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iI Preface
I

The purpose of the study was to develop an extremely user friendly

computer code to simulate an injection locked pulsed CO laser. The use

of this program is most suited to the design of lidar applications.

The program was written under the BASIC language format for use on

an IBM-PC/AT compatible. Unfortunately a version of BASIC, Microsoft's

BASIC version 7.0, was not available until after most of the code wasI
written. Microsoft's BASIC will allow program and data modules to

reside in extended or expanded memory. This advantage would result in

more longitudinal modes tracked, longer pulse times, and smaller

interval sizes used in computations.

I wish to thank MAJ Stone for his efforts and understanding during

my thesis.

Allen M. Susie
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Computer Model of an Injection Locked Pulsed C02 Laser

IChapter I Introduction
The purpose of this chapter is to define key terms and to detail

the direction and scope of the work. This chapter is divided into three

sections. The first section consists of the definitions used throughout

the document. The second section details the purpose of the work

effdrt. The final section states the scope of the work.

Key ierms and Definitions

With the discovery of the laser there have bi continual attempts

-to increase the "spectral brightness" .(1':229of a laser for

applications such as signal processinganelidar. To this end

techniques using either passive or active cavity elements have been

developed to isolate a single longit-udinal mode in both continuous and

pulsed laser systems 1:23';. Although passive elements have useful

applications in continuous systems their use in pulsed systems is

difficult to control 1:23. TheIne ction of an external signal has

proved very successful (11.230 Injection mode locking is a technique

where a single frequency signal is usedl.to seed the active medium during

the gain build-up period (11:238). The laser transitions in CO gas

lasers are due to changes in the molecular energy in the vibraticnal or

rotational aspects of the molecule. C02 may transition in one of three

bands; the Regular band, the Hot band, and the Sequence band. In the

Regular band transitions the energy exchange between vibrational states

is very rapid because of the near-resonant energy transfer (13:68). The

energy in one aspect of excitation can be exchanged for another mode of

excitation. For the purposes of this thesis the focus will be on the

transition between the first asymmetric stretch mode and the first



I symmetric stretch mode in the Regular Band (13:14) or the 0001 to 1000

10.6 um transition.

Ii Due to collisions between molecules and the effect of the movement

of molecules inside of the cavity the stimulated emission cross section

I becomes broadened. At low pressures below 10 torr the effect is

primarily due to Doppler shifts of the transition frequencies (13:59).

Above 50 torr the collision processes dominate (12:147; 13:60). This is

called collision broadening or pressure broadening. This model is

limited to the pressure broadened regime.

Purpose of the Work

An injection locked laser delivers superior frequency isolation

and stability. Frequency isolation is rec .ed for laser radar designs.

The purpose of the work was to produce a user friendly computer model

which provides a realistic simulation of an injection seeded pulsed CO2

laser. The computer language chosen was QuickBASIC® to allow easy

future modification. QuickBASIC cannot compute complex numbers in the

manner of FORTRAN. This limitation is overcome by the separation of

real and imaginary parts of wave equations. The program will develop

results for a set of physical conditions. The model will not develop

* the set of input conditions required to produce a specific result.

Scope of the Work

The computer program requires less than 128 kilobytes to run,

utilizes an EGA display, and does not require extended or expanded

memory. The model is based on a point model of the laser. This model

utilizes four rate equations for a four state laser. The rate equations

I describe the populations in the three upper states and the photon

density of the natural longitudinal modes. The rate equations are

normalized to eliminate the dependence of the rate equations on physical

units. in addition, two equations describe the cavity detuning angle

2
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I| and power evolution for an injected laser. The model ignores higher

quantum levels and focuses on the P(20) transition. The number of
longitudinal modes is limited to a frequency range of eight free

spectral ranges higher or lower than the transition frequency. This is

due to the size of video display. The video display depicts the

evolution of the power, gain, and energy of any mode in comparison to

either the most powerful mode or to the summed power and energy in the

laser pulse. The injected mode display shows the injected phase as

well.

Chapter II describes the model and basic rate equations. Chapter

III describes the modifications of the basic model for multimode

operations. Chapter IV details the considerations used in developing

the computer model. Chapter V contains the literature review relevant

to laser injection locking and Chapter VI is a discussion of the

* lresults.

iI
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Chapter II Equations and Model

This chapter explores the physical model on which the computer

code is based. As part of this model the discussion will include a

short description of the spontaneous emission term, W,. The transition

rates between states and the pump rates for those states are delineated.

Cavity lifetime is defined. The injection field equation is presented.

The expression for instantaneous phase and injected signal field change

is derived in a manner similar to other works. A comparison between

steady state flux and field equations verifies the validity of the mixed

I approach instead of using field equations exclusively as Lachambre did

in his works (5:757).

Model of the Physical Process

I . ..... ........

040
200W

I 030 z

: I0/' 10.6 u
IO._,z

I
010

000 VI Ve V3

Co2  N2

Figure 1 Model of the Physical Process 4n the Laser Study
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Ii The C02 laser process involved is the exchange of energy between

the asymmetric stretch level of 0011 and the symmetric stretch mode

I 1000. Gilbert et al (3:2524) proposed a model of this process using the

model shown as Figure 1. Figure 1 shows the existence of both the

higher energy and lower energy states of CO2 as well as the role of

nitrogen as a reservoir of energy for the lasing process. The

transition between nitrogen and carbon dioxide is endothermic. The

* higher carbon dioxide state is actually more energetic than that of the

nitrogen by 18 cm- . This amount is small in comparison to room

temperature energy - 208.3 cm-1 (12:261). The population rate equations

that are applicable to this model are shown in equation set (1) (9:4).

= oc a (Nb-Na) -yaNa+YccoNc-Yc1zNa+Wa
~d

= CFC (N.-Nb) + - -y N+W (1
Ndt a4 bb
-t =yc14'Na-Ycco N'c+Wc

The symbols follow the international system for units (S.I. units)

unless otherwise noted: c is the speed of light, a is the stimulated

emission cross sectional area of the CO2 molecule, 1; is the photon flux

density in units, Wa, Wb, and W. are the pumping rates for each

population, and Na, Nb, and Nc represent the concentrations of those

populations. The y symbols represent the collisional relaxation rates

* for the transitions between the states noted in Figure 1. The reduction

by 1/4 in the equation for Nb is due to the fact that the transition

* from the higher to the lower energy state has a four different possible

changes in state. Since we are interested in only one of these changes

we incorporate this diversity by reducing the second term by 1/4. In

addition, the rate equation for the photon density is shown in Eq (2):

I

I



d ac (Na-Nb) - l *+NWs (2)dt tCAv

where tCAv is the cavity lifetime and W, is the term we will use to

describe the spontaneous generation of flux in the manner of Gilbert

(3:2525).

*l Cavity Lifetime - tcAV

For the purposes of this work the cavity lifetime will be as shown in Eq

(3) where Lres is the length of the cavity and R is the reflectivity of

the output mirror with the assumption that the other mirror is lossless.

= 
2 Lres 1

Sln( (3)

In some works (notably Lachambre), the cavity lifetime includes a factor

for transmission losses or absorption losses inside the cavity itself.

Lachambre defined the cavity lifetime as tCAV = 2T/[ln (1/(RT)] where T

I is the transmissivity of the empty cavity and 2r is the round trip time

of a photon. T accounts for the internal losses of the cavity. Cavity

losses affect the photon density on every trip through the cavity. An

equivalent factor is possible. The photon density is reduced by an

IN equivalent percentage for each time interval. This model will

incorporate this concept in Chapter III.

a - Effective Radiative Cross Sectional Area

*N The effect of pressure broadening is to reduce the effective radiative

cross sectional area. This reduction also depends on the spectral

separation from the laser transition. The effective radiative cross

section of the molecule is Eq (4) (12:147; 13:57):

6
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0-S (VoV) Acoef f  (4)

where Ao is the transition wavelength. The Einstein A coefficient,

3 Acoeff, depends on the isotopes involved and is set at either 0.174 for

C 2 or 0.208 for C" (4:534; 7:1091). The frequency for the transition

SI has an isotope dependence; 28.306 THz for C12 and 26.889 Thz for C13

(13:23-49). The factor S(vo, v) designates the line shape and depends

3 on frequency of the transition, vo, and the frequency of interest, v.

This factor is normalized according to Witteman (13:59) and Verdeyen

>3 (12:142) as Eq (5):

fS (vol v)dv (5)V. 0
The line shape is Lorentzian for high pressures. This results in Eq (6)

I (13:60) for line shape:

2S=n2."E (6)(I 2i2

I The pressure broadening factor is taken from Witteman (13:61) shown in

the next equation as:

IAVp' .58 Eco,+ .73 N+. 6 4 9H,+. 38 H 2 +3 H2
i X P" 760".30 in MHz ) (7)

FT

where ecO2, eN2, eHe, H20, and eH2 refer to the fraction of the gas mix of

I that component (in total of 1), the pressure, P, is in units of

atmospheres, and the temperature, T, is in Kelvin.

Transition Rates between States

.3 The rates for the various transitions are dependent on the isotope

of the carbon in the molecule, the gas pressure and the relative amounts

7I'
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Ii of each gas component. For C'2 the set of rates from Lachambre (5:756)

using the same notation as the previous equation is as follows (9:4):

Ya= P 760 (350tco2 + 106x, + 85tMe + 24000Ho + 3864tH )
y*N= P 760 19100t (8)
y~cc= P 760 17370tc(8

Yb= P 760 (1949co, + 650 N; + 3270tHe + 4500004Ho + 71000 H)

The rates for the transitions for C13 are shown in Eq (9):

Ya= P 760 (1000Cco + 304 t, + 90 e + 24000 Ho + 3864

iCR= P 760 17370N, (9)
y7¢¢0= P 760 19100c,(9

Y7= P 760 (1944co + 650 11 + 3270tH, + 4500009H o + 710009H,

I The rates for the transitions for the lower state, Yb, have been

measured by an induced fluorescence technique where the molecules of a

passive cell are excited and then spontaneously decay (13:76).

S- Spontaneous Generation of Flux Density

One can incorporate the effects of the Boltzmann distribution.

I The effective stimulated emission cross sectional area is a product of

the stimulated emission cross sectional area and fu, the thermal

equilibrium probability of occupation (3:2535). The value of fu is

roughly 7% for the P(18) to P(22) transitions at standard temperature

and pressure. For the P(19) transition the value of this reduction

expressed as f, is 0.0715 (3:2535). The spontaneous generation of flux

depends on the product of the fraction of the molecules in the upper

state, Na, and Ws. W, is a product of the inverse radiative lifetime of

the lasing transition (the Einstein A coefficient) and the fraction of

photons that are radiated into the small aperture of the secondary

U mirror within the spectral width of the axial mode, F (3:2523). The

quantity F is shown in Eq (10) in derivation:

I
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Ws= F ACOGff
S2 U (v) dv Aco Af

_0 f 1 dv Acoeff

Area 2nt cae f
(V-Vo (10)

- 1 2 Acoeft

-4 a I±-)
Ar ea teAV

where Area is the area of the secondary mirror, dv =1/(2;r tcAv), and

AV P is substituted from Eq (7).

Pump Rates for Each State and Pump Cycle

The model of this laser is not dependent on the pumping mechanism.

This model does not incorporate any accounting for penetration depth or

nonhomogeneous distribution of energies throu-',ut tne medium. Using

the ideal gas law the pumping rate is calculated z:n a in Eq (11)

as:

W. = Eff pump t 9.65 "1024 P

Effpp co2 .9.65 .1024 . T 7__.___ (I1)

Wb= Wa

where the efficiency of the pumping mechanism is expressed as EffLPuP,

and rpP is the length of the pump pulse. These equations incorporate

the assumption that excitation of nitrogen is 3 times as effective as

CO2 and that the pumping is indiscriminate among the states (both Na and

Nb are equally pumped).

Degeneracy Ratio

The degeneracy ratio effects the small signal gain. This study

assute the P(20) transition is the only transition. P transitions have

a rotational change of -1 (13:19). This rotational change from the

9I



upper state, j', to the lower state, j, generates a degeneracy as

(2j'+l)/(2j+l) = gu/g, = 39/41 = 0.95122 (13:63). Degeneracy impacts

the stimulated transition term in Eq (2) as a factor reducing the amount

*! of population in the upper state available to support the transition.

Field Equations for Injected Signals

*l For an amplified electromagnetic wave propagating in a cavity to

have consistent boundary conditions the length of the resonator should

be n(J/2) where n is any positive even integer. The wave builds without

degradation due to inconsistent boundary conditions. Each wave exists

on what we shall call a natural longitudinal mode. For an injected

signal not on these resonance frequencies a phasor analysis is done.

* For such a field the signal at the end of a round trip (designated 2 T

in time) we have:

Ei(t + 2) = gainoundt r ip Ei(t ) + EO( t 2) (12)

I where Ei is the evolving circulating signal and Eo is the injected

signal. The round trip power gain of a cavity is G given by Eq (13):

G=Te (t)1=g 2 (13)

where T is the cumulative transmission gain (O<T<I) through the passive

cavity for a round trip not including output coupling, a(t) is the power

gain per unit-length of amplifier and 1 is the length of the active

section inside a cavity of length Lres becomes

gain (round crip) = g R e2 J ,  (14)

After the incorporation of Eqs (13) and (14), the round trip gain for

any injected signal may be expressed as (10:395):

10



r (t)1 2 k 1,,.-nn
gain (round trip) (RT) I exp 2 (15)

where R is the product of the reflectivities of the mirrors in the

optical path. The offset or detuning angle is the difference between a

nearest natural mode and the injected signal. This is the difference

between 2kLes where k is the wave number of the injected signal and 2n r

where n is an integer large enough to make the difference to a range of

values between -;r and ;r. We will designate this difference as do

(10:387). We convert the effects of the reflectivity and transmission

losses from Eq (13). Next we take the natural logarithm to each side of

Eq (15). We note that 2T is equal to 2 * Lres/c. After dividing by 2T

an expression for the exponential representation of the evolving field

is Eq (16):

l= i(gainroudtrip) = -1 +c a(t) 1+j cdO6

2c =2tcA 4 L J-2L) (16)
= M(t)

I A differential equation for the behavior of this wave is then developed

through a Taylor's expansion. The Taylor's expansion for ex where 0<x<l

as ex 1 + x + x 2/2! + x3/3! + ... When x is small the first two terms

of the expansion are a sufficient approximation. For a small gain

scenario the value of a circulating wave at the end of a round trip is

(10:395-396):

2 (17)Ei(t 2,r)=e 'UEi(t)

I By defining grt as the round trip gain in Eq (18)

N= 2
M (18)

we replace the round trip gain in Eq (12) with Eq (18):

I
1I



e Etg (t) =e2tmW E, (t)+E, (t+2T)(9

SI Through manipulation and using the forementioned Taylor's expansion as

an approximation we develop a differential equation for an evolving

I field as:

- t-~(t) ,- m(t)E5t) + m(t)k (t+2T) (20)
dt e 2t ~ -1.

Comparison of Flux versus Field Equations in Steady State
The flux density rate equation is equivalent to the field equation

in the steady state. The flux rate Eq (2) is now written as:

* -,+Ofc (AN)* (21)
dt tCWv

where the degeneracy factor gu/g1 is incorporated as seen in Eq (22):

AN=Na -- -'Nb (22)

From the field model just derived

UdE= EspnI dE=M( t )E (t )+m( t ) s n (23)
dt e2Vn(CJ -i

where E is the evolving field of the longitudinal mode and Espon t is a

term for the spontaneous generation of the field. After subtracting the

spontaneous terms the field equation is

d =m (t) E(t) (24)

The steady state for the equation of m(t) for natural longitudinal modes

with no offset angle m(t) is Eq (25):

I
I
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m( )- - la(t) (25)

2 tAV 4 L

With the power gain coefficient, a(t), as follows

a (t) = (a - g Nb) 2L (26)
V 1

m(t) becomes

m(tl- -- e ANc 1 (27)
2 2 tc.v

The exponent in the field equation is dimensionless and any quantity may

be used to define the field E. Therefore, defining the field as the

square root of the flux density the derivative of the field is:

dE d 1 d (28)

Eqs (24) and (25) with Eq (28) simplify to:

d- =- i--- T+Cae A NT (29)dt tEAv

Thus, the two forms for photon density and field (21) and (24) are

equivalent as expected. An injected signal requires a phasor analysis,

Injected Field and Phase Equation.

This section relies on the derivation of two first order non-

linear differential equations as published in Computer Modeling of Gas

Lasers (10:395-400):

20=E 0 (t) eJ o  (30)

Let the value of the injected signal be represented by the expression

above. The previous argument showed in the slowly varying analysis when

13
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the injected signal was not changing quickly in time, i.e. E0 (t)

E,(t+2r)

-=m (t) Ei (t) + m(t) t (31)
Il e2,m 0 -1

The equation for the evolving injected field is divided into magnitude

I and phase:

l(t) =I 1 e(t)Iee(t) (32)

Eq (32) becomes after differentiating:

I d Ei(t) I i (t j dO (t eJ(t) (33)-a dt e~~) 2dt

This in turn is the instantaneous field represented below (10:395):

I dt dt dt

The value of m(t) in Eq (16) is treated by dividing the expression into

real and imaginary parts so that m(t) = x + jy. The expression for m(t)

is substituted into Eq (31). Euler's identity is used on the

exponential term in Eq (31). With the additional notation for the new

variables c and d seen in Eq (35)

x= - ca (t) 1
2 tcAl 4L

y=cdO (35)2LTil c'e2" cos (2Ty) -1
d=e2' -.n (2 ty)

we can compare like term$ and derive the same euat;-ons in literature

Ifor phase and magnitude (10:400).

14
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1Ei I

d + cos(xcyd) - sine(xd-yc) (36)

dt c2+d2

dO 1 sinO(xc+yd)-cosO(xd-yc) (37)
dt i c2+d2

)

The combination of Eqs (36) a'd (37) describes the evolution of an

injected signal and like the population and flu: equations previously

detailed are coupled differential equations. However, Eqs (36) and (37)

are nonlinear differential equations due to the transcendental terms for

8.

Runge-Kutta Intearation and Multimode Operations

The fourth order Runge-Kutta method of integration is accurate to

the fifth order of the binomial expansion. Numerical integration

provides approximate solutions to differential equations. For all the

populations and flux densities given to as a start of an interval of

duration h:

t.oh

N,(to+h) N,(to)+ f f(N,Nb,NC, flux, time)dt (38)
to

The end value of any population or flux equation depends on the

initial value of that variable and the effects of change induced on all

of the variables during the interval. Eq (38) is applicable to the

other populations and the flux density as well. A series of successive

approximations in Taylor Series expansion becomes equation set (39) for

a generic variable y that is a function of x and y:

15



t0 h

y(to+h) =y(to)+ f (x,y)dt

yito+h) =y(to) +kr °

where k is found by approximation as follows:
k= hf°

k= hf (x+-h, y+-k) (39)2 2

k3  hf(xo+-!h, yo+-lk 2 )

X4 hf (x0+h, yo+k 3)
k I. k 1 +2k2+2k 3 +k4 )

The values of the integrand are relatively insensitive to changes

in other variables in small gain, small interval models. However, there

-I are many potential longitudinal modes. If each mode is not selected in

isolation from other modes we have designated an order or precedence.

U This is not the case in reality. Instead we must hold the populations

* constant for all the flux calculations. Each mode's flux builds in

isolation from other modes, affected by the "instantaneous" population

only. These individual fluxes are then summed to obtain a new total

Iflux for population effects. At the next time step the integration of

individual mode's flux is based on the previous flux of that mode and

again summed. This process is shown in Figure 2. Thus, the flux for

each mode is based on the instantaneous populations frozen in time.

I This method cf integration is accurate to the fifth order of the power

series expansion of the function used to describe the independent

I variable (1:492).
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Chapter III Modifications to Equations for Multimode Operations

This chapter explains the extent to which the basic equations are

modified for computer modeling. The first of these modifications is the

normalization of the flux and population equations to dimensionless

units. The second modification is the inclusion of the line shape

factor in the flux equations to account for reduced cross sectional area

due to frequency separation of-the various longitudinal modes from the

transition frequency. The assumptions inherent to the model and the

simulation default settings are.discussed.

Normalization is a preferred technique that eliminates physical

units from an equation or a system of equations. Additionally,

normalization has the added benefit of eliminating compu':ational

problems involved in the Runge-Kutta technique. Without normalization,

the chosen integration technique suffers a major error at the start of

computations. The various populations are low in comparison to the

decay rates and a negative population density develops. Although this

effect can be countered by resetting the populations to zero density it

is more practical to normalize. The electromagnetic field equation may

be in any units desired. The equivalent expression for power in the

photon rate equation is in units of photon density per second. The

electromagnetic field is directly related to the square root of the

power produced. As the power produced is directly related to photon

density per second, the electromagnetic field equation defined in units

of the square root of photon density per second is an equivalent

expression as shown in Chapter II. The equations are normalized by

choosing the critical photon density as the number of choice. This

number, Dt, taken from Gilbert (3:2528) is Dt=l/(tCav*ceerc) in

meters-3. The populations and flux variables are divided by D=. Next

i8
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I
I the pumping rates are multiplied by cavity lifetime, tCAV, and divided

by Dt. Finally, the transition rates are multiplied by tcAv. This

results in the series of equations shown as equation set (40) (3:2528).

Io Dt
n (a. bc) - D (40)
r(,,b,, ) = y(a, b,0 tCAV

Wd,b,c,s = " C)

I The complete equation set modified from Eqs (1) and (2) in Chapter II is

shown as a matter of record as set (41) below.

dn-~O-. ) (nb-na)-ran cnc-rcNna+wa
dtCCC
dnb_ = D(na-nb) +.-n a -rbnb+wb
dt (41)l dn
d- l=rc ,na-cc2nc+wc
dt ad1D = (na-nb) -- _D +naw.dt teAV

Line Shape Factor in the Flux Rate Equation

Eqs (5) and (6) in Chapter II detailed the line shape factor for a

homogeneously broadened condition. Recall that S(vo, v) was found to

be:

iI  S O, IV)= -&V__P

27t (42)

and that the effective radiative cross sectional area was found to be:

0 S (v,v) A,:Off (43)

I The formulation of the "line center" stimulated emission effective

cross sectional area is derived by considering when v vo exactly.

I When this condition is met S(v0 , v)= 2/(,; Avp) and so incorporating he

distribution from Chapter H!, Eq (10):

I
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fu nter 2 cff (44)

IThis gives in turn an effective radiative cross sectional area,
a effective, as seen in Eq (45):

iAvp

aeffctive= acentr" 2 (v0, v) (45)

This factor, ceffective, will be the 'factor, ce, used in the flux

rate equations. Recalling that Dt incorporates ae, we must modify theI cross sectional area in the flux equation to account for the frequency

separation of the longitudinal modes.

Absorption Losses

The variable T in Eq (13) of Chapter II accounts for the

transmission losses on a round trip basis. In accordance with the

desire to account for "productive" output power the cavity lifetime

described in Eq (3) of Chapter II does not account for those

transmission losses in the cavity due to absorption. These losses in

the cavity are accounted for by reducing the photon flux during each

* interval by an indexed amount for all the natural longitudinal modes.

The injected signal will be degraded by an equivalent amount with the

- fl accounting for the difference between field and power. For the natural

modes during a time period, t, for a cavity with a round trip time of 2r

and a distributed loss photon attenuation, A, the factor to multiply the

flux density by is designated Lossinterval as given by:

L = 1- 2 (46)

LoSSinterval accounts for any size time period even if the interval is

chosen to be very small order. The loss for the electromagnetic field

of the injected signal at each round trip is simply:

I
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lOssinterval = i (47)

The interval size is forced to that of a round trip time when an

injected field is studied and an indexed expression for field losses is

not needed. This avoids a complicated equation set that would include

accounting for positional field evolution of the injected signal in the

cavity. Since this a point model of a laser, we will not force this

derivation.

Assumptions Used With the Model

Spatial hole burning or inhomogeneity due to physical location is

not considered. Another assumption is the lack of transition between

nitrogen and ground state and the grouping of the other rates to include

all transitions out of that state. In addition, in this point model the

round trip gain must be smaller than one. This is due to the Taylor's

expansion limitation on the argument described in Chapter II on page 11.

*• As Gilbert (3:2525) explained these are reasonable assumptions if the

length is short and the other physical assumptions previously described

are valid.

Default Conditions

For further study a set of default conditions is required. A

short description is given below. In addition to common physical

constants for the speed of light and Planck's constant, the degeneracy

ratio and the percentage of molecules in the P(20) transition are not

changed throughout the simulation. The Einstein A coefficient is set

for C12 at 0.174 sec -1 . The length of the resonator is 1 meter. The

reflectivicy is set to 71.636 percent. The area of the secondary mirror

is 0.0004 square meters. The gain section has a gas mixture of 10% C02 ,

10% N2, and 80% He confined at 1 atmosphere pressure at 3000K. The pump
U

pulse is rectangular in shape, has an efficiency of 0.2 and the duration

of the pump is 10 cavity lifetimes. The laser pulse output is tracked
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I
to 400 cavity lifetimes. The cavity is not Q switched and nominal

losses are 3%. During the pump pulse and until 30 cavity lifetimes the

computational interval size is 0.1 cavity lifetimes. From 30 cavity

lifetimes until 400 cavity lifetimes the interval size is 1 cavity

lifetime. The normal number of longitudinal modes tracked is three. A

schematic of the nominal model is shown in Figure 3.

LENGTH OF RESONATOR

SECONDARY
_______M IRROR

* LOSS
SECTION

ACTIVE
SECTION
LENGTH

Figure 3 Model of the Laser Cavity Showing Mechanical Parameters

I2
I

I
I
I
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Chapter IV Computer Program Implementation Considerations

This chapter describes the computer on which the program was run.

The software limitations are detailed. The display screens are

described and examples provided. The program is exercised to determine

the limits of a noninjected model in regards to pressure andm
computational step size.

* Machine Details and Considerations

The program was written in QuickBASIC 4.5® for implementation on

an IBM-PC© or compatible. The choice of language was not arbitrary - a

previous effort tracking single mode operations was already available.

The program compiles to a final size of 120 Kbytes. The computational

run time is under three minutes using the standard defaults on a 25 Mhz

80386 based computer with a math coprocessor. The speed of execution

depends largely on the number of side modes tracked, the various step

sizes, and the length of time to track during the pulse process. A math

coprocessor greatly speeds the time of execution.

Ii  Software Considerations

The program was written so that the majority of the variables were

I expressed in single precision format. This was based on the memory

requirements for each type of precision - double precision

I representation requires 4 bytes to represent a number while single

precision representation requires only 2 bytes. The program maintains

i in active memory at each time interval: the population of each state;

the power, energy, and gain of each longitudinal mode; and the power,

gain, energy, and the instantaneous phase angle of the injected signal.

The simulation requires a significant amount of active memory for 16

i modes (the maximum allowed) and a maximum interval size of 400 cavity

lifetimes.
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I The computational routines are not the largest part of the

program. The computations are mostly contained in one subroutine

(RungeKutta4 for integration) with two function calls (differential

equations: F for the populations and aModeflux for natural modes' flux).

An additional subroutine is called for the computation of the

instantaneous phase and for the computation of the change in the

injected field strength. The majority of the program code generates a

complex set of display screens and options that display the following

normalized to the largest value of each category during the pulse or

alternatively to the peak value of all the modes summed: (1) relative

* cross sectional areas; (2) the value of the injected signal cross

sectional area relative to the cross sectional areas; (3) the evolution

I of the power, gain, and energy of any natural longitudinal mode

(additionally phase for the injected signal); (5) the instantaneous

:i power, gain, and energy profile of all modes at any time; (6) a

numerical display of & mode's characteristics with population densities

I for any period of time; or (7) a numerical peak Dower and peak energy

analysis. Gain curves on the graphs are always based on the highest

gain by any single mode. An example of the display is shown in Figure

4. Figure 4 is a display of all of the modes at an instant of time. At

i the top left is the time in the pulse chosen for the display. The to

right indicates that this particular graph is normalized to the peak

values of the total power and total energy. Each individual mode hds a

group of three bars that chart the value of the particular field in

i comparison to the maximum total peak power, the maximum total energy,

and the gain for the mode in comparison to the highest gain of any mode.
At the right margin is a listing of the time of the maximum power of the

most powerful mode, the time of maximum energy of the most powerful

mode. the time of the peak gain of the most power-ful mode, the time of

the peak total. power, and the time of the maximum energy. At the bottom

I
24

!I



of the display is a listing of the arbitrary mode number. Mode numbers

are assigned in order of increasing frequency separation from the

transition frequency. Mode one is always the closest natural

longitudinal mode to the transition frequency. The mode numbers are

assigned alternatively with even numbers for progressively higher

frequency natural longitudinal modes. Odd mode numbers areI
progressively lower in frequency. The display reinforces this with

commentary notations at the bottom left and bottom right. Finally, the

far right bar set is the total power and total energy at the same time

as noted at the top left. Figure 4 shows this multimode display for anI
non-injected case. On the actual display the bars corresponding to

power, gain, and energy are all in color. All individual power bars are

*B blue, all gain bars are red, and energy bars are yellow. The total peak

power and the maximum energy are depicted in purple and green

I respectively.
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MAX Power 2an Ene Total Power Total Ene e Maximum
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Figure 4 Multimode Display for Nominal Conditions at 30 Cavity

Lifetimes

Figure 5 shows the same display at 400 cavity lifetimes. Figure 6

1 highlights the peak power distribution normalized to the total power at
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I the instant of peak power for the nominal case. Figure 7 shows the same

distribution normalized to the largest peak power of all of the modes.
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I frequency separation from the line center. As ae becomes smaller the

critical inversion density increases. Thus, a mode with extreme

spectral separation might have little effect on total power or energy.

This details a dilemma: although more modes would better reflect the

actual behavior of the laser, tracking additional modes requires more

computing time and memory. Additionally, the length of time that the

pulse evolution is tracked decreases. Coincidentally, the subinterval

size used in the Runge-Kutta integration increases. Still another

consideration is the fact that the entire populations Na and Nb are

available for all the modes. The center modes will depopulate the

inversion quicker than any outlying modes. With the entire population

inversion funneling through one mode the total power is larger than the

I summation of power for multiple modes. The number of modes that are

required for the computations to be within 10% accuracy is the primary

consideration. Figure 10 shows that any number of modes will match this

requirement. The graph shows the percentage difference between the

number of modes for total energy and peak total power against the

condition of tracking one mode only. A better criteria is the

comparison of the minimum number of modes required to closely match the

maximum mode case. Figure 11 is a comparison of the summed peak powers

and total energy for the 1, 3, and 16 mode case. The interval step size

was chosen for the stable solutions under 0.2 cavity lifetimes plotted

against the single mode case using a step size of 0.005 cavity

lifetimes. Figure 11 shows a clear degradation for increasing time

steps. The limitation for a consistent solution is 0.19 cavity lifetime

for hl. For step sizes larger than 0.19 the results fluctuate from

interval to interval. The solution for three modes with hl=O.19 is

within 9.8% of the similar value for hl=0.005 and 16 modes. The

Ilimitation of this approach is the focus on the peak power. Any

approach considering total energy alone results in a step size of almost

29I
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arbitrary size because the peak power pulse has little effect on the

total energy, less still on the energy of any one mode.

1

°I

Figure 11 Differences in Peak Power and Total Energy

Nominal Analysis for Pressure and Step Size

: : :',

Figure 12 increase of Power due to Pressure

increasing t~he pressure of t~he system has twao effects. First it:

increases the pressure broadened bandwidth. Secondly, pressure affects

30
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the gain of the system and hence the power output in an almost linear

fashion from 0.1 to 2 atmospheres as seen in Figure 12. Increasing the

pressure also affects the allowable step size as seen in Figure 13. The

relationship between pressure and interval size is not linear. The

interval step size must decrease to accurately record the peak power as

pressure increases. In Chapter VI the validation of this model is at 1

atmosphere. Accordingly the step size of h1=0.19 is within the desired

10% accuracy.

0,F;ElE0 EK - ---WE .EE. PPSI-E

.-E, :N NIN- )T i 0 N 6W E

I C L

Figure 13 Effect of Pressure on Allowable Step Size

I Increasing the number of modes weakens the assumption that the P(20)

transition is isolated from the P(18) and P(22) transitions. The

spectral separation between modes is 150 MHz with a cavity size of 1

meter. However, the separation between the P(20) and P(18) lines is

I 54283.22 MHz and the P(20) and P(22) lines are separated by 53548.92 MHz

(13:24). This large separation precludes influence by populations in

I another transition for the maximum number of modes on each side of the

transition frequency. increasing the gain does effect the maximum

I allowable sten size. Phenomenologically speaking the higher pressure

causes higher gain which in turn increases the change in populations and

I
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Ii flux density during a set step size. As seen in Figures 10 and 11 the

difference between 1 and 16 modes for peak power is well within 10% for

step sizes up to hl=0.2 for any of the detailed pressures. The maximum

allowable step size does vary with pressure as seen in Figure 13.

Although hl=0.19 is a sufficient step size for pressure under 1.2

atmospheres a smaller step size is required at higher pressures. A

single mode case study always has a larger power than a multimode case

study. This is not due to the fact that in a multimode study some

frequencies represent a larger potential energy in photon energy while

others are smaller. At these frequencies and cavity sizes the

Idifference is not that large - the difference between energy of a photon

between adjacent modes is less than 0.001%. The mode associated with

-E the largest ce will have the largest gain in the noninjected case. The

discrepancy in gain leads to a larger flux density for the associated

Imode. The larger flux density stimulates a larger percentage use of the
available population of the upper state. When the total upper state

supports the mode with largest Ce, the peak power increases. The change

in flux density from Eq (2) is directly proportional to the size of the

ICe and the flux density. The spontaneous flux density is also

proportional to the ae. The initial flux also has a direct effect of

the charge in flux density. Clearly, the largest ae has an advantage in

the nominal case. This is not true in the injected case. A large

injected signal flux may influence the pulse evolution more than the ae.

In a continuous, homogeneously-broadened laser, the gain is eventually

I reduced to threshold levels. The mode closest to line center has the

highest gain. This mode also has the largest ae.

3I
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Chapter V Literature Review

In this chapter the significant literature is reviewed in

chronological order. Lachambre used a modified flux-population rate

equation with a conversion from field to flux. Siegman and Tratt et al

both agree with Lachambre's approach and validate his findings of the

injected mode selection range. Recently Cassard and Lourtioz used

Maxwell's equations to predict conditions when two or more signals would

exist simultaneously.

Lachambre's Approach

Lachambre developed the first locking study of TEA CO2 using a

combined population and field approach. He described the injected field

in the manner of Chapter III. His results showed three major regions: a

region where the injected signal had no effect; a region where mode

selection existed for a wide variety of phases and powers; and a region

where injection locking would occur with very small detuning angles and

very large injected powers. Even for low powers an injection range of

almost 0.4;r in phase was observed. He based his efforts on a constant

ce for the CO2 molecule and for a total of 12 longitudinal modes. The

results are instructive as depicted in Figures 14, 15, and 16. Figure

14 shows the relationship between the initial detuning angle or offset

* and the portion of the total pulse energy due to the injected signal.

The vertical scale is the portion due to the injected signal Ei over the

sum total of the injected signal plus the energy in the natural modes

E.. The injected signal has a strength of 5 X 10(17-2m) W/cm2 where m is a

number from 2 to 9 as detailed on the figure. The portion of the total

energy due to the injected signal is very high for detuning angles under

360 for the injection powers shown. For any signal injected with an

offset of 0.5;r or greater there is little ccntribution from the evolving

field to the total energy.
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I Figure 14 Mode Selection Region (5:761)

In Figure 15 the injected signal exhibits definite effects on the

evolving signal. According to Lachambre the total peak power of all the

natural modes when the detuning angle is 0.5;r is 45 MW/liter with the

peak occurring at 700 nanoseconds for a total energy of 4.4 Joules/liter

(5:759). A strong injected signal causes an early reduction in the

population inversion. This is seen in Figure 16 by the earlier peak

power at 600 nanoseconds and the reduced peak power of 29 MW/liter. The

total energy increases to 4.5 Joules/liter due to the longer power

pulse. The lower charts in Figures 15 and 16 depict the value of 28/4

on the vertical axis where 2r is the round trip time, 8 is the

instantaneous change in the phase and 0 is the initial detuning angle of

the injected signal form the nearest natural mode. If the quantity 2r8

is equal to 0 then the evolving signal follows the detuning angle. This

is termed the mode locked condition and the injected signal is said to

operate in the mode selection region. If 2r8 is equal to zero the

I• amplified injected signal is not locked to the detuning angle and is

locked to the amplified injected signal. This is the true injection

34
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locked case. In the low power case we see a beat frequency oscillation

in Figure 15. This is due to the competition between the mode and theI0
injected signal when the selected mode's power decays. High power

I c12E_ 0.5 W /CM2Injected

Power iIIn 3 
-0 

L8

k /cm 3  
E ,to.5 J /c n

10 
ime in useconds

0 3 3

Frequency

Itime 
In useconds

0 I2 3

I Figure 15 Mode Selection for Low Powered Injection (5:760)

injection causes an earlier reduction in the inversion before locking to

lock to the injected signal. This suggests that injection locking is

J E 12 .Skw s m2

Injected 8
Power /100
In 3 6 E 8nJ/cmkW/cm

2 time In usecond3

0
0 2 3
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I possible only when the gain is low (below threshold). Figure 16 shows

the signal evolution at very small detuning angles with very high

injected powers. The injected power peak is reduced even further to 9

MW/liter. The peak power occurs even earlier at 500 nanoseconds. The

secondary peaks are less extreme and the pulse tail is longer. The

signal is effectively injection locked, and the total energy in the

injected signal increases to 6 Joules/Liter.

IrattQ 2 Laser Injection Study

Tratt completed an extensive review of injection seeding in 1985.

I This effort detailed the active mode selection schemes which lead to the

selection of one single longitudinal mode (SLM) (Tratt:235). The

features of these schemes show a suppression of the gain switched spike

of radiated power and a longer tail over the time of the pulse as

depicted in Figure 17 (11:237).I 7I!7 -
I Jt;o w clON SIGNAL

INJECfO 10
01,LOW
POWER

IIG VOWKR Ii

I4 0

Figure 17 Change in Power Evolution due to Injection (11:237)

depletion of the inversion level and leads to earlier siglnals and lower
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I powers. Eq (48) is the w "e used in his analysis and i. sim±lar to the

description in Chapter I.

E (t ) = FR i(t-2r )e1(G(t)+ C(48)

I Here G(t) is the real part of m(t) expressed in Eq (16) of Chapter II, R

is the reflectivity of the secondary mirror and 0 is the imaginary part

of m(t) from Eqs (12) and (l6) earlier. The steady state solution

(11:245) of Eq (48) is when G(t)=0. Eq (48) is separated into real and

imaginary parts. This results in the real part of the field, M, and the

imaginary part, a, as:

* [E(O)] = Einjecced I-F COS1 (49)
1 +R-2-Rcos4)

S(E( = -Rsin (50)
+ R-2RcosO

I From these two expressions Tratt developed an expression for the

round trip phase shift 8(t) as:

tan(0(t)-O(t-T)] = Z{E(t)] I (E(t-r)] - [E(t)] Z(E(t-)]A C[E(t) IA [E (t-r) I +Z[E (t) 15[E (t-T)]I

and the instantaneous frequency F(t) becomes (8(t)-8(t-r))/ (11:245).

* The implications are that a zero phase shift indicates a locking to the

injected signal but that a phase shift change implied a resonance

condition with the nearest cavity mode like Lachambre. Tratt documented

the three regimes noticed by Lachambre (11:246). Tratt noticed the

* existence of the beat frequency oscillations in the higher power cases

due to interactions between the existing cavity signal and the injected

*signal (11:246-247).

Tratt found that injected signals with a detuning angle from zero

to 7r had an effect on the power output orofile. The effects became less

noticeable for larger and larger offsets as depicted in Figure 18. Many

authors agree with the limi:ation of the detuning angle of O.Ar for
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Figure 18 Injected Regime (11:248) 0 is the detuning angle

injection locking. However, other authors using large cavities found

that injection locking could be forced over the entire spectrum

* (11:260).

Siegman's Derivation

Siegman objects to the practice of using the term "injection

locking" because the injected signal provides a set of initial

conditions from which the wave grows with little regard to the injected

signal. He would rather the term "injection seeding" apply in this

scenario. in a laser cavity the wave circulatn a- a •t crc-,

i would be the sum of the previous circulating wave that is just reflected
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off the mirror, Ei(t), and the injected wave, E,(t), using the

expressions below (8:1155):
Eel~~t) El~) +E~t)(52)

I 2 (t) =E~i,, (t -2 r) e [g J 
2.T ((ta1oce)] (53)

where g refers to the cumulative gains inside the cavity of the previous

wave at time t-2r, wosc is the frequency of the nearest longitudinal

mode, and winj is the frequency of the injected ignal. When the cavity

is below threshold and the signals are on resonance the vectorially

added signal results in a steady state nominal wave. The injected

signal makes up the vectorial difference between the circulating wave

and the longitudinal miode. For injected signals of low power there are

distinct possibilities for injection seeding. After separating the

variables and using Euler's identities for exponents (8:1156):

[ irc= -e'g9cos (2r ((Jini-Wosc) )]+j [e'gsin(2T E n-¢ , (4)1 (54)

This expression shows that for the signal to build the subexpression

I 2z(winj - w0osc)I must be less than 7r/2. When the instantaneous phase

0(t) is designated as Siegman did (8:1160):

I(t) - -((ainj-0sC) T"
T (55)

- -( ij s)t

then the actual frequency owi(t) is simply:

it d 0 (t) +
dt (56)

- in3 + ()oc + Wini

From Eq (55) and using a expansion of the equation in the form of

f (x+h) = f (x) + hf'(x) + h2 f(x) (etc) (57)
2!.I

based on the assumption that wi-w, << 1/(2T) Eq (52) becomes:
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dtj-Ooa [2? E. (58)

The implication from Eq (56) is that the frequency of a mode

selected laser is almost entirely on the resonant mode wavelength and

for all practical purposes the injected contribution is buried. This is

phenomenologically correct when the circulating wave is much bigger than

the injected signal in a mode selected regime.

Cassard and Lourtioz Approach

Cassard and Lourtioz approached the process from Maxwell's

equations and assumed linearity. A wave equation of motion for the

complex field E in a medium with a polarization 9 and current density

* is:

ArE - 2jk(-!E + + E) = -i 2P (59)

dt c dt 2coc)

Iwhere a is the conductivity and &) is any arbitrary mode frequency

(2:2322). After fixing the boundary conditions they developed a set of

eigenmodes (2:2322). Their solution provides for the injected field

(2:2324) as Eq (60):

Uf g(0) de

E(t + 2?) = (E t) + ) e e.2 ' (60)

where g() is the complex gain term that includes resonant dispersion

and 6 = r/x()inj-w,) and is equivalent to Lachambre's expression cdG/2L.

I In this instance the injected signal is measured prior to entering the

cavity.

Cassard and Lourtioz objected (2:2321) to the assumption that

Lachambre made concerning the lack of amplification of the injectedI . signal. However, the injected signal would only experience

amplification on one trip through the cavity. At the end of that trip,

the injected signal is added to the circulating wave. Since the
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circulating wave becomes much larger over time than a low power

* injection signal one can discount the contribution of the injected

signal over time. This validates Lachambre's approach. For a high

power injection signal there could exist an injected signal amplified by

one trip through the cavity that adds vectorially with the evolving

field. This would cause the evolving field to shift not only due to the

offtuning of the cavity but also due to vector addition with the

I injected signal. There could exist more than one mode in the cavity but

this regime will be confined to large injection powers.

The combination flux-population rate equation approach is valid

for low power injection signals. The incorporation of line shape in the

expression for cross section will yield more accurate results than

Lachambre for there will be a dependence on mode selection and spectral

separation for outlying modes. Three modes is enough to consider at

* atmospheric pressures -from the line shape factor the relative size of

the mode at 8 free spectral ranges for the nominal mix is still 70% of

* the highest value but has little contribution to the total signal.

I
I
I
I
I
I
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I Chapter IV Results

This chapter discusses the results of the computer runs. The

validation of the basic model is reviewed and the differences between

Lachambre's results and the computer program are explained. The

* dependence of the evolving field on various physical parameters is

depicted.

* Validation

The simulation was run against the original model developed by

Stone from Gilbert's article on CO2 Lasers. There was no difference

between the two simulations. Next the model was run in comparison to

Lachambre's results. The program correctly predicted the same results

for the peak power of 45 MW/liter but had a much earlier peak. There

are two reasons for this discrepancy. The first is that Lachambre

included in his population equations a collision transition between the

1000 and the 0200 as a relaxation process for the lower state. This

rate was dependent only on CO2, N2, and He gas mixtures. He implicitly

assumed that the relaxation from this state was very fast and that the

possibility of the reverse transition was not likely. Although a

relaxation operation is required from the 1000 state to keep a strong

inversion the method of using a lumped relaxation process is more

accurate. The second difference is in the generation of spontaneous

flux. In Chapter II the derivation of the spontaneous term was based on

* the population of the upper state and the fraction of the spontaneous

emitted photons that intersect the secondary mirror. Lachambre used a

I different approach incorporating the concept of amplified spontaneous

emission (ASE) and determined a one-way photon noise density to use as

* his field for the natural longitudinal modes (5:757). This results in a

spontaneous flux density does not depend on the population inversion.

The value for current default parameters is 109 times larger than
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I Lachambre. Accordingly our peak is much sooner. Since the flux builds

rapidly once established, there is no effect on the peak power

magnitude.

Additionally, Lachambre did not include the effects of a reduced

active element size in his flux rate Eq (5:758). He accounted for a

gain section length inside a larger resonator cavity only in his

generation of ASE. He did not account for the possibility of the

smaller section length in his field equations. The rate of change of

the populations is not dependent on the power, but the density of the

flux in the gain section affects the change in the upper and lower CO2

states. This effect is significant. In the manner of Milonni (6:296)

one must add the effect of the reduced active section length in the

cavity to both the flux equation for the natural modes and the coupled

equations for the injected field. Figure 19 shows how the peak output

power is reduced as the length of the cavity increases with a constant

i gain section length.

SL
I 26

! -.

Figure 19 Dependence of Peak Power on Cavity Length

* Vigure 19 is a compilation for the defau1: parameters with an

active section length of 0.5 meters and a reflectivity of 90%. The pump
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length and the integration step size were both adjusted for all events

so that the pump duration was 300 nanoseconds and the integration step

size was a constant 3.17 nanoseconds regardless of the cavity length.

In an continuous wave, non-injected scenario, the long term laser

frequency belongs to that of the strongest mode. In a continuous wave

laser under homogenous conditions similar to the present case, the modes

with a smaller effective radiative cross sectional area are eventually

quenched either by losses or filters and only the strongest signal

survives. This is somewhat true in this study as well. Five modes are

I more than adequate to describe the power evolution as seen in Figures 4

through 7. In Figure 5 less than 3% of the total energy comes from Mode

5. From a phenomenological view one might think that smaller effective

radiative cross sectional area would effect the mode selection range.

While this is true with small pressure broadened bandwidths this is not

the case at atmospheric pressures. Figure 20 depicts the relationship

between injection near the strongest longitudinal mode and the next

strongest mode for the default parameters.

I 111_ C.1 5 EZT £ .

* Figure 20 Total Power Percentage due to injection.
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I There is not a significant relationship between the total energy

of the injected signal for either mode one or mode three at atmospheric

pressure. This effect is the same regardless whether injection is

higher or lower in frequency around the chosen mode as long as the

I detuning angle is equal. Figure 20 also shows power and offset

dependence similar to Lachambre's results.

The same effects that Lachambre noticed for injected signals are

also apparent. There is a distinctive beat frequency oscillation as the

total power weakens. This effect is more noticeable for higher injected

powers and is still more noticeable as the total power weakens. As seen

in Figure 21, the effect of the oscillation is low at the beginning.

This oscillation does not occur during the peak power spike but at some

later time. The oscillations become larger and larger. Lachambre

noticed this as well (Figure 15).

I For Injected made Against Sun Totals
Power Energy Gain Phase Total Power Total Energq MaximumL -L-4 -L4..- -,__ _' __ _ _ 2/LH - va lues
.0 . ...... ...... -- -- --- -- . ./ -I-L - occur at

MODE he
LOCKED - - :JL iL--I _ ... .. . Iwie

each - . ---------- t-------Iis 5V of -- *--, --------i----j 43 ,78.26
items 7H . .. . . . . ."-- . . __,_ L . ., __ o . . -t- 14.34

. .. ...... t 16.68

value ----- 3--F - I -- 99.9Sexcept . . . . .L -.L ..'. . . - . . . . ..-_.- ..'--._

rreq/phs?

INJ_ - __ ___ __

R TIME (in tCau) ea interval 19.99734 tCav 0.40E.03
Press enter to continue

Figure 21 Display for an Injected Signal 1 W/cm2

Figures 22 and 23 show how the phase oscillations increase in

amplitude over time as the injected signal becomes larger. Figure 22

shows that as the iniected signal is increased the phase oscillation

becomes progressively larger. Later in the pulse, the effect of the

I
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I
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Figure 22 Effect on Phase for Varied Powers with a 12° Offset
oscillation is more noticeable as shown in Figure 23 for the same

conditions for Figure 22. If the time is continued out much longer, as

in Figure 24, the oscillation gets larger and larger then abruptly

becomes injection locked; however, the output signal is so weak that the

~signal serves little value.
A ,

I a -, ' -4 - -- .. . .-- % ......

Figure 23 Phase Dependence on Tnected Power with 120 Offset
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U ~For Injected mode Against Sun Totals p II
Power Energy Gain Phase Total Power Total Energy Maximum
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I Press enter to continue _I Figure 24 Injected Signal Near Mode 4

Another noticeable characteristic is that the phase closely

.Iollows the rising gain curve as seen in Figure 25. Figure 25 shows the

ivolution of an injected signal near Mode 4 at a detuning angle of 24

Aearees with an injected power of 1 Watt/cm2 . The most influencin~g

lactor in Eq (43) is the factor '~ iis the ratio of the evolving field

For Injected mode Against Sun Totals
Power Energy Gain Phase Total Power Total Energy Maximum

J , I - -I I I 1 aue
4 _ -- -- pccur at
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interval -1 L 4 68.68

is sy of J

itFem/ps b43
maiu 7 71'...................r -Vr-lue 399.9

t-
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8 TIME (in tWau) ea intervadl 1.0888781 tCau 0.20E+02
Press enter to continue
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I over the injected field. As the evolving field becomes larger, the

second term in the differential phase Eq (37) becomes smaller. This

results in a dependence on the initial offtuning angle exclusively.

Figures 26 through 29 show the lack of dependence of the amplified

I injected signal on the mode number nearest the injected signal.

AT 16.60 CAVITY LIFETIMES Against Sum Totals
YA "AX Power Gain Energy Total Power Total Energq Maximum
180 a lues

I 88 a

75

60 378.26I 5 ....... 14.34
58 .16.68
45 399.95
40
35
382S

IsI

15 13 11 9 7 S 3 1 IN 2 4 6 8 16 12 14 16 TOTAL
LOW FREQ Return to cont or A for another time HIGH FREQ

Figure 26 Multimode Display for Injected Signal near Mode 1.

Figure 26 is based on injection near Mode 1 using the standard

conditions with a detuning angle of 24 degrees and an injected signal of

1 Watt/cm 2. The injected signal peak power clearly dominates all

longitudinal modes. Figure 27 is based on injection near mode 4 using

the same conditions as Figure 26. The dominance of the injected signal

3 is clear in Figure 27 as well. In a mode selection regime all of the

peak power is due to the injected signal as exemplified in Figures 26

* and 27.

I
U
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contribution by the injected signal is not as dominating. This is shown

in Figures 28 and 29.
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For an injected signal near Mode 1 the contribution by the injected

signal is 86% of the total for the given conditions.
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Figure 29 Injection for Same Conditions as Figure 27 near Mode 4

For an injected signal near Mode 4 the same injected signal strength is

only 77% of the total. The injected signal suffers from inconsistent

boundary conditions. A larger gain potential is required for the

amplified injected signal than the natural longitudinal modes. As the

gain decreases the amplified injected signal dies away. The remaining

population supports the natural longitudinal modes. This difference in

energy is reflected in Figure 24. Figures 28 and 29 use the same

conditions as Figures 26 and 27.

Mode number has little effect on the injection locking regime as

seen in Figures 30 and 31. In Figures 30 and 31 we used the default

parameters with an injected signal strength of 5 KWatts/cm2 at a

I
detuning angle of 24 degrees. Figure 30 is for injection near Mode 1.
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Figure 30 Injected Signal with Power of 5 KW/cmz near Mode1

Figure 31 is for injection near Mode 4. In both cases the peak power is

at the same time. The injection phase is also the same.
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Figure 31 Display for Same Conditions as Figure 30 near Mode 4

UEffect of --Iniected Siarnal Power on Power Evolution

An increased injected signal strength causes an earlier depletion

of the poulation inversion. Consequently, as the injected signal

5.
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I strength increases the peak power will decrease and the time of the peak

is earlier. This is seen in Figures 32 through 34. Figure 32 shows the

power due to the amplified injected signal for various strengths in the

* injection mode selection zone near mode one using the standard

conditions.

1OE ?E CF t ts-rE POWER :;J 11.E :-E s, S PE%3-

it'

FD - :,SA 7O T,..,.'G : 2O1P

Figure 32 Amplified Injected Power for Injected Signal Powers

Figure 33 depicts the total p of all modes, whether

spontaneously genera-ed or due to the injected signal for a similar

interval as shon in Figure 32. Notable is the effect on the total

power due to a small injected signal. For an injected signal of 10-6

W/cm 2 the detuning angle is too large to allow mode selection. However,

for a signal of 10-4 W/cm' the total power is 16 'W/liter (Figure 33)

while the power due to the injected signal is 12 MW/liter. At the

higher injection levels the power is due almost entirely to the injected

signal with little contribution from the other modes.

5
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Figure 33 Total Power for Various Injection Levels

I Figure 34 is a close up of mid-pulse power evolution to show how the

i higher signal levels deplete the population inversion faster and cause

the power to dissipate faster.

I - -

Figure 34 Total Power Evoution in Mid Pulse
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I As seen in Figures 32 through 34 for very low powers the effect on

the total output is very small. At higher powers the injected signal

has a dominant effect on the power evolution.

Behavior of Injected Signal at Various Detuning Angles

Lachambre found that the mode selection region was as large as

0.4;r. This region decreased as the injected signal strength decreased.

He also noted that the peak of the injected signal was retarded in time

as the offset increased. This model predicts similar effects.

2I
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Figure 35 Peak Power as a Function of Detuning Angle in Degrees

Figures 35 through 38 are based on the output due to model running with

Lachambre's parameters.

Table I Lachambre's Parameters

Active Length = 1 meter He = .7 atmospheres
Les = 1.5 meters CO2 = .15 atmospheres
T = 72% N2 = .15 atmospheres
R = 28% Volume = 100 cm"

U
In table I is the list of the applicable variables to the current model.

T is the same value in Eq (13) of Chapter Ii. This is equal to (1-
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l f)/100 at the end of Chapter III. R is the reflectivity. The volume is

translated into the area of the secondary mirror multiplied by the

active section length. The partial components for the gases are

translated into their appropriate fractions for use in the program.

Figure 35 shows that the total peak power is very low for small detuning

angles as much of the energy is consumed in the early degradation of the

population inversion by the injection flux density. The power of the

total combined flux densities reaches a plateau past 50 degrees. This

implies that the injected signal is weak. This is indeed the case. The

effect of the injected signal at large detuning angles is small. From

Figure 13 Lachambre found little total energy contribution past 0.35r.

OSEZ': -F 'kECE PEAK :,A- C 1 SETNiN- A45.---% T-:

l4-

Figure 36 Dependence of Injected Peak Power on Detuning Angle

As seen in Figure 36, the injected signal dies quickly outside the

mode selection range. The same effect is seen in the time of the power

peaks. The smaller the injection detuning angle is the more effective

the injected signal becomes at inducing a response. The injected peak

power occurs earlier but the peak power is lower.

55

I
I



I

I

Figure 37 Time of Total Peak Power

As the injected signal power increases the peak power time

decreases corresponding to the early depopulation of the inversion. The

peak power occurs later as the detuning angle increases. This

corresponds to a decrease in the effect by the injected signal. This

effect plateaus in correspondence to the undriven case.

-_ _____----a {

* Figure 38 injected Peak Power Time
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I Inside a limited range, the majority of a pulse's power comes from the

injected signal. The proportion of the energy that is due to the

injected signal is significant. However, the amount of the power due to

injection decreases quickly as the size of the input signal decreases

I and the frequency offset from the nearest longitudinal mode increases.

I
I
I
I
I
I
I
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I
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I
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Chapter VII Conclusion

Within the confines of the point model for the laser and the small

signal approximation Lachambre's equations predict the behavior of

injection mode locking in CO2 lasers. There are three regimes of

injection locking: a region at large detuning angles where the injected

signal has little to no effect on the pulse forming process and

contributes little to the total power; a region where the injected

signal influences the power evolution of the cavity and enhances the

output of the nearest longitudinal mode; and a region at extremely high

power and small detuning angles where the laser will oscillate at the

injected signal. Indications of injection mode selection are the

oscillation of the phase in synchronous the initial cavity detuning

angle. Symptoms of non-mode selection are the lack of contribution to

the power output or early oscillation of the phase in the injected

signal resulting in a beat frequency oscillation. In the mode selection

regime phase tends to follow the rising gain. This makes sense when Eq

(37) is examined in this new light. As the variable q grows larger,

dO/dt becomes simply the value of the detuning angle/time. When this is

integrated over time the result is the detuning angle. Mode selection

has little dependence on the nearest mode. The primary factors in

determining mode selection are the detuning angle and the injected

signal power in that order. Mode number is a distant third. Increasing

the pressure will increase the gain and hence the output of the laser.

Incorporating a reduced cavity length decreases the output power in an

inverse manner - as the active section to cavity length ratio decreases

I the power output of the laser decreases.

I
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A homogeneously broadened CO2 laser is examined as a point model

with injection locking. Three distinct behavior regions are discovered

in confirmation of previous works by Lachambre, Tratt, and Cassard. Low

power injection at medium-to-low offtuning angles causes the nearest

longitudinal mode to dominate all other modes. High power injection at

very low offtuning angles causes the injection signal to amplifiy and I

dominate all of the longitudinal modes. The injected signal has little

effect on the power or energy evolution of the multimode cavity at large

offtuning angles. A computer model written in QuickBASIC© for use on an

IBM-PC/AT© or compatible is used to examine the behavior of injected 3
signals. Field and photon density rate equations are shown equivalent.

The mixed flux-population equations are valid within the confines of the

point model.
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