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Preface

The purpose of this study was to investigate the trade-off between the number

of quantization levels and the resulting quantiz"tion noise characteristics for three

classes of commonly occurring signals. Prior efforts, particularly those addressing

the related frequency spectra, had been primarily limited to the result of quantizing

Gaussian signals.

Theoretical expressio .s were developed in terms of appropriate orthogonal

polynomials. These expressioas were used to determine specific noise characteris-

tics resulting from " e quantizitioa ,j,.)cess over various numbers of bits.

I would like tV: thank my thesis advisor, Dr. Vittal Pyati, for his guidance.

Although his name does not appear in the bibliography, much of Chapter III has

directly evolved from earlier, unreleased work that he had performed. I also want

to thank my other thesis committee members, Lt Col David Norman and Capt

Gregory Warhola, for their help. l:inally, I want to express my gratitude to my wife,

Diana, and to our two daughters, Vanessa and Rebecca, for their understanding and

inspiration as I labored to finish this project.

Van N. Osborne
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Abstract

The purpose of this study was to investigate the trade-off between the num-

ber of quantization levels tnd the resulting noise characteristics for three classes

of commonly occurring input signals, namely, those signals possessing Gaussian,

negative-exponential and random sinusoidal distributions.

From a literature review, it was noted that much had been done to characterize

the mean-squared error resulting from the quantization of a variety of inpAt signal

types. However, those efforts to-characterize frequency spect,,a had been limited to

the output spectrum resulting from an input with a Gaussian distribution. This

study was able to characterize he mean-squared error, output spectrum and error

spectrum for each of the three input signal classes considered.

This study derived expressions for each of the entities under consideration by

expanding the nonlinear quantization function into a summation of orthogonal poly-

nomials matched to die corresponding input signal distribution. Once accomplished,

orthogonality properties were applied to provide usable expressions patterned as

sums of intermodulation coefficients.

A set of three Fortran 77 programs were developed - each of which applied

to one of the studied input signal classes. Each program required the quantization

step size, one appropriate input signal parameter and the number of bits used in the

quantization process. When provided each of these required values, the appropriate

program produced upon demand either a mean-squared error value and a signal-to-

quantization noise ratio or quantizer output spectrum data and quantization error

spectrum data. Typical input power spectral densities were applied in order to

i)-uLIdtCC Lhe spectra data.

The study resulted in a set of tables which provided mean-squared error and

signal-to-quantization noise ratio data based on various numbers of bits used for

x



the quantization process. Also, a number of plots displaying the power spectral

densities under consideration were produced as based on similar numbers of bits.

Amorhg the recommendations provided is to extend the results of this thesis to include

the effects of non-uniform quantization, since this thesis strictly considered uniform

quantization.

xi



QUANTIZATION NOISE CHARACTERISTICS RESULTING

FROM GAUSSIAN, NEGATIVE-EXPONENTIAL,

AND SINUSOIDAL RANDOM INPUT SIGNALS

I. Introduction

1.1 Background

It is commonly known that a quantized signal has undergone an irreversible

process. The mapping of a signal with a continuous amplitude distribution to a

signal with a discrete amplitude distribution introduces error which is referred to as

quantization noise. This mapping is a nonlinear function and must be appropriately

analyzed for its introduction of noise.

The noise which results from the quantization process affects the quality of

the received signal. The number of discrete levels used in the quantization process

has a direct bearing on the resulting quantization noise. As this number of levels is

allowed to increase without bound, the quantization process becomes a one-to-one

correspondence, and the resulting quantization noise disappears.

Perhaps the obvious answer to the quantization noise problem is to increase the

number of quantization levels to an arbitrarily chosen large number. Unfortunately,

such a solution would cause the cost and complexity of the necessary equipment to

increase. In addition, as more levels are used, a larger bit transmittal rate becomes

necessary in order to transmit the quantized information.

As the minimum number of necessary quantization levels is determined by

considering the maximum allowable quantization noise, another complication arises.

1



Quantization does not identically affect different types of signals. The characteris-

tics of the quantization noise depend heavily upon the characteristics of the input

signal. For example, an input signal with an amplitude distribution evenly spread

throughout the domain of the quantization function will result in quantization noise

with different characteristics than that noise resulting from an input signal with a

Gaussian amplitude distribution.

In order to prudently select the number of quantization levels to use for a given

application, it becomes necessary to anticipate the characteristics of the quantization

noise. Therefore, it is imperative that a relationship be developed between the

imber of quantization levels aid the resulting noise characteristics for a given set of

input signal amplitude distributions. The noise characteristics warranting particular

interest are the mean-squai'ed error (also known-as and referred to as the normalized

noise power) and the noise frequency spectrum. The quantizer output frequency

spectrum also deserves consideration.

1.2 Problem

For three classes of input signals, this thesis effort has developed a relation-

ship between the number of quantization levels-and the resulting quantization noise

characteristics.

1.3 Summary of Current Knowledge

There have been a number of prior studies involving quantization noise. Some

of these efforts have included the numerical calculation of the mean-squared error

for a variety of input signal classes. Other efforts concentrated on the quantization

noise spectra, but were typically limited in scope to the result of an input with a

Gaussian amplitude distribution. For a historical survey of past efforts, the reader

is referred to Chapter II.

2



1.4 Assumptions

In order to proceed with this thesis effort, some assumptions were necessary.

They were as follows:

1. The quantization process was assumed to be performed by an ideal quantizer,

or a quantizer which introduces no nonlinearities to the quantization process

other than the intended nonlinear quantization function. The consideration of

a quantizer perturbed by the introduction of any additional nonlinearity was

-beyond the scope of this thesis.

2. The input signal was assumed to be free of noise. This assumption was made

in order to concentrate exclusively on quantization noise.

3. The input signal was assumed to be a wide-sense stationary random process.

This has been a standard assumption when analyzing in the frequency domain,

since a random process possesses a power spectral density if it is wide-sense

stationary.

1.5 Scope

This thesis was-limited in scope to-the-analysis of the quantization noise-result-

ing from an ideal, un'form, continuous-time quantizer. Neither nonuniform quan-

tization nor sampling effects have been considered during the development of this

analysis.

Quantization noise has been denoted the topic of concern for this thesis. The

other noise product of the quantization process, saturation noise, has not been con-

sidered independently of quantization noise. This thesis incorporates both types of

quantization rclatcd noise and does not -distinguibh between the effect( of the two

types. Gray and Zeolimhave produced a study which optimizes the trade-off between

these two results of the quantization process (8).
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Finally, this thesis develops the expressions for the quantization noise frequency

spectrum. However, the spectrum depends on the spectrum of the input signal. In

order to produce output and error spectrums based on the derived equations, it

was necessary to consider a single input autocorrelation function for each class of

input signals. However, it should be noted that for any given input autocorrelation

function, the derived equations may be difficult, if not impossible, to apply.

1.6 Approach

The approach of this thesis effort began by expressing the autocorrelation

-function of the quantization error in terms of various characteristics of the quantizer

input and output. Those terms which included the quantizer output were then

treated individually by expressing the output as a nonlinear function of the inpit.

The treatment of the nonlinear function was dependent upon the amplitude

distribution of the input signal. For each of the three classes of inputs considered, the

nonlinear function was series-expanded using expansion techniques derived by Bar-

rett and Lampard (2). Once these series expansions were complete, the Fourier trans-

form of the resulting autocorrelation function was determined. The result yielded

a quantization noise spectrum and a quantizer output spectrum for each class of

inputs considered.

Algorithms for determining the quantization mean-squared error, the quantizer

output spectrum and the quantization error spectrum were developed by applying

the derived equations. Since the required approach was dependent upon the class

of input signal, multiple algorithms were necessary. The algorithms pertaining to

the Gaussian and the negative-exponential distributed inputs were based on basic

orthogonal polynomial identities as determined by Szeg6 (16). Each algorithms were

then coded in the Fortran 77 computer language and executed to obtain the desired

mean-squared error values and quantization related spectra for a variety of numbers

of quantization levels.

4



Finally, it should be noted that the sections of this thesis which consider the

Gaussian distributed input tend to parallel Velichkin's earlier work (18) and provide

similar results. This effort provides an additional analysis involving the quantization

noise spectrum. In addition, the sections which pertain to the other two classes of

inputs provide entirely new material and new results.

1.7 Equipment

An ELXSI mainframe computer with a UNIX operating system and a For-

tran 77 compiler was used to execute the computer programs developed under this

thesis effort.

5



II. Historical Survey

Quantization has been a familiar topic in the digital communication field for

a number of years. As a result, quantization mean-squared error derivations have

appeared in many reputable textbooks on the subject matter. This resulting mean-

squared error represented the quantization noise power

q2

Nq = (1)
12

where q is the quantization step size of the quantizer, or the d'3tance between quan-

tization levels. Roden has provided the usual treatment (14:119-121).

This popular result has been based the assumption that the quantization error

was uniformly distributed over its -range. Unfortunately, this assumption has rarely

applied to anything other than a classroom problem. However, this simple expression

generally gave a good starting point.

2.1 The Gaussian Distributed Input

Probably the most obvious class of inputs to be considered was that class pos-

sessing a Gaussian probability density function. Many types of signals and noise

possess an amplitude probability density which very closely resembles such a func-

tion.

Max sought to develop an algorithm which would determine the necessary

quantization parameters to minimize distortion for both uniformly and Gaussian

distributed inputs. His approach was to minimize the expected value of some function

of the quantization error. He chose this function to be the square of the quantization

error. Consequently, the mean-squared error became the value to be minimized

(11:7-9).

6



Max considered both nonuniform and uniform quantization. In tt,e nonuniform

case, he partially differentiated his expression for the mean-squared error with respect

to both the input and the output. Next, he equated both results to zero. He then

employed iterative numerical techniques in order to solve these resulting equations

and yield quantizer outputs and corresponding ranges of inputs. The matching of

these outputs to ranges of inputs provided the minhnum possible mean-squared error

for a given number of quantization levels (i1:8-9).

Similarly, Max applied his optimization techniques to the uniform quantization

case. He partially differentiated his expression for the mean-squared error with

respect to the uniform step size. Once again, he equated the result to zero. However,

this time he employed iterative numerical techniques in order to yield the optimal

step size. This step size would provide the minimum mean-squared error for a given

number of levels (11:9).

The results for both the nonuniform and uniform quantization case were pre-

sentcd in tabular form for the number of output levels ranging from 1 to 36. In each

case, the resulting mean-squared error was also determined and given (11:11-12).

2.2 The Rayleigh Distrtbuted Input

As image processing and o')tical holography research became more common,

the Rayleigh probability density function became more applicable to the quantization

process. Pearlman and Senge recognized this trend and adapted Max's algorithm to

determine the optimal quantization of an input possessing a Rayleigh distribution

(12:101).

Pearlman and Senge inserted the Rayleigh probability density function into

the equation for the mean-squared error. As Max had done, they also considered

both nonuniform and uniform quantizatio.. In both cases, partial differentiations

were taken and equated to zero. Iterative Newton-Raphson techniques were used in

both cases to determine the optimal step sizes. Also, in both cases, least-squares

7
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curve fitting techniques were also applied to yield general approximation equations

for the mean-squared error as a function of the number of quantization levels (under

optimal quantization conditions) (12:102-103).

The effort was completed with the inclusion of tables providing the optimal

step sizes, resulting mean-squared error, and output entropy for the number of quan-

tization levels ranging from 2 to 64 (12:104-111).

2.3 A Wider Class of Inputs

As applications to the quantization process have increased, a wider class of

inputs have become applicable. Lu and Wise applied techniques similar to those

used by Max and by Pearlman and Senge to four input distributions: Gaussian,

two-sided Rayleigh, Laplace, and two-sided gamma. Each of these considered dis-

tributions were two-sided and symmetrical (unlike the classic Rayleigh distribution

considered by Pearlman and Senge). However, Lu and Wise considered only uniform

quantization (10:471-472).

Lu and W.._ were determined to avoid the massive tables provided by earlier

investigators of the topic. Therefore, one of their prime objectives was to provide

approyimation techniques in a compact form. In order to do so, they applied curve

fitting techniques to each of their results so that only a short list of parameters would

require tabulation. These parameters could then be used to approximate th, optimal

step size and the resulting mean-squared error for any number of quantization levels

ranging from 4 to 1024. Their final results, spanning four different input distributions

and the above range of numbers of levels, were then able to fit in three small tables

(10:472-473).

2.4 The Frequency Spectrum of the Output

The previously acknowledged efforts were each limited in scope to the con-

sideration of the mean-squared quantization eiror, or the quantization noise power.



However, the distribution of this power across the frequency spectrum could be just

as important, depending upon the particular application.

2.1 Early Work When the quantization of speech signals emerged, Bennett

became one of the first to successfully characterize the spectrum of a quantized

signal. Bennett restricted his consideration to input signals possessing a Gaussian

distribution (3:463).

I, the interest of examining the frequency spectrum, Bennett understood the

importance of characterizing the autocorrelation function of the quantization error.

Ile derived an approximation of such a characterization by employing classical prob-

ability density function transformation techniques and by applying Poisson's sum-

mation formula. The result was an autocorrelation function of quantization errors in

terms of the autocorrelation functicn of the signal. The Wiener-Khinchine Theorem

was then applied to provide an error power spectral density formula (3:463-468).

When Bennett examined the complete spectrum of the result of the quantiza-

tion process, it became necessary for him to also consider the effects of sampling the

original analog signal. While this inclusion tended to create some confusion regard-

ing the effects of only the quantization process, it did provide an understanding of

the effects of increased sampling frequency on the signal-to-quantization noise ratio

for a given number of bits (3:453).

2.4.2 Other Approaches As the quantization operation became more com-

monplace, Velichkin also sought to characterize the spectrum of the output of a

quantizer. Ile also limited himself to a Gaussian distributed input. However, unlike

Bennett, Velichkin chose to consider the effects of sampling and quantization inde-

pendently. This modularized his efforts and allowed him to examine the effects of

quantization apart from those of the sampling process (18:70).

Velichkin used orthogonal polynomial expansion for the second-order Gaussian

9



probability distribution to obtair an exact, but computationally intunsive equation

for the tutocor-'ttion function for the output of the quantizer. Once again, the

Wiener-Ininchine theoremn was applied to result in the power spectrum of the quan-

tizer output (18:71-73).

Lever was interested in comparing the results of Bennett, Velichkin, and other

notable quantization noise spectrum efforts made over the years. Like Bennett, Lever

chose to analyze the effects of sampling and quantization jointly, but did so with a

sensitivity to prior work which separated the effects of the two processes (9:201-203).

Lever was also able to compare theoretical and experimental signal-to-noise

ratio results. He did so under two different circumstances. First, he considered the

effects of an ideal quantizer. Next, he considered the effects of a quantizer which

had been perturbed by the introduction of an additional nonlinearity. Ie was able

to show that developed theoretical relationships were inadequate to provide accurate

estimates when the quantization -process was perturbed by an additional nonlinearity

(9:203-206).

2.5 Closing Comments Regarding Previous Efforts

There have been a number of studies performed in the area of quantization

noise. They have included the minimization of quantization noise for a variety of

inputs. These noise minimization studies have often considered nonuniform, as well

as uniform quantization. There have also been efforts made in the interest of charac-

terizing the quantization noise spectrum. These efforts have typically been limited

to Gaussian inputs undergoing uniform quantization. A matrix of the discussed prior

studies and their applicability to the different input distributions and quantization

types appears in Table 1.

There exists a relationship between this thesis and these past efforts. This

thesis effort has developed quantization noise spectium expressions resulting from

Gaussian inputs, as well as two other classes of inputs. Some of the techniques used

10
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Table 1. Prior Study Applicability Matrix

Input Distributions Quantization Type
Gaussian Rayleigh Others Uniform Nonuniform

Mean-Squared Eirror
Max X X X
Pearlman and Senge X X X
Lu and Wise X Two-Sided X X
Error Spectrum_
Bennett X X
Velichkin X X
Lever X X

to develop these derivations were similar to those used in the prior quantization

noise spectrum efforts. As already rioted in Chapter I, the thesis effort regarding the

Gaussian input specifically tended to parallel Velichkin's efforts (18) and provided

similar results. The prior noise minimization studies were also useful as a comparison

tool against the calculations resultirig from the derived mcan-squared error equations.

11



Ill. Theoretical Development

3.1 The Quantizatio, Process

In order to appropriately study the effects of quantization, the quantization

process itself must be understood on a basic level. Let the time-varying input to

the quantizer is denoted as x(t) and the output is denoted as y(t). If g(x) can be

determined such that y(t) = g[x(i)], or y = g(x), the relationship between y(t) and

x(t) for an ordinary Q-bit uniform quantizer with a step size of q and for Q = 4 bits

is as illustrated in Figure 1.

For a Q-bit quantizer, there are 2Q distinct levels with a step size of q between

each level. Consequently, the normal operating region of the quantizer exists over a

range of q(2Q - 1). As a result, the relationship illustrated in Figure 1 exists over

a range of x(t) from -lq(2Q - 1) to +lq(2Q - 1). Beyond this range of x(t), the

quantize will simply output a level corresponding to =t=q(2Q - 1) depending on the

sign of the input. This phenomenon is known as saturation and ± q(2Q - 1) are

denoted the saturation levels of the quantizer.

3.2 Quantization Error

3.2.1 Defining the Quantization Error The error resulting from tne quantiza-

tion process is known as the quantization error and can be-determined as a function

of time by the equation

eq(t) =Y(t) - X(t) (2)

where once again, x(t) and y(t) are the quantizer input and output, respectively.

The quantizer error only exists over the normal operating range of the quantizer.

For Ix()j > q(2 Q - 1) saturation error results. It can also be determined

by Equation 2. The analysis in this thesis incorporates both types of quantization

related error, and does not distinguish between the effects of the two.

12
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Figure 1. Quantizer Output vs Input for Q = 4 Bits

3.2.2 The General Quantization Noise Autocorrelation Problem

3.2.2.1 The Preliminary Expression In order to determine the power

or -the spectrum of the quantization noise, x(t), y(t) and eq(t) must -be considered

as random processes. As random processes, these functions will be denoted as X(t),

Y(t)= and Eq(t), respectively. In addition, these -random processes are assumed to

be stationary in the wide -sense, implying that -the- mean of the random process is

constant and its autocorrelation is a function of -time differential.

The initial goal is to-obtain the autocorrelation of the error, defined-as

REq(T) -E [Eq(tl)Eq(t2)] (3)

where 7- = t2 - tj, and- E is the expectation operator.

13



Equation 3 becomes

REq(7) = ZJ{[Y(t1 ) - X(tl)] [Y(t 2) - X(t 2 )fl

= E [Y(t))Y( 2) - t2)- Y(t)X(t 2) + X(t1 )X(t2)]

= P[Y(tl )y(t 2)] - - [X(tl)Y(t 2)] - E [Y(tl)X(t 2)]

+ -P [X(tl)X(t 2 )]

= Ry(r) - Rxy(7) - R1yx() +Rx(r) (4)

where Rxy(r) is the crosscorrelation function defined as

Rxy('r) -- [X(t,)Y(t 2)] (5)

If Y(t) can be determined as a function of X(t), or if g(x) can be determined

such that y = g(x), then the autocorrelation definition can be used to yield

y() = 1 g(x 1 )g(X2)W(x1,x 2;7)dx1 dx2  (6)

where x, = x(ti), an observation of the random variable X(t i ). Similarly, x2 = x(t2).

Also, W(x1, x2; r) is the joint probability density function applicable to X(t) for the

bivariate case.

The second and third terms appearing in Equation 4 require more advanced

treatment. Bussgang proved that if an input possesses a Gaussian distributed am-

plitude, the crosscorrelation of the input and output of a distorting device "will be

proportional to the autocorrelation of the input signal" (4:5). Barrett and Lampard

broadened the scope of Bussgang's important theorem to include the distributions

discussed in this thesis (2). They also provided the expression to determine the

constant satisfying

Rxy(r) = c&x(7) (7)

14



as

C 00 j 9 X2)W2(X2) (X2 112) dX2 ()

where W 2(x 2) is the marginal probability density function appiicable to X(t 2), and

1A2 and o2 are the mean and the variance, respectively, of X(t 2) (2:25). It also follows

from these results that

Rxyy7) = Ryx(-) (9)

since Rx(r) is an autocorrelation and is, therefore, an even function.

By applying Equations 4, 6, 7, 8 and 9, the following general relationship for

the autocorrelation of the quantization results:

REq(T) = g(xl)g(x 2)W(xI, x 2 ; r) dxj dx2

+ [1 -2/~ 2 W( 2  '2 2 )~ dX2l RX (T) (10)

3.2.2.2 Treatment of the Nonlinearity Since it is assumed that the prob-

ability density functions required to evaluate the expression given as Equation 10

are known, the next obstacle is the determination of an appropriate expression for

the nonlinear relationship y = g(x) so that the above integrals can be evaluated.

Thomas provided a general technique for treating a nonlinearity which involves

a series expansion of the nonlinearity. The expansion can then be employed to yield

an appropriate expression for y = g(x) (17:314-323). However, Thomas' own utiliza-

tion of his technique is useful only if the input possesses an amplitude distribution

which is Gaussian. The general technique, as applied to the quantization problem,

is as outlined in the following paragraphs.

The nonlinear function, g(x), can be represented by the series

00

1(x) = (ii)

15



where V,4(x) are orthonormal polynomials with respect to the marginal probability

density function, W(x). This implies that

F W(x).,(.T).() dx = S.n (12)

is satisfied, where 8m, is the Kronecker delta satisfying

1 ifm=n
6Smn = (13)8n 0 otherwise (3

The equation

C= J- 0(x)w((X)¢n(x) dx (14)

is used to determine c,,. This integral can b'ome quite a formidable task unless

On(X) is carefully chosen with regard to W(x).

Since g(x) is discontinuous, the integral appearing as Equation 14 may be

approached as the Riemann-Stieltjes integral

f f(x) da(x)

where f(x) corresponds to g(x) and dca(x) corresponds to W(x)O,(x) dx. In addition,

the limits a and b correspond to -oo and co, respectively. Applying the formula for

integration by parts applicable to the Riemann-Stieltjes integral (1:144) yields

c., [g(x)rF.(x)I'~ - F F(x) dg (x) (5

where
d

,Fr(x) = W(x)Ob(x) (16)

16



By inspection of Figure 1

M

dg(x)= L q6(x -iq) dx (17)

where M =2 Q- 1 - 1 and 8(x) is the Dirac delta function which satisfies

6(x) = lim exp (X2] (18)b-0o 101

(6:50). Consequently, the sampling property of this delta function can be determined

as

f f(x)6(x) dx = J exp [7" )f(x) dx
COb-O -cI [bJ

= f(0) (19)

for any continuous function, f(x). Therefore, inserting Equation 17 into Equation 15

yields

= [g(x)F.(X)]o - E qS(x - iq)F(x) dx (20)c,, [gx)Fnx)] _ CO i =-M

Some rearrangement and the use of the sampling property determined as Equation 19

provides the following identity:

M
C, = fg(x)FP,(x)]I-< - Z q-P,(x) (21)

i=-M X=iq

3.3 The Gaussian Case

3.3.1 The Noise Autocorrelation Problem for a Gaussian Input If the input

signal level possesses a Gaussian probability distribution, it becomes necessary to

consibder both 'he rst and second order plobability dclibity fuil(..ioill wlich' possess

17



the following forms respectively:

W(x) = exp (22)

and

W(xI,x 2;,r) = 1(- 2 exp L2  - p,(r)\ (23)
27ru,2[1 - -X 2 ~ ) )

where the distributions are assumed to be shifted so that the mean of X(t) is zero

for all values of t. The variance, o,2, is equivalent to Rx(O), and the correlation

coefficient, p,(r), is equivalent to E or

The orthogonality property for the Hermite polynomial is

exp (-2) Hm(x)Hn(x) dx = 8mnfn! (24)

where 1N1(x) is the n-th degree Hermite polynomial defined by

J,() ()ex (2) dn [eXp (_ X2~) (25)

for non-negative integer values of n (2:27). The change of variables mapping x to

as performed on Equation 24 results in

1 xp Hn (x) IHn () dx = Snnn! (26)

which implies that a suitable ,,(x) satisfying Equation 12 is

=O(X lf ( X (27)

or

7P W) exp _ (H ]

18



= .(-1)'exp [exp ( ) (28)

Inserting the expressions given as Equations 22 and 28 into Equation 21 pro-

vides the following for n = 1, 2, 3,...

C7 _ t~gX n-1 dn-1 x 2

ex q n' M - - 2{ exp (xr e)x -

) x ( _ldn-1  x2 9)

or exp 2a2

i=-M 27rn! d2-

Note that the second term vanishes since

rn p(x) (0li eexp(x 2) - 0 (-0)

for any polynomial p(x). Therefore, for n = 1, 2, 3,...,

' M (iq)2 ' / nq

g cx =x 71'- exp 2 d ex

i=-

Thle n = 0 case must be considered separately. For n = 0, Equation 14 becomes

Co = g(x)W(x) dx (32)

19



since ?ko(x) = 1. Now, since for the Gaussian case, g(x) is an odd function and IV(x)

is an even function, the product g(x)W(x) is odd and

co = 0 (33)

An important note regarding the Hermite polynomial, H1,(x), is that if n is

even, each term within J-I,,(x) with a nonzero coefficient possesses an even power of

x. Similarly, if n is odd, each term within H,(x) with a nonzero coefficient possesses

an odd power of x. This leads to the following observation:

I,(-x) = -,,(x) n odd (34){ fI(x) n even

Applying this property to Equation 31 provides

fq=-M exp (- 2 2.- (L) n oddCn 2a a(35)
0 n even

It is now possible to express the nonlinear function, g(x), in the series repre-

sentation

g~~e) = 1(2iq).+iq (x) (36)g(X) = -" E] E (' ) 2
k=O i=-M (2k + 1)! 2a o2 a

The new expression can now be applied to the first portion of the REq(r)

expression, given as Equation 10, or equivalently to the Ry(") expression, given as

Equation 6. But first, W(x1, x2 ; 7) must be treated appropriately.

In order to simplify the integral given in Equation 6 by taking advantage of

the orthogonality property of the Hermite polynomial, W(xi, x 2; 7-) can be expanded

20



into the following form:

W(XI,-X2 ;-r) exp -1 ( 2)]

m . (37)

The technique employed to provide this expansion was provided by Barrett and

Lampard (2:27).

By utilizing Equations 36 and 37, and by rearranging the orders of summation

and integration, Equation 6 now becomes

2M M )2 +o )2fRy (T) t t exp (i 2r2(j
Ry~r) = 2r i=-M j=-M k=O 1=0 m=O

.112u(k + 1)! e (j, ) '~ ~()1~()d

.V'-*(2 - 1)! J.ooexp (-2)2

Utilizing the orthogonality property given by Equation 26 allows the simplifi-

cation of Equation 38 to

2 M M f p2k+I(r) (iq)2 + (jq)2]
Rii(r) 2T i=-M j=-Mk=+i

27 f P ex p -I (39)2- =r k-o (2k +1)! [i=_M 2o

which takes thc form 01

Ry(,r) E a kl.y+'(r) (40)
k=0
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where
27+ 2k! Al )2 '

1) 2k1[ exp ( Lq) (f41)ak 27(2k + 1)! \i L=_ e  2u or

Now, the second term in Equation 10 may be attacked by first evaluating the

integral given by Equation 8. For the case at hand, Equation 8 becomes

c= g(x) 1 exp (X 2 ) dx (42)

Noting that this integrand is an even function of x allows the use of the following

equation:
2 p0 X 2 \

c= - g(x) exp dx (43)

Ignoring the form of g(x) derived as Equation 36 and performing the integration given

as Equation 43 as a finite sum of integrals over intervals where g(x) is continuous

yields

M [ (M + D e
M+ ) qexp (- ) dx

f+ +l)q 2a2

M2 n2 (m+1)
2 2  ]j

- ~M+ \~\ 2 q exp 2 2 )-exp 2ar2 }
+ (M+1)qexp ( -(M+ 2 )) (44)

Expanding the summation and collecting terms provides the following expression:

C E exp (45)
v I[ e 1- M2,2)]
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The autocorrelation of the quantization error can now be expressed as a func-

tion of the autocorrelation of the input in the following manner:

('r2 10 (iq)2 ' - 2
q2 ¢o2 f exp -2' 12k2 k(O k=0 (2k + 1)! i=_2

* ( I)2k+ l R +'r)}

+j [ ( (r 2 exp ,y (r) (46)

3.3.2 The Determination of Some Noise Related Figures of Mferit for a Gaus-

sian Input

3.3.2.1 The Normalized Noise Powur Once Equation 46 has been pro-

vided, the determination of an expression for the normalized noise power becomes

quite trivial. The normalized noise power, or the mean-squared error, is merely the

autocorrelation of the quantization error evaluated at a time differential of zero, or

Nq REq(T= O)

q2 ¢¢ 1exp 2

= 2k=O (2k + 1)! [( )]

r2  r2 1 M(,_e p

3.3.2.2 The Signal-to-Quantization Noise Ratio Now that Equation 47

has been provided, a signal-to-quantization noise ratio expression also becomes trivial

since the normalized signal power in this case is

S = Rx(r = 0) = or2  (48)
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Therefore, the desired ratio then becomes

[q2 1  exp (q) 2  )1 2

7T, 2,,,2 (2k + 1)! =_12k

+ [I) + 2 2exp r2 (49)

3.3. 9 The Determination of the Quantization Noise Spectrum for a Gaussian

Input Once the relationship for the autocorrelation of the quantization error has

been provided as :n Equation 46, the quantization error spectrum can be deter-

mined by apply]::., the Wiener-Khinchine relationship. This relationship, given in

Shanmugan and Breipohl (15:145), is

G-rq(f) F F[RN(T)]

J REq(r) exp(-j21rfr) dr (50)

where j = v"-cT. In other words, the power spectral dLnsity of the quantization error

is the Fourier transform of the applicable autocorrelaio. function.

The Fourier transform operation is well known as being a linear operation. As

a result, the application of the Wiener-Khinchine relationship to Equation 46 results

in

q 2 _ I M (iq)2 )12

Gr, (f) -EE ep_)12k
Gq k={ (2k + 1)! -M  ( 2

* ( ) 2 k + l T [ I ~ ~ ( )

+ 1- 11+2 E exp F[Ry(T)l (51)
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which takes the form

10

GEq(f) E ak." [R "+'()] + b. [Rx (T)] (52)
k=O

where ak is as defined in Equation 41 and

[~i ) ( (mq)
b~e- 1-t-2 exp5,)

If an identical approach is taken regarding Equation 40, the following relation-

ship results for the output spectrum:
Co

Gy(f) = E ak.F [R+' '(r)] (54)
k=O

The intermodulation coefficients, ak, will require a certain amount of involved

computation - especially since these coefficients converge towards zero somewhat

slowly as k increases without bound. However, ignoring ti problem for the moment,
it should be noted that the evaluation of F [Rk+'(r)] as k increases without bound

is not a trivial exercise for the general Rx(').

A manageable Rx (T) with some application to communications is

= exp(-aerI) (55)

where a is a positive constant and acts as a damping factor. Inserting this input

correlation function into the error power spectral density equation results in

Co

Gr(f) E ak .'{exp[-a(2k + 1)IrI} + bV {exp[-al]rJ}
k=O

= Zak' 2c2k +1) ]+ [ 2aak K22k + 1)2 + (2rf)2J a2 + (2rf)2 (56)
k--O

25



Similarly,
Gy(f) = 2ak [ (2 + 1) (57)G f)=E aka2(2k + 1)2 + (2-,rf)2j

k=0

3.4 The Negative-Exponential Case

3.4.1 The Noise Autocorrelation Problem for a Negative-Exponential Input

If a signal with a Gaussian amplitude distribution undergoes a narrow bandpass

operation, the resulting envelope has a Rayliegh first order distribution. If following

the filtering operation, the signal undergoes a square law detection operation which

introduces no time delay, then the signal level of the output possesses the second

order probability density

WV(xI,X 2;,r) = 2[1 °1 [2V/Tx2 1- r)

]exp X (58)

for 0 < (xI, x 2) < oo (2:27). The parameter xo corresponds to the expected value of

x. The operation Jm(X) is the m-th order modified (or hyperbolic) Bessel function.

The function y(r) is related to the autocorrelation of X(t). This relationship, as

well as its derivation, appears in Section A.1 of this thesis.

The resulting first order probability density function is the familiar negative-

exponential density function

W( 0) = { otherwise (59)

Of particular note is the constraint that x must be non-negative. This con-

straint necessitates a modification of the quantization process. Since x must be

non-negative, there is no need to consider nonlinearities for negative values of x.

Now, the appropriate relationship between the output of the quantizer, y(t), and the
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Figure 2. Non-Negative Quantizer Output vs Input for Q = 4 Bits

input, x(i), appears as in Figure 2.

As before, for the Q-bit uniform quantizer, there are 2Q distinct levels with

a step size of q between each level. However, now saturation occurs when x(t)

equals q(2Q - 1) + g(x = 0), or the largest x(t) which equals its corresponding

y(t). Therefore, now the operating region of the quantizer exists over a range of

q(2Q -1) +g(x= 0).

As for the general case, the autocorrelation function for the quantization noise

will follow the relationship described in Equation 10. The treatment of the nonlin-

earity will also match the treatment given in Equations 11 through 15. However,

Equation 17 now becomes

d N
-- = qS(x - iq) (60)
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where N =2 Q - 1. As a result, Equation 21 now becomes

N

cn = g(x)P,()IO - L qF.(x)i (61)
i=1

where on(x) are now orthonormal polynomials with respect to the marginal prob-

ability density function now under consideration. As before, F,(x) is as defined in

Equation 16.

The orthogonality property for the Laguerre polynomial is

or e-Lm(x)Ln(x) dx = 8,n, (62)

where Ln(x) is the n-th degree Laguerre polynomial defined by

Ln(X) = C x (Xfl-0) (3T! dx-L()=n!d x-( (63)

for non-negative integer values of n (2:28). The change of variables mapping x to -LX0

as performed on Equation 62 results in

f7 exp (-)Lm() L-() dx = mn (64)

which implies that a suitable 4n(x) satisfying Equation 12 is

7(x) =L. (- (65)

or

0. W)= 1exp ( x d' x \exp x

T. _,_ X( x0

=~ ~ Xoo /x
- (-)--ex[(!) exp (- ) (66)
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Inserting the expressions given as Equations 59 and 66 into Equation 61 pro-

vides the following for n = 1, 2, 3,... :

ITn-1-g(x) dn-1 r00"-7/
n x '0xCfl = t ! dx,,-, [(,.v) exp

N qXn-1 dn-_o- n! dxx e - (67)
i=1 X=iq

Now, noting that

-ii exp - i

{- n. [)"ex( T (68)

provides the identity

dn-' [( T)" exp (- )]

n-,_ exp x (-x(9

nd X X exp - - xo [('-- exp ( (69)

Inserting this identity into Equation 67 provides the following for n = 1, 2,3,...

- n! d (,)n1 ex

d (-) [(' L =

i= - n -1 e
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- g(x) exp (x2-[L-( x~ L,-
N

where

q =(71)
1 i = 1,2,3,...

The n = 0 case must be considered separately. For n = 0, Equation 14 becomes

co = j g(x)W(x) dx (72)

since ?po(x) = 1. Therefore,

co= [g(x = 0) +iq] exp dx
0i=0 q

+ J +) [Y(x = 0) + (N + 1)q] -exp (- x) dx
N x -j- ( (i + 1)q)]

• g(x= 0) + i] [exp

+ [g(x = 0) + (N + 1)q] exp ( (NV+ 1)q d (73)

XO /

Expanding and combining terms yields

N
-'o = Eqiqexp - (74)

i=O iqxp

Therefore, Equation 70 also applies to the n = 0 case if the understanding is made

that the L,-, (x) terms vanish when n = 0.
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It is now possible to express the nonlinear function, g(x), in the series repre-

sentation (:)IV [ (iq)]7-' qLk. (T ) exp (- [q--) -Z (-1 (75)

k=O X0i=0

Similar to the earlier Gaussian analysis, the next step is to apply the expression

for the nonlinearity to the equation for the autocorrelation of the quantizer output,

Ry(r). But also as in the Gaussian analysis, W(xI,x 2; r) must be expanded in

order to take advantage of the orthogonality of the polynomials used. Barrett and

Lampard (2:28) showed that W(xI, x2; r) can be expanded into the following form:

1 X1 + X2 2m ) L (x2 )
W(Tl, X2;r)=2exp ( P (,+( ' (76)

XO ) m=OO X

By utilizing Equations 75 and 76, and by rearranging the orders of summation

and integration, Equation 6 now becomes

Ry ~ 2 E) E E2 ZZ E {w ep(iq+jq)2m~ri=O j=0 k=O 1=0 m=O XO /

Lk [,o( -Lk ( )] [LI ( -LI- (j, q)]
[1' exp Lk- L_ d T2(77

The orthogonality principle given by Equation 64 allows the simplification of

the previous expression to

N N o

]Ry(") = q2 __,E" 7_{;ijexp Qq-+ j) A 2k ( ")
i=O Ok=O XTO

[ (Lk(' -Lk-1 (.o)] [Lk (oj) -I Lk-1 (jo)]l
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2 (Nr Eiq Fi li\2
=q 2 EZA k =r qZexp [Lk Lk-1a) (78)

k=O -j kX0 L O \/

which takes the form 00

Ry(r) = Z ak j 2k(T) (79)
k=O

where

akq= q E ni exp -o[Lk o- Lk-1 /iq (80)

Now, the other term in the error autocorrelation expression, Equation 10, may

be approached. First, the constant, c, may be evaluated by performing the integral

given in Equation 8. For the applicable probability density function, Equation 8

becomes

c =- 0x) exp -, o(81)

where a2 = X2 . Ignoring the form of g(x) derived as Equation 75 and performing

the integration given as Equation 81 as a finite sum of integrals over intervals where

g(x) is continuous yields

N (n~l)q(n+/oq1ex

C E L"q ('0 -2o_ dx1

+ 100q (N + 7o) 0.71 exp dx

J(N+1)q xo /O \Xo

N 
( 

(n +oq2(n+l)exp) (n).l)q

2N

71=0 XX

?- (83)I~
X0  nkXO}

Expanding the summation and collecting terms provides the following expression:

qZ V- _ q (83)
.T= 2 2_, It xP -

n=1 l
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The autocorrelation of the quantization error can now be expressed in the

following form:
00

RBq(T) E ak/I (r) + (1 - 2c)Rx(-r) (84)
k=O

which introduces a new problem. The relationship between Rx(r) and J(r) remains

to be determined. To determine this relationship, the following integral may be

considered:

Rx(r) = 0jXIX2W (XlX2 ;)dxi dX2

= 1 00 1[00 X1X2 T~,.1 [2./xjx y(7-)]

0o2[1- p02( 1 - 112(r)J

exp X1 + X2  dxi dx2  (85)(XO[j -fj(r)1 )x (5

The reduction of this integral to a simple function of jt(T) is quite involved and

appears in Section A.1 of this thesis. Then resulting relationship is as follows:

nx(7) = xO[1 + P2(T)] (86)

Incorporating Equations 80, 83 and 86 into Equation 84 allows the expression

of the autocorrelation of the quantization error as a function of p(r) in the following

manner:

(7-) = q2-/2k(r rexp- [Lk (0-L- 1 ()]o
k=O i=O 

2

+ 2 - 2q 2 =2 nexp -o [1 + 2 (7) (87)

where, as before, N = 2Q - 1.
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3.4.2 Th Determination of Some Noise Related Figures of Merit for a Neg-

ative-Exponential Input

3.4.2.1 The Normalized Noise Power From the expression provided

above as Equation 87, the determination of an expression for the normalized noise

power can be made. This normalized noise power, or the mean-squared error, is the

autocorrelation of the quantization error evaluated at a time differential of zero.

The determination of lt9(r) at a time differential of zero is accomplished as

follows:

-x (, = 0 )A,2(7- = 0) 2X0
(2E(x2) 1

2

-1 (88)

Therefore, the normalized noise power can be expressed as

Nq = q2Z{Zmexp (-)[LL-ia Lk- Iq)
h~ =O (__X =0X

+2 0 E 2q2nexp - (89)
n=1l X

3.4.2.2 The Signal-to-Quantization Noise Ratio With Nq given in Equa-

tion 89, the only remaining entity required to produce a signal-to-quantization noise

ratio is the noinalized signal power. This quantity is determined as follows:

S = Rx(T=o)

= E(X2 )

= 2xg (90)
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Creating the desired ratio then yields

S (;7< 2 c~N (q) [L2i)

+ -t E exp I- (91)

3.4.3 The Determination of the Quantization Noise Spectrum for a Negative-

Exponential Input Now that the autocorrelation of the quantization error is available

as Equation 87, the Wiener-Khinchine relationship can be applied in a similar manner

as for the case of the Gaussian input. Applying this relationship and reco,',nizing once

again that the Fourier transform operation is a linear operation yields the following

expression:

00N (i\2
GE,(f) = q2 > .- [it 2k(7)] E7iexp [Lk -Lk- (

k=O k = xo X Xo}

+ EN nep - 1) 1 P[Ry)] (92)

which takes the form

Co

GEq(f) = E ak.[/2k('r-)] + b2[Rx(7r)] (93)
k=O

where ak is as defined in Equation 80, and

b = I -Nnexp (94)

If an identical approach is taken regarding Equation 79, the following relation-

ship results for the output spectrum:

Gy(f) 1 a,2k(r)] (95)
k=O
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As with the case of the Gaussian input, the evaluation of the F[/, 2k(7)] term as

k increases without bound is perhaps impossible for the general /t2(r). A manageable

Pz2(r) which satisfies Equation 88 is

/12(7) = exp(-aIrI) (96)

which is identical to the input autocorrelation function considered for the Gaussian

input. The corresponding input autocorrelation function is

Rx(r) = x'(1 + exp(-aITI)] (97)

Applying these functions to the error power spectral density equation results in

o

GEq(f) ak.F[exp(-akjl-) + bJ{x2[1 + exp(-ceIr)]}
k=O

O Zak 2ak + bx 2 2a

k=l a2k2 + (27rf) 2  0 a2 + (27rf) 2

+(ao+ bx )(f) (98)

Similarly, 0 r 2 ak ]
Gy(f) = aoS(f) + E ak [a2k2 + (27.f)2] (99)

k=1

It should be noted that for the general case,

00

GEq(f) = ak.y[12k(T)] + bx2F[t 2(,r)] + (ao + bX2)5(f) (100)
k=1

Since the value of b is usually negative and tends to approach -1 as the number of

quantization levels increases, care must be taken to ensure that the value ao + bxo

provides a valid power spectral density quantity. In other words, the condition

ao + bxo 0 (101)
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must be met.

Using Equation 80,

a0 =q2 [71i exp -00 (102)

Using this identity and inserting Equation 94 into the required condition yields the

following requirement:

g(x=O)>_ 2q2 'flnexp ( -x -qE exp (-i) (103)
1 n=l X i=l

Since the choice of a g(x = 0) value directly affects the ao term, the quantiza-

tion noise can be minimized if the g(x = 0) value is chosen to satisfy Equation 103

at equality. Consequently, the identity

ao = -. bx, (104)

can be assumed, unless Equation 103 at equality provides either a complex or a

negative value for g(x = 0). If this becomes the casc, g(x = 0) can be chosen as a

zero value, and hence

a0 = q2 [ exp ( q)] (105)

3.5 The Sinusoidal Case with Random Phase

3.5.1 The Noise Autocorrelation Problem for a Sinusoidal Input with Random

Phase If the input to the quantizer consists of a signal which possesses the charac-

teristics of a sine wave with constant amplitude and frequency but with a uniformly

random phase, it can be modeled as the following random process:

X(t) = A cos(wot + I)) (106)
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where the probability density function pertaining to the random phase is

2v -7r < <
W(O5) =(107)

0 elsewhere

Through the utilization of the corresponding characteristic function, Barrett

and Lampard (2:28) showed that the resulting second order probability density func-

tion for the signal level of the quantizer input is

0 E m,, Tm 2) cos(mwor) (108)
in=O 1)

for lxiI < A and IX21 < A, where

1 m=0
ern = (109)2 m = 1,2,3,...

and Tm(x) is the Tchebycheff polynomial of the first kind, defined by

Tmn(x) = cos[m arccos(x)] (110)

The resulting first order probability density function is

Ixi < AWV(X) , (A2-.2;r2 (111)

0 elsewhere

The quantization operation to be acted upon this input is identical to the

upcldLioII ubed upun the Gausbian input. Iowevel, now the level of the input signal

is constrained to an absolute value less than A, wvho cas the Gaussian and negative-

exponential inputs were allowed to approach unbounded levels.
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As for the general case, the autocorrelation function for the quantization noise

will follow the relationship described in Equation 10, with new and appropriate limits

placed on the integral. Equations 11 through 21 apply in a similar manner.

The orthogonality property for the Tchebycheff polynomial is

/_ (X)T(X) (1- ,2) dx = (112)

(2:28). The change of variables mapping x to 1 results inA

LI , -Tm j) Tn - ) ( (A 1 dx = 8,n(113)

which implies that a suitable V'.(x) satisfying Equation 12 is

=.(X() (114)

or

?P = (X/)Cos [narccos (i) (115)

Inserting the expressions given as Equations 111 and 115 into Equation 21

provides the following:

M
Cn g(x)V~Ff(x)AA- qv/Fn(x)I =q (116)

where

dR = [" ( Cos narccos (A)] (117)

Some modification to this equation reveals that

M ,A
= X) 717 ()(118)

i=-M x=iq -A
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where

KWC (A2 -x2)Jos [narccos (119)

Still further simplification yields

c= E -sin narccos
i=- M n1,'r I )I

{(x)v/nsin [narccos (jT j} -A

n~r GOIIA

q= -;.E u, (120)
i=-M

where U7,(x) is 'he Tchebycheff polynomial of the second kind, defined by

Un (x) = sin[7i arccos(x)] (121)

It is interesting to note that

U,,(-x) = sin[narccos(-x)]

= sin{n[7r - arccos(x)]}

= sin(nir)Tn(x) - cos(nr)U,,(x)

= (-I)n+' U.(X) (122)

Applying this property to Equation 120 provides

qZ,,. A oddC0 no ld(123)

0 n, even
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It is now possible to express the nonlinear function, g(x), in the series repre-

sentation

_2q 0M 1
g(X) =Z 2k+ ( ) T2k.F x (124)

Sk=o i=-2k +1

where, as in the Gaussian case, M = 2 Q-1 - 1.

By utilizing the expressions given as Equations 108 and 124, and by rearranging

the orders of summation and integration, Equation 6 becomes

= 4q2 M cos(mWoT)
i=-M j=-M k=0 =0+ 1)(21 +1)

. [i:.I,.T2k+l (( .(_(,) -dx]

* [;IAErT2 1+1 () ( (A 2  ) dx2] } (125)

Utilizing the orthogonality property given by Equation 113 allows the simpli-

fication of Equation 125 to

]1(r) =2q 2 M A f cos[(2k + 1)wo-'r]

= ( E E '[ (2k)+ 1 2
i=-M j=-M k=O

*U2,-+l (A ) U~+ () }
2q 2 oocos( + 1)wo7T] M(16
= "2 =O{(2k + 1) 2  U2 k+ (

which takes the form
Co

RY(r) = _ ak cos[(2k + 1)wo71- (127)
k=O
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where
2q 2  1 Iiq)

ak =2 (2k + 1)2 i u-+- (12)[=(2
Now, the second term in Equation 10 must be attacked by first evaluating the

integral given by Equation 8. For the case at hand, Equation 8 becomes

c = g(x)dx (129)
A - x2)2"

where o.2 is the normalized power of the input, which for a sinusoid with amplitude
A2

is -" Noting that the integrand is an even function of x, allows the use of the

following equation:

c j=g-- ) KAl2 . dx (130)

Ignoring the form of g(x) derived as Equation 124 and performing the integration

given as Equation 130 as a finite sum of integrals over intervals where g(x) is con-

tinuous yields

4 M{ [(n+I)q m~q((A12~
+ A E=0~ m  M + q r(A x dx

M + -q xdx
2+)) 7r(A2 _ X2) 2

4q { 220

-A 2  [(m+ ) ([A - (mnq)2] - [A2 
-(m+ )2q ]!)

+ (M + )([A' - (M + 1)2q21 )} (131)

Expanding the summation a! 1 collecting terms provides the following expression:

-'(A2 nq (132)
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The autocorrelation of the quantization error can now be expressed in the

following form:

00

RtEq(r) = E akcos[(2k + 1)wor] + (1 - 2c)Rx(r) (133)
k=O

which introduces another new problem. The relationship between Rx(r) and

cos(wor) remains to be determined. To determine this relationship, the following

expression must be considered:

I A
RXr = I IXi 2W(XI, X2; r,) dx1 dX2 1

- -cos(?nwo) -i 2 
X m (T. dxl, 71=o 1 (d1 )

- [[AAT,,, dxl (134)
0{ os(mwor) A (A-x2)r (A/ JJ

The reduction of this expression to a simple function of cos(mwor) is quite involved

and therefore appears in Section A.2 of this thesis. The simple function of cos(mwor)

is as follows:

A2Rx() ycos(wo r) (135)

Incorporating Equations 126, 132 and 135 into Equation 10 allows the expres-

sion of the autocorrelation of the quantization error as a function of cos(rnwoT) in

the following manner:

R~q(q = q2 oo cos[(2k + 1)wor] MW U )1']2"

_ (2k +12 K+ A q=AM 2_M "nq2
7r 2 + ( A1 os(wo) (36)
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where, as before, Al = 2 Q-1 - 1.

3.5.2 The Determination of Some Noise Related Figures of Merit for a Sinu-

soidal Input with Random Phase

3.5.2.1 The Normalized Noise Power" From the expression provided

above as Equation 136, the determination of an expression for the normalized noise

power can be made. As mentione(. 1 r the previous two cases, this normalized noise

power, or mean-squared error, is the autocorrelation of the quantization error eval-

uated at a time differential of zero, or

Nq = rEq(T = 0)
= 2q2 o { 1 Z U2k+l (iq)]}

~k=0 (2k-+ 1) 2 
q=M

A 2  4q + E ( 2 (137)
2 M= L 1.

3.5.2.2 The Sigtral-to-Quantization Noise Ratio Now that Equation 137

has been provided, a signal-to-quantization ratio derivation becomes trivial, since the

normalized signal power is

A2s = ~y(T= 0)= T(138)

Creating the desired ratio then yields

S= KL22 Z{ 20 l [~MU2k+ .)2

4qr 1 +2 M '1 ) 2'-
+ ., A A2+ E (A2 -re7q ) J(139)

3.5.3 The Determination of the Quantization Noise Spectrum for a Sinusoidal

Input with Random Phase Now that the autocorrelation of the quantization error
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is available as Equation 136, the Wiener-Khinchine relationship can be applied in

a similar manner as for the previous two cases. Applying this relationship and

recognizing that the Fourier transform operation is a linear operation yields the

following expression:

2q (2f) 2 ± 1 U2k+l (v) 1Ff{cos[27r(2k + 1)for]}

+ 2  4 + E (A _m2q2 2] 'F{cos(27rfor)}

q 2 oo {[ ]~+ q 2

1(2k + 1) {6[f- (2k + 1)fo] + 6[f + (2k + 1)fol}

+ A2 2q A2 _ m2q2) ]}

[8(f- fo) + (f + fo)] (140)

which takes thc form

GEq(f) = E Z ak{8[f - (2k + 1)fo] + 8[f + (2k + 1)fo]}
2k=O

+ 21(f - fo) + 6(f + fo)]

= E ak{8[f - (2k + 1)fo] + 8[f + (2k + 1)fo)2k=1

+ 2(ao + b)[(f - fo) + 6(f + fo)] (141)

where ak is as defined in Equation 128 and

b= 2 4q [A t A~2 2 2\rY] (1I2)b= 2 7 2 [2 T+ k -mq)
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If an identical approach is taken regarding Equation 128, the following rela-

tionship results for the output spectrum:

1 00
Gy(f) = - E ak{5[f - (2k + 1)fo] + 8[f + (2k + 1)fo]} (143)

2k=O

Note that in order for Equation 141 to represent a valid power spectral density,

the condition

ao + b > 0 (144)

must be met.

Since

Ul(x) = sin(arccosx)
I

= (I- X2 2 (145)

Equation 128 can be used to reveal that

ao = 2 [(A2 - i~q2)] (146)

Making the appropriate substitutions into the condition given as Equation 144 yields

Sq ~ ~ (A2-jq)] - [ +F~ (Ai2 q 2] + > 0 (147)
i=2 -7r" i=l

The application of the quadratic equation reveals that an equivalent condition is

A (A2-i2q2) > A -- (148)
2 4q

or
q 2q ( 1 q 2 > 7r (149)
A A 4 A -2
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In order for the preceding expressions regarding the sinusoidal input with ran-

dom phase to be valid, care must be taken to ensure that this condition on the ratio

of q to A is satisfied. Also, a second condition exists which must be satisfied. This

condition, namely

Lq < .(150)

can be noted by studying many of the previous expressions.
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IV. Computer Implementation and Computations

4.1 The Gaussian Case

.4.1.1 Approaching the Gaussian Input Equations When approaching the

problem of attacking the equations derived for the Gaussian input problem, the

first obstacle to overcome is the determination of each required intermodulation

coefficient, ak, by using Equation 41, repeated here as

ak = 2'7- (=2-
ex p  +l)+)J

r [i- I)(2k + 1)!J

Studying Equation 151 draws particular attention to the ratio of H12k (!) to

/(2k + 1)!. Both of these terms increase without bound as k increases without

bound. Therefore, somehow this ratio must be approached carefully.

Szeg6 developed an approximation for a related Hermite polynomial (16:194)

which is as follows:

P(-+1) ,2pr(,n + 1) exp H' t(.T)

cos [(2n + 1)2'x-ni.] + ( 77 sin [(2n + 1)"x-n7n] (152)
21 6(2nz + 1)i 2

or, for n being even,

H.'(x W ( -- exp\ - I2

( FL! P2J

.{cos [(2n + 1)1x] + - ), sin [(2n + 1)2x (153)

where

H1,(x) = (-1)neX 2 d, e'  2 (154)
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Relating the approximation given as Equation 153 to the version of the Hermite

polynomial used in this thesis reveals that

I,, (x) =2-2~ (~
1 ( 2 11 

5

. Cos [(?I + 2 (n + 1) sin

for n being even.

Returning to the ratio under consideration

ex(x (2k) ! - (156)
(2k + 1)! I exp (--1)kk(x) 

where

C0k(x) = cos [(2k + 1)x] + ' + sin [(2k + 2)lx] (157)

In order to simplify this ratio, Stirling's approximation can be utilized. This

approximation is

k -e k (2rk).2 (158)

(5:29). It is applicable to large k, and is accurate to within 0.5% for values of k

larger than 16. Utilizing this approximation reveals that

1__2_kX) [e-2k (2k)2k (47rk)12 (
(2k + ) e-kkk-(2kk)2'2k(2k + 1)1 E !) (-1)C2k(X)

(k + 1)(?rk)'] exp (4 1)kck(x) (159)

49



Now, for values of k larger than 16, the following approximation for ak can be

used:

-,r= 2q 2  =Al K [(2k + i)(7k)] exp ( 4U 2 )

Co (2k + )'(iq)]

+ 24(2k + sin (2k + ) M ] (160)

For values of k smaller than or equal to 16, the exact expression for ak, given as

Equation 151, can be used. Generating the Hermite polynomials necessary to use

the exact equation becomes a simple matter if the following recurrence relationship

(13:2402) is recognized:

H,,+1(x) = xviG,(.) - nH-.n_(x) (161)

where Ho(x) = 1 and Hh(x) = x.

Allowing a' to be equivalent to (cr2)2 k+ak, with ak as calculated using the

exact equation, the number of necessary computations for determining a' can be

reduced by noting the property given as Equation 34. This property allows the

modification of Equation 151 to

q 2 k ) + 2 e p ( ( ) ) " 2 ( ) 1 2( 1 2
ak = 27r(2k + 1)! Jk(0) + 2 exp 2a2 12k (162)

Now, if a' is equivalent to (o2 )2k+lak, with ak as calculated using Equation 160,

then the expression used to calculate the normalized noise power for the nluantization
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noise can now be derived from Equation 47 to be

16 R
Nq ;: a' +ZEa'

k=O k=17

+ - / + 2 exp ((: )

1C' R
a' a+ L ' + o2 b (163)

k=O k=17

where b is as defined in Equation 53. The upper limit, R, can be determined by

repeatedly increasing its value by a factor of 10 until further increases have no

substantial effect on the result. For the purposes of pro'viding data for this thesis,

the values R = 10) R = 105, and R = 106 were used. Computer memory limitations

placed a constraint on the R- = 106 value, although, for each case, this was sufficient

for providing a reasonable approximation. Particular attention was paid to the order

of the summation. The intermodulation coefficients were summed in the order of

decreasing values of k in an attempt to sum smaller values of ak first and reduce the

effects of computer roundoff.

Once Nq is determined, the signal-to-quantization noise ratio is easily obtained

by dividing the Nq value into the input signal power, S = o"2.

In the process of calculating Nq, it became necessary to determine each a', each

k., and the value b. These same values can be used to provide the power spectral

densities of the quantization error and of the quantizer output. For the chosen input

autocorrelation function, Equations 55, 57, and 56 reveal the following one-sided

power spectral densities:

Gxf 4 (164)

Gy(f) - (2k + ) (165)
+1)2±
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G4(f) [ 4(2k + )ak

+ ] (166)+1+ (2,,r)

In order to reduce redundancy, each of the above power spectral densities are one-

sided and apply only to f > 0. Note that these power spectral densities can be

plotted in increments of -1 versus a horizontal axis of 1, Therefore, at this point,

ce does not require further specification. R takes on the same value as that used to

determine the final a. for earlier consideration.

Finally, since for the chosen input autocorrelation function, Rx(r = 0) = o,2

1. This implies that ak = a' and ak = a'. Therefore, all quantities needed to

determine the power spectral densities are identical to those used to determine the

normalized noise power.

4.1.2 Programming for Gaussian Input Results The computer program sub-

routines which compute the normalized noise power, signal-to-quantization noise

ratio, and each of the relevant power spectral densities pertaining to the chosen in-

put autocorrelation function have been coded into the Fortran 77 computer language

and can be found in Section B.1 of this thesis. This code applies to the R = 10, 000

case only. Only minor modifications are necessary to increase R.

A synopsis of the subroutines which have been used to produce the results

given later in this thesis appears in Table 2.

4..1.3 The Gaussian Input Results Once the required subroutines were coded,

they were used to generate the normalized noise powers and signal-to-quantization

noise ratios for the quantization process ranging from 1 to 8 bits. In order to obtain

the normalized noise powers, a unit input standard deviation was assumed. However,

the calculated signal-to-quantization noise ratios are valid regardless of the input
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Table 2. Subroutines Used for the Gaussian Input Case

Subroutine Purpose I Called By 3
nopoga Calculates the normalized noise power User. This sub -outine must be pro-

and the signal-to-quantization noise vided the quantization step size, the
ratio. standard deviation of the Gaussian in-

put, and the number of bits used for
quantization.

pospga Determines the power spectral densities User. This subroutine must be pro-
of the quantization error, the quantizer vided the quantization step size, the
output, and the quantizer input for the standard deviation of the Gaussian in-
chosen input autocorrelation function put, and the number of bits used for
and places them in files named gauerr, quantization.
gauout, and gauin, respectively.

dtakga Determines all values of a' and a. for nopoga or pospga.
k = 0 through k = R. For the case
provided in Section B.1,/R = 10,000.

clakgl Calculates the value of a' for k = 0 dtakga.
through k = 16.

geth2k Determines the configuration of H2k(X) clakgl.
and H2k.-(x) if given I1 2k.-2(x) and
H2k-3(X) or if k = 0.

evevpl Evaluates a polynomial possessing clakgl.
nonzero coefficients for only the even
powers of the polynomial argument.

facto Provides the factorial of an integer. clakgl.
clakg2 Calculates the value of a' for k = 17 dtakga.

through k = R. For the case provided
in Section B.1, R = 10,000.
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Table 3. Calculated Noise Related Figures of Merit for a Gaussian Input

Number Step Normalized Signal-to-
of Size Noise Power Quantization

Bits R (units) (units squared) Noise Ratio (dB)
1 104 1.60 3.61.10- 1 4.42
2 10" 1.00 1.17 10-1 9.32
3 10s 0.590 3.71 .10 - 2 14.3
4 10" 0.339 1.13 .10 - 2 19.5
5 106 0.191 3.46 .10 - 3  24.6
6 106 0.106 1.02.10 -  29.9
7 106 0.0586 2.95 10-'  35.3
8 106 0.0313 8.14 10- ' 40.9

standard deviation. The optimal quantization step size was determined to three

significant digits by repeated program execution over a simple iterative process. The

data obtained, along with the value of R used to obtain the data, appears in Table 3.

The necessary subroutines were also used to determine the input, the output,

and the error power spectral densities for the quantization process ranging from the

use of 1 to 5 bits. The input power spectral density for the chosen input autocorre-

lation function appears in Figure 3.

Figure 4 illustrates the trend of the output power spectral density as the num-

ber of bits employed increases from 1 to 5. Likewise, Figure 5 illustrates the trend

of the error power spectral density as the number of bits used increases in a like

manner.

4.2 The Negative-Exponential Case

4.2.1 Approachinq the Negative-Exponential Input Equations As was the case

with anticipating a Gaussian input, the problem of attacking the negative-exponential

input problem begins with approaching the intermodulation coefficients. The cqua-
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tion for determining these coefficients appears as Equation 80 and is repeated here

as
2 N 2

(Lk = q E i exp (! [Lk ()-Lk.. 4  - (167)

Studying this expression draws particular attention to the subtraction operation

between the two Laguerre polynomialb. Both of these terms become difficult to eval-

uate as k increases without bound. Therefore, this expression must be approached

carefully.

Szeg6 developed an approximation for the Laguerre polynomial (16:192) which

is as follows:

Ln(x) 7 - x2 exp (nx)-1 cos [2(nx)" - (168)

TIJis appioximation bec.mes iniledsingly accurate as n becomes large, but the accu-

racy occurs somewhat more slowly than the approximation for the IHermite polyno-

mial given as Equation 152 (16:192). However, the approximation, which possesses
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an error crin on the order of n -: ', is sufficiently accurate for values of n such that

n > 50. Thcrelore, for values of k larger than 50, the following ap)proximation can

be uscd:

(k a = q
2  72x r cxp ( ) )

eCos 2
\ 2zo/

_s ((k2 -( ) 2- V r c x p \ 2 o}X

q%~KN 2xO) 'XL
22

- [i(k- 1)]- cos [2 ( (k x)iq) - 4] } 2 (169)

For values of k such that k < 50 the exict exr-ession of ak , given as Equa-

tion 167, can be uscd. Gencrating the Lagucrre polynomial difference teriiis necessary

to use the exact equation can be accomplishcd if the following idcjitity, ais providcd

by Szeg6 (16:97), is applied:

Lk(x) (k ) (. (170)
r=O 7 1

TJherefore, for k > 1)

L,(x)- l,,_(x)

- )" - -J _-__+ I - I

57



- kI +k. r=1 7. -

E- -~ (171)
r=1 ?. - 1 r

Now, if ak and ak are determined using the appropriate equations, the expres-

sion used to calculate the normalized noise power can be derived from Equation 89

as

50 ]z

Nq E ak+Ek
k=O k=51

+ 2 X - 2q 2 n exp (

5o R

ak + E &k + 2b0X (172)
k=O k=51

where b is as defined in Equation 94. The upper limit, R, can be determined by

repeatedly increasing its value by a factor of 10 until further increases have no

substantial effect on the result. For the purposes of providing data for this thesis,

the values R = 104, R = 10', and R = 106 were used. Computer memory limitations

placed a constraint on the R = 106 value, although, for each case, this was sufficient

for providing a reasonable approximation. Particular attention was paid to the order

of the summation. The intermodulation coefficients were summed in the order of

decreasing values of k in an attempt to sum smaller values of ak first and reduce the

effects of computer roundoff.

Recall that before this expression for Nq can be valid, the value g(x = 0)

must be chosen to satisfy the condition given as Equation 103. Therefore, before

Equation 172 can be applied, g(x = 0) must be determined by applying Equation 103

or by letting g(x = 0) = 0 as appropriate. For further details, please refer to .h(

text accompanying Equation 103.
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Once N is determined, the signal-to-quantization noise ratio is easily obtained

by dividing the value Nq into the input signal power, S = 2x0.

In the process of calculating Nq, it became necessary to determine an appropri-

ate g(x = 0), each ak, each ak, and the value b. These values can be used to provide

the power spectral densities of the quantization error and of the quantizer output.

For the chosen input autocorrelation function, Equations 97, 99, and 98 reveal the

following one-sided power spectral densities:

Gx(f) x 6 [ 1 ] (173)

Gy(f) , - + R (a)(174)
R 2

+ 4 [ ~k k + b 0 )2] (175)

C k=1 k---- + "7r I - (1

In order to reduce redundancy, each of the above power spectral densities are one-

sided and apply only to f > 0. Also note that as for the case of a Gaussian input,

these power spectral densities can be plotted in increments of versus a horizontal

axis of 1. Therefore, at this point, a does not require further specification. R takes

on the same value as that used to determine the final ak for earlier consideration.

4.2.2 Programming for Negative-Exponential Input Results The computer

program subroutines which compute the normalized noise power, signal-to-quan-

tization noise ratio, and each of the relevant power spectral densities pertaining to

the chosen input autocorrelation function have been coded into the Fortran 77 com-

puter language and can be found in Section B.2 of this thesis. This code applies to

the R = 10, 000 case only. Only minor modifications are necessary to increase R.
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A synopsis of the subroutines which have been used to produce the results

given later in this thesis appears in Table 4.

4.2.3 The Negative-Exponential Input Results Once the required subroutines

were coded, they were used to generate the normalized noise powers and signal-

to-quantization noise ratios for the quantization process ranging from 1 to 8 bits.

In order to obtain the normalized noise powers, a unit input mean was assumed.

However, the calculated signal-to-quantization noise ratios are valid regardless of the

input mean. The optimal quantization step size was determined to three significant

digits by repeated program execution over a simple iterative process. Furthermore,

the optimal value for the quantizer output corresponding to the first quantization

level was determined as well. The data obtained, along with the value of R used to

obtain the data, appears in Table 5.

The necessary subroutines were also used to determine the input, the output,

and the error power spectral densities for the quantization process ranging from the

use of 1 to 5 bits. The input power spectral density for the chosen input autocorre-

lation function appears in Figure 6.

Figures 7 through 11 illustrate the trep,' of the output power spectral density

as the number of bits employed increases from 1 to 5. Note that the delta function

appearing at= 0 increases and approaches the value -,, or -1, as the number

of bits used for quantization increases. Figure 12 illustrates the trend of the error

power spectral density as the number of bits used increases in a like manner.
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Table 4. Subroutines Used for the Negative-Exponential Input Case

Subroutine Purpose Called By
nopone Calculates the normalized noise power User. This subroutine must be pro-

and the signal-to-quantization noise vided the quantization step size, the
ratio. mean of the negative-exponential in-

put, and the number of bits used for
quantization.

pospne Determines tile power spectral densities User. This subroutine must be pro-
of the quantization error, the quantizer vided the quantization step size, the
output, and the quantizer input for the mean of the negative-exponential in-
chosen input autocorrelation function put, and the number of bits used for
and places them in files named nexerr, quantization.
nexout, and nexin, respectively.

dtakne Determines all values of ak and ak for nopone or pospne.
k = 0 through k = R. For the case
provided in Section B.2, R = 10,000.

getg0 Determines the appropriate g(x = 0) dtakne.
in order to minimize error while satis-
fying the necessary conditions for valid
computations.

claknl Calculates the value of ak for k = 0 dtakne.
through k = 50.

elpdt Evaluates the Laguerre polynomial dif- claknl.
ference term for a particular argument.
This term is the evaluation of Lk.(x) -
Lk.-(x) for the given argument.

comb Evaluates the combination function of elpdt.
Cw choose n". In other words, it deter-
mines the number of ways that n items
can be selected from m total items.

dfacto Finds the factorial of its first argument elpdt.
and returns the factorial as its second
argument. The second is in double pre-
cision format in order to allow larger
values.

clakn2 Calculates the value of ak for k = 51 dtakne.
through k = R. For the case provided
in Section B.2, R = 10,000.
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Table 5. Calculated Noise Related Figures of Merit for a Negative-Exponential
Input

Number First Quantization Step Normalized Signal-to-
of Level Output Size Noise Power Quantization

Bits R Value (units) (units) (units squared) Noise Ratio (dB)
1 101  0.001 1.91 3.77.10- 1  7.24
2 10'4 0.244 1.08 1.37.10- 1  11.7
3 10 0.221 0.660 4.96 10-2 16.1
4 105 0.161 0.400 1.70. 10-2 20.7
5 106 0.104 0.235 5.75 .10 - 3  25.4
6 106 0.065 0.139 1.86.10 - 3  30.3
7 106 0.038 0.0784 5.81 • 10 '  35.4
8 106 0.023 0.0465 1.81 • 10- ' 40.4
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4.3 The Sinusoidal Case with Random Phase

4.3.1 Approaching the Random Sinusoidal Input Equations For the case of

this class of inputs, computations become more direct and straightforward than for

the prior two cases. As before, the problem begins with approaching the inter-

modulation coefficients. The equation for determining these coefficients appears as

Equation 128, and is repeated here as

ak = U2k+ (176)
712 (2k + 1)2 i=_M A

Applying the property given as Equation 122 to Equation 176 reveals that

_ 2q 2  1 U2 / + M ()]iq 2  (77)
ak = (2k + 1)2 [2k ( o)+ 2 2k+1 J17

where

U2 k+l(x) = sin[(2k + 1) arccos(x)] (178)

Now, using Equation 177, the expression used to calculate the normalized noise

power can be derived from Equation 137 as

R A 2  4q[A A, 2 2 2 )]Ar, E 'ak +- + E (A -mq 2

k=0 2 7" m=l

Rq ak + b (179)

k=O

where b is as defined in Equation 142. The upper limit, R, can be determined

by repeatedly increasing its value by a factor of 10 until further increases have no

substantial effect on the result. For the purpose of providing data for this thesis, the

values R = 10' and 1 = 105 were used. Particular attention was paid to the order

of the summation. The intermodulation coefficients were summed in the order of

decreasing values of k in an attempt to sum smaller values of ak first and reduce the
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effects of computer roundoff.

Recall that before this expression for Nq can be valid, the ratio of q to A must

meet certain criteria as defined by the conditions given as Equation 149 and 150.

Therefore, before Equation 179 can be applied, the ratio of q to A must be tested

for applicability.

Once Nq is determined, the signal-to-quantization noise ratio is easily obtained

by dividing the value of IVq into the input signal power, S = A2

2.

In the process of calculating IVq, it becomes necessary to determine each ak and

the value b. These same values can be used to provide the power spectral densities

of the quantization error and of the quantizer output. Equations 135, 143, and 141

reveal the following one-sided power spectral densities:

2Gx(/) A ( fo) (1L80)

T

Gy(f) f akS[f - (2k + 1)fo] (181)
k=0
T

GE, (f) E Z akS[f - (2k + 1)fo]
k=1

+ (ao + b)(f - fo) (182)

In order to reduce redundancy, each of the above power spectral densities are one-

sided and apply only to f > 0. Also note that for a random sinusoidal input, these

power spectral densities can be plotted versus a horizontal axis in increments of fo.

Therefore, at this poinL, fo does not require further specification. Finally, the value

T can be limited in order to produce an uncrowded input. The limited value of T

will produce a spectrum for 0 < f < (2T + 1)fo. The value of T must be chosen to

be smaller than that of R.

4.3.2 Programming for Random Sinusoidal Input Results The computer pro-

gram subroutines which compute the normalized noise power, signal- to- quantization
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Table 6. Subroutines Used for the Random Sinusoidal Input Case

Subroutine if Purpose Called By
noposi Calculates the normalized noise power User. This subroutine must be pro-

and the signal-to-quantization noise vided the quantization step size, the
ratio. amplitude of the random ,,inusoidal in-

put, and the number of bits used for
quantization.

pospsi Determines the power spectral densities User. This subroutine must be pro-
of the quantization error, the quantizer vided the quantization step size, the
output, and the quantizer input for the amplitude of the random sinusoidal in-
chosen input autocorrelation function put, and the number of bits used for
and places them in files named sinerr, quantization.
sinout, and sinin, respectively.

testra Tests the given ratio of the quantiza- noposi or pospsi.
tion step size to the amplitude of the
random sinusoidal input. If the ratio
given does not allow valid results, an
appropriate message is printed and sub-
sequent calculations are forgone.

dta!ksi Determines all values of a,, for k = 0 noposi or pospsi.
through k = R. For thc. case provided
in Section B.3, R = 10, 000.

claksi Calculates the value of ak for k = 0 dtaksi.
through k = R. For the case provided
in Section B.3, R = 10,000.

evuk Evaluates the Tchebycheff polynomial claksi.
of the second kind, Uk(x).

noise ratio, and each of the relevant power spectral densities have been coded into

the Fortran 77 computer language and can be found in Section B.3 of this thesis.

This code applies to the R = 10,000 and T = 20 case only. Only minor modifications

are necessary to increase R or change T.

A synopsis of the subroutines which have been used to produce the results

given later in this thesis appears in Table 6.

4.3.3 The Random Sinusoidal Results Once the required subroutines were

coded, they were used to generate the normalized noist '---'c.rs and signal-to-quanti-

zation noise ratios for the quantization process rang,' 8 bits. In order to
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Table 7. Calculated Noise Related Figures of Merit for a Random Sinusoidal Input

Number Step Normalized Signal-to-
of Size Noise Power Quantization

Bits R (units) (units squared) Noise Ratio (dB)
1 104 1.58 1.18 10- ' 6.26
2 10' 0.607 2.24 . 10- 2 13.5
3 10 0.274 5.12 .10 - 3  19.9
4 104 0.131 1.25 .10 - 3  26.0
5 10" 0.0639 3.10 .10 - 4 32.1
6 105 0.0316 7.81 .10- 1 38.1
7 101 0.0158 2.12.10 - 5  43.7
8 105 0.00784 5.01 10- 6 50.0

obtain the normalized noise powers, a unit amplitude was assumed for the random

sinusoidal input. However, the calculated signal- to- quantization noise ratios are

valid regardless of the input amplitude. The optimal quantization step size was

determined to three significant digits by repeated program execution over a simple

iterative process. The data obtained, along with the value of R used to obtain the

data, appeari in Table 7.

The necessary subroutines were also used to determine the input, the output,

and the error power spectral densities for the quantization process ranging from the

use of 1 to 5 bits. The input power spectral density for a unit input amplitude

appears in Figure 13.

Figures 14 through 18 illustrate the trend of the resulting output power spectral

density as the number of bits employed increases from 1 to 5. Figures 19 through

23 illustrate the trend of the error power spectral density as the number of bits used

increases in a like manner.
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Figure 15. The Power Spectral Density of a 2-Bit Quantizer Output for a Random
Sinusoidal Input

10

1

0.1

0.01
Gy(f)

0.001

0.0001 t j 1 1 j
le - 06

0 5 10 15 20L 25 30 35 40
fo

Figure 16. The Power Spectral Density of a 3-Bit Quantizer Output for a Random
Sinusoidal Input

71



1 I I I

0.1
0.01

0.001

Gy(f) 0.0001

le - 05

le- 06

le - 07

le - 08 1
le - 09 I ,

0 5 10 15 20 25 30 35 40
fo
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V. Conclusions and Recommendations

5.1 Conclusions

For three classes of input signals, this thesis has developed a relationship be-

tween the number of quantization levels and the resulting noise characteristics. For

each case, this relationship was characterized by expressions for the normalized noise

power, the signal-to-quantization noise ratio, the quantization error power spectral

density and the quantizer output power spectral density. These expressions were in

turn used to obtain the results given in Tables 3, 5 and 7. Furthermore, by assuming

the input power spectral densities shown in Figures 3, 6 and 13, the quantization

error power spectral densities were determined to appear as shown in Figures 5,

12 and 19 through 23 as applicable to the corresponding input signal classification.

Similarly, the quantizer output power spectral densities were determined to appear

as shown in Figures 4, 7 through 11 and 14 through 18.

In actuality, this thesis effort resulted in no unexpected results. However, there

was a discovery that certain requirements regarding quantization parameters were

to be met before the derived theoretical expresslons became valid. This discovery

was not anticipated. These requirements are summarized in Table 8.

By comparing the signal-to-quantization noise ratios of the three classes of in-

puts, it is evident that the Gaussian and negative-exponential input cases result in

Table 8. Quantization Parameter Requirements for Valid Expressions

Input Signal Parameter Condition
Distribution Affected Required

Gaussian None N/A
Negative-Exponential g(x = 0) See Equation 103
Random Sinusoidal -AE See Equations 149 and 150
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similar ratios, particularly as the number of bits used in the quantization process

increases. In contrast, the random sinusoidal input case fares much better. The

reason for this better performance is that the random sinusoidal case has no possi-

bility of providing an input larger than A. The other two cases must account for

the probability of inputs approaching infinity. Therefore, as the numbei of bits used

increases, the optimal quantization step size leads to a higher saturation level. This

trend is not necessary for the case of the random sinusoidal input. Consequently,

the optimal step sizes are much smaller and lead to a more accurate representation

of the input.

5.2 Recommendations

It is recommended that further studies be directed toward incorporating the

effects of sampling into the results obtained by this thesis. Recall that this thesis

was limited in scope to a continuous-time quantizer.

It is also recommended that further work be done to extend the results of this

thesis effort to include non-uniform quantization. It is well known that non-uniform

quantization, although more difficult to theoretically analyze, provides better noise

performance than uniform quantization.

Finally, further efforts regarding the consideration of additional classes of input

signals are also recommended. The three input signal classifications studied by this

thesis are only a subset of the signals relevant to today's applications.
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Appendix A. Key Derivations

A.1 The Determination of a Simple Relationship between Rx(T) and /i(r) for a

Negative-Exponential Input

The integral under consideration for determining the subject relationship was

expressed as Equation 85 and is restated here as

?, (r) = j XJ[[-/_12(r)J °  X0 1 -__ 2(_T)

•exp ( 1+X2 1 ) d .1 dX2  (183)

By rearranging the double integral and by letting

1

xo[1 -12(T)l (184)

and

= xE.2 1 -()

= VC-11(T) (185)

Equation 183 caD be written as

Rx(r) = - X2 exp(-x 2 ) J [x exp(-ax1)Jo(2Pfix) dx1] dx 2} (186)

Applying an integral identity given by Gradshteyn and Ryzhik (7:720) results in

=~ (T) /X 2 exp (- aX2) !2cp ~'

* M-j dX2  (187)
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where 111,.,,,(z) is the Whittaker function (7:1059) defined by

M.\,V,(z) Z- z" 2 exp (-z) , - A + -, + 1; (188)

The degenerate hypergeometric function (7:1058), 4,(-1; z), is defined by

Z) 
(+ + + z1) 2

( + 1)(C +t 2) z'

+ - + 1)(-y + 2) TI +"" (189)

Applying the identities given as Equations 188 and 189 to Equation 187 and

letting z = _2. yields

= ( X2ex(-ax2) 1 + 2z + -+.j-+"". dx 2

- x2 exp(-ex2){ - ] dx 2cxo 1 n ! I

=- x2 exp(-cax
2 ) d c z+) ] dX2

o' o~ ~ 7 T x

- k 00 X 2 eXp(-ax2) d+ z 7e., dx

)= Xf 2 exp(-a 2) +- ()x2]

= X2exp(-Cx 2)(l+z)edX2 (190)

Recalling Equation 185 and recalling that z = -reveals that

I "R--7 o[a; + jcX 2 (e)xp]-exp{-[1 - 2 (,r )] I (l,;2

[X 10a2 ep-4 2) eIa .IdX
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1t ( T p0  2+ x ( .4 exp{.-c1 - 1 (T)1.2} 2Xo )1

- 1x- [ 1- 1 2(()1 [+2 (191)
ax0 [a2[l - 112(,r)]J xo a3[1 - 112(,r)] 3

Finally, recalling Equation 184 reveals that

R.x(r) = xg[1 + IJ2(r)] (192)

A.2 The Determination of a Simple Relationship between Rx(r) and cos(rnwor)

fr " a Sinusoidal Input with Random Phase

The expression under consideration for determining the subject relationship

was expressed as Equation 134 and is restated here as

00 = m cos(mwor)21,  
(193)

where

=X LI (ix2) dxT
A X

= L- (A Xx) cos [marccos ()] dx (194)

Applying the trigonometric substitution x = A cos 0 to Equation 194 yields

= A j cos 0 cos(rnO) dO

= (195)
0 elsewhere

Applying this result to Equation 193 provideb t.- following simple expression:

Rx(r) -jcos(wor) (196)
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Appendix B. Computer Programming Source Code

B.1 Source Code Used for the Gaussian Input Results

* SUBROUTINE NOPOGA *

* This subroutine determines the normalized noise power and the *
• signal-to-quantization noise ratio (in dBs) when given the *
* quantization step size, the standard deviation of the Gaussian *
* input, and the number of bits used in the quantization process. *

* Variables: *

* q The quantization step size *
* sig : The standard deviation of the Gaussian input *
* noofbt The number of bits used in the quantization *
* process *

• akpa The array which ultimately contains all of the *
• desired a sub k primes *
• b An additional quantity later required to pro- *
• vide the power spectral density of the *
• quantization noise *

* nopo : The calculated normalized noise power *
* sinora : The signal-to-quantization noise ratio in its *
* dimensionless state *
• sinodb : The signal-to-quantization noise ratio in dBs *
• lev The number of quantization levels *
* k The parameter which indicates the desired *

a sub k prime *

subroutine nopoga(q,sig,noofbt)
real q, sig, akpa(O:10000), b, nopo, sinora, sinodb
integer noofbt, lev, k
call dtakga(q,sig,noofbt,akpa,b)
lev 2**(noofbt)
nopo 0.
do 20 ki 10000, 0, -1

nopo nopo + akpa(k)
20 co-atinue

nopo = nopo + (sig**2 * b)
write(6,30) 'The normalized noise power for ', lev,

+ ' levels with a step size of ', q, ' units'

write(G,40) ' and a Gaussian ilxpUL wiLh a StULdatd ',
+ 'deviation of ', sig, ' units

write(6,50) ' is ', nopo, ' units squared.'
sinora = (sig**2)/nopo
sinodb = 10. * logiO(sinora)
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write(6,60) 'The resulting signal-to-quantization noise ,
+ 'ratio is ', sinodb, ' dB.'

write(6,*) '

30 format (Ix, a31, i3, a28, f7.4, a6)

40 format (lx, a40, a13, fS.2, a7)
SO format (Ix, a6, gi0.3, ai5)
60 format (Ix, a43, a9, f5.2, a4)

end

* SUBROUTINE POSPGA *

* This subroutine outputs the data necessary to plot the power *
* spectral density of the quantization noise for a Gaussian input *
* with a specified autocorrelation. This data allows the plotting *
* of the power spectral density in increments of 1/alpha versus *
* the horizontal axis of freq/alpha, where alpha is a damping *

* factor pertaining to the specified autocorrelation function. *

* Variables: •
* q : The quantization step size *
* sig : The standard deviation of the Gaussian input *
* noofbt : The number of bits used in the quantization *
* process *
* pi : The standard constant *
* aka : The array which stores the previosly calculated *
* a sub k's *
* b : A quan.,.y calculated earlier which is necessary *

* t-- p-, ,ide the power spectral density of the *
* quan.ization noise *
* falph : fhe freqiency divided by the parameter alpha *
* psdo : The output power spectral density in increments *
* of I/alpha for a particular falph *
* psde : The error power spectral density in increments *
* of I/alpha for a particular falph *
* psdi The input power spectral density in increments *
* of 1/alpha for a particular falph *
* indf : An index used to iterate through falph's *
* 1k The parameter which indicates the desired
* a sub k prime *
* dukpll : The value 2k +1 *

subroutine pospga(q,sig,noc'bt)
real q, sig, pi, aka(0:10000), b, falph, psdo, psde, psdi
integer noofbt, indf, k, dukpll
pi 3.1416
q= q/sig

sig =.
call dta'-a(q,sig,noofbt,aka,b)
open (unit::I0,file='gauezr')
open (unit=Il,file='gauout')
open (unit=12,filo='gauin')
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do 20 indf = 0, 236
falph = indf/59.
psdo = 0.
do 10 k = 10000, 0, -1

dukpll = 2 * k + I
psdo psdo + (dukpll * aka(k))/

+ (dukpll**2 + (2. * pi * falph)**2)
10 continue

psde = 4. * (psdo +
+ (b/(1. + (2. 4 pi * falph)**2)))

psdo = psdo * 4.
psdi = 4./(0. + (2. * pi * falph)**2)
write(1O,30) falph, psde
write(11,30) falph, psdo
write(12,30) falph, psdi

20 continue
30 format (lx, f8.6, 5x, e12.5)

close (unit=l0)
close (unit=ll)
close (unit=12)

end

* SUBROUTINE DTAKGA *

* This subroutine determines all values of a sub k prime for k = 0 *
• through k = 10,000. It also produces the constant b, which, *
* along with the a sub k primes, is necessary to determine the *
* quantization noise spectrum. *

• Variables: *
*q : The quantization step size *
• sig : The standa i deviation of the Gaussian input *
* noofbt : The number of bits used in the quantization *
• process *
* akpa : The array which ultimately contains all of the *
• desired a sub k primes *
• b : An additional quantity later required to pro- *
* vide the power specti t' density of the *
• quantization noise *
• pi : The usual constant *
* qsigra : The ratio of the step size to the standard *
• deviation of the Gaussian input *
* sumex : The sum of the iterated exponential terms *
* exarg : The iterated argument of the exponential term *
• necessary to determine b *
• h2kmnl : The polynomial array representation of the
* Hcrmitc polynomial of degree 2k - I
* h2k : The polynomial array representation of the *
• Hermite polynomial of degree 2k *
* m The number transitions between quantization *
* levels in the positive (or negative) non- *
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* zero range *
* ind : An index used in the process *
* k : The parameter which indicates the desired *
* a sub k prime *

subroutine dtakga(q,sig,noofbt,akpa,b)
real q, sig, akpa(O:l000), b, pi, asigra, sumex, exarg
double precision h2kmnl(0:31), h2k(0:32)
integer noofbt, m, ind, k
pi = 3.1416
m = 2**(noofbt - 1) - 1
qsigra = q/sig

do 10 ind = 0, 31
h2kmnl(ind) = 0.
h2k(ind) = 0.

10 continue
h2k(32) = 0.
do 20 k = 0, 16

call clakgl(akpa(k),h2kmnl,h2k,qsigra,q,m,k)
20 continue

do 30 k = 17, 10000
call clakg2(akpa(k),qsigra,q,m,k)

30 continue
sumex = 0.
exarg = (-(qsigra**2))/2.
do 40 ind = 1, m

sumex = sumex + exp((ind**2) * exarg)
40 continue

b = 1. - sqrt(2./pi) * qsigra * (1 + 2. * sumex)
end

* SUBROUTINE CLAKG1 *

* This subroutine calculates the exact value of a sub k prime and *
* is to be used on values of k such that 0 <= k <= 16. Larger *
* values of k will result in overflow during calculations. Also, *
* for larger values of k, the approximation subroutine CLAKP2 is *
* quite sufficient. *

* Variables: *
* akp The desired value a sub k prime *
* h2kmnl The polynomial array representation of the *
* Hermite polynomial of degree 2k - 1 *
* h2k The polynomial array representation of the *
* Hermite polynomial of degree 2k *
* qsigra : The ratio of the step size to the standard *
* deviation of the Gaussian input *
* q The quantization step size *
* m : The number transitions between quantization *
* levels in the positive (or negative) non- *
* zero range *
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* : The parameter which indicates the desired *

* a sub k prime *
* pi The standard constant *
* msum The total evaluation of the summation term *
* polarg The iterated argument of the Hermite polynomial *
* in the summation term of the appropriate *
* a sub k prime equation *
* polqty The iterated evaluation of the Hermite poly- ;

* nomial in the summation term of the approp- *

* riate a sub k prime equation *
* sumadd An intermediate value used to obtain msum *

* squqty : The squared quantity which includes all terms *
* involving Hermite polynomial evaluations *
* facqty The factorial of 2k + I *
* ord : The degree of the Hermite polynomials to be *
* evaluated *
* i : An index used in the process *
* dukpll : The value corresponding to 2k + 1 *

subroutine clakgl(akp,h2kmni,h2k,qsigra,q,mk)
real akp, qsigra, -q, pi, msum, polarg, polqty, sumadd, squqty,

+ facqty

double precision h2kmnl(0:31), h2k(0:32)

integer m, k, ord, i, dukpll
pi = 3.1416

ord = 2 * k
call geth2k(h2kmnl,h2k,k)
mcum = 0.
do 10 i 1, m

polarg = i * qsigra

call evevpl(h2kord,polarg,polqty)
sumadd = polqty * exp((-(polarg**2))/2.)

msum = msum + sumadd
10 continue

polarg = 0.
call evevpl(h2k,ord,polarg,polqty)

squqty = (polqty + 2. * msum)**2
dukpll = ord + 1
call facto(dukpli,facqty)
akp = (squqty/facqty) * (q**2/(2. * pi))

end

* SUBROUTINE GETH2K *

* This subroutine determines the configuration of the Hermite *
* polynomials of degree 2k and of degree 2k - 1. In order to do *
* so, it must be fed the Hermite polynomials of degree 2k - 2 *
* and of degree 2k - 3 (the previously determined Hermite poly- *
* nomials). *

* Variables: *
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* h2kmnl : The polynomial array representation of the *
* Hermite polynomial of degree 2k - 3 (when *
* called) and then of degree 2k - I (whe. *
* returned) *
* h2k The polynomial array representation of the *
* Hermite polynomial of degree 2k - 2 (when *

* called) and then of degree 2k (when *
* returned) *
* k The parameter which indicates the desired degree *
* n The degree of the desired h2kmni *
* npli The degree of the desired h2k *

* coind An index used in the process *

subroutine geth2k(h2kmnl,h2k,k)
double precision h2kmnl(0:31), h2k(0:32)

integer k, n, npll, coind

if (k .eq. 0) then
h2k(O) = 1.
return

else
n=2*k- 1
npll = 2 * k
do 10 coind = 1, n, 2

h2kmnl(coind) = h2k(coind - 1) - (dble(n - 1.)
+ * h2kmnl(coind))

10 continue
do 20 coind = 2, npll, 2

h2k(coind) h2kmnl(coind - i)
+ - (dble(n) * h2k(coind))

20 continue
h2k(O) = (-n) * h2k(O)

end if
end

* SUBROUTINE EVEVPL *
* *** * ** * ****** ** ** * **** * **** ** **** *** *** *** ***** * *** **** ** * *** * *** ***** *

* This subroutine evaluates a polynomial possessing nonzero *
* coefficients for even powers of the polynomial argument only. *
* The maximum degree of the polynomial which can be handled by *
* this subroutine is degree 32. *

* Variables: *
* polarr The polynomial array representation -- *
* polarr(n) is the coefficient *

of the n-th power of the polynomial *
* argument *
*ord : The degree of the polynomial to be evaluated *
* polarg : The argument of the polynomial *
* polans : The evaluation of the polynomial for the *
* argument *

* poladp Iterations of polans in double precision form *
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* indexp : An index used in the process *

subroutine evevpl(polarr,ord,polarg,polans)
real polarg, polans
double precision polarr(0:32), poladp

integer ord, indexp
poladp = polarr(O)
do 10 indexp = 2, ord, 2

poladp = poladp + polarr(indexp) * polarg**indexp
10 continue

polans = poladp
end

**********t**************************,I***********************************

* SUBROUTINE FACTO *
************************************'h I**********************************

* This subroutine finds the factorial of its first argument and *
* returns the factorial as its second argument. *
*************************************k *********i,************************

* Variables: •
* facarg : The int r whose factori 1 is to be found *
* facans : The calculated factorial oi facarg *
* facind : An index used in the process *

subroutine facto(facarg,facans)

real facans

integer facarg, facind
facans = 1.
if (facarg .le. 1) return
do 10 facind = 2, facarg

facans = facans * facind

10 continue

end

* SUBROUTINE CLAKG2 *

* This subroutine calculates the approximate value of a sub k *

* prime and is to be used on values of k such that *
* 17 <= k <= 10,000. Smaller values of k should be referred to *
* CLAKPI for an exact calculation. Larger values of k will be *

* insignificant. *

* Variables: *
* akp : The desired value a sub k prime *

* qsigra : The ratio of the step size to the standard *
* deviation of the Gaussian input *

* q . The quantization step size *
* m : The number transitions between quantization *

* levels in the positive (or negative) non- *
* zero range *

* : The parameter which indicates the desired *
* a sub k prime *
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pi The standard constant

* cosarg : The square of 2k + 1/2 - used to increment the *

* argument of the cosine and sine terms *

* msum : The total evaluation of the summation term *
* mqty : An intermediate value used to obtain msum *

* sinfac : The factor applied to the incremented sine term *

* s oesquqty : The squared quantity which includes the *
* summation of the cosine and sine terms *

* i An index used in the process *

* dukpll : The value 2k +1 *

subroutine clakg2(akp,qsigra,q,m,k)

real akp, qsagra, q, pi, cosarg, msum, mqty, sinfac, squqty

integer m, k, i, dukpll
pi = 3.1416

cosarg = sqrt(2. * k + 0.5)

msum = 0.
do 10 i = 1, in

mqty cos(cosarg * i * qsigra)
sinfac = ((i * qsigra)**3)/(24. * cosarg)

mqty = mqty + sinfac * sin(cosarg * i * qsigra)

msum = msum + mqty * exp((-((i * qsigra)**2))/4.)

I0 continue

squqty = (i. + 2. * msum)**2
dukpli = (2 * k) + 1
akp ((q**2)/(2. * pi * dukpll * sqrt(pi * k)) * squqty

end

B.2 Source 'Code Used for the Negative-Exponential Input Results

* SUBROUTINE NOPONE *

* This subroutine determines the normalized noise power and the *

* signal-to-quantization noise ratio (in dBs) when given the *

* quantization step size, the mean of the negative-exponential *

* input, and the number of bits used in the quantization process. *

* Variables: *

* q : The quantization step size *

* xO : The mean of the negative-exponential input *

* noofbt : The number of bits used in the quantization

* process *

* aka The array which ultimately contains all of the *

* desired a sub k's *

* b An additional quantity later required to pro- *

* vide the power spectral density of the *
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* quantization noise *
* gO The desired value for the quantizer output *
* corresponding to the first level divided by *
* the step size *
* nopo The calculated normalized -noise power *
* sinora The signal-to-quantization noise ratio in its *
* dimensionless state *
* sinodb The signal-to-quantization noise ratio in dBs *
* lev The number of quantization levels *
* k The parameter which indicates the desired *
* a subk *

subroutine nopone(q,xO,noofbt)
double precision q, xO, aka(iO000), b, gO, nopo, sinora,

+ sinodb

integer noofbt, lev, k
call dtakne(q,xO,noofbt,aka,b,gO)
lev 2**(noofbt)
nopo = 0.
do 20-k = 10000, 0, -1

nopo nopo + aka(k)
20 continue

nopo = nopo + (2. * (xO**2) * b)
write(6,30) 'The normalized noise power for ', lev,

+ 'levels with a step size of', q,
+ ' units'

write(6,40) ' and a negative-exponential input with a ',

+ 'mean of ', xO, ' units is

write(6,50) ' ', nopo, ' units squared.'
sinora = (2. * xO**2)/nopo
sinodb-= 10. * logiO(sinora)
write(6,60) 'The resulting signal-to-quantization noise ',

+ 'ratio is ', sinodb, I- dB.'

write(6,70) 'The quantizer output for an input of 0 units',
+ ' is ', gO * q, ' units.'

write(6,*)
30 format (Ix, a3i, i3, a28, f7.4, a6)
40 format (ix, a43, a8, f5.2, alO)
50 format -(Ix, a3, giO.3, aiS)
60 format (ix, a43, a9, f5.2, a4)
70 format (ix, a44, a4, f5.3, a7)

end

* SUBROUTINE POSPNE *

* This subroutine outputs the data necessary to plot the power *
* spectral density of the quantazation noise for a Negative-Expo- *
* nential input with a specified autocorrelation. This data *
* allows the plotting of the power spectral density in increments *
* of I/alpha versus the horizontal axis of freq/alpha, where alpha *
* is a damping factor pertaining a function of the specified *
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* autocorrelation function. *
**********************************#*********************** *************

* Variables: *
* q The quantization step size *
* xO The mean of the negative-exponential input *
* noofbt The number of bits used in the quantization *
* process *

* pi : The standard constant *
* aka : The array which stores the previosly calculated *
* a sub k's *
* b : A quantity calculated earlier which is necessary *
* to provide the power spectral density of the *
* quantization noise *
* gO The desired value for the quantizer output *
* corresponding to the first level divided by *
* the step size *

* falph The frequency divided by the parameter alpha
* psdo The output power spectral density in increments *
* of I/alpha for a particular falph *
* psde : The error power spectral density in increments *
* of i/alpha for a particular falph *
* psdi : The input power spectral density in increments *
* of i/alpha for a particular falph *
* psdde : The level of the delta function which *

* accompanies the error power spectral density *
* psddo The level of the delta function which *
* accompanies the output power spectral *
* density *
* psddi : The level of the delta function which *
* accompanies the input power spectral *
* density *

* indf : An index used to iterate through falph's *
* k : The parameter which indicates the desired *

* a sub k prime *

subroutine pospne(q,xO,noofbt)
double precision q, xO, pi, aka(O:1000), b, go, falph, psdo,

+ psde, psdi, psdde, psddo, psddi

integer noofbt, indf, k
pi = 3.1416
call dtakne(q,xO,noofbt,aka,b,gO)
open (unit=13,file='nexerr')
open (unit=14,file='nexout')
open (unit=l5,file='nexin')
do 20 indf = 0, 236

falph = indf/59.
psdo 0.
do 10 k = 10000, 1, -1

psdo = psdo + (k * aka(k))/
+ (k**2 + (2. * pi * falph)**2)

10 continue
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psde = 4. * ( psdo +
+ (b * xO**2)/(I. + (2. * pi * falph)**2))

psdo = psdo * 4.

psdi = 4. * (xO**2)/(i. + (2. * pi * falph)**2)
if (indf .eq. 0) then

psdde = aka(O) + (b * xO**2)
psddo = aka(O)
psddi = xO**2

write(13,30) falph, psde, psdde
write(14,30) falph, psdo, psddo
write(15,30) falph, psdi, psddi

else if (indf .eq. 1) then
psdde = 0.
psddo = 0.
psddi = 0.
write(13,30) falph, psde, psdde
write(14,30) falph, psdo, psddo
write(15,30) falph, psdi, psddi

else
write(13,40) falTp, psde
write(14,40) falph, psdo
write(15,40) falph, psdi

end if
20 continue
30 format (Ix, f8.6, Sx, e12.5, 5x, e12.S)
40 format (1x, f8.6, Sx, e12.5)

close (unit=l3)
close (unit=l4)
close (unit=t5)

end

* SUBROUTINE DTAKNE *

* This subroutine determines all values of a sub k for k 0 *
* through k = 10,000. *

* Variables: *
* aka, The axray which ultimately contains all of the *
* desired a sub k's *
* qxOra The ratio of the step size to the mean of the *
* negative-exponential input *
*xO The mean of the negative-exponential input *
• n The number of transitions between quantization *
• levels *
• k The parameter which indicates the desired *
• a subk *

Sind An index used in the process
• gO : The desired value for the quantizer output *
* corresponding to the first level divided by *
* the step size *
* q : The quantization step size *



* b An additional quantity later required to pro- *
* vide the power spectral density of the *
* quantization noise *

subroutine dtakne(q,xO,noofbt,aka,b,gO)
double precision q, xO, aka(O:10000), b, gO, qxOra
integer noofbt, n, k
qxOra = q/xO

n = 2**(noofbt) - I
call getgO(gO,q,xO,qxOra,n,b)
do 20 k = 0, 50

call claknl(aka(k),qxOra,q,n,k,gO)
20 continue

do 30 k = 51, 10000
call clakn2(aka(k),qxOra,q,n,k,xO,gO)

30 continue
end

**** t****** ************************************************************

* SUBROUTINE GETGO *

* This subroutine determines what the quantizer output corre- *
* sponding to the first level should be in order to negate or *
* minimize the dc or average value of the quantization error. In *
* other words, it determines the appropriate g(x = 0). *

* It also produces the constant b, which, along with the a sub k's,*
* is necessary to determine- the quantization noise- spectrum. *

* Variables: *

* gO : The desired value for the quantizer output *
* corresponding to the first level divided by *
* the step size q *

* q : The quantization step size *
* xO : The mean of the negative-exponential input *
* qxOra : The ratio of the step size to the mean of the *
* negative-exponential input *
* n : The number transitions between quantization *

* levels *

b : An additional quantity later required to pro- *
* vide the power spectral density of the *
* quantization noise *

* sumex : The sum of the iterated exponential terms *
* exarg : The iterated argument of the exponential term *
* necessary to determine b *

* srbxO : An intermediate value used to determine go *

* exind : An index used in the process *

subroutine getgO(gO,q,xO,qxOra,n,b)
double prek ision gO, q, xO, qxOra, b, sumex, exarg, srbxO
integer n, exind
gO = 0.
sumex = 0.
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exarg = -qxOra
do 10 exind = 1, n

sumex = sumex + exind * exp(exind * exarg)

10 continue
b = 1. - 2. * (qxCra**2) * sumex
if (b .lt. 0.) then

sumex = 0.
do 20 exind = 1, n

sumex = sumex + exp(exind * exarg)

20 continue
srbxO = (xO * sqrt(-b))/q
if (sumex .lt. srbxO) gO = srbxO - sumex

end if
end

• SUBROUTINE CLAKNI •

* This subroutine calculates the exact value of a sub k and *
* is to be used on values of k such that 0 <= k <= 50. Larger *
* values of k will result in overflow during calculations. Also, *
• for larger values of k, the approxi-ation subroutine CLAKN2 is *
* quite sufficient. •

* Variables: *
• ak : The desired value a sub k *
• qxOra : The ratio of the step size to the mean of the *
* negative-exponential input *
• q : The quantization step size *
• n The number of transitions between quantization *
• levels in the positive (or negative) non- *
• zero range *
• k : The parameter which indicates the desired *
• a subk *

• gO : The desired value for the quantizer output *
• corresponding to the first level divided by *
* the step size *

• nsum : The total evaluation of the summation term *
• polarg : The iterated argument of the Laguerre poly- *
* nomials in the summation term of the
* appropriate a sub k prime equation
* polqt : The iterated evaluation of the difference of the *
• two relevant Laguerre polynomials *
• sumadd : An intermediate value used to obtain nsum *
* ind : An index used in the process *

subroutine claknl(ak,qxOra,q,n,k,gO)
double precision ak, qxOra, q, gO, nsuia, polalg, polqt, sumadd
integer n, k, ind
nsum = 0.
do 10 ind = 0, n

polarg = ind * qxOra
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call elpdt(k,polarg,polqt)
sumadd = exp(-polarg) * polqt
if (ind .eq. 0) sumadd = gO * sumadd
nsum nsum + sumadd

10 continue
ak = (q * nsum)**2

eid

S UBROUTINE ELPDT*

* This subroutine evaluates the Laguerre polynomial difference *
* term for a particular argument. This term is the evaluation *
* of the Laguerre polynomial of degree k minus the evaluation *
* of the Laguerre polynomial of degree k - I for the given argu- *
* ment. •
********************************************** ****, (****** ********

• Variables: •
Sk : The parameter which indicates the desired degree *
• polarg The iterated argument of the Laguerre poly- *
• nomials in the summation term of the *

• appropriate a sub k prime equation*
• polqt : The iterated evaluation of the difference of the *

* two relevant Laguerre polynomials *
* r : -An index through the appropriate summation term *
• kmnl : The value of k minus 1 *
* rmni : The value of r minus I *
• cterm : The evaluation of the combination term *
• rfact : The evaluation of r factorial *

subroutine elpdt(kpolarg,polqt)
integer k, r, -kmnl, rmnl
double precision pol.arg, polqt, cterm, rfact
if (k .eq. 0) then

polqt = 1.
return

else
kmni = k - I
polqt = 0.
do 10 r = 1, k

rmnl = r - 1
call comb(kmn,rmni,cterm)
call dfacto(r,rfact)
polqt = polqt + ((cterm/rfact) * ((-polarg)**r))

10 continue
end if

end

* SUBROUTINE COMB *

• This subroutine evaluates the combination function of *
• "m choose n". In other gords, it determines the number of ways *
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* that n items can be seleted from m total items. *

* Variables: *
m : The number o2 items selected from

* n : The number of items selected *

* cterm : The result of the operation *
* mmnn : The value of m minusn *
* 1o : The smallest valte between n and mmnn *
* hi : The largest value betwes n + I and mmnn + 1 *
* ind : An index used in the process *

subroutine comb(m,n,cterm)
integer m, n, mmnn, lo, hi, ind

double pre.ision cterm
mmnn = m - n
if (mmnn .gt. n) then

lo = n
hi = mmnn + I

else

lo = mmnn
hi = n + 1

end if

cterm = 1.
do 10 ind = m, hi, -1

if (1o .gt. 1) then
cterm = cterm * (dble(ind)/lo)

lo = lo - I
else

cterm = cterm * ind
end if

10 continue

end

* SUBROUTINE DFACTO *
* ******* ** *** * ****** *** * **** *** *** *** ** *** ** **** *******':*** *** **** * **** *

* This subroutine finds the factorial of its first argument and *
* returns the factorial as its second argument. The second *
* is in double precision format in order to allow larger values. *

* Variables: *
* k : The integer whose factorial is to be found *
* kfact : The calculated factorial of facarg *

* kind : An index used in the process *
* ***** * * ***** * **** * *** ** *** *** * *** ** * **** ** **** * ********** *** ** ** ** *** *

subroutine dfacto(k,kfact)
integer k, kind
double precision kfact
kfact = 1.

if (k .le. 1) return
do 10 kind 2, k

kfact = kfact * kind
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10 continue
end

* SUBROUTINE CLAKN2 *

* This subroutine calculates the approximate value of a sub k *
* and is to be used on values of k such that *
* 51 <= k <= 10,000. Smaller values of k should be referred to *
* CLAKNI for an exact calculation. Larger values of k will be *
* insignificant. *

* Variables: *
* ak : The desired value a sub k *
* qxOra The ratio of the step size to the mean of the *

negative-exponential input *
* q . The quantization step size *
* xO : The mean of the negative-exponential input *
* go : The desired value for the quantizer output *
* corresponding to the first level divided by *
* the step size *
* pi The standard constant *
* piov4 : The standard constant, pi, divided by 4 *
* cosari : The the term used to increment the argument *
* of the first cosine term *
* cosar2 : The the term-used to increment the argument *
* of the second cosine term *
* nsum : The total evaluation of the summation term *
* nqty : An intermediate value used to obtain msum *
* n : The number transitions between quantization *
* levels *
* k : The parameter which indicates the desired *
* a sub k prime *
* ind : An index used in the process *

subroutine clakn2(ak,qxOra,q,n,k,xO,gO)
double precision ak, qxOra, q, xO, gO, pi, piov4, cosari,

+ cosar2, nsum, nqty
integer n, k, ind
pi = 3.1416
piov4 pi/4.
cosarl = 2. * sqrt(k * qxOra)
cosar2 = 2. * sqrt((k - 1.) * qxora)
nsum = 0.
do 10 ind = 1, n

nqty = (xO/((ind * k)**(0.25)))
+ * cos((sqrt(ind * 1.) * cosarl) - piov4)

nqty = nqty - ((1./((ind * (k -))**(0.25)))
+ * cos((sqrt(ind * 1.) * cosar2) - piov4))

nsum= nsum + (nqty * exp(-((ind * qxora)/2.)))
10 continue

ak = (q**(1.S)) * sqrt(xO) * (1./pi) * nsum**2
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end

B.3 Source Code Used for the Random Sinusoidal Input Results

* SUBROUTINE NOPOSI *

* This rubroutine determines the normalized noise power and the *

* signal-to-quantization noise ratio (in dBs) when given the *

* a sub k's as determined by DTAKSI, the quantization step size, *
* the amplitude of the sinusoidal input, and the number of bits *

* used in the quantization process. *

* Variables: •
* q The quantization step size *

* a The ampltitude of the sinusoidal input *

* noofbt The number of bits used in the quantization *
* process •

* aka The array which ultimately contains all of the *

* desired a sub k's *
* b An additional quantity later required to pro- *

* vide the power spectral density of the *

* quantization noise *

* nopo The calculated normalized noise power *

* sinora The signal-to-quantization noise ratio in its *

* dimensionless state *
* sinodb The signal-to-quantization noise ratio in dBs *

* k The parameter which indicates the desired *

* a sub k prime *
* lev The number of quantization levels *

* valid A logical indication of whether the qara is a *

* valid ratio *

subroutine noposi(q,a,noofbt)
real q, a, aka(O:iOOOO), b, nopo, sinora, sinodb

integer noofbt, k, lev
logical valid
call testra(q,a,noofbt,valid)

if (valid) then

call dtaksi(q,a,noofbt,aka,b)
lev 2**(noofbt)

nopo = 0,
do 20 k 10000, 0, -1

nopo = nopo + aka(k)
20 continue

nopo = nopo + b

write(6,30) 'The normalized noise power for ', lev,
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+' levels with a step size of ', q, ' units

write(6,40) ' and a random sinusoidal input with an ',
+ 'amplitude of ', a, ' units I

write(6,S0) ' is ', nopo, ' units squared.'
sinora = ((a**2)/2)/nopo
sinodb = 10. * loglO(sinora)
write(6,60) 'The resulting signal-to-quantization noise '

+ 'ratio is ', sinodb, ' dB.'

write(6,*) I I
end if

30 format (Ix, a31, i3, a28, f7.4, a7)
40 format (Ix, a41, a13, fS.2, a7)
so format (lx, a6, g10.3, alS)

60 format (lx, a43, a9, f5.2, a4)
end

* SUB0UTINE POSPSI *
•***** k **************************************************************

* This subroutine outputs the data necessary to plot the power *
• spectral density of the quantization noise for a random *
• sinusoidal input with a specified autocorrelation. This data *
• allows the plotting of the power spectral density versus the *
• horizontal axis of frequency in increments of the frequency of *
* the random sinusoidal input. *
* ** **** ** * *** ** *** ** * ** *-****** *** ****** *** ** **** * ***** *** * * *** ***** * ****

• Variables: *

• q : The quantization step size *
• a : The ampltitude of the sinusoidal input *
* noofbt : The number of -bits used in the -quantization *
* process *

• aka : The array which stores the previosly calculated *
* a subk's *

• b : A quantity calculated earlier which is necessary *
* to provide the power spectral density of the *
• quantization noise *

• psde : The error power spectral density *
* psdo : The output power spectral density *
• psdi The input power spectral density *
• psdO : A value set to zero-which aids in the plotting *
* of the delta functions *
* indf : An index used-to iterate through freq's *
• freq The frequency in increments of the input *
• frequency *

• valid : A logical indication of whether the qara is a *
• valid ratio *

subroutine pospsi(q,a,noofbt)
real q, a, aka(0:10000), b, psde, psdo, psdi, psdO
integer noofbt, indf, freq
logical valid
call testra(q,a,noofbt,valid)
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if (valid) then
open (unit=16,file='sinerr')
open (unit=17,file='sinout')
open (unit=18,file='sinin')
call dtaksi(q,a,noofbt,aka,b)
psde = aka(O) + b
psdo = aka(O)

psdi = (a**2)/2.
psdO = 0.
freq = I
write(16,20) freq, psdO
write(16,20) freq, psde
write(16,20) freq, psdO
write(17,20) freq, psdO
write(17,20) freq, psdo
write(17,20) freq, psdO
write(18,20) freq, psdO
write(18,20) freq, psdi
write(18,20) freq, psdO
do 10 indf = 1, 20

freq = 2 * indf + i

psde = aka(indf)
psdo = aka(indf)
write(16,20) freq, psdO
write(16,20) freq, psde
write(16,20) freq, psdO
write(17,20) freq, psdO
write(17,20) freq, psdo
write(17,20) freq, psdO

10 continue
close (unit=16)
close (unit=17)
close (unit=18)

end if
20 format (lx, i3, Sx, e12.5)

-end

* SUBROUTINE TESTRA *

* This subroutine tests the given ratio of the quantization step *
* size to the amplitude of the random sinusoidal input in order *
* to determine if subsequent calculations are valid. *

* Variables: *

• q The quantization step size *
• a : The ampltitude of the sinusoidal input
* noofbt : The number of bits used in the quantization *
• process *

* valid A logical indication of whether the qara is a *
• valid ratio *
* qara The ratio of the step size to the amplitude of *
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* the sinusoidal input *
* mrec The reciprocal of m *
* pi The usual constant *

* piov2 The value of pi divided by 2 *
* ssum : The iterated sum of square roots used as a *
* test quantity *

coqty The qunatity derived from ssum which is compared *
* to piov2
* m The number transitions between quantization *
* levels in the positive (or negative) non- *
* zero range •
* ind An index used in the process *

subroutine testra(q,a,noofbt,valid)

real q, a, qara, mrec, pi, piov2, ssum, coqty
integer noofbt, m, ind
logical valid
valid = .true.
qara = q/a
m = 2**(noofbt - 1) - I
mrec = 999999
if (m .ne. 0) mrec 1./m
if (qara .gt. mrec) then

write(6,*) 'The q to A ratio is too large!'
valid = .false.

else
pi = 3.1416
piov2 pi/2.
ssum = 0.
do 10 ind 1, m

ssum = ssum + sqrt(. - (ind * qara)**2)
10 continue

coqty = qara * (I + 2. * ssum)
if (coqty .1t. piov2) then

write(6,*) 'The q to A ratio is not appropriate!'
valid = .false.

end if
end if

end

* SUBROUTINE DTAKSI *

* This subroutine determines all values of a sub k for k 0 *
* through k = 10,000. It also produces the constant b, which, *
* along with the a sub k's, is necessary to determine the *
* quantization noise spectrum. *

* Variables: *
* aka : The array which ultimately contains all of the *
* desired a sub k's *
* qara : The ratio of the step size to the amplitude of *
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* the random sinusoidal input *

* q : The quantization step size *
* m The number transitions between quantization *

* levels in the positive (or negative) non- *

* zero range *
* k The parameter which indicates the desired *
* a sub k prime *

* valid : A logical indication of whether the qara is a *

* valid ratio *

subroutine dtaksi(q,a,noofbt,aka,b)

real q, a, aka(0:10000), b, pi, qara, sumex

integer noofbt, m, k, ind

pi = 3.1416
qara = q/a
m = 2**(noofbt - 1) - I
do 10 k = 0, 10000

call claksi(aka(k),qara,m,k,q)

10 continue

sumex = 0.
do 20 ind = 1, m

sumex = sumex + sqrt(a**2 - (ind * q)**2)

20 continue
b = (a**2)/2. - 4. *-q * (sumex + a/2.)/pi

end

* SUBROUTINE CLAKSI *

* This subroutine calculates the exact value of a sub k fork *
* such that 0 <= k <= 10000. Larger values of k will result in *
* negligible values. *

* Variables: *
* ak : The desired value a sub k *

* qara : The ratio of the step size to the amplitude of *

* the random sinusoidal input *

* m : The number transitions between quantization *
* levels in the positive (or negative) non- *

* zero range *

* k The parameter which indicates the -desired *

* a subk *

* q : The quantization step size *
* pi The standard constant *

* msum : The total evaluation of the summation term *

* polarg : The iterated argument of the Tchebycheff *
* polynomial in the summation term of the *
* appropriate a sub k equation *

* polqty : The iterated evaluation of the Tchebycheff *

* polynomial in the summation term of the *
* appropriate a sub k equation *

* squqty The squared quantity which includes all terms *
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* involving Tchebycheff polynomial evaluations *
* dukpll : The value corresponding to 2k + I *
* i An index used in the process *

subroutine claksi(ak,qara,m,k,q)
real ak, qara, q, pi, msum, polarg, polqty, squqty
integer m, k, dukpll, i

pi = 3.1416
dukpll = 2 * k + 1
msum = 0.
do 10 i = i, m

polarg = i * qara
call evuk(dukpll,polarg,polqty)

msum = msum + polqty
10 continue

polarg = 0.
call evuk(dukpli,polarg,polqty)
squqty = (polqty + 2. * msum)**2
ak = 2. * ((q/(pi * dukpll))**2) * squqty

end

* SUBROUTINE EVUK *

* This subroutine evaluated the Tchebycheff polynomial of the *
* second kind, U sub k of the argument, given the argument and *
* the degree, k, of the polynomial. *
* * ** ** **** **** * *** ***** * **** *** **** *** * ****** *** * *** * **** **** **** ** *** *

* Variables: *
* k : The parameter which indicates the desired *
* a subk *
* polarg : The argument of the polynomial *
* polqty The evaluation of the polynomial for the *
* argument *

subroutine evuk(k,polarg,polqty)

real polarg, polqty

integer k
polqty = sin(k * acos(polarg))

end
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