
AFOSR.TR,.3

T "l ?he Synthesis of Intelligent Real-Time Systems
Lnr Final Technical Report

Covering Period April 1989 to November 1990

N Stanley J. Rosenschein
Leslie Pack Kaelbling

I |Technical Report No. TR/90-03

I

~JA Noeme 9, 19910

I

I

I
I
!

a D~TIC '
ELECTE f

TEL EOS
RE SEAR C H

I
'1 "F.'?' O E4 5 3288c 0 d'' 'OC, .r

• i

The Synthesis of Intelligent Real-Time Systems
Final Technical Report

Covering Period April 1989 to November 1990

Stanley J. Rosenschein

Leslie Pack Kaelbling

Technical Report No. TR/90-03

November 9, 1990

Prepared by:
Teleos Research

576 Middlefield Road
Palo Alto, CA 94301

Prepared for:
Air Force Office of Scientific Research = I

Boling Air Force Base D TC
DC 20332-6448 JAN039 1.

Contract Number F49620-89-C-0055

REOR OOU ETTO PAG Form Aoprov"

04uaW m p 94TW0 :? V on 4 W~ T~ 4 WP'S~

1. AGL U till 10011 TYa9 A*J L1IM Agr8OATv gol3 SOA ?

:::;ssnofk~~vQ1k 0ne:7e 1 90' IContractor Report: Fji.8 1o.9
Tffu AND51JIM. PUMkQW NUmellas

RealTimeSystms. Project No. 2304/A7

StaleyJ.Rosenschein and Leslie P. Kaelbling

;; =1 r4i A MI(S6) AHO AOMSIS1 L PUPOAN OW&Wut~rsdwI Teleos Research um
576 Middlefield RoadI Palo Alto, CA 94301 TR/90-b3

r sOmo / MEIZGAIMC =A13) hAft ADMPSS([$) IL LooksoM f MONITWO

I DCSMA- MoitoingF49620-89-C-0055
AFOSR (Sponsoring) (P11 No.)I Bldg. 41Q, Boiling Air Force Base
Washingiton, _______20332-6448__

Staniey J. Rosenschein, Tel: 415/328-8803I AFOSR Program Manager: Dr. Ab aham Waksman, Tel: 202/7.67-5025

I UNCLASSIFIED/UNLIMITEDc6

I X~Tm=u24wWTlo g esearch, under the sponsorshlp of the Air Fce
ffice of Scientific Research, has carried out a two-year program of res arch
n"The Synthesis of Intelligent Real-Time Systems." The purpose .ofthe

ffort was to develop and extend theories and techniques that facilitate the
esign and implementation of intelligent real-time systems. In particulzr,
eleos has extended situated-automata theory to apply to situations in wlich
he system has probabilistic information about the world; designed and bliutIhigh-level, declarative programming tool for synthesizing efficiient p 0-
rams that track dynamic conditions in the world; clarified the theoreti al
elationships between Gapps, an existing declarative programming tool fo
escribing action strategies, and the newly designed tool; investigated heI ossibility of moving the burden of developing correct programs from the
uman programmer to the agent itself through the use of algorithms that 1101
he agent to learn from trial and error; applied the principles of situaled-
utomata theory to the understanding of existing vision algorithms and t e
evelopment of new ones; and teste..these theoretical principles and design
ools in a real robotic domain. I/

173
REAL-TIME SYSTEMS; REACTIVE CONTROL; rW W
REINFORCEMENT LEARNING; REAL-TIME PERCEPTION

77. IRoAT E A Ta iI. 130J9.ATy alAstounrs it. sicuay 8%= CASC1GW A G Of ASSTAC
of RIpw W IThIPA44UO 0A&STRACT UNCLASSIFIED
UNCLASSIFIED I UNCLASSIFIED IUNCLASSIFIED_

____ ___ ____ _ O :G1 C-6. S rCoN

I

i 1 Objectives of the Research Effort

Teleos Research, under the sponsorship of the Air Force Office of Scientific Research, has
carried out a two-year program of research on "The Synthesis of Intlligent Real-Time
Systems." The purpose of the effort was to develop and extend theories and techniquesI that facilitate the design and implementation of intelligent real-time systems. These are
embedded computer systems that are linked to the external world through sensors and
effectors and are programmed to interpret sensor data and to produce flexible, goal-directedI behavior continuously and in real time. Systems of this kind will be of crucial importance
to a wide variety of military and industrial applications, including robotics, process control.
real-time situation monitoring, and space applications. If this potential is to be realized.
better techniques will be required for producing the sophisticated software that lies at the
heart of such systems.

In previous research, Teleos personnel hive developed situatee automata theory, a new
approach toward modeling and programmiig intelligent real-time systems. This approach
combines the flexibility of symbolic reasonisig systems with the performance of real-time
control systems. By identifying and encapsulatir- high-level abstractions, it is possible
to raise the conceptual level at which such sy,..ems are programmed and to improve the
efficiency of the programmer, as well as the capabilities of the target system.

The objectives of the research effort carried out for the AFOSR were to test and extend
this existing approach in the following ways:

* Extend situated-automata theory to apply to situations in which the system has
probabilistic information about the world;

* Design and build a high-level, d 'clarative programming tool for synthesizing efficient
programs that track dynamic conditions in the world;

* Understand the theoretical relationships between Gapps, an existing declarative pro-
gramming tool for describing action strategies, and the newly designed tool;

* Explore the possibility of moving the burden of developing correct programs from3 the human programmer to the agent itself through the use of algorithms that allow
the agent to learn from trial and error;

* Apply the principles of situated-automata theory to the understanding of existing
vision algorithms and the development of new ones; and

1 * Test theoretical principles and design tools in a real robotic domain.

The combined progress in each of these areas has allowed us to take significant steps
toward an ideal situation in which (1) a programmer gives a high-level, declarative spec-
ification of the dynamics of the world and of the intended behavior of the agent; (2) the
specification is compiled into highly efficient code for a real robotic agent with complex

I effectors and visual sensors; and (3) the agent acts in the real world, filling out the details
and correcting errors in its specification by learning from its experience in the real world.

I2

I2 Status of the Research Effort
In this section we will summarize our progress in each of the areas described above and
provide references to more detailed accounts, which have been included as appendices to
this report.

5 *We finished the design and implementation of Ruler, a declarative language from
which efficient declarative programs can be synthesized. Ruler allows the user to
specify the behavioT of the world using Prolog-like rules. The user then selects
particular properties of the world that should be tracked and the compiler, using
backward-chaining proof techniques, generates a circuit that tracks the desired prop-
erties in the world. This system and its theoretical foundations are discussed in detail
in Appendix A.

9 Stanley Rosenschein and Michal Irani (a visiting student) developed a probabilistic
formulation of situated-automata theory, including a calculus for the combination
of probabilistic information. In the deterministic version of situated-automata the-
ory, the information content of an agent's state is modeled in terms of environment
conditions implied by the agent's being in that state. The theory can be generalized-
and its utility extended-by allowing situations in which the correlation between the
agent's state and the environment is probabilistic rather than deterministic. Unfortu-
nately, because of the non-monotonic nature of probabilities, this extension does not
immediately yield a compositional design methodology; a condition which is highly
probable given the state of a component may be highly improbable given the states
of other components. To overcome this problem, we developed an approach based on
stable probabilities where the designer makes assertions that bound the probability of
certain propositions given partial information about the agent's state. A prototype
design tool was implemented in Prolog that, like Ruler, derived circuits composi-
tionally from declarative specifications, but unlike Ruler was grounded in the more
general probabilistic model of information.

* There is an elegant theoretical relationship between the notion of a "goal," as used in
the Gapps language, and the notion of "information," as used in the Ruler language.
If an agent can be thought of as having a single overall goal, N, then for it to have
another goal, P, can be modeled as the agent's having the information that P implies
N. This duality of goals and information is the subject of a more detailed discussion
presented in Appendix B.
In addition to this theoretical work, the Rex and Gapps languages were extended and
enhanced in a variety of ways. In order to support robotic experimentation and more
efficient debugging, new code generators that generate Lisp and C as output were
added to the Rex compiler. The Gapps compilation process was sped up significantly
through the addition of a caching mechanism. Finally, a new construct was added
to the Rex language that allows the execution of individual program modules to be
triggered by other conditions in the program. This construct increases the efficiency
of programs that have modules whose results are used only occasionally.

U. 3a

I
The topic of reinforcement learning, or learning from trial and error, was studied

extensively by Leslie Kaelbling. The results of this study included a number of new
algorithms for efficient reinforcement learning in embedded agents and culminated
in a demonstration of these techniques on a small mobile robot. The foundations
of this approach to learning are described in Appendix C and some algorithms for
efficiently learning Boolean functions in k-DNF from reinforcement are described in
Appendix D. In addition, Kaelbling's Ph.D. thesis on this topic ", included under
separate cover.

1 *We studied a variety of existing algorithms for machine vision. In particular, we used
situated-automata-theoretic techniques to characterize several model-based vision al-
gorithms, including Goad's method and Grimson's method, both of which match
model features to image features to generate and filter hypotheses about object iden-
tity and to refine information about object parameters. While these investigations
yielded a better understanding of the logical basis of these particular algorithms, they
did not immediately suggest how to generalize the algorithms to less constrained do-
mains nor how to compile declarative descriptions of such domains into perceptual

recognition circuitry. These remain important topics for future research.

In addition, David Chapman extended his work on the design of a set of visual
primitives and routines over those primitives that can be used to support reactive
behavior in embedded agents. Appendix E describes his work in detail.

Finally, we designed an architecture for a complex robotic demonstration system.
The specification for the architecture, included as Appendix F, includes descriptions
of a class of demonstration tasks, an efficient symbolic database and query language,
and an interface to low-level machine-vision tools. A large part of the specifica-
tion was implemented, and the rest remains to be carried out under future research
projects.!

Ileeorilon For

'~~Mpgcreo1 US RA&I
DIM TAB
Umbaamounced 0,
Suat£ife ____

Dlstrlbution/
Availability Codes

i1 and/or
Miat I Speolal

1 4I

I
g 3 Publications

o H. Keith Nishihara, "Tests of a Sign Correlation Model for Linocular Stereo," Inves.j tigative Ophthalmology and Visual Science, vol. 30, no. 3, March, 1989.

* H. Keith Nishihara, "Psychophysical and Computational Tests Comparing the Sign-
Correlation and Zero-Crossing Models of Human Stereo Vision," Image Understand.
ing and Machine Vision, 1989 Technical Digest Series, 14, Optical Society of Amer-
ica, Washington, D.C., 1989.

o Stanley J. Rosenschein, "Synthesizing Information-Tracking Automata from Envi-
ronment Descriptions," in Proceedings of the First Annual Conference on Principles3 of Knowledge Representation, Toronto, Canada, May, 1989.

o Stanley J. Rosenschein, "Synthesizing Information-Update Functions Using Off-Line
Symbolic Processing," in Proceedings of the Society of Photo- Optical Instrumentation
Engineers Symposium on Advances in Intelligent Robotics Systems, Philadelphia,
Pennsylvania, 1989.

I * Stanley J. Rosenschein and Leslie Pack Kaelbling, "Integrating Planning and R.-
active Control," in Proceedings of the NASA/JPL Space Telerobotics Conference,5Pasadena, California, 1989.

* Leslie Pack Kaelbling, "A Formal Framework for Learning in Embedded Systems,"
in Proceedings of the Sixth International Workshop on Machine Learning, Ithaca,
New York, 1989.

o Leslie Pack Kaelbling, Learning in Embedded Systems, Ph.D. DisFertation, Stanford
University, 1990. Also published as Teleos Research Technical Report No. TR-90-04,
August, 1990.

o Leslie Pack Kaelbling and Stanley J. Rosenschein, "Action and Planning in Embed-
ded Agents," in Robotics and Autonomous Systems, vol. 6, pp. 35-48, 1990. Also in
New Architectures for Autonomous Agents: Task-Level Decomposition and Emergent
Functionality, P. Maes, Ed., MIT Press (in press).

o Leslie Pack Kaelbling, "Learning Functions in k-DNF from Reinforcement," in Pro-
ceedings of the Seventh International Conference on Machine Learning, Austin, Texas.
June, 1990.

o David Chapman, Intermediate Vision: Architecture, Implementation, and Use, Teleos
Research Technical Report No. TR-90-06, October, 1990. Submitted to Cognition.

Leslie Pack Kaelbling, "Generating Complex Behavior for Computer Agents," il
Proceedings of the DARPA Planning Workshop, San Diego, California, November.
.990.

a5
1I

Leslie Pack Kaelbling, "Foundations of Learning in Autonomous Agents," in Robotics

and Autonomous Systems (in press). Also in Toward Learning Robots, W. Van de
Velde, Ed., MIT Press (in press).

I6

I

I- 4 Personnel
ISupervisory:

e Stanley J. Rosenschein, Ph.D., 1975: "Structuring a Pattern Space, With Applica-
tions to Lexical Information and Event Interpretation."

Senior Professional:

* H. Keith Nishihara, Ph.D., 1978: "Representation of the Spatial Organization of
Three-Dimensional Shapes for Visual Recognition."

Professional:

* David Chapman, Ph.D., 1990: "Vision, Instruction, and Action."

* Neil Hunt, Ph.D., 1989: "Tools for Image Processing and Computer Vision."

ft * Leslie Pack Kaelbling, Ph.D., 1990: "Learning in Embedded Systems."

o Jeffrey R. Kerr, Ph.D., 1985: "An Analysis of Multi-Fingered Hands."

1 o Nathan J. Wilson, M.A., 1987: "Developing a Computational Model of Biological
Motion to Study Concept Formation"

I7

!
I
!

I
I
1i
I

I

I_ 5 Interactions

I 5.1 Papers Presented
H. Keith Nishihara, "Tests of a Sign Correlation Model for Binocular Stereo," Inves-

tigative Ophthalmology and Visual Science, vol. 30, no. 3, March, 1989.

* H. Keith Nishihara, "Psychophysical and Computational Tests Comparing the Sign-
Correlation and Zero-Crossing Models of Human Stereo Vision," Image Understand-
ing and Machine Vision, 1989 Technical Digest Series, 14, Optical Society of Amer-
ica, Washington, D.C., 1989.

* Leslie Pack Kaelbling, "Foundations of Learning in Autonomous Agents," at the
Workshop on Representation and Learning in Autonomous Agents, Lagos, Portugal.

~1988.

Stanley J. Rosenschein, "Synthesizing Information-Tracking Automata from Envi-
ronment Descriptions," at the First Annual Conference on Principles of Knowledge

I Representation, Toronto, Canada, May, 1989.

* Stanley J. Rosenschein, "Synthesizing Information-Update Functions Using Off-Line
Symbolic Processing," at the Society of Photo-Optical Instrumentation Engineers
Symposium on Advances in Intelligent Robotics Systems, Philadelphia, Pennsylva-
nia, 1989.

* Stanley J. Rosenschein and Leslie Pack Kaelbling, "Integrating Planning and Reac-
tive Control," at the NASA/JPL Space Telerobotics Conference, Pasadena, Califor-5nia, 1989.

e Leslie Pack Kaelbling, "A Formal Framework for Learning in Embedded Systems,"
I at the Sixth International Workshop on Machine Learning, Ithaca, New York, 1989.

* Leslie Pack Kaelbling, "Learning Functions in k-DNF from Reinforcement," at the5 Seventh International Conference on Machine Learning, Austin, Texas, June, 1990.

* Leslie Pack Kaelbling, "Generating Complex Behavior for Computer Agents," at the
I DARPA Planning Workshop, San Diego, California, October, 1990.

, 5.2 Other Presentations

* Leslie Pack Kaelbling, "Intelligent Robots in the Real World," invited talk at the
Eleventh IFIP World Computer Congress, San Francisco, California, 1989.

I * H. Keith Nishihara, "A Machine Theory for Human Stereo Vision," Apple Computer,
August, 1989.

i* Stanley J. Rosenschein, participant in NASA/Ames Applications Workshop, Moffett
Field, California, October, 1989.

18

I

* Stanley J. Rosenschein, guest speaker at Art Ecial Intelli ence/Robotics SeminarISeries, Computer Science Division, University of California, 12erkeley, California,
November, 1989.
Stanley J. Rosenschein and Leslie Pack K&elbling, participants in Workshop on In-
telligent Real-Time Problem Solving, Santa Crur., Catiornia, November 1989.

1 * Stanley J. Rosenschein, co-organizer and presenter with M. Pollack and M. Brat man,
seminar series, "Models of Rational Agency," for Center for the Study of Language
and Information, Stanford University, Stanford, California. Fall, 198g.

9 H. Keith Nishihara, "Hidden Information in Transparent Stereograms," CCRMA3 Seminar, Stanford University, March, 19q0.

9 Leslie Pack Kaelbling, "Planning and Action ir, Robotics and AI," invited talk at the
International Symposium: Artificial Intelligence, What Reality?, Rabat, Morocco,
May, 1990.

* David Chapman, Leslie Pack Kaelbling, and Sta:.lcy J. Rosenschein, participants in
DARPA Workshop on Benchmarks and Metrics for Integrated Agent Architectures,
July, 1990.

* Stanley J. Rosenschein, "Reasoning and Acting in Real Time," invited talk at the
Eighth National Conference on Artificial Intelligence, Boon, Massachusetts, Au-
gust, 1990.

I9

I
!
I
I

I
I
I!
Ia

6 Discoveries and Inventions

There have been no new discoveries, inventions, or patent disclosures or applications stem-t rning from this research effort.

10

7' Other Statements

The following papers, which are included as appendices to this report, provide a detailed
description of the research progress achieved under this contract:

9 Stanley J. Rosenschein, "Synthesizing Informaticn-Tracking Automata from Envi-
ronment Descriptions."

* Leslie Pack Kaelbling and Stanley J. Rosenschein, "Action and Planning in Embed-
ded Agents."

* Leslie Pack Kaelbling, "Foundations of Learning in Autonomous Agents."

J * Leslie Pack Kaelbling, "Learning Functions in k-DNF from Reinforcement."

* David Chapman, "Intermediate Vision: Architecture, Implementation, and Use."

I * Leslie Pack Kaelbling, Neil D. Hunt, Stanley J. Rosenschein, H. Keith Nishihara,
Nathan J. Wilson, Laura E. Wasylenki, and Jeffrey R. Kerr, "Cooperative Robot

I Demonstration: Working Document"

In addition, Leslie Pack Kaelbling completed her Ph.D. thesis under the partial spon-
sorship of this contract. It is titled Learning in Embedded Systems, and has been included
under separate cover.

1
I
I
!

11

rI

g ASynthesizing Informat ion- Tracking Automata from
Environment Descriptions

I1

Synthesizing Information-Tracking5 Automata from Environment
Descriptions

Stanley J. Rosenschein

I Teleos Research

Technical Report No. 2
July 3, 1989

I
I

I Abstract
This paper explores the synthesis of finite automata that dynamically track con-

ditions in their environment. We propose an approach in which a description of the
automaton is derived automatically from a high-level declarative specification of the
automaton's environment and the conditions to be tracked. The output of the synthe-
sis process is the description of a sequential circuit that at each clock cycle updates
the automaton's internal state in constant time, preserving as an invariant the corre-
spondence between the state of the machine and conditions in the environment. The
proposed approach allows much of the expressive power of declarative programming
to be retained while insuring the reactivity of the run-time system.

This work was su.'ported in part by a gift from the System Development Foundation.I'
i!

I
I

j Synthesizing Information-Tracking

Automata from Environment

DescriptionsI
j1 Introduction

This paper is concerned with the synthesis of finite automata whose internal states
are provably correlated with changing conditions in the environment. In earlier
work [Rosenschein1985,Rosenschein and Kaelbling1986], we investigated the math-
ematical foundations of embedded machines and direct methods of programming
them. Later research was aimed at raising the conceptual level of the programming
task by exploring declarative techniques for synthesizing their action-selection cir-
cuitry [Kaelbling1988]. In this paper, we extend this line of research to perceptual
updates, that is, the computations responsible for updating the internal information
state of the machine. We present techniques that allow programmers to describe
the environment in which a machine is to be embedded along with conditions to
be tracked and to have these descriptions algorithmically transformed into provably
real-time circuitry for tracking those conditions in the environment. Information
about these conditions would be used by other parts of the system to ide action.

Mainstream theoretical AI has developed models of information and action based
on formalized commonsense psychology. In this approach, intelligent computer sys-
tems are modeled as having at their disposal a set of propositional "beliefs," usually
assumed to be embodied in a set of symbolic expressions, such as logical formulas,
whose intended semantics are clear to the designer. Some of these beliefs are pro-
vided by the designer as part of a knowledge base, while others are produced by
the perceptual system at run time. In addition, the system contains inference pro-
cedures for dynamically deriving new beliefs from old and for continuously revising
beliefs over time in response to sensory inputs (and perhaps reflection.) In this way,
the designer can arrange for the agent to have access to a much more complex set5 of beliefs than could have been enumerated explicitly in advance. The designer also
provides symbolic representations of the goals the agent is to pursue. The agent
continuously attempts to deduce which actions it should take to achieve its goals
and then performs those actions.

By modeling the infornation available to the system as symbolic facts deducible1

I
U

by the system, the traditional approach allows the methods of symbolic logic, in-' cluding automated symbolic inference, to be applied to problems in agent design.
Of particular importance is the availability of a clear semantics for non-numerical
data structures that are used to represent qualitative information about the world.
These are attractive features-ones we would like to preserve. However, the tradi-
tional AI approach also has some other, less attractive, features which we hope toI eliminate. For example, in applications requiring continuous, high-speed interac-
tion with the environment, the computational cost of formally deriving facts from a
data base of logical premises and of keeping the data base consistent with the world

p is often prohibitive. This has been a severe obstacle to building high-performance
embedded computer systems based on the model of the intelligent agent as symbolic
reasoner.

Situated-automata theory is a framework for reconciling the attractive features
of Al methods (non-numerical descriptions of the world) and of control-theoretic
methods (continuous constant-time updating of internal representations and guar-I anteed response.) The central observation of situated-automata theory is this: It is
not the run-time symbols or numbers, per se, that are of significance, it is the fact
that (1) they are semantically meaningful to the designer, that is, they stand for
well-defined world conditions, and (2) the machine is designed in such a way that
the world condition represented by the value of an internal location will indeed hold
when that location has that value.

In this paper, we apply the situated-automata framework to the problem of syn-
thesizing machines that track semantically complex conditions in the environment
using constant-time update circuitry. We describe how inference techniques can
be used at compile time to carry out the synthesis automatically, g.ven symbolic
descriptions of the environment and of the information to be tracked.I
2 Basic concepts: A model of information

The mathematical framework of situated-automata theory takes as its starting point
a model of dynamic systems. Consider a physical or computational system consist-
ing of a set of locations that can be in different states over time. These states can be
thought of as actual physical states or as abstract data values that might be stored
in the register of a computer. Let T be a set of times, L a set of locations, and let
each location a take on values from some set, D., with compound locations [a, b]
taking on values in D. x Db. Let the union of all value domains be designated byj D. Each possible "trajectory" of valucs can be given by a function w : L x T -D

in which w(a, t) is the value of location a at time t in trajectory w. Following the
terminology of possible-worlds semantics, we call these trajectories "worlds."5In physical or computational systems that operate according to fixed rules or
constraints, not every world is consistent with the laws of nature. This can be

12

captured mathematically by identifying some designated subset of worlds that are
consistent with the intended constraints. We shall call this set of possible worlds
W. Let 0, the set of propositions or world conditions, be the set of all subsets of
W x T. Intuitively, a condition V E t corresponds to the set of world-time pointsjat which that condition holds. We sometimes write W(w, t) rather than (w, t) E 9
when we wish to assert that the condition V holds at w, t.

By definition, 0 has the structure of a Boolean algebra of sets: a condition V
can imply (be a subset of) another condition 0t, we can take the meet, V n 0, of
two conditions, and so on. Furthermore, the structure of 4' allows us to define two
mathematical objects useful for characterizing world dynamics: the initial condition
joo = {(w,O) I w E W} and the strongest postcondition function S : 4 -4 t,
where S(jo) = {(w, t + 1) I V(w,t)). The initial condition (oo and the strongest

Spostcondition function S will be used later to characterize machine synthesis.

The restriction on what is possible gives rise directly to a notion of information.
The information contained in a location's value is modeled as the strongest propo-
sition consistent with that location's having that value. Formally stated, to every
location (or compound location) a, we associate a function, M. : D. --+ (4 that maps
a's values into propositions. This function is defined as follows: M.(v) = {(w, t) I
w(a, t) = v}. To say that a location a has the information that W in world w at
time t is to say M.(v) implies W, in other words, that the proposition W is true at3 each world and time in which a has the same value it has in world w at time t.

As defined, the concept of information is very abstract, representing the total-
ity of what must be the case, given that some location in the machine has the
value it does. For this notion to be of practical use, we must find ways of ex-
pressing in understandable terms particular, more limited, aspects of this total
information content. This is the proper role of logic. By defining logical lan-
guages whose formulas express propositions of interest, we can conveniently de-
scribe the content of propositions included in an agent's information state, such asj in(book, roornl) V in(book, room2). Furthermore, modal logics of knowledge can be
used to assert facts about the information relation itself, such as whether particular
locations have or do not have particular information, e.g., -K(a, in(book, room2))A
K(b, in(book, room2)), which asserts that location a does not contain the informa-
tion that the book is in room 2, while location b does. These logics are explored
more fully in [Rosenschein and Kaelblingl986] and [Halpern and Moses1985]. In
this paper, we will use letters p, q,... and standard logical operators A, V,... in
formulas that express the information carried in a location's value.

5When we wish to consider machines with very large state sets, we regard the
machine as being constructed from a network of components, with the state set
of the whole machine corresponding to the Cartesian product of the state set of
the individual componeiis. Fortunately, there are straightforward techniques for
inferring informational properties of aggregates from informational properties of

13

their components. For instance, the following can easily be shown to be valid:

MI1 ,.j([u, vi) = M.(u) n Mb(v)

We refer to this property as spatial monotonicity. It follows that if location a
carries the information that p holds and location b carries the information that q
holds, then the aggregate location [a, b] carries the information that the conjunctive
condition p A q holds. Spatial monotonicity is useful in synthesis because it means
that subsystems can be developed independently and composed in a meaningful
way.

It is important to observe that location a can carry information about p without
explicitly encoding a symbolic formula representing p; any value of the location that
is systematically correlated with p will suffice. Different locations might have dif-
ferent states representing the same proposition p, and the same data values might
have different informational significance at different locations. In general, an infinite
number of formulas will follow from the information contained in a finite value, but
since the formulas need not be separately represented, this causes no problem. In-
deed, the computational complexity of updating a location's value so that it tracks
changing conditions in the environment is entirely decoupled from the computa-
tional complexity of the symbolic inference problem for the logical language that
expresses the conditions being tracked. This fact is crucial for understanding how
seemingly complex semantic conditions can be monitored in real time.

These considerations lead directly to certain abstractions useful for describing
how information is represented in machine states and how it is re-represented as
it moves from location to location within a machine. We call these abstractions
informational data types.

3 Informational data types

IRecall that the function M. maps a's values (elements of D.) to the abstract propo-
sitions with which they are correlated. As such, we can think of it as a "meaning"
function. It is also useful to consider an inverse to these meaning functions, namely,
"representation" functions that map propositions back to the data values that en-
code them. Let us define an informational data type to be a triple r = (D, M, R),U with D being a set of data values, M a meaning function from D to lb, and R a
representation function from 4, to D. Intuitively, if a location is of type r, then
whenever it takes on the value v E D, the world is intended to satisfy condition
M(v), and if the world satisfies condition o, it is appropriate for the location to take
on the value R(V). These two functions must satisfy the property that Wo implies
M(R(Wo)) for all o E 41, that is, the representation map must be consistent with
the meaning map. Since the implication is only one way, the representation of a
world condition in the machine will, in general, not be information preserving. An

14

extreme case of this is when M(R(p)) = true and contains no information at all.
U We generally assume R(W) to be maximally specific, that is if R(tp) = vi, then there

_ is no vj such that M(vj) implies, but is not implied by, M(v,).
Informational data types provide a way of analyzing the localization of infor-

I Umation in a machine, including the computational complexity of such localization.
Given two informational data types, r. = (DI,M 1,R1) and r2 = (D 2,M 2,R 2), we
can define a translation function that "re-represents" the content implicit in the val-
ues of a location of type T1 in the language of r2. Mathematically, the translation
function is a mapping T : D, -+ D2 that is defined as follows: T(v) = P2(Mj(v)),
i.e., the representation, in the second "language," of the meaning, in the first "lan-
guage," of v. The computability and complexity of these translations remain to be
determined and are greatly affected by the choice of representation, that is, by the
specific nature of M and R and not merely by the range of propositions encoded.

Although the informational concepts developed thus far apply equally to finite
and infinite languages, we shall henceforth restrict our attention to machines having
a finite number of internal locations, each taking on values from a finite domain.
One immediate consequence is that all translation functions are computable, al-
though complexity trade-offs remain. For instance, since all Boolean functions can
be computed by a circuit of depth 2, we could always compute the translation func-
tion in constant time-if we were prepared to tolerate the potentially large number
of computing elements that may be required. In the worst case, an exponential

j number of gates could be needed and the constant-time result is merely academic.
Our aim, however, is to control the synthesis process in order to produce systems
that not only track world conditions but are also practical to design and implement.

In the next section we discuss how informational data types can be used to
approach the synthesis problem.I

u 4 From analysis to synthesis: The machine in-

duced by world dynamics

I One way of using the situated-automata framework is for the analysis of existing
machines: Given the description of an environment and of a machine embedded in
that environment, we seek to describe the information encoded in its states. For
purposes of design, however, we are more interested in the opposite question: Given
a description of the world and of the information we would like to have encoded in
machine states, how can we design the machine's circuitry in such a way that states
of the machine will actually be correlated, as desired, with conditions in the world?

At the theoretical level, we can show that the dynamics of the world, together
I with the semantics of the machine's inputs and the intended semantics of its internal

states (expressed as an informational data type), fully determine a machine whose

5 5I

internal states carry the desired information by virtue of their actual correlation
with the world. To see why this is the case, imagine we are given an informational
data type , = (Di, Mi,, A-.) for the input location of a machine and an intended
data type r. (D., M., R) for the internal location a. Imagine, further, that we
are given the proposition Wo approximating the initial world condition (in the sense
that (oo is implied by the true initial condition), and a function S approximating the
true strongest-postcondition function (in the sense that S(co) is implied by the true
strongest postcondition of o for each po; approximation is the best we can do, since
the world is not fully determined until we have fixed the embedded automaton.)
We now show how these elements determine a machine that tracks changing world
conditions as desired.

Here a machine will be defined by a pair of domains Di. and D. (for inputs and
internal states), an initial value v E D., and a next-state function f : Di D, --
D. satisfying the following conditions for all w, t:

w(a,O) =
I w(at. + 1) = f(w(in, t),w(a,t))

Given ri,, ra, o, and S, we define v0 and f as follows:
v0 = R (o

fAu.v = R.(S(Mn(u)nM,(v)))

I Intuitively, vo, the initial value of the location a, is just the representation, in
a's data type, of the initial I)position; the value of the next-state function is

I determined mathematically by zonsidering the proposition associated with the old
value of a and with the input, determining what will be true one time instant in the
future given what is true now, and representing that proposition in the data typeIof a. Note the implicit reliance on spatial monotonicity and the similarity between
this construction and the definition of translation functions in the previous section.

Assuming Min is veridical, it can be shown that these definitions of VO and f
I insure that M. will be veridical as well, i.e., that the machine's utates will indeed

be correlated with the intended meanings of those states. Mathematically, we must
demonstrate that for all w, t:

IThe proof of this proposition is straightforward and proceeds by induction on t.
(The variable w is universally quantified throughout.) The base case is established
as follows: From the definition of Vo, we have that WI(w, 0). The soundness of Ra3 gives us Ma(R.(Vo))(w,O), whence M.(w(a,0))(w,O) follows immediately from the
definition of v0 by simple substitution, since w(a, 0) = v.

The inductive case is established similarly. The induction hypothesis is that
M,(w(a, t))(w, t) ,

3 6I

K

I

U
and the veridicality of M,., gives us

Mi. (w(i, t))(w, t)

3 Conjoining these conditions yields

-- (Mi(w~in, t)) n3M.(w(a,t)))(w,t) .

5The definition of S implies that

g S(Min(w(in, t)) n M,(w(a,t)))(w,t + 1),

and the soundness of R. guarantees that

3 AM(R(S(M,,(w(in, t)) n M.(w(a, t)))))(w, t + 1).

Substituting in the definition of f, we get

M(f(w(in, t), w(a, t)))(w, t + 1),

I from which M.(w(a, t + 1))(w, t + 1) follows immediately.

1 5 Syntactifying the construction

We have just seen how the dynamics of the environment, together with the se-
mantics of the inputs and the intended semantics of the internal state, completely
determine the structure of a machine. To be of practical utility, however, the math-
ematical construction must be made operational. One approach would be for the
programmer, based on his intuitive understanding of the task environment, to define
the induced automaton directly in a conventional programming language. Although

j adequate in principle, this approach is difficult to apply in practice for complex do-
mains. For this reason we seek compilation techniques that would automate at least
part of the synthesis process and make the transition from environment description
to automaton more transparent to the programmer.

Although the automaton is mathematically determined by ri,, r., po, and S, we
cannot directly present these abstract objects to a compiler and must use symbolic,
often approximate, descriptions. Let us examine the form these descriptions might
take for informational data types (r and r.) and for world dynamics (V'o and S).

5.1 Specifying informational data types

Consider a machine location z of informational data type r, = (Di, Mx, R,). Let
us see how the three components of the data type might be described to a compiler.

17

I

The value domain D. is straightforward to describe using conventional data typedeclarations. For our purposes, it will be sufficient to consider only atomic data
types such as Booleans, integers, floats, etc. and record structures, possibly nested,over these atomic types. For example, to tell the compiler about the value domainj of location x we might write x: [bool [int int] float].

The specification of the other two components is more complex. Let us beginwith M,. Recall that M., the "meaning function" associated with location z, mapselements of D, to 4, the set of propositions, where propositions are modeled as setsof world-time pairs. Recall also that logical formulas can be used to partially expressthe content of a proposition, provided they are taken from a logic that assigns sets ofworld-time pairs as the denotation of formulas. Many temporal logics will suffice forthis purpose. (For one example, see [Rosenschein and Kaelblingl986].) Given sucha logic, formulas parametrized by run-time values can be used to define a meaning
function from values to propositions.To see this, let C be the language of some temporal logic, with interpretationI function X : £ -+ § and provability relation K. Assume that among its individualterms, the language has constants that rigidly designate values of locations, possiblyin addition to terms that denote location values that vary with world and time. If3 v is a data value, we let c, stand for the rigid designator of value v in the language

.
Let P (U) be a formula of f- with a free variable U for which value-denotingterms can be substituted. Each substitution instance P,(4) is a closed formula towhich the interpretation function 2 can be applied. The parametric formula Pt(U)

thus induces a mapping M x :) --+ !D that approximates M_ and is defined asfollows:
M-(,) = .(P.(c.)).

The semantic interpretation I of the language £ is itself approximated for the
compiler by a set, r, of background facts relative to which the syntactic conse-quences of Px(c,) are to be derived. To answer the question "does M(u) implyM,(v)," the compiler would attempt to establish r F- P(c.) - P1,(c) using deduc-
tive techniques.

Having approximated M by a formula Px(U) and a background theory r, wehave nearly determined the third component of the informational data type aswell. Recall that the representation function R, is intended to map propositions
to elements of the value domain that best capture them. Since we are encodingpropositions for the compiler using formulas, we are interested in functions that mapformulas to data values. If Q is a formula expressing the proposition V, candidate3 representations of so (relative to r) should bc drawn from the set

C (Q) = {I Ir F Q -4 P,(c,)1.
IIntuitively, elements of C (Q) are the data values whose meaning is entailed bythe information in Q, and hence by o. This set must contain at least one element,

*8

I

I

since there must be a value in D, representing true, which is entailed by every
proposition. In practice, it is convenient to have multiple representations of true,
for instance by uniformly including a boolean valid bit in all data types. When the
valid bit has the value zero, the meaning of the whole value is taken to be simply

I true, regardless of the values of the rest of the parameters.
If there is more than one element in CQ(Q), the multiple values must somehow

be combined so that they might "fit" into the space alloted to x. We call the
functions responsible for combining these values rconj functions ("representation of
the conjunction.") This function is defined as

3rconj(v,, v 2) = R.(M(v) n M,(v2)).

Because the choice of &, and hence rconj, is under-determined by the meaning
function M,, the designer must somewhow stipulate the rconj, function directly for
each type T. This can be made relatively convenient through the use of declarative
rules of the form3P, (V) A P, (V2) -. P (f (V , V2)).

Having specified a binary rconj operator, arbitrary finite sets of values can be
combined in the obvious way:

rconj(vi , v.)=3 rconjx,(v,. ...rconjz,(vn...i v,,) ...)

The order of combination does not matter since the rconj function is commutative
due to the commutativity of the underlying conjunction operator n in terms of
which rconj is defined.

5 Example

We illustrate the concepts above by defining a sample informational data type.
Consider a location x of value type [bool int). Informally, the first field is the
valid bit, and th second field is intended to represent a lower bound on the age of
some individual, Fred.3 The semantics of x can be expressed using the formula

P (U) = age(fred, [first(U), second(U)])

I under the intended interpretation:

Z(age(fred,[V, V])) t ru if V =
WV)if V1 = 1

where W(V) = {(w, t) I age(fred, w, t) >. the number denoted by V2}. Thus, the run-
time value [0, n] at location x would represent the vacuous proposition true for any
n, the value 1, 14] would represent that Fred is at least 14 years old, and so on.

1

An rconj rule for the informational data type might look like this:

age(fred, [Ul, U2]) A age(f red, [V, V2])

-- age(fred,

[or(Ut, V), if(Ut, if(V, max(U, V2), U2), V)1).

This rule indeed defines a coD tutative rconj operator that can be used to com-
bine values of this informational data type in a way consistent with the intended
interpretation.

Furthermore, if the intended model incorporates the constrain' that 18-year olds
can vote, we might include among the background facts an assertion of the form

age(fred, [U,, U2]) --

can.vote(fred, and(U , ge(U2, 18))).

This fact implicitly defines part of a translation function from the age(fred,-) data
type to the can.vote(fred,-) data type. Notice that in this data type, fred is
fixed at compile time. This would be appropriate if distinct locations were used to
store information about individuals referred to explicitly at compile time. If Fred's
identity were not known until run time, the run-time parameter would have to take
on values that encoded propositions about Fred, Sam, etc.

5.2 Specifying World Dynamics

As we described above, the compiler is assumed to have access to a background
theory, that is, a set of assertions describing the environment. This theory will
contain many temporal facts as well as atemporal facts. By choosing the language
Z to include appropriate temporal operators we can express facts about the initial
condition of the world and about temporal transitions in a way that allows us to ap-
proximate the semantic objects Wo (initial condition) and S (strongest postcondition
function.)

In the simplest case,the language £ need only include the modal operators 0,
init, and next satisfying the following semantic properties for all w, t:

w, t = D3V iff w',t' = V for all w', t'

iw,t I init p iff w, 0 1= V

w, t - next Vp iff w, t + 1 [- V

The compiler can answer questions of the form "does S(MX(u)) imply M,(v)"
by establishing r F 0(P,,(c,) -. next Pu(c,)) using deductive techniques.

10

5.3 Putting the Pieces Together: Synthesis Method, Ao-

I stract Version

We now describe a compilation method that operates on the representations dis-
cussed above and produces a circuit description of the aesired autom, ton. The
compiler takes as inputs a descrpti(i of information carried by the run-time in-
puts to the machine and the internal machine state, as well as a background theory
containing temporal facts. The compiler operates by deriving theorems about what
is true initially and about what will be true next at any time, given what is true
at that time. In the course of the derivation, free variables are instantiated in the
manner of logic programming systems. From the instantiated formulas the com-
piler extracts the initial value of the machine's internal state and the description of
a circuit for updating the machine's state vector.

More precisely, the compiler's inputs consist of the following:

3 e a list [al, ... , a] of input locations

e a list [bl, ..., bin] of internal locations

3 for each input location a, a formula P.(U) with free variable U

* for each internal location b, a formula Pb(U) with free variable U and a function
3 rconjb

* a finite set r of facts.

I For each internal location b, the compiler computes two sets of value terms Ib
and Nb defined as follows:

Ib = {e I r t- Oinit Pb(e))

I Nb = {fe I r P 1P.,(a,) A... \ Pb.(b,,) - next Pb(e)}.

If these sets are infinite, they can be generated and used incrementally. This is
discussed more fully below.

From these collections of sets the compiler computes the initial value and the
update function. The initial value is computed as follows:

3 VO = [rconjb,(Ib),...,rconjb*n(Ib.)],

In other words, the initial value of the state vector is the the vr .tor of values derived
by rconj-ing values representing the strongest propositions that can be inferred by
the compiler about the initial state of the environment in the "language" of each of
the state components. Similarly, for the next-state function:

f([an], [l ,. . ., bm])=

* 11

I

U
U

[rconjb* (N61), ... , rconjb*(Nb),
Here the compiler constructs a vector of expressions that denote the strongest propo-
sitions about what will be true next, again in the language of the state componeits.

In the case of the initial value, since all the terms are rigid, the reonj values
can be computed at compile time. In the case of .he next-state function, however,
the rconj terms will not denote values known at compile time. Rather, they will
generally be nested exprebsions containing operators that will be used to compute
values at run time. Assuming the execution time of these operators is bounded,
the depth of the expressions will provide a bound on the update time of the state
vector.

Without restricting the background theory, we cannot guarantee that the sets
b and Nb will be finite. However, even in the unrestricted case the finiteness of

terms in the language guarantees that whichever elements we can derive at compile
time can be computed in bounded time at run time. Furthermore, the synthesis
procedure exhibits strongly monotonic behavior: the more elements of lb and Nb
we compute, the more information we can ascribe to run-time locations regarding
the environment. This allows incremental improvements to be achieved simply by
running the compiler longer; stopping the procedure at any stage will still yield a
correct automaton, although not necessarily the automaton attuned to the most
specific information available. Since, in general, additional rconj operations con-
sume run-time resources, one reasonable approach would be to have the compiler
keep track of run-time resources consumed and halt when some resource limit is
reached.

As we have observed, without placing restrictions on the symbolic language
used to specify the background theory, the synthesis method described above would
hardly be practical; it is obvious that environment-description languages exist that
make the synthesis problem not only intractable but undecidable. However, as
with Gapps [Kaelbling1988] and other formalisms in the logic programming style,
by restricting ourselves to certain stylized languages, practical synthesis techniques3 can be developed.

We have experimented with a restriction of the logical language that seems to
offer a good compromise between expressiveness and tractability. This restriction is
to a weak temporal Horn-clause language resembling Prolog but with the addition
of init and next operators. I i this language the background theory is given as facts

I of the following form:

init q(X,Y).
I next q(Xf(X,Y)) :- ql(X,Y),...,qn(X,Y).

q(X,f(X,Y)) :- qi(XY),...,qk(X,Y).

For each predicate or function expression, the first argument represents a compile-Itime term and the second a run-time term. Facts of the first two sorts assert
temporal facts (the 0 operator is implicit), and facts of the last sort are ordinary

*12

U
U

instantaneous facts, much as one would find in a conventional Prolog system, but
Swith terms syntactically marked as compik.-time or run-time.

The rconj rules are given in the following form-

rconj q(x,f(xyly2)) :- q(xyl), q(x,y2).
The derivation process proceeds as described above but uses backward-chaining

deduction techniques adapted from logic programming. Each distinct location has
an associated atomic formula schema p(i,Y). In deriving the initial value v0 the
compiler attempts to prove p(i,Y) from the init declarations and the instanta-
neous facts. If this succeeds, the initial value of the i'th component of the state
vector is the rconj* of the bindings of Y. If the attempt fails, the valid bit of that
component is set initially to 0. Similarly, the next-state function for component i is
derived by attempting to prove next p(i ,Y) using the next rules and the instanta-
neous facts, chaining backwards and cutting off proofs that traverse more than one
"next" clause. Although the process of finding the proofs need not be real-time,
the circuit that is finally produced is.

A prototype system, called RULER, has been built implementing the Horn-
clause version of the synthesis algorithm. The language resembles Prolog in many
ways, differing mainly in the strong distinction between compile-time and run-time
expressions. Compile-time expressions undergo unification in the ordinary manner;
run-time expressions, by contrast, are simply accumulated and used to generate
the circuit description. RULER was implemented in Lisp as an extension of the
Rex language [Kaelbing1987]. Run-time expressions in RULER are allowed to be
any valid Rex expression, and all of the Rex optimizations (common-subexpression
elimination, constant folding, etc.) are applied to the resulting circuit desciptions
produced by RULER. The RULER system was run on several small examples in-
volving object tracking and aggregation, and the synthesis procedure has proved
tractable in our test implementation.

1 6 Future Directions

Our current research is directed toward extending the theoretical basis for synthesis
and improving the practical utility of tools such as RULER. On the theoretical side,
one important extension is to adapt the synthesis techniques to cases where the cor-
relation between machine states and world conditions is best described probabilis-
tically. Naive approaches will not work, primarily because the spatial-monotonicity
property fails in the probabilistic case. For this reason we have been exploring
design disciplines that reconcile structured synthesis methods with the inherently
non-monotonic nature of probabilities, preserving the spirit of the techniques pre-
sented in this paper.

On the practical side, experiments with RULER suggest needed improvements in
several areas. One syntactic improvement would be to uniformly suppress valid bits,

113

since their treatment is so systematic. Freer syntactic intermingling of compile-time
and rim-time expressions and tests would be useful as well. A more serious practical
consideration has to do with helping the programmer control the combinatorics
of the synthesis proeess. As in general logic programming, it is possible, using
RULER, to write programsvwith unacceptable combinatorial behavior. While this
is not the fault of RULER per se and can undoubtedly be ameliorated by increasing
the programmer's experience and skill in using the tool, there are improvements
that can be made in the system itself, including facilities for detecting cycles and
redundant proofs. Finally, there is need to gain practical experience in applying
this style of programming to real problems in visual perception, sensor fusion, and
other similar areas.

1 7 Related Work

I There has been considerable work on the synthesis of digital machines from temporal
logic specifications, for example, the work by Ben Moszkowski [Moszkowskil983].
This work considers symbolic specifications similar to the kind considered here
but does not connect them directly to an informational account of machine states.
The work of Joseph Halpern and his asssociates [Halpern and Moses1985], on the
other hand, has examined mathematical approaches closely related to our own for
characterizing information in distributed system, but have so far not addressed
issues of automated synthesis. Chris Goad [Goad1986] has used partial evaluation
to generate efficient algorithms for visual recognition. Goad's techniques are rather
domain-specific and do not handle tracking of conditions over time. There is a rich
literature in the traditional AI paradigm (as well as in formal philosophy) on belief
revision (see, for example [Doylel979,de Kleer1986j), but little work has addressed
the implications of real-time update requirements.

Acknowledgments

I have benefited greatly from discussions with Leslie Kaelbling, Michal Irani, and
I David Chapman.

I References

I [Rosenscheinl985] Rosenschein, Stanley J. "Formal Theories of Knowledge in AI
and Robotics". In New Generation Computing, Vol. 3, No. 4, (special issue on
Knowledge Representation), Ohmsha, Ltd., Tokyo, Japan (1985).

1 14U ___ _

U
!

[Rosenschein and Kaelbling1986] Rosenschein, Stanley J. and Leslie P. Kaelbling.
"The Synthesis of Digital Machines with Provable Epistemic Properties," Pro.
ceedings of Workshop on Theoretical Aspects of Reasoning About Knowledge,
Monterey, California (1986).

I [Kaelbling1988] Kaelbling, Leslie P. "Goals as Parallel Program Specifications."
Proceedings of the Seventh National Conference on Artificial Intelligence, Mor-3 gan Kaufmann, St. Paul, Minnesota (August 1988).

[Kaedblingl987] Kaelbling, Leslie P. "Rex: A Symbolic Lanugage for the Design
and Parallel Implementation of Embedded Systems." Proceedings of the AIAA
Conference on Computers in Aerospace, Wakefield, Massachusetts (1987).

[Moszkowskil983] Moszkowski, Ben. Reasoning about Digital Circuits. Ph.D. Dis-
sertation, Stanford University, Stanford, CA (1983).

[Goad1986] Goad, Chris. "Fast 3D Model-Based Vision." In From Pixets to Predi-
cates: Recent Advances in Computational and Robotic Vision, Alex P. Pentland
(ed.), Ablex Publishing Corporation, Norwood New Jersey (1986).

3 [Halpern and Moses1985] Halpern, Joseph Y. and Yoram Moses. "A guide to the
modal logic of knowledge and belief." Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, Los Angeles, California (1985).

[Doylel979] Doyle, Jon. "A Truth Maintenance System." Artificial Intelligence,
Vol. 12, No. 3 (1979).

[de Kleer.986] de Kleer, Johann. "An Assumption-Based Truth Maintenance Sys-
tem." Artificial Intelligence, Vol. 28, No. 1 (1986).

I
U
3
I
U
* 15U __

Ut

U B Action and Planning in Embedded Agents

I
U
U
U
U
i
I
I
I
I
I
I
I
i
l
I 13

I

Action and Planning in Embedded Agents *

Leslie Pack Kaelbling
and

Stanley J. Rosenschein
Teleos ResearchU

1 November 2, 1989

S1 The Design of Embedded Agents
Embedded agents are computer systems that sense and act on their environ-
ments monitoring complex dynamic conditions and affecting the environment
in goal-directed ways. Systems of this kind are extremely difficult to design and
build, and without clear conceptual models and powerful programming tools,
the complexities of the real world can quickly become overwhelming. In certain
special cases, designs can be based on well-understood mathematical -aradigms
such as classical control theory. More typically, however, tractable models of
this type are not available and alternative approaches must be used. One such
alternative is the situated-automata framework, which models the relationship
between embedded control systems and the external world in qualititative terms
and provides a family of programming abstractions to aid the designer. This pa-
per briefly reviews the situated-automata approach and then explores in greater
detail one aspect of the approach, namely the design of the action-generating
component of embedded agents.

3 1.1 The Situated-Automata Model

The theoretical foundations of the situated-automata approach are based on
modeling the world as a pair of interacting automata, one corresponding to the
physical environment and the other to the embedded agent. Each has local

*This work was supported in part by the Air Force Office of Scientific Research under
contract F49620-89-C-0055DEF and in part by the Nmtinnal Aeronautics and Space Adminis.
traction under Cooperative Agreement NCC-2-494 throught Stanford University subcontract
PR-6359.

II
*

a
U
U

state that varies as a function of signals projected from tile other. The aim of
the design process is to synthesize an agent, in the form of an embedded state
machine, that causes the desired effects in the environment over time.

In applications of interest, it is often useful to describe the agent in terms
of the information available about the environment and the goals the agent is
pursuing. It is also desirable that these descriptions be expressed in language

that refers to states of the environment rather than to specific internal data
structures, at least during the early phases of design. Moreover, the inputs,
outputs, and internal states of the state machine will be far too numerous to
consider explicitly, which means the machine must be constructed out of a set of
separate components acting together to generate complex patterns of behavior.
These requirements highlight the need for compositional, high-level languages
that compactly describe machine components in semantically meaningful terms.

Situated-automata theory provides a principled way of interpreting data val-
ues in the agent as encoding facts about the world expressed in some language
whose semantics is clear to the designer. Interpretations of this sort would be
of little use were it not also the case that whenever the data structure had a
particular value, the condition denoted was guaranteed to hold in the environ-
ment. Such considerations motivate defining the semantics of data structures
in terms of objective correlations with external reality. In this approach, a ma-
chine variable z is said to carry tile information that p in world state s, written
s I-- K(z,p), if for all world states in which x has the same value it does in s,
the proposition p is true. The formal properties of this model and its usefulness
for programming embedded systems have been described elsewhere [9,11,5,10].

Having established a theoretical basis for viewing a given signal or state in
the agent as carrying information content by virtue of its objective correlation
the environment, one can consider languages in which this content might be
expressed. In general there will be no single "best" language for expressing this
information. For example, one language is the set of signals or states themselves.
These can be regarded as a system of signs whose semantic interpretations are
exactly the conditions with which they are correlated. lowever, the designer
will typically wish to employ other, higher-level, languages during the design
process. This theme will be expanded upon below in connection with goal-
description languages.

U 1.2 Perception-Action Split

One way of structuring the design process for the cognitive ease of the designer
is to separate the problem of acquiring information about the world from the
problem of acting appropriately relative to that information. The former we
shall label perception and the latter, action. In terijs of the state-machine
model, as shown in Figure 1, the perception cuzipi net corresponds to the
update function and the initial state, whereas the action component corresponds
to the output mapping.

*2

I
I

m

Perception Acion J

U

Figure 1: Division between perception and action components.

m The perception-action split in itself is entirely conceptual and may or may
not be the basis for modularizing the actual system. Horizontal de(.ompositions
that cut across perception and action have been advocated by Brooks as a
practical way of approaching agent design (2]. The horizontal approach allows
the designer to consider simultaneously those limited aspects of perception and

action needed to support specific behaviors. In this way, it discourages the
pursuit of spurious generality that often inhibits practical progress in robotics.

These attractive features are counterbalanced, however, by the degree to
which horizontal decomposition encourages linear thinking. In practice, the
methodology of not separating the acquisition of information from its use tends
to encourage the development of very specific behaviors rather than the iden-
tification of elements that can recombine freely to produce complex patterns
of behavior. The alternative is a vertical strategy based on having separate
system modules that recover broadly useful information from multiple sources
and others that exploit it for multiple purposes. The inherent combinatorics
of information extraction and behavior generation make the vertical approach
attractive as a way of making efficient use of a programmer's effort.

The commitment to a decomposition based upon the perception-action split
still leaves open the question of development strategy. One approach is to
iteratively refine the perception-action pair, more or less in lockstep. The in-
formation objectively carried by an input signal or an internal state is relative
to constraints on other parts of the system-including constraints on the action
component. The more constrained the rest of the system, the more the designer
can deduce about the world from a given internal signal or state, hence the more
"information" it contains. As the designer refines his design, his model of the
information available to the system and what the system will do in response
becomes increasingly specific.

An alternative to iterative refinement, suitable in many practical design
situations, is the strict divide-and-conquer strategy in which the design of the
perception component is carried out in complete isolation from the development
of the action component except for the specification of a common interface-the
data structures that encode the information shared between the perception and
action modules. Although there may be occasions when the designer needs to

3

U

I
I

rely on some fact about what the agent will do in order to guarantee that a
certain signal or state has the semantic content he intends, if these situations
can be minimized or ignored, considerable simplification will result.

1 1.3 Goals

As we have seen, one way of semantically characterizing an agent's states is
in terms of the information they embody. The perception component delivers
information, and the action component maps this information to action. In
many cases, however, it is more natural to describe actions as functions not
only of information but of the goals the agent is pursuing at the moment [12].

Goals can be divided into two broad classes: static and dynamic. A static
goal is a statement the agent's behavior is simply designed to make true. In
reality, a static goal is nothing more than a specification, and as such the attri-
bution of this "goal" to the agent is somewhat superfluous, although it may be
of pragmatic use in helping the designer organize his conception of the agent's
action strategy. Dynamic goals are another matter. The ability to attribute to
the agent goals that change dynamically at run time opens the possibility of
dramatically simplifying the designer's description of the agent's behavior.

Since we are committed to an infor mation- based semantics for reactive sys-tems, we seek an "objective" semantics of goals defined explicitly in informa-
tional terms. We can reformulate toae notion of seaving a goal p as having the

information that p implies a fixed top-level goal, called A' for "Nirvana." For-

mally, we define a goal operator G as follows:

3 G(z,p) - K(z,p - N).

In this model, x has the goal p if z carries the information that p implies
Nirvana.' This definition captures the notion of dynamic goals because p can
be an indexical statement, such as "it is raining now," whose truth varies with
time. Since this model defines goals explicitly in terms of information, the same
formal tools used to study information can be applied to goals as well. In fact,
under this definition, goals and information are dual concepts.

To see the duality of goals and information, consider a function f mapping
values of one variable, a, to values of another variable, b. Under the information
interpretation, such a function takes elements having more specific information
into elements having less specific information. This is because functions gener-
ally introduce ambiguity by mapping distinct inputs to the same output. For
example, if value ul at a is correlated with proposition p and value u2 at a is
correlated with q and if f maps both ul and u2 to v at b, the value v is ambigu-
ous as to whether it arose from ul or U2, and hence the information it contains

IWe observe that under thi dIfinitinn Fals¢ will niway-s be a goal: in prn.ctice, howcvcr,
we are only interested in non-trivial goals.

* 4I
I

is the disjunctive information p V q, which is less specific than the information
contained in either ul or U2. Thus, functional mappings are a form of forgetting.

Under the goal interpretation, this picture is reversed. The analog to "for-
getting" is committing to subgoals, which can be thought of as "forgetting"
that there are other ways of achieving the condition. For instance, let the ob-
jective information at variable a be that the agent is hungry and that there is
a sandwich in the right drawer and an apple in the left. If the application of
" many-to-one function results in variable b's having a value compatible with
the agent's being hungry and there being a sandwich in the right drawer and
either an apple in the left drawer or not, we could describe this state of affairs
by saying that variable b has lost the information that opening the left drawer
would be a way of finding food. Alternatively, we could say that variable b
had committed to the subgoal of opening the right drawer. The phenomena of
forgetting and commitment are two sides of the same coin.

We can relate this observation to axioms describing information and goals.
One of the formal properties satisfied by K is the deductive closure axiom, which
can be written as follows:

I K(z,p - q) -. (K(zp)-- K(z,q))

The analogous axiom for goals is

UK(, p - q) (G(x, q)-. G(x, p))

This is precisely the subgoaling axiom. If the agent has q as a goal and carries
the information that q is implied by some other, more specific, condition, p, theIq
agent is justified in adopting p as a goal. The validity of this axiom can be
established directly from the definition of G.

Given these two ways of viewing the semantics of data structures, we can
revisit the state-machine model of agents introduced above. Rather than specify
the action component of the machine as a function of one argument interepreted

in purely "informational" terms, f(i), it may be much more convenient for de-
signers to define it as a function of two arguments, f'(9, i) where the g argument
is interpreted as representing the dynamic goals of the agent. Where does the 9
input come from? Clearly, it must ultimately be computed from the agent's cur-
rent information state as well as its static goals, go. As such, it must be equiva-
lent to some non-goal-dependent specification: f(i) = f'(extract(i, go),i). Nev-
ertheless, the decomposition into a goal-extraction module and a goal-directed
action module may significantly ease the cognitive burden for the designer while
leaving him secure in the knowledge that it is semantically grounded.

1.4 Sofl.ware Tools for Agent Design

Although it is conceptually important to have a formal understanding of the
semantics of the data structures in an embedded agent, this understanding does

!5
I
U

not, directly, simplify the programmer's task. For this reason, it is necessary todesign and implement software tools that are based on proper foundations and
that make it easier to program embedded agents.

Rex [5,7] is a language that allows the programmer to use the full recur-sive power of Lisp at compile time to specify a synchronous digital circuit.The circuit model of computation facilitates semantic analysis in the situated-
automata theory framework. Rex provides, however, a low-level, operational
language that is more akin to standard programming languages than to declar-
ative Al languages. For this reason, we have designed and implemented a pair of
declarative programming ldnguages on top of the base provided by Rex. Ruler
[10] is based on the "informational" semantics and is intended to be used to
specify the perception component of an agent. Gapps [6] is based on the "goal"
semantics and is intended to be used to specify the action component of an
agent. In the rest of this paper, we will describe the Gapps language, its use
in programming embedded agents, and a number of extensions that relate it to
more traditional work in planning.

3 2 Gapps

In this section we describe Gapps, a language for specifying behaviors of com-
puter agents that retains tie advantage of declarative specification, but gen-
erates run-time programs that are reactive, do parallel actions, and carry out
strategies made up of very low-level actions.

Gapps is intended to be used to specify the action component of an agent.The Gapps compiler takes as input a declarative specification of the agent'stop-level goal and a set of goal-reduction rules, and transforms them into the
description of a circuit that has the output of the perception component as its
input, and the output of the agent as a whole as its output. The output of the
agent may be divided into a number of separately controllable actions, so thatwe can independently specify procedures that allow an agent to move and talk
at the same time. A sample action vector declaration is:

(declare-action-vector

(left-wheel-velocity int)
(right-wheel-velocity int)
(speech string))

This states that the agent has three independently controllable effectors and
declares the types of the output values that control them.

In the following sections, we shall present a formal description of Gappsand its goal evaluation algorithm, and explain how Gapps specifications can be
instantiated as circuit descriptions.

16I
I

U

I
2.1 Goals and Programs

The Gapps compiler maps a top-level goal and a set of goal-reduction rules into
a program. In this section we shall clarify the concepts of goal, goal-reduction
rule, and program.

There are three primitive goal types: goals of execution, achieverent, and
maintenance. Goals of execution are of the form do(a), with a specifying an
instantaneous action that can be taken by the agent in the world-the agent's
goal is simply to perform that ection. If an agent has a goal of maintenance,
notated mairit(p), then if the proposition p is true, the agent should strive
to maintain the truth of p for as long as it can. The goal ach(p) is a goal
of achievement, for which the agent should try to bring about the truth of
proposition p as soon as possible. The set of goals is made up of the primitive
goal types, closed under the Boolean operators. The notions of achievement
and maintenance are dual, so we have -,ach(p) -maint(-,p) and -maint(p)
ach(-,p).

In order to characterize the correctne& nf programs with respect to the
goals that specify them, we must have a notion of an action leading to a goal.
Informally, an action a leads to a goal G (notated a -. G) if it constitutes a
correct step toward the satisfaction of a goal. For a goal of achievement, the
action must be consistent with the goal condition's eventually being true; for
a goal of maintenance, if the condition is already true, the action must in ''V
that it will be true at the next instant of time. The leads to operator must also
have the following formal properties:

3a ,. do(a)

(a -G) A (a -- G') * a-..-(GA)
S(a G) V (a G ') a a--- (G V C')

cond(p, a - G,a G') a -. cond(p,G, 0')
(a--)^A(G- G') a, G ' .

This definition captures a weak intuition of what it means for an action to lead
to a goal. The goal of doing an action is immediately satisfied by doing that
action. If an action leads to each of two goals, it leads to their conjunction;
similarly for disjunction and conditionals. The definition of leads to for goals
of achievement may seem too weak-rather than saying that doing t action
is consistent with achieving the goal, we would like somehow to say that the
action actually constitutes progress toward the goal condition. Unfortunately,
it is difficult to formalize this notion in a domain-independent way. In fact, any
definition of leads to that satisfies this definition is compatible with the goal
reduction algorithm used by Gapps, so the definition may be strengthened for
a particular domain.

Goal reduction rules are of the form (detgoa.r G G') and have the se-
mantics that the goal G can be reduced to the goal G'; that is, ttiat G' is a

U7
I
I

I
I

specialization of G, and therefore implies G. In this case, any action that leads
to G' will also lead to G.

A program is a finite set of condition-action pairs, in which the condition is
a run-time expression (actually a piece of Rex circuitry with a Boolean-valued
output) and an action is a vector of run-time expressions, one corresponding
to each primitive output field. These actions are run-time mappings from the
perceptual inputs into output values, and can be viewed as strategies, in which
the pan icular output to be generated depends on the external state of the world
via the internal state of the agent. Allowing the actions to be entire strategies
is very flexible, but makes it impossible to enumerate the possible values of an
output field. In order to specify a program that controls only the speech field
of an action vector, we need to be able to describe a program that requires the
speech field to have a certain value, but makes no constraints on the values
of the other fields. One way to do this would be to enumerate a set of action
vectors with the specified speech vaue, each t1which has different values for the
other action vector components. Instead of doing this, we allow elements of an
action vector to contain the value 0, which stands for all possible instantiationb
of that field.

A program 11, consisting of the condition-action pairs {(ci, al),.. .,

is said to weakly satisfy a goal G if, for every condition ci, if that condition is
true, the corresponding action ai leads to G. That is,

11 weakly satisfies G 4=* Vi.c, -. 0 (a, --- G).

Note that the conditions in a program need not be exhaustive--satisfaction does
not require that there be an action that leads to the goal in every situation, since
this is impossible in general. We will refer to the class of situations in which a
program does specify an action as the domain of the program. We define the
domain of H as

dom(II) =V i.Ii
A goal G is strongly satisfied by program 11 if it is weakly satisfied by II and
dom(l1) = true; that is, if for every situation, 11 supplies an action that leads
to G. The conditions in a program need not be mutually exclusive. When
more than one condition of a program is true, the action associated with each
of them leads to the goal, and an execution of the program may choose among
these actions nondeterministically.

Given the non-deterministic execution model, we can give programs a declar-
ative semantics, as well. A program II = {(c, a),..., (c., an)), can be thought3 of has having the logical interpretation

SANa, - c,), , V a,) V" V c, .
i i i

Either the domain of the program is false (the second clause) or there is some
action that is executed and the condition associated with that action is true.

* 8

I
I

I
I
I
522.2 Recursive Goal Evaluation Procedure

Gapps is implemented on top of Rex, and makes use of constructs from the Rex
language to provide perceptual tests. There is not room here to describe the
details of the Rex language, so we refer the interested reader to other papers
[5,7]. Gapps programs are made up of a set of goal reduction rules and a top-
levei goal-expression. The general form of a goal-reduction rule is

(defgoalr goal-pat goal-expr),

where
goal-pat

(ach pat rex-params)

(maint pat rex-parains)

I goal-expr (do index rez-expr)

(and goal-expr goal-expr

(or goal.expr goal-cxpr)
(not goal-erpr)

(if rex-expr goal-expr goal-cxpr)

(ach pat rex.expr)
(maint pa! rex-expr)

index is a keyword, pat is a compile-time pattern with unifiable .riables, rex-
expr is a Rex expression specifying a run-time function of inpL variables, and
rex-params is a structure of variables that becomes bound to the result of a rex-
expr. The details of these constructs will be discussed in the following sections.

The Gapps compiler is an implementation of an evaluation function that
maps goal expressions into programs, using a set of goal reduction rules supplied
by the programmer. In this section we shall present the evaluation procedure;
we have shown that it is correct; that is, that given a goal G and a set of
reduction rules r, eval(G, r) weakly satisfies G.

Given a. reduction-rule set Gamma, we define the evaluation procedure asi follows:

define eval(G)
case first(G)

do : make-priaitive-program(second(G),third(G))
and: conjoin-prograas(eval(second(G)),eval(thir l(G)))
or : disjoin-programs (eval (second(G)),eval(third(G)))
not: eval (negate-goal-expr(second(G)))
if : disjoin-programs

(conjoin-cond(secondc(G),eval(third(G))),
conj oin-cond(negat e-cond (G) ,eval (fourth (G))))

1 9I
I

I-I

I

saint,
ach: for all R in Galma such that match(G,head (R))

disjoin-progras (eval (body (R)

3 We shall now consider each of these cases in turn.

Do

The function make-primitive-program takes an index and a Rex expression
and returns a program. The index indicates which of the fields of the action
vector is being assigned, and the Rex expression denotes a function from the
input to values for that action field. It is formally defined as

make-primitive-program (i, rcz.ezpr) =

{ (true, (O....re-erp,..., 0))),

with the rez-ezpr in the ith component of the action vector. This program
allows any action so long as component i of the action is the strategy described
by rez-ezpr.

And

Programs are conjoined by taking the cross-product of their condition-action
pairs and merging each of elements of the cross-product together. In conjoining
two programs, the merged action vector is associated with the conjunction of
the conditions of the original pairs, together with the condition that the two
actions are mergeable. The conjunction procedure simply finds the pairs in each
program that share an action iad conjoins their conditions. We can define the
operation formally as

conjoin-programs (11', 11") =

{((c' A c ' A mergeable (a , aj)), merge (a , aq)))5 for 1 <i< m,l <j < nwhere

Ial = {(,al),... (c", a")}fi ll {(qc a ... , nc ,a n

The conjunction operation preserves the declarative semantics of programs; that
is, the sen antic interpretation of the conjoined program is implied by the con-
junction o1 the semantic interpretations of the individual programs.

Two action vectors are mergeable if, for each component, at least one of them
is unspecified or they are equal.

3 mergeable ((at,...,an),(b, ..,b))

Vi.(a, 0) V (bi = 0) V (a, = bi).

* 10

U
I

I

i
i

If either component is unspecified, the test can be completed at compile time
and no additional circuitry is generated. Otherwise, an equality test is conjoined
in with the conditions to be tested at run time.

Action vectors are merged at the component level, taking the defined element
if one is available. If the vectors are unequally defined on a component, the result
is undefined:

merge (a,..., an), ,..,b.)) = (ez,..., c.), where

f ai ifbi=0orbi= ai
q = b, ifa i,=

I L otherwise.

The merger of two action vectors results in an action vector that allows the
intersection of the actions allowed by the original ones.

Or
The disjunction of two programs is simply the union of their sets of condition-

action pairs. Stated formally,

disjoin-programs (Il', 1") = II' U I".

5 Not

In Gapps, negation is driven into an expression as far as possible, using De-
Morgan's laws and the duality of ach and maint, until the only expressions
containing not are those of the form (ach (not pat)), (maint (not pat)),
and (not (do index rex-erpr)). In the first two cases, there must be explicit
reduction rules for the goal; in the last case we simply return the empty pro-
gram. The handling of negation could be much stronger if we provided for the
enumeration of all possible values of any action vector component and required
them to be known constants at compile time. Then (not (do left-velocity
6)) would be the same as Vi.6 make-primitive-program(left-velociy, i); that is,
license to go at any velocity but 6. As we noted before, these limitations are too
severe for use in controlling a complex agent that has large numbers of possible
outputs.

The procedure negate-goal-expression rewrites goal expressions as fol-
lows:

(not (and G, G2)) =* (or (not G) (not G2))

(not (or G, G2)) =o (and (not G2) (not G2))

(not (not G)) G 0
(not (if c G, G2)) * (if c (not G) (nont G))

(not (ach p)) =o (saint (not p))

(not (saint p)) :;, (ach (not p))

I I

I

I
I
I

If

The evaluation procedure for conditional programs hinges on the definition of
the conditional operator cond(p, q, r) as (p A q) V (-,p A r). The procedure for
conjoining a condition and a program is defined as follows:

Thus conjoin-cond (p, 11) = {(pAchal), (pAc,,a,,)).I Thus,

disjoin-programs (conjoin-cond (p, H'), conjoin-cond (-p, 11")) =S((p A c', a',.,(Aca) ("p A c, ,a"),..., (-p A c"., all/

Ach and Maint

Goals of maintenance and achievement are evaluated by disjoining the results
of al. applicable reduction rules in the rulebase r. A reduction rule whose head
is the expression (ach patl rex-params) matches the goal expression (ach pa2
rez-expr) if patl and pat2 can be unified in the current binding environment.
The patterns are s-expressions with compile-time variables that are marked by a
leading ?. The Rex expression and parameter arguments may be omitted if they
are null. The binding environment consists of other bindings of compile-time
variables within the goal expression being evaluated. Thus, when evaluating
the (ach (go ?p)) subgoal of the goal (and (ach (drive ?q ?p)) (ach (go
?p))), we may already have a binding for ?p. As in Prolog, evaluation of this
goal will backtrack through all possible bindings of ?p and ?q.

Once a pattern has been matched, Gapps sets up a new compile-time binding
environment for evaluating the body of the rule. This is necessary in case
variables in the body are bound by the invocation, as in

(defgoalr (ach (at ?p) [dist-err angle-err])
(if (not-facing ?p angle-err)

(ach (facing ?p) angle-err)
(ach (moved-toward ?p) dist-err)))

In the rule above, (at ?p) is a pattern, ?p is a compile-time parameter,
dist-err and angle-err are Rex variables, and (not-facing ?p angle-err)
will be a Rex expression once a binding is substituted for ?p. A possible invo-
cation of this rule would be:

(ach (at (office-of stan)) [*distance-eps* 10)

Gapps also creates a new Rex-variable binding environment when the rule is
invoked, binding the Rex variables in the head to the evaluated Rex expressions
in the invocation. These variables may appear in Rex expressions in the body of
the rule. Note that compile-time variables may also be used in Rex expressions,
in order to choose at compile time from among a class of available run-time
functions.

3 12

I
I

2 ----

£ai IF

C.-
0. IF

Figure 2: Circuit generated from Gapps program

12.3 Generating a Circuit

Once a goal expression has been evaluated, yielding a program, a circuit similar
to the one shown in Figure 2, that instawi:ates the program is generated. 2 Be-
cause any action whose associated condition is true is sufficient for correctness,
the conditions are tested in an arbitrary order that is chosen at compile time.
The output of the circuit is the action corresponding to the first condition that
is true. If no condition is satisfied, an error action is output to signal the pro-
grammer that he has made an error. If, at the final stage of circuit generation,
there are still 0 components in an action vector, they must be instantiated with
an arbitrary value. The inputs to the circuit are computed by the Rex expres-
sions supplied in the it and do forms. The outputs of the circuit are used to
control the agent.

2.4 Reducing Conjunctive Goal Expressions

Conjunctive goal expressions can have two forms: (ach-or-maint (and P, p2))
and (and (ach-or-maint pi) (ach-or-maint P2)). Because of the properties of
maintainance, the goals (maint (and Pl P2)) and (and (maint Pl) (maint

p2)) are semantically equivalent. This is not true, however, for goals of achieve-
ment. The goal (ach (and P, P2)) requires that p, and P2 be true simulta-
neously, whereas the goal (and (ach GI) (ach G2)) requires only that they
each be true at some time in the future.

Goals of the form (ach-or-maint (and P, P2)) can only be reduced us-
ing reduction rules whose pattern matches this conjunctive pattern. Goals of
the form (and (ach-or-maint pi) (ach-or-maint P2)) can be reduced in two

2An equivalent, but more confusing, circuit with log(n) depth can be generated for im-
proved performance on parallel madines.

3 13

I
I

ways: using the standard evaluation procel .ire for conjunctive goals and us-
ing special reduction rules. It is often the case that an effective behavior for
achieving G1 and achieving G2 cannot be generated simply by conjoining pro-

grams that achieve G, and G2 individually. A program for tie goal (and (ach
have hammer) (ach have saw)) will almost certainly be incomplete when the
two tools are in different rooms, because there will be no actions available that
are consistent with the standard programs for achieving each of the subgoals.
Because of this, we allow reduction rules of the form (daegoalr (and (ac/-or.
maint patl rez.params 1) (ach-or-maint pa12 rez-params2)) goal.ezpr) so that
special behaviors can be generated in the face of a conjunctive goal.

Following is an example that illustrates both kinds of conjunctive goals. At
the top level, the goal is to have the hammer and saw simultaneously, but this
reduces to conjunctions of ach and miaint goals.
(defgoalr (ach (and (have hammer) (have saw))

(if (have hammer)

(and (saint have hammer) (ach have saw))
(if (have saw)

(and (saint have saw) (ach have hammer))

(if (closer-than hammer saw)

(ach have hammer)

(ach have saw)))))

The agent will pursue the closer object until he has it, then pursue the second
while maintaining posession of the first. We might need a similar rule for re-
ducing the conjunctions of goals of achievement and maintenance. Instead of
the specific rule above, we could write a more generic sequencing rule, like the
following:
(defgoalr (ach (and ?S1 ?g2) [gl-paras g2-parans])

(if (holds ?gl gi-params)
(and (saint ?gl gl-params) (ach ?g2 g2-parans))
(if (holds ?g2 g2-params)

(and (maint ?g2 g2-paraas)

(ach ?gl gl-params))

(if (better-to-pursue ?gl gl-params

?g2 g2-params)
(ach ?gl gl-params)
(ach ?g2 g2-paras)))))

The generic form of the rule assumes that there is a Rex function, holds, that
takes a compile-time parameter and generates a circuit that tests to see whether
the predicate encoded by the compile-time parameter and the run-time variables
is true in the world.

2.5 Prioritized Goal Lists

It is often convenient to be able to specify a prioritized list of goals. In Gapps, we
can do this with a goal expression of the form (prio goal-erprl ... goal-erpr,).

1 14

I
I

The semantics of this is

cond(dom(I 1), I ,
cond(dom(112), 12 ,...,

cond(dom(II_), 111) A

where i = eval(goal.expri). The domain of a program (true in a situation if
the program has an applicable action in that situation) is the disjunction of the
conditions in the program. A program for a prio goal executes the first program,
unless it has no applicable action, in which case it executes the second program,

and so on. At circuit-generation time, this construct can be implemented simply
by concatenating the programs in priority order, and executing the first action
whose corresponding condition is satisfied.

An example of the use of the prio construct comes about when there is more
than one way of achieving a particular goal and one is preferable to the other
for some reason, but is not always applicable. We might have the rule

(defgoalr (ach in-room r)
(prio (ach follov-planned-route-to r)

(ach use-local-navigation-to r)))

This rule states that the agent should travel to rooms by following planned
paths, but if for some reason it is impossible to do that, it should do so through
local navigation. The same effect could be achieved with an it expression, but
this rule does not require the higher-level construct to know the exact conditionsa under which the higher-priority goal will fail.

2.6 Prioritized Conjunctions

An interesting special case of a prioritized set of goals is a prioritized conjunction
of goals, in which the most preferred goal is the entire conjunction, and the less
preferred goals are the conjunctions of shorter and shorter prefixes of the goal
sequence. We define (prio-and G, G2 ... G,) to be

(prio (and G G2 ... G.)
(and G 02 ... G.-I) ...
(and G, G2)
GI).

Isaac Asimov's three laws of robotics (1] are a well-known example of this
type of goal structure. As another example, consider a robot that can talk and
push blocks. It has as its top-level goal

(prio-and (maint not-crashed)
(ach (in blockl room3))
(maint humans-not-bothered))

1!1
I

K'

It also has rules that say that any action with the null string in the talking
field will maintain humas-not-bothered; that (in ?x ?y) can be achieved
by pushing ?x or by asking a human to pick it up and move it; and that any
action that keeps the robot from coming into contact with a wall will maintain
not-crashed. As long as the robot can push the block, it can satisfy all three
conditions. If, however, the block is in a corner, getting in a position to push
it would require sharing space with a wall, thus violating the first subgoal. The
most preferred goal cannot be achieved, so we consider the next-most-preferred
goal, obtained by dropping the last condition from the conjunction. Since it is
now allowed to bother humans, the robot can satisfy its goal by asking someone
to move the block for it. As soon as the human complies, moving the block
out of the corner, the robot will automatically revert to its former pushing
behavior. This is a convenient high-level construct for programming flexible
reactive behavior without the need for the programmer to explicitly envision
every combination of conditions in the world. It is important to remember that
all of the symbolic manipulation of the goals happens at compile time; at run
time, the agent simply executes the action associated with the first condition

if that evaluates to true.

3 Extending Gapps

IGapps is an appropriate language for specifying action maps that can be hard-
wired at the compile time of the agent. In this section, we will consider ways
of extending and augmenting Gapps to do exhaustive planning at compile time,
to do run-time planning, and to do run-time goal reduction.

3.1 Universal Planning with Goal-Reduction Schema

Schoppers [13] has introduced the notion of a universal plan. A universal plan
is a function that, for a given goal, maps every possible input situation of the
agent into an action that leads to (in an informal sense) that goal. The program
resulting from the Gapps-evaluation of a goal can be thought of as a uni'ersal
plan, mapping situations to actions in service of the top-level goal.

Schoppers' approach differs from Gapps in that the user specifies the capa-
bilities of the agent. in an operator-description language. This language allows
the user to specify a set of atomic capabilities of the agent, called operators,
and the expected effect that executing each of the operators will have on the
world, depending possibly on the state of the world in which the operator was
executed.

Another way to characterize operators is through the use of a regression

function [8]. The relation q = regress(a,p) holds if. whenever q hnlds in the
world, the agent's performing action a will cause p to hold in the world as a
result. In general, the regression function will return the weakest such q. Regres-

1 16

I
I

sion is usually used to look backwards from a goal-situation p; the proposition
q describes a set of situations that are only one "step" or operator application
away from the set of situations satsifying p. We know that if the agent can get
to a situation satisfying q, it can easily get to a situation satisfying p.

The following schematic Gapps rule allows it to do the exhaustive backward-
chaining search that is typically done by a planner, in order to construct a
universal plan. The Capps compiler must be augmented slightly by giving it.
a depth-bound for its backward chaining, because this rule would, by default,
cause infinite backward chaining.

(defgoalr (ach (before ?p ?q))
(if (holds ?q)

fail

(if (holds ?p)
(do anything)
(if (holds (regress ?a ?p))

(do ?a)
(ach (before (regress ?a ?p) (regress ?a ?q)))))))

The reduction rule is for goals of the form (ach (before ?p ?q)); that is, the
goal is to achieve some condition ?p before some other condition ?q obtains.
This form of achievement goal is, we think, typical-it is rare that an agent
has a goal of achieving something no matter how long it takes. The rule works
as follows: if ?q is true in the world, the agent fails; if ?p holds in the world,
then the agent can do anything because it has achieved its goal; otherwise, if,
for any action ?a, (regress ?a ?p) holds (that is, performing action ?a will
cause ?p to hold next time) then this goal reduces to the goal (do ?a); finally,
this goal can be reduced to achieving, for any action ?a, (before (regress ?a
?p) (regress ?a ?q). The final reduction says that it is good for the agent to
get into a state from which action ?a achieves the goal ?p before the agent gets
into a state from which action ?a achieves the releasing condition ?q, because
once that has been done, all the agent must do is do action ?a.

Consider the application of this process to the standard 3-block blocks-world
problem. The actions are named atoms, like pab, which signifies "put a on b."
The world is described by predicates like ca, which signifies "clear a" and obi,
which signifies "on b table." An additional predicate, tine(i), is true if the time
on some global clock, which starts at 0, is i. We will use the abbreviation ti to
stand for lhne(i). Given the goal (ach (before (and oab obc) (time 2))),
the evaluation proceduie returns a program that is described propositionally asa follows:

S{((-H2 A obc A ca A cb),pab),
((-'t 2 A -t A obc A ca A cb),pai),
((H2 A -il A obc A oab A ca), pat),
(('t 2 A -t 1 A ca A cb Acc), pbc),

17

I

((-H2 A -it A oba A cb A cc), pbc))

Ig According to this program, if b is on c, a and b are clear, and it is not time 2,
then the agent can put a on b; otherwise, if it is neither time 1 nor time 2, the
agent can do a variety of other things. For instance, if b is on c and a and bIg are clear, the agent can put a on the table. This illustrates the generality of
the program. Because it is not yet time 1, it is acceptable to undo progrcss (we
miglht have some other reason for wanting to do this), because there is time to
put a back on b before time 2. Notice that this program is not complete. There
are situations for which it has no action, because there are block configurations
that cannot be made to satisfy the goal in two actions. Notice also that, because
this is a program of the standard form used by Gapps, it can be conjoined in
with programs arising from other goals, such as global maintenance goals. Its
generality, in allowing any sequence of actions that achieves the first condition
before the second, makes it more likely that conjoining it in with a program
expressing some other constraint will result in a non-null program.

3.2 Working In Parallel With an Anytime Planner

When the size of the state space is .o large that doing exhaustive planning at
compile time is impractical, it is posible to solve problems described as planning
problems by integrating a run-time planning system with the Gapps framework.

We can express the planning process as an incremental computation, one step
of which is done on each tick. On each tick the process generates an output, but
it may be one that means "I don't have an answer yet.," After some number of
ticks, depending on the size of the planning problem, the planner will generate a
real result. This result could be cached and executed as in a traditional system,
or the agent could just take the first action and wait for the planner to generate
a new plan.

Because time may have passed since the planner began its task, we must take
care that the plan it generates is appropriate for the situation the agent finds
itself in when the planner is finished. This can be guaranteed if the planner
monitors the conditions in the world upon which the correctness of its plan
depends. If any of these conditions becomes false, the planner can begin again.
This behavior will be correct, though not always optimal. In the worst case,
the planner will continuously emit the "I don't know" output and the agent will
react reflexively to its environment without the benefit of a plan.

The kind of planner discussed above is a degenerate form of an anytime
algorithm [3]. An anytime algorithm always has an answer, but the answer

II improves over time. In the example given above, the answer is useless for a while,
then improves dramatically in one step. It might be useful to have planning
algorithms that improve more gradually. Such algorithms exist for cprtain kinds
of path planning, for instance, in which some path is returned at the beginning,
but the algorithm works to make the path shorter or more eff.ient. There is

11

still a difficult decision to be made, however, about whether to take the first
step of a plan that is known to be non-optimal or to spend more time planning.
For many everyday activities, optimality is not crucial, and it will be sufficient
to act on the basis of a simple plan, if a plan is required at all.

From the perspective of Gapps, the anytime planner is just a perceptual
process that has state. It is "perceiving" conditions of the form: "the world is
in a state such that if I do action a followed by action f, followed by action 't,
my goal will be achieved." The following Gapps program makes use of such a
planner, but also has the potential for reacting to emergency situations:

(defgoalr (ach (in room) Er t])
(if (kno-plan-for-getting-to-room r t)

(ach execute-f irat-step
(plan-for-getting-to-room r t))

(if (tino-is-critical-for-getting-to-room r 0)

(ach drive-in-the-direction-of-room r)
(saint sit-still)))) .

If the agent has the goal of being in room r at time t, and he knows a plan
for getting there, then he should execute the first step of that plan; otherwise,
if it looks like time is running out, the agent should do the best action he can
think of at the moment; if there is no problem with time, his best course of
action is to sit still and wait until the perception component has produced a
plan. These issues of combining planning and reactive action are explored more
fully by Kaelbling [4].

3.3 Run-Time Goals

So far, we have only addressed the case in which the agent's top-level goal is
specified at compile time. It will often be the case that it is useful to think of the
agent as acquiring goals at run time. Before we can discuss ways of processing
run-time goals, we must understarid their semantics.

3.3.1 Dispatching

The simplest case of responding to run-time goals is to consider them to be
another type of perceived information and write goal-reduction rules that are
conditional on the given goal. As an example of this, an agent could be given the
static compile-time goal of following orders and reduction rules of the following
form:

(defgoalr (maint follow-orders)
(if (current-request-pending)

(ach goal-encoded-by (perceived-command))
(do tviddle-thombs)))

(defgoalr (ach goal-encoded-by parans)

19

(if (uove-coaand params)
(ach do-aove-comand (get-destination paraxs))
(if (stop-comand params)

(ach stopped)

The agent will carry out requests as it perceives them by dispatching to
the right goal-reductions based on the nature of the request. This method is
sufficient for many cases, but requires the run-time goals to be of a few limited
types, because the different types must be tested for and dispatched to directly.

3.3.2 Run Time Goal Reduction

An alternative to explicit dispatching on the types of goals is to interpret Gapps-
style goal-reduction rules at run time. An interpreter for Gapps is very similar
to the evaluation procedure, except that the result at each step is a set of
possible actions, rather than a set of condition-action pairs. This is because
the interpretation is taking place at run time, which allows all of the conditions
to be evaluated during the interpretation process, rather than combined into a
program that is to be evaluated later. Any action can bc chosen from the set
resulting from interpreting the top-level goal in the current situation.

Given a reduction-rule set Gamma, we define the interpretation procedure as
follows:

define interp(G)
case first(G)

do : make-action-set(second(G) ,rex-eval(third(G)))
and: conjoin-action-sets (interp(second (G)) .interp (third (G)))
or : disjoin-action-aets(interp (second (G)) ,interp(third (G)))
not: interp(negate-gc al-expr(second(G)))
if: if rex-eval(second(G)) then

interp (third(G)) else
interp(fourth(G))

maint,
ach: for all R in Gama such that match(Ghead(R))

disjoin-action-sets (interp(body(R))

The function make-action-vector takes an index and a value and returns the
singleton set containing the action vector with the field specified by the index
set to the indicated value. That is,

make-action-vector(i, V) = {(V,.... v,. .. ,0)).

The value is calculated by evaluating, in the current state of the world, the Rex
expression specifying the primitive action. Using the functions mergeable and
merge described in Section 2.2, the conjunction of action sets can be defined as

conjoin-action-sets(A', A") = {merge(a , asI) I mergeable(a , as'))

20

for 1 < i < m,l <j n where

A' =

A"= (all..ll)

The disjunction of two action sets is simply the union of the sets:

disjoin-action-sets(A', A") = A# U A" .

The crucial difference between the interpretation procedure and the eval-
uation procedure is in the if case. When the interpreter encounters an it
goal, it can simply test the condition in the current state of the world and go
on to interpret the subgoal corresponding to the result of the test. This ob-
viates the need for manipulating formal descriptions of conditions during the
goal-interpretation process.

If the rule set is fixed at compile time and is not recursive, interpretation
can be done by a fixed circuit (written, perhaps, in Rex) whose depth is equal
to the length of the maximum-length chain of rules in the rule set. If the rule
set is recursive, a depth bound will have to be imposed in order to guarantee
real-time response. Another possiblity would be to make this into an anytime
algorithm by using iterative deepening search over the course of a number of
ticks, and being careful that conditions that have already been evaluated do not
change their values during the search process.

If the agent acquires goal reduction rules at run time, perhaps through learn-
ing, then the interpretation process can by carried out by general-purpose goal-
reduction machinery. It can either be done in real time by a fixed circuit or
over time by an anytime search procedure. If interpretation is to happen in
real time, there must be a limit on the number of reduction rules that can be
applied, in order to make the circuitry be of fixed size.

Conclusions

The Gapps goal-reduction formalism provides a flexible, declarative method for
describing the action component of agents that must operate in real-time in
dynamic worlds. It has a formal semantic grounding and has been implemented
and used in a variety of robotic applications. In addition, it can be extended in
a number of ways for use in domains with different types of complexity.

References

[1] Isaac Asimov. I, Robot. Fawcett Crest, New York, New York, 1950.

[2] Rodney A. Brooks. A robust layered control system for a iubile robot.
Technical Report AIM-864, MIT Artificial Intelligence Laboratory, Cam-
bridge, Massachusetts, 1985.

21

[3] Thomas Dean and Mark Boddy. An analysis of time-dependent planning.
In Proceedings of the Seventh National Conference on Artificial Intelligence,
Minneapolis-St. Paul, Minnesota, 1988.

[4] Leslie Pack Kaelbling. An architecture for intelligent reactive systems. In
Michael P. Georgeff and Amy L. Lansky, editors, Reasoning About Actions
and Plans, pages 395-410. Morgan Kaufmann, 1987.

[5] Leslie Pack Kaelbling. Rex: A symbolic language for the design and par-
allel implementation of embedded systems. In Proceedings of the AIAA
Conference on Computers in Aerospace, Wakefield, Massachusetts, 1987.

[8] Leslie Pack Kaelbling. Goals as parallel program specifications. In Pro.
ceedings of the Seventh National Conference on Artificial Intelligence,
Minneapolis-St. Paul, Minnesota, 1988.

(7] Leslie Pack Kaelbling and Nathan J. Wilson. Rex programmer's manual.
Technical Report 381R, Artificial Intelligence Center, SRI International,
Menlo Park, California, 1988.

[8] Stanley 3. Rosenschein. Plan synthesis: A logical perspective. In Pro.
ceedings of the Seventh International Joint Conference on Artificial Intel-
ligence, Vancouver, British Columbia, 1981.

[9] Stanley 3. Rosensch. Formal theories of knowledge in Al and robotics.
New Generation Computing, 3(4):345-357, 1985.

[10] Stanley J. Rosenschein. Synthesizing information-tracking automata from
environment descriptions. In Proceedings of Conference on Principles of
Knowledge Representation and Reasoning, Toronto, Canada, 1989.

[11] Stanley J. Rosenschein and Leslie Pack Kaelbling. The synthesis of digital
machines with provable epistemic properties. In Joseph Halpern, editor,
Proceedings of the Conference on Theoretical Aspects of Reasoning About
Knowledge, pages 83-98. Morgan Kaufmann, 1986. An updated version
appears as Technical Note 412, Artificial Intelligence Center, SRI Interna-
tional, Menlo Park, California.

[12] Stanley J. Rosenschein and Leslie Pack Kaelbling. Integrating planning
and reactive control. In Proceedings of NASA/JPL Conference on Space
Telerobotics, Pasadena, California, 1989.

[13] Marcel J. Schoppers. Universal plans for reactive robots in unpredictable
environments. In Proceedings of the Tenth International Joint Conference
on Artificial Intelligence. volmune 2, pages 1039-1016, Milan, 1987. Morgan
Kaufmann.

22

C Foundations of Learning in Autonomous Agents

I

14

I

I
Foundations of Learning in Autonomous

Agents

I Leslie Pack Kaelbling"
Teleos Research

and
Stanford University

3 O:tober 13, 1989

1 1 Introduction
Autonomous agents must learn to act in complex, noisy domains. This paper
will provide a formal description of the prolblem of building autonomous agents
that learn to act and will provide metrics for comparing learning algorithms
that are appropriate for autonomous agents.

Why should we build learning agents? A program that "learns" is not in-
trinsically better than one that does not. One reason to build learning agentsis that it is very difficult for humans to write explicit programs for agents that

must work in complex, uncertain environments. In programming robots, for
instance, it is common for a human programmer to learn a great deal about
the operation of the robot's sensors and effectors in the course of debugging
programs for the robot. It would be much easier and less time-consuming if the
programmer were able to articulate only general principles about the environ-
ment, allowing the robot to experiment and learn about its own sensors and
effectors. Another reason for building agents that learn to act is that we would
like t0 have agents that are flexible enough to work in a variety of environments,
adapting their perception and action strategies to the world in which they find
themselves. Even if a human could completely specify the program for an agent
to operate in a particular environment, the agent would have to be completely
reprogrammed to move it to a new environment.

In these cases, the goal of the agent's designer is to have the agent learn what
actions it should perform in which situations in order to maximize an external
measure ofsnccess. All of the information the agent has about thc cxtcrnal world

*Tlus work was supported in part by a gift from the System Development Foundation and
in part by the Air Force Office of Scicntific Research tinder contract #F49620-89-C-0055.1

1
I

I

is contained in a series of inputs that it receives friom the environment. These
inputs may encode information ranging from the output of a vision system to
a robot's current battery voltage. The agent can be in many different states of
information about tile environment, and it must map each of these information
states, or situations, to a particular action that it can perform in the world. The
agent's mapping from situations to actions is referred to as an action map. Part
of the agent's input from the world encodes the agent's reinforcement, which is
a measure of how well the agent is performing in the world. The agent should
learn to act in such a way as to maximize its total reinforcement.

As a concrete example, consider a simple robot with two wheels and two
photo-sensors. It can execute five different actions: stop, go forward, go back-
ward, turn left, and turn right. It can sense three different states of the world:
the light in the left eye is brighter tan that in th right eye, the light in the right
eye is brighter than that in the left eye, and the light in both eyes is roughly
equally bright. Additionally, the robot is given high values of reinforcement
vhen the average value of light in the two eyes is increased from tile previous

instant. In order to maximize its reinforcement, this robot should turn left when
the light in its left eye is brighter, turn right, when the light in its right eye is
brighter, and move forward when the light in both eyes is equal. The problem of
learning to act is to discover such a mapping from information states to actions.

Thus, the problem of learning to act can be cast as a function-learning
problem: the agent must learn a mapping from the situations in which it finds
itself to the actions it can perform. In the simplest case, the mapping will be
a pure function, but in geieral it can have state, allowing the action taken at
a particular time to depend on any previous situation. In the past few years
there has been a great deal of work in the artificial intelligence and theoretical
computer science communities on the problem of learning pure Boolean-valued
functions [10]. Unfortunately, this work is not directly relevant to the problem
of learning action maps because of the different settings of tile problem. In the
traditional function-learning work, a learning algorithm is presented with a set
or series of input-output pairs that specify the correct output to be generated
for that particular input. This setting allows for effective function learning, but
does not mirror the situation of an agent trying to learn an action map. The
agent, finding itself in a particular input situation, must generate an action.
It then receives a reinforcement value from the environment, indicating ho.:
effective that action was. The agent cannot, however, deduce the reinforcement
value that would have resulted fi m executing any of its other actions. Also, if
the environment is noisy, as it. will be ini geiiral, just, one instance of performing
an action in a situation may not give an accurate picture of the reinforcement
value of that action.

The problem of learning action maps by trial and error is often referred to as
vinforccmcnl learning because of its sim,.larlty to models used in psychological
studies of behavior-learning in humans and animals. It can also be classified
as unsupervised learning because correct answers are not provided by a teacher

52

I

I
I

[14]. One of the most interesting facets of the reinforcement learning problem is
tile tension between performing actions that are not well understood in order to
gain information about their reinforcement value and performing actions that
are expected to be good in order to increase overall reinforcement. If an agent
knows that a particular action works well in a certain situation, it must trade
off performing that action against performing another one that it knows nothing
about, ir case the second action is even better than the first. Another important
aspect of the reinforcement-learning problem is that the actions that an agent
performs influence the input situations in which it will find itself in the future.
Rather than receiving all independently chosen set of inpult-output pairs, the
agent has some control over what inputs it. will receive and complete control over
what outputs will be generated in response. In addition to making it difficult
to make distributional statements about the inputs to the agent, this makes it

possible for what seem like small "experiments" to cause the agent to discover
an entirely new part of its environment.

Because of these differences in the setting of the learning task, algorithms
(such as Michalski's star method [13], Mitchell's version spaces [15,16] and
Valiant's algorithm for learning k-dnf [25]) and evaluation metrics (such as
PAC-learning [241 and mistake bounds [12]) developed for traditional function
learning are not appropriate for learning to act. This paper focuses on building
formal foundations for the problem of leariiing in autonomous agents. These
foundations must allow a clear statement of the problem and provide a basis
for evaluating and comparing learning algorithms. It is important to establish
such a basis: there are many instances [22,9] in the machine learning literature
of people doing interesting work on learning agents, but reporting the results in
a way that makes it difflcult to compare theii with the results of others.

5 2 Acting in a Complex World
An autonomous agent can be seen as acting in a world, continually executing
a function that maps tile agent's perceptual inputs to its effector outputs. Its
world, or environment, is everything that is outside the agent itself, possibly
including other robotic agents or humans The agent operates in a cycle, re-
ceiving an input from the world, doing some computation, then generating an
output that affects the world. The mapping that it uses may have state or
memory, allowing its action at any time to depend, potentially, on the entire
stream of inputs that it has received until that time. Such a mapping from an
input stream to an output stream is refe red to as a behavior.

In order to study the effectiveness of particular behaviors, whether or not
they involve learning, we must model the connection between agent and world,
understanding how an agent's actions affect, its world and, hec, its own input
stream.

13
II __ _

Figure 1: An agent's interaction with its world.

I 2.1 Modeling an Agent's Interaction with tihe World

The world can be modeled a~s a deterministic finite automaton whose state

transitions depend on the actions of an agent. This model will be extended to

include non-deterministic worlds in the nest section. A world can be formally
modeled as the triple (S, A, HI), in which .S is the set of possible states of the

I world, A is the set of possible outputs fromn the agent to the world (or actions
that can be performed by the agent), and III is the state transition function,
mapping S x A into S. Once the world has been fixed, the agent can be modeled

i as the 4-tuple (2., I, R, B) where I" is the set of possible inputs from the world
to the agent, I is a mapping from .S to Y" that determines which input the agent
will receive when the world is in a given state, R is the reinforcement function of
the agent that maps S into real numbers (it may also be useful to consider more

I limited models in which the output of the reinforcement function is Boolean-
valued), and B is the behavior of the agenit, mapping 2"" (streams of inputs) into
A4. The expressions i(f) and a(l) will denote the input received by the agent at

I time t and the action taken by the agent at time t, respectively.
The process of an agent's interaction with the world is depicted in Figure 1.

The world is in sonic internal state, s, which is projected into i and r by the
I input and reinforcement fu~nctions I and R. These values serve as inputs to

the agent's behavior, B, which generates an action a as output. Once per
synchronous cycle of this system, the value of a, together with the old value of
world state s, is transformed into a new v'alu of world state S by the world's

I transition function IV.
Note that if the agent does not have a simple stimulus-response behavior, but

K'
I
I

has some internal state, then tile action taken by the behavior can be a function
of both its input and its internal state. This internal state may allow the agent
to discriminate among more states of the world and, hence, to obtain higher
reinforcement values by performing more appropriate actions. To simplify the
following discussion, actions will be conditioned only on the input, but the
treatment is easily extended to the case in which the action depends on the
agent's internal state as well.

2.2 Inconsistent Worlds

One of the most difficult problems that a learning agent must contend with is
inconsistency. A world is said to be inconsistent for an agent if it is possible that,
on two different occasions in which the agent receives the same input and gen-
erates the same action, the next states of the world differ in their reinforcement
or the world changes state in such a way that the same string of future actions
will have different reinforcement results. There are many different phenomena
that can account for inconsistency:

I The agent does not have the abildty to discriminate among all world states.
If the agent's input function I is not one-to-one, which will be the case
in general, then an individual input could have arisen from many world
states. When onic of those states respond differently to different actions,
the world will appear inconsistent to the agent.

i The agent has "faulty" seasors. Some percentage of the time, the world
is in a state s, which should cause the agent to receive I(s) as input,
but it appears that the world is in sonie other state s', causing tile agent

to receive l(s') as input instead. Along with the probability of error, the
nature of the errors must bv..pecificd: arc the erroneously perceived states
chosen maliciously, or according to some distribution over the state space,
or contingently upon what was to have been the correct input?

* The agent has "faully" effectors. Some percentage of the time, the agent
generates action a, but the world actually changes state as if the agent
had generated a different action a'. As above, both the probability and3 nature of the errors must be specified.

The world has a probablistic transition function. In this case, the world
is a stochastic automaton whose transition function, W', actually maps
S x A into a probability distribution over S (a mapping from S into the
interval [0, 1]) that describes the probability that each of the states in S
will be the next state of the world.

Some specific cwses of noi.w phenomena above have been studied in the formal
function-learning literat.ure. Valiant [2.1] has explored a model of noise in which,
with some small probability, the entire input instance to the agent can be chosen

I

I

I
I

I

I I a 1 -W(sxa)

I

I Figure 2: Modeling faulty effectors as a probrbilistic world transition function.

maliciously. This corresponds, roughly, to having simultaneous faults in sensing
and action that can be chosen in a way that is maximally bad for the learning
algorithm. This model is overly pessimistic and is hard to justify in practical
situations. Angluin [21 works with a model of noise in which input instances are
misclassified with some probability; that is, the output part of an input-output
pair is specified incorrectly. This is a more realistic model of noise, but is not
directly applicable to the action-lcarning problem under consideration here.

If the behavior of faulty sensors and effectors is uot malicious, each of the
types of inconsistency discussed above can be described by transforming the
original world model into one in which tile set of world states, S, is idential to
the set of agent inputs, ", and in which the world has a probabilistic transition
function. Reducing each of these phenomena to probabilistic world.transition
functions allows the rest of the discussion of embedded behaviors to ignore the
other possible modes of inconsistency. The remainder of this section shows how
to transform worlds with each type of inconsistency into worlds with state set
I and probabilistic transition functions.

Consider an agent, embedded in a world with deterministic transition func-
tion W, whose effectors are faulty with probability p, so that when the intended
action is a, the actual action is v(a). This agent's situation can be described by
a probabilistic world transition function W'(s, a) that maps the value of W(s, a)
to the probability value 1 - p, the value of W(s, v(a)) to the probability value
p and all other states to probability value 0. That is,

"W(s, a)(W(s, a)) = 1 - p

W'(s,a)(W(s, v(a)) = p

The result of performing action a in states will be W(s,a) with probability l-p,
and W(s,v(a)) with probability p. Figure 2 depicts this transition function.First, a deterministic transition is nade based on the action of the agent; then, a
probabilistic transition is made by the world. This model can be easily extended

* 6

I
!

i

I

W(sa) 1-p W(s,a)
Is

S P (sa)

I- W(s',a)

(v(W(s',a))

3 Figure 3: Modeling faulty sensors with multiple probabilistic transitions.

if v is a mapping from actions to probability distributions over actions. In that
case, for all a' not equal to a, the value of W(sa') is mapped to the probability
value p v(a)(a'), which is the probability of an error, p, times the probability that
action a' will be executed given that the agent intended to execute the action
a. The value of W(s, a) is mapped to the probability value 1 - p + p r(a)(a),
which is the probability that there is no error, plus the probability that the
error actually maps back to the correct action.

Faulty input sensors are somewhat more difficult to model. Let the agent's
sensors be faulty with probability p, yielding a value i(il(s)) rather than i(s).
It is possible to construct a new model with a probabilistic world-transition
function in which the states of the world are those that the agent thinks it is
in. The model can be most simply viewed if the world makes more than one
probabilistic transition, as shown in Figure 3. If it appears that the world is in
state s, then with probability p,, it actually is, and the first transition is to the
same state. The rest of the probability mass is distributed over the other states
in the inverse image of s under v, v-(s), causing a transition to some world state
s' with probability p,,. Next, there is a transition to a new state on the basis of
the agent's action according to the original transition function W. Finally, with
probability p, the world makes a transition to the state v(W(s', a)), allowing for
the chance that this result will be misperceived on the next tick. In Figure 4,
this diagram is converted into a more standard one, in which the agent performs
an action, then the world makes a probabilistic transition. This construction
can also be extended to the cases in which ri(s) is a probability distribution over

3 7

.I!_

I

1I(1 W(s,a)

3 Ss v(W(saa))

3S
W(s' A

ipv(W(s', a))

5 Figure 4: Modeling fa,.Ity sensors as a probabilistic world transition function.

I(W(s,,a))

5Figure 5: Modeling inability to discriminate among worlds.

S and in which the initial world-transition function is probabilistic.
To model an agent's inability to discriminate among worlds, it is possible to

construct a new model of the world in which the elements of I are the states,
standing for equivalence classes of the states in the old model. Let {s1, ...,sO)
be the inverse image of i under . There is a probabilistic transition to each
of the sj, based on the probability, pj, that the world is in state si given that

the agent received the input i. From each of these states, the world makes a
transition on the basis of the agent's action, a, to the state W(sj,a), which
is finally mapped back down to the new state space by the function I. This
process is depicted in Figure 5 and the resulting transition function is shown in
Figure G.

In the construction for faulty sensors, it is necessary to evaluate the proba-
bility tOat the world is in some state sk, given that it appears to the agent to

1 8
1
I

3{sll(s)=ia
a

I Il(W(sj, a))

Figure 6: Modeling inability to discriminate among worlds as a probabilistic
world transition function.

be in another state s. This probability depends on the unconditional probabil-
ity that the world is in the state s., as well as the unconditional probability
that the world appears to be in the state s. These unconditional probabilities
depend, in the general case, on the behavior that the agent is executing, so
the construction cannot be carried out before the behavior is fixed. A similar
problem exists for the case of lack of discrimination: it is necessary to evaluate
the probability that the world is in each of the individual states in the inverse
image of input i under I given that the agent has input i. These probabilities
also depend on the behavior that is being executed by the agent. This leads to
a very complex optimization problem that is, in its general form, beyond the
scope of this paper.

The rest of the paper will be concerned only with worlds that are globally
consistent for the learning agent. A world is globally consistent for an agent if
and only if for all inputs i E I and actions a E A, the ezpected value of the
reinforcement given i and a is constant. Global consistency allows for variations
in the result of performing an action in a situation, as long as the expected,
or average, result is the same. It simply requires that there not be variations
in the world that are undetectable by the agent and that affect its choice of
action. If the transformation described above has been carried out so that the
sets I and S are the same, this is tantamount to requiring that the world be a
Markov decision process with stationary transition and output probabilies [11].
In addition, the following discussion will =issume that the world is consistent
over changes in the agent's behavior.

1 2.3 Learning Behaviors

The problem of programming an agent to behave correctly in a world iq to choose
some behavior 13, given that the rest of the parameters of tle agent and world
are fixed. If the programmer does not know everything about the world, or if he

1
UI!_ _ _ _

U

i

loop

i : input

output a
r :a reinforcement

9 :a u(Si,a,r)
*nd loop

Figure 7: General algorithm for learning behaviors.

3 wishes the agent he is designing to be able to operate in a number of different
worlds, he must program an agent that will learn to behave correctly. That is,
he must find a behavior B' that, through changing parts of its internal state on
the basis of its perceptual stream, eventually converges to some behavior B"
that is correct for the world that gave rise to its perceptions. Of course, to say
that a program learns is just to take a particular perspective on a program with
internal state. A behavior with state can be seen as "learning" if parts of its
state eventually converge to sonic fixed or slowly-varying values. The behavior
that results from those parameters having been fixed in that way can be called
the "learned behavior."

A learning behavior is an algorithm that learns an appropriate behavior
for an agent in a world. It is itself a behavior, mapping elements of I to
elements of A, but it requires the additional input R(s) for every state s, in
order to know the reinforcement value of the state for the agent. A learning
behavior consists of three parts: an initial state s0, an update function u, and
an evaluation function e. At any moment, the internal state encodes whatever
information the learner has chosen to save about its interactions with the world.
The update function maps an internal state of the learner, an input, an action,
and a reinforcement value into a new internal state, adjusting the current state
based on the reinforcement resulting from performing that action in that input
situation. The evaluation function maps an internal state and an input into
an action, choosing the action that seems most useful for the agent in that
situation, based on the information about the world stored in the internal state.
Recall that an action can be useful for an agent either because it has a high
reinforcement value or because the agent knows little about its outcome.

A general algorithm for learning behaviors, based on these three components,
is shown in Figure 7. The internal state is initialized to so, then the algorithm
loops forever. An input is read from the world and the evaluation function
is applied to the internal state and the input, resulting in an action, which is
then output. At this point, the world changes to a new state. The program
next determines the reinforcement associated with the new situation, uses that
information, together with the last input and action, to update the internal

1 10

I
I

S.....

state, then goes back to tile top of its loop. Formulating learning behaviors in
terms of so, c, and u facilitates building experimental frameworks that allow
testing of different learning behaviors in many different worlds.

3 3 Performance Criteria

In order to compare algorithms for learning behaviors, we must fix the criteria on
which they are to be judged. There are three major considerations: correctness,
convergence, and time-space complexity. First, we must determine the correct
behavior for anl agent in a domain. Tlhenr we call measure to what degree a

learned behavior approximates the correct behavior and the speed, in terms of
the number of interactions with the world, with which it converges. We must
also be concerned with the amount of time and space needed for computing the
update and evaluation functions and with the size of the internal state of the
algorithm.

As well as comparing tile performance of different algorithms for a partic-
ular world, it is useful to study the way different performance measures of an
algorithm vary as a function of independent variables that characterize a world.
Such independent variables might include: the sizes of I and A and the val-
ues of the performance measures on the random algorithm (one that chooses

among the available actions randomly at each time step). These kinds of com-
parisons are not pursued further in this paper, but are enabled once objective
performance criteria are chosen.

1 3.1 Correctness

When shall we say that a behavior is correct for an agent in an environment?
There are many possible answers that will lead to different learning algorithms
and analyses. An importaint quantity is the expected reinforcement that the
agent will receive in the next instant, given that the current input is i(t) and
the current action is a(t), which can be expressed as

eyI~) a -t) E(n(i(I + 1)) 1i(t), a(t))

- 1

= Ri' W i t)a)(i.

It is the sum, over all possible next states, of the probability that the world will
make a transition to that state times its reinforcement value. This formulation
assumes that the inputs directly correspond to the states of the world and that
W' is a probabilistic transition function. If the world is globally consistent
for the agent, the process is Markov and the times are irrelevant in the above
definition, allowing it to be restated as

e,(i, a) =iE R(i')lV(i,a)(i').

U _

i
I
I

One of the simplest criteria is that a behavior is correct if, at each step, it
does the action that is expected to cause the most reinforcement to be received
on the next step. A correct behavior, in this case, is one that generates actions
that are optimal under the following definition:

Vi E Z,a E A. Opt(i,a) .-. Va' E A. er(i,a) > er(i,a') .

Optimal behavior is defined as a relation on inputs and actions rather than as a
function, because there may be many actions that are equally good for a given
input. However, it can be made into a function by breaking ties arbitrarily.
This is a local criterion that may cause the agent to sacrifice promises of future
reinforcement for immediately attainable current reinforcement.

The concept of expected reinforcement can be made more global by consid-
ering the total expected reinforcement for a finite future interval, or horizon,
given that an action was taken in a particular input situation. This is often
termed the value of all action, and it is computed with respect to a particular
behavior (because the value of the next action taken depends crucially on how
the agent will behave after that). In the following, expected reinforcement is
computed under the assumption that the agent will act optimally the rest of the
time. The expected reinforcement, with horizon k, of doing action a in input
situation i at time I is defined ms

k
erk(i(t),a(t)) = E(ZR(i(t+j)) I i(I),a(t),Vh < k. Opt...(i(t+h),a(t+h)))

j=l

This expression can be simplified to a recursive, time-independent formulation,
in which the k-step value of all action in a state is just the one-step value of the
action in the state plus the k-I -step value of the optimal action in the following
state:5erk(i, t) = Cf'(i,a) + O~kli)

i'eZ

This definition is recursively dependent on the definition of optimality k steps
into the future, Optk:

Vi E 2,a E A. Optk(i, a) .- Va' E A. erk(i,a) > erq(i,a').3 The values of er and Opt, are just er and Opt given above. The k-step value
of action a in situation i at time t, erL(i,a), can be computed by dynamic
programming. First, the Opt, relation is computed; this allows the er 2 function
to be calculated for all i and a. Proceeding for k steps will generate the value
for erk. Because of the assumption that the world is Markov, these values are
not dependent on the time. However, if k is large, the computational expense
of this method is prolibitihe.

Another way to define global optimality is to consider an infinite sum of fu-
ture reinforcement values in which more recent values are weighted more heavily

I 12

I
I

I
I
I
I

Io

Figure 8: A sample deterministic world.

than older values. This is referred to as a discounted sum, depending on the pa-
rameter -t to specify the rate of discounting. Ezpccted discounted reinforcement
at time t is defined as

00

er,(i(t),a(t)) = E(EZ7-'R(i(t +j)) Ii(t),a(t),Vh. Opt.y(i(t + h),a(t + It))).
j= 1

Properties of the exponential allow us to reduce this expression to

3 er(i(t), a(t)) + yer.(i(t + 1), a(t + I)),

which can be expressed independent of time as

3 er.,(i,a) = er(i,a) + -y 1 W'(i,a)(i')er,(i',Opt1 (i'))
"ez

3 The related definition of 7-discounted optimality is given by

Vi E Z, a E A. Opt.r(i, a) ,- Va' E A. er.,(i, a) > er.,(i, a').

For a given value of -y and a proposed definition of 6pt.t, er. can be found
by solving a system of equations, one for each possible instantiation of its ar-
guments. A dynamic programming method called policy iteration [20] can be
used in conjunction with that solution method to adjust policy Opt., until it is
truly the optimal behavior. This definition of optimality is more widely used
than finite-horizon optiniality because its exponential form makes it more com-
putationally tractable. It is also an intuitively satisfying model, with slowly
diminishing importance attached to events in the distant future.

As an illustration of these different measures of optimality, consider the world
depicted in Figure 8. In state 0, the agent has a choice as to whether to go right
or left; in all other states the world transition is the same no matter what the
agent does. In the left loop, the only reinforcement comes at the last state before

* 13

I
U

U
i

I

er
* 20.

I 15. r

10.;

5 --

5. .1. 2.

UFigure 9: Plot of expected return against horizon k. Solid line indicates strategy
of going left first, then behaving optimally. Dashed line indicates strategy of3going right first, then behaving optimally.

state 0, but it has value 6. In the right loop, each state has reinforcement value
1. Thus, the average reinforcement is higher around the left loop, but it comes
sooner around the right loop. The agent must decide what action to take in
state 0. Different definitions of optimality lead to different choices of optimal
action.

Under the local definition of optimality, we have er(O, L) = 0 and er(O, R) =
1. The expected return of going left is 0 and of going right is 1, so the optimal
action would be to go right.

Using the finite horizon definition of optimality, which action is optimal
depends on the horizon. For very short horizons, it is clearly better to go right.
When the horizon, k, is 5, it becomes better to go left. A general rule for optimal
behavior is that when in state 0, if the horizon is 5 or more, go left, otherwise go
right. Figure 9 shows a plot of the values of going left (solid line) and going right
(dashed line) initially, assuming that all choices are made optimally thereafter.
We can see that going right is initially best, but it is dominated by going left
for all k > 5.

Finally, we can consider discounted expecte'I i-ue. Figure 10 shows a plot
of the values of the strategies of always going left at state 0 (solid line) and
always going right at state 0 (dashed line) plotted as a function of Y.. When
there is a great deal of discounting (-y is small), it is best to go right because
the reward happens sooner. As -y increases, going left becomes better, and at
approximately 7 = 9.15, going left dominates going right.

One way to design learning behaviors that have these difficult kinds of global

* 14

I
U

I

* er
17.5.

15.;

12.5

10.1

0.-6 0.7 0.8 0:9 gamma

Figure 10: Plot of expected return against discount factor 7t. Solid line indicates
strategy of always going left. Dashed line indicates strategy of always going

* right.

optimality is to divide the problem into two parts: transducing the global rein-
forcement signal into a local reinforcement signal and learning to perform the
locally best action. Thz global reinforcement signal is the stream of values of
R(i(t)) that come from the environment. The optimal local reinforcement sig-
nal, R(i(t)), can be defined as R(i(t)) + 7er 7(i(t),OptT(i(t)). It is the value
of the state i(f) assuming that the agent acts optimally. As shown by Sutton
[22], this signal can be approximated by the value of the state i(t) given that
the agent acts how it is currently acting. Sutton's temporal difference (TD)
algorithm provides a way of learning to generate the local reinf'-rcement signalfrom the global reinforcement signal in such a way that, if (--mbined with a
correct local learning algorithm, it will converge to the true optimal local re-
inforcement values [22,23]. A complication introduced by this method is that,
from the local behavior-learner's point of view, the world is not stationary. This
is because it takes time for the TD algorithm to converge and because changes
in the behavior cause changes in the values of states and therefore in the local
reinforcement function.

The following discussion will Le in terms of some definition of the optimality

of an action for a situation, Opt(z, a), which can be defined in any of the three
ways above, or in some novel way that is more appropriate for the domain in
which a particular agent is working.

I
1!1
U

I

I
I

3.2 Convergence

Correctness is a binary criterion: either a behavior is or is not correct for its
world. Since correctness requires that the behavior perform the optimal actions
from the outset, it is unlikely that any "learning" behavior will ever be correct.
Using a definition of correctness as a reference, however, it -.; possible to develop
other measures of how close particular behaviors come to the optimal behavior.

's section will consider two different classes of methods for ch.,racterizing how3, or useful a behavior is in terms of its relation to the optim. 1 behavior.

3.2 1 Classical Convergence Measures
Early work in the theory of machine learning (5,7] was largely concerned with
learning in the limit. Researchers were interested in characterizing whether or
not a learning strategy would converge to the correct behavior in the limit. A
behavior converges to the optimal behavior in the limit if there is some time
after which every action taken by the behavior is the same as the action that
would have been taken by the optimal behavior. Work in learning-automata
theory has relaxed the requirements of learning in the limit by applying different
definitions of p:obabilistic convergence to the sequence of internal states of a
learning automaton [18].

An important recent development in this area is a model of Boolean-function
learning algorithms that are probably approximatcly correct (PAC) [24,2], t.'!at
is, that have a high probability of converging to a function that closely approx-
imates the optimal function. The correctness of a function is measured with
respect to a fixed probability distribution on the input instances-a function is
said to approximate another function to degree c if the probability that they will
disagree on any instance chosen according to the given probability distribution
is less than c. This model requires that there be a fixed distribution over the
input instances and that each input to the algorithm be drawn according to
that distribution.

For an agent to act effectively in the world, its inputs must provide some
information about the state that the world is in. In general, when the agent
performs an action it will bring about a change in the state of the world and,
hence, a change in the information the agent receives about the world. Thus,
it will be very unlikely that such an agent's inputs could be modeled as be-
ing drawn from a fixed distribution, making PAC-convergence an inappropriate
model for autonomous agents.

In addition, the PAC-learnig model is distribution-independent-it seeks
to make statements about the performance of algorithms no matter how the
input instances are distributed. As Buntine has pointed out [6], its predictions
are often overly conservative for s;t.uations in which there is a priori information
ahimit. the distribution of the input instances, or in which something is known
about the actual sample, such as how many distinct elements it contains.

3 16

I
I

I
I
I

3.2.2 Measuring Error over an Agent's Lifetime

None of the classical convergence measures take into account the behavior of the
agent during the period in which it converges. Instead, they make what is, for
an agent acting in the world, an artificial distinction between a learning phase
and an acting phase. Autonomous agents that have extended run times will
be expected to learn for their entire lifetime. Because they may not encounter
certain parts or aspects of their environments until arbitrarily late in the run,
it is inappropriate to require mistakes to be made before some fixed deadline.

Another way of characterizing the performance of a function-learning algo-
rithm is to count the divergences it makes from the optimal function. Little-
stone [12] has investigated this model extensively, characterizing tile optimal
number of 'mistakes' for a Boolean-function learner and presepting algorithms

that perform very well on certain classes of Boolean functions. This model
is intuitively pleasing, making no restrictive division into learning and acting
phases, but it is not presented as being suited to noisy or inconsistent domains.
However, by assimilating the inconsist of the domain into the definition
of the target function, as in the requiremesi. for optimal behavior, .'pt, we can
make use of mistake bounds in inconsistent domains. A behavior is said to make
an avoidable mistake if, given some input instance i, it generates action a and
Opt(i, a) does not hold; that is, there was some other action that would have
had a higher expected reinforcement.

Avoidable mistake bounds take into account the fact that many mistakes
cannot be avoided by an agent with limited sensory abilities and unreliable
effectors. However, that measure is not entirely appropriate, because every non-
optimal choice of action is considered to be a mistake of the same magnitude.
The expected error of an action a given an input i, err(a, i), is defined to be

err(a, i) er(a', i) - er(a, i),

in which a' is any action such that opt(a', i). The expected error associated with
an optimal action is 0; for a non-optimal action, it is just the decrease in expected
reinforcement due to having executed that action rather than an optimal one.
The error of a behavior, either in the limit, or for runs of finite length, can
be measured by summing the errors of the actions it generates. This value,
referred to in the statistics literature as tile regret of a strategy [4], represents
the expected amour't of reinfrcement lost due to executing this behavior rather
than an optimal one. Thi is an appropriate performance metric for agents
embedded in inconsistent 2nvironments because it measures expected loss of
reinforcement, which is p; ccisely what we would like to minimize in our agents.

many situations, the optimal behavior is unknown or difficult to compute,
W makes it difficult to calculate the error of a given behavior. It is still
pos to use this measure to compare two different behaviors for the same
agent and environment. The expected reinforcement for an algorithm over some
time period can be estimated by running it several times and averaging the

I

l.3

I
I
i

resulting total reinforcements. Because expectations are additive, the difference
between the expected error of two algorithms is the same as the difference
between their expected total reinforcement values. Thus, the difference between
average reinforcements is a valid measure of comparison that provides a measure
of a behavior's correctness that is independent of the internal architecture of
the algorithm and that can be used to compare results across a wide variety of
techniques.

I 3.3 Time and Space Complexity

Autonomous agents must operate in the real world, continually receiving inputs
from and performing actions on their environment. Because the world changes
dynamically, an autonomous agent must be reactive-always aware of and react-
ing to chang" in its environmtnt. To ensure reactivity, an agent must operate
in real-time; Lhat is, its sense-compute-act cycle must keep pace with the un-
folding of important events in the environment. The exact constraints on the
reaction time of an agent are often diflicult to articulate, but it is clear that, in
general, unbounded computation must never take place.

A convenient way to guarantee real-time performance is to require that the
behavior spend only a constant amount of time, referred to as a 'tick,' generating
an action in response to each input. If the behavior is a learning behavior,
the learning process must also spend only a constant amount of time on each
input instance. There are two strategies for des:gning such a learning system:
incremental and batch.

An incremental system processes each new data set or learning instance as
it arrives as input. The processing must be efficient enough that the system
is always ready for new data when it arrives. If new relevant data can arrive
every tick, the learning algorithm must spend only one constant tick's worth of
time on each instance. The requirement for incrementality can, theoretically,
be relaxed to yield a batch system, in which a number of learning instances are
collected, then processed for many ticks. As long as the learning system adheres
to the tick discipline, this process need not interfere with the reactiveness of the
rest of the system. Working in batch mode may limit the usefulness of the
learning system to some degree, however, because the system will be working
with old data that may not reflect the current situation and it will force the
data that arrives during the computation phase to be ignored. When using this
method, the input data must be smpled with care, in order to avoid statistical
distributions of inputs that do not reflect those of the external world.

An algorithm caii be said to be strictly incremental if it uses a bounded
amount of time and space throughout its entire lifetiiie. This is in contrast
with such approaches as Kibler and Aha's instance-based learning [1], which

is incremental in that it processes one instance at a ti ,,n, but is not strictly
incremental because instances are stored in a memory whose size may increase
without bound. For an incremental system that processes one instance per tick

*18

I
I
I

to perform in real time, it must be strictly incremental.
The amount of time an incremental behavior spends on each input should

not vary as a function of the number of inputs that have been received. It
will, however, depend on the size of the input and the output, but that is fixed
at design time. This allows the programmer to know how long each tick of
the learning behavior will take to compute on the available hardware and to
compare that rate with the pace of events in the world. Any formalization of
tile interaction between an agent and its world will depend on the rate of the
interaction; behaviors that work at rates different from the chosen one will es-
sentially be working in a different environment. The expected values of optimal
behaviors for different reaction rates will be quite different. In general, up to
some minimum value, the faster an agent. can interact with the world, the better
(otherwise the agent does not have time to avert impending bad events), so we
should strive for the most efficient algorithms possible, though a slow algorithm
with better convergence properties might. be preferable to a fast algorithm that
was far from optimal.

Complex agents, such as mobile rebots, with a wide variety of sensors and
effectors will have a huge number of possible inputs and outputs. If algorithms
for these agents are to be practical, they must have time and space complexity
that is polynomial in the number of input bits, lg(j IT 1), and the number of
output bits, lg(j A 1), rather than the the number of inputs and outputs. This
will probably only be achievable by limiting the class of behaviors that can be
learned by the agent.

I 4 Related Work

The problem of learning the structure of a finite-state automaton from examples
has been studied by many theoreticians, including Moore [17), Gold [81 and,
more recently, Rivest and Schapire [19]. This is a very difficult problem that has
only been studied in the case of deterministic automata. If the entire structure
of the world can be learned, it is conceptually straightforward to compute the
optimal behavior. It is important to note, however, that learning an action-
map that maximizes reinforcement is not necessarily as complex as learning the
world's transition function.

A number of different groups of researchers have considered the problem
of designing algorithms for reinforcement. learning and, in the process, have
addressed the issue of measures for performance of reinforcement learning algo-
rithms.

Statisticians have studied reinforcement learning in the guise of k-armed ban-
dit problems, in which the agent has k possible actions and only reinforcement
as input (4]. The work has primarily concerned the existence of optimal strate-
gies given various kinds of a prior iirormation about the possible distributions
of the payoffs of the individual arms. The notion of regret was developed in the

I
I

I
I
I

context of choosing the optimal behavior in the minimax setting, in which the
worst is assumed about the world. These strategies are, in general, computa-
tionally intractable and require, except in the minimax case, information thatis unavailable in tihe current setting of the problem.

More appropriate to agents that nmust learn to behave in the world is the

work of researchers in the field of Icarning automata [18]. They classify their
algorithms according to whether they are expedient (better than the random
strategy), optimal, or c-optimal (some parameter can be chosen to make the be-
havior arbitrarily "close" to optimal). In addition, there are methods for char-
acterizing the convergence rate for some learning-automata algorithms. These
evaluation methods are tailored for the case in which the learning behavior's
only internal state is a vector of probabilities, one for each possible action, that
characterize the probability of the agent performing that action. Also, no con-
sideration is made of the effectiveness of the algorithm during the time before
it converges.

\Watkins [27] presents a very clear discussion of different types of optimality
from an operations-research perspective and characterizes possible algorithms
for learning optimal behavior from delayed rewards. Williams [28] presents
a theoretical view of a connectionist reinforcement-learning algorithm [3] as
a form of gradient search. Sutton [22,23] shows how to divide the problem
of learning fron delayed reinforcement into the problems of locally optimal3 behavior learning and secondary reinforcement-signal learning.

5 Conclusion

This paper has studied the problem of building agents that learn about acting
in complex, inconsistent environments. It has established local and global defi-
nitions of optimality of behaviors in non-deterministic worlds and has provided
an implementation-independent measure of deviation from the optimal. This
framework for the comparison of algorithms will allow researchers to develop
new algorithms and compare them rigorously to one another.

A particularly interesting direction to pursue is how to make the algorithms
more efficient in time and space and closer to optimal in behavior by making
assumptions about the environment. Examples of this are Van de Velde's work
on learning to optimize usefulness of results rather than their correctness [26]
and Russell's use of determinations (21]. The only hope for the machine learning
enterprise is that there are regularities in the world that will make efficient3 learning possible.

Acknowledgements

This paper is much improved thanks to insightful comments by Rich Sutton,
Walter Van de Velde, and Stan flosenschein. Thanks also to Guy Boy, Ann

I20

I

Reid and Laura Wasylenki.

References

3 [1] David W. Aha and Dennis Kibler. Noise tolerant instance-based learning
algorithms. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, volume 1, pages 794-799, Detroit, Michigan, 1989.
Morgan Kaufmann.

[21 Dana Angluin and Philip Laird. Learning from noisy examples. Machine
Learning, 2(4):343-370, 1988.

[3] A. G. Barto and P. Anandan. Pattern recognizing stochastic learning au-
tomata. IEEE Transactions on Systems, Man, and Cybernetics, 15:360-
374, 1985.

[4] Donald A. Berry and Bert Fristedt. Bandit Problems: SequentialAllocation
of Experiments. Chapman and Hall, London, 1985.

[5] L. Blum and N. Blum. Towards a mathematical theory of inductive infer-

ence. Inforniaton and Control, 28:125-155, 1975.

[6] Wray Buntine. A critique of the Valiant model. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, vol-
ume 1, pages 837-842, Detroit, Michigan, 1989. Morgan Kaufmann.

[7] E. Mark Gold. Language identification in the limit. Information and Con-I trol, 10:447-474, 1967.

[8] E. Mark Gold. Complexity of automaton identification from given data.
Information and Control, 37:302-320, 1978.

[9] John J. Grefenstette. Incremental learning of control strategies with genetic
algorithms. In Proceedings of the Sixth International Workshop on Machine
Learning, pages 340-344, Ithaca, New York, 1989. Morgan Kaufmann.

[10] David ilaussler. New theoretical directions in machine learning. Machine3 Learning, 2(4):281-284, 1988.

[11] John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Springer-
Verlag, New York, 1976.

[12] Nick Littlestone. Learning quickly when irrelevant attributes abound: A
new linear threshold algorithm. Machine Learning, 2(4):245-318, 1988.

I

I
I|

[13] Ryszard S. Michalski. A theory and methodology of inductive learning. In
Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors,
Machine Learning: An Artificial Intelligence Approach, chapter 4. Tioga,1983.

[14] Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors.
Machine Learning: An Artificial Intelligence Approach, volume 2. Morgan
Kaufnann, Los Altos, California, 1986.

[15] Tom N1. Mitchell. Version spaces: A candidate elimination approach to rule
learning. In Proceedings of the International Joint Conference on Artificial
Intclligence, pages 305-310, Cambridge, Massachusetts, 1977.

[16] Tom NI. Mitchell. Generalization as search. Artificial Intelligence,18(2):203-226, 1982.

[17] Edward F. Moore. Gedanken experiments on sequential machines. In Au-
tomiata Studies, pages 129-153. Princeton University Press, Princeton, New
Jersey, 1956.

[18] Kumpati Narendra and M. A. L. Thathachar. Learning Automata: An
Introduction. Prentice-llall, Englewood, New Jersey, 1989.

[19] Ronald L. Rivest and Robert E. Schapire. A new approach to unsupervised
learning in deterministic environments. In Proceedings of the Fourth Inter-
national Workshop on Machine Learning, pages 364-375, Irvine, California,
1987. Morgan Kaufmann.

[20] Sheldon M. Ross. Introduction to Stochastic Dynamic Programming. Aca-
demic Press, New York, 1983.

[21] Stuart J. Russell. Tree-structured bias. In Proceedings of the Seventh
National Conference on Artificial Intelligence, pages 641-645, Minneapolis-
St. Paul, Minnesota, 1988.

[22] Richard S. Sutton. Temporal Credit Assignment in Reinforcement Learning.
PhD thesis, University of Massachusetts, Amherst, Massachusetts, 1984.

[23] Richard S. Sutton. Learning to predict by the method of temporal differ-
ences. Machine Learning, 3(1):9-44, 1988.

[24] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

[25] L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings of the
International Joint Conference on Artificial Intelligence, volnm 1, pages
560-566, Los Angeles, California, 1985. Morgan Kaufmann.

22

[26] Walter Van de Velde. Quality of learning. In Proceedings of he European
Conference on Artificial Intelligence, pages 408-413, Munich, 1988. Pitman
Publishing.

[27] Christopher John Cornish Itellaby Watkins. Learning from Delayed Re-
wards. PhD thesis, King's College, Cambridge, 1989.

[28] Ronald J. Williams. Reinforcement learning in connectionist networks: A
mathematical analysis. Technical report, Institute for Cognitive Science,
University of California, San Diego, La Jolla, California, 1986.

2i
I
I
I

I
I

I
S

3!2
I

D Learning Functions in k-DNF from Reinforcement

15

To appear in Proceedings of the Seventh International Conference on5 Machine Learning, Austin, Texas, 1990.

Learning Functions in k-DNF from Reinforcement

Leslie Pack Kaelbling"
Telcos Research

and
Stanford University

Abstract it may also choose an action in order to gain in-
formation about its expected results. The tradeoff

An agent that must learn to act in the world between acting to gain reinforcement and acting to
by trial and error faces the reinforcement gain information makes this problem especially in-
learnin problem, which is quite different teresting. The formal foundations of reinforcement

lfrom standard concept learning. Although have beer. widely studied [Kaelbling, 1989b,
good algorithms exist for this problem in Kaelbling, 1989a, Narendra and Thathachar, 1989,
the general case, they are quite inefficient. Berry and Ristedt, 1985, Williams, 19861.
One strategy is to find restricted classes of This paper will focus on a simple case of the re-
action strategies that can be learned more inforcement learning problem in which the following
efficiently. This paper pursues that strat- assumptions hold:
egy by developing algorithms that can effi-
ciently learn action maps that are express- e the agent has only two possible actions
ible in k-DNF. Both connectionist and classi- * the reinforcement signal at time i + 1 reflects onlycal statistics-based algorithms are presented, the success of the action taken at time t
then compared empirically on three test
problems. Modifications and extensions that * reinforcement received for performing a particu-
will allow the algorithms to work in more lar action in a particular situation is 1 with some
complex domains are also discussed. probability p and 0 with probability 1 -p and each

trial is independent
1 Reinforcement Learning * the expected reinforcement value of doing a par-

ticular action in a particular input situation stays
Consider an agent that must learn Lo act in the world. constant for the entire run of the learning algo-
At each moment in time, it gets information about rithm
the world from its sensors and must choose an action Section 6 discusses the extension of the results in this
to take. Having executed an action, the agent gets a Se tion i th eei of the resuit
signal from the world that indicates how well the agent paper to situations in which each of the above assump-
is performing; we shall call this a reinforcement signal. tions is relaxed.
The reinforcement signal can be binary or real-valued
and it will typically be noisy. 2 Complexity Versus Efficiency

This learning scenario is quite different from stan- There are a number of good algorithms for the
dard concept learning, in which a teacher presents reinfo ement-learning scenario we are interested
the learner with a set of input/output pairs. In the in, including learning-automata algorithms [Naren-
reinforcement-learning scenario, the agent must choose dra and Thathachar, 1989], Sutton's reinforcement-
an output to generate in response to each input. The comparison methods [Sutton, 1984], and Kaelbling's
reinforcement signal it receives indicates only how suc- interval-estimation methods [Kaelbling, forthcoming].cessful that output was; it carries no information about These algorithms were originally developed for the case
how successful other outputs might have been. In ad- when the agent has no inputs other than reinforce-
dition, the fact that the reinforcement signal is noisy ment and merely needs to decide which action it should
means that each output will have to be generated a take all the time. They can be extended to the case
number of times in order for the agent to acquire an of having many input situations simply by making a
accurate picture of which is better. In reinforcement-lerigstaina gn a hoea cin copy of the algorithm for each possible input situation.
learning situations, an agent may choose an action This method works well, but results in algorithms with
because it expects it to have good results; however, space complexity proportional, at least, to the number

*This work was supported by the Air Force Office of of possible input situations. In addition, no general-
Scientific Research under contract F49620-89-C-0055. ization is exhibited; that is, the combined algorithms

I

I
do not take advantage of the common intuition that performance. For each algorithm, the inputs are hit-
"similar" input situations are likely to require "simi- vectors of length Al, plus a distinguished reinforce-
lar" actions. ment bit; the outputs are single bits.

We can think of agents as learning action maps:
mappings from input situations to actions. If an agent 3 Connectionist Methods for
must be able to learn action maps of arbitrary com- Learning k-DNFI plexity, then the methods described above are as good
as any. lowever, if we restrict the class of action maps There has been interesting work in the connectionist
that we expect an agent to learn, we can invent algo- community on learning from reinforcement, which is
rithms for learning those maps that are much more relevant to our goals because it focuses on using more
efficient than algorithms for the general case. efficient algorithms to learn action maps in a restricted

A restriction that has proved useful to the concept- class of functions. This section will describe three con-
learning community is to the class of functions that nectionist methods: a linear reinforcement-comparison
can be expressed as propositional formulae in k-DNF. method, a multi-layer backpropagation method, and
A formula is said to be in disjunctive normal form a hybrid method that combines Valiant's algorithm
(DNF) if it is syntactically organized into a disjunc- for concept learning with the linear reinforcement-
tion of purely conjunctive terms; there is a simple comparison method.
algorithmic method for converting any formula into These and other algorithms will be described in a
DNF [Enderton, 1972]. A formula is in the class k- standard form consisting of three components: so is
DNF if and only if its representation in DNF contains the initial internal state of the algorithm; u(s, i, a, r)
only conjunctive terms of length k or less. There is no is the update function, which takes the state of the
restriction on the number of conjunctive terms-just algorithm s, the last input i, the last action a, and the
their length. Whenever k is less than the number of reinforcement value received r, and generates a new

atoms in the domain, the class k-DNF is a restriction algorithm state; and e(s,i) is the evaluation function,
on the class of functions, which takes an algorithm state s and an input i, and

Valiant was one of the first to consider the ie- generates an action.
striction to learning functions expressible in k-DNF
[Valiant, 1984, Valiant, 1985]. lie developed the fol- 3.1 Linear Reward-Comparison Method
lowing algorithm for learning functions in k-DNF from Most of the connectionist methods are simple single-
input-output pairs, which actually only uses the input- layer algorithms that can learn action maps in the clasz
output pairs with output 0: of linearly separable functions [Widrow et al., 1973.

Sutton, 1984, Barto and Anandan, 1985]. Sutton [Sut-
Let T be the set of conjunctivc terms of length ton, 19841 performed extensive experiments on such
k over the set of atoms (corresponding to the methods and found that reinforcemcnt-comparison al-
input bits) and their negations and lei L be goritlims tend to have the best performance The
the number of learning instances required to equations below define Algorithm 8 from his disser-
learn the concept to the desired accuracy.) tation [Sutton, 1984], which uses a version of the

fcr i:= 1 to L do begin Widrow-Iloff or Adaline [Widrow and hloff, 1960)
v := randomly drawn negative instance weight-update algorithm.
T:= T- any ierm that is satisfied by v The input is represented as an

end M-dzmensional vector i. The internal state,

return T so, consists of two Al-dimensional vectors, v
and w.

The algorithm returns the set of teriis remaining Af
in T, with the interpretation that their disjunction is u(s, i,a, r) = let p := E t v;i,
the concept that was learned by the algorithm. This forj = I to Al do begin
method simply examines a fixed number of negative in- wj : wj + o(r - p)(a - 1/2)ij
stances and removes any term from T that would have vj := v, +)3(r - p)i

caused one of the negative instances to be satisfied.2 end
The following sections describe algorithns for learn- Irif W 1f itw i i + V > 0

ing action maps in k-DNF from reinforcement and 0 otherwisc
present the results of an empirical comparison of their

'Thiis choice is not relevant to our reinforcernent- where a > 0, 0 </3 < 1, and v is a nornally
learning qrenario--the detaikL arc dcscribd in Vdiant'b disthibuted random variable of mean 0 and
papers (Valiant, 1984, Valiant, 1985). standard deviation 6y.

'Valiant's presentation of the algorithm defines T to be The output, e(s,i), has value I or 0 depending On
the s. of conjunctive terms of length k or less oer the set
of atoms and their negations; however, because any term the inner product of w and i and the value of the ran-
of length less than k can be represented as a disjunction of dom variable Y. The addition of the random value
terms of length k, we use a smaller set T for simplicity in causes the algorithm to "experiment" by occasionally
exposition and slightly more efficient computation time. performing actions that it would not otherwise have

.3

I
taken. The updating of tile vector w is somewhat corn- the one described in Section 3.1 above.
plicated: each component is incremented by a value If there are M input bits, the set T has size C(2 Al, k)
with four terms. The first term, a, is a constant that because we are choosing from the set of bits and their
represents the learning rate. The next term, r - p, negations. However, we can eliminate all elements that

represents the difference between the actual reinforce- contain both an atom and its negation, yielding a set of
ment received and the predicted reinforcement, p. This size 2*C(M, k). The space required by the algorithm,
serves to normalize the reinforcement values: the abso- as well as tihe time to update the internal state or to
lute value of the reinforcement signal is not as impor- evaluate al input instance, is proportional to tile size
tant as its value relative to the average reinforcement of T, and thus, O(Mk). It is important to note that
that tire agent has been receiving. The predicted re- this algorithm (as well as the other three discussed in
inforcement, p, is generated using a standard linear this paper) is strictly incremental: its time and space
associator that learns to associate input vectors with requirements depend only on the size of the input and
reinforcement values by setting the weights in vector v. on the fixed parameter k and do not increase over the
The third term in the update function for w is a- 1/2: course of a run.
it has constant absoiute value and the sign is used to
encode which action was taken. The final term is ij, 4 Interval-Estimation Algorithm for
which causes the jth component of tile weight vector k-DNF
to be adjusted in proportion to tire jth value of the
input. The interval-estimation algorithm for k-DNF is, like

The space required for tire state, as well as time for the hybrid algorithm described in Section 3.3, based
both update and evaluation operations is O(M), where on Valiant's algorithm, but tire interval-estimation al-IA is the number of input bits. gorithm uses standard statistical estimation methods

rather than connectionist weight-adjustments. The
3.2 Multi-layer Back-propagation Method technique of interval-estimation has also been appliedto other reinforcement-learning problems [Kaelbhing.
Error back-propagation is a method for training con- forthcoming].
nectionist networks that are comprised of multiple lay-

ers. Anderson [Anderson, 1986] has designed a connec- 4.1 General Description
tionist system with multiple layers that uses backprop-agation as a method for learning from reinforcement. This section will describe the algorithm independent

Andations ye m ethod f or ler o e foreen, of particular statistical tests, which will be introduced
Anderson's system uses two networks: one for learn- in the next section. We shall need the following defi-

ing to predict reinforcement and one for learning which nitions, however. An input bit-vector satisfies a terni
action to take. Each of these is a two-layer network, whenever all the bits mentioned positively in the term
with all of the hidden units connected to all of the have value I in the input and all the bits mentioned
inputs and all of the inputs and hidden units con- negatively in the term have value 0 in the input. The
nected to the outputs. The system was designed to quantity er(t, a) is the expected value of the reinforce-
work in worlds with delayed reinforcement (which are ment that tie agent will gain, per trial, if it generates
discussed here at greater length in Section 6), but it is action a whenever term t is satisfied by the input and

easily modified to work in our simpler domain. This action -,a otherwise. The quantity ubr 0 (t, a) is tile up-
algorithm is rather complex, so space doe:, not allow
it to be described further. A clear descrirtion can be pebud ocm00(a ine invalonfound in Anrderson's dissertation [Ande:son, 1986]. expected reiniforcenrent gained from performing action

a whenever ternri t is satisfied by the itiput. \We canThis method is theoretically able to learn very com- now give tre formal definition of tie algorithm
plex functions, but tends to require many training in-
stances before it converges. Fre time and space corm- so = the set T, with a collection of statistcs

plexity for this algorithm is O(Mll), where AM is tile associated with each member of the set

number of input bits and 11 is tire number of hidden e(s, i) = for each I in S
units. if i satisfies t and

ubra(t, I) > ubr 0 (t,O) and
3.3 A Hybrid Algorithm lr(er(t,1) = er(t,0)) < 13

Given our interest in restricted classes of functions, then ,eturn 1
we can construct a new hybrid algorithm for learning return 0
. -.ion maps in k-DNF, It hinges on the simple obser- u (s,i,a,r) = for each t in S
vation that any such function can be expressed a:s a update-term-..statistc.s(t, i. a. r)
linear combination of terms in tire set T. where T iq retur s
tire set of conjunctive terms of length k over the set
of atonis (corresponding to the input bits) and their At any moment in 'he operation of this algoritlhir,

3 negations. It is possible to take the original Al-bit in- we can extrat a symbolic description of its current
put signal and transduce it, to a wider signal that is the hypothesis. It is the disjunction of all terms t such that
result of evaluating each member of T on tire original ubr 0 (t, 1) > ubr,(t, 0) and Pr(rr(t, I) = er(t, 0)) < 0.
inputs. We can use this new signal as input to a rela- This is tire k-DNF expression according to vhrih tir.3 tively simple connectionist learning algorithm, such as agent is choosing its actions.

I

I
The evaluation criterion is chosen in such a way as where z./ 2 is such that Pr(Z > z/ 2) Pr(Z <

to make the important trade-off between acting to gain -z. 12) = a/2 when Z is a standard normal ran-
information and acting to gain reinforcement. A naive dom variable [Larsen and Marx, 1986]. This allows
method would be for each term to generate a 1 when- us to define ubra(t, 0) as h(so, no, a) and ubr 0 (1, 1) as
ever action 1 has had a higher success rate than action h(sl, n1, a), where so, n0, sl, and n, are the statistics
0. This would be a very bad strategy, however, be- associated with term t.
cause if the first trial of action 0 failed, its success rate To test for equality of the underlying Bernoulli pa-
would be 0, causing action 0 never to be chosen again. rameters, we use a two-sided test at the /3 level of
The interval estimation method works because of the significance that rejects the hypothesis that the pa-
fact that the value of ubr can be high for two rea- rameters are equal whenever
sons. It may be high because the confidence interval
is very large due to the action not having been tried 1 I J i < -ZP12
very often-this will cause the action to be chosen in no 'n' is either or
order to gain information. The upper bound may also 1)- no+n) > +ZP/2
be high because the confidence interval is small and V non,

the action has a genuinely high payoff-this will cause where ZP/2 is a standard normal deviate [Larsen and
an action to be chosen in order to gain reinforcement.
At the beginning of a course of execution of this al- Marx, 1986]. Because sample size is important for this
gorithm, actions are chosen almost at random, until test, the algorithm is slightly modified to ensure that,
the upper bound of the worse action is driven down at the beginning of a run, each action is chosen a min-
by sampling, while the upper bound of the other stays imum number of times, referred to by the parameter
high. The value of a determines the size of the confi- /-in.
dence interval: when it is small the confidence interval The complexity of this algorithm is the same order
is large and the algorithm is very conservative. It is as that of the hybrid connectionist algorithm of Section
not likely to converge to the wrong action, but it may 3.3, namely O(Mk).
take a long time to converge. As a is increased, the
confidence intervals become smaller, the learning rate 5 Empirical Comparison
fastt', and the chance of gross error higher. This section reports the results of a set of experiments

Let the equivalence probability of a term be the prob- designed to compare the performance of the algorithms
ability Lhat the expected reinforcement is the same no discussed in this paper.
matter what choice of action is made when the term is
satisfied. The second requirement for a term to cause 5.1 Algorithms and Environments
a I to be emitted is that the equivalence probability be The following algorithms were tested in these experi-
small. Without this criterion, terms for which no ac- ments:

tion is better will, roughly, alternate between choosing
action 1 and action 0. Because the output of the entire LINCONN Linear reinforcement-comparison algo-
algorithm will be I whenever any term has the value rithm
1, this alternation of values can cause a large number 0 LINCONN+ Linear reinforcement-comparison with
of wrong answers. Thus, if we can convince ourselves an extra input wired to have a constant value
that a term is irrelevant by showing that its choice of * CONNKDNF Hybrid connectionist algorithm for k-
action makes no difference, we can safely ignore it. DNF

4.2 Statistics * IEKDNF Interval-estimation algorithm for k-DNF

In the simple reinforcement-learning scenario we are * BP Anderson's error back-propagation algorithm

considering, the necessary statistical tests are also * iE Basic interval-estimation algorithm
quite simple. For each term, we store the following The basic interval-estimation algorithm iE [Kaelbling,
statistics: no, the number of trials of action 0; so, the forthcoming] is included as a yardstick; it is computa-
number of successes of action 0; ni, the number of tionally much more complex than the other algorithms
trials of action 1; and sl, the number of successes of and will very likely out-perform them.
action 1. These statistics are incremented only when Each of the algorithms was tested in three different
the associated term is satisfied by the current input environments. The environments are called binomial
instance. Boolean expression worlds and can be characterized by

If n is the number of trials and s the number of the following parameters: M, expr, Pi., pi,,, po., and
successes arising from a series of Bernoulli trials with po, Tho parameter Al is the mxmhcr of input bits;
success probability p, the upper bound of a 100(1 -a) expris a Boolean expression over the input bits; pi. is
percent confidence interval for p can be approximated the probability of receiving reinforcement value 1 given
by that action I is taken when the input instance satisfiesI l " +e4pr), P+in is the probability of receiving reinforcement

.2*. + () + "*4_ value I given that action I is .ken when the input
h(s, n, a)= " -

2n4n instance does not satisfy expr Po, is the probability
I3+ of -eceiving reinforcement value I given that action 0

Un

.Task M Ppin Poi P n
3 .9 .1 .1 .9

3 6 .9 .5 .6 .8

Table 1: Parameters of test environments for k-DNF
experiments.

ALG-TrASK 3

LINCONN
is taken when the input instance satisfies ezpr, and a .0625 .125 .125
pon is the probability of receiving reinforcement value LINCONN +
1 given that action 0 is taken when the input instance a .125 .0625 .25
does not satisfy ezpr. Input vectors are chosen by the CONNKDNF
world according to a uniform probability distribution, a .125 .25 .03125

Table I shows the values of these parameters for each IEKDNF

task. The first task has the simple, linearly separable za/2 3 3.5 2.5
expression (io A il) V (il A i2); what makes it diffi- zO/ 2 1 2.5 3.5
cult is the small separation between the reinforcement /A,,,, 15 5 25
probabilities. Task 2 has highly differentiated rein- Fill

forcement probabilities, but the function to be learned, 0 .1 .25 .1
(ioA'il)V(i A-'i 2)V(i 2A-'io), is a complex exclusive- O3h .2 .3 .05
or. Finally, Task 3 is the simple conjunctive function, p .15 .15 .35
i2 A -is, but all of the reinforcement probabilities are Ph1 .2 .05 .1g high and there are 6 input bits rather than only 3. 1iF

5.2 Parameter Tuning za2 3.0 1.5 2.5

Each of the algorithms has a set of parameters. For Table 2: Best parameter values for each k-DNF algo-
both IEKDNF and CONNKDNF, k = 2. The simple rithm in each cuvironment.
connectionist algorithms LINCONN and LINCONN+ as
well as CONNKDNF have parameters cr, /f, and a. Fol-
lowing Sutton [Sutton, 1984], parameters P3 and a in
CONNKDNF, LINCONN, and LINCONN+ will be fixed to
have values .1 and .3, respectively. The IEKDNF al-
gorithm has t. o confidence-interval parameters, z,/2
and zpl, and a minimum age for the equality test
/3,mn, while the IE algorithm has only Z&/ 2. Finally,
the BP algorithm has a large set of parameters: P3,
Iearning -ate of the evaluation output units; Ph, learn-
in,, rate of the evaluaion hidden units; p, learning rate
of the action ou'put units; and Ph, learning rate of the
action hidd .n units. In cach of the tasks, the BP algo-
rithm had L many hidden units as inputs.

All of the parameters for each algorithm were be ALG-TASK 1 2 3
chosen to optimize txe vehavior of that algorithm on LINCONN .5329 .7418 .7769
the chosen task. The success of an algorithm was mea- LINCONN+ .5456 .7459 .7722
sured by the average reinforcement recei,,ed per tick, CONNKDNF .5783 .8903 .7825
averaged over the entire run. For each algorithm and IEKDNF .5789 .8900 .7993
environraer,, a series of 100 trials of length 3000 were BP .5456 .7406 .7852
run with different parameter values. Table 2 shows the 1E 5827 .8966 .7872
best set of parameter values found for each algorithm- random 5000 .5000 .6750
environment pair. optimal .6000 .9000 .8250

5.3 Results Table 3: Average reinforcemnent for k-DNF problems
Having chosen the best parameter valuer for e ach at- over 100 runs of leng .h 3000
gorithm and environment, the performance of the al-
gorithms was compared on runs of length 3000 using
the parameter settings of Table 2. The p,-rformance
netric was average reinforcement per tick, averaged

vver the entire run. The results are shown in Tal",'

3, together with the expected reinforcement of execu.
ing a completely random behav.ior (choosing ations

I

IE CONNKDNF IE IEKDNF

5 LINCONN+ BP BP

LINCONN ONNKDN

5 Figure 1: Significant dominance partial order among
k-DNF algorithms for Task 1.

I 0 LINCONNe.

IEKDNF CONNKDNF Figure 3: Significant dominance partial order amongI k-DNF algorithms for Task 3.
LINCONN

lakdnf
0.6 opt

I 0.58

Figure 2: Significant dominance partial order among er 0.56 bp5 k-DNF algorithms for Task 2. 0.5 41 ,inconn+

0.5?

0 and 1 with equal probability) and of executing the , avq
optimal behavior. These results do not tell the entire 5 10 15 20 2S 30

story, however. It is important to test for statistical bucket of 100 ticks
significance to bp relatively sure that the ordering of
one algorithm ov- another did not arise by chance. Figure 4: Learning curves for Task 1.
Figures 1, 2 and 3 show, for each task, a pictorial rep- tux
resentation of the results of a 1-sided Z-test applied to 0.9cokdf
each pair of experimental results. The graphs encode a iekdnf

partial Grder of significant domnance, with sojid lines er 0.8 bp
representing significance at the .95 level and dashed "inconn.
lines representing signih- nce at the .85 levd. 0.7 inconn

With the best parameter values for eacl. algorithm,
it is also of some interest to compare the rate at which
performance improves as a function ot the number of 0.6
training instances. Figures 4, 5, and 6 show superim-
posed plots of the learning curves for each of the al- 5 10 15 20 25 30

gorithms. Each point represents the average reinforce- bucket of 100 ticks
ment received over a sequence of 100 steps, averaged
over 100 runs of length 3000. Figure 5: Learning curves for Task 2.

5.4 Discussion
On Tasks 1 and 2 the basic interval-estimation algo- 0.82 ee

rithm, Im, performed significantly better than any of 0.8 Cokdnf linonnn

the other algorithms. The magnitude of its superior- 0.78 -con
ity, however, is not extremely great--Figures 4 and er 0.I incor

5 reveal that the IEKDNF and CONNKDNF algrrithms 0.74
have similar performance characteristics both to each 0.74

other and to IE. On these two tasks, the overall per- 0.72
formance of IEKDNF and CONNKDNF were not found to 5 0 12

be significantly different, 68_. -,v_
The backpropagation algorithm, BP, porformed con- bucket of 100 t.,'ks

rderably worse than expected on Tasks I and 2. It
is very difficult to tune the parameters for this algo- Figure 6: Learning curves for Task 3.3rithm, so its bad performance may be explained by

I,

a sub-optimal setting of parameters.3 lowever, it is solved by N interconnected modules that learn to gen-
possible to see in the learning curves of Figure, ' Rnd erate one output bit from reinforcemeiL. Thus, the5 that the performance of BP was still increasiih at a!gorithms presented here could be applied, using thisthe ends of the runs. This may indicate that with method, to problems with many possible outputs.more training instances it would eventually converge The problem of delayed reinforcement has been
to optimal performance. addressed by Sutton [Sutton, 19881 and WatkinsThe simple linear connectionist algorithms per- [Watkins, 1989], among others. Sutton's solution,formed poorly on both Tasks I and 2. This poor per- called the temporal difference method (TD) can bv
formance was expected on Task 2, because such algo- abstracted away from the particular reinforcement-rithms are known to be unable to learn non-linearly- learning mechanism being used. It provides a mod-separable functions. Task 1 is difficult for these al- ule that learns to transduce the delayed reinforcementgorithms because, during tile execution of tle algo- signal that is coming from the world into an iminedi-
rithm, the evaluation function is often too complex to ate reinforcement signal that evaluates each state ofbe learned Ly the simple linear associator. Adding a the world to be the expected future reward based on
constant inp it value to the simple linear connectionist the agent's current strategy. Because this local rein-algorithm made a significant improvement in peifor- forcernent signal must be learned, using a TD module
mance; this is not surprising, because it allows dis- violates a different one of our assumptions: that thecrimination hyperplanes that do not pass through the expected reinforcement of performing an action in aorigin of the space to be found, situation be fixed over the course of a run. This will

Task 3 reveals many interesting strengths and weak- be addressed below.nesses of the algorithms. One of the most interesting If the reinforcement provided by the world cannotis that l E is no longer the best performer. Because the be modeled as independent trials of some sort, thentarget function is simple and there is a larger num- it is very difficult to use explicit statistical methods.ber of input bits, the ability to generalize across input The connectionist algorithms are implicitly statisticalinstances becomes important. The IEKDNF algorithm and would also have trouble in such worlds. How-
is able to find the correct hypothesis early during the ever, if the trials are independent, we have a variety ofrun (this is apparent, in the learning curve of Figure different statistical models available. The CONNKDNF6). Ilowever, because the reinforcement values are not algorithm, as presented, can be used when tile rein-highly differentiated and because the size of the set T forcement is real-valued. The IEKDNF algorithm canis quite large, it begins to include extraneous terms dute be implemented with different statistical tests. Forto statistical fluctuations in the environment, causing instance, if we know that the reinforcement values forslightly degraded performance, each input-action pair are normally distributed, we canThe JE, BP, and CONNKDNF algorithms all have .,ery use standard statistical methods to construct confi-similar performance orn Task 3, with the linear connec- dence intervals and to test for equality of means. If wetionist algorithms performing _;ightly worse, but still have no model, we can use non-parametric methodsreasonably well. Finally, we consider the case of having the expected

reinforcement of performing an action in a situation6 Relaxing the Assumptions change during the course of a run. The CONNICDNFRalgorithm will work in such cases, although it might be
This section will discuss the consequences of relaxing necessary to adjust its parameters. The statistically-the assumptions made at the beginning of this paper, based IFKDN algorithm can be modified to work, byespecially in the context of the two better-performing causing its statistics to decay over time. If an action
algorithms, IEKDNF and CONNKDNF. In some cases, has not been tried for a long time, its n value willsimple changes can be made to the algorithms that will slowly decay, which will cause its confidence intervalallow them to work in the more general situations In to grow larger. Eventually it will grow large enough
others, there are theoretical problems that make ex- for that action t) be chosen again. If the action hastensions difficult. Each of the concrete extensions pro- good results, the policy will be changed to favor this
posed to the IEKDNF algorithm has been implemented action.
and tested.

Thus far we have assumed that the agent has only 7 Conclusion
two possible actions. Many of the early learning- From this study, we can see that it is useful to de-
automata algoithms are directly applicable to prob- F ro this t ar e taief to e -lems with more than two actions. It has also been sign algorithm~s that are tailored to learning certain
lsw i n, m ortht cions Ithas ilso rben o restricted clas ,: of functions. The two specially-shown [Kalbling, forthcoming] that the problem of desigtned algorithins far out.-prforirind standard nith.-5 ~generating actions spe'ified by A' output bits cai, b c so opral opeiy TeCNKN nV oils of comparable complexity. The CONNIMINI- and

'41n the parameter tuning phase, the parameters were I-KIN- algorithms each have their strengths and
varied independently-it may well be necessary to perform w:aknesses. It is possible that CONNKDN- may out-gradient-ascent search in the parameter space, but that is perform IEKINF to some extent because in CONNKDNFa computationally difficult task, especially when the eval- each term gets to contribute to the answer " it h differ-uation of any point in parameter spact may have a high ent degrees. This avoids errors that occur in I;iANEFdegree of noise. when a single term is barely over the threshold for gen-

I

erating a 1. On the other hand, the state of IEKDNF [Sutton, 19881 Richard S. Sutton. Learning to predict
has internal semantics that are clear and directly in- by the method of temporal differences. Machine
terpretable in the language of classical statistics. This Learning, 3(1):9-44, 1988.
simplifies the process of extending the algorithm to [Valiant, 1984] L. G. Valiant. A theory of the learn-
apply to other types of worlds in a principled manner. able. Communications of the ACM, 27(11):1134-

Important future work wi. be to identify other re- 1142, 1984.
stricted classes of functions that can be learned i,-
ciently and effectively from reinforcement and demon- [Valiant, 1985] L. G. Valiant. Learning disjunctions
strate that these classes contain functions that solve in- of conjunctions. In Proceedings of the Interna.
teresting and important problems from the real world. tional Joint Conference on Artificial Intelligence,

volume 1, pages 560-566, Los Angeles, California,
Acknowledgments 1985. Morgan Kaufmann.
Thanks to Stan Rosenschein for providing financial [Watkins, 1989] Christopher John Cornish lellaby
and moral support and to Rich Sutton for helpful dis- Watkins. Learning from Delayed Rewards. PhD the-
cussions -f connectionist and statistical reinforcement sis, King's College, Cambridge, 1989.
learning methods. [Widrow and Hoff, 1960] Bernard Widrow and Mar-

cian E. Hoff. Adaptive switching circuits. In
References IRE WESCON Convention Record, New York, New

York, 1960. Reprinted in Neurocomputing: Founda-
[Anderson, 19861 Charles W. Anderson. Learning and tions of Research, edited by James A. Anderson and

Problem Solving with Multilayer Connectionist Sys- Edward Rosenfeld, MIT Press, Cambridge, Mas-
tems. PhD thesis, University of Massachusetts, sachusetts, 1988.
Amherst, Massachusetts, 1986. [Widrow et al., 1973] Bernard Widrow, Narendra K.

[Barto and Anandan, 1985] A. G. Barto and P. Anan- Gupta, and Sidhartha Maitra. Punish/reward:
dan. Pattern recognizing stochastic learning au- Learning with a critic in adaptive threshold sys-
tomata. IEEE Transactions on Systems, Man, and tems. IEEE Transactions on Systems, Man, and
Cybernetics, 15:360-374, 1985. Cybernetics, SMC-3(5):455-465, 1973.

[Berry and Fristedt, 1985] Donald A. Berry and Bert [Williams, 1986] Ronald J. Williams. Reinforcement
Fristedt. Bandit Problems: Sequential Allocation of learning in connectionist networks: A mathemati-
Experiments. Chapman and Ilall, London, 1985. cai analysis. Technical report, Institute for Cogni-

(Enderton, 1972] Herbert B. Enderton. A Mathemnat- tive Science, University of California, San Diego, La
ical Introduction to Logic. Academic Press, New Jolla, California, 1986.

York, New York, 1972.

[Kaelbling, 1989a] Leslie Pack Kaelbling. A formal
framework for learning in embedded systems. In
Proceedings of the Sixth International Workshop
on Machine Learning, pages 350-353, Ithaca, New
York, 1989. Morgan Kaufmann.

[Kaelbling, 1989b] Leslie Pack Kaelbling. Foundations
of learning in autonomous agents. In Proceedings
of the Workshop on Representation and Learning
Autonomous Agents, Lagos, Portugal, 1989.

[Kaelbling, forthcoming] Leslie Pack Kaelbling.
Learning in Embedded Systems. PhD thesis, Stan-
ford University, Stanford, California, forthcoming.

[Larsen and Marx, 1986] Richard J. Larsen and Mor-
ris L. Marx. An Introduction to Mathematical Statis-
tics and its Applications. Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[Narendra and Thathachar, 1989) Kumpati Narendra
and M. A. L. Thathachar. Learning Autoniata. An
Introduction. Prentice-Hall, Englewood, New Jer-
sey, 1989.

(Sutton, 1984] Richard S. Sutton. Temporal Credit
Assignment in Reinforcement Learning. Phl) the-
sis, University of Massachusetts, Amherst, Mas-
sachusetts, 1984.

I E Intermediate Vision: Architecture, Implementa-

1 tion, and Use

I
I
1
I
I

I

I
I

I

Intermediate vision:
Architecture, implementation, and use

David Chapman

Technical Report No. TR-90-06

October, 1990

Abstract

This paper describes an implemented architecture for intermediate vision. By in-
tegrating a variety of intermediate visual mechanisms and putting them to use in
support of concrete activity, the implementation demonstrates their utility. The
system, SIVS, models psychophysical discoveries about visual attention and search.
It is designed to be efficiently implementable in biologically realistic hardware.

SIVS addresses five fundamental problems. Visual attention is required to restrict
processing to task-relevant locations in the image. Visual search finds such loca-
tions. Visual routines are a means for nonuniform processing based on task de-
mands. Intermediate objects keep track of intermediate results of this processing.
Visual operators are a set of relatively abstract, general-purpose primitives for spa-
tial analysis, out of which visual routines are assembled.

This report describes research done in part at the Artificial Intr'ligence Laboratory
of the Massachusetts Institute of Technology. Support for the laboratory's artifirial
intelligence researcb is provided in part by the Advanced Research Projects Agency
of the Department of Defense under Office of Naval Research contract number
N00014-85-K-0124. This research was also done in part at Teleas Research and
supported by the Air Force Office of Scientific Research under contract F49620-89-
C-0055, by the Defense Advanced Research Projects Agency under NASA contract
NAS2-13229, and by Teleos Internal Research and Dcvclopment funds.

Copyright 0 David Chapman, 1990. All rights reserved.

1 Contents

I 1 Introduction 2

2 Visual attention 5

3 Visual search 9
3.1 Psychophysics of visual search 9
3.2 An architecture for visual search 10
3.3 Extensions .. 14
3.4 Related computational work 16
3.5 Open questions .. 17

1 4 Visual routines 17

3 5 Intermediate objects 21

b Visual operators 24
6.1 Criteria on visual operators 24
6.2 SIVS's visual operators 25

6.2.1 Visual attention and search 25
6.2.2 Tracking ... 26
6.2.3 Distances, directions, and angles 27
6.2.4 Marker, line, and ray manipulation 28
6.2.5 Activation .. 28
6.2.6 Blanking ... 29

7 Visually guided activity 29

8 Conclusions 44
8.1 Outstanding problems 44
8.2 Evaluating the visual operators 45
8.3 Successes .. 46

I
I
!

I

E 1 Introduction

This paper presents an implemented architecture for intermediate vision: the mechanisms that
connect bottom-up early vision with later, task-specific processing. The system, SIVS,

: models relevant psychophysical results,
* obeys the constraints imposed by biologically plausible hardware,
* addresses key computational problems in vision that are often passed over, and5 * integrates a variety of mechanisms to support complex activity in a realistic task domain.

Background and summary

I Unlike some machine vision systems which seek engineering solutions by whatever means, SIVS
is intended to model specifically biological vision. The inputs and the first few early stages of
mammalian visual processing are relatively well understood as a result of neurophysiological
studies and computational modeling [20, 30, 31]. We know less about the nature of processing
after early vision and before the outputs. Computational studies have mainly addressed the
problem of object recognition by shape matching. Object recognition, often referred to as late
vision, is an important part of visual processing, but there is much evidence (reviewed later
in the paper) for intermediate visual processes in addition. Vision does not leap from early
representations to final outputs in a single step. Unfortunately, relatively little is known about
intermediate visual processing. There is little relevant neurophysiological evidence, for example.

Progress at this point seems to require the construction of plausible models which can suggest
questions for neuroscientific, psychological, and computational experiments. Such a model must
respect the evidence that is available, even if it is scanty; the model this paper proposes is
informed by psychophysical, neurocomputational, and engineering evidence. SIVS models the
psychophysics of visual attention and search in detail. It is designed to be implementable in
slow, massively parallel, locally connected hardware, such as that found in the brain. It is based
on an engineering analysis of the intermediate vision task, it has proven adequate to support
visually-guided activity in a complex domain.

The intermediate visual processes I posit pe' .rm non-local computations with representa-
tions of portions of the image. Thus they contrast with early vision, which is concerned with
local computations, and with late vision, v n : oduces representations of external objects.
They also span the gap between early and late p -cessing in terms of the sorts of encodings of
information used. Early vision maps the retinal inputs point-by-point into retinotopic represen-
tations. Late vision probably encodes its outputs with what I will call compact encodings, small
groups of neurons which together represent a particular property of a scene. These properties
might be coded as boolean values or continuous scalars. For example Perrett et al. describe
experiments that suggest that individual monkey neurons respond selectively to faces [39]. (The
interpretation of these and related experiments is still controversial; see [31] for a review.) The
input encodings for late vision are unknown, and in any case not well defined since the scope of
"late" vision is itself not well defined. However, it seems likely that the inputs are also in the
form of compact encodings of properties of regions of the image. Thus, the intermediate visual

I 2

I

I

"* cmatcompact

,

3
: encodings

E ncodig s

~intermediate
early processing isi t

I Figure 1: Early, intermediate, and late vision. Early processing computes, point by point,
retinotopic maps from the retinal image; intermediate vision reduces these maps to compact5 encodings; late vision computes exclusively with compact encodings.

processes I propose fill the gap by reducing retinotopic representations to compact ones (figure

IThese intermediate processes are intended to be roughly equidistant from early vision and
final outputs. Thus, should the proposed mechanisms be found to model human performance,
they will place considerable constraint on the remaining parts of the puzzle. In order to exploit
this constraint, it would be necessary to interface SIVS with realistic models of early and late
processing. I haven't done this; I chose SIVS's domain so that, although it was of practical
use in a broader research program, I did not have to implement early vision or general object
recognition. However, this paper specifies the interfaces between the intermediate processes I
implemented and early and late vision; section 8 discusses some remaining difficulties.

This paper addresses five issues that arise in the computation of nonlocal properties of
images. These issues are sufficiently fundamental that it seems that any intermediate vision
system will have to address them; they are relatively unstudied in the computational vision3 literature, however.

* Visual processing must be applied selectively to task-relevant regions of the image.

I The visual system must therefore be able to find regions of the image with task-relevant
properties.

* Visual processing must be serial in part, with various operations performed in sequence
and according to environmental conditions.

* Thus, the system must be able to keep track of intermediate results of visual computations.

* The enormous variety of visual tasks suggests that visual processing must allow the de-
velopment of new patterns of processing in response to new task requirements.

*3

I

I

U
SIVS addresses these issues with

3 * visual attention, which restricts access to image properties to a "spotlight" of attention;

* visual search, which can direct the attentional spotlight to regions of the image satisfying3 particular critiera;

* visual routines, task- and situation-specific sequential patterns of visual processing;

3 * intermediate objects, image-rentered representations for intermediate results of visual rou-
tines; and

e visual operators, a set of general-purpose, relatively abstract primitives, which are com-
bined to form visual routines.

These mechanisms have been proposed by others on psychophysical and speculative com-
putational grounds. However, many aspects of these proposed mechanisms have previously
been left vague. As has often been the case in cognitive science, a computer implementation

forced complete specification, thereby ur.covering a variety of new issues. Engineering con-
siderations led to the develo.nent of new mechanisms which may or may not be found in
human vision. These issues and proposed mechanisms may now be subjected to psychophysical
scrutiny. Further, mechanisms such as visual search have typically been studied in isolation.
SIVS demonstrates that it is possible to integrate several such mechanisms to achieve synergistic
power.

Studies linking perception and action have been rare in artificial intelligence. An exception
has been work in robotics, but the vision systems used there have tended to be ad-hoc and
not psychologically motivated. SIVS is designed to support visually-guided activity in a psy-
chologically realistic way. This is important because the psychophysical studies on which the
proposed mechanisms are based were conducted on isolated, highly specific, artificial tasks. It
was, therefore, possible that these mechanisms would have no actual use in a broader context,
or that they would have to be used very differently under ecologically valid circumstances. That
SIVS is able to support complex activity in a realistic domain demonstrates for the first time
that these mechanisms are of practical value.

SIVS is part of a larger system called Sonja [7]. 1 Sonja integrates advances in vision,
natural language pragmatics, and action. Sonja plays a video game called Amazon modeled
after a commerical arcade game. Its access to the game world is only via SIVS and via thefgame's primitive actions.

Outline

ISection 2 describes visual attention, the ability to access subsets of the early retinotopic rep-
resentations. Neurophysiological and psychophysical evidence suggest that visual attention is
implemented with a mechanism that routes information from dynamically selected locations

'The version of SIVS reported on here is improved in several respects over that of [7].

* 4I

to a central node; this device is a key locas of the reduction of retinotopic representations to
compact encodings.

Section 3 describes visual search, the ability to find locations in an image that have specified
properties. Visual search has been shown psychophysically to depend on visual attention;
i.i many cases it proceeds by seri,.ily enumerating and testing locations. SIVS is the first
implemented system that models the psychophysically demonstrated properties of human visual
search.

Section 4 describes visual routines, patterns of applications of particular visual operations
over time. Visual routines can do geometrical work, such as finding the smallest or leftmost
item in ac ollection, and topological work, such as determining connectedness or containment.
The notion of visual routines was proposed by Ullman (60], and SIVS draws heavily on his
work. His proposal is sketchy in many respects, however; this paper extends it and renders it
specific. Although other researchers have worked in the visual routines framework [28, 45], no
one has previously produced an im. lementation complete enough for application.

Section 5 describes intermediate objects, which are used to keep track of the intermediate
results of visual routines as they proceed. There are four sorts of intermediate objects, called
markers, lines, rays, and activation planes.

Section 6 describes visual operators, hypothesized bits of brain hardware which perform
particular sorts of visual work. Visual routines are sequences of activations of visual operators;
the theory hypothesizes that there is a small, innate set of operators. Three typical visual
operators find the distance between two points, track a moving object, and find the extent of a
homogeneous image region. Section 6 describes the specific set of visual operators used in SIVS
and the criteria for choosing them.

Section 7 nescribes the use of SIVS in guiding activity. Practical use demonstrates that
SIVS is adequate to support complex activity in a realistic domain. Visually guided activity is,
further, an interesting problem in its own right; and its requirements differ from those of object
recognition and other well.studied late visual tasks.

Section 8 presents conclusions, evaluating SIVS and describing successes and outstanding
problems.

2 Visual attention

Visual attention is the ability to differentially apply visual processing to a subset of a scene.
It is taken as consisting of two components: overt visual attention, or gaze direction, which
can be observed with an eye tracker; and covert visual attention, which is neurally mediated
and so can only be observed indirectly. This paper is concerned only with covert attention; [7]
briefly describes how overt attention might be incorporated into the model. Following standard
usage, I will use "visual attention" to mean covert visual attention when this will not result in
confusion.

There are large psychophysical and neuroscientific literatures on visual attention; I will
review some of this literature in this section. While the data are uncertain and sometimes
contradictory, there is broad agreement about some g, ,aeral facts.

5

I
I

1 The primary evidence for covert visual attention comes from psychophysical studies, for
instance those of Posner et al. [40]. In a typical experiment, subjects are required to react to
an event such as alight coming on somewhere in the visual field. The results of such experiments
are that

* Reaction times are lower when the subjects are told where in the field the event will
occur, suggesting that visual resources can more effectively be brought to the detection
task when the location of the event is known.

" Covert visual attention is independent of (overt) gaze direction: it operates even when the
subjects do not foveate the indicated location [36, 40], and brain lesions that eliminate
voluntary eye movements do not affect covert attention [41].2

" Visual attention is at least partly cognitively penetrable -.nd under voluntary control; the
event location can be indicated by non-natural cues [40].

* The bulk of use evidence suggests that attention can be directed only to a single contiguous
I subset of the image [13, 40]. 3

" The diameter of the attended subset can be varied voluntarily [13,22,53,56]. The possible
shapes it can assume and the distinctness of its margin are uncertain [53].4

These observations are summarized as the spotlight model of attention, in which attention
"illuminates" a chosen subset of the image. The precise nature of these subsets is unclear, so I3 will refer to them neutrally as "locations"; I will discuss them further in section 3.5.

Covert attention interacts closely with early vision. Therefore I will summarize necessary
background concerning early vision before proceeding. The retina is a two-dimensional array of3 light sensors. Neuroscientific study shows that the pats of the brain to which it is immediately
connected preserve this retinal topology [31]. This retinotopic neural processing comprises early
vision. Early vision is coming to be quite well understood [20, 30, 31]. In addition to being3 retinotopic, early vision is bottom-up and applies uniformly and in parallel over the image.
Bottom-up visual processing is that which depends only on the retinal image. A process is
bottom-up if and only if the same computation occurs whenever the same image is presented.
Bottom-up processing, thus, cannot depend on any non-visual contextual factors, on memories
or other state, or on the agent's intentions. Early vision produces "unarticulated" output
representations, typically a single continuously variable or boolean value at each point in the3image. Early visual processing is performed by a set of fixed, innate, retinotopically organized
machines called early maps. The identity and function of some of these maps are known; new
maps are still being discovered and the functional properties of some remain to be determined.

I 2There may be weak interactions between covert and overt attention. Kr6se, for instance, presents evidence
that the detectability of a "T* in a background of *L's is a function of retinal eccentricity (25]. Other researchers
(such as Nakayama and Mackeben (36, p. 1639]) have failed to find such effects.

3 FArlier studies by Shaw and Shaw (48, 49] suggesting that attention can be split over arbitrary subsets of
the image have not been confirmed by more recent work; but see Driver and Baylis [10].

4 Eriksen and St. James [13] present evidence for an indistinct margin, with processing efficiency decreasing
gradually from the center. Farak's results [14] suggest that attention can be directed to oddly-shaped regions,
but this may instead be the result of an unrelated activation operation (see section 4).

36
U.

msI

U
I

There appear to be roughly fifteen maps; among them are ones that compute color, edge
orientation, stereoscopic depth, and various properties of motion such as speed, direction, and
size change.

5

Koch and Ullman [24] have proposed an addressing pyramid as the hardware supporting the
attentional spotlight. (This proposal was inspired by neuroanatoical speculations of Crick
[8]; similar proposals have been made by Anderson and Van Essen [2], Treisman and Gormican
[55], Tsotsos [58], and others.) The addressing pyramid is similar in function to the addressing
hardware of a conventional serial computer it routes inforr.,.tion from a selected part of a
peripheral array to a central location. In the case of a conventional computer, this information
is the contents of a memory location; in the case of the attentional hardware, it is the contents
of the early representations in the attended location in the retinotopic array. The pyramid
gets its name from its two-dimensional hierarchical tree organization. It consists of a series of
exponentially smaLer stacked layers that route information upwards to a central node (figure 2).
Each level is composed of an array of nodes, each of which selects one of the nodes beneath it
to route to its superior. Thus the system as a whole acts as a recursive ,iftner-take-all network
[17], eventually routing the contents of just one leaf Dode up to the root. These leaf nodes
actually each contain the values of the early represent at one retinotopic location. I will
describe how pyramid nodes choose among their subnou" in section 3.

A spotlight of variable diameter can be implemented by having some of the nodes send up
a combination of the values of their inferiors, rather than choosing a single one. This has been
suggested by Treisman and Gormican [55], who propose that interior nodes in the pyramid can,
selectively, pass up the average of the early values of their inferiors, rather than passing up the
exact value of a single chosen inferior.

This addressing pyramid, then, is a key locus of the "collapse" of retinotopic representations
into compact encodings that is criterial of intermediate vision. Koch and Ullman propose
implementing the pyramid in terms of a circuit of neuron-like elements; SIVS follows this
proposal closely. I will ' scribe the implementation further in section 3.

I
U
U
I

'Early work by Zeki [63, 64] suggested a one-to-one correspondence between retinotopic maps and types of
visual information. It is now known that the correspondence is many-to-many [31]. 1 will ignore this observation
for simplicity.U!

I

ior

I
i

II
I -- / / ',, -"<.......* •

*0 t

..... ** /" 41.... -"

. '','

° .T a. o m

on. The other '"

.lt / / e ds
,. ',,, .., : * . . .

/ /S

I. *, S '., . .

Sigr 2:Th adrsigprmd Lefnds(oi ice)cnanbsescmatyec n

* ueir Her th nicldrgo (otnigfule os) sadesd h neirnd

on. h ote ineir.oe seec jutoeo.hirifrost pasu a roete r

I

I

3 Visual search

Visual search is the process of finding locations in the image which have specified properties.
Visual search has been extensively studied psychophysically; for surveys, see Julesz [22] and
Treisman and Gelade [54]. In most psychophysical experiments, the sorts of properties searched
for are very simple: "is red," for example, rather than "is a chair of some sort." Restricting
attention to such simple properties has made it possible to isolate the mechanisms that probably3 underlie more complicated sorts of search. Fortunately, in Amazon (the vih-ogame domain
SIVS has been applied to), these simple properties are sufficient to locate the objects that
are relevant to any task. Thus it was possible in SIVS to implement the psychophysically
demonstrated mechanisms without much speculative extention.

In Sonja visual search is a means to an end, as well as an object of study in itself. Psy-
chophysicists have principally studied visual search in isolation and under artificial conditions.
This has begged questions about the interface between these mechanisms and other visual and
non-visual processes. For example, questions about the interaction between visual search and
segmentation that must be answered to fully specify an implementation have gone unasked. (I'll
take this point up in section 3.5.) More seriously, the role of visual search in broader activity
has not been addressed. SIVS integrates the visual search mechanisms discovered psychophys-
ically with other visual processes, and (as we'll see in section 7) Sonja further integrates all3 these visual processes with action to achieve concrete ends.

This section first explains the psychophysical prnperties of visual search and the brain archi-
tecture they suggest, then explains SIVS's implemantation of that architecture and compares3 it with related computational implementations.

3.1 Psychophysics of visual search

The central result of the visual search literature, due to Treisman and her colleagues [54, 551,
concerns the distinction between paralel and serial self-terminating search. The experimental
paradigm motivating this distinction examines the time required to determine whether or not
an object with specified properties exists somewhere in an artificial scene. The results depend
on the nature of the property and also on what objects are found in the scene (figure 3). Tasks
varying on these dimensions segregate strongly into two classes. In the first class, the time
required is independent of what is in the scene. In the second class, time is a linear functior
of the number of "distractor" objects in the scene, and on average is twice as long in cases in
which the object to be found is not present than when it is present. Treisman interprets the
first ...ass as indicating that certain properties are computed in parallel and in constant time
over the entire visual field. In cases in which the desired property is one of those computed
this way, determining whether or not any object with the property is present can be computed
in constant time as a global OR over the resulting retinotopic map. The object, if present, is
said to "pop out" of the display, and such properties are called pop out properties. Treisman
interprets the second class as indicating that, in cases where properties are not computed in
parallel, visual attention must be applied sequentially to each location in the field to determine
whether or not it has the desired property. In these cases if a single object of the desired type

I

I

* I °

!* I -i * I
• :..

I * . I I I

I ! i -IIi. I iI1 .:*** - I ---

I : - I i-

Figure 3: Psychophysical displays requiring, respectively, parallel and serial search. Determin-
ing whether or not there is a horizontal line or whether or not there is a dashed line in a display
such as the first one takes time independent of the number of objects. Determining whether
there is a horizontal dashed line among vertical dashed and horizontal solid lines (as in the
second display) requires serial search and takes time linear in the number of objects.

Sis present, on average halt the objects in the field will be examined before it is found; if one is
not present, every object in the field must be examined. This "serial self-terminating search"
accounts neatly for the reaction time data.

Given this paradigm, we can ask what features pop out. Treisman and Gormican [55]
report that colors, grey level, line curvature, line orientation, line length, line ends, directions
of motion, stereoscopic depth differences, and the proximity and numerosity of clusters of lines
are pop out properties. These results are particularly interesting because there is convergent
neurophysiological evidence for early retinotopic representations of many of these properties
[30, 31]. On the other hand, intersection, line juncture, angle, connectedness, containment, and
aspect ratio are not pop out properties. Neither are conjunctions of pop out properties.

Treisman's results have been replicated by many other researchers. Recently, some conflict-ing data and alternative explanations have been put forth [35, 57, 62). 1 have adopted Treisman's

3 as it is the most generally accepted; new empirical results may force modifications.,

3.2 An architecture for visual search

These psychophysical results suggest an architecture like that of figure 4. Early modalities
compute retinotopic maps bottom up.7 Let us say that an early property consists of a dimension

3 'For example, the results of Wolfe et at. [62] suggest that the activation maps described in the next section
should be continuously graded, rather than binary.

'This is an abstraction from neuroscientific results, which show that retinotopic maps are actually computed
in a cascade of stages [31]. The work of Moran and Desimone [32] suggests further that these stages are probably
interwoven with the attentional pyramid: they found increasing effects of visual attention on the receptives fields

* 10U l

I

I

06..

rein

/1

Fu o te le

I I *

Figuur 4: a art e for visua l search. In this example the retina is presented with
lines varying in orientation (horizontal, vertical) and color (symbolized by solid and dashed).
Two early maps compute these properties. Activation maps compute whether a desired value

I (vertical or dashed, input from the left) is present in the corresponding early maps at each
U point. A global OR (output on the right) supports parallel search. The addressing pyramid

supports serial search, routing to the root (and thereby combining) all the early properties
I corresponding to a particular addressed location (the lower left in this case). I have omitted

most lines connecting to pyramid leaf nodes to reduce visual clutter.

* 11

I

activation map global OR

I "

I (e.g. RED)

early map/R

I (e.g. color)
/ D GREEN

Figure 5: Structure of the activation maps. At each point the early value is compared with the
desired value to give a boolean activation value. A global OR of activation values is computed
over the entire map.

I (which is a particular early modality) and a value on that dimension. Thus color is a dimension
and red is a value. Each retinotopic map is retinotopically connected to an activation map.
An activation map acts as a value filter; it has binary elements which are "on" at points
where corresponding elements in the early map have the desired value! A network extending
globally over the activation map distributes the desired value to all the activation elements.
(An alternative implementation would use a separate activation map for each early value. This
would correspond to value unit encoding, which seems to be the rule for cortical neurons [3].)
Another global network computes the global OR (figure 5).'

I of neurons in successively later area of the visual cortex.
$Activation maps are not part of Trefsman's original model, but seem necessary to avoid seazching blank

areas. Similar mechanisms have been proposed previously [24, 62].
$Alternatively, as Treisman and Gormican [55] have suggested, the global OR could be computed using the

addressing pyramid by adjusting the diameter of the attended area to span the entire visual field.

112

I

This much machinery is sufficient for tasks that require deciding whether or not there is a
location in a scene which has a particular early property, and therefore accounts for parallel
visual search. What about combinations of early properties? A straightforward solution would
be to provide activatior maps for all possible combinations. There's a good engineering reason
not to do this: ther, are too many combinations. Assuming that there are a dozen early
maps, there would be 212 = 4096 combination maps. (Value unit encoding of the individual
activation maps would increase the exponent substantially.) Since retinotopic maps each take
up a significant chunk of cortex [31], this is infeasible. An alternative to this proliferation of
maps is serial application of visual attention, as proposed by Treisman and others.

Serial visual search requires enumerating candidates and testing to see if they have theI desired property. This enumeration must be performed under the direction of some external
system, which I will refer to as the control system and whose internal structure is outside of
the scope of this paper. Various enumeration schemes are possible; I will propose a simple
one which matches psychophysical results. To enumerate candidates, you pick one of the early
dimensions involved in the compound desired property and enumerate all the locations that
have the desired value on that dimension. For instance, if you are looking for a vertical blue
edge, you can enumerate all the vertical locations and check if they are blue or enumerate all
the blue locations and check if they are vertical. Enumeration involves repeated application
of two primitives, content addressing and return inhibition, which affect the way nodes in
the addressing pyramid select among their subnodes. In the remainder of this section I will
describe content addressing, candidate testing, and return inhibition, and show how they can
be combined into an algorithm for visual search.

In content addressing, the control system specifies an early dimension and value, and the
addressing pyramid routes the early properties of an arbitrary location with that value on
that dimension to the root. This is accomplished via the activation maps: the control system
supplies the desired value to the relevant activation map and specifies that activation map as the
relevant one for content addressing. Pyramid leaf nodes disqualify themselves from the selection
process if the corresponding activation map value is zero. Disqualification propagates upwards;
an internal node is disqualified if all its subnodes are disqualified. This system guarantees that
the early values routed to the root node correspond to a location in the image whose activation
value is one, and thus which has the desired early value on the specified early dimension. If
there is no activated element in the specified activation map, the root node itself is disqualified;
this corresponds to search failure.

For purposes of visual search, the root of the addressing pyramid is connected to circuits
which determine whether the early properties presented there are the desired ones. In the worst
These circuits, operating on compact encodings rather than retinotopic representations, would

easily into a small chunk of the brain. Having just one copy of these circuits, rather than a
copy at each retinotopic location, is a tremendous hardware savings. Further hardware savings
can be realized by computing only those combinations of early properties that are actually of
interest.

Suppose the currently attended-to location does not have the desired properties; we must

13

3 reject it and find another. Return inhibition, when applied, prevents the currently addressed
location from being co-sidered a candidate in future content addressing. This allows candidates
to be enumerated uniquely. Return inhibition requaires that each leaf node in the pyramid
keep a state bit which says whether or not it hax been inhibited; i aibited nodes disqualify
themselves. Klein [23) and Posner et al. [41] present psychophysical evidence for the reality of
return inhibition.

In summary, an algorithm for serial self-terminating search in the proposed architecture
goes as follows.10

1. Pick one of the conjoined early properties. Set the activation map for this property's
dimension to filter for this value.

2. Use content addressing to find an activated location in the image. If there is none, return,
signalling failure. Otherwise, the addressing pyramid will map the early properties of the
found location to the root.

3. Check whether the addressed location has the desired combination of early features. If
so, return, signalling success.

4. Otherwise, inhibit return to the currently addressed location. This means that future
content addressings will find different locations. Go to step 2.

Sonja makes extensive use of this algorithm in playing Amazon.
Treisman and Gelade [54] report that human subjects require about 60ms per iteration of

the address, test, inhibit cycle. This corresponds to examining seventeen locations per second.
SIVS's cycle time varies because it was implemented on a serial machine, but on average it
examines as many locations per second.

3.3 Extensions

This section presents two extensions to the basic visual search paradigm which proved very
useful in Sonja but which are only weakly supported by psychophysical evidence. The first
extension allows control of the order in which locations are enumerated; the second allows
attention to be directed to locations based on their positions in the image, rather than on their
early properties.

Controlling enumeration order

In many cases it is useful to control the order in which visual search enumerates locations. For
example, domain knowledge often can tell you roughly where the sought location is likely to
be.

Koch and Ullman [24], based on the psychophysical studies of Engel [11, 12], proposed a
proximity preference mechanism for their model of the attentional pyramid. Proximity pref-
erence makes the location selected by the next content addressing as close as possible to the

3 0lTsotsos presents a similar algorithm [58]. His is more complicated because it involves shape matching.

114

currently selected location; it can be implemented with circuitry that enhances the activity of
units close to the selected unit in the winner-take-all network.

SIVS provides a related form of proximity preference. It allows the control system to choose
an arbitrary point of interest and causes content addressing to proceed in increasing order of
distance from this point. This mechanism could be implemented using a damped spreading
activation starting from the chosen point and enhancing winner-take-all units in proportion to
the proxinity to that point. SIVS's implementation actually uses explicit distance-comparison
circuits. The chosen point is specified using a visual marker mechanism, explained in section 5.
SIVS also includes a mechanism that constrains visual search to a specified region of the image
or to locations lying along a specified line. In the latter case, locations may be enumerated in
order along the line.

These enumeration order extensions to visual search are based solely on efficiency consid-
erations. The only relevant psychophysical evidence I know of is due to Krase and Jlesz [26],
who show that proximity preference does not always apply; this does not rule out it" -elective
application under external control. It would be easy to do experiments to discover whe~lier the
human visual system has similar mechanisms. If not, people must do exhaustive searches in
situations in which SIVS does not; this would result in somewhat different attentional perfor-
mance.

Pointer addressing

In addition to content addressing, SIVS supports pointer addressing. In pointer mode, the
control system can direct the pyramid to address an arbitrary (z, y) retinotopic location. This
requires passing addresses downward through the pyramid and inhihiting nodes not addressed.
The pyramid can also pass addresses upward, providing the control system with the image
coordinates of a location addressed by content.

There is little psychophysical evidence bearing directly on the question of whether the
human visual attention apparatus supports pointer addressing; the question has not been asked
explicitly before. The most relevant studies ask whether or not people can direct attention to
points defined indirectly, for example as "two inches to the left of the big X". Some experiments
have been done along these lines, but the results are inconclusive. Kr6se and Julesz [26] present
evidence that argues against such addressing; Posner et al. [40] and Nakayama and Mackeben
[36, experiment 2] present evidence that argues for it. Pylyshyn [43] argues against it on a
priori grounds.

Whether or not an attentional mechanism supports pointers affects possible implementation
strategies for other sorts of visual machinery. For example, consider the problem of determining
whether one location in an image is to the left of another. An architecture that supports pointers
can subtract z coordinates to answer this question; an architecture without pointers must do
something more complicated.

I
3 15

I

I 3.4 Related computational work

So far as I know, SIVS is the first implemented system to model the phenomena described in
the psychophysical visual search literature I have discussed.

Several other researchers have presented implementations of visual attention. These imple-
mentations vary in their motivations, in the faithfulness with which they model psychophysical
results, and in various engineering parameters. Among the last are the type of routing network
used (retinotopic, hierarchical, or all-points), selective enhancement of signals from attended
locations versus selective inhibition of signals from non-attended locations, and whether or not
regions of variable diameter can be addressed.

Feldman and Ballard [17] provided the first suggestion I have found for a computational
implementation of covert attention. They intended both to model Treisman and Gelade's [54]
psychophysical studies and to solve the connectionist crosstalk problem. They suggested using
a winner.take-all network; their discussion is abstract and appr ently the suggestion was not
implemented. Koch and Ullman [24] similarly did not implement their proposed pyramid.

The earliest implementation I " found is due to Fukushima [19]. He used a hierarchical
winner-take-all network of connectionist units. His implementation seems to have been mo-
tivated principally by engineering concerns; it does not try to model psychophysical results
accurately. For example, the attended subset of the image does not need to be contiguous.

Strong and Whitehead [51] present an implemented model of overt visual attention inspired
by Feldman and Ballard's work and similarly intended to solve the crosstalk problem.

Mozer's [33, 34] implementation of covert attention models psychophysical results betterthan Fukushima's; it can attend only to a single contiguous region. His winner-take-all network

is not implemented hierarchically (as a pyramid) but rather retinotopically. Koch and Ull-
man argue that a hierarchical organization results in faster convergence of the winner-take-all
computation than would a locally connected network such as Mozer's. Mozer implemented ad-
dressing of continuously variable diameter regions; SIVS doesn't. Mozer's network operates by
selective enhancement of signals from the attended region, rather than by selective inhibition of
signals elsewhere (as does Fukushima's implementation and S1VS). Neurophysiological results
suggest that the primate attentional system operates by selective inhibition.11

Ahmad and Omohundro [1] describe an implementation ,vith a contiguous, variable diameter
spotlight and boolean inhibition. This implementation is able to gate signals from the attended
location to a central node in constant time by connecting the central unit to every unit in a
retinotopic array. Th;s seems biologically implausible; SIVS uses a log(n) depth fan-in tree
instead.

" Moran and Desimone (32] found that neurons in area V4 of the visual cortex whose receptive fields (RFs)

include the attended location respond strongly to stimuli at this location and weakly elsewhere in the RF, but
neurons whose RFs did not include the attended location responded strongly to stimuli anywhere in the RF.
Tiotaos [58] argues that selective inhibition should make the winner-take-all network converge more quickly.

I
* 16

I

3.5 Open questions

Many empirical and engineering questions concerning this architecture, beyond those posed
earlier in this paper, remain open.

Current psychophysical evidence does not answer many questions concerning return inhi-
bition. For example, is it applied automatically and uniformly, or selectively under control of
the control system? SIVS allows the latter. How are locations uninhibited? SIVS provides
a global inhibition reset line which uninhibits all locations, providing a clean slate for a new
search. Perhaps individual locations can be uninhibited, or perhaps inhibition just decays over
time. Is there a limit on how many locations can be inhibited? What is the spatial resolution

5 for inhibition? It cannot be the case that enormous numbers of locations can be inhibited with
3I great precision, or it would be easy to count patterns of many dots in arbitrary order.

Just what are the "locations" which the attentional spotlight looks at, content addressing
finds, and return inhibition applies to? A simple hypothesis is that locations are the regions
of the image found by a general-purpose preattentive segmentation process that partitions the
image into relatively homogeneous regions. There is much psychophysical evidence that at least
a first-pass segmentation is performed bottom-up [50, 53]. Psychophysical studies on attention
have usually controlled out segmentation by using as stimuli displays of small geometrical
figures neatly separated by a featureless white background, so little is known about interactions
between attention and segmentation. More study of this interaction would be valuable; recent
studies by Driver and Baylis [10] and by Farah et al [15] support the hypothesis that attended
locations are preattentively segmented regions.

1 4 Visual routines

Visual routines are time-extended patterns of visual processing. Many visual properties, partic-
ularly topological properties such as.connectedness and containment, are difficult or impossible
to compute using a single type of processing. Different sorts of processing must be applied
in sequence. Ullman's visual routines paper [60] proposes that patterns of visual processing
be thought of as programs, or routines, whose primitive operations are parameterized types of
visual processing. The strength of this idea is that a small set of visual primitives can be re-
combined into an infinite number of types of visual processing. The demands of visual analysis
are very diverse; yet given the right set of operations, it may be possible to assemble visual
routines capable of performing whatever sort of visual work is necessary for a new task. A
vision system can thus be thought of as a sort of programming language.

As an example, Ullman describes a visual routine for computing whether or not a particular
point is contained within a closed curve in the image. This routine involves applying two
primitive operations. First, a "wave of activation" is propagated in the image, starting from
the point of interest, and expanding in parallel in all directions, but stopping when a boundary
is reached. (See figure 6.) This computation can be performed efficiently on a parallel two-
dimensional grid machine. Second, a "point at infinity"-any point that is for some reason
guaranteed to le outside any curve-is tested to see whether it has been activated. If it has,

1 17
I

I Figure 6: A visual routine for computing containment. Starting from a point marked with a
solid square (first picture), a wave of "activation" is spread (second picture). The wave stops
when it hits a boundary. Then, a "point at infinity" is tested to see whether it is activated
(third picture). In this case, the point at infinity is marked with another square; it is not
activated, and so the first square must have been inside a boundary.

we know that the activation has "leaked out" of any surrounding curve, and that the original
point is not in fact contained in a closed loop. If it hasn't, we know that there is a containing
curve.

In SIVS, primitive visual operations are computed by visual operators, which are thought
of as specific pieces of neural hardware. Primitive operations and operators correspond one-to-
one: although it is logically possible that individual pieces of visual hardware could compute
several distinct operations, the proposed primitive operations are sufficiently dissimilar that it
seems more likely that functions are allocated statically.

In the most general case, illustrated in figure 7, a visual operator takes as input zero or
more retinotopic maps and zero or more control signals which determine the parameters of the
operation and whether or not it is actually carried out. The operator encodes its results on zero
or more compactly-encoded output buses. The operator may maintain state, typically shared
with other operators; I will explain the form of this state in section 5.

Collectively, the set of visual operators constitute a visual routines processor (VRP). The
operation of this VRP is directed by an external control system, probably the same one in-
volved in visual search, whose nature I will again leave unspecified. The interface between
the VRP and the control system consists of a fixed set of compact buses, with queries and
commands as inputs to the VRP and results as outputs. This organization is similar to that
of a horizontally microcoded computer (figure 8). The VRP plays the role of the datapaths;
the control system is analogous to the computer's control logic. As in some recent horizontally
microcoded architectures, there are many datapaths all of which operate in parallel on every
cycle (though some of them may not do anything useful, if there is no computation of their sort
to be performed on that cycle). Thus visual routines are strictly patterns rather than simply
sequences of visual operations: several operations may occur simultaneously. On each tick the
control system computes the parameters controlling the visual operators; this is analogous to
the vector of control bits provided by a horizontal microinstruction.

Depending on the primitive operations selected, on task requirements, and on the mech

I

UUc'Upt

gwaedc viSUPI operator

coto
inut

Figure 7: A generic visual operator. The visual op, rator, on the basis of control inputs, produces
compact outputs from the retinotopic maps. It may maintain some state, which can be shared

with other visual operators.

I 19

£ ______

visual visual visual
operator operator operator

Figure 8: Overal modularity. A control systm tkes inputs from the visual operators and

produces outputs for them.

20

anisms that determine when operations are performed, visual routines might be used in very
different ways. For Sonja, visual routines are a means for to0--specifc, top-down control of
visual processing in support of action. "Task-specific" means that visual routines are designed
to discover properties of domain situations that are meaningful in terms of the the task the
agent is engaged in. "Top-down" means that visual routines are invoked on the basis of factors
other than just the currently visible image, such as the memories and purposes of the agent. In
such a model, you might have task-specific routines for checking your speedometer, for glancing
at your keyboard to align your fingers in home position, for checking a pancake to see if it
is ready to flip, and for finding safe footing when walking in the mountains. These tasks are
subtasks of other tasks, which are not purely visual, but which are guided by visual feedback.
In section 7 we will see a complex example of a task-specific visual routine that guides activity
in Sonja.

These commitments to task-specificity, top-down control, and visually guided activity are
not necessary correlates of the visual routines architecture. Visual routines might instead
be used as part of a bottom-up object recognition system, for example, or they might be
applied uniformly and might deliver purpose-independent representations as outputs. SIVS's
architecture might carry over directly to such applications although that is not the way I have
used it.

I will postpone discussion of the specific operators in SIVS until section 6.2, after explaining
the data structures the operators use (described in section 5) and the criteria used in choosing
the operators (described in section 6.1). However, their purpose, in general terms, is spatial
analysis: establishing both geometrical and topological relationships between portions of the
image.

5 Intermediate objects

We saw in section 4 that visual operators can access state variables. This state is required to
keep track of intermediate results during visual routines. We have seen one example already:
the activated region that is computed in the first step of the containment routine (figure 6).
Lacking empirical constraint on the nature of these intermediate representations, I have adopted
Ullman's proposals, which were based on computational intuition, and extended them based on
my own computational intuition. 12 These proposals might be tested psychophysically.

SIVS's visual operators manipulate four type- of intermediate objects: markers, lines, rays,
and activation planes. These representations are shared across operators, rather than being
private to particular ones. Visual markers designate locations in the image. Lines (actually
directed line segments) run between two points; rays extend from a point to infinity. Activation
planes represent regions in the image. In figure 17, for instance, we see some markers, lines,
rays, and activated regions displayed graphically on top of a running Amazon game. The
reverse-video polygons represent markers, the drawn lines represent line and ray intermediate
objects, and the shaded regions represent activation planes. (These graphical representations

"2The only previous implementation of visual routines, due to Romanycia [45], used only retinotopic
representations.

21

K 0 0

ft Figure 9: To determine whether there are four colinear points, you have to keep track of points
to apply the colinearity test to.

3 should not be confused with the intermediate objects themselves.) All four sorts of intermediate
objects are image-centered, representing only two-dimensional information. Three-dimensional
processing is beyond the scope of this paper; see [7] for ways to incorporate it.

The interface between the control system and the VRP is in part in terms of the interme-
diate objects. The control system can name intermediate objects; that is, it can pass compact
encodings which say which marker, line, ray, or activation piane to use in an operation. Oper-
ators can, for instance, determine whether the distance between one pair of markers is greater
or less than the distance between another pair; draw a line between two markers; or determine
whether a marker is within an activated region.

The remainder of this section describes in turn markers, lines and rays, and activation
planes.

i Markers

Many visual operations require storing locations. For example, if you want to know if there
are four colinear points in an image, you have to keep track of points to apply the colinearity
test to (figure 9). Visual markers are one mechanism for keeping track of locations. The
simplest implementation of location stores would be registers holding image coordinates. Since
stored locations are typically found using visual search, this implementation requires that the
addressing pyramid be %bWe to pass addresses in at least the upward direction.

Visual markers are not intended as a complete theory of the ability to store locations.
Markers can only represent visible objects, whereas people can remember the locations of objects
that are no ionger visible. Psychological evidence has led several researchers [16, 42, 43] to
propose that there are several distinct spatial memory mechanisms; markers might be one.

23 22

Lines and rays

Lines and rays in SIVS may not correspond to any "things" in the human visual system.
They were an easy interface for various useful visual operators which may well use some other
interface. Their principal use is to specify spatial limits for a search: SIVS has operators
that find things that lie along a straight line or a ray. Whether such limits can actually
be put on visual search is unknown but could readily be determined experimentally. One
way to implement them would be to "draw" the line on a retinotopic map that is ANDed
into a search activation map. Then only locations lying on the line would be candidates for
content addressing. Another implementation would scan attention serially along a line. These
implementations could be distinguished psychophysically by reaction time data.

UActivation planes

Activation planes are used to keep track of interesting regions of the image, as in Ullman's
routine for computing containment. They can be naturally implemented as retinotopic bit
arrays, one bit array per plane; bits are turned on at points that are within the region of
interest.

Psychophysical evidence could help support or disconfirm the existence of activation plane
hardware. I know of only one relevant study, due to Farah (14], who found that imaging a
complex bounded form increased the detectability of events within the bounded region. This
effect was found to be similar to attending to a colored form of the ame shape. An activation
plane would be a natural mechanism underlying this effect. Kosslyn has suggested an experi-
ment (described by Ulman [60] but apparently never performed) that would give a more direct
test. In it facilitation of later inside/outside judgements by a first judgement would suggest the
existence of a representation of the extent of the bounded region.

How many activation planes are there? I know of no psychophysical studies of this question.
The following informal observation may serve as the basis for an experiment. When staring
at floors tiled with a regular pattern of identical tiles, I find that I can cause specific subsets
to jump out: a hollow or filled square or hexagon (depending on the tiling pattern) or, more
interestingly, disconnected sets like alternate tiles (resulting in a checkerboard appearance).
This phenomenon is quite striking in that I can make quite elaborate patterns appear globally
over a space of hundreds of tiles. The jumping-out tiles almost literally appear to be darker or
"colored." If this is the phenomenological correlate of activation, it suggests that there is only

one activation plane available for this purpose, because despite much effort, I am completely
unable to form even simple patterns that divide the surface into three sets rather than two.
Simple psychophysical experiments might decide this question. In any case, Sonja uses three
activation planes, but could probably get by with timesharing a single one.

I The next section explains how intermediate objects are manipulated by visual operators.

I
3 2

I
I
I

6 Visual operators

Visual operators are to be thought of as bits of hardware each dedicated to performing a
specific visual operation. Because visual operators support intermediate vision, their purpose
is to give compact answers to compact questions about non.compact representations such as
image regions and activation planes. (Recall figure 7.) Because the range of visual processing
tasks is so broad, there are many visual operators with distinct functions. Individually they
may not do much, but they may be combined by serial application into powerful visual routines.
These routines involve partial results which are kept track of with intermediate objects.

Section 6.1 explains how we might choose and evaluate a set of visual operators; section 6.2
describes the specific set implemented in SIVS. Section 7 provides examples of the combination
of these operators into visual routines.

6.1 Criteria on visual operators

There are two sorts of criteria that bear on choosing perceptual operators: local criteria on
individual operators and global criteria on the set of them.

The local criteria I used in designing SIVS were that an operator be implementable in biolog-
ically plausible hardware, general purpose, neurophysiologically and psychophysically plausible,
and clean from an engineering standpoint.

" Each operator ought to be implementable in biologically plausible hardware. The local
connectivity and slow processing speed of neural hardware imply that visual computations
(which typically operate in less than a second) must involve no more than about a hundred
sequential steps [17] and make certain mechanisms such as pointers expensive-perhaps
prohibitively so. Ideally SIVS would implement each operator as a network of neuron-like
units. However, even the most powerful parallel computers available today would not
have been up to the job of simulating the number of units required, and so I implemented
most operators with conventional serial algorithms. However, I will sketch massively
parallel, pointer-free implementations for each visual operator, thereby arguing that the
constraints of biological plausibility do not rule them out a priori.

" "he operators should be general purpose in two senses: they should not depend on the
specific domain in which the system is tested, and they should be useful for very different
sorts of tasks. It is impossible to be sure without doing cross-domain and cross-task
studies, but my intuition is that all SIVS's operators satisfy this criterion.

" Each opere.tor's membership in the set ought to be supported by neurophysiological and
psychophysical evidence. This is not true in SIVS. Most of the relevant experiments
have not been done. Many of the operators in SIVS suggest tests for comparable human
performance.

* Finally, I used straightforward engineering considerations to choose many of the operators.
I used programmer's intuition to judge whether the postulated operators involved seemed

524

clean. SIVS includes only one inelegant operator (explained in section 7), in a case in
which "doing the right thing" seemed like it would be a lot of work and not particularly
edifying. I am reasonably sure that this operator does nothing that could not be done
cleanly.

My global criteria on the set of operators were that the set span the space of visual analysis
tasks; that it make programming visual routines easy; and that it make learning visual routines
easy. I will postpone evalu.ting SIVS according to these criteria until section 8.2.

* We want a "spanning" set: that is, a set of operators that together are sufficient for any
task. Here "any task" may mean "any psychologically plausible task" or, for engineers,
"any task in the class of domains of interest." Thus the set of visual operators, when com-
bined into routines, are to form a finite means for the realization of an infinite collection
of possible visual processes.

* A set of operators should not only make it possible to implement any visual task, it
ought to make it easy. From an engineering standpoint, the VRP should present a nice
programming system.

* A set of operators should also make it easy to learn new visual routines.

6.2 SIVS's visual operators

This section describes the specific visual operators SIVS uses. This set substantially extends
the set proposed by Ullman [60].

The subsections of this section correspond to a somewhat arbitrary categorization of op-
erators into six groups. The first group is concerned with visual attention and search; the
corresponding subsection, 6.2.1, fills in some details left vague in sections 2 and 3. Subsection
6.2.2 describes an operator for tracking moving objects. 6.2.3 describes operators concerned
with geometry: distances, directions, and angles. Subsection 6.2.4 describes operators for di-
rect manipulation of intermediate objects and 6.2.5 describes operators involving activation
planes; together these can be used to determine topological properties such as containment and
connectedness. Subsection 6.2.6, finally, describes a housekeeping operation called "blanking."

By convention, the names of operators that change the state of intermediate objects end
in an exclamation mark (content-address!), and those that implement boolean tests end in a
question mark (distance-within?).

6.2.1 Visual attention and search

I have explained the implementation of visual search in section 3; this section explains the
details of the interface between it and the control system. This interface is in terms of visual
operators which encapsulate the addressing pyramid, thereby integrating it into the architecture
of figure 8.

Attention supplies early properties to the control system. I gave the VRP as plausible an
interface with the control system as I could, but made no attempt to make the connection

25

between early and intermediate vision realistic. SIVS does no pixel-wise early processing.
Instead, the visual operators have direct access to the data structures representing video game
objects that Amazon maintains for its own purposes. I will talk about the implications of
bypassing early vision in section 8.1.

Thus, to implement content addressing, I needed a simulated implementation of early pro-
cessing. This implementation is in terms of seven early dimensions. I chose these dimensions
and the values assigned to video game icons along these dimensions somewhat arbitrarily; my
main concern was to ensure that some objects would p6p out and that others would require slow
serial searches. Some of the dimensions are found in human early processing: grey level, speed
and direction of motion, line orientation, and perhaps overall size. Two others are arbitrary
and probably not biologically accurate: I called them "fiddliness," corresponding roughly to
the amount of detail in the icon, and "boxiness," corresponding to whether or not the icon is
roughly rectangular. Early properties are not computed at run time, but are fixed properties of
icons. The implementation does not model the internal structure of the icons; they are treated
as homogeneous blobs. SIVS takes icons to be the "locations" to which return inhibition applies;
see section 3.5.

The operator content-address! implements content addressing. It takes as inputs an enable
signal and an early (dimension, value) pair to find. Because one typically wants to keep track
of the addressed location, the operator takes a marker as an additional input; the marker is
moved to the center of the addressed location. Optionally content-address I can take as input
another marker representing the locus of proximity preference (section 3.3).

Three operators put spatial limits on content addressing. conatent-address-activated! re-
quires that the found location be within an activated region. scan-along-line I and scan-along-
ray! address the first location with a given early property found along a line or ray.

The operators inhibit-return! and uninhibit-return! perform the operations they are
named for and take only an enable signal as input.

6.2.2 Tracking

An ability to track several moving objects simultaneously is very useful in playing video games.
My informal observations of human players suggest to me that people can to track up to four or
five moving things simultaneously; Pylyshyn and Storm (43, 44] present psychophysical evidence
for about the same numerical limit on tracking.13

SIVS tracks moving objects with visual markers. The operator track! causes a marker,
pawed as an input, to track the motion of the thing it marks. As many copies of track! are
required as things can be tracked simultaneously. SIVS supplies five copies, of which Sonja uses
only three. SIVS also provides disappeared? operators which tell whether a tracked thing has
been lost.

13Pylyshya argues that this ability contradicts the finding that people can attend to only one location at a time.
No such contradiction is necessary, however, if attention is required to support access to all early properties. Full
acces is not necessary for tracking, which needs access only to motion computations. The tracking hardware
probably has a separate, dedicated a!.iessing scheme for a motion map.

26

3 a

1 7

I ®b

Figure 10: Major and minor components of directions to the circled point. The major compo-
nent is drawn as a solid arrow and the minor component as a dashed one. In two cases (a and
b) the two components coincide.

In the human visual system, tracking presumably works by segmenting the optical flow
field. How this works in detail is unclear (see Thompson and Pong [52] for an explanation of
the issues and some computational approaches) but there is no doubt that the human visual
system supports tracking as a primitive [46].

5 6.2.3 Distances, directions, and angles

SIVS provides a series of operators which compute geometrical relationships between intermedi-
ate objects. These operators manipulate distances, directions, and angles. All of these operators
are implemented as numerical computations in terms of the pixel coordinates of intermediate
objects. Directions are coded as ordered pairs of the eight "king's move" directions, a major
and minor component representing the nearest and next nearest of the eight directions to the
actual direction. (See figure 10.) This encoding provides sufficient resolution for the purposes
to which the system is put.

The operator distance-within? is a predicate on two markers and a distance; it tests whether
the distance between the two markers is greater or less than that given. greater-distance?
takes two pairs of markers and tells whether the distance between the first pair is more or less

3 than the distance between the second. markers-coincident? tells whether the distance between
Btwo markers is zero.

marker-to-marker-direction tells the direction from one marker to another. aligned? tells
whether or not two markers are aligned in one of the eight directions.

Three operators, angle-cc;?, arker-line-angle-cc?, marker-ray-angle-cc;? determine

1 27
I

i

whether or not an angle is counterclockwise; they respectively take three markers, a marker
and a line, and a marker and a ray as inputs.

Two operators determine whether locations (interpreted as Amazon icons) are adjacent to
each other. touching? takes as inputs a marker and a direction; it tells whether or not the
Amazon icon under the marker is touching something else on the specified side, or whether
there is free space in that direction. corner-free? similarly determines whether there is free
space adjacent to a given corner of an icon. These operators probably ought to be decomposed
into routines over more primitive operators that would shift attention to the indicated edge of
the icon and check for free space.

6.2.4 Marker, line, and ray manipulation

I Two operators provide direct manipulation of marker positions. warp-marker! moves one marker
to be coincident with another. walk-marker! moves a marker a specified distance in a specified
direction. These are implemented by side-effects to the coordinate information that markers
maintain. Similarly, draw-line! takes two markers and a line and causes the line to extend
from one marker to the other, and draw-ray! extends a given ray from a given marker in a3 given direction.

6.2.5 Activation

SThe primary use of activation planes is to fil (activate) a bounded region. Ulnan [60] suggests
that what counts as a boundary may be task-specific (and thus is presumably supplied as a
parameter by the control system). Lacking evidence about the nature of this information in the
human visual system, I had the operator take a disjunction of icon types that are allowed in the
activated region. UUman suggests further that short gaps in surrounding edges may optionally
count as boundary segments for the activated regi:,n, and SIVS provides an optional gap filling
facuity.

14

Region filling is implemented by the operator activate-connected-region!, which takes a
marker to start spreading activation from, a plane to mark the region with, and the type
information about what will count as boundaries. The operator returns a single boolean value,
which tells whether activation succeeded or if the spreading would, rather, continue to infinity.

Activation can be efficiently implemented in a locally-connected retinotopic array of proces-
sor [60]. You turn the activated? bit on iv the processor corresponding to the marked point
from which activation begins, and then you repeatedly propagate activation: each activated
Sprocessor tells all its neighbors that it is activated; if they are boundary points they do noth-
ing; otherwise, they set themselves activated. Repeat until no new processor becomes activated.
Mahoney [29] and Shafrir [47] describe still faster divide-and-conquer activation algorithms.

Three operators, marker-activatod?, line-activated?, and ray-activatd? determine whe-j ther other intermediate objects intersect activated regions. Operations like these could be

1 4Psychophysical study of gap filling in edge tracing, postulated as a related operator, is reported by Jolicoeur
et at. [21]. Ullman [59] suggests that gap filling is a ubiquitous operation in early vision and proposes neuril
networks for the operation.

£ 28

implemented by connecting corresponding elements in the retinotopic arrays representing the
various sorts of intermediate objects. For instance, in section 5 1 have suggested implementing
lines by 'drawing" them on a retinotopic array of computational elements; line-activated?
could be implemented by having these elements communicate with corresponding elements in
the activation plane to determine if they represent a point that is both activated and on the
line; computing a global logical OR over the array will yield the desired result.

SIVS provides several other operators that manipulate activation planes. mark-centroid!
puts a marker at the centroid of an activated region. A biologically plausible implementation
might use a spreading activation computation [18]. convex? ells whether a activated region is
convex, and expand-to-convox-hull! takes two activation planes and makes one be the convex
hull of the other. Computing convex hulls is probably not psychologically realistic, but for the
purpose I put it to, a realistic and equally useful operation would be to compute a Gaussian
blurring of a region; such blurring operations have been demonstrated neurophysiologically in
human early vision [30].

tranuect-activation! takes two activation planes, a line, and a direction. It sets one of the
activation planes to be the subset of the other plane that is on the side of the line indicated
by the direction. (See figure 17 for an example.) One way to implement transection would be
in terms of the activation propagation algorithm previously described; it would require turning
on the boundary? bits in elements corresponding to locations along the line.

0.2.6 Blanking

Blanking is a sort of housekeepin4 operation. A blanked intermediate object is unused and has
no spatial information associated with it. For each intermediate object there is an operator
which tells whether or not it is blanked and one that blanks it. There is no explicit way
to unblank an object; operators that side-effect objects unblank them. In implementation,
blankedness is just a bit associated with each intermediate object.

This concludes the enumeration of SIVS's visual operators. It is not hard to think of other
operators of the same general character that could be added to the set. (For example, SIVS
does not currently support boolean operations on activation planes.) This suggests that the set
is incomplete; this issue is taken up in section 8.2. However, the next section will demonstrate
that SIVS's operators are adequate to support complex visually guided activity in at least one
domart.

7 Visually guided activity

This section describes the use of SIVS to guide action in Sonja. Sonja plays a competent
beginner's game of Amazon. Its access to Amazon is only via SIVS and the game's primitive
actions. Study of such visually guided action is important for several reasons:

* It is an interesting and ubiquitous phenomenon in its own right, and one that has been
relatively little studied, at least within Al.

29

* The support of practical activity is a main function of vision, and one which seems to

have different requirements from (for example) object recognition.
* Practical use of SIVS shows that the intermediate visual mechanisms described in this

paper actually are useful. This does not necessarily demonstrate that these mechanisms
will be useful or sufficient in other domains or that they are biologically accurate models,
but it does suggest that they are worthy of further empirical and computational study.

* By coordinating the various intermediate visual processes integrated in SIVS, Sonja
demonstrates that combinatorial power of simple mechanisms.

e The use of psychologically realistic vision puts significant constraints on practical reason-
ing and representation. For example, the bandwidth limitations of visual attention imply
limitations on representation in reasoning under time pressure, and thereby rule out some
but not all popular approaches to reasoning about action [6].

In Sonja, the "control system" tham slpplies parameters to visual operators is the same as
that responsible for reasoning about action; it is described in [7]. Because this system is beyond
the scope of this paper, I will devote this section to presenting an example of Sonja in operation.
This example will give a sense of the ways in which many different sorts of visual operations,
including search, can be combined effectively to guide action; it should not be hard to see how
to make the relevant control decisions. What matters is that the control mechanisms base
their choices on visual information derived from visual routines using the operators described
in section 6.2. Sonja's cycle time is well under a second, engendering tight coupling between
perception and action.

Before more concrete discussion, I must explain the relevant aspects of Sonja's domain,
Amazon. I chose a video game as a domain in part because it allowed me to finesse both
early and late vision in SIVS. Doing so is dangerous, of course; as section 8.1 points out, it
may not be possible to connect a SIVS-like intermediate visual system with real early and late
vision. Amazon, as a domain, has several positive qualities from point of view of vision research,
however.

* It is a naturally occurring task domain, closely patterned on a popular arcade game.
People regularly engage in the same task Sonja performs.

s The task is intensely visual. Action decisions can be made mainly by examining the cur-
rent, visually accessible situation, without needing extensive reference to past situations
or elaborate reasoning about hypothetical future worlds.

* The scene presented on the game screen changes frequently, reflecting a dynamic under-
lying domain, and affording opportunities for research on visual processing in the face of
change.

Amazon is a dungeons-and-dragons.like game based on the commercial game Gauntlet.
Figure 11 is a screen snapshot of the Amazon window as it appears to the player. The player
(a person or Sonja) controls an icon on the screen representing a woman warrior: the amazon.
The window actually provides a view into a small part of a larger underlying dungeon composed
of bricks which form obstacles, walls, and rooms. The window tracks the amazon; when it gets

30

IP

I

I
I
I
I

.I I ."

tlI. "A T.. , I' I..
, .. P

II.
X . -I " X X:I L I ,

3 Figure 11: A simple Amazon scene. The player controls the amazon icon, which in the scenario
presented in this section must navigate around the obstacle to get the amulet.

I
1 31

i

close to the edge of the screen, the window smoothly moves over the underlying scene to keep
it within bounds, revealing new parts of the dungeon as it goes. The amazon can move in

the eight king's-move directions only; motion is continuous (actually a pixel at a time and fast
enough that there is no noticeable flicker). In the dungeon there are various sorts of enemies
and tools. In figure 11, for instance, there is an amulet at the extreme left which, when picked
up, confers magical powers on the amazon. There are many further complexities to the domain

which are not relevant here.
The scenario presented in this section will demonstrate only a small fraction of Sonja's

abilities; specifically, one of several routines for moving the amazon about in the dungeon.
I_ Sonja plays Amazon from the same perspective a human does: looking at the screen, which is

to say as if looking down on the dungeon from above, not from the point of view of the amazon
icon. There are well-known algorithms for navigating in mazes seen from above; depth-first
search is an obvious one, and probably one can't do much better in the general case of complex
and deliberately confusing mazes. I have not adopted such a solution. Amazon's mazes are
simple enough that it is visually obvious how to get about in them; search would be overkill.

It seems plausible to me that a human Amazon player instead uses visual routines whose
job it is to determine how to get from one point to another. Navigation thus depends mainly
on continuous visual analysis of the current situation. It also seems plausible that there are
several of these routines, specific for different sorts of situations. For example, different routines
might analyze the scene in terms of obstacles to avoid, rooms to enter or exit, or passageways3 to follow. (Eye tracking studies might be used to explore this hypothesis.)

When a new Amazon game begins, SIVS is initialized, blanking all the intermediate objects.
The first order of business is to find the amazon using the visual search algorithm of section 3.2.
Sonja uses coutent-addre:s! and inhibit-return! to enumerate things, such as the amazon,
whose value for the early dimension size is sodium. Sonja checks each successively addressed
:object to see whether it has the conjunction of early properties that are criterial for amazonhood,
namely being Iiddly and having diagonal elements in addition to having size sodium. Since
relatively few objects other than the amazon are of medium size, the search can be expected
to terminate quickly. (In figure 11, the only object Sonja might examine besides the amazon is

II the amulet.) Sonja then permanently allocates a marker to tracking the amazon, using a copy
of the track! operator. Sonja also draws a ray from the amawon in the direction it is heading,
using draw-ray!. Figure 12 shows the outcome of this amazon-finding routine.I Once Sonja has found the amazon, it looks around the screen to find interesting objects.
It does this with another visual search, specifying th early dimension grey-level with de-
sired ,malue non-zero, thereby enumerating all objects. There's no way to avoid enumerating
everything if you want to be able to find interesting things of arbitrary types, because there is
no single early property that interesting things share that is not also shared by uninteresting

I objects such as bits of wall. Accordingly, this search can spend many ticks enumerating bits
of wall before finding anything interesting. In the example at hand, Sonja eventually finds the
amulet, identifies it as such by examining its early properties, and drops a marker on it (figure
13).

32

1" TI...

'XJ.. P

I TT P!.

*.. PI. I X

Figure 12: Finding the amazon. Sonja tracks the amazon with the right-pointing marker and
extends a ray in the direction the amazon is heading. Recall that the inverse-video graphics
are only representations of the intermediate objects, which are not implemented graphically.

33

II.4

Fiue1:SnafnsteaueIn arsi ihtedaodsae akr

I3

To get the amazon to a goal (such as the amulet), Sonja first draws a line betwe' n their
rtspective markers using draw-line!. Then Sonja uses scan-along-line! to determine whether
this line intersects anything that would constitute an obstacle.

If there were no obstacle, the amazon could head directly for the goal. (Remember that
the amazon moves continuoubly.) Sonja finds the direction to the goal using marker-to-marker-
direction and by default heads the amazon in its major component. (The major and minor
components of directions were explained in section 6.2,3.)

There is an obstacle to getting to the goal, and scan-along-lin.I drops a marker on it
(figure 14). Typically, the obstacle is a largish Abject; simply putting a marker on it some-
where is not enough to know how to pass it. In order to discover its extent, Sonja uses
activate-connected-regionI, passing it the obstacle marker, a type specification for obstacles,
and an activation plane. This activates the whole obstacle (figure 15).

Having found an obstacle to getting to the goal, Sonja has to figure out whether or not the
obstacle is a room that must be entered or exited or whether it can simply be passed (as is the
case).

Sonja's visual routine for determining whether or not an icon is in a room is similar to
the abstract containment routine proposed by Ullman and discussed in section 4. It uses
activate-connected-region! to spread activation out.vard from the icon until it runs into an
obstacle boundary. The operator knows to skip over short gaps in the boundary; in this case
those may constitute doorways in a room. In the scene illustrated in the figures, had the
amulet been in the center of the obstacle, the walls would have acted as a room to enter, with
the doorway at the bottom right. The operator activate-connected-region! fails if activation
runs off the edge of the screen, which corresponds to the "point at infinity" of section 4. If
activation extends off the screen, the goal is not bounded by a room, or at any rate not one
that is currently wholly visible. In figure 15, neither the amazon nor the amulet is in a room,
and activato-connected-region! fails for both.

If the amazon is in a room and the goal is in the same room, or if neither is in a room, then
the entering and exiting code is not applicable. Responsibility for getting to the destination
rests in such cases with code for passing obstacles.

The passing code has one decision to make: which way to go around the obstacle. This
decision is quite complicated in general. By default, the best way around is the shortest.
However, if part of the obstacle is offscreen, the apparently shortest way around may not be.

To discover which is the shortest way around the obstacle, Sonja finds the centroid of its
convex hull. First it uses ezpur, 1-to-convex-hull! to activate the convex hull of the obstacle.
Then it uses mark-centroid! to move the obstacle marker to the centroid of the convex hull
(figure 16). Sonja can then get an idea of which way around the obstacle is shorter by examining
the sign of the angle between the goal, the amazon, and the center (using angle-ccv?). It is
usually the case that the shortest way around has the same sign as this angle. In the figure, for
instance, the shorter way around is counterclockwise.

Next Sonja needs to determine whether the obstacle extends offscreen in the direction it
would pass it if it took the apparently shortest way around. If so, it would typically be better to
go the other way, because the obstacle might extend arbitrarily far offscreen. (Recall that the

35

-,IT

.AI.

177

Figure 14: Marking the obstacle by finding the first thing along the line between Sonja and the

destination. The obstacle miarker is the square one.

5 36

I
I
I
I
I
U
I
U
3
I
I
1
I
I
I
I Figure 15: Activating the whole obstacle.

I
1 37

U

I
I
I
I
1

I
I

I
U

I
Figt 16: Marking the center of the convex hull of the obstacle to find the shorter way around.
The shorter way is given by the sign of the angle between the destination, amazon, and obstacle
markers: counterclockwise, in this case.

* 38

U
I
I

screen shows only part of a much larger underlying world.) Sonja determines whether the ob-
stacle passes off screen by activating the portion it would pass around and determining whether
that portion touches the edge of the screen. Specifically, Sonja uses transect-activation! to
activate the portion of the obstacle that is on the appropriate side of the goal line (figure 17).
Sonja then uses an operator called activation-touches-screen-dge? to determine if the ob-
stacle runs off the screen in the direction it hopes to pass. This is the "inelegant" operator I
mentioned in section 6.1; it is not obvious how to treat the edge of the screen given that SIVS
does not truly implement early vision.U Now Sonja has a best guess as to which way to go around: the apparently shortest way
unless it runs off the screen. To pass the obstacle, Sonja first sets the amazon's heading to
the major component of the direction to the goal: left, in this case. This makes the heading
ray pass through the obstacle, a condition Sonja senses with ray-activated?. Sonja then tries
successively more indirect candidate directions by repeatedly setting the amazon's heading to
be 45 degrees from its current heading, rotated in the direction opposite to that in which the
amazon will pass around the obstacle, until the heading ray no longer intersects the activated
region. (See figure 18.)

Eventually Sonja will have gone far enough that it can turn to head more directly towards
the goal. Periodically it forces the amazon's heading 45 degrees closer to the goal (the opposite
rotation from that used to find an initial valid heading). If the heading ray is still clear of the
obstacle, Sonja tries again, rotating until it has gone too far and runs back into the obstacle
(figure 19). Then Sonja rotates out one increment so that the ray is in the clear again. In figure
20 we see the amazon having gone far enough that a new heading is valid.

3
U
U
U
I
I
I

*!3

U
I
U
I
U

I

I
! x

Figure 17: Activating the apparently shorter part of the obstacle. The upper portion is activated
with both the original obstacle plane (diagonal increasing hatch pattern) and another (diagonal
decreasing hatch pattern), yielding a lozenge pattern.

I

i
U
I
I
I

*

xI

I

I

Ui

Figure 18: Searching for a heading. Sonja rotates the amazon, and the heading ray, progressively
clockwise, until the ray no longer intersects the obstacle. In this case Sonja first tries heading
left, finds that doing so causes the ray to intersect with the obstacle, and so tries heading3 diagonally up and left, which also fails. Finally it tries heading up, and succeeds.

1 41
I

U
U

II x
I
I
U

I I t

5,5

I I E

I

Fi

44

I

I
I
I
U
U
U
I ~*

U
UI p;~h

U
U
I
U
U -

I Figure 20: The amazon has gone far enough that a new heading will work.

U
U 43

I

1 8 Conclusions

SIVS is a first attempt at an integrated intermediate level vision architecture and so necessarily
cuts some corners. Section 8.1 describes some of these cut corners. Section 8.2 evaluates
SIVS according to the criteria of generality and usefulness posed in section 6.1. Section 8.3
summarizes the successes of the system. Though this exploratory investigation raises more
questions than it answers, it demonstrates that familar mechanisms such as visual muach and
attention can be made practically useful in a computational implementation.

I SI. Outstanding problems

The most pressing problems in both the model and implementation presented here are the lack
of treatment of early vision and of object recognition.

SIVS bypasses all of the standard difficulties with early vision, such as noise and illumination
variations. This raises the issue of whether this model of vision can be extended to domains in
which early vision is harder. Unfortunately, other research on intermediate vision has similarly
failed to address this issue. The relevant psychophysical studies use clean, evenly lit displays
with highly discriminable stimuli. Ullman's visual routines paper uses as examples diagram
interpretation tasks in which noise issues can be ignored, and this tradition has been continued
by other researchers in the area. Noise sensitivity is a serious issue because it is the job of
the visual operators to reduce noisy retinotopic arrays to compact encodings, carrying boolean
values in many cases. So unlike the outputs of early vision, which vary continuously, the
outputs of visual operators may be very wrong if they are not exactly right. Thus, they had

better not be sensitive to noise, Is it possible to implement noise-insensitive operators that
perform operations similar to those of SIVS? This is an open question on which the plausibility
of the model rests. In current research I am connecting SIVS with a real-time early vision
constructed by Nishihara (37, 381 in order to support a robot system.

SIVS does not address the hard issues in object recognition because Amazon is atypical in
that objects can be categorized simply by combinations of early properties. The number of
types of objects (icons) that can appear on the screen is smal, and problems such as occlusion,
the rotational instability of features, and non-rigid motion are not found in the domain.

Still, giving SIVS access to the icon datastructures does not fully finesse object recognition.IWhat constitutes an object for the Amazon code and what constitutes an object for Sonja differ
in some cases, so that Sonja has to do significant work to identify objects. Amazon represents
walls in terms of uniform square chlinks of wall-stuff, and represents only the positions of these
chunks, not their connectivity relationships. Accordingly, as described in section 7, Sonja must
use a connectivity operator to segment obstacles from the background.

Ullman originally proposed that visual routines are a preprocessing stage for shape recog-
nition [60]. More recent work suggests that the two are parallel channels each connecting the
early maps with the central system. It is tempting, in fact, to identify shape matching and
the visual routines processor with the temportl and parietal visual processing streams, devotedIrespectively to object recognition and the assessment of spatial relationships, described by
Ungerleider and Mishkin [61].

1 44U __ _

8.2 Evaluating the visual operators

This section evaluates Sonja's VRP according to the three "global" criteria posed in section
6.1.

* We want a "spanning" set: that is, a set of operators that together are sufficient for any
task. Here "any task" may mean "any psychologically plausible task" or, for engineers,
"any task in the class of domains of interest." Thus the set of visual operators, when com-
bined into routines, are to form a finite means for the realization of an infinite collection
of possible visual processes.

It is hard to formulate this criterion rigorously, but it is clear that SIVS does not satisfy it.
I added operators to the set as needed for particular tasks. By the end of the implementation,
I found I often had all the operators I needed to implement a new routine, but not always.
This suggests that I may have been approaching an adequate set, but I'm sure that even in the
one domain of playing Amazon continued system development would occasionally require new
operators.

This raises the concern that there is no spanning set, or that it would too large to implement
with the amount of hardware found in the human brain. The visual routines model is only
plausible if a relatively small spanning set is possible; since operators correspond to innate bits
of hardware, there can be only as many as will fit in the brain. (Given that we know little
a bout how intermediate vision is actually implemented, it is hard to say how many this would
be. Hundreds might be feasible; millions probably wouldn't be.) Further research, for example
cross-domain studies or formal analysis of the space of spatial reasoning tasks, is required to
address this issue.

* A set of operators should not only make it possible to implement any visual task, it
ought to make it easy. From an engineering standpoint, the VRP should present a niceprogramming system.

3It is hard to evaluate SIVS on this score because I never had an opportunity to implement
visual routines with a completed and debugged VRP. This largely negated the visual-system-
as-a-programming-language metaphor I was trying to create. Only by the end of the implemen-
tation was the VRP relatively complete and reliable; by that time, implementing new routines
was fairly straightforward. Further experience with the architecture is needed.

My feeling, however, is that the set of operators in SIVS is on the whole too low-level.
Writing routines often seemed to require more work than it felt intuitively like it ought to. It
required too much visual "bit diddling"; I wanted to be able to express things more abstractly.
Such abstraction might be provided by higher-level operators. It might also, however, be
provided by a "library" of general-purpose parameterized routines which would use low-level
operators.

3* A set of operators should also make it easy to learn new visual routines.

1 45
I

Lacking adequate theories of learning, it is hard to evaluate SIVS on this score. My thesis [7]
suggests experiments that might elucidate the problem. It seems likely that learnability would
be enhanced by the other criteria I have discussed. Learning is easier when your primitives3 span a space in which useful combinations are relatively dense [27].

8.3 Successes

This paper describes an implemented, integrated model of intermediate vision which addresses
several fundamental but often neglected problems: selective application of visual processing
to subsets of the image, search for regions of the image with task-relevant properties, and
the computation of spatial relationships among 1pa-ts of the imag. These problems arise in
most real visual tasks. SIVS's visual attention mechanism models psychophysical evidence. ts
model of visual search is based on Treisman's theory [54, 55] and is the first implementation of
visual search that models psychophysical results. SIVS's visual routines processor substantially
extends Ullman's proposals [60], specifies plausible interfaces between visual routines and earlier
and later processing, and is the first to apply visual routines to a natural task. All of these
mechanisms are designed to be implementable in biological hardware. Sonja demonstrates the
value of the mechanisms by using them to support visually-guided activity.

Because the biology of and computational constraints on intermediate vision are still poorly
understood, many of the mechanisms proposed in this paper represent informed guesses. These
proposals pose new open problems which can be the basis for experimental tests, many of which3 I have suggested.

i Acknowledgements

This paper was improved by comments from Phil Agre, Leslie Kaelbling, Jeff Shrager, and
Lambert Wixson.

References

[1] Subutai Ahmad and Stephen Omohundro, "Equilateral Triangles: A Challenge for Connec-
tionist Vision." Proceedings of the 12th Annual Meeting of the Cognitive Science Society,
MIT, 1990.

(2] C. H. Anderson and D. C. Van Essen, "Shifter circuits: A compucational strategy for
dynamic aspects of visual processing." Proceedings of the National Academy of Sciences,3 USA, Vol. 84, pp. 6297-6301, September 1987.

[3] Dana H. Ballard, "Cortical connections and parallel processi:ag: structure and function."3 The Behavioral and Brian Sciences 9 (1986) pp. 67-120.

[4] Dana H. Ballard, Eye Movements and Spatial Cognition. UniversiLy of Rochester Depart-
ment of Computer Science TR 218, 1987.

46I
U

I
I

[5] Dana H. Ballard, "Reference Frames for Animate Vision." IJCAI-89, pp. 1635-1641.3 [6] David Chapman, "Penguins Can Make Cake." Al Magazine, Vol. 10, No. 4 (Winter 1989),
pp. 45-50.

[7] David Chapman, Vision, Irstruction, and Action. MIT Al TR 1204, April 1990.

[8] Francis Crick, "Function of the thalamic reticular complex: The searchlight hypothesis."3Proceedings of the National Academy of Science, Vol. 81, pp. 4586-4590, July 1984.

[9] Francis Crick and Christof Koch, 'Towards a neurobiological theory of conscioisness."
Submitted, 1990.S [101 Jon Driver and Gordon C. Baylis, "Movement and Visual Attention: The Spotlight
Metaphor Breaks Down." Journal of Experimental Psychology: Human Perception and
Performance. 15:3 (1989) pp. 448-456.

[i1] F. L. Engel, "Visual Conspicuity, Directed Attention, and Retinal Locus." Vision ResearchIVol. 11 (1971) pp. 563-576.

[12] F. L. Engel, "Visual Conspicuity and Selective Background Interference in Eccentric Vi-
sion." Vision Research Vol. 14 (1974) pp. 459-471.

[13] C. W. Eriksen and J. D. St. James, "Visual attention within and around tne field of focal
attention: a zoom lens model." Perception anz Psych6physics 40 (1986) pp. 225-240.

[14] Martha J. Farah, "Mechanisms of Imagery.Perception Interaction." Journal of Ezperimen-
Sal Psychology: Human Perception and Performance 15:2 (1989), pp. 203-211.

[15] M. J. Farah, J. L. Brunn, M. A. Wallace, and N. Madigan, "Structure of Objects in Central
Vision Affects the Distribution of Visual Attention In Neglect." Society for Neuroscience
Abstracts 15:1 (1989), p. 481.

3[16] Jerome A. Feldman, "Four frames suffice: A provisional model of vision and space." The
Behavioral and Brain Sciences 8:2 (1985) pp. 265-313. With commentary from various
authors.

[17] Jerome A. Feldman and Dana Ballard, "Connectionist Models and their Properties." Cog.
nitive Science 6 (1982) pp. 205-254.

[18] Margaret M. Fleck, "Classifying Symmetry Sets." To appear in the Proceedings of theBritish Machine Vision Conference, 1990.

[19] Kunihiko Fukushima, "A Neural Network Model for Selective Attention in Visual Pattern
Recognition." Biological Cybernetics 55 (1986) pp. 5-15.

[20] B. K. P. Horn, Robot Vision. MIT Press, Cambridge MA, 1986.

47.

I

1 [21] Pierre Jolicoeur, Shimon Ullman, and Marilynn Mackay, "Curve tracing: A possible basic

operation in the perception of spatial relations." Memory and Cognition 1986, 14 (2),3 pp. 129-140.

(22] Bela Julesz, "A brief outline of the texton theory of human vision." Trends in NeuroScience,1 February, 1984, pp. 41-45.

(231 Raymond Klein, "Inhibitory tagging system facilitates visual search." Nature vol. 334 (4
August 1988) pp. 430-431.

[24] Christof Koch and Shimon UUman, "Selecting One Among the Many: A Simple Network
Implementing Shifts in Selective Visual Attention." Human Neurobiology 4 (1985) pp. 219-
227. Also published as MIT Al Memo 770/C. B. 1. P. Paper 003, January, 1984.

[25] Ben J. A. Krbse, "Local structure analyzers as determinants of preattentive pattern dis-3 crimination." Biological Cybernetics 55 (1987), pp. 289-298.

[26] Ben J. A. Krbse and Bela Julesz, "The Control and Speed of Shifts of Attention." Vision
Research Vol. 29 No. 11 (1989), pp. 1607-1619.

[27] Douglas B. Lenat and John Seely Brown, "Why AM ard Eurisko Appear to Work." A r-
tificial Intelligence 23 (1984) pp. 269-294. An earlier, shorter version of this paper also3 appeared in AAAI-83, pp. 236-240.

[28] Jim Mahoney, "Proposal for a system for spatial analysis of schematic drawings by visual3 routines." Unpublished M.S. thesis proposal, MIT Al Lab, June, 1985.

[29] James V. Mahoney, Image Chunking: Defining Spatial Bus,.ung Blocks for Scene Analysis.
MIT Al Lab TR-980, August, 1987.

[30] David Marr, Vision. W. H. Freeman and Company, San Francisco, 1982.

[31] John H. R. Maunsell and William T. Newsome, "Visual Processing in Monkey Extrastriate
Cortex." Ann. Rev. Neurosci. 1987 10 (1987) 363-401.

[32] Jefferey Moran and Robert Desimone, "Selective attention gates visual processing in the3 extrastriate cortex." Science 229 (1985), pp. 782-784.

[33] Michael C. Mozer, "A connectionist model of s!ective attention in visual perception."
Program of the Tenth Annual Conference of the (gnitive Science Society, Montreal, 1988,
pp. 19.5-201.

(34] Michael C. Mozer, The Perception of Multiple Objects: A Connectionist Approach. MIT
Press, Cambridge, MA, forthcoming.

[35] K. Nakayama and G. H. Silverman, "Serial and parallel processing of visual feature con-3 junctions." Nature 320 (1986), pp. 264-265.

* 48

I

I
I

[36] Ken Nakayama and Manfred Mackeben, "Sustained and Transient Components of Focal

Visual Attention." Vision Rcsearch 29:11 (1989), pp. 1631-1647.

[37] H. K. Nishihara, "Practical Real-Time Imaging Stereo Matcher," Optical Engineering 23,
5, 536-545, Sept.-Oct. 1984. Also in Readings in Computer Vision: Issues, Problems,
Principles, and Paradigms, edited by M. A. Fischler and 0. Firschein, Morgan Kaufmann,
Los Altos, 1987.

I [38] H. Keith Nishihara, "RTVS-3 Real-Time Binocular Stereo and Optical Flow Measurement
System System Description." Teleos Research internal document.

[39] D. I. Perrett, E. T. Rolls, and W. Cann, "Visual Neurones Responsive to Faces in the
Monkey Temporal Cortex." Ezp. Brain Res. (1982) 47:329-342.

[40] Michael I. Posner, Charles R. R. Snyder, and Brian J. Davidson, "Attention and Detection
of Signals." Journal of Ezperimental Psychology: General, 1980, Vol. 109, No. 2, pp. 160-
174.

[41] M. I. Posner, Y. Cohen and R. D. Rafal, "Neural systems control of spatial orienting."
Philosophical Transactions of the Royal Society of London, Series B 298 (1982) pp. 187-
198.

[42] Mary C. Potter, "Representational Buffers: The Eye-Mind Hypothesis in Picture Percep-
tion, Reading. and Visual Search." Chapter 24 in Eye Movements in Reading: Perceptual
and Language Processes. Academic Press, New York, 1983.

[43] Zenon Pylyshyn, "The Role of Location Indexes in Spatial Perception: A Sketch of the
FINST Spatial Index Model." Cognition, 32:1 (June, 1989), pp. 65-96.

I [44] Zenon W. Pylyshyn and R. Storm, "Tracking multiple independent targets: Evidence for
a parallel tracking mechanism." Spatial Vision 3:1.19.

[45] Marc H. J. Ronanycia, "The Design and Control of Visual Routines for the Computation of
Simple Geometric Properties and Relations." University of British Columbia Department
of Computer Science Technical Report 87.34, 1987.

l [46] H. Sakata, H. Shibutani, and K. Kawano, "Functional properties of visual tracking neurons
in posterior parietal association cortex of the monkey." Journal of Neurophysiology 49
(1983) pp. l 64-1380.

[47] A. Shaffir, "Fast region coloring and computation of inside/outside relations," M. Sc. The-
sis, Department of Applied Mathematics, Feinberg Graudate School, Weizmann Institute
of Science, Rehevot, Israel.

[48] Mary L. Shaw, "A capacity allocation model for reaction time." Journal of Ezperimental
Psychology: Human Perception and Performance, 4 (1978), pp. 586-598.

I 49

I

I
I

I [49] M. L. Shaw and P. Shaw, "Optimal allocation of cognitive resources to spatial locations."
Journal of Ezperimental Psychology: Human Perception and Performance, 3 (1977),
pp. 201-211.

[50] J. Shrager, D. Klahr, and W. G. Chase, "Segmentation and Quantification of Random Dot
Patterns" Proceedings of the 23rd Annual Meeting of the Psychonomics Society, 1982.

[51] Gary W. Strong and Bruce A. Whitehead, "A solution to the tag.assignment problem for
neural networks." Behavioral and Brain Sciences (1989) 12, pp. 381-433.

I [52] William B. Thompson and Ting-Chuen Pong, "Detecting Moving Objects." Proceedings of
the First International Conference on Computer Vision, 1987, pp. 201-208.

[53] Anne Treisman, "Perceptual Grouping and Attention in Visual Search for Features and
Objects." Journal of Experimental Psychology: Human Perception and Performance, Vol. 8
No. 2 (1982) pp. 194-214.

[54] Anne M. Treisman and Garry Gelade, "A Feature-Integration Theory of Attention." Cog-
nitive Psychology 12 (1980), pp. 97-136.

I [55] Anne Treisman and Stephen Gormican, "Feature Analysis in Early Vision: Evidence From
Search Asymmetries." Psychological Review Vol. 95 (1988), No. 1, pp. 15-48.

[56] Anne Treisman and Janet Souther, "Search Asymmetry: A Diagnostic for Preattentive
Processing of Separable Features." Journal of Experimental Psychology: General, Vol. 114,
No. 3 (September 1985), pp. 285-310.

[57] Yehoshua Tsal, "Do Illusory Conjunctions Support the Feature Integration Theory? A
Critical Review of Theory and Findings." Journal of Experimental Psychology: Human3 Perception and Performance 15:2 (1989), pp. 394-400.

[58] John K. Tsotsos, "Analyzing vision at the complexity level." To appear, Behavioral andIBrain Sciences.

[59] Shimon Ullman, "Filling in the Gaps: The Shape of Subjective Contours and a Model for
their Generation." Biological Cybernetics 25:1 (1976), pp. 1-6.

1' [60] Shimon Ullman, "Visual Routines." Cognition 18 (1984), pp. 97-159. Also published as
MIT A.I. Memo 723, June 1983.

[61] L. G. Ungerleider and M. Mishkin, "Two cortical visual systems." In D. J. Ingle,
M. A. Goodale, and R. J. W. Mansfield, Analysis of Visual Behavior, MIT Press, Cam-
bridge, MA, 1982.

[62] Jeremy M. Wolfe, Kyle R. Cave, and Susan L. Franzel, "Guided Search: An Alternative
to the Feature Integration Model for Visual Search." Journal of Experimental Psychology:
Human Perception and Performance 15:3 (1989), pp. 419-433.

*I 50

I

[63] S. M. Zeki, "The functional organization of projections from striate to prestriate visual
cortex in the rhesus monkey." Cold Spring Harbor Symposium on Quantitative Biology 40
(1975), pp. 591-600.

- [64] S. M. Zeki, "Uniformity and Diversity of Structure and Function in Rhesus Monkey Pres.
Itriate Visual Cortex." Journal of Physiology 277 (1978), pp. 273-290.

II
I
I
I
I
I
I
I

I

!I

I

I F Cooperative Robot Demonstration: Working Doc-

I ument

I

I
£
I
I
I

I
I
I
I
i

i

I
I
I
I
I

Cooperative Robot Demonstration: Working
Document£

Leslie Pack Kaelbling
Neil D. Hunt

Stanley J. Rosenschein
H. Keith Nishihara
Nathan J. Wilson

Laura E. Wasylenki
Jeffrey R. Kerr

1 October 6, 1989

I
I
i
I
I
i
I

Chapter 1

Motivation and Plan

1.1 Outline
We would like to produce a demonstration of robotics capabilities illustrating approaches
and techniques in the areas of real time perception, reactive control and planning. and
manipulation. An important characteristic of our approach is to make all the elements
of the demo as general as possible, so that we can extend the system in many different
directions to enable additional demonstration capabilities.

The goal of this plan is to formalize our approach, and to concentrate our efforts so
that a large group of people might contribute fully to a significant combined effort.

1.1.1 Philosophy

Our aim is to create a set of generalized methods at each level in the architecture which
we hope will lead to a cross-product of capabilities. The addition of a new capability at
any level multiplies the performance of the whole system rather than simply adding to it.

We intend to develop a system which is clearly programmed in a generic way, in which
the subcomponents are each applicable in a wide range of situations, so that the whole
system can respond to situations far outside those few which could have been enumerated
by the designers of the system and of each component. We hope to demonstrate incremental
progress down a well defined path toward such richness of performance.

1.1.2 Methodology

We will tackle this project in a series of stages or slices, each of which will have two main

phases:

1. Define an incremental level of performance which can be achieved in a period of
about a month. Define the architecture, interfaces and communications languages of
the complete system. Determine the additional capabilities which will be required
at each level.

2. Create a skeleton system in which each module exists in some nominal fashion.
The skeleton system should allow developments in each separate module to be at

1

I

I least partially tested in its environment. After the first stage, this slice will involve
something like implementing the extended interface definitions and recompiling.

3. Extend the capabilities of each module in parallel, to included those requirements
identified at the start of each stage.

£ 4. Integrate all the modules, test and evaluate the system.

I 1.1.3 Robot games

A proposed sequence of performance goals will permit the system to piay 'robot games"5such as those listed below.

1. Toggle (pick up, put down; hold this, hold that).
2. Hide and Seek.

L 3. Passing back and forth. (Human hand)

4. Tag?

I 5. Catch.

6. Pour me a drink.

5 7. Simon says (user specified goals in some language).

It should be emphasized that we hope to build a system whose capabilities cannot be
enumerated, where the compositional structure of the goals provides great richness. The
games listed above are simply intended to motivate and illustrate initial subsets of the

I possibilities.

1.2 Architecture

We conceive of the system as having three components: next state computation, inter-
nal state, and action control, as illustrated in Figure 1.1. The system operates in a regular.
clocked mode, in which the current state vector is updated based upon new inputs and the
previous state.

The three components can be divided into a number of subcomponents. We identify
three major components of the internal state:

Recognition state Recognition of objects and characteristics of the world mu-,t take
place in stages over time, with successive observations accumulating evidence toward
recognition. This accumulating evidence is part of the internal state of the systemmi.

I Database The system maintains its current picture of the world in the form of an objects
and properties database.

12

Next state
c o m p u ta tio n I t m lA t o

Raw input data: State Contro
viin,

MUucSn SApocions

Dhs oli r actions] :::::-...........

Figure 1.1: Proposed demo system architecture.

Goals The current goals (volition) of the system is encoded in another piece of the internal
state.

Each of these subdivisions of the internal state vector is updated bsed upon different
mixtures of previous state and new inputs. Thus the next state computation may also be
divided into the same three sub parts.

Recognition The recognition component is responsible for accumulating evidence about
properties of the world in the recognition state; to do this, it considers raw input
from the world, the properties of other objects in the world (obtained from the
database state), aid previous evidence collected in the recognition state. In addition,
manipulator status is recognized and used to update properties of the maipulator
objects in the database.

Database The database of world properties is maintained by degradation of the informa-
tion over time. The main input to the next state computation for the database is
the previous state of the database, which contains all the data about velocities, ac-
celerations, etc. for each object. In addition, the recognition subsystem can propose
new objects for the database, or may be able to retract previous assertions made to
the database. Thus additional input is obtained from the recognition state.

Goals The goals of the system are derived from speech input data, and are maintained
over time by copying the previous state.

Based upon the current input state, the system can take various actions to satisfy its
goals. The actions can also be broken down into several parts:

Sensor control Perception of the world is an active process, and demands that the sensors
generating the raw perceptual data arc pointed and controlled to acquire the data
most useful for recognition of conditions in the world. The sensor control actions a' e
dependent upon the current recognition state, and also ui)on2 the curient objccts in
the world. They are also dependent upon the current goals of thv systeiii.

3

a.Rcgnition Database oorei.

ArnColuol - Am .conto

Figure 1.2: Proposed demo system architecture.

Arm control The manipulators are the principal means by which the system interacts
with the world to achieve its goals. The arm control outputs depend upon the objects
currently in the world database, and also the goals of the system.

Speech output Speech (or other textual output) is important for answering queries, and
for prompting or asking for assistance or clarification from the user of the system.
The speech output is based upon the current goals and the state of the objects in
the world database.

While the model of the system presented above is conceptually simple and elegant, it
is more convenient to break it down into horizontal slices to enable different pieces to be
constructed in parallel as separate modules. Figure 1.2 shows a modular decomposition of
the architecture described above.

The relationship between the parts of the two figures is described below:

Perceptual modules The raw input data requires a great deal of specialized processing
before it is suitable as updates to the recognition state; The perceptual modules of
Figure 1.2 encapsulate such processing, and arc viewcd as a sct of tools which can
be pointed and controlled in order to ask specific questions about the state of the
world. They receive inputs from the sensor-control action module in addition to raw
world data, and generate outputs to the recognition system.

Recognition The recognition module of Figure 1.2 groups together the recognition coin-
putations, and also the recognition internal state. The third part of the recognition

4

slice is the sensor control section.

Database The database component includes the database state, and the update rules.I- Inputs are obtained from the recognition (both world properties and textual inputs).

Database projection The action block of Figure 1.1 must test many different conditions
about the world represented in the database. In order to ensure that the develop-
ment of each of the parts of the actions block is well structured, the computation
of predicates representing these world conditions has been abstracted into a block
called database projection (because it projects the facts in the database into a set
of conditions and properties of direct interest for determining actions to perform).

3 A central task is to determine a language for specifying the conditions that will
be implemented in database projection, that will motivate the type of recognition
and perception capabilities which will be required, and that will control the type ofIactions which can be implemented.

Goal strategies and action control The actions block remains grouped together, as
the different actions which can be performed must be mediated by some common
system so that common resources (manipulators, time, attention) can be allocated
according to priorities established by the goals, and by a set of top level goal achieve.
ment strategies. The goal strategies will have available sets of action strategies fur-
nished as speech actions, sensor control actions, and manipulation actions.

Arm control The arm control block translates the action commands from the actions
block into low-level manipulator commands, and feeds status information and force
data back into the recognition module.

£ Speech control The speech control block translates the speech commands from the ac-
tions block into low-level speech commands. It also interprets speech input and feeds

I the data to recognition.

The next sections discuss the requirements for each of these modules in more detail.

,1.2.1 Perception

A number of perception modalities are anticipated, including vision, touch/force, and
sound.

The visual perception capability is viewed as a set of modules making reliable, robust.
real-time measurements of physical parameters of the world. They are to be viewed as
tools, which can be controlled and queried by the higher level processes.

Touch and force feedback is afforded by the robot manipulators available and will be
I used as an additional capability for determining details of the world.

Speech input and output (initially simulated using a keyboard and screen) will be used
for goal acquisition and for the system to interact with users by outputting status or
requests for the user.

3 5

I

1 1.2.2 Recognition

The recognition component will take as input the results of queries made of the low-level
perceptual machinery and force-feedback data and will transduce that into high-level state-
ments about objects and their relations. The objects that we would like to recognize (at
least for the initial stages of the project) are: table, robot arm and hand, human arm andI hand, coffee cup, soda can, ping-pong ball, and freezer cont 2r. The recognition compo-
nent will have its own internal state and will be responsible ,Qr managing the uncertainty
connected with intermediate stages of recognition. When it passes information out to the
next component, it will be taken to be true.

The recognition process also has an action component. It will be important to direct the
low-level perceptual sensors to parts of the world that will be of most use to the recognition
component. In a similar vein, the recognition actions will be triggered by high-level goals.
which will tell the robot to look for ping-pong balls, or track the human hand, or search
for a flat surface on which to place some object. The recognition-action component may
also direct the arm in order to use the force-feedback to find the location of an object.
Goals of information will have to be prioritized with other goals in order to avoid conflicts.

The recognition process may also use information from the database to guide its per-
ceptual activities and inferences. An interface must be carefully specified in order to shieldIthis component from the implementation details of the database.

The recognition component can be tested, at the early stages, with no other compo-
nents, by giving the agent top-level goals of information and simply tracing the outputs of
the recognition module.

Individual steps in building the recognition component are hard to identify. A graded
set of abilities can be described, however, as follows:

1 1. Static object alone against contrasting background; no occluding or even distracting

objects.

2. Static object in sceue with others, but no occlusion.

3. Slowly-moving object with no occlusion or confusion.

4. Slowly-moving object with other objects but no occlusion.

I 5. Static objects that occlude one another.

6. Moving objects that occlude one another.

I 1.2.3 Database

The database component will be responsible for storing dcscriptions of objccts founld by
the recognition component. It will store information about a finite number of objects and
their relations with one another in very general terms. This information will include a tag

I that describes the type of the object and bounds on the locations of objects with respect
to oite another as well as their relative velocities. The information will come from the
recognition component.!6

-I

This component can probably be developed &,id tested initially by using synthetic data.
An important early decision is whether to implement it in C or in Rex. If we do it in C
it will require a fairly large amount of system hacking to get the interfaces to work right;
doing it in Rex entails a fairly large performance penalty due to the inefficiency of indexing.
but would make it easy to integrate with the rest of the system.

The database must perform the following operations:

Merging: If two database entries can be shown to be the same physical object (perhaps
because they occupy the same space), then their parameters should be intersected
and one of the instances deleted.

Propagation: If it is possible to deduce something about the relation between objects
i and k from the relations between objects i and j and objects j and k, then the
relation between objects i and k should be strengthened accordingly. It is difficult
to bound the number of propagation steps required to get the database into steady-
state. In practice, a certain number of propagations will be performed each tick.
leaving some relational information incompletely localized.

Degradation: As time passes, the information that the database has about a particular
object will degrade. The database must degrade its information every tick, based on
what it knows about individual objects. For instance, it might know that a coffee
cup with no arms near it will stay where it is from one tick to the next, or that the
robot arm can only move at a certain maximum velocity so that it must be within a
certain distance of where it was last tick.

Inconsistency reduction: Although the recognition component strives to come to true
conclusions, sometimes it will err. The database may notice such errors in either the
merging or the propagation phase. When it tries to intersect two sets of properties
and relations for an object and finds a contradiction, it must remove all of the objects
involved. For instance, if it decides that two entries must be the same because they
occupy the same space, but that they are different colors, it will throw them both
out.

Pruning: There will be only enough room in the database for a finite number of objects
(in order to keep the update time bounded). When a new object is found by the
recognition component and the database is full, it must decide which object to throw
away. This may be based on the recency or specificity of information about the object.
It might be more reasonable to make it depend to some degree on the agent's current
goals; this would require feeding goal information back to the database component.

1.2.4 Manipulation

The manipulation component will consist of a set of low-level manipulation strategies.
written in Gapps, that achieve or maintain particular goals. These strategies are expected
to make use of conditions that can be derived from information in the database as well
as (perhaps) direct use of force-feedback data. The implementors of the manipulation

7

component should tell the database implementors if they would like to have the force
information directly or channeled through the database.

Many of these abilities can be debugged initially by fixing the locations of the objects
and using force information directly (unless we want or need to do visual servoing; if this
is the case, we may want to work on data directly from the recognition component or from
the database). We may want to invent more abilities that show off force control or other
novel capabilities of the robot and its programmers.

Below is a list of possible manipulation abilities. Although they are listed individually.
it would be best if the entire set of abilities could be generated from a few major kinds of
manipulations and different sets of parameters.

Desired manipulation abilities include:

1. Pick up ping-pong ball.

2. Pick up cup (from different orientations).

3. Pick up soda can.

1 4. Pick up freezer container (from different orientations).

5. Open soda can (if possible).

6. Pour liquid from one vessel to another (soda can to cup is a good starting case).

7. Place picked-up objects back on table.

8. Put ping-pong ball inside cup or freezer container.

1 9. Put freezer container or cup over top of ping-pong ball.

5 10. Put object in human's hand.

11. Hold objects for human to take, noticing when he has a hold of it and letting go.

12. Take objects from human.

I1.2.5 High-level Action

The high-level action component will initially consist of a set of strategies for playing
interactive "games" with a human user. A more sophisticated version will have the user
describe (in natural-ish language) what game he wants to play.

Some possible games are:

I Pick-up/Put-down: This game can be played with any object; the robot is to pick up
the object if it is on the table and put it down if it is not. Can be generalized to toggle
between any two user-specified conditions. The conditions can be finite conjunctions

- (or prios) of ach's and maint's. Need way of specifying to the robot that it should
stop the current game and start another one.

8

Catch: In the simple case, give an object to the human, then take it from him. In the
more complex case, play real catch by throwing the object. Not sure we have enough
precision in when the gripper opens and closes to do this. Could catch the ball in a
cup and "throw" it by dropping it.

Hide and Seek: Tell the robot to find a particular object. Robot indicates the object
(somehow) when it is found. May entail physical actions like picking up an overturned
coffee cup to see if there is a ping-pong ball under it.

Tag: Dangerous. Robot tries to tag human hand, then human tries to tag robot hand
while robot tries to get away.

Simon Says: All of these games can be expressed as fairly simple Gapps goals. In the
long run, implement run-time goal-reduction and all the Gapps goal operators at
run time with a fixed bound on total goal length. With a suitable set of primitive
conditions, there could be a wide variety of interesting robot games. This ability
can be approximated in the shorter term by having a set of high-level goal types and
allowing the user to give the agent simple conjunctions of parametrized instances
of the goal types. An example would be: (ach, maint) (on, in) <referring-expr>
<referring-expr>. Syntactic sugar could be used to make the language more natural.

1.2.6 Database projection

In the course of writing the high-level action strategies, the programmer will need to test
a number of conditions. These conditions will not be directly available in the database,
but should be projectable from the information contained in the database. ii addition,
there will be a set of standard world conditions that the human can use to communicate
with the robot. The task of high-level perception is to implement the functions that map
the database into these conditions. They will be indexical-functional conditions like the-
location-of-the-cup-cont aining-the-ping-pong-ball and is-there-a-unique-cup-containing-a-
ping-pong-ball.

It might be reasonable to write these functions in Ruler, although, because these are
pure functions, we wouldn't need the state-update facilities. The standard world conditions
can be specified ahead of time, but much of the specification of this task will depend on
the speciic conditions that need to be tested in order to carry out particular strategies.
We will use a simple compositional language to specify these conditions rather than using
atomic names.

1.3 Interfaces and Implementations

I 1.3.1 Machines and languages

Perceptual modules: Initially, stereo and motion modules will be implement-d on
Natasha (symbolics lisp machine), and shape and other capabilities will be imple-
mented on Boris (Decstation 3100). Since there is no frame buffer capability on Boris.

9

Natasha Boris Wayback

Figure 1.3: Processes and machines.

Wayback (Sun 2/120) will be hoo!:ed up as a frame buffer server passing portions of
image to Boris across the ethernet.

Recognition: Recognition will be implemented in Rex, to run as part of a monolithic
process (incorporating the database, database projection, and action rules) on Boris.

Database: The database will probably be implemented in C, but will be linked into the
Rex module running on Boris. Nathan has described a technique for generating
a shell database by defining inputs and outputs and a minimal Rex program, and
causing the Rex compiler to generate the shell which will then be filled in.

Database projection: The database projection rules will be written in Rex and incor-
porated into the main process.

Actions: Each of the actions modules will be written as a set of Gapps rules, which will
then be integrated by the Gapps compiler into the main process running on Boris.

1.3.2 Sy'nchronization issues

We have decided to maintain the asynchronous behaviour between the different processes
of the system, as it offers significant simplifications in communications protocols, and offers
possibilities for running the system in a fault, tolerant manner.

However, where multiple processes art :unning on the sune machine (Boris), there was
a question as to whether the processes should communicate directly to avoid pathological
timesharing behaviour, or whether indirect synchronization or no synchroniztiton womld
suffice.

No synchronization: The round robin type tin.slharing operaLtilng system woulh ensture
that each process obtained its share of the, resomu ces over time, but it wa.N quest aincd
whether the granularity of such sharing would be satisfactory for maintaining real-
time performance.

10

Indirect synchronization: One possibility would be simply to have the cooperating pro-
cesses simply relinquish control of the CPU at suitable intervals by sleeping for a few
milliseconds, enabling the other process to resume action. Suitable points would be
at the beginning or end of each Rex tick, and between working on different perception
queries.

Direct synchronization: Apart from hacking the scheduler (or obtaining a real time
operating system with the necessary facilities already present), other more plausible
solutions include synchronizing the two processes by means of pipes, signals, or other
IPC mechanisms.

Desirable properties of the mechanism chosen include satisfactory performance, and main-
tenance of modularity between the different processes. It would be good if the processes
could be moved to alternative processors without changing the code too much.

The hope is that with Rex sleeping after each tick up to the declared tick time, the
scheduler will be able to give the perception processes sufficient compute time for the
system to work. If this turns out not to work, we can either switch back to having Rex call
the per-ption processes explicitly or have some synchronizing message passing between
the con." C.ting processes.

I 1.3.3 Interfaces

Most of the interfaces between the modules of Figure 1.2 will be internal data structures
within Rex. The definition phase will determine the nature of the data exchanged across
such interfaces.

A number of external interfaces between processes and machines also need to be de-
signed.

I 1.3.3.1 Recognition and Perception (interfaces A, B, D)

This section explains how we expect code written in Rex to control and get information from
a set of perceptual processes each capable of performing some parametrized calculation onIsome input unavailable to Rex. It is designed to handle situations in which many questions
can be answered in one tick, as well as situations in which it takes many ticks to answer a
single question.

The general model is that each tick Rex will ask up to a fixed number of questions in a
prioritized order. Each tick it will als. receive up to a fixed number of answers to questions
that it asked sometime in the past.

The questions are sent to the Rex Execution Environment, hereafter RexEx, in the
usual way. (Note: In the current implementation the Rex code is actually called directly
by RexEx and heuce is just a part of the RexEx process.)

RexEx takes each question and tags it with the tick number in which the question was
asked. It then sends the questions, in priority order, to whichever process it considers
appropriate, as a packet through a socket. Using sockets allows us to have either processes
running on separate machines connected to the machine running RexEx, or as separate
processes running on the same machine. Note that it is also possible to have a single proce,,,,5 _11

I

that answers the questions for more than one socket. Initially the different processes will
answer very different types of questions so they will probably be dispatched based simply
on a type field in the question from Rex. In the future, if we ever have a system where more
than one perceptual process is capable of answering the same question, a more complex
dispatching system could be devised. After dispatching all the questions asked by Rex.
RexEx sends a null question packet to all the perception processes that wei e not asked any
question. As with the other question packets, the null question packets include the current
tick number.

Each perception process maintains a queue of q,,estions. When a perception process
has an empty queue it blocks, waiting for new questions to arrive on its socket from RexEx.
When a question is read by a perception process, any questions in its queue from earlier
ticks are pitched and the new question is put on its queue. Once the socket is empty the
process takes off the first question in the queue and starts working on it. When it is done
it sends the answer back to RexEx, looks for new questions and starts over. Note that since
null packets are labelled with their tick numbers, they cause the queue to be purged.

After sending out the questions, RexEx looks for any answers that might have arrived3from the perception processes. If more answers arrive on a given tick than can be sent to
Rex, the oldest answers are discarded. A more complex selection scheme may need to be
developed if it turns out that we are discarding a lot of answers.I We considered a number of more complex schemes for handling overruns of questions
going to the perception processes or answers coming back to Rex. The systems we con-
sidered involved giving each question a unique ID number and/or a priority number over
some small range.

3 1.3.3.2 Framebuffer server to Perception (interface C)

This will be a two way ethernet protocol, in which perception indicates the subimage
desired from which frame buffer and at what resolution. The existing UDP packet protocol
could be used, subject to packet size constraints. Alternatively some higher level protocol
will be used. This will be decided in the next phase.

I
I
i
|

II

Chapter 2

Level 1 Demonstration

2.1 Task Definition

This section gives an external specification of the desired abilities of the level 1 demon-
stration. Note that it is not sufficient to simply achieve these abilities; the code should
be structured according to the general philosophy and methodology of this project and be
amenable to extension into the next phases of the demonstration.

The system should be able to satisfy goals of the form

{ach I maint)((verb)(noun) (noun))

in which (verb) ranges over the set {touching, grasping} and (noun) ranges over the set
{hand, table, cup, ping-pong ball}. The things in the verb category are binary predi-
cates; the nouns, unary predicates (note, not individuals). The semantics are existential;
that is, ach (grasping hand cup) means that some hand should be grasping some cup. The
semantics will be made more formal in the section on 41.

This definition should help the designer of each module to determine what its inputs
and outputs must be in order to enable the desired top-level competences.

The particular top-level goal of the agent will, initially, be specified at compile time,
but it should be a simple extension to allow top-level goals of this kind to be entered by a
user at the keyboard.

2.2 Language and Database Definitions

2.2.1 rI

This section contains a preliminary specification for the language to be used in specifying
goals and internal conditions for the Level 1 demonstration.

2.2.1.1 Abstract L1: AL 1

First order language over the following symbols:

13

I
I

Constants: tablel, robot-handi, cameral
Unary predicates: table, robot-hand, camera, cup, ping-pong ball
Binary predicates: grasping, touching, in
Unary functions: weight
Binary functions: relative pose

Obviously, auxiliary predicates will be required for expressing any interesting conditionsIand manipulation strategies. E.g., how do we express the fact that the cup is upside down?

cup(c) A upside - down(c)

surface(b) A table(t) A cup(c) A bottom - of(b, c) A touching(b, f)

2.2.1.2 Concrete Ci: CC1

To serve as a concrete language for programming, we have to define the Gapps expres-

sions that express conditions abstractly defined by AC1 . Gapps has two places where
"conditions" or propositions play a role:

1. as the first operand in an if expression: (if condition subgoall subgoal2); and

2. as the operand of an ach or a maint expression, with the added complexity that the
condition is factored into a compile-time tag and run-time parameters: (ach/maint
tag- of. condition parameters - of- condition).

2.2.1.2.1 Testable Conditions The first case is easier to deal with: we can use ex-
actly the first order language AC1 , with quantifiers interpreted as finite quantification over
indices in the data base (rather than real-world objects-a major pun).

So, we can implement a Rex function, db-test which takes a Lisp s-expression that
encodes a statement in A 1 and returns true, false, or dont-know. It is possible to refer to
individuals in these expressions by using a database index, gotten by calling the function
a with a variable name and an expression in AC1 in which that variable occurs free. (For
example (a 'x (cup x)).) It will be useful to augment A. 1 with the quantifier 3!; this
obviates the need for a the function, as well.

2.2.1.2.2 Goal Conditions The second case is trickier, since the goal reduction rules
don't just "evaluate" the condition, they trigger off its syntactic shape., For now, define a
subset of goals

su st o ol (ach/m aint ((binary) (unary) (unary))[ul v vJ
where the condition encoded by the ordered pair ((r pi p2), []) is 3x, y., pI(x)Ap2 (y)Ar(.r. Y).
Far from general, but a way of getting started. (This is the interpretation used in the
section describing the external goals for this level.)

14

2.2.2 Database Definition

Let LP and LR be lattices with elements finitely representable and with operations n
(meet), U (join), j= (entails). These lattices can be primitive lattices of several types

* finite lattices defined explicitly (e.g., type hierarchies)

S @ interval lattices with elements [X, y], where

[TI,y] n [x2,y] = [max(x 1,x 2),min(y,, y 2)].

9 product lattices with elements [xI,... , x,], where

[l, ,.iXdn n[y,,...,y.] = [ln y,,..., nnYn].

Intuitively, the elements of LP represent primitive unary properties that can hold of
objects in the robot's world, and the elements of LR represent primitive binary relations.
(The non-primitive ones will be computed from the database by database projection.)

In addition to meet, join, etc., we assume we are also given the following operations on
lattice elements:

degl : LP -LP
deg2 LR -LR

triang LRxLR-.-LR

Let 0 (1) be the minimal (maximal) elements of some lattice determined by context.
Let DB = [P,R], where P is a vector of size n with elements drawn from LP, and R is an
n x n array with elements drawn from LR. Let IN be the input variable, taking as values
triples (u, v, w) where u E LP and v, w are each n-tuples of elements of LR. (Intuitively.
u represents a unary description of an object; v and w represent the relations between it
and the other objects. Most of v and w can be 0, possibly excepting the objects relation
to the camera and/or the arm. Obviously, we could have also have a vector of INs.)

We can define the DB component's next-state function as

f (DB, IN) = infer(insert(IN, purge(degrade(DB))))

with the following function definitions.

Degrade:

degrade([P, R]) = [P', R'],

for all i,
P'[i] = degl(P[i]))

and for all i, j,
R'[i,j] = deg2(R[i,j]).

Purge:

purge([P, R]) = [P',R1]

Let m be the index of the least important object in DB; then

{ 0 if i = mP'[i]
P[i] otherwise

0 ifi=m
R'[i,j]= 0 ifj = m

R[i,j] otherwise

Insert:

3 insert((u,v,w),[P, R]) = [P',R']

Let m be the index of the least important object in DB (the index just purged)

S= u ifi=m
P'[i] = P[i] otherwise

I v[j] if i = m
R'[i,j] = w[i] if j = m

I R[i,j] otherwise
Infer:

I
infer([P, R]) = inferl(inferl(... inferl ([P, R]).

and inferl([P, R]) = propagate(merge([P, R]))

3 Merge:

merge([P, R]) = [P', R']

I Let i,j be the first mergeable pair (i.e., the first pair such that R[i,jJ = 'j='). For all k,

P'[i = P[i] n P[j]

R'[i,k] = R[i,k]nR[j,k]

R'[k,i] = R[k,i]nR[k,j]

-I Propagate:

3 propagate([P, R]) = [P, R']

For all k,5 R'[i,jI] = R[i,j] nl triang(R[i, k],R[k,j])

16

I
2.3 Interface Definitions

2.3.1 Perception to Recognition: Vision tools on Natasha

2.3.1.1 General interface notes

2.3.1.1.1 Port numbers

Natasha system control port: 1024 + 442 = 1466

Natasha receive port: 1024 + 444 = 1468

Natasha reply port: 1024 + 445 = 1469

2.3.1.1.2 Datagram formats To start the system, send a one word datagram to
Natasha's system control port containing the number 1. This starts a server which will
then handle requests and respond on the receive and reply ports. To stop the system, send
a one word datagram to the system control port containing the number 0.

Request datagram packets begin with a tick number, followed by a single code word
indicating type of request, followed by additional words specific to the type of request
being made.

Reply datagrams will begin with the code word and parameter words from the request
being replied to, followed by additional words specific to the type of request.

2.3.1.1.3 Scheduler behavior Once started by the start system message, the sign-
correlation scheduler will monitor incoming datagrams on Natasha's receive port. Packets
will be read out of the input buffer until the last one is found. All packets with a tick
number smaller than that of the last packet (unless packets can come out of order) will
be discarded. The most recent packet will be decoded and dispatched to the appropriate
measurement tool. The resulting measurement will then be returned to the requester and
this cycle will be repeated.

Note that the input buffer seems to have a capacity for about 40 short datagranis.
When it is full it ignores new stuff. Thus if too many new requests are sent while Natasha
is working on an earlier one, the 41st and later requests will be discarded.

2.3.1.2 Motion Tool

The motion tool will measure motion over its full field of view and report the position,
velocity, and approximate size of the n fastest moving regions. (n will be a small number
in the range (1 to 4)).

1. Motion request datagram format

Tick number The number of the Rex tick on which this message was generated.

Request code = 100. Code for a motion measurement.

2. Motion reply datagram format

17

Tick number The number of the Rex tick on which this message was generated.

Request code = 100. Code for a motion measurement.

motion vector 5 word motion cluster.
(a) x position in nun relative to calibration plane origin

(b) y position
(c) x velocity in mm per second relative to calibration plane

(d) y velocity

(e) cluster area in square mm at calibration plane

2.3.1.3 Stereo Tool

The stereo tool will make an m by m set of range measurements about a specified location
in the visual field-m on the order of 4 or 5. It is capable of taking advice on the expected
range to the surface at that location. The tool will returns a confidence measure for the
measurement, the average range to the surface, the gradient of the surface, its x and y
curvature, and the disparity range searched.

1. Stereo request datagram format

Tick number The number of the Rex tick on which this request was generated.

Request code = 200. Code for a stereo measurement.

x position center position of measurement in mm relative to calibration surface
origin.

y position center position of measurement in mm relative to calibration surface
origin.

z position estimate in mm relative to calibration surface; -32768 means no estimate
available.

measurement patch diameter in mm relative to calibration surface.

2. Stereo reply datagram format

Tick number The number of the Rex tick on which this request was generated.

Request code = 200. Code for a stereo measurement.

x position center position of measurement in mm relative to calibration surface
origin.

y position center position of measurement in rni relative tu calibiation surface
origin.

z position estimate in mm relative to calibration surface; -32768 means no estimate
available.

measurement patch diameter in mm relative to calibration surface.

18

failure code = if not zero then there was a problem indicated by following code
numbers.

1 requested measurement lies outside of active camera field of view.
2 failed to measure a good correlation over the range searched

confidence 0 to 100 scale with 100 the highest confidence in following measurement
data.

average range Height above (negative - below) calibration plane in mm. Calibra-
tion plane position established at system calibration time.

x gradient of surface In mm per mm on calibration plane.

y gradient of surface In mm per mm on calibration plane.

x curvature of surface In mm per mm per at calibration plane.

y curvature of surface In mm per mm per at calibration plane.

condition codes set bits in this word indicate following conditions (bit zero is least
significant).

0 dropouts seen at positive y side of region

1 dropouts seen at negative y side of region

2 dropouts seen at positive x side of region
3 dropouts seen at negative x side of region

2.3.2 Perception to Recognition: Vision tools on Boris (or Way-
back)

2.3.2.1 General interface notes

2.3.2.1.1 Port Numbers

Boris Shape tool requests sent to port: boris:(1024 + 450)

Boris Shape tool replies returned to port: boris:(1024 + 451)

Wayback shape tool requests sent to port: wayback:(1024 + 272)

Wayback shape tool replies returned to port: boris:(1024 + 273)

2.3.2.1.2 Scheduling The shape tool will await messages from its assigned port in
a sleeping state, permitting other processes on the machine to run. When one or more
packets are received, all available packets are read, the latest (largest) tick number ib noted.
and all packets having a tick number less than this are discarded. The shape tool will then
work on the remaining requests in the reverse of the order in which they were received.

The shape tool will sleep for lms at intervals to be agreed upon, and between processing
packets, in order to let other processes running on the machine obtain a time slice more
frequently than the scheduler might otherwise enforce.

19

2.3.2.1.3 Datagram formats Datagrams to the shape tool will take the form of a
request code, and a tick number, followed by a series of parameters according to the

following definitions.

typedef Coord int; /* Pixels *
typedef Coord2 int; /* Square pixels *

typedef Angle int; /* RAUs (4096 per circle) c

typdef enum

shape-.status a 0, /* Trigger a null response. *
shape-.axes a 1, /* Ask for orientation of major/minor axes c
shape..parameters a 2, /* Ask for centre of blob */
shape-.signature a 3, Ac Ask for signature of blob c
/A Future extensions. *

I ShapeToolRequestCode;

typedef enum

mode..normal a 0, /A Default segmentation mode c
} SegmentationMode;

struct ShapeToolRequestPacket

int tick; /* Monotonic tick number. *
ShapeToolRequestCode code; A* Request code. *
SegmentationMode mode; Ac Unused. */
Coord x; A4 Coords of region to look near. *
Coord Y
Coord W; /* Size of region to look in. *
Coord h

typedef enwo

shape..status..null a 0, /A Empty response to any query *

shape-.status..blank =1, Ac Found no shape to analyse *
shape..status..ok - 2, /A Found shape to analyse */
shape..status..truncated z3, Ac Shape may extend beyond portion analysed. c

I ShapeToolStatusCode;

struct Sh apeToolResponsePacket

int tick; Ac Tick number from request. c

ShapeToolRequestCode code; /* Request code. *
SegmentationMode mode; Ac Unused. */
Coord x; A* Coords of region to look near. *
Coord Y

20

Coord V; /* Size of region to look in. */
Coord h;

3 ShapeToolStatusCode status;
unsigned trunc; /* Unused */

union

/* Response to shape.parameters */
struct

Coord cent.x; /* Centre of area */
Coord centy;
Coord2 area; /* Area *I
Coord perim; /* perimeter length */
Coord major; /* Length of major axis */
Coord minor; /* Length of minor axis */
Angle orient; /* of major axis ccw from y=O */

} shape.parameters;

/* Response to shape.signature */
struct

Coord x; /* Position of peak *l
Coord Y;
int strength;/* Height of peak */
signature[SignatureCount]; /* Report up to SignatureCount peaks */

rerponse;

2.3.2.2 Shape tool

The shape tool will analyse a rectangular region of the image centered at x, y, with size
2*w x 2*h. The region will be segmented according to the Segmentation mode field:
currently only a default mode is defined.

a A shape-status request will cause a packet with status.null to be returned.

a If no region is found, the status parameter will be set to status-blank.

e If there is a region, the status parameter will be set to status.ok. If there is more
than one region in the field, the report will describe one of the regions. This might
be the largest region entirely enclosed within the field.

e If the region reported upon has pixels in the edgemost row or column of the field.
it cannot be distinguished that the region does not extend beyond the field, and the
status parameter will be set to status-truncated. A future extension might use
the trunc field to report which edges or comers of the field cut across the region.

21

U

5 2.3.2.2.1 Request shape parameters This request will ask for the centre position.
area, perimeter, and orientation and length of major and minor axes of the blob in the5 region.

2.3.2.2.2 Request shape signature This request will ask for the raw signature ofI the region shape: this will be the coordinates of the SignatureCount highest peaks on the
region, along with their heights. The coordinates might be object centred, and the heights
might be normalized so that the largest has a specified value.

2.3.3 Recogniiion to Database
The interface between the database and recognition components will consist of an array

of records. Each record represents information about an object, including a set of unaryU properties, such as type, and the relation of the object to each of the landmark objects.
The size of the array will be 2 initially, but may grow as recognition gets to be more useful.

Landmark objects are things that are unique and known to all of the components. WeU propose the following set of landmark objects: gripper, camera, and table. The table's
frame will be the same as the frame of the robot, which is centered at the base. This
is necessary because the dead-reckoning capabilities of the arm continuously report the
location of the gripper in the coordinates of the arm-base. Thus, if we know the location
of, say, a ping-pong ball with respect to the gripper and the location of the gripper with
respect to the base, we can deduce the location of the ping-pong ball with respect to the
arm base. In the next tick, imagine that the gripper moves with respect to the base, but
the ping-pong ball does not. In this case, we will have new information about the relative
position of the gripper and the base; when we combine that information with the relative
position of the ping-pong ball and base, we will have current information about the relative
position of the ping-pong ball and the gripper.

The gripper also has a standard frame of reference associated with it. The camera3frame will be centered between the camera centers and pointing down the middle (the
average of the directions of the cameras).

In order to make the data structures uniform, we will define three types: property.
relation, and recognition-data. These types may be the same as the ones that are
used internally in the database (that would simplify things), but need not necessarily be
the same.

The property data type will have the following fields:

I type The type of the object will be one of primitive types or a disjunction of a set of
them. The primitive types will be: gripper, camera, table, pp-ball, and cup.

gripper-open Is the object open? Can only be true of the gripper. Needs no valid bit5because we always know whether or not it is open. It is sort of disgusting to have
to have this in every entry, but Rex requires fixed data types. It's possible that we
could use this field to mean different things for different types, if we ever need to.

The relation data type will have the following fields:

I 22I .

relative-pose Bounds on the position and orientation of the first object in the second
object's frame of reference. Jeff is working on exactly how these bounds are to be
represented.

relative-velocity Bounds on the velocity of the first object in the frame of the second
object.

relative-force Bo' nds on the force exerted by the first object on the second. The gripper
will almost always be one of the participants in this relation when it is information-
ful. If we want to say more useful things, like what part of the object is exert::,g
force on the gripper, this field will have to get more complicated.

Finally, the recognition-data data type will have the following fields:

valid A Boolean value indicating whether the remainder of the record is valid. This allows
the recognition component to not fill up the entire set of records if it doesn't have
interesting data to report.

object-properties A value of type property giving the unary properties of this object.

gripper-rel A value of type relation giving the relation between the object and the
gripper. Order is important. We are describing the object in the gripper's frame. If
the relations are invertible, that's all we need specify. If they are not, we will have
to specify the relation between the gripper and the object, as well. For now. assume
that they are inverses.

camera-rel A value of type relation giving the relation between the object and the
camera.

table-rel A value of type relation giving the relation between the object and the table.

2.3.4 Database to Database Projection

On each tick the database component will output its entire contents to the database pro-
jection component. The database will be a Rex module, so its output will be in list form.
Specifically, it will be a list of Boolean and floating-point values encoding the various
properties of and relations between the objects in the database.

The beginning of the output list will c-)rrespond to the vector in the database, each
cell of which stores characteristics of a single ob'-c. (type and mass, for instance). An
object's type will be encoded by a vector of Booleans whose indices correspond to the
possible types. A Boolean in the vector will be set to true if the object might be of the
type associated with its index. For example, if the object is known to be a cup, only the
cup Boolean will be true, and if the object is known to be either a cup or a gripper, the
Booleans for cup and gripper will be true. For the first demo, each cell of the database
vector will contain a vector of five Booleans that encode an object's type and one Boolean
indicating whether the gripper is open (only relevant for grippers). There will be five cclls
in the vector to begin with, so the first section of the database's output will be 30 Boolean
values.

23

I

I The remainder of the output list will correspond to the two-dimensional array in the
database which stores the relations between objects. For the first demo, each cell [a, b] of
the array will contain twelve floating-point values which describe the position of object a
in b's frame of reference. There will be ten useful cells ii, this array at first (one for each
possible pair of objects), so this part of the output list will have 120 floating-point values.

The database projection component will read the values from the database's output list
into data structures with the same form as those in the database. The information stored
in these structures will then be used to answer the action component's queries about theU objects.

2.3.5 Database Projection to Goal Strategies

For the Level 1 demonstration, the interface between the arm control action component
and the database will be a language based on a simple episteaic logic. Expressions in the
language will evaluate to Rex circuitry that extracts the truth value of desired conditions
or object indices from the database. In addition, there will be a set of functions that
extract parametric information about database objects from their indices.

2.3.5.1 Database Language

The database language will consist of a small set of Rex functions and a separate language,
used by these functions, that can generate circuitry that accesses the database.

3 Types: The database language uses two special types.

1. objs are indices into the database that correspond to some database object.

2. k-conds or knowledge conditions represent the system's knowledge about a par-
ticular condition. They can have three values, {1 0,1}, that roughly correspond5to 'known to be true', 'known to be false', and 'unknown'.

Terms: Any Rex expression of type obj is a term. There is only one primitive function3 that returns terms.

1. (a t k-exp) returns an obj or list of objs. fC is an atom or list of atoms, and
k-ezp is a knowledge expression as described below. Intuitively a returns an
obj or a set of objs from the database that satisfy some condition. It finds the
set by sequentially binding ti.2 atoms in j to the objs in the database. An is5 equivalent to a.

Condition Expressions: Condition expressions are of type k-cond. They can only ap-
pear as the aiguinclt to the know function, described below, or as part of other
condition expressions. The bottom level condition expressions are a set of conditions
that can be directly tested on the database. There will be one domain independent
condition.

1 24
U

U
1. (equal term term) tests whether the two terms reference the same database

object, i.e. are the indices equal.

5 The following is a list of conditions that we expect to implement for the goals of
grasping and touching.

3 1. (grasping term term) tests whether the first object is grasping the second
object. For the current demo this test can only be I or I if the first object is
the hand; if the first object is anything else, it must be 0.

2. (touching term term) test-, whether the first object and the second object are
' -uching.

3 3. ,,: ,n-grasp term term) tests whether there is suffici-nt space around the sec-
ond obj,-t for the first object to grasp it. This con ition has the same con-
straints as grasping.

4. (can-touch term term) tests whether there is sufficient space around the sec-
ond object for the first object to touch it.3 5. (in term term) tests whether the first object is entirely within the bounds of
the second object.

6. (clear-between term term) tests whether there is sufficient space between the
objects such that the first object can move so it is touching the second object.

7. (fully-above term term) tests whether the lowest Z coordinate of the first
object is above the highest coordinate of the second object.

8. (above term term) tests whether the lowest Z coordinate of the first object is
*above the lowest Z coordinate of the second object.

9. (xy-bounds-intersect term term) tests whether the projections of the two
objects onto the table intersect.

10. (table term) tests whether the object is a table.

11. (robot-hand term) tests whether the object is a robot hand.

12. (human-hand term) tests whether the object is a human hand.
13. (hand term) tests whether the object is a hand.

14. (pp-ball term) tests whether the object is a ping-pong ball.

15. (cup term) tests whether the object is a cup.3 16. (soda-can term) tests whether the object is a soda can.

17. (freezer-container term) tests whether the object is a freezer-container.3 18. (container term) tests whether the object is one of cup, soda-can or
freezer-container.

19. (open term) tests whether the object is open. Can only be known if the object
is a container.

I25

I

1 20. (gripper-open term) test if the object's gripper is open. Can only be known
if the object is a hand.

21. (moveable term) tests whether a given object can potentially move. It is deter-
mined just from the type of the object and hence does not take into consideration
whether there is anything currently blok..ing the object from moving.

22. (has-opening term) tests whether a given object has an opening. This condi-
tion is also determined from just the type of the object. Can only be known of
the object is a container.

Complex Conditions : More complex conditions can be formed by combining other
conditions using the following operators:

1. (not pred-exp) maps 1 into 0, 0 into 1 and .L into L.

2. (and pred.exp pred.ezp) returns 1 when both arguments are 1, 0 when at least
one argument is 0, and _ otherwise.3 3. (or pred-exp pred.ezp) returns 0 if both arguments are 0, 1 if at least one
argument is 1, and .1 otherwise.

4. (exists t pred-ezp) returns 1 if were is an obj for ea 'I atom of t for which
pred-ezp is 1, returns 0 when pred.ezp is 0 for all bindings of i, and I otherwise.

5. (exists-unique t pred-ezp) returns 1 if there is exactly one binding of F for
which pred.ezp is 1, 0 if pred-ezp is 0 for all bindings of 2 or pred.ezp is 1 for
more than one binding of .;, and J. otherwise.

6. (for-all ±* pred-ezp) returns 1 if for all bindings of f. the value of pred.ezp is
1, 0 if there is some binding of t for which pred.ezp is 0, and I otherwise.

Knowledge Expressions: Knowledge expressions are Boolean-valued Rex expressions
that use only the operators andm, orm, notm, and know. The first three of these are
just the standard Rex functions.

1. (know pred-ezp) evaluates pred-ezp and then maps 1 to 1b, 0 to Ob, and I to
Ob. Intuitively it tests whether pred-exp is 'known to be true'.

2.3.5.2 And Now More Form~ally

3 (extended.rez) --+ (knowledge-ez),ression) I (term) I(re-expression)

(knr wiedge. 'esion) --+
I (andm (k. :edge. ezpression) (knowledge-ezpress:on))

I (orm (knowledge.expression) (knowledge-ezpression))
I (notin (knowledge-ezpression))
I know (condition.ezpression))

5 (condition.expression) --+

26U

I
3 (and (condition.ezpression) (condition.ezpression))I(or (condition. expression) (condition. expression))

(not (condition-expression))

I(exists it (condition- expression))
(exists-unique (condition-expression))
(forall * (condition-expression))
(equal (term) (term))
((ground-condition) (extended-rex)* (term)+)

I (term) -+
(a i (knowledge.expression))3 I (r"Xobj

where t is an atom or list of atoms, (ground-condition)s are a set of Rex functions of
type k-cond, and (rexobj)s are Rex expressions of type obj.

I 2.3.5.3 Other functions

The above functions only return k-conds and objs. There will also be a set of Rex functions
that extract parametric values about an obj from the database. The following are functions
useful for touching and grasping.

1. (grasping-points obj) returns three object relative poses at which the object can
be grasped.

2. (opening obj) returns the bounds on the radius of the given object's opening and
the vector from the center of the object to the center of the opening. If (has-opening
obj) is false then the function is undefined.

I 2.3.5.4 Examples

1. An object that is known to be held by a hand.

(an object (know (grasping (an obj2 (hand obj2)) object)))

3 2. The object with the greatest highest Z coordinate excluding the hand and any object
the hand is holding.

3 (an object (know (for-all obj2
(or (above object obj2)

o) (grasping (an obj3 (know (handU objcct)))

obj2)))))

3 3. The object with the greatest highest Z coordinate that is above the given object and
whose X and Y i'ounds intersect with the given object.

3 27

(defun highest-object-above (object)
(an obj2 (andm (know (XY-bounds-intersect object obj2))

(know (above obj2 object))
(notm (know (exists obj3 (above obj3 obj2)))))))

4. The object that the given object is contained within.

(defun surrounding-object (object)
(an obj2 (know (in object obj2))))

U 2.3.6 Goal Strategies to Manipulation

The consensus is that these two components are too intertwined to make it useful to
specify an interface between them in advance. As the demo tasks become more complex,
this division may be more useful.

2.3.7 Manipulation to Arm Control
U 2.3.7.1 Overview

REX can talk to the ZERO arm over the Ethernet via pseudo-UDP packets. A com-
mand packet contains a few bytes of command information followed by some command
parameters. They are fixed length packets.

Once a packet is received by the ZERO controller, it begins execution of the commandU (if possible), and sends back a status packet. The status packet is parallel to the command
packet in that it has a few bytes of status information followed by the arm data.

U2.3.7.2 Packet Descriptions

2.3.7.2.1 Command Packet The command packet consists of 53 bytes described in
I the table below:

Byte # Description
0 First header byte - arbitrarily set to the char 'A'
1 Second header byte - set to the char 'B'
2 Command byte - describes one of the N possible commands
3 Output byte - commands digital devices to be on or off

Bit # Device / State
0 Hand - 0 = closed, 1 = open

1-7 Unused
4-27 Comma'ided hand position given as a 6xl XYZ/Angle-

Axis vector or as a 6x1 joint angle vector (P1 - P6):
6 numbers encoded as 4 byte floats, LSB first. UNIX
and the PC use the same IEEE standard floats, but the
SUNs store floats MSB first whereas the PC, the DEC
machine and the lisp machine all store floats LSB first.
The network standard is to send floats MSB first, but
we are sending the LSB first, anyway.

28

U,

28-51 Force command parameters (F1 - F6): 3 forces along
the XYZ gripper axes and 3 torques about the XYZ
gripper axes encoded as 4 byte floats, LSB first.

52 Bytewise checksum - { [sum(bytes 0-51)] modulo 256 }

The first two bytes and the last byte are not really used for anything - they are left
over from the serial communication days. We leave them in just in case, we have to go
back to serial communication.

2.3.7.2.2 Status Packet The status packet also consists of 53 bytes which are de-
scribed in the table below:

Byte # Description
0 First header byte - arbitrarily set to the char 'A'
I Second header byte - set to the character 'B'
2 Status byte with the bit definitions:

Bit # Description
0&1 Command status:

0 = last command accepted and completed
1 = execution of last command in progress
2 = last command failed for some reason
3 = bad command number in last packet

2 1 = Bad checksum (not currently used), 0 = OK
3 1 = Arm is in motion, 0 = Arm stationary
4 1 = Last move command was aborted due to excessive forces

0 =OK
5 1 = Command parameters out of range, 0 = OK
6 1 = Arm not homed, 0 = Arm ready to go
7 1 = Gripper open, 0 = gripper closed

3 Input byte - input from digital sensors
Bit # Device / State
0-7 Unused

4-27 Arm joint angles - Joint angles 1 - 6 in radians encoded
as 4 byte floats, LSB first.

28-51 3 forces along the XYZ gripper axes and 3 torques
about the XYZ gripper axes encoded as 4 byte floats,
LSB first.

52 Bytewise checksum - [sum(bytes 0-51)] modulo 256

Again, the header bytes and the checksum are not used, but are left for reverting to
the serial communications.

2.3.7.3 Receiving and Executing Commands

The general flow of operation is as follows: The ZERO controller waits for an ethernet
packet to arrive. When any packet arrives, it assumes it is an arm command, and begins
processing the command, setting the appropriate status flags as needed.

29

Some commands are initiated, but will not be completed before the next command
arrives. This situation is indicated by the first two status bits in the status byte. Most
commands, however, will be completed in the initial processing.

After a command is processed, a status packet is returned which reflects the outcome
of that commands' processing. The controller then waits for the next command packet.
Commands are double buffered as they come in over the ethernet. When ready to process
a new command, it is the most recent command received which is copied into a working
buffer for processing. If command packets come in too fast (at more than about 15 hz).
some of them will be dropped. There is currently no indication that a packet has been
dropped.

2.3.7.4 Command Descriptions

The commands encoded by the command byte fall into roughly the two catagories of
setting control parameters, or starting or modifying some arm motion. These commands
are accompanied by parameters passed in the position and force command vectors in the
rest of the cormmand packet.

In specifying the arm configuration, the position vector must represent the position of
the hand in the world in some particular set of coordinates. For some commands, arm
positions are commanded as Cartesian coordinates specifying the position and orientation
of the gripper relative to a base frame which is fixed relative to the table.

The gripper frame is encoded as a 6x1 position / angle-axis vector. The first three
elements of the vector are the X, Y, and Z coordinates of the origin of the gripper relative
to the base frame in millimeters. The second three elements represent a vector in the
base frame, such that if we rotate the base frame about this vector, we will get the same
orientation as the gripper frame. The amount that we need to rotate about this vector is
given by its length in radians.

Algorithms for converting back and forth between rotation matrices and angle-axis
vectors are given in John Craig's robotics book in Chapter 2. One special case which he
leaves as an exercise to the reader is for converting to the angle-axis form when the rotation
angle is 180 degrees. If the rotation matrix is given as R, the rotation vector for 180 degree
case is simply the sum of the columns of the matrix (R + I). This vector should be scaled
to have length 7r.

Other arm commands specify the configuration of the arm directly in joint angles. Note
that the position vector returned in the status packet is always in joint angle coordinates.
The forward kinematic fumction of the arm must be invoked to convert the joint angles
into a Cartesian frame.

All of the commands available to in the REXARM program are detailed below:

2.3.7.4.1 Parameter Setting Commands

0 NOP - good for waiting for something to happen.

1 Robot initialization - turns the servos on and declares that the arm is in the home
position. Should only be used in homing operations.

30

2 Robot reset - turns the servos off and forgets where the arm is.

5 Zero force sensor - declare a new zero position for the force sensor for force thresholded
moves.

7 Set zero position - tells the arm what its joint angles are when it is positioned in the
nest. Use only in homing the robot. Home position is specified in joint angles in the
position command vector.

8 Set speed - a single joint speed parameter between 0.0 and 1.0 stored in PI, tile first
element of the position vector. Smaller is slower, bigger is faster.

9 Set acceleration - a single joint acceleration parameter between 0.0 and 1.0 stored in P1.
the first element of the position vector. Smaller is slower, bigger is faster.

15 Float - turn the motors off while continuing to monitor joint positions. Currently, the
correct position is not returned in the status packet until a move command is issued.
A freeze command should be issued before issuing any move commands.

16 Freeze - turn the motors on, servoing to the arm's current position.

127 Halt execution of the program. The arm will automatically go back home.

2.3.7.4.2 Fixed position commands These move commands are initialized, but will
not be completed for several ticks. If one of these commands is issued, communication will
cease until the move is finished. These commands are not generally useful for REX style
programming but will work as long as the REX program is content to live with old data
until the move is finished.

10 Joint space move - move the arm to the joint angles specified in P - P6 .

11 Relative joint space move - increment the arm joint angles by the amounts specified in

P -P6 .

12 Single joint move - moves the joint 1-6 (specified as 1.0 - 6.0 in P1) to a specified angle
(in degrees in P2)

17 Add wobble - sets the magnitude of a wobble to be superimposed on the three wrist
joints for all subsequent fixed position move commands. Magnitude in degrees is
specified in P1 - P3 .

18 Turns the wobble off.

.19 Add joint space via point - specify the next poilt ill a continuous path in joint cool-
dinates P - P 6.

20 Translate gripper - translate the gripper by the X, Y, Z increments specified in P1 -
P3 without changing the orientation. Coordinates are in millimeters in base frame
coordinates.

31

21 Hand relative translation - Same as command 20, but the coordinates are specified
relative to the hand coordinate frame.

22 Hand rotation - rotates the hand about the axis specified by P - P3 (in base coordi-
nates) by the angle specified by P4 (in degrees). The fingertips will not translate.

23 Hand relative rotation - same as command 22, but the axis is specified in hand coor-
dinates.

25 Cartesian move - move the gripper to the Cartesian coordinates P - P6 encoded as ail
XYZ/angle-axis vector.

I 26 Add Cartesian via point - same as command 19, but the via point is specified with an
XYZ/angle-axis vector.

I 27 Run path - executes the continuous path set by the previously specified via points.

2.3.7.4.3 Variable Position Moves These move commands specify a single goal po-
sition which can be modified continuously. When one of these commands is issued, the
arm will start moving towards the goal point, the controller will return a status packet
and then look immediately for the next command. New goal positions can be sent whether3 the arm has reached the goal, or not. These are the commands typically used by REX
programs.

3 28 Cartesian move - move the gripper to the Cartesian coordinates P - P6 encoded as
an XYZ/angle-axis vector. A command 29 should be issued before giving any other
kind of move command.

29 Halt move - take the arm out of variable position move mode and servo to the current
position of the arm.

One last detail in the command section is the output byte. This is used to turn on or
off binary devices. The only device currently used is the gripper, which is commanded by
bit 0.

I 2.3.7.5 Ethernet, IP and UDP Particulars

The PC communicates over the ethernet using a 3COM 503 ethernet adapter and the
KA9Q public domain device driver. This device driver sends and receives raw ethernet
packets. Unfortunately, the rest of the REX related machinery insists upon using several
layers of communication protocols above the et 't level. Communication takes place

I through UDP packets, which are then bundled aj A1- packets, which are then bundled as
ethernet packets.

REXARM uses none of the features of the IP or UDP protocols. If it receives a packet
with its ethernet address, it strips away all of the header information, assuming the packet
is an arm command.

I 32
U

Sending status packets back to the REX machine, however, is difficult, because the
packets must contain IP and UDP headers which are realistic enough to fool the UNIX
communication software.

The outer layer of headers is the ethernet header containing the ether destination
address, ether source address, and type code (here, we use 0x0800 to indicate that the
next lower layer is an IP packet). An ethernet checksum is tacked onto the end of the
ethernet packet by the ethernet hardware.

The IP header starts off with version, IHL and type of service information, all copied
verb-tim from other similar packets on the net. (I don't know what these things mean,
but simply hardwiring their values seems to work for now.) Next is the IP packet length.
and identification. The packet length is the length of the IP packet in bytes, and the
identification we arbitrarily set to the number of packets sent. The flags, fragment offset.
and time to live fields are again just hardwired to similar values seen on the net. The
protocol is set to OxI 1 for UDP packets, and the IP header checksum is calculated through
some completely convoluted means. The last things to deal with are the IP source and
destination addresses.

The next level header, the UDP header, is quite a bit simpler - it contains the UDP
source and destination port numbers, the UDP packet length, and a UDP checksum. The
UDP checksum is simply set to 0, but nobody seems to care.

The ethernet addresses, IP addresses and UDP port numbers of all the relevant ma-U chines are listed below:

zero.enet.addr[] { 0x02, 0x0, Ox8c, OxOc, OxIS, Ox3a };
zeroip.-addr[] = { OxcO, Ox2a, Ox08, Ox16 };

sherman.enet-addr[] { OxOW, OxO0, 0x20, OxOl, 0x22, Oxce };
sherman.ip.addr[] z { OxcO, Ox2a, Ox08, Ox02 };
shermanudpport[) - { Ox06, Ox40 };

vaybackenet-addr[] "-z{ OxO8, OxOO, Ox20, Ox01, Ox01, Ox2e };
wayback-ip.addr[] = { OxcO, Ox2a, Ox08, Ox04 };

I waybackudp-port[i { Ox05, Oxc2 };

boris.enet.addr[] = { Ox08, OxOO, Ox2B, OxOF, OxOE, 0x41 };
I boris-ip-addr[] = { OxcO, Ox2a, x08, Ox17 };

boris.udpport[] { Ox06, Ox40 };

U 2.3.7.6 Owning and Operating REXARM

Tho r- r thing to remember for safe robot operation is to turn the power on only wheii
RlXiRi. mpts you, and turn the power off whenever things look dicey.I Before turning on the PC, first make sure that the two 40 pin and one 10 pin flat
ribbon cables are plugged in, as well as the power connector and the air hoses. All these
connections are made in the metal box next to the arm. Open up the valve on the air tank
to make sure there is air for the gripper. The gauge should read between 40 and 60 psi.
Fill up the tank if needed. Make sure the arm is placed in its nest.

33

I

I With everything in place, turn on the PC and move to the TELEOS directory. Once
there, type REXARM2 to start up the current version of the program. If you just want to

I test a REX program without actually moving the arm, indicate so at the prompt. When
asked for the name of the REX machine type 'boris' or 'wayback', depending on which
machine is being used. Finally, when prompted, push the green power button on the arm

I power supply and turn on the air. (Don't bother if you indicated that you don't want to
use the arm.) From here on out, it is a good idea to hold onto the remote kill button.

After hitting a key to acknowledge that power is enabled, the arm will go through its
homing procedure. The arm will then move to the ready position, and is ready to accept
ethernet packets. As commands are sent, packet information will bz printed on the screen.
Note, however, that while a variable position move is in progress, nothing will be printed
to the screen until a command 29 is issued.

At any time, a 'q' typed on the keyboard will halt the arm, send it back to its home
position, and terminate the program. The same thing happens when a 127 command is
received. After the program halts, turn off the power supply with the red button or the
remote switch. Don't forget to turn off the air valve.

I 2.3.7.7 Known Bugs, Glitches and Deficiencies

1. Robot reset and initialization functions do not set and reset the arm homed flag.

2. Communication halts during fixed position commands. These commands should be
made interruptible.

3. Current positions and forces are not returned while floating.

4. There is no prompt for turning off the power.

5. After the arm goes back into the nest, periodically a math floating point error shows
up. If this is the case, turn off the arm power and reboot the PC for good measure.

6. There is no function for setting force thresholds on moves.

7. If a variable position command is aborted, another move command must be issued
to detect the abort condition. A command 29 will wipe out that information.

8. There is no function for changing the g, *per frame.

II

I 34

I

m 1 - *VI

Ic 0

OD0.

tm I
~1

II

0 2

0
z I

loll 10

A 00

I oz

us o

434
z 3 03

zU Z

4) -
0i3 41Z

* I
-4--

AJ LA' 1 1

1, - 4
1, 'N - 'I, & k

jrIoo - 50 R

vft C

1.. '4 .a . 1
-~i 0006C

3' 0.6"' 0, CL - 1

C30 156 log. -. 30E

~5 .Zc 'f
to 0~c 5 ~ ~ ~

0,D a, -- M, z ,.f

0b >~ 0 fte

'. 21mM23.

Go 3o~ 32-0

7~~~I 3 .. ~~~
0. a. 3 0 C4 0.0. .

00 z. m0 a 4a .5 - -U

3 -Q C =4 i

a,~~ cc im ~ ~ fr ~ .
-C L" - O f5.9 0. 1w .0

-3 0

ftl 0 ~ v
0. 0. 8 'N.0

0~ - 9 4 0. IV.

0 3 , =yc £03

14 F. r. ,tJ, ,~t

9, ob i 2 0,

N ~-0 V,I'M I' 03 9

'4 mc t 5~-= * .

tN 3t3.
r0x 0: - 0

Ii i
-"4"r 0.

