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Preface

The purpose of this study was to develop numerical approximations for the Green's functions

of a theoretical model of an aperture fed stacked-patch microstrip antenna. Each complex valued

Green's functions was approximated by three functional forms. One component of each Green's

function- was well- approximated by a single function. The other component required a -piece-

wise approximation but with each approximating- function valid over the- same range, of radial

separation, for each function. All the approximations were determined using a-least squares curve

fitting method and excellent agreement with-the original data was obtained. These approximations

were -given to Capt Leon Irvin for use in a separate -effort to determine the patch surface- currents

using a-method-of moments analysis. Approximations of this type should provide for a much more

computationally efficient method of moments analysis.

I would like to-thank my advisor, Major Harry Barksdale, for his help, encouragement, and

patience throughout- the last year. I would:also like to-thank -the members of my thesis- committee,

Capt Philip Joseph and Capt Byron Welsh-for their help as wellas patience and understanding.

The last year and a half have been some of the best and worst times of my life. The association

with the members of the LO track will stand as a highlight of my life. In what could have been a

-competitive race for position in our classes, the members of the LO track were always ready-and-

willing to help and encourage each other. The entire Air Force could benefit from this cooperative

type- of relationship. On the downside, the last year and a half have been the worst -in regards

to personal- and family- life. I would like to give special -thanks- to my wife Carole, for her love,

patience, and understanding over the last year and a half. She sacrificed her career that I might

obtain this degree and words will never be able to express my appreciation. I would also like to

-give thanks to my sons David and Jonathan for doing without "Daddy" much of the time.

In any undertaking, such as a thesis, hind site is always much clearer than foresight. At

the outset-of this effort an unwritten goal was to rewrite the code used by Nazar to eliminate the



use of cnmmercial software packages. The primary goal was determining the Green's functions

approximations. Over the summer a great deal of time was spent investigating different analysis

and integration techniques. During this time I seemed to lose sight of the primary goal, obtaining

the approximations. When the decision was made to press on, using the routines developed by

Nazar, much valuable time had been lost. A clearer plan of attack, with a sequence of important

events, might have kept me on track better. The fault rests with the author and not the advisor.

Sometimes the lessons hardest learned are the best remembered.

Ronald E. Erwert
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AFIT/GE/ENG/90D-19

Abstract

The numerical approximations of the Green's functions for a theoretical model of an aperture

fed stackedpatch microstrip antenna are presented. The Green's functions approximated are those

developed by Nazar (AFIT Thesis GE-89D-37), ;Green's Functions for a Theoretical Model of

an Aperture Fed Stacked-Patch Microstrip Ante'na . Each complex valued Green's function was

written as a function of the source-observer separation. The behavior of each Green's function was

analyzed, and it was found that they could all be approximated by three separate functions. The

approximating functions were either polynomials or rational functions composed of polynomials.

One component could be approximated by a single function over the entire range of radial

separations, while the other required a piecewise approximation over the same intervals for each

function approximated. The coefficients of the functions were determined by using a least squares

curve fitting method and were used in a separate effort XF) to perform

a moment method analysis of the antenna. Custom written FORTRAN code was developed to

determine the coefficients of the approximations. " L t

Example results for several of the Green's functions approximated are presentedAThe agree-

ment between the approximations and the original functions was excellent.

ix



NUMERICAL APPROXIMATIONS OF THE GREEN'S FUNCTIONS

FOR A THEORETICAL MODEL OF AN APERTURE FED

STACKED-PATCH MICROSTRIP ANTENNA

L Introduction

The microstrip antenna concept was first proposed by Deschamps in 1953 [1]. The concept

lay dormant-until the early 1970's when there was an immediate demand for low-profile antennas

on a new generation of missiles [2] and better theoretical .nodels and manufacturing techniques

were developed. Low cost, ease of construction, thin profile, and modular design are among the

numerous advantages offered by microstrip antennas. Conformability makes them easy to integrate

into the skin of an aircraft or missile without degrading the vehicle aerodynamics. Extensive efforts

continue to improve the designs, integrate them into- new applications, and develop better analysis

techniques to predict antenna performance

1.1 Microstrip Antenna Background

1.1.1 Definition. The basic geometry of a microstrip antenna consists of a conducting strip

radiator or patch printed on a grounded dielectric substrate (see Figure 1). The antenna input or

feed-can be either a coaxial cable or a microstrip. The antenna patch conductors can in principle b.

-any shape but are usually rectangular or circular to simplify analysis and performance prediction.

Generally the substrate dielectric constant should be low ( c 2.5) to enhance the fringe fields

which account for the radiation [1].



Antenna Patch Antenna Patch

Ground Microstrip GroundCoaxialGon edGon
Fed Plane Feed Plane

(a) (b)

Figure 1. Microstrip Antennas with (a) Coaxial Feed and (b) Microstrip Feed [3].

1.1.2 Advantages. Compared to conventional antennas, microstrip antennas have numerous

advantages and can be used in a wide variety of applications over a frequency range of approximately

100 MHz to 50 GHz. Some of the major advantages are [1]:

* light weight, low volume, low profile planar configurations which can be made conformal

* low fabrication cost, readily amenable to mass production

* can be made thin; hence they do not perturb the aerodynamics of the host aerospace vehicles
* the antennas may be easily mounted on missiles, rockets and satellites without major alter-

ations

* microstrip antennas are compatible with modular designs (Solid state devices such as oscil-
lators, amplifiers, variable attenuators, switches, modulators, mixers, phase shifters, etc. can
be added directly to the antenna substrate board)

* feed lines and matching networks may be fabricated simultaneously with the antenna

1.1.3 Disadvantages. Unfortunately microstrip antennas do have some disadvantages com-

pared to conventional antennas such as [1]:

* narrow bandwidth

* loss, hence somewhat lower gain

* most microstrip antennas radiate into a half plane

* poor end-fire radiation performance

e poor isolation between the feed and radiating elements

2



1.2 Problem Background

As previously stated, narrow bandwidth is one of the disadvantages of microstrip antennas.

The bandwidth of the antennas shown in Figure 1 is typically 1-5% of the resonant frequency.

Increasing the substrate thickness can increase the bandwidth but any bandwidth gains are offset

by loss, radiation, and impedance mismatch problems [3].

Captain James Nazar developed an analytical model of a configuration combining two band-

width improving techniques, aperture feeding from a microstrip line and using stacked patch radi-

ating antenna elements. A picture of this aperture fed stacked-patch microstrip antenna is shown

in Figure 2. In his thesis he presented a theoretical model- for this antenna using the mixed po-

tential -integral equation (MPIE) approach. The Green's functions associated with-the vector and

scalar potentials are evaluated in the spatial domain using stratified media theory. He outlines a

method of moments technique to solve for the currents but no actual solutions for the currents are

calculated.

The Green's functions developed are expressed in the form of Sommerfeld integrals. The

moment-method analysis requires surface integration of the Green's functions over the source and

observer coordinates. The Green's function integrands are dependent on the radial separation

between the source and observer. To numerically evaluate the integrals of each Green's function

at every value of radial separation required in the surface integrations would be extremely time

consuming. Nazar proposed numerically evaluating the integral Green's functions over a finite

number of radial separations and interpolating to find the intermediate values. He states polynomial

averaging may be an acceptable interpolation technique [3].

1.3 Problem Statement

In this thesis, a subset of the Green's functions developed by Nazar will be numerically

evaluated at a finite number of observer-source radial separations and approximations for each

3
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Figure 2. Aperture Fed Stacked-Patch Microstrip Antenna [3].

Green's function will be developed which can then be used in a tractable method of moments

analysis.

1.4 Research Objectives

The main goal of this research is to further develop a mathematical model suitable to analyze

an aperture fed stacked-patch microstrip antenna as displayed in Figure 2. The Green's functions,

previously developed, are in the form of Sommerfeld integrals which will be solved numerically

and approximated by simpler functions. These Green's function approximations will be used in

a concurrent thesis effort, by Captain Irvin [4], to perform a method of moments analysis to

determine the various currents of the antenna. Captain Terry [5] is building and measuring the

radiation characteristics of an aperture fed stacked-patch microstrip antenna. The culmination of

these thesis efforts should be a working and verified analytical model of the antenna.

4



1.5 Research Questions

Answers to the following questions will be found:

1. What are the form functions necessary to accurately model the Green's functions?

2. How well do these functions approximate the original Green's function?

1.6 Assumptions

Because this thesis effort is a continuation of Nazar's work, the same simplifying assumptions

were made about the material parameters to make the mathematical analysis tractable. Each

dielectric is considered isotropic, homogeneous, and lossless. The dielectric layers and ground plane

are considered infinite sheets. The ground plane and antenna patch conductors are infinitely thin,

perfect electrical conductors, while the dielectric layers have finite thickness. Finally, the Green's

functions derived by Nazar were assumed correct.

1. 7 Scope and Limitations

Only the aperture fed stacked-patch microstrip antenna was analyzed. The unique-Green's

functions derived by Nazar were evaluated numerically and approximated-by appropriate polyno-

mials. Once these functions were determined, the coefficients were given to Capt-Irvin for use in a

method of moments analysis to determine the electric and magnetic currents of the antenna.

1.8 Thesis Organization

The rest of this document is organized in the following manner. Chapter II is a review of

several current articles on aperture fed microstrip antennas, stacked-patch microstrip antennas,

aperture fed stacked-patch microstrip antennas, and the method of full wave analysis. Chapter

III contains the theory necessary to develop the Green's functions in the theoretical model used

to analyze this antenna. Chapter IV presents an explanation of what functions are approximated,



what the approximations are and how well the functions approximate the Green's functions. The

conclusions and recommendations are discussed in Chapter V. Finally the components of the vector

potential derived in Chapter III as well a complete list of the Green's functions used in the model

are contained in appendices.

6



I. Literature Review

This literature review summarizes current work on microstrip antennas. Since this thesis

effort concentrates on further development of a theoretical model for an aperture fed stacked-patch

microstrip antenna, only current reports on aperture fed microstrip antennas, stacked patch mi-

crostrip antennas, aperture fed stacked-patch microstrip antennas, and full wave analysis techniques

will be summarized. The final work reviewed is Captain James -Nazar's thesis, the departure point

for this thesis effort.

2.1 Aperture Coupled Antennas

In 1985 D. M. Pozar [6] presented a new technique for feeding microstrip antennas. He

proposed coupling a microstrip patch on a substrate to a microstrip line feed located on a parallel

substrate via an aperture in the ground plane separating the two substrates (see Figure 3). To

make the feedline location easier to visualize, the feed substrate in Figure-3 is shown transparent.

Pozar cited three advantages of an aperture coupled configuration:

1. The configuration is well suited for monolithic phased arrays, where active devices can be
integrated on, for example, a gallium arsenide substrate with the feed network, and the radi-
ating elements can be located on an adjacent (low-dielectric constant) substrate, and coupled
to thefeed network through apertures in the ground plane separating-the two substrates. The
use of two substrates thus avoids the deleterious effect-of a high-dielectric-constant substrate
on the bandwidth and scan performance of a printed antenna array.

2. No radiation from the feed network can interfere with the main radiation pattern, since-a
ground plane separates the two mechanisms.

3. No direct connection is made to the antenna elements, so problems such as large probe self
reactances or wide microstrip line (relative to patch size), which are critical at millimeter-wave
frequencies, are avoided.[6]

Pozar designed a prototype antenna using small hole coupling theory and a cavity model

for the patch. No specific bandwidth performance results were cited, but he did report that the

patterns in the principle radiation planes were basically the same as for a microstrip antenna-with

same geometry. Also radiation from the feed side of the antenna was negligible.

7
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Figure 3. Aperture Coupled Microstrip Antenna.

Sullivan and Schaubert [7] took Pozar's concept and developed an exact mathematical model

for an aperture fed microstrip antenna with one radiating antenna patch. They formulated coupled

integral equations by using the Green's functions for grounded- dielectric slabs. Their analysis

included all the coupling, radiation and surface-wave effects for both substrates. In their analysis

they invoked the equivalence principle, closed off the aperture and replaced it with magnetic surface

currents Ms located just above and below the ground plane (see Figure 4). To ensure continuity of

the tangential electric field across the aperture, the magnetic currents are of equal magnitude but

oppositely directed. The space below the ground-plane (z < 0) is designated as region a and the

region above (z > 0) as region b. The known incident current distribution on the feedline is Jinc,

the scattered current distribution on the feedline is Jf and the current distribution on the patch is

Jp. The electric and magnetic fields in each region can then be written as the summation of the

contributions from each source:

Et t = Ea(Jinc) + Ea(Jf) + Ea(Ms)

HtOt = Ha(Jinc) + Ha(Jf) + Ha(Ms)

Etot = Eb(Jp) - Eb(Ms)

Hbot = H(Jp) - Hb(Ms)

8



IP Jp

Regionb ,.

Eb

Region a

o Jinc Jf

(a)

Region b

Lb
Ms

La

Region a ,,._

o  Jinc + f

(b)

Figure 4. Antenna and Feed with Incident and Induced Currents. (a) Original problem. (b)
Equivalent problem. [3, 7].
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By enforcing the boundary conditions they obtained three coupled integral equations for the un-

known currents Jf, Ms and Jp. The equations were then solved using a Galerkin moment method

procedure. The analysis was simplified by assuming the electric currents on the antenna patch and

stripline were only in the y-direction and the aperture was electrically shorted and replaced by

magnetic currents confined to the x-direction. The expression obtained for Ms was not quite exact

because one material parameter must be determined from empirical data. The authors verified

their results by comparing calculated to measured input-impedance for several different combina-

tions of dielectric constant, dielectric thickness and aperture position and obtained good agreement

between predicted and measured performance.

Tsao et aL [8] reported the results from the design and testing of several aperture fed stacked-

patch microstrip antennas. A test model with a single input-feed network achieved a 19.2 percent

bandwidth at 3.9 GHz with an input voltage standing wave-ratio less than two. A two-input-port

-model designed-for dual polarization achieved a 23 percent bandwidth at-3.74 GHz with an input

VSWR less than two. No exact 3nalysis was presented but the authors did demonstrate that

an aperture fed stacked-patch microstrip antenna can yield higher bandwidth-than a single patch

microstrip antenna.

Das [9] studied the general configuration of printed antennas fed by planar transmission

lines in a multilayered substrate geometry by analysis using a full -wave spectral domain moment

method. In his model he developed a complete set of full wave spectral domain Green's functions

for a multilayered geometry. One particular configuration he studied was an aperture fed stacked-

patch antenna. He verified his analysis by using a waveguide simulator and reported a bandwidth

of 11 to almost 17 percent depending-upon the primary patch size.

In a recent article Pozar [10] modeled an infinite phased array of aperture coupled microstrip

patches. His solution used the exact Green's functions for the dielectric substrates in a spectral

domain moment method approach. The coupling of one aperture in the infinite array to its ar-

10



sociated feedline is found, and an equivalent series impedance is determined. The model assumes

no coupling between the feed lines themselves as long as they do not come within a few substrate

thicknesses of each other. A waveguide simulator was used to verify the theory. The agreement

between measured and calculated impedance results was good.

2.2 Analysis of Microstrip Antennas

The electromagnetic fields radiated by a microstrip antenna are found by solving the integral

equations for the currents on the feed elements and the antenna patch(s). Mosig [11] describes a

mixed potential integral equation (MPIE) technique applied to microstrip structures which can be

used to solve for the currents. In this method he uses Green's functions associated with the scaler

and vector potentials which are calculated by using stratified media theory and are expressed as

Sommerfeld integrals. The author solves the MPIE in the space domain to keep a good physical

insight to the problem. The MPIE is numerically stable and can be solved with efficient algorithms.

The formulation of these equations provides a powerful and flexible technique because contributions

from coupling, dispersion, radiation losses and surface waves are included. The technique can be

extended to multilayered substrates and multiple conductors at different levels (stacked patches)

by making suitable modifications to the Green's functions and increasing the number of unknowns.

Additional insight into using the MPIE is provided by an earlier paper by Mosig and Gar-

diol [12]. The authors develop in detail the spatial Green's functions associated with microstrip

structures. These Green's functions correspond to the fields and potentials created by a horizontal

electric dipole placed on the air/dielectric interface and are expressed as Sommerfeld integrals. The

situation where both the source and observer are located on the same plane is studied extensively.

Numerical methods to evaluate the Sommerfeld integrals in this situation are reviewed, and several

techniques introduced and discussed in detail.

Analytical techniques applicable to stratified media were needed to develop the model for the

11



antenna studied in this thesis. Mosig indicated the MPIE can be used for stratified media but he

derived the Green's functions using only the horizontal electric dipole (HED) and a point charge

and did not derive the Green's functions for stratified media [11]; Kong developed the integral

expressions for the electric and magnetic fields for both the HED and the horizontal magnetic

dipole (HMD) in both infinite and semi-infinite stratified media [13]. As discussed later, Nazar

extracted the HED and HMD Green's functions for stratified media from Kong's integral field

expressions [3]. The Green's functions for the HMD were needed to determine the fields radiated

by the magnetic currents used to close off the aperture in the ground plane.

Das and Pozar derived a generalized, two dimensional, spectral-domain Green's function

'completely defining the field inside a multilayered dielectric structure due to a current element

located between any two layers. They derive their solution by solving a "standard" form containing

the current element located on the interface between any two layers and using an iterative algorithm

to take care of additional layers. Another iterative algorithm is then used to find the field in any

layer in terms of the field expressions in the two layers of the "standard" form. The locations of

the poles of the Green's function are predicted, and an asymptotic form is derived along with the

asymptotic limit. From their analysis they draw the following conclusions:

1. The convergence of the numerical solution of the Green's functions is much faster when the
source and observer are on different planes than when they are coplanar.

2. The numerical convergence to the asymptotic limit is much faster for thicker dielectric layers.

3. The convergence of the numerical solution is much-faster for structures with a ground layer
than for structures without a ground plane [14].

Most of the exact analysis of microstrip antennas has concentrated on deriving the Green's

functions using only horizontal dipole sources such as the HED and HMD. Hall and Mosig [10]

applied the MPIE approach to vertical monopoles embedded in a dielectric substrate media. The

vector -and scalar potentials were written in terms Sommerfeld integrals and evaluated using tech-

niques similar to those developed for horizontal dipoles in microstrip antennas. The analysis was

12



verified by comparing measured and calculate impedance data for a monopole embedded in Teflon.

Good results were obtained indicating this method may be useful for modeling the coaxial feed for

a microstrip patch antenna.

Barlatey et al. analyzed a stacked patch microstrip antenna using the MPIE approach. They

provided a complete and rigorous treatment of the Green's functions for the potentials in the space

domain, created by a RED located at any of the dielectric interfaces of a multilayered structure. The

surface waves which can arise in such a structure were characterized numerically. An approximate

formula for the value of the propagation constant of the dominant TMo mode was given, and

conditions necessary to ensure the absence of higher order modes were specified. The MPIE was

solved with a Galerkin method of moments procedure. They show that the introduction of auxiliary

variables greatly reduces computation time. Theoretical results for the input impedance of a two-

layer patch agreed well with measurements. The authors estimate one configuration would have a

bandwidth greater than 15 percent for a VSWR of two or less.

2.3 Nazar's Thesis[S]

Nazar developed a theoretical model for the analysis of an aperture fed stacked-patch mi-

crostrip antenna. The mixed potential integral equation (MPIE) approach was used. The aperture

was closed by using opposing magnetic currents on each side of the ground plane. As noted before,

Nazar derived the-stratif;%d media Green's functions using both the HED and HMD. The necessary

Green's functions associated with the vector and scalar potentials were evaluated in the spacial

domain to keep a good ph, 3icat insight to the problem. The Green's functions are expressed as

Sommerfeld integrals. A n.".athoo of moments technique to solve for the currents of the antenna

is outlined but no actual solutions are calculated. The Sommerfeld integral in the Green's func-

.tions were analyzed and found to have the following characteristics: complex,oscillatory integrands;

singularities; surface waves; and semi-infinite integration intervals. He also developed several inte-
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gration techniques to deal with these characteristics. Example calculations for several of the Green's

functions were performed. The cut-off frequencies for the surface waves were determined and he

found that for the proper choice of material parameters only one surface wave mode propagates.

Example Green's functions were evaluated with sample results reported.

2-.4 Summary

Microstrip antenna research continually produces innovative designs and more elaborate anal-

ysis techniques. Work by. Pozar, Sullivan and Schaubert, Tsao et al., Das, and Barlatey et al. have

shown the feasibility of using aperture coupling and stacked patches to increase the bandwidth of

microstrip antennas. Sullivan and Schaubert, Mosig and Gardiol, Kong, and Das and Pozar devel-

oped analytical techniques to rigorously calculate the solutions for microstrip antennas in stratified

media. Hall and Mosig applied the MPIE approach to vertical monopoles embedded in a dielectric

substrate. Nazar developed the Green's functions for an aperture fed stacked-patch microstrip

antenna. Solving these Green's functions numerically in an efficient manner will allow their use in

a method of moments analysis to determine the antenna currents. The complete analytical model

for this antenna can then be used to define frequency, bandwidth, and radiation characteristics and

thus develop criteria for the efficient design of this antenna.
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III. Theory

3.1 Analysis Overview

The goal of this analysis is to find the induced electric currents on the two antenna patches

given an assumed magnetic surface current over the aperture. These currents can be used to de-

termine the antenna operating characteristics such as resonant frequency, input impedance, band-

width, and radiation pattern. The various antenna currents are illustrated in Figure 5. The electric

currents are labeled as Jinc for the feedline current; Jf is the feedline scattered current; J 2 is the

primary-patch current; and J3 is the parasitic patch current. The equivalence principle [15] can be

used to close off the aperture and replace it with opposing magnetic surface currents M 1 located

just above and below the ground plane. The opposing magnetic currents ensure continuity of the

tangential electric field through the aperture [7]. Though only x-directed electric and y-directed

magnetic currents are shown in Figure 5, the analysis includes all currents in the xy-plane. The total

electric and magnetic fields in regions a and b can be written as the summation of the contributions

from each source:

Etot = Ea(Jinc)+Ea(Jf)+Ea(M1) (1)

Htot = Ha(Jinc)+Ha(Jf)+Ha(M 1 ) (2)

Etbot = Eb(J2)+Eb(J3)-Eb(M1) (3)

Htbot = Hb(J2)+Hb(J3)-Hb(Ms) (4)

In this analysis a somewhat simplified model is used. Rather than using Jinc as the known

input, the magnetic surface current across the aperture is assumed known. Thus only the two

patch currents J2 and J3 need be solved for. To determine these currents, only expressions for the

electric field need to be derived.
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Figure 5. Stacked Patch Antenna and Fecd with Incident and Induced Currents (3].
(a) Original Problem. (b) Equivalent Problem.
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The electric fields in the problem can be expressed using the mixed potential integral equation

(MPIE) and solved in the space domain. Harrington discussed using both-vector and scalar poten-

tials (mixed potentials) to solve scattering and antenna problems [16]. Mosig applied the MPIE to

microstrip antennas [11] and -Nazar applied them to the aperture fed stacked patch structure [3].

The electric fields due to the electric and magnetic sources, respectively, are derived from the

scalar and vector potentials

E = -jwA-VV (5)

E = - V F (6)

where-A is the magnetic-vector potential, V is the electric-scalar potential, F-is the electric vector

potential, and j=,f-r.

Equation- (5) assumes only electric sources are- present and Eq -(6) assumes only magnetic

sources. The vector and scaler potentials can be expressed using-the corresponding Green's function

as superposition- integrals of the current and charge densities.

A(p) = JGA(PIP).J(p)ds' (7)-

V(p) = f Gq(pjp')q(p')ds' (8)

F(p) = j p(pp')"- M(p')ds' (9)

with the dot in Eqs (7) and (9) indicating a dot product of the dyadic Green's function with the

-vector surface current. The radial positions of the observer and source respectively, from the z-axis

are represented by p and p. The continuity equation relates the electric current and charge density.

V.J +jwq = 0 (10)
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The electric field in region b (the half space into which the antenna radiates) is described by

substituting Eq (7) through (10) into Eqs (5) and (6). Two coupled integral equations are then

obtained for the two unknown currents J2 and J 3 by enforcing the boundary conditions of Table 1.

The remaining boundary conditions such as conditions on the normal and tangential fields at the

dielectric interfaces, are incorporated in the construction of the Green's functions.

Table 1. MPIE Boundary Conditions [3]

1) Etan = 0 on antenna patch 1

2) Et " = 0 on antenna patch 2

In developing a mathematical model the first step is to determine the expressions for the vector

and scalar potentials from which the Green's functions are constructed. The MPIEs satisfying the

boundary conditions in Table 1 are then formulated and can be solved for the current and charge

distribution by a moment method solution. Throughout the analysis a time dependance of ejiw is

assumed.

8.2 Vector and Scalar Potentials

By definition the Green's functions are potentials created by a unit source which is an electric

or Hertz dipole located on of the patches or an equivalent magnetic source located across the

aperture in the ground plane. The superposition principle applies in a linear system and the

potentials of any finite source can be determined by representing the source as a continuum of

elementary dipoles and integrating the contributions of all the elementary sources [17]. The method

of Green's functions for arbitrary microstrip sources was developed by Mosig and Gardiol [12, 17].

However, they only constructed Green's functions for a single dielectric layer antenna, with only

electric sources on the dielectric-air interface and the dielectric permeability fixed at the free space

value. Nazar [3] -extended these results to model an aperture fed stacked-patch structure with
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two dielectric layers with different permittivities and permeabilities; with electric sources at the

dielectric-dielectric and dielectric-air interfaces; and with equivalent magnetic sources at the ground

plane-dielectric interfaces.

3.2. 1 HED at Interface 2b [3]. The first step in analyzing this structure is to determine the

magnetic vector potential created by a HED having a unit moment (Idx = 1 A m) along the x-axis

at the interface of dielectrics lb and 2b (see Figure 6) [3]. The resulting Green's functions can be

used in Eqs (7) and (8) along with Eq (5) to obtain the E fields of the structure for an arbitrary

distribution of sources on interface 2b. The x and z components of the magnetic vector potential

E3b- lt3b

E2b, 1'2b

Clb' 9lb

b2bP

b14

x

Figure 6. HED at Interface 2b (dielectric 2b is transparent for clarity) [3].

in each dielectric and free space can be expressed in the form of Sommerfeld integrals [17]

Ab12 (p) = jH )(AP) 2 sinh(ulbz)dA (11)

b12(P) = cos j H( )(Ap)a 2 cosh(ulbz)dA (12)
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Ab 22(P) = H(2) (Ap) [bb sinh(u2bz) + cb2 sinh(u2bz)] dA (13)

A22(p) = cos 1 H2)(Ap) [b2 sinh(U2bz) + cz2 sinh(U2bz)] dA (14)

A32(P) = 1H 0)(Ap)db2exp(-usbz)dA (15)

A32(p) = cos H 2)(Ap)db 2exp(-u3bz)dA (16)

where a 2, a 2, bb2, etc. are unknown coefficients to be solved for, p is the radial distance IpI between

the source HED and the observer point and

li 2 kb, 112b A 2 b 113b A2 k2

with kib, k2 b, and k3 b being the wave numbers in dielectrics 1b, 2b , and 3b, respectively. Although

k3b is assumed to be the free space value, k0, it is referred to as k3b for notation consistency. The

wave numbers are defined as

klb = wVTc7i, k2b = w\V/fi72pb, k3b = w\/Cjji

with Elb,2b,3b and Plb,2b,3b being the permittivities and permeabilities of the corresponding medium.

As an example of the notation, Ab12 is defined as the x-directed magnetic vector potential in region

b, dielectric lb (0 < z < bib) for a HED at interface 2b. The remaining vector potentials, Al,2 nm

are defined similarly. A definition of the integration path C along with some background of the

development of Eqs (11) - (16) can be found in the works by Nazar [3], and Mosig and Gardiol [17].

Nazar developed the necessary boundary condition to solve for the coefficients of Eqs (11) -

(16). The relevant results applicable to this work are summarized as follows:

© z = blb

Mi = A22 (17)
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1 8Ab 12  1 6A22 _(p) (18)
Pb OZ: P2b ez 27rp

Az12 _ A. 2  (19)
Pib P2b
-1 8Ab12 1 OAb22 os 1 1 ) 8Ab0) (20)

Cibllb 19z £261126 09Z 6226P26 £lb~Ui6 Op

z = b2b

Ax22 = Ab 2  (21)

1 8A 22  1 Ax32 (
-7 (22)

-P2b Oz 13b z

z~2 2 _ ~ 2 (23)
P2b P3b

-22 A 3 2 ( 1 Co1 OA 32  (24)
62612b OZ £3b6123b OZ C 36P3b £E2612b OP (

along with the Sommerfeld radiation condition

limr= IA +jkA =0 (25)
r-oo '\cOr

where A satisfies the homogenous Helmholtz equation

(V 2 + k2) A = 0 (26)

The branch interpretation [18) of U3b = is determined by the Sommerfeld radiation

condition as

U3b ="-l [-k,,, JAI >_ kab

U3b = j VA -1, IAI k3b
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The term 6(p)/(21rp) in equation (18) represents a unit current source (Idx = 1 A m) on interface

1b, where 6(p) is the Dirac delta function which can be expressed as [17]

(P) (H2)(Ap)dA (27)

Using the boundary conditions defined and Eqs (11) - (16), eight equations are formed and solved

for the unknown coefficients [3] yielding

1 Nb

b H (2)(A(2 sinh(ulbz)dA (28)

A1 2 (p) = - III H(AP) cosh(ul bz)dA (29)
4r JD bA)D(A

Ab~ = ~ (2)(\ rNb2(A)sinh(u2bz) + N 2(A)sinh(u2bz)]

x22(p) - J_ 0  Ap) ) DH(A dA (30)

Az 2(p) = jH2)(Ap) exp(u bz)h d(31)

Ab32 (p) cos€[j H (Ap) • dA exp(-ubz)dA (2
A 2- (33)

41r J. DeAD(A)D
Ab( 1 (2 (AP Ndb2 (A)

z32 COS H( JD(AD(A) exp(-u3bz)dA\ (33)
with3(P 4-hr Js rersetn thDueaos b Db

with the N's representing the numerators of a 2, a 2 , bb2 , bb2 , etc. and D's represent the denomina-

tors. The zeros of

eDb(A) - [pb12U3b + Ub coth(blbUlb)] U2b cosh(U2b(b2b - bib)) ()

+ [ b12U2b + 23UbU3b cot(bibUib)] sinh(u2b(b2b - bib))

D (A) = [Cbi3U3b + Ulb tanh(blbUlb)] U2b cosh(u2b(b2b - bib)) (35)

+ [b12U2b + 4b23UibU3b tan(blbulb)] sinh(u2b(b2b - bib))

define the surface wave poles in the dielectrics where

Clb L2b Cib
4b12 "" C623  -1 Cb13

C2b C3b 63b
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and

/412 = -, b P23-- b 43- =-
P2b JP3b 13b

The frequencies at which the TE and TM surface waves propagate are determined by the roots

of De(A) and Db(A) [3]. The surface waves represent power propagating along the surface of the

dielectric layers, instead of radiating into space. Db(A) and Db(A) are related to the reflection

factors on a microstrip structure for an incident perpendicular polarized wave (TE) and parallel

polarized wave (TM), respectively [17). The N terms are given in Appendix A.

3.2.2 BED at/nterface 3b [3]. The case for a HED located on the dielectric 2b and dielectric

3b (free space) is shown in Figure 7.

E3b, '3b

Idx// .. _. E2b9 9J2b

p

b...........
• '[- lb' A'lb

x

Figure 7. HED at Interace 3b [3].
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The x and z components of the magnetic vector potential in each dielectric and free space (3]

can be expressed as

Ab13(P) - H(2)(AP)a4ssinh(ulbz)dA (36)

Ab 3 (p) = cos j H 1(Ap)a s cosh(ulbz)dA (37)

Ax 23(p) = H(2 (Ap) [b, 3 sinh(u2bz) + cb3 sinh(u2bz)] dA (38)

Ab23(p) = cos 4 j H 2)(Ap) [bb3 sinh(u2bz) + 3 c sinh(U2bz)] dA (39)

A3 3(p) = j Ho )(Ap)dx 3exp(-u3bz)dA (40)

Ab33(p) = cos 0 q 1 2 (Ap)dbexp(-u3bz)dA (41)

The boundary conditions needed to solve for the coefficients of equations (36) - (41) are:

Z = bib

x13 = AX23  (42)

1 9Ab3= 1A 23  (43)
Jul b Oz =P2A Oz

z = A (44)
P 1 P2b

1 9Ab3 1 OA 2 3 (cosi 8Ax13  (45)

C1bPIb 8z C2bP2b Oz 2 bP2b CM6lb Op

© z = b2b

A 23 - A 33  (46)

1 A 23  1 OAhX3  6(p)
P2b 19Z P3b OZ 27rp
A 23 = A 33  (48)

P2b P3b

1 OAz23  1 OA 3 3 _ ( 1 1 A3 (49)
C2bP2b OZ 3bP3b Oz -3bP3b c 6 2bo2b p
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along with the Sommerfeld radiation condition of Eq (25). As before, the term 6(p)/27rp in Eq (47)

represents a unit current source, but this time on interface 2b. Solving for the unknown coefficients

results in the following

1 [ (2) N b xa A nAi3(P) - H° (Ap) b3(WA) sinh(Ulbz)dA (50)

X1 P) r .h0 Db (A)

Ab 3 (p) = co JH(2)(AP) Nb(A) o(51)
4wCO H D (D,LA cosh(ulbz)dA (13(P 4w f . I D b (A)D b (A)

Ab2 ((P) = jH I2 (Ap) [NbXS(A)sinh(u2bz)N NbX3 (A) sinh(u2bz)] (52)
Axb23(p) = T H~(p 3D/' bU dA (52)-\~ /

(2 [0) ND( b)(\) u d d(53)So I (Ap) 3 ) exp(-Usb) (54)Az2 3(P) =- 11' 1 b--e (53
b 1 (2) /  dz(A e

AX33(p) = Tos b x(Ubz\(4

A b C'O'S' dbAD3(A exp(-U3bz)dA (55)

'The N terms of equations (50) - (55) are included in Appendix A.

3.2.3 IIMD at Interface lb [3]. The electric fields in region b due to the equivalent magnetic

current on the ground plane (see Figure 8) are found with Eq (9) along with Eq (6). The first step

in the analysis is to find the fields created by a HMD along the x-axis at the ground plane with

a unit moment Vdx = 1 V m. Using the same procedure as for the electric sources, the x and z

components of the electric vector potential in each dielectric and free space of region b are expressed

as

Fb 1 (p) = H()(Ap) [a4 sinh(ulbz) + ebl cosh(ulbz)I dA (56)

F211 (p) = cos € j Hi2)(Ap)aa21 sinh(ulbz)dA (57)

F 2 (p) [bjI2)(AP.) [bbl sin(2b0) + CXl cosh(U2bz)] dA (58)

Fb21(p) = cos SH'2)(Ap) [bb
1 sinh(U2bZ) + cb1 cosh(U2bz)] dA (59)

Fb3 1(P) = j1H 2)(A)dxblexp(-usbz)dA (60)
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Figure 8. HMD at Interface lb (dielectrics lb & 2b are transparent for clarity) [3].

Fz31 (p) = cos4fjH()(Ap)dbexp(-u 3 bz)dA (61)

The boundary conditions needed to solve for the unknown coefficients are:

@z=0

1 F(e) (62)

Clb az 27rp

@ z-= bib

Fxbjj = Fb2. (63)

I 9Fxbl I  I 8Fb2
= 2 l (64)

Olb z 2b OZ
211 = F. 1  (65)

Clb 62b
I a bI, I 9Fb21 _cs I  I OFbl

1 ~ ~ Cs XF1  F 2  F 11  (66)
Clb.Ulb OZ 2bP2b Oz c (;2b2b Clulb' ap
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aZ ----b2b

rb21 =F 3  (67)
1 8Fb2l1 I Fbs1 31  (68)

C2b 9z a Z Oz
Fb , F.31

z___= (69)
£2b C3b

1 OFb2  1 OFb3l C 1 1 OF( 31 (70)

along with the Sommerfeld radiation condition, Eq (25), with A replaced with F. As before, the

term -6(p)/(27rp) in Eq (62) represents the unit magnetic current source on the ground plane

(interface 1b). The solutions of Eqs (56)-(61) are as follows

b (2),\ Nbl(A) cosh(ulbz)1F 11(p) = L JCH2)(Ap) [-.c- sinh(UlbZ) + e b(A) zJ dA (71)

Fb( Co (f~2) (\P Nb 1.,(X)
s=41r I H() D.b()D,(A) sinh(ulbz)dA (72)

Fb21 (p) = -2H)(AP) [NbI (A) sinh(U2bZ) + Nb I(A) cosh(u2bz) dA7
P = HUD,\(A) (73)

Fb21(P) -os H(2)(Ap) [Nbz (A)sinh(u 2bz) + Nb I (A)cosh(u 2bz)] dA (74)Fb H' N z _(_
Fz3 1 (P) = -;(- Ap)N (exp(-u Abz)dA (75)

cs (2)A) Ndb,(A)
Fb Cos 2)(,\P)Ndb.,(A)_

z~31 (P) = ~H 1)(bpb D (,) exp(-uabz)dA (76)

The numerator terms are listed in Appendix A.

8.2.4 The Electric Scalar Potential [3]. To determine the electric field of Eq (5) the electric

scalar potentials are needed. The potentials can be found using the Lorentz gauge condition for

electric sources:

V. A +jwcpV -0 (77)
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When applied to the magnetic vector potentials previously calculated, Eq (77) will yield the po-

tentials for two opposite electric point charges. To determine the Green's functions of Eq (8), the

potentials of a single point charge are needed. The electric potential, V, of a single point charge

can be found using the electrostatic relationship linking an electric point charge and a dipole po-

tential [17]:

V = Vq (78)
ft

V can be found within an arbitrary constant by integrating V over z. The value of the constant is

unimportant since the gradient of V is taken to calculate the electric field.

3.2-4.1 Scaler Potential for HED at Interface 2b [3]. Applying Eq (77) to Eqs (28)

and (29) yields
x[8Ab12  OA+ 2 ] (79)jWClb/Plb 12 e--- x 49Z

resulting in

Vb (p) Cosq5 f( H 2) [ANbb2(A) Nb22 (A) 1
e(A) Ulb DADA'sin)(ulbZ)dA (80)

12 -47rjwc1bJU1bj I~ [A De - ulb D(A~

As previously stated, this potential is for two point charges. Applying Eq (78) to Eq (80) results

in
1 [1 H(2) [Nbx2(A) Ulb N.b20€)

vb 2 ( P) 47rjw1bpl J, 0 [H D sinh(ulbz)dA (81)

The potentials in the other mediums can be found similarly:

Nb b 2AN b snh(ubz)
Vb~ ~ ~ ~~N H( ()ID(A D5N ,()1

122 (p) = 47rjWC2bP2b [ ( _ cs bbA) ( d(82)+ C 9 A Y .2 b 2 2 c o s h ( U b Z )

vb32 (p) _ 1b f H°2)(Ap) [dx2(A) DU3b N 2(A) exp(-u 3 bz)dA (83)
q32 (P) 0 L (A) A Db(
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3.2.4.2 Scalar Potentials for HED at Interface Sb.

1(2\4rj jH p) b300 U3b Db(A)D (A) sinh(Uib )d(

b N - Ax _ snh(u2 z)

4Vbf\ - ,1 fH)(P _ b Nb. (A)_coho
q23J 0 j(A) 1- A Db(A)D b.-) d (84)

b____ H(2__ UAPb D ~ 3 A
vb(p) = jw 1 0H+)(Ap) N -(A) N (AM) exp(-ubz)dA (86)

4zj~cb 3" , De'-" t Db A)DmJ

3.3 Green's Functions Construction

The electric fields in any medium may be found using Eqs (5) and (6) along with the vector

potentials and the electric scalar potentials. However, only the tangential eclectic fields listed in

Table 2 are needed for this analysis.

Table 2. Necessary Tangential Fields [3]

HED at interface 2b (Patch 1): HMD at interface lb (Aperture):

1) Et" at interface 2 1) E" at interface 2

2) Etan at interface 3 2) Etan at interface 3

HED at interface 3b (Patch 2):

1) E tan at interface 2

2) Etan at interface 3

3.3.1 E Fields Due to Electric Sources [3]. Equation (5) is used to calculate the E fields

due to electric sources. The Green's functions for the case of an electric source on interface 3b and

an observer on interface 2b are used to demonstrate the form of the equations.
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The tangential E field at interface 2b is found by putting equations (52) and (85) into equation

(5), yielding

E2an [-jw (Ab23 + Ay23Y) - VtVq32](zb) (87)

where Ab 23 is the magnetic vector potential for a y-directed current source and is equal to Eq (52).

Since only a unit point source located a p = 0 is assumed initially, the integrals of Eqs (7) and (8)

over the point source results in

Gbxx

=A22 A 23(p) (88)

A23p y A 23  (89)

G 23(p) = v 23 (p) (90)

where Gbx23(p) is defined as the magnetic vector potential in the x-direction (first z in the super-

script) on interface 2b for an infinitesimal x-directed current source (second z in the superscript)

on interface 3b, with an observer at radial position p. The Green's functions in Eqs (89) and (90)

are similarly defined. By taking the transverse gradient in cylindrical coordinates and using the

identity ; = Ycos ' + ysin 4, Eq (87) becomes

23(p = r GA23X p - 8G 2 ()Cos 4' i+ [-jwGb(p) G(p) )sn' (91)

I awGA20P A23 OP

The Green's functions only depend on the radial separation p = IpI between the source and observer

and not the relative angular position. Equation (91) gives the expression for the tangential E field

anywhere on interface 2b for a point source at p = 0 on interface 3b. For generalized source and

observer points (p : 0), p and 4 become R and C (see Figure 9)

R = IP - p'l (92)

= sin - [ psin R sin
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Then for the generalized case for a distribution of sources over interface 3b, Eq (91) becomes

PRP 1

Figure 9. Geometrical Relationships for x-Directed HED at Arbitrary p' [3, 17].

Ebtan(P) = [-jw f5, GAX (R)x 2 (O')ds' - cos 2 f 3, Gq, 2(R)q 2(p')ds'] ()
+ [-jw f,, Gb(R) y2 (p')ds' - sin f8, Gqbs(R)q 2(p')ds'] y

where

G bGq 23(R)
OR

By properly interchanging the Green's functions and source terms in Eq (93), all the tangential E

fields produced by the HEDs listed in Table 2 can be found. It appears that Nazar inadvertently

left out a factor of jw from the denominator terms of G b 2(R), G b 3(R), G b 3(R), and Gb 2(R). AoGq22) Gq23) Gq33() an q32()

complete list of all Green's functions can be found in Appendix B.

3.3.2 E Fields Due to Magnetic Sources [3]. The tangential E fields at the dielectric in-

terfaces due to the magnetic source on the ground plane are found with Eq (6). An example of

calculating one of those fields will be presented.
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The tangential E field at interface 3b due to an infinitesimal, z-directed magnetic current

source on interface lb (ground plane) can be found by expressing F31 in cylindrical coordinates

F b31 (P) 80 f H~(p N0 (A) exp(-usbZ)dA (94)c4, [ , ,(A)

cosi (2) Nd,(A)
F03 1(p) = - i(H(Ap) exp(-usbz)dA (95)

z3 (p)  1s b D (() DP3 bzbz)dA (96)

and then applying Eq (6) in cylindrical coordinates results in

3 1 (P) - z 3 1  p3 (8~ 1 3 1 )71 (97)
63 9Oa z /J(Z=b 1 .)

The z and y components of the E field can be determined by using = cos¢ + ysin and

= -Esin € + ycosS, resulting in:

b
4'b 1 ... ( 2 ) Nb I ((A)

2 0 f- H (Ap)Db D(A) 1
-x" cPs si 2) (A)Deb , 't ( A) exp(-usbb2b)dA

_ (2) Nb  (
Ebyf(p) = 47rbl - fcHo (Ap)Usb z exp(-usbb2b)dA (99)

P ~ De7(_)D m(A

where E-bx designates a 1,-directed electric field for an x-directed magnetic current element. As

before, the integrals of Eqs (98) and (99) only depend on the radial distance between the source

and obserer points. For an arbitrary distribution of -directed magnetic current elements let p

and € become R and C as related by Eq (92). Then Eqs (98) and (99) become

bxx (p) .' (R, ()Mb 1 (p')ds' (100)

1 G-E312
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Ebyx (P) by.x )b
E31(p) = - GE(R,C)M x(p)ds' (101)

where -Gbx(R,C) equals the right-hand-side of Eq (98) and -GEb,(R,C) equals the right-hand-side

of Eq (99) for arbitrary source and observer locations.

To determine the E fields for y-directed magnetic current sources replace 0 by ) - ir/2 in

Eqs (94) to (96) [3] and repeat the same procedure used to derive Eqs (98) and (99). The x and

y components of the E fields at interface 3b due to an infinitesimal, y-directed magnetic current

source on interface lb are then

E~~(p) sin 24 f - (2)H ,(A Nb n() exp(-usbb2b)d,\(024 $2b

! + ft(2)(AP) D( ) exp(-ubb2b)d\ (frH '5b1 \V~()Db(A\)-
3 1 4 ,r, 6 2b +(2) ) 5 N db2I ( ) e p

+Jcom. ./-HI (AP) b exp(-u3bb2b)dS+in2  De()Dm(A)
4 r$2b

bbxy(2) N,,()(13
E31 (P) -T 47rC2b + fcH H (AP)Usb b(A eXP(-usbb2:)dA(13+sin 2 0 f Ho( ((AP)A , j (AD ) exp(-u~bb2b)dA,

which are similar to Eqs (98) and (99). For an arbitrary distribution of y-directed magnetic current

elements, the E fields of Eqs (102) and (103) are represented as

Eby(p) = - yi (R,0)Mb(P)ds' (104)

b(p = -j G b(R ,,)Mxl (p )ds' (105)

The tangential E fields can be written more compactly as

E btan Mb s --

3a -j GE3 (R, .Mb (pt)ds' (106)
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where
=b Gbx (R ()R E31(R,¢)x-y

GE3, (R,¢) (107)byx(R YRG y ,GE31(R y E31 -

The tangential E fields at interface 2b due to the magnetic surface currents on interface lb

can be found by expressing Fb1 in cylindrical coordinates and repeating the procedure for z = bib

[3] resulting in
Ebtan Mb l--

21 - GE21(R,) M(p')ds' (108)

The complete set of Green's functions for this analysis are in Appendix B.

3.4 Integral Equations

The expressions for the E fields are integral equations involving the derived Green's functions

and the unknown current and charge distributions. The unknown distributions on the patches are

found by enforcing the boundary conditions of Table 1. To comply with the boundary condition

Etn = 0 on patch 1, the sum of the tangential electric fields due to the sources on patch 1, patch

2 and the equivalent sources on the aperture must equal zero. Using the derived Green's functions

and Eq (5), this can be expressed as

-jw -A=(P1P'). J 2(p')ds' - Vt Jp Gb22(Pp')q92(p')ds'

-jw P GA23(p1p,) • J3 (p')ds' - Vj Gb23(PlP')qs(P')ds'

+f G=E21(PIP) MI(p')ds' = 0 (109)

with

=b , Gb(pIp')R- 0
GA22(pIp') = (110)

0 GA2
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GA23(plp') is similarly defined and MI(p') is the assumed magnetic current across the aperture.

On patch 2

-jw j A32(PIP) J2(P,)ds' - Vt Gq
wjG 4 (p) )- Gq2(pp')q2(p')ds'

Gj A33(PIP' ()" S t G

+ GEM (pIp ). Mi(p')ds' = 0 (111)

The unknown current and charge distributions in Eqs (109) and (111) can be solved using a method

of moments approach which converts the integral equations to matrix equations.

3.5 Approximation Theory

Given a set of discrete values for a function, approximations for intermediate values can be

determined by two separate but related processes [19]. If the values are assumed accurate then

an interpolation scheme can be used. This involves determining a function whose curve will pass

through each data point or a chosen subset of those points. If the discrete data are thought to

contain errors then a curve fitting process can be used to try and average out these errors.

The Green's function data to be approximated was assumed accurate, so the first thought

might be to use an interpolation technique. The numerical data for each Green's function consisted

of 50 data sets which would require an interpolation polynomial of order 49 if all the data sets were

used. The process of determining the coefficients of this size polynomial would only be trading one

computationally intense process for another. Using only a subset of the data would be possible

if one knew a priori which data sets should be used. No previous knowledge of the data to be

approximated was assumed, so all the data was used in determining the approximations. Thus

to use all the data, a curve fitting method was chosen to determine a polynomial or functional

approximation of hopefully much lower orde'. A linear least squares method was chosen for use in
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determining the coefficients of the approximation functions.

In the least squares method a form of function or a polynomial is assumed and the coefficients

are solved for based upon the goal of minimizing the square of the error between the original function

and the approximation. An outline of the method as presented by Stark [19] follows.

Given a table of n + 1 points, an approximating function of the form

pm(x) = amgm(x) + a.-g.-(x) + ... + alg(x) + aogo(x) (112)

is assumed, where the functions gm(x),..., go(x) are some known functions of x. The approximating

function is sought to match the n + 1 given points in such a way that if a set of deviations were

formed, one for each tabulated xi,

6o = p..(XO) - f(Xo)

61 = p(X)- f(Xi)

62 = P.(X2) - f(x2)

6n = pm(Xn)- f(Xn)

or, in general terms, the set of deviations

5 = p.(xj) -f(xj) fr i=O, 1,2,...,n (113)

then the sum of the squares of these n + 1 deviations should be a minimum:

E(bi)2 = a minimum. (114)
i=O

36



The summation in Eq. (114) can also be written as

E = -]p(X,) _(X,)]2 (115)
i=0 i=0

n n

,(b,) 2  =Elamgmxi) + . . .+ aogo(zi) - f(_-)]2 (116)
i=O i=O

The object is to minimize the right-hand side of Eq. (116). Since the xi and f(zi) are given in the

original table, and the gi(x) are known functions which can be evaluated at the given xi, the only

unknowns in Eq. (116) are the coefficients ai. Thus Eq. (116) can be looked on as a function of

the m + 1 coefficients ai with all the other terms being known constants.

To minimize a function its first derivative is set equal to zero and the equation is solved for

the unknown variable. In this case the function to be minimized, Eq (116), is actually a function of

the m + 1 unknowns ai. The first step in solving for the unknowns is to find the partial derivative

of the summation with respect to each of the m + 1 variables a, and set each of these derivatives

equal to zero:

, n 2 0

(8,)= 0,

oi=n

E(6,)2 = o
ali=0

or, in general terms
n 

)

-- (i o for =0,1,2,...,m. (117)
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The series has a finite number of terms, and so the derivative of a sum is equal to the sum of the

derivatives of the terms. Thus Eq (117) can be written as

tft

Oaj i=0 i=0 Oa

E Z26" a-= 0
i=0Oa

or,

--n 196 i 1 8
06i- 0 for j 0, 1,2,...,in. (118)

i=O O5a1

The differentiation of any 6i with respect to aj is simple when noting that

6i= Pm(Zi) - f(xi)

= amgm(xi) + am.-gm.-l(i) +" " +ajgj(zi) +...

+alg (z) + aogo(xi) - f(xi). (119)

When differentiating with respect to aj, every other term in Eq (1-19) is assumed constant except

the term containing aj, so that all the other terms drop out upon differentiating, and

ab6i = + + -+ a ag~ i
aa Oa

Aa"-; =  V(x). (120)

Now substituting Eq (120) into Eq (118), m + 1 equations are obtained:

n

E 6bgi(x) = 0 forj =0,1,2,...,m (121)
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Substituting Eq (113) into Eq (121, results in

[p.(xi) - f(xig))j(xi) = 0 for j = 0,1,2,...,, (122)
i=O

and then substituting Eq (112) into (122) leaves

n

E [amg.m(x) +.+ a"g1 (xe) + aogo(Ti) - f(x,)] gj(xi)-= 0
i=0

for.=0,1,2,...,m (123)

Multiplying through on the left-hand side

n

E[amgm(xi)gj(xi) + - + ajgi(zi)gj(z)
i=O

+aogo(zi)gj (xi) - f(xi)gj (xi)] = 0 for j 0, 1,=2,

Breaking up the left-hand side into separate sums results in:

n n

Eamgnm(i)gj(zi) + "'JrEajgj(xj)gj(xi)
i=O i=O

n n

+ Eaogo(x)gj(xi)- fExi)gj(xi) = o
i=O i=O

forj =0, 1,2,...,m

Next factor the a's out of each term:

t n

amEgm(xi)gj(zi) + ... +a1 Eg(Xi)gj(Xi)
i=O 1=0

ft ft

+ ao Ego(zi)gj(zi) = E f(i)gj(zi) (124)
i=O i=O

for j =0, 1,2,...,m
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Eq (124) provides a useful result because each of the summations can be evaluated since the 9g's

are known functions and the xi's are tabulated values. Eq (124) is actually a system of m+ 1 linear

equations with the ai's the only unknowns. These linear equations can then be solved by using any

of a number of standard methods for the solution of a system of simultaneous linear equations.

To simplify the process a bit and make it more suitable for computer solution it should be

noted that the coefficient of ak in the jth equation is

n for k 0, 1,2,...,m
akj = gk()gj(Zi) (125)

0j = 0,1,2,...,m

Since j and k in Eq (125) can be interchanged, ckj = ajk, which reduces the work required to

compute these coefficients by half.

The method presented provides a workable scheme for finding the least-squares fit. Using

Eq (124) the m + 1 equations are solved for the unknown a's, which exist and are unique if the

g(x) functions are chosen properly. The resulting a's are then substituted into Eq (112) to give the

desired expression for pm(x).
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IV. Results

To determine the surface current and charge distribution of the antenna by using the method

of moments, an efficient method is needed to numerically evaluate the Green's functions. The

Green's functions as developed by Nazar are complex valued integral functions. In his thesis he

examined the Green's functions expressions, developed techniques to numerically integrate them,

and coded representative examples to show their behavior as a function of the radial separation

between the source and observer. This thesis effort concentrated on coding the remaining Green's

functions needed and developing approximations that could be used in an efficient moment method

analysis of the antenna. All the needed Green's functions were calculated numerically and then

various curve fitting schemes were tried until suitable approximations were found for each. The

curve fitting was done using a least squares method to test the fit of the various approximations.

All the custom written code developed inthis thesis was written in FORTRAN.

4.1 Numerical Evaluation of the Green's Functions

Before approximations could be made for the Green's functions, the remaining Green's func-

tions needed to be coded and numerical results obtained. The examples coded by Nazar represented

all the unique forms of the Green's functions so his results were extended by coding the remaining

Green's function integrands and using the integration routines he developed [3]. A complete list of

the Green's functions needed for this model is listed in Table 3. The redundant forms are indicated

by their equivalent forms. The Green's functions used to calculate the contribution to the E field

from the equivalent magnetic sources have an angular as well as a radial dependence. Each of these

functions is composed of two or three integral functions which each have only a radial dependence.

Table 4 shows which integral equations are the components of these Green's functions. All the

approximations in this thesis have only a radial dependence.
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Table 3. Green's Functions for Various Source Contributions

liED on Interface 2b HED on Interface 3b

Gbxx(R) (R

A22() Gbxx (R)

Gby ()bx(R) Gbyy A33

A22R A2) A3(R,= x C) )

G22(R,) Gq3(R, )

Gbx (R, ) Gb(R, C) x R

(R, ) Gq(R2 C

HMD on Interface lb

Gbxx 42



4.1.1 Behavior as R -0 0. To determine the currents using the method of moments, it is

necessary to perform a surface integration over the source and observer areas [3]. When the source

and observer are on separate planes, the Green's functions integrands decay exponentially and the

Green's functions can be solved and evaluated for a discrete series of R values between R = 0 and

the maximum radial separation expected in the antenna design. Once the Green s functions have

been evaluated for a discrete number of R values, then a suitable approximation can be made to

fit to the data. This approximation would be much more computationally efficient than trying to

evaluate the Green's function each time a value is needed. Unfortunately this method fails when

the source and observer are on the same plane.

When the source and observer are on the same plane the integrands of the Green's functions

do not decay. Nazar developed asymptotic approximations for all the Green's functions where

the source and observer are coplanar. For example, the asymptotic approximation for Gb22(r) as

R -+ 0 becomes

[lb uo(A R cosh(u2b(b2b - bib)) + Pb23U3b sinh(u2b(b2b - bib))2r JO De(A)

1+ Pb23 R J0o(X)dx 1 1+ Pb23 (126)

1 + +Pb12 + Pb23 " Pb13 J} R R1 +Pb12 + pb23 + b13(

The first and second integrals in Eq (126) are now over finite intervals of integration and the

solutions finite for any values of R. If the Bessel function in the second integration is expanded into

its series expansion and integrated term by term, the value of the integral goes to A as R -+ 0.

The surface integration of the last term in Eq (126) needs to be done analytically for the method of

moments analysis. This asymptotic approach is only needed for small R for the Green's functions

where the source and observer are on the same plane. The asymptotic approximations are given

along with the general form of the Green's functions in Appendix B.

Depending upon the Green's function, the contribution from the last term, which is integrated
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analytically, will be entirely real or imaginary. Therefore at least one component of the Green's

functions where the source and observer are on the same plane can be approximated for all values

of R of interest.

4.1.2 Evaluation Intervals and Antenna Parameters. All the unique Green's functions listed

in Table 3 were numerically evaluated using the techniques developed by Nazar. These functions

were the ones necessary to describe the tangential electric fields on both antenna patches. All the

Green's functions where the source and observer are on the same plane were solved for 50 values of

R between 0.001 and 0.1 meters. The asymptotic forms of these functions were solved for 25 values

of R between 0 and 0.003 meters. The functions where the source and observer were on different

planes were solved for 50 values of R between 0 and 0.1 meters. A quadratic distribution [17, 3] of

points was used so that a higher concentration of data points would be taken near Rmin where the

function changes more rapidly. This quadratic distribution can be described by

1 = (iP - 1) + Rmin (127)
(N2 - 1)

where N is the total number of points to evaluate. The functions were evaluated for the following

antenna parameters, which were the same as used by Terry in his work [5].

Frequency = 3.7Ghz
b=b = 0.00158m
b2b = 0.00316m
elb = 2.2co
62b = 2.2c0
63b = E0

11b = P2b = P3b = PO

The data from the numerical evaluation of the Green's functions was then approximated using the

functions described in the next section.
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4.2 Green's Function Approximations

The Green's functions are complex valued integral functions. The purpose of this thesis was

to determine approximations for the real and imaginary components which could be used in a

method of moments analysis. Most functions can not be evaluated exactly even though we may

handle them as if they were known exactly. All functions can be approximated by a polynomial

or a rational function, which is a polynomial divided by another polynomial [20]. At the outset of

this effort it was hoped that polynomial approximations could be used for all the components of

the Green's functions, but this was not the case.

All of the Green's functions analyzed had the same general form. They are complex valued

functions involving the integration of a Hankel function over an infinite interval. Nazar used a

Hankel transform to transform all the Green's functions to integrals of a Bessel function over a

semi-infinite interval. The only real difference in the functions is caused by the multiplicative

factor in front of the integrand. Some were real and some were imaginary. The Green's functions

accounting for the contribution to the E field from electric and magnetic surface currents had a

real factor out front, while those accounting for the contribution to the E field from electric surface

charge had an imaginary factor. This can be seen from derivation of the electric scalar potential

from magnetic vector potential by using the Lorentz gauge condition (see Eq (77)). As an example

G2(R) and Gq22(R) are shown

Gb(R) -c H(2)(AR)AU2bcosh(u2b(b2b - bib)) + Pb23U3bsinh(U2b(b2b - bib)) (128)
Gb2 2(R) 0 b JcD(A )  dA (1)

4r I De
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Cb23U2bU3bCOSh2 (U2b(b2b - bib))

SPb23U~bU3b + (Izz12u b + b13Cb23U3b)

*Ulbtanh(blbUlb)

G ( H 2)(AR)A *sinfh2(u2b(b2b - bib))Gb22(R) =47'jWI6bc D ADb() dA (129)
+ U112b + 423423Ub + (/413 + M12Cb23)

*UlbU3btanh(blbUib)

* u-sinh(2U2b(b2b - bib))

+pbJUMb23UlbU btanh(blbUlb)

Notice Gb 22(R) has a 1/j dependence that G 'x2x(R) does not. The net effect of the 1/j factor is to

interchange the real and imaginary components and change the sign of the real component. With

these differences addressed we can now move to the approximations.

4.2.1 Single Polynomial Approximation. At the outset of this thesis it was hoped to find a

polynomial approximation for each component of the Green's functions that would be valid over the

entire range of radial separations of interest. This was only possible with half of the components.
The graph of the imaginary part of Gbxx(R) shown in Figure 10 illustrates the behavior where a

single polynomial approximation is valid over the entire range of radial separations. The behavior

is that of a slowly decaying oscillatory function which can be approximated by a single, sixth order

polynomial of the form

f(R) = ao + aiR + a2 R2 + a3 R3 + a4 R4 + asR5 + a6 R6  (130)

The sixth order was used to ensure a good fit for all the components of the Green's functions

examined.

The approximations were chosen basically by a trial and error method. Several trial form

polynomials were chosen and a least squares curve fitting method was used to determine the co-

46



1.e-08

0 -

-1.e-08

-2.e-08

-3.e-08
Q-s

-4.e-08

-5.e-08

-6.e-08

-7.e-08

-8.e-08

-9.e-08 I

0 .02 .04 .06 .08 .1
Radial Separation (m)

Figure 10. Plot of G (R), Imaginary Part.

efficients. The trial polynomials were then evaluated at the same values of radial separation as

the original data. Then the original and approximated data were plotted on the same graph and

analyzed to see how well they agreed. Several iterations were enough to determine the order of the

approximations necessary to match the behavior exhibited in Figure 10.

4.2.2 Piecewise Approximation. The behavior of the other half of the components to be

approximated is illustrated by the graph of the real portion of Gb~xx(R) shown in Figure 11. This

behavior is that of a sharply decaying oscillatory function. At full scale the oscillatory nature

is not evident (see Figure 11a), but if the scale is expanded as in Figure 11b it can be seen.

Numerous attempts were made to approximate curves with this behavior by using a single function.

Polynomials up to and including tenth order were tried. Good agreement was attained over the

sharply declining portion but the oscillatory portion had too much variation.

The interval of interest was broken into two parts. The first was 0.001-0.010 meters. On

this interval the function changed the most rapidly and an eighth order polynomial, as shown in
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Eq (131), was used to approximate all the Green's functions over this interval. As before the least

squares curve fitting method was used to test the different curves and determine the polynomial

coefficients. The generality of using a single function for the approximation was lost but it was

possible to use the same interval breakpoint for all the Green's functions approximated.

g(x) = b0 + bjR+ b2 R2 + b3RP + b4R4 + bsRS + b6RW + b7 R7 + b8 Rs (131)

Over the interval from 0.01 to 0.1 meters the approximating function needed to match the oscillatory

nature as well as the remaining portion of the sharply decaying Green's functions. For an arbitrary

breakpoint, a simple polynomial would not match the curve. Including several terms with negative

powers of R was tried in order to match the sharply decaying portion. These curves were found

to be well approximated by an eighth order polynomial plus two terms with negative powers of R.

This is actually equivalent to a rational function of two polynomials. The numerator would be a

tenth order polynomial and the denominator would be a quadratic polynomial with the constant

and first order term equal to zero. Rational functions of polynomials generally give slightly more

efficient approximations but are harder to obtain [20]. The coefficients for this approximation were

also obtained by using the least squares method with two of the terms having negative powers.

h(x) = c- 1 R- 1 + c- 2 R - 2 + co + ciR+ c 2 1R2 +c3R3 +c4 R 4 +cR s +c6R6 +c 7 R 7 +csR s (132)

A listing of all the Green's functions/components with the form of the applicable approximation

for each range is given in Appendix C.

4.3 Sample Results of the Approximations

To show how well the approximations matched the Green's functions, sample plots of the

original numerical data with the approximations superimposed are displayed in the next several
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sections.

4.!3.1 Resulis for Gbx(R) and Gb 22(R). Plots of Gb2(R) and Gb2 2(R) were chosen to

illustrate the behavior of the Green's functions when the source and observer are on the same

plane. The Green's functions are plotted from 0.001 - 0.100 meters. The asymptotic expressions

were not plotted along with the full expressions. As stated in Section 4.1.1, one component of the

asymptotic form is defined at R = 0 while the other goes to infinity because of the 1/R dependence

in the third term of the asymptotic form illustrated in Eq (126).
GAxx(R), both the original and approximated

Figure 12 is a plot of the real portion of Gb22

data. Figure 12a is the full scale data and Figure 12b is the expanded data showing the decaying

oscillatory nature of the Green's functions. The eighth order and rational polynomials are excellent

approximations for the real portion of the function. The imaginary part of Gb22(R) is shown in

Figure 13. The much more slowly decaying oscillatory nature is well approximated by a sixth order

polynomial. The asymptotic form of the imaginary component of G22(R) is finite at R = 0. In

fact the value is approximately constant over the range from 0-0.001 meters.

The real portion of Gb22(R) plotted in Figure 14 shows the function is well approximated

by a sixth order polynomial. The value of the asymptotic form is almost constant over the range

0-0.001 meters. This behavior can be seen in Figure 14 for values of radial separation close to zero.

The plot is of the same shape as the imaginary portion of Gb22(R). The switch in the behavior

of the real and imaginary components, as compared to G b2(R), is due to the 1/j factor in the

Green's function.

The imaginary portion of Gb22 (R) is plotted in Figure 15 and is of similar shape to the real

part of Gb2(R) except for the sign of the values. Here again the eighth order polynomial and the

rational polynomial provided excellent approximations for the original function.
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4.3.2 Results for Gb3 (R) and Gb 3 (R). Plots of GA (R) and Gb23(R) were chosen to

illustrate the behavior of the Green's functions when the source and observer are on different

planes. These functions are plotted from 0 - 0.100 meters and no asymptotic forms were needed.

Figure 16 is a plot of the real portion of Gb23(R), both the original and approximated

data. Figure 16a is the full scale data and Figure 16b is the expanded data showing the decaying

oscillatory nature of the Green's functions. The eighth order and rational polynomials are again

excellent approximations for the real portion function.

The imaginary part of Gbx(R) shown in Figure 17 is of similar shape as the imaginary part

of Gb2(R). The much more slowly decaying oscillatory nature is again well approximated by a

sixth order polynomial.

The real portion of Gq23 (R) is plotted in Figure 18. This function is well approximated by

the sixth order polynomial. The plot is of the same shape as the real portion of Gq 22(R). Again

the switch is due to the 1/j factor in the Green's function.

The imaginary portion of Gb23 (R) is plotted in Figure 19 and is of similar shape to the

imaginary part of Gq22(R). Here again the eighth order polynomial and the rational polynomial

provided excellent approximations for the original.

4.3.3 How Well the Approximations Matched. The initial tests as to how well the approxi-

mations matched the Green's functions were done by "eye". The approximations for all the Green's

functions basically overlaid the graph of the functions they were to approximate. As a further test

of the "goodness" of fit, each function and its approximation was integrated over the entire range of

values of R of interest using a simple trapezoidal integration routine. The results of these integra-

tions for the functions displayed in Sections (4.3.1) and (4.3.2) are given in Table 5. The agreement

between the actual values and the approximations was excellent. Comparing the actual and ap-

proximated results show agreement out to the third or fourth decimal place, indicating agreement

to within a fraction of a percentage.
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Figure 16. Plot of G''(R) Real Part, Combined Data (a)Ful Scale, (b) Expanded Scale.
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Table 5. Integration of the Green's Functions and their Approximations

Component
Function Real Imaginary

Actual Approx Actual Approx

Gbxx(R) 8.2416e-8 8.2426e-8 -2.3774e-9 -2.3774e-9

Gq 22(R) 3.5832e-8 3.5817e-8 -1.5358e-1 -1.5359e-1

GA23b(R) 1.1871e-7 1.1871e-7 -4.8477e-9 -4.8477e-9

Gb 23(R) 7.5807e-3 7.5776e-3 -2.5025e-1 -2.5025e-1

4.4 Data Supplied to Capt Irvin

The coefficients for the approximations of the full expression Green's functions were given to

Capt Irvin for use in his moment method analysis of the antenna. A complete set of the coefficients

is given in Appendix C. The data for the asymptotic forms was given to him in tabular form and

he interpolated to find any desired value. The handling of the asymptotic data was dictated by

time constraints and by some uncertainty at the time about evaluating the asymptotic forms of the

Green's functions at R = 0. As stated in Section (4.1.1), one component of the approximation could

be incorporated into the full expression because it it, finite at R = 0. The term in the asymptotic

approximation with the 1/R dependence dominates the behavior of the component which is not

finite at R = 0. Perhaps the asymptotic data for small values of R 0 0 could be incorporated into

the full expression approximation. This would only leave the analytical surface integration of the

last term at R= 0.
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V. Conclusions

Numerical approximations for a theoretical model of an aperture fed stacked-patch microstrip

antenna have been developed. The behavior of the Green's functions were examined and three

different approximation forms were found applicable to each. The approximations were then used

in a separate thesis effort to determine the patch surface currents and charge distributions. The rest

of this chapter discusses the answers to the research questions posed in the introduction, suggestions

for further work, and some general observations made during the study.

5.1 Answers to Research Questions

5.1.1 What is the form of the functions necessary to accurately model the Green's function?

Each Green's function can be modeled by three separate approximations. One component of each

Green's function can be modeled with a sixth order polynomial over the entire range of radial

separations. The other component required a piece-wise approximation over two separate intervals

which were the same for each function. Over the interval from R,,,,n out to 0.01 meters, the rapidly

changing functions can be modeled by an eighth order polynomial. From 0.01 - 0.10 meters an

eighth order polynomial plus two terms with negative powers were used to model the functions.

This expression is actually equivalent to a ratio of polynomials with a tenth order polynomial in

the numerator and a quadratic polynomial in the denominator.

5.1.2 How well do these functions approximate the original Green's functions? The approx-

imations were found to be excellent approximations for the original Green's functions. When

initially developed the "goodness" of fit was determined by "eye" and found that the approxima-

tions overlaid the original functions over the entire range of radial separations values of interest.

As a further test of the agreement the original functions and the approximations were integrated

using a trapezoidal integration routine and the results were found to agree to within at least two
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and sometimes and possibly four decimal places. This indicates an error on the order of a fraction

of a percent.

5.1.3 Can the approximations be simplified while still retaining the accuracy required for the

model? This question was not answered due to lack of time for an iterative process. The actual

approximations were determined late in the thesis process and needed by Captain Irvin to complete

his thesis effort. Continued work on this question is needed and discussed in the next section.

5.2 Recommended Follow on Work

As mentioned in the previous section, work is needed on determining if simpler approximations

would be acceptable in the model. Further work on these approximations needs to be done in concert

with the moment method work done by Capt Irvin. Using the approximations developed in this

thesis and the surface currents determined by Capt Irvin as a baseline, the effect of simplifying

the approximations can be studied. As the radial separation between the source and observer

increases, the values of the Green's functions decrease by several orders of magnitude. The effect

of determining a lower threshold value of the Green's functions, below which they may be assumed

to be zero should be investigated.

Another area of interest would be to take the integration routines written by Nazar and try

to simplify them. The IMSL routines used in his code are extremely elaborate. Simpler routines

may speed up the numerical evaluations of the Green's functions required for each set of antenna

parameters. For example the execution time of the modified Nazar code used in this thesis was one

hour on an ELXSI System 6400 Computer, running under its native EMBOS operating system.

The code developed in this thesis needs to be combined into one routine to determine the

Green's functions approximations. Separate routines were written for each approximation procedure

but the data input was modified to include only the applicable portions. It should be a simple
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matter to incorporate the routines into one program with conditionals to determine the appropriate

approximations to use.
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Appendix A. Vector Potential Parameters

A.1 HMD on Interface lb.

Nbxl(A) = -ei&A [Cb23Uabcosh(b2bU2b) +U2bsiflh(b2bU2b)] sech(blbUlb)

NCXI(A) = i&A tU2bcosh(b2bU2b) + b23U3bSiflh(b2bU2b)1 sech(bibUlb)

Ndx1 (A) = ei&AU2sexp(b2bU3b)sech(blbUlb)

Nb1 A [111~fLUb + Cbi3U3btaflh(bibU1b)] U12bCOSh(112b(b2b - bib)) 1
+ [Cb23Ulbusb + -412 2btanh(b1bUib)I sinh(U2b(b2b - bib))J

[-11bl3Cb13 + cosh2 (uib(b2b - bib))] 2U'2bcsch(2bjbuib)

+[-Pb124b12 2b - 14134bi3U3b + Mb234b23 3b]

N~2 a)ziCb *2csch(2bbUlb)sinh (u12b(b2b - bib))

+ [1423 - Pbi341l2 - Pbi2Cbls + 4b23]

*U2bU3bcsch(2bibUib)siflh(2U2b(b2b - bib))

[- /.423Cb23] CibUibU2bcsch(blbUib)cosh(bibU2b)

[-Pbi2 + 14231 CibU 2bsech(bibUib)sinh(bbU2b)E (PbiaCib -Pb23C2b)U~bcosh(b2bU2b)1

b 2 (A) = A2  -i(412c1b - 2b)U2bsiflh(b2bU2b)J

*U2bsech(bibuib)cosh(U2b(b2b - bib))

+ (PIbi3413 - Pb23Cb23)U3bcosh(b2bU2b)1

+(Pbi2Cbl3 - Cb23)U2bsiflh(b2bU2b)J

*C2bU3bsech(blbUib)sinb(U2b(b2b - bib))
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[1 Pb23Cb23]elbUlbU2bcsch(blbUlb)cosh(blbU2b,)

[Ub12 + /il3Cb2 3] elbu2bsech(blbUlb)cosh(bibu2b)E(-pbl3C1b + Pb23C2b)U3bsiflh(b2bU2b)1

Nb (A) = A2  +(-bl2Clb + C2b)U2bcosh(b2bU2b)j
Cz ~ *U2bsech(bibUib)cosh(U2b(b2b -bib))

+[(-Pbl3Cbl3 + Pb23Cb23)lI3bsiflh(b2bU2b)1

+(-Pbl2Cbi3 + Cb23)U2bcosh(b2bU2b)J

*C2bU3bsech(blbUlb)sinh(U2b(b2b - bib))

[-Pbl3Clb + 63b] U2bsech(blbUlb)cosh(12b(b2b -bib))

N bx ~us~~A 2  + 5U23C~b + C3bsCbi2)Ulbcsch(blbUlb)1[ (-Pbi2Clb + E2b)U3bseCh(bibUib)J

*sinh(U2b(b2b - bib))

A-2 HED on Interface 2b.

Nax 2 (A) = Ul~b,\[U2bcosh(U2b(b2b -blb))+ Pb23U3bsinlh(U2b(b2b -blb))] csch(blbUlb)

Nbx 2(A) = -Pbkl\[b23U3bcosh(bibU2b) +U2bsiflh(b2bU2b)]

Ncx 2(A) = IPlbA[U2bcosh(b2bU2b) + Pb23U3bsiflh(b2bU2h)]

Ndx2(A) = plb,\exp(b2bUab)U2b

[1- bl3Cbl3]U2b0ech(bibUib)

+ ( U bl2Cbl2)U2b + (-.Pbl3Cbl3 + Mb234b23)U3b

=z(A PlA *sech(bibUlb)sinh 2 (U2b(b2b - bib))

+[b3- /1bl3Cb12 - Pb12Cb13 + Cb23]

2 sech(bibUlb)sinh(2U2b(b2b - bib))
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[-Cbl2 + M42341i31,01 b~sifh(blbU2b)

[1 - p4b23Cb23/.l~bUlbU2bcosh(bbU2b)tanh(blbUib)[(hPlbCbl3 - JI2b~b23)U3bCOSh(b2bU2b)1

N b (A) = A2  +(-pU2b + Plb~bl2)U2bsiflh(b2bU2b)J

*U2bcosh(U2b(b2b - bib))

+ W134b13 - Pb23Cb23U3bcosh(b2bU2b)1E+(-pb23 + Pb13ebl2)U2bsiflh(b2bU2b)J

*.p2bU3bsiflh(U2b(b2b - bib))

[Cb12 - b23eb13]/Ib~cosh(bibUl2b)

[-1 + Pb23Cb231PlbUlbU2bsnh(bbu2b)tanh(blbUlb)E(-Iilbebl3 + P2beb23)U3bsiflh(b2bU2b)1

N'~ 2 A b A2  +Pb- .lib~b2)U2bcosh(b2bU2b) J
*U2bcosh(U2b(b2b - bib))[(-.pbl3Cbl3 + /Ab23Cb23)U3bsiflh(b2bU2b)1

+(Ab23 - Pbisebl2)U2bcosh(b2bU2b)J

*/.L2bl3bsiflh(U2b(b2b - bib))

[Pb- P.lbb3]U2bcosh(U2b(b2b - bib))

Nb2 (A exp(b2bU3b)U2b A2  + [(P2b - Pi:bi2)1i~b]

*sinh(U2b(b2b - bib))

A.3 HED on Interface Ab.

Nb-.3(A) = PlbAU2bcsc(blbUlb)
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Wb3 (A) = U2bA[Ulb cosh(blbU2b)coth(blbUlb) - Pb12U2bsinh(blbU2b)]

W~(A) = U2bA[-Ulbsinh(blbU2b)coth(blbUlb) + JUb12U2bcosh(blbU2b)]

Nb~ (A ~~x ~ Ub l b2U2bcosh(U2b(b2b - bib))]

[+Uibcoth(bibUlb)siflh(U2b(b2b - bib))]

[1 /lpbi3CbI3U2bcosh(U2b(b2b - blb))sech(blbUib)

Na23( = l~bU2bA + (412 -IJ 23 b3)UIbcsch(blblb) ]sinh(U2b(b2b - bib))J

[(Pibebi3 - U2b~b23)P3bcosh(b2bU2b)1Ub

[ i(-,U2b + IbebI2)112bsinlh(b2bUi2b)J

+[(-Cbi2 + IPb23CbI3)U2bsiflh(bibU2b)

Nb~ (A \ 2  +(l -Pb23Cb23)Uibcosh(bibU2b)tanh(bibUlb)

*/.LIbU2bcosh(U2b(b2b - bib))

+ 1 b23Cb23)UIbcosh(bIbU2b)]

+(-b12 +,Ub23Cb 13)U2bcot(bibuib)siflb(bibU2b)

*P 2bUIbsiflh(U2b(b2b - bib))

(-pubib3 + P2beb23)/I3bsiflh(b2bU2b)1
IU2b

+(Pb- PI b~b12)P2bcosh(b2bU2b)]

+ [(41i2 - Pb23CbI3)U2bcosh(blbU2b)I

Nb (A) - A2  +(-l + 14b2 3Cb23)Ubsifl(bbU2b)taflh(bibUib)

*pilbU2bCOSbI(12b(b2b - bib))

+ (-l + Pb23Cb23)Uibsiflh(bIbU2b)]

*/.L2bUibsiflh(U2b(b2b - bib))
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[lUb + U~bl],

+[A~bU'lb - PlbCb 2Ub] cosh (U2b(b2b - bib))

= ep~~b~bA 2  [-p2bb23Ulb + P3b/lbi2Cbl2U2b] siflh (U2b(b2b - bib))E(Pab~bl2 - P2bCbi3)coth(blbUib) 1
+(U3bpUb12 - UlbCb23)tanh(blbUlb)J

*Ub2b sinh(2U b(b b - bib))
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Appendix B. Complete G! een's Functions

D~b(A) = ["bi2U3b + Uibcoth(bibUlb)] U2bCOSh(U2b(b 2b - bib))

+ [Ab12 2b + /Pb23UlbUabCOt(blbUib)] sinh(U2b(b2b - bib))

Db (A) = [Cbl3U3b + Ulbtaflh(bibuib)] U2bcosh(U2b(b2b - bb))

+ [41i2 2b + eb23ulb3btan(bibUlb)] sinh(U2b(b 2b - bib))

Uib= V'-k2b U2b=V A-k2b ~ 2 k
lb 2b U~b 3b

B.1 Green's Functions for Electric Fields From Electric Sources

B.1.1 RED at Interface 2b.

Gbxx(R - 2)(AR)A U2b~cOsh(U2b(bib - bb)) + Pb23U3bsiflh(U2b(b 2b - bb))d4r C Db(A)

Gby(R) = x(R)

Cb23U~bU3bcosh1(U 2b(b 2b - bib))

+ AM23U03b + (Pb122+Ubl333

+ [ *Uibtanh(blbul:;

=b H1 f l(AR)A sih(U2b(b2 b - bib))

G~~~ 22(R)~~~~ 2bje~JD(AD() [U + /4234b23%~b + (Ub 13 + Pb124b23)J

[ *UibU3btanh(bibUib)

*22bsinh(2U2b(b 2b - bib))

+.b3b23UibU~btafh(bibUib)j
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For large A, these integrands decay as A- 112 .

Gbxx R) = lb H (2),voA u2b d

Gbyy(R) = Gbxx (R)

[113b + pb13ulbtanh(blbUib)]

*U2bcosh(U2b(b2b - bib))

1b Hf H(AR)AU2b F ~ + Sb 1 A
Gq32(R) - 1j~ b b~~A D(A) + Pbl3Cbl2U + (pb23 - Pb134b12)U d

[ +pbl2UlbU3btanh(b~bUlb) ]
*sinh(U2b(bib - bib))

For large A, these integrands decay as expt-A(bib - bib)].

.B.1.1.1 Asymptotic Forms for Small R.

G bx(R) =- AC 2 (R Ai d I l+Pb23 RAC JO
A227r l 2(R,)A + 1412+ /423 + b13 Jo Rd

+ 1 + Pb23 t
+R1 +PUb12 +Pb23 +Pb13J

Gb1 1x b+43RXCJ( d
q22() =2irjwC2 b LJo I 22(R, A)dA I l+ b12 + b23 + b13 J0

+ 1+ b23 }
R. 1 + 4b12 + Cb23 + Cb13

whre12 2(R, A) and Iq22(R, A) are the integrands of the original functions with Ho 2 (AR) replaced

by Jo(A\R).

B.1.2 HED at Itherface 3b.

Gbx(R - ~ H~ (2 H(AR),\ [Pbi2U2bcosh(U2b(b2b - bib)) 1d
47r Ih Dbe(A) [+ulbCOt(blbuib)sinh(U2b(b2b - bib))J

Gbyy(R) =Gbxx (.
A3 AMR)
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[U3b + Pb3Ubtanlh(bIbUib)1

*cash 2 (U2b(b2b - bib))J

+ lUb + 14124bi2%b) U3b ]
_ 1 fH~~(A)A [+/pb23Cb12UIbU~bcoth(bibUib) d

Gb I(R) Holjwa JD (\)~A) *sinh2(bbb - bib)) d

[Pb23U~b + 141341b2U2b

+ Cbi2COth(bibUib)

+ +p1bi 2tanh(bibUlb) ) ]U~
*22ksiflh(2U2b(b2b - bib))

For large A, these integrands decay as -/

G~(R)= GZ(R) - Gbx(R)

[(U3b +,Ub13Uibtanlh(bIbUib)]

*6b23U2bcosh(U2b(b2b - bib))

Gq23 (R)=jf)(RA b + (-1 + Pb23Cb23)U 4TCb D()b + UIb 12d
[+Pb12Eb23UIbU3btanh(bibUIb)j

*sinh(U2b(b2b - bib))

For large A, these integrands decay as exp[-A\(b2 b - bib)].

B.1.2.1 Asymptotic Forms for Small R.

bx () Pb1C+ Pbi2 P-1 Jo4
GA33) = 2r {I Jo 33 (R, A)d,\ - I+ Pb12 +Pb23 +Pb13 Jo R d

+ 1+ Pbi2
R1 + Pb12 + Pb23 + Pb13J
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Gb33(R) Iq 33(R, A)dA -R -(-- dx
l7jCb+ Cbi2 +Cb23+Ci Jo f

S 1 + Cb12
R 1 + eb12 + Cb23 + TH3

where Ib 3 (R, A) and ~q33(R, A) are the integrands of the original functions with H02 )(AR) replaced

by Jo(AR).

B.2 Green's Funclions for Electric Fields From Magnetic Sources

B.2.1 HMD at Interface lb.

G bx(RC) = -sin(2() [I 2 1(R) - 4I2 1(R)

bEx (R,C) = - [-LI(R) - cos2()Ir 21 (R) + cos(2()Ib2 (R)]

GE21(R, [ 1 (R[2 1(a) + sin2( )J 21(R) + cos(2()Ib 21(R)]

Gbyy(RC) . -sin(2() [ jI 21(R) +32(R)

where

I 21(R) = jH 2 )(AR)A3sech(blbUlb)b~l (R) c D b(A) Db (A)

[1 - b13b13]U2b

A [(1 -/b12Cb12)U2b + (-Pbl3Cbl3 + Pb23Cb23)U3b]

* *sinh 2(U2b(b2b - bib)) dA

-I[p23 - Ubl3Cbi2 - Pbl2Cbl3 + Cb23 ]

* u 2" sinh(2u 2b(b2b - bib))
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H( !)(AR)A2sech(blbUlb)
b~2 1 (R) =RDb(A)Db (A)

fl - Pb13Cb13]U2b

+ ( Ibl2Cb12)U2b + (-.0613C + 14234b23b]

* *sinh 2 (2b(b2b- bib)) d

+[14b23 - / 13C612 - P6124b13 + £b231

2 sinh(2U~b(b~b - bib))

= H( 2)(AR)AU2 bsech(blb Ulb) ezbi3U3bCOSh(U2b(b2b - bib))I mA +Cb12U2b- inh(U2b(b2b -bib))

For large A, these integrands decay as exp(-Ablb).

G3j(R, ) -sin(2() [2Ib3l (R) 1501 (R)]

GE31 (R,)= - [-1' 1 (R) 31 co 2 CI(R) + cos(2()1' 3 1 (R)]

=x (R, - [' 1(R) + sin 2 (()Ir3 1 (R) + COS(2()I' 1 (R)I

GE3(RC) = -sin(2() 1- ~()+ I'b13l(R)]

where

[1 - It136bl3]U2bsech(blbUlb)cosh(U2b(b2b -bib))

Ir10(A[A (CM1 - Pb23Cb13)UibU2bCSCh(b~bibb) 1
b3l (R) - e ,H (A)A) + dA

j eD m)~A +(-Pbl2Cb13 + Cb23)U2bU3bsech(blbUib)J

*sinli(Uib(bib - bib))
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[1- bl3Cbl3]'2bsech(blbUlb)cosh(U2b(b2b - bib))

11,1 () fH~(~R (Cb1 - Pb23CbI3)UIbU2bcsch(blbUib) 1
-J RD(A)~(A +(-/lbl2C&1a + e&23)U2bUbsech(blbUlb)J

*sinh(U21, (b21, - bib))

(2)
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Appendix C. Summary of Results

Green's Function Approximation Forms

g(R) = bo +b 1 R+b 2R2 +b 3R
3 +b 4

4 +b 5 R5 +b 6R
6 +b 7 R7 +b R

h(R) = cl1R-1+c_ 2R- 2 +co+cR+c 2 R2 +c 3 1?+c4
4  +c5 R+c6R6+c 7 R7+csR8

f(R) = ao + aiR+ a2R2 + a3R3 + adj 4 -+ a5R5 + a6R6

Table 6. Coefficient Order for the Piecewise Approximation

Eighth Order
bo bi b2 b3 b

Ratio
C-2 C-I C1 C2

C3 C4 C5 C6 C7

CSI

Table 7. Coefficient Order of the Single Function Approximation

Sixth Order
ao aa a3 qa4a5oo I aI
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Coefficients for Each Green's Function Approximation

b22(R)

Real Component

8th ardor 0.001-0.010
2.827135E-04 -3.9~846656E-01 2 .7286907E+02 -1 .0962870E+05 2.7278677E+07

-4.2391776E+C9 3.9943867E+11 -2.083340SE+13 4.6074276E+14
Ratio .0.010-0.100

1. 1336337E-10 -7.7506745E-09 2.8776042E-07 -7 .9761966E-14 -2.8113896E-04
1 .2g17902E-10 3.4524106E-01 -9 .6808158E+00 1 .2043431E+02 -7.3386638E+02
1 .7830531E+03

Imaginary Component

6th Order 0.001-0.100
-8.2697879E-08 3. 0039634E-08 4.4481533E-05 3.7821366E-04 -2.3998044E-02
2. 3993749E-01 -7 .4304513E-01

G b3(R)

Real Component

8th Order 0.001-0.010
2.9895392E-04 -3.9713808E-01 2.7003667E+02 -1 .0882422E+05 2.7177121E+07
-4.2349631E+09 3.9979300E+11 -2.0878692E+13 4.6215527E+14

Ratio 0.010-0.100
2. 6798747E-10 -7.65940224E-09 1. 8608318E-07 1. 5038343E-14 -3. 224288SE-04
-3. 1416726E-11 3.4634456E-01 -8.3578282E+00 8.8658536E+01 -4.6285555E+02
9.7746550E+02

Imaginary Component

6th Order 0.001-0.100
-3.2193756E-07 1. 1728108E-07 1."1359691E-04 1 .4780323E-03 -9.3812439E-02
9. 3841364E-01 -2. 9073262E+00

b23(R)

Real Component

8th Order 0.000-0.010
4.360669S-06 1 .6428502E-03 -1 .94086501 0i .092ig13+04 -3.0476872E+06
4. 9365870E+08 -4. 6983776E+10 2. 4369181E+12 -6. 3137854E+13

Ratio 0.010-0.100
1 .7029449E-10 -8. 1399245E-09 2.6622167E-07 -4. 1338661F,-14 -2.996327SE-04
6.3114878E-11 3.4697986E-01 -9.2439316E+00 1 .0942193E+02 -6.3847649E+02
1. 4970486E+03
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Imaginary Component

6th Order 0.001-0.100
-1 .6312406E-07 4.74183S1E-08 8.8848203E-05 7. 1341936E-04 -4.6862616E-02
4.6971581E-01 -1 .4647107E+00

b21 (R)

Real Component

8th Order 0.000-0.010
~-2.3690010E+04 -5. 1497773E+03 2.0098000E+09 1. 1664054E+11 -2.4628222E+14
6.0581647E+16 -6.9634200E+18 4.0033536E+20 -9.29183355+21

Ratio 0.010-0.100
-2.7567323E-01 4. 1969248E+01 -1 .7263071E+03 6.7013484E-04 2.63936665+06
-1 .0569782E+00 -3.8054523E+09 1.0860188E+11 -1 .33S9628E+12 7.9367587E+12
-1.8720567E+13

Imaginary Component

6th Order 0.000-0.100
7 .3622798E+02 1.6413327E+02 -9.46600025+05 -B.5624401E+06 6.6S99743E+08
-8. 2057805E+09 2. 9878758E+10

b21 R

Real Component

8th Order 0.000-0.010
-7.1631702E+04 -1.6126649E+06 1.6138582E+10 -4.6090776E+12 2.05140255+14
1. 1322934E+17 -2.2354787E+19 1.65961655+21 -4.532253SE+22

Ratio 0.010-0.100
-3.91458225-01 6.07714495+01 -2.4640424E+03 1. 0734826E-03 4.23723325+06
-1.6926680E+00 -6.5280178E+09 1.8569636E+11 -2.2676061E+12 1.33519825+13
-3.1213003E+13

Imaginary Component

6th Order 0.000-0.100
1.4578382E+03 3.2605113E+02 -1 .8752160E+06 -1.1014941E+07 1.3194275E+09

-1.62581115+10 5.9202168E+10

Jb2l(R)

Real Component

8th Order 0.000-0.010
-1.1845706E+04 6.1244112E+03 4.8720618E+08 3.E107918E+10 -4.5628645E+13
9.63640225+16 -9.8801478E+17 6.1850820E+19 -1.1172704E+21
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Ratio 0.010-0.100
-i .4338001E-01 -8. 8320753E+00 4. 8974870E+02 -i .9777346E-04 -1. 6920208E+05
3.2111913E-01 2.6480174E+08 -9.6649961E+09 ± .472976SE+ll -1 .0371150E+12
2. 7871008E+12

Imaginary Component

6th Order 0.000-0.100
3.6839408E+02 -1.0565021E+02 -2. 1992704E+05 -1.7804531E+06 1 .2335704E+08
-1 .2791397E+09 4. 0846293E+09

Ir3 (R)

Real Component

8th Order 0.000-0.010
-3.5845677E+04 -1 .8303401E+05 3 .3506986E+09 -4.0133292E+11 -1 .6475295E+14
5. 8048203E+16 -7. 7186016E+18 4. 8748677E+20 -1. 2131994E+22

Ratio 0.010-0.100
-3.2220387E-01 -1.1195931E+01 6.7963919E+02 -2.7539833E-04 -7.0817217E+04
4.4877070E-01 1.6953818E+08 -8.6162929E+09 1.5436197E+11 -1. 1848456E+12
3.3469197E+12

Imaginary Component

6th Order 0.000-0.100

7. 2947448E+02 -2. 0927389E+02 -4. 3564658E+06 -3. 5273908E+06 2. 4440619E+08
-2. 5346126E+09 8. 0937999E+09

b31 (R)

Real Component

8th Order 0.000-0.010
8.3730489E+05 1 .8548911E+07 -6.9596640E+i1 4.9585244E+14 -i .65090F
3 .0643030E+19 -3.2457653E+21 1 .8334913E+23 -4. 2836938E+24

Ratio 0.010-0.100
1.0488087E+00 -9.7803738E+01 3.8139458E+03 -1.1916493E-03 -4.5203S32B-e.0
1 .8826109E+00 6.23i6114E+09 -1 .7672322E+11 2. 1844777E+12 -1 .311aQME4 3
3. 1297587E+13

Imaginary Component

6th Order 0.000-0.100
-1 .261858SE+03 -1. 1645510E+01 1 .2324177E+06 7.8562878E406 -8. 16S8149E+08
9.7146319E+09 -3 .4550352E+10
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Ib3l(R)

Real Component

8th Order 0.000-0.010
2.8114574E+05 5.9078765E+06 -5.9241731E+10 1.6899417E+13 -7.7355313E+14
-4.0848676E+17 8.1118069E+19 -6.0339466E+21 1.6495873E+23

Ratio 0.010-0.100
1.553846SE+00 -1.2262199E+02 4.5582187E+03 -1.4436500E-03 -6.4603264E+06
2.2647814E+00 9.1346088E+09 -2.5611943E+1i 3.1131480E+12 -1.8348861E+13
4.3053899E+13

Imaginary Component

6th Order 0.000-0.100
-2.4949310E+03 -2.4719206E+01 2.4398514E+06 1.5547730E+07 -1.6171597E+09
1.9242115E+10 -6.8442981E+10

Gq22(R)

Real Component

6th Order 0.001-0.100
2.4690865E-01 8.1564715E-02 -3.1310965E+02 -1.7501311E+03 2.1602490E+06
-2.6605711E+06 9.6760956E+06

Imaginary Component

8th Order 0.001-0.010
-5.0295804E+02 6.9944277E+05 -4.7773874E+08 1.9210580E+11 -4.7861591E+13
7.4454262E+16 -7.0205947E+17 3.6635682E+19 -8.1050716E+20

Ratio 0.010-0.100
-3.0506451E-04 3.7573808E-02 -1.5014618E+00 3.1525211E-07 7.9630909E+02
-5.0947594E-04 -7.9604799E+05 2.3725931E+07 -3.2364262E+08 2.1545771E+09
-5.6293092E+09

Gq33(R)

Real Component

6th Order 0.001-0.100
9.6785892E-01 3.2169259E-01 -1.2286658E+03 -6.8608196E+03 8.4780207E+05
-1.0443582E+07 3.7986523E407

Imaginary Componeiit

8th Order 0.001-0.010
-7.1240104E+02 9.5940154E+05 -6.5262043E+08 2.6293123E+11 -6.56S7068E+13
1.0231241E+16 -9.6588316E+17 5.0443342E+19 -1.1166002E+21
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Ratio 0.010-0.100
-7.3279954E-04 8.4236082E-02 -3.2371602E+00 3.4357684E-07 9.1330452E+02
-5.4107447E-04 -2.6362783E+05 9.1863973E+06 -i.8340614E+08 1.6197594E+09
-5.0799782E+09

Gq 23 (R)

Real Component

6th Order 0.000-0.100

4.8908078E-01 9.7940015E-02 -6.1506941E+02 -3.6456986E+03 4.3101735E+05
-5.2961144E+06 1.9249510E+07

Imaginary Component

8th Order 0.000-0.010
-i.0079854E+02 -3.9690570E+03 4.6810550E+07 -2.6387382E+i0 7.3656913E+12

-1.1930563E+15 1.1354126E+17 -5.8887562E+18 1.2840182E+20
Ratio 0.010-0.100

-4.6056133E-04 5.4394079E-02 -2.1168582E+00 2.8577567E-07 8.4397927E+02
-4.4687389E-04 -6.1246793E+05 1.8533381E+07 -2.7071295E+08 1.9286742E+09
-5.309/892E+09

Gq32 (R)

Real Component

6th Order 0.000-0.100
4.8908078E-01 9.7940015E-02 -6.1506941E+02 -3.6456986E+03 4.3101735E+05
-5.2961144E+06 1.9249510E+07

Imaginary Component

8th Order 0.000-0.010
-1.0079854E+02 -3.9690570E+03 4.6810550E+07 -2.6387382E+10 7.3656913E+12
-1.1930563E+15 1.1354126E+17 -5.8887562E+18 1.2840182E+20

Ratio 0.010-0.100
-4.6056133E-04 5.4394079E-02 -2.1168582E+00 2.8577567E-07 8.4397927E+02
-4.4687389E-04 -6.1246793E+05 1.8533381E+07 -2.7071295E+08 1.9286742E+09

-5.3094692E+09
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Table 8. Green's Function Approximations Summary

Real Component Imaginary Component

Function Approximation Range (m) Approximation Range (m)

GAxx(R) 8th Order 0.001-0.010 6th Order 0.001-0.100
Ratio of Polynomials 0.010-0.100

Gb22(R) 6th Order 0.001-0.100 8th Order 0.001-0.010
Ratio of Polynomials 0.010-0.100

Gb32(R) 6th Order 0.000-0.100 8th Order 0.000-0.010
Ratio of Polynomials 0.010-0.100

GAxx(R) 8th Order 0.001-0.010 6th Order 0.001-0.100
Ratio of Polynomials 0.010-0.100

GAxx(R) 8th Order 0.000-0.010 6th Order 0.000-0.100
Ratio of Polynomials 0.010-0.100

Gb33(R) 6th Order 0.001-0.100 8th Order 0.001-0.010
Ratio of Polynomials 0.010-0.100

Gq23(R) 6th Order 0.000-0.100 8th Order 0.000-0.010
Ratio of Polynomials 0.010-0.100

I 21 (R) 8th Order 0.000-0.010 6th Order 0.000-0.100
Ratio of Polynomials 0.010-0.100

I 21(R )  8th Order 0.000-0.010 6th Order 0.000-0.100
Ratio of Polynomials 0.010-0.100

1 21(R) 8th Order 0.000-0.010 6th Order 0.000-0.100
Ratio of Polynomials 0.010-0.100

Isl(R )  8th Order 0.000-0.010 6th Order 0.000-0.100
Ratio of Polynomials 0.010-0.100

Isbl(R) 8th Order 0.000-0.010 6th Order 0.000-0.100
Ratio of Polynomials 0.010-0.100

3,31(R) i 8th Order 0.000-0.010 6th Oruer 0.000-0.100
Ratio of Polynomials 0.010-0.100
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Appendix D. Computer Programs

A description of the programs and subroutines written, modified, and used during this research

is presented in this appendix. The programs written by Nazar and modified by the author were

run an ELXSI System 6400 computer operating under the ENBOS 13 operating system. The

programs written by the author were run on a 20 Mhz PC/AT Clone, Using a Microsoft Version

4.0 FORTRAN compiler. Copies of the actual code may be obtained by contacting

Major Harry Barksdale
AFIT/ENG
Wright-Patterson AFB, OH
45433

D.1 Programs to Numerically Evaluate the Green's Functions

GREENM is the main program used to numerically solve the integrals of all the Green's

functions listed in Appendix C. All the material parameters of the antenna are set in GREENM.

The original code was written by Nazar [3] and only evaluated representative examples of Green's

functions. The author added the code necessary to evaluate remaining Green's functions examined

in this thesis. SUBROUT contains all the custom written subroutines called by GREENM. It was

also written by Nazar [3] and used with only minor modification. EXTFUN is a file containing

all the FORTRAN implementation of the integrands for the various Green's functions and all non-

IMSL functions used in GREENM. It also was originally written by Nazar and modified by the

author.

D.2 Programs Used to Approximate the Green's Functions

LTSQR6 and LTSQR8 are custom written code which perform a least squares curve fitting

using a sixth or and eighth order polynomial. LTSQR82 performs a least squares curve fit using
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an eighth order polynomial plus two terms with negative powers. The result is a curve fit using a

rational function composed of a tenth order polynomial divided by a quadratic polynomial. All three

programs call two subroutines contained in SIMEQ which solve a system of simultaneous linear

equations. The routines were extracted from the book Numerical Recipes [21]. LTSQR6, LTSQR8,

and LTSQR82 were written to only operate on the data from one component of a Green's function at

a time. Lack of time prevented consolidation of all the routines. Several file manipulation routines

were needed to break out the input file components and combine the results of the approximations.
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