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Transient Signal Extraction in |
a Multipath Environment :

R.J. Vaccaro and 5. Maragakis

-

University of Rhode Island

Ai)stract

We consider the problem of estimating the arrival times
of overlapping ocean-acoustic signals from a reccived sig-
nal which consists of an unknown deterministic signal along
with scaled and delayed versions due to multipath propaga-
tion plus additive noise. Our objective is to simultancously
detertmine the transmilted waveform and the arrival times.
The proposed algorithm obtains approximately maximum
likelihood estimates of the arrival times and the parameters
which characterize the unknown signal. Our assumptions
are that the number of the different paths is known and
that the signal must belong to a parametric class of sig-
nals. We demonstrate the algorithm on a class of signals
consisting of gated sinusoids.

i Introduction

Time delay estimation is a well known problem occurring
frequently in the fields of 'sonar, radar and geophysics. In
this problem the received waveform consists of delayed and
scaled replicas of the transinitted signal. This is the result
of different reflections and attenuation of the signal in the
channel.

The received waveform r{f) can be described mathetnat-
ically as

a

()= Saslt - +nlt) . 0T (1)
k=1

where s(t) is the transmitted signal, a, the attenuation fac-
tor for path k, 7, the time delay for path k, M the number
of different paths and n(t) a noise component. In our de-
velopment we assume that the noise is white Gaussian,
The classical method for estimating the times of arrival
is correlating the received waveform with the transmitted
waveform. The peaks in the correlator output give the es-
timates of the arrival times. It can be shown that il the
signals are separated in time by more than the duration of
the signal autocorrelation function, the correlator is equiv-

Department of Electrical Engincering

alent to the MLE (1]. Other approaches are given in (2|, -

(3], and [4).

OThis work was supported in part by Grant N0OO14.89-K.6003 from
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A completely different approach has recently been pro-
posed by Kirsteine [5, 6l The basic idea of this approach
is to look at the problem in the frc;;ucncy domain. Since
a delay in the time domain is equivalent to multiplication
by an exponential in the frequency domain, the frequency
domain problem is one of fitting weighted complex expo-
nentials to the spectrum of the received signal. Utilizing
an iterative method of fitting complex exponentials as in
17] and 8|, this approach provides a way of estimating the
times of arrival. In this algorithm the number of different
paths must be known and the spectrum of the source sig-
nal must be nonzero. The requirement that the number of
paths must be known is not too restrictive since in many
cases the number of different paths can be determined from
the geometry of the channel.

All the above methods require the source signal to be
known. In our problem we assume that the source signal is
not known. Our objective is to simultaneously obtain good
estimates for both the delays and the source signal with a
minimal amount of computations. In our formulation we
assume that the source signal belongs to a parametric class
of signals which means that it can be completely deter-
mined by a vector of parameters. A rectangular pulse for
example can be complelely characterized by its duration,
its amplitude and its starting point. By assuming that the
source signal belongs to a certain class of signals we have
to estimate a much smaller number of parameters and the
problem comes much better defined. In our development we
will assume that the number of paths is also known. Using
those two assumptions we will develop a method of obtain-
ing approximate maximum likelihood estimates of the time
delays and the source signal parameters.

2 The maximum likelihood estima-
tor

Making the assumption that the signal belongs to a para-.
metric class of signals, we can rewrite cquation (1} as

r(t) = f:a.a(!-—r.;ﬂ)+ n(t) , 0<t<T (2

where 0 is the vector of parameters which characterize the
source signal. In the case that n(t) is white Gaussian noise
the least squares estimator is also the maximum likelihood

CH2KER-9/90/0000-0115 $1.00 * 1990 IEEE

91 1 14

029



estimator {Helstrom, pp 199 [9]). Therefore the MLE is
given by

min
“ ", 'l‘

T M
/ r(t) Xu,‘s(l - 7,;0)jzdt (3)
" ks
We remark that one advantage of the maximum like-
lihood formulation of the problem is that the case when
the signal is unknown is conceptually the same as when
the signal is known. If the signal is known, then the pa-
rameter vector 8 in (3) is fixed and is not included in the
minimization. If the signal is not known, then the (3) must
be minimized with respect to all the parameters.
Assuming the integrand in (3) is zero outside [0, T|, we
can extend the limits to infinity. Using Parseval’s theorem
we get the equivalent expression

0o M
min / IR(w) - Sw;0) S ape P dw  (4)
.1, a0 )00 k=1

where ft(w) and S(w;8) are the Fourier transforms of r(t)
and s(t;0), respectively. It should be noted that this ex-
pression for the MLE is only valid for white Gaussian noise.
However even if the noise is not Gaussian the estimator may
still be uscful as the least squares estimator.

The problem now is to approximate R(w) by a weighted
sum of complex exponentials. If we sample the frequency
functions with spacing Aw, we have

I ~1ndw __ ,)hn

4

— e

where
At = —r,Aw.

After sammpling the integrals are approximated by sums and
the MLE is given approximately by

L-1 M
, r}xin Y IR(n) — w(n;6) Y apertlp? (5)
. Aa, Oy n=0 k=1

where w(m;0) = S(mAw;0), and L is the total number
of points in the discrete Fouricr transform applied to the
sampled data.

Remarks

Before giving an algorithm for estimating parameters from
frequency domain data, we first give some features of the
frequency domain formulation of the MLE.

I. Note that the delay parameters are estimated as real
numbers even when using sampled data. There is no
need for interpolation as there would be in a time-
doain formulation.

2. The frequency-domain formulation is equivalent to
modeling the spectrum of the received signal as a
weighted sum of complex exponentials with real-valued
coefficients. The complex exponentials do not orcur
with conjugate symmetry, in general. The fitting of
unweighted complex exponentials with complez am.

16

plitudes is a well-known problem, and accounting for
the weights is simple. However, constraining the am-
plitudes to be real when the data is complex has ap-
parently not been considered before. We show in the
next section how to include this constraint.

3 The known signal algorithm

Using the notation developed in the previous section, we
now consider the case when the source signal is known and
is narrowband. We show in the next section how the known-
signal algorithm can be used iteratively in the case when
the signal is not known.

When the signal is narrowband, most of the energy of
the signal is concentrated in the passband. For example in
a gated sinusoid most of the energy of the signal is concen-
trated in the main lobe around the center frequency. In this
case, we do not have to include all frequency points in the
minimization; we only have to include those which contain
some signal energy. If we take N points starting at q corre-
sponding to positive frequencies where the spectrum of the
transmitted signal is nonzero, we can define the following
error function

N-1 M
Ei(de, @) = 3 [R(n+q) —w(n + q) D are? (9| (6)
n=0 k=1

Note that the above equation is not equivalent to the MLE
expression shown in (5) because it only corresponds to the
positive frequency portion of the spectrum. The conjugate
symmetric portion of the spectrum corresponding to nega-
tive [requencies must also be included to obtain the MLE

error expression. We first define some notation.
Let

It

[R(q) R(q + l)r-“ R(g+ N -1)|T

a= ]a, a; - QM'
W = diag{w(q) w(g+1) --- w(g+ N -1)}
efre PLLL Ve e/ Ime
efMile+ ) efAala+1) eSAmla+)
A(}) = .
N1 haletN=1) L Giar(geN=1)
P(3) = WA())

Then
Er(a,A) = [Ir = P(A)all™. (™)

This is the error expression considered in [6]. However,
the MLE error expression must also include the conjugate
symmetric portion of the spectrum as shown below

E(a,d) = |Ir = P(N)al* +Ir* = P*(N)all’,  (8) O

where the superscript * refers to complex conjugation. Note
that the vector a is not conjugated in the sccond term of
the above equation since it is assumed to be a real number.
Thus the formulation in (8) is equivalent to the constraint
that the amplitudes be real valued.

'.ubstlty coden
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For any fixed A, the coefficients a; which minimize £,
e given by

ay = PYA)r = (P Py tply (9)
ste that the resulting vector ag will be complex in general
ibstituting (9) into (7) yields

I"(;\)

E(()) = I (I = P(PYPY'PHyr|P = |PH (M) (10)

Similar expressions can be written for the true MLE
ror expression as follows

Ea ) = [ iy ] - [ Py el (1)

‘or any fixed A, the coefficients a which minimize £ are

iven by
{Il"T"Tl [,’,’ ]}_liP"Pfl[,’.] (12)

a = [Real(P" P)|"'Real(P"r) (13)
vhere the superscript H stands for complex conjugate trans-
yose, and Real(-) stands for the real part of a complex num-
ser. Note that the above expression always results in real
salues for the amplitudes.

If we define P(A)
o= 7] (14)

ind substitute (13} and (14) into (11) we get

P = 10 - Ge¥ | L = 16* ) [ 2]
(15)

The error is now only a function of the unknown time
delays. Note that G*()) is the matrix which projects onto
the orthogonal complement of the column-space of G.

The expressions for E; (which uses half the spectrum)
and E (which uses the complete spectrum) are of the same
form as shown in (10) and (15). It is shown in (6] that E,
can be written as a function of a new parameter vector b

as follows

E(b) = || B(B" B)'Yb|* (16)
where
by - bu
bo - ba 0 bo
B - . . W, b=|
0 . . bpy
b, - by

bo,---,bp are chosen to satisly
bo + by(e™) + oo+ by(eMM) =0, i=1,00 M,

Rig+M+1) - R(q)
Rig+M+2) -+ R(g+1)

k(q+:N-l) R(q+N—M)

17

and fe(7) -~ W15 R(5).

Note that b(z) = by + bjz 4+ --- 4 bpz* is a polynomial
whose roots are e’* 1 = 1, P, In order for the roots to
be on the unit circle we must impose the conjugate symme-
try constraint by = by, as in 16] and {8]. We can enforce
the conjugate symmetry condition on b by writing b = Cz
where 1 is a real-valued vector whose elements consist of
the real and imaginary components of by - - - bas/2, and C has
the forin

[1 3 0 0 -~ 0 0
o 0 1 3 -0 0
. : : R
“- 1 -3 00 ... 0 0 | (17)
O vt 3 - 00
L0 0 0 0 .1 ~-j

Using b = Cz, we can write the error as a function of
the vector 1 as

Ez) = |B(B" By 'YCz|'. (18)

Before developing an algorithm to minimize this error ex-
pression, we first look at £, and E for a one-path example
to gain some insight into the relationship between these two
error expressions.

3.1 A One-Path Example to Compare FE
and £,

The errors £y and £ can be written as functions of the
unknown time delays only as shown in (10) and (15). In
thi. section, we give an example of a signal containing a
single time delay to compare E; and E.

The transmitted signal in this example consists of a 244
Hz gated sinusoid whose duration is 40 ms. The rececived
signal was obtained by delaying the transmitted signal by
50 ms. Thus the error surfaces should have minima at
t=0.05 secs.

In Fig. 1, we show the received signal with a moderate
amount of noise added. In Fig. 2, we show the error sur-
faces for E and E, corresponding to the received data in
Fig. 3. Note that both E and E; have minima at ¢t = 0.05,
but E; is a smooth unimodal function, while E is a modu-
lated sinusoid. Qur attempts to minimize E converged to
some local minimum unless the algorithm was initialized
very close to the global minimum. On the other hand, our
algorithm converged to the global minimum of E, for a wide
range of initializations.

By looking only at Fig. 2, we might conrlude that min-
imizing E, always gives the same results as minimizing the
true MLE expression E. However, this is not the case. Fig.
3 shows the same received signal with a large amount of ad-
ditive noise, and Fig. 4 shows the corresponding error sur-
faces £y and E. The error sutface E still has a minimum at

= 0.05, but the minimum of E, occurs at ¢ = 0.048. Thue
it scerns that minimizing E; will result in biased estimates
of the time delays at low signal-to-noire ratio. Neverthe-
less, we choose to work with E| instew ni' £ because it is
casier to find the global minimum of E, than it is for E.



As shown in the above example, K, will work well provided
the signal-to-noise ratio is large enough. The development
of an cllicient algorithm to find the global minimum of f
for a wide range of initial estimates is an important open

problem.

3.2 A Perturbation Expansion Approach
to Minimizing E,

An iterative algorithm for minimizing £, has been derived
in 16]-|81.110]. However, the algorithm described in these
references failed to converge for the example given in the
next section of this paper. Here we briefly describe a new
approach to minimizing ;.

We begin by considering the value of the error function
at an increment Ar away from a nominal value z of the

cocfficients
E(r+ A1) YB(z + A2)|B"(z.82)B(z + Ax)]7'YC2

(19)
After some calculation, a first-order perturbation expansion
for E(z + Az) can be obtained. The result is

E(z + Az) = ||Ppy + QpaBY Phy + PEABQYI? (20)

where = means “equal to first-order in Az,” Qp = B(BY B)~!

Py = B(BYB)-'B", P} =1 - Pp, and B is evaluated at
the nominal parameter vector z. Finally, for any vectors
vy and vy, we derive first order expressions relating AB
and Ar as follows (that is, we derive expressions for the
matrices M, and M) ‘

ABU|=M|AI (21)
AB”U1=M7AI.
Substituting the above expressions into {20} with v, =
By, vy = P}y, and b=Cx yields

Elz + Az) = |jv + MAz)? (22)

where v = Pygy and M = M, + M,. We then solve for
Az which minimizes the above expression subject to the
constraint that Az is real valued. The result is

Az = [Real(M¥ M)|"'Real(M¥v). (23)

If z corresponds to a given value of the parameter vec-
tor &, then we replace z by z + Az and repeat the above
calculations (solve for a new Az). The process continues
until convergence.

4 Simultaneous signal extraction

We now turn to the question when the source signal is also
unknown. In this case we also want to estimate the vector 0.
In our analysis we will assume that the signal belongs to the
parametric class of signals of gated sinusoids of unknown
frequency and duration. This class of signals was chosen
because of availability of experimental data of this class.
First we observe that those can be completely described
by specifying the frequency, the duration and the starting

point. The phase of the sinusoid at the starting point may
also be included with the above parameters. However if
the frequency and the duration are such so that there are
several cycles of the sinusoid in the source signal, the phase
will ot be an important paraieter. In order to reduce
the calculations, this assumption was made in our model
and the phase was taken to be zero. Also note that the
time delays are calculated relative to the starting point.
Changing the starting point of the source signal will change
the time delays by the same amount. In our algorithm we
assume that the source signal starts at zero and we calculate
the time delays relative to that point.

By making the above assumptions, the source signal
extraction has become the estimation of the frequency and
the duration. The maximum likelihood estimator for the
frequency, duration and the delays is equivalent to

Ny M ]
min Z IR(n) - w(n, f,d) Zau”“""’lz (24)
] 0 k=1

fddon [T

where f and d are the frequency and the duration respec-
tively. This expression is not easy to minimize. [t is much
more complicated than a fitting of exponentials since w is
alan nonlinear in [ and d. A multidimensional search is

practically impossible because of its computational inten-
sity.

Our algorithm reduces the computations by breaking
the problem down and solving for the parameters and the
delays as follows:

L. Obtain initial estimates f9, d° of the unknown fre-
quency and duration.

2. Use f* and d’ in the known-signal algorithm to esti-
mate the time delays r{,

- Using the estimated time delays rf, calculate new val-
ues f**', &'*! for the frequency and duration.

4. Check for convergence; return to 2.

The qu’cstions}that we now have to address are how to
estimate f* and &' and how to obtain the first estimates of

f% and &°.

Consider the error function for a given set of time delays:

N-1 M
E(f.d) = 3 [R(n+q)~w(n+q; £,d) 3 are™in+a)jt (25)
n=0 k=l
E(f,d) is a nonlinear function of / and d making the
minimization very hard analytically. Notice that the du-
ration d is a discrete variable ince the signal is sampled.
Because of this, a gradient based algorithm of minimizing
E(/,d) would not work for d. The advantage of this is that

only a finite number of values for d is possible. E(f,d) is
minimized as follows:

1. Do asearch over values of d near the previous estimate
of d.
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2. For each value of d find the best value of [ using a
gradient based technique.

3. Repeat 2 until a minimam is found,

‘ote that during the minimization £(f,d) will have to be
valuated several times. Each evaluation is made faster by
he fact that w(-; f,d) can be computed by an FFT.

The last question is how to obtain the initial estimates
% and d°. Those estimates do not have to be very accurate,
n fact they can be quite crude since they are only used to
nitialize the algorithm.

For our experimental arrangement the geometry of the
hannel gives us that the first two paths will be the least
ittenuated and wili probably be overlapping. After filtering
.he reflections from the first two paths will lie over the noise.
Faking advantage of this we can get estimates of f and d
s follows.

+ Obtain the envelope of the signal as tollows: tor eacn
point take the maximum amplitude over the next 20
points (generally choose a number of points sufficient
to cover a period of the sinusoid).

o Take the initial estimate of the duration to be (Q-I.-
20)/2.

e The initial estimate of the frequency is found using a
standard frequency estimation algorithm on the data
points between £ + 20 and Q.

This completes the description of our algorithm. In the
next section we will demonstrate the algorithm on both real
and simulated data.

5

{n our experiments the geometry of the channel gives us
four different paths with the first two less attenuated than
the other two. This situation arose in ocean acoustic signals
reflected on the surface and the bottom of the ocean. When
the data was collected, a hydrophone near the transmitter
recorded the actual source signal. The transmitted signal
was a gated sinusoid of frequency 244 Hz and duration 40
ms.

A record of received data is shown if Fig. 5. Using
the known.signal algorithm presented in section 3 of this
paper, we estimated the time delays and amplitudes of the
four paths. We then constructed an estimate of the received
signal using our estimates of the delays and amplitudes as
well as the known source signal. The actual received signal
and our reconstructed signal our shown together in Fig. 6,
which shows that the estimates provide a good fit to the
data,

Next, we applied the unknown signal algorithm pre-
sented in the previous section to try to estimate the pa-
rameters of the transmitted signal as well as the delays and
amplitudes in the received signal. The estimates of both the
known signal and unknown signal algorithms are shown in
the Table 1.

Example with Experimental Data
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We bhelieve that the estimates obtained by both algo-
rithms would be inproved by minimizing error surface 2
instead of £y We also remark that the estimates of the
amplitudes are extremely sensitive Lo the values of the est;
mated delays, however the anplitudes are always caloulared
to give a least-squares fit to the data for a given set of time
delays.

True parameter | K.S. estimate | U.S. estimate
Frequency 244.0 - 239.3
Duration 0.0400 - 0.0365
Ty - 0.1550 0.1550
74 - 0.1640 0.1657
T - 0.1920 0.1902
Tq - 0.1995 (.2004
a - 0.6448 -0.2657
a, - -0.6463 -0.7162
as - -0.4237 0.0304
a, - -0.0207 0.4871
Table 1: Estimates of delays and amplitudes using the

known signal (K.S.) and unknown signal (U.S.) algorithins.
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Figure 1. A received signal consisting of a single path with

Figure 4: The error surfaces E and F, corresponding to the
a moderate amount of additive noise.

received signal in Fig. 2. The smooth curve is Ey and the
oscillating curve is E.
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Figure 2: The error surfaces £ and F, corresponding to the , ) .
Figure o. A record of experimental data with feur overlap-

received signal in Fig. 1. The smooth curve is E; and the ) : :
ping paths moderate amount of additive noise.

oscillating curve is E.
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Figure 6: The received signal of Fig. 5 together with the re-

Figure 3: A received signal consisting of a single path with _ X . .
constructed signal obtained by the known signal algorithm.

a large amount of additive noise.

120




