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Abstract

An investigation is conducted into low orbiting satellites about the

planet Venus with drag limited lifetimes. It is possible to specify combi-

nations of orbital elements which result in orbital lifetimes greater than

some desired value. These combinations can be assembled into Critical

Curves and Critical Surfaces. Critical Curves and Critical Surfaces are

defined as the curve or surface in orbital element space above which

initial element sets will result in orbits that meet or exceed lifetime

requrements

A numerical method is implemented for finding these combinations,

ard three Critical Surfaces are examined. A "decay threshold" is

selected for bounding satellite lifetime. Numerical simulations of orbital

behavinr are conducted, and polynomials describing the Critical Curves

are produced for five different eccentricities at each of three decay

thresholds. Comparisons of the effects of the different perturbations

considered (geopotential, atmospheric drag, third body effects, and solar

radiation pressure) and of decay threshold altitude variations are made.
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MINIMUM ORBITS ABOUT THE PLANET VENUS

I. Introduction

Background

Orbital elements are initially determined to meet specific mission

objectives. These objectives may be in terms of ground track coverage,

communications coverage, or other criteria. For example, Cain [3] has

determined element sets which will result in orbits containing arcs of

minimum altitude variation. These orbits would be useful for missions

utilizing sensors which are extremely sensitive to altitude variations, huh

are also extremely susceptible tu decay due to drag, because of low

altitudes and eccentricities. All orbital elements will tend to stray from

their nominal values. These perturbations are caused by various forces

acting on the satellite, and can result in orbital decay to the extent that

the satellite reenters the atmosphere. Satellite lifetime is therefore an

impcrtanht concern to mission planners.

It is possible to determine combinations of orbital elements which

specify an orbit which meets a given criteria for orbit lifetime. This

could be described as a minimum or critical orbit. If these critical

element sets are known over a wide range of element values, a "Critical

Surface" may be constructed (in six dimensional element space), above

which satellite lifetime can be guaranteed to meet or exceed the lifetime

criteria. This Critical Surface may then be used as an aid in determin-

ing initial element sets which would fulfill other requirements and meet
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a minimum lifetime specification. This would be particularly useful for

low altitude lightsats with limited or no station-keeping capabilities.

Drag is the predominant perturbation involved in the decay of low

altitude satellites. In determining these minimum orbits, drag therefore

must be taken into account. To accurately model the satellite lifetime,

other significant perturbations must also be included. A decay thresh-

old must be selected below which the satellite is considered to have

"reentered" in order to definitively bound lifetime. In order to produce

the C, ica Surface, a wide range of initial elements is required, but

ou-ft- w here drag is not the most influential perturbation are not con-

siderej. In these cases, the orbital elements will be perturbed from the

ncmizr.a valuer, but the perturbations will not necessarily result in

ci1.x-' decay. Drag is most predominant for orbits with low eccentrici-

tieE E:- only orbits with fairly low eccentricities will be addressed.

Objective

. method of determining the Critical Surface was derived (see

Chapter I1, Search Method). Three Critical Surfaces for the planet

Ve:.u , based on three slightly different decay thresholds, were speci-

fled by this method. Geopotential effects, atmospheric drag, solar third

boIey effects, and solar radiation pressure were considered.

A search method was employed to determine the minimum semi-major

axi- for a given eccentricity and inclination such that the orbit did not

-2-



decay to the point of reentry before 90 earth days had elapsed. If an

axisymmetric planet is considered, the longitude of ascending node,

argument of periapsis and true anomaly may be set to any arbitrary

value without changing the effect of the perturbations considered, and

the convenient value of zero was used. This limited the effective orbital

element space to three dimensions. The method was employed over a

range of eccentricities and inclinations. Polynomials were then fitted to

these initial element sets to obtain equations describing general relation-

ships between the elements in question. Three Critical Surfaces were

generated in this fashion.

-3-



I. Anaiyum model

A satellite affected only by the gravitational attraction of a spheri-

cal, homogeneous planet would exhibit "two-body," or Keplerian, motion.

The two-body solution positions the satellite by means of six variables

(semi-major axis a, eccentricity e, inclination i, longitude of ascending

node 11, argument of periapsis u, and true anomaly v). With the excep-

tion of the true anomaly, which locates the satellite along the orbit,

these would not change with time. The satellite would continue to follow

the same orbit indefinitely. In reality, a host of lesser forces act on

the satellite, "perturbing" the orbit and causing the orbital elements to

chainge over time. In order to study the effects of the perturbations it

is necessary to model both the ideal two-body motion and the perturba-

tior.Ts cf Lntelest.

Perturbations may give rise to periodic effects, secular effects, or

both. Periodic effects result in no net change in the orbital elements,

but vary the elements around some nominal value. Secular effects do

change the elements with time, and are of primary interest here. The

effect a given perturbation may have on a specific orbital element is not

necessarily in proportion to its magnitude.

The position and velocity of a satellite may be found from:

-a()
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where f is the inertial acceleration of the satellite and a is the sum of

the accelerations caused by perturbative forces acting on the satellite.

This chapter will present the relationships and equations used to model

two-body motion and perturbative accelerations due to the geopotential,

air drag, third body effects and solar radiation pressure. These accel-

erations produce perturbations which can be averaged over the orbital

period to give the net change in each element over one period, and

these averaged equations are also presented.

-5-



Ormay -tig

Two-Body Motion. The two-body motion contribution to a in

Equation (1) is the acceleration due to the gravity of the primary,

modeled as a point mass. Gravity obeys an "inverse square" law, with

gravitational attraction falling off as the inverse of the distance

squared. This can be written as:

r-f r (2)

where r is the position of the satellite and 4 is the product of the mass

of the planet (M) and the universal gravitational constant (G). This can

be shown to result in motion according to the equation describing a

conic, or Kepler's Equation:

a(1 -e 2 )r (3)
1 + ecos(v)

where r is the distance from the center of the planet to the satellite [2:

20].

Geopotential. The potential function that results in the right side

cf equation (2) is V -iw/r. Taking the gradient of this scalar function

result in the vector acceleration a referenced in Equation (1):

a - 7V (4)

Newton showed that this potential -an be extended to a planet that

could be modeled as a series of concentric homogeneous spherical shells.

Unfortunately, real planets deviate greatly from this model, severely lim-

iting its accuracy.

At this point it is necessary to develop a geopotential function that
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will allow a non-spherical, non-homogeneous planet. To do this, Equa-

tion (4) is used considering V as an unknown. With a given by the

acceleration due to a point mass, as in Equation (2), Equation (4) is

integrated over the surface of a unit sphere. This results in Poisson's

Equation for gravitational fields:

V 2V - -4nGW (5)

from which any V may be found as a function of position, given

rx, y. z) -- the density distribution of the central body. Considering

only those orbits outside the planetary surface (where v(x. y. z) - 0)

reduces Equation (5) to Laplace's Equation:

V 2 V-O (6)

Since the bodies of interest are nearly spherical, Equation (6) is

expressed in spherical coordinates:

____1 2sinO I - )v- (7)
r2 -Tr r r sinOO 13 0 r 2 sin2 2

where r is the radius to the point of interest, 0 is the co-latitude, and 0

is the longitude. This is a linear partial differential equation, and can

be separated into three functions of r, e, and 0 respectively. The sepa-

rated function of 0 describes a simple harmonic oscillator. Considered

with the appropriate boundary conditions, its solution becomes:

F(O))- Ccosk *Sksinko (8)

Separating the function of 0 results in:

-i dO LI F(e) - 0 (9)
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which is recognizable as Legendre's Equation, and is solv, d by the

Associated Legendre Polynomials:

(0) - P (cos 0) (10)

Lastly, the function of r yields two solutions, only one of which is

physically meaningful. This leaves:

F(r)-r "nl - (-r) (11)

where R. is the planetary equatorial radius. Equations (8), (10) and

(11 are combined to produce an infinite series solution to Equation (7):

r ,4-j ( P:(cos)(C., cosk Ssin k ) (12)

C . and S,, are now constants defining the shape of the gravita-

tionai field [7: 7]. The lead-off term in this series will be the point

mas potential term. This function, with C,,, and S, supplied by an

appropriate gravity model for the planet in question, defines the gravi-

tatacnal field the satellite operates in and may be employed to determine

the ac-eleration on the satellite due to the geopotential:

a.9 7I/ (13)

Gravity models for most of the explored planets have been compiled from

empirical data [15].

If the primary of interest can be modeled as an axisymmetric planet

(a planet of the form of a solid of rotation about the polar axis, where

the ellipticity describes the "out of roundness" of a meridian, but paral-

lels of latitude are perfect circles) then Equation (12) can be simplified.

In this case, there is no dependence on the variable 4 and the index k
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is fixed at zero. The S,, sink term goes to zero, and the C, cosk¢ term

becomes C, The Associated Legendre Polynomial P' is equivalent to the

Legendre Polynomial P,,. With the replacement of Cno with -J, Equation

(12) reduces to:

which is the geopotential expansion for an axisymmetric planet. The

terms resulting from this series are called "zonal harmonics." This

model will be concerned with this expansion through the sixth order

zonal harmonics. The coefficients (J 2 ,J 3 , etc.) used in computing the

zonal harmonics for Venus are given in Appendix A, Table A-I.

Averaged Equations for Geopotential. Merson [11) produced aver-

aged equations for the change in each of the elements due to geopoten-

tial expansion terms for J 2 - J, over one orbital period, and his results

are presented here. If the inclination or the eccentricity is zero, the

equation for the change in argument of periapsis is not valid, and if the

inclination is zero the equation for longitude of ascending node is not

vahld. Merson also included terms for the change in the elements due to

(.'2)' since for earth (J 2 )2 is of the same order of magnitude as J 3 - J 6

This is not the case with Venus, where the J 2 term is not nearly as

predominant as with the earth (see Table 1). Therefore, the (J 2 ) 2 terms

have been culled from the equations presented here.

The change in the semi-major axis is entirely dependent on the

-9-



(j 2 ) 2 term and is therefore negligible. The change in the other ele-

ments is given by:

Ax = 2yi J( --- x.1 (15)2n[= a(I -e )

where Ax is replaced with A9, At, fl or Aw, and x, is replaced by the

appropriate term from the equations below.

Qz: 0

e:= -3/2(1 - e 2 )sin lcosw( I - 5/4sin 2 1)

e, -45/16(1 - e 2 )( I- 7/6sin 2i)esin 2 isin2w

L 15/4(1 - e2 )sinlL( - 7/2sin2
1+ 21 /Ssin 4 t)( 1 3/4e2 )cos U

-7/8(1 -9/8sin 2)2 sin2 icos3w

o%=525/32(1 -e2)sin2i(I1 - 3sin2t - 33/16sin4j)( I + 1/2e2)esmn2w

-3/16(1 1Osin2z)e3sin2lsin4w]

0

*.;- 3/2(1 - 5/4smn2 i)ecosoocost

Z4 - 45/32(1 - 7/6sin 2 ,)e 2sin2wsin2i

i, : 15/4orosiI(I - 7/2sin2 
i+ 21/8sin 4z)( I 3/4P)cogu

.7/8(1 - 9/8&in 2z)e 2 sin2zcos 3 uuj
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L, - 525/64e sn2i 1(01-3sin 2 +33/ 16sin 4j) (1 4 1/2e2 )esin 2w

Dj 3/2cosi

fl 3/2(1 - 15/4sin 2 i)e sinwcoti

f,15/4cosif(1 - 7/4sin 2 i)(1 + 3/2 e 2 ) - 3/4(l - 7/3sin 2z)e 2 cos 2 uj

fl 15/4coti I(I - 21/2sin 2 i_0 1O5/8sin41)( 1 + 3/4e 2 )esinw~

-7/8(1 j5/8srI,2i)e~sin3w I

- 5/2(l 6sin 21 99/ 16sin 41)(1 _+ 1/2 e 2 )e 2 cos2wu

- 15/32(1 -- 33/2Osin 2 i )e 4sin 2 zcos 4(.k

(15/4smni

W, -~312e 'sinuwsini( I- b/4sin~t)~-(3b/4cosUi- coec.2 1)e']

()4 15/32 r (16 -62 SID2, 49 sin 4) _+(6sn2z - 7sin 2 )cos2w4(18

-63sin 
2 1 189/4sin 4 jQ2 _ (-6+ 35sin2-63/2n 4 i)e 2coq2w]

c- 1O5/16e 2146/sn4L-371sni)e2+I+98i 1

(I- 39/8sin 2 i -33/8sin 4 )e 4sin 2 cos2w1



+33/8sin 4i)Sin2 icos2w4) 6( 1 - 43/6sin 2 i 109/8sin'z- 121 /8

sin 6 i >e2 (-2 - 25sin 2 i- 459/8sin 4 
i+ 561/ l6sin 6 i)e 2 cos2w

43/8(1 - I1I / 10sin 2 i)e 2 sin 4 icos4w+ ( 2 -27/2sin 2 i+ 99/4 Sin ~t

-429/32sin 6ie4 + (_I+ 21/2sin2i- 363/16sin 4 i+429/32sin 6j)

0
4 coE,2uw) 3/8(-- - 22/Ssin 2 

j- 143/40sin 4j)e4 sin 2icos4.v]I

These equations may be used to determine the secular changes to the

orbitalI elements due to geopotential which occur in one orbit -- periodic

perturbations with a period of less than one orbital period are averaged

out,

-12-



Atmospheric Perturbation

Air Drag. The motion of a satellite through the upper atmosphere

of a planet subjects the satellite to aerodynamic forces which can

perturb the orbit. Atmospheric forces cause an acceleration in the

direction opposite the velocity with respect to the atmosphere (commonly

called drag), and an acceleration perpendicular to the velocity vector.

The perpendicular component does not necessarily pass through the

satellite's center of mass, resulting in both a "lift" force and a "lift"

moment about the center of mass. Figure 1 illustrates the aerodynamic

forces on a satellite.

L IFT

MOMENT
[)ORAG

PILA71VL WINDC

Figure 1. Atmospheric Forces on the Satellite
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The direction of the perpendicular component at any time is a function

of satellite attitude. It is reasonable to assume that the perpendicular

component is small compared to the other component, and that the

design and attitude of the satellite over time will drive the resultant

acceleration towards zero, so that this component can be ignored [8: 13].

The acceleration due to drag is then given by:

CDA
- -k--puv (16)

where CD is the coefficient of drag for the satellite, A is the frontal

area the satellite presents to the airstream, m is the satellite mass, p is

the atmospheric density, and v is the velocity with respect to the atmo-

sphere. To simplify parametric analysis, a "ballistic coefficient" f3 is
C 0 A

often introduced where - A--" Each of these factors will now be

examined in turn.

Ballistic Coefficient. Starting with Lhe simplest term of the ballis-

tic coefficient, the mass of the satellite may be either fixed or a func-

tion of time. The mass obviously has an affect on the acceleration that

drag will Produce on the satellite (a less massive satellite will be more

susceptible to drag perturbations than a more massive satellite) in

accordance with Newton's Second Law. An effective or average value

for the mass over the period of interest can be used as long as the

actual mass does not vary greatly from this value.

The area the satellite presents to the atmosphere depends on the

size, shape and orientation of the satellite. Uncontrolled tumbling or

controlled attitude changes will cause a change in the presented area.

-14-



Either of these can be complex functions of time and/or orbital position.

Again, an average or effective value must be employed.

Due to the long mean free path lengths associated with the molecu-

lar densities encountered at orbital altitudes, Newtonian flow theory is

used in determining the coefficient of drag. In this model of gas

dynamics the shock waves are considered to remain very close to the

leading edge of the satellite, so each molecule acts independently, with

nc "knowledge" of any other molecule. Several major assumptions in

this model are:

1) The satellite is assumed to be at rest, with the molecules flow-

ing past with some relative velocity plus some distribution of a thermal

velocity.

2) Each molecule will impinge upon the satellite and be momentarily

retained before being re-emitted.

3) Collisions between incident and re-emitted molecules are

neglected. Some broad assumptions must be made in evaluating this

coefficient, but several sources recommend setting 2.0-< C !5 2.2 [8: 15; 9:

2-4].

Atmospheric Density. The single most important characteristic of

the atmosphere's role in determining satellite lifetime is density. The

atmospheric density is a function of time, solar activity, and altitude.

As the planet revolves about its axis the sun warms the atmosphere,

causing it to expand and form a "diurnal bulge" about two hours after

midday. Athough this causes relatively little change in density at low

altitudes, density can increase by a factor of 8 at higher altitudes. The

-15-



27 day rotation period of the sun causes another periodic effect on the

density. The position of the planet on its orbit provides another oscil-

lation, with minima at apohelion and maxima at perihelion. Solar activity

is related to the 11 year sunspot cycle, and this also affects

atmospheric heating. Solar activity also varies essentially randomly from

day to day with short term flares and other activity.

The primary assumption made in modelling the atmosphere, and the

greatest simplification, is that density is a function only of altitude

above some reference ellipsoid (geodetic altitude). While the factors

mentirned in the preceding paragraph all cause deviations from this

model, empirical data from actual satellite trajectories indicates density

can be modelled as a function only of geodetic altitude reasonably accu-

rately [14: 2; 8: 22]. Density drops off with altitude in accordance with

the perfect gas law:

pRT (17)
* M

(where P- is the pressure, M is the mean molecular weight of the atmo-

sphere, T is temperature and R' is the universal gas constant) and the

hydrostatic equation:

dp - -pgdr (18)

Extensive studies of earth satellites have shown a good first

approyimation of the density can be obtained by use of an exponential

atrrcsphere model. This atmospheric model assumes the density drops

off exponentially with altitude h:

p - poeCh. )/ H (19)

-16-



where p. is the density at some reference altitude h., and H is the scale

height (the distance over which density will change by a factor of e).

Several types of exponential atmospheres exist, with the primary differ-

ence being in the determination of the scale height at the altitude of

interest. Some of the methods of determining scale height are:

1) Strictly Exponential Atmosphere: The scale height is be consid-

ered to be constant over all altitudes.

2) Locally Exponential Atmosphere: The scale height is considered

to be constant over some small altitude interval.

3) f r Constant Atmosphere: The product of the inverse of the scale

height (F% not to be confused with ballistic coefficient) and the radius

considered constant.

4) Isothermal atmosphere: The temperature is considered constant

over some altitude interval. This leads to the quantity 13r 2 being con-

stant [14: 4].

Each of these methods is preferable in some situations. This model

uses a constant scale height atmosphere, with the scale height set to

the proper value for the region in which the satellite is expected to

operate. The actual scale height used is 22.48 km at a reference alti-

tude of 250 km.

Ellipsoidal Altitude. Since the density is a function of ellipsoidal

altitude, it is necessary to find ellipsoidal altitude as a function of lati-

tude. Given a planet with ellipticity E, the ellipsoidal altitude, h., can

be approximated by:

-17-



. ( 1- £2)

ho - os- (20)

where o is the geocentric latitude [9: 3-5].

Relative Velocity. The velocity v the satellite has with respect to

the rotating atmosphere is the difference between the inertial satellite

velocity (%,.) and the velocity of the atmosphere at that point (v,):

v-v, -V 0  (21)

Finding the velocity of the atmosphere involves several assumptions.

The atmosphere rotates at approximately the same rate as the planet

near the surface, but this rate drops off with altitude. Assuming that

the entire atmosphere rotates uniformly and at the same rate as the

planet greatly simplifies matters. If the atmosphere is considered to

rotate uniformly, and at the same rate as the planet, then the inertial

velocity of the atmosphere at a point located at ra is given by:

V. - u Txr0  (22)

with w. being the inertial rotation rate of the planet.

This model includes perturbations due to atmospheric drag. In fact,

drag is the probably the single most significant factor in determining

the lifetime of low orbiting satellites, and orbits for which drag is not

the predominant perturbation will be considered beyond the scope of

this work. The physical parameters of the satellite used in this model

are presented in Appendix B.

Averaged Equations for Atmospheric Drag. Equations representing

the average change in orbital elements over one period due to air drag

-18-



have been produced by Sterne [13]. These are presented in Equation

(23), where E is the eccentric anomaly, E- (I -ecosE), E 2 -( I ecosE), n

is the mean motion ((p/z3)1 2 ), and d - (w/n)cosi(J - e2)12.

Aa -2(a-2 f E 2  - dEl dE

0
A ~ f -2( /2 f E 2 l-)

0

x [cosE -. Sd(E 1 )(2COSE- e- ecos2 E)/(1I- e 2 )]dE1/2s

- .5(uo En)E2sini(l- e=) -'  PEV ,- I-2

0

x(14 cos2iE2 [(2-e)co E - 1" 2e2 -2ecosE]}dE

Ai) .5(wuo/n)asin2(I e)-S n / 2 C2( 1-d)0

x[2e?- 1-2ecosE (2-e 2 )cos 2E]dE

Aw -- coszAf)

These equations can be numerically integrated to find the average

change in the orbital elements over one period due to atmospheric drag.

As with the geopotential averaged equations, periodic effects will be

averaged out.
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Third Body Penturtbtion-

Third Body Geometry. If a third body is close enough, or massive

enough, its gravitational attraction can have an effect on the satellite's

orbit. In cases where the third body is in a nearly circular orbit about

the primary, or the primary is in a nearly circular orbit around the

third body, the third body can be modelled as being in two-body motion

around the planet, simplifying the process of finding the vector from

the third body to the planet.

S AT E LL 1T E

-E ECQD'.

PRIMARY

Figure 2. Third Body Geometry

Figure 2 shows the various position vectors involved. As indicated,

the vector from the planet to the third body is given by p, and the
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vector r locates the satellite from the center of mass of the ylanet.

Hence, the vector from the third body to the satellite is given by

PS= r -

Gravitational Attraction. The effect a third body has on the orbit

of a satellite is two-fold: 1) the satellite is affected by the attraction of

the third body, perturbing its motion around the planet, and 2) the

motion of the planet itself is affected. The acceleration due to the

gravitational attraction of the third body in both cases is given by:

P,
a - - (24)

where the vector from the third body to the body of interest is given

by p,, and p, is the product of the mass of the third body and the

universal gravitational parameter. The complete third body acceleration

(including the direct effect of the third body on the satellite and the

effect on the planet) is:

P, Ptb 9b (-L r25)
a'b= ,b ; p (r-p,.)' p')

This model includes third body effects from the sun [9: 3-4].

Averaged Equations for Third Body Effects. Kaufman [6] has

developed equations representing the change in orbital elements over

one period due to a third body. In the event that the inclination is

equal to zero the equations for the change in inclination and longitude

of ascending node are not valid. The subscript (0) indicates a parame-

ter related to the third body. These equations are presented below.
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Au0

(- 15n)( I - e 2 )* (n./n) 2 ea(3(c./r.) 3

Az = - 6n(n./n) 2 ( 1 - e2) -
s S(sini ) -I (a/r,) 3

x [r6(l + 4e 2)* f3e(l - e2 )- Sape 2 cosi]

-M I6(n,/n)2(1 -e?) s(sint)-'(aG/r ) 3  (26)

x [a ( I 4e 2 )sinw 4y( I - e 2 )cosWo]

AU =6n (ri/n)2 (- e 2 )- (aQ/r,) 3 x {(4a2- - 1)

- (,yco;t /sin L)( I - 2 )[a( - 4e 2)sini w - ( I - e2)coscW]}

The terms a, f3, 6 and are coordinate frame conversion factors

deLned by:

a - r 0 P

ro°.K0
V R

6- r. 0 'P

where

° -. sin fl cos

sin 2 Cos 4J

cos D c05 t& - sin 2 sin w coq

sin cos u. + cos D2 sin w. cos

sin I Cos (.
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Cos f cos - sin D sin w cos i
sin D cos w) cos ID) sin w cos 

sin Cos

- C cos £2 sin
Cos

sin D cos w - cos D2 sin w cos i

" =cos 0 2 cos w - sin D 2 sin w cos i
0

[sin £ cos w - cos £2 sin w. cosQ"= - Cos fli Cos ow - sin 02 sin wo Cos

As before, these equations can be used to obtain changes in the ele-

ments over one period due to the third body.
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SoQ Radintion Pressure

Geometry. Any time the satellite is illuminated by the sun, solar

radiation pressure exerts a slight but continuous force on it, producing

a small acceleration. This is caused by the continuous momentum

transfer from innumerable photon impacts. The acceleration depends on

the area of the satellite, the mass of the satellite, the reflective

characteristics of the satellite and the radiation pressure exerted by the

sun at that distance. Figure 3 illustrates the various vector relations

involved.

N

P0 .

SAEL 'TE

PRIMARY

SHADOW

Figure 3. Solar Radiation Pressure Geometry

If the vector from the planet to the sun is p ,,and the vector from the

planet to the satellite is r, then the vector from the sun to the satellite
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pos - r-p.

The radiation pressure exerted is a function of distance from the

sun alone, and, like gravity, is ruled by an inverse square law. Since

the radiation pressure on a perfectly absorbing (black body) surface at

the distance of the earth's orbit is known, it is convenient to express

the absorptivity of the satellite as a ratio, and the distance from the

satellite to the sun as a fraction of the distance from the earth to the

sun.

The mean distance from the earth to the sun is 1 AU, or 149599650

km. Therefore, the solar radiation pressure at any other distance from

the sun will be related to the pressure at 1 AU by the square of the

product of the inverse of the distance and 1 AU. If the radiation pres-

£2r cr. a black body at 1 ALI is PR, then the pressure exerted on a

black body at the satellite's position is Pp P .-

Feflectdvity and Other Considerations. In reality, no satellite (or

an) other object) is a perfect black body. The reflectivity of the satel-

lit eL. profoundly change the magnitude of the acceleration due to

raJ alcr pressure. The acceleration on a perfect reflector will be twice

that cr, a perfect absorber, and a transparent satellite would feel no

acceleration at all. Therefore a factor y is included in the expression

for the acceleration, where y - I for a perfect absorber, y- 2 for a per-

fect reflector, and y < I for a translucent satellite, with real world satel-

lites usually represented by values between 1 and 2. As an example,

for alum.inum -y- 1.96. The angle of reflection can affect the direction in

wh1h the acceleration is acting, but for simplicity it is justifiable to
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assume the satellite reflects diffusely, resulting in the force pointing

directly away from the sun.

The complete description of the acceleration due to solar radiation

pressure is now:

asrp - YP (A (27)

where A is the area illuminated, and m is again the satellite mass [1:

188].

"AV

... .... .....;

SHADOW REGION

Figure 4. Occultation Geometry

Occultation. Note this acceleration only acts when the sun is illu-

minating the satellite -- during periods when the satellite is eclipsed or

occulted it goes to zero. To check for planetary occultation, a planet
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centered coordinate system is constructed with the first unit vector (9)

pointing in the direction of the sun (Figure 4). If the shadow cast by

the planet is assumed to be a cylinder, and the satellite is located from

the planet by the vector r, the satellite will be occulted at any time that

the following two conditions are both met:

r<

(r .2 2 *C r . ) r ,, (28)

where r, is the radius of the planet plus the altitude to which the

atmosphere can be considered to block solar radiation. Then at any

time, the geometry of the sun-planet-satellite system can be checked for

the presence of radiation pressure [10: 3-33]. Solar radiation pressure

will be included in this model.

Averaged Equations for Solar Radiation Pressure. Cook [4] has

derived equations for the rates of change of the orbital elements over

one period. In these equations the effects of the primary's shadow are

neglected.

AU. - 0

3(1 - 2 )1;2

3 We cos w-(29)

2a(I- e2)I 2

3 1+e sin wu

2nu( I e 2 )1 2snz
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3(1 -e 2) 1

2nae

The terms SP, S., and W are components of the solar radiation force, and

are defined by:

-ttcos(w -A)-sin cos(w+ +A)Cos
'

SF F~ 2 2 j 2

2 tO Si O(LL

CoL os(A) A co w- -A) sin

_![cos(u)- A)-cos(Lk)+A)]sinzsint}
2

T  - a" (CO S 2 s i n ( ow-A - A ) - s ln 2
-

s n ( wo D + A ) I C o s 2

Icos 2sin(-f? -A)+ sin2tsin(w-sn- A) sin21

2 2 j2

2[smn(w-A)-sin(+A)-sA)]sinLsin

2
I.,'j n [cos(w l A) -s - lw- n)]sin]sin jCS.

[cos(w + A)- cos(Lu- A)cossin s2

, cosw- 2 \[sn(w" f-/-A)- sin(u-fq+ A)]sinzcos 2

2

[sln(u A)-sin(w-- A)Icoszsin }

where a, is the magnitude of the acceleration due to solar radiation

pressure described by Equation (27), t is the obliquity of the ecliptic,
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and .\ is the geometric mean longitude of the sun, measured in the

ecliptic. These equations may be used to find the secular and long

period perturbations to the orbit due to solar radiation pressure.
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SNumerjcW Model

Two methods of applying all of the aforementioned perturbations in

a mathematical model of satellite motion were considered -- an averaging

* method and Cowell's method. An averaging method would use the

averaged equations presented at the end of each of the preceding

sections (Equations (15), (23), (26) and (29)) to propagate the average

orbital elements forward in time, giving a prediction of what the

elements would be at the end of the 90 day period. Cowell's method

would propagate the position and velocity of the satellite forward in

time, subject to equations of motion found by summing the acceleration

equations presented in each section (Equations (13), (16), (25) and (27)).

Both methods have advantages, and both were investigated in making

the selection.

Cowell's method of General Perturbations was chosen. In this

method, the equations of motion for the satellite, including the

perturbative accelerations, are expressed in rectangular coordinates and

integrated numerically [12: 199]. This allows the use of the acceleration

eqv~crn- determined in each section, without requiring the averaged

equations. The starting orbital elements are converted to a state vector

in rectang'ilar coordinates and used as initial conditions for the

integration of the equations of motion. At each time step, the state

vector is converted back to orbital elements so that they may be

examined, if desired. This method has the advantages of being simple

and straightforward, in addition to determining the actual position of

the satellite at each time step. Its disadvantage is that it is slower
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S

*than methods which work with averaged orbital elements.

The equations for this model are of the form:

X=ux

z=y

S-ay a,,- + at., a.r.

a.. a , a ,, - CP = (30)

where ni, a. a. , and a, are given in Equations (13), (16), (25), and

*(?', repectavely. The motion is expressed in six first order equations

to ai ,-w use of a fixed step size, eighth order Runge-Kutta integration

a~o~ri::it described in reference [5].
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SmIch M

Orbital elements on the Critical Surface were obtained by estimating

an initial element set, propagating that orbit forward 90 days, and itera-

tively adjusting the estimate and repropagating the orbit to obtain a

final value of periapsis altitude within a given tolerance of the decay

threshold. This method was necessary because the numerical integration

routine used was incapable of being operated backwards in time.

It was first necessary to determine realistic decay criteria. A

decay threshold chosen too low resulted in very rapid decay at the 90

day point, making it very difficult to "fine tune" the initial semi-major

axis such that on day 90 the periapsis altitude would be within a given

tolerance of the decay threshold. If the decay threshold was too high,

drag would not be the predominant perturbation, and the orbit would

tend to not decay monotoniczally, with perturbations other than drag

having a more pronounced affect on satellite lifetime.

Once a suitable threshold was determined, the initial estimate was

obtained by computing the two-body semi-major axis for the desired

periapsis altitude. Recalling Equation (3) from Chapter II:

,--e 2) (31)
- e ocos (v)
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and recognizing that at perigee v = 0 the radius at perigee can be

expressed as:

r,-a(1 -e) (32)

This initial estimate was then propagated forward through 90 days

using the numerical method described in Chapter II. If the final per-

iapsis altitude was not within the decay threshold tolerance, the semi-

major axis was incrementally adjusted until the desired periapsis

altitude was obtained. This procedure was repeated over a range of

inclinations at each of five eccentricities. Due to the iterative nature of

the search method, obtaining a single data point required between ten

and fifteen, and sometimes as many as twenty, integrator runs. Since

each 90 day integrator run required approximately twenty minutes of

computer time, producing the Critical Curves was a very time intensive

op e r ation.

A polynomial fitting routine was then applied to the data to gener-

ate functions which would allow interpolation between the data points

and simplify use of the Critical Curve at that eccentricity.
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To establish a realistic decay threshold, general decay characteris-

tics were examined at e - .001. For a given periapsis altitude, a less

eccentric orbit will have a smaller semi-major axis than a more eccentric

orbit, and will spend a larger fraction of the orbital period at lower

altitudes where the satellite will be subjected to drag. Therefore, lower

eccentricity orbits are more profoundly affected by drag, so a realistic

threshold for low eccentricity should be acceptable for higher eccentri-

cities. The behavior of the periapsis altitude over time for a typical

orbit (a,-6270km,e,- .001,i,- 45") is shown in Figure 5.

F DE-OAY THRESH0LD EXAMPL E-
e .001 i 45 deg

220

20.

180

120

Ioo

80

80

40

20
20 40 8'0 0 "0

TIME (lays)

Figure 5. Terminal Orbital Decay

-34-



It can be seen that after a periapsis altitude of 150 km is reached,

decay becomes very rapid. At periapsis altitudes below about 120 kin,

the curve is almost vertical. Attempting to determine initial conditions

to result in a final periapsis altitude in this region would not only be

very difficult, but the lifetime of any orbit in that regime would be

extremely sensitive to variations in initial conditions and perturbative

forces. Therefore, a minimum decay threshold of 130 km was selected.

Two additional decay threshold altitudes were selected at 140 km and

150 km. The tolerance allowed was 10 km above the threshold. When

the slope of the decay curve permitted, an effort would be made to

obtain a final periapsis altitude as close to the threshold as possible.
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Crikal Curve Familie

Eccentricity = .001 The smallest eccentricity examined was e - .001

to reflect the scarcity of perfectly circular orbits in real world

situations. The curve family is shown in Figure 6.

90 DAY MINIMUM ORBITS
e - .001

6272.5

8271.5

S6270 53 /
6 9 5

6268.5 A

A -- PER ALT -1 .30 km
B- PER ALT - 140 k-
C -PiER AL'T 1 5 0 kr f

000 20.00 40 00 o.o 80,00
INCLINATION (dog)

Figure 6. Critical Curve for e=.0O01

A high degree of inclination dependence can be seen in these curves,

causing a variation in initial semi-major axis of nearly 5 km over the

inclination range. This seems to indicate a much lower rate of decay at

low and high inclinations than at mid-inclinations. A short investigation

as to the nature and cause of this inclination dependence is included

later in this chapter.
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The polynomial fitting routine was unable to produce a good fit to

the data with less than a seventh order polynomlal, reflecting the rela-

tive complexity of the curve. The polynomial coefficients are given in

Appendix C, Table C-1,

Eccentricity = .01 At e - .01 the inclination dependence is still

obvious, although less pronounced. The curve family is shown in Figure

7.

90 DA'Y MINIMUM ORBITS
e = .01

63C5 0

62 0 0J

A - PER ALT - 130 km B

-? PLR AL7 140 k-
C - PER ALT I 50 kM A

0 O 20,00 4000 e60.00 8o 00
INCLINATION (d q)

Figure 7. Critical Curve for e=.01

Although the inclination dependence produces a less striking effect in

the shape of the curve at this eccentricity, the effect on the range of

initial semi-major axis values is very noticeable, with almost 25 km of
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variation.

The polynomial fitting routine produced a good fit to these data

sets, and all of the following data sets, with a fourth order polynomial.

The polynomial coefficients are given in Appendix C, Table C-2.

Eccentricity = .02 At e - .02 it was first seen that at higher incli-

nations (as before, corresponding to slower decay) periapsis altitude

actually increased over the 90 day period.

90 DAY MINIMUM ORBITS
e - .026365- 0-

836" 0

.e 3530 0

C'4' C

6340 0

6 35 

6- 3C 0

6 32. 0 B
A -- PER ALT"/ 13 0 k

-- PER ALI - 140 k
5200C -- PER ALT 1 50 k-n A
0. 0 20.00 40.00 60.00 ,0 00

INCLINATION (cog)

Figure 8. Critical Curve for e:.02

Data showing this tendency is not presented here, since it is not of

interest in terms of short term drag-limited lifetime. This results in

some of the fitted curves being clipped at higher inclinations. The
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curves presented here are clipped at the first inclination where the

final periapsis altitude is higher than the initial periapsis altitude. The

curve family is shown in Figure 8. The trend towards increasing range

of initial semi-major axis values continued, spanning almost 45 km in

this case.

The polynomial fit was again accomplished with a fourth order poly-

nomial. The polynomial coefficients are given in Appendix C, Table C-3.

Eccentricity = .04 At e - .04 the tendency mentioned in the last

section became more pronounced, requiring further clipping of the

curves. The curve family is shown Li Figure 9.

90 DAY MINIMUM ORBITS
Fe ,04

6490 0

6480 0

6460 0tX°
6450 0

6440.0 A

A - PER ALT - 130 kmn
8 -PER ALT -140 km
C - PER ALT - 150 kM

80.0000.o 4o.0o o.0o
INCLINATION (deg)

Figure 9. Critical Curve for e=.04
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The trend towards a wider spread in initial semi-major axis seemed to

have leveled off at just over 50 km in this and the next graph, but this

can largely be attributed to the data clipping. The tendency for per-

iapsis altitude to "climb" at high inclinations would significantly increase

the range, were the higher inclinations to be included.

The polynomial coefficients for these curves are given in Appendix

C, Table C-4.

Eccentricity = .1 The largest eccentricity examined was e =. I. The

curve family is shown in Figure 10.

90 DAY MINIMUM ORBITS
e =.

C

A PER ALT 0 30 km

9 PER ACT 140 km
-- PER ALT 15 0 km A

Oe0000 '* 46.00 -00C, .. . .. . .. . .2o o bb ' .. . . .. O O
INCLINATION (d eg)

Figure 10. Critical Curve for e=.l
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It is obvious that at this and larger eccentricities, smaller inclina-

tion ranges will "decay down" to a final periapsis altitude. At these

eccentricities, drag will be less of a factor in determining lifetime, so

these will no longer be short term, low orbiting satellites.

Again, a fourth order polynomial was sufficient. The polynomial

coefficients are given in Appendix C, Table C-5.

Note that in this section, the x-axis represents initial semi-major

axis, so "peaks" on these graphs are indicative of higher amounts of

decay.

-41-



Inclinaton Deeadence

To investigate the cause of the inclination dependence noted in the

graphs above, the model was run for 90 days in five different

configurations. In four of the trials, all of the perturbations but one

were zeroed out. In the fifth all of the perturbations were zeroed out.

The initial conditions used were considered to be representative of the

range of initial conditions considered in determining the Critical Curves.

The five curves presented in these graphs represent the final perigee

altitude, as a function of inclination, for each of the separate

perturbations and the unperturbed case. The no perturbation case

differs from the initial perigee altitude by only the integrator error.

These graphs depict final periapsis altitudes, so the "peaks" represent

minima] decay, the opposite of the previous section.

As can be seen from Figure 11, the inclination dependence at middle

eccentricities resiees almost entirely in the geopotential perturbation.

The drag perturbation causes the same total decay at all inclinations.

This is different than would be the case for the earth, where the

equatorial bulge in the planet is mirrored in an equatorial bulge in the

atmosphere (and in the ellipsoidal altitude density model used here) and

drag perturbations are therefore inclination dependent, with low

inclinations being more affected by drag. Because Venus is much more

spherical than earth, there is no significant corresponding equatorial

bulag. The solar third body perturbation seems to be negligible, having

less of an effect than even the solar radiation pressure. The radiation

pressure perturbation causes a slight inclination dependence, with
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maximum effect near 20 degrees of inclination. Neither radiation

pressure nor third body effects are normally considered to be

significant for low orbiting satellites, but were included here because of

Venus' proximity to the sun.

Figure 12 presents the same data as Figure 11, but for the low

eccentricity case. In this case, the same observations can be made

concerning solar radiation pressure and third body effects. These could

be expected to have even less of an effect in this lower orbit. The

drag. as expected, is much more predominant for this lower orbit, and is

aga~n independent of inclination. The geopotential effect is significantly

different, with almost no tendency to cause the orbit to "climb."
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Figure 11. Final Periapsis Altitude as a Function of Inclination (em.O2)
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Figure 12. Final Periapsis Altitude as a Function of inclination (em.0O1)
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ae-potntud Perturbatzon Cycbic 1ff scts

Since the geopotential produces a conservative force, it could be

expected that the dependence seen in Figures 11 and 12 would be part

of a cyclic behavior. To investigate this hypothesis, longer (120 day)

simulations at the previously investigated eccentricities of .02 and .001

were run.

High Eccentricity. Inclinations used for the higher eccentricity

case were 40 degrees (where the gravity perturbation leads to the

fastest decay), 65 degrees (where the gravity perturbation has a minimal

effect), and 85 degrees (where the gravity perturbation seems to

actually make the periapsis altitude increase).

GEIOPOTEN-IAL EFFECTS ONLY
e .02 i = 40 deg

initiol a 6342 km
1 85 00

155 00

150.00

14 
000

e14C)00

~135,00

1 30.00

125 00

12000

11 5 00 -----.-- .
0.00 40.00 50.00 0 00..

TIME (daye)

Figure 13. Periapsis Altitude as a Function of Time
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Figure 13 shows the effect geopotential has on periapsis altitude.

As could be expected from Figure 1, this shows up as a decrease in

periapsis altitude. The expected periodicity (due to geopotential pro-

ducing a conservative force) is not apparent, however. Note that in

these graphs, like Figures 11 and 12, the final periapsis altitude is

plotted, so lower parts of the curve correspond to more decay.

GEOPOTENTIAL EFPFECTS ONLY
e .02 i = 65 deg

initial a = 6342 km
I1C4.50

164.00

163 50

1 63.o0

Er

162 0L

I1I62 00.161 50

0.00 40.00 a0.00 120.00
TIME (0oy*)

Figure 14. Periapsis Altitude as a Function of Time

In Figure 14 the geopotential effect over the 120 day period shows

up as a smal net change (note the scale -- Figures 13 and 14 are to

different scales) with a short period oscillation superimposed. This is

consistent with the results shown in Figure 10, where there was very
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little decay at 65 degrees inclination. This short period oscillation

would also show up in Figure 13 but is lost on that graph because its

magnitude is so much smaller than that of the "net" change.

GEOPOTENTIAL EFFECTS ONLY
e .02 i = 85 deg

initiol a 6342 kn
205.00

200.00

11. 00

95.00

175.00

17C 00

165.00

1 C, 00

1 55 00 • . . .. v
' '

0008 40.00 0.00 120.00

TiME (0oye)

Figure 15. Periapsis Altitude as a Function of Time

In Figure 15 the expected "climb" in periapsis altitude can be seen.

All three of these figures show some magnitude of net change over the

120 days, along with some small fast oscillation. In no case does the

larger net change give evidence of being periodic.
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Low Eccentricity. Inclinations used for the low eccentricity case

were 40 degrees (where the most decay occurred), 65 degrees (where

the geopotential had minimal effect), and 70 degrees (where the geopo-

tential caused a small increase in periapsis altitude). The results are

presented in Figures 16, 17, and 18.

GEOPOTENTIAL EFFECTS ONLY
e = .001 i = 40 deg

initial a = 6271 km
220.00

21 0.00

190.00

1 70.00

16000 L~--
0.00 40.00 80.o 120.00

TIME (days)

Figure 16. Periapsis Altitude as a Function of Time

Figure 16 is very similar to Figure 13, showing the overall drop in

periapsis altitude, consistent with Figure 12.
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GEOPOTENTIAL EFFECTS ONLY
e = .001 i = 65 deg

initial a = 6271 km
214.00

213.50
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212.50

212 00

211 .50

21 1 00

0 00 4000 800oo 170.00
TIME (doys)

Figure 17. Periapsis Altitude as a Function of Time

In Figure 17 the small net change is again seen, with the expected

small fast oscillation visible because of the scale of the graph.



GEOPOTENTIAL EFFECTS ONLY
e .001 i = 70 deg

initial a = 6271 km
220.00

219.00

218 00

217.00

216.00

215.00
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21- 00

40.00 .. . 00 120 .00
TIME (doys)

Figure 18. Periapsis Altitude as a Function of Time

In Figure 18, evidence of the expected periodicity in periapsis alti-

tude is finally seen. Because this curve represents the relatively small

"climb" in periapsis altitude seen at low eccentricity, the short period

oscillation is more noticeable than in Figure 15. These figures, taken

together, show that the effect of geopotential seen with this model is

periodic, as predicted by the fact that the geopotential produces a con-

servative force. The response is composed of multiple oscillations of

differing periods. This investigation implies that the inclination of 65

degrees is relatively stable for the periapsis altitude for Venus. This is

accompanied by relative stability in semi-major axis and eccentricity,

with changes in these elements for both examined eccentricities of less
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than .25 km and .0004, respectively, over the 120 day period. Satellites

placed in 65 degree inclination orbits would experience minimal change

in periapsis altitudes, at least within the 120 day time frame examined.

It should be possible to adjust the inclination so that geopotential

induced "climb" will offset the drag induced decay in the periapsis, at

higher altitudes, resulting in short term orbits with roughly constant

periapsis altitudes.
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Visual representations of the three Critical Surfaces were produced

with the aid of a three-dimensional plotting program. These plots are

presented as Figures 19, 20 and 21.

Note that in these plots, inclination runs along the nearest axis,

increasing from left to right. Eccentricity (multiplied by 1000 for

scaling) is plotted along the other horizontal axis, increasing from front

to back. The vertical axis represents the difference between initial

semi-major axis and the planetary radius.

The Critical Curves can be seen as the lines of constant

eccentricity corresponding to the values discussed earlier. Other values

on the surface are interpolations of the plotting program. Obviously,

more data would significantly increase the accuracy of these surfaces,

but the trend of the data is apparent. The plotting program also

interpolates over regions where the data has been clipped at higher

eccentricities and inclinations.

Any set of orbital elements corresponding to a point above these

Critical Surfaces will produce an orbit which will not decay below the

specified minimum altitude in 90 days.
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CRITICAL SURFACE -- 130 k

Figure 19. Critical Surface (Final Periapsis Altitude =130 kmn)
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CRITICAL SURFACE -- 140 km

Figure 20. critical Surface (Final Periapsis Altitude =140 kmn)
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CRITICAL SURFACE -- 150 km

Figure 21. Critical Surface (Final Periapsis Altitude 1 J50 kmn)
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IV. Conclusions and Recommendations

Critical Surfaces can be produced with an iterative numerical

method. These surfaces show a strong geopotential-caused inclination

dependence which is periodic in nature. Critical Surfaces generated for

lifetimes in excess of 90 days would be more effected by this long term

periodicity. Drag, as expected, causes a unLform decay rate at all incli-

nations when considered for a spherical planet. Although neither solar

third body effects nor radiation pressure made substantial contributions

to the rates of decay, solar radiation pressure did have a small effect,

and would probably be significant for higher orbits because of Venus'

proxirruty to the sun.

At certain inclinations and eccentricities the periodic geopotential

effect takes the form of an increase in periapsis altitude. This could be

used to offset the decay due to drag for some finite time, in order to

maintain a constant periapsis altitude. This possibility should be inves-

tigated more closely. For high eccentricity and inclination, the geopo-

tential effect offset the drag decay completely, resulting in orbits which

were not lifetime-limited by decay in the time frame examined. Since the

geopotential effect is periodic, these orbits would have finite lifetimes,

but thiLs effect could be used in conjunction with limited station-

keeping, and this also should be investigated.

This investigation only considered zonal harmonics up to sixth

order. Further investigation involving sectoral and tesseral harmonics

could be conducted, but would require consideration of all six orbital
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elements, complicating analysis.

As mentioned in the Introduction, perhaps the most interesting

application of this type of investigation would be for lightsat mission

planning. Interplanetary exploration probes are not likely to be short-

term expendable spacecraft in the near future, but the military potential

of small, inexpensive, single purpose satellites is great. Producing the

Critical Surfaces for these types of missions would require the inclusion

of third body effects from the moon, which would add complexity to the

surfaces. This area of research should be pursued.
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S

Phvical Conatants for th p'tn& Venus

The physical constants for the primary used in this model were

taken from References 9 and 10.

Mean Distance from the Sun 108100000 km

Planetary Radius (R,) 6051 km

Occultation Radius (r.,,) 6141 k m

P 0 3.24858 E 5 km 3 /sec 2

Rotation Rate (w.) -1.71 E -5 deg/sec

Planetary Ellipticity (e) 0.0

Scale Height (f3) 22.48 km

Reference Height 250 km

Reference Density 3.19 E -4 kg/km3

Geopotential Coefficients

-. 45207 E -5

J3 .13421 E -5

J 4 .24135 E -5

J, .25940 E -6

J, .33613 E -6
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Physical PArandbrs of the Spmraft worthis ModelI

The physical parameters for the spacecraft for this model were

loosely based on those for the Magellan Venus Orbiter (Reference 9).

Spacecraft Mass (m) 1085 kg

Coefficient of Drag (Ca) 2.0

Spacecraft Area ( 24 rn2

Reflectivity Factor (y) 1.0
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Polyno,,ag C-efficantz to the Crical Curves

The coefficients for the polynomials fitted to the Critical Curve data
are given in Table C-1 through C-5.

Table C-i. Critical Curve Polynomial Coefficients for e=.001

DEGREE DECAY THRESHOLD (Periapsis Altitude)
0 130 km 140 km 150 km

0 6267.99 6268.24 6268.49

1 -6.95906 E-2 2.99023 E-2 1.32518 E-1

2 2.08757 E-2 7.38482 E-3 -7.20412 E-3

3 -1.28716 E-3 -4.75775 E-4 4.50068 E-4

4 4.49841 E-5 2.08839 E-5 -6.96061 E-6

5 -8.90591 E-7 -5.18589 E-7 -9.0554 E-8

6 8.79975 E-9 5.92692 E-9 2.63286 E-9

7 -3.33571 E-11 -2.45627 E-11 -1.44104 E-11

Table C-2. Critical Curve Polynomial Coefficients for e=.01

DEGREE DECAY THRESHOLD (Periapsis Altitude)

130 km 140 km 150 km

0 6287.83 6288.54 6289.48

1 1.77987 E-2 -2.62089 E-2 -9.69216 E-3

2 2.62497 E-2 3.32471 E-2 4.07476 E-2

3 -6.79421 E-4 -8.40906 E-4 -1.04491 E-3

4 4.20771 E-6 5.20687 E-6 6.53673 E-6
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Table C-3. Critical Curve Polynomial Coefficients for e=.02

DEGREE DECAY THRESHOLD (Periapsis Altitude)

130 km 140 km 150 km

0 6331.34 6333.85 6337.94

1 2.75642 E-2 -4.46667 E-3 8.94402 E-2

2 4.31136 E-2 5.70271 E-2 6.14433 E-2

3 -1.11557 E-3 -1.4776 E-3 -1.61977 E-3

4 6.92373 E-6 9.3038 E-6 1.01088 E-5

Table C-4. Critical Curve Polynomial Coefficients for e=.04

DEGREE DECAY THRESHOLD (Periapsis Altitude)

130 km 140 km 150 km

0 6447.23 6454.59 6463.24

1 3.03818 E-1 4.0992 E-1 5.80655 E-1

2 4.82529 E-2 4.42407 E-2 3.25586 E-2

3 -1.32737 E-3 -1.23606 E-3 -9.41725 E-4

4 7.95499 E-6 7.12796 E-6 4.68943 E-6

Table C-5. Critical Curve Polynomial Coefficients for e=.1

DEGREE DECAY THRESHOLD (Periapsis Altitude)

130 km 140 km 150 km

0 6875.97 6882.02 6891.97

1 -2.89251 E-1 2.33786 E-1 6.39414 E-1

2 7.58337 E-2 5.74248 E-2 2.77024 E-2

3 -1.87211 E-3 -1.60948 E-3 -9.46644 E-4

4 1.16795 E-5 1.02871 E-5 5.81199 E-6
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