
Fig. 8 may exhibit very high lift characteristics but is
hardly practical. Regarding such rooftop pressure
distributions, it is worth recalling that at compressible
speeds, there is a lower limit on the minimum pressure
that one can specify in the flow field. The limit is
obviously zero, and all practical airfoils will have a
pressure minimum well above this limiting value. In a

similar vein, lift can be increased by increasing the
prescribed pressure levels on the lower surface of the
airfoil or by equivalently decreasing the speed
distribution there. Clearly, the maximum amount of lift is
obtained if the speed is identically zero everywhere on
the lower surface. Obviously, such a flow is impossible,
and all practical airfoils will have values of the speed on
the lower surface well above the stagnation value.

The drag of an airfail can be significantly lowered
by delaying the transition of the flow from laminar to
turbulent. Considerable effort has gone into the design
of such natural faminar flow airfoils over the past halif-
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Fig. 8 Maximum it pressure distribution and
corresponding contour




century. The above-mentioned designs of the NACA 1-
to 7-series airfoil sections, which constituted some of
the earliest efforts of generating contours corresponding
to prescribed pressure distributions, all had as a goal
the achievement of extensive runs of laminar flow on
both the upper and lower surfaces. The criterion of
lowering drag by inducing long laminar flow runs
through appropriate surface pressure distributions was
followed by Liebeck. In these studies, transition was
delayed by bprescribing a continuously favorable
pressure gradient from the leading edge stagnation
point to the position of minimum pressure. This
acceleration region modifies the ideal rooftop which
tends to maximize lift (see Fig. 9). Similarly,
Pfenninger17.18 used careful tailoring of the surface
pressure distribution to control the growth of instabilities
that bring about transition of the flow to design a number
of nétural laminar flow airoils for transonic applications.
An example of such an airfoil is given in Fig. 10.

The shape of a pressure distribution to which an
airfoil contour is to be designed depends on the
particular application. In this section, some general
characteristics of the distribution and certain possible
features to design for have been described. In the
previous section, the characteristics of physically
acceptable -- and practical -- airfoils were indicated,
and certain connections between the geometry and the
pressure distribution were mentioned. The question of
the existence of an airfoil for an arbitrarily prescribed
surface pressure distribution (containing some or all of
the above-discussed features), whether physicaily
acceptable or not, has to be addressed now. This will
be taken up in the following sections, along with the
relationship between prescribed pressures and the
airfoil geometry.

4. FORMULATION OF THE INVERSE DESIGN
PROBLEM

The problem that will be addressed now is the
construction of the airfoil profile, which has a surface
speed distribution, qo, equal to some desired function,
F, everywhere along its arc length, s. As mentioned
earlier, this is 1o be measured clockwise around the
airfoil contour, starting at the lower surface trailing edge
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point.  The airfoil's coordinates, x,y, can be
parameterized as functions of s. In Section 2 it was
mentioned that a teature of practical airfail contours is
that the trailing edge be either closed ¢r have a very
small gap. Thus, a requirement on the to-be-determined
airfoil is that the upper and lower surface trailing edge
points be separated by prescribed distances Ax and Ay.
The horizontal gap, Ax, is usually set to zero, whiie the

vertical gap, Ay, is set to zero or to a small positive
number. The free stream is also defined by prescribing
values lor the tree-stream velocity q.., temperature, and
pressure (or density). These in turn determine the frae-
stream Mach number, M. In incompressible flow, of
course, it is necessary only to specify the velocity in
order to identify the free stream uniquely. Our
formulation applies in its entirety if we specify a surtace-
pressure distribution instead of a surface speed since
the two are uniquely related. Formally, then, the
problem is to determine the airfoil protile ot a specified
trailing edge thickness corresponding to the speed
distribution

Do = F(s/ 5max) (5)

4o

Again, without loss of generality, s,,,can be set equal

to one; ¢, is taken as positive in the clockwise direction
around the airfoil. As shown by Theodorsen,? any
airfoil contour can be mapped into the unit circle by the
unique conformal transtormation

1-¢€;
d |1 (P+iQ)
3 [' CI ¢ ©

wherg z=x +iyand { = rei“’ are the coordinates in the
physical and mapped planes, respectively, and ex is
the included trailing edge angle. This transformation
leaves the far field, { -« , unchanged, except for a
possible rotation (see Fig. 11). Equation 6 can be
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a) z - PLANE

b} ¢ — FLANE

Fig. 11 Mapping of airfoil to circle

separated into its real and imaginary parts. Thus, on

r=1,

ds .Y
2;=[Zsm?]( ef @
0=-;—(l+e)(x—w)—-’25+Q (8)

where 6 is the local slope of the airfoil. Q is the Fourier
series

N
0= ..2;3 (A, sin no — B, cos no) ©

and P is its conjugate series. Because 0 is known as a
function of s, the coefficients of the series can be found
by standard Fourier analysis as described in Ref. 10.

With this mapping procedure, the leading terms of the
serigs are related to the trailing edge gap (Ax, Ay) by

Ax ) . A)
Ay = _(E;)SM B ,~ (%) cosB,+ (1-¢)

B = —(zéx;)cos B~ (fi—) sinB,.

The transformation the airfoil profile into a circle
simphfies the problem of constructing a solution for the
fiow about the girfoil. Generating a solution for the flow
aboust a circle is a relatively straighttorward process. In
fact, for incompressible flow, it can be expressed
analytically. For transor.ic flows, it can be computed
numerically by a number of methods (see, for example,
Ref. 19). Tha velocity components at any point on the
airfoil or in the flow field can be obtained by dividing the
respective components of the flow at the corresponding
point in the circle plane by the metric of the

(10)

transformation, E%'. evaluated at the point in question.

Obviously, the total speed in the two planes are
similarly related.

In the case of incompressible flow, the compiex
potential, w, for the incompressible flow past the circle
is given by

w=q"(;,-iﬂ+§:)+ﬂ‘log§ (1)

where a is the angle of attack of the free stream and I is
the circulation around the circle. Since the far field is
not altered by the transformation, ¢.. is also the vaiue of
the free stream in the physical plane. The conjugate of

the velocity is given by %WC_ and the value of T is

obtained by requiring that this % be zero at the point

on the circle corresponding to the airfoil's trailing edge.
The velocity in the physical plane (around the airfoil) is
then given by

dw dw (dz)!
aaE) a2

Thus, the calculation of the flow about any airfoil can be
reduced to the computation of the two factors on the
right hand side of Eq. (12), which can be computed from
Eq. (6) and (1), respectively. Moreover, Eq. (12) can
be used to generate an airfoil profile by re-arranging it in
the form

ds__|dz| _ |aw] g
E_’;E'-};EHZ! . (13)

It one now assumes E:—l to be the ¢,, the speed

distribution that the airfoil profile is prescribed to have,
the exprassion can be used to obtain the arc length and
the slope of the airfoil as a tunction of w, and hence the
ordinates of the airfoil. Assuming qo is prescribed as a
function of the «, then the right hand side of Eq. (13) is
completely known as a function of w. Using Eq. (7) and
(9), the coefficients of the series of the transtormation

dz
can be evaluated. Once ';El has been expressed as a

trigonometric series in w, the airfoil coordinates, z, are
found by integration.

If go is prescribed as a function of arc length, s,

some iteration would be required since ’%‘:—, which is

needed in Eq. (13), will not be known as a function of &
until after s(w) is found. However, the design of the
airfoil is still a straightlorward process.

For compressible flow of a perfect gas, the tiow
past the circle cannot be expressed in closed form. 1
can be computed numericaily, though, and a similar
iterative procedure can be formulated for compressible
flow.




Specifically, the procedure could be as follows.
An initial airfoil contour is mapped into the unit circle,
and the flow around the circle is solved subject to the
conditions on the circle boundary that the tangential
speed be the required total speed. The passage from
Go(s) to go(w) is done using the current s(w). In this
fiow, the circle boundary is not necessarily a
streamline, and the departure of the boundary from a
streamline can be used to find a correction to the airfoil
contour. Using the new metric, the process can then be
repeated.

5. CONSTRAINTS IN INCOMPRESSIBLE FLOW

The question that must be asked at this point is
whether an airfoil solution exists for an arbitrarily
prescribed speed distribution. For incompressible flow,
Mangler and Lighthill showed that, in fact, a solution
exists only if certain integral constraints are satisfied by
Gy and this can be demonstrated as follows.

Since a lifting flow over a circle can be reduced
to the nonlifting, symmetric flow as shown in Ref. 5 and
20, it is sufficient to consider the nonlifting case in order
to simplify the discussion. The mapping between the z
and { planes must have the form

z=§'+ia,l [

n=0

if the flow in the far field is to remain unscaled. Here, the
an‘s are complex constants. Therefore,

d: - _
& 1= Fray .

Differentiating Eq. (11) gives
el
o U ay

Hence, by combining the last two equations, one
obtains

%=q~[1+ 3. bn C"']- (14)

n=2

Since (dw/ dz)=g,e™*?, it follows that

log Fﬁ
G

As pointed out by Lighthill and Thwaites,

log |4, / 9..| is an analytic function in the domain outside
the circle. (It fails to be analytic at stagnation points on
the circle where a9 = 0.) Therefore, it can be expanded
in a Fourier series on the circle itself. However, from
Eq. (15) it ca" be seen that the series cannot have terms
of zero or first orger. In fact, 9, Must be such that

DX 4as (15)
A=2

2x 1
Jlog Fp—{ €08 Dlgw=0. (16)
9ol | sin @

o

These are the three integral constraints that the
prescribed speed distribution must satisfy for an airfoil
solutior to exist. These three constraints have arisen
from the requirements that the airfoil be closed and from
the imposition of a value on the free stream. It can be
safely assumed that similar constraints exist also at
supercritical speeds. The above discussion indicates
that the prescribed speed distribution should contain, in
general, three adjustable parameters to guarantee that
the constraints may be satisfied. Thus, the surface
eoeed distribution should be prescribed in the form

[

P F(s/ smaxi P12 P2, P3) (17

where pi, p. and py are the three parameters that are
found as part of the solution.

The above discussion has not dealt with the
possibility of the contour deing reentrant. The constraint
that the thickness of the airfoil be always positive, or
even always greater than some minimum value cannot
be expressed in a simple relation, as Eq. (16). it could
be accounted for, and satisfied, through a numerical
procedure by the introduction of additional parameters
in Eq. (17). Such parameters could be adjusted to
guarantee that the thickness at selected chord locations
have values above specified values. The particular
functional forms chosen to introduce the parameters in
Eq. (17) will, of course, affect the class of airfoil
solutions that can be obtained.

6. AN ALTERNATIVE LOOK AT THE
CONSTRAINTS

For compressible flow (M., #0), Eg. (16) is no
longer valid. In order to formulate a well-posed inverse
design procedure which would be valid at compressible
speeds, the nature of the constraints must be re-
examined, and they must be expressed in a form useful
for a design procedure. 1t is logical to do this in the
context of the computational method that has been
outlined. The two constraints that arose because of the
required trailing edge gap are of a geometrical nature.
Hence, one can set up a procedure in which, by
monitoring the trailing edge gap size, the target speed
can be modified in order to drive the gap's dimensions
to its specified values. The first constraint creates a
problem because there is no single, physical quantity
that reflects the constraint. This first condition is a
statement of "compatibility” between the prescribed
surface speed and the free-stream speed. If the later is
also being prescribed, as is usually the case, the
surface speed prescription has to be modified for the
constraint to be satisfied. If the free-stream speed is not
spaecified, in the case of incompressible flow its vaiue
can be found from Eq. (16). In the absence of a closed-
form exprassion, which would be valid at compressible
speeds, the problem is to define a procedure whereby
either the surface speed or the tree-stream speed might
be changed to bring about “compatibility.”

Consider the incompressible flow over a circle
again. As mentioned earlier, it will be sufticient to
consider the nonlifting symmetric flow. The general
solution for the flow on the outside of a circle of unit
radius can be represented in the form
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N
b,
G=ag+a reosm+ Z-ﬁ cos nw,
n=1

N being a sufficiently large number. Here G represents
the potential function of the flow.

This is the most general solution to Laplace's
aquation that yields a uniform free-stream flow in the far

field (r = «). Hence

%G )
;=(q—%)mm—2n7‘%cosnm (18)

=2

and

190G

N
. nb, .
- $='(al —r%»]sm o~ ‘E;Ffrsm no . (19)
it follows that the total velocity

" _i
q= (Gr _760)' @

must be of the form

N
q=a— Y b " (20)

r=2

In the far field, as { — «,g =q.,. Hence, and g, =4¢.. and

N
9=du~- 25" (21)
a=2

which reflects the result expressed in Eq. (15). Thus, if
the flow over the circle is determined with the condition
that Q = Go(w) on the boundary r = 1, it can be seen that
if Go(w) is expanded in a series

N )
(@)=co+ Y cpe ™ (22)

restrictions on 9, immediately arise, echoing the
constraints described by Lighthill and Mangler. In
particular, one sees that €o = Qoo the first constraint
Also, ¢, must vanish, implying two additional
restrictions on the speed, since <, is a complex
constant.

It is interesting to note thuat Eq. (21) can be
factored into the form

=2

LR [l“?l[) [1- glb;t"'} (23)

Since the first part on the right-hand side of this
expression represents the solution for the flow over the
unit circle, the expression in brackets formally gives the

mapping |d{/dj. which generates the airfoil
corresponding to q:qo(m) (assuming 9 satisfies the
constraints).

It is also obvious that an integration of Eq. (22)
around the perimeter of the circle yiekls

2x
faot@do=2x4q... (24)

o

This means that the average speed on the surface of the
circle must be equal to the free-stream speed, a
conclusion that could have been made from Eq. (16)
aiso. This interpretation of the first constraint was used
by McFadden?! in the formulation of his airfoil design
procedure.

At this point the reader should be reminded from
the discussion in Section 2 that a proper speed
distribution for an airfoil should contain at least one zero
corresponding to the leading edge stagnation point, and
two zeroes if the trailing edge is not cusped. A result of
Eq. (23) is that a design procedurse utilizing the circle
plane must ensure that the zeroes of g match the zeroes
of the flow over the circle if the metric is to be free of
singularities, with the possible exception of the trailing
edge.

The stagnation, or branch, points of the
prescribed flow must necessarily be at specific
locations on the circle. It can be shown that requiring
that the branch points be on the circle forces the first
constraint to be satisfied. In fact, as with q in Eq. (21),
Eq. (22) can be factored into

1 X ,
alw)=c, (1 -ET) [1 =Y e""‘”}.
A=l

For simplicity, the expression in brackets will be called
h. As before, this represents a mapping of the flow. The
other factors,

ol

can be interpreted as the fiow over a circle imbedded in
a stationary fluid and moving in the negative x
direction with a speed equal to co. Adding to this a free
stream moving in the pusitive x direction with a speed

equal to {q.. —¢,) gives the velocity field

% =q.,—§%. (25)

This represents the flow over a unit circle moving with a
speed aqual 10 co in the negative x direction within a

stream moving at a speed equal 10 q., in the opposite

direction. The spaed of this fiow in the far field is q..,
naturally. On the unit circle it is




4= H%(wh (9 - co)] (26)

i q.=c,. the speed on the circle is exactly the
prescribed speed. Moreover, the stagnation points of
the flow are exactly on the circle, since setting ¢; = 0 in
Eq. (25) gives

gz=;‘v-=1. (27)

Analogously, requiring that the stagnation points be on

the circle ({=1) means that ¢, =4., and, again, the
speed on the circle is the prescribed speed. The
requirement that the branch points of the flow must be on
the circle boundary is equivalent to the requirement that
the first constraint expressed in Eq. (16) be satisfied.
Either condition can be used in a design procedure to
find the value of the appropriate free parameterin
Eq. (17) reflecting this requirement.

The equivalency of the two conditions was
proved numerically by Volpe and Melnik.'4 They
described a procedure to generate an airfoil
corresponding to a given speed distribution by
successive modifications of an initial airfoil profile. In
the procedure, which is valid at compressible speeds,
the initial profile is mapped into a circle, and the flow
around the circle is solved subject to the boundary
conditions that the tangential speed on the circle be the
required value. Since this is a Dirichlet problem, the
normal speed on the circle boundary is not necessarily
zaro. It would be if the airfoil contour were gxactly the
required airfoil. The normal velocity component is used
to modify the initial contour and the process is repeated.
The procedure converges rapidly in the sense that the
computed normal velocity component goes to zero quite
fast, and the modifications to the airfoil contour become
progressively smaller. In their test, Volpe and Melnik
took the speed distribution, f(s), computed on a Korn
airfoil at M,, = 0.100 and an angle of attack of 1.7° (see
Fig. 12 for the corresponding pressure distribution) and
multiplied it by an arbitrary factor, p. They then

e

Fig. 12 Pressure distribution on Korn airfoli;
M_=0.100,0 =1.7", CL =0.5262,
CD= 0.0001

19

requested the numerical procedure to generate the
airfoil corresponding to this scaled distribution. A one
degree of freedom was introduced in the form of a
scaling factor, py. Thus, Eq. (17) was given the specific
form

f‘L =p [pA(s)]. 28)

Since f(s) was computed for a closed airfoil, the
distribution in Eq. (28) satisfies the other two constraints
automatically and, as a result, p2 and p3 can be set to
zero. An application of the integral relation expressed
in Eq. (16) quickly reveals that an w.rfoil solution can
exist only if p,p = 1. Of course, the resulting airfoil is in
each case the Korn airfoil. The scheme used by Volpe
and Melnik found a vailue for py using the condition that
the normal velocity component vanish at the leading
edge point where the tangential velocity is prescribed to
be zero. in other words, the stagnation points of the flow
are forced to be on the circle boundary. (The
intraduction of a mass flow term is used in the procedure
to force the trailing edge stagnation point to be on the
circle.) In the numerical scheme, regardless of the
initial value of p, the resuiting value found for p; was
such that their product was unity, as required by the
integral relation. This is shown in Fig. 13. The total
scaling of the speed distribution (p,p) is driven toward
one very quickly. Here, flow field sweeps mean the
number of iterations required by the procedure to
compute the flow field over the initiai airfoil contour, and
design cycles indicate the number of airfoil updates.

The advantage of using the stagnation point
condition over the integral relation to enforce the first
constraint lies in the fact that the former can in principle

1.01

=

b
2 4 8 8
DESIGN CYCLES

0.994

0.0 = 1o ey Sy e
0 20 40 80 80

FLOW FIELD SWEEPS

Fig. 13 Convergence history of scale factor for
Korn airfoil design; M_ = 0.100
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be used at transonic speeds, as it was, in fact, done in
Ref. 22. It is worth mentioning again that this constraint
arises from the imposition of a value for the free stream.
I this were to be left free, the constraint apparently
disappears. In reality, it does not. The removal of the
need for a p1 in Eq. (17) is obtained at the cost ot
making q., a free parameter; p1 has now really become

G- In incompressible tiow, the value of q. is found by
an application of the integral constraint, and it can be
found, for compressible flows, by applying the

stagnation paint condition. Letting ¢., float is equivalent
10 introducing the parameters py in the form of a scaling

factor as in Eq. (28). In this expression, whether q., is
fixed and p1 is free to float, or vice versa, the ratio
(Go/q..). Which is the quantity of interest, is the same.
As a final point, it must be noted that if a speed
distribution does not satisfy the first constraint, the
incompatibility between the surface speed and the free
stream renders the flow mathematically impossible, and
no airfoil solution, no matter how unrealistic a shape it
may have, is possible. Failure to satisfy the trailing
edge constraints, however, does not preciude a
solution, but the resulting shape may be unrealistic or
unacceptable.

Z.__SENSIMIVITIES OF GEOMETRIC_
CHARACTERISTICS TO PRESCRIBED SURFACE
DISTRIBUTIONS

Families of airfoils have been designed by
various authors by varying some parameters that
characterize an otherwise similar surface speed
distribution to examine the effect on the parameter on
the resulting geometrical contour. In some cases, the
pressure distributions were chosen and the airfoils were
designed with the purpose of achieving certain fift and
drag charactefistics. These results can be used to
perform sensitivity studies.

Nonweiler® designed a series of low drag airfoils
using Lighthili's procedure. The prescribed pressure
distributions were systematically altered, and the
differences in the resulting shapes can be observed. In
Fig. 14, two airfoils designed to distributions that differ
basically in the trailing edge region are shown. As a
result of the ditferences in the imposed pressures, the
trailing edge angle of the resulting airfoils increases with
increased local loading. Slight ditferences in the
distributions in the leading edge region generate airfoils
of dramatically different leading edge radii and
thickness, as can be seen in Fig. 15. The effect of

-0.8 7

-04 4
0.0 4

0.4

0.8 -

Fig. 14 Effect of pressure distribution near
trailing edge on airfol] shape; in-
compressible flow; C =024
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-12_

—-0.4 1

0.4

1.2~

Fig. 15 Effect of pressure distribution near
leading edge on airfoil shape; in-
compressible flow; solid line: CL =1.07;
dashed line: cL =1.05

extending the region of favorable pressure gradients on
the upper surface is depicted in Fig. 16. It shouid be
noted that enforcement of the constraints alters the
ideally prescribed distributions. As a result, the
modified imposed pressure distributions for which the
airfoils are found differ by more than the changes that
would be expected by the single parametric change.
This is true for all such studies regardless of the
particular procedure to generate the contours. The
additional differences in the pressure distributions
depend) on the particular functional form chosen for
Eq. (17).

Lieback® also performed studies which examined
the relationships between airfoil shapes and imposed
pressure distributions. As mentioned earlier, Liebeck
concentrated on formulating the optimal shape for a
velocity distribution with which boundary layer could be
controlled (e.g., transition location could be delayed,
flow separation avoided) in addition to maximizing the
lift. The general appaarance of the Liebeck velocity
distribution is depicted in Fig. 9. The extent of the
rooftop region and, as a result, that of the Stratford
recovery region depend on the level of the rooftop. In
Fig. 17, various airfoils corresponding to different levels
(e.g., maximum velocity) are depicted. The contours
weare computed using a numerical procedure due to

-2.0 4

_12—

~0.4 1

0.4

12~

Fig. 16 Effect of axtent of favorable upper

surface pressure gradient on airfoll
shape; solid line: C, = 1.28; dashed
line: C; »1.22; 1 pressible flow
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Fig. 17 Effect of maximum rooftop velocity on
airtoil shape; incompressible flow

James.23 The effect of increasing design lift on airfoil
thickness is demonstrated in Fig. 18. In this example,
laminar flow over the entire rooftop region was assumed
in the prescription of the pressure distribution.

8. EFFECTS OF PRESCRIBED DISTRIBUTIONG
ON CONSTRAINTS AT TRANSONIC SPEEDS

A study which indicates how Eq. (17) could be
formulated at transonic velocities was performed by
Volpe.24 The study was done by designing airfoils fo
pressure distributions which were systematically
changed. The numerical procedure was that described
in Ref. 14. In the study, trailing edge closure was not
enforced. As a result, the airfoils were generally open.
Therefore, the designed airfoils present a view of the
sensitivity of the trailing edge closure to particular
characteristics in the pressure distribution and, also,
give an indication of the changes in the latter needed to
bring about closure. In the study, the parameter py is
identified with a floating value ot ¢.. . as discussed
earlier. Thus, the effect of the pressure variations on q.,
can also be examined.

~ a)CL=24,t= 010

B C =20,t= 018

T

/,,;

c)C=15.t= 022

C,=10.,t= 023

Fig. 18 Effect of design lift on airfoll shape;
incompressible flow
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The first example examines the sensitivity of the
solution to changes in the targe! pressures in the
forward ponion of the lower surface, as shown in Fig.
19. In this figure, the pressures are plotied as a function
of arc length, around a flat plate with a chord length
equal to 0.5. The two pressure distributions are different
only between 23% and 47% of the arc length.
Otherwise they are identical, even in the stagnation
point region. As in ail the other examples that will be
shown in this section, the angle of attack is chosen to
be zero and the free stream Mach number is 0.800. The
flow is thus supercritical on both the upper and lowaer

surfaces, as can be seen in Fig. 19 (C, denotes the
value of the critical pressure coefficient). The resulting
airfoils corresponding to these two target distributions
are shown in Fig. 20, along with the pressure
distributions that are computed by a direct analysis of
the contours. kI should be pointed out that in each case,
the result of the analysis is identical to the target for the
inverse problem. The target distribution is scaled from
the originally defined distribution because usually q.,
turns out to be some value other than one, as in this
case. The abscissas of the resuits of the two cases are
lined up in such a way that the lower surface trailing
edge points coincide. The differences in pressure
distributions are due to the very ditterent scaling factors
(g.) resulting for the two cases. The shapes of the
original targets are both retained. The vertical gap size
(Ay) is also dramatically different for the two examples,
while only a slight difference in the horizontal gap is
present. Note also the different chord lengths of the two
airtoils.

The effect of changing the pressure distribution in
the aft section of the lower surface can be seen for the
cases shown in Fig. 21, whose results are shown in Fig.
22. Lowering the pressure coefficient in this area again
increases ¢, substantially, causing the different levels
in computed pressure. Ay is now greatly increased
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Fig. 19 Target pressure distributions to study
effect of forward loading on design;
cases 731, A31; M_ = 0.800
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while the change in Ax is small. Figure 23 shows two
velocity distributions near the stagnation point. Except
for the ditference shown in this region, they are
otherwise identical and, in fact, correspond to the
prassure distribution given as a dashed line in Fig. 19.
The location of the stagnation point itself is unchanged.
The solutions for these two cases are shown in Fig. 24.
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Fig. 20 Effect ot forward loading:
designed airfoil contours and direct
solutions; cases 731, A31; M_, = 0.800
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" Fig. 22 Effect of aft loading:
designed airfoil contours and direct
J solutions; cases A34, B34; M, = 0.800
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Fig. 21 Target pressure distribution to study 1Fig. 23 Target speed distribution to study effect
effect of aft loading on design; cases of stagnation point region on design;
cases A34, A33; M., = 0.800
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Finally, the effect of the location of the stagnation
point on the solution is examined. The two speed
distributions in Fig. 25 are identical except in a region
extending approximately 5% on either side of the
stagnation point. In fact the dashed line is only a lateral
movement of the curve locally. As can be seen in Fig.
26, their corresponding solutions differ only minutely in
4. @nd Ay, but substantially in Ax. In the pressure plot,
the dashed pressure distribution represents the solution
for the dashed airoil which is drawn by makirg the
lower surface trailing edge points line up with the
corresponding points on the other airfoil. This accounts
for the diffarences in the pressures seen on the upper
surface. If the upper surface trailing edge points are
made to coincide, such differences are reduced. The
different chord lengths of the airfoils, which are the
abscissas, account for the remaining differences.
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designed airfoil contours and direct
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In designing airfoils to prescribed pressure
distributions, the contour generated is highly dependent
on the particular form assumed for Eq. (17) it the iceal
distribution (the one for which py, pa and p3 in Eq. (17)
vanish). The results of studies such as this, as well as
those of Liebeck, Nonwaeiler and others, can be used as
a guide to select proper ways of allering the ideal
distribution in order to satisfy the constraints.

9. _CONCLUDING REMARKS

In three dimensions, the probiems associated
with designing a physically acceptable structure are
magnified. The earlier discussion associated with the
2-U airfoil is pertinent to the cross section of the wing at
any station alorg its span. in addition, the several cross
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Fig. 26 Effect of stagnation point location:
designed airfoil contours and direct
solutions; cases 728, 731; M_ = 0.800

sections must "blend” into each other. Therefore, the
sections’ chord lines have to adhere to a specific
distribution, which is at least piecewise continuous.
The spanwise thickness distribution and the location of
the point of maximum thickness are aliso required to vary
continuously and -- in most cases -- menotonically. The
wing should also close at the tip, of course. These
physical requirements translate into restrictions on the
pressure distribution to be specified on the wing.

It is safe to assume that a constraint expressing a
compatibility condition between some average of the
surface speed and the free stream exists. It should be
possibie to express such a constraint in closed form for
incompressible flows. It is yet to be determined it any
analytical relationships between imposed pressures
and wing geometry exist in three dimensions. It is not
clear if even a general description of such relationships
is possible. Because of this difficulty, 3-D wing design
at present is limited to the re-design of certain portions of
il. This particular re-design usually involves the use of
2-D surface modificatior techniques applied in each of
the cross sections in gquestion. The imposed target
speed distributions are perturbations of the flow
computed over the wing tc be modified using an
appropriate 3-D analysis program. A designer must
interact with the design procedure in order to guarantee
an acceptable shape.

The existence of the various restrictions on
geometry and the acsociated constraints on the
imposed pressure distributions have made airfoil design
an interesting and tertile field of research. Because of
the practical implicaiions, the field of 3-D wing design is
iust as rewarding. Because of the inherent difficulties of
tha problem, it is unlikely that the above-mentioned
user-interactive procedure for design will ever be
supplanted.  Probably, it is not even desirable.
Progress in understanding the relationships between
3-D wing flow characteristics and geometric features
will contribute substantially to the development of
numaerical tools to be used in the design procedure.
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SUMMARY

The problem of constructing wing profiles that
yield specified pressure distributions and/or
performance charactaristics is discussed. A practical
solution to the problem, which consists of a physically
acceptable profile, exist only if certain constraints are
satisfied by the prescribed characteristics and by the
profile itself. These constraints are addressed in
various manners by the several methodologies that
have been proposed. The various approaches are
discussed along with the relative advantages and
disadvantages of each. The inverse approach is
considered in detail to provide a link to the classical
incompressible design problem and to establish a raison
d'etre for the other methodologies.

1. INTRODUCTION

The design of wings and wing sections is a
problem of considerable interest not only to the
aerodynamic configuration engineer but also to the
developer of methods for achieving such designs. The
reasons are obvious. The aerodynamic and economic
efficiencies of an aircraft are highly dependent on the
layout of the wing and the shape of its profile. The best
possible aircraft (whether commercial or military) is the
one that meets its design goals in an optimal manner
(assuming one has established a definition for
optimality). The degree to which a design team will
come to obtaining the best possible configuration for a
given set of design parameters (e.g., range, speed,
volume) is, of course, a function of the skiils of its
members and the theoretical ‘ools they have available.
The time constraint plays a major role in the design
cycle, also. Missing the best gives rise to inferior
performance which can be translated into lower cruise
speeds, decreased range, insufficient carrying
capacity, etc. The penalties involved in missing the
best design have always been well known facts. As
aircraft started operating routinely in the transonic range
the penaities became larger because of the deleterious
effects of the shock waves on the flow field around the
aircraft. As a consequence, the avoidance of these
penalties has a bigger payoff for supercritical designs.
It is a small wonder, then, that a lot of effort has gone,
and is still being put, into the development of techniques
for designing shockless wings.

The design of a wing begins with the selection of
its section profile (or profiles). Some deformation of the
two-dimensional section may occur in the course of
performing the three Jimensional design, but this first
step is currently indispensablo. Tailoring of the airfoil
profile to the specific requirements of the wing as
opposed to selecting one from a stockpile may be highly
desirable. This paper will be mainly concerned with
airfoil design, since theoretical tools are maost highly
developed for such a problem. In addition at present,
such tools are the most easily portable, because three-
dimensional methods, in large, reflect the design
phitosophy of the developer.

The various algorithms available for the design ot
airfoil sections can be placed in one of several classes
of methodologies. Whereas in the case of subcritical
flows all methods developed for that purpose could be
categorized as inverse methods, a number of “alternate”
methods have been developed for transonic flows
because of the difficulty of extending the incompressible
flow approach to the supercritical regime. Some of
these alternate methodologies demonstrated certain
advantages over the original inverse technique. In
practice,defining a section for a particular application
entails the use of various methods. In an inverse-type
method of airfoil design, the speed -- or, equivalently,
pressure -- distribution (throughout the paper both terms
will be used and they will be interchangeable) one
desires on the surface of the profile is specified along
with the magnitude and direction of the free stream.
Mangler! and Lighthill2 discussed this “inverse"
problem of airfoil theory for the case of incompressible
flow and proposed various analytical solutions. Their
methodology was refined and adapted for application
on large and small computers by successive
researchers.3-7 However, the difficulty in extending the
methodology developed for incompressible flow to the
transonic regime eventually gave rise to a number of
alternate methods. In a pure inverse-type method of
airfoit design -- such as those of Mangler and Lighthill --
the speed (or pressure) distributions desired on the
surface of the profile are specified along with the
magnitude and direction of the free stream. In contrast
to the direct problem in which the shape of the airfoil
profile is specified and the surface speed is computed
through a solution of a Neumann-type problem, the
inverse problem does not necessarily have a solution.
A solution to the inverse problem exists only if a centain
constraint between the free-stream speed and the
surface speed is satisfied. In incompressible flow,
which can be described by Laplace's equation, this
can easily be shown and the constraint can be
expressed in closed form. If, in addition, it is required
that the airfoil profile be closed (or have a particular
trailing edge thickness), two additional constraints
appear. They can also be expressed in closed form for
incompressible flow. The existence of these constraints
has been known since the work of Mangler and
Lighthill, and Waods has extended the analysis to
subcritical compressible flows of a Karman-Tsien-type
gas. The work of these authors indicated that a
specified surface speed distribution had to be altered in
such a manner as to satisly the three constraints in
order to guarantee a solution. In their methods, as in the
refinements that followed,4-7 the approach was to
prescribe the surface speed distributions with three free
parameters whose values were to be adjusted to satisfy
the three constraints.

The formulation of an inverse method at
supercritical speeds has been problematic because of
the lack of closed-form expressions for the three
constraints. The existence of constraints for the
transonic design problem was intuitively true because
the incompressible design problem was a subset of the
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more general compressible problem. The lack of a clear
understanding of the nature of the first constraint was
the main source of the difficulties. A tormulation ot the
inverse problem for transonic speeds was finally given
by Volpe and Melnik,8.2 who devised a numerical
procedure to guarantee satisfaction of the three
constraints. The procedure is based on the discovery
that the first constraint would be satisfied if the branch
points of the flow were enforced to be on the airfoil.

An obvious advantage of inverse methods is the
control the designer has over the force characteristics
of the airfoil profile and over the boundary layer
development on its surface, a control gained through
the pressure (speed) distribution that is specified. This
control can still be retained when making the changes
that might be necessary to satisfy the constraints. The
introduction of the three free parameters can be
arranged such that an "ideal" speed distribution is
modified only over selected segments of the airfoil
surface. Desired characteristics of a speed distribution
(e.g., "rooftops,” Stratford-type pressure recovery, rear
or front loading) can be retained with little or no
modifications. Indeed, the satisfaction of three
constraints does not necessarily guarantee a realistic
airfoil. Re-entrant shapes, where the upper and lower
surtaces cross before the trailing edge, are not ruled out
by this formulation. However, additional parameters
could be introduced in an inverse design procedure to
prevent this from occurring.

The problems created by the constraints can be
avoided by the use of so-calied indirect methods of
design, such as those of Hicks et al.,'? Davis,!?
McFadden'? and othars. In these methods the
solutions (pressure and/or force characteristics) for the
flow over some arbitrary initial airfoil contour are
compared with a desired set of values for the pressure
distribution or forces. The differences between the
“target” and "current” characteristics are used in some
rational way to modify the airfoil profile in the hope of
reducing these differences. The process obviously has
to be iterated. One advantage of such methods is that a
realistic airfoil profile is always obtained at every step of
the iteration. The biggest disadvantage, however, is the
lack of a guarantee that the iteration will converge with
the differences between computed and target values
reduced to arbitrarily small levels. The question of the
existence of an airfoil solution for a particular "target™
pressure distribution is skirted in these methods and, in
fact, they will not converge for arbitrarily prescribed
pressure distributions that do not satisfy the three
constraints. This approach to airfoil design is best
suited to applications where the target pressure
distribution is a "small” modification ot the one computed
over the initial profile.

Another approach pioneered by Sobieczky!3 is
built around the concept of the fictitious gas in regions
of supercritical flow. This approach is ideally suited to
the redesign of an existing contour in a way that the new
contour will have shock-free flow. This technique is
much easier to implement than hodograph methods for
the design of shock-free airfoils such as those of
Garabedian and Korn (see Ref. 14) and Boerstoel,15
whose mathematical elegance is unfortunately offset by
the need of a highly-skilled user. In neither of these
classes of methods does the user have control of the
pressure distribution. Such control can be exercised
only with an inverse method.

The implementation of an inverse, or even an
indirect, method of design involves the all-important task
of defining the pressure distribution. This is not
impossible (see Ref. 16 and 17, for example). In

addition, in many applications one can use the
distribution over a known profile as a baseline on which
desired characteristics are injected. This "modification”
approach to the definition of surface characteristics is
one of the major reasons for the practical success of
indirect methods. The definition of a surface speed
distribution can be avoided entirely if the differences in
some other parameters -- such as lift, drag, maximum
thickness and combinations thereof -- are used as
drivers of the design process. In fact, by assigning
appropriate weighting factors to the various parameters
being taken into account some optimal configuration
could be attained. This is the idea underlying the
method described by Hicks et al.,18 in which
optimization techniques are the vehicles for performing
the design. In a similar vein Jameson!9 has used
control theory as the vehicle for the design.

Optimization techniques can be used to generate
designs that satisfy multiple design points. A
shortcoming of inverse and many indirect methods is the
fact that the resulting shapes are "point® designs, whose
off-design performance may be unsatisfactory. At times,
this shortcoming is of little consequence. For example,
a transport aircraft which spends most of its time at a
prescribed speed and altitude is essentially a point
design. If better off-design performance is desired,
however, it could be attained (at the expense of trading
away some of the best at the design point) by defining
additional design points with associated weighting
factors in the optimization process. It should be
realized, however, that such a design exercise
becomes progressively longer and more difficult as the
number of design parameters grows. Such an
approach, while possible in principle, may be
unrealistic in practice. The use of an optimization
technique used to refine a design obtained by an
inverse technique might offer the most efficient solution
in such a case.

The paper will discuss at some length an inverse
approach to transonic airfoil design because of its roots
in the classical incompressible problem, and because it
is the technique by which desired flow characteristics
can be attained most closely. It will be followed by
some discussion of indirect methods and optimization
technigues.

2 THE_ INVERSE DESIGN PROBLEM
EORMULATION

The problem that will be addressed now is the
construction of the airfoil profile, which has a surface
speed distribution, qo, equal to some desired function,
F, everywhere along its arc length,s. This is to be
measured clockwise around the airfoil contour starting
at the lower surface trailing edge point. The airfoil's
coordinates, x,y, can be parameterized as functions of
s. A feature of practical airfoil contours is that the
trailing edge be either closed or have a very small gap.
Thus, a requirement on the to-be-determined airloil is
that the upper and lower surface trailing edge points be
separated by prescribed distances Ax and Ay. The
horizontal gap, Ax, is usually set to zero, while the
vertical gap, Ay, is set to zero (a closed airfoil) or to a
smali positive number. The free stream is also defined
by prescribing values for the free-stream velocity ¢,
temperature, and pressure (or density). These, in turn,
determine the free-stream Mach number, M,. In
incompressible flow, of course, it is only necessary to
specify the velocity in order to identify the free stream
uniquely. i is to be reminded that speed and pressure
distributions will be used interchangeably. Formally,




then, the problem is to determine the airfoil profile of a
specified trailing edge thickness corresponding to the
speed distribution

%o = F(s/snss) M

Without loss of generality, Snax San be set equal to one;
% is taken as positive in the clockwise direction around
the airfoil.

As shown by Mangler! and Lighthili,2 for
incompressible flow and by Volpe and Melnik8 for
supercritica! flows the problem, as stated, does not
have a solution uniess the function F(s/smax) Satisfies
three constraints. Volpe20 discusses these constraints
in some detail. The constraints are due to requirements
that, at the trailing edge, Ax and Ay have specified
values and, that the speciftied surface flow be
compatible with the flow in the far field where it
approaches a uniform free stream plus a circulatory
component, as discussed by Ludford.2' in
incompressible flow, these three constraints can be
expressed in closed form. Unfortunately, this is not
possible at transonic speeds.

As a consequence of the constraints, an airfoil
solution will be found only if F contains three free
parameiers. The most general speed distribution that
can be specified is, therafore,

g"-=F(S: P2 p3),

oo

where p1, p2, p3 are the three adjustable parameters
where values are to be found together with the airfoil

contour. In this paper it will be assumed that the target
speed is of the form

;"¢ = ise )G+ Alsm)+ Alsm)] @

where fo(s) represents the ideal target speed distribution

that, in practice, is usually a tabulated function. The
functions 1., f, and f3 are introduced to modity the

ideal target in order to satisfy the three constraints. in
general, it is desirable to localize the effect of f,, 12, and

f3 so that the resulting surface speed will be close to the
ideal speed distribution, fo(s), over most of the airfoil

surface. Since in transonic flow it is not possible to
relate p,, p,. and Ps to the three constraints in closed
form, a numerical search for the parameters must be
made. The search is greatly faciiitated by choosing 11,
12, and 13 in such a way that each significantly affects
only one of the constraints. We would then have three
one-dimensional searches for Py, Po. and Py In Ref. 22
the sensitivity of a designed airfoil contour to various
changes in the speed distribution is reported. This and
other studies (see Ref. 16 and 23, for example) can be
used to detine the forms for f,, fp and 1y in Eq. 2. Three

separate schemes will be described here.
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Satisfaction of the first constraint is guaranteed
by adjustment of Py. By definition, t, causes a scaling

of surtace speed (qolqw). in scheme 1, t is set equal
10 p,. This results in a scaling that is uniform along the
airfoil. iIn this case one could consider P, as a scaling
on either 9,0rq,. In the latter case, q__ is essentially

fioating, and it would be determined as part of the
solution. As mentioned above, the value of Py is

chosen to guarantee that the specitied leading edge
stagnation point will truly be a branch point of the flow.

Control over Ay, the vertical separation between
the upper and lower surtace trailing edge points, can be
exercised by defining

H=Em sin(g—w) .wS%Il (3)

Outside this range fy is zero. Here, the ordinate is

substituted for the ordinate « in the computational plane
for the arc length s. Al airfoil flows can be mapped into
flows about the unit circle. The ordinate @ (running from
0 to 2r), then identifies the length along the airfoil
surface from the trailing edge point along the lower
surface to the corresponding point on the upper surface.
it is more convenient to use w rather than s, and the
formulation of the probtem is not affected by this
substitution. The function (3 is the hardest to define. The
horizontal separation between the two trailing edge
points, Ax, is affected primarily by the location of the
leading edge stagnation point. As shown in Ref. 22, a
small shift in this stagnation point along the surface of
the airfoil, on the arder at 2% of the chord length, can
alter the horizontal gap by 5-6%. It should be pointed
out that a2 2% shift in the stagnation point along the
surface is hardly noticeable when viewed as a shift
along the chord. In order to maintain a loose coupling
among p,. p,. and P3. the shift must be accamplished

without altering the local velocity gradients. This can
be accomplished by shifting the functional dependence
of g, ons locally, near the leading edge. Thus, one

can define

Als)=£,(s) - fols)
with

5 =5 p3h(s)

where

h(s):%[l —cos(i-(s—s-r +2As))] , sy ~28s <SS 57~ As

u

L Sp—AsSs<sr +As

=';‘[1+COS(‘£S‘(I—IT—AY))] , ST +AsSs S5y +24s

Elsewhere, h(s) is zero. The point sy denotes the
location where 10(5) is zero in the leading edge region
and As is some appropriate distance, typically 2.5% of
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the totai arc length. This form for {5 shifts the leading

edge stagnation point smoothly without introducing any
*wiggles” in the target speed distribution and. in
addition, has hardly any effect on the values of p, and

Py This form for '3 is common to all the three schemes
described here.

A second scheme for modifying the target
distribution uses a different definition for 1, in Eq. 2).

The expression given in Eq. (3) aiters the target speed
distribution only on the lower surtace of the airfoil. 1t
waould, therefore, be unsatistactory it one were trying to
design a symmetric airfoil. An alternative form for 12 is

=p|1-2Z
fz-Pz[l wl]

2n-w
=py| ——-1 , Ww22r—-wp
e

, ooy

O]

This function alters the magnitude of the speed in the
neighborhood of the trailing edge symmetrically. In this
computational scheme, the speed takes on opposite
signs on the upper and lower surfaces, accounting for
the sign difference between the two parts of Eq. (4); @,

is typically taken as n/3. A third scheme can be
formulated by substituting for f, = p, in scheme 1 the

function
fi=/1ep sinZ(g)

which concentrates the scaling in the front half of the
airfoil.

As discussed by Volpe,20 the first constraint of
the inverse airfoil design problem is a statement of
compatibility between the prescribed surface speed and
the praescribed free-stream speed. The constraint can
be satisfied if the surface speed is prescribed with an

adjustable parameter (p1 in this case) or if ¢, is allowed
to float. If pq is introduced as a scaling parameter, as in
schemes 1 and 2, one could interpret py as being q..

and use the latter as the free parameter. g., can at any
time be scaled to any desired value without altering the
formulation of the problem by simply scaling qo by an
equal amount. This operation would leave the pertinent

ratio, Go/q.., unchanged.

Airlqil Desion Sct

The shape of the airfoil which gives rise to the
speed distribution represented by Eq. 2 can be obtained
by iteratively moditying some initial contour, as shown
by Volpe and Melnik.9 This initial contour need not be
close to the sought-after profile for the iteration to
converge. As described in Ref. 9, this initial contour is
mapped into the unit circle by the unique conformal
transformation

1-¢)
a 41 (P+iQ)
& [‘ J ‘ ®

wherez=x +iyand { = 16'® are the coordinates in the
physical and mapped planes, respectively, and ex is
the included trailing edge angle. This equation can be
separated into its real and imaginary parts. Thus, onr =

1,
ds o .
E=[2Sln?]‘ e (6)

=1 —w)-%
0-2(1+e)(n )] 2+Q (7

where 8 is the local slope of the airfoil. Q is the Fourier
series

N

2=, (A, sin nw - B, cos nw) (8)

and P is its conjugate series. Because 8 is known as a
function of s, the coefficients of the series can be found
by standard Fourier analysis as described in Ref. 4.
With this mapping procedure, the leading terms of the

series are related to the trailing edge gap (Ax, Ay) by

A= v(zéx’}-)sm B,- (;3—’);) cosB,+ (1-¢)

B = —(%)cos B, - (;3—:;) sinB,

For convenience the infinite flow field around a unit
circle can, in turn, be transformed into the finite region
inside the circle. The modulus of the transformation of
the physical plane, z, to the inside of the circle is then
written as

(9)

1 1dz
H=
Ear

In the invarse design problem dz/dl is, of course, the
quantity to be found since it describes the
transformation ot the unknown airfoil profile into the
circle. 1t should be recalled that the transformation is
conformal everywhere except at the airfoil's trailing
edge where the metric h={dz/d{f vanishes.

The mapping of the airfoil into a circle simplifies
the computation of the tiow field around the contour. In
an analysis problem, where the shape of the contour is

given, q.. is usually set to unity and the flow is
computed subject to the boundary conditions that the
velocity component normal to the surface, v, be ze" ..
For incompressible flow, which can be describec by
Laplace's equation, this solution can actualy be
expressed in closed form. For transonic flow, the
solution must be determined numerically. Whether one
assumes the potential equation or the Euler equations 0
be descriptive of the fiow, the flow field can be
computed by a number of numerical .chemes. The
schemas described by Jameson,24.75 for example, are
widely used for these classes of computations.

Flow fields with no shocks, or only weak ones,
(and inviscid, of course) cn be described adequately




by the potential equation. In such a case the flow in the
circle plane is described by the continuity equation

F] 3
== (pU) +r5-(pV)=0 (10)

U and V are the transformed circle plane velocity
components in the r and w directions, respectively. For
irrotational flow they can be expressed as gradients of a
potential function ¢, thus

U=9y. V=rp, (1)

Using the energy equation the density p is
evaluated from u and v, the velocity components in the
physical plane. These are related to the components in
the circle plane by

u=—, v=— (12)

Clearly the flow within the circle cannot be computed if
h is not known; the assumed initial shape for the airfoil

provides the initial estimate for h. In the limit of M,
going to zero, Eq. (10) reduces to Laplace’s equation.

The mapping introduces singularities at infinity,
but they can be removed by subtracting from the
potential its behavior in the far field. As discussed by
Ludtord,2? the solution in the far field is made up of a
uniform stream plus a circulatory component. The
potential functions describing these terms are known.
Thus, one can define a reduced potential function.

G=9¢ —q.,(r+})cos(w+ «)-E tan"[ {1- M) an(ew + a)]

where a is the flow incidence and E is a circulation
constant. This reduced potential is continuous and
single valued everywhere.

At infinity (r=0)G =G,,, a constant that can be
set at zero in direct (Neumann) problems, but which
must be determined as part of the solution in inverse
(Dirichiet) problems by extrapolating from the interior of
the flow field.

For the direct (analysis) problem, ¢, is usually
sel to unity and the boundary conditions demand that
v=0 at the surface. The solution for the flow field is
computed numerically by discretizing the flow field in
conservation form along a polar coc. .nate mash. The
set of difference equations that approximates Eq. (10) is
solved for the discrete values of the reduced potential,
G, at the nodes of the computational mesh by an
approximate factorization multigrid scheme similar to the
one described by Jameson.24 The value of the
circulation constant, E, is determined from the Kutta
condition, which requires that u be finite at the trailing
edge. Since h=0 at the trailing edge, U must be made to
vanish at this point. In this direct problem the surface
speed qo(s)su(s) is computed from the potential
function G.

—

For the inverse design problem the boundary
conditions at r=1 are imposed on u rather than v. Using
the known functional relation between s and w for the
current contour, the target speed distribution q, can

then be expressed as a function of w. Then, at the
boundary in the circle plane one can set u°=u(m) equal

to q,(s(w}). Of course, this would be true if h were the

true mapping metric; in general, it is not. Hence, the
boundary is not necessarily a streamline of the flow. In
other words, v is not necessarily zero at the boundary.
The flow field is computed subject to the boundary
condition u°=q°(s(m)) at r=1 by a numerical scheme
identical to the one used for the direct problem. The
Dirichlet boundary conditions are implemented by
integrating q, around the airfoil to find the reduced
potential G at the boundary points. A constant of
integration Go can be prescribed arbitrarily. The
numerical problem that has boundaries at both r=0 and
r=1 is well posed since the value at the inner boundary,
G., is determined as part of the solution. The
circulation constant is determined by integrating Uy

around the full boundary. in general, in the Dirichlet
problem there is a net mass flow emitted from the
boundary. To allow for this, a source term ¢ log ris
subtracted from the potential leading to a new reduced

potential, G defined by
G=G-ologr

The far-field boundary condition will then have the
additional term

g-log [1 - M 2sin}(w+ a)]

In this Dirichlet problem the normal velocity
component, V, computed on the circle boundary will not
be zero, in general. There is also no guarantee, at this
point, that an airfoil-like shape corresponding to go(®)
exists. The above mentioned constraints on F(s) have
not been satisfied. The constraints are satisfied by
adjusting py, p2, and p3 in Eq. 2. Two of the
parameters, p2 and p3, can be reset by monitoring the
trailing edge gap values, Ax and Ay. py is reset by

monitoring the value of ¢.,. As shown in Ref. 8 and 20
the first constraint can be satisfied if the branch points of
the flow are forced to be on the circle itself. This can be
accomplished if V can be made to vanish at points
where U vanishes. U is zero at the leading edge
stagnation point where qo is zero, and at the trailing
edge where the metric, h, and possibly, o, are zero. V
can be set to zero at these two points by adjusting two
parameters. One parameter is the source flow term, o,
which has a role similar to that of the circulation term fro
the Neumann problem. The otaer parameter is ¢... the
free-stream speed. As discussed earlier this can be
allowed to float to satisfy the first constraint. It can be
returned to its original value by subsequently adjusting
P1.

Because of the definition of the reduced potential
V is directly proportional to ¢ and to -¢., cos (w+a).

New values of ¢ and ¢., can then be found by solving
simultaneously two equations of the type

— et
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Ag. cos(w +a)-Ao=V,

where wj are the two branch points where U=0 and V;
are the computed values of the normal velocity

components. The corrections Ag. =g, ~ and

Goo gy
Ao=0, - 0, are the values that are required to

drive V2 to zero.

C Modificati

The solution to the Dirichlet problem, in general,
will give a non-zero normal velocity at the circle
boundary except at the enforced branch points.

A non-zero normal velocity V implies that the
actual streamline is (to first order) rotated from the
boundary by an angle of magnitude

56 = mr‘(%) (13)

This equation is used to modify the initial slope
distribution expressed by Eq. 7. New Fourier series for

Q and P can then be computed, as well as a new ‘—%
from Eq. 6, and finally

& & G & sin @
dw dw

The actual ordinates of the new airfoil contour are
then obtained by integration. This new airfoil provides a
new approximation for the metric h and a new relation
s{w), which are needed to set up a new Dirichlet
problem in the circle plane. This process can be
repeated until a desired tolerance in the maximum value
of V/U is reached. 1t should be noted that the ratio
expressed in Eq. 13 is finite at all times since V=0 where
U=0.

2.3 Heration Procedure

The procedure for iteratively moditying some
initial airfoil into the shape that generates the surface
speed distribution expressed by Eq. 2 can be made to
converge regardless of the assumed initial shape by
under-relaxing the changes suggested by Eq. 13. The
values of p¢, p2, and p3 are found as part of the
solution. A convergent iteration process is described
as follows. A Dirichlet problem for the flow inside the
circle is set up using the metric of the initial assumed
contour, and, as boundary condition the requirement
that the tangential velocity u be equal to the total speed
distribution, Qo. (This is actually true only at
convergence.) The Dirichlet problem is solved
numerically through sequential sweeps of the flow field
computational mesh, as in the technique described in
Rel. 24.

At the end of every sweep of the flow field, q
and o are determined by forcing v to be zero both at the
leading edge point where u is zero and at the trailing
edge. The factor Py is then adjusted to scale q_, back

to its specified value, and the flow field is swept again.

The value of the normal component of velocity at the
leading edge stagnation point, v, goes to zero quite fast
(due to the continuous resetting of p1). When v is below

a given tolerance (typically 1075 10'6), estimates are
made of the values that A1 and B,. the first-order terms

of the series in Eq. (8), would have if the airfoil were
modified at that stage. These values are compared with
the values they should have for the airfoil to have the
desired trailing edge gap dimensions, as given by Eq.
{9). The differences between the current and desired
values, !SA1 and 581, are then used to change p, and

P3. respectively. The change in p, is made
proportional to 8A1 and the change in P5 is proportional
to (-881). Since p, is introduced as a muftipfier, a

change in the surface boundary conditions due to a
few py can be transmitted through the entire flow field

by scaling the entire potential field. Using this
procedure p, can be updated after each muitigrid

sweep of the flow field without seriously affecting the
convergence rate of the numerical scheme. This
procedure is not possible with p, and p3: therefore,

they are updated infrequently. However, the method of
false position can be used to accelerate convergence
of p, and P3 The flow field is assumed to be converged

when all the residuals at all the flow field node points
are below a specified tolerance, and v at the leading
edge stagnation point together with 15A1 and 3B, are

below their respsctive tolerances. At this point the
airfoil contour is modified and another Dirichlet problem
is set up. There is no need to analyze the new airfoil
contour with this procedure. A direct analysis can be
made at the very end of the calculation just to check the
results.

To ensure convergence of the design process
only a fraction of the changes suggested by Eq. (13} is
actually taken in the early design cycles. After several
contour modifications the factor can be increased. The
tangential velocity u(w) at the boundary, which is
interpolated from the desired Gy = F(s), is also under-

relaxed when a new design cycle is started.

At convergence, the mass flow term ¢ goes to
zero, as it should, since there cannot be any sources in
the flow field. As a final note, the angle of incidence, a,
of the free stream is free to be specified. The final airfoil
shape is independent of a, however; only its orientation
will vary according to the value of a. As a result, the
incidence can simply be set at zero.

3. EXAMPLES OF INVERSE DESIGN

In this section airfoil design using the procedure
described above is illustrated. All the examples that will
be presented have been computed on a mesh
containing 192 points in the circumferential direction
and 32 points in the radial direction.

At supercritical speeds, "shockiess™ airfoils are
usually the goal. A reasonable target speed distribution
might be the distribution depicted by the symbols in Fig.
1. This distribution represents the function fo(s) in Eq. 2.
The free-stream Mach number is 0.800. in order to
satisfy the three constraints, the target distribution must
be modified into the distribution depicted by the solid
line. This modification was achieved automatically
using the above-mantioned scheme 1.

The shift in the location of the stagnation point
should be noticed in this figure. The shift is achieved
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smoothly and makes it possible to close the x-gap in the
airfoil. The designed airfoil is depicted in Fig. 2 along
with the computed pressure distribution. This pressure
distribution is the result of a direct solution of the flow
field over the designed airfoil contour, and it agrees to
three decimal places with the pressure distribution that
corresponds to the target speed distribution (the solid
line in Fig. 1). This airfoil solution is obtained regardless
of the airfoil contour initially prescr,ed to start the
iteration procedure. In Fig. 3 the designed airfoil
contour is compared with four different starting shapes:
the Korn airfoil, the NACA 0012, the NACA 0002, and,
finally, a "needle" -- two straight lines joined at the
trailing edge and at the leading edge tangent to a
semicircle of radius equal to 0.25% of the chord.

It is satisfying to note that the values ot Py P
and Py are identical regardless of the starting shape

(i.0., the modified target speed distribution is the same in
all cases). Apparently, by decoupling the three
parameters, it can be ensured that only a single set of
values exists that satisfies the three constraints. It is
possible that, i the three parameters had been coupled,
more than one set of values might exist that would
satisfy the constraints. Even though there is no formal
proof of this, decoupling appears to guarantee a unique
solution as well as making the search simpler and faster.
The convergence rate of the methad for the various
"starter” profiles is given in Fig. 4, which depicts the
maximum value of [v/u} as a function of design cycles.
Again, after 10-12 cycles it is difficult to distinguish any
changes in the airfoil shape. Typically, the code is run
10 a level where the maximum |v/ul is 0.001 or smaller.
A converged solution generally requires 4-5 min. on a
Cray-1M computer and about 20 min. on the IBM 3081
machine.
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Fig. 3 Final airfoil profile (solid line) compared with
starting profiles (dashed line)

The pressure distribution depicted in Fig. 2
appears to have very desirable features; in particular,
the "plateau” region on the upper surface suggests the
absence of a shock. However, a very large drag (CD =

0.0232) is present even at the design point. A look at
the Mach number contours in Fig. 5, reveals that, while
there is no shock at the airfoil surface itself, a very
strong shock is present oft the surface. The contours
represent increments of 0.01 in Mach number, and only
contours for values greater than the free stream are
shown. At off-design conditions, the shock reaches the
surface. Several authors have observed this feature. A
smooth recompression along the surface does not
necessarily mean that the flow field is shockless. Thus,
the airfoil shown in Fig. 2 is impractical because of its
high drag.

A truly shockless closed airfoil is depicted in Fig.
6, along with the computed pressure distribution (i.e.,
modified target) and the original, unmodified target.
Note the low computed drag (Cpy = 0.0005) of this airfoil.
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Fig. 5 Design point isomachs; ‘‘shockiess'’ case,
o = 0.800, « = 0°; contours shown at
0.01 intervals beginning with M = 0.810

The computed isomach pattern in Fig. 7 shows that the
flow over this airfoil is truly shock free, and at off-design
points only a weak shock develops. This case was
computed using scheme 2 described above. It should
also be noted that in this case the modifications made to
the ideal target pressure distribution are considerably
larger than those that resufted in the previous case. The
changes on the lower surface reflect mostly the effect of
f,. as given by Eq. (4). An example of an airfoil

designed using schems 3 is shown in Fig. 8. Note, in
this case again, the very low value for the drag and the
considerable lift coefficient. The modifications to the
ideal target that should be noticed apart from the scaling
are concentrated near the trailing edge.
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beginning witi. ¥ = 0.810
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A very interesting profile designed to an unusual
prassure distribution is depicted in Fig. 9. The airoil
was designed for laminar flow (remember that this
method is purely inviscid) to a distribution devised by
Pfenninger!7 for M_ = 0./66. It is only one of a series

of airfoils designed for such purposes. The scheme
used was scheme 1. Since the ideal pressure
distribution was based on the considerable personal
experience of its designer, minor modifications were
needed to generate the airfoil solution. The computed
Mach number contours are depicted in Fig. 10. Notice
the shallowness of the supersonic region as compared
10 its length. This airfoil exhibits very low drag for a
considerable range of flow conditions around its design
point. As mentioned earlier, the method will generate
airfoil contours of arbitrary trailing edge thickness. The
contour shown in Fig. 11 has a trailing edge thickness
equal to 2% of its chord. Like the previous example, this
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represents an interesting design that, in addition to front
loading, has a long and shallow supersonic flow region.

4. INDIRECT METHODS

The design of wing sections can be
accomplished by a procedure in which the changes to
some initial contour are driven by the difference
between the pressure distribution computed over the
given profile and the target pressure distribution. The
shape changes are made according to some specified
set of rutes and the procedure is iterated in order to
drive the differences between computed and target
distributions toward zero. Such methods are often
referred to as direct methods since they involve
repeated calculations of the flow field over a known
contour -- a direct, or Neumann problem, as opposed to
the inverse, or Dirichlet problem. It should be

Fig. 10 Design point isomachs; case LFC1, M, =
0.766, « = 0°; contours shown at 0.01
intervals beginning with M = 0.770
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Fig. 11 Designed contour, original target, and
computed pressure distribution; case LFC2,
2% trailing edge thickness; M, = 0.775, «
= 0°, CL = 0.4805, Cp = 0.0001

mentioned that in such an approach to design, the
procedure for computing the flow field is completely
divorced from the shape modification step.

In this class of methods the issue of constraints is
avoided. The set of rules controlling the shape changes
can always be defined in such a way as to yield a
realistic airfoil. It is also true, however, that by such a
technique the differences between computed and target
distributions will not necessarily be driven to an
arbitrarily low value, and, in fact, the obtainable
minimum value may be quite high. Nonetheless,
methods in this class are quite useful, especially when
"small” design changes are involved. It is not
uncommon in practice to specify the target pressure
distribution to be a modification of the distribution
computed over a known airfoil profile. In such a case
(in)direct methods work quite well. A pair of techniques
illustrating this type of approach will be described
briefly.
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4.1 Wavy-Wall Method

Within the context of small disturbance theory
(see Ref. 26) the value of the pressure coefficient (Cp)
over a wavy-wall is given by an expression of the type

Cp=1 (M) 2 (14)

if M, is greater than 1, and by

d2
Cp=g2 (M..) ;% (15)

it M, is less than one. Davis!! suggested that
exprassions of this type could be used to guide the
shape changes needed to achigve a target pressure
distribution. This could be done by interpreting Eq. 14
and 15 as being expressive of the sensitivity of the
“local” pressure coefficient to the “local” surface shape,
and vice versa. Based on the work of Spreiter and
Alksne,27 who used local linearizations of the transonic
equation to develop separate expressions for the
supersonic and subsonic regions of flow over an airfoil,
Davis proposed variations of Eq. 14 and 15 above,

which are more accurate and are compatible with a
potential assumption for the flow field. While the forms of
the expressions are changed, their basic nature is not,
however. Thus, at supersonic points the local pressure
coefficient is still related to the local slope of the surface
by an expression of the type

o=t [M,(Zx—y)w}) : (16)

where M is the local Mach number.

At subsonic points it is related to the local
curvature of the surface by

200
Cp=1ts (M (ﬁ] ] (7

where M’ is a reference value that ensures smooth
switching between subsonic and supersonic regions.

In the "wavy-wall* method of design the flow over
some initial airfoil is tirst computed (by the method
proposed in Ref. 24, for example). At points on the
airfoil where the flow is locally supersonic a new slope
is proposed. This new slope is computed by

(@@ 2 oo

Here Cp is the pressure distribution computed over the

airfoil and C; is the target distribution. The gradient of

the slope with respect to the pressure coefficient is
computed from Eq. 16, which is interpreted as being

descriptive of the relationship between the two
quantities. Similarly at subsonic points a new curvature
is proposed by

2 2 2
: y) (d y] : [d yJ ’
—5 =|-= +——| =5 Cp _Cp (19)
[dx new dx old de dx old( )

The gradient of the curvature with respect to Cy is to be
computed from Eq. 17. With these new distributions of
slope and curvature a new airfoil contour can be
constructed by integration and the procedure can be
repeated. It should be ncted that the changes
suggested by Eq. 18 and 19 are under-relaxed since
Eq. 16 and 17 are only approximations.

This technique can be used to re-design only
part of an airfoil contour. This is actually the preferred
mode of operation. The accuracy of the technique in
the leading edge region is iow since the integration for
the new shape is performed in the physical plane where
the curvature is very high. An example of an airloil
design using this method is given in Fig. 12. Here an
airfoil contour is iteratively modified on the uppsar
surface starting from a location 0.6% of the chord away
from the leading edge. The lower surface was kept
fixed. The target pressure distribution represented by
the symbols in Fig. 12 was a moditication of the
distribution computed on the initiai contour (the dashed
ling). The latter distribution featured a shock which was
to be weakened by the prescribed target. The final
modified section, which is pictured in Fig. 12, differed
only slightly from the initial contour, but the target
pressure distribution was in large part achieved, as can
be seen. Slight differences between the target and the
final achieved result can be noticed, especially in the
{railing edge region. 1t is to be recalled that this
technique does not necessarily drive these differences
to zero.

CASE " RYMBOL
INITIAL SECTION |~ ~ - -
TARGET 000

20THITERATION | ———
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Fig. 12 Airfoil re-design with wavy-wall technique;
M. = 0.680
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An approach similar to the one described above
has been developed by Fray et al.28 who combined the
wavy-wall concept in supersonic zones with the
subsonic thin wing inverse code of Fray and Sloof.29 In
the formulation ot Ret. 23 the design of entire airtoil can
be tackled in a practical manner, since better control
over the design of the leading edge region -- which can
be safely cssumed to be subsonic -- is obtained through
the use of an inverse approach there. Through the
inverse approach trailing edge closure is also
addressed by Fray et al., a goal that can be achieved
only through a trial-and-error process of modification of
the target distribution in the Davis technique.

It was mentioned earlier that the flow over any
airfoil and the flow over the unit circle are related by the

transformation, h, that maps the airfoil into the circle.
Specifically one car write

_ds _|dz| _ jadw
i

and, in the Lhysical plane, )?):qg, the speed on the
Z

-1
(20)

ﬂ
dz

alrfoil surtace. For incompressible flow the solution tor
the flow over the circle can be expressed analytically

as a function of {. In this case the metric, and thus the
airfoil, can be constructed immediately. In fact, this is
the basis of all inverse methods for incompressible
design. For compressible flows, where the solution in
the circle plane is not known a priori and can be
computed numerically only if some value of the metric
(i.8., an initial contour) is provided, this is not possible.
Equation 20 can be used to provide the mears hy
which an airfoil profile can be iteratively altere.
achieve a desired speed distribution, go. This was the
approach proposed by McFadden.’2 In this method Eq.
20 on the unit circle is written as

ds i

};=qo(s-(w-_)) P {21)

Here, qq is the prescribed speed distribution expressed
as a function of w. The mapping of the starting airfoil
contour into the circle is used to provide a functional
ralationship between s and w as was done above in the

case of the inverse method. ¢, is the speed on the
circle computed numerically using, again, this same
mapping function. The solution for the flow is obtainew
subject to the boundary condition that the velocity
normal to the circle is zero (the Neumann problem), so

that ¢, is the total speed. Equation 21 is basically a re-
writing of the first of EQ. 12. The new twist is to interpret
the left-hand side of Eq. 21 as the new metric. Then, as
shown in Section 2, the ordinates of the airfoil, x and y,
can be generated by integration. In practice the metric
changes are under-relaxed. As in the Davis approach
the procedure for computing the flow over the circle can
be used as a "black box." and the ¢'2sign process
involves the sequential analyses of airfoil profiles
iteratively modified by the rule provided by Eq. 21.

An approach similar to McFadden's was
developed by Jameson30 and has been used by

hENY}

Tavernadl in designing propeliers for general aviation
applications. Jameson also interprets the left-hand side

of Eq. 21 as the new metric. ¢, on the right-hand side is

the product of the speed computed over the starting
airfoil, qq, and the old metric. Thus, one can write

o =Lty
9o

and finally

A

108 (Anew) = 08 (hurg) + o [—j— | e

0

The second term on the right-hand side in Eq. 22
provides the sought-after airfoil modification. In practice
it is multiplied by an under-relaxation factor.

In this type of technique special care has to be
taken to ensure that the zeroes (i.e., stagnation points)

in the computed speed distribution (¢, or q¢) and the
target distribution match in order to avoid unwanted
singularities in the new metric. McFadden and
Jameson apply modifications to the target distribution to
bring this about.  In addition, at any step in the iteration
process Qo may develop shock waves even though gc
may be shockless. Scme smoothing of the gradients
near these shocks must be provided to prevent the
airfoil from developing corners. The issue of constr=ing
{which is ignored in the Davis method) is addressed
indirectly in these methods. Specifically, the issue of
compatibility between ftree stream and surface speed

(the first constraint) is resolved by letting ¢., float. The
value of g.. is obtained by first calculating the average

value of qc/q., over the airfoil {or circle to which it is
mapped). For incompressible flow this value is zero, as
shown by Mangler,1 Lighthill,2 and Volpe.14 For the

target distribution, qo/q.,, the average should be zero if

a solution is to exist. McFadden chooses for ¢, a value
that minimizes a functional expressing the difference (in
a mean-square sense) between these two average

values. In the Jameson method ¢, is chosen to
equalize the averages. In either case the rz'ionale is
based on the fact that since the direct solution over the
starting airfoil necessarily satisfies the first constraint,
keeping the average value of the target speed “close”
to the initial average will modify the target distribution in
such a way that it always satisties the constraimt. The

re-setting of g, results in a scaling of go/¢. which is
analogous 1o the scaling introduced in schemes 1 and 2
« { Volpe's method discussed earlier.

In the McFadden and Jameson methods trailing
edge closure is not addressed explicitly, As in the
wavy-wall method, if an airfoil has an undesirable
trailing edge, a new design problem can be set up with
a modified distribution. Trailing edge closure can also
be brought about by an a-posteriori resetting of the
Fourier coefficients of the new metric. Choosing the first
order terms, Ay and By, according to Eq. 9 instead of
assigning to them the values suggested by £q. 21 or 22,
will result in a contour which always has the correct
trailing edge gap, Ar and Ay. The speed computed
over this airfoil is no Icnger the target speed, however,
and the differences from the target are not necessarily
small.
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2. OPTIMIZATION METHODS

In another class of design techniques, which has
been proposed, successive modifications to some
initially prescribed contour are performed in such a way
as 1o minimize the value of some chosen object
function, or of a combination of several such functions.
The object function might be the difference between the
pressure distribution over the initial profile and a
prescribed 1arget distribution. 1t could also be the value
of the total drag. Multi-point design can be addressed
by such methods by defining several functions
encompassing different tliow conditions. As in the case
of indirect methods, this class of techniques uses a
series of direct analyses of the current airtoil shape to
determine the necessary modifications. Most methods
use classical optimization techniques (see Ref. 32, for
example) to determine the changes, and the procedure
for analyzing the airfail is truly a "black box.” A more
recent approach, proposed by Jameson,'9 borrows
ideas from control theory to formulate an adjoint
equation, which embodies the object function, and
whose structure reflects the nature of the direct solver.

5.1_Desi ia } ical Optimizati

The technique described by Hicks and
Vanderplaats?8 is typical of an optimization approach
and will be described briefly since it contains the
concepts common to all such techniques. In this

technique the ordinates, z, of the airfoil are expressed
parametricaliy in the form

N
z=zo+Za,~j} (23)
i=l

where 2o denotes the shape of the initial contour, f;
some specified shape functions (typically polynomials
in x, the abscissa), and a; are coefficients to be tound,
whose values will determine the new airfoil contour.
The design problem consists of defining an object
function, /, whose vaiue is to be minimized (or, in
certain cases, maximized) subject -- possibly -- to a
number of constraints, Gj, on desired quantities. The
object function, 7, might be the drag of the airfoil, or the
lift, or the pitching moment. The design problem may try
to achieve a specified speed distribution, g, in which
case the object function could be described by

I=f(g-ar) a5 (24)

s

where q is the speed over the initial contour and the
integral is performed over this contour. Regardless of
how il is defined, I is assumed to be a function of the
design variables, a;.

The constraints may be of a geometric or an
aerodynamic nature and they are assumed to be
functions of the design variables, alsa. A constraint
might be the requirement that the enclosed volume of
the airfoil, V, be greater than or equal to a specitied
value Vmin, in which case, the constraint could be
expressed as

v
J=1-——<0
Gag;)=t Vins

It should be mentioned that trailing edge closure could
be satisfiea at all times by appropriate choices of the
polynomials f; in Eq. 23, independently of the value of
the a's. Other constraints to be imposed might include
minimum values ot thickness and curvature at various
stations along the airfoil, maximum pressure coefficient,
oft-design drag rise limits and minimym {or maximum)
values of force and moment coefficient at various flow
conditions.

The design process begins by perturbing
separately e sh of the N design variables, a;, in Eq. 23,
and analyzing the corresponding N different contours.
The tiow solutions will yiald N separate values for the
object function, Iy, and for each of the constraints,
Gin. These values together with the values for the
object and the constraint functions pertinent 1o the
original configuration (a;=0) are used to estimate values
of the derivatives of the functions with respect to the

. . G
design variables (ai’—)[?i] The critical step, which
; 4

follows and is to be performed by the selected
optimization procedure, is to determine, now, the
direction of steepest descent of 7 in the N-dimensional
space. in other words, the optimization procedure is to
assign new values to the a's such that the resulting
contour will have an object function closer to the
sought-after minimum. In the N-dimensional space each
of the constraints is represented by a surface and the
space on one side of this surface denotes the region
where the particuiar constraint is satisfied and the other
side the region where it is not. When all constraints are
considered there will be -- hopetully -- a region where
all the constraints are satisfied. Such a region is termed
the feasible region. Care has to be taken to begin the
design process in the feasible region and to remain
there. CONMIN, the optimization program developed
by Vanderplaats33 is used in the design procedure of
Ref. 18 and in others.

Having found the direction of steepest descent

from the estimates of the (gi (usually through one-
a;

sided differences) all the a's are modified along that
direction in_an amount proportional to some given
factor, A. Then, the flow at various points, typically
three, along this direction, corresponding to various
values of A, is computed and the object and constraint
functions are obtained at each point. Movement (i.e.,
variation of the aj's) along that direction is continued
until the object function starts to increase or until one or
more of the constraints should be violated. The former
case might occur because of non-linearities in the
dasign space. In either case the procedure for
determining a direction for minimizing / is repeated, by
sequentially and separately varying the aj's to obtain

new derivatives, (g—lj In the case where a constraint
a;

surface is crossed, a "feasible” direction, which keeps

the design variables within the feasible region, is

a
determined using the gradients 704 W no constraint
a,

surfaces are crossed the direction of steepest descent
is again used. The design process is terminated when
movement along the gradient (or the feasible) direction
leads to an increase in the object function.
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By appropriate choice of the shape functions in
Eq. 23 the procedure can be used to re-design only a
portion of an airfoil, as it is done in the example shown
in Fig. 13. Here, the upper surface of a 13 percent thick
NACA 6-series airfoil - the initial contour - is to be
reshaped to weaken the shock it exhibits at M,,=0.7,
a=0° The object function is defined by a minimum of
the (drag/as computed by an inviscid potential flow
program) which in this case is entirely due to shock
losses. The design was performed subject to a lower
limit on the value of the cross-sectional area (or volume)
of the airfoil (2 constraint). The design objective was
attained in this case. It is not certain, however, that this
might be the best possible design, even if subject to the
given constraint. An optimization procedure will drive
the design toward a local minimum of the object function
with no assurance that the local minimum will be an
absolute one. It is even possible that a different local
minimum is obtained when the design process is started
from different initial conditions.

Design by optimization is a costly process.
Typically, 10 to 15 cycles involving new estimates of
the gradient directions are needed to attain the
minimum. Each cycle in turn requires N analyses of the
flow field corresponding to the N separate variations of
the aj's, plus -- usually -- three analyses of the flow
along the newly-estimated direction. Thus, the total
number of flow analyses grows linearly with the number
of design variables. One would have to keep the
number of design variables low to keep program running
times within desirable limits. However, the number of
attainable designs will be limited by the number of
design variables. This number should be as large as
possible, regardless of the choice of shape functions, in
order to make available a wide design space. The need
to express the airfoil in terms of parameters (design
variables) appears to be the most serious limitation of
this technique.

5.2 Design via C I

An interesting technique recently proposed by
Jameson'9 obviates the need for a parametric
representation of the shape of the airfoil, and cuts down
substantially the number of flow solutions needed to
estimate the direction of the changes to the contour
needed to drive the object function toward the minimum.
The technique regards the design problem as a contro!
problem in which the airfoil profile is the control.

The process, again, begins with a definition of an
object, or cost function, /. This might be given as in Eq.
24, for example. In the procedure, the variation in the

cost function, 8/, is expressed as a product of the

variation in the shape, &z, and some appropriately
chosen function, g. The choice of g is dependent on
the particular equations assumed to govern the physics
and geometry of the flow. In the illustration of the
method given in Ref. 19, the two-dimensional flow about
the airfoil is analyzed in the circle plane and is
described by the potential equation, as in Section 2,
The metric h is descriptive of the airfoil shape in this
case and 4 can be substituted for §z. A variation in
the metric resuits in a variation in the potential, the
speed on the surface, etc. In turn, it will cause a
variation in the cost function, which, when defined as in
Eq. 24, can be expressed as

2z
81= j(q—q,) 8 dw
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Fig. 13 Inviscid drag minimization; M = 0.70, « = 0

Here, the integral over the circle boundary is
substituted for the integral over the airfoil surface.
;Jamesonw shows that this integral can be put in the
orm

2z
81=[g8f do (25)

[

where &f = §h/h and g is a gradient function
oP
g=>,-(a-ar)q (26)

P is obtained by solving a Poisson equation whose
forcing term is the product of the gradient of the potential
and the gradient of an auxiliary function y.

AP = pM2Vq) Vy 27)

The function y is calculated by solving an adjoint
equation

Ly=0 (28)

whose operator L is the same operator which would be
obtained for the potential if Eq. 10 were to be expanded
for @ and terms containing derivatives of the mapping
functions were to be dropped.

The key element in this design procedure is to
make modifications to the airfoil through changes in the
mapping function. These changes are given by

5f=T=-1g (29)

where A is a small positive number. If this expression is
substituted in £q. 25 one notes that the change in the
cost function resulting from the selected modifications to
the airfoil is necessarily negative. This means that the
new airfoil has a cost function which is smaller than that
corresponding to the previous contour. The airfoil
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modification process converges in a direction which
tends to minimize the cost, as desired.

The design cycle begins by first solving for the
flow field. This yields the potential, ¢, the velocity
components and the density. The adjoint Eq. 28 is then
solved for y, and P is subsequently obtained by
solving Eq. 27. The function g is computed from Eq. 25,
and the mapping function is corrected according to Eq.
29.

The constraints, which concern compatibility of
surface speed and the free stream and trailing edge
closure, and which were discussed earlier, can be
accommodated in this procedure by using on the right-

hand side of Eq. 29 a modified function g which is
obtained by subtracting from g terms that force the
constraints to be satisfied. As in the case of methods
using the modified mapping modulus approach, the
appearance of shock waves might cause numerical
problems, since in such a case (q-qr) would not be
differentiable and, consequently, 8h might develop
"spikes.” This can be avoided by a more sophisticated
choice of the cost function, a choice which in effect
entails using a smoothed distribution of (q-q7). The cost
function could be defined in a way that could account
for additional design constraints. These constraints
could call for specific lift values at several tlow
conditions, and a minimization of the drag. This could
be done by taking as the cost function the sum of the
cost functions separately defined for each design goal.
It should be noted that the second part of the gradient
function g in Eq. 26 reflects the variation of the cost
function and thus changes with the definition of the
latter.

The example in Fig. 14 illustrates the method in
the drag minimization mode. In this case the target
speed is taken to be the speed actually computed over

the RAE 2822 airfoil at M_ = 0.730, a = 2°. A target
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a) Initial profile, C|_= 1.0468, Cp = 0.0170

speed distribution has to be imposed in addition to the
zero drag requirement to prevent the procedure from
generating a flat plate at zero angle of attack. The
imposed distribution forces the litt of the designed profile
to be close to the prescribed one. After six cycles the
design is essentially frozen. The final airfoil has a drag
coefficient of 0.0016, as compared to a value of 0.0170
for the initial profile. In the drag minimization mode the
technique converges faster than it does in the "design
to pressure” mode, in which case it requires 15 to 25
cycles, typically.

The procedure can be formulated in a similar
fashion for the case where the flow is to be described by
a different set of governing equations. A set of adjoint
and auxiliary equations can be found by a similar
analysis. The basic idea, as before, is to express the
variation in the cost function as a product of a gradient

function, g, and the variation of the shape, &, as in Eq.
25.

This technique avoids the need for, and the
restrictions accompanying, a parametric representation
of the shape.In addition it offers considerable savings in
computing costs over the classical constrained
optimization approach. Each iteration cycle basically
involves the solution of the equivalent of two flow fields,
one for ¢ and one for y, since the adjoint equation is
"close” to the potential equation. The solution of the
auxiliary equations, and in particular Eq. 27, is
relatively fast. As a result, the cost per cycle is slightly
more than two flow field solutions as opposed to the
approximately (N+3) solutions required for the
optimization methods. The technique does suffer from
some of the same problems as the latter method,
however. In particular, if more than one local minimum
exist in the solution space, the method will not
necessarily converge to the absolute minimum, and
might, in fact, reach different minima from different initial
conditions. Also, as in the optimization methods, the
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b) Profile after six design cycles; C_=1.0368,
Cp =0.0016

Fig. 14 Re-design of RAE 2822 airfoll to reduce drag; M., = 0.730




success of the technique is dependant on the accuracy
of the numerical procedures. |f the gradients which
determine the direction in which the shape is 10 be
changed are not computed accurately enough,
convergence might be impaired or prevented.

6. CONCLUDING REMARKS

The preceding discussion of various
méthodologies available for wing design has been
restricted to inviscid, two-dimensionat flows for several
reasons. The most obvious is that the presentation of a
method is most easily done under these conditions.
Another reason comes from the fact that design methods
- just as analysis methods - are more fully developed for
such flow conditions. Viscous effects could be
incorporated in the above-mentioned approaches in a
straight-forward manner. For exampls, indirect methods
and optimization procedures, which use direct solvers
as "black boxes® could use Navier-Stokes codes
instead of potential or Euler codes. A purely inverse
code, such as the one described in Section 2, could
similarly be formulated using the Navier-Stokes
equations instead of the potential flow equation. A
simpler approach in that inverse method would be to
compute a boundary layer on the contour using the
proscribed pressure distributions as a boundary
condition. As shown by Lighthill34 the displacement
thickness of the boundary layer can be represented by
a transpiration velocity normal to the surface. This
coukl be added to the normal velocity computed by the
solution to the Dirichlet problem to give a total normal
velocity which is to be used to make the contour
modifications.

Extension of the various methodologies to three
dimensions has been difficult and has met with varying
degrees of success due to the obvious difficulties
introduced by the third dimension. All 3-D methods
have concentrated on re-designing portions of a wing.
Basically they used the 2-D approaches to modify
cross-sections at one or more stations along the span of
a large aspect ratio wing. Henne35 formulated a method
which can be categorized as an indirect approach
rather than an inverse one because it does not design
strictly to a pressure distribution containing the various
parameters needed to satisfy constraints, but to a
distribution that is periodically re-adjusted by the user to
yield a satisfactory surface. Henne and Hicks36 used
an optimization procedure in 3-D analogous to that
formulated by Hicks for 2-D. A procedure that
incorporates ideas from the inverse approach as well as
the wavy-wall method has been proposed by Brandsma
and Fray.37

As discussed above each of the various
approaches to wing design has its merits and enrtails
particular disadvantages. In practice, it is not likely that
a single method (i.e., computer program) can be
formulated to satisfy the design needs of even a
particular organization. A pure inverse code with
aenough constraints to yield a structurally-satisfactory
shape can be set up, but the result is a point design.
This may not be always satisfactory. A successful wing
design will most likely rely on a procedure, that utilizes
geveral techniques, rather than a single approach. The
procedure will be iterative and will contain a man in the
loop. The user will interact with and will be an essential
element of the procedure. He will decide at any one
step of the iteration if the design exercise is headed
foward a satisfactory result or if the design targets need
to be altered. The procedure provides the steps to be
followed in order to achieve the prescribed targets and
guidelines for changing these targets. 1 will also reflect

5-15

the design philosophy of the designer(s). The various
design techniques described above provide the tools
with which the procedure will perform its task.
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L _SUMMARY

A new approach to the inverse design of two-
dimensional acrodynamic shapes has been developed. This
formulation is based on a Stream-Function-Coordinate
(SFC) concept for steady, irrotational, compressible,
inviscid, planar flows. It differs from the classical stream
function formulation in that it treats the y-coordinate of
each point on a streamline as a function of the x-coordinate
and the stream function ¢, that is, Y = Y(x,¢). This new
formulation is especially suitable for the computation of
stream line shapes, and therefore, for determination of
aerodynamic shapes subject to specified surface pressure
distributions,  An additional advantage of this new
formulation is that it requires the generation of only a one-
dimensional grid in the x-direction. The grid in the y-
direction is computed as a part of the solution since y-
coordinates of the streamlines are treated as the unknowns
in the SFC formulation. In addition, the SFC method is
equally suitable for the analysis of the flowfields around
given shapes. A computer code has been developed on the
basis of SFC formulation. It is capable of performing
flowfield analysis and inverse design of airfoil cascade
shapes by changing a single input parameter.

2_INTRODUCTION

In a recently published article, Huang and
Dutikravich {1} gave detailed derivations of the new Stream
Function Coordinate (SFC) concept for inviscid, steady,
two-dimensional and three-dimensional compressible flows.
The SFC concept reflects the main objective of the inverse
design where the ultimate goal is to determine the shape,
that is, the coordinates of a surface contour which is
compatible with the desired surface pressure distribution.
Thus, it is logical to solve for the coordinates directly.
Recently, Chen and Zhang {2] have published a paper on
inverse design of muiltiple cascade shapes. They used a
special form of the SFC formulation suitable for
axisymmetric surfaces of turbomachinery and they have
successfully computed shapes of simple cascades as well as
shapes of multiple cascades with splitter blades inside the
flow passages. Oven and Pearson [3] have developed a
complete threedimensional formulation based on a general
concept by solving directly for the coordinates. They have
applied their formulation to different duct flows and to free
jet flows [4).

3 ANALYSIS

Instead of using the standard formulation where the
stream function ¢ is a function of the x and y coordinates

2,2 2
{1 - K"y + 2
v ) .xx K ’x.y .xy +

2 2
(1 - K » =0 €1
L vy

Huang and Dulikravich [1] performed a transformation

= ¥x,y) «4 ¥ = Y(x,¥) (2)

which transforms (1) into the SFC equation

2 2 2
(Y' - K) Yxx -2 va + (1 + Yo } Y.. =0

.Yx'
where the Y-coordinate of each streamline is treated as an
unknown and x and y are known. Here, the compressibility
coefficient K2 is defined as
. 1

N 2 2

&) )

where » is the local density and a is the local speed of
sound. Details of the derivation and evaluation of K* are
given in Appendix A. The SFC formulation bas significant
advantages over the classical stream function formulation
where ¥ = ¢(xy). For two-dimensional problems SFC
requires only a one-dimensional grid in the x-direction. The
other family of grid lines is determined as a part of the
solution where Y are the unknown coordinates of the
streamlines ¥ = constant.  Because of the SFC
formualation, true upwind differencing could be achieved
without the complexity of determining the direction of the
local velocity vectors since one family of the grid lines
corresponds to the streamlines. This simplifies the
extension of the code to transonic flows [2]. Huang and
Dulikravich (1] clearly pointed out that the SFC formulation
where Y = Y(x,¢) is singular at all locations where the x-
component of the velocity vector becomes zero. These
singularities are nonphysical since they are created by the
transformation and cannot be eliminated simply by using
grid clustering within the regions of singular points {1}.

(4)

Thus, strictly speaking, the SFC formulation is suitable for
the flow ficld analysis and shape inverse design of objects
having cusped leading and trailing edge points where there
are no stagnation points. In practice, leading and trailing
edges are often [S] modified when using the SFC
formulation by adding artificial cusps to them.

When the SFC method is used in the forward
(analysis) mode, solid portions of the upper and lower
airfoil boundary from the leading to the trailing edge
remain fixed since they represent the given airfoil surface.
Since these Y coordinates are prescribed, the SFC equation
is not solved on the solid boundaries in the analysis mode.
In the inverse (design) mode, the input geometry of the
airfoil surface is used only as an initial guess. The
evolution of the upper and lower boundary shape is driven
by the specified surface Mach number, critical Mach
number, or coefficient of pressure distribution which
uniquely determines the local value of the compressibility
coefficient K on the surface (Appendix A). Second order
central difference expressions with variable grid size were
used throughout the domain (Appendix B). Rather than
transforming the SFC equation to a uniform grid, all
computations were performed in the actual physical (¥.x)
plane. The resulting algebraic finite difference equations
were solved using artifically time-dependent SLOR in
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conjunction with the Generalized Non-Linear Minimal
Residual Method (GNLMR) ([6] which significantly
accelerates the convergence rate. Details of the GNLMR
methodology as applied to SFC equation are provided in
the Appendix C and Appendix D.

In both analysis and the inverse design case, the
periodic boundaries are free to move vertically since they
represent stagnation streamlines and their shape is not
known in advance. They are subject only to the periodicity
constraint that the gap between the upper and the lower
stagnation streamline remains constant (Appendix E). In
the design mode, the leading edge point of the airfoil must
remain fixed in order to keep the entire cascade from
moving within the domain. Due to the similarity of the
boundary conditions for the two modes of operation,
switching between the analysis mode and the design mode
is accomplished by means of a single input parameter.

4_RESULTS

Based on the formulations presented in this paper,
.+ computer code was developed on VAX 3550 computer.

The code was exercised in both forward (analysis) and
inverse mode on periodic channel flows. Each domain was
discretized with a fixed clustered grid having 20 grid cells
on the bottom and on the top surface, 20 cells upstream,
and 20 cells downstream of the object, with 20 streamtubes
across the channel. First objective was to evaluate the error
resulting from the SFC transformation singularity at
stagnation points. Steady, incompressible, irrotational,
inviscid flow through a cascade of dipoles has a known
analytic solution [7] and was chosen to be the first test
geometry. When using the SFC code in an analysis mode
the initial streamlines (Fig. 1) converged within 50 iterations
to their correct shapes (Fig. 2). The resulting pressure field
(Fig. 3) compares well with the analytical solution (Fig. 4).
The computed surface C, distribution indicates very narrow
regions of locally high error (Fig. 5) due to the the
singularity arising from the SFC transformation. Since this
is an extreme example of a blunt leading edge, it can be
concluded that the singularities generate only very local
errors. Consequently, by using grid clustering, no need is
perceived for the use of artificial extensions (cusps) at the
leading and trailing edges. When the SFC code was
exercised in its inverse design mode, free stream coefficient
of pressure distribution was specified along the top and
bottom surface of the circle. Evolution history of the entire
lower boundary is depicted in Fig. 6. The corresponding
convergence history (Fig. 7) indicates that only 200
iterations were needed to achieve the correct shape (Fig. 8)
of the channel. When running a high subsonic test case
(M. = 0.62) with a non-staggered cascade of 12% biconvex
airfoils having sharp edges (Fig. 9), practically no error at
the stagnation points could be detected (Fig. 10 and Fig.
11). By specifying the wall C_-distribution to be the same
as that of the freestream, a straight channel was obtained
(Fig. 12) very rapidly (Fig. 13). The iterative process can
be further enhanced by using our GNLMR method (Fig. 14)
explained in the Appendix C.

5_CONCLUSIONS

The SFC formulation is straightforward to perform
analytically and simple to implement computationally. It is
very fast and could be formulated for multidimensional and
multiply ¢ cted dc It is equally applicable to the
analysis of the flow around the existing configurations and
to the inverse shape design.
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Coefficient K
Notice that

T (2T (A1)
Tt Geey) T,
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where T is the absolute temperature, T, is stagnation
temperature and T. is the critical temperature. In terms of
local Mach numbers this becomes
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Since the compressibility coefficient K is defined as
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it follows that A.7 divided with (3-1) becomes
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Since Y, and Y, will be changing during the iterative
process, this means that
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Thus, at every point in the flow field for the given
instantaneous values of Y, and Y, we can iteratively
determine the corresponding instantaneous local values of
the compressibility coefficient K. Second order (modified)
Newton'’s iteration yields

1-2 leZ
I UL | (A.16)
K 2
Y
L
-4 2
2 — 1 + Y
d—;-zl"3x"‘—(» Y A1)
dK Y + 1 ¥ 2
v
so that

2 2
(o) () _dF  ar 2 4%
K K P @ - dle (A.16)

where the superscript n is the iteration counter.

An approximate relation between the mass flow rate and
the jocal Mach number is given by Ives (8] and can be used
instead of the iterative procedure.

APPENDIX B: Finite Diff Formul

Second order accurate central differencing for x
derivatives was used throughout the domain.
The central differences for the derivatives in y direction
have an entirely analogous form. The difference
expressions were substituted into the SFC equation (3).

Iterative Solution of the SFC Equation

Let the non-linear operator governing SFC formulation be
designated as N, that is,

2 2 2
N = (Y. - K%) Yxx - 2ny + (1 + Yx ) Y.. =0

(c.1)

'Yx'

A one step iterative algorithm for solving (C.1) can be
defined by calculating the new value of the Y coordinate of
a streamline from a simple relaxation algorithm

Y(nl) . Y(t) - °(t) (C.2)

where superscript t desi{nates the iteration level, w is the
relaxation factor and §'*’ is the correction at the t-th
iteration level based on some basic iteration method.

An M-step method can be defined for advancing the
iterative algorithm from iteration level t to iteration level
t+1 with M steps combined. That is,

(D ’z' o™

m=]

where s are the corrections evaluated at intermediate
steps. They are obtained by successively applying M simple
relaxation (w = 1) iterations to the solution of C.1.

The optimal values of w'*’ can be found [6] by
solving a matrix problem
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where the values for 3(K?*)/aY, and a(Kz)/an are given in

Appendix D.
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Cocfficient K

When evaluating derivatives aN/3Y, and aN/3Y, it
is important to notice that the compressibliity coefficient K
is a function of Y, and Y, This can be shown by
combining A.13, A.11 and A.7. The result is that

.2 (0. 1)

Taking a partial derivative of both sides of D.1 with respect
10 Y, gives
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Similarly, partial derivative of D.1 with respect to Y, gives
(after making an additional use of D.1) the following
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The periodic boundary conditions were enforced
upstream and downstream of the airfoil as follows

Y(ijmax+1) = Y(ijmin+1) + GAP (E.1)
Y(ijmin-1) = Y(ijmax-1) - GAP (E.2)
YMID = (Y(ijmin) + (Y(ijmax))/2  (E3)
Y(ijmin) = YMID + GAP/2 (E4)
Y(ijmax) = YMID - GAP/2 (ES5)

where GAP is the y-distance between the leading edges of
two airfoils.

The values of y at the overlapping layers of points
(jmin-1) and (jmax+ 1) were set according to the similar
expressions

PSI(i,jmin-1) = PSI(ijmax-1) - PSITOT (E6)
PSI(ijmax+1) = PSI(ijmin+1) + PSITOT (E.7)

where
PSITOT = PSI(i jmax) - PSI(ijmin)
= (z.1,,) GAP/CHORD (ES8)

Here, M., is the x-component of the critical Mach number
and CHORD is the chord length of the airfoil.

Inlet and exit boundary conditions were enforced by
specifying the vertical variation of ¥ between the lower and
the upper stagnation streamline and enforcing the inlet flow
angle e, and the exit flow angle a; in design mode. In the
analysis mode, the Kutta-Zhukovskii condition was enforced
at the trailing edge instead of the angle a, at the exit. Solid
wall tangency boundary conditions were enforced by
evaluating Y at the wall points via one-sided second order
differencing and then deducing the appropriate values at the
imaginary points (jmin-! and jmax+1) from the second
order central difference formula for Y at the wall.

Fig. ! Initial Y-x grid consisting of (20+20+20)
x 20 cells for the flow through a cascade
of dipoles
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Fig., 2 Final streamline shapes for the flow
through a cascade of dipoles
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Fig. 3 Computed isobars for the M,= 0,05 flow
through a cascade of dipoles
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Fig, 4 Anmalytic values for isobars for an
incompressible flow through a cascade of

dipoles
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Superimposed analytic and computed surface
Cp values for the Mg= 0.0 and Mg= 0.05

flow through a cascade of dipoles
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Fig. 6 Intermediate shapes of the bottom wall
during the inverse design from a cascade

of dipores to a straight channel
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Fig. 7 Convergence history for the inverse design

from a cascade of dipoles to a straight
channel

Fig, 8 Streamlines for the inversely designed
straight channel when starting from a

cascade of dipoles

Fig. 9 Streamlines for the converged analysis
of the cascade of 12% thick biconvex

airfoils at My 0.62.
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Fig. 10 Computed isobars for the analysis of 4.0
a flow through the cascade of 12% thick '
biconvex airfoils at Mgg 0.62,
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Fig. 13 Convergence history for the inverse design
from a cascade of 12% biconvex airfoils
to a straight channel at Mg~ 0.62.

0. 00}
—e . CIGHT ACCELERATION FACTORS USED
Py ¢ SEVEN ACCILERATION FACTONS USED
g . SIX ACCELERATION FACTORS USED
—e o FIVE ACTILIRATION FACTORS USED
—— . FOUR ACCILERATION FACTORS USED
— —1.50~ W TMREE ACCELERATION FACTORS USED
2 —p : THO ACCELEIRATION FACTORS USED
x ————— 4 OME ACCELERATION FACTOR usED
E : NO ACCELERATION {OMEGA=t.O0)
3
s -3.00p
fig. 11 Computed surface ¢ distribution for 2
1
the analysis of flow through the cascade
of 12% biconvex airfoils at Mg 0.62. 4. 501
~6. 00
~7.80(~
S == L 1 1 1 1 1
0.00 75.00 150,00 225.00 300.00 375.C
CPU TIME(SEC)
Fig. 12 Intermediate shapes of the bottom wall Fig. 14 Typical convergence histories for SFC
during the inverse design from a cascade compressible flow with SLOR and DMR method

of 12% biconvex airfoils to a straight
channel at Mgr 0.62.




SUBSONIC AND TRANSONIC CASCADE DESIGN

Olivier LEONARD

von Karman Institute
for Fluid Dynamics
72, chaussée de Waterloo
1640 Rhode-Saint-Genése

Belgium

ABSTRACT bscri

subscripts
Two iterative methods for blade design, using direct flow n normal component
solvers and a blade geometry modification algonthm, are t tangential component
presented. Both procedures start with the analysis of a t tangential component, inside
given cascade geometry using an existing flow solver. The to tangential component, outside
difference between the calculated velocity distribution and 1 cascade inlet
the required one is used to calculate a flow distorsion. In 2 cascade outlet
the first method, this flow distorsion is produced by sin- .
gularities while in the second method the distorsion is de- superscript
rived by imposing the required velocity distribution as a P equation number
boundary condition. This flow distorsion is used by the new value at the time n+1
modification algorithm a nd results in a new blade shape old value at the time n
for wich the calculated velocity is closer to the desired one. req required value

* intermediate value

Examples for both subsonic and transonic flows are pre-
sented and show a rapid convergence to the geometry re-
quired for the desired velocity distribution. The main ad-
vantage of the proposed method is that existing analysis
codes can be used, for the design and for the off-design
analysis.

Some restrictions which have to be imposed on the required
velocity distribution are also discussed.

LIST OF SYMBOLS

speed of sound

chord length

coupling factor

left eigenvector
isentropic Mach number
normal coordinate
normal vector components
number of vortices

total pressure

static pressure
curvilinear coordinate
time coordinate

total temperature
vector of unknowns
velocity components
velocity

geometry coordinates

3
-

SEQNTeEYY A TN
«

A
-

greek symbols

8 slope of the blade contour

B8 inlet flow angle (with resp. 7Z)
B outlet flow angle (with resp. 3%)
¥ vortex strength

r circulation

A cigenvalue

p density

4 cascade solidity

[
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vortex coordinates

1. A CLASSIFICATION OF INVERSE METH-
OoDs.

In a Direct Method, the computing task consists in de-
termining the aerodynamic performances of a given blade
section shape. A designer specifies an arbitrary cascade
geometry which is then analysed with a computer code
to define its performances. Based on the results, the de-
signer modifies the blade shape in accordance with his ex-
perience. This is essentially equivalent to the wind tunnel
design method of "trial and error”, but with a computer
instead of the wind tunnel.

An alternative way to achieve an aerodynamic design is
the Inverse Method, where the geometry of the blade
results from the calculation and is supposed to give the re-
quired performances. Inverse methods car be categoriged
according to various criteria, for example the flow regime
(subsonic, transonic or supersonic) for which the methods
are valid, the way the problem is solved (analytical or nu-
merical), the modification method, the assumptions made.

Two main families of inverse methods can be distinguished:
the methods in which the problem can be solved analyti-
cally, resulting directly in the geonetry of the blade, and
these for which a numerical procedure is necessary.

Methods of the first class have been widely developed be-
fore computer facilities were available, in order to find a
solution to the inverse problem that could be calculated
manually. They therefore need severe assumptions to for-
mulate the equations in a simple enough form to allow
an analytical solution. Although they are very restrictive,
they permit to develop a complete theory for the inverse
problem, including the constraints that the required veloc-
ity distribution has to verify in order to obtain a physical
solution (Lighthill, 1945, Woods, 1955).
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Analytical methods make use of the conformal mapping
of the cascade plane into a circle (or a row of circles) and
solve the incompressible potential flow equations (Lighthill,
1945, Schwering, 1970, Murugesan and Railly, 1969, Ubaldi,
1984). With the need of higher performances, resulting in
transonic flow regimes, their limits have been exceeded and
other less restrictive methods have been sought, resulting
in the second family.

The second class of methods has been developed in parallel
with the classical direct solvers which calculate the flow for
a given geometry. A numerical scheme is used to solve the
non linear equations. Some of these methods make use of
a tranformation to uncouple the calculation domain from
the initially unknown blade geometry. No first guess of
the blade geometry is necessary if the potential equation
is solved; the potential stream function plane may be used
for the calculation (Stanitz, 1953, Schmidt, 1980). Another
possibility is to solve the potential equation in the hodo-
graph plane which also allows to lineraize the equations
(Bauer, Garabedian and Korn, 1972, 1795 and 1977, Sanz,
1983, 1984, 1988).

If non potential flow fields are considered, the Euler equa-
tions must be integrated. Since the flow is computed in
the physical plane, a first guess of the geometry is neces-
sary to start the calculation. This initial geometry may
be modified during the flow calculation, adapting it step
by step to achieve the imposed pressure or velocity dis-
tribution (Meauze, 1980 and 1982, Giles and Drela, 1985
and 1987, Zannetti, 1984 and 1988) and at the same time
verifying the slip condition on the blade wall.

At the other hand, the initial geometry can be modified
after convergence of the flow calculation which has been
petformed by the solver. The blade is then modified to sat-
isfy the boundary condition which has not been respected
during the flow calculation. This procedure results in the
so-called Iterative Inverse Methods.

The blade modification can be performed using a physical
model which relates the displacement of each point of the
geometry to the difference between the current pressure dis-
tribution and the required one, or by means of a mathemat-
ical algorithm minimizing an object function defined by the
user, and subject to some constrains. Although these lat-
ter methods should lead to a solution, even if the required
pressure or velocity distribution does not correspond to a
physical geometry, they still have the disadvantage to be
very expensive in terms of CPU time (Vanderplaats, 1979
and 1984, Hicks, 1981).

This paper deals with iterative inverse methods using a
physical algorithm to modify the blades. The main feature
of these iterative inverse methods is the modification of the
blade geometry based on a velocity field which verifies the
prescribed velocity or pressure distribution but does not
respect any more the slip condition on the blade wall. By
resetting the blade wall parallel to the flow or by using the
concept of transpiration, the blade is modified and a new
direct calculation is performed by the flow solver. This
ptocedure is repeated until the difference between required
and calculated velocity is small enough (see the flow chart
on figure 1).

These methods may differ by the way the velocity field
around the blades is derived from the prescribed distribu-
tion, and two different approaches will be discussed here.

Since the main advantage of these methods is that they
make use of direct solvers, whose accuracy and reliability

have been proven many times, the first idea is therefore
to use these solvers just as a black box. The boundary
conditions implemented in these direct solvers provide a
velocity field tangent to the blade wall. A supplementary
algorithm is required to provide a correction of the veloc-
ity field from the difference between the imposed and the
calculated velocity distributions.

Another idea is to modify the boundary conditions inside
the solver in order to impose directly the prescribed pres-
sure distribution. The converged velocity field resulting
from the iterative calculation will therefore include the dis-
tortion with respect to the tangential situation, and the
blade geometry can be directly modified.

2. MODIFICATION OF THE GEOMETRY.

As said previously, the choice has been made to imple-
ment the concept of iterative inverse methods, starting
from classical direct solvers Any modification of the pres-
sure distribution on the blade wall will induce a distorsion
of the complete flow field and therefore a displacement of
the streamlines.

The geometry modification algorithm that is used is there-
fore based on the calculation of the new streamlines po-
sition, starting from the initial blade wall which is not a
streamline any more. This calculation makes use of the
velocity component normal to the initial blade, produced
from the difference between the initial and the required
pressure distributions. The calculation of the normal ve-
locity component will be discussed in details in the next
chapter.

As the new streamlines can intersect with the old blade
shape, wherein the flow quantities are not defined, the po-
sition of the new streamlines must be calculated from the
old ones, namely from the old blade wall.

In the transpiration model, the old blade wall is consid-
ered as porous with a normal velocity going trough it. The
mass balance is applied in the cell defined by the points
(1), (i — 1)*, (i)™ and (i — 1)™¥ as shown in fig. 2.

This results in:
d(pVin) = pVods (1)

or in discretized form:

A"PV«|-—1 + Qs

Valo + pVali . -
el £PVRls _ gy, (2)

The ingoing velocity V,l._, i1s taken as the mean value of
the tangential velocity along the normal direction at the
point 1 — 1, namely

Ve|.‘4 = Bl +2V'"°)“'

The outgoing velocity V,I. is calculated in the same way.

(3)

Expression (2) allows the calculation of the shift An, if
An,_; is known. The modification starts at the stagnation
point, where the value An, is set to zero. The modifica-
tion of the pressure side and the suction side are calculated
separately and it is hoped that both contours do not cross,
which would result in an unphysical blade shape. This
depends on the accuracy of the numerical integration pro-
cedure and on the accuracy of the normal velocities calcu-
lation.




The streamline model calculates the position of the new
blade wall by setting this wall parallel to the local velocity
V = V. + 7, as illustrated in fig. 3.

This results in:

- - ‘/n
an(s) = [ j—:da =/., e (1)

The discretized form of (4) is:
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The closer the new blade contour follows a real streamline,
the smaller are the chances that pressure and suction sides
cross each other.

Both models have given good results; they reduce to the
same expression for incompressible flow fields. After the
modification, a new discretization of the flow field must be
done for the new blade geometry, and another flow calcu-
lation is performed.

The modification algorithms that are proposed imply that
the velocity at the blade wall has a component normal to
the blade wall due to the fact that the required pressure
or velocity does not correspond to the current geometry.
However, any direct solver (potential or Euler) provides
a velocity field which is tangent to the actual blade wall,
due to the slip condition that is imposed as the boundary
condition on the blade wall, and which does not necessarily
satisfy the required pressure distribution.

Moreover, the well-posed problem theory prohibits that
both boundary conditions (slip condition and required pres-
sure) could be imposed together on the blade wall. Two
possibilities are then offered:

o either the direct solver is kept with the classical slip
condition, and a supplementary algorithm is imple-
mented in order to calculate the distorsion of the flow
field due to the required pressure; the method pre-

sented here makes use of vortices to modify the flow
field;

o or the boundary condition imposed at the blade wall is
modified inside the flow solver (that cannot be called
direct solver any more!) and the resulting flow field
will respect the required pressure but not the slip con-
dition; the walls are supposed to be permeable.

The first option has the advantage that existing direct
solvers can be used as black boxes, but the second option
may be theoretically more correct, as will be shown later.
Both ideas have been developped and will be discussed in
the next chapters.

3. NORMAL VELOCITIES CALCULATED BY
VORTICES.

The velocity field resulting from the direct solver repects
the slip condition but does not agree with the required
velocity. The basic idea is to distribute singularities, such
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as vortices, on the blade contour, in order to increase or
to decrease locally the velocity on the blade and to set it
equal to the required value (Murugesan and Railly, 1969,
Van den Braembussche et al., 1989).

The first effect of a vortex distribution is to create a differ-
ence between the tangential velocity at the outer and the
inner pari of the contour:

Y= Ve~ Vi (6)

this difference being equal to the local vortex strength.
Moreover, the flow field induced by the vortices must be
defined in such a way that zero tangential velocity inside
the contour is obtained as a kinematic condition. Therefore
we have:

7=V (7
If we want to increase or decrease locally an already exist-
ing velocity at the outer side of the blade, a vortex can be
placed on the blade contour with its strength defined as:

1= AV, (8)

or
v =V Y ®

A second effect of this vortex distribution is the creation of
a velocity normal to the blade contour, which for a cascade
of blades at a pitch ¢ is given by:

1 sinh X cos 8 + sinY sin 8
v, = zzf{ ads  (10)

cosh X —cos ¥’
with:
., 27
XN=—lz-¢)
2
Y=Ty-) (1)

where £, 7 are the vortex coordinates and z, y is the location
where the value of V,, is calculated.

The discretization of (10) for N intervals results in:

VR Q. A .
Vali) = 52 3 Hi, 5 (5)8s(5) (12)
i=1
with . sinh X cos + sin Vein
H(i,j) = cosh X —cosY (13)

Calculation of the normal velocities V,, at the N positions
where the vortices are located results in the following linear
system of N equations:

vy [0 HOGMY oy
Val2) | _| HED oHEN) || Y@
V(M) \nmy_f 0 7(N)
(14)
with
¥'(7) = 1(5)As(5) (15)

Unfortunately the matrix H has a zero diagonal since a
vortex has no contribution to the local normal velocity.
This system of equations is ill-conditioned and can give rise
to a wavy velocity distribution since two adjacent vortices
(i — 1) and (3 + 1) of the same sign and equal strength
induce zero normal velocity at the point i.

P A—— ]
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Since a vortex cannot create flow, the total mass flux in-
duced by each vortex across the closed profile must be equal
to zero. Therefore we have:

fV,.da =0 for each vortex (16)

N
2_: H(i, j}7(j)As(i) = 0 =L,  (an

In order to correct the numerical error introduced by the
discretization, a normal velocity is calculated by {17) for
each vortex and added, at the point where the vortex is
located, to the one calculated using (12). This correction
reduces the chances that the new suction and pressure sides
intersect or diverge from each other.

As this method is based on the superposition principle, it
is therefore correct only for incompressible potential flows;
however, also for a compressible flow, it gives a blade cor-
rection which is in the right direction, and which anyway
vanishes as the velocity distribution converges to the re-
quired one. Another weakness of the method is that the
correction calculated using the vortices is incorrect if a su-
personic pocket is present in the flow field, since a vortex
from this zone induces a normal velocity upstream, which
is not in agrement with the hyperbolic character of the
flow. However, experience has shown that it can also be
efficiently used for transonic flows.

The method has the great advantage of simplicity, allowing
the use of accurate and efficient direct solvers which have
been developed in the past and are well documented in the
literature. Another advantage of the use of a direct solver
is that, once the blade geometry has been determined, the
off-design analysis can be carried out using the same flow
solver and input file.

This method has been used together with two different
direct solvers, an incompressible potential code (Van den
Braembussche, 1984) and a Time Marching procedure solv-
ing the Euler equations (Arts, 1982). Two examples will
illustrate each code.

The first example demonstrates the procedure in the de-
sign of a compressor blade for incompressible flow with the
required vzlocity distribution shown in figure 4a. The cal-
culations use as a first guess a NACA-65(18A10)10 blade
at zero stagger (fig. 4b). The ratio of local velocity over
inlet velocity obtained from a first analysis at 8 = 30 deg.
and a pitch-chord ratio of 0.9, is shown in figure 4c.

For the same inlet air angle and pitch-chord ratio a new
blade shape, shown in figure 4d, is obtained after 40 mod-
ifications. With a blade definition of 40 points, the CPU
time on a VAX 780 for this example is 55 sec.. This new ge-
ometry is very different from the first guess (fig. 4b). The
stagger angle has increased from 0 to 4.6 deg. and the new
blade is much thicker. This large trailing edge thickness re-
sults from the required velocity distribution and accounts
for both the geometrical blade thickness and the boundary
layer displacement thickness on the pressure and suction
side

The potential flow calculation method does not account
for wakes and the blade contour is therefore closed by
rounding-off at the trailing edge. The blade velocity dis-
tribution agrees very well with the required one as shown
in figure de. Discrepencies are observed only at the last
two points on the pressure and suction side, at the trailing
edge round-off. The local overshoot of the velocity is due to

the flow acceleration around the thick circular trailing edge
and cannot be avoided with potential flow calculations.

The second example demonstrates the procedure in the re-
design of a turbine rotor hub section. The velocity dis-
tribution on the initial blade is compared to the desired
one in figure 5a. The last one has a considerably larger
loading than the initial blade and the pitch-chord ratio has
been increased proportionally to obtain the same outlet
flow conditions.

The new blade shape, obtained after only 10 modifications,
15 compared to the initial shape on figure 5b. Also shown
are the initial and new cascade parameters. Figure 5c
shows the comparison between the required velocity dis-
tribution and that corresponding to the final blade shape.
Discrepencies are observed at the leading edge pressure side
where the calculated velocity is higher than the required
one, because the mean value of the required pressure and
suction side velocity at the ieading edge is lower than the
inlet velocity. This would imply a negative blade thickness
(negative blockage). The discrepency does not disappear
when the number of modifications is increased.

A code solving the Euler equations has been developped
in order to serve as a basis of the different steps of the
development of the inverse method. The code is based on
a Time Marching procedure, a finite volume approach, and
on a scheme investigated by Arts (1982).

The numerical domain is represented on fig. 6. It is made
up of several pseudo streamlines and pitchwise lines. The
control surfaces used in the finite volume approach are bi-
trapezoidal.

The time derivative is discretized by means of a corrected
viscosity schume:

new

At
e = T(transport terms)

" %[UMW SUS Lped e gy

-1 gl 41y [FER!

a e - e "
— {U.»I.J UL U, U

The terms superscripted by an asterisk are updated every
20 iterations; a is a numerical viscosity coefficient which is
function of the density gradient:

a=VC [l _ Prag t P Pyt P 4Rl
4

(19)

where VC is an empirical coefficient {typically 0.98)

Using this flow solver, the iterative method was first demon-
strated with a required velocity distribution calculated from
a classical NACA-65 (12A,1e)10 blade. The first guess
was a NACA-65 (12A,0)10 blade. The geometries of both
blades are compared in figure 7a. The velocity distribution
on the initial blade and the required velocity distribution
are shown on fig. 7b.

The flow conditions are: p? = 1.33 bar, T? = 3415 K, 3; =
45 deg, p; = 1.173 bar. The cascade geometry is defined
by a stagger angle of 31 deg and a solidity of 1 for both
blades.

Figures 7c and 7d show the convergence of the calculated
velocity Good agreement with the prescribed veloaty dis-
tribution is evident in fig. 7d, except for the leading edge



and the trailing edge regions. This can be due to the fact
that the discretization with a H-type grid is not suited to
deseribe accurately the fiow field in these regions. The com-
parison between the final blade geometry and the NACA-
65 (12A318)10 is shown in figure 7e. The calculations are
made with 71 stations in the streamwise direction and 21
points in the pitchwise direction. The CPU time on a VAX
780 was about 5 hours for 12 modifications.

The fourth example demonstrates the procedure in the de-
sign of a turbine blade. The starting geometry is that of
the workshop VKI-LS 82-05 (Arts, 1982). The flow condi-
tions are: p) = 1 bar, T? = 278 K, B; = 0 deg, M2 = 1.2.
The cascade geometry is defined by a stagger angle of -60
deg and a solidity of 1.25.

Problems have been encountered modifying the suction and
pressure surfaces at the same time, since there is a strong
interaction between both surfaces in the throat region. The
expansion waves starting from the pressure side trailing
edge interact with the suction side.

To work around this problem, only the pressure side ve-
locity was impaosed during the first modifications. This
reduces the expansion in the trailing edge region. Figures
Ba shows the starting velocity distribution and the required
velocity distribution, while figure 8b shows the velocity dis-
tribution after 2 modifications.

Once the required velocity distribution has been obtained
on the pressure side, a similar procedure has been applied
on the suction side, in which we impose simultaneocusly
the suction and pressure side velocity distributions. Six
modifications were needed to obtain the required suction
side velocity distribution. Figure 8c shows the final velocity
distribution while the comparison between the initial and
the final blade geometry can be seen in figure 8d.

Using the same Time Marching solver, an off-design anal-
ysis has been made for this final blade. Results are shown
on figures 9a for M; = 1 and 9b for M; = 0.8. One can
see that a blade which has been optimized for one out-
let Mach number does not necessarily give a good velocity
distribution at other outlet Mach numbers.

4. PERMEABLE WALL.

The problems encountered using the vortices for transonic
blade designs have led to the idea of developing a theorit-
ically more correct modification method, which would ac-
count for compressibility and respect the hyperbolic char-
acter of the unsteady Euler equations. This can be achieved
by imposing directly the required pressure distribution on
the blade wall, intide the Time Marching calculation.

Imposing simultaneously the pressure and the slip condi-
tion on a wall jeads to a ill-posed problem in a mathemati-
cal point of view since the problem is over-determined; this
means that the inverse problem has no sofution in general.
If the required performances correspond to a physical ge-
ometry, one of the two boundary conditions drops out and
the design is possible.

Since it was cb to impose the requi P as the
boundary condition on the wall, the velocity is allowed to
have a component normal to the blade wall which therefore
has to be considered as per ble. This normal velocity
component will be used for the geometry modification after
convergence of the Time Marching calculation.
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4.1. Characteristic Surfaces and Wave-like Solu-
tions.

Boundary conditions connect the calculation domain with
the surrounding flow field and should express correctly the
propagation of the information which is discribed by the
equations. Especially the boundary conditions and the cal-
culation of the unknowns at the blade wall have to be dis-
cussed in more detail, since the information propagating
along the streamlines doesn’t propagate any more along
the blade wall. The way the information is propagated is
discussed here for first order systems of equations.

A system of two first-order equations can be written in
the form:

u u  Ov
118— + 2b'8—y + ‘a—' = 0
(20)
By @ -0
oz By
or in the matrix form:
au au
Mgy + g =0 (21)

v-[a] wefat] e[ i) e

Since these equations describe a convection process, infor-
mation may propagate like waves under some conditions.
If a simple wave solution is sought, propagating in the di
rection 7, it has the form:

U = Ue'lrestm) (23)

This solution for U can be substituded in equation (21),
and the condition to obtain such solutions is that the de-
terminant of the matrix (A5, + A;ny) vanishes:

an, +2bm, cn,
~n, Ne

=0 (24)

Hence from the roots of
2
a(h) +26(n—’) +ec=10 (25)
ny By

the conditions defining the type of the quasi-linear differen-
tial system of equations are obtained. If (°~4ac) > 0 there
are two wave-like solutions and the system is hyperbolic,
while for (* — 4ac) < 0 the two solutions are complex con-
jugate and the equation is elliptic. When (4? - 4ac) = 0 the
two solutions are reduced to one single direction of propa-
gation and the equation is parabolic.

A wave front surface may be defined, which separates the
points already influenced by the propagating disturbance
from the points not yet reached by the information. 1
S(2,y) = S, (where S, is a constant) is such a surface, the
propagation direction # is normal to the surface S:

7n=Vs (26)

The surfaces S(z,y) which satisfy equation (25) for real
values of n, and n, are called characteristic surfaces, which
transport certain properties of the flow.




7-6

The general definition for a system of n partial differ-
ential equations, containing n unknowns u’ in the m-
dimensional space z*, written in the quasi-linear form, is:

8w’ .
{',g:o i,j=1,..,n k=1,.,m (27)
or in the matrix form:
;14
h‘_‘—= = .
A F 0 k=1,.,m (28)

The (n x n) matrices A* can depend on z* and U but not
of the derivatives of U. A plane wave solution will exist if
the system ’ )

{A*nuU =0 (29)

has non-trivial solutions. This will be the case if the deter-
minant of the system vanishes, that is, if

|A*nif = 0 (30)

There are, at most, n solutions and therefore, at most, n
characteristic surfaces. The system is said to be hyperbolic
if all the n normals are real and if the solutions of the n
associated systems of equations are linearly independent.
If all the characteristics are complex, the system is said to
be elliptic and if some are real and some are complex, the
system is considered as hybrid. If the matrix [4*n,] is not
of rank n, then the system is said to be parabolic.

If one space variable, say z™, is singled out and the cor-
responding Jacobian matrix A™ is the unit matrix, this
variable is called a time-like variable. The system (28) is

itt
written as au B_U

— A — =
ot 4 g

0 (31)

The charateristic condition, equation (30), becomes

[ned + A*ny| =0 k=1,.,m-1 (32)
Equation (32) is therefore an eigenvalue problem where the
characteristic normals are obtained as the eigenvalues of
the matrix

Ki; = Afjn. k=1,.m-1 (33)

If the n eigenvalues are real there are n characteristic sur-
faces which transport information in the 7 direction.

I the unsteady two-dimensional Euler equations are
considered, their quasi-linear form can be written as:
au au U

—_ — — = - (34
8t+A82+Bay 0 (34)

If the primitive variables »,V and p are used, we have

P upO(/)
_|u |06 uw 0 1/
U'v A—OOuO

P 0 pa® 0 u

v 0 p O
0v 0 O
B=loo v 1/p
00 pa® v

Since the system is hyperbolic, a matrix Cx may be defined
as
Cx = An, + Bn, vR (35)

This matrix has real eigenvalues and a complete set of
eigenvectors.

Eigenvalues of Cx are: Va, Vi, Vi+aand Vii—a

4.2. Boundary Conditions.

The information necessary for the initial and boundary
conditions to be imposed with a given system of differen.
tial equations, in order to have a well-posed problem, can
be gained from the preceding considerations. A solution of
the system of first-order partial differential equations can
be written as a superposition of wave-like solutions cor-
responding to the n eigenvalues of the matrix K. For an
hyperbolic problem, all the eigenvalues are real and expres-
sion (23) shows that no amplified mode are generated {an
amplified mode is not physically acceptable). Therefore n
boundary conditions have to be given to determine com-
pletely the solution. These boundary conditions have to be
distributed along the boundaries at all values of ¢, accord-
ing to the direction of propagation of the corresponding
waves.

If the information propagated by one wave front is imping-
ing a boundary point, coming from the inside of the calcu-
lation domain (positive eigenvalue if 7 is the outgoing nor-
mal vector), the value of the corresponding unknown must
be calculated from this information and not from a bound-
ary condition. At the other hand, if the the information
comes from the outside of the calculation domain (nega-
tive eigenvalue), the value of the unknown at this bound-
ary point must be imposed by a boundary condition. These
considerations have to be applied in the different boundary
problems of a blade-to-blade calculation.

For the inlet boundary (and if a subsonic axial velocity
is considered), only V7 + a is positive and three boundary
conditions must be imposed, usually the total conditions
(p° and T°) and the inlet flow angle.

If the slip condition is.imposed on the blade wall, only
the eigenvalue Vit — a is negative and therefore only one
boundary condition must be imposed, i.e. the velocity di-
rection at that point.

At the other hand, if the static pressure p is imposed
on the blade wall, a component of velocity normal to
the blade will appear and depending upon its sign, 2 or
0 additional conditions must be imposed. Three problems
have to be solved:

® how to calculate the sign of the normal velocity com-
ponent ?

o which boundary conditions to apply in addition to the
static pressure 7

o how to calculate the value of the unknowns that are
not imposed by the boundary conditions 7

These problems can be solved by introducing the compat-
ibility relations.

4.3. Compatibility Relati

An alternative definition of characteristic surfaces and hy-
petbolicity can be obtained from the fact that wave front
surfaces carry certain properties and that a complete de-




scription of the physical system is obtained when all these
properties are known. This implies that the original system
of equations, if hyperbolic, can be reformulated as differen-
tial relations written along the wave fronts (characteristic
surfaces) only. The original system of equations can be
transformed, through a linear combination, into an equiva-
lent system of equations containing only derivatives along
the characteristic surfaces S. For any equation of the sys-
tem (31} we have:

U ,8U]
or

=1

.5“-:" [ Z !ngh} = (37)

, [26""0: + zz a2 ,.} w=0 (38
% &

where the [; are n arbitrary coefficients.

For a two-dimensional system (k=1,2), we can define a set
of n vectors Z; such as

Z; =41, + Y k(45T + By1,) (39)

and the linear combination (36) can be written as

Z": Z;Vu; (40)

This expression can be interpreted as a sum of derivatives
along curves which are tangential to vectors Z;. The coef-
ficients I; are chosen such that equation (36) contains only
derivatives in a two-dimensional subspace of the (z,y,t)
space, namely the characteristic surface S whose normal is
7. The condition for that is given by

Z;m=0 vj (41)

or

Line+ 3 L (Aijng + Bijny) = 0 vj (42)

=1

The relation can be written using the definition of the ma-
trix Cx (35):

ling + il. [Ca)ij =0 vj (43)
izt

which expresses that [ is an eigenvector of the matrix Cy,
with —n, = ) the corresponding eigenvalue.

If the unsteady two-dimensional Euler equations are con-

sidered, the discretized form of the compatibility relations
(36) is, for the equation a:

new old
2yt [ 4
(=

new old
yold P -p
sy (T

+ F,’“) +
+ f;’“) =0 (44)

The terms F°'¢ denote numerical approximations of the
divergence terms; they can be estimated from the Euler
equations. For the density we have:

P"P d _
i +FM =g (45)
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The compatibility relations become:

(157 ("

-0+ @) -7
+ @M -r) =0 ()

where the superscript asterisk means the this variable is
estimated from the discretization of the Euler equations;
then the new value of the unknown is computed using the
compatibility relation, if the corresponding eigenvalue is
positive. The four compatibility relations and the corre-
sponding eigenvalues are:

eigenvalue | compatibility relation
Va —a (™ =)+ (7 - p) =0
V. V'new _ V" =0
Vo-a —pa(Vr — Vo) + (pn — ) - 0
Vata pa(Vre — )+ (™ - p) = 0

where the values of the density p and the speed of sound a
are taken at the old time level.

The first problem evoked in the section 4.2. can be solved
by the fact that the eigenvalue V, + a is always positive, if
the assumption is made of a subsonic normal component.
This means that the corresponding compatibility relation
may be used to calculate the value and the sign of 1, since
the information propagating with this wave comes from the
interior of the calculation domain. The pressure p™* in the
relation is obviously the required pressure.

If the normal velocity is positive, one boundary condition
(the required static pressure) must be imposed, since only
one eigenvalue V, — a is negative. If the normal velocity
is negative, two additional boundary conditions must be
imposed, since V,, is negative as well. It has been found
that ihe best solution is to impose the total pressure and
total temperatures at that point.

A summary of the different cases at the blade wall is pro-
posed now. In the following examples, CR means that
the compatibility relation is used, and BC that a bound-
ary condition is imposed. The compatibiliy relation corre-
sponding with V, — a is never used since this eigenvalue is
always negative.

example: impermeable wall

1BC: V™= 0
3 CR: p™v =p" + (pa)V;
P =gt 4 (P - p7)/a?
Vs v
example: subsonic inlet
1 CR: V2= Vi + (5™ - p*)/(pa)

3 BC: p™v =p'%
™ = F(To, po, p™)
Virev= F(Ty, po, p™)

example: subsonic outlet

3 CR: V2= V7 + (¢ - p")/(pa)
V=t + (P - p) e
V= Ve

1 BC: p™v = pre

From the four variables p™*, p™*“ V"% and V™™ the new
value of the primitive variables or of the conservative vari-
ables can be calculated.
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4.4. The Euler Flow Solver.

A code solving the Euler equations has been developped
in order to serve as a basis of the different steps of the
development of the inverse method. The code is based on
a Time Marching procedure, a finite volume approach, and
on a scheme investigated by Jameson (1981).

For the space discretization, non-intersecting finite volumes
are used together with a cell-vertex approach. The physical
domain is shown in figure 10. C-grids are used for a better
leading edge modelisation.

For the time discretization, both second order and fourth
order Jameson viscosities are used, In order to preserve the
conservation form of the scheme, the artificial dissipative
terms are introduced by adding dissipative fluxes. For the
cell 1, j the equilibrium is written:

8 4
A (EU-'J) + ,‘Z Fit=Di; (4m)
=1

The dissipative operator is defined by:
Dij=diy;—diy;+dijuy— 'i-;;'—} (48)

where the dissipative flux dﬂh is given as

diyi = oueiy (Ui - Uig) (49)

- °i+g-.j(:+§-_j(ui#1.i — Uiy, +3U;; — Uing)

Here €?+§J and ¢, yj 3C adaptative coefficients designed

to switch on enough dissipation where it is needed:
f.?»«w = B max(visa ) Vist gy Vids %ic1,) (50)

Sy = max(0, &~y ;) (51)

where v;; is defined as

Py — 25 + pianil

i = 52
2 pisrs + 2pis + Pl (52)

and k?, k! are constants (typically 0.5 and 0.015).

The coefficient €? is proportional to the second derivative
of the pressure and therefore in smooth regions of the flow
proportional to the square of the mesh size, while €* is of
the order one. The dissipative fluxes in the smooth regions
are then of third order in comparison to the convective
fluxes. However, in the regions where the pressure changes
rapidly, the sensor v;; is of order one and with the help of
formula (51) the third order difference operator is switched
off. The dissipation is then of second order and the finite
volume scheme behaves like a first order accurate scheme.

The coefficient a;,} ; is chosen to give the dissipative term
the proper weight:

V(A Ay
T (ke R AT B
Srbi = 3 (A‘-’J * A¢Z+u) (53)

where At;; is an estimate of the time step for a unit CFL
number.

4

A fourth order Runge-Kutta scheme is used for the time-
stepping, requiring & mini of comp torage:

Ut - poe
U' = U%_ At RHS/4
U* = U™ - AtRHS'/3 (54)

U = U - AtRHSY/2
U* = U™ _ AtRHS?
UM‘II = U(

This four-stage scheme is second order accurate for nonlin-
ear problems and allows a maximum CFL number of 2/2.

4.5. Results.

The method has first been tried starting from the NACA-65
(12A10)10 blade geometry in a cascade defined by a stagger
angle of 31 deg and a solidity of 1. A new blade geometry is
calculated by imposing a Mach number distribution slightly
different from the result of the direct calculation having a
lower value of the maximum Mach number on the suction
side. The Mach number distribution on the initial blade
and the required Mach number distribution are shown on
fig. 11a. The flow conditions are: p9 = 1.33 bar. TP =
341.5 K, B, = 45 deg, p» = 1.173 bar.

Figures 11b and 11c show the convergence of the calculated
velocity. A good agreement with the required velocity is
obtained after 2 geometry modifications only.

The advantages of the method have been demonstrated
by solving the same example used previously for vortices,
namely the Mach number distribution of an existing geom-
etry (the NACA-65 (12A,14)10 blade) has been imposed as
the required Mach number distribution, starting from the
NACA-65 (12A10)10 blade geometry. The flow conditions
and the cascade geometry are the same as for the previous
example.

The figure 12a shows the original and the required Mach
number distributions. Because of the big difference be-
tween both distributions, an under-relaxation factor of 0.5
has been introduced into the first geometry modification,
results of which are shown in fig. 12b. The final results
(fig. 12c) show a good agreement between the calculated
and the prescribed Mach number distribution, except for
the trailing edge, b the discretization does not allow
to impose a Mach number value at that point.

The third example concerns the redesign of a transonic
compressor blade. The NACA-65 (12A,1a)10 is the origi-
nal geometry, for which a shock is present on the suction
side (fig. 13a and 13b). The flow conditions are: p? =
1.33 bar, T? = 341.5 K, B, = 45 deg, p» = 1.136 bar. The
cascade geometry is defined by a stagger angle of 31 deg
and a solidity of 1.

The shockless transonic Mach number distribution shown
in fig. 13c has been imposed. Figures 13d and 13e show the
convergence of the calculnted Mach number distribution to
the required one. The original and final geometries are
compared in fig. 13f.

The fourth example demonstrates the procedure in the de-
sign of a turbine blade. The starting geometry is that of
the workshop VKI-LS 82-05 (Arts, 1982). The flow condi-
tions are: p) = 1 bar, T¢ = 278 K, 8, = 0 deg, M; = 1.0.
The cascade geometry is defined by a stagger angle of -60
deg and a solidity of 1.25.




A 'Y 'S + M M.d h Aiat it hu been
imposed on the suction side (fig. 14a). The calculated
mach number distribution converges as close ac possible to
the required one (fig. 14b and 14c) but not completely,

probably b this required distribution does not corre-
spond to a physical g try. This problem of exist of
a solution will be di d in details in the next chapter.

5. RESTRICTIONS ON THE REQUIRED
VELOCITY DISTRIBUTION.

Blade designs in which the required velocity is obtained
from the analysis of an existing cascade do not show any
particular problem. Under-relaxation is sometimes needed
if the required velocity distribution is far from the initial
one, but the method rapidly converges to the correct blade
shape.

However, solutions for blade designs to be derived from
arbitrary suction and pressure side velocity distributions
do not always converge. This is related to the problem
of the existence of a solution. The required velocity dis-
tribution must be compatible with the free stream condi-
tions up: and downst of the de and must
result in a realistic blade profile (closed with a positive
thickness). These constraints generate restrictions on the
required velocity distribution, analytical expressions for
which are available only for incompressible potential flows
over isolated airfoils and cascades (Lighthill, 1945, Woods,
1955). Expressions for the constraints cannot be derived
for the compressible flow of a perfect gas, but their exis-
tence can be inferred from the fact that the incompressible
flow case is a subcase of the more general compressible flow
problem.

A solution can be obtained by introducing some freedom
into the prescribed velocity distribution, expressed by some
parameters relating the velocity distribution to the free
stream flow conditions. These parameters are then modi-
fied until the prescribed velocity distribution corresponds
to a physical solution (Volpe and Melnik, 1984).

Another way to obtain a solution is to modify some geo-
metrical parameters of the blades and the cascade such as
pitch, stagger and trailing edge thickness.

The modification method presented here should theoret-
ically not suffer from problems with contour intersection
because the blade is defined by streamlines. However con-
tour intersections can occur for different reasons:

o the flow distorsion is not correctly calculated, due to
the i pressible approximation when vortices are
used;

o the numerical errors introduced when integrating the
streamlines.

One may like to impose some limitati to the d
such as:

© & minimum trailing edge thickness in order to avoid
unrealistic blade geometries,

o a fixed pitch resulting from a given number of blades
on the circumference of a stage.

The stagger angle is free and results from the calculation.

79

Taking into acount thesc limitations there may be no ge-
ometry that corresponds to the required velocity distribu-
tion. If vortices are used, the calculated velocity will not
converge to the required one from one modification to the
next. If the required pressure distribution is directly im-
posed during the normal velocities calculation, the Time
Marching procedure will not converge to the required pre-
cision since this would imply crossing or diverging stream-
lines, and it may not be possible to define a geometry where
the normal velocity compouent vanishes. However these
methods have the advantage to converge as close as possi-
ble to the required pressure distribution.

Experience has shown that some simple restrictions on the
desired velocity distribution can be defined. The block-
age created by the non zero blade thickness requires the
average prescribed velocity at the leading and the trailing
edge to be higher than the free stream velocity upstream
and downstream of the de. Violation of this condi-
tion will prevent the method from converging. Increasing
or decreasing the average of the required velocity at lead-
ing and trailing edges allows the local blade thickness to
be increased or decreased. Similar restrictions also apply
to the velocity distribution between leading and trailing
edges. These are more difficult to formulate because they
depend on the local flow direction which is not a priori
known.

If an inviscid solver is used, the trailing edge thickness will
also include the boundary layer displacement thickness.
This boundary layer displacement thickness can be calcu-
lated in advance since the required velocity distribution is
known. A Navier-Stokes solver can be used together with
vortices, for incompressible and non separated flow calcu-
lations. Since the velocity at the wall is zero, the vortices
should be defined as to correct the free stream velocity, and
therefore located outside the boundary layer. In the case
of viscous calculations, no displacement thickness has to be
removed from the resulting geometry.

Other problems arise from the fact that Time Marching
Euler solvers require as downstream boundary condition
the static pressure, velocity or Mach number. These out-
let conditions can be calculated frum the required velocity
distribution and the continuity equation before starting the
inverse calculations.

The circulation around the blades is calculated from

T= fv,"'da (55)

and is related to the inlet and outlet tangential velocities
by
T'=(Vasinfy— Visin i)t (56)

The downstream axial velocity component is derived from
the continuity equation :

P Vicos By = paVycos By (57)

The density at the outlet is a function of the outlet static
pressure and therefore is a function of the unknown out-
let velocity V3. For this reason, an iterative procedure is
used to solve equations {55) to (57). The procedure just
described is valid only for irrotational flows and is therefore
not exact if shocks are present.
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6. CONCLUSION.

Two iterative inverse methods, based on existing direct
solvers and on a separeted geometry modification algo-
rithm, have been presented. The first one makes use of
vortices to calculate the flow dist which is necessary
to respect the required velocity distribution. This method
is strictly correct for incompressible flow calculations only,
but experience has shown that it can be used succesfully
for compressible subsonic and even transonic designs. This
method, when coupled with a i ible direct flow
solver, is very fast and allowed the accumulation of ex-
perience about the probl lated to the exist of a

lution. A fast converg to the required velocity distri-
bution is observed and the method has proven to be robust.
The method hss also been fully tested, coupled with
an Euler direct solver, since the correction is in the right
direction and vanishes when the calculated velocity distri-
bution has converged to the required one.

The second method has been developped for subsonic and
transonic blade design. The required Mach number distri-
bution is imposed, in terms of static pressure, directly on
a permeable blade wall during the flow calculation. This
method is much faster than the previous one since the
correction is calculated in an more accurate way. Sub-
sonic and transonic designs have been performed and shock
free blades have been designed starting from geometries for
which a shock was present in the Mach number distribu-
tion.
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Abstract

The objective of this paper is a numerical method for design-
ing three-dimensional ducts and blade rows. The method ap-
plies to inviscid compressible rotational flow, and it is based
on the time-dependent technique. The walls where the de-
sigh pressure is prescribed are considered as flexible and im-
permeable. Starting from some initial guessed configuration,
the computation follows the transient which occurs while the
flexible walls move and finally reach a steady shape.

1 Introduction

This report describes a methodology to solve inverse design
problems for channels and blade rows, assuming the flow to
be multidimensional and the fluid inviscid, compressible and
ideal. The methodology is based on the procedures described
in [1] for the solution of inverse problems in 2D channels,
in [2] for 2D inverse cascade problems, in [4] for 3D inverse
blade rows probleins. An updated version of the methodology
is described in [5] for both 2D and 3D inverse problems in
channels and blade rows.

The basic idea is described in [1). Briefly, a time-dependent
computation is performed in a duct, where a distribution of
pressure is prescribed on a wall, the geometry of which is un-
known and has to be determined. Such a wall is a boundary of
the flow field and it is assumed as a flexible and impermeable
surface. Somie initial configuration is guessed for the shape
of the wall and for the internal flowfield. During the follow-
ing transient the flexible wall move in a wavy fashion and,
at the end, it will assume the steady shape teguired by the
prescribed pressure on it and in agreement with the steady
internal flow.

A coordinate transfonmation is used in order to map the
physical region, whose shape depends on time, into a com-
putational domain, whose shape is independent of time. The
Euler equations are integrated in time by a finite difference
method on the time-dependent, body fitted, grid defined by
the mapping.

Fig. 1 shows one of the possible problems that can be
solved. The domain is bounded by the solid wall AB, the
flexible wall CD, the entry permeable surface AC, and the
exit permeable surface BD. The flexible wall is constrained
at the point C, while the point D can move along the exit
surface BD.

/ D
¢ movable wall

inlet < ext
surface surtace

»

Yized wall

I N Ty

| I

Figure 1: the physical model

Fig. 1 does not represent the only possible configuration,
but both impermeable walls may be movable, or be partly
movable and partly solid, or be each other constrained by pe-
riodicity as in cascade problems. In order to show the way
the solution is gained in time, we report here one of the ex-
amples of {1]. The Ringleb flow {8] was taken as benchmark
case. A sct of streamlines ¢ = const of the Ringleb flow are
plotted in fig. 2. Once iwo streamlines are selected, they may
be regarded as the solid walls of a channel, and, from the
point of view of an inverse probiem, the theoretical pressure
acting on these may be taken as the design input datum. The
chosen channel is in the transonic region, and is confined by
the streamlines y» = 0.8, ¥ = 1.0 and by the radial coordinate
lines 8 = 40", 6 = 90".

Fig. 3 shows the shapes of the walls during the transient.
Both of them are assumed to be movable. Their shapes at the
beginning of the computation (K = 0)are taken far from the
theoretical ounes, while the pressure acting on them is assumed
to be the same as the theoretical one and is prescribed as
function of the angle § in the polar frame of reference. At
the time step X = 500 the walls finally reach the steady
location. The solid lines in fig. 3 denote the computed shape
of the walls, while the dots are the theoretical locations. The
telative error of the computed shape of the walls is plotted in
fig. 4, while the relative error of the computed Mach number
is shown as isolevel curves in the flowfield,in fig. 5. This
example was perfomed using a 19X47 mesh.




Figure 2: Ringleb flow
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Figure 3: time evolution of the movable walls
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Figure 4: Wall location error

Since [1] was published, several improvements have been
done. Upwind numerical schemes have been adopted to attain
consistency with the wave propagation phenomena described
by the Euler equations, as a consequence the computation
at the boundaries has been improved; the extension to 3D
problems has been shown feasible; different formulations have
been attempted. The path of the evolution we followed runs
from [1] to [5).

We describe in section 2 the physical model that we use to
solve the inverse problem for 2D cascades of airfoils; we dis-
cuss briefly the well posedness of the problem, the boundary
conditions, and we show some numerical examples. In sec-
tion 3 the genaral numerical procedure to integrate the 3D
time-dependent Euler equations is desctibed. In section 4 we
show the algorithm that we use to compute the boundaries in
the case a 3D duct has to be designed. In section 5 the pro-
cedure to design 3D blade rows is presented, and in section 6
numerical examples are shown.

2 The cascade problem

For a 2D cascade of airfoils, the inverse problem consists of
finding the geometry of a cascade producing a flow of which
some parameters are prescribed. There is a certain freedom
in the forimulation of the problem. For example, in addition
to suitable condition at infinity one may:

i} prescribe the distribution of thickness and load along the
chord of a profile, and inquire for the geometry of the
camber line,

prescribe the distribution of thickness and pressere on
one side of the profile, and again inquire for the geometry
of the camber line, or

it

iil) prescribe the pressure distribution around the profile and
inquire for its geometry.

Novak and Haymann-Haber [13] have given a solution to
problem i), based on the Taylor expansion of the equations of
the steady wmotion for a compressible inviscid flow. We solve




Figure 5: Mach number error

the problems i), ii), iii) by a different technique as briefly
outlined in the previous section: a time-depent computation
is perforned, in which the boundary conditions are imposed
according to the formulation of the inverse problem, until
a steady state is reached asymptotically. The contours of
the blades are considered as impermeable but perfectly de-
formable. An initial geometry is assumed. Since such a ge-
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Figure 6:

given there cannot be applied to the present cases, due to the
peculiar formulation of the inverse problems.

We address the subject with a different attitude. We use a
physical time-dependent technique. If the design data which
we impose violate the constrains needed by the steady well
posed problem, we expect the computation never to become
steady. Morcover, the well-posedness of a time-dependent
formulation also depends on the upstream and downstream
boundary conditions, as discussed in [17]. In fact, instabilities
can be generated by upstream and/ot downstream counditions
that, together with conditions prescribed along the blade sur-
faces, do not allow the flow to get stabilized but, on the con-
trary, amplify its unsteadiness until the computations blows
up. In particular, as discussed in {2], having prescribed a cer-
tain downstream pressure, there are two possible solutions to
problem i), only one of which is stable from the viewpoint of
a time-dependent technique.

onsetry s incomipatii-le with a steady motion, consistent with
\he prescribed conditions, a \ransient is generated. During
the transient, the walls of the blades change in shape, in or-
der tu satisfy the condition of impenetrability as well as the
boundary conditions, compatible with problem i), ii), or iii)
above  The solution of the inverse problem is given by a ge-
ometry obtained asymptotically.

Other approaches to the inverse problem, similar in some
aspests to the one described here, have been developed in-
dipendently in [6] e [7). HBowever, the formulations of the
ptoblem are different from the present one and the methods
ptoposed <eem to converge to a solution only if the initial
confignration is very close to the solution itself.

A very important point has to be discussed when dealing
with mverse problems: the well-posedness of the problem.
Problem i) 1s discussed in the case of a single airfoil in {14],
whets it 1o shown that the design data cannot be presctibed
with complete {reedom. In fact they must satisfy some con-
strains which are dictaded by the consistency of the data with
the flow conditions at infinity and by the requirements that
the contonr of the airfoil must be closed. The number of con-
strains depends on the way the inverse problem is formulated.
This matter is anlytically clear for incompressible potential
flow, [15].{16]. Unfortunatly, there is not an exhaustive the-
ory capable of prescribing the constrains that lead to a well
posed problem for compressible rotational flow. In [14] a way
is provided to cirrumvent such difficulties, but the suggestion

For i) also p an ambiguous feature which is
discussed in [2]. When the pressure distribution is prescribed
on one side of the blade, together with its thickness, it cannot
be said a priori whether that side has to play the role of a
suction side ot of a pressure side. The computation itself will
select the role of the side on which the pressure distribution
has been assigned. According to the nuinerical results shown
in [2], the computation selects that side as the pressure side.

We confine the discussion in the present report to problem
i) for the 2D and 3D cases. The reader may refer to Ref.[2]
and Ref.[6] for the discussion of the 2D ii) and iii) problems.

2.1 The physical problem

We proceed now to describe the process, in particular the
boundary conditions, that we have chosen to generate the
solution, confining ourself to the physical viewpoint. A wote
detailed description of out method, based on the theory of
hyperbolic systems, is given in the sections 3, 4 and 5, where
the 3D problem is discussed.

Figs. 6a) and 6b) show typical initial and final configu-
rations. The flow is assumed to be confined between two
consecutive blades, the arcs BC, and twn patallel lines issu-
ing from the leading edge and the trealing edge of the blades.
The lines in front of the blades ate denoted by AB. The lines
behind the blades are denoted by CD. Such boundaries are
assumed to be impermeable and perfectly deformable; there-
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Figute 8:

fore, we can think in terms of a flow within a channel, the
geometry of which may change in time, although its width
{measured parallel to the y-axis) is independent of time. The
channel is confined by the permeable boundaries AA and DD,
upstream and downstream, respectively. The inlet boundary
AA is considered fixed in time, whereas the exit boundary
DD can slide upwards and downwards, maintaining a con-
stant pitch. A time-dependent putational grid, which fits
the boundaries, is defined inside the ch ]

The design data are prescribed, according to problem i), by
giving the distribution of thickness r(z) and pressure jump
between the two sides of the blades, Ap(z). Since the flow
is periodic, the upper and lower boundaties of figs. 6 can be
reduced to a single boundary for a single blade, as in fig. 7.
Note that the upper part of the ABCD line in figs.6 is the
lower boundary in fig.7, and viceversa.

The arcs, AB and CD are deformable and impermeable
interfaces, across which the pressure is continuous but the
tangential velocity component may be discontinuous. In for-
mulating the boundary conditions, the whole ABCD arc can
be treated homogeneously. The interfaces can be considered
as surfaces of blades for which a vanishing thickness and a
vanishing pressute jump are prescribed. With this conven-
tion in mind, we procede to describe the technique for any
blade surface.

In fig. 8 we show two grid points on two different sides
of the blade, at the same abscissa. The velocity vector is
decomposed along the tangent and the nommal to the blade

at each point. Since the blade is impermeable, the two flow
velocities and the blade velocity must have the same normal
component. From fig.8 we see, thus, that:

in iy
e Y2 =
cos ¢y’

Y1e = (1)

oS b
In addition, the thickness is constant in time; therefore:

Yie = Yy (2)
The pressure jump, Ap(z), is constant in time; consequently:

opy  Op2

iy (3)
Equations (2) and (3) are the boundary condition that allow
the geometry and the the flow to be updated at each compu-
tational step.

At the inlet boundary AA (figs.6) we prescribe the total
pressure, the total temperature and the flow angle, if the flow
is subsonic, whereas all the flow quantities are prescribed if
the flow is axjally supersonic.

At the exit boundary DD no boundary conditions are
needed if the flow is axially supersonic, while in the case of
subsonic flow, the kind of boundary conditions to be enforced
has to be selected carefully, in fact, as it is discussed in the
next section, the inverse problem i) has not an uniquely de-
fined solution. The kind of boundary conditions that is used
selects one solution among the possible ones.

2.2 Flow deflection and force acting on a
blade

With reference to fig.9, let us consider a subsonic cascade with
inlet and outlet boundaries located sufficiently far upstream
and downstream, so that the flow at such boundaries does
not depend on y.

For the sake of semplicity the flow is considered homoen-
tropic, so it is sufficient to prescribe the total temperature,
©?, and the flow angle, o;, at the inlet boundary. Let us
now choose to prescribe the static pressure p, as downstream
boundary condition. In a steady state configuration, the tan-
gential force F acting on one blade is related to the upstzeam
and downstream y-components of the flow velocitv:

F =rm{v, —v.) 4)

On the other hand, F can be determined as a function of
the exit flow angle, o., as follows:

a) The exit velocity, g.. is a known function of ©," and p,:

p &
q. = v 2¢,(0) - p.7 )

b) Assume a value of o, the velocity components u, and v,
are:

U, = q,.CO80, v, = g.sino,

e oot
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Figure 10:

¢) The mass flow can thus be evalnated:

s
m = su,p. with p. =p?

d) p, and the inlet velocity components are obtained by solv-
ing
m = 8g; coso; p,

i
o=p. @=\2(87-p )

and m is the same as obtained in ¢).

where

e} Now the force F is computed, according to eq. (4)

From a prescribed set of values for ©}, o,. and p., one can
compute F(o,). This relationship is plotted in fig. 10. We
see that the F vanishes for three values of 0. At o, = £90",
because u, and, consequently, ri, vanish. In these two points,
the blades are so deflected at the trailing edge, that the flow
has no axial velocity component. In addition, F vanishes for
o, = o,, that is, when the blade does not deflect the flow.
The force is positive when 0. < o,, and vice versa.

Assume now thet the inverse problem has to be solved with
a set of boundary conditions (9, 7,, and p.) and a prescribed
distribution of load over one blade (Ap(z)). On the basis of

Tex
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Figure 11:

the previous considerations, two different geometries of the
blade may satisfy the problem, or none. The force F results
as

F=/Ap(z)dz

with the integral carried over the z-axis between leading and
trailing edge. If F > F,ux or F < F,,,, no solution exists,
but if Foun < F < Fpur, two different cascades may be
obtained, providing the same force (such as A and B, for
example). The same force, thus, may be balanced, according
to eq. (4), by a lower mass flow and a larger deflection at
point A, or by a higher mass flow and a smaller deflection at
B. However, if we prescribe the downstream pressure p. as
exit boundary condition, only the configuration described by
point B can be reached.

Let us, indeed, consider a cascade providing an exit angle,
o, slightly smaller than (0.)4, and a steady flow through it,
which acts on the blades with a force slightly smaller than
F4. Let us now increase the pressure jump of this initial
configuration so that the force reaches the value F, and, at
the same time, let the blade adjust itself to the new condi-
tion. Since F4 is larger than the initial force, the curvature
of the blade must increase and o, decreases, instead of in-
creasing towards (c.}4. Thus, the blade geometry tends to
move farther and farther away from A. The opposite motion
of the blade occurs if the initial value of o, is slightly larger
than (0. )4, and the force, originally grater than Fy, is de-
creased. In this case, however, the geometry of the blade will
eventually reach point B. In conclusion, B represents a stable
configuration and it is the onlv one which can be reached us-
ing the numerical procedure and the exit boundary condition,
as formulated above.

In otder to succeed in obtaining a geometry of the A-type,
one should try to make the function F{c.) single valued. All
difficulties, indeed, seem to arise from the fact that different
mass flows can provide the same force with different deflec-
tions. To achieve our goal, we replace the downstream bound-
ary condition (constant static pressure p.) by an exit surface
modeled in the spirit of Ref. [18]. As shown in fig. 11, a
discontinuity is located at the exit boundary, which simulates
a guide forcing the flow to be discharged to the right at the
prescribed static pressure, p,, and with the given angle, o,.,.
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Figure 12:

We assume that the mass flow and total pressure are the same
on both sides of the discontinuity:

Prlic = PreGer COST,g

i i
P =P\ Pex =P (5)
e 1,2, 2 o 1,
P’ + 2—c,’(u, + ;) =per + T, e

Eqs. (5), Peys 0.y are the downstream boundary conditions
that define a unique solution to the inverse problem. In fact,
once the steady state is reached, the relationship F(o.) can
be found:

a) from p., and o.,, the mass flow is computed:

:
m=p,.q,c080,, with g.,= 2c,(p; >

b) and from the computed values of u, and v., we get:

Vo
7, = arctan —
u,

The function F{e,) is now monotonic, as shown in fig. 12.
The curve is limited by two points, M and N. For o, < o, 5
and o, > o,y it is no longer possible to maintain the same
mass flow required by p.; and o.;. If a force is prescribed,
such that Fy < F < Fy, there is only one acceptable ge-
ometry which can be shown to be stable, using an argument
similar to the one employed above.

A more detailed discussion and several numerical examples
on this matter are presented in Ref.[2]. In particular, the

Figure 13:

Figure 14:

effectiveness and limitation of the second kind of exit bound-
ary conditions on producing high cambered airfoils is shown.
Briefly, we suggest the following recipe: if the design point
is located on the stable branch of fig. 10, then it is safe and
simple to enforce the downstream pressure, p., as exit bound-
ary condition; whereas, if the design point is in the unsteable
branch, the second kind of exit boundary condition has to be
used, but some instability may still be experienced, as shown
in {2], especially when dealing with strongly cambered blades.

2.3 2D numerical example

Two numerical examples are hete presented according to for-
mulation i) and prescribing the static pressure p, as exit
boundary conditi Further ples are shown in Ref. [2].

Fig. 13 shows the initial configuration and fig. 14 the
steady solution to the inverse problem for the case corre-
sponding to

r = .025{1 - cos(2rz)] <z <)

Ap = .1[1 - cos{2rz)] 0<r <1

The ratio p, /p” between downstream pressure and total pres-
sure is 0.8, the upstream flow angle o, is 20", and the up-
stream total temperature ©” is 1. Both this case and the
following one have been computed using 40 intervals in r and
10 in y.

A check on the accuracy of the computation is shown in
fig. 15, where the theoretical behavior of the y-momentum is
compared with the numerical result. The maximum ersor is
less then 1%.
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Figure 16:

The case of fig. 16 has the same r. o, and ©" as in the

preceding, case, but
Ap = .15[1 - cos(2rzx}] 0<z< 1)

and p./p” = 0.71.

The resulting cascade is supercritical but unchoked and
shockless. It can be seen from the isoMach lines of fig. 16
that a supersonic bubble appears on the upper side of the
blade, but the lower side is entirely subsonic. The pressure
cannot be discontinuous on the subsonic side; therefore, it
must be continuous on the supersonic side as well, since Ap
is prescribed as a continuous function of z.

3 The general numerical procedure

The numerical process we use is a variation of the lambda-
scheme [9and, more generally, it can be considered as belong-
ing to the SCM [10] family. It exploits the hyperbolic nature
of the Euler equations, which are discretized according to an
upwind finite difference scheme. The scheme we use approx-
imates the governing equations written in quasi-linear form.
as a consequence it is not conservative and weak solutions are
not captured spontaneusly, but they need some special treat-
ment. This shoricoming is the price to be paid for the main
advantage that our numerical process offers: the capability of
compnting the boundacies in a way consistent with domain
of dependence due to the hyperbolic nature of the governing
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equations, avoiding the need for spurious additional numeri-
cal boundary conditions. This point is crucial for the success
of our method,in fact the computation in a domain whose
physical shape depends on the soluticr ic verv semsitive to
the way the boundary condition are euforced and any w.’
treatment may produce catastrophic instabilities. Details on
this matter can be found in [11].

Moreover, the inverse problems that generally one asks to
be solved are shockless and the need for shock-capturing ca-
pability is rare; if this capability is requested, the scheme can
be easily converted in a conservative Flux Vector Splitting
scheme, as described in [12].

Let us take into consideration the more general 3D case, we
denote by y”,(n = 1,....4), the cartesian coordinate in the
Euclidean space-time four-dimensional space, E*. teserving
the apex 4 to denote time. Let us denote by v”.(n — 1.....4).
a curvilinear frame of reference in E?, whose transformation
from the Cartesian coordinates has the form:

e

o oY) a=1....3) (n- L1

%)

I

The mapping (6) is sufficiently general to define the curvi-
linear. time-dependent, body-fitted grid we use to discretize
the physical domain in our inverse method. Moreaver, we
define a vector Q in EY, whose (contravariant) components
Q"*{a = 1....,3) coincide with the components of the flow
velocity q and whose time component is constant and equal
to one, @* = 1. With such assumptions, the Euler equations
can be written in a form invatiant for teansformations with
the form (6). According to teusor notations, the 3D time-
dependent Euler equations can be written as:

Q'ay +6aQ, = 0
Q@ +a (% - rau)g =0 ()
Qs =0

where latin indexes run from 1 to 4, greek indexes run from
1to 3, ",” denotes tensor derivative, a is the speed of sound,
& = 2/lv ~ 1), x = a/{2¥8), v is the specific heats ratio and
¢""" is the metric tensor and all the variables are normalized
with respect to suitable reference values.

Following Ref. [L1]. eys. (7) can be rearranged in a fonm
suitable for upwind discretizzation by decomposing the 3D
unsteady motion as due to waves fronts parallel to the co-
ordinate surfaces; the resulting set of equations prompts an
upwind discretization that preserves the 3D nature of the ac-
tual flow and that is particularly convenient from the point
of view of the treatment of the boundaries:

& .
ay = 2{54+£,+n,,+n,.+g,,+g,]+6~s,

n
Q, = %{\/g’*’ [2'71,+ g;i('b— - Yl.l)] +

— 23
Vol e - &) + VB [zc,. + 53 « - c.,)]}




&-8

(8)
1 1 g‘2
Qy = 3 {\/9" [2& + e (& -54)] +
_ 3
Ve (n. - nal + Vg® [2(r + :_ﬁ ¢~ (4)]}
13
@ - ! [\/Q“ {'25-» + 'ng(ﬁr ~Eu)] +
<1 3 g
2
Ve {‘2'1. + :'5 (. - ﬂ./)} + VK. - CA)}
s 0= LutnatC

The terms £., n.,(. in egs. (8) are relative to waves fronts
parallel to ! = const.,z® = const.,z> = const. sutfates,
propagating with the speeds X, ®,, u., respectively:

§o= Ay, A= QF
@@

oen(Fh-F G wee
23 [

{,:‘,\_(ﬁ'ﬁﬁ#) \=@

1
5,,:—,\,.("—‘1 - K8y + %) A= QY+ ay /gt

&= -\ (T —Key - é’;—) Ao = Q' - ay/git
Ta = —P,82 ¢, =Q?
m:~¢..(%§;~§%“g,,) 8 =Q

a4t 2 9
b (G -He) e-q

n=—-%, (u—f' - K83+ &y = Q% +ay/g¥?

¢, = Q* —ay/g?

n =

Co = —pus3 He =Q°
. Q' o
o=~ (7‘;%*";37#) wo=Q°
9)
27, 23
< uo=Q

s = Q@+ ay/9?

C1 = — My

Be= Q% ~a/gP

The terms £,,7,,{,, roughly speaking, express quantities
carried by the waves in the unsteady motion, in a numerical
process they have to be approximated by an upwind numeri-
cal scheme to preserve correctly the domain of dependence of
the compute points. A more rigorous analisys about our nu-
metical approximation of hyperbolic squations is attempted
in [11],

The numerical scheme we use is explicit, second order ac-
curated in time and space. Let us describe the scheme we use
for the case of a scalar advection equation, being obvious the
extension to egs.(8):

ue=§  with = —u, (10)
The scheme is a two step predictor-corrector scheme:
predictor:
T T
with £ = -2} (—-‘—-1—“nz‘;“'
(1)
conrector:
urtt = u:ﬂ/: . (L'“/’A:L
g = __/\;:1»1/2 [2(,‘;-“/3 - u;'_*l”’) _ i:_ Y

i — A S 11-5)
with A=ty J=k+55

In order to semplify the computation and to improve the
accutacy, we prefer to avoid explicit evalutation of Christoffel
symbols when computing the tensor derivatives of the vector
Q. In fact, a tensor derivative has the general form:

F:! &
@ = 35 + QT

(12)
The balancing in (12} of the partial derivative, approximated
by oune-sided diffrences, and the Christoffel symbol T%, eval-
uated on nodes, is quite deflicate. We prefer to base out ap-
proximation on the formula:

2 L
@, =200 (13)
az™ Iy
where [/ ate the Cartesian components of Q and the deriva-
tives g—% are approximated by finite differences, according to
the integration scheme (11).
It is also convenient to integrate in time the Cartesian com-
ponents of Q, getting their derivatives in time from eqs. (8)
and the formula:

Ut ay
7 = Veow a9

avoiding again the evalutation of Christoffel symbols.




Figure 17:

4 The computation at the bound-
aries

The numerical process that we follow to soive 3D inverse pro-
blems is based on physical models that are straight forward
extension of the 2D model of Ref. [1], for the case of ducts,
and of Ref. [2]. briefly described in section 2, for the case
of blade rows. The idea is shown in figs. 17a) and 17b) for
the case of a 3D duct: a channel is considered whose side
walls are partly (or entirely) flexible and impermeable and
partly solid. For instance, the walls ABCD and EFGH of fig.
17a}) are solid, the walls BFGC and AEHD are flexible and
impermeable, ABFE is a permeable inlet surface and DHGC
35 a permeable exit surface. The inlet and the exit surfaces are
y* =const. plane surfaces, the equations of the solid surfaces
are:

ABCD: ¥ =)
(15)
EFGH : v = (¥’ %)
The equations defining the flexible walls are:
AEHD: ¢ =d(y', v’ yY)
(16)
BFGC: ¢ =e(y', ¢’ ¢")

The coordinate transformation:

P Ct))
S T
oL Wod
T (e-d)
(17)
-I'J = y3
1" = y‘

is used to define a time-dependent grid that fits the walls and
adapts itself to the motion of the flexible walls.
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The design pressure distributions p = p*(y*, y) are pre-
scribed over the flexible walls; total temperature, entropy and
flow direction are prescribed at the inlet surface, static pres-
sure is prescribed at the exit surface in case of subsonic flow,
while all the flow propierties are prescribed at the inlet surface
and nothing is prescribed at the exit surface when the flow
is supersonic; the vanishing of the normal component of the
flow velocity is imposed on solid walls. With such boundary
conditions a time dependent computation is performed over
the 2/ grid, according to the numerical scheme described on
the previous section. Fig. 17b), for instance, shows the shape
that the channel has at the end of the transient, solving the
inverse problem for the prescribed pressure distributions over
the flexible walls.

As mentioited above, the enforcement of the boundary con-
ditions is the most delicate operation of the nmmerical pro-
cess. We use the same general idea of {11}: at each boundary
a certain number of £, or n, or (. expresses the propaga-
tion of signals coming inward from the boundary, such terms
depend on the boundary conditions and are indipendent of
the internal flow field. In the numerical process, they cannot
be computed according to egs. (11), but they must be com-
puted enforcing some boundary conditions. The number of
boundary conditions needed by the finite difference equations
(FDE) does not necessarily match the number of boundary
conditions needed by the partial differential equations (PDE):
if the boundary conditions needed by the FDE outnumber the
boundary conditions needed by the PDE some additional nu-
merical boundary conditions must be enforced. It is quite
obvious that an algorithm that asks always the same bouud-
ary conditions for the FDE as for the PDE is optimal, this is
the case of the scheme (11) applied to egs. (8).

Let us consider, for instance the ABCD surface of Figs.
17a), 17b). At this boundary, the £, related to positive speeds
od propagation, A, > 0, have to be computed enforcing the
boundary conditions. The ABCD surface is a solid wall, the
physical boundary condition is the vanishing of the normal
component of the flow velocity, that is:

Q=0 (18)

There is one positive speed of propagation in z* direction:
M1, as a consequence there is one term, £,, to be evaluated
enforcing eq. (18). Let us differentiate in time eq. (18) and
then integrate it numerically in time, with the same time
step, 9_%‘ which is used by the scheme {11} at the predictor

and corrector step. With this process in mind. the houndary
condition {18) is given by the equation:

Al + gl
([71+,0,I,’,‘}f,)oi -0 (19)
Ird 2 dy!
where the contravariant component of the velocity, @' has
been expressed by means of the cartesian components U/,
By substituing eqs. (14) and (8) in eq. (19} we obtain
one algebraic equation in one unknown, £, which satisfies eq.
(18) in both predictor and corrector steps of the integration
scheme (11).
Any boundary can be computed following the same idea:
differentiate in time the boundary conditions, integrate them




in time, consistently with the scheme (11), substitute them
in the governing equations (8), and get as many equations
as many are the £,, 1., (. unknown at the boundary. In
[11] it is shown that this procedure is consistent with the
characteristic theory for 1D flow and, more generally, with
the wave reflection concept in multidimensional flow.

Let us consider now a moveable wall, for instance the
AEHD surfaces of Figs. 17a},17b). At this boundary the n,
with positive ¢, have to be assumed as unknowns to be eval-
uated by means of the boundary conditions. There is again
one unknown, 7; and one boundary condition: the pressure is
prescribed as a given function of time, p = p(z*), (generally it
is prescribed to be constant in time). We satisfy the boundary
condition by enforcing, in the predictor and corrector steps,
that at each boundary point:

Azt

da 1 . Az‘)
T—P(”T (20

(ol | 8
A=)+ a (3:‘6 N(’)r")
9p

where
w( (ol B\ 8
a \Jz*$§ "8zv) = oz

By substituing eqs. (8) in eq. (20), we get one equation that
allows the unknown 7, to be computed.

At each predictor and corrector step we update the geom-
etry of the wall, given in general form by eq. (16), by means
of the eq.:

1,3 4 ﬁ.‘{: ) gl 3 4 o 94 ﬁy_‘
d(y,y‘y+ 2 —d(y‘y.y)+ay. 2 (21)
where the derivative gf: is expressed by the condition of im-
permeability of the wall: at a moving wall, as well as at a
fixed wall, the contravariant component normal to the wall of
the vector Q has to be zero, Q* = 0. In fact, let us consider
the wall AEHD, whose geometry is defined by the first of eqgs.
(16). This wall is the coordinate surface z? = 0, as it can
be deduced from the second of eqs.(17). Because of the im-
permeability of the wall and because of the continuity of the
fluid, a fluid particle which is on the wall, has to move without
leaving the wall, that is preserving its coordinate z? = 0, that
is with Q? = 0. By definition of contravariant component, it

is: 1(!’2 4
Y (e ~d)

Enforcing @ = 0 aud considering that I/* = 1, from eq. (22)
it follows:

@=qQ va=1 (22)

(n=13) (a=123) (23)
In computing eq. (23), dd/dz” are approximated by finite
differences.

The other solid 0 moveable walls are computed in the same
way, once the proper unknown terms £, or 1, are detected.

The corner lines common to solid and moveable walls, as
for instance the line AD of Figs. 1a),1b), are computed by
using both the boundary conditions {19) and (20).

Figure 18:

The inlet and outlet boundaries are computed following
the sanie general idea: the boundary conditions are written in
numerical integral fonus, as eq. (19) for solid walls or eq. (20)
for moveable walls, the resulting set of algebraic equations,
obtainet by substituting eqs. (8), allows the proper unknown
terms {, to be determined.

5 Design of 3D blade rows

The method for designing 3D blade to blade channels is sim-
ilar to the method for designing 3D ducts. We use the same
set of equations (8) and we formulate the problem in the same
way: as shown in Figs.18a) and 18b), we take into consider-
ation a channel whose walls GLTQ and CFPM are imperme-
able and deformable, with DEON and HISR representing the
suction and pressure sides of the blades, respectively. The
surfaces GCFL and QMPT are the annulus solids walls, the
surface GCMQ is the inlet surface and LFPT is the outlet
surface. Fig. 18a) shows a tipical initial configuration and
Fig. 18b) the shape of the channel solving a given inverse
problem.

There are two differences between the method of solution of
inverse problems in ducts and in blade to blade channels, the
first one concerning the mathematical model and the second
one concerning the formulation of the inverse problem:

1. Because of the geometry of blade rows, it is more
convenient to use as physical frame of reference a
sort of 4D cylindrical coordinates instead of Carte-
sian coordinates, therefore the equations of section
3 and 4 have now to be read considering y' as ta-
dius, y* as tangential angle, y* as axial coordinate,
y* as time, and {77 as the contravariant components
of the vector Q in this {frame of reference. Therefore
the relationship (13) is now:

Izt ay atn art oy

& :U’——:( /"')—_f—-
Q= U5 5w = (g + VTl ) 57 o
(24)

where T/, ate the Christoffel symbols in the cylin-
drical frame of reference.
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We base the numerical approximation of (24) on the
formula:

' Elia oy \ ozt
@, = (F +U"r{,_a—;’,;) 5y ()

by replacing the derivatives gi" by finete differ-
ences, according to the integration scheme (11).

®

. [uverse problems for blade to blade flows are con-
strained by the periodicity or by the requirement,
identical from the geometrical viewpoint, that the
blade profiles must be closed: in fact, the pitch is
a geometrical parameter that is known a priori as
function of the radius and that must be satified by
the solution of the inverse problem. As discussed in
section 2 for the 2D case, different formulations of
the inverse problem are possible: one may a) pre-
scribe pressure distributions on pressure and suc-
tion sides aund look for the blades shape ot b) pre-
scribe the pressure on one side and the thikness of
the blades and look for the camber distribution or
) prescribe the loading and the thikness and look
for camber distribution. Problem a) reduces to a
problem identical to the duct problem, but does
not satify a priori the closure condition, problem b)
shows the same ambuguities of the 2D case, cast-
ing doubts on its well posedness; the only problem
that seams well posed satisfying the periodicity con-
dition is problem ¢), within the limits discussed in
section 2 and Ref [2]. We choose to formulate the
3D inverse problem for blade to blade flows as a
problem c): we prescribe a design pressure jump
between pressure and suction sides Ap and design
thikness r:

ap=fy'yY) . =987 (26)
The whole flexible surfaces CFPM and GLTQ are com-
puted satisfying eqs. (26): in the CONM, EFPO, GHRQ and

ILTS surfaces in front and behind the blades eqs. (26) reduce

to:

Ap=0, r=0 (27)

Eqs. (26) are the boundary conditions that allow the flex-
ible walls to be computed. Following the same general idea
expressed in section 4 for the boundary treatment, the first
of eqs. (26), is replaced by:

{ ozt m(ﬁ!;.ﬁ azt
PEN a5 aet) 2 T

G (2l 2y en)
{P(r)+ a (8:‘6 Kc’):‘ 2 S_Ap (28)

with "P” and "S” denoting pressure and suction sides, re-
spectively, and d, e are defined by eqs. {16). The second of
eqs. (26) can be written as:

d -~ e = 1 + pitch
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that is
ﬁ = ﬁ {29)
dyt Ayt
Again according to the general treatment of boundaries, eq.
(29) is replaced by:

ad 9*d Ay? de e Ay ;
ot T T aa T il Ty (30)
9y oa(yty 2 A oty 2

and substituting eq. (23} into eq. (30) we obtain:
a 72 " gt 4+
{UZAU'-,’?iOL N (m JuU" ad o ) ar*]

gz dy" ayt oyt ar "
o e Do 9z (A AU de vy Ay
T Sz Ay oyt~ oyt ar Ay ) 2 J.

(31

where the cross derivatives are neglected, vanishing at the
steady state, and where a = 1,2,3; n = 1,3, and ad/dx",
de/dz" are approximated by finite differences.

Eq. (28) and eq. (31), combined with eqs. (8}, allow 1.,
unknown at the pressure side boundary, and ., unknown at
the suction side boundary, be valuated satisfying the bound-
ary conditions (26).

The geometry of the pressure and suction sides are updated
as in the duct case, integrating in time the derivatives —f—,’; =
%, according to eq. (23).

The inlet and exit boundary conditions are the same as
those of the inverse problem for a 3D duct, briefly described
in section 4.

6 Numerical examples

We present here three numerical results, the first one refers to
the design of a 3D rotational, transonic, convergent-divergent
nozsle, while the other two refer to the design of turboma-
chinery bladings.

6.1 Example 1

In order to test the capabilities of the present inverse techni-
que, we choose an example with a distorted geometry, quite
far from the guessed initial one. Fig. 19a) shows the 3D view
of the initial configuration and Fig.19b) the final one that
solves the inverse problem. The solid walls are planes, whose
equations are:

v

=0 =-1+k

The design pressure distribution on the lower moveable wall
is
pe= .8~ KeS

on the upper wall:
pr = .8 - 351 - cosl7z”))

On the inlet boundary we impose that the total tempera-
ture is uniform and constant in time ©" = 1, that the flow
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Figure 19:

Figure 20:
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Figure 21:

Figure 22:

Figure 23:

velocity has the direction of the x° coordinate lines and that
the total pressure obeys the law:

P =1-A0"y - e -y A=

The resulting flow is rotational and non homoentropic.
Figg.20a), 20b) show the isoMach lines over the left and
right solid walls, Figg. 21a), 21b} over the upper and the lower
moveable walls and Figg. 22a), 22b) over the inlet and exit
surfaces, respectively. Figg. 23a), 23b) show the constant-
entropy lines on the inlet and exit surfaces, respectively.

6.2 Example 2

The second example refers to the design of the blades of a
stator. Figg. 24a}, 24b), show the initial and final 3D view,
respectively. The tip and hub solid annulus walls are cylin-
drical:

w=re i Wl=n,
with ry/ry, = 1.5,
The design thickness is:

32
r = .07sin [‘I y:‘ y,J]
Y —u

with y7 - y} —axial chord.
The design loading is:
v -y

7y

~w

Ap = .08sin [x

~w
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Figure 24:

At the iulet boundary the flow is axial. The total temper-
ature is kept constant ©” = 1, while the tototal pressure is
distorted:

P =gV +h
with g = . 1/(/Fr — yT1), h = 1. — g /r.

At the exit surface, a distribution of pressure, in agreement
with an approximate solution based on the radial equilibrium
theory, is given as boundary condition, with p, = .7 at hub
radins.

Figg. 25a), 25b) show the isoMach lines on the blade to
blade surfaces at the hub and tip radii, Figg. 26a), 26b)
on the pressure and suction sides of the blades, respectively.
Figg. 17a) and 27b) show the constant entropy lines at the
inlet and exit surfaces.

The constant entropy surfaces coincide with stream-
sutfaces; as it has been pointed out in Ref. [4], looking at
Figg. 27a) and 27b) one would expect to see the typical ro-
tation of such surfaces as consequence of the secondary flows
generated in 3D rotational flow. Actually, a streamwise coni-
ponent of the vorticity is correctly generated, it does not re-
veal itself as a rotation of the streamtubes, but rather as a
peculiar twisting of the blades: the loading is prescribed as
design datum and it cannot be decreased as a consequence
of secondary flows, but the lower is the total pressure (and
density) the higher the deflection to provide such loading.

Finally, two integral checks have been done on the continu-
ity and angular momentum of the computed flow field: Fig.
28 shows the mass flow computed on cross sections along the
blade to blade channel; Fig. 29 compares the angular momen-
tum evalnated on rross sections along the channel with the
cortispouding theoretical torque due to the design loading.

6.3 Example 3

o the third example the annulus walls form a conical sur-
face at hub radius, and a cylindrical surface at tip radius.
The flow at entry is assumed to have axial direction, with
constant total temperature and a parabolic distribution of
total pressnce, the smallest being at huu radius. A certain
distribution of thickness and pressure jump as functions of
the radial and axial coordinates are assumed, 7 = g(y', °),

Figure 27:
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Figure 29:

Figure 31:

Ap = f(y',¥®). At the exit surface, a distribution of pres-
sure, in agreement with an approximate solution based on the
radial equilibrium theory, is given as boundary coudition, as
well as in the previous example.

The initial configuration of the blade row is shown in fig.
18a). The blades are without camber and twist. Fig. 18b)
shows the final configuration of the blade row. Figg. 30 and
31 represent the isoMach lines of the initial and final config-
uration of blade to blade section at hub radius, respectively.
Figg. 32-37 represent the final configurations of the interme-
diate and tip blade to blade sections. The threedimensional
nature of the flow field and the twisting of blades is shown in
these results.

The flow is transonic, in fact a supersonic bubble extends
from hub to tip on the section side. Figg. 38 aud 39 show
the isoMach lines on the projection on the meridional plane
of the suction and pressure sides of the blades, respectively.
Finally, figg. 40a) and 40b) show constant entropy lines on
the sections normal to the axis, corresponding to the trailing
edges and the exit of the streamtube.

The constant entropy surfaces coincide with stream-
surfaces. Figg. 40a) and 40b) show the absence of the typical
rotation of such surfaces and the peculiar twisting of the blade
to blade chaunel, as well as in the previous example.

Figure 32:



Figure 37:

Figure 39:

Figure 40:
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Summary

Recent developments in design/analysis methodology for
airfoils and ¢ des are p ted. Short gs of stan-
dard inverse methods in flows involving shock waves are
overcome by a modal geometry perturbation inverse method
driven by a least-squares pressure mismatch minimization.
The method is incorporated into an existing viscous/inviscid
zonal method. Simultaneous solution of the fiowfield equa-
tions and the pressure mismatch minimization equations is
obtained by a full Newton method. This leads to very large
computational savings compared to traditional minimiza-
tion methods. The method is also applicable to viscous flows
with or without separation regions present.

The Newton-based solution scheme, which yields sensi-
tivity information as a by-product, also allows very efficient
solution of general optimization problems. Perturbation of
the geometry and flowfield is specified outside of the New-
ton solver 8o as to drive any aerodynamic and/or geometric
quantity to its minimum. The availability of free sensitiv-
ity information and the rapid reconvergence property of the
Newton method after each optimization cycle again gives
very large computational savings over traditional optimiza-
tion techniques. Examples are given for drag minimization
of transonic and low Reynolds number airfoils, and loss min-
imization in a transonic compressor cascade. The applicabil-
ity of drag optimization methods to airfoil design is assessed.

1 Introduction

Inverse methods developed to date for airfoil and cas-
cade design have employed a wide variety of formulations.
For incompressibie or linearized compressible flows, Eppler
and Somers [1] have employed a complex-mapping method
initially treated by Mangler [2] and Lighthill [3]. Tran-
sonic inverse problems have been approached by solving the
full potential equation with Dirichlet boundary conditions.
Volpe and Melnik (4] transform the exterior fiow problem
into the interior of the unit circle, while Daripa and Sirovich
|5) solve the problem in the potential-streamfunction plane.
Bauer et al (6] use the alternative approach of solving the
compressible potential equation via complex characteristics.
Physical-plane inverse methods have also been reported, em-
ploying either the full potential equation as in the method
of Carlson (7}, or the Euler equations as in the method of
Giles and Drela [8].

A very useful feature of a compressible inverse method
is the ability to accept surface pressure distributions con-
taining shock discontinuities. The difficulty with any such
method [4,8] is that such a distribution will in general pro-
duce an airfoil surface slope discontinuity at the foot of the
shock. Although the discontinuity can be minimized by
specifying surface pressures which are consistent with the
correct shock pressure jump, such a requirement is a nui-
sance to the practicing airfoil designer.

For a majority of design problems, treating the flow as
inviscid is adequate and entirely appropriate. In certain
cases, however, especially those involving transonic and/or
low Reynolds number flow, the boundary layer diapl t
effects can very significantly alter the effective geometry gen-

erated by an inviscid inverse method. A useful feature of an
inverse method, therefore, is the ability to account for this
viscous displacement effect. In principle, one can subtract
from the airfoil contour a displacement thickness calculated
separately from the specified pressure distribution. In prac-
tice, this may lead to irregularities in the calculated air-
foil shape, since the displacement thickness always changes
rapidly at the transition or shock location. This irregular-
ity will then be directly transferred to the airfoil contour.
Also, this approach cannot be used for low Reynolds num-
ber flows (Re < 10°), in which some flow separation is in-
variably present and a displacement thickness distribution
cannot be generated from a specified pressure distribution.
The few viscous inverse methods reported to date, such as
those of Giles at al [9] and Hirose et al {10}, have not ad-
dressed these more general inverse problems. The transonic
viscous mixed-inverse case presented in reference [9], for ex-
ample, uses a specified pressure distribution which is shock-
free, and the transition point is outside the inverse part of
the airfoil. As a result, the resuiting modified airloil geome-
try is smooth. However, the method cannot be used if even
a small amount of separation occurs. The viscous inverse
solutions presented in reference [10] also appear to have dif-
ficulty in dealing with flow separation, and shocked cases
are not presented.

Although it might seem pointless to design for shock
waves and flow separation, the fact is that transonic flows
involving weak shock waves and low Reynolds number flows
involving small separation bubbles frequently represent op-
timum airfoil design solutions. Also, shock waves are some-
times inevitable, as in the case of low through a transonic
compressor cascade. Hence, an inverse method which can
readily handle such flows has substantial engineering inter-
est,

The inverse viscous formulation presented here is aimed
at generating airfoil shapes which are guaranteed to be smooth
even if flow separation and/or shocked flow occurs, and the
displacement thickness distributions have strong irregulari-
ties. The technique is to limit the airfoil geometry change
generated by an inverse solution to a relatively sinall number
(ten or less) of smooth geometric modes. Such a modal ge-
ometry perturbation formulation has been commonly used
in optimization-based inverse methods, such as those of Van-
derplaats (11], Hicka et al {12], and Cosentino and Holst [13].
The present method is novel in that it uses a Newton so-
fution technique to solve the flowfield equations simultane-
ously with a set of least-squares aarface pressure mismatch
constraints which govern the geometric mode amplitudes.
Each Newton iteration produces the sensitivities of all the
least-squares constraints to each geometric mode amplitude.
These sensitivities are then used to update the geometric
mode amplitudes within each Newton iteration.

The advantage of the present technique of generating the
sensitivities of the surface pressures (or any other flow quan-
tity) from the Newton solver is that it leads to very large sav-
ings in computational effort. Standard optimization-based
methods normally obtain the sensitivities by sequentially
perturbing each mode and recalculating a direct solution by
the "black-box" direct solver — a very expensive process
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even if only a few modes are used. The no-overhead gener-
ation of these sensitivities by the Newton method results in
the entire modal inverse solution requiring about the same
CPU time as one direct or one full- or mixed-inverse calcu-
lation — typically 5 minutes or less on a VaxStation 3200
machine. This is a substantial improvement over the pure
optimisation-based methods which only deal with the di-
rect solver as a “black-box”, and may require tens or even
hundreds of direct solutions to perform one inverse solution.
Furthermore, the inclusion of viscous effects into the present
inverse solver via a simultaneously-coupled integral bound-
ary sofution has little effect on the overall calculation time.
Again this represents a large cost advantage over previously-
reported viscous inverse solvers [10] which are based on the

Navier-Stokes equations and require hours of sup p
time for an inverse solution.
The Newton solution procedure allows I im-

plementation of general optimization procedures, such as
minimization of profile drag at fixed angle of attack or fixed
lift. The modal-inverse method is a particular optimization
method which incidentally can also be incorporated implic-
itly into the flowfield Newton solution. More general opti-
mization must be performed outside of the flow solver, but
is able to make full use of the “free” sensitivity information
available from the Newton method. The result is that any
well-posed optumntlon problem can be solved with a very

ional effort — ble to that needed
for several dlxec'. solutions.

The present modal-inverse and optimization methods
have been implemented as additional options to the success-
ful ISES airfoil/cascade code [9,14,8,15. This code already
has two standard inverse mode capabilities — a full-inverse
mode where the pressure is prescribed over the entire air-
foil surface, and a mixed-inverse mode where the pressure
is preacribed over only a part of the airfoil surface and the
geometry is prescribed over the remainder. Inverse solu-
tion examples have been presented in references [9,8]. The
new modal-i variant presented in this paper is simi-
lar to these two existing inverse formufations, except that
the airfoil contour change is restricted to the smooth geo-
metric modes as mentioned above. The smooth geometric
modes in the present formulation can represent either the
perturbation of one airfoil side or the perturbation of the
airfoil camber line. Allowing only one surface to change is
most useful in isolated airfoil design, where the two surfaces
are typically tailored separately at two different operating
conditions. Allowing only the camber line to change (which
preserves the airfoil thickness) is most useful in turboma-
“Yinery compressor blading design applications, where the
airfoil thickness is more or less fixed by draconian structural
requirements.

This paper will give a summary of the ISES code for-
mulation into which the present modal-inverse method is
incorporated. The Newton solution method unique to the
method will be addressed in more detail. An extension of
the method to optimisation problems involving drag mini-
mization will also be p ted. Design ples for airfoils
and turbomachinery blading will be presented to illustrate
the usefulness of the modal inverse method. The role of op-
timisation techniques in airfoil design will also be assessed.

2 Numerical Formulation of ISES Code

The ISES code has been extensively documented in the
literature [16,17,8,15,14). Here, only a brief description of
the basic method will be given. The boundary conditions
pertinent to the various direct, inverse, and optimisation
options sre central to the present work, however, and will
be presented in more detail.

3.1 Interior flowfield equations

The ability of the ISES code to handle both direct and
inverse problems stems from its streamline-based discreti
tiop of the steady Euler equations. This discretization is
similar to the older atreunlme cum'.ure methods [18] comn-
monly used in turb A of
key differences, however, allow the ISES code to handle tran-
sonic flows, and to easily accept inverse or direct boundary
conditions with or without boundary layer effects included.

Streamline curvature codes typically discretized the non-
conservative Euler equations expressed in local intrinsic s—n
coordinates. In contrast, ISES discretizes the Euler equa-
tions in conservative form. A conservation cell is defined
by two streamlines and three “quasi-normals” (they do not
need to be normal to the streamlines) as shown in Figure 1.
The standard Euler variables of density p, pressure p, veloc-
ities u,v, are located at the center of the quasi-normal cell
face. There is no convection across the streamline faces, so
that only the pressure p and the streamline node position
z,y are needed as unknowns there. The lack of convec-
tion across the streamline faces of each cell also allows the
continuity and energy equations to be replaced by simple
algebraic statements of constant mass flux and stagnation
enthalpy in each streamtube. This reduces the number of

tions and the ber of unknowns per cell to only two.
Only the normal position n of each grid node, and the den-
sity p on each quasi-normal cell face remain as variables.
The streamline grid is thus determined as part of the solu-
tion. This permits a very simple extension of the method
to inverse problems, where the airfoil is determined by the
calculated shape of its two bounding streamlines.

In supersonic regions, ISES adds a speed-upwinding dis-
sipation term to the streamwise p t of the
tum equation. This has the appearance of the physical bulk
viscosity term, and mainly comes into effect in steep speed
gradients, allowing shock waves to be captured. More de-
tails are available in references [16,17).
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Figure 1: Euler grid node and variable locations.




3.2 Newton solution method

A key feature of ISES is the global Newton solver which
is used to solve all the governing equations as a fully-coupled
system. This system contains all the interior equations,
as well as all the airfoil and farfield boundary conditions
(described later). An initial streamline grid corresponding
to incompressible flow, and a uniform density equal to its
freestream value, are used for the initial guess. The vari-
ables determined by each Newton iteration are the stream-
line node movement §n along a specified direction (typically
normal to the streamline), and the density change 6p at each
quasi-normal face. The linear system which governs these
changes for each Newton iteration has the form

én
J fp} = {~R (1)

where J is the known Jacobian matrix and R is the vector
of all residuals. Because each variable én and 6p affects
only the nearby residuals, the matrix is tightly banded for
the most part. However, the system also typically contains
several “global” variable changes §G which affect 1 large
number of residuals. Examples of these are the ch in
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Figure 2: Six streamline nodes and two density variables
determining surface pressure p;.

2.4 Direct ard inverse surface boundary condi-
tions

The farfield boundary conditions described above distin-
guish between cascade and airfoil cases, and between sub-
sonic and supersonic flows. However, whether a particular
case is viscous or inviscid, or is of the direct or inverse type,
is only determined by the boundary conditions on the air-
foil surface. At each streamline node on an airfoil surface,
one boundary condition is required to close the entire equa-

the inlet and outlet flow angles ¢ which enter the boundary
conditions in cascade cases, and the change in the circulation
T which affects the farfield boundary conditions in isolated
airfoil cases (the boundary conditions will be discussed in
more detail in the next section). The additional variables
are implicitly constrained by equations such as the Kutta
condition, which appear as additional residuals in the
vector R. The large, sparse, linear system (1) resulting from
each Newton iteration is solved by a custom banded solver.
For even the largest two-di ional probl tered
in actual applications — approximately 10000 variables —
this is faster and much more reliable than iterative solvers.

2.3 Farfield boundary conditions

The two interior variables n and p and the two inte-
rior momentum equations are unchanged for all the types
of flow problems handled by ISES. Cascade and airfoil cases
are distinguished only by the farfield boundary conditions,
which also depend on whether the flow at the boundary is
subsonic or supersonic. Typically, the streamline angle ¢
and the stagnation density p, are imposed at the domain
inflow boundary. The flow angle is either prescribed or cor-
rected for the solution farfield behavior obtained from the
Prandtl-Meyer function ¥(M) or an asymptotic compress-
ible potential expansion.

9= Ve subsonic cascade 2)
2 v(M) = Oy supersonic cascade  (3)
tand = &,/9, subsonic airfoil 4)

The Prandtl-Meyer boundary condition prevents spurious
reflection of waves back into the d and automatically
returns the unique-incidence condition of supersonic cas-
cades {19]. The airfoil farfield potential ®(z,y;T) depends
on the circulation constant T, which is implicitly determined
by impoeing a Kutta condition. It can also optionally in-
clude airfoil doublet terms for more accuracy. In addition to
giving the inflow angle, this potential also gives the farfield
pressure which is imposed on the outermost streamlines in
the airfoi! case. This high-order boundary condition treat-
ment allows the outer boundary to be placed within a few
chorda of the airfoil. References {14,8] give more details on
the airfoil farfield boundary conditions.

tion set. In an inviscid direct problem, the position of the
streamline adjacent to the airfoil is tixed, and hence the
movement én; of the node is simply set to zero.

én; = 0 (5)

In an inverse problem, the pressure at a surface grid node
(explicitly related to the neighboring density and streamline
node position variables shown in Figure 2) is set to a speci-
fied value. With s; being the arc length position of surface
node i, the pressure is enforced by the following expression.

Pi = Pupeclsi) + A; fis) + Az fas) (6)

The present streamline Euler formulation allows the surface
node pressure p; to be explicitly related to the neighboring
streamline nodes and density values as shown in Figure 2.
The linearization of equation (6) which is incorporated into
the Newton system ( ) therefore has the form

ap ap;
—8ny + —&px — 6A; [i(5) — 6A; f2(%)
z‘:am 3 z,,:ap. Px 11 2 J2

= Pupec(s) + Ay Ji(8) + Az fr(s) — pi (7)

where the summations are carried over the local n and p
variables which influence p;.

Note that the specified pressure distribution pye(s) has
added terms which consist of specified modes f(s) and fa(s)
weighted by unknown free parameters A, and A;. These
two parameters are additional “global” variables implicitly
determined during the Newton solution to satisfy two ge-
ometric airfoil closure conditions. In full-inverse problems
where the pressure is imposed over the entire airfoil surface,
it is appropriate to specify that the leading be closed, and
that the trailing edge gap be equal to some specified value
heg.

an,, = 0 (8)
ANy = hes (9)

The corresponding linearized equations are then

6"“‘::. - 5":‘;" = AN, (10)
Sn;ot — 6n:':." = hyp — ANy, . (11)
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In mixed-inverse problems, geometric closure must be spec-
ified at the left and right blend points i, and i, joining the
direct and inverse segments of the airfoil (Figure 3).
ang, =0
§ny, = —any,

(12)
(13)

an,, =0
éni, —an;,

The actual surface pressure distribution p(s) which re-
sults from an inverse solution will differ from the prescribed
distribution pipec(#) by the additional terms in equation (6).
This must of course be accepted in any inverse method as
originally proved by Lighthill {3] for incompressible cases.
Volpe and Melnik [4] have argued that the same must be
true for compressible cases. Note that it is possible to ob-
tain the exact specified pressure over a part of the airfoil
by setting the mode shapes fy(5) and fy(s) to be zero there,
and nonzero elsewhere. This is rarely necessary, however,
and simple linear mode functions (shown in Figure 3) have
proved to be effective in practice.

Woods [20] has treated the incompressible mixed-inverse
problem by using a conformal mapping into the pex po-
tential plane. His method required three integral constraints
on the specified surface speed, which is inconsistent with the
present scheme needing only two constraints. This inconsis-
tency is somewhat puzzling, particularly since the present
scheme gives reliable convergence with any specified pres-
sure distribution, and hence is likely to be well posed. It
is suspected that the discrepancy between Woods’s resuit
and the p method is h lated to regularity in
the pressure gradient distribution. The geometry regularity
condition at each blend point (12) still allows a disconti-
nuity in the surface curvature, which in turn produces a
/2 behavior in the local surface pressure on the prescribed-
geometry side of the blend point. Woods’s analytic flow-
field description precluded such behavior, and hence an ad-
ditional constraint naturally arose. In the present mixed-
inverse method, pressure gradient regularity can be enforced
by adding an additional free parameter term to equation (6).
Wooda’s requirement of only one additional constraint sug-
gests that if regularity is obtained at one blend poiut, the
other point will be regular as well. However, this would
only be true if no discretisation error were involved. To
allow perfect control at each blend point, two additional
terms A, f3(s) and A, fi(s) can be added to equation (6) as
indicated in Figure 3. The additional unknowns A, and A,
are then determined by enforcing the second derivative in
pressure at the blend points to be equal to a fixed values
stored from the seed airfoil solution. In discrete form, this
is expressed as

Pt ~ 25+ P = (B~ 2 4 Pin) g (14)
where i is the index of a blend point. This equation is Jin-
earised in terms of the local Euler variables 6n, §p , and
added to the Newton system. Instead of constraining the
second derivative in the p , it is of possible to
directly specify the curvature at the blend points. However,
the surface pressure is the relevant aerodynamic quantity,
and constraining it instead of the curvature has been found
to be more effective. The mode shapes fy(s) and f,:9) for
these additional constraints are again arbitrary, but the best
results are obtained if each mode is restricted to be nonsero
only in the vicinity of the correspor.ding blend point to be
constrained. Finally, it must be mentioned that the /2 be-
havior in the surface pressure is often imperceptible, and
becomes apparent only if severe changes in the surface pres-
sure distribution are specified. For most cases, only the two
leading additional terms added to the specified surface pres-
sure are adequate.

P = Prpec * AL(S) ¢« A (5] »...

s

hi

Figure 3: Mixed-i
nuity constraints.

with two g

se p try conti-

The key ieature of the ISES code which enables the wide
variety of inverse problems to be specified is the global New-
ton solution method and the associated direct banded ma-
trix solver. The solver sees a boundary condition as simply
another equation in the Newton system — the particular
form of that equation is immaterial (it only needs to produce
a sufficiently well-conditioned linearized system). Thus, any
well-posed boundary condition can be easily implemented
with no change to the remainder of the overall solution pro-
cedure. An iterative solution strategy would strongly de-
pend on the boundary condition equation stencil as well as
the magnitudes of the stencil elements. Particularly trouble-
some would be the determination of the global variables A,
- A4 which influence all the surface nodes where the pressure
is specified. The influence of these variables on the closure
constraints (9,12) t be easily obtained, especially for
transonic fiows. They would therefore be difficult to incor-
porate into a reiaxation scheme.

3.5 Specified thickness and loading

For turbomachine blading calculations, it is often highly
advantageous to strongly constrain the structural properties
of a thin cascade airfoil during an inverse calculation. The
simplest approach is to preserve the thickness and modify
the ber line by imposing the loading Ap across the air-
foil. Note that this allows only partial control of the pressure
distribution on one particular surface, but this concession
must be made to avoid an over-specified problem.

In any direct or inverse problem, two boundary cond-
tions are needed at each surface node position — one for

each airfoil side. In the thickness/loading inverse problem,
these two conditions are
i = fepecl8i) (15)
Ap = g™ — P = Appeisi)
+ ALfHis) + A fis)  (16)

where ¢; is the airfoil thickness at node 5. Equation (15) in
linearised form

AP — 5™ = lepedd) — & (17)

while the linearised form of equation (6) has the same form
as equation (7). These linearised equations are then in-
cluded into the Newton system as usual.

The appropriate constraints on the free parameters A,
and A, in equation (16) are the usual geometry continuity
constraints st the left and right blend poinis 5;,ix joining
the direct and inverse airfoil segments.




SnlP 4 snl = 0 (18)
BT+ a0 (19)

The one exception to this is the special case where the in-
verse segment extends all the way to the trailing edge, and
the trailing edge is left free to move up and down. In this
case, the two extra terms in equation (16) are not used.
Correspondingly, two eq must be discarded to retain
a closed system, these being the right geometry continuity
equation (19) and the trailing edge Kutta condition. The
latter is taken care of by equation (16) being applied at
the trailing edge. Only the remaining left geometry closure

quation {18) is i d, and this now implicitly constrains
the airfoil circulation in airfoil cases, or the exit flow angle
or exit pressure in cascade cases.

3.8 Leading edge geometry considerations

The full-inverse formulation in the ISES code has not
found to be particularly effective for blunt leading edge ge-
ometries. Difficulties arise near the stagnation point, where
the surface contour is extremely sensitive to the local im-
posed pressures. This is to be expected of any inverse method
which requires pressures rather than surface speeds to be
specified, as the pressure variation near the stagnation point
is quadratic wkile the speed variation is linear. If the pre-
scribed pressure even slightly exceeds the stagnation pres-
sure, the method must fail. The mixed-inverse formulation
circumvents this difficulty by allowing the geometry to be
imposed near the stagnation point, and hence is a much
more effective and robust design tool for airfoils with blunt
leading edges.

For airfoils with very small leading edge radii, such as
turbomachinery compressor blades, it is often advantageous
to not resolve the leading edge, especially in preliminary
design stages. This lack of resolution eliminates the stagna-
tion point in the numerical solution, making the full-inverse
method practical for these canes.

3.7 Inviscid inverse example: Transonic airfoil

Figure 4 s1 »ws a NASA supercritical airfoil from refer-
ence [21] operating at M = 0.75 , C, = 0.8. Ten Newton
iterations were required for this direct calculation, which
consumed a total of 12 minutes CPU time on a VaxStation
3200 for the typical 132 x 32 grid. A fairly strong shock wave
occurs at this condition on the suction side of the airfoil, pro-
ducing the unacceptably high wave drag of Cp = 0.01095.
This shock can be weakened via a mixed-inverse redesign
of most of the upper surface. Figure 5 shows the origi-
nal and new specified C, distributions. Although the shock
wave could be replaced by an isentropic recompression, the
resulting airfoil would likely have undesirabie off-design per-
formance. Also, a smooth recompression often results in a
stand-off shock 122,8) which still carries a significant wave
drag penalty. For these reasons, specifying a weak shock at
the design point usually produces a better overall airfoil.

Figure 8 shows the final surface C, and geometry of the
new airfoil resulting from the inverse calculation. The angle
of attack a was left as a free variable in the overall Newton
problem to allow the design C; = 0.8 to be maintained ex-
actly. This also caused a slight change in the lower surface
C, distribution. Four additional Newton iterations (5 min-
utes CPU on a VaxStation 3200) were needed to converge
this case starting from the direct solution. The small and
certainly ptable discrepancy bet the specified and
final surface C, distributions is the two additional terms in
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equation (6) which were set to obtain geometric closure at
the two blend points.

Figure 7 shows the new calculated airfoil shape to have
a slope discontinuity at the shock location, and the local
geometric angle # and normalized curvature xc to have os-
cillations there. These features arise from the specified C,
surface values within the smeared shock being inconsistent
with the vaiues which would be obtained on a smooth sur-
face. In particular, no special attention was paid to ensur-
ing that the surface C, near the shock was consistent with
the correct Rankine-Hugoniot jump condition and the post-
shock Zierep pressure singularity. This consistency is not
easily achieved, as the Zierep pressure singularity depends
on the curvature of the final airfoil which is not known a
priori, and the numerical structure of the smeared shock
is difficult to predict. If there is no shock within the in-
verse segment, such problems of course do not arise, but
here the geometric disturbance at the shock is a continual
nuisance when many redesigns are performed. Elimination
of this problem is one of the primary motivations behind the
modal-inverse method described in the next section.
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Figure 4: 132 x 32 grid, Mach contours, and surface C,
distribution for inviscid supercritical airfoil.
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for mixed-inverse redesign.

calculated Cyp on new airtoil
-1.2

. 1€

. specified G v s 12
-0.9 1.1
0.8 — 1.6
0. 0.9
02 0.8
o0 0.7
0.2

0. Jto.e
(X 0.5
0.8 - e Z::
0 idd 8:1

B Xy ou’C

Figure 6: Specified and new calculated C, distributions on
redesigned airfoil.

redesigned
Xwigiml ‘

6.2 o 0.6 0.8 10 1.2 1%

Figure 7: Comparison between original and mixed-inverse
redesigned airfoil. Surface angle and curvature distributions
on redesigned airfoil.

3 Modal-Inverse Formulaticn

The modal inverse formulation implemented in ISES is
actually more closely related to a direct than an inverse
method. The boundary condition applied at a modal-inverse
surface node is L

= Z by getai)

=1

which is equivalent to perturbing the airfoil contour by the
L geometric modes g(s). The same perturbation condition
can also be applied to opposing points on the two airfoil
surfaces. This preserves the airfoil thickness distribution,
and is equivalent to perturbing the airfoil’s camber line. The
mode shapes specified in the ISES code are shown in Figure
8. Since the modes are smooth, the perturbed geometry is
also guaranteed to be smooth.

(20)

8n = 167, g (s

9 %
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s

Figure 8: Camber-line and single-surface modal geometry
perturbations.

The mode amplitudes i, are determined by minimizing
the integrated mismatch between the specified and result-
ing surface pressure distributions. The discrete form of this
mismatch integral I is defined as

1
=520~ Papect®i))’ (21)
f

where the summmation is taken only over the inverse segment.
The L minimisation constraints with respect to all the mode
amplitudes are obtained by setting the integral variations to

gero.
aI
dn,

Linearising this about the current solution, one obtains L
Newton equa.tionl for the L mode variable changes 61i.

):[a" OB 4 (o~ Prpectsi)) Bn,..( P‘)]

= —E(A—M(«))E ; 1<L<L(29)

E(n ""“"’)an = 1<e<L (22)

The quantity in the square brackets is therefore an element




of the Hessian matrix for the pressure-mismatch integral
1. 1t is necessary in practice to neglect the second term
inside the brackets, since calculation of the cross-sensitivity
of p; with respect to fi; and i, is impractical. The Newton
equations actually used are therefore the following.

& o= v 9B O
O A= Az
z=:1 v Ofim O

Ip;
= — 3 - Pt} gr  1SLSL(24)
i e

Fortunately, the neglected term has a minor impact on the
terminal convergence rate of the global Newton procedure,
SiNCE Py — Pupectdi) becomes small and dp; /A, rapidly tends
to a constant as convergence is approached, making the en-
tire term a higher-order quantity.

Even if the second term in equation (24) is discarded,
it is still not poesible to immediately incorporate the sys-
tem (24) into the global Newton system in the usual man-
ner, since the sensitivities 8p; /9% are normally known only
after the global Newton system is solved. This problem is
circumvented by the following modified Newton procedure.

The L columns corresponding to the Newton variables
b7y are placed on the righthand side, to obtain a Newton
system of the form

én

(1)

bpp = {—R} + bRy (g} + Ofi (g,
G

where the unknown vector on the lefthand side contains all
the flowfield Euler unknowns én, 6p, G , and R is the vector
of all the interior flowfield equation, boundary condition,
and global constraint residuals. Since J is now a square non-
singular matrix, the system (25) can be solved by Gaussian
elimination to obtain a partially-determined solution.

én &6
bpp = {68} + 6Ry {Big--- + 6Ry (Bu)  (26)
5G G

The vectors §fi, 67, and &, are now known, and the geomet-
ric mode amplitude changes 6, are still undetermined. The
surface pressure at any node is a known function p(n, p) of
the neighboring streamline node positions and density vari-
ables (see Figure 2), so one can explicitly determine the sen-
sitivity of each surface pressure p; to each geometric mode
amplitude i, as follows.

O _ g Ondm e Omdn 4oy o)
1]

a'l.ll - Yy Bn,, Bv‘u ap. 87’1‘ !
where the summations are carried over the nodes adjacent to
node ¢, shown in Figure 2. As discussed earlier, dp;/9n, and
3pi/ Bps are explicitly calculated by differentiating p(ns, 1),
and dn, /97, and dp; /3, are simply the known elements of
the column vector @ in the vector equation (26). With all
the sensitivities dp; /37, thus determined, the L equations
(24) become an L x L linear system for 84, .. .67, which is
easily solved. Substituting the resulting 67 values into the
vector equation {26) then fully determines all the remaining
Newton changes én and £p at all the flowfield grid nodes.
The Newton update can then proceed as usual. The stream-
line adjacent to the modal inverse segment will move during
this update, thus aut tically adjusting for the ch in
the airfoil geometry.

As mentioned earlier, this modified Newton solution pro-
cedure does not constitute a “proper” Newton method, as
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the modal constraints (24) are not the exact linearized forms
of the least-squares constraints (22). The overall conver-
gence rate is therefore no longer quadratic, but degrades to
linear., However, the discarded linearization terms are so
small that an order of magnitude decrease in the residuals
per iteration is typically obtained in practice. Four or five
iterations therefore suffice to converge a modal-inverse case.

3.1 Specified thickness and loading with Modal-
Inverse

As mentioned in the previous section, turbomachinery
blading airfoils lend themselves well to inverse calculations
with a specified thickness and loading Ap. This same ap-
proach can also be easily incorporated into a modal-inverse
method. In this case, the geometry perturbation modes are
used to equally change each surface rather than the single
surface. This naturally preserves the airfoil thickness and is
equivalent to only perturbing the airfoil’s camber line. The
discrete pressure-mismatch integral now takes the form

I= %): (Api ~ Apipuctsi))’ (28)

where the summation is performed only over the part of
the airfoil where the camber line is being perturbed. The
remainder of the solution algorithm is essentially identical
to the one-surface modal-inverse method described above.

3.2 Inviscid Modal-inverse example: Transonic
airfoil

The transonic airfoil inverse example presented in the
previous section is an obvious candidate for a modal-inverse
calculation. Using the same specified C, distribution shown
in Figure 5, a modal-inverse calculation is performed using
the five geometric perturbation modes shown in Figure 8.
Again, a is left as a free variable to allow the design C, = 0.8
to be maintained. Five Newton iterations (7 minutes CPU
on the VaxStation 3200) are required for convergence, start-
ing from the converged original airfoil case. The final sur-
face C, is shown in Figure 9, and the new airfoil geometry
is compared with the original geometry in Figure 10. As ex-
pected, the new geometry is smooth, and the match between
the specified and resulting surface pressures is certainly ac-
ceptable. A better match could naturally be obtained by in-
corporating more geometry perturbation modes. The com-
putational effort increases by only about 3% for each addi-
tional mode, 8o using many modes is very attractive. The
low cost per mode is due to each mode only adding a right~
hand side to the Newton system. This righthand side is a
trivial additional burden for the direct banded matrix solver
used in ISES. For iterative solvers, the cost per mode would
naturally be higher.

\cjlcum!od Cy on new airfoit
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Figure 8 Specified and new cal ulated C. distributions on
airfoil redesigned using modal-inverse.
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Figure 10: Comparison between original and modal-inverse
redesigned airfoil. Surface angle and curvature distributions
on redesigned airfoil.

The ISES code is structured so that the specified C, dis-
tributions can be easily edited and the solution reconverged
at any time. The relatively quick execution, particularly for
subcritical cases which converge in 2-3 iterations, allows the
designer to efficiently determine the most effective solution
1o a particular airfoil design problem.

4 Viscous Inverse Solutions

The ISES code can optionally incorporate viscous effects
into any direct or inverse Euler solution by modifying the
airfoil (and wake) surface boundary conditions via the dis-
placement surface concept. In the direct and modal-inverse
modes, the condition of the surface streamline being fixed

- to the airfoil is repfaced by the requirement that the stream-

line be displaced from the airfoil surface by a distance equal
to the viscous displacement thickness. Referring to Figure
11, the linearized boundary condition which replaces equa-
tion (5) in direct viscous problems is

bny — 6(87) = & - anm; (29)

where 6° is the displacement thickness, and an is the stream-
line offset distance. On the trailing wake, the gap between
the two streamlines bounding the wake is likewise driven
to the wake displacement thickness, and also the pressure
jump across the wake is specified to be zero. More details
are given in references (15,23]. In modal-inverse solutions,
the boundary condition which replaces equation {20) is

L
Sny ~ 6(8)) = & — any + Y Shegus) (30
=

so that the streamline is still offset from the airfoil by §° ,
but the airfoil surface itself can be displaced by the geometry
modes. The wake displacement condition is unaflected.

The boundary conditions modified for the displacement
effect have introduced the new variable §(6°) at each airfoil
surface and wake node into the Newton system. Two ad-
ditional viscous variables are further added to describe the
viscous layer, these being the Newton changes of the mo-
mentum thicknesa §8 and the max shear stress coefficient
§C,. To obtain a closed system, three new equations must
therefore be introduced at each node to govern the three
new variables. As described in reference (15, ISES employs
the standard von Karman integral momentum equation, the
kinetic energy shape par quation, and a dissipation
lag equation. In turbulent flow regions, these equations have
the following form,

@
) (31)
LU S T
di’ = #(0,8,u,C) (33)

Like the surface pressure p; in Figure 2, the boundary layer
edge velocity is a known function u,(n;, ps) of the neighbor-
ing Euler variables n and p , and hence does not constitute
an additional unknown. In laminar flow regions, a maxi-
mum disturbance amplitude variable N replaces C,, and an
amplification equation of the form
& = s (30
pl the lag equation (33). The transition point is de-
termined by the variable N exceeding a specified critical
value N.. The result is roughly equivalent to the ¢® tran-
sition prediction method of Smith and Gamberoni {24] and
van Ingen [25].

The boundary layer equations are discretized using two-
point central differencing and their linesrized forms are
added to the global Newion system. The Newton changes
§(8°) , 60, 6C;, needed to update the boundary layer solution
are thus calculated simultaneously with the Euler solution
in both direct and inverse cases. Because the viscous and in-
viscid sol are fully coupled in this solution procedure,
flows involving separation can be readily computed.
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Figure 11: Viscous wall boundary conditions at direct and
inverse points.




For full- or mixed-inverse cases with boundary layer cou-
pling included, the specified-pressure boundary condition
(6) is h d. The boundary layer equations are still
solved as part of the global Newton system, but on the
specified-pressure portions of the airfoil, §* no longer affects
the position of the streamline nearest the airfoil surface. In-
stead, the airfoil contour is simply offset from the inviscid
streamline by a distance equal to §° as shown in Figure 11.
In full-inverse cases, this is essentially equivalent (except
for the wake displacement effect) to performing a standard
specified-u, boundary layer calculation and correcting the
airfoil shape by 6° as a post-processing step. In mixed-
inverse viscous calculations, the direct boundary condition
(29) is used at the fixed-geometry portion of the airfoil, and
hence there is a two-way pling b the boundary
layers and the inverse solution ﬂowﬁeld

As discussed in the Introduction, if transition or a shock
wave occurs within the inverse segment, the displacement
thickness will change rapidly, and this change will be trans-
ferred to the calculated airfoil shape as a geometric irreg-
ularity. This is a nuisance in viscous inverse calculations,
and is one the motivations for the modal-inverse method.
A far more serious problem in both full- and mixed-inverse
problems is that the overall solution will fail outright if the
boundary layer separates anywhere the surface pressure is
imposed. At such locations the boundary layer is effectively
being solved in the conventional specified-u, mode, which
is known to allow unconstrained perturbations in §° at sep-
aration (the cause of the well-known Goldstein separation
singularity). This in turn produces a singular Jacobian ma-
trix in the global Newton system and results in solution
failure. The direct and modal-inverse boundary conditions
(29,30) sidestep this problem by directly constraining the lo-
cal §° perturbations. The modal-inverse method can thus be
safely used with limited separation regions present. One in-
stance where the modal-inverse method is expected to fail,
however, is when one or more of the geometry perturba-
tion modes g,(s) in equation (30) is confined to an entirely-
separated region. This geometry mode will then have al-
most no influence on the surface pressure distribution, since
it cannot affect the inviscid streamline pattern and pres-
sure field through the “soft” separated boundary layer. As
a consequence, dp;/di, in equation (24) will nearly vanish,
and an ill-conditioned system for all the mode amplitude
changes 67 will result. In practice, this problem can be eas-
ily avoided by selecting broadly-distributed modes such as
those pictured in Figure 8.

4.1 Viscous modal-inverse example: Low-speed
compressor cascade

Figure 12 shows the calculated and experimental pres-
sure distributions for a low-speed compressor section tested
at UTRC and reported in refi {26]. Transitional sep-
aration bubbles are predicted on both surfaces due to the
refatively low Reynolds number. In order to increase the
flow turning and the stage work of this cascade, a thick-

ness/loading modal-inverse calculation can be performed with

an increased specified loading. Figure 13 shows the calcu-
lated and new specified surface loading. The airfoil cam-
ber line has been allowed to deform everywhere with the
leading edge point being fixed. For commonality with the
usual single-side inverse mode, the pressure p on each sur-
face rather than the loading Ap is input by the user. For
the thickness/loading inverse option, h , the program
only makes use of the dlﬂ'erence Ap = po — pf‘

In order for the cascade to achieve its higher loading,
its trailing edge must be set free to move so that the over-
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all camber line can increase with the inlet flow angle fixed.
Since the geometric perturbation modes pictured in Figure 8
cannot allow the trailing edge to move, an additional mode
of the form g = s—sin(s) has been added to the system. The
result of the modal-inverse calculation is shown in Figure 14.
The turning angle has been increased by 16°. The specified
and resulting loading distributions match closely, although
the pressure distribution on an individual surface cannot be
controlled independently — an unavoidable feature of the
thickneas/loading inverse formulation.

~2. 07153 UTRC BUILD 2 HOD
i wACH = 0. 118
i AE - 0.550:10%
sl AINL « 39.50
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Figure 12: Calculated and experimental C, distributions on
low-speed compressor cascade.
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Figure 13: Specified surface loading Ap for modal-inverse
redesign.

specified loading
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Figure 14: Result of modal-inverse redesign of low-speed
compressor section.
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5 Optimization Applications

The present solution scheme based on the Newton method

lends itself well to embedding in a global optimisation scheme.

Because gradient information on any aerodynamic quantity
is a nearly “free” by-product available after each Newton
ltentlon, thlt quantity can be readily driven towards a

J [27] has recently reported an
optmnhon—type inverse technique which employs an inex-
pensive perturbation sensitivity calculation employing the
same operator as the full-potential equation which governs
the flowfield. This is similar to the present method in that
the sensitivity vector for each flow variable can be calcu-
fated in parallel with the flow solution, and hence repeated
perturbation of a direct solution is avoided.

The geometry perturbation modes used in the modal-
inverse method can be included in the inviscid or viscous
solid wall boundary conditions (20,30) at any time. To re-
cover the standard direct or viscous problem, the trivial
Newton system constraints

6hg = 0 (35)
can be used in lieu of the modal-inverse pressure mismatch
minimization constraints (22). A more interesting case re-
sults, however, if the amplitudes §fi, are specified so that
the airfoil shape and flowfield are altered to obtain desired
aerodynamic or geometric properties. The modal-inverse
problem described earlier is a specific example of such a
method, with the required aerodynamic property being a
least-squares fit to the specified surface pressure distribu-
tion. In the general case, the required property is that an
arbitrary cost function I be minimized. For airfoil design, a
typical goal is to minimize drag at a fixed lift, hence

I=¢Cp (36)
with the undc..tanding that any variation of I is at a fixed
Cy.

In ISES, the airfoil profile drag or cascade profile loss are
determined from the viscous momentum thickness 8,, at the
last wake point, and from the shock wake momentum defect
at the domain exit plane, much like in an experimental wake
survey.

o= T2 ST lm-w)m ()
D= rPco??.,Ci Qoo — g5} ™;j

The summation is taken over all the streamtubes with m,

being the mass flux in streamtube j, and ¢; corresponding

to the streamtube speed which would result if the flow isen-

ically reached the fr pressure (or inlet pressure

for cucldes) This isobaric speed ¢, is readily obtained from

the wake total pressure profile p, , and the known freestream
static pressure p,, and total entha.lpy R,.

#= - ()]

Formally, the equations governing all the L geometry

(38)

mode amplitudes are obtained by setting the variations of
I = Cp to szero.
O _ 1 2 On 0y
e~ <O pollc Bnedp,
=0 ; 1<t<L (39)

Here 3¢;/3p,; is obtained directly by differentiating rela-
tion (38). The mode amplitude sensitivities 38/, and
3p,;/O%, are obtained directly from the appropriate ele-
ments in vectors &, in the partially-determined Newton so-
lution (26). The fundamental difference between the drag
minimization constraints (39) and the pressure-mismatch
minimization constraints (22) is that the latter can be ap-
proximately linearized into the form given in equation (24)
and incorporated into the overall Newton system. Equa-
tions (39), in constrast, must be solved outside of the New-
ton system by using classical minimization methods such as
steepest-descent or conjugate-gradient. The two different
formulations are illustrated in Figures 15,16. In general, any
type of cost function in least-squares form can be included
implicitly into the Newton solution, while more general cost
definitions must be treated explicitly. The simple steepest-

descent method, for example, is impl ted by explicitly
setting

Ry =

—e Eon ;
outside of the Newton iteration cycle, with ¢ an empirical
constant. These mode amplitude changes are then used
to generate the new airfoil geometry, which will decrease
the cost I for a sufficiently small ¢. An important advan-
tage of the present streamline-based method is the flowfield
can be updated together with the airfoil geometry, with the
streamline grid moving to accomodate the new airfoil shape.
Specifically, the flowfield is updated by the changes én, &p,
6G, calculated directly by inserting the mode amplitude
changes 61, into the inverted Newton system (25) available
from the last Newton iteration, as indicated in Figure 16.
This update, corresponding to the linearized response of the
flow to the geomeiry perturbation, is effectively one “free”
Newton iteration for the next estimate of the flow which
minimizes I. A few additional Newton iterations are then
performed to converge the flow with the airfoil geometry
frozen to ensure that the sensitivities 8I/97, are sufficiently
accurate for the next optimization step.

1<t<L (40)

Although for the drag minimization problem the modal
geometry perturbations are incorporated explicitly outside
of the global Newton solution, this approach is still very ef-
ficient compared tc the brute-force optimigation technique,
since the cost sensitivities 31/, are obtained cheaply as
by-products of the Newton solution. The present method
also lends itself well to multi-point optimization, since the
external geometry perturbation indicated in Figure 16 can
in fact receive contributions to the cost function I from any
number of parallel solutions, which may correspond to dif-
ferent specified Cz,, Reynolds number, and/or Mach number
values. The geometry perturbations &7, would then be sent
to each solution which would then be reconverged indepen-
dently until the next optimization step.

It is important to note that the solution to any op
tion problem is influenced by the global constraints imposed
on the flow probl For ple, the itivities 98, /37,
will take on different values if the airfoil a is held fixed, or
the C is held fixed. Each instance will clearly lead to a
different optimal airfoil eolution. In actual applications, it
may also be necessary to add geometric constraints to the
cost function I, such as a prescribed maximum thickness or
enclosed area. In this case, these geometric terms will add
contributions to the sensitivities /8%, which can be ob-
tained in a straightforward manner using the known mode
shapes.
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$.1 RAE 3832 airfoll optimization example

Figure 17 shows the calculated solution for the RAE 2822
airfoil Case 10 experiment reported in reference {28]. The
freestream Mach number of 0.75 and the specified exper-
imental Cy = 0.743 produce a shock-induced separation
over about 10% of the chord, which was also observed in
the experiment. The airfoil is well past the drag-divergence
point, as evidenred by the rather high le-sl of computed
drag Cp = 0.0..9. In an attempt to reduce the drag (or
equivalently increase the drag-divergence Mach number), a
viscous optimization calculation was performed to minimize
the simple cost function I = Cp. The five geometric per-
turbation modes pictured in Figure 8 were specified to act
on most of the upper surface from 1.5% chord to the trail-
ing edge. For simplicity, no constraints were placed on the
enclosed area or maximum thickness, these being unable to
change drastically anyway due to the leading edge radius
being fixed.

The internal Newton loop illustrated in Figure 16 was
~xecuted with the original Cp = 0.743 being specified, ef-
fectively giving an L/D maximization problem. Five opti-
mization passes were performed, with the geometry mode
amplitudes calculated from equation (40) using ¢ = 0.002,
with the mode shapes themselves having unit amplitude. A
significantly larger step size would result in erratic changes
in the cost function from one optimization atep to the next.
Two or three Newton iterations were used between each
optimization step for & total execution time of 15 minutes
CPU on the VaxStation 3200 computer — roughly the time

ded for two isolated direct soluti The evolution of
the cost function Cp during this process is shown in Fig-

Figure 16: Newton method with external optimization.

ure 18. Figure 19 shows the final calculated surface C,
distribution on the new airfoil and a comparison between
the old and new geometries. A rather drastic drag decrease
from Cp = 0.0229 to Cp = 0.0129 has been obtained, with
most of this reduction coming from a decrease in wave drag
as indicated in Figure 18. While the drag decrease appears
very attractive, it is in fact largely illusory. Figure 20 shows
Mach-sweep calculations for the two airfoils. Apparently
the drag reduction obtained by the optimization procedure
at M = 0.75 carries a severe drag penalty at lower Mach
numbers, which in actual applications would probably be
unacceptable. Clearly, the optimization approach must be
used with great caution.
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Figure 17: RAE 2822 airfoil calculation and experimental
data.
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Figure 18: Reduction in total and wave Cp during RAE
2822 airfoil optimization.
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Figure 20: Drag-divergence behavior for original and opti-
mized RAE 2822 airfoils.

5.3 Transonic compressor cascade optimization
example

Figure 21 shows a calculated viscous solution for a typ-
ical transonic compressor tip section cascade. The inlet
Mach number is 1.3, and the stage pressure ratio is 1.95.
The fairly fine 132 x 32 grid used in the calculation is nec-
essary to capture the total pressure loes of the small leading
edge bow shock, whose wake is visible in the Mach contours
in Figure 21. A massive shock-induced separation region ex-
tends over nearly the entire suction surface paat the shock,
and the total stage losses are correspondingly bigh. Exami-
nation of the flowfield reveals that the cascade has excessive
rear camber which aggravates the separation problem. To

find a more effective camber shape, an optimization calcu-
lation can be performed to minimize the cascade loss. A
suitable definition of this loss is Cp as defined by equa-
tions (37,38). With this definition, the first term in equa-
tion (37) represents the blade profile loss, while the second
term represents the total pressure loss of the bow shock and
main passage shock.

To preserve the inlet Mach number, incidence, and mass
flow, which are typically imposed by the specifications on
the overall turbomachine, it is necessary to preserve the ge-
ometry of the front supersonic portion of the blade. This
portion, which determines the inlet incidence and Mach
number via the upstream-running waves [19}, is therefore
left fixed during the optimization. Specifically, only the rear
75% of the blade is allowed to be deformed by the geometric
modes. Both sides are specified to be perturbed equally, so
that the airfoil thickness and hence structural properties are
affected as little as possible. As with the low-speed inverse

d ple pr d earlier, camber-changing modes
were added to those shown in Figure 8 to allow the trailing
edge to move.
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Figure 21: Final 132 x 32 grid and calculated Mach contours
(AM = 0.05) for transonic compreasor cascade.
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Five optimisation cycles were performed for this case,
using € = 0.01 in equation (40). Figure 22 shows the re-
sulting flowfield and compares the old and new geometries.
The evolution of the loes during the optimization process
is shown in Figure 23. A very substantial 50% loss reduc-
tion has been achieved, this resulting entirely from a reduc-
tion in the blade profile loss — the shock loss has not been
changed significantly. Although the optimum has clearly not
yet been reached, it was necessary to halt the optimization
cycle to prevent the passage shock from being expelled from
the inlet and “unstarting” the cascade. As Figure 22 shows,
the passage shock is now closer {o the inlet, indicating that
the maximum pressure ratio sustainable by the cascade has
in fact decreased. The exit flow angle has also decreased
by 4.5°. The loss reduction has therefore been attained at
the price of reduced stall margin and reduced stage work.
Whether this tradeoff is favorable can probably only be an-
swered by considering the characteristics and specifications
of the entire compressor.
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Figure 22: Calculated flow for optimized compressor cascade
and geometry comparison.

.
010-\.\
¢, M total toss
o e e
—_—
005+
shock loss
—_— N . . .
o i 23 i 5

optimization cycle

Figure 23: Reduction in total and shock loss during com-
pressor cascade optimization.

5.3 LA3203A airfoll optimization example

The LA203A is a low Reynolds number Liebeck airfoil
reported in reference (29]. Figure 24 shows the calculated
and experi | C, distributions at a Reynolds number of
250000. The large transitional separation bubbles visible in
the calculated and experimental surface pressure distribu-
tions are typical for this Reynolds number regime. As in
the previous tr ic airfoil ple, an optimigaticn cal-
culation was carried out allowing the entire upper surface
from stagnation point to trailing edge to deform. Eight op-
timization cycles were needed to minimize drag with the lift
coefficient fixed at its original value of 1.08. For this case,
it was possible to use the relatively large steepest-descent
step size ¢ = 0.02 compared with the transonic airfoil case
above.

Figure 25 shows the final calculated C, distribution on
the new airfoil together with the geometry comparison be-
tween the new and original airfoils. The optimization has
changed the airfoil so that a weak adverse pressure gradi-
ent is now imposed over most of the upper surface ahead of
the transition locati This increased disturbance
amplification and forces transition to occur earlier in the
bubble. The resulting reduction in the bubble’s size has de-
creased the overall drag coefficient by 18.5% from 0.01485
to 0.01210. A similar optimization has been performed at
CL = 1.5, with the results shown in Figure 26. Again, asub-
stantial reduction in drag has been achieved, although the
optimized airfoil shape is quite different from the C; = 1.08
case.
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Figure 24: Calculated and experimental surface C, for
LA203A airfoil.
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Figure 25: Calculated C, distribution for airfoil optimized
at C, =1.08.
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Figure 26: Calculated C, distribution for airfoil optimized
at Cp, =1.50.

To investigate the effect of the optimizations on the over-
all airfoil performance, a polar sweep was calculated over the
entire usable a range of each airfoil. The polars are plot-
ted in Figure 27, together with the polar for a two-point
optimized airfoil described below. It is clear that the drag
advantage gained through a single-point optimization proce-
dure is realized only in the vicinity of the design Cy. In fact,
the two single-point “optimized” airfoils can be considered
inferior to the original airfoil in an overall sense.

This optimization study serves to illustrate the pitfalls
which can befall a simple optimization approach to airfoil
design. The two-point optimization, as suggested in refer-
ence {30], was intended as a poesible solution to this prob-
lem. The cost function was defined as a weighted sum of
the Cp values at the two C, operating points used in the
single-point optimizations.

1 2
1= E(CD)C,FLN + g(cn)cﬁx.so (41)

A larger weight was placed on the C; = 1.50 point since
the single-point polars in Figure 27 suggest that the Cp =
1.08 point might cause excessive loss in Crmax if allowed to
strongly influence the optimization. Over one optimization
cycle, the two solutions were independently converged in
parallel. The sensitivities from each solution were then used
together to determine the mode changes needed to drive the
cost function (44) to its minimum. The changes were then
sent to each solution and the cycle was repeated. The final
ptimized C, distributions at the two “sampled” points are
shown in Figure 28. Interestingly, the two-point optimiza-
tion produced a weaker adverse pressure gradient ahead of
the separation bubble than either of the single-point opti-
izati The g try of all three new airfoils is com-
pared with the original LA203A geometry in Figure 29.

Figure 27 shows that the two-point airfoil is fairly satis-
factory, with an attractive reduction in minimum Cp gained
at the expense of a small but still significant loss in Crmax
and a loss in thickness of about 1% of chord. Also, maximum
Cp/Cp has not changed significantly, while the endurance
parameter C,'_/ ?/Cp has decreased slightly. Overall, the new
airfoil may be slightly better or slightly worse than the orig-
inal LA203A depending on the application.

It may be possibie to further improve the two-point op-
timization result by a better choice of the C values where
the cost function is to be evaluated. However, these points
are uncertain at the outset, and suitable weighta for the
Cp values at the different points must be guessed. For the
RAE 2822 optimixation case, the excessive drag created at
lower Mach numbers might be alleviated by a two-point op-

timization that included the drag contribution at some Mach
number below the design value. Knowing which other Mach
number to use is certainly not clear a priori. In any case,
these examples strongly suggest that even with optimiza-
tion design techniques available, a designer-driven iterative
approach to airfoil design is still necessary, with each suc-
cessive design stage being a resp to the probl un-
covered in the previous design stages. On a more positive
note, the single-point optimized airfoils do clearly indicate
what qualities are needed in a low Reynolds number airfoil
to achieve low drag. The features of the two-point optimized
airfoil indicate how the conflicting requirements at different
operating points might be reconciled.
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Figure 27: Calculated polars for original LA203A, sin-
gle-point, and two-point optimized airfoils.
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Figure 29: Geometry comparison between optimized airfoils
and original LA203A airfoil.

5.4 The role of optimization in airfoil design

It is the opinion of this author that any working airfoil
optimization method is unlikely to represent a “solution”
to the general airfoil design problem. Most rea! airfoil de-
sign problems are far too complex to be quantifiable as a
cost function which is to be minimized. Often, constraints
or requirements either cannot be reliably quantified (e.g.
manufacturability, roughness sensitivity, etc.), or the best
numerical weight 1o place on a particular cost function term
is not known a priori. Such factors in the design problem
are uanally determined or discovered with numerical and/or
experimental data as the design evolves. Hence they can-
not be used to formulate the mythical all-encompassing cost
function at the outset.

The best role for optimization appears to be as another
item in the airfoil designer’s numerical toolbox. An opti-
mization solution to a necessarily simple and hence imper-
fect cost function can serve as a guide to the designer by in-
dicating which way the design “wants to go” from a purely
aerodynamic viewpoint, say. The designer’s role is then to
reconcile this naive optimum solution with other constraints
which may be either unquantifiable, or too complex to lump
into a cost function. For this part of the design cycle, other
design tools such as inverse methods are likely to be more
appropriate.

8 Conclusions

This paper has presented several recent developments in
design/analysis methodology for viscous and inviscid airfoil
and cascade flows at transonic speeds. A variety of new in-
verse and optimization formulations have been incorporated
into the existing ISES airfoil/cascade code. The salient fea-
tures of the overall methodology are:

o A coupled Euler plus integra! boundary layer flowfield
representation.

o A streamline-based Euler discretization which allows
airfoil geometry changes to be obtained during flow-
field solution.

o Flexibility in specification of direct or inverse bound-
ary conditions.

o A full Newton solution scheme for all viscous and in-
viacid variables.

« Sensitivity information for optimization procedures is
obtainable from the Newton solver at negligible extra
coat.
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The i ptions in the method allow specification of
pressure distributions on any portion of the airfoil surface.
Alternatively, the loading and airfoil thickness distributions
can be specified if strong structural constraints are present.
The geometry changes can be arbitrary, or can be restricted
1o relatively few smooth geometric modes. It is shown that
the latter option is more effective, and may even be nec-
essary, if shock waves or separation regions are present in
the flow. Inverse calculation examples involving a transonic
airfoil and a low-speed cascade illustrate the advantages of
the modal g try rep; tation

The Newton-based sensitivity calculation technique has
been shown to allow extremely inexpensive optimization cal-
culations. The optimisgati ples p ted isted of
drag minimization of a viscous transonic airfoil with shock-
induced separation, and drag minimization of a low Reynolds
number airfoil with transitional separation bubbles. Two-
point optimization of the low Reynolds number airfoil was
shown to be necessary to partially overcome severe problems
inherent in single-point optimization.
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ONE POINT AND MULTI-POINT DESIGN OPTIMIZATION FOR AIRPLANE
AND HELICOPTER APPLICATION
J.J. THIBERT, Aerodynamics Department
ONERA - BP 72 - 92322 Chétillon Cedex - FRANCE
SUMMARY
The paper describes ical optimization techniques and shows how these techniques can be used in

aerodynamic design. Emphasis is put on the applications with various optimization cases described in details. One
point optimization cases for airfoil and wing designs with different objective functions, constraints and design
variables are prestnted as well as multiple design points cases for helicopter blade airfoil applications.
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1. INTRODUCTION

The different design tools which are available can be classified in three categories :
- indirect methods
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- inverse methods
- numerical optimization methods

Each of these methods has its advantages and its shortcomings and so they have to be considered as
complementary and not competitive. Each offers a different way of finding efficient aerodynamic shapes without
resorting to expensive cut and try wind tunnel testing. However, the challenge of designing practical transport or
fighter aircraft or helicopter which alse demanding higher performance levels is one of the most difficult tasks
facing the aerospace designer. For these aircraft, designs must satisfy somewhat different and conflicting
aerodynamic objectives. Other considerations, such as radar cross-sectional area, wing or blade bending moment or
wing thickness are becoming increasingly important in the final design. Clearly an automated system which is
capable of finding the "best compromise” to the problem of aircraft design would be very useful. In that way
numerical optimization techniques appears to be a rational, directed design procedure. They give an ordered
approach to design decisions where before aerodynamicist relied heavily on intuition and experience.

A CFD analysis program is coupled with a numerical optimization algorithm in such a way as to create a
design tool. Aerodynamic quantities such as lift, drag, pitching moment, pressure distribution are computed by the
CFD algorithm for a certain configuration and are used in defining an objective function to be minimized by the
optimizer. This objective function must relate changes in geometry to improvements in the aerodynamic quality of
the design.

Minimization of this objective function through proper choice of the geometric design variables should then
correspond to a configuration that is "optimal” in some sense. While this is true only for a given flight condition, it
is possible to find a design which will most nearly satisfy optimal requirements for a range of flight regimes by the
use of multiple design points.

In addition to the merits of multiple point designs, numerical optimization also allows a great deal of control
over both the aerodynamic qualities and the physical shape of the final configuration design. However, a great deal
of user expertise may be necessary to take advantage of this high degree of flexibility.

The design process is not reduced to a few computer runs and the intuition and experience are still very
important. The most persistent criticism of numerical optimization procedures is the large amount of computer
time required for the optimization algorithm to "sort out” and decide which configuration is best. The computer
time being largely due to the CFD algorithm used, current improvements in computer and CFD algorithm speed
may soon eliminate this shortcoming.

The purpose of this paper is to give in a first part a rapid but basic knowledge of numerical optimization
algorithms, to present in a second part the optimization techniques i.e. how to choice the objective function, the
constraints and the design variables, and finally to present in a third part a large variety of design applications.

Since it is not the objective of this paper to describe in details all the possible minimization algorithms, only
*he most widely used are presented. More details can be found in [1] where various algorithms are presented. It is
hoped that the paper will encourage practicing engineer to use this powerful tool in design.

2. NUMERICAL OPTIMIZATION TECHNIQUES
2.1. General problems statement

Assume we wish to find the minimum value of the following algebraic function :
) Fx)=10x4 -20x)2 xp + 10%2 + x32-2x; + 5

F (x) is referred to as the objective function which is to be minimized and we wish to determine the combination of
the variables x; and x2 which will achieve this goal. The vector x contains x; and x2 and we call them the design
variables. Fig. 1is a graphical representation of the function where lines of constant value of F (x) are drawn. Fig. 1
is referred to as a two variable design space where the design variables x) and x2 correspond to the coordinate axis.
If no limits are imposed on the values of x; and x2 and no additionnal conditions must be met for the "design", F (x)
is said to be unconstrained and the solution is represented on Fig. 1 by the point A.

Now assume that for some reasons the design variables x; and x2 have to meet some requirements for
example :

2) x s1, X2 S 2,
and assume also that we add the additionnal condition

(3) Gix) = 3xg+ 5%;-25 0

Now the minimum value of eq. (1) subject to the additionnal conditions given by eq.(2) and (3) is represented on Fig.
2 by the point B. Eq. (2) and (3) define the constraints on the design problems. The constraints given by eq. (2) are
often referred to as side constraints because they directly impose bounds on the values of the design variables;
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The portion of the design space of Fig. 2 inside the constraint boundaries defined by the hatched lines is
referred to as the feasible design space.

In general a design space will be n dimensional and we can write the nonlinear constrained optimization
problem mathematically as follow :

4) Minimise F (X) objective function
subject to
(5) gix) <0 i=lm inequality constraints
(8) hix)=0 k=1,1 equality constraints
(4] xil S x, S x¥ i=1n side constraints
X
X2
where X = design variables
Xn

The above form of stating the optimization problems is not unique and various other statements equivalent to this
are presented in the literature.

2.2. The iterative optimization procedure

Most optimization algorithms require that an initial set of design variables, X°, must be specified. Beginning
from this starting point, the design is updated iteratively. Probably the most common form of this iterative
procedure is given by

“* X9 = X% 4 o*s3
where q is the iteration number and S is a vector search direction in the design space. The scalar quantity a* defines
the distance that we wish to move in direction S.

To see how the iterative relationship given by Eq. (4) is applied to the optimization process, consider the two-
variable problem shown in Fig. 3.

Assume we begin at point X° and we wish to reduce the objective function. We will begin by searching in the
direction 8’ ziven by

(5) s':{'l'o }
~05

The choice of 8 is somewhat arbitrary as long as a small move in this direction will reduce the objective function
without violating any constraints. In this case, the S! vector is approximately the negative of the gradient of the
objective function, that is, the direction of steepest descent. It is now necessary to find the scalar a* in Eq. (4) so that
the objective is minimized in this direction without viclating any constraints.

We now evaluate X and the corresponding objective and constraint functions for several values of a to give

S

1.0
(6a) Fla)=100 glay=-1.0
o X [20] 10[—]0} {1.'»}
a=t “lio ™ —05 ] los
(6b) F(a})=84 gla)=-0.2
2.0 ~-10 0.50
a=15 X= +15 =
1.0 ~-05 0.25
(6c) Fl@e)=76 gla)=02
5 *=125 X* {20} 125{‘”’} Io.750}
) a® = = + 1. =
1.0 -05 0.375
8d) Fe*)=8 g«@* =00
- | Ve
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where the objective and constraint values are estimated using Fig. 3. In practice, we would evaluate these functions
on the computer, and, using several proposed values of a, we would apply a numerical interpolation scheme to
estimate a*. This would provide the minimum F (X) in this search direction which does not violate any constraints.
Note that by searching in a specified direction, we have actually converted the problem from one in n variable X to
one variable a. Thus, we refer to this as a one-dimensional search. At point X', we must find a new search direction
such that we can continue to reduce the objective without violating constraints. In this way, Eq. (4) is used
repetitively until no further design improvement can be made.

From this simple example, it is seen that nonlinear optimization algorithms based on Eq. (4) can be separated
into two basic parts. The first is determination of a direction of search S, which will improve the objective function
subject to constraints. The second is determination of the scalar parameter a* defining the distance of travel in
direction S. Each of these components plays a fundamental role in efficiency and reliability of a given optimization
algorithm.

2.3. Optimization algorithms

It is not the objective of the paper to describe in detail all the possible algorithms. However the main features
of the more widely used will be described in the following chapters. We will first begin by the techniques available
to find the search directions.

2.3.1. Unconstrained function of n variables

Fig. 4 provides a general flowchart for multivariable unconstrained minimization. As seen from the figure, an
actual optimization programs consists of three major components :

1. Determine the direction in which to search
2. Perform the actual one-dimensional search
3. Determine when the process has converged to an acceptable solutiun.

2.3.1.1. Zero-order methods

Optimization techniques which require function values only are called zero-order methods. These methods are
considered most useful for problems in which the function evaluation is not computationnallly expensive. The
random search method and the Powell's method [2] are the most popular methods.

Powell’s method is based on the concept of conjugate directions, where directions S' and § are conjugate if
N (§)'THS =0

where H is the Hessian matrix (i.e. the matrix of the second partial derivatives of the objective with respect to the
design variables).

The basic concept of Powell's method is to first search in n orthogonal directions, 8, i = I, n being the
coordinate directions, where each search consists of updating the X vector according to Eq. (4), These directions are
not usually conjugate but provide a starting point from which conjugate directions are built. Having complemented
the n unidirectional searches, a new search direction is created by connecting the first and last design point. This
becomes the n + 1 search direction. The process is shown geometrically in Fig. 5.

The first search is in the X, direction, followed by a search in the X2 direction. Note that the a;* in Eq. (4) is
negative, assuming the S' vector is in the positive X1 direction. In practice, we may first search in the positive X
direction and, failing to improve the design, then search in the negative X; direction. This allows for writing a
one-dimensional search algorithm which only searches in the positive a domain.

At the end of the second iteration the n + 1 search direction §? is found by connecting the initial design X°
with the current design X? as shown.

The method of Hooke and Jeeves [3) and the somewhat more complicated method of Rosenbreck [4] utilize
exploratory searches conceptually similar to Powell's univariant searches, followed by acceleration steps. In each
case, the idea is to gain useful information about the shape of the design space which can be used to accelerate
convergence.

2.3.1.2. First-order methods

First-order methods, those which utilize gradient information, are usually more efficient than zero-order
methods. The price paid for this efficiency is that gradient information must be supplied, either by finite-difference
computations or analytically, and that these methods often perform poorly for functions which have discontinuous
first derivatives. However, for the majority of problems, first-order methods can be expected to perform better than
zero-order methods because the user is providing more information on which to base optimization decisions.

In the following section, two basic first-order approaches are presented, steepest-descent and conjugate-
directions.
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Steepest descent

The steepest descent method is probably the best known and yet the worst performing of the first-order
methods. The principal importance of the method is that it usually forms the starting point for the more
sophisticated first-order methods.

In the steepest descent method, the search direction S is taken as the negative of the gradient of the objective
function. That is, at iteration g

(8) 8§ = -VF (X9

The S vector is used in Eq. (4) to perform the one-dimensional search. The optimization algorithm for the steepest
descent method is shown in Fig. 6.

Figure 7 shows the sequence of one-dimensiunal search. As seen from the figure, the convergence rate of the
method is very poor. This is principally due to the fact that the steepest descent method does not utilize information
from previous iterations in order to accelerate the convergence. Therefore, the steepest descent algorithm is not

recommended for general application, although the steepest descent direction will be used as an initial search
direction in the more powerful algorithm of the following section.

The conjugate direction method

The conjugate direction method of Fletcher and Reeves [5] requires only a simple modification of the steepest
descent algorithm and yet dramatically improve the convergence rate of the optimization process.

The basic approach is to pick search directions which are conjugate by the definition of Eq. (4). This is
accomplished by specifing an initial search vector as the steepest descent direction defined by Eq. (8). On
subsequent iterations a conjugate direction is defined as :

9 §% = - VF(X9) + pg S’

when the scalar fqis defined as:

[VF (x9?

a0 S AL
T R xR

Fig. 8 shows the iteration history of the algorithm.
2.3.1.3. Second-order methods : Newton's method

Newton's method, together with various modifications to improve efficiency, is the classical second-order
method. This technique begins with a second-order Taylor series expansion given by :

1
(11a) Fou = FX% + PF(XY . 6X + - BX . HXM8X
where

(11b) §X = X9+ _ x4

Solving Eq. (11a) for the stationary conditions gives:

(12 8X = ~ [HXY™'VF(XY
Rearranging Eq. (11b), we have, using Eq. (12) :

(13) X9*1 = X9+ 5X
= X9~ [HXY ' 9F (X9
Comparing the last term in Eq. (13) to the S vector in Eq. (4) (with a* = 1), we have

i14) = ~ HXY VP XY
Therefore, Eq. (14) provides us with a search direction to use in a general one-dimensional search. We will not
actually invert H but will instead solve the set of simultaneous equations HS = - VF.

Here we must provide not only function values and gradient information, but the second-derivative matrix H
as well. If the function being minimized is a true quadratic in the design variables, the use of this search direction
with a move parameter a* = 1 will provide the solution in only one iteration. In practice, because we wish to
minimize a general function, we can modify the algorithm to improve efficiency. First, we can actually search in
direction 89, noting that a = 1 should be an excellent first estimate for ag*. A second modification is to only
calculate the H matrix every few iterations, but calculate the VF vector on each iteration. This assumes that the
second derivatives of the function do not change too rapidly and so need not be determined as often as the first-
derivative information. If the calculation of the Hessian matrix is expensive, this can markedly improve overall
optimization efficiency without significantly affecting the final result.
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If . we are fortunate enough to be able to calculate the matrix of second derivatives easily, Newton's method is
almost always the preferred approach. While most engineering problems do not lend themselves to easy calculation
of the second derivatives, it is often possible through the use of approximation techniques to convert the problem to
a form ideally suited for solution by this method.

2.3.2. Constrained functions of n variables
2.32.1. Linear programming

Undoubtedly, the most thoroughly developed and understood optimization problem is the one in which the
objective and constraints are linear functions of the design variables X. Such problems are referred to as linear
programming (abbreviated LP) problems. Most engineering problems of practical interest are not of this form.
Therefore, in the study of numerical optimization techniques, linear programming is often overlooked in favor of
proceeding directly to the problem at hand. However, the discussion of linear programming is important because it
is often possible to simplify a nonlinear optimization problem by linearization and then to solve it using these
techniques.

The most common method for the solution of LP problems is referred to as the simplex method. This method is
attributable to Dantzig and was developed in the late 1940s [6]). Computer codes based on this method are available
on most computer systems. These have usually been extensively tested and are highly reliable.

Standard linear programming form

The standard form of the LP problem is defined by

Minimize :
a8 FX)= }: C X,
Subject to : !

n
ae 2 e,X=b j=1m
un l=1XIEO i=ln

This is an equality-constrained problem with nonnegative design variables. Most problems of interest are not
of this form. However, all LP problems can be converted to this form.

Equation (17) appears at first glance to be a major restriction to the method. However, this restriction can be
conveniently overcome by replacing variable X; by two positive variables and taking their difference; that is,

(18a) Xile'—X"

(18b) X'20 X"20 i=1,n

Now for any finite value of X, either positive or negative, there must exist two variables X;' and X;" such that their
difference will equal X;. Therefore, by using Eq. (18) in Egs (15) and (16) and solving with respect to the new
variables, the problem can be solved directly. After solution, the values X; corresponding to the optimum can be
determined using Eq. (18a). Note, however, that this transformation has been expensive. We have doubled the
number of design variables which must be considered in the optimization problem

An alternative approach would be to add a constant to each of the design variables X; so that
a9 X =X'-Q

where Q; is a large positive number. Eq. (19) can be substituted into Eq. (15) to (17) without increasing the number
of design variables in the problem.

The simplex method proceeds in two phasges : Phase I finds an initial basic feasible solution which has only m
nonzero variables X;, and these variables are positive (or zero). Phase Il moves from one basic feasible solution to
another until the optimum is found.

2.3.2.2. Sequential unconstrained minimization technigues

Here we deal with the more general design optimization problem where both the objective function and
constraint functions are nonlinear. This general problem statement is defined by Eq. (4) to (7) repeated here :
Minimize :

20 F(X)
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Subject to:

(21) g’.(X)so j=i,m
(22) h, X)=0 k=1,1
note that the side constraints are included in the inequality-constraint set.

The general approach will be to minimize the objective function as an unconstrained function but to provide
some penalty to limit constraint violations. Because the way in which this penalty is imposed often leads to a
numerically ill-conditioned problem, a method is devised whereby only a moderate penalty is provided in the initial
optimization stages, and this penalty is increased as the optimization progresses. This requires the solution of
several unconstrained minimization problems in obtaining the optimum constrained design ; thus the term
sequential unconstrained minimization techniques or SUMT to identify these methods.

The classical approach to using SUMT is to create a pseudo-objective function of the form
(23) (X, rp) = F(X) + rp P(X)
where F (X) is the original objective function. P (X) is an imposed penalty function, the form of which depends on the
SUMT being employed. The scalar r, is & multiplier which determines the magnitude of the penalty, and rp is held

constant for a complete unconstrained minimization. The subscript p is the unconstrained minimization number.

The first and easiest to incorporate into the design algorithm is referred to as an exterior penalty function
method because, it penalizes the objective function only when constraints are violated.

The penalty function P (X) is typically gien by
m 1
24 POO= 3 (max(0,g N+ 3 [, 0F
j=1 k=1

From Eq. (24), we see that no penalty is imposed if all constraints are satisfied [all gj (X) s 0 and all h (X) = 0], but
whenever one or more constraints are violated, the square of this constraint is included in the penalty function.

The second approach, known as the interior penalty function method, penalizes the objective function as the

design approaches a constraint, but constraint violations are never allowed. Therefore, a sequence of improving
feasible design is produced.

Probably the most common penalty function used in the interior method is

LR
(25) PiXi= S ~——
J=lgl()(i

However the numerical ill-conditioning often encountered in the two previous techniques can be substantially
reduced by using another method known as the augmented Lagrange multiplier methed (ALM).

In that method the objective function is replaced by the general augmented Lagrangian.

m 1

126) _ < 2. N 2
A(X,A,rr) =FX)+ N l.\|q;‘ + rp\p‘]+ k_,__l ('\k‘mhu X) + r’lhk .81
y= =
where
7 -4
2n \p] = max g)(X), ?
b
The update formulas for the Lagrangian multipliers are now
—\P
28)
AP S AP 4 2 imax bg (X)), —'” j=1,m
i ; v | 2r
4
| SR J -
29) ML =N, L, X k=1

The general algorithm is given in Fig. 9. In summary, the method has several attractive features.
1. The method is relatively insensitive to the value of r,. It is not necessary to increase ry to «
2. Precise g (X) = 0 and hy {X) = 01is possible.
3. Acceleration is achieved by updating the Lagrange mulipliers.
4. The starting point may be either feasible or infeasible.
5. Atthe optimum, the value of A;* = 0 will automatically identify the active constraint set.
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2.3.2.3. Direct methods

Techniques dealing with the constraints directly in the search for the optimum are numerous. We can list for
example :

- the random search technique

- the sequential linear programming

- the method of centers

- the generalized reduced gradient method.

- the feasible direction methods.

Only the last one will be described briefly. The optimization algorithm associated to the method begins with
the determination of the search direction, then considers the one-di ional search and finally address the
problem of initially infeasible designs.

The search direction

Assume that at iteration q there are J active constraints. We now wish to find a usable-feasible direction
which will reduce the objective function as rapidly as possible. For now we will consider inequality constraints only,
dealing with equality constraints later as a special case. Now, instead of finding a direction slightly away from the
constraint boundaries, we will find a direction S which will follow the constraints but will allow for the design to
leave a constraint boundary if such a direction will reduce the objective most rapidly. In other words, we wish to
find a "constrained steepest descent” direction. This is easily done by considering the following problem :

Maximize :

(30) - F(X).8
Subject to:

31 ng(x).SSO j€d
(32} $.8 =<1

Solving this problem gives a search direction which is tangent to the critical constraint boundaries, unless the
objective can be reduced more rapidly by moving away from one or more constraints. We can identify the case where
the search direction is away from a currently active constraint by taking the scalar product of the gradient of each
critical constraint with the S vector. If the result is less than zerc within a small tolerance [it will never be greater
than zero by virtue of Eq. (31)] we omit this from our set of active constraints. Another possible solution is that Sisa
null vector (say numerically all |Sj} < 0.001, i = 1, n).

Assuming an S vector is found for which one or more Vg; (X) . § = 0, j € J, we will choose a set of dependent
variables as in the generalized reduced gradient method. We then perform a one-dimensional search with respect to
the independent variables, updating the dependent variables using Newton's method. For example, in Fig. 10 we
may pick X3 as the independent variable and update X; as the dependent variable at each step in the one-
dimensional search.

Equality constraints

In that special case the direction finding problem becomes :

Maximize :

(33 - VF(X). S
Subject to :

(34) ASs=0
(35) BS=0
(36) S.Ss1

where now the rows of A contain only the gradient of the active constraints, The rows of matrix B contain the
gradient of the equality constraints

YT hy (X)

VT hy (X)
(3N B=

T ||,

Now, for each equality constraint, we can choose one of the design variables (and the corresponding
component of S) as a depe1. ‘ent variable. Thus, we partition Eq. (35) as

S
38 BS=ICD) =0
Sp
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where S) are independent variables, Sp are dependent variables, and C and D are the corresponding submatrices of
B. There are ] terms in Sp and they need not be the last terms in S. We simply partition the equations this way for
clarity. We can now solve for Sp in terms of Sj, substitute this into Eqgs. (33), (34), and (36) and solve for the reduced
set of components Sy, just as for inequality constraints.

Equation (39) Sp = - D! CSj is then used to obtein the components of S corresponding to the dependent
variables.

Injtially infeasible designs

If an initial design X° is specified such that one or more constraints are violated, the first priority is to find a
feasible design.

We begin by treating all violated constraints as if they are inequality constraints. Any equality constraints
which are satisfied (or nearly satisfied) are used to define dependent variables to give a reduced direction-finding
problem similar to the one described in the previous section.

Therefore, we can treat constraint violations in the same manner as in the method of feasible directions to
provide a search direction which points toward the feasible region.

Having determined the S vector, we define dependent variables associated with all equality constraints, but
not inequality constraints, and then search in the S; direction. Here we search to overcome the constraint violations
associated with inequality constraints but do not necessarily stop at the constraint boundary. During the search we
use Newton's method w drive the equality constraints to zero so, ideally, at the end of tl.e one-dimensional search,
the equality constraints are satisfied precisely and the inequality constraints are at least satisfied. In practice, this
may require several iterations, so that during each search we reduce the infeasibility as much as possible. This is
because the problem may be so nonlinear that we cannot overcome the coustraint violations in one iteration.

Infrequent gradient calculations

The cost of optimization in practical design is usually directly proportional to the number of function
evaluations needed to reach the solution. This is particularly true when finite-difference gradients are calculated
because n function evaluations are needed, in addition to the nominal design, to compute the gradient information.
Therefore, we should consider the possibility that it may not be necessary to compute gradients at each iteration of
the optimization process.

Consider now the first-order Taylor series expansion of a general function f(X):

o £X9 = (X971 + 90 (X9 Y 5x¢
where f (X) may be any objective or constraint function, and

(€3] 5X9 = X% .- x9-!

Now if we have completed iteration q and we evaluate the true function f (X%), we can compare this to its
approximation f (X%), If they agree within an acceptable tolerance, we can use Vf (X9') again. We can identify the
situation where the gradient is changing rapidly if the approximate and precise objective and constraint function
values do not agree within a specified tolerance or if Newton’s method for determining the values of dependent
variables fails to conver.-e or converges slowly. In either case, or when some new constraint becomes active for
which we do not have the gradient, we would calentlate new gradient information.

Note that the technique of infrequent gradient calculations is not limited to the method discussed here but
may be incorporated into other methods.

To summarize, we again emphasize the importance of making the best use of whatever information is
available at each step in the optimization process. The algorithm of the feasible direction method described above is
given Fig. 11,

2.3.3. One-dimensional search techniques

In the previous chapters, various techniques for finding the direction in which to search have been described.
As said at the beginning of chapter 2.3.1. The second step of the optimization process is to perform the displacement
in the search direction which provide the minimum F (X) which does not violate any constraints. The solution of
this problem will give a* in Eq. (4). This problem is called the one-dimensional search since the only variable is a.

Several techniques can be used to treat the problem :
- polynomial interpolation
- golden section method

For each of these methods the objective function F is calculated for several values of a in order to find a*.
Several other techniques can be found in [1] for the cases where the one variable function is subject to constraints.

When using the feasible direction method described in section 2.3.2.3., the following method can be used.
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Considering the matrix Q defined by :
Vg (X)
VTgo(X)
(42) Q= VTeX
VThy (X)
ThiX) [ genxa
From here, using Gaussian elimination with pivot search, we identify the set of dependent variables. Having done
this, we partititon the S vector as:
Sy
(43) S =
Sp
where now the set of dependent variables includes those associated with inequality constraints as well as equality
constaints.

We now perform the one-dimensional search with respect to the independent variables as :

44) = xa-1 g

X7 =X} + a5
For each proposed aj, we update the values of the dependent variables using Newton’s method, just as in the
generalized reduced gradient method. A first estimate for the dependent variables is obtained using Eq. (43) to
give:
(45) x§ =Xy '+ a8y
where this is precise for linear constraints. For nonlinear constraints, we use Newton's method to ensure precise
satisfaction of the constraints.

If we have only calculated the gradient of the J active constraints, our first proposed a in the one-dimensional
search is a somewhat arbitraty one. However, if adequate computer storage is available, we can also calculate the
gradients of some subset K of nearly active cosntraints to give Vg; (X}, € K. Now we can obtain a reasonable first
estimate for qj from:

- g)(X) I
(46) = mi = ———— j€K
6 q, qm)n;: q ng(X).S J
In Eq. (46) any negative q; is not used because the search direction is actually away from that constraint.

By calculating the gradients of only a few additional constraints, we can expect to improve the efficiency of the
one-dimensional sea, .n since this will usually provide a good initial estimate to aj*. It is recognized that some other
constraint not contained in the set K may actually limit the search or that aj* will correspond to an unconstrained
minimum with respect to X]. However, this approach usually provides significant efficiency in the - ne-dimensional
search.

2.3.4. Convergence criteria

Concerning the convergence of the optimization algorithms, the most widely criteria used are :

- the maximum number of iterations.

- some prescribed value for the absolute or the relative change in the objective function.

The summary of the main optimization algorithms is presented Fig. 12. Some of these algorithms are included
in the most widely used numerical optimization codes which are :

- CONMIN (7]

-COPES (8]

- QNMDIF [9]

-E04 (10)

2.4. Optimization techniques

The formulation of the optimization problem is of great importance because it will play a major role in the
optimization process. This ‘ormulation includes the choice of the objective function, the selection of the constraints
as well as the selection of the design variables. Concerning the objective function, its choice depends on the
aerodynamic code which will be used with the optimization code while the constraints will be selected regarding
both the performance of the aerodynamic and of the optimization codes.

[ - Py v
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Sinice the solution of the optimization problem will be a combination of the design variable, it is obvious that
their selection hss to be made carefuly.

2.4.1. Selection of the objective function

It is very attractive to choose as objective function the main performance which has to be improved like the
drag or the C| max. However, these two coefficients suffer from the questionable accuracy of their evaiuation with
current methods. However if their gradients with respect to each design variable and constraint are accurately
determined the optimization will give some improvement even if the absolute values of these coefficients are not
accurate.

However, taking the drag or 1/D as objective function can give no design improvement since they do change
with angle of attack and may mislead the optimiser. To avoid this problem, the lift coefficient value for which the
drag has to be improved can be put as a side constraint but a more efficient solution is to use for the objective
function an analytical representation of the drag polar (11]{12]. For example in [12] the drag polar is expressed as :

47 _ 2

CD - CDmm + K‘CL - Cme)
If the optimization drag result is evaluated as & change in drag relative to a baseline drag polar, then a simple lift
change in angle of attack will not mathematically appear as a design improvement. The baseline drag polar would
be given by equation (47). The parameters Cp min, K and CL min ¢an be determined by three numerical analyses
and the baseline drag problem is actually a curve fit to the results. Equation (47) becomes

48) - ?

CDb‘n = CD‘ + K(CL - CL‘)
where the nomenclature is changed to indicate a local curve fit to a baseline polar. A new drag result would be
evaluated as

(49a) ac =C

149b) AC=Cp ~ €,* + K (€ ~C,*F)
within the accuracy of the curve fit, this results in ACp = 0 for an angle of attack change with the baseline
geometry. Thus the optimizer does not have a bias towards reducing lift in order to reduce the drag.

Eq. (49) can be manipulated to yield several different objective functions that can be used as part of the
optimization criteria. The objective function could be expressed as a changein K :

(50) K. =€y = €€~ *F

new

where a smaller Kpew is a better design. Alternatively, the objective function could be expressed as a change in Ci *.

51) -
Chlnew =CL—(Cp—Cp*V/K
and the optimization seeks to maximize Cp *pew.

Finally, the optimizer may be used to minimize Cp*pew :

152) _ 2
Cp’rew =Cp— K€ -C\ Y
As applied to an optimization problem, the following factors will influence the success of the particular
objective function used :
e Analysis inaccuracies may change the baseline drag polar or the increments due to geometry changes.

o The lift changes {(with the baseline geometry) may exceed the range that is accurately modeled by the
curve fit drag polar.

o As the design progresses (i.e. the geometry changes), the original baseline drag polar curve fit will become
inappropriate.

However as the design progresses, the cuive fit can be revised to more accurately represent the dray polar of
the current geometry.

Another objective function which is widely used is a target pressure distribution prescribed by the designer. In
that case the optimization problem is furmulated in the form of :

(53) (&
om-¢{2

i=1

12
«f-c )’]
P, Pi

1

)
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that is, minimization of the "error" between target and analysis pressures. The optimization procedure is then used
to obtain essentially the same results as the inverse methods. The success of this type of objective function is due to
the fact that the aerodynamicist is comfortable with pressure distributions and the analysis codes are generally
easier to use than the inverse methods. However, an advantage of wing optimization procedure in that way is that it
is easy to control the geometry of the design through constraints while it is not the case with most of the existing
inverse methods. An extension of the previous objective function can be found in [13] where a non-linear least
squares minimization is formulated as follows :

let the residuals rj (Py... Py), i = 1, 2...N, be functions of M design parameters. To minimize r;, in the least-
squares sense, value for the parameters, P, are found which minimizes:

(54) <\'~
F@®,P, P= ) l[rllf",qu.PM)l
i=

where r; denotes the difference between the N specified reference plane quantities and corresponding N computed
quantities associated with the M parameters. The reference plane fluid state variables are the total pressure Pr, the
total temperature TT, the directional Mach number My, My, M,.

Eq. (54) can be written in vector form R (P)T R (P) where R (P) is a vector with components r;. Variable
constants are imposed by addition of barrier functions, added to the objective function..

Thus the expression R'R becomes :

N

r
Tn _ 2
RlR= 3 (P, -P) +(1‘Tr

2 2 2
X " - TT)i + (M’rp =M+ (My' - My)‘
1=

P P

N
c
2 N, 42
+ M, - M)+ S ¢’

P
P 1=1

where Ny is the number of geometrical distinct reference plane points, ¢; represents the barrier functions, and N, is
the number of parameter constraints.

The non linear least square form of Eq. (54) is then minimized using an extension of the Gauss-Newton
method.

The examples presented above show that various objective functions, simple ones or complex ones can be used.
However complex objective functions in which several aerodynamic coefficients are present can lead to the
following problems:

¢ very long optimization process

¢ great probability to go to a "relative” optimum during the optimization process

® no guarantee that the value of all terms appearing in the objective function decreases during the

optimization procedure.

In most cases it is so recommended to use a simple objective function and to complete the objective function
with the constraints.

2.4.2. Selection of the constraints

The constraints can be used to control the design shape or to complete the objective function or to discipline
the modification during the optimization process.

- In the first case constraints are put for example on the thickness to chord ratio or on the thickness for
several prescribed locations for an airfoil or a wing design. For bodies of revolution or wing design volume
constraints are sometimes taken into account.

- In the second case when optimizing the drag, constraints on the lift range for which we want to have a drag
reduction can be used.

Another example is the C[, max optimization. Since this coefficient is generally not directly given by must
of the codes it cannot be chosen for the objective function so the problem can be formulated as follow :

Objective: Cpat high angle of attack
constraints : |Cp| level limit coming from experimental data on airfoils of the same type.

In the third case the constraints are used in order to take into account some other aerodynamic
performance than the one(s) included in the objective function. For example when optimizing the drag or
the CL max, 8 constraint on the pitching moment coefficient can be used or when several design points are
to be considered, the optimization can be performed for one point with constraints put on some
aerodynamic coefficients on the second point for example :
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obj: Cp(My, ay) first design point
constraint : Cp (My, ag) second design point

The gradient of the constraints being computed by the optimization code, generally increasing the number of
constraints will increase the computing time. Moreover some optimization codes are not very efficient when
constraints are included and some parameters have to be adjusted in order to force the convergence. This is
illustrated by the following example which compares the performance of the CONMIN code and of the EO4VAF
code (from the NAG library) for the Rosen and Suzuki problem.

The problem is formulated as follow :

¢ The function to be minimized is:

OBJ(X) = X2 + Xo? + 2X32 + X42-5X; - 5X2-21X; + TX¢

e Theconstraintsare :

SX12-Xp?- X32-Xg2- Xy + Xp- X3+ X+ 820
SX)2-2X02-X32-2X,2 + Xy + Xg+ 1020
S2X1?2-Xp2-X32-2X) + X9+ X4+ 520

The initial conditions are X; = (0,0, 0, 0).

The CONMIN code uses a feasible direction method from Zoutendijk when the constraint are active while in
the EO4VAF code constraints are included in the objective function through the use of a Lagrangian function as
follow :

M
OBI'=0BJ+ X O C +plCH
i=1

C; being equality constraints which are formulated from the inequality constraints.

Fig. 13 shows the convergence history of the CONMIN code for two values of the parameters ALPHAX and
ABOBJ1 which control the initial displacement for the one-dimensional search. The exact solution (OBJ = - 44 for
X (0,1,2,- 1)) is obtained after 43 objective function and constraints evaluations.

Fig. 14 shows the conergence history of the EO4VAF code with several values of the p parameter which
controls the weight of the cunstraints. For p = i the convergence is fast but in final solution the constraints are
violated. For p = 100 the convergence is very slow.

This example shows the nccessity for the designer to know in details the optimization code he wants to use
especially if constrained optimizations are to be performed.

Some authors {14] use the constraints to force the optimization process to go rapidly towards the solution. In
that cas- a constraint (initially violated) is put on the same parameter than the one included in the objective
function.

2.4.3. Selection of the design variables

The final result of the optimization process being a combination of the design variables their choice is very
important.

The design variables must be selected to converge the optimization process quickly and generate a wide
variety of geometries. The functional relations well-adapted to this problem can be described mathematically in
many ways. Numerical tests are needed to determine the value of the mathematical model proposed. Two types of
shape functions exist : analytical functions and shape functions of aerodynamic origin.

2.4.3.1. Analytical shape functions

o Legendre polynomials.

When the Legendre polynomials or other orthogonal expressions are used. the optimization algorithm

becomes highly effective and the initial airfoil is modified regularly.

The coordinates of the modified area are expressed as a function of reduced abscissa X = x/xq, where x is the
real abscissa and [0, xg) is the modified area :

Y=Y 01 - XP la, VX + 8, + 1)+ a (P, - 1h
+ u‘ﬂ“ +1) + .5“)5 -+ ue(P6 + 1)
. Py L V.
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where Pg, P3, P4, P5 and Pg designate the Legendre polynomials over (0, 1] and ay, ag, a3, a4, a5 and ag are the
design variables :

P2=2X -1,
P = 6X7-6X +1,
P, = 20X - 30X7 + 12X - 1,
P, =70X* ~140X% + 80X* - 20X + 1,

P =252X° - 630x* + 560X% - 210%% + 30X ~ 1,

The square root term is introduced to modify the leading edge of the airfoil, and factoring by (1 - X)3 ensure the
continuity of the radius of curvature at the point Xo.

Figure 15 shows the six corresponding shape functions.

This approach is used in modifying the part of the upper or lower airfoil surface upstream of a given abscissa
Xg/c.

e Other polynomial functions.

Some other functions can be selected to address the modification qualitatively. These functions are added
linearly to the starting geometry.

Wagner functions may be used (Fig.16a), which permit a fairly large variation as far as the shape of the airfoil
upper and lower surface are concerned. However, they cannot be used at the highest harmonics (n > 7) because
they can cause waves in the geometry (changes in the sign of the slope over a small part of the chord). These
functions are unsuitable to modify the camberline significantly (starting, for instance, from a symmetrical airfoil).

The Hicks-Henne (H.H.) functions (Fig. 16b) and the polynomial functions (Fig. 16¢c) have a simpler form,
which makes them particularly suited for even substantial changes of the camberline ; hence they are mainly used
for this purpose. They are characterized by different curvature towards the trailing edge : H.H. functions are
concave, polynomial functions are convex. The use of these functions during the optimization permits, in general
the attainment of the desired behavior in the upper surface portion just forward of the trailing edge : both concave
and convex geometries are thus obtained, according to the requirements. Other functions have been derived from
the need to reproduce other geometrical behaviors typical of the transonic design : such as lower surface cusp for
rear loading, and deflection of leading edge and trailing edge flaps.

All mentioned functions could be used concurrently in the modification of the airfoil, but this would give rise
to some problems. A first advice contrary to such a use comes from the expansion of the computation time. In the
design of an airfoil required to operate at high Cp, starting for instance from a symmetrical profile, functions for the
refinement of the thickness distribution should be used only when the geometry has already been cambered
enough. Moreover, a modification using all variables at the same time, "masks" the impact that each type of
function has on the geometry. To have a knowledge of such an impact is on the other hand important because it may
suggest the introduction of new, complementary functions. The only shortcoming associated to the sequential use of
sets of functions is, this being a non-linear problem, that the sequence in which these functions are used influence
the final result. Once again, design experience must give indications on the most adequate sequence.

o Analytical definitions of an airfoil

Instead of using perturbation functions to be added to an initial airfoil, it is very attractive to deal directly
with the airfoil coordinates. However it is not easy to define an airfoil contour with only a few parameters. An
example is given however by the Boudigues formulation.

S. Boudigues'formulation is particularly well-adapted to representing existing airfoils in analytical form. The

point at coordinates x(t), y(t) describes the airfoil starting at the leading edge, as t varies from 0 to 2n. The
expressions are established as a function of the {(xx, yx) coordinates of 2n points on the airfoil. xy is given by the law:

x, = ;(1 —oos(?)), k=0,..,2n

Then :

1
x(t)= - (1 - cost),
2

——

yo= ..E..'uz“,,‘l %(t_ )

s|F{= 5




10-18

or:
¢
x{th = — {1 ~ cost),
2

Ao + A_cos(nt)
_t

¢ (1) =
Y 2

n-1
+ N (A s(qv + B_siniqtih
q=1

where :

o E (%)

The number 2n points to be retained depends on the initial geoemtry. The parametric expressions are
generally obtained with a good precision for n = 18. The result cap be smoothed by canceling the high-order
harmonics, and in this case the definition includes some twenty coefficients.

This parametric formulation, which is also an advantageous smoothing method, considers the Aq, Bq
coefficients as so many decision variables.

2.4.3.2. Shape functions of aerodynamic origin
There are two advantages to using shape functions of aerodynamic origin, having a physical meaning. Firstly,
the user can choose those best adapted to the problem at hand and, in this case, the small number of design

variables reduces the calculation time. Secondly, the airfoil and pressure distributions are more realistic.

These advantages are put to use in the two approaches explained below, one using an airfoil library [8] [11]
{15](16] and the other the concept of aerofunctions 111)112)

2.4.32.1 Arrfoil library
The numerical optimization algorithm is associated with an airfoil library. The airfoil is defined by a linear
combination of basic airfoils, and the optimization program determines the relative importance of the various

shapes in defining the optimum airfoil.

The possibility remains of modifying the upper and lower surface independently and imposing geometric
constraints in the airfoil, as long as the basic airfoils stay within the properties demanded of the optimized airfoil.

Using airfoils as a set of shape functions in the optimization process produces realistic solutions at a relatively
low cost. This is an easy way of modifying existing airfoil or defining new ones.

2.4.3.2.2. Aerofunctions
It is easier to choose airfoil shape functions for a particular problem if these functions are of aerodynamic

origin. Shape functions can then be defined by an inverse program, to change a given pressure distribution as
desired. These shape functions are called "aerofunctions”.

Ref. [12] presents several aerofunctions shapes which are reproduced Fig. 17.
These modifications were chosen as follows :

¢ SHAPEI1 (Fig. 17a) - control leading edge expansion

e SHAPE2 (Fig. 17b) - smooth upper surface shock

o SHAPE3 (Fig. 17¢) - control airfoil thickness with lower surface modifications
¢ SHAPE4 (Fig. 17d) - control upper surface supersonic plateau

© SHAPESA (Fig. 17¢) - move upper surface shock forward

¢ SHAPESB (Fig. 17f) - move upper surface shock aft.




10-16

When used in a design optimization, the aerofunction shapes would be added to a baseline geometry by a
scaling factor. The scaling factor would be the design variable controlled by the optimizer.

2.4.3.3. Other possible design variables

Van Egmond ref. {17) uses a parametrization of the pressure distribution to optimize a target pressure
distribution directly.

The pressure distribution over the airfoil is divided in several regions (Fig. 18). For each region the pressure
distribution is described by an analytical function with some parameters which are the design variables.

2.4.4. Multi design points

A great advantage of the optimization methods over the inverse methods is that several design points can be
taken into account. Several examples will be presented in the chapter 3.2. which concerns propeller ~r heliconter
blade airfoils design.

In that case the objective function is formulated as follows in the case of the drag minimization.
OB = Ky Cp (M, a1} + K2Cp My, a2

where (M1, a1) represents the first design point and (Mg, a2) the second one. The coefficients K| and K2 can be
used as weighted coefficients in order to put more emphasis on one design point.

Since the objective function is more complex, the optimization process is longer than for a one point
optimization. However it allows the designer to find a good compromise between several design points which are

generally conflicting.

2.5 Advantages and limitations of numerical optimization

Some advantages and limitations of numerical optimization techniques are listed here {1].

2.5.1. Advantages of using numerical optimization

¢ A major advantage is the reduction in design time -this is especially true when the same computer
program can be applied to many design projects.

¢ Optimization provides a systematized logical design procedure,

e We can deal with a wide variety of design variables and constraints which are difficult to visualize using
graphical or tabular methods.

¢ Optimization virtually always yields some design improvement.

o Itisnot biased by intuition or experience in engineering. Therefore, the possibility of obtaining improved,
nontraditional designs is enhanced.

e Optimization requires a minimal amount of human-machine interaction.

2.5.2 Limitations of numerical optimization

¢ Computational time increases as the number of design variables increases. If one wishes to consider all
possible design variables, the cost of automated design is often prohibitive. Also, as the number of design
variables increases, these methods tend to become numerically ill-conditioned.

o Optimization techniques have no stored experience or intuition on which to draw. they are limited to the
range of applicability of the analysis program.

o If the analysis program is not theoretically precise, the results of optimization may be misleading, and
therefore the results should always be checked very carefully. Optimization will invariably take
advantage of analysis errors in order to provide mathematical design improvement: .

® Most optimization algorithms have difficulty in dealing with discontinuous functions. Also. highly
nonlinear problems may converge slowly or not at all. This requires that we be particularly careful in
formulating the automated design problem.

e It can seidom be guarcnteed that the optimization algorithm will obtain the global design optimum.
Therefore, it may be necessary to restart the optimization process from several different points to provide
reasonable assurance of obtaining the global optimum.

¢ Because many analysis programs were not written with automated design in mind, adaptation of these
programs to an optimization code may require significant reprogramming of the analysis routines.
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In order to reduce the computing time, two techniques can be used :
- The first one is to use Taylor approximations for the objective function and the constraints [14].

For the initial design variables X' the objective function F and the constraint functions G; are approximated
by a second order Taylor series :

1
F(X)= Fi+ aXTOF9 + 5 AXTHIAX
q Tygd 4 - T
G,() =G+ aXTvG] + £ AXTHIAX

Using these Taylor approximations instead of the correct analysis calculation, an improved design is found by
the optimization procedures described before. Thereby the step width has to be limited in order not to move too far
away from the centre of the Taylor series. Finally now the correct analysis has to be done for this approximately
improved design. These exact objective and constraint function values together with the preceeding ones are used to
determine the Taylor approximation at the new initial design. By this procedure only one exact calculation is
necessary per optimization step and the approximation gets better and better. Only the "starting procedure" at the
very beginning of the optimization needs more calculations because the complete 2nd order Taylor series requires 1
+ n + n(n + 1)/2 points of support. The COPES code uses a starting procedure which improves the design already
during building up the initial Taylor series. The starting procedure can be influenced by prescribing the starting
design variable sets. It can be drastically shortened by the input of already known results, e.g. from an interrupted
optimization or from similar optimization with different constraints.

- The second one developed by Rizk [18] is based on the idea of updating the flow variable iterative solutions
and design parameters iterative solutions simulianeously.

To conclude this chapter, another approach due to Jameson (19] has to be mentionned.

The method determines the configuration (e.g. shape of an airfoil) satisfying the given design objective (e.g. a
desirable pressure distribution). Such a design method might be created by integrating a variation function into an
analysis method, and inserting an iteration procedure to minimize the design objective function following the
steepest descent. A. Jameson [19] illustrates this "design via control theory" by three applications in aerodynamic
design.

3. APPLICATIONS OF NUMERICAL OPTIMIZATION

In this chapter are presented some applications of numerical optimization techniques for aerodynamic design.
The large variety of design problems which are described will show how powerful can be the numerical optimization
technique.

In the first section, airfoil design with various objective functions are described while in the second section
sorne 2 design points optimization are presented. In the third section some 3D designs have been selected and in the
last section unsteady optimization process for helicopter blade #irfoil design is described.

3.1. Airfoil design

3.1.1. Drag minimization

e The first example is described in [11]. The CONMIN code is used for an optimization of a transport aircraft
wing airfoil.

The PV39GEO sairfoil used to generate transport aircraft wings was optimized for a Mach number of 0.76 to
decrease the drag coefficient Cp with a Cy, between 0.5 and 0.6 and to delay the upper surface separation that
develops at high Cy,. To take structural constraints into account, the PV39GEOQ airfoil was optimized with the
constraint of prescribed values of the airfoil thickness in the area of the spar box, at 15 and 60 % chord.

The polar graph Ci, = f (Cp) is approximated by a parabola and the objective function used expresses the
improvement of the overall aerodynamic coefficient Cp and Cy,

(CD— 0.0095)
oy = —— x 10

2
(CL - 0 25y

Figure 19 gives the geometry of the PV33GEO airfoil and the pressure distribution at the design point, with
Mach number 0.76,a = 0.2° and Re = 4 X 106, The boundary layer is calculated with a transition fixed at 7 %.

Then ical optimization algorithm uses the set of airfoils presented in figure 20. The five basic airfoils are
supercritical, with a thickness law modified by affinity to stay within the thickness constraints at 15 and 60 % of
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the chord. The minimization program determines the relative participation of the various shapes, to define the
optimum airfoil.

Four iterations were run, occuping the CRAY 1-S for 1,000 seconds. The convergence history is given in
figure 21. The variation of the objective function shows a major improvement in the aerodynamic characteristics
starting at the firstiteration.

The pressure distributions of the PV39GEO and optimized PV39GEO airfoils are compared at the
optimization point in figure 22. The optimized airfoil exhibits a delayed upper surface shock, of lesser intensity, a
more regular lower surface pressure distribution and a slightly higher rear loading. The pressure distribution of the
optimized airfoil is shown at a lower angle of attack in figure 23.

The aerodynamic characteristics of the airfoils in figure 24 show a decrease in the drag coefficient Cp of the
optimized PV39GEO airfoil for C, values above 0.35. This decrease is approximately 15 % for a C1, of 0.6.

On the other hand, the modification of the PV39GEO airfoil slightly increases the absolute value of the
moment coefficient from 0.095. The Cp variation as a function of the Mach is plotted in figure 25 for a Cy, of 0.55. It
seems that the improved aerodynamic characteristics at high Cp are maintained over a large Mach number
domain,

o The second example concerns the optimization of a propeller airfoil [20] with CONMIN.

The specifications for an airfoil located at 70 % of the blade span can be stated as :

- high maximum lift coefficient at moderate Mach number M = 0.47 to 0.63, for high static thrust
requirements at take-off conditions ;

- high lifdrag ratio CL/Cp for Mach numbers ranging from 0.54 to 0.67 and lift coefficients between 0.65 and
1.05 corresponding to climb conditions ;

- high drag divergence mach numbers for C1, between 0.38 and 0.65, corresponding to cruise conditions ;

- thickness to chord ratio = 7 %.

The numerical optimization method was used to improve the aerodynamic characteristics of the HORD7
airfoil which previously was designed using a direct method.

The precise purpose of the optimization presented here was to increase performance at high Cy, for take-off
(M = 0.55) and to reduce the drag under cruise conditions (M = 0.70).

The corresponding computed results for the HORG7 airfoil are presented in Fig. 26 and Fig. 27.

Shocks wave are present on the suction side under take-off conditions and on the pressure side under cruise
conditions.

The upper and the lower surfaces of the initial airfoil have been successively modified using analytical shape
functions.

- The suction side was optimized to reduce Cp at M = 0.55 and C.. = 1.35, with the constraint on suction side
maximum expansion Cpmin > - 8.
- The pressure side was optimized to reduce Cpat M = 0.70 and C. = 0.38.

Moreover, a geometric constraint was imposed on the thickness to chord ratio : 6.5 % = ties t/7.5 %.

The computed pressure distributions on the optimized HORQ7 show improvements for the two optimization
points :

- under the climb conditions at M = 0.55, the intensity of the suction side shock is reduced due to an upstream
isentropic pressure recovery and the leading edge expansion is decreased by 10 %. The drag coefficient Cp is
reduced by 24 % at the take-off optimization point.

- under the cruise conditions at M = 0.70, the lower surface shock wave is suppressed and the maximum
expansion decreases by 12 %. The Cp is reduced by 9 % at the cruise optimization point.

The 2-D tests on the HORG7 and optimized HORG7 airfoils in the SSMA wind tunnel confirmed these
predicted aerodynamic characteristics (Figs. 28-29).

For these two first examples the aerodynamic code associated with the optimization code is a direct viscous
transonic flow method developed by Bousquet [22].

o The third example from (21] is the optimization of the GAW 1 airfoil with polynomials functions (spline)
used for the geometry description. Two coordinates at x'¢c = 65 % and 85 % constitute the design variables, The drag
minimization is performed at M = 0.25, a = U° and Re = 6.106 and the aerodynamic code is DOFOIL, a viscous,
steady. compressible flows computer program developed by Dornier.

Figure 30 shows the results of the optimization, where open symbols denote values of approximations from
COPES to Cp. Closed symbols denote the corresponding exact values from DOFOIL. Note that the first two airfoils
(A and B) were generated for the purpose of building the Taylor series approximations. The next 10 iterations show
little further improvement in Cp, with the actual effort being placed on increasing the value of the constraint Cy, to
a value greater than 0.52. Figure 31 shows the variation of C,, Cp, and of the two design parameters for the 10
iterations.
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Figure 32 shows that the upper surface curvature has somewhat decreased, and the start of recompression has
been moved rearwa.d ;

One danger of optimizing at a particular flight condition is that off-design performance can become worse. As
is seen in figure 33, this is not the case in this example. Indeed, for Mach numbers other than 0.25 and non-zero
angles of attack, the improvement in performance is the same if not greater than that at the design point.

- As it has already been mentioned, the accuracy of the aerodynamic code in evaluating the objective function
must be good enough to be sure than the optimization will improve the design. For example in [16] using a 3D
inviscid code for the drag minimization of a high aspect ratio rectangular wing gives unsatisfactory result when the
pressure drag is taken for the objective function while good results are obtained with the wave drag (Fig. 34). Thisis
due to the fact that the wave drag which is computed by the integration of the momentum equation along a surface
surrounding the supersonic zone as suggested in [23} is more accurate than the pressure drag obtained by the
pressure integration on the wing surface;

The last example of drag minimization is taken from [24]. Aerofunctions like those presented Fig. 17 are used
as design variables. The FLO-36 analysis code is the aerodynamic code.

Design conditions for the design were M = 0.75,Cp, = 0.5, Cm = - 0.02, and t/c = 0.12. Viscous analysis of a
previously designed airfoil (optimization using polynomial shapes) for these conditions is shown in Fig. 35 and the
airfoil in Fig. 36. The airfoil showed unacceptable trailing edge flow separation, 0.83 chord, at the design point, did
not meet the Cp, requirement, and had leading and trailing edge shapes that were considered unacceptable. The
leading edge exhibited a double nose radius and the upper surface of the trailing edge was concave.

A TRO-2D optimization was run using drag as the objective function with inequality constraints on lift,
moment, and thickness. Side constraints on leading and trailing edge camber design variables were set so as to
preclude any upper surface concavity.

The TRO-2D designed airfoil is compared to the original design in Fig. 37. Note the more conventional nose
shape and trailing edge for the TRO-2D design. Analysis of the TRO-2D airfoil at the design Mach and lift
coefficient, as shown in Fig. 38, shows that the moment constraint has been met, no flow separation is predicted,
and a 30% reduction of drag is predicted compared to the original airfoil. CONMIN required four cycles to reach a
final solution in approximately one minute of CPU time on the CRAY-1M computer.

3.1.2 Flow field characteristic as objective function

Ref. [13] described an interesting optimization case with a prescribed velocity field used as the objective
function in a reference plane. The problem is formulated as described in section 2.4.1.

A NACAO0012 airfoil was uged as a simple example to illustrate aerodynamic optimization in the presence of
separated flow. This is a common airfoil which has been extensively analyzed and is defined by :

y (x) = 5t (0.2969x172 - 0.126 x - 0.3516 x2 + 0.2843 x3 - 0.1015 x4)

where the parameter, t, determines the maximum airfoil thickness. For the NACA0012 airfoil. the thickness
parameter is specified as 0.12.

The PARC CFD code was used to define the target RP properties by computing the laminar flow field about
this airfoil, subject to the indicated boundary conditions indicated in Fig. 39. A Reynolds number, based on chord
length, of 106 was specified which produced a flow field with an attached houndary layer (Fig. 40). Defining the
target profile numerically assured tha! «n absolute global minimum existed within the design space. The RP was
located at the airfoil trailing edge ana extended to the boundary of the computational domain, although the
influence of the body was minimal approximately two chord lengths into the domain. The desired RP properties
were then used to form the nonlinear least-squares objective function, which was minimized by application of
Broyden's algorithm.

The design parameter (airfoil thickness) was doubled as en initial guess to begin the optimization. This value
was selected since the contour subject to the stated boundary conditions produced a flow field which was highly
separated (Fig. 41) in constrast {o the attached target solution (Fig. 40). As noted, the reference plane was placed at
the trailing edge of the airfoil passing through the region of separated flow.

For this example the correct optimum was located, by Broyden's algorithm, within Q.1 percent in six iterations
requiring seven function evaluations. Figure 42 compares the target geometric profile with the initial guess profile,
the first iteration profile, and the optimal profile as determined by Broyden's algorithm. Figure 43 and 44 show the
reduction of the objective function and the convergence history of the design parameter, t, versus iteration number,
respectively. As evidenced by these figures, the Broyden's algorithm isolated the global minimum quite efficiently.
The optimum was located within 1 percent in four iterations and was isolated within 0.1 percent in six iterations.
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3.1.3. Pressure distribution optimization

Van Egmond in {17] presents different cases of pressure distribution optimization. As an example, the case
presented here concerns the definition of the max. lift contribution that can be obtained with stable laminar over
the first 60 % of an airfoil. Stable with respect to the instability criterium for Tollmien Schlichting waves;
instability occurs if Reg/Reg; > 1. With the requirement of just sonic conditions at s/c = 0.60 for Mo = 0.65 and
Re. = 15.106. Then the problem det;lgxit,ion reads : find the Cp-distribution between s/c = 0 ; Mjp, = 0 and

s/c =0.60; Mjoe = 1 such that Cp ds/c is maximum while everywhere Reg/Reg; approaches 1 as close as
06 [

possible ; or minimize = J Cpds/c + j max (0, Reg/Reg; - 1) d s/c. After a few attempts with different relations
0 0

for Cp = f(s/c) it was observed that reasonable results could be obtained with the following relation for the pressure

gradient :

where ¢ is a small value, to prevent the singularity ats/c = 0.
Then, by integration :

5

P e .o

CP:Cp“+Aln(c " )+B{(; +l:) —:Nl
Where A, B, e (> 0) and N are design variables and Cpst is pressure coefficient at stagnation point. Three of the
design variables are independent, the fourth follows from the requirement of sonic flow at s/c = 0.60. Fig. 45 shows
the results of the above problem. The Cp distribution for stable laminar flow over the whole region is depicted in
Fig. 45a, while Fig. 45b shows that indeed Reg and Reg; nearly coincide over the largest part of the region. These

results were relatively easily obtained.

3.1.4. CL. may optimization

- The first example of Cy, max optimization is taken from [8). It has been done using the approximation concept.
The design variables are 4 NACA airfoils and 2 linear functions which are used to impose the closure of the trailing
edge. The analysis code [25] is used to perform the computationat M = 0.1,a = 6°

Figure 46 shows the results of optimization of an airfoil for maximum lift. The design constraints are listed on
the figure. This optimization required 19 aerodynamic analyses. Although it may be argued that this girfoil is
impractical, it must be remembered that this airfoil mathematically satisfies the design constraints. The lift
coefficient obtained here is C, = 1.144.

The quality of the approximation to the lift coefficient may be judged from figure 47. Because there are four
independent design variables, the full second-order Taylor series expansion of the functions requires 15 analyses, It
is intriguing to note that on the sixteenth analysis and beyond, the approximation for this case is quite precise.

- The second example from [20] concerns an airfoil for an ultra light aircraft; A first design called OAULMO1
was defined with a set of airfoils in order to obtain a high C, with low upper surface maximum expansion and a
moment coefficient less than 0.04.

The tests in the 810 wind tunnel of the CEAT in Toulouse showed that the aerodynamic characteristics were

of intere-t for the application dered, pt that the stall was too steep.

To remedy this, the airfoil was optimized to reduce the rise in the boundary layer shape parameter between 30
and 50 % chord, to avoid a leading edge type of stall. The OAULMOZ airfoil is the result of this second optimization.

Figure 48 shows the calculated boundary layer shape factor along the upper surfuce of the OAULMO1 and
OAULMO2 airfoils, for a lift coefficient Cp, = 2.

The geometry of the two airfoils and their pressure distributions for C = 1 and Cp, = 2 are presented in
Fig. 49. The pressure recovery of the OAULMOZ2 airfoil is smoother up to 35 % of the chord length. The computed
transition location is about x/c = 15 %.

The experimental lift and moment coefficient of the OAULMO1 and OAULMO2 airfoils are presented in
Fig. 50 for a Mach number M = 0.12 and a Reynolds number Re = 1.4.108,

The stall behaviour of the OAULMO2 airfoil is better.
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3.1.5._High lift systems optimization

Since the optimization of the relative locations of a multi-element airfoil needs a high number of analysis

calculations, an optimization process will save computer time. In [26], such an optimization is performed for a two-

element airfoil using COPES coupled with a subsonic multi-element airfoil analysis code PSM developed by
K. Jacob.

Figure 51 shows the starting design and the best design of a flap position optimization. The contour geometry
of the two-element airfoil DOAS is kept constant. The specifications are :

Design objective : C1, should become a maximum.

Design variables : x, y-coordinates of a flap fixed point in main coordinate system,
Constraint: . slot width s/c = 0.01

Constant values: M = 0.1, Re, = 5.106,a = 10°, flap deflection i = - 40°,

As the design objective Cy, in this case depends on only two design variables, the optimization procedure can
be graphically illustrated. Figure 52 shows the lift coefficient Cf, in the area of interest for the flap fixed reference
point. It can be seen that the reference point has to move from the starting position (starting design of figure 51) to
the constraint line s/c = 0.01 nearer to the main element.

The same situation is shown again in figure 53 but now in form of iso-lift lines. The optimization path found
by the COPES code is also indicated. After the first 3 analysis calculations (to find the initial gradient) COPES was
free to find its way to the optimum which was reached after totally 30 analysis calculations (plotting the iso-lift
lines of course needed much more). The lift coefficient was improved from Cp, = 2.5 to 3.6 (45 %).

3.2. Examples of multi-design points optimization

3.2.1. Airfoils for helicopter blade

Specifications for the design of an helicopter blade airfoil concern generally the conditions which are
encountered by the airfoil during a revolution of the rotor that is to say advancing blade condition and retreating

blade condition. To find the best compromise between these two flight conditions it seems particularly interesting to
use numerical optimization techniques [11].

- The first example concerns a 7 % thick airfoil called OA207. The CONMIN code is conpled with the analysis
code [22]. The problem is formulated in order to reduce the drag :

- under advancing blade conditions :
M =085 and C =0

with the aerodynamic constraint limiting the absolute value of the moment coefficient :
001sCps 001,
- under retreating blade conditions ;
M =040 and C, =08,
with a limiting constraint on the upper surface expansion :

Comn- 35

Figure 54 shows the two optimization points considered on the aerodynamic polar curves of the OA 207 airfoil.

The objective function is represented by a linear combination of the Cp at the two design points:
OBJ = 08Cp; + 02Cpy

Six shape functions, constructed from the Legendre polynomials were used to modify 50 % of the airfoil upper
surface;

Figures 55 and 56 show how the pressure distributions were modified at the two desig: points. For the
configuration corresponding to a Mach number of 0.85, the local Mach number decrease in front of the shock
obtained by an isentropic recompression reduces the intensity of the upper surface shock. This same modification
decreases ieading edge expansion on the upper surface by 10 % at a Mach number of 0.40 and a Cr, of 0.83.

For the advancing blade conditions (Cy, = 0), Cp is reduced by 16 % at the design point. The gain is smaller for
Mach numbers less than 0.85, since the reduction of Cp mainly affects the wave drag. For the second design point
(M = 0.40 and C = 0.83), the improvement in the aerodynamic characteristics is a 6 % decrease in the drag
coefficient Cp,
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- The second example concerns a 12 % thick airfoil design for the inner blade sections [20]. The initial airfoil is
called OA 213 and was designed | reviously using an inverse method.

The design conditions are

M=075 CL=0
M=04 CL=15

The objective function is the sum of the drag for the two design conditions and two constraints were laid down
to control the pitching moment for zero lift and the maximum expansion level for M = 0.4 and high Cy.

The tests performed on this new airfoil OA312 in the S3MA wind tunnel have demonstrated the efficiency of
the design process.

As shown in figure 57 the OA312 airfoil has lower drag under advancing blade conditions due to a large
reduction of the leading edge lower surface pressure peak level which also leads to a reduced nose down pitching
moment coefficient. The Mach drag divergence is 0.78 for the 0A312 airfoil which gives AMgq = 0.03.

For M = 0.4, the maximum lift coefficient measured in the SSMA wind tunnel was 1.5, whereas it was 1.54 for
the OA312 airfoil under the same conditions.

As shown in figure 58, the drag level is better with the new airfoil at high lift levels.
The shapes of the two airfoils and their total performances are compared in figure 59.
- The third example from [20] concerns an airfoil for a shrouded tail rotor.

The purpose was to design an sirfoil having a large range of angles of attack with a drag level lower than 0.02
in order to minimize the power required for the shrouded tail rotor. The optimization has been applied for a Mach
number of 0.62 and a Reynolds number of 1.1.106,

The range of angles of attack corresponding to the different flight conditions is - 5° < a, = 12°, ap being
referenced to the zero lift angle of attack. Within this range, the drag level of the airfoil should remain lower than
0.02. Moreover, the nominal value for the angle of attack isap = + 6°(design point) and for this point the drag level
should be lower than 0.01. For this Mach number, shock waves are present on the initial airfoil for large positive
and negative values of the angle of attack. So a first optimization was carried out in inviscid flow under the
following conditions :

Odjective function : wave drag 1 + wave drag 2
wavedrag 1 corresponding to M = 0.62, ap = - 6°
wave drag 2 corresponding to M = 0.62, ap = + 7.5°

For the second point, a constraint was laid down in order to control the camber of the airfoil.

This constraint expressed in the form 10.3° < ap < 10.8° was computed using the Cy, obtained for the two
points.

In this first optimization, a library of airfoils having the same thickness to chord ratio (t/c = 10.2 %) was used.

Having minimized the wave drag for a larer ~ange of angles of attack, a second optimization was performed in
viscous flow in order to obtain a sufficient range of angles of attack beyond the design point with a drag level lower -
than 0.02.

The corresponding objective function is :

with a1 = - 4°
a2 = 5.4°

The March number being 0.62 and the Reynolds number 1.1.106, These values of angle of attack have been
kept lower than those for the first optimization in order to stay within the limits of the viscous transonic
aerodynamic code. For the second point, the constraint Cp < 0.02 has been given. Eight design variables acting on
the camber line of the airfoil were used and two cycles were performed.

The optimized airfoil OAF102 has been tested in the SSMA wind tunnel. The tests were carried out for three
values of the stagnation pressure. The corresponding Reynolds numbers are 1, 2 and 3.106for M = 0.62 The Ci,max
values plotted in figure 60 show that the highest performances were obtained for the design Mach number
M =062

The curves also show an iinportant Reynolds number effect up to high Mach number values, The performances
of the airfoil are plotted in figure 81 for M = 0.62 and Re = 1.108,
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It can be shown from Fig. 60 that the best results have been obtained for the Mach number used for the
optimization which demonstrate the efficiency of the process.

3.2.2. Helicopter blade design

To conclude this section devoted to examples of multi-design points, an example of a spanwise blade section
distribution optimization taken from [27] is presented. The problem is to find the spauwise distribution of two
airfoils which will minimize the power of the rotor under different flight conditions. Two flight conditions are
considered :

Pointl M=8 2z=0 v = 250 km/h
Poiatl M=8 z=3000m v=2360kmh

The objective function is:
NBJ = (1-m)Py + nPg

Py and Pa being the power needed respectively for the flight conditions and n being a coefficient which is used
in order to privilege one flight condition.

The design variables are the span locations of two airfoils sections {OA312 and OA309) noted R1/R and Ro/R.
Fig. 62 shows the power reduction obtained for the two f'ight conditions versus the n coefficient. In Fig. 63 are
plotted the optimized airfoils locations versus the n coefficient. For the best compromise corresponding ton = 4 the
rotor performance are compared to the ones of the initial rotor (R1/R = 0.8, Ry/R = 0.9).

3.3. Examples of 3D optimization
3.3.1. Wing drag optimization

The first example from (28] concerns the various wing drag components minimizations. The CONMIN code is
coupled to the 3D inviscid flow analysis code (29]. The DLR F4 wing is used for the optimization (Fig. 65). Four
spanwise sections are used to define the wing. The twist distribution is linear between the sections. The flow
conditions taken for the optimization are M = 0.75 - Cy, = 0.67. Four objective functions were successively used for
the optimization of the twist distribution with a constraint on the lift coefficient C1, = 0.67.

The objective functions chosen were :
1) lift-induced drag

2) wave drag

3) lift-ir.duced drag + wave drag

4) pressure drag.

A  additional unconstrained calculation was also done aiming at an elliptical load distribution. The drag was
computec using "farfield” techniques as described in [30) and (31)].

Fig. 66 summarizes the results. Minimizing the lift-induced drag loads the wing in the outer part (Fig, 67)
while minimizing the Cpw term loads the inner part. Minimizing Cp; + Cw drag or Cpp drag gives results which
are very close (Fig. 68). In that case the twist distribution is somewhat different of the one of the real F4 wing.
However Fig. 69 shows that changing the conditions from M = 0.75to M = 0.785 gives a twist distribution closer to
the F4 one.

16000 grid points are used for these computations which might be considered not sufficient for accurate drag
prediction. However this number of grid points has been selected after a parametric study of the accuracy of the far
field computed drag versus the number of grid points. This mesh realizes the best compromise between the
computer time and the drag accuracy. However it is clear that different values of the various drag components will
be obtaincd with a finer grid but the results will exhibit the same tendencies which means that the conclusions will
be the saine. Each optimization requires between 1 H and 2.30 H computing time on a CRAY X-MP computer.

The second example of wing drag minimization has been done by Cosentino and al. [32]. Jt concerns the
CESSNA model 650 wing used on the new citation IIl aircraft. The design was made at M = 0.81 and Cy, = 0.57.
The objective funiction is the wing L/D which is computed by the TWING code which is coupled to the quasi-Newton
QNMDIF code.

The geometry. as shown in Fig. 70, has a fairly high leading-edge sweep of 37° before the break, and 27° after.
The aspect ratio is 9.0, and no wing dihedr~! is present. This wing is defined by different airfoil sections at the root,
break, and tip stations, and the twist distribution is incorporated in the airfoil coordinates. These three airfoils,
along with the locations of the fixed and the th -ee movable spline support points are shown in Fig. 71. As can be
seen, three movable poins were chosen at each defining station for this case.

The results of this design case are presented in Fig. 72 at three span stations. Again, reasonably smooth
pressure distrivutions and airfoil shapes are observed, with reduced shock strengths at every station (the 48.5 %
span station is nearly shock-free). The slight rressure peak at the root station at about 6 % of chord might be
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eliminated by redistributing spline support points and reinterpolating. The remaining stations are quire well
behaved. Note that actually very little modification to the shape of thickness of any section was required to achieve
the desired result. This is an indication that the wing was very well designed and highly efficient before any
optimization redesign. Some data summarizing this design are presented in Fig. 73.

This design required only six optimization iterations and was completed in just under 1 hr of CRAY X-MP
CPU time (about 90 % of the improvement required about 20 min of CPU time). The inviscid drag-to-lift ratio of this
wing has been increased by over 85 % at the expense of just over 10 % of the lift, yielding a reasonable and efficient
design at nominal computational expense. Figure 73 displays the drag-rise characteristics of the original and
optimized wings at fixed lift coefficient. The coefTicient o] drag (scalled by & factor of 100) is plotted at several Mach
numbers for both wings. As can be seen, the optimized wing displays superior drag-rise characteristics as the mach
number is increased, yet does not suffer any undesirable off-design behavior at the lower Mach numbers. Note that
the drag divergence mach number has been increased by approximately 0.03.

Other examples of wing optimizations can be found in the literature {33] {34].

3.3.2. Complete configuration optimization

At the present time there is no exampies of complete configuration optimization using 3D potential or Euler
codes due to the large computer time associated with these methods and the poor reliability of the aerodynamic
coefficients which are computed with the coarse grids generally used.

An interesting approach of this complex problem is given by Vau den Dam in [35]. The aircraft is projected
onto a plane normal to the flight direction and is approximated by a number of straigth line segments representing
the various elements of the configuration. The contributions of the various elements to the lift and the lift induced
drag are computed in the Trefftz-plane while the viscous drag is computed using DATCOM's formulae.

An induced drag minimization case including propeller slipstream is presented here as an example.

In order to examine the effects of the propelier slipstream on the aircraft induced drag, the axial and
tangential velocities in the propeller slipstream have to be given. For a particul..: example design condition, the
distribution of propeller induced velocities of figure 74 has been used (advance ratio of J = 0.13 and a thrust
coefficient of Ct = 0.12).

For a wing configuration with two "up-inboard” rotating propellers, located at 25 % of the semispan with a
diameter-to-span ratic of 13 %, the optimal spanwise bound circulation distribution is shown in figure 75. This
distribution greatly differs from the optimal "clean wing" distribution that is also shown in figure 75. With this
distribution, the wing is capable of restoring much of the loss associated with slipstream swirl.

In figure 76, the effects of the horizontal propeller position for different rotating concepts of the propellers on
the minimum induced drag coefficient have been plotted. As can be seen clearly from this figure, two up-inboard
rotating propellers lead to a most favourable configuration with respect to the minimum induced drag. If the
Jocation of the propeller-centre is moved outboard, induced drag will decrease for two up-inboard rotating propellers
and will be a minimum when the propellers are located at the wing tips.

3.3.3. Wing-engine interference reduction

Optimization of a wing + engine configuration should aim at reducing the drag increment created by the
interference. However reliable estimation of this drag increment is still beyond the reach of analysis methods, let
alone such inexpensive methods as might be incorporated into an optimization procedure. The example presented
here from [28) uses the following simplified methodology. The engine effect on the wing is balanced by an opposite
perturbation obtained through wing shape modifications (Fig. 77). So the modified wing with the engine will
exhibit the same pressure distribution than the original clean wing.

Fig. 78 shows the perturbation of the wing pressure distribution due to the engines. Four successive
optimizations for each side of the pylons have been successively performed. The objective functions are defined by
target pressure distributions in the wing sections where the perturbations are maximum. The CONMIN code was
coupled with the analysis code [29] of Bredif. Eight aerofunctions for the lower side and three for the upper side
were designed with inverse 2D computations in order to modify the pressure distribution at the prescribed span-
wise locations (Fig. 79).

Fig. 80 shows the results of the optimizations in term of ACp between the modified motorized wing and the

initial clean wing. Comparing to Fig. 78 it is clear that the perturbations have been greatly reduced which
demonstrates the efficiency of the process.

3.34. Inviscid 3D nozzle design

The last 3D example is the design of a 3D rectangular nozzle (13] presented Fig. 31. The nozzle geometry and
interior grid were defined by a 3D Bezier polynomial.
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Four control points were specified at each of five axial planes such that each axial cross section was
rectangular. The design parameters were two coefficients, P and Pg, which implicitly determined the distance
between the control points in the 'y’ and 'z’ directions at the mid-plane (Fig. 81). The target geometry corresponded
to values of unity for each parameter which produced a nozzle with a nominal exit to throat area ratio of 2.5. Total
conditions were specified at the nozzle inlet and a static pressure below second critical was selected at the nozzle
exit which provided supersenic flow development in the divergent portion of the nozzle. This geometry and these
boundary conditions produced a flow with a nominal exit Mach number of 2.5 when analyzed by application of the
Euler version of the PARC code.

For an initial guess, the design parapeter Py and Py were set equal t0 2.0 and 2.5, respectively, which produced
a high area ratio nozzle with a nominal exit Mach number of 5.8. Unlike the target nozzle, which was square at each
axial cross section, the initial guess geometry had a square cross section at the inflow plane, which transitioned to a
rectangular cross section at the mid-plane, and then transitioned again to a square at the exit plane. The large
difference in exit flow conditions for the initial guess was imposed to illustrate that the initial guess flow field does
not necessarily need to closely resemble the desired optimum to obtain acceptable results. The difference in the flow
fields for the target and initial guess nozzles is illustrated by comparing the centerline Mach number profiles for the
two designs (Fig. 82).

A sensitivity analysis on the geometric design parameters indicated that the objective function partial
derivatives were very sensitive to parameter step size because of nonlinear effects and numerical error inherent in
the objective funtion evaluations. Although the most stable step size determined was applied, Broyden's algorithm
did not converge to the global minimum. However, the Gauss-Newton algorithm was successfully applied and the
optimum was reached in six iterations requiring eighteen function evaluations. Figure 89 illustrates the RP
convergence by comparing RP Mach number profiles along the y-axis for various iterations. The achieved reduction
in objective function and the design parameter convergence is depicted in Figs. 84 and 85, respectively.

3.4. Unsteady optimization

In order to design new helicopter blade airfoils, an optimization technique has been developed at ONERA by
H. Bezard.

The method results from the association of :
an unsteady full potential code [36]

- & 3D unsteady boundary layer code from R. Houdeville and J. Cousteix of the ONERA-CERT/DERAT
department

- the CONMIN optimization code.

The design variables are 4 airfoils with a thickness to chord ratio of 0.12 presented Fig. 86, the first one the
NACAO0012 airfoil being used as the initial design.

- The first optimization case has been done under the following conditions :
® Mach number

M =067+018siny
o Angle of attack

o

a® =ap’- 3°26siny
y being the azimuth angle (0 s y = 360° and ay, the 5¢ design variable).

® Objective function . _
0BJ = Cp wave + Cp viscous

Cp are the mean values of the drag components given by :

T =Lt Jmc x M*d

D7 360 " 067 Jo © ¥
Cp, and M being the drag and the Mach number at each time (azimuth) step. Cpwave is obtained through the
integration of the unsteady momentum equation over a contour surrounding the shock at each time step while
CDviscous is obtained by applying the squire and Young formulae.

¢ One constraint on the mean value of the C, _
CL203
The optimization history is presented Fig. 87. After 8 optimization cycles the objective function has decreased
by 24 % and the constraint is not active. 55 unsteady aerodynamic computations have been performed. On the
figure are also drawn the evolutions of the design variables during the optimization process. The overall computing
time is 1 H 37 mn on a CRAY-2 computer.
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- The second optimization case is the same than the previous one with & second constraint applied on the
maximum unsteady pressur: coefficient value :
[Cominl S 2

The objective function has been modified in order to obtain some penalty when a separation appears on the
airfoil.

OBJ = (€h wave + Chrmeons¥Xs
X, being the maximum location of the separation (from the trailing edege) computed during one cycle.

For that case, the optimization history presented Fig. 88 is less smooth than for the first case due to boundary
layer separation apparing during the optimization. After 8 optimization cycles, the constraint n° 1 (C1) is non active
while constraint n° 2 (|Cp)) is just active.

On Fig. 89 are plotted the design variables. The additional constraint influences greatly the final solution as it
can be shown by comparir g Fig. 89 and Fig. 87.

The airfoils contour obtained with these two optimizations are plotted on Fig. 90. The airfoil from case n° 2
exhibits more camber which is confirmed by the pressure distribution computed for two azimuth angles plotted
Fig.9l.

Fig. 92 compares the unsteady aerodynamic coefficients of the two airfoils versus the azimuth angle,

The viscous and the wave drag mean values of airfoil n° 2 are higher than those of airfoil n° 1 which has been
optimized without the constraint on the [Cp min| ; however, a separation occurs on the airfoil upper and lower
surfaces for a large ra: ~e of azimuth angles which is not the case for airfoil n° 2.

This design method which is presently under development will certainly in the near future become a powerful
and valuable design tool for unsteady designs.

4. CONCLUSION

Through the various examples presented in the paper it has been shown that numerical optimizations may be
used for solving a lot of design problems. Even if the computing time is somewhat higher than the vne of other
design techniques, numerical optimization provides generally a reduction in total design time. The major
advantage of numerical optimization is the possibility to deal with a wide variety of design variables and
constraints and yield improved, efficient and economical designs.

However it is important to understand the limitations of optimization techniques and use these methods as
only one of many tools which are available. It can seldom be guaranteed that the optimization algorithm will obtain
the global design optimum. Therefore it may be necessary to restart the optimization process from several different
points or with different design variables to provide reasonable assurance of ob‘aining the global optimum.

As it is said in [1], expectations of achieving the absolute "best" design will invariably lead to "maximum”
disappointment.
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Fig. 15 - Shape functions from Legendre polynomtals.
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Fig.33b - Off-design performance Cp, - us - C (M = 0.25)

Fig. 33a - Off-design performance Cpy - vs - CL(M = 0.25).
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Fig. 40 - Viscous airfoul target velocity field.

Fig 41 - Viscous atrfoil initial guess velocity field.
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CONSTRAINED SPANLOAD OPTIMIZATION
FOR MINIMUM DRAG OF MULTI-LIFTING-SURFACE CONFIGURATIONS

R.F. van den Dam
Natfonal Aerospace Laboratory NLR
P.0. Box 90502 Amsterdam The Netherlands

SUMMARY

This paper presents a practical method for the determination of optimal spanloads for
multi-lifting-surface configurations. It comprises algorithms for choosing the spanwise distributions
of 1lift, pitching moment, chord and thickness-to-chord ratio of lifting elements. The choices are
optimal in that they minimize induced plus viscous drag while satisfying constraints of aerodynamic,
flight-mechanical and structural nature. The configuration that can be dealt with, may consist of a
number of segments representing, for instance, wings or parts of wings, horizontal tails or canards,
wingletrs, flaprail-fairings, etc. Also the interaction between propellers and lifting elements may be
included in the procedure.

The induced drag 1is computed using the Trefftz-plane integral (farfield-analysis), while the
viscous drag fol'~:s from form factor methods. Novel mathematical formulations of the constrained
optimization problem are used,- that are based on the calculus of variations. The method can be
used as a first step in the inverse numerical optimization approach to provide a starting point
for the specification of target pressure distributions. These target pressure distributions are
then used by an inverse code to determine the corresponding geometry. This paper presents the
theoretical models and methods underlying the analysis and optimization capability, comparisons
with other theories, and some examples of application.

1 INTRODUCTION

The success of an aircraft design depends largely upon finding an optimal balance hetween the
contributions of the disciplines involved. Moreover, many of the benefits from emerging technologies
can only be fully exploited through their interactions with other disciplines. Good examples of these
are the technologies of active control and composites which make 1t possible to design aircraft with
forward swept wings and relaxed static stability. In order to find an optimal balance between the
contributions of the dlsciplines and to take maximum advantage of technology advances, the
interactions should be identified and quantified before the wain decisions comcerning the overall
configuration design are made. This implies the necessity of developing the analysis and design
capability to a suitable breadth and depth for earlier application in the design process. Increased
breadth means the inclusicn of the appropriate spectrum of disciplines and new technclogies early in
the design. Increased depth in the early design stage is required to assure that the Interactions are
correctly quantified before the main decisions are made. An example of developing methods of this
nature is the method for drag minimization studies described in the paper.

Minimization of (aerodynamic) drag is an important goal in aircraft configuration design studies
as it helps to improve upon fuel efficlency. In these studies, 1t has been common practise to
decompose the aircraft drag in components that are to a large extent independent. Computational Fluid
Dynamics have created possibilitles for drag breakdown that 1s based on physical principles (Sect. 2.3
of Ref. 1). In such a breakdown 1t is convenient to distinguish between viscous (boundary layer) drag,
induced (or vortex) drag and wave drag.

With respect to the choice of independent variables in drag minimization problems one may
distinguish different approaches. One is to use parameters defining the geometry as the independent
variables {direct numerical optimization). While this approach 1s feasible In two dimensicns (see e.g.
Ref. 2) 1t 1s hardly so, at present, in the case of three-dimensional configurations because of the
lack of accuracy in the available three-dimensional codes in combination with the limited computer
power available (Ref. 3).

Yet an alternative approach may be adopted, namely the use of aerodynamic (load and pressure
distributions) rather than geometric shape functions as independent variables (Ref. 4). This approach,
called inverse numerical optimjzation (see Fig. 1), involves the successive determination of optimal
target spanloads (using methods as described in the paper), target pressure distributions (optimal
with respect to the specified drag characteristics and providing the prescribed spanlcads), and
corresponding lifting~surface geometries (using an inverse code). This process 18 repeated until a
geometry is obtained having acceptable performances for all flight conditions.

This paper concerns the first step in the {inverse numerical optimization approach: the
determination of optimal spanlcads. In literature, various theoretical methods can be found for
determining spanlosds for minimum drag. Almost all of them consider induced drag only in determining
optimal spanloads (see e.g. Ref. 5, 6, 7). Inclusion of other drag components in the optimization

procedure can produce substantially different minimum drag spanloads compared with induced-drag-enly
results.
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Metheds that extend the induced drag minimization theory to include other compenents as well, and can
be used in preliminary aircraft design, are the subcritical design ~ode of Kuhlman (Ref. 8) and the
transonic optimization scheme of Mason (Ref. 9).

The method described in this paper provides capabilities for chcosing the spanwise distributicns
of lift, pitching moment, chord and thickness-to-chord ratic of lifting elements of an aircraft
configuration. The choices are optimal in the sense that they minimize induced plus viscous drag, or
induced drag only, while satisfying constraints on, for example, piltching moment and section lift
coefficients. Determining minimum drag spanloads, alsc the interaction between propellers and lifcting
elements may be included in the procedure. With an optimal spanload, the wing can restore much of the
(rotational) energy loss asscciated with propeller swirl (Ref. 10, 11). The method may provide direct
input for more detailed aerodynamic design (e.g. the inverse numerical cptimization procedure), but
may also be used for parametric airplane configuration design studies. In these parametric design
studies, the method 1s used to quickly assess the consequences of changes 1in the coenfiguration of
(complex) aircraft.

In the following sections, an outline of the analysis and minimization technique developed is pre-
sented. Comparisons with other theories are given and the capabilities of the method will be illustra-
ted by some examples of application,

2 FORMULATION OF THE PROBLEM

It is assumed that the projection of the aircraft configuration onto a plane perpendicular to
the flight direction can be approximated by a number of straight line segments, representing the
various elements of the configuration. An example is shown in figure 2(a). The geometry description
can {nclude wings (or parts of wings), tailsurfaces, pylons, winglets, etc. The planform geometries of
the configuration 1ifting elements can be described by the spanwise distributiens of chord-length,
together with the ccordinates of the 1/4-chord point locations, defining the planform sweeps (see Fig.
2(b)). The vortex sheets aft of the configuration are assumed to remain undistorted. The latter can be
argued to be a reasonable approximation in the case of planar optimal spanloads. It is assumed that
this also holds for optimal spanloads of non-planar configurations. The airplane 1lift and drag are
thought of as being composed of wing, tail and/or canard, fuselage and nacelle contributions, as
i{llustrated in figure 2(c). The lift of the fuselage i1s modelled using the principle of lift carry-
cver from the wing, resulting in a constant distribution of bound circulation of the fuselage width.

If the interaction between propellers and lifting elements has to be considered as well, each
propeller is assumed to shed a helical vortex sheet that is not influenced by the presence of the wing
(Ref, 12), and that 1s confined inside a cylindrical "stream" tube parallel to the flight direction.
The velocity distribution inside the slipstream has to be known for a specified propeller and required
thruse,

The foliowing problems are to be addressed:

- determination of optimal spanwise lift-distributions plus, 1if applicable, spanwise pitching
moment distributions that result in either minimum induced drag or minimum induced plus viscous
drag. In this procedure, constraints may be imposed on total pitching moment (trimmed aircraft).
section liftcoefficients (feasible airfoils), rolling moment and, if applicable, bending moment.
A part of the total spanwise 11ft-distribution may be specified in advance. In that case, the
induced (plus viscous) drag is to be minimized by adjusting the remaining part of the lift-
distribution.

- computation of the {fnduced (plus viscous) drag for given (non-optimal) spanwise 1ift
distributions. For instance, to quickly quantify the penalties that arise from the use of non-
optimal loadings, to determine the performance under off-design conditions, or to estimate the
induced drag associated with flap deflection.

3 DETERMINATION OF DRAG AND LIFT

The aircraft 1is assumed to fly with a conatant velocity in a uniform, inviscid and irrotational
medium. An expression for the induced drag 1in the Trefftz-plane can be derived by applying the
momentum theorem to a control surface enveloping the afrcraft (Ref. 4, 13). Consider a contrel surface
S of the type as indicated in figure 3. Several subsurfaces of S can be distinguished: the Trefftz
plane (5.), & similar plane far upstresm {S ), the top and bottom plame (S}, the bedy surface (5.),
the shochave surface (S ), the vortex sheet surface (5 ), the propeller surface (S_) and the slip-
stream surface (Ssl)' fppllcation of the cvnnervatio“ laws of momentum leads to the integral
expression:

2 { pn_+ ouq } ds = 0, (1)

S - + + + .
where S Su ST S, + SB Sp + Sv + Ssl + Ss

-
p is the (local) static pressure, q is the total velocity vector, o is the density, ; is the ynit
outward normal to the control surface, and u is the component in the free-stream (x-)direction of q.
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Splitting~cff the body pressure {ntegral and realizing that q = 0 on SB leads to the following
expression fer the total pressure drag of the alrcraft: n

D =~ g P dS = - sjs (pnx + ouqn) ds, (2)
B B
Working out this expressicn and splitting-off the wave drag integral the following Trefftz-plane
integral for the induced drag can be derived (see Ref. 14):

f (H-H Ju ] nlog
D, = é E(P-Pm) + plu-u yu - p ol ds - 15? 31(5), 3)

T

H represents the stagnation enthalpy. D 1s the slipstream diameter, J Is the propeller advance ratio
(= uw/uD, where  1s the propeller angular veleclity), Q is the propeller torque and u_ is the number
of propellers. P

Assuming small perturbatiens in the Trefftz-plane, the flow being isentropic, and using the law
of Biot-Savart, equation (3) may be worked out further te obtain (see again Ref, 14):

*
D./s = L1 r(wv (n)dn + i rm (¥ .vdn + 3 c's W2 (4)
1" 2 . n P 2 ref o
S HST Vﬁ(ST +ST
v I 1t
where
*
- 2 A ds—zpj—{%)i}.
S . u s. PP 1=1 4
ref o T

I is the bound circulation, v_ {s the velocity induced in the Trefftz-plane normal to the vortex sheet
segment, and = (u_,v_,w ) is the (fixed) perturbation velocity in the slipstream of an isclated
propeller. n dBnotes Pehd d¥stance (spanwise parameter) along SyNSy. The last term in equation (4)
represents the magnitude of the "swirl loss" of the propeller. Tn the first right-hand term of
equation (4) the integration 1is performed over all lifting elements, in the second term the
integration is performed over the lifting elements in the slipstream only. The local trailing vertex
sheet strength is equal to the derivative of the bound circulation at that spanwise positicn; so,
using the law of Bilot-Savart, the following expressicn for vn can be derived:

R (Frym) x €

! dar(z)
v (n) b f el o 5 dr ()
1T (x,nY|
Again, the line integral is taken over the projections rf ~»._ lifting cqnfiguration elements

onto the Trefftz-plane. n(n) 1is the unit vector normal’to the position n, and e_ 1s the (downstream
directed) unit vector along the x-axis. The vector r(r1,r) denotes the vector from the spanwise
position 1 to the spanwise position n. Integrating by part. with respert to 7, equation (5) can be
rewritten into:

vl =Sl f fn T e )
where
an) . (F(1,n) x &)
Flr,m = - L > :—( . 2"\} 7)
2 S___u T | rlram) |
ref =

The other term at the right side of (6) has disappeared since I = 0 at the free end of a lifting
element. Substituiion of (6) in (4) ylelds:

2
2
Sref“m

€ = [[ ECt,n) T(1) T(n) drdn + [ PV () itm)dn + c* (8)

D
i

Thus, the optimal circulation distribution may be computed with the propeller and wing located
both far upstream, eliminating the 3D-computatien of velocities induced by the wing on the propeller
and by the propeller bound vorticity on the wing. In fact, this expression underlines the correctness
of the postulation of reference 10 concerning the generalisation of the stagger theorem of Munk. The
generalized version of the stagger theorem allows the farfield .omputation as 1t states that also for
propellier-wing combinations the 'net force in the streamwise direction 1s independent of the
streamwise position of 1ifting surfaces with a given circulation distribution”.

PR}
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Viscous drag

The viscous drag is derived for given airfoll characteristics. These airfoil characteristics
define the viscous drag at each spanwise station as a function of the local section lift ccefficient.
An expression for the viscous drag can be derived using the (2D, incompressible) DATCOM/Hoerner
formulae:

4 i Swet
c -C { 1+ k(t/c) + 100 (t/c) f T 9

dvisc F ref

C. denotes the flat plate friction <seriicient (depends on locatior of transition peint and
local ngnolds number, see Ref. 14) and . is the thickness location factor (depends on locarion of
maximum thickness). t/c represents the thickness-to-chord ratio. For common airfoils, the wetted
surface swet is about twice the reference surface Sref'

Applying thir airfoil theory and corsidering the velocity distribution and the drag contribution
of both the upper surface and lower surface individually (hereby assuming the same class of pressure
distributions, see Fig. 4), expression (9) can be written in the form:

- - - - 4
- r ;
Cdvisc CF {l + kup(ut + u,) + 10 (ut + ul) } +

up (10)

- - - =4
+ CFL {1 + klo(ut - up) + 100 (ut - uy) }
0

Gt and ;1 represent average perturbation velocities as a result of airfoil thickness and life,
réspectively:

- - A
u, = 1 Cl and u ™ 1515%—525-—

t an

n

where Bn = \/1 - M, cos“A (12)

A denotes the sweepback and M, denotes the (3D) undisturbed Mach number. CE denotes the (3D-) 1lift
coefficient that is linked, according to the Rutta-Joukowski theorem, to the bound circulation (see
eq. 15). Substitution of (11) fin (10) leads to an expression for the viscous drag as function of C,y
and t/c. It is plausible to assume, on the basis of DATCOM's formulae, that k varies continuously with
the position of the pressure recovery starting point Xp (see Fig. 4):

x_ /¢ X \ X
R R R
k= 25— ~-8.26 (—c-o.a)'-z.s-l.a—c
Using this formula, k = 2 for xR/c = (0.3 and k = 1.2 for XR/C = 0.8, which corresponds with DATCOM's
formulae.

In the Cy-range of interest, the viscous drag function (10) is approximated by a polar of the
form

. * * * 2
€ (G =+ K (Cpm €Y, a3

visc vie

* * *
where the factors Cv s’ K and CE follow from a least square fit to the function. Integration results
in the total viscous profile drag:

C (T(n),n) e(n)
dvisc
c -f

b dn, (14)

vise Sref

Expressiong for 11ft and moments
An expression for the local 1ift follows from the Kutta~Joukowski theorem applied in the 1ift
direction:

2 cos(¥(n))

S e(m as

* *
Co(m = g (M (M where g (M =

u(n) is the local upstream velocity for a 1ifting element at the position n. 1f (a part of) the
1ifting element is situated in the slipstream, u(n) differs from the undisturbed velocity. (M)
denotes the dihedral angle. The total 1ift of the configuration follows from integration:
2 cos(w(N)) u(n)

s

¢, = [ g (m I(m an where 8 (" = (16)

]
ref =
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If the section pitching moment distribution is not given, 1t can be deduced from the pressure
recovery point locations. For the class of pressure distributions given in figure 4, the next
expression for the section pitching moment Cm w.r.t. the quarter chord point xl/a can be derived:

* At 17
C (C) = C - & G (17a)
where
A a,a - a,a
C* - = ( 4 (t/c) cos + . ) ( 1% . 293 (170
2 1 - M_ cos“A L )
* 3% )
A = (——— (17¢)
2 El + 8,
and
1 1 1 1 1.2
Tzt ST wWrw R TE
u u u
1 1 1 1 1.2
I R B % T T %Ry TE Ry

Cz follows from (15). m, and m, are known constants, With the section pitching moment defined with
respect to the quarter—éhord pé&nt. the total contribution of the lifting elements to the aircraft
pitching moment w.r.t. the centre of gravity then follows from:

G = Tgym Tem an v —2 o [ chm Fem wE(m an (182)
S c u,
ref ref ®
where
gp(m = 2 - () - AT MeM) cos(e(M) (18b)

C u,
ref ref

¢ denotes the length of the reference chord, and x 1s the longlitudinal coordinate of the
re§ . C.8.
configuration centre-of-gravity,

If the aircraft configuration is asymmetrical, (e.g. a configuration with propellers all rotating in
the same direction), a rolling moment constraint CR w.r.t. the point P = 0 (in the plane of symmetry)

may be imposed:

€ - ] gy(M T(" dn (19a)
where
2 u(n) . { }
gy(M = —=2ms | (M - y(0)) cos (9(M) + {2t - 2@} a1 (U(M) (19b)
srefbrefu”

bre is the reference span. Note that the rolling moment coefficient CR equals 0 1f the afrcraft
conglguration is symmetrical.

Limitation in design c,, t/c, n and M

In order t¢ ensure that the computer program works wi*h feasible airfeil characterlistics, a
relation defining feasible combinations of (design) 1lift coefficient, (design) Mach number, wing
thickness-to~chord ratio and pitching moment coefficient may be formulated. For supercritical
airfoils, a graphical representation of such a relation between t/c, c, and M is given in figure 5 for
o ~-.110. Data tor other c_-levels follow from the relation 6(t/c)/%cm = ~0.6. The relation can be
considered to represent a “condensed"” section characteristics data base for a feasible class of
spupercritical afrfoils. This class 1s described by a relation between allowable combinations of design
¢y My t/c, c_. The data base holds for 2D-airfolls. If a sweep angle A 1s applied, the 3D-values have
to be calculaPed from the 2D-values using the relations:

Cy(3B) = c4(20) cogh R Cm(3D) - cm(ZD) coszA.

% (3D) = % (2D) cosh R M (3D) = M (2D)/cosh.

The data base is used when imposing (local) 1ift coefficient constraints in drag minimization
procedures. In the case that the user provides pitching moment coefficient distributions, the
combination of t/c, M and ¢ directly leads to the upper limit of the sllowed range for the (design)
11ft coefficient, If the pitching moment coefficients are not directly specified, the combination of
t/c and M only results in a feasible cm-cl area. In that case, the pitching moment coefficient




distribution may be defined by relation (17), which further restricts the possible combinations of n
and S in this feasible area, Both < and ¢, are then found as part of the solution.

It is emphasized that the "data base" of feasible characteristics Is representative for a
certain class of airfoils. The user should check whether this data base 1s compatible with his own
experience. If required, the relation may be modified to his own experience.

4 DRAG MINIMIZATION
General

The numerical optimization of drag is based on an approach, in which the evaluation of double
integrals (see eq 8) is avoided. This is realized by first deriving analytically the necessary
optimality equations before doing any discretization. Discretization of the bound-circulatien

distribution 1m the (single) integrals is performed starting from these analytical necessary
optimality equations.

Analytical necessary optimality equations

The drag minimization problem can be stated as follows: determine the function T'(n) that mini-

mizes the functional CD + CD subject to constraints imposed on CL, CM and, if required, on CR:
1 visc
G =C -C - 0
1 L Ldes
G. = - - 0 (20)
27 % Gy
Gy = Cp - CQ ~ 0
Also CL(“) may be constrained:
G,(n) =C.(n) ~C () £ 0 , vn. (21)
4 13 ldes
CL N CH and the (dimensionalized) propeller torque CQ are prescribed values for CL (eq. 16},
des des
CH (eq. 18) and CR (eq. 19). Cl (n) follows from the relation between €y t/e, n and M as

des
described in the preceding section. Expression (8} and (14} specify the induced drag CD and viscous
i

drag CD , respectively.

visc

The problem may be solved through the iIntroduction of Lagrange multipliers. That 1is, the
augmented integral

3
Ie ¢y +¢ + L6+ ! (MG, () dn
i visc 1=i

is formed, where the Lagrange multipiiers A, (i = 1,3) and u(n) are to. be determined. The next step
towards the molution of the optimization problem is to write I'(n) = I(n) + 8T(n), and to form the
first variation &I of I with respect to variatiens of T(n),

-

(V (n}. nln)) +

1= | [z [ £Ct,m T(v) dt +

n Srei L

2 ~ 3
+26° g} (0 T(w - 2% g tnc,tm + T Ag (m + utmg,Im ]cr(n) an (2
i=]

3 *
In this vsriation, the parameters Vp. K and Cl. and all geometry-related parameters, have fixed
values.

The necessary condition for the minimization of 1 is that the first varlation vanighes, This
condition holds for any arbitrary function &TI'(n), hence the term between brackets in (22) wust vanish
at all spanwise positions. In fact, this necessary condition for the minimization of I {s nothing else
but the Buler-Lagrange equations of variational calculus. Upon substitution of the expressicn (6) for
f(1,n), the condition can also be written in the form:

> . 2 3
2 (vn(n) + Vp(n).nf:)) + 2x'(n)g'{ (mT(n - ZK?n)g;(n)C:'(n) + T g (m e u(Mg (M = 0
1=1
ref'= (23)

§

that must hold for all n. In combtnation with the constraint relations (20) for C

N C and CR' and the
constraint for C ('» written in the form

L
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wMm(c,(m -c, (M) = 0
des wn (24)
u(n) 2 0,

the optimal bound circulation is determined.

It may be noted that, if only the induced drag is minimized (K = 0) in a flow without propeller
alipstreams (V= 0) and imposing the total lift constraint only, the necessary condition reduces to
Munk's criterifm for minimum induced drag (Ref,15)

)= 0 , Vn

2

n A -
s 2 va(M + (¢ CLdes
ref's

In words, "the induced drag will be a minimum when the component of the induced velocity normal
to the lifting element at each point is proporticnal to the cosine of the dihedral angle of the

lifting element at that point (vn = v, cos )",

Numerical approach

The necessary optimality conditions (23) for the drag minimization includes an {ntegral
expression for v . Direct integration can be done analytically only for the most simple bound
circulation distrfbutions. Thus, to sclve the integral equation (23) by approximation, it is necessary
to assume a priori a convenient shape of the bound-circulation distribution function TI'(n). The
discretization model adopted here 1s the same as that utilized by Kuhlman (Ref.7) viz. a pilecewise
quadratically varying bound circulation:

dl“i(o) o +h

RN e

—_— - < <
3 Yio1 7, h,SPEh (25)

1" Y 1 1

where h,_ is the half-width of the panel i. P is the panel coordinate: ¢ = 0 coincides with the panel
midpoiné, while ¢ 18 positive 1f located outboard of this point. Y  and Y . denote the trailing
vortex sheet strength at the panel ends. Using this discretization mod%l and a suitable panel-spacing
technique, sufficiently accurate solutions can be obtained with a relatively small number of panels.

The integral expression (5) for the normal velocity v_ can be written as a summation of panel
integrals. Upon substirution of the discretization model, the following expressioen for ve induced at
panel § and at a distance T from its midpoint can be derived from (5) and (25):

+h +h

2k Y.+ Y i Y, - 1
v (1) = 13 { 4 11 i1 A(p,t)dp+-1__’£l | oa(,T)de (26)
n 27 2h
=1 -h 1 -hi
where
-> > >
n(?) . (r(®,7) xe)
A(P,T) = —*____2__._". and t e [-h, h]
{0, L

The summation 1s performed over all (2k) panels at both sides of the (xz-) plane of symmetry.
The integrals in equation (26) over each individual panel are evaluated analytically.

From equation (25) follows

Y +3Y Y, +Y Y, =Y
Fety o T _4-1 17711 171 .2 st
(7) (hi) A hi + 3 T+ bhi T ( h1 T hi) 27
vhere
r = -F
(hi) (Ym_l+ Ym) hm'

The summation is performed over all panels located outboard panel 1.

Application of the necessary condition (23) at all panel midpoints, using expressiocns (26) and (27)
for v and I respectively, then results in 2k relations for the unknown trailing vortex sheet strength
valuel Y‘ and Lagrange multipliers *1 and ¥

]
2k 3 .
T b3 A - -
- 513 Yi + o gij .t "1813 bj R i 1,2k (28)

wvhere the index j indicates the panel at the midpoint of which the necessary condition is imposed.
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Substituting the discrete bound-circulation model (25) in the equations (16), (18), (19) and (15) for
c , CH' C, and Cl(n ), rvespectively, these equations can be integrated analytically and can be
eXpressed §n terms oé the trailing vortex-sheet strength values Y ., Together with the 2k-relations
(28) and the constraints (20) and (24) they form a system of linear equations for the unknown trailing
vortex-sheet strengths and Lagrange multipliers. This system determines the optimal spanwise
bound-circulation distribution that results in minimum drag.

The methed developed automatically takes care of satisfying Helmholtz' thecrem at configuration
element intersections, which is manifested by jumps 1in the bound circulation distribution. If a
symmetrical aircraft configuration is considered (no propellers, or a counterrotating palr of
propellers) this results in k unknown vortex sheet strengths Y, and the range of i in equation (28)
reduces to j = l,k. In addition, the rolling moment constraint may be deleted.

In order to avoid rather complicated and computationally expensive integrals the drag components
are calculated using a numeri_al integration rule, instead of integrating anlytically. Using a panel
arrangement method with properlv increased panel densitv in regifons with comparatively large

vn-variations. use of the midpoint rule already results in a sufficientlvy accurate approximation with
a relatively small number of panels. An alternative might be the Simpson rule.

Knowing the spanwise bound-circulations alsc other quantities of interest can be determined.
Examples are trimdrag, bending moment distribution, and the overall forces acting on the aircraft
components.

5 EXAMPLES OF APPLICATIONS

In this section, a number of typical examples {s presented that demenstrate some of the
capabilities of the method developed. The examples do not represent actual design studies.

Induced drag enly

Obviously, the accuracy of numerical induced drag methceds is affected by the discretizaticn
medel of the bound circulation distribution. It has been shown for a planar wing (Ref. 7), that
methods using plecewise quadraticaliy varying bound circulations, are approximately four to five times
as accurate in computing the induced drag as a vortex-lattice methcd with the same equal-sized panel
arrangements. In figure 6, the present method is compared, for a planar wing, with the method of
Kuhlman (Ref. 7), in which also quadratically varying bound circulations are used. Although the
present method 1s less time-consuming than Kuhlman's method, it can be seen that the differences in
accuracy and convergence are very small; both methods approach the exact value of the induced drag
rapidly as the number of panels increases. Using 10 wake panels per semi-span, the minimum 1induced
drag of the planar wing is computed with an accuracy of about 0.2 percent.

For an non-planar configuration, the present method is compared with a result obtained by Lundrv
using a conformal-mapping technique (Ref. 16). In figure 7, the optimal bound circulations are compared
for a wing configuration with vertical endplates (or winglets). In figure &, the induced drag values
are compared. As can be seen, the results of hoth methods agree well.

In ffgure 9, some of the system capabilities with respect to trimmed induced drag minimizaticn
are demonstrated for a transport-sircraft type configuration, a sketch of which is given. The minimum
induced drag as function of the centre-of-gravity location for three different vertical positiens of
the hoerizontal tail is shown in figure 9a. The spanwise C_-distribution was specified (C_.(n) = -.106 |
0 %2 n s b/2) and for the body pitching moment coefficient’ CM = 4+ 0.007 was adopted. his figure
shows that for (conventf{onal) cases of negative tail loads.’ghe minimum Induced drag Increases with
fncreasing height ~f the horizontal tafl. Nete that the lowest values of minimum induced drag are
obtained for high-tail configurations with positive tail lcads. This suggests that, from the point of
view of induced drag, there might be a preference for high-tail pesitions for configurations combining
relaxed static stability with active contrel tecimelogy.

In figure 9b, the influence of the tall-to-wing span ratio and the vertical pesition of the
horizontal tail on the minimum Induced drag is displayed for two different positions of the
centre~of-gravity. It can be seen that, for a fixed height of the horizental tail, the minimum induced
drag increases with decreasing tail-to-wing span ratio.

The inclusion of C,(n)-constraints in the optimizatfon procedure is realized using a relation
between c,(des), c¢_(des), M and t/c (see section 4). As an example, the same configuration of figure 9
is consid%rEd for™ = .735 The limitatiens in design c¢,, t/c, ¢ and M of figure 5 (supercritical
atrfoils) are used. Instead of giving a specified spanwise C —dispribution, now the pressure recovery

point lccations have been given (x l(n) = .5| 05 ns b/2). With this, a relation between C, and
C. 1s specified (see eq.(17), (%7%Yn) = (5.5 T | 0 s n s b/2). In figure 10, cthe opfimal
c®-distribution is compared with those of the "nc wing-thickness comstraint” opticn (x at 30 X

MAC). The figure shows that, in this particular example, the C ~distribution has changed £4%4 constant
C, over a portion of the wing. The inclusfon of wing-thickness constraints results in an induced-drag
increase of about 2 7.
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Induced drag minimization including propeller slipstreams

In order to examine the effects of the propeller slipstream on the alrcraft induced drag, the
axial and tangential velocities in the propeller slipstream have to be given. For a particular example
design condition, the distribution of propeller induced velocities of figure 1l has been used (advance
ratio of J = 0.13 and a thrust coefficient of CT = 0,12).

For a wing configuration with two "up-inboard” rotating propellers, located at 25 of the
semispan with a diameter-to-span ratio of 13%, the optimal spanwise bound circulation distribution is
shown in figure 12. This distribution greatly differs from the optimal "clean wing" distribution that
is also shown in figure 12. With this distribution, the wing is capable of restoring much of the loss
associated with slipstream swirl.

In figure 13, the effects of the horizontal propeller position for different rotating concepts
of the propellers on the minimum induced drag coefficient have been plotted. As can be seen clearly
from this figire, two up-inboard rotating propellers lead to a most favourable configuration with
respect tc the minimum induced drag. If the location of the propeller-centre is moved outboard,
induced drag will decrease for twe up-inboard rotating propellers and will be a minimum when the
propellers are located at the wing tips (see also Ref. ll).

It is apparent from the results above that favourable lifting-element/propeller interference
resulting in lower induced drag or, equivalenty, induced thrust, may be preduced by appropriate wing
design. The required C,-distribution may be realized by, for Instance, adjusting twist, thickness,
camber and chord distrib:-tions. The results obtained agree with those of Kroo (Ref.l0), who showed
that in some cases all of the swirl loss can be recovered.

Also proper design of the engine nacelle/pylon may possibly contribute to swirl loss recovery.
Figure l4 presents the optimum span loads for two configurations (with up-inboard rotating propellers)
one utilizing passive (streamline) shaping of the pylon and the other having an active loading on the
pylon. In this particular example, a 9 % reduction of the minimum induced drag 1s realized. 0f course,
this 1s not an actual design case and the benefit can be realized only at the cost of a more
complicated detailed design, but it may be interesting to investigate the possibilities of a more
active role of the nacelle/pylon.

Induced + viscous drag minimization

The importance of including the viscous drag component Iin the uminimization procedure 1s
{1lustrated by the next example. This example concerns a wing-canard ceonfiguration., In this example,
the pressure recovery polnt locations have been given ({x/c) - .53 (x/c)“ L " .4), while for the
thickness-to-chord ratic (t/c) a constant value of 12 7 has beeﬁuadopted. *

In figure 15, the drag as function of the centre-of-gravity lecation is displayed. The upper set
of drag curves represent the sum of induced + viscous drag {(only the viscous drag of wing and canard
is considered), while the lower curves are for the induced drag alone. By optimizing the sum of the
induced and viscous drag, the total drag 1s less than it would have been 1f only the induced drag was
minimized and the viscous drag added afterwards. Of course, the induced drag alone is greater when the
sum of the drags 1s minimized than when induced drag alone is optimized. In addition, the total drag
minimum is located about 102 b/2 ahead of the minimum induced drag alecne position, stressing the
importance to include (estimatfon of) viscous drag in configuration design studies.

In figure 16, the section C,'s for both minimum induced-drag and minimum induced plus viscous
drag are given for the minimum (ln'auced + viscous) drag c.g.-position. As can be seen, the inclusiocn
of profile drag results in a reduction of peak section Cl and an inbeard shift of the spanloading for
the main wing.

The results agree with those of Magson (Ref, 9), who showed that a dreg reducticn of about 5%
could be achieved by including the profile drag in the optimization procedure.

Configuration design studies

The method developed can also be used for parametric preliminary design studies, for instance,
to assess the effect of changes in size, location, dihedral and sweepback of wing, tail or canard,
wvinglets, etc. The configuration may be of the conventional type (tail-aft) or nonconventional type
(canard, three-surface configuration, forward awept wing, etc.).

A typical exsmple of a nonconventionsl aircraft configuration 1s the three-surface aircraft
(canard, wing and aft tail) given in figure 17, For the canard-wing and wing-tail configuration, the
specification of the centre-of-gravity position (static margin) and the trim condition are most
decisive to fix the balance of 11ft between the wing and control surface, but for the canard-wing-tail
configuration the 1ift distribution among the surfaces can be chosen to reduce the total induced drag
vhile reteining trimmed conditions at a specified static margin. The three-surface circulation
distributions of figure 17 are only presented to Illustrate the capabilities of the system and are not
meant to represent an actual configuration design study.
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In the past couple of years, there has also been a renewed interest in aircraft configurations
with forward gwept wings (FSW). According to reference 17, the application of forward swept wings may
result in, among others, lower induced drag and higher maximum 1ift coefficient as compared with an
aft swept wing (ASW). The problem of aero-elastic problems for forward swept wings may nowadays be
solved by using an aero-elastically tailored wing using composite matrrials. Figure 18 shows that in
the case of forward swept wings, the tendency of spanwise loading for minimum trimmed induced drag is
to move inboard.

Configuration design studles may concern the composition of the total aircraft lay-out as well
as local alterations of the aircraft configuration as is the case, for instance, when the effective-~
ness of winglets 1s 1nvestigated.

6 CONCLUSIONS

An induced (plus viscous) drag analysis and minimization methed has been developed that provides
a low cost and useful tool, that can be used both for preliminary aircraft design purposes, and for
providing direct input to detalled aerodynamic design procedures. In the latter function, the method
provides bound-circulation distributions that may be used in specifying target pressure distributions
for inverse aercdynamic design codes.

Complementary to the determination of optimal spanloads, the method can also be used to support
selection of sgpanwise distributions of pitching moment, chord and thickness-to~chord ratio. In the
procedure, the interaction between propellers and lifting elements may be included. Compared to other
methods in this spirit, the present method is less time-consuming than near fleld metheds and more
accurate than vortex-lattice methods. Comparisons with known solutions of other theoretical methods
have proven excelleat agreement,

The examples shown in this paper {1lustrate the lmportance of ceonsidering, early in the design,
all aspects that may influence the drag characteristics. The inclusion of, for instance, viscous drag
and/or propeller slipstreams may lead to cother choices for the spanwise distributions of 1ife,
pitching moment, chord, and thickness-to-chord ratio than when only the 1induced drag without
propeller-slipstream is considered.

The method is fast and easy to use, and therefore very suitable for interactive design purposes
in which rapid configuration trade-offs have to be made. It has a wide field of application and may be
especially usefull to support the assessment of unconventional design concepts in which lack of
experience precludes good design decisions. Examples of unconventional concepts are three-surface
configurations, relaxed static stability, ™"active" nacelles/pylons. forward swept wings. etc. The
capabilities of the wethod are exploited more efficiently when used in a multidisciplinary design
environment .
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AERODYNAMIC OPTIMIZATION BY SIMULTANEOUSLY UPDATING
FLOW VARIABLES AND DESIGN PARAMETERS
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Sverdrup Technology, Inc./TEAS Group
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Eglin Air Force Base, Florida 32542-5000

SUMMARY

The application of conventional optimization schemes
to aerodynamic design problems leads to inner-outer
iterative procedures that are very costly. In this
paper, an alternative approach is presented based on
the idea of updating the flow variable iterative
solutions and the design parameter iterative solutions
simultaneously. Several schemes based on this idea
are applied to problems of optimizing advanced
propeller designs and correcting wind tunnel wall
interference. Computations are performed to test the
schemes’ efficiency, accuracy, and sensitivity to
variations in the computational parameters.

SYMBOLS

N incrementing factor for optimization scheme
[see Equation (9)]

g decrementing factor for optimization scheme
[see Equation (9)]

C positive constant for chord method
[see Equation (7))

Cp power coefficient; also pressure coefficient

Cpo  desired power coefficient

D propeller diameter

g unit vector along the Py axis

E objective function

f constraint function

'l solution of the flow governing equations

¢, ith component of V{relative to rotated
coordinate system

h tunnel height

:I unit vector along the P, axis with

components defined relative to the unrotated
design parameter coordinate system

US.A.

1 unit vector along the fl axis with
components defined relative to the rotated
design parameter coordinate system

L number of design parameters

Le measured model lift coefficient

L computed lift coefficient for model in free air

Lp computed lift coefficient for model in wind
tunnel

M Mach number; also number of problems
solved in parallel by the optimization scheme

né number of iterations required for the

¢ .
convergence of the analysis problem’s
solution

ng number of iterations required for the
convergence of the optimization problem’s
solution

P vector of design paraieters

P vector of design parameters relative .o
rotated coordinate system

P, th fesi :

i componenet of design parameter vector

2, ith component of design parameter vector
relative to rotated coordinate system

r radial coordinate

R blade tip radius
Ry residual Euclidean norm
Rimar maximum residual

a angle of attack

[’03/4 ﬂ3/4 which corresponds to the power
coefficient Cp,

B34 SR-3 blade angle at 75% blade span
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unperturbed blade angle distribution
blade angle disiribution perturbation

incremental vector used to update the vector
of design parameters

8 Pyygr maximum incremental value allowed in

updating the design parameters

AM Mach number correction

AN number of iterative steps at which P is
periodically updated

Ao angle-of-attack correction

€ small positive incremental value used to
perturb the design parameters

n propeller efficiency

I parameter determining the allowable region
in design parameter space for searching for
the optintum solution [see Equation (26)]

v cost of solving an optimization problem/
cost of solving L analysis problems
— 0 a

lid =l [ ¢

¥ flow iterative solution

Superscripts

n iteration number

* optimum value

Subscripts

13 measured turael condition

F computed free-air condition

M

corrected condition

coordinate system rotated by the modified
scheme

body surface
computed tunnel condition
free-stream condition

rotated coordinate system

1. INTRODUCTION

Numeri 1l optitization is one of the tools wsed in
aerodynamnic design. ‘The solution of the optimizatioa
probler attempts to deterinine the vector of design
parameters P that minimizes the olyective function
E(I; §) subject o given constraints. where § is the
solution of the flow equations. In airfoil and wing
design problems, I coutains the coefficients of the
polynomials or the shape functions used to define the
lifting surface, while £ may be chosen to be the
minimized drag, subject to the constraint of «
minimum allowable Jift value. The objective function
E may also be chosen to be a ieasure of the
difference between the pressure on the lifting surface
and a desired pressure distribution.

Conventional optimization methods {e.g., the steepest
descent method and the conjugate gradient method)
are iterative procedures that determine a sequence of
solutions_ Py, P . ., that converges to the optimum
solution P*. These methods require the evaluation of
the objective function and constraint function many
times before the optinnimn solution is determined.
Since £ is dependent on the solution §. the flow
governing equations must be solved each time £ is
evaluated. Therefore, any of the conventional
optimization schemes become a two-cycle (inner-
outer) iterative procedure. The inner iterative cycle
solves the analys

is problem for § iteratively for a
given iterative solution P, while the outer iterative
cycle determines the optimum P jteratively. In the
inner-outer iterative approach for solving the design
problem (References 1-5), the usual procedure is to
conple an existing analysis code (which solves the flow
equations iieratively for a given j’) to an optimization
code {which finds the optimum P iteratively). The
repetitive execution ol time-consuming analysis codes
is the sonrce of the high cost of this approach.

An alternative to the costly conventional two-cycle

approach is the siugle-cycle approach. This approach
is based on the idea of updating the flow variable

iterative salutions and the design parameter iterative
solutions simultaneously. The iterative procedure for
solving the flow governing equations (the analy
problen) is modified so that the solutions § of the

flow equations and the design parameters P are
npdated s, auitancously. This results in the
suceessively improved approximations (3", P,
where n= 1,2, .. .. that converge to the solution
(3%, '), thus satisfying the optimization problem.
With this approach, the need for the costly inner-
onter iterative procedure is eliminated. Schemes
based on this approach are presented below. The
results of applying these schemes to acrodynamic
problems are also presented.




2. OPTIMIZATION PROBLEM

In the optimization problems considered here, the
optimum design parameter vector, P*, is determined
so that

E(P* §) = min B(P; §) (m
P
subject to the constraint
HEP=0 (@)

with the flow variable vector § satisfying the flow
governing equation

D=0 (3)
subject to the boundary condition
B@ Pr=0 (4)

The flow governing equation, Equation (3), may be
the Navier-Stokes, Euler, potential flow equations or
an approximation of any of these equations. The
boundary conditions given by Equation (4) include
boundary conditions applied at the body surface as
well as far-field boundary conditions. Schemes are
presented below for solvir-g the single equality
constraint problem defined by Equations {1)-(4).
Extensions of these schemes to other constrained and
unconstrained problems are also prescated.

3. OPTIMIZATION APPROACHES

Different approaches may be used to solve the
optimization problem defined by Equations (1)-(4).

In this section, a discussion of several of these
approaches is presented. The discussion is limited to
the one-design-paraeter problem, governed by
Equations (1), (3), and (4) with the vector P replaced
by the scalar P. This special problem allows the use
of graphical illustrations to complement the discussion
and is chosen for that reason. However, many aspects
of the discussion may be extended to the general
problem defined by Equations (1)-(4).

The iterative procedure used to solve the flow
governing equations determines a sequence of
successive approximations, 5", wheren=1,2,....
The flow solution therefore evolves gradually with n.
It is possible to replace the n coordinate by a time-like
coordinate ¢ and to view the evolution of § as a time
dependent process. However, the time here is not
real. The time coordinate { will be used inter-
changeably with the n coordinate in discussigns given
here. For example, 3™ which denotes the alh iterative
flow solution may be replaced by (1), where ¢ = n.

3.1 Graphical Approach

The point P* at which E is a minimum can be

determined by choosing a set of closely spaced points,
P= P,e,, m=1.2,... M, and evaluating the
function E at these points. A curve showing the
variation of £ with P may then be plotted and the
value of P* at which E is a minimum, E in» €an be
determined (see Figure 1). The objective"}unction
E(P;; 9m) is dependent on the flow solution §y,. To
evaluate E for a given Py it is therefore necessary to
choose an initial iterative guess for §, which is
assumed to be the free stream flow, then the flow
equations are solved iteratively so that §,, evolves i
time until convergence occurs. The iterative flow
solutions are therefore evaluated along M paths as
shown in Figure 2, with ¥ iterative solutions
evaluated at each path where N is a number large
enough to allow the solutions on all paths to reach
convergence. The iterative solutions E( P,g‘; Im)
along those paths define a valley shaped surface, 5‘9,
as shown in Figure 3. The minimum value of the
ol‘)jective function is time dependent and is given by
E”(f). The path of thisJ)oint is given by P g(t). As
. ] 0
the solution converges, P~ (t) and E ° (1) converge to
P* and E in

3.2 Steady-State Approach

This is the conventional approach to solving
optimization problems. It is a two-cycle (inner-outer)
iterative procedure. An optimization scheme is used
to determine a sequence of successive approximations,
Pp®, m=1,12, ... which converge to the optimum
value P*. This is the outer iterative process. Like the
graphical approach, F is evaluated at different P
values as shown in Figure 1, however, the use of an
optimization scheme to choose these values leads to a
significant reduction in the number of these
evaluations in cornj rison to the graphical approach.
For each P value (P = Pp,*%) the flow equations are
solved iteratively (inner iterations) along

P = constant paths, similar to those shown in

Figure 2. However, it is possible to reduce the
number of iterative solutions obtained on a particular
path by using the last converged outer iterative flow
solution as an initial guess for the present outer
iteration. The conventional approach is labeled here a
steady-state approach because the design parameter.
P, is held fixed while the flow solution evolves in
time. It is updated only after the flow solution is
converged to a steady state. In other words, Pis
updated on the basis of information obtained from the
steady-state curve shown in Figure 1. Information
from the surface shown in Figure 3 is not used in this
process.

3.3 Time-Dependent Approach

In the time-dependent approach, the iterative
procedure for solving the flow governing equations is
modified so that § and P are updated simultaneously.
In this case the multiple iterative paths, P = Pp,%%,
m=1,2,... used in the steady-state approach are
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replaced by a siggle time varying path P = PM(!).
The solution E* (1) al(gxg this path is embeded in the
surface 5*¢ given by E'3(1, P). It is defined by the
iterative solutions along time-dependent paths parallel
to P!(1). These paths are given by P= P'(1) + §,,

=1,2,..., where 5 is a constant for a given path.
The minimum value of the ob{'jctive function is time
dependent and is given by E?%(f). The path of this
poylt is given by pot (1). As the solution converges,
P, PPy, E'(r), E°%(1), and E'%(4, P)
converge respectively to P*, P*, E ins Emin‘ and
E(P). This approach updates P as g evolves in time.
It is a single-cycle approach, since it eliminates the
need for the two-cycle (inner-outer) iterative
procedure.

Before developing a time-dependent scheme, it is
important to recognize some of the main differences
between the stcady-state and the time-dependent
formulations. In the steady-state formulation, the
search is performed for a fixed target, P*, for which
E(P*) is the minimum of the fixed cutve E(P). In
the time-dependent formulation, however, the search
is performed for a moving target, P°*4(1), and the
objective function (1, P) is a continuously
evolving function. While the use of higher order
schemes which depend on information from a number
of iterative solutions may be advantageous in the
steady-state formulation, iterative schemes should be
limited to lower order schemes in the time-dependent
formation, since diff' ‘ent iterative solutions are not
obtained at the same time . Another important
difference between both formulations is that the
iterative § and P solutions are noninteracting in the
steady-state formulation, while they are mutually
interacting in the time—gependem, formulation. In the
latter case, the path Pt () should be chosen so that
the flow solution converges in a number of iterations
comparable to that required for solving an analysis
problem with P held fixed. Large corrections applied
to P can cause the flow solution to be nonconvergent,
while extremely small corrections applied to P can
lead to a slow convergence of the optimization
solutions. Figures 4a, 4b, and 4c show cases in which
the cotrections applied to P are too small, acceptable,
and too large respectively, The act.ue:} path used in
the computations is that given by Pt ().
Computations are not performed for the path P”ld( 1);
however, that path mj,y be found if desired by
computing surface id,

4. TIME-DEPENDENT SCHEMES

The basic idea of updating both § and P
simultaneously can be used to develop a family of
efficient optimization schemes. Three of these
schemes are presented here. The first, scheme I, is a
general scheme which can be used to solve problems
with different constraint conditions. The second and
third schemes (Il and HI) are applicable to a limited
class of problems. Nevertheless, including the last two

schemes here serves two purposes. They provide
additional examples of schemes that update the design
parameters and the flow variables simultaneously.
Moreover, results obtained from applying these
schemes to optimization problems provide additional
sets of data for determining the effects of updating the

design parameters while the flow solution is
developing.

4.1 Scheme I (Parallel Scheme)

This scheme is first presented for the single equality
constraint problem define¢ by Equations (1)-{4). It is
then extended to other problems.

4.1.1 Single Equality Constraint

The goal of the optimization scheme is to determine
the values of the design parameters that minimize the
objective function, E, subject to an equality
constraint. A search must therefore be conducted in
the design parameter space P for the optimum
solution, P*. This optimization problem is most
conveniently solved in the rotated design parameter
space P, with the P, coordinate normal to the
constraint surface and the El coordinates, where
1=2,3,..., L, parallel to the constraint surface.
For fixed values of the components of Z’ let

P =BG Bha=0,1,2,. .. (5)

be the iterative solution for the analysis problem,
where ¢ denotes the solution obtained by applying the
iterative scheme for solving the flow governing
equations once using §" as an initial guess. As for
the analysis solution, obtaining the optimization
solution requires the repeated application of
Equation (5) to update the flow field. While P is
held fixed in the former case, it is allowed to vary in
the latter,

The vector of design parameters Z’ is updated every
AN iterations. Therefore,

z,ﬂ+1 = Z)n + 6Eﬂ+l (6)
where

PP 0, (n+1)/AN £ 1,2, 3, ...

In the iterative steps that satisfy the relation
(n+1)/AN=1,2,3, ..., the incremental values for
the design parameters are given by

opI¥t < — ll"ﬁl [min (C1f*) 6Pmaz)]  (7)

n+1 _ . $Pmaz n41
6_}_’1 = min (l.(AP—;‘ﬁ-I)AEl ,
1=2,3,....1L (8)
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where

= {5

ARTH = o T D+ - Jop rH e

!
]
n n+1-anN
Trl+1 - _ EI 6£l (10)
{ IAE? 61_37;+1-ANI

The purpose of AE’,‘ appearing in Equation (10) is to
determine the sign of §E/8P7, which in turn
determines the sign of the new incremental step along
the E’l‘ direction.

The incremental displacement in the design parameter
space introduced so that the constraint may be
satisfied is taken in the direction normal to the
constraint surface and is determined by the chord
method in Equation (7). The constant § Ppq; sets an
upper limit on the magnitude of this incremental
displacement. The incremental displacements given
by Equation (8) are introduced along the coordinate
axes, which are parallel to the constraint surface with
the purpose of reducing the value of the objective
function. The slgn of the incremental correction
6P’; l, where §P" s the If component of the
vector 6P , is c‘nosen to be opposite to that of
BE/BP;' The magnitude of the increment 6P" +1
given by

827 = cjsR7FIAN)

with an upper limit given by 6Pmﬁ,, where ¢ > 0. If
the signs of 6PI 1 and 6p are in
agreement then the last two iterative solutions 27
and P "4 fall to one side of the point along the Pl
direction at which F is a minimum. In this case, c is
set equal to the constant ¢, which is greater than 1.
Increasing the magnitude of the step size in this
manner accelerates the approach toward the point
along the P, direction at which E is a minimum. On
the other hand, if the signs of 6P "+1 and
6Pl"‘ g are not in agreemenlt then P" and
nEaN fall on opposite sides of the point a{ong the
El direction at which E is a minimum. In this case, ¢
is set equal to the constant c,, which is less than 1.
Decreasing the magnitude of the step size in this
manner i3 necessary for convergence to the point along
the P, direction at which £ is a minimum.

The updated components of the design parameter

vector P are used to calculate the new flow
iterative solution, 3771, given by
<n+1 w( En+l) (ll)

In addition to the main solution gllven by Equation
(11), the perturbed solutions § gl I=1,2,... 1,
given by

12-5
-n+1 prtt a4l
= IER BT ) )
are alsa computed Here ¢ is a small positive constant
and x wA=1,2,..., L, are the set of orthogonal

unit vectors along t.he axes of the rotated coordinate
system P n+l P; 1. BZ L Equation (10)
AE';l is gnen by

AE} = E(P"+ < iTid]) ~ E(B% 3™ (3)
Scheme I is referred to as a parallel scheme because
the sign of the incremental change 52,1 of
Equation (8) is chosen on the basis of comparing the
main iterative solutmn E(P", 3") with a perturbed
solution E(P +e1 l’ y;') The paths along which
these solutions are computed in the P-t plane are
paralled to each other, as shown in Figure 5.

While the optimization procedure is most sujtably
conducted in terms of the transformed parameters Pl'
1=1,2, ... L. the flow solution is computed in
terms of the physlcal design parameters Py,

I=1,2 ... L To express the transformed design
parameters in Equations (11) and (12) in terms of the
original design parameters, it is necessary to use the
transformation equation, which relates these two sets
of parameters.

<1H—1 ,IJI+1 pn+l

where the orthogonal transformation matrix "1 is
given by

L [;ln+1 ;;+1 L ;Zﬂ]
n+1 .

The unit vector x is normal to the constraint
surface at P = P™ and is given by

= ofBn ) v BN

where an estimate for Q'I', the I** component of Vf, is
given by

67 =[(B"+<ip:32) - (" 3") ] 05)

The Gram-Schmidt orthogonalization process, which
uses a set of [ linearly independent vectors to
construct a set of L nrthonormal vectors, is used to
construct the unit vectors 1 A=23, . L.

along the rotated axes P2t 1 =2,3,. L The
following equation is useJ for this purpose:
ﬂ+l
*nt1
: = 1=2,3,.
: u’,‘“l
where

13
i = i
In the initial iterative step, the vectors 'l are given by
=g, 0=02 ., Lwhere ) [=1,2,.. ., L

“n (23 N P -
,;H'l: _E ( n"z+l)‘:+l (16)




is the set of orthogonal unit vectors along the axes of
the coordinate system Py, Py, ..., P;. While the
flow variable vector § is updated each iterative step,
the coordinate system in the design parameter space is
rotated every AN iterations. The unit vectors 1, like
the vector of design parameters P, are updated only
in the iterative steps that satisfy the relation
(n+1)/AN=1,2,3,.. .

The optimization scheme described above requires
that L + 1 iterative problems be solved in parallel. In
addition to the main solution, L perturbed solutions
are computed in which each of the design parameters
in the transformed space P;, Py, ..., P, is
perturbed. The computational costs and the
computer memory requirements are therefore
proportional to L 4+ 1. A modification to this scheme
requires that only L iterative solutions be obtained.
In the modified procedure, the perturbation sofution
associated with the perturbed design parameter in the
direction of the P, axis, normal to the constraint
surface, is not computed. This solution was used in
Equation (15) to compute G, which is required for
the calculation of the vector i 'l' , which determines
the direction normal to the constraint surface in
Equation (14). In the absence of this solution, a new
procedure for rotating the design parameter space
must be defined. The procedure is first explained for
the case of a two-design-parameter problem, and then
it is extended to the general multi-design-parameter
problem.

Figure 6 shows the design parameter space for a two-
design-parameter problem. In the figure, the
constraint function values f3, /1, f3 are defined as
follows:

In the modified procedure, the chord method, used in
Equation (7) to satisfy the constraint condition, is
used to rotate the design parameter space. The
rotation angle 60'1';1 given by

60';;1 = tan’! (M) (17)

is used to rotate the coordinate system, where the
subscript 3 indicates that the modified scheme is
used. The angle 66™F1 is now compared to the
corresponding rotation angle 60" used in the
original scheme and given by

56"t o gant (u m) (18)

This comparison shows that the term f] — fJ in the
original scheme is replaced by ¢/C in the modified

scheme. Therefore, the modified scheme may be
viewed as the original scheme with the exception that
the exact value for 1, is replaced by an approximate
estimate in which the gradient of fin the direction of
the P, axis, G, is not calculated but is estimated
using the same proportionality constant used in the
chord method of Equation (7). Thus,

-1
G =4 (19)
This is applicable for both the two-design-parameter
problem and the general multi-design-parameter
problem.

In the optimization scheme developed here, corrective
increments are applied to the design parameter
solutions every few iterations of updating the flow
solutions. For convergence to occur, the signs of the
increments must be chosen correctly to allow the
iterative solution to approach the desired solution.
The magnitudes of the increments are depenrent on
the computational constants ¢, ¢y, and C. Because
the design parameters are updated frequently during
the iterative process, we are not concerned with
determining the incremental step sizes that lead to the
highest short-term convergence rate. In fact, this may
he difficult to define, since the flow variable solutions
are continuously changing during the iterative process.
Qur aim is to achieve design parameter convergence
over a long term defined by the number of iterations
required for the flow solution convergence. A wide
range of incremental step sizes should produce the
desired convergence properties over many iterations,
even though convergence properties over a few
iterations may differ. These comments apply to both
of the schemes described above for determining the
design parameter space rotation. The direct
procedure for determining the design parameter space
rotation in the original scheme is replaced by an
iterative procedure in the modified scheme. Since this
rotation is updated frequently during the iterative
process, this replacement should have no substantial
effect on the overall convergence of the solution.

A potential problem exists when the modified scherne
is used for rotating the design parameter axes. In the
first AN — 1 iterative steps of solving the problem,
the coordinate system in the design parameter space
coincides with the original unrotated design parameter
space Py, Py, ..., P;. Atthe AN iterative step, a
new rotated coordinate system is determined. When
Equation (15) for determining G‘I‘N“is used, we are
guaranteed that the vector r‘f points in the direction
in which the constraint function increases.
Consequently, the use of Equation (7) will cause the
iterative solution to approach the constraint surface.
When Equation (Al,5) is replaced by Equation (19) for
determining G2™1, there is a possibility that the
computed vector i‘l‘Nwill point in the direction in
which the constraint function decreases. In this case,
the assumption that C is positive is wrong, and using




it will cause the solution to diverge. This occurs if the
vector ?1 is nearly in the direction of —Vf“N'l; that
is, if the quantity

A7
T VAN

is close to unity. The probability of this occurring is
approximately 1:4 in a two-design-parameter problem
and is reduced further as the number of design
parameters increases. There are two suggested
approaches for overcoming this problem. In the first
approach, the initial few iterations are performed
using the original scheme for determining Q;‘ by
Equation (15) in ordet to determine the correct initial
directions for the P; axis. This may then be updated
using the modified scheme, Equation (19), in the rest
of the computation. Realizing that the probability for
the potential problem to occur is smail, the second
approach uses the modified scheme from the
beginning of the computation. If divergence does
occur, then the constraint function is redefined to be
equal to the negative of the original constraint
function, and the problem is solved again.

4.1.2. Extensions of Scheme I

Scheme I is applicable to optimization problems with
a single equality constraint. However, this scheme
may be extended to more general problems such as
multiple constraint problems and problems with
inequality constraints. These extensions are now
briefly presented.

In the case of multiple constraints, the set of
equations

f(PiH)=0,k=12.. K
replaces Equation (2), where K is the number of
constraints. For this problem, Equation (7) is
replaced by

sprti__ ﬁ min(C|f*|, 6P )
£ l - I,Q;][ , ) mazr ]'
=12 ..,K
Equation (8) is applied for values of / given by
= K+1, K+2. .. ., L and the unit vectors i'; !are
given by

VAB™ 5™ /IR (™5 5™, 1= 1

= ae sk

7’;+1/|7';+1|, =K+, K+2, ..., L

where
- - [ 3 . - -
Q;l'f'l - NVII+1 _ ZI(N;H-I . ';H'l) I:.H.l,
r=

1=2,3,..., K

Nyt =V (B "

and -I';"H was defined in Equation (16).

In the case of an unconstrained problem, the problem
is solved in the original, unrotated design parameter
space. In this case Equation (7) is not used and
Equation (8) is applied for I values given by
1=12,...,1L

In the case of a problem with inequality constraints,
the solution procedure at a given iterative step is
equivalent to that of an unconstrained problem, if
none of the constrainis are effective, and it is
equivalent to that of a problem with K equality
constraints, if K, of the constraints are effective. For
the problem with inequality constraints, Equation (2)
is replaced by

L (Pig)<o, k=12 K

At the iterative step n + 1, the k* constraint is
effective if either of the following conditions is
satisfied: .

fk (E”: -") >4

where é is a small positive number, or
DN, an
9E(E":§") ¢

pn, 2N I
Vk(f ;9 <6, TP:'

Otherwise it is not effective.

4.2 Scheme II (Branch Scheme)

The perturbed solutions §" are used only once every
AN iterative steps to compute the perturbed objective
functions appearing in Equation (13). It is therefore
possible to modify scheme I so that it becomes
unnecessary to compute to flow solutions along paths
parallel to that of the main solution. In this modified
scheme, Equation (13) is replaced by

AE’; ~ E(En + (ztlx; }*’ln+1) _ E(Z’"; 1""+1)(20)

where
MY =93 B (21)
B = G(3% B+ 1) (22)

In this formula&tion, Equation (12) is no longer used to
calculate 31"_:" alnd Equgtionsl('ll) and (22) are used
to compute A" and Il,"+ only once every AN
iterations. If AN is greater than or equal to five,
substantial savings in computational costs may occur.
The paths along which computations are performed

are shown in Figure 7.




It should be noted that scheme II will be successful as
long as the signs of AE"; predicted by Equations (13)
and (20) are in agreement. The magnitudes of AE"
given by the two equations will not be in agreemenl.
even as the flow solution converges. For that reason
scheme 11 may not be used in general for solving
constrained optimization problems. In these problems
Vfis used to determine the direction normal to the
constraint surface. Correct results are obtained only if
the computed Vf converges to the exact Vf. This
does not occur for scheme 1I. The use of scheme II is
therefore limited to unconstrained problems solved in
the original (unrotated) design parameter space. An
exception to that is the constrained problem in which
the direction of the normal to the constraint is known
(Reference 6). In this case the constrained problem is
solved in the original (unrotated) design parameter
space. Further discussions about scheme II are
found in Reference 7.

A possible variation of scheme II is shown in Figure 8.
It combines elements from both schemes I and II.

4.3 Scheme 111 (Special Scheme)

This scheme is applicable to a limited class of two-
design-parameter problems with an equality
constraint. The objective function is assumed to be of
special form and the constraint line is assumed to be
normal to the P, axis in design parameter space.
Therefore, the solution is obtained in the original
(unrotated) design parameter space.

The scheme was developed for application to a
particular problem arising from a transonic wind
tunnel wall interference correction procedure. In this
procedure the free-air flowfield around the model is
computed. The design parameters are the model
angle of attack a and the free-air Mach number
M, p.sothat P = (ap, er). Their optimum
values are determined so that Equation (1) is satisfied
with

_ (Mg — M)t ds

E
TMZ ds

(23)
subject to the constraint
f=Llpg—Le=0 (24)

where Mg is the computed Mach number
distribution on the model surface in free-air and M.
is the corresponding Mach number distribution in the
wind tunnel. This is obtained from a wind tunnel
flow computation which is performed prior to the free-
air computation. The integrals in Equation (23) are
taken over the model surface.

in scheme 111 a single solution given by Equation (11)
is computed. To determine the sign of dE" /3P it is
therefore necessary to use values of F at diﬂ'eren{
iterative steps. In this scheme AN = 1 and AEg is

defined by

AE; — (E'"‘ _ E"'l)(e" _ cﬂ-l)
where

E"

E (!"": E")

e =e (i’"; E")

o d Mg = Myg) ds
hi Mg ds

Because AE" is evaluated at two different time steps
the sizn of AE"™ may not always agree with that of
HE" PR, As llong as the frequency at which this
disagreement occurs is below a certain limit the
scheme converges to the correct solution. The
coordinate system in design parameter space is not
rotated. Therefore, the search for the minimum
objective function is conducted along constant Py
lines. In general. this will not lead to accurate
determination of the optimum solution, however, in
the particular problem considered here the constant
Py lines are nearly parallel to the constraint curve.
The resulting error is therefore negligible. Further
discussions about scheme 11 are found in Reference 8.

5. RESULTS

‘The optimization procedures described above were
applied to propeller design problems and wind tunnel
wall interference problems. The computations were
performed on the Cray X-MP computer. The results
of these computations are presented below.

5.1 Propeller Design

The optimization procedure I described above.
rombined with the Euler analysis code developed by
Yamamoto et al. (Reference 9), was used in

Reference 10 to find the twist distribution for the
blades of the eight-bladed SR-3 propeller with the
ohjective of maximizing its efficiency under the
constraint of a desired power coefficient given by

Cpo = 1.7. The computations were performed for a
free-stream Mach number of 0.8 and an advance ratio
of 3.06. Let 30,4 be the blade angle at the 75%
blade span corresponding to the desired power
coefficient. We take the blade angle distribution,
(1), corresponding to this propeller as our base
configuration. A perturbation, J'(r), to the blade
twist distribution, i ,(r). was computed so that the
propetler efficiency would be maximized subject to the
power constraint. The perturbatinn twist distribution
is given by

2
3'(r):1’1+1’,('_R;f_,/?)w&{(%) —%} (25)

where Py, Pp. and Pj are the comnponents of the
vector of design parameters P and R is the propeller
radius.
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Experimentation with the propeller analysis code
indicated that the flow iterative solution diverges
when the blade tip angle exceeds a certain limit. To
exclude the region leading to the divergence from our
search in the design parameter space, the following
redefinition of the objective function was introduced:

E= —n + maz {o.o. 0.1 (,|P§+P§—,‘)} (26)

where p determines the allowable search region. As
the value of u increases, the allowable search region
also increases. The value of u was taken to be equal
to 5.0 unless otherwise specified.

The mesh used in the following computations consists
of 45 points in the axial direction, 21 points in the
radial direction, and 11 points between adjacent
blades in the circumferential direction. Computations
are initialized by the SR-3 flow solution, which
corresponds to a 54.9° angle at the 75% blade span.
This initial solution was intentionally chosen not to
be a close approximation of the desired solution. In
all of the following computations, the modified
coordinate rotation scheme, which determines G, by
Equation (19) instead of Equation (15), is used unless
otherwise specified. Also, unless otherwise specified,
the initial iterative guesses for the design parameters
are set equal to zero and the computational para-
meters ¢y, ¢y, C, 6Pg, 6Pg, 6Pmaz. €. and AN are
given, respectively, by 1.2, 0.6, 3.0, 0.5, 0.5, 1.0,
0.0001, and 40.

The optimization procedure was applied to two-
design-parameter problems and to three-design-
parameter problems. For the two-design-parameter
computations, the values of P3 in Equations (25) and
(26) are set equal to zero. Results for the two-design-
parameter problem are presented, followed by those
for the three-design-par ter probl For the
initial flow solution, which corresponds to a Bass
value of 54.97, the value of Cp was 1.1. Also the
value of B o34 Was determined to be 58.067". The
design parameters predicted by the optimization
scheme are given by P} = —~2.83", Py = 5.51". The
predicted solution does satisfy the power constraint.
The value of Cyp corresponding to this solution is
1.6999. The objective function, E, was reduced from
the value —0.839 in the case of the original design,
with P} = P, = 0.0, to the value —0.908 in the case
of the optimized design. The value of the efficiency
was increased from 0.839 for the original design to
0.910 for the optimized design.

The computed value of efficiency, which corresponds
to the optimized design, is approximately 5% higher
than expected. Towards the end of this study it was
discovered that an approximate formulation used in
the analysis code to integrate the aerodynamic forces
near the blade base was the cause of this over-
prediction. The main portion of the results presented
here was obtained using the approximate formulation

for computing the performance. These results are
presented first. They are then followed by results
obtained by using an accurate formulation for
computing the performance. While there may be no
interest in the first set of solutions for the purpose of
improving the propeller design, these results are valid
for the purpose of testing the optimization scheme. In
this case, —n is viewed as an objective function
without attaching a physical meaning to it. In the
second set of results it was necessary to use an
accurate formulation for computing the performance
in order to show the required blade shape modification
for impruved perfor: 1ance and the corresponding
increase in performance obtained by optimization.

The iterative histories of the design parameters are
shown in Figure 9, while the iterative histories of the
power and efficiency are shown in Figure 10. From
these figures two distinct stages in the convergence
process of the solution may be identified. In the first
stage, relatively rapid changes in the values of P, Cp,
and n occur as they approach the converged values of
the solutions. At the end of this stage, these para-
meters are close to their final values. In the second
stage, minor adjustments take place as the parameter
solutions converge to their final values. The residual,
Ry, is a measure of the convergence of the flow field
solution. Figure 11 compares the residual history for
the design problem, in which § is updated in addition
to i’. to the residual history for the regular anaiysis
problem, in which § only is updated while P is held
fixed. The figure indicates that modifying the pro-
peller geometry in the design problem as the iterative
solutions for the flow variables are updated does not
negatively affect the rate of convergence of the flow
field solution in comparison to the analysis problem.
In fact, the following results of our computations show
that the convergence of the flow field solution is
accelerated when the design parameters are updated
to satisfy the power constraint or to satisfy the the
conditions of the optimization problem. For a regular
analysis problem with P set equal to P*, the number
of iterations required for convergence was 4710.
Hereafter, convergence is assumed to be achieved
when the magnitude of the residual, R, is reduced to
the value of 10°°. For a constrained solution in which
the second component of the design parameter vector,
P,, was set equal to the value P;. while the first
component was updated throughout the iterative
process so that the constraint Cp = Cp, would be
satisfied, convergence was attained after 4040 iterative
steps, indicating an increased convergence rate relative
to tke regular analysis problem. For the design
problem in which both P, and P, were updated in a
manner that allows the constraint Cp = Cpg to be
satisfied and the objective function £ to be min-
imized, the number of iterative steps required for
convergence was further reduced to 3250.

On the average, 0.972 cpu second was required for the
iterative step in the design problem, while 0.403 cpu
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second was required for the iterative step in the
analysis problem. Therefore, the average design
iterative step required slightly more than double the
cpu requirements for the analysis iterative step. In
the design problem, two analysis problems are solved
in parallel. The additional cpu requirement for the
design problem is mainly due to generating a new
computational mesh whenever the design parameters
are updated.

For a regular analysis problem, the computational
mesh is generated only one time at the beginning of
the computation. For a design problem, however, it
is necessary to regenerate the computational mesh
whenever the design parameters are updated. In the
present computations, this was done once every 40
iterative steps. The cost of mesh generation relative
to the cost of solving the flow equations was
acceptably low. As the value of AN decreases,
however, a point may be reached at which the cost of
generating the mesh becomes excessively high, and it
may represent a substantial fraction of the total
computational cost. In this case, a possible
alternative to regenerating new meshes, whenever the
design parameters are updated, is the use of
approximate meshes that are generated by linearly
combining L+1 reference meshes. The reference
meshes may be updated =very J AN iterative steps,
where J > 1. The need for making this
approximation does not arise here, as the propeller
analysis code used here has relatively slow
convergence properties and, therefore, the appropriate
AN value is relatively large. However, the use of
accelerating schemes, such as the multigrid scheme,
would allow the AN value to be sufficiently low to
require the use of the mesh approximation discussed
above.

We have performed a single computation using the
exact formulation for calculating 1 ,, as given by
Equation (14), with G, computed by Equation (15).
This formulation requires solving L+1 problems in
parallel instead of L problems, in the case of the
approximate formulation given by Equation (19).
The average iterative step for this computation
required 1.474 cpu second. The number of iterations
required for convergence was 3425. Comparing these
values to the corresponding values for the
approximate formulation indicates that there is a
strong advantage in using the approximate
formulation over the exact formulation.

To verify that the computed solution is indeed the
optimum solution, solutions were computed that were
slightly perturbed from the optimum predicted
solutions but that satisfied the power constraint.
Table 1 compares the values of the objective function
for the solution predicted by the optimization scheme,
shown in the first row, to those for the perturbed
solutions, shown in the second and third rows. It is
appatent from the table that perturbing the design

parameters causes the value of the objective function
to increase. Therefore, the design parameters
predicted by the optimization scheme do indeed
minimize the value of the objective function.

[able 1. The Objective Function at the Optimum
Solution and Perturbed Solutions for the
Two-Design-Parameter Problem

Py P, E
—-2.83 5.51 —0.90773
—-2.73 5.31 —0.90730
~-2.93 5.71 —0.90728

The sensitivity of the scheme’s convergence to the
initial iterative guesses of the solution and to the
computational parameters was tested by recomputing
the problem defined above with perturbed initial
conditions and computational parameters. Table 2
shows the number of iterative steps, nZ, required for
convergence when different values are used for the
initial iterative solutions and the computational
parameters. It is clear from the table that the
convergence properties of the scheme are weakly
sensitive to the values of the initial conditions and the
computational parameters. Needless to say, there is
an optimum set of values for these parameters that
maximizes the convergence rate of the scheme for a
given problem. However, within a relatively wide
range of these parameter values, good convergence is
achieved. This is due to the frequent updating of the
design parameters in the course of solving the
problem. The cpu requirement for the average
iterative step is approximately the same for all the
cases solved, except for the case in which AN = 25.

Table 2. Effect of Perturbing the Initial Conditions
and the Computational Parameters on the Scheme’s
Convergence, for the Two-Design Parameter Problem

”® K AN ¢ q ¢ nl

0.9 0.0 40 3.0 1 1.2 ) 0.6 3250
3.0 | -5.0 40 30 | 1.2 | 0.6 3690
0.0 0.0 25 3.0 { 1.2 | 0.6 3376
0.9 0.9 40 45 | 1.2 | 0.6 3252
0.0 0.0 40 60 | 1.2 | 0.6 3250
0.0 0.0 40 30 | 1.b | 0.6 3333
0.0 0.0 40 3.0 { 1.2 | 04 3120
0.0 0.0 40 3.0 | 1.5 | 0.4 3281

The cpu requirement for the average iterative step in
this case is given by 1.078 seconds, in comparison to




approximately 0.972 second for the other cases. This
is due tn the increased frequency of generating the
computational mesh in the case with AN = 25.
Figures 12 through 14 show the jterative histories for
Py, Py 1, Cp and R for the case in which the initial
iterative guesses for the design parameters, P2 and
Pg, were perturbed. Among all the perturbeé
computations, the rate of convergence for this case
was affected the most.

The computations performed above for the two-
design-parameter problem were performed with a
value of 5.0 for u. To perform computations that
allow both parabolic and linear modifications to the
blade angle distributions, it was necessary to reduce
the value of y to 4.0. The three-design-parameter
optimization computations were solved using this
value for y4. The main two-design-parameter
computation was also repeated using this value for u
to allow a comparison between the two-design-
parameter and the three-design-parameter results.
The optimum values of the design parameters for the
two-design-parameter problem with u = 4.0 were
found to be given by P} = —2.35" and P} = 4.56".
The value of Cp corresponding to this solution is
1.6999. The objective function £ was reduced from
the value —0.839 in the case of the original design,
with P; = P, = 0.0, to the value —0.897 in the case
of the optimized design. The value of i was increased
from 0.839 for the original design to 0.900 for the
optimized design. As expected, the magnitudes of
both £ and n determined with s = 4.0 are less than
those determined with g = 5.0. As the value of u
decreases, the restriction on the allowable search
region in the design parameter space increases. In the
two-design-parameter problem, 3235 iterative steps
were required for convergence. The cpu requirement
per iterative step was 0.972 second. The optimum
values of the design parameters for the three-design-
parameter problem with 1 = 4.0 were found to be P}
= ~277", P; = 4.50°, and P} = ~1.20". The
corresponding values of Cp, E, and 7 are given by
1.6999, —0.900, and 0.905, respectively, indicating a
superior design to that achieved by using only two
design parameters. The number of iterative steps
required for convergence was 3228, while the cpu
requirement per iterative step was 1.459 seconds. The
iterative histories for Py, Py, Py, n, Cp, and RE are
shown in Figures 15 through 17.

To verify the accuracy of the computed solution,
several solutions were computed that were slightly
perturbed from the optimum predicted solution but
that satisfied the power constraint. Table 3 compares
the values of the objective function for the solution
predicted by the optimization scheme, shown in the
first row, to those for the perturbed solutions shown
in the following rows. It is apparent from the table
that perturbing the design parameters causes the
value of the objective function to increase. Therefore,
the design parameters predicted by the optimization

12-11

scheme do indeed minimize the value of the objective
function.

Table 3. The Objective Function at the Optimum
Solution and Perturbed Solutions for the Three-Design
Parameter Problem

P, P, Py E
-2.77 | 450 | -120 | —0.90026
~287 | 450 | —145 | —0.90011
~287 | 469 | —120 | -—0.89986
-267 | 450 | -093 | —0.90012
267 | 430 | ~-120 | -0.89988

L

Computations were performed using the accurate
formuiation for computing the propeller performance.
In these computations it was found that 7 responds to
changes in the design parameters at an iteratively
much slower rate than that associated with the first
set of computations. For that reason it was necessary
to reduce the value of ¢, to 0.98. All other
computational parameters were set equal to their
same values used in the first set of computations. In
this set of computations, it was determined that
Bosse = 57.648°. The value of Cp for the initial
flow solution, which corresponds to a B4 4 value of
54.9°, was 1.2. By optimizing the blade shape for the
two-design-parameter problem, the value of the
efficiency was increased from 0.8229 for the original
design to 0.8233 for the optimized design. For a
regular analysis problem with P set equal to P* the
number of iterations required for convergence was
4320. A comparison of this number with the number
of iterations required to solve the optimization
problem, 3260, shows that the cost of solving the
optimization problem is approximately twice the cost
of solving a regular analysis problem.

In the computations presented above, the effect of
varying the linear term of Equation (25) on the
propeller efficiency was investigated. To investigate
the effect of varying the quadratic term in Equation
(25) on the propeller efficiency, a computation was
performed in which Py was allowed to vary while P,
was set equal to zero. Tn this case, the design
parameters predicted by the optimization scheme were
given by P} = —~0.79", P; = ~2.07". The value of
Cp corresponding to this solution was 1.7000, and the
value of n was 0.82549. The number of iterations
required for convergence was 398C. A comparison of
the values of 7 for the two cases in which (P}, P3)
and (P;‘ + P4) were the design parameters shows that
the introduction of a quadratic perturbation to the
twist distribution is more effective in increasing the
efficiency than the introduction of a linear
pecturbation.
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Finally, the optimum values of the design parameters
for the three-design-parameter problem were found to
be P} = —3.34", P; = 3.9, and Py = —3.23°. The
corresponding values of Cp and n are given by 1.7000
and 0.83291, respectively. It is apparent that using a
combination of linear and quadratic perturbations in
the blade angle distribution is much more effective for
improving the efficiency than using only one of these
distributions. Relative to the original SR-3 design,
using both perturbed distributions increased the
propeller efficiency by 0.0100. This is compared to a
value of 0.0026 for the quadratic distribution alone
and a value of 0.0004 for the linear distribution alone.
The number of iterative steps required for convergence
was 4380 in comparison to 4460 for the regular
analysis problem.

The iterative histories for P, 7. Cp. and R in the
second set of computations, not presented here, are
similar to those of the first set of computations
(Figures 9 through 17), and may be found in
Reference 11.

Figure 18 compares the optimum blade angle
perturbations from the SR-3 baseline design predicted
for the cases of linear, quadratic, and combined linear
and quadratic shape functions. Curve C, which gives
the blade angle perturbation distribution for
maximum improvement in efficiency, shows that the
efficiency of the SR-3 propeller can be improved by
reducing the blade angle distribution both at the hub
and at the tip. This explains the observed weak
sensitivity of the propeller efficiency to linear
variations in the blade angle distribution. The use of
a linear shape function allows an increase in the blade
angle at either the tip or the hub positions and a
decrease in the blade angle at the other position.
Therefore, the positive effect on efficiency resulting
from the perturbed blade angle distribution at one of
these positions tends to cancel the negative effect
resulting from the perturbed blade angle distribution
at the other position leading to the apparent
insensitivity of the efficiency to linear variations in
the blade angle distribution. The maximum
improvement in efficiency obtained here resulted from
the use of linear and quadratic shape functions.
Further improvement may be obtained by using other
shape functions.

5.2 Wind Tunnel Wall Interference Cotrections

References 12 and 13 present a wall interference
correction procedure which is divided into two main
steps. In the first step the flow is computed around
the model in the wind tunnel subject to measured
boundary conditions at the tunnel walls. The model
angle of attack, a ., that causes the computed model
lift, L, to match the measured lift, L., is determined
by the chord method. The Mach number distribution
on the model surface, Mg, is also determined in this
step. In the second step, which is formulated as an

optimization problem, the flow is compuwed around
the model in free air. The design parameters P, and
P, are the model angle of attack, agp, and the free-
stream Mach number, Mm’-, respectively. They are
detemined so that the objective function given by
Equation (23) is minimized subject to the constraint
given by Equation (24). The Mach number
correction, AM, and the angle-ol-attack correction,
Aa, are given by

AM:MNF—MOO,;Aazar—aT

and the corrected Mach number and angle of attack
are then found from the relations

MFQ[ = Mye + AM; al =as + Aa

The flow was assumed to be governed by the Euler
equations. The flow solver used was based on a finite
volume discretization. A multigrid strategy together
with a multistage time-stepping scheme were used to
advance the flow solution to a steady state as rapidly
as possible. Details of the dissipative terms, the
multistage scheme and the inultigrid methed are
given in References 14-16. Some results of applying
the optimization procedures to the wall interference
problem in References 12 and 13 are presented below.

The correction procedure was applied to a wing/body
combination consisting of an ONERA M6 wing, with
a wing span and maximum chord of 2.4 and 0.6737
unit lengths, respectively, mounted on a cylindrical
body of a 0.2-unit-length radius. The model was
assumed to be tested in an open jet with zero pressure
perturbations along its boundaries. The tunnel height
and width considered were 2.0 and 4.0 unit lengths,
respectively. The computational domain consisted of
half the flow field by including the plane of symmetry
as one of its boundaries. The computational
parameters 6}’2. ¢1. ¢, C, and 6 Pypqy were assigned
the values 0.005, 1.2, 0.6, 0.3, and 0.2 respectively.
The initial guess for the flow solution was set equal to
free-stream conditions. A 72x24x12 mesh was used
for the tunnel computation, while a 72x32x12 mesh
was used for the free-air computation. The free-air
mesh and the tunnel mesh were identical in a region
bounded by the upper and lower tunnel walls and the
wing tip. Beyond the wing tip, the meshes did not
coincide. The experimental conditions were given by

M. e = 0.84 and L, = 0.20.

In the first step of the correction procedure, the tunnel
flow is computed and the angle of attack, a ™ is
determined. It was found to be given by

oy = 2.777". In the second step of the correction
procedure, the free-air flow is computed and the
parameters Py and P, are determined by using
scheme 11, where

Pi=ap and Py=M__.




Their values were found to be given by o = 2.468
ad M_ ;. = 0.833. The angle-of-attack and Mach
numbei corrections are, therefore, given by
Aa = —0.309", and AM = —0.007. Figure 19 shows
the iterative histories for o rpand Lp, while the
iterative history for M__ . is shown in Figure 20.
Figure 21 compares Ry, 4, for the second step in the
correction procedure, in which § is updated in
addition to oy and M__ -, to Rpyq; for the regular
analysis solution, in which only § is updated while a .
and M_,. are held fixed. The figure indicates that
the convergence rates for the analysis and the
correction schemes are comparable. The high-
frequency oscillations apparent in the curve associated
with the correction procedure are due to the
introduction of perturbations in the flow field as M_ -
is updated. The computational requirements for the
free-air correction scheme and the analysis scheme are
wssentially th _une. ‘The first of these computations
required 153 cpu seconds, while the second required
150 cpu seconds. For the uncorrected free-air flow
(M p =084, ap = 2.777°), the values of Lp and E
are given by L, = 0.235, E = 5.2x10°%. For the
corrected free-air flow (M_ . = 0.833, a = 2.468"),
these values are given by L = 0.200, £ = 6.92x1077.
The corrections therefcre achieved the goal of
satisfying the lift constraint and of reducing the value
of the objective function.

Scheme Il was applied to different three-dimensional
configurations with success. However, problems
developed when applying it to two-dimensional
configurations, as the supersonic bubble size increased
beyond a certain limit. To demonstrate this problem
the procedure is now applied to a NACA 0012 airfoil
tested in an open jet of height & = 3.6. The airfoil is
assumed to have a chord of unit length and to be
located in the middle between the upper and lower
boundaries., A 72x64 mesh is used for the tunnel
simulation and a 72x96 mesh is used for the {ree-air
simulation. The airfoil lift coefficient and the tunnel
Mach number are given by L, = 0.35 and

Moe =0.7.

In the first step of the correction procedure, the wind
tunnel flow is computed and the angle of attack a is
determined. In the second step of the correction
procedure, the free-air flow is computed and the
parameters ap and M_ . are determined. The initial
iterative values of a and M__ . are chosen to be
equal to @ and M, respectively. The initial flow
field solution is set equal to free-stream conditions.
The parameters 6Pg, €11 €9y C, 6Pmgz, AN, and €
are given, respectively, by 0.005, 1.2, 0.6, 0.3, 0.2, 4,
and 1075,

The iterative history of M__ . resulting from using
scheme [ is shown in Figure 22a. In this figure, an
initial stage of about 150 iterative steps is identified
in which relatively rapid variations in the value of
M p take place. At the end of this stage, the value

of Mw,. is essentially converged. Only minor
variations are observed in the value of ¥_ . beyond
the initial stage. The iterative history of M_ .
resulting from using scheme II1 is shown in Figure
22b. An initial stage of about 60 iterative steps of
rapid variations is observed in this figure. The
solution beyond this point seems to be essentially
converged. However, at approximately the 80** and
the 230k iterative steps, a rapid departure from the
apparently converged solution takes place. Within
about 25 iterative steps in both cases, an essentially
converged solution is observed again. Many
computations were performed using scheme 111, for
different test conditions. The appearance of local
spike-shaped deviations is a common feature among
these solutions. However, the size of these spikes and
the frequency of their occurrence depends on the
particular problem being solved. In scheme 1, the
incremental value 8P, is determined by comparing
two objective functions at the same time step. In
scheme III, this value is detemined by comparing two
objective functions at different time steps. Scheme 111
functions properly as long as the dependence of the
objective function on the parameter M__ . is stronger
than its dependence on time. As its dependence on
time becomes comparable or stronger than its
dependence on M_ ., the computed § P, values no
longer lead to convergence to the optimum solution.
The local divergence shown in Figure 22b is due to
the solution’s weak dependence on M_ p as the values
of é P, become small. As the local divergence occurs,
the value of & P, increases, causing a stronger
dependence on M_ . and causing reconvergence. In
other words, the process that takes place at the spikes
is self-stabilizing. [t is, therefore, possible to use
scheme I1I to determine a solution by simply ignoring
the local solutions at the spikes, However, as the
supersonic region increases in size, the size of the
spikes also increases. Eventually, it becomes no
longer possible to use scheme 1] for determining valid
solutions. Figure 22¢ shows the iterative history of
M_ g resulting from . <ing scheme Il in the same
problem solved above, but with a value of M, of
0.75 rather than 0.7. It is apparent that a converged
solution in this figure is no longer identifiable.
Therefore, scheme 111 is no longer useful in
determining a solution.

Figure 23 shows the history for the maximum
residual, Ryqz, for the three cases corresponding to
Figure 22. While the effect of the spikes is seen to be
local and limited to a few time steps in Figure 22b,
the recovery to the pre-spike level is seen to take a
relatively longer time interval in the case of the
maximum residual, as indicated in Figure 23b, which
shows that, beyond 300 time steps, the maximum
residual oscillates about a fixed value. The
computation was continued to 800 time steps, and the
oscillatory behavior was found to continue. This
behavior is due to the same process that leads to the
local divergence observed above. As indicated above,




at certain stages of the computation, the signs and
values of 8 P, are no longer chosen in a manner that
causes M_ . to approach its optimum value. If
conditions are such that the sign of é P, remains
unchanged for a large number of steps, then the local
divergence observed above will occur. On the other
hand, if the positive and negative signs of é P, are
reasonably well balanced, then the oscillatory
behavior observed in Figure 23b occurs. It should be
noted that, even though the maximum residual may
no longer converge, the level at which this occurs in
Figure 23b does indicate that, for practical purposes,
the solution is converged. The uncertainty caused by
scheme III in this particular problem should be of no
practical concern.

Table 4 compares the accuracy of the schemes I and
{Il. The exact solution was obtained by solving a
series of problems with different values of Moo .. In
each problem the value of agp, which satisfies {he lift
constraint, was determined by the chord method. In
each of these problems, the objective function was
computed. The exact solution is the solution that
results in the minimum value for the objective
function. It does appear from the table that the
results obtained by each of the two schemes are
accurate and the errors are within acceptable levels.

Table 4. A Comparison of the Accuracy of the
Optimization Schemes

r

exact scheme | scheme 111
Ao —1.6000" —1.5999° —1.5981°
AM —0.0062 0.0062 —0.0065
error in 0.0% 0.0% 0.1%
Aa
error in 0.0% 0.0% —4.8%
AM
E 8.97x107% | 8.97x10°% | 8.98x107°

To compare the efficiency and relative costs of the
two schemes, it is necessary to set a convergence
criterion. The convergence criterion used here
assumes that convergence is attained when

Rmaz = 10°%. At this value of the maximum
residual, it is found that the values of Aa, AM, and
E are all essentially converged. Based on this
convergence criterion, Table 5 compares the number
of iterations and the computational time required for
convergence for the different schernes and for a regular
analysis solution. It is clear from the table that
updating the angle of attack and the Mach number in
addition to the flow variables resulted in reduced
convergence rates relative to that of an analysis
problemn in which only the flow variables are updated.
The table also indicates that the computational time
per iteration required for scheme I is double that of

scheme III. This is due to the requirement of
computing two solutions in parallel when scheme 1 is
used. While scheme 111 updates ap and My . each
iterative step, scheme I, through the parameter AN,
allows the user to specify the frequency of updating
these parameters. In the present computations, these
parameters were updated every four iterative steps.
We did not attempt to determine the value of AN
that maximizes the rate of convergence. Therefore,
there is a good possibility that the efficiency of
scheme | can be improved over that indicated.

Table 5. A Comparison of the Efficiency of the
Optimization Schemes

analysis scheme I scheme III
Number of 92 268 174
Iterations
CPU Seconds 23 137 44

The above computations were performed for a case in
which scheme III functions properly to allow
comparison between that scheme and scheme I in the
range in which it is valid. Scheme I was applied
successfully to cases at high Mach numbers
(Reference 12) in the range where scheme Il cannot
be used. An example of these cases is defined by the
test conditions A = 4.6, M, = 0.8 and L, = 0.35. A
T2x80 mesh was used for the tunne) simujation and a
72x112 mesh was used for the free-air simulation.
The first step of the correction procedure determined
an a g value of 2.8296°. Figure 24 shows the iterative
histories for M_ ., ap, Lp and Rypqz in the second
step of the correction procedure. This step
determined an a value of 1.6488" and an M_ p value
of 0.7871. A comparison between the solution
obtained in the second step and a regular analysis
solution indicates that 246 iterations and 143 cpu
seconds are required for the present solution to
achieve convergence, while 66 iterations and 19 cpu
seconds are required for the analysis solution to
achieve convergence. The correction results are given

by
Ao = —1.1808", AM = ~0.0129, Ep, = 354 x 107*

‘I'hese values are identical to the exact solution.
Figure 25 presents a comparison between the pressure
on the airfoil surface for the wind tunnel flow

(M =08, a = 2.8296"), the free-air flow at the
uncorrected conditions (M_ ¢ = 08, ap, = 2.82967)
and the free-air flow at the corrected conditions
(M_ = 0.7871, ap = 1.6488"). As indicated from
the figure, the correction procedure does accomplish
the goal of determining the free-air corrected
conditions (ap, M_ p) with aerodynamic properties
nearly matching the corresponding properties for the
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tunnel conditions (a 4, Mege)~ The value of E is
reduced from 384.36 x 107 for the free-air flow at the
uncorrected conditions to 3.54 x 107 for the free-air
flow at the corrected conditions.

Scheme III was applied in References 8 and 17 to the
problem of wall inte:ference correction. There,
however, the transonic small disturbance equation was
assumed to be the flow governing equation and the
solution was obtained by successive line
overrelaxation.

5.3 Efficiency of Optimization Schemes

Schemes I and 1l were applied in this paper (P) and in
Reference 6 to propeller design problems (PD).
Schemes I, 11, and [II were applied in this paper in
References 7, 8, and 17 to wall interference correction
problems (WIC). Scheme Il was applied in

Reference 18 to airfoil design problems (AD). In these
applications the Euler equations, the potential flow
equation and the transonic small disturbance (TSD)
wete assumed to be the flow governing equations.

The potential flow and TSD equations were solved by
successive line overrelaxation (SLOR), while the Euler
equations were solved by method A, described in
References 9, method B described in Reference 16, or
the multigrid method C based on the schemes of
References 14-16. One-, two-, and three-design-
parameter problems were solved.

The effect of updating the design parameters while the
iterative flow solutions evolve, on the convergence of
the flow solution, is measured by the parameter o
given by

Q
u
2\
alao
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where n¢ is the number of iterations required for
convergence, when solving the optimization problem,
and n} is the corresponding number of iterations
required for convergence, when solving the analysis
problem. A o value of one indicates that updating
the design parameters while the iterative flow solution
evolves has no effect on the convergence of the flow
solution, while o values which are less than one and
greater than one indicate accelerating and decelerating
convergence effects, respectively. To compare the
efficiency of different schems, it is convenient to define
the parameter v, which is the ratio of the cost of
solving the optimization problem to the cost of
solving L regular analysis problems. It is given by

v = Ao
where

M/ L for scheme I
A= {(AN+ L+ 2) [/ (LAN) for scheme II
1/L for scheme III

M is the number of problems solved in parallel for
scheme [; Z takes the values of 1 and 0 for
unconstrained and constrained problems, respectively.

Table 6 compares the parameters v and o for different
problems solved in this paper and in References 6, 7,
8, 17, and 18. All problems satisfy a single equality
constraint, except those of References 7, 8, and 18,
which are unconstrained. The table shows that good
convergence rates for the flow iterative solutions are
possible even if the design parameters are allowed to
vary as the flow solutions evolve. The table also
shows that it is pussible to solve an L-design-
parameter optimization problem at a cost equal to L
times the cost of solving the analysis problem. It

Table 6. Efficiency of Solving Optimization Problems

Flow Method of

Problem Eqs. Solution Scheme L N 4 v Ref.
PD Euler A 1 2 2 0.7-0.8 0.7-0.8 P
PD Euler A 1 2 3 0.7 1.1 P
PD Euler A 1 3 3 0.7-1.0 0.7-1.0 P
PD Potential SLOR H 3 - 1.1 2.2 6
WIC Euler B 1 2 2 2.9-3.7 2.9-3.7 P
WIC Euler B 11 2 1 1.0-1.9 0.5-1.0 P
wIC TSD SLOR 11 1 - 0.7-0.8 1.1-1.2 7
WIC TSD SLOR 11 2 - 0.8-1.5 0.7-1.4 7
WiC TSD SLOR 11 3 - 1.4-1.6 0.9-1.1 7
WIC TSD SLOR 111 1 1 0.9-1.1 0.9-1.1 8
WIC TSD SLOR 1 2 1 0.9 0.5 17
AD Euler C I 3 - 2.9 1.3 18

SUS— CP——
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should be noted that the costs considered here do not
include those for mesh generation and evaluation of
the objective and constraint functions. These costs
were minor in the probleins presented lLere.

6. CONCLUSIONS

In this paper, an approach based on updating the flow
variables and the design parameters simultanconsly
was presented. This approach is applicable to
aerodvnamic optimization problems in which the flow
guverning equations are nonlinear equations that are
solved iteratively. Three schemes based on this
approach were presented.

Scheme | is a general scheme. It was applied to two-
and three-design-parameter problems with a single
equality constraint. However, extensions of this
scheme applicable to optimization problems with
multiple equality and inequality constraints were
presented. The results show that the scheme is highly
accurate in determining the solution of constrained
optimization problems. Schemes Il and HI also
presented here are only applicable to a limited class of
problems. The cost of solving the optimization
problems presented here was within the range

(0.5L — 3.7/) times the cost of solving a regular
analysis problem, where L is the number of design
parameters. This wide range is a reflection of the
different problems solved, the differe. procedures
used in solving the flow governing e, .aiion, and the
different degrees of accuracy to which the design
parameters were determined. Tests performed on
screme I indicate that the convergence rate of the
solution is weakly sensitive to variations in the
computational parameters and the initial iterative
guesses for the design parameters.

The three schemes presented here are only examples of
schemes which update the flow variables and the
design parameters simultaneously. Other schemes
based on this approach may be developed. The
results of the preliminary tests conducted indicate
that the approach of updating the flow variables and
the design parameters simultancously is an attracti e
alternative to the costly inner-outer iterative
procedure associated with the use of conventional
optimization schemes. Further tests, however, are
required to better evaluate this approach. Direct
comparisons between the results of this approach to
the results of conventional schemes are necessary.
Applying this approach to problems with a larger
number of design parameters than used here and
investigating its performance in this case is also
necessary for a better evaluation of this approach.
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Figure 3. Objective Function’s Time Evolution. Figure 5. Parallel Scheme (1).




r— -

12-19
—':: '“‘I (‘ »
[y i o"i ’\n
TR - — .
| ﬂ-i L s 1.
. = L |
T
a™ » t
! =l |
l = Py =3 1000 2000 2000 4000 sam‘z.n
\ " NUMBER OF ITERATIONS
t=ifs 1 K )
. Figure 10. Power and Efficiency Iterative Histories

for the Two-Design-Parameter Problem.
Figure 6. Two-Dimensional Design Parameter Space

PERTURBED POSITION
CORRECTED POSITION
o 1000 2000 3000 000 5000
NUMBER OF ITERATIONS

Figure 7. Branch Scheme (II).
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Figure 8. Combined Parallel-Branch Scheme.

Figure 12. Desigr. Parameter Iterative Histories for
the Two-Design-Parameter Problem with Perturbed
Initial Conditions.
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Figute 13. Power and Efficiency Iterative Bistories
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Perturbed Initial Conditions.
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Figure 16. Power and Efficiency Iterative Histories
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Figure 21. Residual Evolution Histories for the
Correction Problem and the Analysis Problem in
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