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I't-RFORMANCE OF NEURAL NETWORKS IN CLASSIFYING ENVIRONMENTALLY DISTORTED TRANSIENT SIGNALS

R. L. Field and E. J. Yocrger

Naval Oceanographic and 'Aunospheric Research Laboratory
Stennis Space Center, MS 39529-5004

and

P. K. Simpson

General Dynamics Electronics Division
P.O. Box 85310, San Diego, CA 92138

Abstract modulated signals with a center frequency of 5(0 I/ and idcnucal
Neural networks have been showing great promise in several areas', power spectra (Figure Id). The signal shown in Figure la (class I)oNe of which is the chensihication of undcrwater acoustic transients. is a 6 to 32 It downsweep, Figure Ib (class 2) is a 32 to 6R 117The classification of low-frequency underwater acoustic transient upsweep and Figure Ic (class 3) is the minimum phase version ofThc lasifiatin o lo-frquecy uderate acustc tansent the 68 to 32 1-1z downsweep.

signals using a neural network based system is investigated. The En68on32nta do nes
received acoustic transients are sin.,ated using a time-domain Environmental distortion of the above signals is simulated i the
parabolic equation model. The neural network is trained on three range-dependent ocean shown in Figure 2 using a time-domain
source signals and tested by classifying the same signals at 25 parabolic equation (TDPE) model'. The three signals are propagated
different receiver locations in a noise-free, range-dependent (upslope) out to a range of 5 km in I -km range steps. The signals are recci ed
environment. Overall classification performance is above 90%. at each range on a 5-element vertical hydrophone array moored to

the ocean bottom. The sensor separation is 25 m. The soutce depth
for all three signals is 150 m. This simulation corrrspeIds to !!C
location of a transient experiment conducted about 40 !wii off

The synthetic time waveforms which the network is trained on are the California coast. Environmental parameters typical of the
shown in Figures la, b, and c. All signals are linear frequency continental slope in this area are used in the model
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Figure 1. (a) Class I: Linear FM downsweep 68-32 Hz, normalized time waveform; (b) Class 2. Linear FM upsweep 32-68 Hz,
normalized time waveform; (c) Class 3: Minimum phase linear FM downsweep 68-32 Hz, normalized time waveform, and
(d) Normalized power spectrum for classes 1, 2, and 3.
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Figure 2 Distributed sensor held and range-dependent ocean environment.

10 respective range The array samples the wavefield in depth (given by
(a) the height of the box) and in time (given by the width of the box).

08 At the I-km range. Figure 4a. there are two fronts, the direr.

arrival. D, and the surface-reflected arrival. S At 2 km. Figure 4b.
06 these two arrivals begin to refract back into the water column due

to the relatively high sediment sound speed gradient Ihese refractions
0 04 are labeled DR and SR for direct-and surface-reflectcd refrac-

02tions. respectively. Distortion up to the 2-km range is due solely to
0< the interference between the D and S paths. The bottom depth has

not changed up to the 2-km range. At 3 km. Figure 4c. the smeared
0- wavefront trailing the S wavefront consists of the first bottom bounce,

-0? i B. the refracted fronts DR and SR that have re-cnicred the water
column and the surface-bottom reflected arrival. SB. These fronts

-04 have become better separated at 4 km. Figure 4d Finally, at 5 km.
-100 -80 -60 -40 -20 0 20 40 60 80 100 Figure 4c, the above wavefronts are almost fully developed. Signal

TIME (nVsecl distortion at each range and depth is due to the mutual interference

30 of these multipaths and the source signal over the aperture of the
(b) array.

25
Neural Network Overview

720 The most difficult neural networks to build are those that recognie
ZI, time-varying patterns (spatio-temporal patterns). General Dynamics

has been working with neural networks for several years that deal
explicitly with the recognition of time-varying signals buried in a

10 great deal of noisci. The neural network that was used in these
experiments is a product of this work. There are several aspects to
the work presented here that are important to point out: (I) the spatio-

5 temporal pattern recognition network is able to learn new
spatio-temporal patterns without destroying any of the information

0 concerning the previous spatio-temporal patterns; (2) the neural
0 50 100 150 200 250 300 350 400 450 networks are able to

FREQUENCY (Hz) respond very quickly both during training and A

during recall; and (3) the neural networks are able to generalize
igure 3. (a) TDPE source pulse, and (b) power spectrum of TDPE quite well.

source pulse. The neural network used for these expenments is constructed in

four parts: (I) feature extraction; (2) spatial pattern classification;
The broadband pulse shown in Figure 3a is the TDPE source (3) spatial pattern to spatio-tcmporal pattern transformation and

pulse. The power spectrum of this pulse is shown in Figure 3b. The (4) spatio-temporal pattern classification. These four parts are shown
received signals are generated by convolving the propagated in the block diagram in Figure 5. )r
broadband pulse with the source waveforms shown in Figures Ia. b, Several feature extraction techniques were considered including
and c Figures 4a. b. c. d. and e display the pressure field of the Fourier Transforms. Maximum Entropy Method Coefficients and
broadband pulse as a function of depth and relative arnval time at Gabor Wavelets. We settled on the third transform as it provided an 0
ranges I through 5 km. respectively. Figures 4a through 4c show the eloquent way of handling the low-frequency data. The transients are 0
bottom depth changing as the pulse marches upslope The boxes passed through a Gabor filter that is 64 sample points in length with
drawn on the ocean bottom represent the arr?y aperture at the an 8 point overlap. Each st of 64 points is called a time slice in this .
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Figure 4. Pressure field for broadband pulse at ranges of (a) 1000 m, (b) 2000 m, (c) 3000 m, (d) 4000 m, and (e) 5000 m.

context. The spectral pattern created from each 64 point sample is catcd adaptive resonance theory (ART) neural network with fuz.N
256 bins that represent the frequency range from 0 to 100 1 1z. Because theory to create a flexible, yet robust, pattern classifier that is able
it is possible to precompute the coefficients for the Gabor transform to add new pattern classes of a predefined size on-the-fly'.
filter in advance and place them into a matrix, it is possible to think The output of the Fuzzy ART neural network is the pattern class
of the Gabor transformation operation as Linear Associative Memory of the spectral pattern. By keeping track of which classes that win
with hardwired weights. We use toe Gabor filter in this context, and when they win, it is possible to create a spatial pattern that
thcrefore it is considered to be the first part of this neural network. represents the spatio-temporal dynamics of the transient signal being

The output of the Gabor transformation operation feeds directly presented. The resulting spatial pattern is then fed to a second Fuzz%
to a neural network analog pattern classifier that creates classes of ART pattern classifier that determines the class for the transient.
a predefined size from the spectral patterns. The neural network Overall, this system has only three parameters that must be tuned
performing the classification is an on-line learning analog pattern and the adjustment for these parameters is very straightforw,,ard.
clasifier entitled the Fuzzy Adaptive Resonance Theory (Fuzzy ART) Before discussing the results, two points should be made with regards
neural network. Fuzzy ART successfully synergizes the sophisti- to the neural network studied here. First, this system did not work
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.shows thc received wavclorms lor class I (dnwns%%ccp) arid 6b
TIME SERIES shows the wavelorms for class 2 (upsweep). (The lop waveforms of

-a-(w-dowld at 64 pis Figures 6a. b. c. d. and e arc the source signals displayed for reference.
with 8 pt o erlap) The vertical axis is scaled to the absolute maximum amplitude

received over the ive sciisor dcpths For example, in Figure 6a, the
bottom sensor at 1450-m depth has the largest peak amplitudc at this
range over the 5-clement array. The source signal amplitude is one

Gabor There is no significance to location of the signal in time. Thcrefore.
Tranfsorm arrival imes cannot be inferred from the figures).

The next experiment demonstrates the ability of the neural network
SPECTRAL. IMAGE to nondestructively add new spato temporal patterns by adding a

(256 points. 0-100 Hz) third signal to the neural net\ork. This is the minimum phase signal.
(2) class 3. Figure Ic. Like the first two source signals, this signal also

Fuzzy ART Spatial has 25 received signals that are used to test the network. The combined
Pattern Classifier test set consists of 75-ieceived signals. 25 from each of the source

signals. Out of 75 roccivcd signals. only 7 are classified incorrecty.
Two of the class 2 signals are classified incorrectly as class 3 signalsmx at the 3-km range for receiver depths of 14X) and 1425 m. Compare

(3) Figures 6b. second test, and Figure 6c Five of the class I signals are

Spatto-Tempora Pattern classified incorrectly as class 3 signals at the I-km range for all
Created from Spatial receiver depths. Compare Figures 6d and 6c All of the class 3Class Occurrences signals were correctly classified. Overall the classification perform-

l4) 1ance was above 90%.
(4)yAF1z ConclusionsSuati0-Temporal The results presented here are preliminary, but encouraging With

Pattern Classifier only knowledge of the source signal, the neural network wa able to
recognize the received signals with 90% accuracy. Although the
received signals that were presented to the network were studied

Signal Class under limited environmental conditions (no noise and short range)
they were similar in their time-frequency character. This indicates

Figure 5. Block rliaoram of system. that the approach has the potential of distinguishing desired transients
from noise transients. In addition, this technique allows new signals

h noisy data General Dynamics has created neural network n e to be added on-the-fly, making this approach to transient signal
nie identification look extremely promising.

cellation techniques that handle noisy data that are not included

his design. Second. the transient distortion encountered here is
ited to the ranges, depths and environment studied. The results Acknowledgments
cn beloW would undoubtedly change if these studies were extended This work has been approved for public release and was supported
)ther ranges, depths and environments. The following results are by the Office of Naval Research and the Naval Oceanographic and
liminary. Atmospheric Research Laboratory (Contribution No. 90:029:244).
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Figure 6 (a) Class 1, downsweep at R = 3 km ups/ape, (b) Class 2. ups weep at R =3 km
upsiope, (c) Class 3. minimum phase downsweep at F? = 3 km upsiope, (d) Class 1,downsweep at R = I km ups/ape (misclassified all Class I as Class 3); and (e) C/ass 3,minimum phase downsweep at R = I km upsiope.
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