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Abstract

This study identified techniques and software available for the optimization of doubly curved

shells and applied them in the context of a large nozzle shape. An optimality criteria scheme

that can reduce solution time was evaluated and compared to the Method of Feasible Directions.

MSC/NASTRAN and ASTROS were used to perform finite element analysis and optimization, and

the results were compared to theory. The programs give virtually identical results, and if plates

and shells are carefully modeled, then stresses, displacements and modes are accurate to within ten

percent. A Mindlin-type axisymmetric finite element was implemented in ASTROS that preserved

accuracy and reduced the size of the stiffness matrix by a factor of four.

Nozzle optimization was performed using static pressurc and thermal loads, constrained by

the Von Mises stress criteria. Software errors in ASTROS were documented, and four characteristic

stress regions identified for the optimized nozzle.
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A COMPARISON OF THE OPTIMIZATION AND

ANALYSIS OF DOUBLY CURVED SHELLS

USING MSC/NASTRAN AND ASTROS

I. INTRODUCTION

Purpose And Objectives

Rigorous optimization of aerospace systems is required to extend range, reduce costs, and meet

preformance objectives. The trend toward complex, high performance systems requires early sys-

tem level multidisciplinary optimization. This has driven the implementation of multidisciplinary

optimization schemes in finite element analysis software.

Doubly curved shell structures are a key element in aerospace systems. Their high strength

has led to use in aircraft skins, rocket fuel tanks and nozzles, among other things. The purpose of

this study is to identify techniques available for the optimization of doubly curved shells and apply

them to an aerospace structure. This will be done by researching robust optimization algorithms

and the software that implements them. The software will be tested for accuracy, then used to

optimi. -the wall thickness of a large nozzle.

Literature Search

Literature In Optimization: Structural weight optimization is important to the design of

Aerospace vehicles since weight has a great impact on vehicle performance. Optimization is gen-

erally performed in the context of constraints, and various methods have been developed to deal

with them. The constrained optimization problem may be changed to an unconstrained problem

by transforming the cost and constraint functions into a new cost function that penalizes constraint



violations. The problem is then optimized using unconstrained techniques. Arora (2) details tech-

niques that fall into this category, and their inherent instabilities near constraint boundaries. More

popular and powerful methods use constraints directly in the optimization process using Lagrangian

multipliers. Miura (17) describes a well conditioned Modified Feasible Direction algorithm that is

faster than steepest descent methods. Venkayya (26, 27) details an Optimality Criteria Method that

resizes or scales the design based on Kuhn-Tucker conditions and the location of the constraints.

Literature In Plate And Shell Structures: In general, a plate structure is defined as the solid

material enclosed between two closely spaced planer surfaces, and a shell structure as the material

between two curved surfaces (7:Gibson). The utility of plate and shell structures is illustrated in

creation. Insect exoskeletons are commonly made of thin shells, and plate like structures are seen

in the plant world. Plate and shell structures have a high strength to weight ratio that is useful in

aerospace applications. Nozzles are one important application of doubly curved shells.

CLsed form solutions to the structure and vibration problem exist for a number of simple

plate and shell structures. Timoshenko (23) has solved for stresses and displacements in a uni-

formly loaded round plate with uniform thickness and clamped edges. Meirovitch (16) illustrates

the derivation of natural frequencies and mode shapes for this problem. A spherical dome with

rigidly fixed edges is another doubly curved shell structure for which a closed form solution exists.

Timoshenko (23) illustrates both the derivation of the exact solution and a simpler approximate

solution which was first developed by Hetenyi. Gibson (7) illustrates the FORTRAN coding of the

approximate solution.

Literature In Nozzles: Snpersonic convergent/divergent nozzles are used in a variety of ap-

plications including rocket and turbine engines and supersonic wind tunnels. Nozzle shape and

length may be optimized based on the characteristics of the flow and mission profile. Oates (19)

illustrates the relationship between expansion ratio and thrust at different altitudes. The nozzle's

structural design is driven by material strength and design stability, subject to pressure loading

2



and other mission loads. By assuming one dimensional flow, the pressure loading may be approx-

imated using the Laval nozzle equations. Kuethe and Chow (12) detail the development of these

equations. Mission loads may include transient thermal effects from the gas flow, thermal effects

from nuclear bursts, erosive effects, and a vibration spectral density environment. For instance,

erosion is the primary concern in analyzing solid propellant rocket nozzles, followed by thermal

stresses and conductivity (6:Galati). Th- steady state operating temperature of the nozzle is an

important consideration for liquid propellant rocket engines. Barrere, Jaumotte, DeVeubeke and

Vandenkerckhove (3) illustrate methods developed by Ciniaref and Dobrovolski for calculating these

temperatures in a liquid propellant rocket nozzle with regenerative cooling.

Literature In Finite Elements And Software: With increasing demands ior vehicle perfor-

mance there arose the need for multidisciplinary optimization early in the design process. In the

past, large software packages performed analysis in one discipline at a time. It was up to the

user to collect the necessary design sensitivity information from the various disciplines and put

them in a form that could be optimized. The Air Force Wright Aeronautical Laboratories initiated

development of ASTROS, short for Automated Structural Optimization System. This is a large

software package that collects static, modal, aerodynamic and dynamic analysis together for mul-

tidisciplinary optimization (10:Johnson). The MacNeal Schwendler Corporation developed a new

MSC/NASTRAN solution sequence, SOL 200, that collects static, dynamic, and buckling analysis

together for the same purpose (17:Miura).

Finite elements for shells have been difficult to develop. Curved elements closely model the

physical situation but are complicated. Modeling the shell as a set of finely faceted flat elements

is less complex and works well enough to compete with curved elements (4:Cook). An alternative

for problems with axial symmetry is an axisymmetric shell element. Cook details the development

and accuracy of a Mindlin type axisymmetric shell element with membrane, transverse shear and

benlding stiffness. MSC/NASTRAN (14:MacNeal) incorporates a conical axisymmetric shell ele-
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ment with all but drilling degrees of freedom at each nodal ring. A Fourier analysis scheme is used

I to obtain the response to non-axisymmetric loads.
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I. OPTIMIZATION BACKGROUND

The General Optimization Problem

Optimization has been pursued in a variety of disciplines, but regardless of the discipline

the optimization problem can be reduced to a generai form. Numerous mathematical optimization

techniques have been developed based on this standard form, which is defined by Arora (2) as

follows:

I Given the design variables

= (xi,....,Ix ) (1)

I and the function

I F(x)=F(xl,.. ,,n) (2)

find the x that will minimize F(x) subject to the following constraints:

izj(xi .... ,x.) < 0 j = I1... k (3)

zj(xl, ... ,x,.) = 0 j = k + 1 ... .1 (4)

iXi - Xi upper :5 0 j 1 1... n (5)

-x - Xj lower S j = 1...n (6)

Equation 3 represents the k inequality constraints, Equation 4 the I - k equality constraints, and

Equations 5 and 6 represent the side constraints on the design variables. The function F(a-) may

I be referred to as the cost or objective function (2:Arora). In general, the objective function and

constraints may be nonlinear, implicit functions of the design variables.

The design variables define an n dimensional design space. Any arbitrary X' is a design. If

the x' produces inequality constraints that are more positive than some user defined constant c, or

equality constraints that are not zero to within ±e, the constraints are violated. Similarly, inequality

constraints between zero and -E, and equality constraints between ±, are considered satisfied and

I5I



active. Inequality constraints that are more negative than -e at the design are characterized

I as satisfied and inactive. The activity or inactivity of a constraint relates to its involvement in

moving about the design space. At a given design, active constraints provide important information

about the direction toward the optimum. Inactive constraints remain part of the problem but the

Iinformation they provide is less critical. For numerical solutions the user defined variable c is

necessary because in a practical sense it is impossible to exactly satisfy a constraint. Without some

finite e, all the constraints would be characterized as violated or inactive, and the optimization

routines would have to act on all the variables. This would be inefficient.

Given the design ZV, we may characterize it as feasible or infeasible based on the condition

of the constraints. If there are any violated inequality or equality constraints, and the design does

not lie within the bounds specified by the side constraints, then the design is infeasible. On the

i other hand, if all the constraints are satisfied then the design is feasible. A feasible design may

have some active constraints, in which case it is a constrained optimization problem. Otherwise it

is an unconstrained problem. At any given x' there are three possible design states;

1. The design is feasible and there are no active constraints.

2. The design is feasible with one or more active constraints.

3. Th( design is infeasible since one or more of the constraints are violated.

The design state is important in determining the action to be taken during the optimization process.

The intent of the design optimization process is to find the feasible design x* that minimizes

the objective function. To do this, the conditions that must exist at the minima need to be

identified. If the minima is bounded and the problem unconstrained, then the familiar calculus

concept of the vanishing gradient at the minima is a necessary condition, or:

VF(x)= [F(x) . F(zj x 0 (7)

6
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Arfken (1) has demonstrated that if the design at the minima includes active constraints, then

I the OF(x) are no longer arbitrary and in general do not vanish. This leads to formulation of the

Lagrangian Function.

If we define some vector S to be an arbitrary unit direction vector in n space, then the dot

product of VF(x") and S yields the rate of change of the objective function in direction S. If

the dot product is negative then the objective function is getting smaller in that direction, and if

positive it is increasing. If zero, the gradient and S are orthogonal and there is nothing to be gained

by moving positive or negative in that direction. Applying the same thought to the constraints, if

the dot product of Vzj (x) and S is zero, then S lies on some iso-potential surface of the constraint.

If the constraint is active then this direction is tangent to the constraint boundary.

Let us assume a constraint is active and direction S is tangent to its boundary. If the dot

product of the objective function and S is nonzero, the objective function can be reduced by moving

along S. If this is the case then the design cannot be a minimum for the objective function can

be reduced without violating the constraint. However, if the dot product is zero then no move

from the present design that remains in the feasible region will reduce the objective function;

hence the present design is at least a local minimum. Also, since the dot product of S with the

gradients is zero, the gradients must be collinear. Therefore an arbitrary A can be chosen such that

VF(zx ") - AVz(z') = 0, which introduces the concept of the Lagrangian function and Lagrangian

multipliers.

As Venkayya (26) has demonstrated, the constrained optimization problem is typically refor-

mulated with a Lagrangian function L(x, A), defined as:

p

L(z, A) = F(z) - E Aj zj(z) (8)
j=1

The zj(x) are the p active constraints and the A's are the Lagrangian multipliers corresponding to

these constraints. At the minima the gradients of the objective function and the constraints are



I

collinear and there exists some collection of Lagrangian multipliers that will nullify the sum of the

Igradients, or:

8L OF P Z. O= 0z'-7 - EAj __ = 0 i = 1,. .. , n (9)
axi xi j=l x

The system of Equations at 9 represent the necessary conditions of optimality and are known as

the Kuhn-Tucker conditions. If we define a matrix e such that

O(10)

then the Kuhn-Tucker conditions may be reformulated as:

p
E eij Aj = 1 i = 1,...,n (11)

I j=l

If the Kuhn-Tucker conditions are met and the constraints are satisfied, then the design has

at least reached a local minima. If the objective function and inequality constraints are convex,

and equality constraints are linear, then this is also the global minimum (2:Arora). Alternatively, a

rigorous search through the feasible design space in search of other global minima candidates may

satisfy the user that the global minimum has been reached.

I Methods For Moving About The Design Space

The design optimization process requires moving through the design space from some X' in

search of the x" that minimizes F(z). Much work has gone into developing algorithms for perform-

I ing this task. One common approach is known as the Method of Feasible Directions (17:Miura).

Its robustness and efficiency have led to its implementation in large structural analysis software

packages such as MSC/NASTRAN and ASTROS. This method follows a two-phase approach; first

determine a search direction, then determine the distance to step in that direction. A less common

approach is defined as the Optimality Criteria Method (26:Venkayya). It is also a two-phase method

8



which either resizes the z' toward the optimum or scales it toward the constraint boundaries. The

decision to resize or scale is based on the design state.

Method Of Feasible Directions: In the Method of Feasible Directions (17:Miura), the design

z' is iteratively updated by the expression

X =+ 1 = z' + a*S (12)

where S is a unit pointing vector used to identify a search direction and the a* is a scaler move

parameter that defines the distance to move along S. The first critical step in the optimization task

is to find the search direction S. If the design is feasible and there are no active constraints, then

the search direction that reduces the objective function most rapidly is S = -VF. This is known

as the steepest descent direction. Experience has shown that convergence is greatly enhanced if

S is modified towards the trend direction of the last several iterations. If the design is feasible

but there are active constraints, then the steepest descent direction will likely violate a constraint.

In this case a sub-optimization must be performed to find an S that minimizes VF(X') • S

subject to the constraints Vzj(x) 9 S < 0, where the zj are the active constraints at the design.

If the current design is infeasible, then a sub-optimization must be performed as above but with

the objective function penalized and the constraint relaxed proportional to the magnitude of the

constraint violation. This allows S to point back toward the feasible region.

After a suitable search direction has been chosen, the scalar step distance a* must be de-

termined. This is done by a one dimensional search. By sampling the F(z) and zj( z) and their

gradients along S, interpolation may be used to select an a* that activates a new constraint or

minimizes the objective function. With a suitable step direction and distance in hand, the design

is updated by Equation 12.

At this point the third critical element of the Method of Feasible Directions comes into play:

9



detection of convergence to the optimum. Failure to find a feasible search direction S while in

possession of a feasible design indicates that the Kuhn-Tucker necessary conditions for optimality

are satisfied and the current design has reached an optimum. Another criteria is that of having the

relative or absolute change in the objective function be below some user specified tolerance. The

optimization must also be terminated if after a reasonable number of iterations a feasible design

cannot be found. If convergence is detected by one of these criteria then the optimization process

is stopped. Otherwise a new search direction and step parameter are sought and the process goes

on.

Optimality Criteria Method: In the Optimality Criteria Method (26, 27:Venkayya) the design

x' is iteratively updated by one of the following expressions:

x + 1 =x i= 1,...,n (13)

xV+1 = Aix' i =1,..., n (14)

Equation 13 resizes the z" by stepping toward the optimum design and Equation 14 scales the

design by stepping toward constraint boundaries. The Ai in Equation 14 is a scale factor chosen to

modify design variable i so as to bring the design to a constraint boundary.

The resizing scheme is based on the Kuhn-Tucker conditions expressed in Equation 11. The

bracketed sum at Equation 13 equals 1 at the optimum design, indicating satisfaction of the Kuhn-

Tucker conditions and producing no change in z". If the design is not at the optimum then the

bracketed summation can be thought of as the ratio of the zx at the optimum and the current zX'.

Since the objective function and constraints are typically nonlinear, the relationship will not be

exact, but it provides a factor that will move the design in the right direction. The "twiddle" factor

a is used to soften the magnitude of the move and prevent oscillations. It is adjusted throughout

the optimization process. Large values of a increase the number of iterations but provide smoother

10



convergence. An a < 1 speeds up the iteration but may miss the optimum. Experience indicates

that using an a value of 2 is good in the early iterations but to smooth convergence it should be

increased to 3 or 4 as the optimum is approached. For the bracketed summation to accurately

reflect the Kuhn-Tucker conditions it would seem necessary to know what constraints are active at

the optimum and the values of the Lagrangian multipliers. But Venkayya (26) has noted that the

optimization process is a series of iterations based on approximations, and the approximations will

eventually converge to the appropriate constraint set and Lagrangian multipliers. He then details

a technique for getting good first approximations for the A's using only gradients of the objective

function and constraints, weighted by each design variable's contribution to the objective function.

The scaling scheme in Equation 14 moves the design toward constraint boundaries by applying

a scale factor Ai to each design variable xi, as in Equation 14. Each design variable may have a

number of candidate scale factors to choose from since each one may in general affect each constraint,

and the constraints may be violated or satisfied to differing degrees. Venkayya and Tischler (27)

have developed a compound scaling algorithm that uses constraint function gradients, constraint

function values, and design variable values in a weighting scheme that selects the proper factor.

Two key quantities are used in compound scaling; candidate scale factors and the relative sensitivity

of the design variables to the constraints.

In developing candidate scale factors it is important to note that the constraints at Equations 3

through 6 are a generalization of constraints which are typically expressed in some variation of:

zj (Xi -,.n) < -Tj (15)

The -7 is some constraint specified by the user in formulating the problem, such as a limitation on

stress or displacement. If we define a parameter 3 as

= zi (16)
zi

11



then two candidate sc,,le factors are:

Ai 1 (17)

A2 = Lol(18)

The a is again a "twiddle" factor used to control convergence. Either scale factor may apply to the

design variable. The sign of - is important in scale factor selection since it indicates the direction

the constraint equation moves in response to the variable. The sign of the zi is also important

for it indicates what direction the constraint needs to move; whether from the violated or feasible

region. In order to determine whether Aj, or Aj2 is appropriate for a particular constraint, a new

parameter is defined:

zj Zi (19)
eij- z1 z,

The sign of the parameter determines which scale factor to use. If for constraint j and design

variable i the parameter /ij is positive, then Aj 2 is the correct scale factor, otherwise Aj, should

be used. Applying this process to all the design variables leads to generation of a scale factor table.

This is the collection of candidate factors for each design variable based on the relationship of that

variable to each constraint. It now remains to select the appropriate candidate for each design

variablc.

In order to make a proper selection, the design variables most sensitive to each constraint

must be identified. This is done by defining a new parameter

pi/j I (20)

where T, is the maximum pij for constraint zj. The magnitude of parameter pij provides a measure

of the sensitivity of constraint zj to percentage changes in variable zi. The new parameter tij

normalizes this sensitivity for each constraint. The design variables most sensitive to the constraints

12



are identified by a 1 and the remaining are scaled with respect to these. The largest tij associated

with design variable zi identifies the constraint zj that is most reactive to changes in the design

variable, and thus the appropriate scale factor. With this in hand, the expression in Equation 14

can be used to update the design. The entire scaling process is essentially bookkeeping. It requires

collecting the products and ratios of gradients, design variables, and constraint values into tables,

then applying rules to those tables in order to select scale factors.

The decision to scale or resize is based on the state of the design. If the design is unconstrained

or infeasible, then it should be scaled toward the constraints. If it is constrained then it should be

resized toward the optimum. After updating the design by Equation 13 or 14, a test for convergence

is applied as in the Method of Fcasible Directions. This will lead to termination of the optimization

process or a new scale or resize decision.

Optimization In The Context Of Finite Elements

The finite element model of a structural system is typically formulated as follows: Let z rep-

resent the n component vector of design variables for the system. Let U and P(z) be I component

vectors representing the generalized displacements and loads at nodal points of the system. An

equilibrium equation is formulated as

[K(z)] U = P(x) (21)

Where [K(x,)] is an I by I matrix called the stiffness matrix. The stiffness matrix and, in general,

the load vector are functions of the design variables. The displacements are obtained by ,nverting

the stiffness matrix and manipulating Equation 21 to the form:

U = [K(z)]- ' P(xr) (22)

13



Stress, strain, and other responses are then obtained by the expression

R = [S(z)] U = [S(x)] [K(z)]-' P(z) (23)

where R is the response vector of interest and [S(x)] is a response recovery matrix that relates

responses to displacements. Like the stiffness matrix, the response recovery matrix is a property

of the structural system and depends explicitly on the design variables, material properties and

geometry of the system. Because of the inverted stiffness matrix in Equations 22 and 23, the

explicit functional form of U and R cannot generally be written; they are implicit functions of

the design variables. Since constraints are placed on displacements and other responses, our zj in

Equations 3 and 4 are implicit functions of the design variables. This means that to use the finite

element model in the optimization process requires the inversion of the stiffness matrix at each new

sample point. This is a very inefficient and impractical approach since the stiffness matrix for most

practical design problems is extremely large, and each element may have many design constraints

applied to it.

The optimization problem is made tractable by linearizing the finite element model about

the current design and ignoring constraints that are not likely to affect the design at that point.

Efficient design sensitivity analysis procedures have been developed for calculating derivatives of

implicit functions with respect to the design variables (2:Arora). With values of the objective

function, constraints, and gradients at design xo, where xo = (x,,... , x,,), an approximate model

of the optimizaton problem may be stated in the form of Equations 1 through 6 as follows:

Given the design variables

X = (XI,, ) - X0(24)
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and the objective function

+O~z ,O+ - F(z)]

F(x) = F(xo) + (x, _ o,-F(x) + + (x, - X"n )-T--) (25)

find the x that will minimize the objective function, subject to the following constraints:

Zj(x)+ (Xl -X1) + ..+ (Xn-xon) <o 0 1..k (26)

zj(Xo) + 8(X- zz) +"+(Xn-on) =0 j k+ l1 (27)

Xj - Xj upper < 0 j 1...n (28)

- Xj - j lower < 0 j = 1...n (29)

Since for approximate optimization we only need the relative size of the objective function, F(z)

may be simplified to

F,.(x) L, OF(z) OF(z)l (30)L,= : x 1-T +... ° o--9- ] 0

where F, denotes the approximated relative objective function. The other terms in Equation 25

are constant.

Using these approximations, optimization of structures modeled by finite elements is carried

out in the following manner:

1. Create an approximate model at the current design.

2. Optimize the approximate model to convergence.

3. Reevaluate the finite element model at the new design.

4. Test for convergence at the finite element level. Convergence is based on the relative and

absolute movement of the objective function between the finite element model of step 1 and

that of step 3.

15



5. If the design has not converged at the finite element level, create another approximate model

and continue the process.

In this way movement about the design space is driven by the approximate model. This avoids

many costly inversions of the stiffness matrix and renders the problem tractable.
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III. ASTROS AND MSC/NASTRAAV COMPARED

MSC/NASTRAN is a hrge industry standard multidisciplinary engineering analysis tool.

ASTROS is a relative newcomer that has challenged conventional apprcaches to analysis by pio-

neering the multidisciplinary optimization of entire aerospace systems. Since both are the progeny

of NASA's NASTRAN analysis software package developed in t1he 1970's, they are notable for their

similarities. There are also clear differences in how each program is directed, in how they store and

manipulate information, and in their capabilities.

Software Differences

NISC/NASTRAN is described (15:MacNeal) as a large-scale digital computer program which

solves a wide variety of engineering problems by the finite element method. Capabilities include

linear and nonlinear static analycis with thermal loads, dynamic structural analysis, heat transfer,

acoustics, electromagnetism and other types of field problems. The latest version includes a struc-

tural optimization capability that can automatically modify the structural design and associated

analysis model to satisfy the criteria prescribed by the user (17:Miura). Contrary to Miura (17),

this capability was preceded by ASTROS and is therefore not unique.

ASTROS likewise is a finite element based program created to assist in the design of aerospace

structures (10:Johnson). Capabilities include linear static structural analysis with thermal loads,

normal mode analysis, aerodynamic analysis with steady state aeroelasticity and flutter, and dy-

namic analysis with transient and frequency response (18:Neill). Capabilities are clearly slanted to-

ward the "aero" disciplines of aerospace and are inferior in quantity to those available in MSC/NASTRAN.

The program performs multidisciplinary optimization within the context of its analysis capabilities.

The user interfaces with these programs through an input data file and the subsequent output

generated during execution. The input data files for MSC/NASTRAN and ASTROS take a very

similar form. Both include portions which control the solution sequence and input the physical

17



characteristics of the problem at hand. Differences lie in the logical arrangement of the solution

sequence portion, the available options for describing the physical problem, and in the description

of the optimization problem.

Control of the solution sequence in MSC/NASTRAN is performed in two sections of the input

data file; the Executive section and Case Control section (20:Reymond). The Executive section

identifies the job and type of solution and declares the general conditions under which the solu-

tion will be obtained, such as maximum time allowed. Any modifications to the normal solution

sequence are also declared here. Case Control defines the subcase structure of the problem, such

as what loads and constraints are to be considered. This is where requests for output are made. In

ASTROS the portions of the input data stream that control the solution sequence are the Executive

System Packet and Solution Control Packet (18:Neill). The input file begins with a preface state-

ment to establish the database, then the Executive System Packet calls a user-supplied solution

sequence or modifies the standard one, if nece-; z.2 %i ijC, Lxecutive is included then the standard

sequence is executed. Next, the Solution Control Packet defines the subcase structure. The most

notable cifference in this area is in the way di-:,l, .re enabled for analysis and optimization.

MSC/NASTRAN has many solution sequences available for the different disciplines, and these are

called by declaring a solution number in the Executive. ASTROS has only one standard solution

sequence that encompasses all the available disciplines. The selection of disciplines is made by

simply rearranging the subcase structure in the Solution Control Packet. MSC/NASTRAN's opti-

mization solution sequence SOL 200 is basically equivalent, but the ASTROS approach is arguably

easier to understand 4nd apply.

The physical problem being considered is described within the Bulk Data section of tile

input data file. The Bulk Data entries available in ASTROS are essentially the same as ;heir

counterparts in MSC/NASTRAN, with the exception being the description of the design model for

optimization. MS('/NASTRAN allows a wide variety of property characteristics to be identified

18



as design variables. ASTROS allows only one type of design variable for each element type; a

variable related to system weight, such as thickness or area. MSC/NASTRAN identifies a variety

of responses that can be constraints or the cost function. The responses that can be used in

this way are structural weight and volume; static displacement, stress and strain; internal force;

natural frequency; buckling responses and composite lamina responses (17:Miura). ASTROS has

Bulk Data entries that identify constraints related to aileron effectiveness, lift effectiveness, flutter,

modal frequency, static displacement, stress, and strain (18:Neill). But the program assumes all

optimization is based on system weight. Because of this and the limited design variables, the

Bulk Data entries for directing optimization in ASTROS are simpler and incompatible with those

in MSC/NASTRAN. The slight incren-e in complexity is a small price to pay for the improved

capabilities.

Other incompatibilities in the bulk data arise from MSC/NASTRAN capabilities that AS-

TROS does not support. Except for the optimization differences, an ASTROS data deck will

generally run in MSC/NASTRAN. The opposite is not true, however. MSC/NASTRAN includes

numerous elements, loads, parameter adjusters, output requests, and other capabilities that are not

supported in ASTROS. This can limit the analyst.

I_ A significant development in ASTROS that is invisible to the user is the structure of the data

3 base. The developers recognized a need for a data base that could handle three distinct types of

data (10:Johnson). First, it had to stoie and retrieve large, sparse matrices. The second requirement

is to access individual data items in entities such as tables, and the third is to access heterogeneous

collections of unstructured data efficiently. As no such data base was available commercially, it was

I developed for ASTROS and designated the Computer Automated Design Data Base or CADDB.

The CADDB supports these different data types and provides a common structure for accessing all

three in an efficient manner. The CADDB also allows the data base to expand and contract with

- the problem at hand rather than resorting to fixed size arrays.

I 19
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A notable similarity between MSC/NASTRAN and ASTROS is their utilization of Vander-

I plaats MICRO-DOT algorithm to perform optimization (17, 10:Miura, Johnson). Different default

3 parameters are used by each program, however. For instance MSC/NASTRAN imposes a 0.2 rel-

ative move limit while that in ASTROS is 2.0. As a result, optimization in the former may grind

along at a much slower pace unless the limit is relaxed.

When both programs are used side by side on the same problem, MSC/NASTRAN is notable

for it's robustness and flexibility. Difficulties that are automatically cared for or worked around

in MSC/NASTRAN may crop up as fatal errors in ASTROS. For instance, modal analysis of

flat plates in ASTROS requires omission of rotational degrees of freedom; something that is not

necessary in MSC/NASTRAN. Also, ASTROS does not support some useful outputs such as nodal

stress values, preventing the analyst from obtaining edge stresses.

U Some bugs still exist in the ASTROS code. For example, if the number of constraints is

about ten times greater than the number of design variables, optimization may halt with a fatal

array dimensioning error. When static thermal analysis is attempted on the Sun 4 using either

3 Versions 4 or 5, analysis terminates with a fatal error and the system accuses the user of defining

more than one temperature per grid point. The same problems run correctly on the VAX. The

Flight Dynamics Lab has confirmed that ASTROS was poorly ported to the Sun, and is working on

corrections. Another interesting discrepancy has to do with Version 5's implementation of the four

noded quadrilateral element QUAD4. Models using this element that run successfully in Version 4

often terminate with fatal matrix singularities in Version 5. The QUAD4 element was modified for

Version 5 to enhance accuracy with composite materials (24). It appears that, greater composite

material accuracy has driven the element to singularities in other applications.

2
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Comparison With Exact Solutions

Round Plate: Timoshenko (23) shows that the center deflection w of a uniform round plate

with clamped edges and loaded by a uniform pressure is given by

qa 4

, = 64D (31)

I where q is the uniform pressure, "a" the plate radius, and D its flexural rigidity. Meirovitch (16)

shows that the first natural frequency w of such a plate in Hertz is given by:I
w = 1.015 2 - Da2 (32)

2a2  p

where p is the area density of the plate. The flexural rigidity D is given by

= Eh 3  (33)D=12(1 - V
2)

where E is Young's Modulus, h is the plate's uniform thickness and v is Poisson's Ratio for the

material.

mtA numerical experiment was performed letting "a" equal 15 inches, h equal 0.25 inches, E

equal 10700 ksi, v equal 0.33, P equal 10 psi and p equal 6.475 x 10-5 slug inches. Material

properties are nominal values for 2024-T3 bare aluminum alloy (5:Denno). The theoretical center

point deflection given by Equation 31 is 0.50593 inches and the first natural frequency given by

Equation 32 is 111.76 Hertz. The same plate was next evaluated using finite elements. Figure 1

illustrates a finite element model of the plate and Figure 2 plots center point deflection in inches

versus the number of radial elements in the model. Both MSC/NASTRAN and ASTROS converged

to within 3.7 percent of the theoretical result with ASTROS slightly more accurate. Figure 3

plots the first natural frequency of the plate in Hertz versus the radial grid refinement. Both

21



Figure 1. Mode! of Clamped Round Plate With Ten Elements in Radial Direction
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Figure 3. Plot of First Natural Frequency Versus Grid Refinement, Round Plate

programs converged to within 0.27 percent of the theoretical result with ASTROS again slightly

more accurate.

Plan e-strain Cylinder: Saada (21) shows that the mid-plane radial deflection 6 of a plane-

strain tube loaded by internal pressure is given by

=Pa 2 (1 +V) 4b 2 2 1 (34)
2(b-a)E L(aM+)2

where P is the internal pressure, b the outer radius and "a" the inner radius of the tube. He also

shows that the mid-plane hoop stress ati is given by

Oh=a 2! 46[+ 2 (35
b2-a (ao+b)2J

A numerical experiment was performed with "a" equal 14.875 inches and b equal 15.125

inches. This gave a plane-strain tube with a mid plane radius of 15 inches and thickness of 0.25

inches. Using the E and v for aluminum and an internal pressure equal to 10 psi gives with
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Figure 4. Model Of A Plane Strain Tube With 32 Circumferential Elements

Equation 34 a theoretical mid-plane radial deflection of 0.00074629 inches. The hoop stress is

594.98 psi per Equation 35. The tube was then analyzed with finite elements. Element boundaries

were skewed with respect to the ends of the tube to convert any inter-element bending tendencies

tn membrane stresses. Figure 4 illustrates a finite element model of the tube and Figure 5 plots

mid-plane displacement in inches versus the number of circumferential elements. MSC/NASTRAN

converged to within 0.2 percent of the theoretical result while ASTROS only converged to within

3.7 percent. Figure 6 is a plot of the hoop stress ah of the tube in psi versus the number of

circumferential elements. Both programs converge to within about 0.6 percent of the theoretical

result, but MSC/NASTRAN is about 0.05 percent better. ASTROS is slightly better on models

having a coarse finite element grid.

Clamped Dome: In the case of a uniform partial-dome loaded by uniform pressure P, Timo-

shenko (23) illustrates the general hypergeometric series solution and Kraus (11) gives an example

of the infinite series form of the solution for the special case of a semi-dome. The solution is an

infinite series of Gamma functions which becomes ill-conditioned and difficult to evaluate as the

thickness of the shell becomes small compared with its radius (23:Timoshenko). A very good ap-
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proximation can be made by assuming a shape for the shearing force that damps out toward the

center of the dome. With a radius to thickness ratio of 30, Timoshenko demonstrates that the

approximation gives stress resultants that are good to within 10 percent at the extremes and follow

the theoretical curves in every respect. The approximation improves as the radius to thickness

ratio increases. With this approximation Gibson (7) has solved for the stress resultant forces Ns

and Ne and the moments Ms and Me, as follows:

- Pa
No = P (36)

Pa Pa
o -(1 - )e(0-, "1) [cos(3(o - 0)) + sin(O(al 1  - -)) (37)

2 2

Pa 2 (l V)
A 4,32 eo(-1 [sin(fl(al - cos(/,3a 1  (38)

vpa 2(1 _ V) 3
(O-'') [sin(3(ai - )) - cos(13(al - 0))] (39)

In these equations "a" is the dome radius and a, the half angle subtended by the dome. The

parameter 3 is defined as:

3= -3(1 (40)

The 0 represents the circumferential direction and 0 the angle from the dome center point, as seen

in Figure 7 from Gibson (7). The stresses within the shell can be derived from the stress resultants

by the following Equation (4:Cook):

N(.) 12zM(.) (41)
h + h(41)

where the * is replaced by 0 or € as desired, and z is the distance from the mid-plane.

A numerical experiment was performed with "a" equal 15 inches, h equal 0.25 inches, a,

equal 35 degrees, E and v for aluminum and pressure P equal 10 psi. The radius to thickness ratio

was 60, which is double that used by Timoshenko to demonstrate the quality of the approximate

solution. Figure 8 illustrates a finite element model of the dome- The theoretical values obtained
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using Equations 36 throu-' .vere compared with those found by finite element analysis. Figure 9

is a plot of mid-plan , .., psi versus the angular distance from the center point. Likewise Figure 10

plots o. The f-p surface af is plotted in Figure 11 and ao at the top surface is shown in Figure 12.

The stres-cs in each case are in psi. MSC/NASTRAN and ASTROS yield virtually identical results

with the former slightly better where differences exist. The finite element solutions lie within about

9 percent of the theoretical results and their extreme value always exceeds theoretical. This is a

positive attribute for an analysis tool as the design is driven by stresses not likely to be exceeded

in the physical world. It is also interesting to note that in Figure 9 the finite element results err in

the direction of the exact hypergeometric series solution illustrated by Timoshenko (23).

Optimization: A numerical optimization experiment was performed on the 64 element plane-

strain tube. With the radial displacement from static analysis as an upper constraint, the model

was optimized for minimum weight to see how close MSC/NASTRAN and ASTROS came to

the theoretical 0.25 inch wall thickness. Optimization started with a thickness of 10 inches. With

default optimizer parameters ASTROS converged within five iterations, but MSC/NASTRAN took

fifteen. This is because the latter imposes a default 20 percent move limit while the former has a
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200 percent limit. With the MSC/NASTRAN move limit relaxed to 90 percent, convergence was

obtained in five iterations. Both programs converge to within 0.02 percent of the theoretical value.

The design variable history is plotted in Figure 13 where wall thickness is given in inches.
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I. OPTIMIZATION OF A DOUBLY CURVED SHELL

The analysis of simple piate and shell constructions has given confidence in the capabilities

of MSC/NASTRAN and ASTROS, and provided a foundation for the analysis of more complex

structures. In this chapter optimization is probed more deeply in the context of a large nozzle.

Finite Element Model Of A Nozzle

Physical Characteristics: A finite element model was created using the deployed shape of the

Peacekeeper Stage II nozzle. This large nozzle was developed by the Missile, Ordnance and Space

Group at Hercules Corporation. It has a length of 78.38 inches, throat diameter of 8.60 inches and

exit diameter of 69.46 inches (8:Hercules). The nozzle was modeled using four noded qudrilateral

elements having bending, membrane and shear stiffness. A computer program was developed that

fits the finite element mesh to the nozzle geometry with IMSL cubic spline routines (9), then

generates the executive, case control and bulk data files needed for analysis in MSC/NASTRAN

and ASTROS.

Analysis time was saved by exploiting the symmetry of the geometry and loads. A quartered

model and single element strip model were used with good results. A full nozzle with 32 elements

per circumference has 960 elements, but only 30 of these are independent. A quartered model

reduces the number of ,lrn:ts to 240, while a strip model uses the 30 independent elements. The

model geieration program has- the flexibility to create either full, quartered, or strip models at, the

user's discretion. It also lets the user vary the fineness of the mesh. Figure 14 is an illustration of

a quartered nozzle and Figure 15 shows the same nozzle modeled by a single strip of elements.

Material propprties were those for alloy AISI 687 (13:Lynch); a high temperature, high

strength alloy of Nickel, Chromium, Cobalt and other trace elements. This alloy was chosen for

its yield strength at the nearly 1700 degrees fahrenheit at the throat. AISI 687 has a modulus of
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Figure 14. rinite Element Model Of Quartered Nozzle, Grid Fineness Of 32 Elements Per Cir-
cumference

x

Figure 15. Finite Element Model Of Nozzle Using Single Element Width Strip, Grid Fineness Of
32 Elements Per Circumference
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elasticity of 32400 ksi, coefficient of thermal expansion of 7.5X10- 6 per degree fahrenheit, and an

interpolated yield strength of 68 ksi at 1700 degrees.

Pressure And Thermal Loads: Pressure loads were approximated using the one dimensional

Laval nozzle equations for isentropic flow. The development of the relation between pressure and

channel area is illustrated by Kuethe and Chow (12), resulting in the equation

[ 4 ] 2 ( 4 2 )
[-1 [] 2~2 ] 

where the "A" is the nozzle area at the point of interest and A* the area at the throat. Pressure

at the point of interest. is denoted by P, and P. is the chamber pressure. The specific heat ratio

for the gas is 1.

With chamber pressure and nozzle geometry known, Equation 42 may be solved numerically

for pressure at any axial location. The relation is double valued except at the throat. The correct

value is determined by whether the point of interest is up or downstream of the throat, and the

pressure outside the nozzle. For this analysis the nozzle was assumed to be operating in a vacuum,

thus the high pressure value belongs on the chamber side of the throat and the low pressure value

toward the nozzle exit. The model generation program numerically solves Equation 42 for P using

the nozzle crossectional area at the element in question, the throat area, a -y of 1.18 and a chamber

pressure of 1000 psi. This was applied to the element as a pressure load. Element loads versus

location are plotted in Figure 16.

The parameters used in the development of pressure loads were chosen to be as realistic as

possible. A 1000 psi chamber pressure is reasonable for a nozzle of this size (8:Hercules). The -y is

for a nitric acid oxidizer and kerosene fuel mixture used by Barrere (3) in an example calculation

of nozzle temperatures. In a real nozzle the -y would not be constant, nor the flow isentropic, as

assuinwd here. lowever, Equation 42 is good first approximation to the pressure loads and generally
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within 15 percent of experimental values (6:Galati), thus it provided a good representative load for

nozzle analysis.

Temperature loads were modeled using the example developed by Barrere. His values were

converted to degrees fahrenheit and fit to this nozzle's geometry. The example was of a nitric acid

and kerosene fueled rocket motor using the nitric acid to regeneratively cool the nozzle. The result-

ing nozzle wall temperatures are plotted in Figure 17. Although the example is a little outdated, it

nonetheless provided a good representative temperature profile for analysis and material selection.

Optimization Scheme: Optimization was performed with the objective being to minimize

weight by varying the wall thickness. The Von Mises stress criteria was used with a yield strength

of 68 ksi as the constraint. This criteria is defined as (20:Reymond):

rv = V -2
... + 2 - 3rr (43)

The minimum wall thi-kness was constrained to 0.01 inches and the exit lip constrained to a

maximum deflection of 2 inches in any direction. Wall thickness was assumed uniform in the
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circumferential direction, consistent with the symmetric loading and geometry. ASTROS Versions

Four and Five do not support nodal temperature loads on the SUN 4, therefore it was run without

thermal loads. MSC/NASTRAN was run with and without thermal loads for comparison purposes.

The Modified Feasible Directions search scheme was used by MSC/NASTRAN and AS-

TROS. Both programs employ the MICRO-DOT algorithm for optimization but initiate it with

different default optimizer parameters. Of the 45 parameters in the algorithm (25:Vanderplaats),

MSC/NASTRAN provides for the easy modification of 13 and ASTROS documents 26. Both pro-

grams allow the experienced user to vary all the parameters. Numerous optimization runs were

performed to compare the goodness of the default parameters and identify those which have the

best effect on the optimization process.

Results

The strip model ran well in MSC/NASTRAN with adjustment of the optimizer parameters,

but did not converge with defaults. Figure 18 compares the optimization progress with different

parameters. The dramatic improvement in the first step was obtained by changing the move limit
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Circumference

parameter DELP from its default of 0.2 to 2.0. This resulted in a slight overshoot that settled in

four iterations and converged within ten. Adjusting the convergence detection parameters CONVI

and CONV2 provided a further improvement in the objective of about 2 percent. These parameters

determine the relative and absolute change in the objective for convergence. The default values are

0.001 and 0.01 respectively. They were both changed to 0.1X10- 12

The strip model and the quartered model were used in ASTROS. Figure 19 compares the

optimization progress between the two models. Although the ASTROS optimizer default values

were an improvement over those in MSC/NASTRAN, the design never reached the optimum.

Varying the optimizer parameters had little effect. Convergence detection parameters were adjusted

to 0.1X 10-1 2 and 0.1X 10-i1, and the design variabes permitted to step to one thousandth of their

initial value on the first step. But the design still changed at the same rate and ground to a halt

short of the optimum. The quartered model was then run and it converged at the same rate but

settled to the MSC/NASTRAN optimum in eleven iterations. Apparently ASTROS has difficulty

optimizing extremely light structures without modification of some yet undiscovered parameter.
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Moving to an equivalent but more massive model overcame this difficulty.

The best MSC/NASTRAN and ASTROS optimization runs are compared in Figure 20. Both

programs converged to final values that agree to within 1.3 percent. However, MSC/NASTRAN

arrived in the neighborhood of the optimum much more quickly than ASTROS. The resulting

thickness distribution is plotted in Figure 21 with thickness is in inches. The programs are in good

general agreement and reach the 0.01 inch minimum thickness constraint at about 20 inches axially.

The distributions at the throat reflect the rapidly changing loads and geometry. MSC/NASTRAN

has more sharply defined thickness variations in the throat area resulting from the fourteen iter-

ations allowed it near the optimum. In designing a real nozzle, the peak values from an analysis

such as this would be used to establish a smoothly varying thickness distribution from chamber to

exit, with some margin of safety added. Despite the discrepancies at the throat, both programs

would provide good data for such a distribution. If ASTROS were used, however, there would be

some risk of exceeding margins, since the peak values in ASTROS are consistently below those in

MSC/NASTRAN.
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Figure 22. Comparison Of Major Principle Stress Distribution Using MSC/NASTRAN and AS-
TROS, Nozzle Model With Grid Fineness Of 32 Elements Per Circumference

The resulting major and minor principle stresses are plotted in Figures 22 and 23. Once

again both programs are in very good agreement with the exception of an interesting deviation at

the throat. Major principle stresses are in the circumferential direction and minor stresses are in

the axial direction. The circumferential stress is generally in tension since the radius of curvature

lies on the pressure side of the structure. However, at the throat the axial radius of curvature

lies outside the nozzle. This causes a large compressive spike in the axial distribution which the

geometry couples into the circumferential direction as a trend toward compression. This is seen

in both the MSC/NASTRAN and ASTROS stress distributions. The ASTROS model is about

0.01 inches thicker in the vicinity of the throat, and this support keeps the element from going

into outright compression. The MSC/NASTRAN model is thinner, so the throat does go into

compression. Despite these variations, the Von Mises stress criteria are satisfied in both cases,

and the stresses have been shown to be reliable. The discrepancy at the throat is a result of

slightly different thickness distributions, and these in turn are a product of the differences in the

optimizer parameters. The nozzle was also optimized using a finite element model with twice the

grid refinement. There was little change in the thickness and stress distributions.
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Figure 23. Comparison Of Minor Principle Stress Distribution Using MSC/NASTRAN and AS-
TROS, Nozzle Model With Grid Fineness Of 32 Elements Per Circumference

The nozzle was optimized in MSC/NASTRAN with static thermal loads. This was done to

quantify the thermal stresses being overlooked because of ASTROS' inability to support thermal

analysis on the Sun 4. Stresses were low and the optimization quickly moved the thickness dis-

tribution to the 0.01 minimum throughout. The resulting major principle stress distribution is

plotted at Figure 23. With the exception of a 3200 psi tensile load at the throat, the loads are

minimal and of a few hundred psi. The throat load is the result of the rapid change in nozzle

diameter and, interestingly, opposes the stress resulting from the pressure load. When the model

was optimized in MSC/NASTRAN with both pressure and thermal loads, the final objective was

about 0.2 percent smaller than that obtained with pressure loads alone. This reflects the balancing

of opposing stresses at the throat, and could lead to a thickness distribution that is inadequate at

engine ignition when the nozzle is cool. In this application the inclusion of thermal loads does not

significantly improve the analysis. The real utility in knowing the thermal distribution is in the

material selection process, where use of high temperature yield values is critical. Thermal analysis

should be done, and it is unfortunate that ASTROS was unsupportive, but good results can be

obtained nonetheless.
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V. AXISYMMETRIC FINITE ELEMENT ANALYSIS IN ASTROS

Axisymmetric shell finite elements offer an alternative to the analysis of axially symmetric

shells with flat elements. We have seen the results that may be obtained with flat, quadrilateral

elements. This chapter will discuss the development of a Mindlin type axisymmetric shell element

and illustrate its use in ASTROS.

Element Development

The following development carries through the steps alluded to but not explicitly demon-

strated by Cook (4) in his development of a Mindlin axisymmetric shell element. Element geometry

and coordinates are illustrated in Figure 25. As in the figure, t denotes element thickness and z

is the distance from the midplane. The length of the element is L and the degrees of freedom

supported at each node ring are u, w and 3. The u and w may be rotated to the global coordinates

U and W. The angle the element makes with global coordinate U is denoted 0. The circumferential

direction is not shown but is denoted by 0.

The element nodal displacement vector de is configured as:

d, = w, ul /31 w2 U2 32 (44)

In the axisymmetric case these displacements refer to nodal rings rather than the more familiar

nodal points. Because of this, elements containing nodal points cannot be attached to axisymmetric

elements.

Using the generalized coordinate where the shape functions are:

N1 = (1 - ) (45)

N 2 = (1 -) (46)
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N3 = L1- 2) (47)

These are assembled into an element shape function matrix [N) of the form:

[ 0 N1  0 0 N2  0]
[I]= N1  0 N3  N2  0 - (48)

0 0 N 1  0 0 N

If we define an operator matrix [D] as

d 0

S 02

[D]1= 0 0 -d(49)

Z W2

I0 0 -1f~

2r

then the element strains are obtained by the operation:

= N3 = 47[B]d (50)

This gives e in the form m = Ee K, jT where the foand are strains and the

are curvature changes.
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The material property matrix is denoted by [E] and defined as:

Et oEto]-1-v -! 0 0 0

vEt Et1 - 0 0 0

[E] 0 0 El v 0 (51)12(1-i,2) 12'1-v) 0(13Et El3012(l-v2) 12(1-L,7 0
5Et

L 0 0 00 12 (1 +1')

Premultiplying c by [E] returns membrane forces A), and bending moments M(.) in the

shell. The (*) is replaced by s or 0 depending on which stress resultant is desired. Using the

relation

A(.) 12zM(.)_(___ - ± +  t (52)
t 0

stresses are obtained through matrix [S,] of the form:

S0 T 0 0

0 0 6 0
10 0 0 0

[S] 0 1 0 0 0 (53)

I 0 0

L 0  0 0 0 1

If postmultiplied by the element strain vector, this matrix will return stresses in the element

coordinate system. These stresses are at the outer surface, midplane and inner surface of the shell.

The form of the stress vector returned is:

0
00t cr

0 - O"8mdpi. ,nc (54)

With these matrices the element stiffness matrix [k] is formed by the following integration:

k] = 2 1[B]T [E][B]d (55)
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The matrix is then rotated to the global coordinate system for assembly into a global stiffness

matrix.

Loads in general do not fall at node rings. A vector of equivalent nodal loads f,,n is formed

for pressure load P() on the element by the integration:

=L j-[N]T P( )d (56)I2
After the finite element solution has been obtained, element stresses are extracted from the

global displacement vector d. as follows:

,7 I Sg]d_ = [Se][E][B][R]dg (57)

The [Rj is a transformation matrix that rotates the global displacements dg to displacements in the

element coordinate system. [Sg] is the stress recovery matrix which converts global displacements

to element level stresses.

ASTROS Implementation

The Mindlin kxisymrnmetric element was implemented in ASTROS by externally programming

the necessary matrices, creating a pseudo axisymmetric problem in ASTROS with rod elements,

then overwriting the internal matrices with those created externally. The program discussed in

Appendix B was developed to create the global stiffness matrix, load vector, and stress recovery

matrix. The integrations required by Equations 55 and 56 are performed using a seventh order

Gaussian Quadrature scheme with weights and function evaluation points provided by Stroud and

Secrest (22). The element level matrices thus obtained are rotated to the global coordinate system

and assembled into global level matrices. Likewise the element level stress recovery matrix is

obtained by performing the multiplications of Equation 57. These are assembled into a global lovel
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stress recovery matrix. The matrices are then put in a direct matrix input form for bulk data el ry

into ASTROS.

To flush out the unwanted matrices and load in the externally created ones, ASTROS requires

modification of the standard MAPOL solution sequence at the executive level. For ASTROS version

5 this was done through the following edit sequence:

INSERT 88
MATRIX [MYKGG], EMYPL], [NYSREC], [STROUT];
INSERT 1613

EKGG] := [MYKGG];
INSERT 1638

[PG1 := [MYPL];
REPLACE 2303,2311

[STROUT] := [MYSREC] * [UG];

CALL UTMPRT(O,[STROUT],[UG]);

The insertion at line 88 creates matrix entities MYKGG, MYPL, and MYSREC within AS-

TROS. These are the global stiffness, load, and stress recovery matrices to be loaded via direct

I matrix input. The STROUT matrix outputs stresses. At the appropriate point the ASTROS global

stiffness matrix KGG and load vector PG are replaced by the externally generated substitutes. So-

lution occurs normally, albiet with radically modified matrices. The normal output sequence from

lines 2303 through 2311 is no longer useful, and is replaced with a matrix multiplication to produce

I stresses and an output command to directly print stresses and displacements.

I All that remained was to create a pseudo axisymmetric bulk data problem with CONROD

elements. This arranged the solution sequence, constraints, matrix sizes and the internal structure

I of ASTROS for solution of the externally generated matrices. CONROD is a rod finite element

that has an element stiffness matrix and degrees of freedom of similar size and compatible with

the axisymmetric finite element. Because of this it is useful for creating the pseudo problem. The

I grid points must match the location of the nodal rings used to create the stiffness, load, and stress

recovery matrices, and they must lie in the X-Z plane. The Z coordinate in ASTROS matches

4
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the global U coordinate along the axial direction in the axisymmetric problem. Likewise the X

i coordinate matches the global W. Constraints and CONROD elements are applied to these grid

points as they would be in the axisymmetric problem. Loads and macrial property entries are

necessary for proper internal sizing, but can contain dummy values since externally generated data

will take over before the solution begins.

Results

A numerical experiment was performed using the geometry and properties of the plane strain

tube used in Chapter 3. The direct matrix input data created for the axisymmetric problem were

merged with a CONROD pseudo model of the tube and the appropriate executive modifications.

Tile theoretical mid-plane radial deflection is 0.00074629 inches and theoretical hoop stress is 594.98

psi. The ASTROS axisymmetric solution returned a radial deflection of 0.00074952 inches and hoop

stress of 600.00 psi. This is an error of 0.43 percent for displacement and 0.84 percent for stress,

comparing favorably with the 0.6 percent obtained using 32 quadrilateral flat elements.

This problem was formulated with a 12 by 12 matrix containing the 6 by 6 axisymmetric

stiffness matrix. In contrast, the quadrilateral element problem required solution of a 1932 by

I1 32 stiffness matrix for the full tube or a 24 by 24 matrix if symmetry was fully exploited. The

axisymmetric element offered comparable accuracy while reducing the size of the problem, but in

this formulation disallowed consideration of non-axisymmetric loads.

The optin.,zed 32 element per circumference nozzle model of Chapter 4 was also reformulated

as an axisymmetric problem. This produced an extremely large bulk data deck which ASTROS was

not successful in solving. In describing the bulk data entry for direct matrix input, the ASTROS

User's Manual (18:Neill) implies that only nonzero entries need be loaded. In fact, if the entire

matrix is not loaded including all the zeros, a number of strange errors crop up in the solution

svqIlenc(. In both versions 4 and 5 the program typically accuses the user of trying to load beyond
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the dimensioned size of the matrix, or of improperly using complex arguments. These problems

I disappeared when the entire matrix was loaded, but this drove the size of the direct matrix entry

to the order of 10,000 lines. This resulted in input/output problems on the Sun 4.

I
I
I
I
I
1
I
I
I
I

I4
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VI. CONCLUSIONS

The Utility Of MSC/NASTRAN And ASTROS

MSC/NASTRAN and ASTROS provide accurate analysis and optimization results on plate

and shell structures, providing the finite element model is carefully constructed with a fine grid

structure. Results on simple shells have been demonstrated to within 10 percent of theoretical

values, and responses obtained for a large nozzle make good physical sense. From an analysis

standpoint the differences between the programs are negligible. Optimization results are similar,

but each program steps down differing iteration paths driven by different optimizer parameters.

MSC/NASTRAN is more robust with a large element set and many other options available

to the analyst. It has well developed documentation suitable for both new and experienced users.

Optimizer parameters are clearly documented and can greatly speed the optimization process. The

program is capable of analyzing thermal loads on the Sun 4. Software bugs were not encountered.

ASTROS is hindered by a few software errors. If the ratio of constraints to design variables

exceeds about ten, the optimizer is driven into an array dimensioning error. The program as

ported to the Sun Workstation has difficulties with thermal analysis. The documentation available

f- ASTROS is also a limiting factor. As a whole the documentation is accurate but not particularly

user friendly. The standard complement of manuals is available, but these do not accurately reflect

the newer versions of ASTROS. System Release - ..,tes rust be used in conjunction with the manuals

to obtain correct infc rmation in some cases. The small element set and limited capabilities can

also hinder the analyst.

On the positive side, with the capabilities it has ASTROS offers cost free equivalence to

MSC/NASTRAN. Software bugs are being actively pursued and corrected, and an optimality c:i-

teria optimization scheme is being implemented. The inclusion of this optimality criteria searrh

technique in the next release should significantly reduce the consumption of computer time on large

scale problems.
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The Optimization Process

Both MSC/NASTRAN and ASTROS use the Method of Feasible Directions for optimization.

This is a robust technique that moves about the design space based upon gradient information.

Movement is meticulous and deliberate. A sub-optimization must be performed in order to deter-

mine the direction to move. A one-dimensional line search must be performed to determine the

magnitude of the movement. This requires sampling the design space and constraints at several

points and interpolating based on the results. The method is well conditioned but its utility is

limited to about 300 design variables, as are all other popular methods.

The Optimality Criteria Method also moves in the design space based on gradient information,

but gradients are used differently. The design leaps about the design space driven by simple ratios

of the design information, modified by "twiddle" factors. No sub-optimizations or one dimensional

searches are required. The method is sensitive to "twiddle" factors and may be unstable if they

are not just right. On the other hand, moving about the design space is less cornputationally

burdensome and less sensitive to the number of design variables in the problem. This method

should move optimization beyond present design variable limits.

Nozzle Analysis And Optimzzation

The doubly curved nozzle shape can be adequately analyzed in both MSC/NASTRAN and

ASTROS. Key areas of consideration are thermal effects and stress distributions. The analyst

may also be concerned with displacements, but these are likely to be of little consequence. The

displacements seen in the analysis done here were of the order of a tenth of an inch at the most.

Nozzle temperatures are extremely high and constrained by material limitations. Because

of the thermodynamics of nozzle flow, the highest temperatures are near the throat. Material

properties may be strongly temperature dependent, particularly yield strength. For instance, the

room temperature yield strength of alloy AISI 687 (13:Lynch) is double that at 1700 degrees
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fahrenheit. If the room temperature yield strength were used in optimization at the 1700 degree

throat, catastrophic failure would result. Therefore high temperature material properties must be

used for nozzle analysis.

Static thermal loads also induce stresses, but these have been shown to be lower order effects

for the nozzle considered here. Thermal loads using composite materials and transient or erosive

effects could be significant, but are beyond the scope of this discussion. Thermal stresses arise in

shells from nodal constraints, changes of curvature, and thermal gradients. All three of these effects

are strong in the vicinity of the throat and can affect optimum thickness distributions. Thermal

stresses at the throat oppose those which are pressure induced, leading to a thinner optimum wall.

The thickness may be adequate at operating temperatures but insufficient for loads at ignition

when the nozzle is cold. Nozzles should be analyzed with and without thermal effects to gurd

against this.

Pressure induced stresses are more critical than those induced thermally. Four distinct stress

distribution regions can be identified and linked to the geometry and loading of the nozzle. Region

I is where the nozzle terminates at the chamber. Region II is the throat area. Region III lies in

the high pressure region aft of the throat. Region IV is the lower pressure region aft of the throat

wherc strcss con triintq ar no longer active.

Because of the nature of supersonic nozzle flow, pressures rapidly drop aft of the throat. Due

to this drop in pressure, the nozzle wall thickness toward the exit is no longer constrained by stress

but is driven by other considerations, such as manufacturability, buckling, and dynamic loads. For

the nozzle evaluated here, the optimization process quickly moved wall thickness aft of 20 inches

to the hypothetical manufacturability constraint of 0.01 inches. This area is denoted as region IV.

The dominant radius of curvature is in the circumferential plane on the pressure side, making the

dominant stress a tensile hoop ctreOs in the circumferential direction. The wall is tilted with respect

to the axial direction, so there is a cumulative compressive axial direction stress. But. pressures are
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low and the angle of the wall with the axial direction is small, making this a secondary effect.

Stress distributions near the throat are much more interesting and unpredictable. As the

throat is approached from the aft end, pressures rise and eventually deactivate the side constraints,

signaling entry into region III. Wall thickness is driven by a stress constraint such as the Von Mises

stress criteria. Hoop stress varies proportional, and axial stress inversely proportional to radius.

Therefore in region III a tradeoff occurrs between axial and hoop stress to keep the Von Mises

stress maximized. This is seen in Figures 23 and 24 where the circumferential or major principle

stress decreases toward the throat, while the axial or minor principle stress increases in magnitude.

Continuing up the nozzle, the shell curvature inflects to form the throat, signaling the onset

of region II. In this area the radius of curvature in the axial plane approaches and may exceed that

in the circumferential plane. The change in curvature superimposes a compressive hoop stress on

the large compressive axial stress. The total axial stress dominates and, because of the geometry,

imparts a compressive circumferential stress. This, combined with the circumferential hoop stress

reduction due to decreasing diameter, leads to the trend reversal seen in circumferential stress at

the throat. The reversal allows a thinning of the nozzle wall in this region.

At region I there is a dramatic axial stress reduction due to the high pressure load component

opposing the cumulative effects frnm the rest of the nozzle. Radial stresses again dominate, and

there is a considerable thickening of the nozzle wall to support the high pressures.

Arzsyrnmetric Elements

Axially symmetric problems such as the nozzle can be modeled using axisymmetric finite

elements. The Mindlin axisymmetric element is nearly as accurate as a four noded quadrilateral

element model with a grid fineness of 160 elements per circumference. The axisymmetric model

tested here uses a 6 by 6 stiffness matrix to ;(lve the problem posed by a 1932 by 1932 quadrilateral

element stiffness matrix. This is a significant simplification. The matrix flushing scheme provided
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a quick test of the Mindlin element's accuracy and demonstrated ASTROS' flexibility, ease of

modification, and potential for the implementation of such an element.

The axisymmetric element considered here is not attachable to elements with nodal points

and does not support non-axisymmetric loads. The loading difficulty can be overcome by Fourier

analysis (14:MacNeal). The inability to attach to other element types is a disadvantage common

to axisymmetric elements, precluding their use in large complex models.

Lessons Learned In The Optimization Of Shells

The following general guidelines have been gleaned from this investigation and will prove

useful to the analyst seeking the "correct" answer to a shell problem:

1. The analyst should not be deceived by the remarkably accurate results finite element analysis

gives for flat plates and singly curved shells under simple loading. A complex, doubly curved

shell is not likely to give results with an error less than the ± 10 percent seen for the clamped

dome.

2. Thermal loads will induce stresses in response to constraints, curvature changes, and thermal

gradients. Material properties used in analysis must also take temperatures into account.

3. Optimization should be driven to convergence. Unless the plot of the objective or cost finction

asymptotically approaches some value, the optimum has not been reached. This is seen

in Figure 19 where ASTROS terminated optimization before reaching the minimum wall

thickness, but claimed convergence.

4. Optimizer parameters should be varied. Accepting default values may give very slow conver-

gence.
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5. Grid fineness should be varied. Accurate results are obtained when the results are no longer

affected by increasing grid refinement. This was seen in Figures 2, 3, 5 and 6 with the round

plate and tube.

6. Formulating the problem with a different finite element model may be helpful and collaborate

results. Going to a quartered model was the only way to get good optimization results in

ASTROS. One may also try other elements, such as triangular or axisymmetric, or other

nodal arrangements.

7. Results that don't make good physical sense should be reevaluated. The nozzle stress results

are believable because ASTROS and MSC/NASTRAN were shown to return accurate values

and because the odd results at the throat do make good physical sense under careful analysis.

Thesis Contrzbution And Suggestions For Future Work

This Thesis has provided a comprehensive comparison of MSC/NASTRAN and ASTROS as

applied to the analysis and optimization of shells. Problems with the porting of ASTROS to the

Sun Workstations were revealed. Finite element results have been compared to exact solutions and

a new nozzle analysis has probed the strengths and weaknesses of each program.

The nozzle analysis included development of a nozzle model generation program. This pro-

gram has the flexibility to encompass different geometries and material properties. The analysis

identified the dominant effects in key regions of the nozzle and issues of concern to the analyst.

Work was also done with an axisymmetric element. The potential for imple menting this

element in ASTROS was demonstrated, and a modularized FORTRAN program developed for its

efficient generation. This flexible program can be used alone to generate shell element models, or

it could provide the core for implementing axisymmetric analysis and optir ' tion in ASTROS.

Future work should refine the nozzle analysis to include more accurate pressure loads, com-

posite materials, and a regenerative cooling scheme. Additional testing of the axisymmetric element.
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should be done and its incorporation into ASTROS pursued. Other areas of investigation could

include optimization with the axisymmetric element and its attachment to other element types.



Appendeilx A. C0,11!I1! IL1i IAI AT/IoI N '( .

IHardnit i

init e vicnient. a ayss a;ii opt iiiz~it 1( ) were po'rt'Oriii l it he Simu 1 \%',)rks at m lol 11ig
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Nozzle AMe Generation Programn

'rhl nozzle generation program entailed significant effort andl is att achedl for reference puir-

poe.The program inputs geometry, material, thermal * and flow Information and produces a finite

eement modlel of a nozzle using four noded quadlrilateral elements. The user may opt to exploit

sy nmmetry, 'andl determines whether anl ASTROS or MISC/NASTRAN data file is generated. Ali

input file for the axisyn-m-etric element program may also be created, allowing the generation of an

axisvmmnetric model of the nozzle.

PROGRAM NQGEN
DIMENSION ZI(2O), RI(20), SC(20), Y(4) , BREAK(20), CSCOEF(20,4),

&ZIT(20), TH(20), BREAKT(20), CSCOET(20,4)
EXTERNAL F
COMMON GM, ARATIO
CHARACTER INFILE*8, DtJTFILE*8, TEMP*78, HEADER*8,

&EXTN*8, TMP2*8, LABEL*1, RTYPE*8, PTYPE*8
1 FORMAT(A78)
2 FORIAT(A)
C
C GET STARTUP INFO FROM USER
C

FP.TNT*, 'INPUT FILE NAMF?'
P.FA(*,2) INFILE
PRINT*, 'OUTPUT FILE NAME?'
READ(*,2) OUTFILE
PRINT*, 'HEADER FILE NAME?'
READ(*,2) HEADER
PRINT*, '1 - IF CREATING A NASTRAN DATA FILE'
PRINT*, '2 - IF CREATING AN ASTROS DATA FILE'
I'RINT*. '3 - IF CREATING AN AXYSYMMETRIC DATA FILE'
READ* , MO)DE[

SF (MODE..N N. I. AND. MODEL.. NE -2. AND. MODEL.. NE. 3) THEN
PR{INT# , IMOOT VF 1, 2 Olt A
STOP'

ItF (MO 'I-I! . (,' O I



READ* , IQUART
IF( I QUART. NE. 1.AND. :QUART. NE.2. AND. I QUART.NE. 3) THEN

PR INT*, 'MUST BE 1 , 2 OR 3 !

EN D IF
S PRINT*, 'HOW MANY ELEMENTS/CIRCUMFERENCE ??'

READ*, M
PRINT*s, '1I - FOR NO THERMAL, 2 - FOR YES'
READ*, MODTMP

C
C INITIALIZE FILES
C

OPEN(UNIT=6, FILE=INFILE, STATUS='DLD')
OPEN (UNIT=7, Fl LE=OUTFILE, STATUS= 'NEW')
OPEN(UNIT=8, FILE=HEADER, STATUS='OLD')
IF(MODEL.EQ.3) THEN

OPEN(UFNIT=9. FILE='AXYDATA', STATUS='NEW')
EN OfF

C
C INPUT MODEL INFORMATION FROM INFILE
C

READ(6,*) NI !NUMBER OF INTERPOLATING POINTS
READ(6,*) (ZI(I, RIMI, I=1,NI) !INTERPOLATING POINTS
READ(6,'*) NTHRT !NTHRT - DS NO FOR THROAT
READ(6,*) NIT !NUMBER OF INTERPOLATING POINTS FOR TEMPERATURE
READ(6,*) (ZIT(I), THUI), I=1,NIT) !INTERPOLATING POINTS
READ(6,*) TECOEF, TREE
READ(6,*) GM,PO !READ IN GAMMA AND STAGNATION PRESSURE
READ(6,*) EMOD,POISS,RHO !MODULUS, NUl, AND MASS DENSITY
READ(6,*) BST,HSC,BSS
READ(6,*) XINIT,XLB,XUH !DESIGN VARIABLE HOUNDS
READ(6,s) XLALL1,XUALL1 !LOWER & UPPER ALLOWABLES
READ(6,*) XLALL2,XUALL2
READ(6,*) XLALL3,XUALL3
READ(6,*) XLALL4,XUALL4

C
C SET UP FOR QUARTER MODEL
C

IF(IQUART.EQ.1) MM=M
IF(IQUART.EQ.2) MM=(M/4)+1
IF(IQUART.EQ.3) MM='2

C
C USE IMSL TO ESTABLISH SPLINE FIT
C

CALL CSAKM (NI, ZI, RI,HBREAK, CSCOEF) !SPLINE FIT THE INTERP PTS
CALL CSAKM (NIT, ZIT,T11, PREAKT, CSCOET) !FIT TEMPERATURE

C
C FORMATS
C
70 FORMAT('CONROD ',418,F8.3)
72 FORMAT('FORCE ',318,4F8.3)
HO FORMAT('DESVARP ',218,3E8.2)
81 FORMAT('PLIST ',I8,A8,I8)
82 FORMAT('DCONSTR ',I8,A8)
83 FORMAT('DCONDSP ',218,A8,F8.3,A8,2I8,F8.3)
90 FORMAT('EIGR ',I8,A8,24X,I8)
91 FORMAT('TEMP ',218,F8.1)
100 FORMAT('HEGIN HULK')
101 FORMAT('GRID* ',21l6,2El6.9,A7,l1,/,A3,I1 ,4X,E16.9,2IIG)
102 FORMAT('GRIDs ',2116,2E16.9,A3,1I,/,A3,I1,4X,E16.9,I16)
103 FORMAT('SPC ',318,F8.3)
104 FORMAT('CQUAD4 ',618)
105 FORMAT('PLOAD ',I8,F8.3,418)
106 FORMAT('MAT1 ' ,I8,E8.3,8X,4E8.3,SX,A6,/.AS,3E8.3)
107 FORMAT('PSHFII ,218,F8.3,18,SX,18)
108 FORMAT('ENDDATA ')
109) FORMAT('DE-'SVAR ',18A1,I1.6X,3E8.2)
110 FORMAT('DVPRHI', IS, 'PSHELL ',218,32X,A3,11/,A3,11,4X,18,F2.3)
ill FORMAT( 'DRIEf 1 1,I8A1,12,5X,2A8,8X,IS,8X,IS)
112 FORMAT( ('DCONSTR I 8 ' ALL. ' ,2F8 .0)
113 FORMAT( ' DRESI 1 1 ,,2AR)
114 FORMAT( 'DE;OPI I A8, X, AS)
I115 fIRMAT( ' DrPIi RN .105
1 16 fjlRMAT( '3:0PD12 's. 'C).(' !, '+2(: SF,'.)
11( 1 C'RMAT I P01TIIM .,Y 0

I2. 1. 1os Rssoo,, M:A/IA'PA2RAM,1.0!.>)



121 FORMATC('DRESP I ',1,A1,13,4X,2A8,8X,18,8X,IS)
122 FORMAT('GR1D* ,21 16,2E16.-9,A3,12, /,A 3, 12, 3X,FI..9,I116)

129 FORJIAT( 'DFSVAR ',13,A1 ,1J,4X,3E8.2)
130 FORMAT( 'DVPREL,1 ' 18, 'ISHELL1 ',218,32X,A3,13,/,A3,13,2X,IS,FS8.3)
131 FURMAT( 'DRESP1 ' .l8,AI ,I'1,3X,2A8,8X,I18,8X,IS)
132 FORMAT('GRID* ' 2116,2EI6.9,A3,I3,/,A3,13,2X,E16.9,Ilf;)
C
139 FORMAT( 'DESVAR ',I8,A1I ,4,3X,3E8.2)
140 FORM'AT('DVPREL1 ',18,)PSHELL ',218,32X,A3,I4,/,A3,I4,lX,I8,F8.3)
141 FORMAT('DRESP1 ',I8,Al15,2X,2A8,8X,18,8X,IS)
142 FORMAT('GRID* ' ,2116,2El6.9,A3,I4,/,A3,14,lX,E16.9,116)
C
152 FORMAT('GRIO* ',2116,2EI6.9,A3,15,/,A3,I5,E16.9,116)
C
C READ HEADER AND WRITE TO DATA FILE
C

IF(MODEL.EQ.3) THEN
NF=9

ELSE
NF=7

ENDIF
READ(8,*) NLINES !INPUT HEADER INFORMATION
00 155 I=1,NLINES

READ(8,1) TEMP
WRITE(NF,1) TEMP !WRITE HEADER TO FILE

155 CONTINUE
C
C FIT MESH TO NOZZLE GEOMETRY
C

RM=FLOAT (M)
P1=3.141592653589793
Z=0.0 !START AT END
NZ=0 !NUMBER OF ELEMENTS IN Z DIRECTION
STEP=2. *SIN(PI/RM)

160 NZ=NZ+1
R=CSVAL(Z,NI-1 ,BREAK ,CSCOEF)
D=R*STEP !DEAPTH TO STEP
Z=Z+D
IF(Z.LT.ZIGJI)) GO TO 160
IF(Z-ZI(NI) .LE.D/2.0) THEN

FACTOR=ZI (NI) /Z
ELSE

FACTOR=ZI(NI)/(Z-D)
NZ=NZ- 1

ENDIF
C
C START BULK DATA DECK
C

WRITE(NF, 100)
IF(MODEL.NE.3) THEN
WRITE(7,116)100.,.O,.O,,10,.

ENDIF
C
C MATERIAL
C

WRITE(NF,106) 1,EMOD,POISS,RHO,TECOEF,TREF,'+MT1 '

&'±MT1 ',BST,BSC,BSS

C
C FIRST GRID RING WITH SPC'S

IF(MODEL.EQ.3) THEN
WRITE(9,102) 1,0,Rl(l),0.,'+GR',1,'*GR',1,0.,0

ELSE
DO 165 I=1,MM

PX=RI(1)*COS(2.*PI*FL.OAT(I-1)/RM)

IF(I .LT. 10) THEN
WRITE(7,102) ,,ZY'+'.,GJ>(1

H SF,';IF( I LT 100) THEN
WRIF(7,122)TopxPC',*s'J1

I FS[LF(I.I.T. 1000) THfi-:r
WR ITF (71 32) 15 X,' 1 *5

IIIIF ( I. IT:. 155)00) TIHEN
.51 (.4)1.,' Y.5,1 5*I ..



STOP
END IF
WRITE(7.103) 1 ,231156,0. !WRITE7 SPC'S
I F(MODTMP.EQ.2) THEFN

WRIT(7,91) 5,1 ,TH(1)
ENDIF

165 CONTINUE
ENDIFIC

C WHITE AXYELEM FIRST DATA

IF(MODEL.NE.3) GO TO 167
WRITE(7,*) DBLE(EMOO) ,OOLE(POISS)3 WRITE(7,*) NZ
WRITE(7,*) DOLE(ZI(1)),DBLE(RI(1))

167 CONTINUE
C
C INITIALIZE VALUES FOR LOOPING Ti] END OF NOZZLE

CATHRT=RI (NTHRT) *RI (NTIIRT) ITIRGAT AREA WITHOUT III

Z2=0.
NZA=O !THIS IS THE NUJMBER OF TIMES STEPPED IN Z DIRECTION
D=RI(1)*STE-P

C
C LOOP TO END OF NOZZLE

170 NZA'=NZA+l
Z1=Z2
Z2=Z2+D
ZIC=ZI*FACTOR5 Z2C=Z2*FACTOR
R=~CSVAL(Z2,NI-1 ,IREAK ,CSCOEF)
THETMP=CSVAL(Z2C ,NIT-i ,BREAKT,CSCOET)
D=R*STEP !SET D FOR NFXT LOOP
R2C=CSVAL(Z2C,NI-1 ,EREAK,CSCOEF)I IF(R2C.LE.RI(NTHRT)) THEN

R2C'=RI (NTHIRT)
ENDIF
IF(MODEL.EQ.3) THEN
II=NZA*M+lI IF(II.LT.10) THEN
WRITE(9,102) II,0,R2C,0.,'+GR'.II,'*GR',II,Z2C,0

ELSEIF(II.LT.100) THEN
WRITE(9,122) II,0,R2C,0.,'+GR',II,'*GR',II,Z2C,0

ELSEIF(II.LT. 1000) THENI WRITE(9,132) II,0,R2C,0.,'+GR',II,'*GR'.II,Z2C,0
ELSEIF(II.LT. 10000) THEN
WRITE(9,142) II,0,R2C,0.,'+GR',II,'*GR',II,Z2C,0

ELSE
PRINT*,'LOOP TOO BIG AFTER 170'I STOP

ENDIF
WRITE(9,103) 1,11,246,0.
TI=NZA*M-M+1
WRITE(9,70) II,II,II+M,1,1. !DUMMY CONROD

ELSEU DO 175 I=1,MM
C PX=R2C*COS(2.*PI*FLOAT(I-1)/RM)
C PY=R2C*SIN(2.*PI*FLOAT(I-1)/RM)

THiETA=FLOAT(I-1)*360. /RM'
ICORD"1
II=NZA*M+l
IF(II.L.T.10) THEN 'WRITE GRID RING

WRITE(7,102) II,ICORD,R2C,THiETA,I+GRIJ1I,*GR: ,II,Z2C,ICORO)
EL.SEIF(II.LT. 100) THEN

WRITE(7,122) II,ICORD,R2C,TIIETA,'4GR'l,II.'*0,R',II,Z2C,ICORI)I ELSEIF(II.LT. 1000) THEN
WRITE(7,132) IT,ICOIID,R2C,THEl-TA.'+GR',II, *G'II,Z2(,IORI)

ELSEIF(II .LT. 10000) THEN
WRI TE(7 ,142) 11I, I CORD, R2C, ,TET A, '4G i' I1 *00' I(,12 .10001)

ROOF IF (TI IT. 100(000) THEN
WE [TJ (1 1,2) I,100,2.T*TA.'0' '*00', i 10,co

1:11 ~ (T ,1. lO~C)THEN
PINT ~*, 'r();l ERORo 1.001' 17V,

III
NI)fI



IF( IQUART. EQ. 2) THEN !WRITP- SPC-S IF QUARTERED MODEL.
IF(I.EQ. 1) THEN

WRITE(7,103) 1,11,2,16,0.0
ELSET 'F(I.I EQ.MM) THEN

WRITE(7,103) 1,11,246,0,0
ENDI F

ELSEIF(IQUART.EQ .3) THEN 'WRITE SPE 'S FOR STRIP MODEL
WRITE(7,103) 1,T1,2-16,0.I ENDIF

IT~ CONTINUE
DO 177 1=1 ,M-1 !WRITE QUAD EL.EMENTS

I I=NZA*M-M+I
WRITE(7,104) II,NZA,!I,114-1,II+M+1 ,II+MI177 CONTINUE

IF(IQLJART.EQ.1) THEN !IF NOT QUARTERED, COMPLETE RING
WRITE(7,104) NZA*M,NZA,NZA*M,NZA*M-M+1,NZA*M+1,NZA*M+M

ENDIF
WRITE(7,107) NZA,1,1. ,1,1 !WRITE PSHELL FOR RING

ENDIF
178 ZP=(Z2C+ZlC)/2.O !Z LOCATION FOR PRESSURE

RP=lCSVAL(ZP ,NI-i, BRE.AK, CSCOEF) !RADIUS AT Z LOCATION
IF(RP.LE.RI(NTHIRT)) THEN LIONT LET RP<GIVEN R THROAT

RP=RI (NIORT)
ENDIF
ARATIO=RP*RP/ATHRT 'AREA RAtIlO
PPOT=(2.O/(GM+1 .0))**(GM/(GM-1 .0))
IF(ZP.EQ.ZI(NTHIRT)) THEN !ITERATE TO PRESSURE
P=PO*PPOT

ELSEIF(ZP.LT.ZI(NTHRT)) THEN
A=PPOTI. 0=1.0

135 IF(F((O+A)/2.O).LE.O.O) THEN

ELSE
A=(B+A)/2.0

ENOIF

TF((B-A).GE.O.00001) GO TO 137
P=PO* (BAB)12.0

17 IF(OOEL.EQ . )..) THEN

ENDIF

ENDI F
IF(MODEL.EQ.1) THEN WRT EARDPRLFONATN

WRITE(7,) NEZAC,T',NZA,XITLEXUI
WRITE(7,11) 1NZA*,,,+P',NZ,. !DUMMY N AD,1

ELIF(NA.L 0)TE

DO 10I1-'WRITE(719 NZA'TN ADN ELEMENTS
WRITE(7,10) N,Z,,'4P,N/.'+1,II NA,/.,1

ELSIFNAR.Q.T10) THENINOQUREEMOLCPET OA
WRITE(7, 12) N/A. 'T' ,N/.AXI+NZT.XI.I,NZA*M

WRITOE (7, 1 ) THEN !WRITE , DS'A, ' DVP FO N/AA
ELIF (NA.f.T0 THEN THEI WRITECY , 109 N/A'T',N/A,X1NIIT,XLH ,X

WE ITE(7, 114 NZANZA,4,'41;I' .N/A.' IADINANA
YL~E(N/IA.r;.lI) THNIRT(,1)NA I NAXrIL3XI

IRT(,2)NANA4't~"NAID"NANAl
IL~F AIT10)TE



NOS=2 !NUMBER OF STRESS COMPONENTS FOR CONSTRAINTS
DO 200 I=1,N(]S !WRITE DRESP1 FOR NASTRAN
IF(I.EQ.1) THEN

LABEL= 'S,
RTYPE='STRESS
PTYPE='PSHELL
IATTA=9
IATT1'=NZA

ELSEIF(I.EQ.2) THEN
LABEL='S'
RTYPE='STRESS
P TY PE'PS HELL
IATTA=17
IATTI=NZAI ENDIF

IF((1O*NZA+I).LT.100) THEN
WRITE(7,111) NOS* NZA-NOS+I, LABEL, I0*NZA+ I, RTYPE, PTYPE,

& IATTA,IATT1
ELSEIF((1O*NZA+1) .LT.1000) THEN
WRITE(7,121) NOS*NZA-NOS+I, LABEL, 1O*NZA+I, RTYPE, PTYPE,

& IATTA,IATTI
ELSEIF((10*NZA+1) .LT.10000) THEN
WRITE(7,131) NOS*NZA-NOS+I,LABEL,10*NZA+I,RTYPE,PTYPE,

& IATTA,IATT1
ELSEIF((1O*NZA+1) .LT.100000) THEN
WRITE(7,141) NOS*NZA-NOS+I,LAHEL,10*NZA+I,RTYPE,PTYPE,

& IATTA,IATT1
ENOIF

200 CONTINUE
WRITE(7,112) NOS*NZA-1,XLALLI,XUALL1 !WRITE DCONSTR FOR NASTRAN
WRITE(7 ,il2) NOS*NZA,XLALL2,XUALL2

ELSEIF (MODEL. EQ. 2) THEN !WRITE DESVARP, PLIST FOR ASTROS
WRITE(7,8O) NZA,NZA,XLB,XUB,XINIT
WRITE(7,81) NZA,'PSHELL ',NZA

ENOIF

C

C NOW THAT AT END OF NOZZLE, FINISH OFF MODEL
C

IF(MODEL.EQ.1) THEN 'FINAL NASTRAN DRESP1, DESOBJ, DOPTPRN, PARAM
_TP~

WRITE(7,111) 88888,'D',88,'DISP ',PTYPE,1,NZ*M+l
WRITE(7,111) 99999,'D',99,'DISP ',PTYPE,3,NZ*M+l
WRITE(7, 112) 88888,XLALL3,XUALL3
WRITE(7. 112) 99999,XLALL4,XUALL4

WRITE(7,113) NOS*NZ+1,'W ','WEIGHT
WRITE(7,114) NOS*NZ+1,'W ','MIN
WRITE(7,115) 2,3,20,_5_ 01
WRITE(7, 118)

ELSEIF(MODEL.EQ.2) THEN 'WRITE FINAL DCONSTR FOR ASTROS
WRITE(7,82) 1,'VMISES
WRITE(7,83) 1,1,'LOWER ',XLALL3,'Dl ',NZ*M+1,1,1.
WRITE(7,83) 1,2,'UPPER ',XUALL3,'D2 ',NZ*M+I,1,1.
WRITE(7,83) 1,3,'LOVER ',XLALL4,'D3 ',N7>*M+1,3,1.
WRITE(7,83) 1,4 ' UPPER ',XUALL4,'D4 ',NZ*M+1,3,1.

ELSEIF(MODEL.EQ.35 THEN
GO TO 250

ENDI F
WRITE(7,90) 75,'GIV '.5 !EIGR INSTRUCTIONS
WRITE(7,I08) !ENDDATA STATEMENT

C NOW CLOSE OFF FILES AND EXIT PROGRAM

250 CLOSE(6
CLOSE(7
C LOSE(C8)

IF(MO1)EL.FtQ.3) THEN
C LOSE(C9)

F.NDIF
STOP
EN D

C I DE~AL.~NF{;N/ IfC NOZ?.. FQ11~

PFA!.Jr v FI IT Fi (X)
:~ ?9;N GMA Af



D=A/GM
E=2 .0/GM
F=((2./B)**C*A/(X**E*(1 .- X**D)))-ARATI;*ARATI0
RETURN
END

.. xisymmetric linitc 1Kb mcnt (cienratin Progra

The axisymmetric elvinent program also involved significant efort, and is attawhd for ref-

erence. The FOITRAN program inputs geometry amn nma? rial propert hs and produces global

stiffness, load and stress recovery matrices in direct niatrix form. It cant be ea.iily modified since

it is modularized and well documented internally. A Gaussian quadrature integration scheme is

used, and the order of integration and weighting parameters call be easily changed in the prefao'.

l)ouble precision is uced throughout to retain accuracy.

PROGRAM AXYSYM
DOUBLE PRECISION E,T(100),DNU,X(100),R(100),PR(100),DKGELM(6,6),

&PWT(2,10) ,TEMP(21) ,TEMP2(6) ,TEMP3(14,9) ,SREC (7,6),
&TEMP4 (9, 3)
CHARACTER iNr'ILE*8, OUTFILE*8

C EXPLANATION OF VARIABLES

C E == MGijU.US
C T == VECTOR CONTAINING ELEMENT THICKNESSES
C DNU == POISSONS RATIO
C Xi, Ri == VECTORS CONTAINING COORDINATES OF END POINTS
C PP == VECTOR CONTAINING PRESSURE ON ELEMENTS NORMAL & CENTERED

C DKGELM == ELEMENT STIFFNESS MATRIX, GLOBAL
C NOD == NODE CONNECTIVITY TABLE

NG NUMBER OF GRID POINTS
C NE =NUMBER OF ELEMENTS
C NOQ == ORDER OF GAUSSIAN QUADRATURE

C PWT ARRAY CONTAINING PSI AND WEIGHTS FOR QUADRATURE (I)
C TEMPi == TEMPORARY STORAGE
C PELM == MATRIX W/COLUMNS BEING ELEMENT LOAD VECTORS, GLOBAL
C SREC == STRESS RECOVERY MATRIX
C
C ESTABLISH GAUSSIAN QUADRATURE DATA
C

NOQ=7
PWT(1 1)=-0.949107912342158524526189684048
PWT(2,1)=0. 129484966168869693270611432679
PWT(1,2)=-0.741531185599394439863864773281
PWT(2,2)=0.279705391489276667901467771424
PWT(1,3)=-0.405845151377397166906606412077
PWT(2,3)=0.381830050505118944950369775489
PWT(1,4)=O.OD+00
PWT(2,4)=0.417959183673469387755102040816
PWT(1,5) =-,,TC I)
PWT(2,!b) =P 4T(2,3)
tWT( 1,6) 2')'T(1 ,)
1'ur(2,C) PWT(2,2)
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4 FORMAT(E16.8)
PRINT*,'INPUT FILE NAME ??'
READ(*,2) INFILE
PRINT*,'IOITUT FILE NAME ??'
READ(*,2) OUTFILE

C
C INITIALIZE FILES

COPEN (UNIT=6, FILE=INFILE, STATUS= '01.0')
OPEN(UNIT=7, FILE='OUTFTLE, STATUS='NEW')

C
C INPUT DATA
C

READ(6,*) E,DNU
READ(6,*) NE
READ(6,*) X(1),R(l)
DO 10 I='1,NE

RF.AD(6,*) X(I+1),R(I+1),PR(I)
10 CONTINUE

00 20 I=1,NE
READ(6,*) T(I)

20 CONTINUE
C
C CREATE AND OUTPUT KG

OPEN(UNIT=8, FILE= 'SCRATCHl', STATUS= 'NEW')
DO 200 I=1,NE+1
IF(I.EQ.1) THEN

CALL KELM(E,T(I),DNU,X(I),R(I),X(I+1),R(I+1),NOQ,PWT,DKGELM)
DO 150 J=1,3

WRITE(8,3) 2
WRITE(8,3) 2*3-1
WRITE(8,3) 2
WRITE(8,3) 1
DO 148 K=1,6
WRITE(8,3) 1
WRITE(8,4) DKGELM(K,J)
WRITE(8,3) 1
WRITE(8,4) 0.00+00

148 CONTINUE
IF(NE.EQ.1) GO TO 149
DO 149 K=13,NE*6+6
WRITE(8,3) 1
WRITE(3,4) 0.00+00

149 CONTINUE
WRITE(8,3) 2
WRITE(8,3) 2*3
WRITE(8,3) 2
WRITE(8,3) 1
DO 150 K=1,NE*6+6
WRITE(8,3) 1
WRITE(8 ,4)0.OD+00

150 CONTINUE
ELSEIF(I.EQ.NE+l) THEN

CALL KELM(E,T(I-1),DNU,X(I-1) R(I-1) X(I) R(l),NOQ,PWT,DKGELM)
DO 160 J=4,6

WRITE(8,3) 2
WRITE(8,3) 2*(3*NE)-5+2*(I-1)
WRITE(8,3) 2
WRITE(8,3) 1
IF(NE.EQ.1) (;O TO 154
00 154 K=1,6*NE-6

WRITE(8,.3) 1
WRITE(8.4) 0.01)+00

154 CONTINUE
1)0 152 K=1,6
WRITE(P,3) I
WRITE(8,4) Dl(GELM(K,1)
WRITE(2 ,3) 1
WRITE(3 .4) 0.00I+00

1 5~;CONTINUCE
WRITE(8, ,) 2

wit If> K-LIKFf
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ELSE
DO 166 J=1,3

DO 165 K=1,9
TEMP4(K,Jk=O.OD+00

165 CONTINUE
166 CONTINUE

CALL KELM(E,T(I-1),DNU,X(I-1),R(I-1),X(I),R(I),NOQxPwr,DKGEL.M)
DO 170 J=1,3

DO 168 K=1,6
TEMP4(K ,J)=DKGELM(K,J+3)

168 CONTINUE
170 CONTINUE

CALL KELM(E,T(I),DNU,X(I),R(I),X(I+1),R(I+1),NOQ,PWT,DKGELM)
DO 180 J=1,3

D0 178 K=1,6
TEMP4(K+3 ,J)=TEMP4(K+3,J)+DKGELM(K ,J)

178 CONTINUE
180 CONTINUE

DO 190 3=1,3
WRITE(8,3) 2
WRITE(8,3) 2*(3*I)-5+2*(J-1)
IRITE(8,3) 2
WRITE(8,3) 1
IF(I.EQ.2) GO TO 184
DO 184 K=1,6*I-12

WRITE(8,3) 1
WRITE(8,4) 0.00+0

184 CONTINUE
00 188 K=1,9
WRITE(8,3) 1
WRITE(8,4) TEMP4(K,.J)
WRITE(8,3) 1
WRITE(8,4) 0.00+00

188 CONTINUE
IF(I.EQ.NE) GO TO 189
DO 189 K=6*I+8,NE*6+6
WRITE(8,3) 1
WRITE(8,4) 0.00+00

189 CONTINUE
WRITE(8,3) 2
WRITE(8,3) 6*I+2*J-6
WRITE(8,3) 2
WRITE(8,3) 1
00 190 K=1,NE*6+6
WRITE(8,3) 1
WRITE(8,4) 0.00+00

190 CONTINUE
ENDIF

200 CONTINUE
WRITE(8,3) 3
CALL ASTOUT('MYKGG ','RDP ','REC 1,NE*6+6,NE*6+6,

&'SCRATCHI ',7)
CLOSE (8)

C
C CREATE NODAL LOAD VECTOR
C

OPEN(UNIT=8, FILE='SCRATCH2' , STATUS='NEW')
'0 300 I=1,NE+1
!F(I.EQ.1) TPEN

CALL PLiAD(X(I) R(I) X(I+I) R(I+l) PR(I) NOQ,PWT,TEM P2)
WRITE(8,3) 2
WRITE(8 3) 1
WRITE(8,3) 2
WRITE(8,3) 1
DO 220 J=1,3
WRITE(8,3) 1
WRITE(8,4) TEMP2(J)
lWRITE(8,3) 1
WRITE(8,4) 0.00+00

2,)0 CONTINUE
FEL;EIF(1.EQ.NE+1) THEN

CALL Pf.OAI(X(I-1) R(J1) ,X(1) R0() .PR(I-1) ,NOQ,PWT,TFMI)2)
DO1 230 J=4',

WITE(8.3) 1
WRI '10(P,4) IPP J

330 ClNT rsro;



CALL PLOAD(X(I-1) ,R(I- 1) ,X(I) ,R(l), -) N0Q~, P',T,Tl-MP2)
TEMP ( 1) =TEMP2 (4)
TEMP (2) =TEMP2 (5)
TEMP (3) =TENP2 ( 6)
CALL PLOAD(X(I),R(1),X(1+1)R(+1)PR() NOQi'wUrFn-!'12)
TEMP( 1)=TEMNP(1)+TEM4P2(1)
TEMP(2) =TENP(2)+TE-MP2 (2)
TEMP (3) =TEMP (3) +TEMP2 (3)
DO 240 J=1,3
WRITE(8,3) 1
WRITE(8,4) TEMP(J
WRITE(8,3) 1
WRITE(8,4) 0.00+00

240 CONTINUE
ENDIF

300 CONTINUE
WRITE(8,3) 3
CALL ASTOUT('MYPL ','RDP ','REC ',NE*6+6,1,

&'SCRATCH2' .7)
CLOSE (8)

C
C CREATE AND OUIPUT STRESS RECOVERY MATRIX
C

OPEN(UNIT=S, FILE='SCRATCH3', STATUS='NEW')
DO 400 I=1,NE+1

IF(I.EQ.1) THEN
CALL RECOVER(X(I),R(I),X(I+1),R(I+1),DNU,E,T(I),SREC)
DO 330 J=1,3
WRITE(8,3) 2
WRITE.(R,I) )*.T-I
WRITE(8,3) 2
WRITE(8,3) I
DO 320 K=1,7
WRITE(8,3) 1
WRITE(8,4) SREC(K,J)

32C CONTINUE
IF(NE.EQ.1) THEN

GO TO 329
ELSE
DO 328 K=8,7*NE

WRITE(8,3) I
WRITE(8,4) 0.00+00

3 CONTINUE
ENDIF

3-", CONTINUE
WRITE(8,3) 2
WRITE(8,3) 2*J
WRITE(8,3) 2
WRITE(8,3) 1
DO 330 K=1,7*NE
WRITE'8,3) I
WRITE(8,4) 0.00+00

3 ) CONTINUE
ELSEIF(I.EQ.NE+1) THEN

CALL RECOVER(X(I-1),R(I-1),X(I),R(I),DNUJ,E,T(I-1),SREC)
DO 340 J=4,6
WRITE(8,3) 2
WRITE(8,3) 1+6*NE+2*(J-4)
WRITE(8,3) 2
WRITE(8,3) 1
IF(NE.EQ.1) GO TO 334
DO 334 K=1.7*(NE-1)

WRITE(8,3) 1
WRITE(8,4) 0.OD+CO

3.1 CONTINUE
DO 338 K=1,7

WRITE (8,3) 1
WRITE(P,4) SREC(K,J)

3 3CONTINUlE
WRITEU8,3) 2

WRITE(8,3)2

Wl'K(' 2) 2
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DO 350 K=1,7
DO 3418 3=1,6

TEMP3 (K, J) =SREC (K, J)
348 CONTINUE
350 CONTINUE

CALL RECOVER(X(I),It(I),X(I+1),R(1+1),I)DNU,E,T(1),SRE:C)
DO 360 J=1,3
WRITE(8,3) 2
WRITE(8,3) 6*(I-1)+2*J-1
WRITE(8,3) 2
WRITE(8,3) 1
IF(I.EQ.2) GO TO 354
DO 354 K=1,7*I-14

WRITE(8,3) 1
WRITE(8,4) 0.OD+00

354 CONTINUE
D0 356 K=1,7
WRITE(8,3) 1
WRITE(8,4) TEMP3(K,J+3)

356 CONTINUE
DO 358 K=1,7

WRITE(8,3) 1
WRITE(8,4) SREC(K,J)

358 CONTINUE
IF(I.EQ.NE) GO TO 359
DO 359 K=7*I+2,7*NE
WRITE(8,3) 1
WRITE(8,4) 0.0D+00

359 CONTINUE
WRITE(9,3) 2
WRITE(8,3) 6*I+2*J-6
WRITE(8,3) 2
WRITE(8,3) 1
DO 360 K=1,7*NE
WRITE(8,3) I
WRITE(8,4) O.OD+00

360 CONTINUE
ENDIF

400 CONTINUE
WRITE(8,3) 3
CALL ASTOUT('MYSREC ','RDP ','REC ',7*NE,NE*6+6,

&'SCRATCH3',7)
CLOSE(8)
STOP
END

C THIS SUBROUTINE INPUTS GEOMETRY AND MATERIAL DATA AND RETURNS AN ELEMENT
C STIFFNESS MATRIX (DKELM) IN GLOBAL COORDINATES.
C

SUBROUTINE KELM(E,TDNU,X1,Ri,X2.R2,NOQ,PWT,DKGELM)
DOUBLE PRECISION E T,DNU,X1,R1,X2,R2,PWT(2,NOQ),

&DK(6,6),DKGELM(6,65,B(5,6),G(5,5),DL
C
C EXPLANATION OF VARIABLES, (I) INPUT, (0) OUTPUT
C E MODULUS (I)
C T ELEMENT THICKNESS (I)
C DNU == POISSONS RATIO (I)
C Xi, Ri == COORDINATES OF END POINTS (I)
C NOQ ORDER OF GAUSSIAN QUADRATURE (I)
C PWT ARRAY CONTAINING PSI AND WEIGHTS FOR QUADRATURE (I)
C DKGELM == ELEMENT MATRIX, GLOBAL (0)
C DK ELEMENT MATRIX FOR INTERNAL USE, SQUARE, LOCAL COORDINATES
C B B MATRIX
C G == E MATRIX
C DL == LENGTH OF ELEMENT
C
C CLEAR DK MATRIX
C

DO 10 1=1,6
DO 8 .J=1,6

DK( I,,3)=0. 0D+00
8 CONTINUE
10 CONTINIE
C

C P'ERI'FO M G(AUC SIAN QUAI)RATURE TO FORM I.LMENT K Y.7T.,1 IX 1)l./2 I; 1 11
C

0' 1 I) I=I , piJQ
CA .1. IFMAT (XI ,11 ,XE ,, ',1' T(I ,I) ,. ,I,1 .)



DO 90 JI=1,6
DO 90 J2=1,5

DO 90 J3=1,5
DO 90 J4=1,6
DK(J1,J4)=DK(J1,34)+PWT(2,I)*B(J2,J1)*G(J2,J3)*B(J3,J4)

90 CONTINUE
100 CONTINUE

DO 150 1=1,6
DO 145 3=1,0
DK(I,J)=DK(I,J)*DL/2.OD+00

145 CONTINUE
150 CONTINUE
C
C ROTATE TO GLOBAL COORDINATES
C

CALL ROTATE(XI, I,X2,R2,6,6,DK,5,DKGELM)
C
C FINISHED
C

RETURN
END

C THIS SUBROUTINE INPUTS GEOMETRY, PRESSURE, AND GAUSSIAV DIRECTIONS, AND
C OUTPUTS ELEMENTAL NODAL LOAD VECTOR IN GLOBAL COORDINA tI.
C

SUBROUTINE PLOAD(X1,Ri,X2,R2,PR,NOQ,PWT,PGENL)
DOUBLE PRECISION X1,RI,X2,R2,PR,PWT(2,NOQ),PGENI'5),PEENL(6),

&DN(3,6) ,DL,P(3)
C
C EXPLANATION OF VARIABLES, (I) INPUT, (0) C'-PUT
C Xi, Ri == COORDINATES OF END POINTS (I)
C PR == STATIC PRESSURE (I)
C NOQ == ORDER OF GAUSSIAN QUADRATURE (I)
C PWT == ARRAY CONTAINING PSI AND WEIGHTS FOR QUADRATURE (I)
C PGENL VECTOR OF GLOBAL EQUIVALENT NODAL LOADS (0)
C PEENL == EQUIVALENT NODAL LOADS IN ELEMENT COORDINATES
C DN == SHAPE FUNCTION MATRIX
C DL == LENGTH OF ELEMENT
C P == LOAD VECTOR FOR INTERNAL USE, ELEMENT COORDINATES
C
C CLEAR PEENL AND ESTABLISH P
C

DO 10 I=1 6
PEENL(15=O.OD+0

10 CONTINUE
P(1)=O.OD+00
P(2)=PR
P(3)=O.OD+00

C
,; PERFORM GAUSSIAN QUADRATURE TO GENERATE EQUIVALENT NODAL LOADS
C

DO 100 I=I,NOQ
CALL NMAT(XI,RI.X2,R2,PWT(I,I),DN,DL)
DO 90 31=1,6

DO 90 J2=1,3
PEENL(Jl)=PEENL(J1)+(PWT(2,I)*DN(J2,J)*P(J2))

90 CONTINUE
100 CONTINUE

DO 110 I=1,6
PEENI.(I)=PEENL.(I)*DL/2.OD+O0

110 CONTINUE
C
C ROTATE TO GLOBAL. COORDINATES
C

CALL ROTATE'(XI,RI,X2,R2,6,1,PEENL,2,PGENL)
C
C FINISHED
C

RETURN
END

C...**....*...,.* *.**********t***********t**********~**..*****

C THIS SUBROUTINE INPIITS GEOMETRY AND MATERIAL PROPERTIES AND RETURNS THE
(7 STRES;; RECO(VERY MATRIX, THS MATRIX WHEN PREMULTIPLYING GLOBAL
C )I SPLACEMENT- YfI EI H R:S;E. AT THE MIDI'LANE AND +- T/2 IN ELEMENT
(5 COORDINATES AT THE CENTER OF THE EIEMENT.

:Yfl:EHOTT NE RECL!'EE (Xl filX',.DJ ETSEC
l. UIt l WT I- F I - X1 , kl , X , .1 ),1 , E , , "I-S ( ) 5



C
C EXPLANATION OF VARIABLES, (I) INPUT, (0) OUTPUT
C Xi, Ri == COORDINATES OF END POINTS (I)
C DNU == POISSONS RATIO (I)
C E == MODULUS (I)
C T == ELEMENT THICKNESS (I)
C SREC == STRESS RECOVERY MATRIX (0)
C G == MATERIAL PROPERTY MATRIX
C B == B MATRIX
C DL == LENGTH OF ELEMENT
C BMC == BENDING MOMENT CONVERSION MATRIX
C TINV == INVERSE OF THICKNESS
C Ci, TEMPi == DUMMY CONSTANTS & MATRICES
C
C CLEAR SREC, TEMP AND BMC MATRICES
C

DO 10 I=1,7
DO 8 J=1,6
TEMP(I,J)=O.OD+00

8 CONTINUE
DO 9 J=1,5
BMC(IJ)=O.OD+00

9 CONTINUE
10 CONTINUE
C
C CREATE CONSTANTS FOR BMC CREATION
C

TINV=1.OD+00/T
Cl=6.OD+00/(T*T)

C
C CREATE BMC, G, AND B MATRICES
C

BMC(1,I)=TINV
BMC(1 ,3)=CI
BMC(2,2)=TINV
BMC(2,4)=C1
BMC(3, 1)=TINV
BMC(4,2)=TINV
BMC(5,1)=TINV
BMC(5,3)=-Cl
BMC(S,2)=TINV
BMC(6,4)=-C1
BMC(7,5)=I.OD+00
CALL BMAT(X1,RI,X2,R2,0.OD+00,B,DL)
CALL EMAT(DNU,E,T,G)

C
C DO BMC*E*B
C

DO 100 J1=1,7
DO 100 J2=1,5

DO 100 J3=1,5
DO 100 J4=1,6
TEMP(JIJ4)=TEMP(J1,J4)+BMC(Jl,J2)*G(j2,J3)*B(J3,J4)

100 CONTINUE
C
C TRANSFORM TO ALLOW OPERATION OFF GLOBAL DISPLACEMENTS
C

CALL ROTATE(X1,RI,X2,R2,7,6,TEMP,3,SREC)
C
C FINISHED
C

RETURN
END

C THIS SUBROUTINE INPUTS GEOMETRY AND THE GENERALIZED COORDINATE OF INTEREST
C AND RETURNS THE B MATRIX AND ELEMENT LENGTH.
C

SUBROUTINE BMAT(XI,RI,X2,R2,DKSI,B,DL)
DOUBLE PRECISION XI,RI,X2,R2,DKSI,B(S,6),DL,R,PHI,CPR,SPR,R,
&DKMDKP, DLINV

C
C EXPLANATION OF VARIABLES, (I) INPUT, (0) OUTPUT
C Xi, Ri == COORDINATES OF END POINTS (I)
C I)K!;l == KSI TRANSFORMED VARIABLE, S -- > KSI
C B == B MATRIX, DERIVATIVE OF SHAPE FCTN, SO T2 SPEAK (0)
C I. I.FN(;TN OF E.EMENT (0)
C RO RADIO.; AT CENTER OF ELEMENT
C PIll ANGLE FROM Z AX IF PER COOK, FIG 1.l-



C CLEAR 13 MATRIX
C

DO 10 1=1,5
DO 8 J=1,6
0 (I, 3) =0CD+00

8 CONTINUE
10 CONTINUE
C
C CALCULATE RO,L,PHI
C

Ro=(R2+RX)/2.OD+00
PHiI=DATAN2(R2-RI ,X2-X1)
DL= (X2-Xl) /DCOS (PHI)

C
C CREATE CONSTANTS FOR ELEMENT CREATION
C

R=RO+(DKSI*DL*DSIN(PHI)/2 .00+00)
CPR=DCOS (PHI) /R
SPR=DSIN (PHI) /R
DKM=0.50+0O*(1 .0D+00-DKSI)
DKP=0 .5D+00* (1.OD+00+DKSI)
DLINV=1 .OD+00/DL

C
C NOW CREATE B MATRIX
C

8(1 ,2)=-DLINV
B(1 ,5)=DLINV
B(2,2)=DKM*SPR
B(2,5)=DKP*SPR
B(2,1)=DKM*CPR
8(2 ,4)=DKP*CPR
B(2,3) =DL* (1.00+00- (DKSI*DKSI) )*CPR/8.OD+00
B(2,6)=-B(2,3)
B(3 ,3)=DLINV
B(3,6)=-DLINV
B (4,3)=-DKM*SPR
8(4 ,6)=-DKP*SPR
B(5,1)=-DLINV
B(5,4)=DLINV
8(5 ,3)=(-DKSI/2.OD OO)-DKM
8(5 ,6)=(DKSI/2.OD+00)-DKP

C
C FINISH' D
C

RETURN
END

C

C THIS SUBROUTINE INPUTS MATERIAL PROPERTIES AND RETURNS THE MATERIAL
C MATRIX FOR USE IN CREATING THE STIFFNESS MATRIX.
C

SUBROUTINE EMAT(DNU,E,T,G)
DOUBLE PRECISION DNIJ,E,T,G(5,5),Cl

C
C EXPLANATION OF VARIABLES, (I) INPUT, (0) OUTPUT
C DNU == POISSONS RATIO (I)
C E ==MODULUS (I)
C T ==ELEMENT THICKNESS (I)
C G ==MATERIAL PROPERTY MATRIX (0)

C CLEAR G MATRIX
C

DO 10 I=1,5
DO 8 J=1,5
G(I,J)=0.OD+00

8 CONTINUE
10 CONTINUE
C
C CREATE CONSTANTS F"'R ELEMENT CREATION
C

C 1=E*T/(1. OD+00-(DNUJ*DNU))
C
C NOW CREATE EMAT MATRIX

G (I *)DNIJ.C"I
(; (2 , 1) =C(1 , )
G (2),) (:
G 3) T. ' .() 1 / I 2 'j '



G(3,4)=DNU*G(3,3)
G (4,3)=G(3,4)
G(4,4)=G(3,3)
G (5,5) =5. OD+OO*E*T/( 12. OD+O0*( 1. OD+OO+DNU) )

C
C FINISiIED
C

RETURN
END

C THIS SUBROUTINE INPUTS GEOMETRY AND THE GENERALIZED COORDINATE OF INTEREST
C AND RETURNS THE N MATRIX AND ELEMENT LENGTH
C

SUBROUTINE NMAT(XIRI,X2,R2,DKSI,DN,DL)
DOUBLE PRECISION Xl,R1,X2,R2,DKSI,DN(3,6),DL,DN1,DN2,DN3

C
C EXPLANATION OF VARIABLES, (I) INPUT, (0) OUTPUT
C Xi, Ri == COORDINATES OF END POINTS (I)
C DKSI == KSI TRANSFORMED VARIABLE, S -- > KSI (I)
C ON == N, THE SHAPE FUNCTION MATRIX (0)
C DL == LENGTH OF ELEMENT (0)
C DNi == ELEMENTS OF SHAPE FUNCTION MATRIX
C
C CLEAR DN MATRIX
C

DO 10 I=1,3
DO 8 3=1,6

DN(I,J)=O.OD+00
8 CONTINUE
10 CONTINUE
C
C CALCULATE DL
C

DL=(X2-X1)/DCOS(DATAN2(R2-RI ,X2-XI))
DNI=0. 5D+00* (I. OD+00-DXSI)
DN2=O.5D+00* (1. OD+00+DKSI)
DN3=DL* (I. OD+0O-(DKSI*DKSI))/8.OD+00

C
C NOW CREATE DN MATRIX
C

DN(1,2)=DN1
DN(1 ,5)=DN2
DN(2, 1)=DN1
DN(2,4) =DN2
DN(2,3)=DN3
DN(2,6)=-DN3
DN(3,3)=DN1
DN(3,6)=DN2

C
C FINISHED
C

RETURN
END

C THIS SUBROUTINE INPUTS GEOMETRY AND A MATRIX ENTITY, CREATES ROTATION
C MATRIX USING THE FORM u=TU (CAPS GLOBAL), AND RETURNS A ROTATED ENTITY PER
C INSTRUCTION CODE. ENTITY MUST BE CONlTATIBLE WITH THE OPERATION.
C

SUBROUTINE ROTATE (X1, Rl,X2,R2, NROW, NCOL,ENTIT, INSTR,ENOUT)
DOUBLE PRECISION X1,R1 ,X2,R2,ENTIT(NROW,NCOL),T(6,6),PHI,DC,DS,

&ENOUT (NROW, NCOL)
C
C EXPLANATION OF VARIABLES, (I) INPUT, (0) OUTPUT
C Xi, Ri == COORDINATES OF END POINTS (I)
C NROW == NUMBER OF ROWS IN ENTIT (I)
C NCOL == NUMBER OF COLUMNS IN ENTIT (I)
C ENTIT == ENTITY THAT IS BEING TRANSFORMED (7)
C INSTR INSTRUCTIONS FOR ROTATION AS BELOW (I)
C 1 -- PREMULTIPLY BY T
C 2 -- PREMULTIPLY BY T TRANSPOSE
C 3 -- > POSTMULTIPLY ENTIT BY T
C 4 -- POSTMITLTIPLY ENTIT BY T TRANSPOSE
C 5 -- > PRE & POST BY T TRANSPOSE & T, RESPU:TIVEL.Y
C , -- > PRE & POST BY T & T TRANSPOSE, RESF E,2TVIE1.Y
C ENOUT = TRANSFORMED ENTITY (0)
C T == TRANSFORMATION MATRIX TO GIVE u=TU
C PHI0 1 AN(;LF FROM Z AXIS PHR COOK. FIG 12.-
C
C; ChlECK FOR (POMP AT I 0I1,ITY



IF(NCOL.NE.6.AND.NROW.NE.G) GO TO 510

C CALCULATE PHIl, COS(PHII) , SIN(PI)
C

PHI=DATAN2(R2-R1 ,X2-Xl)
DC=DCOS(PHI)
DS=DSIN(PHIl)

C
C CLEAR ROTATION AND ENTITY OUTPUT MATRICES
C

DO 10 I=1,6
DO 6 .=1,6

T(I ,J)=0.OD+00
6 CONTINUE
10 CONTINUE

DO 20 I=1,NCOL
DO 18 J=1,NRDW

ENOUT(J,I)'=0.0D+00
18 CONTINUE
20 CONTINUE
C
C CREATE ROTATION MATRIX
C

T(1 ,1)=DC
T(1 ,2)=-DS
T(2, 1)=DS
T(2,2)=DC
T(4,4)'=DC
T(4,5)=-DS
T(5,4)=DS
T(S,S)=DC
T(3,3)=l .05+00
T(6 ,6)=l .0D400

C
C TRANSFORM ENTITY
C

IF(INSTR.EQ.1) THEN
DO 100 31=1,6

DO 100 J2=1,6
D0 100 J3=1,NCOL

ENOUTF(J1,J3)=ENOUT(Jl,J3)+(T(J1 ,J2)*ENTIT(32,j3))
100 CONTINUE

ELSEIF(INSTR.EQ.2) THEN
DO 110 Jl=1,6

DO 110 J2=1,6
DO 110 J3=1,NCOL
ENOUT(31 ,J3)=ENOUT(Jl,J3)+(T(J2,J1)*ENTITC32,J3))

110 CONTINUE
ELSEIF(INSTR.EQ.3) THEN

DO 120 J1=1,NROW
DO 120 J2=1,6

DO 120 J3=1,6
ENOUT(JI,J3)=ENUUT(J1,J3)+(ENTIT(Jl,j3)*T(32,j3))

120 CONTINUE
ELSEIF(INSTR.EQ.4) THEN

DO 130 31=1,NROW
DO 130 J2=1,6

DO 130 J3=1,6
ENOUT(J1,J3)=ENOTJT(J1,J3)+(ENTIT(J1,33)*T(J3,J2))

130 CONTINUE
ELSEIF(INSTR.EIJ.5) THEN

IF(NCOL.NE.G.OR.NROW.NE.6) GD TO 500
DO 140 31=1,6

DO 140 J2=1,6
D0 140 J3=1,6

DO0 140 J4-1 ,6f
ENDT (.31 _14) =ENOUT0J1, .4) +T( 32, J 1 )-ENT IT (J2 ,.13) *T (.3, 34)

140 CONTINUE

IF ( N(71. NE £ OR.1jf1w.NE.r1) QO .rc 5100

00 1O 11 1 C

DO c! ) c - I ,0

1T N1 E;Ii



STOP
EN DI F
GO TO 600

C ERROR STATEMENTS
C
S00 PRINT*,'ERROR IN ROTATE, ENTIT NOT SQUARE'

STOP
510 PRINT*.'ERROR IN ROTATE, ROWS AND/OR COLUMNS NOT COMPATIBLE'

STJP
C
C FINISHED
C
600 RETURN

END

C THIS SUBROUTINE INPUTS FILE DATA AND WRITES AN ASTROS COMPATIBLE DIRECT
C MATRIX INPUT BULK DATA FILE USING LARGE FIELDS.
C

SUBROUTINE ASTOUT(MATRIX,PRECIS,FORM,NROWS,NCOLS,INFILE,NOFILE)
DOUBLE PRECISION AM4
DIMENSION INSTR(5), ICR(4)
CHARACTER MATRIX*8, PRECIS*8, FORM*8, INFILE*S
OPENCUNIT=8, FILE=INFILE, STATUS='OLD')
REWIND(8)

C
C EXPLANATION OF VARIABLES, (I) INPUT, (0) OUTPUT
C MATRIX ==CHARACTER DENOTING MATRIX NAME (I)
C PRECIS ==CHARACTER DENOTING PRECISION (I)
C FORM == CHARACTER DENOTING FORM OF MATRIX (I)
C NROWS, NCOLS == NUMBER OF ROWS AND COLUMNS IN MATRIX (I)
C INFILE ==INPUT FILE NAME (I)
C NOFILE ==FORTRAN OUTPUT FILE NUMBER (I)
C A == REAL MATRIX TERM
C INSTR == INSTRUCTION CODE READ FROM INPUT FILE NUMBER NIFILE
C 1I- FOLLOWING NUMBER IS REAL, DOUBLE PRECISION
C 2 -- >FOLLOWING NUMBER IN FILE IS INTEGER
C 3 ->THIS IS THE END OF THE FILE
C ICR ==INTEGER COLUMN OR ROW NUMBER READ FROM INPUT FILE NIFILE
C IC2 ==INSTRUCTION CODE, NUMBER OF VALUES TO OUTPUT, 1 - 4
C IC3 ==INSTRUCTION CODE
C 1 ->THIS IS LAST LINE TO OUTPUT
C 2 ->DON'T STOP, MORE LINES WILL FOLLOW
C
C ESTABLISH POSSIBLE FORMATS
C
1 FORMAT('DMI ',3AS,2I8,24X,'ABC')
2 FORMAT('*BC ',4E16.8,A3)
3 FORMAT('*BC ',I16,3El6.8,A3)
4 FORMAT('*BC ',21l6,2El6.8,A3)
5 FORY-AT('*BC ',El6.8,2Il6,El6.8,A3)
6 FORMAT('*BC ',2El6.8,2Il6,A3)
7 FORMAT('*HC ',3EI6.8,116,A3)
8 FORMAT('*HC ',4E16.8)
9 FORMAT('*BC ',3EI6.8)
10 FORMAT('*BC ',2E16.8)
11 FORMAT('*BC ',E16.8)
12 FORMAT('*BC ',Il6,3E16.8)
13 FORMAT('*BC ',116,2El6.8)
14 FORMAT('*BC ',I16,E16.8)
15 FORMAT('*BC ',2116,2E16.8)
16 FORMAT('*BC ',21l6,E!6.8)
17 FORMAT('*BC ',E16.8,2116,E16.8)
30 FORMAT(18)
31 FORMAT(E16.8)

C WRITE FIRST LINE
C

WRITE (NOFILIE. 1) MATRIX, PRECIS, FORM,NROWS, NCOLS
C
C STEP THROUGH NIFILE AND OUTPUT PER APPROIPRIATE FORMAT

100 READ(8,30) INSTR(l)
IF(INSTR(1).EQ. 3) THlEN

PRINT* , 'FI RST RECORD READ IN qT10 ASTOIJT TS FM)
STOP

EN I) IDF
150 DO] 200 f-1,4

IFOiN:;Tf(T) -EQ. 1) THlEN



ELSE IF( (I NSTR( I) . EQ. .2) THlE N3 READ(8,30) ICH(1
END IF
IEAD(8 ,30) 1 NSTR( [+1)
1I:(I NSTR( I +) .EQ . 3) THil-N

IC2-1
1C3= 1SGO TO 500

EN 1)1F
200 CONTINUE

IC2=4
IC3-2

500 IF(102.EQ.1) THEN

GO TO 700 TE
EL.SEIF(102.ELJ.2) THEN

WRITE(NOFILE,10) AM1,A(2)I GO TO 700
ELSEIF(INSTR(I').EQ.2.AND.INSTR(2).EQ.1) THEN
WRITE(NOFILE,14) ICR(l),A(2)
GO TO 700

ENDIFI GO TO 600
ELSEIF(1C.EQ.3) THEN

IF(INSTR(1).EQ.1.ANID.INSTR(2).EQ.1.AND.INSTR(3).EQ.1) THEN
WRITE(NOFILE,9) A(1),A(2),A(3)
GO TO 700

ELS3EIF(INSTR(l).EQ.2.ANO.INSTR(2).EQ.1.AND.INSTR(3).EQ.1) THENI WRITECNOFILE,13) ICR(1),A(2),A(3)
GO TO 700

ELSEIF(INSTR(1).EQ.2.AND.INSTR(2).EQ.2.AND.INSTR(3).EQ.1) THEN
WRITE(NOFILE,16) ICRQ1),ICR(2),A(3)
GO TO 700

ENDIF
00 TO 601

EL.SEIF(1C2.EQ.4) THEN
IF(1C3.EQ.1) THEN
IF(INSTR(1).EQ. 1.AND.INSTR(2) .EQ. 1.AND.INSTR(3) .EQ. 1 AND.

& INSTR(4).EQ.1) THEN
WRITE(NOFILE,S) A(1),A(2),A(3),A(4)
O TO 700

ELSEIF(INSTR(1) .EQ.2.AND.INSTR(2) .EQ. 1.AND.INSTR(3).EQ. lAND.
& TNSTR(4).EQ.1) THENI WRITE(NOFILE',12) ICR(I),A(2),A(3),A(4)

00 TO 700
El, ,LF(INSTRI(I).EQ.2.AND.INSTR(2).EQ.2.AND.INSTR(3).EQ.1.AND.

& INSTR(4).EQ-l) THEN
WRITE(NOFILE,15) ICR(1) ,ICR(2) ,A(3) ,A(4)
GO TO 700I E~FLSEIF(INSTR(l).EQ. 1.AND.TNSTR(2) .EQ.2. AND.INSTR(3) .EQ.2. AND.

& I NS1 R(4) .EQ.1I) THEN
WRITE(NOFILE, 17) A1) ,ICR(2) ,ICR(3) .A(4)
GO TO 700

EN D I F
GO T0 602

EI.SEIF(1C3 .E0.2) TxIEN
IF(TNSTR(I E.O. I AND. I-NSTR(2 .E-Q- 1 .ANf).JNSTR(3) EQ. I AND.

91 INSTR( E4 41) THEN
WRITE(( LiE, 2) Al) ,A(2),A(,) ,A(4),'vC

PTTR( I)INSTR())
(J TO 1',"

) .1-N . . N[

AI I) 1 1, 1

I N



& INSTR.(4).E..2) THEN
WRITE(NOFILE,6) A(1) ,A(2) ,ICR(3) ,ICR(4) ,'AIiC'
INSTR( 1 )=INSTR(5)
GOl TO 10

E-'I.SEIF(INSTR( I) .EQ. 1. AND. INSTR(2) . EQ. 1 . AND). INSFR(3) .EQ. I. AND.

& INSTR(4).EQ.2) THEN
WRITE(NOFILE,7) A(1) ,A(2) ,A(3) ,ICR(,) ,'AOC'
INSTR(1)=INSTR(5)
GO TO 10O

ENDIF
GO TO 603

ENDIF
ENDIF

C
C ERROR OUTPUT
C
600 PRINT*, 'ERROR WRITING LAST TWO ELEMENT LINE IN ASTOUT'

STOP
601 PRINT*, 'ERROR WRITING LAST THREE ELEMENT LINE IN ASTOUT'

STOP
602 PRINT*,'ERROR WRITING LAST FOUR ELEMENT LINE IN ASTOUT'

STOP
603 PRINT*, 'ERROR WRITING INTERIM FOUR ELEMENT LINE IN ASTOUT'

STOP
C

C FINISHED
C
700 RETURN

END
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