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PERFORMANCE OF NEURAL NETWORKS IN CLASSIFYING ENVIRONMENTALLY DISTORTED TRANSIENT SIGNALS
R. L. Ficld and E. J. Yocrger N

Naval Occanographic and ‘Aunospheric Research Laboratory
Stennis Space Center, MS 39529-5004

) and
- P. K. Simpson

General Dynamics Electronics Division
P.O. Box 85310, San Dicgo, CA 92138
. Abstract madulated signals with a center frequency of SO H, and identical
- power spectra (Figure 1d). The signal shown in Figure 1a (class 1)
is a 6§ 1o 32 Hz downsweep, Figure 1b (class 2) is a 32 10 68 H7
upsweep and Figure Ic (class 3) is the minimum phase version of
the 68 to 32 Hz downswecp.
Environmental distortion of the above signals is simulatcd 1n the

Neural nctworks have been showing great promisc in several arcas’,
onc of which is the classification of underwater acoustic transients.
The classificaion of low-frequency underwater acoustic transient
signals using a ncural network bascd sysiem is investigaied. The
rcccived acoustic transients are simuiated using a time-domain

parabolic cquation model. The ncural network is trained on three rangc-d‘cpcndcn.l ocean shown in Figure 2 using a time-domain
sourcce signals and tested by classifying the same signals at 25 parabolic equation (TDPE) modcl”. The three signals are propagated
different receiver locations in a noise-free, range-dependent (upstope) out to a rangc of 5 km in 1-km range steps. The signals are received
cnvironment. Overall classification performance is above 90%. at each range on a S-clement vertical hydrophone array moored (o

the occan bottom. The scnsor scparation is 25 m. The source depth
for all three signals is 150 m. This simulation comespets 1o -le

Synthetic Waveforms an i i . . .
2ynte s and Model Simutations location of a transient experiment conducted about 40 i off

The synthetic time waveforms which the network is traincd on are the Califomia coast. Environmental parameters typical of the
shown in Figures 1a, b, and c. All signals arc linear frequency contincntal slope in this arca are used in the model
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Figure 1. (a) Class 1: Linear FM downsweep 68-32 Hz, normalized time waveform; (b) Class 2. Linear FM upsweep 32-68 Hz,
normalized time waveform; (c) Class 3: Minimum phase linear FM downsweep 68-32 Hz, normalized time waveform: and
(d) Normalized power spectrum for classes 1, 2, and 3.
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Figure 3. (a) TDPE source pulse. and (b) power spectrum of TDPE
source pulse.

The broadband pulse shown in Figurc 3a is the TDPE source
pulsc. The power spectrum of this pulse 1s shown in Figure 3b. The
received signals arc gencrated by convolving the propagated
broadband pulse with the source waveforms shown in Figures la. b,
and ¢ Figures 4a, b. c, d. and e display the pressure ficld of the
broadband pulse as a funclion of depth and relative arnval time at
ranges ) through S km, respectively. Figures 4a through de¢ show the
bottom depth changing as the pulse marches upsiope. The boxes
drawn on thc occan bottom rcpresent the aray aperture at the

-

respective range. The array samples the waveficld in depth (given by
the height of the box) and in tme (given by the width of the box).

At the 1-km range, Figure 4a, there arc two fronts, the direr,
arnval, D, and the surfacc-reficcted arrival, S At 2 km, Figurc 4b,
these two amivals begin 1o refract back into the watcr column duc
1o the relatively high sediment sound speed gradicnt. These refractions
arc labcled DR and SR for direct-and surfacc-reficcted refrac-
uons. respectively. Distortion up to the 2-km range is due solely 1o
the interference between the D and S paths. The bottom depth has
not changed up to the 2-km range. At 3 km, Figure 4c, the smcared
wave(ront trailing the S wavefront consisis of the first bottom bounce,
B. the refracted fronts DR and SR that have re-cnicred the walcer
column and the surface-bottom reflecied arrival, SB. These fronts
have become betler separated at 4 km, Figure 4d. Finally, at § km,
Figure 4c, the above wavefronts are almost fully developed. Signal
distortion at each range and depth is due to the mutual interfcrence
of thesc multipaths and the source signal over the aperture of the
array.

Necural Network Overview

The most difficult neural networks to build arc those that recognize
time-varying patterns (spatio-temporal patterns). General Dynamics
has been working with neural networks for several years that deal
explicitly with the recognition of time-varying signals buricd in a
great deal of noise’. The neural network that was used in these
experiments is a product of this work. There arc scveral aspects to
the work presented here that are important 10 point out: (1) the spatio-
temporal pattern  recognition network is  able to lcam new
spatio-temporal pattems without destroying any of the informauon
concerning the previous spatio-temporal pattiems; (2) the ncural
networks are able to respond very quickly both during training and
during recall; and (3) the ncural networks are able 10 generalize
quite well.

The neural network used for these expenments is constructed in
four parts: (1) feature extraction; (2) spatial pattern classificabon,
(3) spatial pattemn 10 spatio-tcmporal paucm transformation. and
(4) spatio-temporal pattem classification. These four parts arc shown
in the block diagram in Figure 5.

Sevcral feature extraction techniques were considered including
Fouricr Transforms, Maximum Entropy Mcthod Cocfficients and
Gabor Wavclets. We scttied on the third transform as it provided an
cloquent way of handling the low-frequency data. The transients arc
passed through a Gabor fiter that is 64 sampie points in length with
an 8 point overlap. Each set of 64 points is called a ume shice in this
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Figure 4. Pressure field for broadband pulse at ranges of (a) 1000 m, (b) 2000 m, (c} 3000 m, (d) 4000 m. and (e) 5000 m.

context. The spectral patiern created from cach 64 point sample is
256 bins that represent the frequency range from 0 to 100 Hz. Because
it 1s possible to precomputce the cocfficients for the Gabor trarnsform
filter in advance and place them into a matrix, it is possible to think
of the Gabor transformation operation as Lincar Associative Memory
with hardwired wceights. We use ine Gabor filter in this context,
therefore it is considered o be the first part of this ncural nctwork.

The output of the Gabor transformation operation feeds dircctly
to a ncural network analog paticrn classifier that creates classes of
a predefined size from the spectral patiems. The ncural network
performing the classification is an on-linc leaming analog patiem
classifier entitled the Fuzzy Adaptive Resonance Theory (Fuzzy ART)
ncural network. Fuzzy ART successfully synergizes the sophist-

cated adaptive resonance theory (ART) neural network with fuzzy
theory to create a flexible, yet robust, pattemn classifier that is able
to add new pattemn classes of a predefined size on-the-fly*.

The output of the Fuzzy ART neural nctwork is the pattemn class
of the spectral pattem. By keeping track of which classes that win
and when they win, it is possible to create a spatial patiem that
represents the spatio-temporal dynamics of the transient signal being
presented. The resulting spatial pattem s then fed to a sccond Fuzzy
ART pattemn classificr that determines the class for the transient.

Overall, this system has only three parameters that must be tuned
and the adjustment for these parameters is very straightforward.
Before discussing the results, two points should be made with regards
10 the ncural network studied here. First, this system did not work
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Figure 5. Block diaaram of system.

h notsy data. General Dynamics has created ncural network noise
ccllation techniques that handle noisy data that arc not included
his design. Second, the transient distortion encountered here is
ited to the ranges, depths and environment studied. The results
cn below would undoubtedly change if these studies were extended
wher ranges, depths and environments. The following results are
liminary.

Results of Experiments

he neural network is tested in two ways. First, classes 1 and 2
used to train the network. Once these source signals arc encoded
» the notwerk, 28 different received signals from each source
nal (for a total of 50) are presented to the neural network. Each
cived signal is classified into one of two classes: class 1,
~nsweep and class 2, upsweep. Of the fifty received signals, all

correctly classified except for one (95% accuracy). Class 2
ssweep) is incorrectly classified as class | (downsweep) at a range
3 km and a rcceiver depth of 1425 m. Figures 6a and b show the
¢ wavcforms reccived across the array at the 3-km range. Figure 6a

147

shows the received waveloms tor class | (downsweep) and 6b
shows the waveforms for class 2 (upsweep). (The top waveforms of
Figures 6a, b, ¢, d. and ¢ arc the source signals displayed for reference.
The vertical axis is scaled to the absolyte maximum amplitude
received over the five sensor depths For example, in Figure 6a, the
bottom scnsor at 1450-m depth has the largest pcak amplitude at this
range over the 5-clement array. The source signal amplitude is one
There is no significance to location of the signal in time. Therefore,
arnval times cannot be inferred from the figures).

The next expenment demonstrates the ability of the ncural network
10 nondcestructively add new spatio-temporal patierns by adding a
third signal to the ncural network. This is the minmum phasc signal,
class 3, Figure 1c. Like the first two source signals, this signal also
has 25 rcceived signals that arc uscd to test the nctwork. The combined
test sct consists of 75-reccived signals. 25 from cach of the source
signals. Out of 75 roccived signals, only 7 arce classificd incomrectly.
Two of the class 2 signals arc classificd incorrecly as class 3 signals
at the 3-km range for receiver depths of 1400 and 1425 m. Compare
Figures 6b, sccond test, and Figure 6¢c Five of the class 1 signals are
classificd incorrectly as class 3 signals at the 1-km range for all
recciver depths. Compare Figures 6d and 6¢ All of the class 3
signals were correctly classified. Overall the classification perform-
ancc was above 90%.

The results presented here are preliminary. but encouraging. With
only knowledge of the source signal. the ncural network was able to
recognize the reccived signals with 90% accuracy. Although the
received signals that were presented to the network were studied
under limited cnvironmental conditions (no noise and shont range)
they were similar in their time-frequency character. This indicates
that the approach has the potential of distinguishing desired transicnts
from noisc transicnts. In addition, this tcchnique allows new signals
to be added on-the-fly, making this approach to transient signal
identification look extremely promising.
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Figure 6. (a) Class 1, downsweep at R = 3 km upslope, (b) Class 2, upsweep at R = 3 km
upsiope, (c) Class 3, minimum phase downsweep at R = 3 km upslope; (d) Class 1,
downsweep at R = 1 km upslope (misclassilied all Class 1 as Class 3); and (e) Class 3,
minimum phase downsweep at R = 1 km upslope.
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