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Preface

This study investigated the state observability

problems associated with a previously developed on-board

recursive filter that estimates the relative position of

each satellite within a satellite cluster. A non-linear

1 least squares filter was used to find and remove the

unobservable components of the state. The on-board filter's

I performance was reinvestigated with the updated state

Iequations.
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ABSTRACT

The relative position determination of a cluster of

satellites operating in a low earth orbit is investigated.

A U-D Covariance Factorization Kalman Filter is used for the

on-board estimator with dynamics based on the

Clohessy-Wiltshire equations. Measurements consist of range

I data between a single host satellite and the remaining

cluster. Therefore only relative position and velocity

states with respect to the host satellite can be determined.

A 15-sample Monte Carlo simulation was conducted with

clusters of 2, 5 and 10 satellites, respectively.

I Performance results consist of average error, average true

error and filter covariance is a function of time.

i
I
I
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AUTONOMOUS NAVIGATION

OF A

SATELLITE CLUSTER

I. Introduction

The concept of using a recursive filter for relative

position determination for a cluster of satellites acting

as a space based radar was the topic of two previous Air

Force Institute of Technology masters' theses. The initial

concept called for a cluster of up to ten satellites

orbiting in a near circular, low earth orbit. The cluster

was placed within a volume of space of dimensions 500 X 500

X 500 meters 3 and the accuracy requirement of the filter was

25 meters. The accuracy was based upon the requirement to

form a clear, cohesive image and is a function of the

radar's wavelength. The filter operated on range data

determined from synchronized clock pulses.

Captain Michael L. P. Ward investigated the feasibility

of using a recursive filter to determine the relative

position of each satellite within the cluster. The filter

was a U-D covariance factorization Kalman filter. During

testing, Captain Ward discovered that the downrange

component of the state was unobservable (6:2-17). The

1



cluster's state was therefore modified to include only

relative downrange components. The filter's performance

satisfied the required accuracy and proved promising under

initial testing (6:4-1). The continued testing of the

filter was conducted by Captain Sherrie Norton Filer.

Captain Filer investigated the discrepancy between the

results from each satellite (3:2). Captain Ward's initial

testing revealed that filter performance was different for

each satellite. The satellite that contains the filter

under investigation is defined as the host satellite.

During continued research, Captain Filer discovered that

the filter for the host satellite, designated satellite #1,

was unable to update its state vector components.

Additional information was sent to satellite #1's filter in

an effort to improve its ability to update its own state.

When this effort proved unsuccessful, Captain Filer

initiated a search for other unobservable state components.

The research yielded mixed results; it seems that none of

the states were truly unobservable (3:52).

The purpose of this thesis is to continue the

investigation into the unobservability of the state

components. The orbital altitude, cluster radius, and

accuracy requirement will remain the same. The cluster

geometry will be a random distribution of satellites within

2



the cluster volume. Satellite #1 will be considered the

primary satellite and its filter's performance will be the

source of the results presented in this thesis. Extensive

usage of Captains Ward and Filer's computer code will be

made in an effort to reduce development and testing time.

3



II. Background

The U-D covariance factorization filter computer code

was originally generated by Captain Ward. Additionally, a

truth model was developed to provide the estimator with

perfect or corrupted range data and to provide a true state

for compariso against the estimator's state. The

following sections detail the development of the truth

model and the estimator as previously presented by Captain

Ward (6:2-1-2-21).

2.1 Truth Model

The truth model was base on two-body orbital dynamics

and provided the cluster's true state and the relative

distance between each satellite. The range data is a

relative measurement and therefore absolute positions

cannot be determined by the estimation filter.

Alternatively, the relative distance is defined with

respect to a rotating reference point located in a circular

orbit of radius R with velocity J/ 7R. The rotating

reference frame (9, ) rotates with respect to an

earth-centered inertial reference frame (T,j,k) at a

constant angular rate of uk (see Figure 1).

4
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The position of each satellite within the cluster was

defined randomly about the reference point and takes the

form:

I (R~
,= 0( {n,(5OOmeters) (3)I 0

where n, is a vector of random numbers between -0.5 and 0.5

I from a uniformly distributed random number generator.

The radial and out-of-plane components of a satellite's

velocity are determined by the Clohessy-Wiltshire equations

I (these equations will be introduced in the next section)

and take the form: (8:80)

I vI= n(r , -r re 1 ) (4)

I Uk = TlrjK (5)

I
where rj is the mean motion of the reference point.

I
I 6

I
I
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The third component of the satellite's velocity is

determined from the constraint that the orbital periods of

all satellites within the cluster must be equal to ensure

I that the cluster remains intact. From Kepler's laws, the

* orbital period of an elliptical orbit is a function of the

semi-major axis of the orbit (2:33). Therefore, the

semi-major axis of each satellite must be the same and

equal to the radius of the reference point. Utilizing the

I energy equation, one may solve for the third velocity

component to obtain:

IJ 2Utj 'a - ,I:-V I-vk- j (6)2

The above information may be used to form the inputs to

the estimator. Captain Ward defined the initial true state

m as the position and velocity components of each satellite

expressed with respect to the rotating reference frame

3 [ROT]. Initially, the axes of both the fixed, inertial

frame [FIX] and the rotating frame are aligned and the

position and velocity may be expressed as:

I
rE ROT] (r,- r a)FIX] (7)

7
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I VA[ROT] = (vi- Vrof )[FIX] -- UI rOT] (8)

therefore the state at t=0 is

rI [ROT]

UV I[ROT]

X,(o)= (9)

3 r. S[ROT)

V s[ROT)]

Additionally, the truth model outputs an s-i relative

measurement vector.

I r 2

I z + U (10)

where u, represents zero-mean, white Gaussian noise with an

associated covariance of R, (4:330). The noise u, is the

best representation for errors in computing the range

measurements from the clock pulses. There are numerous

sources for the errors, but for the purpose of this thesis

8



the errors are lumped together into a single term and

considered independent from measurement to measurement

(6:2-6).

The future position and velocity vectors for each

satellite are determined by the solution of the Kepler

problem and the f and g equations defined in terms of the

eccentric anomaly E (2:219). The equations take the

following form:

1 l--(1 -cosAE) (11)

g=t- (AE-sinAE) (12)

T: .a sinAE (13)
rro

Lg= -- (-cosAE) (14)
r

where AE and r are defined as:

AE=E/-Eo (15)

r=a(1-ecosE,) (16)

The value of the eccentric anomaly, E,, for any time t

was determined by a Newton iteration scheme due to the

I

I
I
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transcendental nature of the Kepler equation. Once

f,g,j,andg are determined, the new position and velocity

vectors for each satellite may be calculated using:

I r(t)=Jr+gvo (17)

I V(t)=Ir+gVo  (18)

Once the position and velocity of each satellite with

respect to the inertial reference frame have been

determined, the relative position and velocity vectors with

I respect to the rotating reference frame can be determined.

I First, the new inertial position and velocity vectors of

the reference point must be determined. This is easily

accomplished by a rotation about the k axis through an

angle e defined as:

0 = W t (19)

Therefore, the new inertial position and velocity vectors

for the reference point are:

I [RcoSO
rr Ijj](t) = RsnO (20)

I ~HsinO
R

V ref[IL(t) j! cose (21)

0

I

Il



The inertial, relative position and velocity vectors

between each satellite and the reference point are

determined by subtracting the two solutions.

r , Otix I=[r(t)-rr~,(t)]=riL+r 2I+rak (22)

Vrel[,= [V(t)- vri.(t] = VL j+ V2+ k (23)

Since the inertial and the rotating reference frames

are no longer aligned, eqns (22) and (23) must undergo a

coordinate transformation through the angle 0 as previously

defined. The relative position and velocity vectors

expressed with respect to the rotating reference frame are:

r, cose+r2 sin 0

-rsinO+r 2cosO y

r r[ROT) 1 r3  Z (24)
SVROTJ1 vlcosO+ v2 sin + w' r 2  2

-V ,sinO+V 2 cose-W r1  Y

v 3  -

Once the position vectors expressed in the rotating

reference frame have been determined, the filter inputs can

be calculated as before.

2.2 Kalman Filter

The extended Kalman filter is used due to the nonlinear

nature of the measurements. The 'U-D covariance

factorization' version of the Kalman filter was used to

11



solve numerical problems encountered by Captain Ward

(6:2-14). This form of the Kalman filter will continue to

be used for the estimator once the observability problems

are identified and corrected.

The system's state propagation is described in terms of

a linear stochastic differential equation. The available

filter inputs are discrete-time, noise corrupted, nonlinear

measurements of the range between the satellites. The

Kalman propagation equations for the system are (4:220):

p - ( i t ; (t ) = 4 (ti I ti-0 :)54 ti- ) (2 5 )

P(t )= (t , _t1  )P(t _1 )4T(t,t _j)+Gd(t,_l)Qd(t,_l)G d (tl) (26)

Where

Qd = The covariance of the dynamics driving noise.

:(t )= The estimated state after time propagation.

(t:)= The estimated state after the measurement update.

Gd= Equals the identity matrix (because the model is

an equivalent discrete-time representation of a

continuous-time system (4:377))

-1= The state transition matrix.

The time argument (t7) will be replaced by (±) for the

remainder of the text. The first time propagation occurs

before any measurement updates, thus the initial filter

state and covariance must be established (6:2-10). For

12



ease in studying the steady state behavior of the filter,

Sc will be set equal to x,(O). The initial state covariance

matrix Po will be diagonal with position elements of order

10-6km 2 and velocity elements of order 10-
12km 2/sec 2

respectively.

The extended Kalman filter update equations are (5:44)

(+ ) = 3c(-)K(z -h[(-)]) (27)

P(+) = P(-)- KHP(-) (28)

K is the Kalman filter gain; an expression defining the

gain will be developed shortly.

The measurement vector h(:Zt) is the filter's estimate

of the range between the satellites. Therefore, the

residual is the difference between the observed data vector

and the measurement vector, z-h[5 (-)]. The measurement

vector's form is:

V(x I-x 2 )2 ,(yI-y 2 ) 2 ,(zI-z 2 ) 2  h,

h= =(29)

N/(x IX")2 +(y _y.,)2+ (ZI- _ .,)2 _-hs-1

The matrix H is developed from linearizing the h vector

with respect to the state components and evaluating it

after the time propagation of the state, ((-):

13



(30)

Which has the following form:

H1  -H, 0 ... 0
H 2  0 -H 2 ... 0

H= (31)

H,_1  0 0 ...- H-

where

Ix-x2 YI-Y2 _-z2 0 0 0 (32)1, h , h, h,I

H X-x, 0 0 0] (33)Hs-I hs-I hs-I hs-l 33

2.2.1 Dynamics

The system dynamics, i.e. the state transition matrix,

is based upon the Clohessy-Wiltshire equations of motion.

These equations describe "the relative motion of two

satellites when one is in a circular orbit." (8:78):

.k- 2T- 3T2X = 0 (34)

+2Tpc =0 (35)

S+ n 2 z =0 (36)

14



One may integrate these equations about the initial

conditions x,, 0,y,z,,and z0- to obtain the position and

velocity solutions (8:79-81)

x(t) = .-( 3.+3x cosTIt + -sinlt + 4x,+ 2' (37)

y(t) y, - (3y 0 +6qx0 )t + ( + 6x,)sin It + -Csq
TITI TI

(38)

z(t) = z-'cos r't + -snTt(39)
TI

x,(t) =(2y 0.+3Tr~x)sinrjt + x 0cosrjt (40)

-3 - 6ylx 0 + (6Tjx 0 +4 0 .)cos~jt - 2.k0 sinTt (41)

z (t)= - z ,T ri flt + z COS Tt (42)

Now, one may develop the state transition matrix (8:81).

4-3cosip 0 0 sinflW 2( 1- Cosi) 0
TI TI

6(sin p-,y) 1 0 2 (coswp- 1) 4-sinw--i 0
TI TI TI

0 0 cosip 0 0 sinw1

3Tin V 0 0 Cos I 2sin i 0
6 T(cosip-l1) 0 0 - 2sin -y - 3 +4cos-y 0

0 0 TinfY 0 0 Cos 1P

(43)

15



where V is q6t and 6t is the sample time. Generalizing the

state propagation equation for the s satellites yields

.4 0 0 0

0 ¢2 0 0
: 0 0 43 0 <(44)

0 0 0 4- ,

2.2.2 U-D Covariance Factorization Filter

The U-D filter is especially valuable for small word

length micro-processors, since it achieves twice the

numerical precision capability for the same wordlength

(4:400). The basis of the filter is the factorization of

the covariance matrices into a unitary upper triangular and

a diagonal matrix, such that

P(-) = U(-)D(-)U T (-) (45)

P(+) = U(+)D(+)U T (+) (46)

The algorithm is initiated with the same initial

covariance values as stated above. First, the initial

n-by-n covariance matrix P0 (where n is the number of

states) is factored into the UDUT form by the following

steps:

16



First, for the ne" column determine

Dnn = ,, (47)

1 i =n
Ui. = P = n-1ln-2....l (48)

Then for the remaining columns, j=n-1,n-2 ... ,1 determine

n

k-j-1

01 i >

D =j) I (50)

P,- I DkkUikUjk /D n  i=j-1,j-2,....1

Once the initial U and D matrices are determined, the

state can be propagated forward to the first update time.

The n-by-2n matrix Y(-) is formed by augmenting the state

propagation equation and the identity matrix Gd-

Y(-) = [41u(+)IGd] (51)

Finally, the 2n-by-2n matrix )(-) is formed by using the

D(+)andQd matrices as the block diagonal elements.

5 D(+) (52)D(- = 0 Qa

The transpose of the Y(-) matrix forms a matrix of column

vectors a, of length 2n.

ar = .a. a 2 ., (53)

17



The propagation is accomplished by calculating the

following relationships for k=nn- 1:....:

Ck = D(-)ak (ck,=,jj(-)aJk, j=1,2,..., 2n)

Dkk(-) = aTCk

dk = ck/Dkk(-) (54)

UJ () = a T dk j= 1,22..., k- I

a, <- a -Ujk(-)ak j= 1,2,..., k-1

The final step of the U-D covariance factorization

algorithm is the scalar measurement update. The following

equations complete the update using the previously computed

UTT() and D(-) matrices, the 1-by-n rows of the H(t 1 ) matrix

and the measurement covariance value.

f = UTH
T

VI, = D ,j(-)f, j= 1,2,..., n (55)

a0  = R

Then, for k = 1, 2, ..., n

ak = ak_ I+ kk

Dik(+) = Dk(-)al/a k

bk Uk (56)

Pk = -ik/ak-I

LI= L'jk( - = ,2...k

b bI+- +" (-), i= 1, 2 k -I

The filter gain is then determined by

18



Ib

K = b (57)
an

Finally, the state vector, 3(+) and the covariance matrix,

P(+) can be determined using Eqns 27 and 28.

2.3 State Definition

The state for the cluster was initially composed of the

position and velocity components with respect to the

rotating reference point. That is, until Captain Ward

discovered that the downrange, y, component of each

satellite was unobservable. The component was removed from

satellite #1's state and for satellites #2-s, the component

was replaced with a relative down-range component measured

with respect to satellite #1. The state vector for

satellite #1 is updated to

zI
l= X I (58)

7yi

While the state vectors for satellites #2-s appear as

19



Xl
Ay,

:;Z L i . 2 , 3, s (59)
II

YL

Where Ay, is determined by subtracting the y solution for

satellites #2-s from the y solution for satellite #1.

Therefore,

Ay,(+) = y,(+)-y,(+)

= [6(sinW- )](x,-x,)+(y,(-)-y,(-))+ (60)

I [?(cos i )]( - ,) + (sin )- K(y, -y)

The generalized state transition matrix, 4, becomes

4P1  0 0 0

P)12 4,2 0 0

= )13 0 4)3 (61)

I 'Ps 0 0 '_

Where

4-3cosy 0 s-2( 1 -cos V) 0

- 0 cosI 0 0

= rT (62)
3Tsin y 0 cos 2sin i 0

6T(cosV- 1) 0 -2sinip -3+4cosip 0
0 -Tsin V 0 0 cosy

* 20

I
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I
I4-3sp 0 0 osin I 2

I -3(cosip 10 0 (2sin l-4cos 0

0.. 0p - 0jSnt 0CsI

11 1

S0 coslp 0 0 sin

3 6sin p 0 0 cos 2sin 0
6 1(cosw-l) 0 0 -2siny - 3+ 4cos 0

0 0 - 0rl) 0 0 cos

i (63)

and

0 0 0 0 0
6(siriW-W) 0 2(cosw- 1) -sin - 0W

@ =0 0 0 0 0 (64)

0 0 0 0 0
I0 0 0 0 0

o 0 0 0 0

Additionally, the h vector and the H matrix are modified to

yield

(X 1 -X 2 )2 + Ay 2 -(Zl-Z2 )2 h

h= (65)

I
SIl H, 0 ... 0
A 2  0 H 2 ... 0

I = (66)

IFI_ 1  0 0 ... H,_1

I 21
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I

I where

X-. 22t 0 0 01 (67)h, h, o Io
Hi= -X -I Ay, 1  zvz.-I) 0 0 0 (68)

Once minor changes are made to the truth model and the

estimator algorithms, the computer program is exactly as

I it was when Captain Ward generated his results.

I
I
I
I
I
I
I
I
I
I
I 22
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III. Observability Analysis

The search for unobservable states was complicated by

the use of the U-D covariance factorization algorithm,

since the filter does not directly invert any matrices.

Therefore, the filter was replaced by a non-linear least

squares filter to take advantage of the fact that the

matrix ZTTQ-IT (to be developed shortly) is inverted

during the estimation process.

3.1 Non-Linear Least Squares Estimation

The equations of interest in the non-linear least

squares problem are the update to the reference trajectory

equation, the covariance of the estimate equation, and the

residual equation. The update to the reference trajectory

is given by:

6x(to) = (TTQ-IT)- TTQ r (69)

Where for convenience the matrix product H4(t,.to) was

redefined as T. The vector r is the residual vector. The

trajectory estimate is then given by:

xN(o) = Xro(to) + 6x(to) (70)

The estimate covariance is given by:

23



P = (T TQ-'T) - 1  (71)

Finally, the residual vector is given by the difference of

the observed and the calculated data vector.

r = z - G(h(x(to),t,),t,) (72)

I The variables that appear on the right hand sides of the

above equations were previously defined in Chapter 2. The

inversion of the matrix product TTQ-lT is the foundation of

I the calculations that appear in eqns 69-71. If the matrix

is singular, a zero eigenvalue will exist (1:357), and the

estimate covariance and the state update defined by eqns 69

and 71, respectively, will be undefined. In other words,

unobservable states are present if the matrix is singular.

Therefore, the ability to successfully invert the matrix

TTQ-lT is the key to the removal of the unobservable

states.

3.2 Analysis

The analysis initially consisted of inverting the

matrix T TQ- T using a Gaussian elimination with maximal

pivoting algorithm. Several assumptions were made to

simplify the analysis: namely, the constellation consisted

of only two satellites which greatly simplifies the

problem; the data vector consisted not of the range between

24



the satellites, but consisted of the actual components of

the state and the individual data measurements were

considered independent and each equally contributing to the

estimate to eliminate any questions about the data causing

observability problems; and finally, the initial reference

state was defined as the initial true state determined by

the truth model thus reducing the analysis to a single

iteration of the non-linear least squares estimation

algorithm.

The first attempt to evaluate the inverse of ZTTQ -1 T

yielded a singular matrix as expected, confirming earlier

suspicions of state unobservability. The next step was to

redefine the state and update all equations defined with

respect to the new state components (this task follows the

steps outlined in Section 2.3). But which state components

should be removed? An examination of the ZTTQ-IT matrix

for which the Gaussian elimination process failed yielded a

matrix of the following form.

25



X A' X X X X A' X A' X X
X A' X X X X A' X X X A'
A' X A' X X X X X X A' X

X A' X X X X A' X X X X
0 0 0 0 0 0 0 0 0 0 0 (73)

where X is a non-zero value. The z and ± components were

removed in an assumption that an absolute horizontal plane

of reference could not be determined.

The new state consists of the x, x, and y components

for satellites #1 and #2 and the relative components

Ay,Az,andAz between satellites #1 and #2. The new

equations for the non-linear least squares analysis assume

the following form:

X 2
0= Ay 2 0 h (74)

Az 2

Y2
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(t 4)2 (75)
d= L2 c12

4-3cos1 si-n 2(1 -cos -)
4> TI TI(76)

3TIsi n' Cos 1 2sin i
-671(cosip-1) -2sinW -3+4cosI_

0 0 0
2 4 3tp

6(sin ip- p) 2-(cos- - 4sinip - LI

412 = 0 0 0 (77)
0 0 0
0 0 0
0 0 0

4-3cosy 0 0 s IV 2-( -cos) 0
T] T

-(ii-)1 0 2 4_3 a
6(si n i - i) 1 0 -- (cos4- 1) -- sinP+ 0

0 0 cosIP 0 0 sin1

1
3qsin u 0 0 cosIP 2sinip 0

6rq(cos- 1) 0 0 -2siny -3+4cosy 0
0 0 - qsin y 0 0 cosi

(78)

Again, the inversion of ZTTQ-IT failed, yielding a

singular matrix. The Gaussian elimination process reduced

the matrix to
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X X X X X X X X X

X X X X X X X X X
X X X X X X X X X
0 0 0 0 0 0 0 0 0
X X X X X X X X X (79)
X X X X X X X X X
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

-X X X X X X X X X-

One may examine eqns 73 and 79 to conclude that the zero

rows corresponding to the Z2 and ;z2 components were

removed by introducing relative z and -z components into

the state. Based upon this conclusion, the zero rows for

the X2,x 2,andy 2 components may be removed by introducing

relative Ax, Ak, and,: components into the state. This

discovery warranted a re-examination of the solutions to

the Clohessy-Wiltshire equations. If the solutions for

satellite #1 and #2 are subtracted from each other and if

like terms are collected, one obtains the following set of

equations.

Ax(+ ) =(4-3cosip)Axo(-)+ sin 1 AX.(-) + 2(l-cosV)AYo(-) (80)

Ay(+) = [6 in - ) o-+ o( +

(Co V + s n -IV Y .(- (8 1)
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Az(+) =cospAz,(-)+sin z8(-)2)

Ax(+) = 3TsinipAxo(-)-cosVAxo(-)+2sinWAyo(-) (83)

A =(+) 6T(cosi-l)Axo(-)-2sinVAXo(-)+(-3+4cosV)A}o(-084)

Az(+) = -TsinWAzo(-)+cosWAzo(-) (85)

This set of equations indicates that there is no

possibility for determining the position and velocity state

components separately for satellites #1 and #2 based upon a

range measurement between the two satellites. For example,

examining the Ax(+) equation, an increase in the

x1 ,x1,and yI components and a corresponding increase in the

x 2,x2,and y 2 components would yield the same solution as if

no change had occurred at all. In other words, satellite

#1, the filter's host satellite, considers itself at the

origin of the reference frame and determines the relative

motion of the other satellite with respect to itself. Once

identified, the discovery seems obvious when one considers

that range is a relative measurement and by itself does not

yield any position information.

Equations 80-85 constitute the new dynamics model that

the filter will use during the estimation process. The new

state vector and state transition matrix for a cluster of s

satellites assume the following form:
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AY 2  Y I-Y 2

A x 2  x 1  2

Ay 2  1IY2
A' 2  z 1 ' 2

(86)

Ax, Ix

A S

o) 0 0

0 0~ -) (87)

where

4 - 3cos i 0 0 1iM 2 (-Cos l) 0
TI Ti

6(sin V- ip) 1 0 2-(cosip- 1) 4-sin ip--i 0
Ti TI TI

0 0 Cos Y 0 0 sni
T]

3Tliip 0 0 cosip 2sin y 0
6 Tj(cos ip- I) 0 0 - 2sin ip - 3 +4cosip 0

0 0 Ti ifp 0 0 Cos 1)

(88)
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Additionally, the h vector and the H matrix are now defined

as

J AX 2
2 AY22 +A Z2 2

h= (89)

_VAX, 2 + A y 2 +Az' 2  -

H2  0 0 .. 0

O H3 0 0

H= (90)

0 0 0 .. ,

where

Hl=Ax, Y Az' 01 ](1
h, hi hk
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IV. Performance Analysis

Once the observable states are defined and the filter

algorithm completed, the next step is to tune the filter

and conduct a Monte Carlo simulation in order to assess the

filter's performance. The tuning of the filter consists of

varying the diagonal elements of the dynamics noise

covariance matrix Qd; a rather simplified approach. Once

the filter is adequately tuned, a Monte Carlo simulation

will be conducted. The constellation size will be varied

and so will the random number seed used to corrupt the

range data. Fifteen test cases will be evaluated for

constellations of two, five, and ten satellites. The

positional errors between the truth model and the estimator

will be determined at each time step. Average error versus

time and average true error and filter covariance versus

time plots will be generated. The average error should be

near zero and the average true error and the filter

covariance should be approximately equal.

The filter's performance is examined by comparing the

values of the true error and the covariance of the

estimate. The true error is the magnitude of the position

difference between the truth model state and the estimate

state.
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TRUE ERROR = E * E2 + E (92)

where E, is the difference between the Ax, Ay, or Az

component of the true state and the estimate state. The

estimate's covariance is equal to the square root of the

sum of the squares of the eigenvalues associated with the

position components of the estimated state.

0 = V(EigenL)a u(x))2 + (EigenLalu e(y)) 2 + (EigenvauUe(z)) 2

I (93)

I 4.1 Filter Tuning

The first step in tuning the filter is to assess the

filter's performance with the elements of the dynamics

noise matrix set to zero. The true error and the

covariance are plotted together in Figure 2 for

I approximately 20 orbits with a time step of 300 seconds.

After the initial transient, the covariance exponentially

dec, yed approaching zero. The estimate approaches

perfectior as the covariance approaches zero. Once the

covariance reaches zero, the estimate will no longer change

I with time and a state of ignorance will exist concerning

the future behavior of the estimated state. Therefore, the

filter must be tuned so that the covariance on the average

will neither decay to zero nor grow to infinity (7:84).
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0.

* 014'4

0 300 00 12000 906. 1 150000

TIME (SECONDS)

Figure 2. True error and covariance as a function

of time with zero dynamics noise.

The process of tuning was confined to the diagonal

elements of the dynamics noise covariance matrix Qd with a

constellation consisting of two satellites. The first task

was to establish a ballpark initial value for the diagonal

elements. The range between satellites was assumed to be

accurate to within one centimeter. Therefore, one may
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-- determine an acceleration value that will yield

approximately a one centimeter error in position after one

orbit by solving the following equation for a.

1.Olmers = Icz(Period)2  (94)

The period is approximately 6300 seconds and the calculated

value of "a" is approximately 5XIO-'°KM/SEC2 . Initially,

only the diagonal elements corresponding to the relative

velocity components were changed. Therefore, the elements

assumed a value equal to:

I Qd = (aAt pdato) 2  (95)

The update time was 300 seconds and the new diagonal

elements were approximately 2.25X10- 14 K,1 2 /SEC 2 . The

exponential decay of the zero dynamics noise filter was

removed, but the true error curve was considerably below

the covariance curve. Therefore, the filter was

overestimating the error of the estimate (see Figure 3).
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TRUE ERROR

S-----COVARIANCE

0 1

11
0 30000 60000 90000 120b00 150b00

TIME (SECONDS)

I Figure 3. True error and covariance as a function of time

with dynamics noise on the order of 2.25X10-
14KA1 2/SEC 2

!
Several values later, the filter was successfully tuned

with an acceleration value of IX10-11 KM/SEC2 and a noise

covariance of 9XIO-1 KA12 /SEC 2. Figure 4 illustrates the

desired result that the true error and the covariance

curves overlap one another.
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TRUE ERROR
-- COVARIANCE

0.010

cr_

0 01 . . . 0 
. 6 

. .0 30000 60000 90000 120000 150b00

TIME (SECONDS)

Figure 4. Filter tuned with dynamics noise covariance of

9X 10-18 KA1 2 /SE0 2 .

The diagonal elements of the noise covariance matrix

corresponding to the position components were varied but

did not yield any appreciable benefits. For all subsequent

testing, these elements remained set to zero.

4.2 Monte Carlo Simulation

Once the filter was successfully tuned, a 15-sample

Monte Carlo simulation was conducted for constellations of
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2, 5, and 10 satellites. The purpose of the simulation is

to test the filter's performance based upon varying initial

conditions. The truth model generated the true state and

the range data between the host satellite and the remaining

satellites at each time step. The initial estimator state

was set equal to the initial state determined from the

truth model. The random number generator seed used during

the corruption of the range data was changed for each

simulation run. For each constellation size and for each

simulation run, the positional errors between the truth

model and the estimator, and the filter covariance were

calculated and stored within separate data files. The

final results consisted of an average error, an average

true error, and the filter covariance at each time step.

For constellations of 5 and 10 satellites, the average

errors and covariance were determined for three different

groupings of satellites. For example, the error data was

calculated between satellites #1 and #2, #1 and #3, and #1

and #5 for the five satellite constellation.

The average error is determined by summing the

positional errors from the 15 data files for each time step

and dividing by 15.

= -Z(X+EE,), (96)
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I The average true error is determined by summing the square

of the positional errors from the data files, dividing by

m 15 and taking the square root.

E= E2+E (97)

The covariance calculated by the estimator at each time

step is recorded in an additional data file. The average

error should be approximately equal to zero and the average

true error and the filter covariance should be

approximately equal.I
4.2.1 Two Satellite Cluster

m Figures 5 and 6 depict the average error and the

average true error and covariance results for a two

satellite cluster. As expected the average error curve is

near zero and the average true error and the filter

m covariance curves are nearly equal as a function of time.

m The average true error approaches a value of approximately

3 centimeters or three times the range measurement error

and is well within the 25 meter accuracy requirement

(3:vii). The steady state filter performance exhibits an

m oscillatory nature with a period equal to the orbital

period of the cluster (approximately 6300 seconds).
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Figure 5. Average error versus time for a two satellite

cluster.
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Figure 6. Comparison of average true error and covariance
versus time for a two satellite cluster.

4.2.2 Five Satellite Cluster

Figures 7-12 depict the average error and the

average true error and covariance results for a five

satellite cluster. The filter was not re-tuned. The

diagonal values of the dynamics noise matrix from the

'tuned' two satellite constellation case were assigned to

the diagonal elements of the three additional satellites.

Figures 7 and 8 are the error plots for relative position

determination between satellites one and two. Figures 9
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and 10 are the error plots for relative position

determination between satellites one and three. Figures 11

and 12 are the error plots for relative position

determination between satellites one and five. The filter

performs as desired with an average true error on the order

of two to three times the range measurement error. The

filter continues to exhibit the oscillatory behavior

previously noted.
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Figure 7. Average error between satellites 1. and 2.
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Figure 8. Comparison of average true error and covariance
versus time for satellites 1 and 2.
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Figure 9. Average error between satellites 1 and 3.
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Figure 10. Comparison of average true error and
covariance versus time for satellites 1 and 3.
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Figure 1. Average error between satellites 1 and
5.
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Figure 12. Comparison of average true error and

covariance versus time for satellites 1 and 5.
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4.2.3 Ten Satellite Cluster

Figures 13-18 depict the average error and the

average true error and covariance results for a ten

satellite cluster. Again, the filter was not re-tuned and

the additional diagonal elements of the dynamics noise

matrix were assigned the same values as previously used.

Figures 13 and 14 are the error plots for relative position

determination between satellites one and two. Figures 15

I and 16 are the error plots for relative position

determination between satellites one and five. Figures 17

and 18 are the error plots for relative position

3 determination between satellites one and ten. The expected

data trends are obtained for the ten satellite cluster

case. The average true errors are approximately two to

three times the range measurement error and again the

oscillatory behavior of the filter is exhibited as

previously discussed.

4
I
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Figure 14. Comparison of average true error and
covariance versus time for satellites 1 and 2.
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Figure 15. Average error between satellites 1 and
5.
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Figure 16. Comparison of average true error and

I covariance versus time for satellites 1 and 5.
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i Figure 17. Average error between satellites 1 and
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I Figure 18. Comparison of average true error and

covariance versus time for satellites 1 and 10.
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V. Conclusions and Recommendations

Relative position determination of a satellite

cluster using an on-board estimator is possible and yields

good results tested against a two-body astrodynamics model.

The state of the cluster can only involve relative position

and velocity components between the filter host satellite

and the remaining satellites. The U-D Covariance

Factorization Kalman Filter was tuned and subjected to a

15-sample Monte Carlo Simulation. The error results

presented illustrate good behavior of the average error,

the average true error, and the filter covariance. The

average true errors were approximately three times the

range measurement error.

Further investigations into this topic should

include a full tuning analysis, a filter robustness test, a

test of the filter's performance using a more accurate

truth model and an investigation into the filter's cyclic

behavior. The variation of non-diagonal components of the

dynamics noise covariance matrix should be investigated for

any significant gain in performance or accuracy. A full

test of the filter's robustness should be conducted to

analyze the filter's performance with a poor initial guess

for the initial state, and with periods of highly

inaccurate range data. A test with an extremely accurate
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perturbations model for the truth model should be conducted

as a preliminary test to establish the filter's

flight-readiness. Finally, the filter's cyclic behavior

should be investigated to fully understand the filter's

performance.
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