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area of multivariate analysis that is particularly active in the People's Republic of China.
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of quadratic forms, estimation of parameters, testing hypotheses, and applications. Since

the normal distribution is in this class, the properties of elliptically contoured distributions

are similar to those of the normal distribution.
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Theory and Applications of Elliptically Contoured
and Related Distributions

T. W. Anderson and Kai-Tai Fang

1. Introduction.

The multivariate normal distribution has long served as the standard model for the

statistical analysis of multivariate observations. Statisticians have been interested in gen-

eralizing the model from the normal population to a wider class of distributions that retain

the most important properties of the multivariate normal distribution. In the past twenty

years it has been found that the class of elliptically contoured distributions (ECD) can be

regarded as a suitable extension of the multivariate normal distribution. The class of ECD

includes many multivariate distributions, such as the multivariate normal, the multivariate

t, the multivariate Cauchy, the multivariate Laplace, the multivariate uniform, mixtures

of normal distributions, and the multivariate stable distributions. Many authors have de-

veloped the theory and methods of statistical inference for the ECD. Survey papers have

been published by Muirhead [701, Chmielewski [191, and Fang [371.

The purpose of this paper is to introduce the contributions of theory and applications

of ECD and related distributions, mainly by Chinese statisticians. When the second author

visited Stanford University in the academic year 1981-82 to pursue research, the first

author suggested ECD as furnishing a fruitful area of investigation; they cooperated in

this venture. Upon his return to China the second author directed his doctoral students

in conducting research on this subject. Most of the papers were originally published in

Chinese journals and collected in the volume [39] in English. Under the influence of this

work a number of Chinese authors entered this area and made valuable contributions

as listed in the references. We regret any omission of major contributions r'a e to the

limitations of our survey.

There are several ways to define ECD and its standard form, spherical distributions

(SD), by using different properties of the normal distribution. (Se, for example, the

preface of [39] and Section 1.1 of [49].) One is the following. The random vector X has

the distribution N($&, X) if and only if

X A i+AY,

where AA' = X and Y has the standard normal N(, I). Here A denotes that the two

1



sides of the equality have the same distribution. For this kind of definition of ECD we

define the spherical distribution first.

Definition 1.1. An n x 1 random vector X is said to have a spherical distribution if
for each Q E O(n)

QXdX, (1.1)

where O(n) denotes the set of n x n orthogonal matrices.

The following theorem gives some equivalent definitions of SD.

Theorem 1.1. Let X be an n x 1 random vector. Then the following statements are

equivalent:

1) QX £ for each Q E O(n);

2) The c.f. of X, Eeit 'X, is a function of t't, t E Rn;

3) X has a stochastic representation

x d Ruin) (1.2)

for some R > 0, where R is independent of U (n) and the latter is uniformly distributed on

the unit sphere in Rn;

4) For any a E R n we have

a'X I IlaliXI, (1.3)

where hal[ is the Euclidean norm and X1 is the first component of X.

From part 2) of the theorem the c.f. of a SD has the form O(t't), where 0(.) is a scalar

function. Therefore, we write X ,- Sn(O). The set of all possible O's is denoted by §n;

that is,

§n = {: O(t2 +."' + t2) is an n-dimensional c.f.}. (1.4)

The probability method that treats models directly with random variates rather than

their distribution function or c.f. plays an important role in theory of ECD. In particular,

Anderson and Fang (2,3] gave a systematic discussion of the ± operator. Many results

2



mentioned in this paper were obtained by the probability method and show that the
d
= operator is a powerful tool. The fact is true in [13], [14], and Zolotarev's book [91].

Therefore, the stochastic representation (1.2) is one of the most important properties
of SD which shows the following properties: (a) The set of SD's is equivalent to that of
the set of nonnegative random variables. (b) The SD is essentially a function of a random
variable R. (c) X/[Xl and IXII are independent, and R ± [UXiI and U (n) A X/uXI.
(d) X has a density which is of the form g(z'z) if and only if R has the density

f(r) (n/2) rn-lg(r2 ). (1.5)

(In this case we prefer to write X S(g) instead of X - Sn(¢) and g is called the
density generating function [49].) (e) Let t(X) be a statistic satisfying t(aX) = t(X) for

any a > 0; if P(X = 0) = 0, then t(X) A t(Z) where Z - N(O, I), i.e., the distribution

of t(X) is invariant in the class; for instance, the t-statistic has the same distribution for
all members of the class. (f) The marginal distribution of X,.... X.. is a SD again which
has the stochastic representation (1.2) with m instead of n and RB instead of R, where
B > 0, B -. B(m/2, (n - m)/2), and R, B, and U(m) are independent.

Definition 1.2. An n x 1 random vector X is said to have an elliptically contoured
distribution (ECD) with parameters i and E (n x n) if

X = I + AY, Y - Sk(), (1.6)

where A: n x k and AA' = Z with rank(E) = k. We write X , EC(,/7,4).

Many properties of ECD can be transferred from those of SD by means of (1.6). The
following properties are important and are needed in this paper.

1) A linear transformation of an ECD is again an ECD; in particular, all marginal

distributions of an ECD are ECD.

2) All conditional distributions of an ECD are ECD.

3) The c.f. of EC,(i, X, 4) is exp(it'p)4(t'/t).

4) X , EC.(p, X, 0) with rank(Z) = k if and only if

X A t, + RAU(k), (1.7)

where R > 0 is independent of U(k), A : n x k, and AA' = X.
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5) If Y has the density g(zx) and A is square and nonsingular, then X = AY has

the density
[(ar - - ,),(1.8)

where AA' = E, and is denoted by X ,- EC,,(M, .E, g). The contours of constant density

are ellipsoids

(z - e - ) = const.

This fact leads to the name of ECD. There are various other terms used, such as round
distribution, isotropic distribution [24] for SD, and ellipsoidal symmetric distribution in

the literature.

More properties and detailed discussions are referred to [491.

This paper is organized as follows. Several types of spherical and elliptical matrix
distributions and their relationships are discussed in Section 2. The distributions of their

quadratic forms and associated Cochran's theorem are presented there as well. Some results
of estimation of parameters of and testing hypotheses about ECD are given in Sections 3
and 4, respectively. The stochastic representation (1.2) and (1.6) gives the structure of SD

and ECD. The same idea can be applied to some other distributions and produces other
classes of symmetric multivariate distributions; a summary constitutes Section 6. Section

5 collects applications of ECD models in regression analysis, principal component analysis,

canonical correlation analysis, discriminant analysis, and econometrics. The last section

consists of miscellaneous results.

2. Classes of Distributions and Distributions of Quadratic Forms

A sample of n observations from a multivariate distribution X(i),... ,X(n) can be

expressed by an n x p matrix

X(2.1)x= • = (X,...,XP). (2.1)
X(n)

This matrix of observations is the basis of multivariate analysis and data analysis. There-

fore, we study its distribution first. If the observation vectors are drawn independently

from N(pu, E), then the matrix X has a matrix normal distribution Nnp(M, I ,) with

the c.f.

O(T) = E[exp(i tr(T'X))] (2.2)

= exp(i tr T'M) exp - tr ZTT
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where M = 1p', and T = (t(1)7,... , t(n))' = (tl,...- , tp). (2.3)

When p = 0, O(T) is a function of T'T and is invariant under n x n orthogonal transfor-

mations.

When the parent distribution is more generally ECp(pA, X, 4), the c.f. of X is
n

E(eitrTIX) = ei tr T'IM f (t'()Et(,)), (2.4)
j=1

where M is the same matrix as in (2.2). Unfortunately, most results for this model are

based on asymptotic theory and numerical evaluation with the exception of X N.(I&,).

(See [69] and [70].)

An alternative model for random X is that the columns of X are uncorrelated and eadia

has mean IA and the covariance matrix Z. This model generates various spherical/elliptical

matrix distributions.

Corresponding to the invariance of (1.1) Dawid [20-22] proposed two classes of spher-

ical matrix distributions (SMD).

Definition 2.1. Let X be an nxp random matrix. If QX d X for every Q E O(n) we

call X left-spherical and write X E LS. If X and X' are both LS we call X symmetrically

spherical and write X E SS.

In terms of the c.f. Anderson and Fang [3] suggested the following.

Definition 2.2. An n x p random matrix X is said to have a multivariate spherical

distribution if the c.f. of X has the form 0(t't 1 ,t' 2t 2 ,... ,tptp) and is denoted X E MS

or X - MSnxp(O).

The most direct extension of spherical distribution to the matrix case is by means of

the vector operator vec(.), defined as

vec(X) = (a .... ,p;)' (2.5)

and considered by many authors, such as Kariya [64], Jensen and Good [62], Fraser and

Ng [59], and Anderson and Fang [3,4].
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Definition 2.3. Let X be an n x p random matrix. If vec(X) is spherical, we call

X vector-spherical and write X E VS.

The above four classes of spherical matrix distributions have been studied individually

by the above authors. Fang and Chen [42,43] established relationships among them and

found more properties as follows. (They used F1, F 2 , 7 3 , and F, to denote the classes

LS, MS, VS, and SS, respectively).

Theorem 2.1. The c.f. of X has the form

Ob(T'T), if X E LS,

4)[ diag(T'T)], if X E MS,

S[tr(T'T)], if X E VS,

4)[eig(T'T)], if X E SS,

where diag(A) = (all,... , app) and eig(A) = the vector eigenvalues of A. As a sequel we

have

VSc MScLS and VSc SScLS. (2.7)

Furthermore, VS = MS n SS.

In the following exposition X , LS(O)) denotes that X E LS and the c.f. of X is

4(T'T), with similar notations for the other cases.

Theorem 2.2. If the n x p random matrix X has one of the spherical matrix distri-

butions, then it has one of the following stochastic representations:

LS: X I U1 A, where U1 : n x p, A : p x p, U1 E LS, U U1 = Ip, A'A = X'X, and

A and U, are independent;

MS: X d= U2 R, where U2 has i.i.d. columns, each distributed as U (n), and R =

diag(Ri,.. .,Rp) > 0 is independent of U 2;

SS: X = UIAV is the singular value decomposition, where U1, A, and V are in-

dependent, U, is the same as in LS, V' E LS, V'V = Ip, and A is a diagonal

matrix with nonnegative elements,

ddnp
VS: X 1 RU3 , where R > 0 is independent of U3 and vec(U 3 ) = U

6



Each of the distributions of U1, U2 , and U 3 is called the uniform matrix distribution

with its respective specific meaning. Furthermore, they have the stochastic representations

U, = y(y'y)-/ 2, U2 = (y,/Ily,11,j = 1,...,p), U3 = Y/(trY'Y)'/ 2 , (2.8)

where Y = (Y 1,..., Y,,) has the standard matrix normal distribution N(O, I x Ip).

The c.f.'s of U2 and U 3 can be found by the result of Schoenberg [75]. Zhang and

Fang [89] obtained an expression of the c.f. of U in terms of the hypergeometric function.

With the stochastic representations given by Theorem 2.2 many results can be trans-

ferred from multivariate normal populations to these wider classes. A number of authors,

such as Dawid [20], Chmielewski [18], Fraser and Ng [59], Jensen and Good [62], and

Anderson and Fang [3], found invariant statistics in these classes. Fang and Chen [42]
obtained necessary and sufficient conditions for invariant statistics in the four classes. For

simplicity, we cite only the theorem in the LS case. Let

LS+={X:XELS and P(X'X>O)=I} (2.9)

Theorem 2.3. Let t(X) be a statistic. Then the distribution of t(X) is invariant

in LS + if and only if t(XA) d t(X) for each A E UT, the set of p x p upper triangular

matrices with positive diagonal elements.

As an application of Theorem 2.3, one can find many useful statistics (such as the

Wilks statistic and the Hotelling T 2, and the statistic for testing equality of several covari-

ance matrices) that are invariant in LS+. This fact shows some overwhelming advantages

of spherical matrix distributions and gives the possiblity of extending the multivariate

analysis techniques into these wider classes. For more details see Section 6.

A random matrix X with an elliptical matrix distribution (EMD) is the linear trans-

form

X =M+YA, (2.10)

where Y has a spherical matrix distribution in any of the above classes and M and A

are constant matrices. Thus we have four classes of elliptical matrix distributions; we

denote them by LE, SE, ME, and VE, respectively. Zhang, Fang, and Chen [90] gave a

comprehensive study of these classes. They found marginal and conditional distributons,

stochastic decompositions, moments, and invariant statistics. It should be noted that the

matrix normal X with distribution N(O, I ® T) is a member of LS, but the rows are not

necessarily spherical.
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The distributions of quadratic forms and Cochran's theorem play an important role in

multivariate analysis. Let the n x p random matrix X in LS be partitioned into m parts
X 1,..., Xn with nl,..., nm rows, respectively. When p = 1 and X has a density, Kelicer

[65] obtained the distribution of X' X 1 . Anderson and Fang [2] derived the distribution

of X Xj, j =1,..., m, without the assumption of X having a density. As a sequel, they
[3] obtained the distributions of the sample covariance matrix, the correlation matrix, the

multiple correlation coefficient, the generalized variance, the eigenvalues of the sample

covariance matrix, etc. Fang and Wu [57] extended their results to the case of LE with
M = 0 in (2.10). When M # 0, Teng, Fang, and Deng [77] obtained the density of XIXI
under some regularity conditions, thus extending the result of Cacoullos and Kout:-- 3 [il]
for p = 1. Fan [25] obtained the noncentral t-, F-, and T 2-distributions by using the

method of [11] and gave a detailed discussion of the distributions.

Let X - N(112, I, 9 lp). The basic features of Cochran's theorem can be formulated

as follows:

1) X'AX _ X2 (I t'AIL ) (the noncentral chi-square distribution with k degrees freedom
and noncentrality parameter 12A/z) if and only if A 2 = A and rank(A) = k;

2) X'AX and X'BX are independent if and only if AB = 0. We shall call the result

the central Cochran's theorem if p = 0; otherwise we shall call it the noncentral Cochran's

theorem. Anderson and Styan [6] reviewed various extensions of Cochran's theorem for

the normal case.

We would here like to mention several contributions to Cochran's theorem for ECD

and LS. Kelker [65] extended the central Cochran's theorem to ECD under the condition
- dthat X has a density with finite fourth moments. Aniderson and Fang [2,3], using the d

operator, gave a new approach to various extt. sions of Cochran's theorem in ECD without

the condition of Kelker. Fang and Wu [57] extended their results to more general quadratic

forms. Due to the need in the theory of multivariate analysis, Fang, Fan, and Xu [45]

extended the results in [4,5] to the case where the matrix A is random and gave some

applications to T 2- and Wilks statistics and Tukey testing.

The noncentral case of Cochran's theorem is much more difficult to handle than the

central case. Thus the results for ECD are not as extensive in the noncentral case as in the

central case. Under the assumption of finite fourth moments Fan [261 proved the noncentral

Cochran's theorem using c.f.'s. Zhang [85] extended the results of Fang and Wu [57] to

the noncentral situation, as well as the result of Fan [26], but under the condition of finite
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2nth moment.

3. Estimation of Parameters of Elliptically Contoured Distributions.

Estimation theory for t. -ormal distribution is highly developed. Let X1,..., Xn be
a sample of independent observato: from Np(/&, r). The maximum likelihood estimators

of it and E axe the sample mean and ti, -ample covariance matrix

-- xi, i= - E Z J.)', (3.1)
n i---1 n i=--- 1(31

respectively. Estimation in elliptical populations can be estab. -led in parallel fashion.

Let the matrix of observations X have an elliptical matrix dis, 'bution (2.10) with

M = lpA' and AA' = E. We want to estimate the parameters 1 anct r, If X has a

density and X E LE, the density must have the form

I-l-p'g[(x _ - M)].

When X is from ME, VE, or SE, the density of X has the same form (3.2) with g [ diag(.)],

g[ tr(.)], and g [eig(.)], respectively. We shall write X - LE(pz,E ,), X .s ME(u,Z,g),

and so on for these models. In this section some results on maximum likelihood estimates

(MLE), minimax estimates, shrinkage estimates, and inadmissibility of the sample mean

are mentioned.

For X -.. VE(Ip, Zr, g) Anderson and Fang [4] developed a new approach to the MLE's

of A and X. The MLE's are

i = X, and E = yS = yg(X - 1X)'(X - 1X'), (3.3)

where the constant yg will be given in Lemma 3.1 below. Later Anderson, Fang, and Hsu

[5] established the relationship of the MLE's in normal and elliptical models and therefore

gave a unified approach to MLE for EV. Their main result is the following:

Theorem 3.1. Let S1 be a set in the space of (p", V), V > 0, such that if (JA, V) E Q
then (11, cV) E Q2 for all c > 0. Suppose g is such that g(z'z) is a density in RN and
Y N/ 2 g(y) has a finite positive maximum y.. Suppose that on the basis of an observation

X from IV-X1/2g[( - I)'V-'(z - j)] the MLE's unL -,r normality (jA, V) E f2 exist and

are unique and that V > 0 with probability 1. Then the MLE's for g are

9



and the maximum of the likelihood is IVJ-/ 2g(yg).

The existence of yg mentioned in the theorem may be based on the following lemma.

Lemma 3.1. Suppose that g(X') is a density in X E RN such that g(y) is continuous
and decreasing for y sufficiently large. Then the function

h(y) = yN/ 2g(y) , Y > 0,

has a maximum at some finite y. > 0. An alternative condition is that g is continuous and

E(X'X) < oo.

Fang and Xu [51] and Fang, Xu, and Teng [54] extended the above results to the case
of ES, EM, and EL, respectively. Since the MLE of a function of J and E is that same

function of the MLE's i and ±, we thus obtained the MLE's for the most useful statistics

in multivariate analysis.

The usual estimator of 1A in the normal population, namely the sample mean, is
inadmissible under a quadratic loss if the dimension of the observations is greater than 2;

this result is due to Stein [76]. After improvement of the original proof, several concise

proofs have been proposed; see to Anderson [1], for example. Among the many papers on

this topic, Brandwein and Strawderman [10] established the inadmissibility of the sample

mean for spherical distributions when the dimension is greater than 3. Their proof is
very long in comparison to the concise proof for normal case given in [1]. Fan and Fang

[31] have given an improved proof which is much shorter than the original one and the

conditions are weaker. Let X have an elliptical matrix distribution LE(p4, Z, g). It is easy

to see that (X, S) is a sufficient statistic for (p, E) by the Fisher-Neyman factorization

theorem. Therefore, the inadmissibility of the mean can be expressed in the following

simple statement.

Theorem 3.2. Suppose that X - ECp(p, Ip, 4k); that is, X - I is spherical. Then

the estimate

6.(X) = (1 - a/llX112 )X (3.4)

is better than the usual estimate X under quadratic loss, provided that p > 3 and

0 (p - 2(p- 3) (3.5)
0_ )E 0IIX II-2 ,

10



where EojIXI -2 is the expected value of IIXI- 2 when s = 0.

This result can be extended to the case where the loss has the form W [(6- A)'(6 - )]

and W(.) is a nonnegative convex function. Furthermore, the estimator

6ai(X) = (1 - af(1X12)/11X112)X, (3.6)

where 0 < f(x) :_ 1, f(x) is nondecreasing, f(x)/x is nonincreasing for x > 0, and

f"(x) < 0 for x > 0 [31] and a satisfies (3.5), also dominates X. Note that for the
inadmissibility of the sample mean under quadratic loss the condition of p > 2 in the

normal case becomes that of p > 3 in the spherical case.

We now consider minimax estimates of 1A. Let X have a distribution VE(p, T, g),

where g(.) is a nonnegative decreasing function. Let W(.) be a nonnegative increasing

function. Fan and Fang [29] pointed out that under the loss W [(d - j)'E- (d - I)], the
sample mean X is a minimax estimate for A. Furthermore, they found that if X 1 ,..., X,

are independently drawn from ECp(I, I, g), 'hen under loss function W(IId-gil) the mean

X is a minimax estimate in the class of {h(X) : h(-) a real function}. Some sequential

minimax properties for the sample mean and Stein's two-stage estimate are also discussed
in [30]. In fact, we can find a wider class of minimax estimates of )A, such as 6a(X) in

(3.4) and 6b,(X) in (3.6) in a certain sense. (See [30].) The estimates (3.4) and (3.6) are

shrinkage estimates.

The reader is referred to Section 4.4.2 of [58] for further discussion.

4. Testing Hypotheses about Elliptically Contoured Distributions.

Let the matrix of observations X have an elliptical matrix distribution LE(It, E, g),

where (11, X) E Q , the parameter space. We want to test

H0 (X,1) E w vs. Hi : (1, r) E f/l. (4.1)

Statistics for testing (4.1) can be derived by different principles, among which is the like-

lihood ratio criteria (LRC). From (3.2) the likelihood function is

L(A, ,F) = II-"/ 2 g[(X - lp')'-'(X - it')]. (4.2)

Hence, the LRC of testing (4.1) is

T(X) = max L(IA, 9)/max L(p, X). (4.3)
w f
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When X E EV, Anderson and Fang [4] obtained many statistics used in multivariate

analysis, such as the criterion for testing lack of correlation between sets of variates, testing

the hypothesis that a mean vector is equal to a given vector, testing equality of several

covariance matrices, testing equality of several means, etc., and found that these statistics

have the same form and the same null distribution in these distributions as in the normal

distribution. With Theorem 3.1 Anderson, Fang, and Hsu [5] gave a unified approach

to LRC's and established the relationship of distributions of the LRC between normal

and other elliptical populations. Fang and Xu [51] and Fang, Xu and Teng [54] extended

systematically the results to the wider classes ME, SE, and LE. They found that there

are some statistics (but not all of those in VE) that have the same form and the same

distribution within the entire class. Chmielewski [18] studied invariant statistics for testing

equality of k covariance matrices. Chen [16] pointed out that the invariants obtained in
[18] are correct only for k = 2 and gave the correct invariant statistic for arbitrary k.

A necessary and sufficient condition for a statistic to be invariant in classes of elliptical

matrix distributions can be obtained as in Theorem 2.3. Kariya [64] gave an alternative

necessary and sufficient condition, but Bian, Wang, and Zhang [8] found that there is a

gap in the Kariya's proof. They gave a counter-example to his result, but proved that if

the matrix of observations has a density, then Kariya's theorem is true.

Although the null distribution of an invariant statistic is the same for all elements of

the class, the nonnull distribution depends on the specific element of the class. That

consideration leads to derivations of noncentral distributions. (See [25], [36], [77].) Let

X - ECn(Mu, 1, 0). Define the sample mean and standard deviation by

Fang and Yuan [56] studied the power of the t-test in the class of ECn(pu, I, 4) and found

that the power can be very different for the different elements of class. They furthermore

pointed out the following.

Theorem 4.1. Let X, d [ RUln)

Let tI = V/l-X./s,, where 1i and si are the sample mean and standard deviation of Xj,

and let d(x, y) = Ix - y I be the L,-norm distance. Then

Ed(t11,t 2) = cEd(1/RI, 1/R 2 ), (4.5)
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where c is a known constant.

Then Ed(ti, t 2 ) can be very large if Ed(1/RI, 1/R 2 ) is very large. With this theorem

Fang and Yuan [56] obtained the limiting distribution of the t-statistic in some subclasses

of ECn(Iz, I, g). The convergence of the statistic is not only in distribution, but also in

density. The same approach can be applied to the F-statistic, T 2-statistic, and so on.

The invariance of a statistic in the class of elliptical distributions can be employed for

enlarging the class. For example, let

F = {X : X is exchangeable and t. ,-, tn- 1 } (4.6)

be a set of n-dimensional random vectors such that the corresponding t-statistic has the

same distribution as in the normal case. (X is exchangeable if X = PX for every

permutation matrix P.) Obviously, the set SD belongs to Ft. In fact, the class F is

much larger than SD. More precisely, let VT denote the class of X that has the stochastic

decomposition (1.2) without necessarily independence of R and U (n) . Then SDC VT C Ft.

This class can serve for deriving Baysian statistics, but its structure has not yet been

sufficiently investigated.

Many LRC's in normal populations yield uniformly most powerful (UMP) and unbi-

ased tests. Do those tests retain their optimal properties in elliptical populations. Quan

[72] and Quan and Fang [73] investigated this subject for VE and found that many LRC's

keep these properties as follows: Let X - VE(p, X, g).

1) Partition i into two subvectors Pi and P2. Consider testing

HO:p 1 =0, 42 =0 vs. HI:#O 90, p 2=-0. (4.7)

If the density generating function g(.) is monotonically decreasing and differentiable and
g'(.) is increasing, then the LRC test for (4.7) is UMP in the class of tests based on the

likelihood ratio statistic.

2) Let R be the population multiple correlation in VE(p, X, g) and let R be the sample

multiple correlation. If g satisfies the conditions in 1), then the LRC for H0 : R = 0 is

UMP invariant.

3) The Wilks statistic and the statistics for testing lack of correlation between sets of

variates, testing equality of several covariance matrices, testing equality of several mean

vectors and covariance matrices simultaneously, and the sphericity test are unbiased if g

is decreasing.

13



The goodness of fit test for elliptical symmetry is a difficult problem. Deng [23]
proposed a significance test for elliptical symmetry by use of moment sequence. It is
evident that his method requires all moments to be finite.

5. Applications.

Application of the established theory of ECD and EMD shows that many well-known

techniques of multivariate analysis, such as regression analysis, multivariate analysis of
variance, principal component analysis, canonical correlation analysis, discriminant anal-
ysis and econometric methods are valid in these wider classes.

Consider the general regression model

Y = f(X,B) + E, (5.1)

where Y : n x p, X : n x q, E : n x p, B : p x q, E has a spherical matrix distribution and
B is the matrix of undetermined regression coefficients. When

f(X,B) = XB, (5.2)

(5.1) is the linear model. The least squares estimate (LSE) of B has the same form in

general

B = (X'X)-X'Y (5.3)

as in the case of E having a normal distribution. Here (X'X)- denotes a generalized
inverse of X'X. When E , VS(O, Z, g) and g is a decreasing function, Anderson and
Fang [3] obtained the maximum likelihood estimates of B and Z, and their distribution.

These results extended some pioneer work of Box, Thomas, and Zellner mentioned in [19].
Bian and Zhang [9] and Fang, Xu and Teng [54 obtained similar results in the classes MS,

SS, and LS and gave invariant statistics of testing some hypotheses about B. Combining
the above results with distributions of quadratic forms and Cochran's theorem for ECD
and EMS, we have systematically established the theory and methods of linear models for

ECD and EMS.

Fan [27] and Fan and Fang [29] discussed shrinkage estimates, ridge regression, and
inadmissibility of estimators of regression coefficients for ECD and EMS. Lin and Gong [68]
considered two seemingly unrelated regression models under some regularity conditions.
They gave the small sample properties of Zellner's estimator when the disturbances have
ECD's. Pan [71] obtained the LSE for the growth curve model and some related invariant

statistics for ECD.
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Whea f(X, B) is a nonlinear function of B the model (5.1) is a nonlinear regression

model. Wei [81] and Cao, Wei and Qian [15] discussed the nonlinear regression model with

errors in ECD and gave an asymptotic expansion and the bias, variance, and skewness of

the LSE by a differential geometry approach.

Principal component analysis and the canonical correlation analysis are important
techniques of multivariate analysis. When the matrix of observations X is from LS,

the algebraic derivations of these two analyses are the same as before. However, the

corresponding distribution theory and test of hypotheses may be different. Here we need
to find the distributions of eigenvalues and eigenvectors of X'PX or of X'PX with

respect to X'P 2 X, where P, P, and P2 are positive definite matrices. The distribution

of the eigenvalues and eigenvectors of X'PX for X E SS were derived by Fang and hang

in Section 3.5.6 of [58] and [17] which extended the results for X E VS of Anderson

and Fang [2]. From the point of view of spectral decomposition, Fang and Chen [43]

studied the spherical matrix distribution and obtained some new subclasses of LS. Their

results can be applied to principal component analysis in LS. As the distributions of the

eigenvalues and the eigenvectors of X'PX with respect to X'P 2X are invariant in the

class of VS, canonical correlation analysis can be used in the class.

Since the distribution of the discriminant function is not invariant in the class of SMD,
it is more difficult to establish the theory of discriminant analysis for SMD. Cacoullos and

Koutras [11] considered the minimum-distance discrimination for SD. Quand, Fang and

Teng [74] employed the information function I(f, g) of f and g defined by

I(f,g) = I (x) log [f(x)/g(z)]dx

to discriminant analysis. They proved that under some conditions the information function

is a monotonic function of the Mahalanobis distance.

There are some studies of the application of the theory of ECD to econometrics. Teng

and Chen [78] and Teng, Fang, and Deng [77] derived the distribution of the instrumental

variable (IV) estimator of the coefficients of the endogenous variables in the simultaneous

equations with spherical disturbance and some related distributions. The reader is referred

to Kunitomo [66] for further results in econometrics.

6. Symmetric Multivariate Distributions.

Why does the class of spherical distributions have so many nice properties? One of

the reasons is its special structure (1.2), where U (' ) is common to all members of the
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class. Therefore, a spherical distribution is uniquely determined by the distribution of a

scalar variable R, but many properties of SD are independent of R as mentioned before.

That fact suggests finding other classes of symmetric multivariate distributions having a
structure similar to (1.2) with beautiful properties.

Given an n-dimensional random vector Y, we may define a corresponding family of

distributions by

-(Y)= {X: X A RY,R > 0 is independent of Y}, (6.1)

and call Y the generating vector of the family Y(Y). For simplicity, in this section we

always assume P(Y = 0) = 0 for each generating vector. By choosing different Y we

obtain different classes of distributions. The following approach seems to yield useful

generating vectors:

1) Take a sample Z1,..., Z,, from a population with cdf F(z).

2) Let Z = (Z 1,... ,Z)' and set Y = (Y,...,Y,,)' with

Y=Zi/IIZII, i=1,...,n.

For example, if Z1,... , ZN is from N(O, a2 ) and the norm is defined as the Euclidean
norm, then Y is simply U (n ) and .7(Y) is the family of SD's. If ZI,..., Zn are sampled
from an exponential distribution and the norm is defined as the LI-norm, then Y is uni-

formly distributed on the simplex Bn = {z : zi > 0, i = 1,... , n, i= 1} and F(Y)
is the so-called class of multivariate L1 -norm symmetric distributions that was defined and

studied by Fang and Fang [46], [48], [33], [34], [35]. The family 7(Y) retains most of the
important properties of Z. Hence, the family of SD's can be regarded as a multivariate

extension of N(0, a 2) and the family of multivariate Li-norm symmetric distributions as

a multivariate extension of the exponential distribution. We can use the same technique
in studying these families. The following table gives a brief introduction to this kind of

multivariate extensions.
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Table 1.

Univariate distribution Its multivariate extension

normal spherical

lognormal logspherical

additive logistic normal additive logistic spherical

exponential multivariate L, -norm symmetric

gamma & beta multivariate Liouville

Cauchy & stable law c-symmetric multivariate

Cauchy & stable law spherical stable law

symmetric gamma generalized symmetric Dirichlet

Scheidegger-Watson rotationally invariant

Let W - (W 1,... , Wn)' be a positive random vector. If log W = (log W1,..., log Wa)'

has an ECD we say that W has a logelliptical distribution. Let X be a random vector on
the simplex Bn-., and let Y = [log(X/X,),...,log(X,,- 1/Xn)]'. If Y has an ECD we
say X has an additive logistic elliptical distribution. These two families were defined and
studied by Bentler, Fang, and Wu [7] and Fang, Bentler, and Chou [41]. The reader can

refer to Section 2.8 of [49].

Taking Y - D(aj,... ,an), a Dirichlet distribution, with the norm defined as the
L1 -norm, the corresponding family FT(Y) is called the family of multivariate Liouville

distributions, which can be regarded as an extension of both the gamma and the beta

distributions as well as one of the multivariate L1 -norm symmetric distributions. The
multivariate Liouville distributions have been discussed by many authors. Gupta and
Richards [60] gave a comprehensive study of this family under the assumption of a density.
Without this assumption Anderson and Fang [2,3], and Fang, Kotz and Ng [49] gave a

parallel discussion with more results. It is worth noting that the structure (1.2) can be
applied to a nonsymmetric generating vector Y by the same approach as for symmetric

generating vectors.

There is more than one natural way to generalize a univariate distribution to its
multivariate extension with structure (1.2). The c.f. of a stable law is

exp ( - Altl ), 0 < a< 2. (6.2)

One may rewrite (6.2) as exp(- lltll ), a function of the L2 -norm of t, yielding what is

17



called a spherically symmetric stable law. A detailed discussion of this family is given by
Zolotarev [91]. Alternatively, one may consider (6.2) as a function of an La-norm of t
with dimension n = 1. This way leads to the a-symmetric multivariate distribution that

was defined and thoroughly studied by Cambanis, Keener, and Simons [14]. Zhang [86]
obtained the distribution of the sum of squares of independent Cauchy variables and the
asymptotic distribution. Zhang [87] generalized a-symmetric multivariate distributions to

the matrix case and found its stochastic decomposition for the case of the matrix having

infinite rows.

Symmetrizing the Dirichlet distribution about the origin leads to the symmetrized

Dirichiet distribution (SDD). Take Y having a SDD; then the corresponding family Y(Y)
is called one of generalized Symmetrized Dirichlet distributions which contains the family

of SD as a special case and retains many properties of Z. When the parameters of Y are
equal, where Z is sampled from a symmetrized gamma distribution with the degrees of

freeedom being the same value as the parameter of Y. Fang and Fang [47] made a thorough

research of this family.

Let V be a linear subspace of R' and let P, and P,,. be projection matrices into the

subspaces V and V1 , respectively. In the statistics of directional data the Scheidegger-
Watson distribution serves as the standard model and is defined by its density

(6.3) g(z'Pz), I1I11 = 1,

where g is a scalar function. Fan [28] suggested a family of distributions whose densities

have the form g(z'P,,z, z'P,4 r); the family includes both the family of ECD and the

family of S - W distributions. Fan called it the family of rotationally symmetric dis-
tributions. Later Fang and Fan [44] discussed asymptotic properties of estimation and

hypothesis testing for the class. Let X1,..., X, be i.i.d. from a rotaitonally symmetric

distribution. They [32] found the MLE of P, and its maximum likelihood characteriza-
tion which is defined as follows. Given an intuitive estimator for some parameters, we may

be interested in finding the parent distributions such that the estimator is the MLE. This

kind of problem is usually called the maximum likelihood characterization of the distribu-

tion.

Take Y having i.i.d. components with cdf F(x); then the class F(Y) consists of

mixtures of F(x). In the early stage of the study of SD researchers found may properties

of mixtures of normal distribution. Later they found that most of those properties can be

extended to the class of SD. A natural question is can we extend those properties to some

wider class than that of SD?
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A largest characterization of SD is a demonstration that there is no generating vector

Y such that the family of SD is a proper subfamily of Y(Y). This was proved by Fang

and Bentler [40]. They pointed out that this largest characterization can be extended to

the family of multivariate Liouville distributions.

With the Dirichlet distribution Fang and Xu [55] defined a class of multivariate dis-

tributions including the multivariate logistic and Gumbel Type I distributions.

7. Miscellaneous

In this section we include some work not cited above. First of all, we shall introduce

some characterizations of multivariate symmetric and related distributions.

Let X be an n x p random matrix. In general, the (marginal) normality of elements,
rows, and/or columns does not imply the multinormality of X. Zhang and Fang [88]

pointed out that the normality of X can be determined by the normality of 1) any element
ofX ifX E VS; 2) any row ofX ifX E MS; 3) Xl,... Xpp ifX E SS; and 4) the upper

triangular elements of X if X E LS. They furthermore discussed relationships between

the normality of X and the normality of linear transformations of X.

Since the order statistics of the exponential distribution have many nice properties,
Fang and Fang [34] derived various distributions and moments of the order statistics of a

multivariate L1 -norm symmetric distribution. Let Z be an n-dimensional interchangeable

random vector; let Z(i) < ... < Z(n) be its order statistics; and define the normalized

spacings of Z as U, = (n - i - 1)(Z(i) - Z(i- 1), i = 1,...,n, with Z(o) = 0. It is known

that Z = U if Z 1,..., Z, are i.i.d. and Z1 has an exponential distribution. Fang and Fang

[35] extended this property to the class of multivariate L1 -norm symmetric distributions
and gave the characterization that if Z is an interchangeable random vector, then Z 1_ U
if and only if Z is a multivariate L,-norm symmetric distribution.

Let S be a connected set on the unit sphere in R' and let C be a cone associated with

S defined by

C = I:X E R", x/l~jl E S) U {O}.

If X E SD and P(X = 0) - 0, then P(X E C) has the same value for all distributions

in the SD. This fact can be used for a characterization of the uniform distribution on a

sphere and for spherical distributions if X and X/IIXI[ are independent. The result is

due to Wang [80] and referred to in [49], pp. 163-165.

Let X1 ,..., X,, be exchangeable normal variables with a common correlation p, and
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let X(I),... , X(n) be their order statistics. The random variable G = X(k) + + X(,)

is called the selection differential by geneticists and is of particular interest in genetic

selection. Fang and Liang [50] gave results concerning a conjecture of Tong [79] on the

distribution of this random variable as a function of p. The same technique can be applied

to yield general results for linear combinations of order statistics of ECD.

Let O(x) and 4(z) be the p.d.f. and the c.d.f. of N(O, 1), respectively. Mills' ratio,

defined by

M(X) = [1 - /(z)} /4(z),

has been studied thoroughly. One can define similarly the Mills' ratio M(m, Z) for

N,(O, .) and EC,,(O, X, g). Fang and Xu [53] gave a detailed discussion of these Mills'

ratios. They [84] obtained results on the expected values of zonal polynomials of EMD

also.

The inverted Wishart distribution has been used in Bayesian statistics. Many inverted

matrix distributions related to SMD can be similarly defined. Xu [83] studied the inverted

beta/Dirichlet distributions and gave some applications to Bayesian statistics.

There are several studies of the moments of a multivariate distribution. Li [67] had a

new approach on this subject. Let X be an n x 1 random vector. The k-th moment of X

is defined as

rk(x) E(X ® X'® ... ® X ® X'), ifkiseven
X E(X®X'®...®X'®X), ifkisodd.

Li gave the relationship between rk(X) and all the k-th mixed moments of X and a

simple formula for the moments of a quadratic form of X as a function of Irk(X). As an

application, he gave moments of ECD and its quadratic forms.
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