
Annual Report

In

IN

Knowledge-Based System Analysis
and Control Defense Switched

Network Task Areas

DTIC
ELECTE
FEB 0 51991D

E
30 September 1989

Lincoln Laboratory 1M

M-ASSA.(III SETTS INST I E OF rE(tlNo(IA)(,)

Prepared for the I)efensec Communications Agenvi

under Air Force Contract F 1 9628-90-C-0002.

• ipr,.ehd for public relea,: distrilutim in unlimited.

91. 2 04 157

'I hli. repoiirt is Iiasedill o situi es ierfiinedi at i niodn Laliratorv a venter fori

ree a rcit lie rated I I. % Mass ,a c Ii et Is. I ist it ute ofTc iiiv.The wo rk va., s Ii in ired
b% tihet, Defense Comun icatio ns Engineering C enter td i the D~efense (onijuniiat io n
Agvni undeir %ir Forve (ont rail F1I9628-90-(-(I02.

Iii repo rt ma% Ilie reprdi ci i 1 to safisf, needs of U . S. (;ieri men t age4 i1ie"

1'lhe ESD I)Iib lic Affai rs ()ffiie has rel- jewed t his rej iiiri. andi

it i releasabl iti theli N at iina ITechnical I tifiiriat iill Ser~ iii.
wn- it %till be a a ila ide lip i t, igneral public. ini-luoding

liii, tiitiiiiaI repiirt has bleun re%~ iiv~e anidi is auiiruiii for piublicatiiin.

#t7/ /I S6&,4_/

111"l L Sutal.It. (ii. I S

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

KNOWLEDGE-BASED SYSTEM ANALYSIS AND CONTROL
DEFENSE SWITCHED NETWORK TASK AREAS

H.M. HEGGESTAD
Group 21

ANNUAL REPORT SUBMITTED TO

DR. SYED SHAH

DCEC R610
1860 WIEHLE AVENUE

RESTON. VA 22090-5500 , Acce-ssion For
NTIS GRA&I
DTIC TAB
Unannounced []
Justification

i ()cT0BER 1988 - 30 SEPTEMBER 1989

By

ISSI El) 10)ECEMBER 1990 Distribution/
Availability Codes

Avail and/or
Dist Special

Appro ed for public release, distribution is unlimited. 4""

LEXINGTON MASSACHUSETTS

ABSTRACT

The primary thrust of the FY89 program was installation and
demonstration of the Network Management Expert System (NMES) at
DCA Headquarters in Stuttgart, Germany. Two major efforts were
involved: completion of improvements and extensions to NMES
itself, and performance of numerous tasks in matching the
hardware and software to the DCA-Europe environment so that it
could be meaningfully operated there. Additional components of
the FY89 program were implementation of an Operator Trainer to
develop operator skills in the use of the current manual Network
Management Support System, as well as execution of a set of
enhancements to, and investigations with, the Call-by-Call
Simulator (CCSIM).

In July 1989 two Sun 3/260 workstations and an IBM PS/2
Model 80 computer were installed at DCA-Europe, to support NMES,
CCSIM, and the Trainer. A Lincoln contract staff member took up
an extended assignment at DCA-Europe at the same time. Between
July and September the software was installed, checked out,
modified and debugged as necessary, and prepared for the
demonstrations. The demonstrations were performed by two very
competent military ACOC personnel offered for the purpose by ACOC
Management, during the period 18-22 September 1989. Both the
Expert System and the Trainer were demonstrated repeatedly to
site and visitor personnel. The scenarios are described in the
body of the report. The ACOC community recognized the valuable
potential of these systems, and offered encouragement to carry
out the significant integration and completion that must be done
before this new technology can become part of their working
inventory.

The FY89 SOW also called for substantial effort to begin to
scope and understand the problems of correlating and interpreting
DCS transmission system alarms and presenting filtered results to
Tech Control and Network Management decision makers. By analogy
with the success of the Call-by-Call Simulator (CCSIM) as a
portrayal of realistic network behavior to use in developing
network management knowledge, it has been conjectured that
TRAMCON and DPAS alarm pattern simulation systems could make up
for the lack of access to real transmission networks for MITEC
software developers, as well as the fact that real networks
seldom produce interesting alarm patterns. In FY89 a
specification was developed for a TRAMCON alarm generator for
this purpose, with an eye to implementing it in FY90. The
complete specification is given in Appendix D.

iii

Table of Contents

Abstract iii
List of Figures vii
List of Tables vii

1.0 EXECUTIVE SUMMARY AND INTRODUCTION 1
1.1 Executive Summary 1
1.2 Background 5

2.0 DCA-EUROPE DEMONSTRATIONS 7
2.1 Implementation of the Demonstration Expert System 7

2.1.1 Background 7
2.1.2 Conversion of NMES to CLIPS 7
2.1.3 New NMES Graphics Interface 8
2.1.4 Changes Needed for the Demonstration NMES 9

2.2 The NMSS Operator Trainer 11
2.3 Specification of the Simulated Network 13
2.4 September 1989 Demonstration Results 15

3.0 CCSIM DEVELOPMENT 18
3.1 Background 18
3.2 Extensions for DCA-Europe Demonstrations 19

3.2.1 Trunk Group Representation 19
3.2.2 NM Control Changes 20
3.2.3 New Switch Report Fields 21
3.2.4 Local Traffic Model 23
3.2.5 Routing Extension 24
3.2.6 Noisy Trunk Simulation 24
3.2.7 Damage Model 25
3.2.8 Further Work 25

3.3 Simulation of Candidate DSN Routing Strategies 26
3.4 Modeling Data Calls 28
3.5 Developing a CCS Model 28
3.6 New CCSIM Network Management Control 29
3.7 Graphics Interface Enhancements 29

4.0 TRANSMISSIOI SYSTEM ALARM INTEGRATION STUDIES 32
4.1 Introduction 32
4.2 Specification for TRAMCON and DPAS Alarm Generators 32

4.2.1 Background 32
4.2.2 Microwave Radio System Description 34
4.2.3 TRAMCON Operation 34
4.2.4 DPAS Description 35
4.2.5 Potential MITEC Interactions with TRAMCON and

DPAS 35
4.2.6 TRAMCON and DPAS Alarm Generator Requirements 36
4.2.7 Development Sequence 36

APPENDIX A NMES FIELD INSTALLATION AND DEMONSTRATION PLAN 38
APPENDIX B NMES MONITORS AND RULES 66
APPENDIX C NMSS TRAINER DOCUMENTATION 75
APPENDIX D NEW CCSIM INPUT FILES 97
APPENDIX E CCSIM NETWORK MANAGEMENT CONTROLS 101
APPENDIX F CCSIM USER'S MANUAL DESCRIPTION 110

v

APPENDIX G TRAMCON EVENT GENERATOR SPECIFICATION iii

vi

LIST OF ILLUSTRATIONS

FIGURE
NO. PAGE

Figure 4.1 Alarm Monitoring Systems 33
Figure A.1 DCA-EUR NM Facilities 39
Figure A.2 Normal ACOC NM Operation 40
Figure A.3 NMES/LARS Demo Live Data 42
Figure A.4 ACOC NM Operator Training Mode 44
Figure A.5 NMES/LARS Demo (Simulated Data) 47

LIST OF TABLES

TABLE
NO. PAGE

Table 1 Language Processors Suitable for TEG 119

vii

1.0 E)ECUTIVE SUMMARY AND INTRODUCTION

1.1 Executive Summary

The primary thrust of the FY89 program was installation and
demonstration of the Network Management Expert System (NMES) at
DCA Headquarters in Stuttgart, Germany. Two major efforts were
involved: completion of improvements and extensions to NMES
itself, and performance of numerous tasks in matching the
hardware and software to the DCA-Europe environment so that it
could be meaningfully operated there. Additional components of
the FY89 program were implementation of a training system to
develop operator skills in the use of the current manual Network
Management Support Systems, as well as execution of a set of
enhancements to, and investigations with, the Call-by-Call
Simulator (CCSIM).

The first major undertaking with NMES was to address memory
management problems that had been observed in FY88 as the size
and complexity of the system gradually increased. The software
development environment then in use was the ART (tm Inference
Corporation) expert system shell running in Lucid Common LISP
under the Sun UNIX operating system in our Sun 3/260
workstations. The vendor of each of these entities said that the
problem had to be with one of the other two. The solution was to
transfer NMES to the CLIPS shell which runs in the C language,
was developed by NASA Johnson Space Center, and is free to
Government users. The transition went smoothly, and was
completed in the early spring. This solved the memory problems,
and also removed the need to pay sizeable software license fees
for each computer in which NMES would be installed in the future.

A new graphics interface was implemented for NMES by
borrowing and modifying the sophisticated system that had been
developed for the Call-by-Call Simulator (CCSIM). This allowed
both interactive and automatic operation of the NMES.

Numerous changes were required to enable NMES to operate
with real dat9 from the telephone switches in the European DSN.
These included modifying the system to accept "comma-separated"
switch report data as currently produced by the Network
Management Support System (NMSS) in use at DCA-Europe. It was
also necessary to provide mechanisms for the NMES to operate
successfully when damaged or incomplete switch report data is
interspersed with good reports - a circumstance which was
happening frequently in DCA-Europe at that time due to noise on
the long-distance modem circuits collecting the switch data. Up
to that time the NMES had operated with switch reports received
every five minutes from the simulated switches, which matches the
behavior of real Northern Telecom DMS-200 switches; however, at
that time the NMSS was limited by data circuit bandwidth to
15-minute reporting cycles, and NMES changes had to be made to

1

deal with this. Another major difference is that only part of
the switches in the European DSN have been upgraded to DMS-200s,
and only those switches provide data to the NMSS; all the other
switches are affecting the network traffic and performance but
not reporting data on which NMES will be able to base its
reasoning. This is in contrast to our simulation experiments, in
which we were dealing with a future DSN in which switch upgrades
were complete. Another issue was that the switch reports from
CCSIM (which matched those of real DMS switches in content, in
accordance with Northern Telecom documentation) contained certain
useful data fields which were not yet being collected by the real
NMSS in the field.

All of the above problems required substantial changes in
NMES rule structures, monitors, and other areas. Difficulties
were compounded by the fact that we could not test the system
with real data until it was brought to Europe late in the FY.

A collateral DCA-Europe oriented project covered by our
Statement of Work was development of an NMSS Operator Trainer.
This was to consist of an IBM PS/2 Model 80 computer identical to
that in the real NMSS, and driven by the CCSIM with data and
scenarios that closely match those of the real DSN. This system
was installed and demonstrated at DCA-Europe in September 1989,
together with a user's guide and documentation that would permit
it to be used for training purposes.

The FY89 SOW called for continuing functional development of
CCSIM in a number of areas, besides a substantial set of changes
necessary to support the Trainer. This included modification of
CCSIM to produce the various kinds of real-world DSN behavior
noted above. We needed to make changes in the internal labelling
of trunk groups; the form, number and contents of switch report
fields; local traffic models; routing mechanisms; trunk noise and
switch damage models; and numerous other ireas. In addition we
modified CCSIM to allow simulation of various candidate routing
strategies and to model data calls (e.g., long-term modem
connections by data users). A common-channel signalling
simulation design was developed and presented to DCEC for
approval, with the intention of implementing it in CCSIM in the
coming year. Also, numerous enhancements were made to the
graphics interface.

In July 1989 two Sun 3/260 workstations and an IBM PS/2
Model 80 computer were installed at DCA-Europe, to support NMES,
CCSIM, and the Trainer. A Lincoln contract staff member took up
an extended assignment at DCA-Europe at the same time. Between
July and September the software was installed, checked out,
modified and debugged as necessary, and prepared for the
demonstrations.

The demonstrations themselves were performed by two highly

2

competent military ACOC personnel offered for the purpose by ACOC
Management: Sergeant First Class Nancy Fuller, USA, and Gunnery
Sergeant Steven Waynick, USMC. They delivered expert
performances of the demos on the following timetable:

12 Sept: arrival of Lincoln demonstration team on site

12-15 Sept: equipment checkout, plans and rehearsals

18 Sept: Briefings and demos for site personnel

19 Sept: Demo for DCA-Europe management and CONUS visitor
(Col. Waterman, Deputy Director, DCEC)

20 Sept: Demo for Tactical USAFE (Ramstein)

21 Sept: Demo for Army 5th Signal Command (Worms)

22 Sept: wrap-up, future plans

The following is a synopsis of the NMES demo that was
repeatedly performed by Sgts. Waynick and Fuller:

- Connect NMES to live switch data; show displays, data
arrival, colors and meanings

- Connect to simulated data, so that NMES response to network
problems can be shown; Sgt Waynick on CCSIM, Sgt Fuller on
NMES

- Run CCSIM with normal conditions for 30 simulated minutes,
explaining displays and capabilities

- Destroy two key switches and a major trunk group
simultaneously

- Show NMES correctly identifying all three, recommending

controls

- Take a snapshot before control application

- Apply controls, compare before-and-after network performance

The following is a synopsis of the NMSS Trainer demo:

- Connect CCSIM/Trainer (Sgt Waynick) to NMSS (Sgt Fuller)

- Run 30 simulated minutes, describing functions

- Sgt Waynick secretly destroys a key trunk group (NVL-MHL)

- Sgt Fuller (the "trainee") detects the failure; confirms it

3

over one more reporting cycle; and applies SKIP controls for
NVL-MHL trunks

Sgt Waynick secretly takes down the switch at ABE

Sgt Fuller detects and confirms the failure, and applies DCC
and SKIP controls

The demonstrations clearly exhibited useful and effective
technology, and it was plainly evident that the ACOC community
wants and needs the benefits of the technology. Analysis and
pattern recognition in the masses of DSN switch statistics data
is difficult even for experienced network managers, and by the
time ACOC personnel acquire significant experience they are
transferred, and new people come in. Consequently the prospect
of automatically obtaining situation assessments and control
action recommendations is highly appealing. The demonstrations
showed bona fide evidence that these functions were being done.

Not surprisingly, however, the ACOC community recognized
that significant integration and completion must be done before
this new technology can become part of their working inventory.
The operations staff is already burdened with learning and using
numerous different user interfaces for systems they use in their
work, and there is no rationale for requiring them to learn two
additional, unique systems that each do a part of the DSN network
management functions. Clearly the systems should be integrated
into a single workstation as noted above. Also, whereas the
examples demonstrated looked right to all concerned, DSN network
management spans a wide range of functions and conditions, and it
will be necessary to do extensive evaluation and analysis of the
integrated workstation to establish that it performs correctly
throughout this range. This process will undoubtedly entail
redesign and correction in some areas.

The FY89 SOW also called for substantial effort to begin to
scope and understand the problems of correlating and interpreting
DCS transmission system alarms and presenting filtered results to
Tech Control and Network Management decision makers. In
particular, it is recognized that these decision makers will be
able to function more rapidly and effectively if they can obtain
immediate information about transmission system problems from
TRAMCON and DPAS systems, rather than having to wait while the
user community slowly reacts to transmission impairments and
produces traffic pattern distortions that allow the managers to
recognize and correct the problems. By analogy with the success
of the Call-by-Ctll Simulator (CCSIM) as a portrayal of realistic
network behavioc to use in developing network management
knowledge, it has been conjectured that TRAMCON and DPAS alarm
pattern simulation systems could make up for the lack of access
to real transmission networks for MITEC software developers, as
well as the fact that real networks seldom produce interesting

4

alarm patterns. In FY89 a specification was developed for a
TRAMCON alarm generator for this purpose, with an eye to
implementing it in FY90. The complete specification is given in
Appendix D.

1.2 Background

The DCEC-sponsored Knowledge-Based System Analysis and
Control Program was established at Lincoln Laboratory to address
an important problem area associated with the ongoing
implementation of the Defense Switched Network (DSN), namely
learning and applying network management techniques to correct
traffic overload and network outage problems and to avoid
disasters. The keystone of this new Program is to develop such
techniques and to capture the knowledge in a flexible, portable
Network Management Expert System which will allow DSN field
personnel to deliver state-of-the-art network management
performance.

It was recognized by DCEC in FY86 that the Call-by-Call
Simulator (CCSIM), a powerful DSN simulation tool built by
Lincoln Laboratory under a DCEC-sponsored effort ending in FY85,
could provide a means for approaching these goals. The original
purpose of CCSIM was to study and evaluate candidate call routing
and preemption techniques for the DSN, and it was a large
software system which had a variety of features well-tailored to
that purpose. If suitably modified and extended, CCSIM could
become an experimental testbed for learning to do DSN network
management. Accordingly, the new DCEC-sponsored program was
established in FY87 with three major goals:

1. Implement the new features and capabilities needed to suit
CCSIM to these new purposes;

2. Conduct a variety of experimental exercises with CCSIM to
derive DSN network management methodologies; and

3. Develop a prototype Network Management Expert System to
serve as a repository of this near-term knowledge as well as
future skills and techni4ues to be derived from both
simulated and actual DSN experience.

These goals were accomplished, as described in the
Knowledge-Based System Analysis and Control, Defense Switched
Network Task Areas FY87 Annual Report, providing a very
interesting initial look at the potential of these techniques for
developing genuinely valuable tools for future field deployment.

The program was continued in FY88, with a Statement of Work
(SOW) that was intended to reap the benefits of the FY87 work by
consolidating and extending the initial results. Task I of the
SOW envisioned an Interactive DSN Simulation (IDSIM) consisting

5

of an enhanced CCSIM in a Sun 3/260 workstation, interfaced with
an enhanced NMES in a second Sun 3/260 workstation. The primary
function of the latter is to exercise control and network
management upon the simulated DSN running in CCSIM. Task II of
the FY88 SOW provided for performing simulation studies with
CCSIM on a variety of traffic overload, congestion and damage
scenarios, aimed at broadening the knowledge base of network
management remedies for problem conditions of concern to DSN
operators. Task III was the precursor of the NMSS Operator
Trainer that was demonstrated in FY89 as noted above; this Task
was to demonstrate the feasibility of such a trainer and to
develop its design, as well as to begin the actual
implementation. Task IV provided for analysis and review of
future requirements of the Defense Data Network for monitoring
and control, and for identification of expert system techniques
and technology that could be applied to improve the effectiveness
of DDN management. All of these tasks were carried out, as
described in the Knowledge-Based System Analysis and Control.
Defense Switched Network Task Aruas FY88 Annual Report.

During FY88 DCEC asked for a field test and evaluation of
NMES to be planned for late FY89 at DCA-Europe, using the same
live input data that is available to controllers using the NMSS.
This new requirement considerably influenced Lincoln's FY88
activity, in terms of both making NMES implementation choices and
planning FY89 work toward the demonstration objectives. Two
Lincoln staff spent a week at DCA-Europe in September 1988
coordinating needs and plans with the site personnel, for both
the NMES demo and the NMSS Controller Trainer, which became a
closely related activity because the Trainer would be used to
provide inputs for NMES during the development of the field-test
version.

The outcome of all this activity was an FY89 program that
heavily emphasized the field demonstration, as described in the
body of this Report.

6

2.0 DCA-Europe Demonstrations

2.1 Implementation of the Demonstration Expert System

2.1.1 Background

At the end of FY88 the Network Management Expert System
(NMES) was a functioning component of the Interactive Defense
Switched Network Simulator (IDSIM). It was a combination of a
rule based expert system using the ART expert system development
shell and routines called 'monitors' written in SUN Common LISP
that processed switch reports from the Call-by-Call Simulator
(CCSIM) and asserted facts into the ART database. It had a
graphics interface that made use of unsupported Sun View graphics
LISP macros. Routines written in the 'C' language were used to
communicate with the other components of IDSIM.

Through a combination of monitors and rules, the FY88 NMES
could recognize switch outages and overflowing and overloaded
links. It had a planning module that could apply appropriate
controls to treat the recognized troubles, and the effectiveness
of the control actions could be evaluated through CCSIM.
Implementation of control actions 'turned on' new monitors that
would look for indications that the netuork had returned to
normal. Other rules would then fi-e to remove the related
controls.

Independent of any considerations relative to a
demonstration at DCA-Europe, there was a strongly felt need to
improve the system. Experience had shown that NMES could not
handle large networks offectively due to problems with memory
management in the ART/LISP environment. Even for the case of
small networks, memory problems (an excessive frequency of LISP
garbage collections) were seen when NMES ran for several hours of
simulation time. It was also clear that a new graphics interface
was needed to enhance the information available to the operator
and to overcome concerns about the lack of vendor support for the
LISP macros used in the FY88 interface.

2.1.2 Conversion of NMES to CLIPS

At the start of FY89, work was undertaken to address the
memory management problems observed with the ART/LISP
environment. Progress was discouraging, and significant
improvement appeared to be unlikely unless the environment itself
could be altered, a task ill-matched to our resources. Instead,
we chose to investigate the use of an expert system shell
developed by the Artificial Intelligence Section at NASA/Johnson
Space Center called CLIPS ('C' Language Integrated Production
System). Our investigations showed that conversion to CLIPS
would be relatively straightforward and highly beneficial.

7

CLIPS contains many of the basic functions of ART that we
had been using. It is designed to provide high portability, low
cost and easy integration with other systems. Problems involving
licensing and availability on more than one machine that had been
of concern with ART are avoided because CLIPS is available at no
cost for U.S. government work. CLIPS has been used to develop
expert systems that have proven to operate reliably in the field
over a long period of time. Using CLIPS simplifies the interface
problems to other components of our system because it is written
in C and developed to interact directly with programs written in
the C language.

The transition from the ART/LISP/C environment of the FY88
NMES to the CLIPS/C environment went smoothly and was completed
during early spring of 1989. The structure of the FY89 NMES is
essentially the same as that described for the FY88 NMES in the
previous Annual Report. The lowest level is the network
representation made up of C structures that are created when NMES
is initialized and later filled in with processed data from the
switch reports as they arrive. At initialization time, the
network representation is also entered, by assertion, into the
CLIPS database and stored as facts. On each cycle of NMES
operation, the C structures are scanned by monitors, implemented
now in C, for interesting features and useful information. The
outputs of the monitors are stored in the CLIPS database as the
abstract state of the network. Potential problems are identified
by a set of CLIPS rules which look for patterns in the abstract
state of the network, and these problems are confirmed over time
by another set of rules. A planning module devises control
actions to improve or correct a confirmed problem situation. An
observation module watches the effects of the applied controls
over time and removes the controls when the problem no longer
exists.

2.1.3 New NMES Graphics Interface

A new graphics interface for NMES was realized by adapting
the CCSIM graphics interface to use different information for
coloring the switches and links. For NMES, the colors represent
levels of anomaly and problem detection and show that action has
been taken. By mousing buttons the operator can set the mode of
NMES to be either automatic or interactive. In automatic mode,
NMES sends control commands to CCSIM immediately upon the
detection of network damage or restoration. In interactive mode
the operator must act to approve, ignore, or defer the
implementation of controls. In either mode the operator, by
mousing the switches and links, can get text describing the
problems and any recommended actions. Also by mouse action, the
operator can see all the switch report information available to
NMES about the switches and trunk groups. Other information,
such as the true extent of network damage, that is available to

8

the CCSIM user from its graphics interface, is not presented to

the NMES user.

2.1.4 Changes Needed for the Demonstration NMES

In order to operate with real network data in the
demonstrations it was necessary to change NMES to work with
switch reports in a format called 'comma-separated' data used by
the NMSS workstation (see Section 2.2). In some respects, these
reports contained less information than the reports from CCSIM
used in the FY88 work, and they were generated less frequently
(every 15 minutes as opposed to every 5 minutes). For example,
at the time of the demonstrations, the real switch reports did
not have any information about call blockage at the switches or
the activity of precedence calls in the network. On the other
hand, they did have other information about the internal state of
the switches (see Section 3.2.3) that was not available from
CCSIM in FY88. They also provided information about individual
trunk groups rather than the links between switches that was
reported by CCSIM in FY88.

To handle the different switch report format, a program
module called the 'translator' was written to convert the
comma-separated data into the format used by CCSIM. We chose to
keep using the CCSIM format since it could handle the union of
the information available from simulations and that obtainable
from the real network. The translator has two modes of
operation. It can feed data to NMES either from archived data
files or from the live network when located on site. In addition
to running with the translator, NMES can be run with simulated
switch reports from CCSIM.

In addition to reporting on inter-switch trunks, the real
network sends reports on other trunk groups going to PBXs and 4-
wire users. These other groups are of little interest to network
managers because problems associated with these groups have
little affect on network performance, and in most cases there is
nothing that a network manager can do about them. Because of the
complexity involved in simulating and representing these trunks,
it was decided that only inter-switch trunks would be monitored
by NMES. Data for other groups is discarded by the translator as
it processes the switch reports.

In the real network, switch reports are subject to both
loss and damage due to interruptions of and noise on the
communication lines between the switches and the ACOC. Some of
the damage situations can be detected and removed by the Data
Acquisition Interface (DAI) processor that polls the switches,
with the consequence that partial reports can be received. The
NMES monitors had to be changed to deal with these partial
reports.

9

NMES requires a complete set of switch reports for a sample
period to have arrived before starting its processing cycle. Of
course, there will be no report from a switch that is damaged,
and there may be none from others from which communication with
the DAI was lost. In the FY88 NMES, we used the arrival of the
first report for the next sample period to trigger the processing
cycle. The same technique was first used for the demonstration
NMES, but because of the 15 minute polling period, a considerable
delay was introduced while waiting for the first poll of the next
period. Since the DAI makes a certain number of attempts to poll
a switch and if all fail then sends a special message called an
empty switch report, we changed NMES to start its processing
cycle when one report (normal or empty) had been received from
each switch for the current period. This technique worked
satisfactorily most of the time and was used for the
demonstrations and tests that followed. However, we later
learned that the DAI in some cases would decide to re-poll a
switch after sending the 'empty' report. If the re-poll was then
successful, NMES would get a new report which it was not
expecting and would become confused until the next complete
cycle.

Noise on the lines between the switches and the DAI can
cause data corruptions that cannot be detected by the DAI. These
can cause errors in the behavior of client programs. We chose to
have NMES do some smoothing over time to reduce the probability
of mis-recognition due to such noise. Hind-sight says that this
decision was a mistake. The data errors did not occur frequently
enough to justify the delay introduced by the time smoothing. We
had based our choice on some early data samples obtained from
Europe that showed a number of errors. However, by the time of
the demonstrations, the error characteristics of the
communication lines had improved significantly, and the smoothing
was probably not needed.

Another major difference between the demonstration
environment and the earlier simulations is that only a sub-set of
switches in the network report to the ACOC. Consequently, less
information is available to NMES about some trunk and switch
outages because reports from both ends of a trunk group or from
all neighboring switches are often lacking. The lack of
information does not cause any fundamental change in the
methodology for diagnosing problems, but it does increase the
probability of making an error in diagnosis, particularly in the
'false alarm' sense. The probability of error is greatest at
times of low network traffic since the only source of information
available directly to NMES comes from the response of the network
to attempts to route calls. If no attempts are made in some time
period, NMES gets no information. If only a few calls are
attempted, NMES gets some information, but it is 'noisy' in the
sense that there tend to be large percentage fluctuations from
period to period. In the demonstration system we attempted to

10

compensate for both the network sub-set and low traffic effects
by requiring an apparent problem to persist over time before
announcing a diagnosis. We would have preferred to take traffic
statistics into account in the diagnosis process and to generate
statistical confidence measures for NMES diagnoses, but it was
clear that the data neccessary to generate the statistics and the
software to incorporate them would not be available in time for
the demonstrations.

The FY88 NMES had rules for recognizing some traffic
problems (overloaded trunks) and applying controls to improve the
call failure rate. Since these FY88 rules made use of switch
report data that was not to be available from the real network at
demonstration time, and the control actions had only a small
affect on the call failure rate in our experiments, we decided
not to attempt to include this capability in the demonstration
NMES. Instead we chose to limit NMES, as far as a complete
problem recognition and control application package was
concerned, to dealing with switch and trunk outages only. Since
the demonstration was to include watching the real network as
well as interacting with CCSIM, and there was only a small
probability of a switch or trunk outage occurring on the real
network during the demonstration, we decided to add the
capability to recognize some other anomaly situations for which
NMES would have no control recommendations but which might be
expected to occur occasionally during a period of watching the
real network. These included switch problems such as failures to
find a free MF receiver or a free Call Condense Block (CCB), and
trunk group problems such as low holding time and high incoming
connections per circuit per hour.

Appendix B contains a detailed description of the monitor
routines used in the demonstration NMES. It also contains a
description of the CLIPS rules involved in recognizing switch
outages and restorations.

2.2 The NMSS Operator Trainer

Work on the NMSS Operator Trainer was brought to completion
during FY89. It was demonstrated at DCEC in August 1989 and at
DCA-Europe in September. The goal of the work was to adapt CCSIM
so that it could serve as a training aid for users of the Network
Management Support System (NMSS) developed by GTE for DCA-Europe.
NMSS is a PC-based system designed to provide centralized network
management control of a small set of Northern Telecom switches.
It uses two IBM PS/2 computers. One, called the Data Acquisition
Interface (DAI) polls the switches, reformats and archives the
Operational Measurement (OM) reports returned by the switches,
and sends them to the other computer called the NMSS workstation.
It provides graphical and alphanumeric displays from which a
skilled operator can deduce the presence of anomalies or problems
in the network and, by mouse and keyboard interaction, can cause

11

network management controls to be sent back to the switches by
the DAI.

Since considerable skill is required to use NMSS
effectively, it was felt that there war a need for a training
capability so that potential operators could practice taking
network management actions in a simulated network situation.
Some kinds of training scenarios can easily be carried out while
observing the behavior of the real network, but others involving
serious damage or major control interventions cannot safely be
carried out except in simulation. Under Task III of our FY88 SOW
we began work on the adaptation of CCSIM to perform this
simulation task. The work involved the extension of CCSIM to
model a number of aspects of switch behavior that were new to it
(see Section 3.2 of this report) plus the development of a new
module called the 'trainer' that handled the data reformatting
and communication protocol issues associated with connection to
the NMSS workstation.

To support the effort we procured two IBM PS/2 computer
systems with graphics capabilities to match the NMSS
workstations. We used one for our software development and
testing. We loaded it with NMSS workstation software provided by
DCA-Europe and confirmed operation using archived files of the
'comma-separated' data also provided by DCA-Europe. We were then
in position to begin testing the 'comma-separated' data produced
by CCSIM through the trainer module. For the demonstration of
the trainer in August, we moved the PS/2 to DCEC and connected it
to a SUN workstation there.

The other PS/2 was sent to DCA-Europe for use in the
demonstrations in September. It was sent early so that people
there would have an additional machine to help with their NMSS
development work that was proceeding in parallel with our trainer
work. Not surprisingly, the parallel developments led to some
additional work because the system we were trying to simulate was
evolving as we worked, and very little NMSS documentation was
available. Fortunately, evolution slowed sufficiently to allow a
sucessful demonstration in September. Some of the details of
the formats for control invocations and reponses were not worked
out until we arrived at DCA-Europe to prepare for the
demonstration.

Further detail on the NMSS operator trainer can be found in
Appendix C of this report which reproduces the User's Manual and
Software Description documents delivered separately to the
sponsor during the year.

12

2.3 Specification of the Simulated Network

For the NMES and Operator Trainer demonstrations in
September, we needed to define a network for CCSIM that would
represent the subset of DSN-EUR that would be monitored by NMSS
at that time. The demonstration network had to contain all of
the switches that would report to NMSS. In addition it had to
have enough other switches to account for the interswitch trunks
connecting the NMSS sub-set with the rest of the network. At a
minimum, these other switches would be the immediate neighbors of
the NMSS-reporting switches. We hoped to be able to aggregate
the traffic in and out of the NMSS sub-set and attribute it to
the immediate neighbor switches. We were confident that such
aggregation could be made to match real network data for any
particular steady-state situation. However, when damage or major
traffic pattern shifts occurred, we thought it unlikely that the
aggregated traffic would continue to match real-net behavior.
Accordingly, we planned to define both a large network with a
full set of DSN-EUR backbone switches and a small network with
just the NMSS sub-set and its immediate neighbors and to compare
their behavior under scenarios of interest. As it turned out,
the effort necessary to define the large network was beyond what
could be accomplished in the available time, and we elected to
focus on the small network for the demonstrations.

Since the current DSN-EUR is quite different from the
networks we had been simulating, we requested detailed
information on the current configuration from DCA B-521. On 29
June we received twelve disks and several maps. The maps showed
the current trunking, and the disks contained complete routing
information by end-office codes. A few weeks later we received
another disk with the trunking information in machine-readable
form. We also had a single page representation of Autovon tanden
switch routing that had been provided by DCEC, and, of course, we
had the trunking data from the NMSS XREF files for the NMSS
reporting switches and their neighbors. Unfortunately, the
routing tables on the twelve disks did not constitute a complete
and consistent set of data. Some tables applied to the current
network, others to a future configuration, and there was nothing
on the disks to say which was which. Still other tables were
unreadable or incomplete. As we were beginning to consider
various alternatives, we came upon another source of information.
While on a visit to the European ACOC, we were offered copies of
the complete routing tables for the six Autovon 490L switches in
Europe. With this solid detailed information as a guide, we were
able to decide which portions of the information on the twelve
disks were consistent with the current network, and putting it
all together, to generate CCSIM routing tables for the
demonstration network.

13

In addition to information about the network topology
(switches and trunks) and the routing tables used in the network,
CCSIM must have a traffic matrix representing the source to
destination traffic for all switches in the simulation. DCEC
provided us with printouts of measured data for busy-hour and
busy-day traffic out of some of the switches in the NMSS sub-set.
There was no information on incoming calls to the NMSS sub-set
switches in the measured data. Since the measurements were taken
over a short time period, there were many source-destination
pairs that showed no traffic at all during the sample. They also
provided us with estimated traffic matrices for the entire
European DSN. Unfortunately, that data existed only as a
hard-to-read copy of a lengthy printout, and efforts to obtain it
in machine-readable form were unsuccessful. If we were to have
used it in detail, it would have been necessary to enter it
manually, a slow and error-prone process. We would also have had
to translate the units of traffic intensity and the
source/destination place names. In the end, we decided that we
could make no practical use of this potentially valuable
information.

We chose to deal with the traffic problem by assuming an
approximate symmetry in the distributions between outgoing and
incoming calls, i.e, if a switch was a source of traffic for n
other switches in the measured data, we would assume that it was
a destination for the same n other switches acting as sources.
The symmetry assumption would not extend to the traffic
intensity, the trunk statistics for which showed to be different
in the two directions. Further we would arbitrarily spread the
distribution somewhat by replacing some of the zeros in the
pairwise matrices with small values. We would then use a trial
and error procedure supported by spread sheet calculations to
adjust traffic intensities until trunk statistics from CCS1M
satisfactorily matched those from archived NMSS busy-hour data.
Simply matching the trunk statistics for a normal busy hour,
which can be done with very many different traffic matrices, does
not give any assurance that the behavior of the simulation will
be realistic for a damage situation. For example, the trunk
statistics can be most easily matched by assuming that all
traffic from a switch is destined for its immediate neighbors,
but that traffic pattern is clearly very unrealistic for many
neighbor pairs.

The procedure described in the previous paragraph produced
traffic matrices that matched reasonably well to both archived
NMSS trunk data and the one-way end-to-end measured traffic data.
As in all work associated with an event by event simulation,
there is a random component that must be treated statistically.
It is not practical to attempt to get a good match on all trunk
groups, particularly those of low capacity which have a high
variance from run to run of the simulation. The behavior of the
simulated network when damage is introduced does not appear to be

14

obviously incorrect, although we know that it cannot be totally
correct because of our assumptions, particularly the attribution
of traffic to and from portions of the overall network that are
outside the NMSS sub-set to immediate neighbors of the sub-set.

Even for a small network, the effort required to produce a
traffic matrix using the trial and error procedure described
above is quite large. If CCSIM is to be used for detailed
investigations pertaining to the behavior of a real network under
damage conditions, more complete measured traffic data is needed
as input to the simulations. With complete source to destination
traffic data the procedure for generating a CCSIM traffic matrix
would be algorithmic. With machine-readable data it could be
reduced to a computer program with little difficulty.

At the time of the demonstrations, we used a 26-node network
in the simulations. Of the 26 nodes, 25 represented real
switches (14 tandem, 11 end-office). The 26th, labelled 'CON',
served as a destination node for all traffic to CONUS. Traffic
from CONUS was simulated as having originated at two of the 14
tandem switches that acted as gateways. Twelve of the 25 nodes
representing real switches were members of the NMSS reporting
sub-set. Shortly after the demonstrations were completed, growth
in the NMSS sub-set required an increase in the simulated network
to 32 nodes.

2.4 September 1989 Demonstration Results.

Preparations.

In July 1989 two Sun 3/260 workstations and an IBM PS/2
Model 80 computer were installed at DCA-Europe, to support NMES,
CCSIM, and a replica of the NMSS Workstation, respectively. A
Lincoln contract staff member (Mr. Paul Gesswein) took up an
extended assignment at DCA-Europe at the same time. Through the
efforts of Mr. Gesswein and visiting staff from Lexington,
between July and September the software was installed, checked
out, modified and debugged as necessary, and prepared for the
demonstrations.

It was deemed desirable to have the actual demonstrations
performed by military ACOC personnel, and two highly competent
people were offered for the purpose by ACOC Management: Sergeant
First Class Nancy Fuller, USA, and Gunnery Sergeant Steven
Waynick, USMC. These two were quick, enthusiastic and
computer-literate, and they worked long hours in developing and
practicing demo scenarios with the Lincoln people. They then
delivered expert performances of the demos on the following
timetable:

12 Sept: arrival of CONUS demonstration team on site

15

12-15 Sept: equipment checkout, plans and rehearsals

18 Sept: Briefings and demos for site personnel

19 Sept: Demo for DCA-Europe management and CONUS visitor
(Col. Waterman, Deputy Director, DCEC)

20 Sept: Demo for Tactical USAFE (Ramstein)

21 Sept: Demo for Army 5th Signal Command (Worms)

22 Sept: wrap-up, future plans

Demo Scenarios.

The following is a synopsis of the NMES demo that was
repeatedly performed by Sgts Waynick and Fuller:

- Connect NMES to live switch data; show displays, data arrival,
colors and meanings

- Connect to simulated data, so that NMES response to network
problems can be shown; Sgt Waynick on CCSIM, Sgt Fuller on NMES

- Run CCSIM with normal conditions for 30 simulated minutes,
explaining displays and capabilities

- Destroy two key switches and a major trunk group simultaneously

- Show NMES correctly identifying all three, recommending
controls

- Take a snapshot before control application

- Apply controls, compare before-and-after network performance

The following is a synopsis of the NMSS Trainer demo:

- Connect CCSIM/Trainer (Sgt Waynick) to NMSS (Sgt Fuller)

- Run 30 simulated minutes, describing functions

- Sgt Waynick secretly destroys a key trunk group (NVL-MHL)

- Sgt Fuller (the "trainee") detects the failure; confirms it
over one more reporting cycle; and applies SKIP controls for
NVL-MHL trunks

- Sgt Waynick secretly takes down the switch at ABE

- Sgt Fuller detects and confirms the failure, and applies DCC
and SKIP controls

16

Sgts. Fuller and Waynick were also trained by GTE
representatives to demonstrate the LARS neural net system for
diagnosing DSN network problems on the basis of information
contained in the statistics reports from the switches. During
the week of 25-29 September they skilfully demonstrated LARS for
the same groups of visitors who saw NMES and the Trainer.

Assessment of the Demo Experiences.

The demonstrations clearly exhibited useful and effective
technology, and it was plainly evident that the ACOC community
wants and needs the benefits of the technology. Analysis and
pattern recognition in the masses of DSN switch statistics data
is difficult even for experienced network managers, and by the
time ACOC personnel acquire significant experience they are
transferred, and new people come in. Consequently the prospect
of automatically obtaining situation assessments and control
action recommendations is highly appealing. The demonstrations
showed bona fide evidence that these functions were being done.

To nobody's surprise, however, the ACOC community recognized
that significant integration and completion must be done before
this new technology can become part of their working inventory.
The operations staff is already burdened with learning and using
numerous different user interfaces for systems they use in their
work, and there is no rationale for requiring them to learn two
additional, unique systems that each implement a part of the DSN
network management function suite. Clearly the systems should be
integrated into a single workstation as noted above. Also,
whereas the examples demonstrated looked right to all concerned,
DSN network management spans a wide range of functions and
conditions, and it will be necessary to do extensive evaluation
and analysis of the integrated workstation to establish that it
performs correctly throughout this range. This process will
undoubtedly entail redesign and correction in some areas.

17

3.0 CCSIM Development

Task II of the FY89 SOW called for functional development of
the Lincoln Laboratory Call-by-Call Simulator (CCSIM) in a number
of different areas. As modified in March 1989, the SOW
identified the work needed in CCSIM to support the planned
demonstrations at DCA-Europe at the end of the FY as the primary
goal with other functional development to proceed as far as
resources permitted. Other development was to include the
simulation of candidate DSN routing strategies, the modeling of
calls having different holding times and arrival rates (e.g.,
data calls), and the extension of CCSIM to model both in-band and
Common Channel Signaling (CCS). During FY89 progress was made in
all of these areas, but not all were complete at the end of the
FY. In the following paragraphs we present a discussion of the
status of CCSIM at the end of FY89 in each of the functional
areas plus a little background information for readers unfamiliar
with the history and function of CCSIM.

3.1 Background

CCSIM was originally developed at Lincoln Laboratory to
support a study of routing and preemption strategies for the DSN
and was delivered to DCEC in September 1985 at the close of that
study. Starting in FY87 and continuing through FY88, extensive
modifications were carried out to allow CCSIM to support the
investigation of network management (NM) strategies for the
evolving DSN. Unnecessary features of the original CCSIM were
removed or deactivated. Models for switch processing and
signaling times were added, and a mechanism was provided to
account for resources tied up by calls that block at points in
the network beyond the source switch. Periodic switch reports
and network management controls were added using the DSN Generic
Switch Specifications provided by DCEC as well as Northern
Telecom Practices as guides. Routing was changed to allow the
engineered routes used in the Pacific DSN, and in-band signaling
was modeled with respect to signaling delays and damage effects.
A sophisticated graphics interface was created to allow an
experimenter to view color displays of network status and
performance as well as to introduce NM control actions and
control all simulator activity.

CCSIM uses an event-by-event simulation technique to work
out the fate of individual calls generated randomly with a
Poisson arrival-time distribution and exponentially distributed
holding times so as to achieve an average offered traffic pattern
matching a given point-to-point erlang traffic matrix. The calls
so generated are taken as a set of call intentions and are
allowed to retry after blocking, preemption, damage, or reaching
a busy destination according to parameters set by the
experimenter. Statistics produced during the simulation allow
the experimenter to observe both the performance of the network

18

as seen by the switches and presented in the periodic switch
reports, and also the performance as seen by the users and
presented as Grade-of Service (GOS) and other performance
matrices. The latter information is not available for the real
DSN or other telephone systems.

CCSIM has been constantly evolving since work resumed in
FY87. The initial goal of supporting research in network
management has been extended to support the development and field
demonstration of NMES and the training of network controllers in
the use of the Network Management Support System (NMSS) at
DCA-Europe Headquarters (see Section 2). To satisfy the new
goals, it has been necessary to increase the level of detail
embodied in the simulation. As a consequence, use of CCSIM by a
network researcher has been made somewhat more difficult because
of the necessity to specify more details about the network to be
simulated. We have attempted to minimize this difficulty by
providing suitable default values wherever possible.

3.2 Extensions for DCA-Europe Demonstrations

In order to make CCSIM useful in supporting the NMES
demonstration and the NMSS trainer at DCA-Europe, it was
necessary to make several major changes in the way CCSIM
functions and in the way that networks are defined for the
simulations. These changes affected the way that trunk groups
are represented, the formats of NM controls, and the content of
switch reports. In addition, a new mechanism was needed to
simulate local traffic so that its effect on the switch reports
could be simulated. Switch and trunk group damage models were
also changed, and a new capability was introduced to simulate one
type of noisy trunk problem. The following sub-sections provide
details on these changes and additions.

3.2.1 Trunk Group Representation

In CCSIM at the end of FY88 trunk groups were identified by
a source switch name, a destination switch name, and a type that
could be either land or satellite. There could thus be at most
two trunk groups between any pair of switches. In the real
network there is no limit on the number of trunk groups between
switch pairs and there are several dimensions in the trunk type
space. Trunks are identified by names called CLLIs (Common
Language Link Identifiers). We chose to extend CCSIM by
replacing the 'net.link' file that previously defined trunking
with a new 'net.clli' file. This file has two lines of text for
each trunk group. (The group has a different CLLI name as seen
by each terminating switch.) Fields on the lines specify the
source and destination switches, the equipped capacity, the CLLI
name used in the 'other' direction, the type of signaling
associated with the group, a satellite/terrestrial type used for
signaling delay computations, and a directionality field allowing

19

CCSIM to handle one-way trunk groups. Other fields specify a
trunk group number needed for switch report generation and type
information that is not used by CCSIM but is displayed for the
experimenter (see Appendix D for details). An optional field
allows some control of the order in which parallel trunk groups
are searched during routing (see Section 3.2.5).

The process of creating a net.clli file for a network can be
very tedious. There is quite a lot of information to transcribe
from other sources if a real network is to be simulated. In the
case of the sub-set of the European DSN that we simulated for the
demonstrations, we had 'XREF' files from NMSS that provided part
of the information needed for the 'net.clli' file. We developed
a set of UNIX tools to produce a first cut at the 'net.clli' file
and to provide consistency checks when the 'XREF' files are
changed to match real network changes. The tools, however,
cannot do the entire job of creating a correct 'net.clli' because
the 'XREF' files do not contain all the required information, and
some manual file editing is necessary to achieve a satisfactory
simulation.

For the case in which a simulation is desired for an
abstract network for which there are no real CLLI names for trunk
groups, we have created a utility called 'linkto cli' that will
make a usable 'net.clli' file from the 'net.link' file previously
used in CCSIM. This program manufactures CLLI names for the
trunks, makes the proper associatio.,i; And assures that
consistency requirements are rct.

3.2.2 NM Control Changes

In the FY88 CCSIM the trunX yruup controls SKIP, CANT, and
CANF were applied to the links between switches, not to
individual trunk groups. In the real network they apply to
individual groups. We have changed CCSIM to follow the real
network practice and to use the CLLI names for the trunk groups.
(See Appendix E for a complete description of all CCSIM NM
controls as of the time of the demonstrations.)

A consequence of the change is that an experimenter working
with an abstract network has to change the way he sets up
experiments. For example, if he wanted to see the effect of
causing 50% of the traffic being routed from switch A to switch B
to skip over that route, and there were more than one trunk group
between the switches, he would have to put SKIP controls on all
the groups such that the product of the fractions skipped would
be 50%. The extra computation is not really burdensome, but the
experimenter must take care to carry it out correctly, and
consequently there are increased possibilities for error.

20

3.2.3 New Switch Report Fields

NMSS polls the Northern Telecom DMS switches in the European
DSN for certain Operational Measurement (OM) data. It gets five
reports which contain status information about the switch itself
and one each for the trunk groups at the switch. Some of the
trunk groups are inter-switch trunks, but many go to PBXs and
4-wire subscriers. CCSIM generates reportable data for
inter-switch trunks only. Of course, the PBXs and 4-wire
subscribers could be added to the simulation as switches, but the
complete simulation would become unwieldy, and we lack traffic
data at the PBX/subscriber level to use as input to CCSIM.
Accordingly, we chose to report zero activity on all but
inter-switch trunks for the demonstrations and controller
training exercises. This simplification seems warranted, since
there is little or nothing that a controller can do about any
problems that might appear on PBX or subscriber trunks.

The FY88 CCSIM already generated the information needed for
all but one of the trunk OM report fields. That field shows the
number of trunks in the group that are viewed by the switch as
being 'In Service'. We cho.e to report as 'In Service' the
number of undamaged trunks in the group. At the time of the
demonstrations we learned that 'In Service' was a number
controlled by switch maintenance personnel and is completely
independent of the actual state of the trunks (see Sections 3.2.7
and 3.2.8). The other fields show the number of incoming and
outgoing attempts, overflows, and trunk usage. The values of
these numbers were available in CCSIM, but it was necessary to
combine the numbers for different precedences to produce the NMSS
OM fields.

The five switch status reports are called 'CPU', 'CP',
'RCVR, 'RADR', and 'DTSR'. The CPU report shows the number of
times that mismatches were observed between the redundant CPUs in
the switch and the number of warm restarts that have occurred.
This information can be useful to a network manager because it
shows that the switch is experiencing problems, but these
problems do not arise from the network activity that CCSIM is
simulating. Consequently, CCSIM reports zeros for the fields in
this report. For training purposes it is desirable to introduce
other values via the graphics interface, but these are not
produced by CCSIM itself.

The CP report shows statistics on Call Condense Block (CCB)
activity in the switch. CCBs are storage blocks used by the
switch program to remember essential information about the calls
it is handling. There are seven numbers in the report. Four arE
constant and show the quantity of resources available to the
switch. In order to produce these numbers, we added a new input
file called 'net.sw' for CCSIM to hold these and other switch
provisioning numbers which vary from switch to switch and change

21

from time to time as the network evolves. (See Appendix D for
details about 'net.sw'.)

Three numbers in the CP report vary with network activity,
and new code has been added to CCSIM to generate them. One is a
peg count of CCBs seized in the reporting period. CCSIM
calculates this number by accumulating the number of inter-switch
call attempts made during the period and adding a number
representing local traffic (see Section 3.2.4) and a housekeeping
factor said by the NTI Practices Documentation to represent
approximately one third of the total. A second reported field
shows the number of overflows, i.e., failures to find a free CCB
when one is needed. A call experiencing such a failure is "left
high and dry" according to the documentation. CCSIM assumes that
any such calls are local calls and does not count them in any of
its other statistics. The third field represents CCB usage,
i.e., the number that are busy as sampled at 100 sec intervals
and accumulated over the reporting period. As for the seizures,
the usage by inter-switch calls is calculated exactly while the
usage by local traffic is approximated. No usage is attributed
to the housekeeping factor associated with the CCB seizure
calculation.

The RCVR report shows statistics about the activity of the
peripheral devices called 'receivers' that are used to receive
in-band signaling. There are two types of receivers. One
accepts the MF signaling used on inter-switch trunks, the other
accepts tone or pulse dialing from users and some PBXs. For each
type there is a field showing the number of receivers available
to the switch. CCSIM obtains this constant value from the
'net.sw' file. As for the CP report there are three fieldE that
vary with activity. These again represent seizures, overflows,
and usage except that usage is based on a ten second scan. The
MF receiver seizures are calculated using the actual counts of
incoming call attempts while the other seizures use the local
traffic approximation. In both cases, the numbers are increased
by the number of test calls reported in the RADR and DTSR reports
(see below). Overflows are calculated by testing the number of
seizures against an estimate of the number that could be handled
in the reporting interval. If the seizure peg count exceeds the
estimate, the difference is reported as the overflow value. In a
real network, the overflows would cause calls to fail, but in
CCSIM we cannot relate the overflow number to individual calls
and do not show call failures in the statistics as a consoquence
of receiver overflows.

The RCVR report also has fields for usage of each receiver
type. CCSIM calculates these values by multiplying the
respective seizure peg counts by a constant factor. At
demonstration time this factor was equal to one half. Experience
has shown that the factors should be different for the two

22

receiver types and should vary from switch to switch (see Section
3.2.8).

The RADR (Receiver Attachment Delay Recorder) report shows
the results of periodic test calls made to determine whether the
switch is providing receivers sufficiently rapidly to maintain
proper service. Again there are fields for each of the two
receiver types. There are fixed fields that CCSIM gets from the
'net.sw' file that show the requested number of test calls per
hour (usuaily 900) and two delay thresholds (usually 3 and 7
seconds). Data fields report the number of test calls actually
made during the reporting period and the numnber which exceeded
either or both of the delay thresholds. CCSIM calculates the
number of test calls that would have been made in the reporting
period from the requested number per hour. It arbitrarily sets
the numbers exceeding the lower delay thresholds equal to one
half the number of the corresponding receiver overflows, if any.
The number exceeding the higher threshold is always set to zero.
This simulation is very simplistic, but we lack data that can be
used to develop a more realistic model. It is rare to observe
any indication of a failure to complete the test calls within the
threshold times.

The DTSR (Dial Tone Speed Recorder) report is similar in
intent to the RADR report. It shows failures to provide 'ial
tone to subscribers within a 3 second threshold time. Nuvbers
are reported for both rotary and tone dial75suscribers. Fields
show the number of tests carried out and the number of times the
threshold was exceeded. CCSIM did not simulate these tests at
the end of FY88. It reported zeros for all values.

3.2.4 Local Traffic Model

The CP, RCVR, and RADR reports have data fields that depend
upon local traffic at a switch. In CCSIM, local traffic includes
traffic that is truly local to the switch as well as traffic that
goes between PBXs and 4-wire subscribers that are homed on a
switch but that does not register as outgoing or incoming traffic
on the inter-switch trunks that are being simulated. In the FY88
version of CCSIM an entry on the diagonal of the traffic matrix
would cause such traffic to be generated on a call-by-call basis.
Since such traffic did not use any resources that CCSIM modeled,
all the calls would complete successfully, and there would be no
retries or preemptions. For the demonstration, we wanted to be
able to set local traffic to sufficiently high levels that
evidence of switch problems could be made to appear in the new
reports. Generating traffic on a call-by-call basis at those
levels would choke CCSIM's CPU and memory resources. We decided
instead to introduce a new model that would more Pconomically
simulate the effects of local traffic.

23

The program to model local traffic is executed every switch
report sampling interval (100 seconds). It computes the number of
new calls that would have arrived and that would have hung up
during the previous interval. It uses the same setting for call
duration that the experimenter specified for routine inter-switch
calls and computes the traffic levels to match the erlang values
found in the diagonal (self-to-self) of the traffic matrix. This
computation is much less expensive than generating individual
calls and maintaining the bookkeeping for them.

3.2.5 Routing Extension

In real networks, routing tables consist of lists of trunk
groups to search in a particular order. When parallel trunk
groups exist between switch pairs, the engineer building the
routing tables can arrange for these groups to be searched in
different orders for different routing destinations even though
the next switch in the routes is the same. Using this strategy,
traffic can be balanced among the parallel groups so that as
traffic to a switch increases the overflows will be more or less
balanced among the parallel groups. In CCSIM, routing tables are
made up of lists of switches rather than trunk groups to try in a
particular order. Without any additional mechanisms, this
routing scheme will always search parallel trunk groups in the
same order. Consequently, the first group searched will tend to
exhibit overflows, perhaps at a high percentage, before the
second becomes full. There is no difference in the call blocking
probabilities or ultimate path through the network (in terms of a
list of switches visited) that a call will follow, but the switch
reports will look different.

In order to make CCSIM's reports more closely resemble those
from the real switches, we added a feature that allows an
experimenter to set a probability value associated with the first
of the parallel trunk groups that allows the second group to be
tried first some fraction of the time. An optional field in the
'net.clli' file line carries the value. If the field is present,
the first group will be tried second with a probability
corresponding to the field value. Experience has shown that with
a modest amount of trial-and-error tailoring, CCSIM switch
reports can be made to resemble real switch reports to a
satisfactory degree for normal traffic patterns. For abnormal
patterns, there can be noticeable differences. The ideal
solution to the problem would be to change to trunk group
routing, but the change would be very expensive in terms of
changes to CCSIM, memory space, and effort on the part of
experimenters to get and transcribe the detailed routing
information from the real switches.

3.2.6 Noisy Trunk Simulation

Simulation of one kind of noisy trunk problem was added to

24

CCSIM in FY89. The kind chosen was noise that would cause a user
to hang up after a short time because communication was
unsatisfactory and then to try the call again, in the hope of
getting a better connection. The noise in this model does not
cause signaling problems on the trunks. Such a case would
require a different model to produce appropriate anomaly
symptoms.

A trunk made noisy in the simulator will exhibit short
holding times and increased attempt rates in both directions, and
call failures will register in the statistics to an extent that
depends upon the traffic level and availability of alternate
routes and/or parallel trunk groups. The noisy state applies to
an entire group and may be turned on and off from the graphics
interface or the CCSIM command file.

3.2.7 Damage Model

At the time of the demonstrations at the end of FY89 CCSIM
had a model for trunk damage that, as mentioned above, reported
as 'In-Service' the number of undamaged trunks in the group.
This value should have been independent of actual damage and set
arbitrarily by switch maintenance personnel. In the case of a
switch outage, the trunks to the switch from its neighbors lost
an 'In-Service' trunk each time an attempt was made to route a
call to the damaged switch. Further, the attempts from the
neighbors failed without reporting overflows until the
'In-Service' value fell to zero. We learned in discussions with
field personnel associated with the demonstrations that the
non-overflow-reporting situation should occur only in some
special cases of switch failure. In most cases, the trunks would
exhibit overflows immediately.

It was clear that our damage models at demonstration time
were incorrect, at least in so far as the switch reports were
concerned, and we acquired some useful information in our
discussions. It appears, however, that after the initial
transient effects had died out, the damage models showed correct
behavior in so far as their effects on the network's traffic
handling capabilities were concerned.

3.2.8 Further Work

There are three areas in which further work is needed to
complete the extension of CCSIM to support the DCA-Europe
Demonstrations and continuing NM workstation development in FY90.
The first is the damage model. We gathered useful information
during the FY89 demonstrations, but more is needed to get the
model to behave properly. Unfortunately, we do not have examples
of all the real damage situations that we would like to simulate.
We must depend on a mixture of documentation and input from field
personnel. For example, we need to know how a switch behaves

25

when it experiences signaling failure on attempting to use a
trunk to a neighboring switch. We have a flow chart in the NTI
Practices document which shows how their commercial DMS switches
handle this situation. We had two experts at DCA-Europe that
told us that document did not apply to the military switches, and
they each gave us slightly different versions of how they thought
the military switches handled the case. We are proceeding with
the development of an improved model, and we expect that several
iterations may be required before it performs to the satisfaction
of the interested parties.

The second area where further work is clearly indicated is
the need to add the Destination Code Cancellation (DCC) control
to CCSIM. This is a control used in the old AUTOVON switches
that has been provided in the military DMS switches for
compatibility. It is not in the DSN Generic Switch Specification
and consequently did not get into CCSIM in our earlier work. Its
action is similar to the behavior of Code Block (CB) in CCSIM
except that it acts on tandem as well as originating traffic at
the switch at which it is applied. It is the preferred control
to use in the event of switch damage because it is easier to use
than CB and it can be applied at fewer switches because of its
action on tandem calls. Since it's action is very similar to
that of CB in CCSIM, it will be easy to add.

The third area concerns the introduction of numbering plan
(code) information into CCSIM. CCSIM generates simulated calls
between source and destination switches. In the real network,
calls go between individual telephones which have numbers. A
Code Block or Call Gap control can be applied to affect calls to
individual numbers, sets of numbers, offices, and area codes. It
is not practical to change CCSIM to generate calls to individual
phone numbers, but it would be possible to do so for office
codes, allowing several such codes to a switch. Requiring the
use of codes would make CCSIM use by experimenters interested in
abstract network design issues more complex. Consequently, any
addition of codes to CCSIM should allow for continued use without
requiring the experimenter to come up with all the detail
associated with the relationship between codes and switches. A
code capability was not needed for the FY89 demonstrations. It
is desirable for the sake of completeness, but it is not clear
that there will be a real need for it in FY90 CCSIM applications.

3.3 Simulation of Candidate DSN Routing Strategies

The original version of CCSIM had a variety of routing and
preemption options that were disabled when the Engineered Routing
mechanisms were installed to allow simulation of the DSN during
FY87-88. Task II of the FY89 SOW called for the restoration of
these capabilities. This work has been accomplished. CCSIM now
works with Forward, Modified Forward, and Engineered routing
tables. Crankback can be used with any of those tables. Primary

26

Path Only routing can be obtained by setting the value of the
route control digits to 'one' in the Engineered routing table or
by the use of the Alternate Route Cancellation (ARC-B) control.
Adaptive Routing can be realized by use of the CHNG-ROUTE-TABLE
command to CCSIM, but the experimenter must provide the tables
that are appropriate to the changed network conditions.

The 'genrt' utility has been updated to work in the SUN
workstation. It generates Forward and Modified Forward routing
tables from 'net.node', 'net.cost' and 'net.conn' files. The
'cost' file provides a metric that is used to determine which
route will yield the shortest 'distance' to the destination node
from any node in the network. The 'conn' file tells what
connectivity exists among the switches. Another utility was
updated that can be used to calculate the cost file from the
latitudes and longitudes of the switches that are found in the
node file. We were not pleased with the performance of the
routing tables that we built using the cost files generated by
that utility. Either hand tailoring of the cost file or a better
distance calculation seems to be needed to get a good routing
table. To facilitate the generation of routing tables, a new
utility was written to build 'net.conn' files from the 'net.link'
files that are more readily available to users at DCEC.

To aid in the modification of Engineered routing tables we
wrote a set of utilities that produces human-readable and easily
editable forms from the form used internally by CCSIM and
provided by DCEC. A matching set of utilities converts the forms
back to the internal form after editing. The latter make a set
of consistency checks but do not check for routing loops or
shuttles. These utilities were very helpful in creating the
routing tables needed to simulate the sub-set of the European DSN
that we simulated for the demonstrations.

Crankback has been restored to operation and checked out in
CCSIM. It may be used in conjunction with any of the routing
table types. When crankback is activated, CCSIM ignores the
route controls associated with the routing tables and explores
the possible routes according to its algorithm. Two types are
available. One explores all routes at each switch. The other
explores primary paths only at nodes not marked as 'spill' nodes
in the 'net.node' file. Loops and shuttles are avoided by a node
trace that prevents a switch from being revisited in the search.
Limits on the number of crankbacks allowed are provided
independently for each precedence level. The resources used by
the 'stubs' where blocking occurs during the search are modeled
by dummy calls that are hung up after an appropriate time derived
from the signaling and switch processing time parameters.

Preemption options in CCSIM have been expanded so that two
types can be simulated in either of two moods. The types are
'out' and 'back', and the moods are 'ruthless' and 'friendly'.

27

Preemption on the way out means that calls are preempted during
the routing process whether or not the preempting call will
succeed. This is the type used in the real DSN. Preemption on
the way back means that preemption will take place only when a
call can complete to its destination. In a real network, back
preemption would require Common Channel Signaling for
implementation, but CCSIM does not force that constraint.
Ruthless preemption means that a preemptive search is made
whenever a free trunk is not found on the next route in the route
list. Friendly preemption means that preemptive searches are
made only when the direct and all alternate routes have been
searched for a free trunk. The real DSN uses the ruthless mode.
Our experiments show that the friendly mode results in fewer
preemptions at moderate traffic densities but offers no advantage
under either low or high traffic conditions.

3.4 Modeling Data Calls

CCSIM has been extended to provide a second set of traffic
generators that can be used to generate traffic with different
holding time and arrival rate statistics. Data calls are the
typical source of such traffic. Lacking information on data call
statistics, we simply replicated the voice call traffic
generators already in use in CCSIM and provided for a separate
traffic file (in erlangs) called 'net.dtraf' and global variables
to set the average message lengths and distribution as a function
of precedence. Another global variable in the net.inval file
indicates whether or not data calls are desired in a simulation.
If not, CCSIM does not look for the data traffic matrix and
generates no data calls.

If data calls are turned on, their traffic level can be
changed dynamically from either the graphics interface or the
command file. The data calls are mixed with the voice calls in
the GOS and other statistics generated by CCSIM.

3.5 Developing a CCS Model

A model for Common Channel Signaling (CCS) in CCSIM was
developed and presented to DCEC for approval. It allows the
experimenter to set arbitrary message sizes for call setup,
takedown, preemption, etc. messages. From these it calculates
the CCS message traffic on each CCS link involved in a call
processing event. From the average over a sampling period
settable by the experimenter, it estimates the expected queuing
delay on Cach link and uses this value in computing call setup
time and the time that resources are held up when calls block.
Statistics are generated showing the overall average signaling
rate and the peak observed in any sampling interval.

In this model, whether a trunk group uses CCS or In-band
signaling is specified by a field in the 'net.clli' file. Two

28

other files provide the capacities and delays that are to be used
for the associated CCS channel.

Implementation of the CCS model was one of the activities
that suffered when priority was given to the DCA-Europe
demonstrations. Work was begun on this model in FY89, but it was
not complete by the end of the year. Work continues into FY90,
and CCS will be discussed in more detail in the FY90 Annual
Report.

3.6 New CCSIM Network Management Control

During FY89 an experimental network management control was
added to CCSIM. Called 'CAN-EOC-OVF', it cancels routine
precedence calls that overflow the last trunk group in their
routing chain at the switch at which it is applied. The canceled
calls are given the treatment associated with Emergency
Announcements, i.e., they are not allowed to retry and are
considered to be failed calls. To our knowledge, the control is
not found in any real switch. It was implemented in CCSIM to
investigate the benefits, if any, that would occur if the traffic
that was having the greatest difficulty getting out of a switch
under heavy load conditions could be canceled. The effect is
similar to that obtained by putting CANF on final trunk groups,
but is easier to apply and potentially more effective because a
particular trunk group may be a final group for some destinations
and not final for others.

Only a few experiments with CAN-EOC-OVF were carried out in
FY89, and little can be said about the potential utility of such
a control from the results. In general, we have found that
controls that cancel calls rarely have a beneficial effect on
network performance. Their use almost always reduces the number
of successful calls in the network as compared with taking no
action at all. They can have application in a real network as a
temporary measure to avoid routing loops and shuttles while
routing table changes are being introduced, and they could be
helpful in reducing switch congestion effects, but those
applications cannot be readily evaluated in simulations with
CCSIM since routing changes there are instantaneous, and
congestion effects are not modeled.

3.7 Graphics Interface Enhancements

Many enhancements to the CCSIM Graphics Interface were
carried out in FY89. A more user-friendly interface was achieved
by making the mouse button usage consistent in all contexts, by
displaying all pertinent information when a user response is
needed, and by checking all command entries to preclude illegal
commands, thereby avoiding error messages.

29

Switch coloring was added to the previously available trunk
coloring, and the mechanism for selecting and identifying the
colorings was improved. Coloring is now controlled either by
stepping through a list of options via a mouse button or by using
a pull-down menu to show all the options and allow a direct
selection to be made. The control buttons are displayed in a
line across the top of the screen together with labeled color
bars showing the relationship between numerical values and
colors. The interface software allows a value of zero to be
represented by a completely different color than that used for
the smallest non-zero value in the range. For example, when the
lines representing trunk groups are colored to show overflows, a
color range from yellow to red is used for the numerical range of
zero to 100% in the ratio of overflows to attempts, with the
exception that the absence of any overflows is indicated by a
green line. The currently available coloring options are:

For Switch Colorings:
Overall Incomplete Calls
Tandem Incomplete Calls
Originating Incomplete Calls
Controls
Monitoring Off

For Trunk Colorigs:
Usage
Preceder-- .,sage
Overflov's
End Chdin Overflows
(AC':) - Attempts per Circuit per Hour
(OCCH) - Outgoing Connections per Circuit per Hour
ICCH) - Incoming Connections per Circuit per Hour

Monitoring Off

Pop-up windows were also added in FY89 to show the detailed
information available from the switch reports in numerical form.
Mousing either a switch icon or a link line brings up a menu that
allows the selection of the information to be displayed. For
example, at a switch the user has a choice of seeing information
pertaining to the switch itself or to all of its trunk groups.

To better support the DCA-Europe demonstrations, a second
type of switch icon was added to allow tandem switches to be
easily distinguished from end offices. In addition, two sizes of
switch icons and two link line thicknesses were provided to show
whether the resources being represented in the display are or are
not part of the sub-network being monitored by the ACOC in the
demonstrations.

A new command was added to allow CCSIM routing tables to be
changed by the graphics interface operator in the middle of a
simulation. The new routing table must already exist as a

30

properly formatted net.route file at the time it is to be invoked
from the interface.

The facilities for displaying the statistics matrices
generated by CCSIM have been enhanced by adding row and column
totals. The matrix displays now automatically expand tne display
space used so that large numbers in any cell of the array can be
presented. In earlier versions, the space per cell was fixed,
and numbers too large to be displayed were marked with '*Is to
show that they were out of range.

The 'snapshot' capability of the interface has been enhanced
so that when a snapshot is taken the statistics matrices are
saved to a file as well as the switch report data needed to
produce the color displays. The saved matrices can be viewed
when the snapshot is read back at a later time. In addition,
when a snapshot is to be taken, the interface now proposes a
unique name for the file which the operator can accept or
override, and when a snapshot is to be read back, the interface
provides a menu of saved snapshots from which the operator can
choose. These features simplify the taking and viewing of
snapshots and reduce the likelihood of operator error.

31

4.0 TRANSMISSION SYSTEM ALARM INTEGRATION STUDIES

This Section is identical to Section 5.0 of the FY89 Annual
Report submitted by Lincoln Laboratory to Rome Air Dcvelcpment
Center. The topic area of this Section is closely related to the
MITEC Expert System which is the main focus of the RADC-sponsored
work, hence it was appropriate to include this material in the
RADC report. Sponsorship for the work described in this section
is provided by DCEC/R220, hence it is appropriate to include the
same material in the FY89 Annual Report to DCEC.

4.1 Introduction

A significant part of the FY89 effort in the MITEC project
has been to begin to scope and understand the problems of
correlating and interpreting transmission system alarms and
presenting filtered results to Tech Control and Network
Management decision makers. In particular, it is recognized that
these decision makers will be able to function more rapidly and
effectively if they can obtain immediate information about
transmission system problems from TRAMCON and DPAS systems,
rather than having to wait while the user community slowly reacts
to transmission impairments and produces traffic pattern
distortions that allow the managers to recognize and correct the
problems. By analogy with the success of the Call-by-Call
Simulator (CCSIM) as a portrayal of realistic network behavior to
use in developing network management knowledge, it has been
conjectured that TRAMCON and DPAS alarm generator systems could
make up for the lack of access to real transmission networks for
MITEC software developers, as well as the fact that real networks
seldom produce interesting alarm patterns. An FY89 task for
Lincoln Laboratory has been to define and specify these alarm
generation systems, with an eye to beginning their implementation
in FY90. Section 4.2 is the statement of required functions for
the alarm generators that was written to serve as a guide for a
study effort in the remainder of the year, and Appendix D is the
result of that study, namely a Software Requirements
Specification for the TRAMCON Event Generator (TEG).

4.2 Specification for TRAMCON and DPAS Alarm Generators

4.2.1 Background

Figure 4.1 illustrates 1) a military TRAMCON (TRAnsmission
Monitoring and CONtrol) system, with the microwave radio network
segment from which it gathers alarm information; 2) a DPAS
(Digital Patch and Access System), for which the radio segment
provides one or more of the T1 carriers to be switched and
cross-connected; 3) a system control software facility,
specifically the MITEC (Lincoln Laboratory Machine Intelligent
Tech Controller) expert system, receiving and interpreting
TRAMCON and DPAS alarm information; and 4) a simulation system

32

LJL
U)

U))

334

that produces data streams realistically representing TRAMCON and
DPAS alarm patterns, in terms of format, content, timing, and
relationship to other network faults and phenomena being
simulated elsewhere. (An example of such other simulation is the
Call-by-Call Simulator of the Defense Switched Network, in which
voice traffic behavior _s affected by outages of trunk circuits
carried by the microwave radio network.)

The purpose of this Specification is to describe the

requirements for the TRAMCON and DPAS alarm simulators.

4.2.2 Microwave Radio System Description

A Microwave Radio Segment consists of a string of microwave
sites providing voice and data transmission via standard military
transmitter/receiver equipment. Typically these sites also have
multiplexing equipment which is used to combine lower-speed data
streams from the local area into high-speed composite (i.e., T1
and T3) signals for radio transmission. All of this equipment is
provided with various built-in fault detection features, with
front-panel alarm lights coupled with electrical alarm signals
that can be remotely monitored. There are moderately complex
relationships among the various possible radio system failures,
and the patterns of primary and sympathetic alarms they
precipitate in other equipment, locally and at other sites. As
one example, loss of transmitter power at an upstream site will
cause a data loss alarm to occur at every downstream site.

4.2.3 TRAMCON Operation

There are two motivations for centralized monitoring of all
the alarm signals generated by an entire radio segment: 1) some
sites are manned only part-time, or not at all, and 2)
simultaneous observation of alarm patterns from throughout a
segment can lead to more rapid diagnosis of problems than would
be possible from the restricted viewpoints of individual
operators at local sites. These factors led to the development
and deployment of TRAMCON systems, consisting of Datalok 10 alarn
logging and command tra-qmission devices at each radio site in a
segment, all of which arc connected to a TRAMCON Master Station
located at a key site. The Datalok devices at all sites are
polled cn a regular basis by an HP1000 computer which is the main
component of the TRAMCON Master Station; the alarm information
is stored and summarized by the HPI000, and displayed in either
color graphics or tabular form as selected by the operator.

A complete list of alarms monitored by TRAMCON is available
elsewhere. Besides a variety of communications equipment alarms,
this list includes critical facility information such as smoke
detector outputs and emergency generator readiness. A skilled
TRAMCON operator can recognize distinctive patterns of these
alarms as presented by his display, quickly identifying the root

34

causes of many different problems. In many cases the radio
equipment will have switched eutomatically to spare modules, and
the TRAMCON operator dispatches repair crews to correct specific
problems in the on-line modules; in other cases the operator can
alleviate problems by sending certain commands to the remote
equipment via TRAMCON.

4.2.4 DPAS Description

Whereas TRAMCON is a deployed operational system, the
procurement of DPAS systems is just beginning. Over 100 of them
will ultimately be deployed in the Defense Communications System.
The DPAS consists of an AT&T DACS II (Digital Access and
Cross-connect System, Version II) plus a DCT (DACS Control
Terminal), together providing the capability to switch and
multiplex numerous T1 signals at both the channel and subchannel
levels. The DPAS provides its own set of alarm signals which are
collected and displayed by the DCT, and follow standard
commercial telecommunications practices as to their sources and
meanings. Moderately complex relationships exist among microwave
radio fault conditions and DACS alarms. An important objective
of the work described here is to formulate and analyze these
relationships.

4.2.5 Potential MITEC Interactions with TRAMCON and DPAS

The primary function of the Machine Intelligent TEch
Controller (MITEC) expert system is to perform fault isolation
and service restoral at a Tech Control Facility (TCF) for
dedicated military circuits, including faults within the TCF as
well as in transmission facilities linking it to other TCFs. In
the latter case, human Tech Controllers can be very substantially
aided in troubleshooting by having TRAMCON and DPAS alarm
information available: they can pinpoint a trouble location more
quickly by analyzing alarm data, rather than conducting a
sequence of tests to infer the nature and source of the trouble.
It is within the purview of MITEC to embody and apply the
knowledge that human Tech Controllers use in exploiting TRAMCON
and DPAS; the questions are 1) how best to get the TRAMCON and
DPAS information into MITEC, and 2) what reasoning and pattern
recognition processes to use upon the information.

The operator displays at a TRAMCON master station contain
the entire body of alarm information currently available. In
principle MITEC could access the same data stream that drives the
displays, but the useful information is enmeshed in screen
formatting and control codes that are necessary for the color
graphics monitor on the HP1000. One would not want to waste
MITEC's resources in stripping out all of these unneeded codes;
instead, the ideal course of action is ultimately to create a new
interface module in the TRAMCON software that implements

35

efficient computer-to-computer communication of the alarm
information in a form that is directly exploitable by MITEC.

The fault alarm vocabulary of the DPAS is known, since it is
identical to that of the DACS-II which is widely deployed in the
commercial telecommunications environment. For T1 signals which
are provided to a DPAS by way of military microwave links, the
relationships among TRAMCON and DPAS alarms can be deduced and
analyzed for a variety of fault conditions. In the future, when
DPAS systems are more widely deployed, simultaneous access to
both DPAS and TRAMCON alarm information will be able to speed the
diagnosis of various fault types. It is possible during the
present ongoing development of the DACS Control Terminal to
specify a computer-to-computer communication link to provide
future access by MITEC to DPAS alarm data.

4.2.6 TRAMCON and DPAS Alarm Generator Requirements

The TRAMCON and DPAS alarm simulation system shown in Fig. .
has two primary purposes: to support the development of MITEC
software for alarm analysis and fault diagnosis, and to form a
part of a broader simulation of Defense Communications System
(DCS) operation. To meet these goals it must provide the
following functions:

1. Storage of an internal representation of microwave and DPAS
network segments, including all the equipment items and
their alarm functions;

2. An operator interface which permits selection of any
realistic failure event(s) in the networks;

3. A message interface which will permit failure event
selection by a remote computer as an alternative to local
selection by a human operator;

4. Internal generation of all the primary and sympathetic
TRAMCON and DPAS alarms that would result from the selected
failure event(s); and

5. Communication of this alarm information to MITEC in a manner
consistent with the way TRAMCON and DPAS would communicate
the alarms if they were provided with communication links to
MITEC.

4.2.7 Development Sequence

It is clear that meeting all aspects of the requirements
above would be a lengthy and expensive process. On the other
hand, we believe that some modest level of completeness and
precision, at a more modest cost in time and manpower, will

36

satisfy our needs in the near term. We envision addressing this
development in several stages, so as to identify and reach that
modest level. Since we are breaking new ground in this effort,
it does not make sense to try to tightly specify milestones,
manpower and completion dates the way one could do for a job that
closely resembled past projects.

The first step will be to develop a more complete software
design specification. This will include analyzing a variety of
information on the TRAMCON system, the radio segment alarms and
their relationships, and the DPAS system and alarms. Much of
this information and analysis is already available at Lincoln
Laboratory, and more will be obtained as necessary from a variety
of sources (to be listed separately). This activity will lead to
an initial understanding of the rules that govern the creation of
alarm patterns. Preliminary ideas on the hardware/software
environment for the alarm generation system will be advanced, and
a high-level software design will be prepared. It is anticipated
that this first step will be done by the end of FY89, with the
level of completeness and sophistication to be determined
adaptively as the work progresses.

The second step, to be undertaken in FY90, will be to choose
an appropriate set of functions from this software design and
proceed with initial implementation. Test and experimentation
with the resulting system will lead to practical choices for
further work. The goal is to have a practical, working
TRAMCON/DPAS alarm simulator in hand in FY90.

37

APPENDIX A NMES FIELD INSTALLATION AND DEMONSTRATION PLAN

A.O Introduction and Summary

The DCA has requested field demonstrations at DCA-Europe of
a Network Management Expert System (NMES) and a DCOSS DSN Network
Management Operator Trainer developed by Lincoln Laboratory, and
a Learning and Recognition System (LARS) neural net
implementation developed by GTE. The purpose of this Plan is to
describe the functions of the Lincoln Laboratory equipment, the
demonstration scenarios that will be performed with it, and the
procedures and requirements for installing, checking out and
demonstrating the systems. While GTE will provide a separate
plan for LARS, the two plans will be closely coordinated through
DCEC and the work will be performed cooperatively at DCA-Europe.

A.1 Functional Description of Demo System

Figure A-i illustrates in a single diagram the existing DSN
network management facilities at DCA-Europe and the new
facilities that are to be delivered to the site in July and
demonstrated in September, namely the GTE LARS neural net pattern
recognition system; the Lincoln Laboratory DCEC/R610-sponsored
NMES (Network Management Expert System); and the Lincoln
Laboratory DCA/B230-sponsored DCOSS DSN Network Management
Operator Trainer. The following paragraphs in this section
describe the functions and interconnections of these facilities.

A.1.1 Existing DSN Network Management Facilities

Figure A-2 shows the existing Network Management Support
System (NMSS) for DSN Network Management at DCA-Eur, supporting
the ACOC staff in the tasks of monitoring DSN status, diagnosing
network problems, and taking corrective measures. (The cther
equipment in the diagram has been concealed with cross-hatching,
to avoid confusion in describing the NMSS.) This structure has
been fully described in documentation produced by GTE contract
support personnel at DCA-Europe. Only a brief summary is given
here to set the stage for the demo system descriptions to follow.

At the upper left in Fig. A-2 are Northern Telecom DMS-100
switches installed to date in the European DSN and provided with
network management (NM) connectivity to DCA-Europe. The number
of such switches is on the order of 12, and slowly increasing,
but still a modest fraction of the expected total number of
European DSN switches. The NM connectivity is obtained via
1200-bps modems on a dedicated telephone circuit to a Maintenance
and Administration Position (MAP) port on each of the DMS-100
switches.

Within the Area Communications Operations Center (ACOC) at
DCA-Eur is an IBM PC running the NMSS Data Acquisition Interface

38

~NMSS
•w NMSS

S W/S DISPLAYS
D(ACOC)

NMSS
W/S DISPLAYS

(DEVEL.)

INSTALLED NM SYSTEM

PROBLEM
PROBLEM LARS rMES DIAGNOSES,
DIAGNOSES M COMMANTROL

READ/WRITE
ACCESS

SEPT 89 DEMO SYSTEMS

.... CSIMNMSS

RIN
W/S .(TRAINER)

TEST DIRECTOR OBSERVER

DSN NM TRAINER

Figure A--1

DCA-Eur NN Facilities, Sept 89

39

NMNMSS
W/S DISPLAYS

DAI (ACOC)

NMSS
W/S DISPLAYS

(DEVEL.)

INSTALLED NM SYSTEM

, , , , , - s- - - - - - s- - ---- , t , , , t i -s I - - -

.....................
...

I / i iI I I II I I I,...........................

ii i¢ hS ttiS il I I I IIS iitISS IS i I IS , I I ,IS.......

. ee , , e

...................... ,

SEPT 89 DEMO SYSTEMS
*~~ M SS~N

CCSW/S .
(TRAINER) (TRAINER)

SUPERVISOR TRAINEE

DSN NM TRAINER

Figure A-?

Normal ACOC NM Operation

(DAI) software system at the top center of Fig. A-2, which is
connected through a multi-port smart switch (not shown) to the
DMS-100 MAP ports via modems and phone lines. Initially the host
computer for the DAI software has been an IBM PC/AT; by September
1989 it will be replaced by a considerably more powerful IBM PS/2
Model 80. A MAP port is normally used by switch operations
personnel on site to perform maintenance actions and to make data
base changes and the like. The DAI is actually logged in as a
user on all of the MAP ports. In current operation, the DAI
polls each DMS-100 every 15 minutes, collecting formatted
activity reports which it then processes and condenses.

At the upper right in Fig. A-2 are shown two identical NMSS
workstations, which are also IBM PC/ATs and will soon be replaced
by IBM PS/2 Model 80 computers. One NMSS workstation is used
operationally in the ACOC, and the other is kept in the office
area of the GTE support contractors, where it supports ongoing
NMSS software development. Each workstation has two monitors:
one provides color graphics displays of the latest network status
updates from the DAI, and the other provides detailed text
displays of supporting information. The ACOC staff analyze this
data and select NM control commands when appropriate to correct
observed network problems. The NMSS has the capability to accept
these control commands from the ACOC staff and to transmit them
to the DMS-100 switches. Under normal circumstances, ACOC
controllers coordinate all control requirements with switch site
personnel.

A.1.2 The LARS Neural Net Pattern Recognition System

The central portion of Fig. A-3 shows the September 1989
network management demonstration systems that are to be installed
at DCA-Eur. Both are shown connected via a read-only port to the
DAI, in the live-data demonstration configuration discussed
below. At the left is the LARS (Learning and Recognition System)
which is to be developed, installed and tested by GTE. It is a
Neural Net implementation whose purpose is to continually scan
the same DMS-100 activity report summaries that the DAI sends to
the NMSS workstations, and to announce occurrences of any events
in the repertoire of DSN problem conditions that it has been
trained to recognize. This information is to be presented to the
ACOC operator for his consideration in selecting and applying NM
control commands. Further information about LARS will be
provided by GTE as agreed between them and the Government.

While Fig. A-3 shows the GTE LARS and the Lincoln NMES
connected simultaneously to live data, please note that it is not
intended that formal demonstrations of the two systems will be
given simultaneously in September 1989. As noted above, the two
development efforts have been entirely independent to date. Their
displays, functions and operator interfaces overlap in some ways

41

NMSS
W/S -Oo DISPLAYS

D 1 (ACOC)

NMVSS
READ-ONLY W/S DISPLAYS
ACCESS (DEVEL.)

INSTALLED NM SYSTEM

PROBLEM
PROBLEM NIMS RDIAGNOSES,

DIAGNOSES NM CONTROL
COMMANDS

SEPT 89 DEMO SYSTEMS

¢SS S SN Z Z z ~ S SSSSN 5 5¢55 5 5 NNN 5 5 5 S S S 5S N N S S S NN5NS SN

5SS SS SSSS N S SS ¢ZSSNSS .55 5 5 5 5 55S S N N SS N SNNNN*SS 5 SS

SNNSS N SNSN N SZSSSN N N ,,SNN S SSN NS* N SNN N NNSNS SSSSNNNS NS N N N

X S/L,\R l~..a'
NSN SN SS NN SN NN , ,NN S NS N NN NN SN SNN N N T N E RNN N N5

Fii!Urc A-3
N~liS /L\RS IDerno (Live Data)

but are very different otherwise; consequently simultaneous
demonstrations for visitors could lead to great confusion.

As explained below, DCEC plans to have GTE and Lincoln
Laboratory merge the two systems in FY90, and at that time a
combined demonstration will be entirely meaningful.

A.1.3 The Network Management Expert System (NMES)

The functions of the Lincoln Laboratory NMES in Fig. A-3 are:

i. Continually scan the DMS-100 report summaries;

ii. Recognize those DSN problem conditions that are included in
the NMES Knowledge Base;

iii. Select and parameterize NM control commands as appropriate
to combat observed DSN problems, within the capabilities of
the NMES Knowledge Base;

iv. Apply the selected commands to the DMS switches involved
(note: for the present this must be done by manual
intervention, as explained in Section A.1.1 above);

v. Scan the DMS-100 reports for indications that the problem
conditions have gone away, and remove the control commands
as soon as possible.

NMES functions i. and ii. above are generically similar to
the functions of LARS, and are implemented in software structures
called "Monitors" and in some of the rules within the Expert
System, which were designed prior to the current involvement
among LARS, DCA-Eur and NMES. The September demonstrations are a
prelude to a DCA-requested FY90 collaborative effort in which
LARS will be interfaced with NMES as a potentially efficient way
to perform functions i. and ii.

A.1.4 The DCOSS Operator Trainer

Figure A-4 illustrates the operation of the DSN Network
Management Operator Trainer. Independently of the development of
neural nets and expert systems, there is an immediate need for
ACOC staff to be trained in DSN network management. Until
automated systems are fully developed and deployed the NM can
only be done by human operators, and they must be prepared to
respond effectively to damage and overload scenarios that have
never yet occurred in the new and uncompleted DSN. The
accumulated past experience of DCA AUTOVON network management
operators is generally not applicable, because the NM
capabilities of AUTOVON switches are very limited compared to
those of the modern DSN equipment.

43

NNMSS
W/S DISPLAYSD(ACOC)

DMVS-1 00 NMSS
SWITCHES W/S DISPLAYS

(DEVEL.)

INSTALLED NM SYSTEM--

.SEPT 89 DEMO SYSTEMS

l~~lt .II I ' I I I I . II.I I .ll I ' II I I .. II.I I .. .I

A5(55S,,5S,5Operator Training 5od

I~~II~t ~I e zI II I I11 I l I II Il I l t t I I t I l l I I~

S~~~~~~ ~~~~~~~~~~~~ I 5 5 S S 5 S 5 5 5 S S* s 5 5 S s s s 5 5 ~ s s s

I55 5 5 5 e*5 S S NSSS %5 e I IN I ee N N e e % % 0 % I %I % II N

SEPT 89DMO SYSTNEMS

5555S55.555555555Figur As5 5 5 5 5 55 5 5 5 5 5 55 5 5 5 5 5 5

5555555555CO %N55 Operator Tr inn 55 5 55 5 5 55 5 5 55 5 5 55

Ssssssssssssss'ss ~ ~ ~ ~ ~~ 55 5 5 5 5 5 55 5 5 5 5 5 55 5 5 5 5 5

The mechanism selected by DCA/B230 to provide the necessary
training is network simulation, based upon the existing DSN
Call-by-Call Simulator (CCSIM) that has been developed by Lincoln
Laboratory under DCEC/R610 sponsorship to support NM knowledge
acquisition and NMES development. The Trainer will be delivered
to DCA-Eur in the same time frame as the NMES, and will have an
important function in the demonstration of NMES, as described
below. CCSIM is a large software system running in a Sun 3/260
workstation which simulates all the user and network activity in
a theater-wide DSN, including call origination, route selection
processing, call blocking events, and preemptions. The CCSIM
operator (shown as the Supervisor in Fig. A-4) has a color
graphics interface which allows him to monitor the progress of a
simulation run, and to inflict network damage and traffic
distortion events at will. CCSIM produces a flow of switch
activity reports for each switch in the simulated network,
identical in format and meaninq to the output of a DAI.

The NMSS workstation at the bottom right of Fig. A-4 is to
be identical to those at the top of the diagram, and is to be
dedicated to operator training. Connected to CCSIM, this
workstation will produce displays that are indistinguishable from
live data. The Supervisor will set up simulations and problem
scenarios as he sees fit, and the Trainee will learn to analyze
the displays, recognize problems, and apply control commands
using the Trainer NMSS workstation. CCSIM will accept and
implement the control commands, and subsequent switch reports
will reflect their effects. The Supervisor can remove the
network problem conditions at will, and require the Trainee to
recognize that fact and respond by removing the control commands.

CCSIM can be loaded with any desired network topology,
connectivity and traffic matrices. Besides training operators on
the current DSN configuration, then, it can train them on
advanced configurations that will exist after further network
upgrades.

A.1.5 Use of the Trainer to Demonstrate NMES and LARS

The DMS-100 is a reliable, modern system, and it can be
anticipated that live DSN problems in the recognition repertoires
of LARS and NMES may occur rarely if at all during the September
1989 demos. While a legitimate function of LARS and NMES is to
report that DSN operation is normal, it will be an uninteresting
demo if that is all they have occasion to do. Also, it was noted
above that the current DCA-Eur NM system accesses only a modest
fraction of the DSN switches; this will make it impossible to
diagnose problems elsewhere in the net. Conversely, access to
switch statistics from throughout the net would make for a much
more interesting diagnosis capability.

45

Figure A-5 illustrates the use of CCSIM in the Trainer as an
attractive solution to these problems. As noted above, its
outputs are indistinguishable from those of a real DAI on a real
network; hence LARS and NMES can select the CCSIM as an
alternative to the real DAI during part of the demo period, so
that controlled, interesting network problem scenarios can be set
up and run at will by the Test Director. Although the September
demonstrations of LARS and NMES will be conducted independently
of each other, there is nothing to prevent having them connected
at the same time to the same stream of CCSIM switch reports as
shown in Fig. A-5. Throughout these simulated-data tests, a
knowledgeable Observer at the NMSS (Trainer) console can analyze
his graphics and alphanumeric displays and assess the correctness
of LARS and/or NMES performance. Interest in such tests is
substantially enhanced by the fact that NMES can have full
read-write access to the MAP ports of the simulated switches in
CCSIM; thus NM control actions selected by NMES can in fact be
implemented immediately in CCSIM, and their effects can be
observed by the demo attendees. Moreover, the Test Director at
the CCSIM control console can respond to requests by demo
attendees to set up and explore any additional cases they may
wish to see.

A.2 Demonstration Scenarios

Although LARS and NMES are shown connected side by side in
Figs. A-3 and A-5, their September 1989 demos will be
functionally independent of each other, as previously noted.
They may run concurrently to whatever degree is found convenient
for GTE, Lincoln Laboratory and the DCA; but the FY89 LARS and
NMES development and implementation schedule constraints are such
that no time is available for the collaborative work that would
be needed to achieve a meaningful joint demonstration. The
objectives of the LARS demo will be arranged between GTE and the
Government, and will not be further discussed here. The
following paragraphs in this section refer only to NMES
scenarios.

A.2.1 Live Demonstration Goals for NMES

When initial plans were being developed between Lincoln and
DCEC/R610 in late FY88 for the DCA-Eur demonstration of NMES, it
was agreed that, as a minimum, NMES will:

1. Recognize outages among the DMS-100 switches to which it is
connected;

2. Recognize outages of trunks connected to those DMS-100
switches;

3. Recommend NM control actions to compensate for these
outages;

46

NMSS
W/S 'c_'"LAYS

DAI (ACOC)

NMS
READ-ONLY WSDSLY

ACCESS (DEVEL H DIPLY

INSTALLED NM SYSTEM

PROBLEM
PROBLEM LASWS DIAGNOSES,
DIAGNOSES NES NM CONTROL

COMMANDS

SEPT 89 DEMO SYSTEMS

(TANR -
(RINR

(TRAINER) ______(TRANER)--

SUPERVISOR TRAINEE

DSN NM TRAINER

X'~~;L.F~SY~r'.y (Simulated Data)

4. Recognize return of failed switches or trunks to service;
and

5. Recommend removal of controls as appropriate when these
facilities are back in service.

Work is progressing in NM knowledge acquisition during FY89,
and we expect that recognition of additional problem categories
in the real European DSN may be possible during September 1989.
Candidates include switch congestion, noisy trunks, and
overloaded trunks. Such additions would enrich the demo and
every effort will be made to do so, but no additions can be
promised at this time. Knowledge in these categories tends to be
more complex and subtle than in the switch and trunk outage
cases, and reliable extrapolation of our CCSIM experiences to the
real DSN will require extended access to examples of recorded
real switch statistics reports associated with such problems.
Such access may be obtained in time to augment the September
demo, but it is not certain.

The following subr.ragraphs define the expected ground rules
of the demonstration of NMES with the real DSN switches.
Step-by-step details of the scenarios are not relevant for
presf t planning purposes, but will be provided in the July time
frame.

A.2.1.1 Live Demonstration Test Plan

The test plan for live demonstrations of NMES can be summarized
very briefly:

i. Connect NMES i the DAI as shown in Fig. A-3;

ii. Observe all NMES actions with respect to switch and trunk
outagcs, as described below; and

iii. Review independent evidence of such outages (switch site
reports, ACOC operator reports) to ascertain whether NMES
correctly identified and responded to them.

There will be two classes of NMES connection time on the
live data from the DAI: 1) routine connection during all
available time when NMES is not being used for something else,
and 2) scheduled demonstrations for witnesses during periods to
be allocated by the DCA in September 1989.

Whenever NMES is in operation it keeps a running log of all
actions it tpkes. In particular, if left connected day and night
to the DAI it will make a record of each switch and trunk outage
it discovers, as well as each control action recommendation it
makes. This record can be examined and compared with records of
actual events observed at the switches and the ACOC. If this

48

identifies instances in which NES is known to have correctly
recognized outages, the result can be exhibited to demo witnesses
as an adjunct to scheduled live operation on DAI data (during
which, as remarked earlier, it is likely that no events of note
will be happening).

A.2.1.2 Switch Outage Event Responses

Each time NMES recognizes that a switch outage has occurred,
it will announce that fact. It will then recommend application
of CB (Code Block) controls at all European DSN switches for 100%
of the calls destined for the failed switch. NMES will also
recommend application of the SKIP and REROUTE controls, to
provide alternate treatment for all calls that would normally
have been routed through the failed switch on the way to some
other destination. In the present Engineered Routing treatment
in the European DSN the SKIP and REROUTE controls cannot actually
be used effectively, but they will be important with the more
sophisticated routing that the DCA expects to implement in the
future.

A.2.1.3 Switch Restoral Event Responses

Each time NMES recognizes the return to service of a switch
previously declared to be out of service, it will announce that
fact. It will also recommend removal of all CB, SKIP and REROUTE
controls that were suggested at the time of discovery of the
outage.

A.2.1.4 Trunk Outage Event Responses

Each time NMES recognizes an outage of a trunk group
connected to one of the live DMS-100 switches it is monitoring,
it will announce that fact. It will also recommend the
application of SKIP and REROUTE controls to provide alternate
treatment for all calls that would otherwise have attempted to
use the failed trunk group.

A.2.1.5 Trunk Restoral Event Responses

Each time NMES recognizes the return to service of a trunk
group previously declared to be out of service, it will announce
that fact. It will also recommend the removal of all SKIP and
REROUTE controls that were suggested at the time of discovery of
the outage.

A.2.2 Simulated Network Demonstration Goals for NMES

In order to provide variety and interest, it is planned that
CCSIM will be selected as the input to NMES during scheduled
periods in the September demonstrations, as determined by the
DCA. The configuration will be as shown in Fig. A-5. All of

49

Section A.2.1 could be repeated here, but the extra verbiage
would serve no purpose; the essence of the test plan is that
Lincoln will generate a controlled sequence of representative
switch and trunk outage events in CCSIM runs simulating the
current European DS'. NMES will recognize problems and recommend
control actions as in Section A.2.1, except that the controls
will be applied directly to CCSIM by NMES, and the demo witnesses
will be able to see them take effect in the subsequent
performance of the simulated DSN.

In addition to the switch and trunk outages, it is planned
that other interesting network problem events will be induced in
CCSIM, and that NMES will recognize and respond to them. The
knowledge engineering work to support these additions is still in
progress, therefore at the present time it is not possible to
state details of what will be demonstrated. These details will
be finalized in July, at the time of delivery of the demo
hardware systems to DCA-Europe.

To reiterate, it is expected that the September demo will
include the set of live network functions agreed upon with
DCEC/R610 in late FY88, as detailed in Section A.2.1 above. The
demo will also include a simulated-network version of Section
A.2.1, based upon CCSIM, in which events of interest can be
induced at will for the convenience of the demo witnesses. It is
considered likely that more functions will be included in the
simulated-network demonstrations; no commitment has been made in
this area, but every effort is being made to add value to the
demo in this way.

A.3 Installation and Checkout Plan

In order to achieve the September 1989 demonstration
capabilities diagrammed in Fig. A-l, GTE and Lincoln need to
deliver and install equipment at DCA-Eur beginning in July. This
will allow time for thorough integration and checkout of
interfaces with the existing NM system at DCA-Eur, and to resolve
ar" problems that are discovered in the course of this process.
The paragraphs to follow refer explicitly to only the Lincoln
Laboratory actions in this regard, and it is expected that GTE
will provide separate documentation detailing their plans
relative to the work they will do. It is intended by Lincoln
Laboratory, GTE and DCEC that these two sets of plans will be
fully coordinated with each other and with DCA-Eur in advance,
and that Lincoln Laboratory and GTE will cooperate in
expeditiously carrying out the planned activity.

A.3.1. Site Support Needs Prior to Equipment Arrival

Appendix B below contains descriptions of the operating
space, prime power and data interconnection needs of the NMES and
Trainer equipment. These are very straightforward requirements,

50

since the equipment consists of off-the-shelf computer hardware,
viz., two Sun 3/260 workstations and one IBM PS/2 Model 80. It
is anticipated that these needs will be coordinated with DCEC and
DCA-Europe, and that the needs can be accommodated satisfactorily
prior to arrival of the equipment and the installation team on
site, i.e., by I July 1989.

A.3.2. Shipping Plans

The equipment will be shipped by Lincoln Laboratory so as to
arrive at DCA-Europe during the first week of July 1989. It is
anticipated that the site personnel will be able to arrange for
delivery of the equipment (still in its shipping containers) to
the workspace where prime power and data cables have been made
available, and where it will be operated while at DCA-Europe.
The two Sun workstations and their monitors will be shipped in
four small, strong, reusable containers which the Lincoln
installers will send back home; and the IBM PS/2 Model 80 will be
shipped in its factory cartons.

A.3.3. Installation/Checkout Team Composition

A team of four Lincoln Laboratory personnel will arrive at
DCA-Europe within five working days of the equipment arrival,
i.e., during the second week of July. Three of them will be staff
members who have had major roles in the development of the NMES
and Trainer systems, and will return to Lexington after
installation and checkout are complete. Approval will be
requested from DCA-Eur for the fourth Lincoln individual to
remain at DCA-Eur until completion of the September demos, as
noted in Section A.3.5 below.

A.3.4. Installation Procedures

The Lincoln team will unpack the NMES and Trainer equipment,
set it up, load the software, and verify that all operation is
normal. A baseline requirement is that the equipment operate
correctly in isolation, that is, that the NMES and CCSIM operate
correctly together exactly as they did before shipment, and
similarly that the CCSIM and the Trainer NMSS operate correctly
together. "Correct operation" is defined for this purpose as
successful execution of a set of test exercises that will be
devisr i and validated at Lexington prior to shipment of the
equipment, to the satisfaction of the developers of the systems.
(Descriptions of these test exercises will be provided to DCA-Eur
site persowiel if they so desire.) If any problems are disclosed
in this process, such as malfunctions caused by the stresses of
shipment, the Lincoln team will perform or secure repair services
as necessary.

After correct operation has been demonstrated in isolation,
a cable will be connected between the DAI and NMES as indicated

51

in Fig. A-3. Note that this will be a "read-only" connection at
the DAI end, that is, the NMES will be so configured that it
receives data from the DAI but does not send any signals back.
Operation in this mode will be carefully monitored for an
extended period, and NMES responses will be evaluated against
evidence obtained by observing an NMSS workstation, until
confidence is established that the DAI/NMES interface is
correctly transferring DAI outputs to NMES. Throughout this
procedure, whenever a switch or trunk outage chances to occur
within the purview of the DMS-100 switches reporting to the DAI,
the responses of NMES will be evaluated to confirm that it is
correctly diagnosing each outage.

It is estimated that the installation and checkout process
will require two weeks. The schedule has a built-in margin
(namely the month of August) to allow for the resolution of any
unexpected time-consuming problem and still meet the September
demo schedule. Throughout their time on site the Lincoln
personnel will conduct their activities in such a way as to
absolutely not interfere with ACOC operations, and to interact
with site personnel only to an extent and in a manner that will
be agreed upon in advance among DCA-Eur, DCEC, Lincoln Laboratory
and GTE.

A.3.5. Post-Installation Activities

At the end of the installation/checkout activity, three of
the Lincoln staff will return to Lexington. The fourth person
will remain on site (given that approval is obtained from
DCA-Eur), and will actively work to insure that the NMES and
Trainer equipment is frequently exercised, remains in working
condition, is properly looked after in the event of any moves or
changes that DCA-Eur finds necessary, and in general is kept in
condition to reliably support the September demos. In the course
of this work the Lincoln person will keep careful records of any
puzzling or erroneous behavior he observes in the NMES or
Trainer, and will communicate these facts to Lexington. From
time to time the Lexington people may issue software updates to
correct such observed prol ims, or to serve other necessary
purposes, and the on-site Lincoln person will install and test
these updates and report the results to Lexington. In short,
this person will act as the on-site eyes and hands of the
Lexington staff. In addition, this person will be continually
available to answer questions, provide impromptu demonstrations
for interested site personnel, and serve as liaison between the
site and Lincoln.

52

A.4 Physical Requirements

A.4.1. Floor Space

As noted above, the Lincoln demo equipment consists of two
Sun 3/260 workstations and an IBM PS/2 Model 80 computer.

Each Sun '/260 workstation consists of a CPU/Disk Cabinet,
plus a user terminal consisting of a color graphics CRT monitor,
a keyboard and a mouse. The CPU/Disk cabinet rests on casters on
the floor, and occupies a space 18 inches wide by 30 inches deep
by 28 inches high. The terminal requires a table or desktop space
approximately 30 inches square. While it is possible for the Sun
terminal to be separated from its CPU by up to 50 cable feet, for
initial purposes at DCA-Eur it is recommended that they be
located together for ease in loading of tapes and the like.
Assuming that this is done, and allowing room for the operator
and his chair, each of the two Sun 3/260 workstations will
require a space about 4 feet wide by 5 feet deep.

Lincoln does not yet have the IBM PS/2 Model 80, since it is
a new modification to NMSS and the first units have just arrived
at DCA -Eur. Lincoln's unit has just been ordered in accordance
with precise specifications obtained from DCA-Eur. Meanwhile,
the size (and power) requirements of the IBM PS/2 Model 80 can be
ascertained at DCA-Eur by querying the staff who are using the
new equipment. For the moment we will make a rough estimate that
the IBM PS/2 and its operator will need the same space as a Sun,
namely 4 by 5 feet.

The net space requirement for the Lincoln NMES and Trainer
equipment is approximately 60 square feet, arranged in three 4 by
5 foot pieces. A rough allowance for sitting or standing room
for several demo attendees would be another 60 square feet. For
example, one could visualize a rectangular space 12 feet wide by
10 feet deep, with the equipment lined up along the longer
dimension and the demo witnesses looking over the shoulders of
the equipment operators. Alternative layouts could be tailored
to suit the physical constraints of the location designated by
DCA-Eur for the demonstrations.

For initial planning purposes, subject to modification as
necessary by GTE, we could postulate a LARS equipment and
operator space requirement similar to that of NMES, viz., 4 by 5
feet. Thus the total space requirement for all the demo and
training equipment in the lower two-thirds of Fig. A-1 is four 4
by 5 foot pieces, plus 60 square feet for the demo attendees, or
140 square feet, arranged to fit the designated location.

53

A.4.2. Power and Data Cable Requirements

Each Sun CPU/Disk cabinet requires prime power input of 5.0
amperes at 115 volts, or 2.5A at 220V, with the voltage
selectable by positioning a strap in the power supply. These
figures have been verified by actual measurements with a clip-on
ammeter at Lincoln Laboratory. The power supplies in the Suns
will accept any input frequency between 44 and 66 Hz. The Sun
user terminal requires 1.6A at 115V, or 0.8A at 220V, with the
voltage selectable by a switch on the back of the monitor. The
total power of about 800 watts determines the air conditioning
requirement for each Sun workstation.

The power requirements for the IBM PS/2 Model 80 are not
known at Lincoln at the moment, but are known to the DCA-Eur
users of NMSS as noted above. For planning purposes, we
recommend sufficient raw power service to reliably provide
13.2A/115V or 6.6A/220V, plus the needs of an IBM PS/2 Model 80,
plus a comfortable margin of 50 percent or so. The total heat
load will be about 1600 watts plus the IBM PS/2 power
dissipation.

Lincoln Laboratory will supply the data cables and splitter
boxes needed for interconnecting the CCSIM, Trainer NMSS, and
NMES with each other as shown in Fig. A-1. The one data cable
needed between the demo equipment and the installed site
facilities is the RS232 cable from the DAI. This cable is
functionally identical to the one already installed at DCA-Eur
between the DAI and the software development NMSS workstation in
the GTE support engineers' area, and should be constructed
identically; the only difference is its length, which depends
upon the location designated by DCA-Eur for the demo equipment.
It is anticipated that arrangements can be made with DCA-Eur to
install a suitable cable from the DAI (in the ACOC) to the demo
equipment space. If availability of appropriate multi-conductor
cable or RS232 connectors at DCA-Eur is limited, Lincoln can ship
the required materials; if line drivers are required because of
the cable length, Lincoln can ship them with the equipment.

A.5 Summary of Site Support Needs

The purpose of this Appendix is to summarize in one place
the anticipated needs for logistic and personnel support by
DCA-Eur to enable the successful installation and test of the
NMES and the NM Operator Trainer. Note that this Appendix refers
only to the Lincoln Laboratory demo equipment; the GTE LARS needs
will be provided separately by GTE to DCEC, and thence to
DCA-Eur. This Appendix is organized below by time period, i.e.,
Pre-Delivery (now to 5 July); Installation (5-20 July);
Post-Installation (20 July - 5 September); Demo Period (5-20
September); and Post-Demo (20 September on). Note that these
dates are approximate, and purely for descriptive purposes; the

54

actual schedules are expected to be negotiated between DCA-Eur

and DCEC.

A.5.1. Logistic Support Needs

i) Pre-Delivery (now to 5 July)

Two kinds of logistic support are needed in this period,
with completion by 5 July: designation and preparation of the
demo equipment location, and provision of a suitable RS232 cable
from the installed DAI in the ACOC to the demo location. This
includes provision of clear floor space as described in Section
A.4.1; three table tops or desk tops, each at least 30 inches
square, to support the three monitors and keyboards; chairs for
the three operators; prime power and air conditioning capability
as listed in Section A.4.2; and a data cable as described in
Section A.4.2. Note that Lincoln Laboratory will supply the
materials for the cable, should they be in short supply at
DCA-Eur; but we need the help of the site in actually running the
cable.

ii) Installation (5-20 July)

The four-person Lincoln installation team will bring along
the necessary tools and equipment. It would be a great
convenience for them to have the use of a single desk and chair
in a designated DCA-Eur office area as a base of operations;
other than that, their desk and seating needs will be satisfied
in the space designated for the demo equipment, as described in
Section A.4.1.

iii) Po-t-installation (20 July - 5 September)

The Lincoln person to remain at the site after installation
(as described in Section A.3.5 above) can continue to use the
single desk and chair mentioned in the preceding paragraph as his
base of operations.

iv) Demo Period (5-20 September approx.)

Three categories of visitors will be present at DCA-Eur
during this period, needing amenities such as badges, escorts,
seating space, etc.: 1) a Lincoln demo team, back up to 4 people
total; 2) DCEC participants, as determined between DCEC and
DCA-Eur; and 3) visitors to see the demos, including DCA
personnel of various ranks, as determined between DCEC and
DCA-Eur. (In addition there will be the GTE LARS demo team,
whose needs will be addressed separately between GTE, DCEC and
DCA-Eur.) The logistics needs of the Lincoln team will be the
same as in the Installation period discussed above.

v) Post-Demo (20 September on)

55

As described in Appendix D below, there are great potential
advantages in maintaining an on-site engineer for an extended
period after the September demonstrations. From a logistics
standpoint, this engineer would need the same desk and chair
described in paragraphs ii) - iv) above.

A.5.2. Personnel Support Needs

i) Pre-Delivery (now to 5 July)

The primary needs in this period are for technical
information exchange required for successful design/development
of the demo systems. There was one visit to DCA-Eur by Lincoln
personnel in September 1988, one in November 1988, the current
one (March 1989), and presumably another in June 1989. In each
case the net personnel time cost to DCA-Eur is on the order of
20-40 man-hours, distributed among a number of DCA and GTE
support personnel, in which the site personnel describe software
and hardware interfaces and functionality for the Lincoln
visitors and participate in planning for the installations and
demonstrations.

ii) Installation (5-20 July)

In this period the Lincoln installation team will be making
sporadic requests to site personnel (DCA as well as GTE support
people) for assistance in resolving problems that arise during
checkout -- unexpected signals, anomalous behavior, suspected
bugs, etc. The estimated total time cost distributed across the
site personnel is 10-20 man-hours.

iii) Post-Installation (20 July - 5 September)

Here it is expected that the Lincoln on-site person will not
be costing DCA-Eur any support man-hours; rather, he will be
answering questions of interest to the site, providing training
and impromptu demos, and generally providing useful services.

iv) Demo Period (5-20 September)

A reasonable estimate is one person, full time, throughout
this period (not serving Lincoln Laboratory needs specifically,
but helping to look after the visitors and support the demos).
Some higher-ranking visitors may attend, and may create extra
demands upon DCA-Eur management.

v) Post-Demo (20 September on)

Again, it is expected that the on-site person will -ake a
net positive contribution to operations at DCA-Eur, rather than
costing any support man-hours.

56

A.6 Post-Demo Recommendations

It is anticipated that the NMES and Trainer equipment will
remain at DCA-Eur upon completion of the September demos, and
that there will be a desire on the part of DCA management to
exploit them as they evolve through continuing development by
Lincoln Laboratory under DCEC sponsorship. Since these systems
do not fit within the operational requirements to which
present-day ACOC staff are trained, however, there is a distinct
possibility that this equipment could remain unused and could
even be detrimental to ACOC operation unless provisions are made
for continuing support on site. This support should be provided
by a capable engineer, and should include:

1. Training in DSN network management skills;

2. Assistance in developing lesson plans and training
procedures for use with the DSN Operator Trainer system;

3. Training in operation of NMES;

4. Installation and test of successive NMES and CCSIM software
versions;

5. Observation and reporting of problems with either system;
and

6. In general, support for DCA-Eur on any matters relating to
NMES and the Trainer.

It should be noted that very similar considerations apply to
the GTE LARS system, and that the opportunity exists for the same
individual to support both the Lincoln and GTE systems.

A.7 NMES Test and Evaluation Plan

A.7.1. Purpose

The purpose of this Appendix is to lay out a Test and
Evaluation Plan which begins with the validation activity of the
September 1989 proof-of-concept demonstrations at DCA-Europe, and
extends through the point at which NMES can be accepted as an
operational tool in the ACOC environment. The scope of the main
body of this document is primarily the September field
demonstrations. The NMES features and capabilities to be
demonstrated at that time will be progressively extended and
augmented in the ensuing months, as the development of NMES
continues.

57

There is a challenging set of requirements in validating the
performance of NMES in the September demonstrations, as noted in
Section A.2 above, and these requirements will become steadily
more complex as the sophistication of NMES grows.

A.7.2. Key Functions and Features of the NMES

As illustrated in Fig. A-3 and discussed in Section A.1.3,
the role of the Network Management Expert System is to assist the
DSN Network Management staff in the ACOC in detecting and
remedying problems in the network. The specific technical
features of the NMES are as follows, and a major requirement of
the validation activity is to verify that these features are
correctly implemented.

1. Provide for convenient initial loading of descriptions of
the topology, connectivity and expected traffic matrices of
the network NMES is to observe.

2. Present an interface that is physically, electrically and
functionally identical to that of the real NMSS workstation
in the ACOC.

3. Interact with the DAI via that interface, exactly as the
NMSS interacts with the DAI, to request and accept switch
reports. For the present, NM control commands recommended
by NMES may be input manually at the switch sites in
response to verbal requests from the ACOC. In the future,
when NMES recommends a control command the operator will
think about it and (if he chooses to do so) authorize direct
transmission of the command from NMES to the switches via
the DAI.

4. Recognize each instance of a pattern in the switch reports
that indicates the existence of one of the network problem
types in the current NMES knowledge base. (As explained in
Section A.2.1, the minimum capability in the September 1989
demonstration system knowledge base will be recognition of
switch and trunk outages. Successive NMES software versions
will add new capabilities.)

5. Notify the ACOC NM operator of the existence of each problem
condition.

6. Recommend the appropriate NM control commands and parameters
to remedy the problem condition.

7. Recognize the cessation of any problem condition previously
reported, and notify the operator.

8. Recommend removal of controls as appropriate in view of the
problem cessation.

58

9. Provide a color graphics display for the convenience of the
operator in rapidly reviewing the current status of all NMES
activity.

10. Maintain a continuous log of all NMES transactions.

11. Provide for interaction with the CCSIM in the DCOSS Operator
Trainer as an alternative to live operation with the DAI
(see Appendix F for a discussion of the design through which
the CCSIM interface is indistinguishable from that of the
DAI).

A.7.3. Validation of NMES Performance

NMES is an Expert System, and one of the normal procedures
for validating the performance of an Expert System is to
comprehensively demonstrate it to the expert from whom the
knowledge was elicited to embed in the system. In the present
case this is impossible, however, since the practice of Network
Management for the DSN is in its infancy; the network is not even
fully implemented yet.

A substantial part of the knowledge base of NMES was
obtained through experimentation with the Call-by-Call Simulator
which forms the heart of the DCOSS Operator Trainer discussed in
Appendix F. The validation of NMES is therefore intimately
associated with the Trainer, in that it should be demonstrable
that NMES can correctly recognize every permitted variation of
problem conditions set up by the CCSIM operator (or Test
Director, as illustrated in Fig. A-5 and discussed in Section
A.1.5 of this document). This is a straightforward if very
lengthy process, and (like the CCSIM validation tests discussed
in Appendix F) the process will be addressed through selecting
and demonstrating a set of representative examples that span the
range of cases of interest, since it will be impossible to do
every single case.

Much of this performance validation activity will be done at
Lincoln Laboratory prior to delivery of NMES versions to DCA-Eur.
However, here is an important case where the skill and experience
of ACOC personnel can be very helpful. Even without pre-existing
expert knowledge in DSN network management, these individuals
will be able to critically watch NMES performance under a variety
of simulated problem scenarios and look for inconsistencies and
unexplained behavior. In fact, whenever feasible it will be a
good idea to have NMES running in the background on the Trainer
CCSIM outputs during supervised operator training sessions, so
that the supervisor can observe whether NMES reacts to problem
conditions in the same way that he thinks the trainee should
react.

59

Finally, operation at the ACOC is the ideal opportunity for
long-term checkout of NMES performance on live DSN data. As
noted in Section A.2.1.1, NMES should be left connected to the
live DAI data at all times when it is not being used for some
other purpose. The built-in logging feature of NMES will keep
track of every network anomaly it identifies and control action
it recommends, and these can be compared with the opinions and
actions of the on-duty ACOC personnel. These personnel (while
they may not have as much experience in DSN network management as
they would like) are the best available reservoir of intuition
and experience on how the network should be reacting to problems
and events.

A.8 DCOSS Operator Trainer Test and Evaluation Plan

A.8.1. Purpose

The purpose of this Appendix is to lay out a Test and
Evaluation Plan which begins with the validation activity of the
September proof-of-concept demonstrations and extends through the
point at which the Trainer is accepted by the ACOC staff
community as a useful operational tool. As delivered and
installed at DCA-Europe in late 1989, the Trainer will have a set
of capabilities that are potentially applicable immediately for
training NMSS operators to deal with certain classes of DSN
network management problems. These capabilities will be
progressively augmented and extended as the ongoing development
of the Cail-by-Call Simulator continues at Lincoln Laboratory,
and successive software versions are sent to DCA-Europe. The
question is whether in fact the Trainer accurately represents
real situations in the real world at each stage in this
development. This Appendix discusses the nature and meaning of
this question and describes the techniques for answering it.

A.8.2. Key Functions and Features of the Trainer

As illustrated in Fig. A-4 and discussed in Section A.1.4,
the role of the Trainer is to provide a completely lifelike
time-varying simulated DSN for the trainee to monitor with an
actual NMSS workstation and to control with actual DSN network
management commands. The training supervisor's control console
allows him to set up any desired damage or overload situations,
and he can guide, observe and evaluate the trainee's performance
in assessing the problems and applying remedies. Typically the
Trainer may run faster than real time (depending on the size and
complexity of the network being simulated), which will make for
efficient training exercises.

The specific technical features of the Call-by-Call Simulator
(CCSIM) as implemented in the Trainer are as follows:

60

1. Provide for initialization with any desired network
topology, connectivity and traffic matrices, within size
ranges that comfortably encompass the present and future DSN
in a theater.

2. Randomly generate every call in the network, in accordance
with arrival rate and call duration distributions matching
the DCA's models of the real world, having averages that
agree with the input traffic matrices.

3. Perform the route selection processing for each call exactly
as it would be done by the corresponding real-world DSN
switches along the path from source to destination. Routing
procedures may be specified at initialization time to match
the present DSN implementation or a selection of more
sophisticated versions planned for the future DSN.

4. Take note of all blocking and preemption events occurring
among calls competing for network resources.

5. Accumulate statistics for each simulated switch in the
network, patterned precisely after the data gathered by real
DSN switches.

6. Present an interface to the trainee's NMSS workstation that
is physically, electrically and functionally identical to
the interface of the real DAI in the ACOC.

7. Provide a stream of periodic switch reports over that
interface which are identical in format and meaning with the
real report stream provided by the DAI to the NMSS in the
ACOC.

8. Provide convenient means for the training supervisor to
alter the behavior of the simulated network at any time
during a run by

i. increasing or decreasing any component of traffic;

ii. damaging or restoring the call handling capability of
any switch;

iii. removing or restoring statistics reporting connectivity
to any switch;

iv. damaging or restoring trunks on any link in the
network; or

v. temporarily freezing simulated time to provide leisure
for questions or discussion.

61

9. Accept DSN network management control commands from the
trainee via the NMSS, and put the commands into effect so
that they begin to be reflected in subsequent switch reports
to the NMSS.

10. Provide a color graphics display for the supervisor which
gives him comprehensive knowledge of what is happening to
user traffic throughout the network, and what effects the
applied controls are really causing.

11. Provide detailed statistics summaries for later analysis by
the supervisor.

12. Maintain a continuous log of all supervisor and trainee
actions for later review.

A.8.3. Validation of Provable Aspects of the Trainer

The correctness of many aspects of the Trainer can be
verified by study and analysis. These include formats of sditch
reports, as a simple example, and more complex questions such as
the exact implementations of routing and preemption procedures
and of NM controls within CCSIM.

The development of CCSIM has been marked by a continual
succession of exercises to define features and functions that
needed to be implemented, in which Lincoln personnel searched
reports and literature, consulted with knowledgeable authorities
in the DCA and industry, and in a few cases finally made
reasonable assumptions to fill in details that were not
obtainable from any of these sources. Each of these provable
aspects of CCSIM is subjected to exhaustive testing, typically by
scrutinizing the code and convincing oneself that the
implementation matches the definition.

A strong contributor to validation of provable aspects of
CCSIM is DCEC, where a copy of CCSIM has been in place for over a
year and is used as a system engineering tool by DCEC personnel.
Their applications subject CCSIM to a whole different set of
stresses from those examined at Lincoln Laboratory, and in a
number of instances this has led to realization that some aspect
of a funccion definition should be changed, or that some feature
should be added or removed.

Despite all of this care, it is likely that discrepancies
remain which will be noticed by skilled ACOC personnel as the
Trainer is used. Any such discoveries will be welcome, and the
next delivered version of CCSIM software will correct the
problem.

A.8.4. Validation of Simulation Aspects of the Trainer

62

Computer simulations of physical processes are inherently
approximate, and they are all subject to question as to whether
their approximations are accurate enough for the simulations to
be valid. It is easy to make this statement, and if you are
knowledgeable about the process being simulated it is also easy
to visualize the meaning of "accurate enough" and "valid". It is
exceedingly difficult, however, to create either practical
definitions of these terms or constructive procedures for
measuring them. Books have been written on the subject, and much
could be said about it; but it boils down to exercising the
simulation over a wide range of conditions, evaluating the
results against all available standards and criteria,
accumulating many examples of operation that appears to be
correct, and observing that none of the test cases disclosed
incorrect operation. Thus validating a simulation is much like
establishing a reputation as an honest person: one cannot prove
honesty in advance, but must demonstrate it over time by
producing numerous observed examples of honest behavior and no
counterexamples.

Four types of simulator validation activity are being
pursued with CCSIM, of which the last two are particularly
applicable at DCA-Europe:

1. Perform as much qualitative and quantitative testing as we

can afford;

2. Calibrate it against known and trusted alternative tools;

3. Compare it with all available examples of real-world
behavior; and

4. Expose it to the scrutiny of the best available experts on
the behavior of the DSN.

A.8.4.1 CCSIM qualitative and quantitative testing

The first type of activity is pursued strongly at Lincoln
Laboratory as part of the implementation of each new feature.
Exhaustive testing of every case and variation is generally
impossible, because it can take several hours' simulation to get
each point on each family of curves one would like to check;
consequently judgement and intuition are applied in choosing a
set of representative experiments spanning the range of
interesting cases. The results tend to show statistical
variation because of the random nature of CCSIM traffic
generation, but care is taken to show that the variation is
within expectations.

Qualitative and quantitative testing of CCSIM operation is
also performed by DCEC personnel as an adjunct to their system
engineering activity. On a number of occasions they have

63

identified trends or phenomena that did not look right,
triggering investigations and some code changes. Work is in
progress to define a joint testing methodology between DCEC and
Lincoln to improve the efficiency of CCSIM testing.

A.8.4.2 Calibration against known tools

The second type of simulator validation was addressed
several months ago, when CCSIM was calibrated against a software
system called "Katz" which has been in use for years at
DCEC/R700. Katz implements numerical solutions of well-known
steady-state telephone network grade-of-service equations, and is
used by R700 for engineering AUTOVON and now the DSN. Network
performance figures were obtained with Katz for a particular
representative set of DSN network and traffic characteristics,
and the identical set of inputs was applied to CCSIM. Much care
had to be taken to correctly reconcile the statistically-varying
outputs of CCSIM with the smoothed outputs of Katz; however,
excellent agreement was achieved.

A.8.4.3 Real-world data comparisons.

It must be noted that the network grade-of-service
calibrations with Katz have relatively little to do with
simulation by the Trainer of the DSN switch statistics reports
that are looked at by the NMSS. For this purpose we need the
third type of simulator validation mentioned above, namely
comparisons between the Trainer and real-world behavior. To this
end DCA-Europe has made available a number of NMSS log files
illustrative of various network problems, and work is in progress
to insure that the Trainer outputs look similar to these log
files when the corresponding problems are induced in the Trainer.

Another aspect of comparison between the Trainer and the
real world can be accumulated over time while the Trainer is in
use at DCA-Europe. Every time an event of note in the real DSN
is observed (such as switch or trunk outages now, and more
complex events in the future), steps can be taken to reproduce
the event as nearly as possible in the Trainer. The results can
then be compared with the NMSS log files recorded during the
actual event. It must be noted that it will never be possible
for the Trainer to precisely replicate the numbers produced by
the real DSN switches: the exact numbers depend upon the
microscopic details of all the actual calls made in the DSN at
the time, and such details are not known at the ACOC. The
Trainer will be able to achieve good qualitative agreement by
running its internal call generators at the approximate average
call intensities of the real traffic (if these can be
determined), and the numbers can be expected to agree within
normal statistical fluctuations.

64

A.8.4.4 Exposure to the experts

In the opening paragraph of Section A.8.4 it was noted that
it is easy to visualize what "accurate" and "valid" simulations
are if you are knowledgeable about the process being simulated.
Put another way, the experts in the problem domain will be able
to evaluate the simulator by watching it in operation, provided
that they watch it through enough examples and variations. To
this end it will be very valuable for the Trainer to be installed
and used at DCA-Europe. The best mechanism for achieving the
benefits of these interactions is frequent application of the
Trainer in a variety of training scenarios, with the training
supervisor always skeptically watching for behavior that makes
sense, and taking careful note of instances that do not match
expectations.

65

APPENDIX B NMES MONITORS AND RULES

This Appendix contains descriptions of the monitors and a
sample of the rules used in the version of NMES created just
after the demonstration at DCA-Europe in September 1989. This
version differed from the one used in the demonstration in that
it takes into account some of the knowledge gained during the
demonstrations about the affects of damage on network resources
(see Section 3.2.7).

The monitors described below are C routines. The rules are
written in CLIPS. Each monitor or rule is given an English
language name intended to be descriptive of the function of the
monitor or rule. That name 4-s followed by the actual name used
within the program in parentheses. In the case of the rules, the
descriptions paraphrase the actual CLIPS forms. The descriptions
omit some details that r-late to CLIPS syntax and other internal
programming issues in order to simplify the presentation without
losing information relative to the functions performed by the
rules.

B.1 NMES Monitors

Monitors are C language routines that process switch report
data and/or the outputs of other monitors and store the results
in a set of C language structures representing the network. Many
of them also work to help maintain (in C arrays) lists of
switches and trunk groups that have anomalous (non-normal)
states. The items on the lists combine the switch or trunk group
with an anomaly identifier. When a monitor recognizes an
anomaly, it appends an item to the appropriate list. It may also
remove an item previously put on the list. There can be more
than one item on the list for a particular switch or trunk group,
but in such a case, the anomaly will be different.

Monitors generally write messages to a scroll window on the
NMES graphics interface so that the user can be made aware that a
monitored situation has occurred. That activity is omitted from
the descriptions that follow.

The order in which individual monitors are run is important
since some use the results generated by others. In the following
sections, they are described in the order in which they run in
MNES.

B.1.1 Switch Monitors

The monitors in this and the following section are run as
each switch report arrives.

66

Monitor - Note arrival of switch report
(markswitch report_received)

Function - Remove any not-reporting state information for the
switch. The 'reporting' state is not considered an anomaly
and is not kept on the switch state list.

remove any not-reporting state for switch X that might be
left on the switch state list from a previous cycle

Monitor - Check for MF receiver overflow
(find no mf receiver free)
Function - Check the switch report for evidence that attempts

to assign a Multi-Frequency (MF) receiver found none free
(overflow occurred).

IF the RCVR OM report for switch X is available for this cycle
AND the value of the MF receiver overflow peg count is
greater than zero

THEN
assert for CLIPS the fact that switch X showed an instance
of no-MF-receiver-free for this cycle append a
no-MF-receiver-free state to the switch state list

ELSE
remove any no-MF-receiver-free state for switch X which
might be left from a previous cycle

Monitor - Check for CCB seizure overflow
(find ccb seizure overflows)
Function - Check the switch report for evidence that attempts

to seize a Call Condense Block (CCB) found none free
(overflow occurred).

IF the CP OM report for switch X is available for this cycle
AND the value of the CCB overflow peg count is greater than
zero

THEN
assert for CLIPS the fact that switch X showed an instance
of ccb-seizure-overflow for this cycle append a
ccb-seizure-overflow state to the switch state list

ELSE
remove any ccb-seizure-overflow state for switch X which
might be left from a previous cycle

B.1.2 Trunk Group Monitors

A normal switch report contains OM reports for each of the
trunk groups that connect the switch to its neighbors. Each
trunk group (tg) report is identified by a group number.
Communication problems during switch polling may cause the loss
of any or all of the tg reports associated with the poll. The
following monitors are run as the switch report is being

67

processed. They are run for all the tg reports that actually
arrive. An additional monitor is run at the end to identify
trunk groups for which no report was received.

Monitor - Check for low/decreasing capacity
(find clli trunksdown)
Function - Check tg report for evidence that the number of
trunks in service is less than the equipped value, and/or is
less than the number reported previously.

IF the reported number of trunks in service is less than the
reported equipped number

THEN
append a decreasedcapacity state for this tg to the tg
state list

ELSE
remove any decreasedcapacity state for this tg which
might be left from a previous cycle

IF the reported number of trunks in service is less than
the number reported previously

THEN
assert for CLIPS the fact that a capacity change has
occurred on this tg during this cycle

Monitor - Check for 100% overflows with zero usage
(find hundredoverflow)
7unction - Check tg report for the case where the overflow peg
count equals the outgoing attempts peg count and the usage
value is zero. This situation corresponds to one type of
trunk failure.

IF there are outgoing attempts on the trunk group AND the
overflows equal the outgoing attempts AND the trunk usage is
zero
THEN

assert for CLIPS the fact that a hundred-percent-overflow
-zero-usage condition exists on this tg at this report
time append an overflows-100-usage-zero state for this tg
to the tg state list

ELSE
remove any overflows-100-usage-zero state for this tg
which might be left from a previous cycle

Mo, itor - Check for attempts with zero overflows and zero usage
(tind zero overflow)
Function - Check tg report for the case where there are
outgoing attempts, no overflows, and no usage. This
situation can occur if 100% SKIP controls are put on at both
ends of the trunk group.

IF there are outgoing attempts on the trunk group AND the
overflow peg count is zero AND the trunk usage is zero

68

THEN
assert for CLIPS the fact that a
zero-percent-overflow-zero
-usage condition exists on this tg at this report time
append an overflows-zero-usage-zero state for this tg to
the tg state list

ELSE
remove any overflows-zero-usage-zero state for this tg
which might be left from a previous cycle

Monitor - Check for high Incoming Attempts per Circuit per Hour
(ICCH) (findhighicch)
Function - Check for cases where the incoming attempts per
circuit per hour exceed a fixed value (currently 20). ICCH is
calculated by dividing the number of incoming attempts by the
number of trunks in service and then multiplying by the number
of switch report periods per hour.

IF there are any trunks in service in this tg
AND ICCH when calculated exceeds 20
THEN

append a high-icch state for this tg to the tg state list
ELSE

remove any high-icch state for this tg which might
be left from a previous cycle

Monitor - Check for no incoming attempts
(find no incomingattempts)
Function - Check for evidence of incoming attempts on the tg.

IF the peg count of incoming attempts equals zero
THEN

assert for CLIPS the fact that a no-incoming attempts
condition exists on this tg at this report time

Monitor - Check for low holding time (find lowht calls)
Function - Check for evidence of low average holding time for
calls on the tg. Average holding time (HT) is calculated by
dividing the usage by the total number of connections (sum of
incoming attempts plus outgoing attempts less overflows).
When the number of connections in a report period is zero,
NMES arbitrarily sets HT to zero to avoid a problem with
division by zero. It would probably be better to set it to a
large real value unless the usage is also zero.

IF the calculated HT is less than 12 seconds
THEN

assert for CLIPS the fact that a low-holding-time condition
exists on this tg at this report time
append a low-holdingo-time state for this tg to the tg state
list

ELSE

69

remove any low-holding-time state for this tg which might be
left from a previous cycle

The following monitor is run after the monitors described
above have been run for all the trunk groups reported in a switch
report.

Monitor - Find trunk groups with no reports
(find clliswithoutreports)
Function - By going through a list of trunk groups that exist
at the reporting switch and for which reports are expected,
find and mark those missing.

FOR all trunk groups in the C structure representing switch X
DO

IF the time stored in the trunk group representation does
not equal the time of the current switch report

THEN
assert for CLIPS the fact theft a no-tg-information
-received condition exists ior this tg at this report time
append a no-clli-report state for this tg to the tg state
list
remove all other tg states for this tg which can no longer
be believed in the absence of a tg report

ELSE
remove any no-clli-report state for this tg which might be
left from a previous cycle

B.1.3 Switch Outage Monitors

Switch outage monitors are run when all switch reports for
an NMES cycle have been received and the data they contained has
been processed by the switch and trunk group monitors described
above. A routine called 'run interval monitors' goes through a
list of all switches in the network calling each of the following
monitor routines for each switch on the list.

Monitor - Find switches with no reports (find-nodes-not
-responding)

Function - Identify switches from which no report was received
in the current cycle. Update the relevant CLIPS facts and
status lists.

IF switch X is a reporting switch AND if no report was
received from switch X this cycle

THEN
assert for CLIPS the fact that switch X had no report for
this cycle
append a not-responding state to the switch state list

FOR all trunk groups on the list of trunk groups at switch
X

70

DO
assert for CLIPS the fact that a no-tg-information
-received condition exists for the tg at this report time
append a no-clli-report state for this tg to the tg state
list
remove all other tg states for the tg which can no longer
be believed in the absence of a tg report

ELSE
remove any not-reporting state for switch X which might be
left from a previous cycle

The following monitors make use of information obtained from
reporting neighbors of a switch. The C structure representing
each switch contains a list of all neighbors to the switch. The
information needed for all of these monitors is calculated on a
single pass through the neighbor list which is carried out in a
routine called 'findno outgoingattempts'. For each neighbor on
the neighbor list, all trunk groups between the neighbor and the
switch in question are examined. The functions for all of the
following monitors are carried out within that routine, with the
consequence that the individual monitors do no have routine names
as do the monitors described above.

Monitor - Find switches from which neighbors see no outgoing
attempts
Function - Check for evidence of outgoing call attempts by
switch X seen as incoming calls from switch X at its
neighbors.

IF one or more neighbor switches to switch X reported AND the
total incoming attempts from switch X seen by those neighbors
was not greater than zero

THEN
assert for CLIPS the fact that neighbors-see-no-incoming
-signals from switch X at this time
append a no-outgoing-attempts state for switch X to the switch
state list

ELSE
remove any no-outgoing-attempts state for this switch which
might be left from a previous cycle

Monitor - Neighbors see trunk groups with successful connections
Function - Check for evidence that one or more neighbors is
achieving successful connections to switch X.

IF one or more neighbor switches made attempts to access trunk
groups to switch X

AND either usage was observed on the accessed group
OR overflows were observed on the accessed group at less than

100%
THEN

assert for CLIPS the fact that neighbors-see-cllis-with

71

-successful-connections from switch X at this time

B.2 NMES Rule Descriptions

B.2.1 Rules for Switch Outages

The following rules are intended to deal with switch
outages. They make use of and change switch outage status which
can have the values: unknown, active, inactive, or very inactive
(down). When NMES starts running, all switches have unknown
outage status. A switch of unknown status is assumed to be
functioning properly and therefore not in need of attention from
NMES. Its status will remain unknown until symptoms of
inactivity are detected. Once having become inactive, a switch's
status is tracked by NMES and the duration of its current state
is maintained. Rules that change switch status to inactive are
run at a higher CLIPS salience so that they will fire before
other rules that might be ready to fire on the same cycle. The
CLIPS fact database also has a 'down-switch' control status that
remembers whether or not controls appropriate to the 'down'
status have been applied at other switches.

Rule - Change switch status from active to inactive
(inact-known-node)
Function- Detects switches that were active but that are now
displaying signs of being inactive.

IF switch X is marked as active at the current time
AND no report has been received from switch X
AND switch X's neighbors see no incoming calls from switch X
AND switch X's neighbors see no successful calls to switch X
AND attempts were made from the neighbors to switch X
THEN

mark switch X as inactive but preserve its control status

Rule - Change switch status from unknown to inactive
(inact-new-node)
Function - Detects switches that had unknown status but that
are now displaying signs of being inactive.

IF switch X status is unknown at the current time
AND no report has been received from switch X
AND switch X's neighbors see no incoming calls from switch X
AND switch X's neighbors see no successful calls to switch X
AND attempts were made from the neighbors to switch X
THEN

mark switch X as inactive and set its control status to
no-control

Rule - Report inactive switches (inact-node)
Function - Detects all inactive switches and passes

information via C routines to the graphics.

72

IF switch X is marked inactive
THEN

call C routines to show inactive status to user

Rule - Update switch inactivity duration (still-inact-node)
Function - Detects switches that have been inactive for more
than one time period and updates duration of inactivity.

IF switch X was inactive or very inactive last period
AND no report has been received from switch X
AND switch X's neighbors see no incoming calls from switch X
AND switch X's neighbors do not see any successful calls to

switch X
AND attempts were made from the neighbors to switch X
THEN

leave switch X marked as inactive or very inactive
add one report period to duration of inactivity

Rule - Change switch status from inactive to very inactive (down)
(very-inact-node)
Function - Detects switches that have been inactive for
a long enough time to be considered very inactive (down).

IF switch X was inactive for a specified number of report
periods

AND the number of currently reporting neighbors who see no
incoming calls is greater than 1 (i.e. there is current
evidence that the switch is inactive)

THEN
mark switch X as very inactive(down)
call C routines to inform user and recommend controls

Rule - Apply controls for down switch (apply-down-ctrl)
Function - Detects that a switch is very inactive, that no

down
-switch controls have been applied, and that the user has
confirmed the recommended application of controls.

IF switch X is marked very inactive
AND down-switch controls have not been applied
AND user has confirmed control application
THEN

call C routines to apply the down-switch controls
call C routines to inform user
mark switch X as very inactive with controls for a down
switch applied (The controls are applied at other
switches.)

Rule - Change switch status to active (act-node)
Function - Detects switches that were inactive, but now
display activity.

73

IF switch X is marked inactive or very inactive(down)
AND switch X's neighbors see incoming calls from switch X
OR switch X is reporting and a switch report was received)

THEN
mark switch X as active
call C routines to inform user

Rule - Remove down-switch controls (remove-down-ctrl)
Function - Detects switches that are active but for which down
-switch controls have been applied.

IF switch X is marked active with down-switch controls applied
AND user has confirmed that controls should be removed
THEN

call C routines to remove controls
mark switch X as active with no down-switch controls
call C routines to inform user

Rule - Confirm that a switch is still active (still-act-node)
Function - Detects that a switch is still active with or
without the receipt of a report from the switch.

IF switch X is marked as active
AND neighbors see incoming calls
OR a report from switch X has arrived

THEN
mark switch X as active
add one report period to duration of activity

74

APPENDIX C NMSS TRAINER DOCUMENTATION

C.0 INTRODUCTION

This Appendix reproduces the NMSS Trainer documentation that
was delivered to the sponsor during the year. Section C.1 is a
brief User's Manual telling an operator how to initialize and use
the software. Section C.2 is a detailed NMSS Trainer Softwdre
Description which is intended to provide all the information
necessary for a programmer to carry out software maintenance and
upgrade of the Trainer. Section C.2 was published and
distributed (to sponsor-approved government agencies only) as a
Lincoln Laboratory Project Memorandum.

C.l NMSS TRAINER USER'S MANUAL

Trainer Overview. The purpose of the Trainer is to harness
the network simulation capabilities of CCSIM to drive the NMSS
workstation for the purpose of training ACOC personnel. The
hardware configuration consists of a Sun Workstation running the
CCSIM programs and a PS/2 Model 80 running the NMSS Workstation.
The two must be connected by a cable in order to communicate.

Starting the NMSS workstation. In order to train, the NMSS
workstation must have the proper hardware configuration and be in
working order. The hardware consists of the system unit, a text
monitor, a graphics monitor, an external floppy disk drive and a
printer. All pieces must be connected and have no obvious
problems. To start the PS/2, remove any diskettes from the "a:"
drive, turn on all peripherals and then turn on the system unit.
Some numbers will flash on the screens as the computer runs
self-tests. If everything is ok with the hardware then both
monitors will display some text the last line containing an
indication of the "C" drive. At the prompt type Trainer to start
the NMSS workstation.

Running the Trainer. runsys.trainer is a script file (a
type of small program) which is used to invoke the Trainer for a
variety of purposes. The script MUST be invoked from a network
directory. The script file starts all the necessary programs.
To use it, enter one of these commands (without the quotes),
where (net) is the network name:

"runsys.trainer (net) nmss" send switch reports only to nmss
"runsys.trainer (net) nmes" send switch reports only to nmss
"runsys.trainer (net) lars" send switch reports only to lars
"runsys.trainer (net) nmss nmes" send switch reports to nmss and

nmes
"runsys.trainer (net) lars nmes" send switch reports to lars and

nmes

75

Of the five different invocations of runsys.trainer, the
ones including "nmss" require that the NMSS workstation be
running and prepared for a training session. Those invocations
specifying "lars" requires that LARS be running and prepared for
a training session. When "nmes" is specified, NMES will be
started on the same SUN as the runsys.trainer.

The only difference between typing "lars" or "nmss" is that
the switch report file names produced by CCSIM/Trainer will
contain "S" instead of a "T" to indicate to LARS that the switch
reports it is receiving are simulated switch reports. (LARS can
be driven by a runsys.trainer invocation including eithe: "lars"
or "'nmss".)

The Serial Cable: Connecting The Sun and PS/2. For a
training session, both the Sun and the PS/2 must be running their
respective software and they must be connected by a RS232 serial
cable link containing one null modem.

The RS232 serial cable is a cable which can connect to many
types of computers. When viewed from the end, each connector has
either 25 "pins" or 25 holes depending from which end the cable
is viewed. Each end of the cable always has the 25 little
connectors but there are two types of cable links. One type is
round, about 3/8 inches in diameter. The other type looks like a
ribbon. Either of two types of serial cables will work.

The PS/2 RS232 serial port is located between the printer
connection and the text monitor connection. The Sun has two
ports, each located on the upper left back of the computer. They
are labele- "Serial Port -A-" and "Serial Port -B-". Either one
can be used with the Trainer. The default is the "B" port but
the "A" port may be specified when invokiny the Trainer.

A "null modem" in the context of this manual is a short
RS232 connector. Its purpose is to "cross" some of .-ie 25 wires
inside the serial cable which otherwise would connect straight
through one for one between the two computers. The Sun to PS/2
connection for the Trainer must contain exactly one null modem.

Maintaining consistency. The (net).clli file, the xref
tables and the sample switch reports must be kept consistent.
Support of CCSIM and the Trainer as well as NMES is concerned
with consistency among several independent systems: DAI/NMSS
workstation and CCSIM/Trainer/NMES. Ideally, a new installation
of CCSIM/Trainer/NMES will consist not only of the respectful
executables and documentation but it will also consist of
consistent (net} files, xref tables and sample switch reports.

Whien a new (net) is defined (currently done exclusively at
Lincolp Lab), input is derived from DAI switch reports and NMSS
workstation xrei tables. The actual DAI and NMSS workstation

76

quickly outdate the (net) files. Therefore, one solution to the
CCSIM/Trainer/NMSS consistency problem is to provide the sample
switch reports used by the Trainer and the xref tables used by
the NMSS with each new installation of CCSIM/Trainer/NMES
software.

Before the Trainer can be run, the inet}.clli file used by
CCSIM must be consistent with the xref tables used by the NMSS
workstation and both of these must be consistent with the sample
switch reports contained in your (net)/sample directory. If
there are inconsistencies, then the NMSS workstation will
complain by sending "XREF mismatch" messages to the printer.

The following three paragraphs describe each entity in the
consistency problem.

xref tables:
There is one xref table for each reporting switch in the NMSS
workstation. Basically, each table contains information about
all trunk groups connected to the switch.

sample switch reports:
The sample switch reports are mentioned in the previous section.

(net).clli file:
The (net).clli file contains trunk group definitions for CCSIM.
Each line in the file contains one trunk group record. CCSIM and
the NMSS workstation look at trunk groLps differently. The main
difference is in naming anid numbering con-enLions; therefore,
when CCSIM is run as the Trainer, it needs to be able to produce
switch reports in the NMSS workstation convention. At the
current time, the clli file contains 13 fields of which 5 are
needed to map CCSIM's cils to NMSS' trunk groups.

The document "clli.file" in the doc directory under the
installed ccsim directory (i.e. /usr/(host)/dsn/ccsim/doc, where
(host) is a machine name) defines the CCSIM format for the
(J.et).clli file. This file also contains information needed by
the aforementioned mapping. The fields needed for the mapping
are clli src dst cap and grp where clli is the 16 character link
name, src is the 3 character source switch name, dst is the 3
character destination switch name, cap is the 3 digit integer
Capacity (number of lines in trunk group) and grp is the 3 digit
trunk group number.

When producing st'itch reports for the NMSS workstation, a
CCSIM switch report is reformatted into the format accepted by
the NMSS. It is at this time when the information from the CCSIM
switch report convention is changed into the NMSS workstation
convention using the information contained in the inet}.clli
file.

77

The consistency of CCSIM's (net).clli file and the NMSS
workstation's xref tables as well as the sample switch reports is
essential. Needless to say, all three of these sources of
information must use consistent three character switch names.

Besides the switch names, their relationship is as follows:

NMSS xref table Found on the NMSS PS/2. There is one
table for each Switch, one line in the
table for each trunk group which
includes among other things the trunk
group number and its capacity

CCSIM (net).clli file Found in the (net) directory. There are
two entries for each clli (or trunk
group), each line includes among other
things the trunk group number and the
trunk capacity sample switch reports
Found in the {net)/sample directory.
There is one sample switch report for
each reporting switch, for those trunk
groups not simulated by CCSIM, the trunk
group report is taken from the
appropriate sample file containing the
trunk group number and capacity

To be ;nsured of consistency:

1. start with a working set of {net) files that were created at
the same time as the sample switch reports and the xref
tables

2. obtain sample switch reports whose origination was the DAI
at the same time as the (net} files were created and the
xref tables were last edited copy them to the (net)/sample
directory

3. make sure the NMSS workstation uses xref tables consistent
with both 1. and 2.

trainerinput.
This is a program to allow input to CCSIM by an interface other
than the graphics. It was first used to learn about Unix socket
based inter process communication and to test the Trainer code
withc,,'t fiLi up the full fledged system. It is invoked
automatically by the Trainer when "input" is specified as a
command line argument. (See section "Running the Trainer").

"/8

C.2 NMSS TRAINER SOFTWARE DESCRIPTION

C.2.1 Introduction: About The Software Description Document

The purpose of the Trainer is to harness the network
simulation capabilities of CCSIM to drive the NMSS workstation.
This involves communicating with the NMSS workstation and making
CCSIM look and act like the real world.

Communicating with the workstation is achieved by adhering
to the DAI/NMSS Communications protocol. The majority of this
communication is the transferring of switch reports. Other
communication includes error messages indicating a switch is not
responding and control response messages indicating the success
or failure of an NMSS control request.

CCSIM produces switch reports every five minutes of
simulated time. CCSIM is made to look like the real world by
accumulating simulated data for 15 minutes (three switch
reports), formatting the data into the standard comma separated
data format and sending switch reports to the NMSS workstation.
The number of CCSIM switch reports to accumulate is a compile
time parameter.

The purpose of this document is to provide programmer level
documentation for the Trainer system. This document assumes a
basic working knowledge of the IDSIM project. C.2.2, Trainer
Function Overview, describes the four parts of the trainer
function: DATA INITIALIZATION AREA, OTHER PROCESS INITIALIZATION
AREA, CONNECTION TO OTHER PROCESSES AREA, MAIN CONTROL LOOP.

C.2.2 Trainer Function Overview

The entry point to the trainer executable is the main
function found in trainer main.c. The main function

* creates a log file
* checks for proper command line invocation
* calls initialize csd
* calls trainer

One or more command line arguments constitutes proper
invocation, the first of which is taken to be the network name.
If trainer was called with a proper invocation, initializecsd is
called and passed the command line arguments. It returns
successfully upon reading the network files. At this point, the
trainer function is called.

Execution does not return to the main function because the
program terminates via the "C" exit call made as a result of the
trainer function.

79

Before reaching the main control loop, the trainer function
performs several initialization tasks. The initialization tasks
and the main control loop are divided into the following four
parts:

DATA INITIALIZATION AREA
initialize global and local variables

OTHER PROCESS INITIALIZATION AREA
fork the commm process (for communication with the NMSS)

CONNECTION TO OTHER PROCESSES AREA
connect to other processes (those forked (such as commm) and
CCSIM) (the connections are via UNIX sockets)
MAIN CONTROL LOOP
loop, reading messages from other processes, process the
message, respond

The trainer function contains the main control loop for the
Trainer. It's purpose is to act as a "go-between" for other
processes therefore it is responsible for reading and writing
from and to sockets for communication with other processes such
as CCSIM and commm (which communicates with the NMSS). A good
example of the trainer function's action is receiving switch
reports from CCSIM, formatting them, and then sending them to the
NMSS. The trainer function is found in the file trainer funs.c
and it calls functions in several other files, including
csdfuns.c.

The following section describes the main control loop.

C.2.3 The Trainer Function's Main Control Loop

C.2.3.1 Overview of the Main Control Loop

The main control loop consists of 5 parts.

* update time variables used for running in real time and for
querying the NMSS

* query the NMSS
* set up the mask of file descriptors for the select call
e call select
o act on the result of the select call

The trainer function terminates upon receiving a STPMSG
(stop message) from some process.

The most important steps in the main control loop are making
a select call, reading a message from another process and acting
on tie message.

80

The select call is used to determine when file descriptors
(connections to other processes) have sent a message to the
trainer. It returns either 0 or the number of file descriptc 3
ready to be read.

When select returns 0, there are no file descriptors ready
for reading. This situation is used for running in real time.
The zero return value means that all programs are in an idle
state. They are not sending messages to the trainer function
(notably CCSIM). If it is time to pause CCSIM, do so now.

If select returns a value > 0 then other processes have sent
messages to the Trainer. The message is read and a switch is
done on the source of the message. Possible sources are DAIID,
NMSSID, CCSIM_ID, NMESID, INPUT_ID, or, GRPH ID. The messages
passed between processes take the form of a structure defined in
msgstruct.h. The type of a message is determined by the mtype
field. Valid mtype values are defined in msgcnst.h.

The next section describes the messages received by the
trainer and the actions taken.

C.2.3.2 Messages Handled by the Main Control Loop

C.2.3.2.1 Messages from the DAI

The trainerfuns.c "C" file is used in the compilation of
the translate executable for translating switch reports received
from the DAI before passing them on to the NMES. When the source
is DAI_ID, the DAI has sent either a switch report file name or
an error 11 message (which indicates that a switch is not
responding to a DAI poll request). A file name is handled by
reading the switch report file, Translating it into the CCSIM
switch report format and sending this formatted switch report to
NMES. The error 11 message is Translated into an empty switch
report message type (from the CCSIM domain) which is sent to
NMES. Some general date and time processing happens with each
switch report file name received. The date and time is compared
with the last date and time received from the DAI and when the
previous and current date or time changes, a date or time message
is sent to NMES.

C.2.3.2.2 Messages from the NMSS

When the source is NMSSID, the NMSS is responding to a
Trainer query by sending a control request. Here, the Trainer
makes CCSIM act like the real world by receiving the control
request from the NMSS. The Trainer calls handleNMSS control
which attempts to format the control message into the CCSIM
control message format. Upon a successful control application in
CCSIM the Trainer sends an affirmative response in the form of a
file name to the commm process for the NMSS. This process then

81

calls commsend to send the affirmative response file to the
NMSS. Upon an unsuccessful control application, the Trainer
proceeds in a similar manner to send an unsuccessfui control
response file to the NMSS.

C.2.3.2.3 Messages from the CCSIM

Overview

When a message has been read with the source CCSIMID, the
Trainer calls handleccsimmsg. The CCSIM message is handled the
same way that all other incoming messages are handled, with a
switch on the message type. This function handles the following
message types:

CNFRM confirmation generally an echo of messages
received by CCSIM

ASK ask a query type message to let
processes know that CCSIM has
completed a "RUN" message

ESWRPT empty switch report indication that there will be
no switch report for this
switch this period

SWRPT switch report a switch report for some switch
for one period

STIMEMSG simulator time current CCSIM simulation time

When trainer funs.c is used in the compilation of the
translate executable, CCSIM messages are sent to NMES. After a
message is processed by the switch statement, handleccsim msg
sends the CCSIM message to the NMES. All messages are passed
directly to NMES except ESWRPT and SWRPT. These two messages
are processed by this function and the result is sent to NMES.

The CNFRM ASK ESWRPT and STIMEMSG Messages

The handleccsimmsg function is called by the trainer
function when it receives a message from CCSIM. When a CNFRM
message is received, the Trainer prints the text portion of the
message to standard output. The first CNFRM received from CCSIM
is the Lincoln Lab/CCSIM version message. After this, CNFRM
messages are echoes of commands received by CCSIM from other
processes.

The ASK message is sent out by CCSIM when the current RUN
period ends. At this point CCSIM expects another RUN command.
When the ASK is received by the Trainer, a message is printed to
standard out.

The first ASK is a special case. At this time, the Trainer
knows that CCSIM is up and running so the Trainer sends
sw-report-on commands for all switches in the (net).reporting

82

file. It also sends a RUN command for a long time period. It
does this with the intention that someone is operating CCSIM via
the graphics interface. For CCSIM to run, this person must
produce RUN commands also.

The ESW RPT message is used to keep track of a switch when a
switch report is not being produced. The function
process switchreport is called specifying an empty switch
report. This function returns a switch report structure if it is
time (enough switch report periods have elapsed) otherwise it
returns NULL. With the switch report structure returned,
handleccsim msg sends an ERR11 message to the NMSS and an empty
switch report message to NMES.

Another last message handled from CCSIM is the STIMEMSG.
This is the current CCSIM simulated time which is sent out every
10 seconds (the current CCSIM default). The value is in ticks
(tenths of seconds) which this function interprets in seconds.
If the Trainer is running in real time, the handle ccsim time
function is called. This function basically adjusts time
variables and sends a PAUSE to CCSIM if it is running too fast.

The SWRPT Message: Making Comma Separated Data Format
Switch Reports

This section describes how the Trainer produces comma
separated switch reports from CCSIM switch reports.

The actions taken upon receiving a SW RPT are the same as
those taken upon receiving an ESWRPT. it is the result that is
different.

The SW RPT message indicates that CCSIM has produced data
for a switch for one CCSIM period. The process_switchreport
function is called passing the CCSIM switch report. This
function returns a comma separated data switch report structure
if it is time (enough CCSIM switch report periods have elapsed)
otherwise it returns NULL. With the switch report structure
returned, handleccsimmsg prints the switch report to a switch
report file. It then takes the appropriate action of sending the
switch report name to the NMSS commm process. For the case of
the translate executable, the switch report structure is
translated back to CCSIM format and the translated switch report
is sent to NMES. This concludes the high level description of
what happens when the trainer receives a switch report from
CCSIM.

The remainder of this section walks through the function
hierarchy beginning with the processswitch_report function.

A prerequisite that shou'd be noted is that the Trainer
acc,7mulates data from CCSIM for several CCSIM switch report

83

periods before sending a comma separated data switch report to
the NMSS. CCSIM produces switch reports every five minutes of
simulated time; thus, the Trainer must accumulate three of these
CCSIM period switch reports to make one (15 minute) NMSS switch
report. The number of CCSIM switch reports to accumulate before
making a comma separated data switch report is defined by
NUMBERSIMSRTOACCUMULATE in "csd.h".

CCSIM uses a different notation from the NMSS to refer to
switches and trunk groups. It gets all the information it needs
from a set of network files. The Trainer reads the net.clli, the
net.node and the net.sw files among others. It uses the
information from these files to map from a CCSIM switch report to
a comma separated data switch report.

Upon receiving a switch report from CCSIM, the Trainer calls
the function process switch_report. This section walks through
the hierarchy of function calls rooted at this function.

This hierarchy as depicted by "cflow" is:

processswitchreport: struct*(), <csdfuns.c 336>
printf: 2
insertswitch in accumulation ring: void(), <csdfuns.c

1095>
printf: 2
calloc: <>
copyswitch_reportto_accumulationring: void(,

<csdfuns.c 687>
printf: 2

accumulatesim switchreport: struct*(), <csdfuns.c 558>
printf: 2
copyswitch_reportto_accumulation_ring: 18
formulatecsdreportfromaccumulation: struct*(),

<csdfuns.c 861>
printf: 2
calloc: 17
makecsddatestringand_file name: vuid(),

<csdfuns.c 1647>
strcpy: <>
getlong time: <>
get structtimefrom secs: <>
bcopy: <>
minus fiveminutes: into, <csdfuns.c 1566>

log: 8
sprintf: <>
log: 8
calculatequarter: into, <csdfuns.c 1615>
lCg" 8
get_ccsim switchfromnumber: 3

bcopy: 30
log: 8

84

get ccsim switch from-number: 3
get capacityfrom clli: <>
get trunk groupfrom clli: <>
free: <>

add switchreport_to_accumulationring: void(),
<csdfuns.c 749>

printf: 2

process -switch report first picks out the CCSIM switch number
from the switch report structure. It then accesses the
accumulationring variable. This is a global static pointer to a
ring of structurcz used to accumulate CCSIM switch reports. The
ring contains one accumulation structure for each unique switch
number received from CCSIM. Process switchreport searches
the accumulationring for an accumulation structure whose
switch node number matches that of the CCSIM switch report. If
it finds such a structure then the function
accumulate simswitch report is called. If there is no
accumulation structure with a switch node-number matching the
CCSIM switch report then the function
insert-switchinaccumulation ring is called.

See the file csd.h for the exact contents of an accumulation
structure. The most important fields of the structure are

* switch number
* start and end time of the accumulated switch report data
* count of accumulated CCSIM switch reports
e pointers to the next and previous accumulation structures
* switch report_data array

The single most important field is switchreprrtdata. This
is an array of shorts used to accumulate the short Jata from a
CCSIM switch report.

The global, static pointer accumulation ring points to one
of the accumulation structures (it is NULL at start-up time).
When processswitchreport searches the ring for a structure
whose switch number matches that of the newly received CCSIM
switch report it simply moves through the ring via the "next"
field. Processswitch report only calls the two functions
mentioned above. Of them, insert switch in accumulationring
simply callocs some space for an accumulation structure and fills
in the switchIreportcount, switch nodenumber, and starttime,
among the fields. It then adjusts the pointers of the new
accumulation structure so that it becomes part of the
accumulationring, insert switch in accumulationring also calls
copyswitch report_toaccumulation_rlng to fill in the
switch reportdata field.

85

Note that the two functions process switch report and
insert switch inaccumulationring are the only two functions
which change the value of accumulation ring. Although, other
functions access the fields of the structure pointed to by
accumulationring.

The second function called by process switch report is
accumulate sim switchreport. It is called after
processswitch report has positioned accumulation_ring so that it
is pointing to the accumulation structure for the desired switch.
accumulatesimswitchreport then does a three-way switch, whose
case depends on how many CCSIM switch reports have been
accumulated for this particular switch.

If the sim switch reportcount is 0 for this switch then
this CCSIM switch report is the first of the number to
accumulate. In this case the simswitchreport count is set to
1, the switch number is set and the CCSIM switch report data is
copied into the accumulation structure with a call to
copyswitchreporttoaccumulation ring possibly overwriting old
data. A NULL csdreport is returned because not enough data has
been accumulated to formulate a complete comma separated data
report.

If the simswitchreportcount is one less than the number
needed to formulate a complete comma separated data switch
report, then the addition of this current CCSIM switch report is
enough data to formulate a comma separated data switch report.

For this case, first the sim switch_report count is set to 0
to be prepared for the next accumulation. Then the
addswitchreport to accumulation_ring function is called and
then formulatecsdreportfromaccumulation is called, whose
value is returned.

For the case where the simswitch report_count is greater
than 0 but one less than the number of switch reports needed to
formulate a comma separated data switch report, the
sim switchreportcount is incremented and the CCSIM switch
report data is accumulated with a call to
add switchreport to accumulationring. This case of the switch
then returns a NULL csd report because not enough data has been
accumulated to formulate a complete comma separated data report.

The main objective of all the function calls in
accumulatesimswitchreport is to get prepared for
formulatecsd_reportfrom accumulation. This function is called,
as described above, when enough data has been accumulated from
CCSIM for one switch to formulate a comma separated data switch
report.

86

The first thing this function does is to produce the comma
separated data switch report file name and date string from the
start time and end time fields of the accumulation structure.
The file name and date strings are then copied into the
csd report structure.

At this time, if we don't have a valid switch report then we
got here because we have gotten NUMBERSIMSRTOACCUMULATE CCSIM
switch reports (some of which were empty switch reports) to
formulate a comma separated data report. For this case simply
return the csd report. The file name field contains a valid file
name so that the Trainer function can pick out the quarter and
hour for formation of an empty switch report.

If we have a valid switch report accumulation, then we have
accumulated NUMBER SIM SR TO ACCUMULATE valid CCSIM switch
reports, so start filling in the comma separated data report
structure with the start time and end time. These times are
copied into the fnstart time and fn end time rather than the
hl start time and hl end-time. The fn_ stands for "file name"
and the hl stands for "header line". This is in reference to a
comma separated data switch report because the time encoded in
the file name is GMT where as the time from the header line of
the switch report is the switch's local time. Use of the header
line time was superseded by the file name time.

Next, formulatecsd reportfromaccumulation goes through
the short data a short at a time. Recall that this short data is
simply an accumulation of the short data from a CCSIM switch
report. Some of the information has already been processed and
some of the shorts are unused, so not every short is accessed.

The short data is accessed via a pointer to a short,
switchreportshortdata. The value of this variable is
initialized upon entry to the function with a pointer to the
short data field of the ac- nulated structure. The pointer is
incremented with each access to a short. (By reading the CCSIM
document describing a CCSIM switch report, you can follow along
short for short. The "csdfuns.c" code also describes the
information short for short as it is accessed.)

From the header of the short data, the CCSIM switch number
is accessed. Then, about the half of the short data
corresponding to the CCSIM switch report header is skipped. The
second half contains data pertaining to the CP, RCVR, RADR and
DTSR one-liner reports. This data is read and filled into the
reportdata field of the CSDREPORT structure. At the same time,
constants are filled in as well as provisioning fields.

After the data for the five one-liner reports has been
filled in, the constant 6 is filled in for the "TRK" report. At
this point, switch reportshortdata is pointing to the trunk

87

data. From the first five shorts, get the number of "trunks in
service" and the "clli number". The "clli number" will be used
to access the trunk group number and number of trunks equipped
which was read from the (net).clli file at program
initialization.

A comma separated data report does not distinguish among the
5 CCSIM call priority levels; therefore, take the total of the
five shorts. This is done for all the statistics in each clli
report. Each of these totals is filled into the comma separated
data switch report structure. (Again, the CCSIM document which
describes a CCSIM switch report documents the clli part of the
switch report short for short. The "csdfuns.c" code also
describes the information short for short as it is accessed.)

The comma separated data switch report structure is now
completely filled in, so return a pointer to it. (Many functions
in the chain of calls started from processswitch_report return a
pointer.) The return from processswitch report returns the
pointer to the caller who will utilized the structure being
pointed to.

Besides the csdstub debugging/testing program,
process_switch report is only called twice, once for a valid
switch report and once for an empty switch report. These calls
are within the trainer function; thus, it is the function which
must do something with the comma separated switch report
structure.

C.2.3.2.4 Messages from the NMES

Again, for the case of the translate executable, when the
source is NMES ID, the Trainer passes along the message from NMES
to CCSIM as long as CCSIM is running. Consequently, the
haricle ccsim_msg function passes along most CCSIM messages
directly to NMES. The Trainer filters out switch reports and
empty switch reports because it Translates this information and
then sends it to NMES.

C.2.3.2.5 Messages from the Trainer Input Program

When the source is INPUT_ID, the trainerinput program has
sent a text message to the Trainer. The trainer input program
enables input to CCSIM via CMDFMT messages. These are character
string messages that CCSIM interprets as if it were found in the
{net).cmds file. The main purpose of running this process is to
allow the Trainer user a means to enter simple commands to CCSIM
without having to run with dsntool. The use of this program is
not recommended because the person who types the commands must
not make a mistake. The recommended means of input to CCSIM is
via the graphics interface which is mouse driver and is designed
to accept correct input only before sending a command to CCSIM.

88

C.2.3.2.6 Messages from the CCSIM Graphics Interface

The last source is GRPHID. The two messages from the
graphics are RUN REAL ON and RUN REAL OFF. Which stand for
turning run real time on or off respectively. Run real time is
implemented in the Trainer by sending PAUSE and CONT messages to
CCSIM to regulate its running speed.

C.2.4 "C" Structures Walk-Through of Switch Report Formation

With reference to "C" structures defined in "msgstruct.h"
and "csd.h", the following paragraph describes the transitions
from one structure to the next.

After enough SWRPT or ESWRPT structures received from CCSIM
have been accumulated in an ACCUMULATORSWITCHREPORT structure
(one in the accumulation ring)
formulatecsd reportfrom accumulation is called. It formulates
a CSD SWITCHREPORT structure from the ACCUMULATOR SWITCHREPORT
structure. A pointer to the CSDSWITCHREPORT structure is
returned up the chain of calls to the Trainer function. That
function either prints the CSD SWITCH REPORT structure to a file
for transfer to the NMSS workstation or it Translates the
CSDSWITCHREPORT structure into a SWRPT structure for writing to
the NMES.

C.2.5 Using the Switch Report Output Functions

The Trainer/Translator concept of comma separated data
switch reports is file based. The reason for this is that the
DAI/NMSS protocol is file based. In the Trainer scenario, before
a comma separated data switch report is transferred to the NMSS,
it must be in a file whose name denotes important information
about the contents. When using canned data to drive the NMES,
note that the source of the comma separated data switch reports
is the DAI. The main source of DAI switch reports is Paul
Gesswein who sends tapes to Lincoln Lab. The tape contains file
based switch reports.

There are functions for reading and writing both CCSIM
switch reports and comma separated data switch reports. The
functions which read fill in a "C" structure with the information
found in a file and the writing functions create a file from the
information in the same "C" structures. There are also functions
for converting netween "C" structures. (See "csd.h" for the
structure definitions.)

All these functions work well with each other. For example,
when the trainer is used to drive the NMES, CCSIM switch reports
are accumulated and then formulated into comma separated data
switch reports which are then translated back into CCSIM format
switch reports.

89

The functions which read and write files for the SWRPT
structure are mainly used with the csdstub program for
developmental purposes. The file format is the same as CCSIM's
output for one switch.

The functions which read and write files for the
CSD SWITCH REPORT structure are used routinely in the
Trainer/Translator. This file format is that of a comma
separated data switch report.

Both of the output functions take a pointer to a structure
as the second argument. The first argument defines the file name
for output and calls for different actions in the two functions.
The following table lists the three different arguments and the
output file name for the two functions:

argument print CCSIMswitch report print_csd-switchreport

"" (empty "CCSIM.sw.for." + 3 letter the standard comma
separated
string) switch name data switch report
file name

"stdout" outputs to stdout outputs to stdout

any other the string is interpreted as string is interpreted
string the file name as the file name

The print_csdswitchreport w_extratgs function takes the
same actions as printcsdswitch report with the additional
feature of adding trunk groups from comma separated data switch
reports found in a sub-directory.

The input functions, read_csd sr and
readCCSIMswitchreport must be called with the literal file
name.

C.2.6 List of Files

HEADER FILES (found in ...trainer/src)

comm.h declarations for NMSS/DAI protocol
csd.h header for Trainer/Translate related files
env.h contains extern declarations for global variables
global.h global useful constants
msgcnst.h my new version of CCSIM header file
msgstruct.h symbolic links to CCSIM header file
nmssfuns.h
trainer.h non-extern declarations for the env.h variables

defines for organizing process communication

90

C FILES (found in ...trainer/src)

canned.c main module for running with canned data (fo.
NMES)

comm.c NMSS/DAI protocol functions
commmain.c main module for accessing comm.c functions
controls.c
csdfuns.c Trainer/Translate functions
csdstub.c stub program used to test csdfuns functions
devcontrols.c functions for control of /dev/ttya and

/dpv/ttyb
env.c processing of Trainer/Translate runtime

parameters
inval.c gets values from the (net}.inval file
log.c functions for logging and file manipulation
myio.c io functions (e.g. yesno_p, get_int...)
mystrings.c string functions
networkfuns.c functions related to getting (net) info
nmssfuns.c mainly processing of NMSS workstation control

requests
time.c unit date/time calls
trainer.c acts as in-between for CCSIM and other

programs
trainer funs.c Trainer/Translate high level functions
trainer main.c "main" access to the function Trainer
translate main.c "main" access to the function Trainer

SCRIPT FILES (written for Trainer/Translate and found in the
installed bin directory /usr/(host)/dsn/bin)

runsys.trainer starts up necessary programs for Trainer
runsys.translate starts up necessary programs for Translate
runtrainer starts up Trainer and checks for timeout
runtranslate starts up Translate and checks for timeout

SOCKET BASED COMMUNICATIONS (functions not written by Mike
Walsh, copies found in ... trainer/src)

get socket.c basically does a unix "socket" and then a
"bind"

makesocket.c basically calls get-socket and then a
"connect"

servsetup.c does a "socket", "bind", "listen" and
"accept"

socketcomm.c function for reading from a socket

MISCELLANEOUS FILES (found in
/home/athena/walsh/trainer/doc/old or ... trainer/misc)

91

error-solution errors/solution encountered while running the
Trainer

affirmativecontrolresponse
file appended to an NMSS control file and
sent to NMSS

negativecontrolresponse
file appended to an NMSS control file and
sent to NMSS

DOCUMENTATION FILES (found in ...trainer/doc)

canned.programmer.doc
canned.user.doc
commm.programmer.doc
commm.user.doc
csdstub.programmer.doc
csdstub.user.doc
trainer.programmer.doc
trainer.user.doc
translate.programmer.doc
translate.user.doc

NETWORK FILES

These are those network files accessed by the Trainer:

{net).clli for clli information
(net).inval for srsync
(net).node for node information
{net).reporting This file specifies which switches should be

reporting to the NMSS workstation so
that the Trainer can send a "sw-report-on" to
CCSIM and receive switch reports for the
desired switches.

(net).sw This file contains the provisioning data
which is basically constant data in the
non-trunk data portion of a comma separated
data switch report.

(net).tconfig "trainer config" specifies options for
running the Trainer as well as some debugging
flags (use of this file is being phased out)

92

C.2.7 Requirements for Running the Trainer

C.2.7.1 Introduction

Running the trainer is similar to running CCSIM. In a
manner of thought, running the trainer is a superset of running
CCSIM because the Trainer is the addition to CCSIM of the ability
to communicate with the NMSS workstation.

Therefore, in order to run the Trainer, one should first
know how to run CCSIM. Once a good level of proficiency is
obtained with running CCSIM, one can then easily run the trainer.

C.2.7.2 Creating the Necessary Directories

Refer to the CCSIM users manual for instructions for using
setupsim. The result of running setupsim is the copying all the
network files specified in the section "list of files" into your
network directory, referred to in this document as (net).

Setupsim provides you with all the network files that are
necessary in order to run CCSIM and the trainer. Setupsim also
creates a directory named "sample" which is only used for the
trainer.

The (net}/sample directory must contain sample switch
reports from the DAI. The sample reports are needed to supply
trunk group data not simulated by CCSIM so that the trainer can
produce switch reports with full sets of trunk group data for the
NMSS workstation. If the addcsdtrunkgroups variable is false
then the Trainer will not look for these sample reports. In this
case the trainer produces switch reports with incomplete trunk
group data.

C.2.7.3 Customizing the Network Files for the Trainer

C.2.7.3.1 The Inval File

The inval file value srsync=0 must be present in the file
(net).inval. This value instructs CCSIM to produce switch
reports for time intervals beginning at the same time for all
switches.

C.2.7.3.2 The Reporting File

The (net).reporting file should contain the three letter
switch abbreviations for all switches which are polled by the DAI
for the NMSS workstation.

93

C.2.8 Tips on Modifying and Debugging the Trainer Code

C.2.8.1 Using Dbxtool

The select returns an error status of -1 while debugging the
Trainer using dbxtool, closing the window and then re-opening the
window. This has no effect on the debugging session because the
trainer main loop returns to the select upon the next cycle.

Under the same circumstances, the servsetup call returns a
-1 instead of hanging, waiting for some other process to connect.
This has a negative effect on the debugging session because the
servsetup call fails to connect to some other process.

C.2.8.2 Debugging Forks

dbxtool (dbx) does not agree with forks. (Or, I can't make
it debug forks.) So, when modifying the Trainer/Translate code,
comment out the segments of code which contain a fork and which
are in the line of execution. Open a window and start the
program by hand (or run the program in dbxtool.) Run the Trainer
or Translate in dbxtool and you are all set for debugging.

C.2.8.3 The Csdstub Program

csdstub's purpose is to allow access to Trainer/Translate
functions without having to fire up CCSIM and other programs.
csdstub can read in either a CCSIM switch report or a csd switch
report and then call any functions you desire. csdstub has no
forks and hence can be easily debugged in dbxtool.

C.2.8.4 The UNIX PS and NETSTAT Commands

When running Trainer, check machine by doing ps and netstat.
These commands will yield information about processes using the
ports used by the IDSIM programs. During Trainer/Translator
development, many times, processes were left running (connected
to a port). The next attempted run would fail to connect.

A problem has arisen twice which I could not duplicate
purposefully. While two processes were trying to connect, the
first process connected at the designated port; but, the second
process did not. Somehow, a port was waiting to be connect to
even though I could not associate any process with that port.
The port status could be seen with a "netstat -a". The problem
was resolved by rebooting. A comparison of process status before
and after the reboot did not yield any information.

94

C.2.8.5 System Status of the Serial Ports

C.2.8.5.1 The Sun Serial Ports with Regard to the Trainer

Either port "a" or "b" can be used by specifying
"commm-port=a" or "commm-por t=b" on the command line. If no
port is specified, the default is commm-port=b.

The serial port communications code has proven to be very
reliable when all is well in Unix. Three things to check in the
Unix domain which have an effect on the serial ports are:

C.2.8.5.1.1 Read/Write Permission

The user running the program which used the serial port must
have read/ write permission to the files /dev/ttya and /dev/ttyb.
NOTE: do an Ils -1 /dev/tty[ab]" to lee if you have read/write
permission. An example desirable output would be:

0 crw-rw-rw- 1 root 12, 0 Jun 19 16:25 /dev/ttya
0 crw-rw-rw- 1 root 12, 1 Oct 31 12:22 /dev/ttyb

C.2.8.5.1.2 Daemons

The ports must be free of daemons. Do an "Ils" as shown in
1. to see who is the owner. If the owner is root then the /dev
file has no daemons. If the owner is daemon then there is
probably a process running in the background which has control
over the port. A good example of this is a process which uses
the port for printing. Somehow free the port of the daemon.

C.2.8.5.1.3 Login Ports

Do a "cat /etc/ttys I more" to see information about tty
devices. There should be an entry for both ttya and ttyb near
the top of the list. A 1 in the first column indicates that the
tty is login-able. A 0 indicates that it is not. For the
Trainer to use the serial ports, the port must be a non-login
port. The first three lines of an example desirable output would
be:

12console
02ttya
02ttyb

C.2.9 Special Function Calls

There are system calls in trainerfuns.c for creating
shelltools after a fork. There are system calls in log.c for
several file utilities. There is a system call in csdfuns.c for
doing an "Ils" of the <net>/sample directory. The "Ils" is in the

95

form of a wildcard looking for switch reports for a particular

source switch.

C.2.10 Trainer Input Program

When trainerinput is true, the Trainer or Translate program
will fork the trainer input process. It allows the user to type
CCSIM commands by hand into a window. All strings except "quit"
are passed directly to CCSIM as a CMDFMT. The main purpose of
trainerinput is to allow detailed control of a simulation
without using the graphics. (I have not used it since early
coding; but, it is a useful tool for running the Trainer and
entering commands to CCSIM dynamically.)

C.2.11 Notes on Trainer Emulation of the DAI

The date string in the switch reports: " 1:" - regards
software version in switches. Don't worry about this for the
Trainer. The NMSS doesn't seem to care. csd is an abbreviation
for "comma separated data".

96

APPENDIX D NEW CCSLM INPUT FILES

D.l The CLLI File

The CLLI file (<net>.clli) contains all information needed
by CCSIM about the Trunk Groups (TGs) involved in a simulation.
It is an ASCII file, each line of which is one TG record. When
two or more TGs connect a pair of switches, the order in which
the TG records appear in the file determines the order in which
the TGs are searched when a call is routed in CCSIM.

Each TG record (file line) must have 13 fixed fields and may
have an additional optional field. The meanings of the fields
are associated with their positions on the line (there are no
field identifiers). Six of the fields are not currently used by
CCSIM but are specified in anticipation of possible future
extensions of the simulation capabilities. There must be at
least one blank space between each field and no blank lines in
the file.

The fields in the TG record are as follows:

1. Name.
The clli name of the trunk group to which the record
applies. The clli name is that by which the group is
known to the source switch. In a real network clli
names need only be unique at each switch, but CCSIM
requires that they be globally unique. To guarantee
uniqueness, CCSIM uses the convention that the clli
name is a concatenation of the three-character name of
the source switch and an arbitrary string that must be
unique among all the trunk groups at the source switch.
The name may be as many as 16 characters in length
overall. When a real network is to be simulated, the
arbitrary string can be set to match the real clli used
in the network. When an abstract network is to be
simulated and no real cllis are available, a utility
called 'link-to-clli' can be used to create a clli file
with arbitrary names that match all the CCSIM
requirements.

2. Source Switch.
The 3-character name by which the source switch is
known to CCSIM. The value of this field must match a
switch name found in the net.node file associated with
the simulation.

3. Destination Switch.
The 3-character name by which the switch at the distant
end of the TG is known to CCSIM. The value of this
field must match a switch name found in the net.node
file associated with the simulation.

97

4. Delay Type.
A field used by CCSIM to determine signaling delay on
the TG. Acceptable values are TERR for terrestrial and
SAT for satellite groups.

5. Capacity.
The number of trunks in the TG.

6. Other Clli.
The clli name by which the TG is known to the
destination switch. There must be a TG record in the
file with a 'Name' field that matches this field.

7. Group Number.
The trunk group number that identifies the group in
switch reports. This number is not checked by CCSIM
but must agree with the real group number if the switch
reports from CCSIM are to match those from the real
switch.

8. Type.
A type field used in graphics displays of TG
properties. Acceptable values are VF, PCM, and VFDG.
If CCSIM were to route data calls differently from
voice calls, PCM and VFDG trunks would be given
preference for data.

9. Signaling.
Tells CCSIM the type of signaling used for the TG.
Acceptable values are CCS for Common Channel Signaling
and IB for In- Band signaling.

10. Transmission.
A type field used in graphics displays of TG
properties. Acceptable values are TROPO, MWAVE, CABLE,
and SATEL. Currently CCSIM makes no use of this field.

11. Supplier.
Another type field used in graphics displays but not
currently by CCSIM. Acceptable values are LEASE and
MIL.

12. Directionality.
Acceptable values are '2W' for normal two-way groups,
'10' for one-way outgoing groups, and '11I' for one-way
incoming groups. Conceptually, CCSIM should route
calls only on '2W' and '10' groups, but the field is
not currently used by CCSIM, and affects only the
graphics displays. To achieve a simulation with
one-way trunk groups, an experimenter must use a
suitable combination of routing tables and controls to
directionalize trunk groups.

98

13. Function.
The function of the TG in the network. Acceptable
values are 'IS' for inter-switch trunks, 'PBX', and
'TEST'. Conceptually, CCSIM should deal only with 'IS'
trunks, since they are the only type simulated, but the
field is currently ignored by CCSIM and affects only
the graphics displays.

14. Change Search Order.
This is an optional field that can be used to split
traffic between two trunk groups connecting a pair of
switches. It is looked at by CCSIM only on the first
of the two groups to be found in the clli file. It
specifies the probability that the second group found
will be searched first for a free trunk when a call is
to be routed. Acceptable values are integers between 0
and 100. This field allows an experimenter to spread
the traffic between the groups to approximate the
behavior of a real network which routes by trunk group
lists rather than the next- switch lists used in CCSIM.

D.2 The Switch File

The Switch (<net>.sw) file contains provisioning and other
information needed to generate detailed switch reports for the
NTI DMS switches in the European DSN. It is a column-formatted
ASCII file with seven characters per column. There are 12
columns, each containing a left- justified four-decimal-digit
field. The meanings of the fields with comments as to their use
in CCSIM and/or the TRAINER are as follows:

1. The number of CP letters (message blocks for call
processing) available in the switch. Used for the CP switch
report line.

2. The number of wakeup blocks available. Also used for the CP
line.

3. The number of call processes available. Another CP line
item.

4. The number of Call Condense Blocks (CCBs) available. This
value is used by CCSIM to calculate CCB seizures, usage, and
overflows for the CP line.

5. The number of MF receivers available for interswitch
signaling. CCSIM uses this value to calculate MF
receiver usage and overflows for the RCVR switch report
line.

99

6. The number of Digitone receivers available for local
subscriber and PBX signaling. CCSIM uses this value to
calculate Digitone receiver usage and overflows for the
RCVR line.

7. The number of MF test calls per hour. Used as a field in
the RADR report line and to calculate the number of test
calls actually carried out during the report interval.
This value appears in the RADR line and affects values in
the RCVR line.

8. The lower delay threshold for MF receiver tests. Used for
the RADR report line.

9. The upper delay threshold for MF receiver tests. Used for
the RADR report line.

10. The number of Digitone test calls per hour. Used for the
RADR report line and to calculate the number of test calls
carried out during the report interval.

11. The lower delay threshold for Digitone receiver tests. Used
for the RADR report line.

12. The upper delay threshold for Digitone receiver tests. Used
for the RADR report line.

100

APPENDIX E CCSIM NETWORK MANAGEMENT CONTROLS

Three types of controls are implemented in CCSIM. They are
listed in the following table. Pre-route controls are applied at
a switch before an attempt is made to route a call out of the
switch. Pre-hunt controls are applied before an attempt is made to
find a tree trunk in the trunk group to which the control is
applied. Post-hunt controls are applied after the call has
overflowed the trunk group. Post-route controls are applied after
a call has failed to find a route out of the switch. Within each
group the controls are listed in the order in which they are
applied. The term 'DMS' in the right-hand column indicates that
the control is implemented in accordance with Northern Telecom
Practices for DMS switches. The term '490L' after the DRZ control
indicates that this is the directionalize control as implemented in
the AUTOVON 490L switches. The term 'EXP' after the CAN-EOC-OVF
indicates a control introduced for experimental purposes that does
not correspond to a control to be found in any real switch. A
blank entry in the third column indicates that the control is
implemented according to our interpretation of the DCA generic
switch specification.

Pre-route Controls:
1. Code Block (CB) DMS
2. Call Gap (GAP)
3. Alternate Route Cancel (B) (ARC-B)

Pre-hunt Controls:
1. Alternate Route Car'-l (A) (ARC-A)
2. Directional Reservation of Equipment (DRE) DMS
3. Directionalization (DRZ) 490L
4. Cancel To (Percent) (CANT-%) DMS
5. Cancel To (Rate) (CANT-RATE)
6. Skip (S) DMS

Post-hunt Control:
1. Cancel From (CANF) DMS

Post-route Control:
1. Cancel End-of-Chain Overflows (CAN-EOC-OVF) EXP

CCSIM does not have different command for applying and
removing NM controls as do real switches. Instead, it uses the
same command both to apply and remove a control. Removal occurs
when a particular parameter (often a percent) is set to a
particular value (zero for the percent parameter). In the
following descriptions of the individual NM controls, the
percent-equal-to-zero-for-removal convention is assumed for all
controls having a percent parameter. For other controls, the
parameter values for removal are specified explicitly.

101

Controls that cancel calls have parameters specifying the kind
of announcement message to which a canceled call should be
connected. There are three such announcements. In CCSIM,
specifying Emergency Announcement 1 (EAl) or Emergency Announcement
2 (EA2) will cause an affected call to be counted as failed and not
to be retrie4. The No Circuit Available (NCA) announcement causes
the call to be handled just as it would have been if it had blocked
due to the lack of a trunk out of the switch at which the control
was applied. In that case, CCSIM will retry the call subject to
the retry parameters applicable to the simulation run.

CCSIM does not yet have tables to translate between codes
(telephone numbers) and switch (node) names. Consequently,
controls such as Code Block (CB) use destination node names instead
of codes to specify the calls that are to be blocked. In this
respect, such controls differ in syntax from those in real
switches, but the effect on traffic is the same as would occur if
all office codes at a switch were specified in a real network
application of a code control.

In the following descriptions the word 'ALL' is permissible as
a value for some parameters. When used, its affect is the same as
would be achieved by issuing a sequence of controls, one for each
of the allowable values of the parameter. For example, it allows
a CB control to be applied at all switches with a single command.
There is no corresponding capability in a real telephone network.

Pre-Route Controls:

CB - Code Block

The CB control is put on at a switch and applies to
originating calls only. It blocks a specified percentage of the
traffic to a destination switch from entering the network. When
the control is applied at less than 100%, only routine calls are
affected. At 100%, CB blocks calls of all precedences. Blocked
calls are handled according to the announcement type specified in
the control.

In a real network, the CB control would apply to codes and
could be used to block calls to individual telephone numbers. In
CCSIM it can be used only for all the codes identified with a
particular switch.

Usage: CB nodel node2 percent ann
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is the three-letter n ie name for the
destination switch to which calls are to be
blocked (or ALL)

percent is the percentage (0-100) of calls to block
ann is the announcement type (NCA, EAl or EA2)

102

Example: CB ALL UXB 50 EA2
Cancels 50% of the routine calls from all nodes to
Uxbridge. The canceled calls will not be retried.

GAP - Call Gap

The GAP control is put on at a switch and applies to
originating calls only. It determines the rate at which traffic to
a particular destination switch is allowed to enter the network.
After an attempt to route a call to the specified destination has
been allowed by the GAP control, subsequent calls to that
destination are blocked for a period of time designated as the "gap
interval." After the expiration of the gap interval, the next call
to that destination will be allowed to attempt to find a route. The
gap interval is chosen from the interval set 0 (no-control), 0.10,
0.25, 0.50, 1, 2, 5, 10, 15, 30, 60, 120, 300, 600 seconds, and
infinity. An infinite interval prohibits all attempts. Blocked
calls are handled according to the announcement type specified in
the control. At intervals 0 through 600, only routine calls are
affected. At the infinite interval, calls of all precedences are
affected.

In a real network, the GAP control would apply to codes and
could be used to gap calls to individual telephone numbers. In
CCSIM it can be used only for all the codes identified with a
particular switch.

Usage: GAP nodel node2 index ann
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is the three-letter node name for the
destination switch to which calls are to be gapped
index is a pointer into the following table of gap
intervals (1 removes the control)

ann is the announcement type (NCA, EAI or EA2)

Index Gap Interval Calls per
(Seconds/Call) Minute

1 0 All
2 0.1 600
3 0.2 240
4 0.50 120
5 1 60
6 2 30
7 5 12
8 10 6
9 15 4
10 30 2
11 60 1
12 120 1/2
13 300 1/5

103

14 600 1/10
15 Infinity None

Example: GAP ALL UXB 11 NCA
Allows only one call per minute to enter the
network from each of the other switches. Blocked
calls are allowed to retry.

ARC-B - Alternate Route Cancellation (Type B)

When the ARC-B control is put on at a switch, it applies to
both tandem calls and originating calls. All calls to the
specified final destination are allowed to use only the direct
route out of the switch. A call for which a free or preemptible
trunk cannot be found on the primary route will be blocked. The
control can be specified to apply to either routine-only or
all-precedence traffic.

Usage: ARC-B nodel node2 precedence
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is a three letter node name for the final
destination switch for the call (or ALL)

precedence is either R (routine-only), AP (all-
precedences) or NONE (remove the control)

Example: ARC-B TJS UXB R
Deny alternate routes for routine traffic between
Torrejon and Uxbridge

Pre-Hunt Controls:

ARC-A - Alternate Route Cancellation (Type A)

The ARC-A control is applied to a link, i.e., one or more
trunk groups between a pair of switches. It causes traffic which
would normally use the link as an alternate route to skip to the
next route, if any, in the routing table. Its effect is to give
preference to traffic that would use the link as a direct route.
It can be applied to affect routine-only or all-precedence traffic.
Calls affected by these controls are not counted as attempts on the
link.

Usage: ARC-A nodel node2 precedence
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is a three letter node name of the switch at
the remote end of the link to which the control is
to be applied
precedence is either R (routine-only), AP (all-
precedences) or NONE (remove the control)

104

Example: ARC-A TJS UXB AP
Allow only direct routed traffic to access the link
between Torrejon and Uxbridge at Torrejon

DRE - Directional Reservation of Equipment

The DRE control is applied at a switch to a trunk group. It
gives priority to incoming traffic by reserving a number of idle
trunks in the group. When the number of idle trunks is equal to or
less than the number of reserved trunks, all traffic (direct- and
alternate-routed) is skip-routed. Calls of all precedences are
affected by the DRE control. Calls affected by these controls are
not counted as attempts on the link.

Usage: DRE nodel clli reserve
nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the clli name of the trunk group to which
the control is to be applied

reserve is the number of trunks to be reserved

Example: DRE UXB UXBTJS084 1
UXB must have more than one free trunk in the group
'UXBTJS084' before it can use that group for
routing a call of any precedence via Torrejon.

DRZ - Directionalization

The DRZ control is applied at a switch to a trunk group. It
places a limit on the number of trunks which may be used for
outgoing calls on the trunk group. The limit ranges from 1 to the
maximum capacity of the trunk group. Setting the limit to zero
removes the control. Traffic (direct and alternate-routed) which
would exceed the limit is skip-routed. Calls of all precedences
are affected by the DRZ control.

Calls affected by these controls are not counted as attempts
on the link.

Usage: DRZ nodel clli limit
nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the clli name of the trunk group to which
the control is to be applied

limit is the number of trunks that may be used by
outgoing calls

Example: DRZ DVN DVNTJS080 3
Donnersburg may use no more than 3 trunks in the
group 'DVNTJS080' for outgoing calls to be routed
via Torrejon.

105

CANT-DIRECT-%/CANT-ALTER-% - Cancel To (Percent)

These controls are applied to a trunk group. They cancel a
percentage of the routine traffic offered to the group.
CANT-DIRECT-% cancels only direct routed routine traffic.
CANT-ALTER-% cancels only alternate routed routine traffic. Calls
affected by these controls are not counted as attempts on the link.
Canceled calls are handled according to the announcement type
specified in the control.

Usage: CANT-DIRECT-% nodel clli percent ann
or CANT-ALTER-% nodel clli percent ann

nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the clli name for the trunk group to which
the control is to be applied

percent is the percentage (0-100) of calls to
cancel
ann is the announcement type (NCA, EAl or EA2)

Example: CANT-DIRECT-% UXB UXBTJS084 80 EAl
Cancels 80% of the routine direct-routed calls
offered to the trunk group 'UXBTJS084' from
Uxbridge to Torrejon. The canceled calls will not
be retried.

CANT-DIRECT-RATE/CANT-ALTER-RATE - Cancel To (Rate)

These controls are applied to a trunk group. They control the
rate at which calls are allowed to access the group. After one
call is allowed access to the group, subsequent calls that
otherwise attempt to use the group are canceled until a period of
time (the 'gap interval') has elapsed. The first call to arrive
after the gap interval will escape cancellation and be allowed to
access the group. The gap interval is chosen from the interval set
0 (no-control), 0.10, 0.25, 0.50, 1, 2, 5, 10, 15, 30, 60, 120,
300, 600 seconds and infinity. An infinite interval cancels all
calls attempting to access the group. CANT-DIRECT-RATE affects
only direct routed traffic. CANT-ALTER-RATE affects only
alternate routed traffic. When the interval is less than infinity,
only routine calls are canceled. An infinite interval cancels
calls of all precedences.

Usage: CANT-DIRECT-RATE nodel clli index
or CANT-ALTER-RATE nodal clli index

nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the clli name of the trunk group to which
the control is to be applied

106

index is a pointer into the following table of gap
intervals (1 removes the control

ann is the announcement type (NCA, EAl or EA2)

Index Gap Interval Calls per
(Seconds/Call) Minute

1 0 All
2 0.1 600
3 0.2 240
4 0.50 120
5 1 60
6 2 30
7 5 12
8 10 6
9 15 4
10 30 2
11 60 1
12 120 1/2
13 300 1/5
14 600 1/10
15 Infinity None

Example: CANT-DIRECT-RATE TJS TJSUXB084 10 EA2
Allows at most 2 direct-routed routine calls per
minute to search trunk group 'TJSUXBO84' for a
trunk to Uxbridge from Torrejon. All other
direct- routed, routine traffic that would
otherwise search the trunk group will be canceled
and not retried.

SK-DIRECT/SK-ALTER - Skip

The SKIP control is applied to a trunk group. It skip-routes
traffic to the next trunk group in the routing chain. SK- DIRECT
affects only direct routed calls. SK-ALTER affects only alternate
routed calls. Calls of all precedences are affected by the SKIP
control. Traffic that is skip-routed is not counted in the
statistics as attempts on the link.

Usage: SK-DIRECT nodel clli percent
or SK-ALTER nodel clli percent

nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the clli name for the trunk group to which
the control is to be applied
percent is the percentage (0-100) of calls to be
skip-routed

107

Example: SK-DIRECT UXB UXBTJS084 70
Skip-routes 70 percent of the direct-routed calls
that attempt to use trunk group 'UXBTJS084' from
Uxbridge to Torrejon.

Post-Hunt Controls:

CANF-DAR/CANF-AR - Cancel From

The CANF control is applied to a trunk group. It cancels a
specified percentage of the traffic overflowing from the group and
prevents it from continuing to the next group in the routing chain.
Canceled calls are handled according to their announcement type.
CANF-DAR cancels 100% of any alternate routed calls and the
specified percentage of direct routed calls. CANF-AR cancels only
the specified percentage of alternate routed calls. Only routine
calls are affected by this control. Calls affected by the CANF
control are counted as attempts on the link.

Usage: CANF-DAR nodel clli percent ann
or CANF-AR nodel clli percent ann

nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the clli name of the trunk group to which
the control is to be applied

percent is the percentage (0-100) of direct-routed
(CANF-DAR) or alternate-routed (CANF-AR) calls to
cancel

ann is the announcement type (NCA, EAI or EA2)

Example: CANF-DAR UXB UXBTJS084 10 EA2
Cancels 100% of the alternate-routed and 10% of the
direct-routed traffic that overflows trunk group
'UXBTJS084' from Uxbridge to Torrejon. The
canceled calls will not be retried.

Post-Route Controls:

CAN-EOC-OVF - Cancel End-of-Chain Overflows

The CAN-EOC-OVF control is applied at a switch. It cancels a
percentage of routine calls that overflow the last trunk group in
the routing chain for a specified destination switch. The canceled
calls are not retried. They are counted as attempts and overflows
for all trunk groups in the chain, and they are counted in a
special statistic associated with the control. This control was
added to CCSIM for experimental purposes. It is not found in real
switches.

108

Usage: CAN-EOC-OVF nodel node2 percent
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is the three-letter node name for the
destination switch for which overflowing calls are
to be canceled (or ALL)
percent is the percentage (0-100) of calls to
cancel

Example: CAN-EOC-OVF TJS ALL 50
Cancels 50% of the routine calls at Torrejon that
fail to find a route out of the switch, no matter
what their destination. The canceled calls will
not be retried.

109

APPENDIX F CCSIM USER'S MANUAL DESCRIPTION

One of the FY89 deliverable items in the Statement of Work was

a user's manual for the Call-by-Call Simulator. This document was

written, and copies have been distributed to the sponsor and placed

at locations where CCSIM is in use, specifically including

DCEC/DRFB and DCA-Europe. Additional copies will be provided upon

request.

The CCSIN User's Manual is not included as an Appendix to this

report, because it is quite large (about 170 pages). The following

is a list of the major section headings of the document, to provide

an idea of its contents as an aid to the reader in determining

whether he wants to see the full manual.

1. Background
2. CCSIM Controls Descriptions
3. How to Execute the Simulator
4. Tutorial in CCSIM Operation
5. Graphics Interface Description
6. Batch Operation
7. CCSIM Parameters
8. Preparation of Input Files
9. CCSIM Outputs
10. Troubleshooting
11. Installation
12. Maintenance

Appendix A Error Messages
Appendix B Support Programs for CCSIM
Appendix C Limitations and Restrictions

110

APPENDIX G TRAMCON EVENT GENERATOR SPECIFICATION

G.l. SCOPE

G.1.1 Identification

This Software Requirements Specification establishes the
requirements for the Transmission Monitoring and Control
(TRAMCON) Event Generator (TEG).

G.2 Purpose

G.2.1 TRAMCON Mission

The TRAMCON alarm monitoring and reporting system collects
and reports alarms associated with the Digital European Backbone
(DEB). The DEB is a network of microwave relay sites that
carries Tl trunks for the Defense Communications System (DCS) in
Europe. Each TRAMCON system consists of one or more (normally
one) TRAMCON Master (TM) stations and a number of remote units.
The TM stations collect and process the data from the remote
units which are connected directly to monitoring and control
points on the transmission equipment. The remote units can be
located at arbitrary distance from the central computer and
communicate with the central computer via direct connection or
remotely via modems.

The primary functions of TRAMCON are to remotely collect
equipment status and performance data and to allow the remote
operation of relay switches associated with the equipment.
TRAMCON monitoring includes transmission alarms as well as
facility alarms (e.g. power failure, intrusion, fire) and status.
The TRAMCON systems also process the status and performance data
in various ways to assist TRAMCON operators in assimilating and
acting on the data. This processing typically includes the
following:

a. Alarm processing, such as comparison of collected data to
alarm threshold values.

b. Alarm correlation, i.e., the presentation to the operator of
information on the status of related pieces of equipment.

G.1.2.2 DPAS Mission

The Digital Patch and Access System (DPAS) provides for the
control, monitoring, and patching of T1 trunk circuits (not only
those carried by the DEB, but also other media). DPAS is
implemented using the AT&T Digital Access and Cross-Connect
System (DACS II) and has been projected to include a Network
Control System (NCS) as well. DPAS and the DACS II equipment

il

also monitor and report alarms associated with their components

and the T1 trunk signals.

G.1.2.3 MITEC Mission

The Machine Intelligent Technical Controller (MITEC) will
assist the Technical Controller (TC) in troubleshooting
telecommunications circuits in a Technical Control Facility
(TCF). MITEC will reduce TC manpower requirements and improve TC
effectiveness by reducing the time to troubleshoot a circuit,
automating currently manual quality assurance and recordkeeping
activities, and refining the accuracy and consistency of
troubleshooting and quality assurance.

G.1.2.4 Intelligent Alarm Filtering

The occurrence of a failure in the equipment monitored by
TRAMCON and DPAS typically causes not only a primary alarm but
also a number of sympathetic alarms (alarms that do not
themselves indicate a fault but are consequences of the primary
fault). When the number of these sympathetic alarms is large, it
takes substantial skill and patience on the part of the human
operator to identify the primary alarm.

Two systems under development at Lincoln Laboratory, MITEC
and the Network Management Expert System (NMES), are intended to
perform the task of identifying the fault that underlies a
communications system failure and institute corrective action
with a minimum of effort on the part of the human operator.
MITEC addresses the diagnosis and rerouting of point-to-point
user and trunk circuits; NMES addresses the diagnosis of switched
networks and the application of network management controls.
Both systems would profit from the introduction of TRAMCON and
DPAS alarm data as a source of diagnostic information.

G.1.2.5 Role of the TRAMCON Event Generator (TEG)

In order to develop adequate techniques for the exploitation
of alarm data in MITEC and NMES, a system is needed that can
supply such data in response to a wide range of possible faults.
TEG will be a simulator which produces the entire constellation
of primary and sympathetic alarms associated with a fault and
supplies these data to MITEC and NMES. The knowledge needed to
define the relationships between faults and alarms already exists
and has to some extent been recorded by USAF, Army, and DCS
personnel.

The TRAMCON and DPAS alarm simulation system shown in Figure
1 has two primary purposes: to support the development of MITEC
software for alarm analysis and fault diagnosis, and to form a
part of a broader simulation of Defense Communications System

112

(DCS) operation. To meet these goals it must provide the
following functions:

a. Storage of an internal representation of microwave and DPAS
network segments, including all the equipment items and
their alarm functions;

b. An operator interface which permits selection of any failure
event(s) in the networks which are recognizable by TRAMCON
and/or DPAS;

c. A message interface which will permit failure event
selection by a remote computer as an alternative to local
selection by a human operator;

d. Internal generation of all the primary and sympathetic
TRAMCON and DPAS alarms that would result from the selected
failure event(s); and

e. Communication of this alarm information to MITEC in a manner
consistent with the way TRAMCON and DPAS would communicate
the alarms if they were provided with communication links.

The first increment of TEG will address TRAMCON events. The
final delivery of TEG will address both TRAMCON and DPAS events.

G.2. APPLICABLE DOCUMENTS

G.2.1 Government Documents

ASISM 25-50-1, Information Management, DIGITAL SYSTEMS
OPERATIONS MANUAL (DSOM) for DEB IIA, Support /Maintenance for
DEB IIA Headquarters, U.S. Army Information Systems Command, Fort
Huachuca, Arizona, September 1985.

CLIPS Reference Manual, Version 4.3 of CLIPS, Artificial
Intelligence Section, Lyndon B. Johnson Space Center, June 1989.

Computer System Operator's Manual for the Transmission
Monitor and Control System (TRAMCON), Version 1.8, Command and
Control Systems Office, CCSO Information Systems Division, Tinker
AFB, Oklahoma, 25 February 1988.

DEB Equipment Troubleshooting Procedures for Equipment
Alarms, Det 12, 1945th C.G. Feldberg RRL, Germany Technical
Control Operations, 29 June 1989.

DPAS and TRAMCON Interoperability Study, AT&T/Harris DCS
System Integration Team, Arlington, Virginia, 05 November 1988.

Giarratano, Joseph C., Ph.D., CLIPS User's Guide, Version
4.3 of CLIPS, Lyndon B. Johnson Space Center, June 1989.

113

J4AMF/ASF/AST304XO -033, PDS Code 9DC, Technical Training,
TRAMCON-DATALOK 10, FTD 936, Rhein-Main AB, Germany.

Master TRAMCON Alarm Listing for TRAMCON Alarms, Det 12,
1945th C.G. Feldberg RRL, Germany Technical Control Operations,
29 June 1989.

Prime Item Development Specification for the Transmission
Monitor and Control System (TRAMCON), CCSO/COI, Tinker AFB,
Oklahoma, 05 February 1988.

TRAMCON Alarm Description for TRAMCON Alarms, Det 12, 1945th
C.G. Feldberg RRL, Germany Technical Control Operations, 29 June
1989.

TRAMCON On-Line Software Reference Manual, June 1988.

TRAMCON Phase I Baseline, 17 June 1986.

Troubleshooting the D.E.B. Digital Equipment thru TRAMCON
Alarms, Det 12, 1945th C.G. Feldberg RRL, Germany Technical
Control Operations, 29 June 1989.

G.2.2 Non-Government Documents

365-301-002, AT&T, DACS II Reference Manual, AT&T, May 1987.

365-301-603, AT&T, DACS II Input/Output Message Reference
Manual, AT&T, May 1987.

365-301-610, AT&T, DACS II Generic 2 Input/Output Message
Manual, AT&T, Dec 1988.

Booch, Grady, Software Engineering with Ada, Second Edition,
Benjamin/Cummings Publishing Company, Inc., Menlo Park,
California, 1986.

G.3. REQUIREMENTS

G.3.1 Programming Requirements

The following subparagraphs establish the requirements for
programming TEG. These subparagraphs establish the language and
language processors to be used as well as guidelines to be
followed in programming.

TEG is intended to be a knowledge-based system. That is,
TEG will represent in declarative style the knowledge of
equipment, circuit connections, fault trees, alarms, and polling
needed to simulate TRAMCON alarms (Figure 2). This knowledge
will be represented in the form of assertions that declare that
certain facts and relationships exist, as opposed to the form of

114

procedures that embody these facts and relationships in their
execution.

TEG will employ a relational view of this encoded knowledge,
rather than a more general object-oriented view (Figure 3). The
relational view provides a means of representing data that is
more directly useful in production rules than an object-oriented
view would be; also, the relational representation would be more
easily stored in and retrieved from a relational database
management system (RDBMS), should this become necessary in the
future.

TEG will be a rule-based system. That is, TEG will
represent the procedures needed to manipulate data and produce
alarms as "IF...THEN" rules, also known as production rules.
However, unlike many rule-based systems, the particular facts and
relationships known to TEG will be represented as assertions,
while the rules will operate generally over the asserted data
(Figure 4).

TEG will employ both data-driven ('forward chaining') and
goal-directed ('backward chaining') formalisms. The majority of
TEG execution will be data-driven. The goal-directed formalism
will be employed to limit search and computation when this is
necessary (Figure 5). Procedural programming will be used to
implement external interfaces and to perform housekeeping.

G.3.1.1 Programming Languages

The various functions of TEG shall be programmed in
languages suited to their requirements. Requirements and
recommendations for each of these languages are given in this
paragraph. Use of alternative languages will be permitted upon
submission of adequate justification and approval of the Lincoln
Laboratory Program Manager.

G.3.1.1.1 Rule-Based Language

All of the TEG simulation shall be programmed in a
rule-based language. This language shall fulfill the following
requirements:

a. Facts. There shall be a mechanism to assert and retract
facts. There shall be a static class of facts that, once
read in, remain present. There shall be a dynamic class of
facts that may be freely asserted and retracted. There
shall be a means to represent facts that is semantically
equivalent to a relation.

b. Rules. There shall be a mechanism for the data-driven
execution of rules. The rule language shall include a means
for selection and binding of data used in rule execution.

115

The rule language shall include a means to execute both
procedures coded in the rule language and procedures coded
in an external language. Note: If data-driven execution is
provided, there is no need for an additional goal-directed
execution mechanism. As discussed in 3.1.3 below, it is
practical to emulate goal-directed execution under a
data-driven mechanism.

c. Embedding. There shall be a means to embed the rule-based
language in a program written in a conventional language and
a means to call functions written in a conventional language
from the rule-based language.

d. Efficiency. The rule-based language shall employ an
algorithm to limit the amount of search needed to select
data. This algorithm shall be at least as effective as the
widely used Rete algorithm.

e. Portability. Programs written in the rule-based language
shall be portable without modification of source code, so
long as the target computer provides adequate resources.
The minimum scope of portability shall encompass the IBM
PC/AT (PC-DOS operating system), the Sun 3 (Berkeley Unix),
and the AT&T 3B2 (System V Unix).

f. Multitasking. The rule-based language shall be capable of
being executed in a multitasking environment.

The rule-based language for TEG should be CLIPS. CLIPS is
deemed to meet all of the above requirements. Alternative
rule-based languages may be used subject to justification and
approval.

Conventional Language

Those portions of TEG that are not practical to program in a
rule-based language shall be programmed in a conventional
high-order language (HOL). The following components of TEG are
deemed suitable for programming in a conventional HOL:

a. System interface. This component includes procedures to
execute and terminate execution of TEG, to interface to
system resources required for TEG operation, and to perform
housekeeping required for TEG operation.

b. Man-machine interface. This component includes procedures
to format and present displays to TEG user and to accept and
validate inputs from the user.

c. Database interface. If an RDBMS is used to store and
retrieve facts, then the interface between the rule-based
language and the RDBMS may be written in a conventional HOL.

116

d. Multitasking. The HOL shall be capable of being executed in
a multitasking environment.

Additional components of TEG may be programmed in a
conventional HOL, subject to justification and approval.

The conventional HOL for TEG should be Ada. For the initial
implementation of TEG only, the C language may be used without
additional justification or approval.

It is believed that assembly language will not be needed to
accomplish any function of TEG. Use of assembly language would
compromise portability of TEG. Assembly language shall not be
used for any programming without justification and approval of
the Program Manager. Justification for any use of assembly
language shall show why it is impractical to accomplish the
programming objective without the use of assembly language.

Database Language

Should it prove necessary to store and retrieve facts from
mass storage (as opposed to maintaining all facts in main
memory), an RDBMS shall be used to implement the Database
function. The RDBMS shall be capable of executing the following
functions:

a. Projection. The RDBMS shall be capable of retrieving a
table containing a set of selected attributes (a
projection). It shall be possible to retrieve a projection
that includes data from more than one table (a join). It
shall be possible to specify commonly used projections
(views).

b. Restriction. The RDBMS shall be capable of retrieving only
those data that satisfy a given predicate (a restriction).
The RDBMS shall support compound predicates and shall
recognize, at a minimum, the following operators: the
logical operators AND, OR, and NOT; the numerical relation
operators <, <=, =i=, >=, and >; the arithmetic operators
+, -, *, /, and mod; and the relation operators = and := for
strings.

c. Transaction processing. The RDBMS shall be capable of
executing a sequence of operations as a transaction. It
shall be capable of updating the database on transaction
completion ('commit') and of restoring the database to the
pre-transaction state on transaction abort ('rollback'). It
shall be capable of establishing checkpoints and of
restoring the database to the checkpointed state. An
archive/restore mechanism is an acceptable means of
implementing the checkpointing requirement.

117

d. Interface. The RDBMS shall provide a means of interfacing
to the selected conventional HOL. This interface should
consist of RDBMS functions callable from the conventional
HOL.

The RDBMS shall use the language Structured Query Language
(SQL). The RDBMS should be one of the following: ORACLE or
UNIFY. Another RDBMS may be substituted, subject to
justification and approval.

G.3.1.2 Language Processors

Language processors chosen for TEG shall conform to the
requirements of 3.1.1 and its subparagraphs above. The language
processors shown in Table 1 are recommended; these are deemed to
satisfy the requirements of 3.1.1. Alternative language
processors may be substituted, subject to justification and
approval.

TEG shall be programmed to compile and operate correctly
under the language processor versions current at the time of
delivery.

118

Table 1
Language Processors Suitable for TEG

Computer/Operating System

Target IBM PC/PC-DOS Macintosh Sun 3/Unix AT&T 3B2/UNIX

Rule Lang CLIPS/PC CLIPS/ ac CLIPS/Unix CLIPS/Unix
Conv. HOL
Ada TBD Ada Ada Vanatage Verdix Ada Verdix Ada

Ready Systems
RTAda

C Microsoft C THINK C Unix C Unix C
Turbo C

RDBMS ORACLE ORACLE UNIFY UNIFY
XDB-SQL ORACLE

G.3.1.3 Programming Standards

The programming standards herein established are intended to
assure that TEG will conform to the programming model discussed
in 3.1 and that TEG will meet its objectives for
understandability, maintainability, expandability, reusability,
and portability. The following programming standards apply to
the programming of TEG:

a. Rule programming style.

i. Programming in the rule language shall employ forward
chaining to the extent practical, backward chaining
when necessary as an alternative to forward chaining,
and procedural code as a last resort.

ii. Use of control facts should be minimized. Generally,
control facts that represent goals and subgoals in a
backward chaining formalism will be permitted, while
other types of control fact should be carefully
justified.

iii. Use of salience should be minimized.

iv. If the rule-based language supports deterministic order
of rule firing based on the sequence in which the rules
are loaded, rule loading order may be used to control
execution. This method of controlling execution order
should only be used as an alternative to either
salience or adding one or more additional rules whose
sole purpose is to control the order of execution.

119

Where rule loading order is critical, the concerned
rules must be contiguous within the same file;
furthermore, a comment shall be provided for each of
the concerned rules stating the required sequencing
relationship among these rules.

V. If CLIPS is used for the rule language, the guidelines
to programming style in the CLIPS User's Guide should
be followed.

b. Conventional HOL programming style. Programming in the
conventional HOL shall be in accordance with the commercial
practice commonly known as 'structured programming'.
Software Engineering with Ada should be used as a guide.

c. System-dependent code. The writing of system-dependent code
is discouraged unless it is impractical to accomplish a
desired function in a system-independent fashion.

i. If it is necessary to write code that is dependent on
particular characteristics of a language processor,
operating system, host computer, or peripheral
equipment, then this code shall be identified and
isolated. Information hiding shall be used to restrict
the scope of impact of system-dependent code.

ii. If conditional compilation is available in the language
processor(s) used, then this shall be used to ensure
that the system-dependent code is compiled only for
those systems that require it. In this situation, it
is possible (and permissible) that several versions of
code specific to particular systems will exist and that
only one version will be compiled.

iii. When alternative versions of system-dependent code
exist, these shall be grouped together.

iv. It shall be acceptable to use the Unix termcap facility
as a mechanism for avoidance of system-dependent
programming.

d. Control of recompilation. Recompilation of those software
components that require it (because dependent on a changed
component) shall be accomplished automatically (as in Ada or
Turbo C) or through a makefile (as in Unix C).

e. Self-modifying code. No self-modifying code shall exist in
TEG. In the rule-based language, rules shall be considered
to be code; facts shall not.

f. Table names. Duplication of table names (e.g. deffacts
blocks in CLIPS) shall only be allowable between tables when

120

the intention is to allow one of the tables to override the
other.

g. Modularity. Each functional group of rules, data or
procedures shall be contained in a separate file. There
shall be a header section for file. The format of these
header sections shall be consistent for all such files of
the same type, e.g., all rule file headers shall conform to
the same style.

h. Readability.

i. All variable names shall be meaningful.

ii. Each rule and procedure shall have a comment explaining
its function. Any restrictions, or assumptions shall
be explained.

iii. If two or more rules are similar, a comment should be
provided with each of these similar rules which
distinguishes the purpose of each rule.

iv. In the case of CLIPS, the wildcard (? or $?) should be
used, rather than variable names, to represent items
which are don't care in rule patterns. The reason for
this is to allow the reader to readily identify the
fields that are pertinent to the matching process.

i. Performance.

i. Any unnecessary clauses inserted for the future or
'just in case' shall be commented out until the need is
identified.

ii. The use of multifield variables shall be minimized.
This type of construct shall be permitted only when the
number of items cannot be predicted in advance or
failure to use this construct will result in the
production of additional rules.

iii. Facts should be cleaned up as soon as they are no
longer appropriate.

iv. Statements whose sole purpose is to test variable
values against constants should be avoided if the
test(s) can be accomplished within the pattern matching
statements (e.g. use of "-" or "&:" construct in
CLIPS).

121

j. Maintainability.

i. Automatic symbol generation facilities (e.g. the gensym
function in CLIPS) shall be used, at most, sparingly.

G.3.2 Design Requirements

G.3.2.1 Sizing and Timing Requirements

The performance of TEG shall be validated against the
following timing criteria while operating, on a 3B2 600 or
equivalent machine:

a. A response to a request from MITEC shall be ready for
transmission to MITEC within forty (40) seconds of receipt
from MITEC.

b. Each packet of information shall be transmitted to MITEC
within one (1) second of receipt of acknowledgement of the
previous packet.

c. A response to a request from the operator shall be presented
to the operator within two (2) seconds of receipt.

d. Program start and re-initialization shall be completed
within one (1) minute.

TEG shall be capable of running on a 3B2 600 or equivalent
machine equipped with a minimum of eight (8) megabytes of main
memory. The disk storage requirement currently estimated is five
(5) megabytes.

G.3.2.2 Design Standards

Software which is to be implemented using the high-order
language shall be developed using structured methodology.
Critical design decisions shall be validated by the use of
prototyping prior to initiation of software coding activities.
Prototyping shall be used to validate the man-machine interface
and the feasibility of attaining system sizing and timing
requirements.

G.3.2.3 Design Constraints

Fault propagation shall be performed with the use of a
forward-chaining rule-based design.

122

G.3.3 Interface Requirements

G.3.3.1 Interface Relationships

This paragraph discusses the interface relationships between
TEG and its interfaces. Figure 6 shows the TEG context diagram.
It depicts the major data flows between TEG and its interfaces.

G.3.3.2 Interface Identification

This paragraph specifies the proper identification of each
interface:

a. MITEC Interface

b. User Interface

G.3.3.3 Detailed Interface Requirements

TEG Interface to MITEC CSCI

MITEC is an ongoing government-sponsored Air Force project
at M.I.T. Lincoln Laboratory to research and develop intelligent
computer-controlled support to the area of technical control of
government communication facilities. A basic charter of the
project is to develop techniques which minimize the human
involvement in technical control and maximize the analysis and
decision-making by computer software. As such, it is necessary
for the computer to obtain directly, i.e., without human
involvement, status and alarm information forum communication
devices; to insure commands to the devices to effect changes in
status, connectivity, etc.; and to obtain measurements of signal
strength and quality.

This Section attempts to provide specifications for such
computer-to-device communication using ASCII characters over an
RS-232 line. It is concerned with the 'syntax' (form) of the
communication and does not address the 'semantics' (content) from
the point of view of MITEC.

Command - Response Paradigm

Communication between MITEC and TEG shall consist of the
following sequence:

a. MITEC issues a 'command' to TEG to supply information. The
contents of legal commands shall be specified by TEG and
will be generated by MITEC software.

b. TEG responds to the command with exactly one 'response'.

123

This command-response sequence shall continue as long as

MITEC issues commands.

Communication Character Set

All commands from MITEC and responses from TEG shall be
within the set of printable ASCII characters, i.e., characters
whose values are between octal 41 and 176 (inclusive) plus: tab
(11), line-feed (12), carriage-return (15), and space (40).

Characters intended for formatting a terminal display shall
not be included in responses to MITEC.

XON-XOFF

TEG shall be capable of accepting any XON-XOFF flow control
requests issued by MITEC.

Prompts

All responses from TEG to MITEC shall conclude with a unique
string of one or more characters that does not appear in any
other context. This string will be referred to as a 'prompt'.

Communication Path Initialization

It shall be possible to initialize the physical
characteristics of the communication path (baud-rate, parity,
etc.) between TEG and MITEC once during installation of TEG. It
shall not be necessary to re-initialize such characteristics
after a power off-on sequence, crash, reboot, etc.

Establishing Known Device State

TEG shall be capable of accepting a synchronization string
from MITEC. This synchronization string will consist of a finite
string of characters. The following types of synchronization
strings shall be supported:

a. re-initialize TEG

b. suspend simulation until receipt of next command from MITEC

It shall not be necessary for MITEC to pace itself (e.g. by
inserting delays) or to watch characters coming back from TEG to
determine if the state has been reached.

Types of Responses

Every response from TEG to MITEC shall be one of the
following:

124

a. Positive confirmation of receipt of the command.

b. Positive confirmation of receipt of the command plus
the requested information.

c. A message indicating the unacceptability of any command
from MITEC. Unacceptable commands shall be defined as
including invalid commands, valid commands which are
not valid in the current context, and commands
containing transmission errors.

Asynchronous Output from TEG

There shall be no asynchronous output from TEG to MITEC;
that is, output not in response to a command from MITEC.

Response After Action

In those cases where a command from MITEC requests TEG to
perform an action or change a state, the response shall be
produced after the action has been completed.

Large Responses

Large responses shall be partitionable and a mechanism shall
be provided for handling such large response. A large response
is one in excess of 2048 bytes or 24 lines, including the
'prompt'. TEG shall be capable of accepting requests for a
selected portion of the output from MITEC.

a. The initial increment of TEG shall support a 'more'
mechanism in which an unambiguous and easily
determinable indication is included in the response to
show that the response is incomplete and that more
information is available. TEG shall provide a command
which MITEC may use for obtaining the next portion of
the output.

b. If returning alarms by category becomes useful in the
future, the ability for MITEC to request a selected
category of alarms (e.g., major equipment alarms) will
be added.

Subcommands

It shall be possible for MITEC to issue any command together
with all of its parameters without entering a 'subcommand' mode
in which each parameter is individually prompted for. TEG shall
be capable of receiving any command from MITEC with all of its
parameters at full input speed (subject to XON/XOFF flow
control).

125

Echo

Future increments of TEG may support a command for turning
on or off the echo of input characters that appear in commands
from MITEC. The default mode for this characteristic shall be
'echo off'.

No Password Protection

Entry of a password shall not be required in order to
execute TEG.

TEG User Interface

The first increment of TEG shall support a user-friendly
menu-driven (keyboard) interface. Future increments of TEG may
additionally support a scripting interface that allows for batch
processing.

The keyboard user interface shall not require the user to
learn formatting and syntax rules. For the first increment of
TEG, the User Interface to TEG may be a set of menus driven by
the rule-based language. If the first phase is developed using
CLIPS, the user interface inputs shall include a batch file for
the TRAMCON segment that is modelled in the TEG database. This
batch file shall include commands for clearing memory, loading
all rules and static facts associated with the TRAMCON segment,
and performing the commands that cause a re-initialization of the
rule-based environment (e.g., CLIPS reset).

Menus that allow the operator to select from a set of
various functions will provide a consistent set of options with a
visual cue to allow the operator to differentiate between
available and unavailable options based on the current state of
the simulator.

Selection of any function which requires selection of
additional criteria will result in the presentation of sub-menus
allowing the user to either select from the set of applicable
values or respond to a prompt with a brief textual response. For
a particular function, these menus and prompts will be presented
in a consistent sequence. When a particular sub-menu or prompt
is not applicable based on previous selections, that sub-menu or
prompt will not be presented.

All user responses shall be validated. Selection of an
unavailable option shall be considered an invalid user response.
An invalid user response shall never cause the simulation to
terminate prematurely or otherwise behave in an abnormal fashion.
Because the required user responses shall be brief and simple,
and the set of valid user responses and valid formats shall
always be clearly stated on the menu or prompt, a user shall

126

always be given an indefinite amount of attempts to re-try after
entering an invalid response.

An escape mechanism will be provided to allow the user to
cancel a function selection prior to completing selection from
all sub-menus associated with that function. When this escape
mechanism is invoked, control will be returned to the menu from
which the function was originally selected.

The user interface associated with future increments of TEG
shall provide a means for selection of TRAMCON segments, and the
loading and saving of scenario files.

TEG Interface to MITEC Network HWCI

TEG will be connected to MITEC using an RS-232 connection.

G.3.4 Functional and Performance Requirements

TEG shall simulate a single TRAMCON segment at a time.

G.3.4.1 Simulation Input Function

The Simulation Input function shall be responsible for
receiving and pre-processing all inputs to TEG.

Simulation Input Function Inputs

Inputs to the Simulation Input function shall include the
following:

a. Keyboard inputs from the operator

b. TEG knowledge base

c. Commands from scenario files

d. Messages from external programs and/or devices

Simulation Input Function Processing

The keyboard interface shall consist of a hierarchy of menus
displayed appropriately for obtaining direction from the
operator. Where appropriate, text, rather than a menu selection,
is the expected response from the user.

The main simulation functional menu shall include, at a

minimum, the following options:

a. modify polling sequence

b. change automatic switchover state

127

c. change operational side

d. insert a fault

e. remove a fault

f. poll

g. run simulation

h. exit simulation

Each of the above options, except for the exit simulation
option, shall allow the user to specify an associated time. Time
will be accepted from the user in hh:mm:ss format. A default
time shall also be provided by TEG. An example of default time
is the last time entered by the user.

Selection of the modify polling sequence option shall cause
the current polling sequence to be displayed and allow the user
to specify the exact order of polling of the TRAMCON sites within
the selected TRAMCON segment. The user shall have the capability
to specify any permutation of these sites. Any site(s) may be
omitted from the polling sequence. For example, if the available
sites are BST, HST, and RAG, any of the following sequences may
be specified:

BST, HST, RAG BST, RAG, HST HST, BST, RAG HST, RAG, BST
RAG, HST, BST RAG, BST, HST BST, HST BST, RAG
HST, RAG HST, BST RAG, HST RAG, BST
RAG HST BST none

After a complete valid user response is entered, it will be
forwarded to the applicable function(s) for further processing.

Selection of the change auto switchover state option shall
cause a menu of sites to be displayed. After a valid user
response is entered, a menu of equipment located at the selected
site that has more than one redundant side will be displayed.
After a valid user response is entered, a menu of valid
switchover states will be displayed. After a valid user response
is entered, the database shall be updated to reflect the new auto
switchover state.

Selection of the change operational side option shall cause
a menu of sites to be displayed. After a valid user response is
entered, a menu of equipment located at the selected site that
has more than one redundant side will be displayed. After a
valid user response is entered, a menu of all sides applicable to
this piece of equipment will be displayed. After a valid user
response is entered, a primary fault event will be created for
processing by the Event Generation function (3.4.2).

128

Selection of the insert fault option shall cause a menu of
sites to be displayed. After a valid user response is entered, a
menu of equipment located at the selected site will be displayed.
After a valid user response is entered, a menu of primary faults
applicable to the selected equipment will be displayed. After a
valid user response is entered, a menu of ports applicable to the
selected equipment will be displayed. After a valid user
response is entered, a menu of sides will be displayed if the
selected equipment has redundant sides. After a valid user
response is entered, the complete request will be forwarded to
the applicable function(s) for further processing.

Selection of the remove fault option shall allow the user to
select a fault for removal from the set of all faults that were
directly inserted by the operator and have not yet been removed
by the operator. The user shall be required to provide a repair
time.

Selection of the poll option shall allow the user to specify
one of the following types of polling:

a. Poll once at an absolute simulation time

b. Poll once at a relative simulation time

c. Poll n times starting at an absolute or relative
simulation time at a specified or default polling
frequency

d. Poll indefinitely starting at an absolute or relative
simulation time at a specified or default polling
frequency

e. Stop indefinite polling at an absolute or relative
simulation time

Selection of the run simulation option shall cause the
simulation to run for the specified period of simulation time.

Selection of the exit simulation option shall cause return
of control to the operating system.

Selection of any of the above options, except exit
simulation, shall cause the simulation menu to be redisplayed
after completion of execution of the selected option.

In addition to the above options, the following functions
will also be supported from the keyboard interface:

a. select TRAMCON segment

b. load scenario file

129

c. save scenario file

Selection of the select TRAMCON segment option will cause a
menu of segments available within the TEG Knowledge Base to be
displayed. After a valid user response is entered, the current
segment will be set to the selected segment.

Selection of the load scenario file option will cause a list
of all available scenario files to be presented to the user. The
user will be capable of selecting a file (or no files) from this
list. If a file is selected, the dynamic facts within that file
will be loaded.

Selection of the save scenario file option will cause the
save state to be toggled. The initial save state will be off.
When the state is toggled on, the user will be prompted to
specify a file name for the newly created scenario file. All
selections made by the user between the time that the state is
togqled on and the time that the state is toggled off will be
saved within that file.

Once all required user inputs have been collected for a
given option, the assembled inputs shall be validated to ensure
that the entire request is valid. Valid requests shall then be
forwarded to the appropriate function(s) for further processing.

The scripting interface will support the full functionality
provided by the keyboard interface.

Messages from MITEC shall be validated and processed as if
they had been entered by the user; except, in the case of an
error in a message from MITEC, the simulator shall output an
error message to MITEC and prepare to receive another message.
The simulator shall not output menus to MITEC.

Simulation Input Function Outputs

The outputs of the Simulation Input function shall include:

a. menus

b. prompts

c. validated simulation requests

d. erro: messages to MITEC

e. message acknowledgements to MITEC

G.3.4.2 Event Generation Function

rEG shall support the following types of events:

130

a. equipment state transitions, resulting from primary
faults or sympathetic faults

b. primary faults, resulting only from the insert fault
option (3.4.1.2)

c. sympathetic faults, resulting from primary or other
sympathetic faults

d. alarms, resulting from primary faults, sympathetic
faults, or other alarms

Each possible alarm and sympathetic fault will have exactly
one of the following causes:

a. the alarm/sympathetic fault can be caused by a single
alarm/fault

b. the alarm/sympathetic fault can be caused by Iihe
presence of one or more of a set of causing
alarms/faults (i.e., an OR condition)

c. the alarm/sympathetic fault can be caused by a
combination of faults/alarms, all of which must exist
for the alarm/sympathetic fault to exist (i.e., an AND
condition)

Removal of an alarm/fault shall result in the following:

a. removal of all alarms/sympathetic faults caused by this
alarm/fault alone

b. removal of all alarms/sympathetic faults which can be
caused by this alarm/fault or other alarms/faults (OR
condition), when no other causing alarms/faults exist

c. removal of all alarms/sympathetic faults which can only
be caused by this alarm/fault in conjunction with other
alarms/faults (AND condition), regardless of whether or
not any such other alarms/faults exist

If the operational side of the applicable device is faulted
and the non-operational side is not faulted, modification of the
switchover status enabling automatic switchover results in
switchover of the device to the other side.

If the non-operational side of the applicable device is not
faulted, a manual switchover request results in switchover of the
device to the other side; otherwise, manual switchover requests
are ignored.

131

Either automatic or manual switchover of a device results in
removal of any alarms/faults uniquely associated with the
previous operational side.

Event Generation Function Inputs

The inputs to the Event Generation function shall include
operator requests to add or remove events as well as the Event,
Causality, Connectivity, Equipment, Equipment Status, Port, and
Side tables. The fault constellation is also an input to the
Event Generation function.

Event Generation Function Processing

This function shall produce and retract sympathetic faults,
alarms, and equipment status. A sympathetic fault is a fault
that is caused by a primary fault (a fault input by the user
through the Simulation Input function, 3.4.1) or another
sympathetic fault. When a fault (or occasionally a logical
combination of faults) that is monitored at the Datalok device or
TRAMCON occurs, an alarm results. Equipment status consists of
various indicators that are monitored but are not considered
alarms because they may arise in normal operation; equipment
status may be input by the operator or change in response to the
occurrence of faults.

Fault Propagation

The Event Generation function shall produce the entire
constellation of sympathetic faults for one or more given primary
faults. The process by which sympathetic faults are produced is
called fault propagation. The Event Generation function shall
carry out fault propagation according to the causality
relationships in the CAUSES table (3.4.5.3.2.4.2). Fault
causality relationships exist within equipment (CAUSES SAME in
the CAUSES table) and between items of equipment (CAUSES SENDER,
DISTANT, or LINK-END). The Event Generation function shall
propagate faults for all of these causality relationships:

a. Fault propagation within a device (SAME relationships)
shall occur whether or not the device (or the side of
the fault in a device with redundancy) is on-line.
Fault propagation between devices shall occur only
between on-line devices (or between on-line sides in
devices with redundancy). On-line status shall be
determined from the Equipment Status (EQSTATUS,
3.4.5.3.1.4) table.

b. Fault propagation from sender to receiver (SENDER
relationships) shall occur when there is a direct
connection from the sender to the receiver. The

132

presence of a direct connection shall be determined
from the Connection (CONN, 3.4.5.3.2.1) table.

c. Fault propagation to the distant end (DISTANT
relationships) shall occur when there is a connection
(which may be direct or indirect) from a sender to its
distant-end counterpart receiver. Connection tracing
(3.4.2.2.2) shall be used to determine the distant end
equipment.

d. Fault propagation to the opposite link end (LINK-END
relationships) shall occur when the sending equipment
and receiving equipment are the link ends of a circuit.
The opposite link-end shall be determined from the
Circuit (CKT, 3.4.5.3.2.3.1) table.

Fault propagation within an item of equipment is complex and
allows for many combinations. The Event Generation function
shall propagate faults for all of the following classes of
causality relationship:

a. Within a port.

b. From a near port to the far port.

c. From the far port to all near ports.

d. To all ports on the equipment.

The Event Generation function shall support OR-causality of
faults. In OR-causality, a fault shall occur when at least one
of the causes of the fault has occurred.

The Event Generation function shall time-stamp faults. The
time of a fault shall be the time at which the cause of the fault
occurred. If the fault has more than one cause, the time shall
be the time of the first cause to occur.

Connection Tracing

When there is a fault on a device that causes a fault on its
distant-end counterpart, connection tracing shall be used to
determine the distant-end counterpart device. Connection tracing
shall proceed from the location of the fault in the direction of
signal travel until the corresponding port on a device of the
same class has been reached. The direction of signal travel
shall be assumed as follows:

a. For a fault originating on a near port, first to the
far port of the same device and thence along the
connection of the far port.

133

b. For a fault originating on a far port, along the
connection of the far port.

The corresponding port on the distant-end device shall be
determined as follows:

a. For a fault originating on a near port, any near port
(not necessarily the same near port) of the first
device of the same class encountered.

b. For a fault originating on a far port, the far port of
the first device of the same class encountered.

Alarm Generation

Alarms shall be generated in the same manner as fault
propagation: when a primary fault, sympathetic fault, or other
alarm that is the cause of an alarm occurs, the alarm shall be
generated. Alarm generation is simpler than fault propagation in
that the alarm is always raised on the equipment on which the
fault exists (that is, all alarm causality relationships are of
the form CAUSES SAME).

The Event Generation function shall support OR-causality and
AND-causality for alarms.

a. OR-caused alarms shall be generated when one or more of
the causes of the alarm exist.

b. AND-caused alarms shall be generated when all of the
causes of the alarm exist.

Alarms shall be time-stamped with the time of occurrence of
the event or events that caused the alarm. In the case of
OR-caused alarms, the time of the first-occurring cause shall be
the time of the alarm. In the case of AND-caused alarms, the
time of the last-occurring cause shall be the time of the alarm.

Event Removal

The Event Generation function shall remove events (both
faults and alarms) for which the cause of the event has been
removed (whether due to switchover (3.4.2.2.5) or due to removal
by the user through the Simulation Input function (3.4.1)).
Event removal shall be immediate when the cause of the event is
removed.

a. For faults and OR-caused alarms with more than one
cause, the event shall be removed when all of the
causes have been removed.

134

b. For AND-caused alarms, the event shall be removed when
any of the causes has been removed.

In order to perform event removal, the Event Generation
function shall maintain, for every caused event, the primary key
of every cause of that event. (The primary key is the fault (or
alarm) symbol and the device, port, and side on which the fault
or alarm occurred.)

Switchover

Certain equipment types known to TEG employ redundancy.
These types may be identified by the presence of more than one
entry in the Side table (3.4.5.3.1.3). In these types of
equipment, only one redundant side is on-line at any time. Since
only the on-line side is in communication with other equipment,
fault propagation between equipment occurs only between the
on-line sides. Therefore, switchover between sides will affect
fault propagation, alarm generation, and event retraction. The
Event Generation function shall execute automatic switchover and
shall account for switchover in the constellation of generated
events as follows:

a. When there is a fault on the on-line side of a device
with redundancy and automatic switchover is enabled for
that device, the Event Generation function shall:

i. Make the current side of the device off-line.

ii. Make the previously off-line side on-line.

iii. Disable automatic switchover on that device until
reenabled by the user.

b. When there is a switchover ("hether automatic or
manual), the Event Generation function shall:

i. Remove all faults that had propagated from other
devices to the previously on-line side and
propagate these to the new on-line side.

ii. Remove all faults that had propagated from the
previously on-line side to other devices.

iii. Propagate all previously existing and newly
propagated faults from the new on-line side within
the device and to other devices.

Event Generation Function Outputs

The outputs of the Event Generation Function shall include
the fault constellation and the alarm constellation.

135

G.3.4.3 Polling Simulation Function

The Polling Simulation Function shall simulate TRAMCON
polling. TRAMCON polls one site and waits for the response,
which takes approximately six (6) seconds, before polling the
next site. If a response to a poll is not received within a
ten-second time-out period, TRAMCON times out and continues
polling the next site in the sequence.

Polling Simulation Function Inputs

The inputs to the Polling Simulation function shall include
information from the Simulation Input function reflecting polling
sequence and poll selections made by the user and faults and
alarms output by the Event Generation function. This function
shall also use information included in the Equipment, Connection,
and Causality tables as inputs.

Polling Simulation Function Processing

The Polling Simulation Function shall simulate polling of
each site included in the specified polling sequence. Polling
shall occur in the same sequence as specified in Lna polling
sequence. The starting time, number of times each site is
polled, and polling interval shall be as specified in the polling
selection. The poll selections made by the user are described as
overall poll requests. This function shall interpret each
overall poll request and convert it to individual specific poll
requests. For example, an overall poll request specifying that
each site is to be polled four times will be converted to four
specific poll requests.

Changes in polling sequence or frequency shall take effect
at the specified time unless polling of a site is in progress at
that time, in which case the changes will take effect immediately
following completion of polling at that site.

The poll time shall be incremented by six seconds each time
another site is polled. This function shall detect a no response
situation based on faults specified in the TRAMCON equipment.
When a no response situation is detected, the poll time shall be
incremented by ten seconds when the next site is polled.

This function shall examine the alarm constellation and
shall select those alarms which would be received in response to
an actual TRAMCON poll. Selection criteria for output shall
include:

a. the fault responsible for the alarm must be in
existence at the time the poll is made (i.e., must have
already been inserted and not yet repaired).

136

b. the alarm must either be a Datalok 10 alarm that is
transmitted to TRAMCON or an alarm derived by the
TRAMCON system.

c. for Datalok 10 alarms, the TRAMCON equipment connecting
the site at which the appropriate Datalok 10 device
(i.e., the Datalok 10 which detects the fault that
causes the alarm) is located to the site at which the
TRAMCON Master is located must not contain any faults
that would result in inability of either the poll
request to be received at the Datalok 10 or the poll
response to be received at the Master.

This function shall determine, for each poll handshake,
whether or not the poll communication can be successful.

Polling Simulation Function Outputs

The outputs of the Polling Simulation function shall include
a list of all TRAMCON alarms generated that correspond to a
particular poll, in the form of poll responses. The output for
each fault shall include complete information identifying the
fault (e.g., equipment ID, port, side), the time at which the
alarm was detected by the poll, and a textual description of the
alarm.

G.3.4.4 Output Control Function

Output Control Function Inputs

The inputs to the Output Control function shall include
valid requests from external programs (e.g., MITEC) and poll
responses provided by the Polling Simulation function.

Output Control Function Processing

The Output Control function shall interpret requests,
assemble the poll responses into the requested report, and output
the requested report in accordance with the protocol specified in
3.3.3.1.

Output Control Function Outputs

The outputs of the Output Control function shall include a
list of all TRAMCON faults and alarms generated from the most
recent poll in a format that conforms to the TEG to MITEC CSCI
interface requirements (paragraph 3.3.3.1). Each of these
outputs shall be one of the following types, depending upon the
request received from MITEC:

a. Summary - 1 line / polled site

137

b. Detailed - 1 line/alarm at site specified in MITEC
request

Examples of summary and detailed reports are shown in
Figures 7 and 8. Future increments of TEG will support output of
DPAS alarms.

G.3.4.5 Database Function

The TRAMCON Event Generator Knowledge Base defines the data
tables used to store the representations of equipment,
interconnections, circuits, faults, alarms, and site locations
known to TEG.

The Knowledge Base defines both tables that are specific for
each unique TRAMCON segment as well as tables that are applicable
to all TRAMCON segments. These two sets will be known as the
segment-specific knowledge base and the non-segment-specific
knowledge base, respectively. Each separate segment-specific
knowledge base and the non-segment-specific knowledge base shall
be contained in separately loadable files. The first increment
of TEG shall model the DEB IIA TRAMCON segment. Future
increments of TEG shall support the capability to model any
TRAMCON segment.

Database Function Inputs

For the first phase of TEG development, inputs to the
database function shall be made through a text editor. Database
function inputs for future phases of TEG are TBD.

Database Function Processing

Database processing in the first increment of TEG shall
provide the functions to enter, edit, and delete individual facts
and blocks of facts. If the rule language requires facts to be
"loaded" or "compiled" the database function shall provide the
requisite processing. Database function processing for future
phases of TEG is TBD.

Database Function Outputs

The outputs of the Database Function shall include all
tables that constitute the TEG Knowledge Base. The TEG Knowledge
Base shall include the tables used to store the representations
of equipment, interconnections, circuits, faults, alarms, and
site locations kniuwn to TEG.

Equipment Representation

The following tables shall be used to define the
representation of equipment known to TEG, aside from their

138

interconnections: the Equipment, Port, Side, and Equipment
Status tables. Additional tables required to define the
attributes of a equipment may be specified at a later time.

Equipment Table

The Equipment table shall define the static attributes of
each item of equipment known to TEG. The Equipment table shall
be a part of the segment-specific knowledge base. Equipment
shall include multiplexers, encryption equipment, and radios;
this list may be extended as needed in the future. Equipment
shall not include the transmission medium, e.g. wires, patch
panels, or radio links. Equipment table records may not be
retracted by other functions of TEG. The Equipment table shall
consist of one record for each item of equipment; each record
will contain the fields defined in the subparagraphs below.

Equipment Table ID

This field will contain the symbol EQUIP. It shall identify
all Equipment table records and distinguish these from all other
types of record.

Equipment Class

This field shall contain a symbol that identifies the class
of equipment represented by the record, e.g. FCC-99 or FRC-171.

Equipment ID

This field shall contain a symbol that identifies the item
of equipment represented by the record. This symbol will be the
primary key of the Equipment table; therefore, it will uniquely
identify the item of equipment. In the simulation of a TRAMCON
segment for which the equipment nomenclature is known, the symbol
shall be the actual name of the item of equipment; otherwise, it
shall be a meaningful and unique name.

Equipment Location

This field shall contain a symbol that identifies the
facility at which the equipment is located. The set of symbols
used in this field will be the set of three-letter facility IDs
(e.g. DON for Donnersberg) used in the DEB.

Equipment Pretty Name

This field shall contain a string that describes the item of
equipment. This string will be for use by display and report
software that needs a suitable print name for the item.

139

Port Table

The Port table shall define the port symbols that are used
for each class of equipment. The Port table shall be a part of
the non-segment-specific knowledge base. There shall be at least
one Port table record for each class of equipment, but most
classes will have two or more records. Port table records may
not be retracted by other functions of TEG. Each record of the
Port table will consist of the fields defined in the
subparagraphs below. Note that the primary key of the Port
table consists of both the Equipment Class and the Port Symbol
fields.

Port Table ID

This field will contain the symbol PORT. It shall identify
all Port table records and distinguish these from all other types
of record.

Equipment Class

This field shall contain a symbol that identifies the class
of equipment that possesses the port defined by this record; for
example, FRC-171. The set of symbols used in this field shall be
the same as the set of symbols used in the Equipment Class field
of the Equipment table (3.4.5.3.1.1.2).

Port Symbol

This field shall contain a symbol that is the name of a port
on the subject class of equipment. The symbol FAR is
distinguished: there shall be at most one 'far' port record for
each class of equipment. Any symbol other than FAR is the name
of a 'near' port. For example, the FRC-171 radio has the ports
MBS-l, MBS-2, SCBS, and FAR.

Equipment that is always a data source or sink to the
TRAMCON-monitored system shall have just one Port table record:
the 'far' port record. The FCC-98 and CY-104A are examples of
such equipment. Other equipment classes shall have two or more
Port table records.

The numbering of 'near' ports shall follow the Tech Control
practice for each class of equipment. When this is not known,
the 'near' ports will be numbered from 1 through N, where N is
the total number of 'near' ports. For non-multiplex equipment,
such as the KG-81, the symbol for the 'near' port may be NEAR.
The symbol NEAR shall not be used as a port symbol for multiplex
equipment.

The convention for the distinction between 'near' and 'far'
ports is that the 'near' ports are those conceptually 'closer' to

140

the end user or the abstract 'center' of a through facility; the
'far' ports are those 'closer' to the transmission medium between
facilities. The demultiplexed ports of a multiplexer are 'near';
the multiplexed port is 'far'. The unencrypted ('clear' or
'black') port of a KG-81 is 'near'; the encrypted ('red') port is
'far'. This distinction may not survive for matrix equipment
such as DACS II and may need to be revisited when it becomes
necessary to model such equipment.

Side Table

The Side table shall define the side symbols and automatic
switchover attributes that are applicable for each class of
equipment. The Side table shall be a part of the
non-segment-specific knowledge base. There shall be at least one
Side table record for each class of equipment, but some classes
will have two records. Side table records may not be retracted
by other functions of TEG. Each record of the Side table will
consist of the fields defined in the subparagraphs below. Note
that the primary key of the Side table consists of both the
Equipment Class and the Side Symbol fields.

Side Table ID

This field will contain the symbol SIDE. It shall identify
all Side table records and distinguish these from all other types
of record.

Equipment Class

This field shall contain a symbol that identifies the class
of equipment that possesses the side defined by this record; for
example, FRC-171.

Side Symbol

This field shall contain a symbol that is the name of a side
on the subject class of equipment. The set of legal symbols is:
Only, A, B. Only will be used to represent classes of equipment
that have only one side (i.e., no manufactured redundancy). For
example, the FCC-98 second level multiplexer has Only one side.
A and B will be used to represent classes of equipment possessing
manufactured redundancy. For example, the FRC-171 radio has the
sides A and B.

Switchover Attributes

This field shall contain a symbol that indicates the
automatic switchover attribute for the subject class of
equipment. The set of legal symbols is: ALWAYS, TOGGLE,
UNKNOWN, NEVER. ALWAYS is used to indicate that automatic
switchover is always enabled for the subject class of equipment.

141

TOGGLE is used to indicate that the switchover state may be
toggled, via operator input, between automatic and manual
switchover. UNKNOWN is used to indicate that the switchover
attribute is unknown. NEVER is used to indicate that switchover
never occurs. This symbol should be used with all equipment that
only has one side.

Equipment Status Table

The Equipment Status table shall define the modifiable
attributes of each item of equipment known to TEG. Equipment
shall include all items contained in the Equipment table. The
Equipment Status table shall be a part of the segment-specific
knowledge base. The Equipment Status table shall consist of one
record for each item of equipment. Equipment Status records may
be retracted by other TEG functions. Each record will contain
the fields defined in the subparagraphs below.

Equipment Status Table ID

This field will contain the symbol EQSTATUS. It slxall
identify all Equipment Status table records and distinguish these
from all other types of record.

Equipment ID

This field shall contain a symbol that identifies the item
of equipment represented by the record. This symbol ill be the
primary key of the Equipment Status table; therefore, it will
uniquely identify the item of equipment. The symbols shall match
those used in the Equipment ID field of the Equipment table.

Operational Side

This field shall contain a symbol that identifies the side
on which the equipment specified in the Equipment ID field is
currently operating. The symbols shall match those used in the
Side Symbol field of the Side table. Until contradictory
information is provided, the initial operational side for
redundant devices will be assigned the symbol A.

Automatic Switchover State

This field shall contain a symbol that indicates whether or
not automatic switchover is currently enabled for the device
specified in the Equipment ID field. The set of symbols will be:
AS-ENAB, AS-DISAB, to represent auto-switchover enabled and
auto-switchover disabled, respectively. Until contradictory
information is provided, the initial automatic switchover state
for all devices will be assigned the symbol XS-ENAB.

142

Connectivity Representation

The following tables shall be used to define the
interconnections of equipment known to TEG: the Connection table
and the Link table. Additional tables required to define
attributes of connectivity may be specified at a later time.

Connection Table

The Connection table shall define the interconnections
between items of equipment; it shall also provide a 'hook' for
the future representation of patch panels, patches, and matrix
switching. The Connection table shall be a part of the
segment-specific knowledge base. There shall be at most two (and
usually one) Connection table records for each pair of connected
ports known to TEG; the Connection table record shall denote that
a connection (whether in one or both directions) exists between
these ports. This implies that for a duplex connection there
will be one Connection Table record, and both the sender and
receiver fields will denote ports capable both of sending and of
receiving data. Two Connection table records may be used to
denote a duplex connection in which the connection paths actually
differ, if this should be necessary.

Each record of the Connection table will consist of the
fields defined in the subparagraphs below. Note that the primary
key of the Connection table consists of all of these fields:
Connection Status, Sending Equipment ID, and Sending Port; the
combination Connection Status, Receiving Equipment ID, and
Receiving Port is also a candidate key and may be used as such.

The Connection table shall also identify ports that are
either not connected or are connected to equipment not modeled in
TEG. The Equipment ID symbols described under 3.4.5.3.2.1.4
shall be used for this purpose. Note that the use of one of
these symbols as the Sending Equipment ID specifies the
connection status of the corresponding Receiving Equipment ID and
Port, while the use of one of these symbols as the Receiving
Equipment ID specifies the connection status of the corresponding
Sending Equipment ID and Port. It would be meaningless for both
the Sending and Receiving Equipment ID fields to contain one of
these symbols.

Connection Table ID

This field will contain the symbol CONN. It shall identify
all Connection table recozds and distinguish these from all other
types of records.

143

Co:inection Status

This field shall contain a symbol to represent the status of
the connection. The keywords for this field are NOMINAL and
ACTUAL. A connection with 'nominal' connection status shall be
the connection as specified in the TSO, multiplex plan, or other
appropriate source of information as to the intended status of
the connection in normal operation. A connection with 'actual'
connection status shall be the connection as established by a
patch, cross-connect, or other variation from the normal
connection. The initial increment of TEG shall not be required
to support the connection status of ACTUAL.

The concept of 'nominal' vs. 'actual' connection status
serves to distinguish the original state of the network from a
state that currently exists due to the presence of a patch.
While patches may be used as temporary workarounds in operation,
they are generally removed as soon as the failed equipment has
been repaired and is placed back in service. Therefore it is
necessary to retain the nominal state of the network in order to
restore this state following the remrial of a patch.

In database search, software that is concerned with the
network as it is p. -sently constituted (for example, in fault
propagation) should first attempt to bind an 'actual' connection
for a given sender or receiver; if this attempt fails, it should
then attempt to bind a 'nominal' connection.

Duplexity

This field shall contain a symbol that denotes whether the
connection is one-way (simplex) cr two-way (duplex). The symbols
SIMPLEX and DUPLEX will be used to represent simplex and duplex
connections, respectively. In the case of a 'duplex' connection,
the Sending Equipment ID and Sending Port fields may refer to
either of the ports participating in the connection: the
assignment of 'sender' and 'receiver' may be arbitrary.
Consequently, software that is searching for the connection of a
given port should be capable of selecting the connection record
whether the given port is the 'sender' or the 'receiver'.

Sending Equipment ID

This field shall contain the Equipment ID symbol of the
equipment participating as sender in the connection. The
Equipment ID symbol will be either a unique Equipment ID as
defined in 3.4.5.3.1.1.1 or any of the following keywords:
SPARE, UNUSED, FAILED, or TNKNOWN. The initial increment of TEG
shall not be required to support the symbols SPARE, FAILED, or
UNKNOWN. The interpretation of these keywords is as follows:

144

The use of SPARE as a Sending Equipment ID will identify a
receiver that is designated for use as a spare in patching.

The use of UNUSED as a Sending Equipment ID will identify a
receiver that is not used for any purpose (and presumably could
be used as a spare). The distinction between SPARE and UNUSED is
thought to be useful because the sparing and service restoration
algorithms of MITEC make use of this distinction.

The use of FAILED as a Sending Equipment ID will identify a
receiver that is not used because it has failed and has been
removed from service. This is only possible for Connection
records of ACTUAL status.

The use of UNKNOWN as a Sending Equipment ID will identify a
receiver that is connected to equipment not represented in this
database.

Sending Port

This field shall contain the Port symbol of the port
participating as sender in the connection. The Port symbol shall
be as defined above. When the Sending Equipment ID is any of the
keywords SPARE, UNUSED, FAILED, or UNKNOWN, the Sending Port
symbol will be the same as the Receiving Port symbol.

Receiving Equipment ID

This field shall contain the Equipment ID symbol of the
equipment participating as receiver in the connection. The
Equipment ID symbol shall be as defined above or may be any of
the following keywords: SPARE, UNUSED, FAILED, or UNKNOWN. The
interpretation of these keywords is as defined above except these
symbols will here identify the receiver.

Receiving Port

This field shall contain the Port symbol of the port
participating as receiver in the connection. The Port symbol
shall be as defined above. When the Receiving Equipment ID is
any of the keywords SPARE, UNUSED, FAILED, or UNKNOWN, the
Receiving Port symbol will be the same as the Sending Port
symbol.

Connection Medium

This field shall identify the type of connection that exists
between the sending and receiving ports. The set of connection
types that shall be supported by the initial increment of TEG
shall be WIRE, MICRO, and NONE. The set of connection types that
will be considered for support in future increments of TEG
includes JACK, PATCH, TEST, TROPO, CABLE, SATCOM, and MATRIX.

145

The matter of defining connection medium types is not settled,
and considerable change in this area may be expected.

WIRE will be used to represent a hard-wired connection
between the sending and receiving ports. In the initial
increment of TEG, which will not support patching, this type
shall subsume the types JACK, PATCH, and TEST.

MICRO will be used to represent a microwave radio connection
between the sending and receiving ports.

NONE will be used to represent a port that is not connected
to anything. Some ports that are actually disconnected or
connected through a medium unknown to TEG may use this symbol.

JACK will be used to represent a connection made through a
patch panel jack. JACK connections shall be restricted to those
made through a set of jacks in their normal (i.e. closed)
configuration; connections that involve an open jack shall be of
type 'patch'.

PATCH will be used to represent a connection made through a
patch panel using a patch cord or plug.

TEST will be used to represent a connection made through a
test and access point.

TROPO will be used to represent a troposcatter radio
connection between the sending and receiving ports.

CABLE will be used to represent a fiber-optic or wire land
line or submarine cable connection between the sending and
receiving ports.

SATCOM will be used to represent a communications satellite
connection between the sending and receiving ports.
MATRIX will be used to represent a connection through a matrix
switch (e.g. a DACS II) between the sending and receiving ports.

Connection ID

This field shall be a symbol that together with the
Connection Medium symbol identifies the individual connection
between the sender and receiver. The set of legal values for
this symbol depends on the value of the Connection Medium symbol.
With the exception of NONE, the Connection Medium and Connection
ID fields, taken together, correspond to the primary key of the
Link table.

For a Connection Medium value of NONE, the Connection ID
will also be NONE.

146

For a Connection Medium value of WIRE, the Connection ID may
be NONE, or it may be some symbol identifying the particular
wire. If it is desired to simulate a fault involving the wire
itself, the Connection ID should not be NONE. If not NONE, the
symbol will correspond to a record in the Link table for that
wire.

For a Connection Medium value of MICRO, the Connection ID
will be a symbol identifying the particular microwave link. This
symbol shall correspond to a record in the Link table for that
microwave link.

Connection ID symbols for other values of Connection Medium
are TBD.

Link Table

The Link table shall provide a 'hook' for simulating
failures on transmission links and (in later increments of TEG)
for implementing patches, cross-connects, and tests. The Link
table shall be a part of the segment-specific knowledge base.
Link table records may not be retracted by other TEG functions.
This table will consist of the following fields:

Link Table ID

This field will contain the symbol LINK. It shall identify
all Link table records and distinguish these from all other types
of record.

Link Class

This field shall contain a Link Class symbol. This will be
any of the symbols defined for Connection Medium (3.4.5.3.2.1.8),
except NONE.

Link ID

This field shall contain a Link ID symbol. This shall
correspond to a symbol used in a Connection ID field
(3.4.5.3.2.1.9).

Link Pretty Name

This field shall contain a string that describes the
specified link. Software that needs a print name for the link
will use this field.

Circuit Representation

The following tables shall be used to define the
representation of circuits known to the TEG: the Circuit table.

147

Circuit Table

The Circuit table shall define each circuit known to TEG.
The Circuit table shall be a part of the segment-specific
knowledge base. Since the connectivity of all equipment is fully
specified by the Equipment, Port, Connection, and Link tables,
the only additional information needed to define the circuit is
the end points of the circuit. For future extensions of TEG, it
may be necessary to define additional characteristics of the
circuit that will be stored in this table. Circuit table records
may not be retracted by other TEG functions. The Circuit table
will consist of the following fields:

Circuit Table ID

This field will contain the symbol CKT. It shall identify
all Circuit table records and distinguish these from all other
types of record.

Circuit ID

This field shall contain a symbol that is the unique
identifier of the circuit. This field will be the primary key of
the Circuit table. For most circuits known to TEG, this will be
the CCSD used in Tech Control.

Origin Equipment ID

This field shall contain a symbol that is the unique
identifier of the equipment where the circuit originates. This
symbol shall be an Equipment ID and correspond to a record in the
Equipment table. (For a unidirectional, or simplex, circuit, the
origin is the sending end. For a bidirectional, or duplex,
circuit, the choice of origin is arbitrary; the preferred choice
is the end that appears at the top or left-hand side of a
multiplex plan or other appropriate source.) For trunk
circuits, which are the only kind to be implemented in the
initial increment of TEG, the Origin Eq' pment ID should be a
multiplexer, the 'far' port of which is the origin of the trunk.

Origin Port

This field shall contain a symbol that identifies the port
of the equipment where the circuit originates. This symbol shall
be a Port symbol valid for the class of the origin equipment.
For trunk circuits, the Origin Port should normally be FAR,
specifying the 'far' port of the originating multiplexer.

Destination Equipment ID

This field shall contain a symbol that is the unique
identifier of the equipment where the circuit terminates. This

148

symbol shall be an Equipment ID and correspond to a record in the
Equipment table. For trunk circuits, which are the only kind to
be implemented in the initial increment of TEG, the Destination
Equipment ID should be a multiplexer, the 'far' port of which is
the destination of the trunk.

Destination Port

This field shall contain a symbol that identifies the port
of the equipment where the circuit terminates. This symbol shall
be a Port symbol valid for the class of the destination
equipment. For trunk circuits, the Destination Port should
normally be FAR, specifying the 'far' port of the destination
multiplexer.

Circuit Pretty Name

This field shall contain a string that provides a
description of the circuit. Software that needs a print name for
the circuit should use this field.

Fault Representation

The following tables shall be used to define the
representation of faults known to TEG: the Event table and the
Causality table. Additional tables required to define the
attributes of faults may be specified at a later time.

Event Table

The Event table shall define the attributes of each possible
status, failure and alarm recognizable by TEG. The Event table
shall be a part of the non-segment-specific knowledge base.
Failures shall include both primary and secondary (also known as
sympathetic) failures. Alarms shall include all alarms
detectable by TEG resulting from primary and secondary failures.
Event table records may not be retracted by other TEG functions.
The Equipment Class and Event ID fields, taken together,
correspond to the primary key of the Event table. The Event
table shall consist of one record for each type of failure; the
Event table shall consist of the following fields:

Event Table ID

This field will contain the symbol EVENT. It shall identify
all Event table records and distinguish these from all other
types of record.

Equipment Class

This field will contain a symbol that identifies the class
of equipment associated with the event represented by the record.

149

The set of symbols used in this field shall be the same as the
set of symbols used in the Equipment Class field of the Equipment
Table.

Event ID

This field shall contain a symbol that identifies the fault
or alarm represented by the record, e.g. RX-FAILURE.

Event Source

This field shall contain a symbol that describes the source
of the event. The set of symbols used in this field will be:
PRIMARY, SECONDARY, DATALOK, TRAMCON, and DPAS. PRIMARY will be
used to represent an actual failure. SECONDARY will be used to
represent a failure resulting from and depending strictly upon a
PRIMARY failure. DATALOK will be used to represent an alarm
reportable by a Datalok-10 device. TRAMCON will be used to
represent alarms derived by TRAMCON based on combinations of
DATALOK alarms. DPAS will be used to represent alarms reportable
by the DPAS.

Event Pretty String

This combination of fields will consist of zero or more
String Component-Substitution ID pairs, followed by a Completing
String. The string resulting from processing these fields will
result in a single string that will be used for reporting an
event to interfacing units. The resulting string will also be
for used by display and report software that needs a suitable
print name for the item.

String Component-S"bstitution ID pairs

This pair of fields will consist of a string portion
followed by a substitution ID portion. There may be zero or more
Event Pretty String Component-Substitution ID pairs.

String Component

This field will contain a portion of a string that describes
an event, including the aspect related to the corresponding
substitution ID field. It will include any characters necessary
for formatting.

Substitution ID

This field will contain a generic field name which will be
used for the purpose of substituting specific names in the event
string component. The set of symbols used in this field will be:
ID, PORT, SIDE. ID will be used to represent a substitution for
actual equipment ID in the event string component. PORT will be

150

used to represent a substitution for actual port symbol in the
event string component. SIDE will be used to represent a
substitution for the actual side of the equipment associated with
the event in the event string component.

Completing String

This field will contain the remaining portion of a string
that describes an event. It will include characters necessary
for formatting event time and any required overall string
formatting characters.

Causality Table

The Causality table shall express the causal relations
between faults and alarms. The Causality table shall be a part
of the non-segment-specific knowledge base. All events whose
source is not primary shall be represented in one or more records
of the Causality table. Causality table records may not be
retracted by other TEG functions. The primary key of the
Causality table consists of all of these fields: Causing Event
ID, Resulting Equipment Class, Resulting Event ID. The Causality
table will consist of the following fields:

Causality Table ID

This field will contain the symbol CAUSES. It shall
identify all Cause table records and distinguish these from all
other types of record.

Equipment Relationship

This field shall contain a symbol that identifies the
relationship between the equipment causing the fault and the
equipment in which the sympathetic fault is caused. The set of
symbols used in this field will be: SAME, DISTANT, SENDER, and
LINK-END.

SAME will be used to refer to the same instance of equipment
as the equipment causing the fault, i.e. equipment having the
same equipment ID.

DISTANT will be used to refer to a piece of equipment of the
same class that is connected through the far port of the
equipment causing the fault. Other pieces of equipment may
reside between the two pieces, but no piece of equipment residing
between the device causing the fault and the distant device may
be of the same class as these devices.

SENDER will be used to refer to a piece of equipment
directly connected to the equipment that causes the fault and is
a sender to that equipment (either as the left-hand-side of a

151

SIMPLEX CONN relationship or as either side of a DUPLEX CONN
relationship (3.4.5.3.2)). There is no requirement that the two
pieces of equipment be collocated at the same site; only that a
CONN relationship exist.

LINK-END will be used to refer to a piece of equipment
residing at one of the ends of the connection path of which the
equipment causing the fault is a part.

Causing Port Symbol

This field shall contain a symbol that identifies the port
associated with the causing event on the equipment causing the
fault or alarm. The set of symbols used in this field will be:
ANY, NEAR, FAR.

ANY will be interpreted to mean that a fault of the type
contained in the Causing Event field on any port of the equipment
causing the fault is capable of causing the sympathetic fault or
alarm.

NEAR will be interpreted to mean that a fault of the type
contained in the Causing Event field on one of the near ports of
the equipment causing the fault is capable of causing the
sympathetic fault or alarm.

FAR will be interpreted to mean that a fault of the type
contained in Causing Event on the far port of the equipment
causing the fault is capable of causing the sympathetic fault or
alarm.

Causing Event ID

This field shall contain a symbol that identifies the
causing fault or alarm. The set of symbols used in this field
shall be a subset of the set of symbols used in the Event ID
field of the Event Table.

Resulting Equipment Class

This field shall contain a symbol that identifies the type
of device in which the sympathetic fault or alarm is resulting.
The set of symbols used in this field shall be the set of symbols
used in the Equipment Class field of the Equipment Table.

Resulting Port Symbol

This field shall contain a symbol that identifies the port
on the equipment in which the sympathetic fault or alarm is
resulting. The set of symbols used in this field will be: ALL,
NEAR, FAR.

152

ALL will be interpreted to mean that a fault of the type
contained in the Causing Event field is capable of causing the
Resulting Event in all ports of the resulting device.

NEAR will be interpreted to mean that a fault of the type
contained in the Causing Event field on one of the near ports of
the equipment causing the fault is capable of causing the
Resulting Event in the corresponding near port of the resulting
device. (Note: corresponding near ports have the same port
identifier, e.g., MBS-2). FAR will be interpreted to mean that a
fault of the type contained in Causing Event is capable of
causing the Resulting Event in the far port of the resulting
device.

Resulting Side

This field shall contain a symbol that identifies the side
of the equipment in which the sympathetic fault or alarm is
resulting. The set of symbols used in this field will be:
ALL-SIDES, OPER-SIDE.

ALL-SIDES will be interpreted to mean that a fault of the
type contained in the Causing Event field is capable of causing
the Resulting Event on all sides of the resulting device.

OPER-SIDE will be interpreted to mean that a fault of the
type contained in the Causing Event field is capable of causing
the Resulting Event in the operational side of the resulting
device.

Resulting Event ID

This field shall contain a symbol that identifies the
resulting fault or alarm. The set of symbols used in this field
shall be a subset of the set of symbols used in the Event ID
field of the Event Table.

Segment Representation

The following tables shall be used to define the attributes
of a segment known to TEG: the Site table. Additional tables
required to define the attributes of a segment may be specified
at a later time.

Site Table

The Site table shall define each site located in a
particular TRAMCON segment known to TEG. The Site table shall be
a part of the segment-specific knowledge base. Site table
records may not be retracted by other TEG functions. "' Site
table will consist of the following fields:

153

Site Table ID

This field will contain the symbol SITE. It shall identify
all Site table records and distinguish these from all other types
of records.

Site Symbol

This field shall contain a symbol that iaentifies the
facility at which the equipment is located. The set of symbols
used in this field will be the set of three-letter facility IDs
(e.g. DON for Donnersberg) used in the DEB. This symbol shall be
the primary key of the Site table.

Site Pretty String

This field shall contain a string that describes the site
location. The string should contain both the full name of the
area as it is known to the DEB community, e.g., "Donnersberg",
"Reese-Augsburg", etc. as well as the site symbol. This string
shall be used for reporting an event to interfacing units. This
string will also be for used by display and report software that
needs a suitable print name for the item. The site pretty string
will also contain any characters required by display and report
software for formatting. An example of the site pretty string
is:

"Donnersberg (DON)%n"

G.3.5 Adaptation Requirements

This section describes data that can be modified to change
the scope of TEG operation within the prescribed limits.

G.3.5.1 System Environment

Adaptation of TEG to different host computers shall be
supported by use of a device-independent rule-based language and
a device-independent high order language.

G.3.5.2 System Parameters

This section is not applicable to this specification.

G.3.5.3 System Capacities

At a minimum, storage for the following values in the data
base for each TRAMCON segment modelled shall be supported:

a. twenty-one (21) sites

b. 500 devices

154

c. 750 connections

G.3.6 Quality Factors

This section defines the quality factors that are applicable
to TEG and describes how the applicable quality factors will be
applied to TEG.

G.3.6.1 Correctness Requirements

The correctness quality factor is the extent to which the
system satisfies the requirements defined in this Software
Requirements Specification.

The correctness of TEG will be assured by frequent
walkthroughs during the design process and by conducting rigorous
testing.

G.3.6.2 Reliability Requirements

The reliability quality factor is the extent to which the
system is expected to consistently perform its intended function.

The reliability of TEG will be assured by conducting
rigorous testing.

G.3.6.3 Efficiency Requirements

The efficiency quality factor is a measure of the efficient
use of the computing resource and memory by the system.

The rule-based language algorithm will provide reasonable
efficiency. Programming standards for the rule-based language
will enhance the efficiency of the search algorithm. Computing
and memory usage risk areas will be prototyped early in system
development and the results of the prototyping will be factored
into the resulting implementation.

G.3.6.4 Integrity Requirements

This requirement is not applicable to this specification.

G.3.6.5 Usability Requirements

The usability quality factor is a measure of the effort
required to learn and operate the system.

The usability of TEG will be ensured by designing the
man-machine interface to be a user friendly and menu driven
system. All messages to the user shall be self-explanatory.

155

G.3.6.6 Maintainability Requirements

The waintainability quality factor is a measure of the
effort required to locate and fix errors in the software.

The maintainability of TEG will be assured by adherence to
the programming standards called out herein. In particular, the
use of well structured HOL code, well formed rules, and extensive
commenting will minimize the number of latent errors in the
system and minimize the effort required to locate and fix the
errors.

If the rule-based languaqe used is compatible with an
appropriate semantic checker, a semantic checker shall be used
for style checking and generating cross-references. If CLIPS is
used, the Cross Reference, Style, and Verification (CRSV) utility
will be used for these purposes.

G.3.6.7 Testability Requirements

The testability quality factor is a measure of the effort
required to qualify that the software performs its intended
functions. All TEG software requirements shall be testable. The
testability of TEG shall be assured by the use of a well
structured man-machine interface. Testability shall be further
enhanced through the use of an ASCII-only interface with MITEC
and use _)f standard transmission protocols.

G.3.6.8 Flexibility Requirements

The flexibility quality factor is a measure of the effort
required to enhance the operational software.

Use of a data-driven rule-based language is an important
element in providing for flexibility of the TEG software.
Because of this feature, substantial changes may be made to the
system by introducing changes into the data base, rather than
modifying source code. Use of structured, modular coding within
the high order language and well-formed rules in the rule-based
language further enhance TEG's flexibility.

Future increments of TEG may include a graphical user
interface. To the maximum extent possible, code developed for
this purpose to support MITEC will be reused.

G.3.6.9 Portability Requirements

The portability quality factor is a measure of the effort
required to transfer the software from one hardware configuration
and/or system environment to another.

156

The portability of TEG will be maximized by the use of
portable rule-based and high order language and the avoidance of
system-dependent features. When system-dependent features are
required, those areas of the code will be isolated and identified
with potential portability impacts.

G.3.6.10 Reusability Requirements

The reusability quality factor is a measure of the effort
required to use the software in other applications.

Source code and data developed for use in TEG may be usable
for the MITEC alarm filtering function and/or a future TRAMCON
trainer.

G.3.6.11 Interoperability Requirements

The interoperability quality factor is a measure of the
effectiveness of the system's interface with other systems.

TEG will be designed to communicate with MITEC in a manner
consistent with the way TRAMCON and DPAS would communicate with
MITEC if such communication links were provided.

G.4. QUALIFICATION REQUIREMENTS

G.4.1 General Qualification Requirements

The purpose of these qualification tests is to verify that
TEG fulfills the requirements of this SRS. In order to assure
the timely completion of system integration and acceptance test,
qualification tests are begun during software development. In
testing TEG, the evaluation of the following quality factors
shall predominate:

a. Usability. Cdn the prospective user community of TEG
operate the program and interpret its results without
difficulty?

b. Correctness. Are the fault and alarm events generated
by TEG the same as those that occur in TRAMCON: do the
results of TEG correspond to known TRAMCON results, or
are TEG results believable to experienced TRAMCON
operators?

G.4.1.1 Qualification Approach

G.4.1.2 Qualification Phases

Qualification testing of TEG will be accomplished in two
phases: Computer Program Test and Evaluation (CPT&E) and CSCI
Acceptance Test (CSAT). The purposes of these two phases differ

157

in that CPT&E is intended to verify primarily the correct
operation of code modules and internal interfaces while CSAT is
intended to verify the quality factors of usability and
correctness discussed in 4.1 above.

Computer Program Test and Evaluation (CPT&E)

The first phase of TEG qualification testing will be CPT&E.
CPT&E will be conducted by the TEG programming staff according to
internally developed procedures. CPT&E will normally be used to
verify internal and developmental requirements, such as the
correct operation of individual code modules and internal
interfaces, software integration, and observance of design and
programming standards. CPT&E will be conducted concurrently with
programming and continue until TEG is complete and ready for
CSAT. When CPT&E is used to verify a requirement stated in this
SRS, the procedures and test results will be recorded and made
available for inspection at CSAT.

CSCI Acceptance Test (CSAT)

The second and final phase of TEG qualification testing will
be CSAT. CSAT will be conducted by the TEG programming staff,
with witnesses from Lincoln Laboratory and the TRAMCON user
community. Certain tests that demonstrate usability of TEG
functions will be conducted by Lincoln Laboratory personnel and
TRAMCON users. Test results that require expert evaluation will
be evaluated by TRAMCON users, assisted by the TEG programming
staff.

Problems detected during CSAT will be recorded and tracked
until corrected or otherwise closed. The Lincoln Laboratory
Program Manager shall be the final authority on the disposition
of problem reports.

G.4.1.3 Qualification Methods

The following qualification methods shall be used to test
TEG: inspection, analysis, demonstration, and test.

Inspection

Inspection is a form of testing in which a requirement is
verified by reading off evidence that the requirement has been
implemented. Inspection is most often used to verify that design
and coding standards have been followed, or that required items
are in fact present. For example, it may be verified by
inspection that TEG stores the data needed to produce each of its
required displays.

158

Analysis

Analysis is a form of testing that differs from inspection
in that the evidence verifying a requirement cannot simply be
read off, but must be argued or deduced. Analysis is commonly
used to verify requirements that are otherwise impractical to
test; for example, to predict the performance of software with a
database much larger than that constructed for the test.

Demonstration

Demonstration is a form of testing in which a requirement is
verified by executing the system and reading off some result that
is evidence that the requirement has been met; for example, that
TEG produces a display that contains the expected data. While
demonstration is in general the preferred form for testing, it is
not practical to use for all kinds of requirements.

Test

Test is a form of testing in which a requirement is verified
by executing the system and analyzing the results in order to
determine whether the requirement has been met. In this sense,
test is a combination of demonstration and analysis. Certain
kinds of requirements are susceptible to test but not to
demonstration; for example, the requirement that TEG generate the
correct set of alarms corresponding to a particular inserted
fault, or that the alarm messages are meaningful to a TRAMCON
operator.

G.6.GLOSSARY

AB Air Base
AFB Air Force Base
ASCII American Standard Code for Information Interchange
AT&T American Telephone & Telegraph
CCSD Command/Control Service Designator
CCSO Command and Control Systems Office
CLIPS C Language Inference Programming System
CPT&E Computer Program Test and Evaluation
CRSV Cross Reference, Style, and Verification
CSAT CSCI Acceptance Test
CSCI Computer Software Configuration Item
DACS Digital Access and Cross-Connect System
DCS Defense Communications System
DEB Digital European Backbone
DPAS Digital Patch and Access System
DSOM Digital Systems Operations Manual
HOL High-Order Language
HWCI Hardware Configuration Item
IBM International Business Machines
ID Identification

159

MBS Mission Bit Stream
M.I.T. Massachusetts Institute of Technology
MITEC Machine Intelligent Technical Controller
NCS Network Control System
NMES Network Management Expert System
PC/AT Personal Computer/Advanced Technology
PC-DOS Personal Computer Disk Operating System
RDBMS Relational Data Base Management System
RS-232 EIA Recommended Standard 232, specifies electrical

characteristics of serial connections.
SCBS Service Channel Bit Stream
SQL Structured Query Language
SRS Software Requirements Specification
TBD To Be Determined
TEG TRAMCON Event Generator
TM TRAMCON Master
TRAMCON Transmission Monitor and Control
TSO Telecommunications Service Order
XON-XOFF Transmission On - Transmission Off
USAF United States Air Force

160

Pute - in e o,nr ev o , ths cotcononom n maiwto 0 eage ,o m .. eseonse -nC, g 1e 'fle 0, e,- ewg nsvhjcit,s sea,_,ng e..5t5 lat, - -ce gante'g and ma~ntann te data neeow
1 C zonpo.tng amd 1ov'-N" o otieio. a' "- z-~na Send -ot Me g tn 0s Ognes,n'ale a, an, Othe asoeC, 0VT te zo".Intna onao oce SgqO~d- lo, r ng tt'S Osron 0. Wavfrtot'

'acresSesaes DCtWo'te lo' n ontn perauons and Sepoes 215 jenersoe 0a.,S HVgay Sgre '204 Afrrto VA f222 4302 adto re 0"<e ol managonnen amd 8,L~et Pa~s.,t Reouct,o, 0-1r
Z0- 88 Wasnroe DC 209C13

1 AENY UE NL (Lav blnk 2REPORT DATE 3. REPORT TYPE AND DATES COVERED
AGNYUEONY(ev bak 7 3 'Septembettr l981) %nnual Report. Oc(ttobter 19J88 -3 St eptembter 1989

4 TITLE AND SUBTITLE 5. FUNDING NUMBERS

Know ledge- Baced Mot1em Analysis and Cotntrotl Defense Switched Network Task Areas

C- F19628-904(:414)02
6. AUTHOR(S) P 2,2

Harold NI. liegestatt

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
REPRT NUMBER

I ing- tn Labat.to Mt~ IT.
P.O. Box 73
L exington. _NI - 02173-9108

9 SPONSORING. MONITORING AGENCY NAME(S) AND ADDRESS{ ES) 10 SPONSORING MONITORING
AGENCY REPORT NUMBER

DC(%r En.oineerina GO(roup

i 800 AX ichle Xs t'ntElS FD)T R -90-l111

11 SUPPLEMENTARY NOTES i.' U.-..

12a DISTRIBUTION AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

%pp~rttset for publlic' releace: tti-tribtion is unlimjitedt. !.

13 ABSTRACT (MaximLum 200 words)

The priniar% thrust of the F)~ 81) prograin %as installatitin antd tdemonstration of the Network Nianagetient Exp;ert ~Sytein NME F1

itself andi perfotrmanc'e of numerouls tasks in matching the hardware and software to the DC %-Erope environment sit that it could
bte mt'aninfnll op~erated there. Additional t'tmponent, otf the F1Y89 program were implementation tif an Operator Trainer to tieN vitti

opleratotr skills in the use of the current manual "Network NManagement Sup~port System.n as well as exer'ution of a set of enhancenment.
to. and investigatittns with, the (all-Its-C all Simulation t1 C:sfM .

The F1 89 SOV, alsot calletd for sulstantial effort tn begintt scotpe and understand the prohlems .tf correlating andi interptretingo

1)(I~ ransinisitn sv stem alarnms antd presenting filteredt r'esnilts tot Tech Control and Netwotrk Management tdecision makers. 13%
analogy' with the aiitcrss f the C(IIM as a ptrtra,.al of rt~listic network ltehayior ti use in developing network management knitwt-

edge. it ha. bteen tonjeetrired that TR.XMCOJNand DPAlaar ptattern simulation ssstens coultd make up1 for the tack if accetc to

real transmissittn netwotrks for MITE(sttftwar- developers. as well as the fact that real netwntrks seldotm produce interesting alarm

ptatterns. In F1i 89 a siteificatitin was dleelttpedi for a TH XMsCON alarm generatttr for this purpose. with an eve to implementing it
in FN 94 1.

14 SUBJECT TERMS 15 NUMBER OF PAGES
exptert xvtlrn .ss-e cotntrttl Defe-nc " witt'het Netwotrk I)SN) I 170
tt mmnin icaftitn tottnt rtol net worrk mta na genme t -t nt ico tmunitattion netwtork s imuittit n 16., PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

I nelassifiett I nt'a.-ifietl I 1la-ifieff I nelassifieti

INSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by AMSI Std 239-18
298-1 02

