AD-A230 664

G, JANo71991 :
3_}:‘”."13 : ),_\,_:Em ,_;,sm; ‘l P

" 'DEPARTMENT OF THE AIRFORCE e
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

F~ DISTRIBUTION STATEMENT K1 ‘ : o

’ App;’oved.for Pl’iblié_ rels

T

1In i liadd



AFIT/GE/ENG/90D-48

QUANTIZATION NOISE CHARACTERISTICS RESULTING
FROM GAUSSIAN, NEGATIVE-EXPONENTIAL,
AND SINUSOIDAL RANDOM INPUT SIGNALS

Approved for public release; distribution unlimited’

Van N. Osborne
Captain, USATF

AFIT/GE/ENG/90D-48

DTIC

47y ELECTE BXy
P, 2 e

B o . g

YO W | LA 3

L5 R ¢
e




AFIT/GE/ENG/90D-48

QUANTIZATION NOISE CHARACTERISTICS RESULTING

FROM GAUSSIAN, NEGATIVE-EXPONENT

IAL,

AND SINUSOIDAL RANDOM INPUT SIGNALS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University
In Partial Fulfiliment of the

Requirements for the Degree of

- Accession For \

Master of Science in Electrical Engineering

"NTIS GRA&L g
DTIC TAB

Unannounced O
Justification . ]

Van N. Osborne, B.S., B.S.E.E.
Captain, USAF

:By .

" Dir. »ibution/

- Availability Codes

December 1990

Approved for public release; distribution unlimited

A- {

Avail and/or

Dist Special

a2 AP S e G i




Preface

The purpose of this study was to investigate the trade-off between-the number
of quantization levels and the resulting quantizution noise characteristics for three
classes of commonly occurring signals. Prior efforts, particularly those addressing
the related frequency spectra, had been primarily limited to the result of quantizing

Gaussian signals.

Theoretical expressio .5 were developed in terms of appropriate orthogonal
polynomials. These expressioas were used to determine specific noise characteris-

tics resulting from *" e quantization 1.~ ocess over various numbers of bits.

I would like t~ thank my thesis advisor, Dr. Vittal Pyati, for his guidance.
Although his name does not appear in the bibliography, much of Chapter III has
directly evolved from earlier, unreleased work that he had performed. I also want
to thank my other thesis committee members, Lt Col David Norman and Capt
Gregory Warhola, for their help. Finally, I want to express my gratitude to my wife,
Diana, and to our two daughters, Vanessa and Rebecca, for their understanding and

inspiration as I labored to finish this project.

Van N. Osborne
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Abstract

The purpose of this study was to investigate the trade-off between the num-
ber of quantization levels 1nd the resultirg noise characteristics for three classes
of commonly occurring input signals, namely, those signals possessing Gaussian,

negative-exponential and random sinusoidal distributions.

From a literature review, it was noted that much had been done to characterize
the mean-squared error resuiting from the quantization of a variety of input signal

types. However, those efforts to-characterize frequency spect.a had been limited to

study was able to characterize ithe mean-squared error, output spectrum and error

spectrum for each of the three input signal classes considered.

This study derived expressions for each of the entities under consideration by
expanding the nonlinear quantization function into a summation of orthogonal poly-
nomials matched to che corresponding input signal distribution. Onceaccomplished,
orthogonality properties were applied to provide usable expressions patterned as

sums of intermodulation coefficients.

(
\
|

the output spectrum resulting from an input with a Gaussian distribution. This

A set of three Fortran 77 programs were developed - each of which applied

to one of the studied input signal classes. Each program required the quantization

step size, one appropriate input signal parameter and the number of bits used in the

quantization process. When provided each of these required values, the appropriate

program produced upon demand either a mean-squared error value and a signal-to-

quantization noise ratio or quantizer output spectrum data and quantization error

spectrun data. Typical input power spectral densities were applied in order to

produce the spectra data.

The study resulted in a set of tables which provided mean-squared error and

signal-to-quantization noise ratio data based on various numbers of bits used for




the quantization process. Also, a number of plots displaying the power spectral
densities under consideration were produced as based on similar numbers of bits.
Among the recommendations provided is to extend the results of this thesis to include
the effects of non-uniform quantization, since this thesis strictly considered uniform

quantization.

xi




QUANTIZATION NOISE CHARACTERISTICS RESULTING
FROM GAUSSIAN, NEGATIVE-EXPONENTIAL,
AND SINUSOIDAL RANDOM INPUT SIGNALS

I Introduction

1.1 Background

It is commonly known that a quantized signal has undergone an irreversible
process. The mapping of a signal with a continuous amplitude distribution to a
signal with a discrete amplitude distribution introduces error which is referred to as
quantization noise. This mapping is a nonlinear function and must be appropriately

analyzed for its introduction of noise.

The noise which results from the quantization process affects the quality of
the received signal. The number of discrete levels used in the quantization process
has a direct bearing on the resulting quantization noise. As this number of levels is
allowed to increase without bound, the quantization process becomnes a one-to-one

correspondence, and the resulting quantization noise disappears.

Perhaps the obvious answer to the quantization noise problem is to increase the
number of quantization levels to an arbitrarily chosen large number. Unfortunately,
such a solution would cause the cost and complexity of the necessary equipment to
increase. In addition, as more levels are used, a larger bit transmittal rate becomes

necessary in order to transmit the quantized information.

As the minimum number of necessary quantization levels is determined by

considering the maximum allowable quantization noise, another complication arises.



Quantization does not identically affect different types of signals. The characteris-
tics of the quantization noise depend heavily upon the characteristics of the input
signal. TFor example, an input signal with an amplitude distribution evenly spread
throughout the domain of the quantization function will result in quantization noise
with different characteristics than that noise resulting from an input signal with a

Gaussian amplitude distribution.

In order to prudently select the number of quantization levels to use for a given
application, it becomes necessary to anticipate the characteristics of the quantization
noise. Therefore, it is imperative that a relationship be developed between the

umber of quantization levels and the resulting noise characteristics for a given set of
input signal amplitude distributions. The noise characteristics warranting particular
interest are the mean-squared error (also known as and referred to as the normalized
noise power) and the noise frequency spectrum. The quantizer output frequency

spectrum also deserves consideration.

1.2 Problem

For three classes of input signals, this thesis effort has developed a relation-
ship between the number of quantization levels and the resulting quantization noise

characteristics.

1.3 Summary of Current Knowledge

There have been a number of prior studies involving quantization noise. Some
of these efforts have included the numerical calculation of the mean-squared error
for a variety of input signal classes. Other efforts concentrated on the quantization
noise spectra, but were typically limited in scope to the result of an input with a

Gaussian amplitude distribution. For a historical survey of past efforts, the reader

is referred to Chapter II.




1.4 Assumptions

In order to proceed with this thesis effort, some assumptions were necessary.

They were as follows:

1. The quantization process was assumed to be performed by an ideal quantizer,
or a quantizer which introduces no nonlinearities to the quantization process
-other than the intended nonlinear quantization function. The consideration of
a quantizer perturbed by the introduction of any additional nonlinearity was

‘beyond the scope of this thesis.

2. The input signal was assumed to be free of noise. This assumption was made

in order to concentrate exclusively-on quantization noise.

3. The input signal was assumed to be a wide-sense stationary random process.
This has been a standard assumption-when analyzing-in the frequency domain,
since a random process possesses a power spectral density if it is wide-sense

stationary.

1.5 Scope

This thesis wasJimited in scope to-the-analysis of the quantization noise-result-
ing from an ideal, un'form, continuous-time quantizer. Neither nonuniform -quan-
tization nor sampling-effects have been -considered during the development of this

analysis.

Quantization noise has been denoted. the topic of concern for this thesis. The
other noise product of the quantization process, saturation noise, has not been con-
sidered independently of quantization noise. This thesis incorporates both types of
quantization rclated noise and does not -distinguish between the effects of the two
types. ‘Gray and Zeoli-have produced a study which optimizes the trade-off between

these two results of the quantization process (8).




Finally, this thesis develops the expressions for the quantization noise {requency
spectrum. However, the spectrum depends on the spectrum of the input signal. In
order to produce output and error spectrums based on the derived equations, it
was necessary to consider a single input autocorrelation function for each class of
input signals. However, it should be noted that for any given input autocorrelation

function, the derived equations may be difficult, if not impossible, to apply.

1.6 Approach

The approach of this thesis effort began by expressing the autocorrelation
function of the quantization error in terms of various characteristics of the quantizer
input and output. Those terms which included the quantizer output were then

treated individually by expressing the output as a nonlinear function of the input.

The treatment of the nonlinear function was dependent upon the amplitude
distribution of the input signal. For each of the three classes of inputs considered, the
nonlinear function was series-expanded using expansion techniques derived by Bar-
rett and Lampard (2). Once these series expansions were complete, the Fourier trans-
form of the resulting autocorrelation function was determined. The result yielded
a quantization noise spectrum and a quantizer output spectrum for each class of

inputs considered.

Algorithms for determining the quantization mean-squared error, the quantizer
output spectrum and the quantization error spectrum were developed by applying
the derived equations. Since the required approach was dependent upon the class
of input signal, multiple algorithms were necessary. The algorithms pertaining to
the Gaussian and the negative-exponential distributed inputs were based on basic
orthogonal polynomial identities as determined by Szegd (16). Each algorithms were
then coded in the Fortran 77 computer language and executed to obtain the desired
mean-squared error values and quantization related spectra for a variety of numbers

of quantization levels.




Finally, it should be noted thai the sections of this thesis which consider the
Gaussian distributed input tend to parallel Velichkin's earlier work (18) and provide
similar results. This effort provides an additional analysis involving the quantization
noise spectrum. In addition, the sections which pertain to the other two classes of

inputs provide entirely new material and new results.

1.7 Equipment

An ELXSI mainframe computer with a UNIX operating system and a For-
tran 77 compiler was used to execute the computer programs developed under this

thesis effort.




II. Historical Survey

Quantization has been a familiar topic in the digital communication field for
a number of years. As a result, quantization mean-squared error derivations have
appeared in many reputable textbooks on the subject matter. This resulting mean-

squared error represented the quantization noise power
q
Ny = = (1)

where ¢ is the quantization step size of the quantizer, or the d:stance between quan-

tization levels. Roden has provided the usual treatment (14:119-121).

This popular result has been based the assumption that the quantization error
was uniformly distributed over its range. Unfortunately, this assumption has rarely
applied to anything other than a classroom problem. However, this simple expression

generally gave a good starting point.

2.1 The Gaussian Distributed Input

Probably the most obvious class of inputs to be considered was that class pos-
sessing a Gaussian probability density function. Many types of signals and noise
possess an amplitude probability density which very closely resembles such a func-

tion.

Max sought to develop an algorithm which would determine the necessary
quantization parameters to minimize distortion for both uniformly and Gaussian
distributed inputs. His approach was to minimize the expected value of some function
of the quantization error. He chose this function to be the square of the quantization

error. Consequently, the mean-squared error became the value to be minimized

(11:7-9).



Max considered both nonuniform and uniform quantization. In tt.e nonuniform
case, he partially differentiated his expression for the mean-squared error with respect
to both the input and the output. Next, he equated both results to zero. He then
employed iterative numerical techniques in order to solve these resulting equations
and yield quantizer outputs and corresponding ranges of inputs. The matching of
these outputs to ranges of inputs provided the minimum possible mean-squared error

for a given number of quantization levels (11:8-9).

Similarly, Max applied his optimization techniques o the uniform quantization
case. He partially differentiated his expression for the mean-squared error with
respect to the uniform step size. Once again, he equated the result to zero. However,
this time he employed iterative numerical techniques in order to yield the optimal
step size. This step size would provide the minimum mean-squared error for a given

number of levels (11:9).

The results for both the nonuniform and uniform quantization case were pre-
sented in tabular form for the number of output levels ranging from 1 to 36. In each

case, the resulting mean-squared error was also determined and given (11:11-12).

2.2  The Rayleigh Distributed Input

As image processing and ontical holography research became more common,
the Rayleigh probability density function became more applicable to the quantization
process. Pearlman and Senge recognized this trend and adapted Max's algorithm to

determine the optimal quantization of an input possessing a Rayleigh distribution

(12:101).

Pearlman and Senge inserted the Rayleigh probability density function into
the equation for the mean-squared error. As Max had done, they also considered
both nonuniform and uniform quantizatior.. In both cases, partial differentiations
were taken and equated to zero. Iterative Newton-Raphson techniques were used in

both cases to determine the optimal step sizes. Also, in both cases, least-squares

~1




curve fitting techniques were also applied to yield general approximation equations
for the mean-squared error as a function of the number of quantization levels (under

optimal quantization conditions) (12:102-103).

The effort was completed with the inclusion of tables providing the optimal
step sizes, resulting mean-squared error, and output entropy for the aumber of quan-

tization levels ranging from 2 to 64 (12:104-111).

2.8 A Wider Class of Inputs

As applications to the quantization process have increased, a wider class of
inputs have become applicable. Lu and Wise applied techniques similar to those
used by Max and by Pearlman and Senge to four input distributions: Gaussian,
two-sided Rayleigh, Laplace, and two-sided gamma. Each of these considered dis-
tributions were two-sided and symmetrical (unlike the classic Rayleigh distribution
considered by Pearlman and Senge). However, Lu and Wise considered only uniform

quantization (10:471-472).

Lu and W._e were determined to avoid the massive tables provided by earlier
investigators of the topic. Therefore, one of their prime objectives was to provide
approximation techniques in a compact form. In order to do so, they applied curve
fitting techniques to each of their results so that only a short list of parameters would
require tabulation. These parameters could then be used to approximate the optimal
step size and the resulting mean-squared error for any number of quantization levels
ranging from 4 to 1024. Their final results, spanning four different input distributions
and the above range of numbers of levels, were then able to fit in three small tables

(10:472-473).

2.4 The Frequency Spectrum of ihe Cuiput

The previously acknowledged efforts were each limited in scope to the con-

sideration of the mean-squared quantization eiror, or the quantization noise power.
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However, the distribution of this power across the frequency spectrum could be just

as important, depending upon the particular application.

2.4.1 Early Work When the quantization of speech signals emerged, Bennett
became one of the first to successfully characterize the spectrum of a quantized
signal. Bennett restricted his consideration to input signals possessing a Gaussian

distribution (3:463).

La the interest of examining the frequency spectrum, Bennett understood the
importance of characterizing the autocorrelation function of the quantization error.
IIe derived an approximation of such a characterization by employing classical prob-
ability density function transformation techniques and by applying Poisson’s sum-
mation formula. The result was an autocorrelation function of quantization errors in
terms of the autocorrelation functicn of the signal. The Wiener-Khinchine Theorem

was then applied to provide an error power spectral density formula (3:463-468).

When Benneti examined the complete spectrum of the result of the quantiza-
tion process, it became nccessary for him to also consider the effects of sampling the
original analog signal. While this inclusion tended to create some confusion regard-
ing the effects of only the quantization process, it did provide an understanding of
the effects of increased sampling frequency on the signal-to-quantization noise ratio

for a given number of bits (3:453).

2.4.2 Other Approaches As the quantization operation became more com-
monplace, Velichkin also sought to characterize the spectrum of the output of a
quantizer. He also limited himself to a Gaussian distributed input. However, unlike
Bennett, Velichkin chose to consider the effects of sampling and quantization inde-
pendently. This modularized his efforts and allowed him to examine the effects of

quantization apart from those of the sampling process (18:70).

Velichkin used orthogonal polynomial expansion for the second-order Gaussian

couk




probability distribution to obtair an exact, but computationally inicnsive equation
for the autocor~.lation function for the output of the quantizer. Once again, the
Wiener-Kninchine theorem was applied to result in the power spectrum of the quan-

tizer output, (18:71-73).

Lever was interested in comparing the results of Bennett, Velichkin, and other
notable quantization noise spectrum efforts made over the years. Like Bennett, Lever
chose to analyze the effects of sampling and quantization jointly, but did so with a

sensitivity to prior work which separated the effects of the two processes (9:201-203).

Lever was also able to compare theoretical and experimental signal-to-noise
ratio results. He did so under two different circumstances. First, he considered the
effects of an ideal quantizer. Next, he considered the effects of a q.uantizer which
had been perturbed by the introduction of an additional nonlinearity. Ile was able
to show that developed theoretical relationships were inadequate to provide accurate
estimates when the quantization process was perturbed by an additional nonlinearity

(9:203-206).

2.5 Closing Comments Regarding Previous Efforts

There have been a number of studies performed in the area of quantization
noise. They have included the minimization of quantization noise for a variety of
inputs. These noise minimization studies have often considered nonuniform, as well
as uniform quantization. There have also been efforts made in the interest of charac-
terizing the quantization noise spectrum. These efforts have typically been limited
to Gaussian inputs undergoing uniform quantization. A matrix of the discussed prior
studies and their applicability to the different input distributions and quantization

types appears in Table 1.

There exists a relationship between this thesis and these past efforts. This
thesis effort has developed quantization noise spectium expressions resulting from

Gaussian inputs, as well as two other classes of inputs. Some of the techniques used

10
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Table 1. Prior Study Applicability Matrix

Input Distributions Quantization Type
Gaussian | Rayleigh | Others || Uniform | Nonuniform
Mean-Squared Error
Max X X X
Pearlman and Senge X X X
Lu and Wise X Two-Sided X X
Error Spectrum
Bennett X X
Velichkin X X
Lever X X

to develop these derivations were sirilar to those used in the prior quantization
noise spectrum efforts. As already noted in Chapter I, the thesis effort regarding the
Gaussian input specifically tended to parallel Velichkin's efforts (18) and provided
sinilar results. The prior noise minimizalion studies were also uscful as a comparison

tool against the calculations resulting from the derived mean-squared error-equations.

11
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III. Theoretical Development

3.1 The Quantizatior Process

In order to appropriately study the effects of quantization, the quantization
process itself must be understood on a basic level. Let the time-varying input to
the quantizer is denoted as z(¢) and the output is denoted as y(t). If g(z) can be
determined such that y(t) = g[z(i)], or y = g(z), the relationship between y(t) and
x(t) for an ordinary @Q-bit uniform quantizer with a step size of q and for @ = 4 bits

is as illustrated in Figure 1.

For a Q-bil quantizer, there are 29 distinct levels with a step size of ¢ between
each level. Consequently, the normal operating region of the quantizer exists over a
range of q(29 — 1). As a result, the relationship illustrated in Figure 1 exists over
a range of x(t) from —3¢(29 — 1) to +1¢(29 — 1). Beyond this range of z(t), the
quantizer will simply output a level corresponding to i%q(ZQ —1) depending on the
sign of the input. This phenomenon is known as saturation and +3¢(29 — 1) are

denoted the saturation levels of the quantizer.

3.2 Quantization Error

3.2.1 Defining the Quantization Error The error resulting from the quantiza-
tion process is known as the quantization error and can be determined as a function

of time by the equation

eg(t) = y(t) — =(t) (2)
where once again, x(t) and y({) are the quantizer input and output, respectively.
The quantizer error only exists over the normal operating range of the quantizer.

For |z(¢)] > 1¢(29 — 1) saturation error results. It can also be determined
by Equation 2. The analysis in this thesis incorporates both types of quantization

related error, and does not distinguish between the effects of the two.

12
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—6q | 4
_8q - } 1
~10q -5¢ 0';1 5q 10¢

Figure 1. Quantizer Output vs Input for Q = 4 Bits

3.2.2 The General Quantization Noise Autocorrelation Problem:

3.2.2.1 The Preliminary Ezpression In order to determine the power
or the spectrum of the quantization noise, z(t), y(t) and e4(t) must be considered
as random processes. As random processes, these functions will be denoted as X (),
Y(t) and E,(t), respectively. In addition, these random processes are assumed to
be stationary in the wide sense, implying that the mean of the random process is

constant and its autocorrelation is a function of -time differential.

The initial goal is to-obtain the autocorrelation of the error, defined as
REq (T) =F [Eq(tli)iEq(i2)] (3)

where 7 = ¢, — 13, and F is the expectation operator.

13




Equation 3 becomes

Rp,(7)

E{[Y (1) — X)) Y (82) — X (t2)]}

BY (81)Y (t2) = X (0)Y (t2) = Y (22) X (2) + X (1) X (22)]

E[Y (@)Y (t)] — B[X ()Y (22)] = B [Y (81) X (22)]

+ B[ X (1) X (¢2)]

= Ry(r) — Rxy(7) — Ryx(7) + Ex() (4)

where Ryy(7) is the crosscorrelation function defined as
Rar(r) = B[X ()Y (i) )

If Y(t) can be determined as a function of X(t), or if g(z) can be determined

such that y = g(z), then the autocorrelation definition can be used to yield

Ry(7) = /_c; /_o:o 9(z1)g(z2)W (1, 225 7) dy deey (6)

where 2, = z(t;), an observation of the random variable X(¢;). Similarly, z; = z(22).
Also, W (xy, 22; 7) is the joint probability density function applicable to X (t) for the

bivariate case.

The second and third terms appearing in Equation 4 require more advanced
treatment. Bussgang proved that if an input possesses a Gaussian distributed am-
plitude, the crosscorrelation of the input and output of a distorting device “will be
proportional to the autocorrelation of the input signal” (4:5). Barrett and Lampard
broadened the scope of Bussgang’s important thecrem to include the distributions
discussed in this thesis (2). They also provided the expression to determine the

constant satisfying

Rxy(7) = cRx(7) (7)
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as

c—/ a,2W2'L2)< 0“)de 8)

2
where W)(x;) is the marginal probability density function applicable to X(t2), and
112 and o3 are the mean and the variance, respectively, of X (¢;) (2:25). It also follows

from these results that

Rxy(r) = Ryx(r) (9)
since Rx(7) is an autocorrelation and is, thercfore, an even function.

By applying Equations 4, 6, 7, 8 and 9, the following general relationship for

the autocorrelation of the quantization results:

R, () / / 9(22) W (21, 225 7) dy dezy

+ {1 -2[:: g(w2)Wa(x2) (mzo_zm) dw} Rx(r) (10)

2

3.2.2.2 Treatment of the Nonlinearity Sinceit is assumed that the prob-
ability density functions required to evaluate the expression given as Equation 10
are known, the next obstacle is the determination of an appropriate expression for

the nonlinear relationship y = g(z) so that the above integrals can be evaluated.

Thomas provided a general technique for treating a nonlinearity which involves
a series expansion of the nonlinearity. The expansion can then be employed to yield
an appropriate expression for y = g(z) (17:314-323). However, Thomas’ own utiliza-
tion of his technique is useful only if the input possesses an amplitude distribution
which is Gaussian. The general technique, as applied to the quantization problem,

is as outlined in the following paragraphs.

The nonlinear function, g(z), can be represented by the series

o0
= ) Cathala) (11)

n=0




where ?,,() are orthonormal polynomials with respect to the marginal probability

density function, W(z). This implies that

L Wepn(e)ne) o = (12)

is satisfied, where 6., is the Kronecker delta satisfying

1 fm=n

Smn = { (13)

0 otherwise

The equation
o
en = /_oo 9(z)W (2)ha(z) dz (14)
is uscd to determine ¢,. This integral can birome quite a formidable task unless
Pn(z) is carefully chosen with regard to W(z).

Since g(z) is discontinuous, the integral appearing as Equation 14 may be

approached as the Riemann-Stieltjes integral

[ @) datz)

where f(z) corresponds to g(z) and da(z) corresponds to W(z)n(z) dz. In addition,
the limits a and b correspond to —oo and oo, respectively. Applying the formula for

integration by parts applicable to the Riemann-Stieltjes integral (1:144) yields

= @ @)% = [ Fil@) dyla) (19)
where
—F,(z) = W(z),(2) (16)
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By inspection of Figure 1

M

o) = 3 adle ~ia)do (17

where M = 29-1 — 1 and §(z) is the Dirac delta function which satisfies

6(c) = %E%T})Texp [-w (%) 2] (18)

(6:50). Consequently, the sampling property of this delta function can be determined

as

/oo f@)(@)de = lm [ 1|exp[ (%)2] fz)dz

= f (0) (19)

for any continuous function, f(x). Therefore, inserting Equation 17 into Equation 15

yields
o= i@ RN - [ S g8(o— iq) o) de (20)

R = M
Some rearrangement and the use of the sampling property determined as Equation 19

provides the following identity:

en = [9(2) Fa(@)|Z, ~ Z ¢Fu(e

i==-M

(21)

:z:=iq

3.3 The Gaussian Case

3.3.1 The Noise Autocorrelation Problem for a Gaussian Input If the input
signal level possesses a Gaussian probability distribution, it becomes necessary to

consider both the first and sccond order probability deusily funclions which possess

17



the following forms respectively:

L ep (= (22)
\/é;r_o' P 20‘2

and

1 a? 4+ 22 — 22122p2(7) }
= , Texp | — 2 = ]
2mo?[l — p2(7)]z 2021 - p3(7)]

where the distributions are assumed to be shifted so that the mean of X(t)is zero

Wz, z9;7) (23)

for all values of . The variance, o?

coefficient, p;(7), is equivalent to %,\5: (g)’ or

, is equivalent to Rx(0), and the correlation

Rx(r)
0%

The orthogonality property for the Hermite polynomial is

W2

£ [ exp(-%) Hon(0)Ha(a) do = Syl (24)

where H,(z) is the n-th degree Hermite polynomial defined by

() = e (5 ) g (o0 (-5 )| (29

for non-negative integer values of n (2:27). The change of variables mapping x to £

as performed on Equation 24 results in

A —— - - = !
orc /-oo exp( 202> Hr (a) Hy (a) de = dpnn! (26)

which implies that a suitable-,(z) satisfying Equation 12 is

th(a) = %Hn (%) (27)

or
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Inserting the expressions given as Equations 22 and 28 into Equalion 21 pro-

vides the following for n = 1,2,3,...:

o - e £ (2

M -
_ g(=1)" . d"} _a
i=—M 27”1-0 d“’"—l [exp( 20? )]

2mnl (27

z=iq

Il
jq
X
X
o
Eet
o]
- ' ~
qwl 8,
\__/
P
—
~
T
-
o)
b
T
)
QNI 8,
N———
IS
)
SN’ ?
3 [N
1
P
pe————
I
"
g
NN
o
) »
v
L ce——

Il
3
M=
©
-~
T
|
s
Qw <
S———’
=
1
g
/N
L d
B
S’

V 27”?,! i=—=M ’
s ( =2 (z) ”
[ @) oy ( 202) Hoos (2 (29)
Note that the second term vanishes since

o @)
T—00 exp(:z:2) =0 (30)

for any polynomial p(z). Therefore, for n = 1,2,3,...,

T 5o (-5 e () )

27rn i==M

The n = 0 case must be considered separately. For n = 0, Equation 14 becomes

o = / 2)W () do (32)
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since 1Po(2) = 1. Now, since for the Gaussian case, g(z) is an odd function and W (z)

is an even function, the product g(z)W(z) is odd and
=0 (33)

An important note regarding the Hermite polynomial, H,(z), is that if n is
even, each term within H,(x) with a nonzero coefficient possesses an even power of
. Similarly, if n is odd, each term within H,(z) with a nonzero coefficient possesses

an odd power of . This leads to the following observation:

~H, (s dd
Hy(~2) = (=) no (34)
H,(z) neven

Applying this property to Equation 31 provides

neven

{ T M arexp ( Ll-) Hay (0) n odd (35)

It is now possible to express the nonlinear function, g(z), in the series repre-

sentation

o) = 3 5 e (-6 ) (D (3) 09

LO:—M

The new expression can now be applied to the first portion of the Rg,(7)
expression, given as Equation 10, or equivalently to the Ry (7) expression, given as

Equation 5. But first, W(zq,2,;7) must be treated appropriately.

In order to simplify the integral given in Equation 6 by taking advantage of

the orthogonality property of the Hermite polynomial, W (z1, 22; 7) can be expanded

20



into the following form:

W(mla T2y 'T')

1
gz OXP

©  H,
« 3 p2() ( )

ml

)

(37)

m=0

The technique employed to provide this expansion was provided by Barrett and

Lampard (2:27).

By utilizing Equations 36 and 37, and by rearranging the orders of summation

and integration, Equation 6 now becomes
g SRR (9)* + (§0)°
Ry(r) = o= % 2. X5 X {eXP [—T]
£ (9 (9
o o
o '1;2 , T
[\/270(2k +1)! / ( _2) "2t (_a") Hm ( ) dw‘]
2
“ oxp (=2 @2\ g (%
{ 27r<7 204 1) / ehp( 20‘2> Hati <0)Hm (a) d$2]}(38)

Utilizing the orthogonality property given by Equation 26 allows the simplifi-

cation of Equation 38 to

moy = £ 8 $ {0 [ s

202

2k+1(7'). [_f: exp (_(’_'gl::) Ho (%)]2 (39)

Il
I»Q
M8
+
=

which takes the form

Rr(r) = 3 axREH(r) (40)

k=0

21

bt B e b

R LR T LT



where

. mz:-_l)' ( }1_2 ) 2k+1 [ é{ exp (—%) Hoy, (z_aq_)] (41)

=

Now, the second term in Equation 10 may be attacked by first evaluating the

integral given by Equation 8. For the case at hand, Equation 8 becomes

o= [ °; o(=) [ zlm exp <-2"’722)] Sda (42)

Noting that this integrand is an even function of & allows the use of the following

c= —2 [ g('v)-—e\:p( z)d'c (43)

= 2o

equation:

Ignoring the form of g(x) derived as lquation 36 and performing the integration given
as Equation 43 as a firite sum of integrals over intervals where g(z) is continuous

yields

21 (M [ pmi1)g 1\ =z z?
¢ =77 {mz [/mq (m+35) asem (“2“) d-’”]
o 1\ z 22
# o, (43) 500 (-5 ao)
21 M 1 m2q2 (m+1)2q2
s <,§0{(m+§) ¢ [‘”‘P e ) — ewp (“-——202

+ (M + %) qexp (—W%@E); (44)

Expanding the summation and collecting terms provides the following expression:

flga(g) e
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The autocorrelation of the quantization error can now be expressed as a func-

tion of the autocorrelation of the input in the following manner:

Rp(r) = 2,;02 Z { (2k 4 1)! Lﬁ;‘,ew (—(;Z);) o (gi)] |

k=0

() o)
+{1_\/fo [1-}—2,722_1 xp( %)]}Rx(‘r) (46)

8.3.2 The Determination of Some Noise Related Figures of Merit for @ Gaus-

stan Input

3.3.2.1 The Normalized Noise Powcr Once Equation 46 has been pro-
vided, the determination of an expression for the normalized noise power becomes
quite trivial. The normalized noise power, or the mean-squared error, is merely the

autocorrelation of the quantization error evaluated at a time differential of zero, or

N, = Rg, (T

2

- £

+o {“\/ZZ {1+2m2_1(3‘(p( (2:2)2>]} (47)

3.3.2.2 The Signal-to-Quantizalion Noise Ratio Now that Equation 47

has been provided, a signal-to-quantization noise ratio expression also becomes trivial

since the normalized signal power in this case is

S = Rx(r =0) =0’ (48)
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Therefore, the desired ratio then becomes

s - <Wz{ h [(——> @]

3.8.8 The Determination of the Quantization Noise Spectrum for a Gaussian

Input Once the relationship for the autocorrelation of the quantization error has
been provided as ‘n Equation 46, the quantization error spectrum can be deter-
mined by applyin ., the Wiener-Khinchine relationship. This relationship, given in

Shanmugan and Breipohl (15:145), is

Gr(f) = F[Rn,(r)]
/:: Rg,(7) exp(—j2n fr)dr (50)

where j = +/—1. In other words, the power spectral dcusity of the quantization error

is the Fourier transform of the applicable autocorrelatios function.

The Fourier transform operation is well known as being a linear operation. As
a result, the application of the Wiener-IKKhinchine relationship to Equation 46 results

in

Gal) = p i {(% T [é{exp (- (;Z):> Hop (%)]2
()l ml}

+ {1 - \/gq [1 +2:‘;1 exp ( (T;of’?)z)] } FlRx(r)]  (51)
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which takes the form
G, (f) = Y aF [RYH ()] + bF [Ry(7)) (52)
k=0
where ay, is as defined in Equation 41 and

b=1—\/§§ [1+2fjexp (-(—’;%X)] (53)

m=1

If an identical approach is taken regarding Equation 40, the following relation-

ship results for the output spectrum:
o0
Gy(f) =Y arF [RE*(7)] (54)
k=0

The intermodulation coefficients, az, will require a certain amount of involved
computation - especially since these coeflicients converge towards zero somewhat
slowly as & incrcases without bound. However, ignoring t1 . problem for the moment,
it should be noted that the evaluation of F [R%"“(T)] as k increases without bound

is not a trivial exercise for the general Rx (7).

A manageable Rx(7) with some application to communications is
Rx(r) = exp(~alr]) (55)

where « is a positive constant and acts as a damping factor. Inserting this input

correlation function into the error power spectral density equation results in

G (f) = ;’_fakf {expl—a(2k + 1)[7[]} + b7 {expl=alr]}

"~ -

& [ 2002k41) 2a
B ank a2(2k+1)2+(27rf)2J+bla2+(27rf)2J (56)
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Similarly,

& . 20(2 + 1)
Gr(f) = EO * o2k + 1) + (27 1) (57)

3.4 The Negative-Fzponential Case

3.4.1 The Noise Aulocorrelation Problem for a Negalive-Exponential Input
If a signal with a Gaussian amplitude distribution undergoes a narrow bandpass
operation, the resulting envelope has a Rayliegh first order distribution. If following
the filtering operation, the signal undergoes a square law detection operation which
introduces no time delay, then the signal level of the output possesses the second

order probability density

W(zy,a27) = = : )110[2\/3;_155 w(7) ]

a3l — p2(7 xo 1 —p(r)
1t
e exp [ _wo[l — #2(7_)]] (58)

for 0 £ (21, x2) < 00 (2:27). The parameter a4 corresponds to the expected value of
x. The operation Ip,(z) is the m-th order modified (or hyperbolic) Bessel function.
The function p(7) is related to the autocorrelation of X(¢). This relationship, as

well as its derivation, appears in Section A.1 of this thesis.

The resulting first order probability density function is the familiar negative-
exponential density function
2 eXp (—fo-) 0<z< o

W(e) = (59)

0 otherwise

Of particular note is the constraint that z must be non-negative. This con-
straint. necessitates a modification of the quantization process. Since z must be
non-negative, there is no need to consider nonlinearities for negative values of z.

Now, the appropriate relationship between the output of the quantizer, y(¢), and the
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Figure 2. Non-Negative Quantizer Output vs Input for Q = 4 Bits

input, z(t), appears as in Figure 2.

As before, for the Q-bit uniform quantizer, there are 29 distinct levels with
a step size of ¢ between each level. However, now saturation occurs when z(t)
equals q(2° — 1) + g(z = 0), or the largest x(t) which equals its corresponding
y(t). Therefore, now the operating region of the quantizer exists over a range of

q(29 — 1) + g(z = 0).

As for the general case, the autocorrelation function for the quantization noise
will follow the relationship described in Equation 10. The treatment of the nonlin-
earity will also match the treatment given in Equations 11 through 15. However,

IEquation 17 now becomes

d N
Tlo(@)] =2 ¢8(= ~iq) (60)

=]
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where N = 29 — 1. As a result, Equation 21 now becomes

N
Cn = g('z:)F,,('l:)Igo - Z an(w)|x=iq (61)

i=1

where ¥,(z) are now orthonormal polynomials with respect to the marginal prob-
ability density function now under consideration. As before, Fy(z) is as defined in

Equation 16.

The orthogonality property for the Laguerre polynomial is
oo
/ €™ Lin(z) Ln(2) dz = bun (62)
0

where L,(z) is the n-th degree Laguerre polynomial defined by

e® dt

n! dzn

La(®) = 5= (a"e™) (63)

for non-negative integer values of n (2:28). The change of variables mapping = to Z

as performed on Equation 62 results in

I L exp (- -"’—) Ln (1) L. <ﬁ> Az = 6y (64)
0 9 2o To o

which implies that a suitable 1,(z) satisfying Equation 12 is

Yu() = Ly (i> (65)

o

or

wie) = oo () gy () o ()]
~ el w




Inserting the expressions given as Equations 59 and 66 into Equation 61 pro-

vides the following for n = 1,2,3,...:

n-1 -1
- (= () e (-5)
& = { n! dzn1 To xp _flto

N n=-1 _Jn-1 n
qug d x z
2= (@) e ()

=1

(67)

Now, noting that

&) e (-2)]-
dz™ L\zo *P z0/]
1 dn—l x \ -1 T dn-l T\ % T
i z 2 - —— (= _= 68
Zo {nd:c""l [(mo) exp( mo)] dzr—1 [(mo> exp( wo)]} (68)
provides the identity
() e (-2)-
dzn-1 .’Ifo) P o -
dt [z \m? T " [/z\" T
il 2V — e |(E _Z 69
Ve [(wo) exp( mo)] 0 G [(:co> exp( :vo>] (69)
Inserting this identity into Equation 67 provides the following for n =1,2,3,...:

o = (1 {nd (‘l ) (&) e (-2)]

Zo
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o0

— e () 5 (5) -2 ()],

- e (D@2 (@] o

=0 0 To To
where
g{x=0) i=0
m=q * (71)
1 1=1,2,3,...

The n = 0 case must be considered separately. For n = 0, Equation 14 becomes

w=[" ge)W(e)do (72)

since ¥o(z) = 1. Therefore,

N o ri+1)g | T
o = 3 [ oo =0) +ig—exp (- ) de

1=0 i

S 1 T
= N —exp | ——
+ /(qu[g(x 0) + +1)q1moexp( mo) da

ilg(“’ = 0) +1q] [GXP (— iq) — exp (—LZ_'*'_D_‘])]

i=0 To To

+ [g9(z = 0) + (N + 1)g]exp (— (N:;l)_q) da (73)

Expanding and combining terms yields

N .
i
o= ) TMiqexp (— ’U—Z> (74)

=0

Therefore, Equation 70 also applies to the n = 0 case if the understanding is made

that the L,—;(z) terms vanish when n = 0.
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It is now possible to express the nonlinear function, g(z), in the series repre-

sentation

9= Eun(Z) Enen () [ (D) -1a (2] 9

Similar to the earlier Gaussian analysis, the next step is to apply the expression
for the nonlinearity to the equation for the autocorrelation of the quantizer output,
Ry (7). But also as in the Gaussian analysis, W(z,22;7) must be expanded in
order to take advantage of the orthogonality of the polynomials used. Barrett and

Lampard (2:28) showed that W (zy,29;7) can be expanded into the following form:

W (z1,22;7) = a-v%exp (— Zit :vz) i p*™ (1)L, (m ) L, (—) (76)

) m=0 To

By utilizing Equations 75 and 76, and by rearranging the orders of summation

and integration, Equation 6 now becomes
N N o oo o iq 7 o
Re(r) = ¢ L3235 {mmjen (=22 in(r)
()
To
Toee (52) 5 (3) 2 (5) )
Zexp (=22 2L = 7
.[./o xoe*cp( ‘0>L1 - L - dao (77)

The orthogonality principle given by Equation 64 allows the simplification of

the previous expression to
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1=0 z

= q2§u2k(’r) {im exp (—%) [Lk (z—q-) = Ly (%)]}2 (78)

which takes the form

Ry(r) = i ax?*(r) (79)

ar=¢q" {gm exp (-— ;—Z) [Lk (%) — Ly (;—Z)} }2 (80)

Now, the other term in the error autocorrelation expression, Equation 10, may

where

be approached. First, the constant, ¢, may be evaluated by performing the integral

given in Equation 8. For the applicable probability density function, Equation 8

c= [ ” o) [%0 exp <-%>] (“’ ;j"’) de (81)

where o2 = z3. Ignoring the form of g(x) derived as Equation 75 and performing

becomes

the integration given as Equation 81 as a finite sum of integrals over intervals where

g(z) is continuous yields

N T p(n41)g 1 2\ [z — 2o
c = ,;[/nq (n+no)q<w—o>exp(—:c—o>( 2 )dm]

o 1 T T — T
+/ N -+ —ex (——) ( ) dz
(N+1)q ( o) qwo P To z3

= é{(n + 770)%% [nexp (-%) —(n+1)exp (_(”_:01)_‘1)]}
+ (N +10) g—;(N+ 1) exp (-%%) (82)

Expanding the summation and collecting terms provides the following expression:

2 N
e=L > mexp (—m) (83)

2
o n= Zo

—
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The autocorrelation of the quantization error can now be expressed in the

following form:

iy (r) = 3 ™) + (L~ 29x () (54)

which introduces a new problem. The relationship between Rx(7) and pu(7) remains
to be determined. To determine this relationship, the following integral may be

considered:

o0 o0
Rx(7) / / @122 W (21, ®2; 7) dty do

_ / / B2 Io[w-'cx—wz u(7) ]

x3[1 - T 11— p*(7)

HA + x4
xp | =—222 ) oy da 5
e exp ( ool = /1.2(7')]) dzy dzy (85)

The reduction of this integral to a simple function of p{r) is quite involved and

appears in Section A.1 of this thesis. The resulting relationship is as follows:
Rx(r) = w1 + (7)) (86)

Incorporating Equations 80, 83 and 86 into Equation 84 allows the expression
of the autocorrelation of the quantization error as a function of u(7) in the following

manner.

Rp,(1) = ¢ Z;ﬂ" {gmexp<——) [—’4<2q) L“(Z,)]}Z

+ [st =20 3 nowp (<29)] 1400) (#7)

n=1

where, as before, N =29 — 1.
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3.4.2 The Determination of Some Noise Related Figures of Merit for a Neg-

ative-Ezponential Input

3.4.2.1 The Normalized Noise Power From the expression provided
above as Equation 87, the determination of an expression for the normalized noise
power can be made. This normalized noise power, or the mean-squared error, is the

autocorrelation of the quantization error evaluated at a time differential of zero.

The determination of p*(r) at a time differential of zero is accomplished as

follows:

Ry(r=0
pi(r =0) = —-————\(2 )—1

Therefore, the normalized noise power can be expressed as

) N . . . 2
= S (e (-0) [ () -2 (2]
k i=0 To To To

=0

N nq
+ 2 ['1:(2, - 2¢° Z nexp (—jv—)] (89)
To

n=1

3.4.2.2 The Signal-to-Quantization Noise Ratio With N, givenin Equa-
tion 89, the only remaining entity required to produce a signal-to-quantization noise

ratio is the noimalized signal power. This quantity is determined as follows:

S = Rx(r=0)
- B

2a2 (90)
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Creating the desired ratio then yields

2 (£ 8 e () [0 () - s ()]}

+1- 3_ Y nexp (__n;(_]_>>—1 (91)

a’O n=1 To

3.4.83 The Determination of the Quantization Noise Spectrum for a Negative-
Exponential Input Now that the autocorrelation of the quantization error is available
as Equation 87, the Wiener-Khinchine relationship can be applied in a similar manner
as for the case of the Gaussian input. Applying this relationship and reco xnizing once
again that the Fourier transform operation is a linear operation yields the following

expression:

oa) = £ 70 S (2) 1 () - (1)}

+ [1—%432%@( . )] FIRx()] (92)

0 n=1

which takes the form

GMﬁ=§%%Wﬂ+W%WN (93)

where ay. is as defined in Equation 80, and

b—l—z—Znexp (—ﬁ> (94)

xo n=1 ’Uo

If an identical approach is taken regarding Equation 79, the following relation-

ship results for the output spectrum:

Gr(f) = Y aFlu (7)) (95)

k=0
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As with the case of the Gaussian input, the evaluation of the F[u?(r)] term as
k increases without bound is perhaps impossible for the general 4*(7). A manageable

p*() which satisfies Equation 88 is

#(r) = exp(~elr|) (96)

which is identical to the input autocorrelation function considered for the Gaussian

input. The corresponding input autocorrelation function is
Rx(7) = wg[1 + exp(—al7])] (97)

Applying these functions to the error power spectral density equation results in

0

G, (f) = ) aFlexp(—akl|r])] + bF {ag[l + exp(—a||)]}
k=0
2 2ok 2¢
- [aw ¥ (27r"f)"’] +oes [oﬂ ¥ (27rf)2}
+ (a0 + b22)6(f) (98)
Similarly, :
ak
G ( = (10(5 + Z ar [mj (99)
It should be noted that for the general case,
Ge,(f) Z apF[u (1)) + bab F (1P (7)] + (a0 + b2)5(F) (100)

k=1

Since the value of b is usually negative and tends to approach —1 as the number of
quantization levels increases, care must be taken to ensure that the value ag + b3

provides a valid power spectral density quantity. In other words, the condition

a0+ ba2 > 0 (101)




must be met.

Using Equation 80,

2
o =¢q

Sypesp (- i—“)f (102)

1=0 To

Using this identity and inserting Equation 94 into the required condition yields the

following requirement:

N nq PN iq

gle =0)> [2(12 Y nexp (——> - mg] —q) exp (——) (103)
n=1 To =1 To

Since the choice of a g(z = 0) value directly affects the ao term, the quantiza-

tion noise can be minimized if the g(z = 0) value is chosen to satisfy Equation 103

at equality. Consequently, the identity
ap = --bx} (104)

can be assumed, unless Equation 103 at equality provides either a complex or a
negative value for g(z = 0). If this becomes the case, g(z = 0) can be chosen as a
zero value, and hence
N i 2
a=q° [Z exp (__q)] (105)
=1 Zo

3.5 The Sinusoidal Case with Random Phase

3.5.1 The Noise Autocorrelation Problem for a Sinusoidal Input with Random
Phase If the input to the quantizer consists of a signal which possesses the charac-
teristics of a sine wave with constant amplitude and frequency but with a uniformly

random phase, it can be modeled as the following random process:

X(t) = Acos(wpt + ®) (106)
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where the probability density function pertaining to the random phase is

l’ -—7!' < < f]
W) =1{ % psm (107)
0 elsewhere

Through the ulilization of the corresponding characteristic function, Barrett
and Lampard (2:28) showed that the resulting second order probability density func-

tion for the signal level of the quantizer input is

W(zy,29;7) = ! [( !

=
(42 =}

kad Y Ta
* > nTn (—) T (——) cos(mwoT) (108)
m=0 A A

for |zy] < A and |zo| < A, where

1 m=0
€m = (109)
2 m=1,23,...
and T;,(2) is the Tchebycheff polynomial of the first kind, defined by
Tm(x) = cos[m arccos(z)] (110)
The resulting first order probability density function is
—L—— Jz|< 4
W(z) = { n(4-2%)2 = (111)

0 elsewhere

The quantization operation to be acted upon this input is identical to the
upcralion used upon the Gaussian inpui. However, now the level of the input signal
is constrained to an absolute value less than A, 'vheicas the Gaussian and negative-

exponential inputs were allowed to approach unbounded levels.
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As for the general case, the autocorrelation function for the quantization noise
will follow the relationship described in Equation 10, with new and appropriate limits

placed on the integral. Equations 11 through 21 apply in a similar manner.
The orthogonality property for the Tchebycheff polynomial is

l/1 enTm(2)Th() (1 - '1:2)—% de = § (112)
7w Ja1 nLm n\- N N mn
(2:28). The change of variables mapping = to % results in
A T x
Lyot(3)7(3)

which implies that a suitable 1,(z) satisfying Equation 12 is

1
W(A?' _$2)§‘

] dz = 6;pn (113)

(o) = VaTs (3) (114)

or

Pu(z) = Ve, cos [n arccos (%)] (115)

Inserting the expressions given as Equations 111 and 115 into Equation 21

provides the following:

M
en = 9@~ Y (@), (116)

=M
where

.(.1%17;1(3;) = [m] cos [n arccos (%)] (117)

Some modification to this equation reveals that

_gelE g ol

nmw

Z Q\/C—T;K

i=—-M

(118)

x—‘iq -A
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where

d.,
z;f\n(.’l,)—-

n @
——————| cos [n arccos <-—>]
(47 - )] A

Still further simplification yields

M - .
Chn = Z -qﬁsin [n arccos (%)]

j=—M DT

- {g_(:z;_%)_;@ sin [n arccos (%)] }
5 2 (Y

% A

A

-4

where U,(z) is the Tchebycheff polynomial of the second kind, defined by

Un(z) = sin[n arccos(z))

It is interesting to note that

Un(—2z) = sin[narccos(—z)]
= sin{n[r — arccos(z)]}
= sin(nm)Th(z) — cos(nr)U,(z)
= (U0

Applying this property to Equation 120 provides

¢, = { D M ar Un (';,‘1) n, odd

0 n, even

(119)

(120)

(121)

(122)

(123)



1t is now possible to express the nonlinear function, g(z), in the series repre-

sentation

T

U2k+l <%) Torsa (Z) (124)

where, as in the Gaussian case, M = 291 — 1,

0= 2w

By utilizing the expressions given as Equations 108 and 124, and by rearranging

the orders of summation and integration, Equation 6 becomes

XX & { cos(mwoT)

Re(r) = _;{J;M;gg Gk + 1) 1)

'U2k+1( >U2I+1 %)

Lo ()2 G () =
Lo (3)2(2) (g =]} 0

Utilizing the ortlogonality property given by Equation 113 allows the simpli-

fication of Equation 125 to

Reir) = 25 % Z{ e

i—-M j==M k=0

. U2l.-+1 (Z) U2L+1 (J/;])}

_ cos[(2k + 1)wp] ig
= Z{ (2k +1)? [Z U““(A)

k=0 M

} (126)

RY(»,") = Z ag COS[('ZIC + J_)wo'r] (127)
k=0

which takes the form
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(128)

o S0 (0]

where
2¢°
k=
w2 (2'1" + 1 i==M
Now, the second term in Equation 10 must be attacked by first evaluating the

t

integral given by Equation 8. For the case at hand, Equation 8 becomes
@

c= / [ } = de (129)

where ¢ is the normalized power of the input, which for a sinusoid with amplitude

2 42)2

2 g al;
A is 4-. Noting that the integrand is an even function of z, allows the use of the
(130)

x
7 (A? - z?)?

following equation:
4 A

=T / g(z)
Ignoring the form of g(z) derived as Equation 124 and performing the integration

given as Equation 130 as a finite sum of integrals over intervals where g(z) is con-

tinuous yields
4 | M | pimi1)g H @
¢ = A_z{,;,[mq (m+§>q(W(A2_m2)%) dm}

A

/ <M + 1) g| —2—| do
(M+1)q 2 T (A? — z2)?

4q u 2 7t 2 2.2

= L3S (o 5) (147 = (malE = (42 = m+ 12R)|
m=0

(M + %) (147 - (M +1)2¢% )}

[NIE
SEP— )

M
+ Z (/12 - m?q?) _I

=

4q

wA?

D]

3
-

o e ey

cC=

42

Expanding the sunimation a: ! collecting terms provides the following expression

S s

(131)

(132)




The autocorrelation of the quantization error can now be expressed in the

following form:

Rg,(7) Z arcos((2k + 1wor] + (1 — 2¢)Rx(7) (133)
k=0

which introduces another new problem. The relationship between Rx(r) and
cos(wo7) remains to be determined. To determine this relationship, the following

expression must be considered:

Rx(r)

A A
/ / 18 W (21, x2; 7) dy day
-AJ-4

2 Je
= Z —";COS(WZLU()T)

m=0 4

i / AN | 34)
— cos MweT —_— — ) do 1
om0 o) ~A (A2 - ,Lz)% " (A> ' (
The reduction of this expression to a simple function of cos(mwg7) is quite involved
and therefore appears in Section A.2 of this thesis. The simple function of cos(mw,T)

1s as follows:
2

Rx(7) = A? cos(woT) (135)

Incorporating Equations 126, 132 and 135 into Equation 10 allows the expres-
sion of the autocorrelation of the quantization error as a function of cos(mwo7) in

the following manner:

REq(’T)

g (oo 8 o]

La=~M 1 J

] } cos(wor)  (136)

M

A2 4q[A
{7 - 2[5+ 2 )

a m=1

LM il
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where, as before, M = 29-1 —1.

3.5.2 The Determination of Some Noise Related Figures of Merit for a Sinu-

sotdal Input with Random Phase

8.5.2.1 The Normalized Noise Power From the expression provided
above as Equation 136, the determination of an expression for the normalized noise
power can be made. As mentioner. .or the previous two cases, this normalized noise

power, or mean-squared error, is the autocorrelation of the quantization error eval-

uated at a time differential of zero, or

N, = REQ(T=0)

2q2 o] 2
- ?;:; (2L+1 ,Z Uakr <A>
2 M 1
+ %— . [i; + 3 (A2 - m2q2)2] (137)
m=1

3.5.2.2 The Signal-to-Quantization Noise Ratio Now that Equation 137
has been provided, a signal-to-quantization ratio derivation becomes trivial, since the

normalized signal power is

A2
S=Rx(r=0)= - (138)
Creating the desired ratio then yields
S _ [ 4d i 1 f: U <z q) 2
qu B ‘427‘-2 k=0 (2k + 1)2 i=—M . A

4(1 2 M

+1——[— A2§_}( 2 - m??) ]>—l (139)

[N

3.5.8 The Determination of the Quantization Noise Spectrum for a Sinusoidal

Input with Random Phase Now that the autocorrelation of the quantization error
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is available as Equation 136, the Wiener-Khinchine relationship can be applied in
a similar manner as for the previous two cases. Applying this relationship and
recognizing that the Fourier transform operation is a linear operation yields the

following expression:

i==M

M zq 2
GEq(f) = Z { 2k+ 1) [ Z U2k+1 (Z)] f{COS[Qﬂ'(Zk + l)fo’r]}}
M

{5 - 2[5+ 2 (w-mr)

w m=1

_ealfe ]
- Wz}%{[{%{%kﬂ (A)}
G O = (B + DAl 817+ (b4 1>fo1}}

HE 3 Een]
o[6(f = fo) + 6(f + fo)] (140)

LM

-+

|} Ftosstonsin)

(M

which takes the form

Ga(f) = 5 2 wlflf = (@2k-+ 1))+ + 2+ i)

+ 218(f = fo) + 87 + o)
= = Z ar{8[f — (2k + 1) fo) + 8[f + (2K + 1) fol}

l.—l

+ (a0 4 B)B(f = o) + 8(F + fo) (1)

where ay, is as defined in Equation 128 and




If an identical approach is taken regarding Equation 128, the following rela-

tionship results for the output spectrum:

Z ar{8[f — (2k + 1) fo] + 8[f + (2k + 1) fo]} (143)

L-O

Note that in order for Equation 141 to represent a valid power spectral density,

the condition
G +b>0 (144)

must be met.

Since

Ui(z) = sin(arccosz)

= (1-2%)? (145)

Equation 128 can be used to reveal that

2; [ + ‘Z‘( )%r (146)

1=1

Making the appropriate substitutions into the condition given as Equation 144 yields

(Mg

Clg e Sle-on)] - 2[4+ L (0o

2
]+%—zo (147)

The application of the quadratic equation reveals that an equivalent condition is

A : A?
2t (A2 - zzqz) > —(;75 (148)

(S

or

_}%(1—%3)% 22’2_ (149)




In order for the preceding expressions regarding the sinusoidal input with ran-
dom phase to be valid, care must be taken to ensure that this condition on the ratio

of q to A is satisfied. Also, a second condition exists which must be satisfied. This

condition, namely
q 1
<o 150
A™ M (150)

can be noted by studying many of the previous expressions.
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IV. Computer Implementation and Computations

4.1 The Gaussian Case

4.1.1  Approaching the Gaussian Input Iquations When approaching the
problem of attacking the equations derived for the Gaussian input problem, the
first obstacle to overcome is the determination of each required intermodulation

coefficient, a, by using Equation 41, repeated here as

e L [ Lo () B

(2k + 1)}

Studying Equation 151 draws particular attention to the ratio of Hoy (';1) to
(2k 4+ 1)!I. Both of these terms increase without bound as k increases without

bound. Therefore, somehow this ratio must be approached carefully.

Szegd developed an approximation for a related Hermite polynomial (16:194)

which is as follows:

L3+ (e,
TorD) P (“'2‘) () ~
1 T :1:3 1 s
2 1)zz — ——] —sin |(2n + 1)2x — —] 152
cos[( n+1)2z ns +6(2n+1)§sm ( )2z ns (152)

or, for n being even,

Hw) ~ -(—)p (Z) e

. {cos [(Qn + 1)%"01 + —-——i——-—sin [(‘271 + 1)15:1:]} (153)

s

where

Hy(z) = (—1)"¢" ——e™" (154)




Relating tlie approximation given as Equation 153 to the version of the Hermite

polynomial used in this thesis reveals that

Hyw) = 2°5H: (%)

for n being even.

Returning to the ratio under consideration

o Ben(Sores o

where
23

1
24(2% + 1)z

Caox(z) = cos [(21; +3

)%'z:] + sin [(Zk + %)%'c] (157)

In order to simplify this ratio, Stirling’s approximation can be utilized. This
approximation is

kl ~ e EF(2rk)2 (158)

(5:29). It is applicable to large k, and is accurate to within 0.5% for values of k

larger than 16. Utilizing this approximation reveals that

Ha(z) [ (k) (ark)i]?
@k+1)1  ekkE(2mk)32k(2k +1)%

]

S S |- (?4-2) (—~1)*Car(z) (159)

oxp (2] (-1 Cuta)

Q
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Now, for values of & larger than 16, the following approximation for ¢ can be

used:

a R by = g;( )%“ <:_.—M [m]gexp ((‘;‘q’);>
fo [+ 3)! @)

G

2
+ ———*———=sin

W alw @)

For values of k smaller than or equal to 16, the exact expression for a, given as

Equation 151, can be used. Generating the Hermite polynomials necessary to use

the exact equation becomes a simple matter if the following recurrence relationship

(13:2402) is recognized:
Hypq(z) = aHy(z) — nHpoq (7) (161)

where Ho(z) = 1 and H(z) =

Allowing aj, to be equivalent to (02)%**1ay, with a; as calculated using the
exact equation, the number of necessary computations for determining aj, can be
reduced by noting the property given as Equation 34. This property allows the
modification of Equation 151 to

“i=é‘%(‘2%?ﬁ Hop(0 +2L xp( )2>H (%)]2 (162)

i=1

Now, if &, is equivalent to (0%)%+1&;, with a; as calculated using Equation 160,

then the expression used to calculate the normalized noise power for the qnantization
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noise can now be derived from Equation 47 to be

ZGH“ Z

k=17

+02{1—\/§q [1+2m§_jlexp< (—’;%)—QH}

Zam Zawa (163)

k=17

where b is as defined in Equation 53. The upper limit, R, can be determined by
repeatedly increasing its value by a factor of 10 until further increases have no
substantial effect on the result. For the purposes of providing data for this thesis,
the values R = 10*, R = 10%, and R = 10° were used. Computer memory limitations
placed a constraint on the R = 10° value, although, for each case, this was sufficient
for providing a reasonable approximation. Particular attention was paid to the order
of the summation. The intermodulation coeflicients were summed in the order of
decreasing values of k in an attempt to sum smaller values of ay, first and reduce the

effects of computer roundoff.

Once N, is determined, the signal-to-quantization noise ratio is easily obtained

by dividing the N, value into the input signal power, S = o2,

In the process of calculating IV, it became necessary to determine each aj,, each
ay,, and the value b. These same values can be used to provide the power spectral
densities of the quantization error and of the quantizer output. For the chosen input
autocorrelation function, Equations 55, 57, and 56 reveal the following one-sided

power spectral densities:

4 - 1
Gx(f) = Z - (2‘;‘_}:)2-] (164)
N il_ [ » (216-*-1)(1]
Gy(f) =~ « | & o )2+( L) (165)




(166)

In order to reduce redundancy, each of the above power spectral densities are one-
sided and apply only to f > 0. Note that these power spectral densities can be
plotted in increments of - versus a horizontal axis of £ Therefore, at this point,
a does not require further specification. R takes on the same value as that used to

determine the final &}, for earlier consideration.

Finally, since for the chosen input autocorrelation function, Ry(r = 0) = ¢? =
1. This implies that ax = a}, and dx = &,. Therefore, all quantities needed to
determine the power spectral densities are identical to those used to determine the

normalized noise power.

4.1.2  Programming for Gaussian Input Results The computer program sub-
routines which compute the normalized noise power, signal-to-quantization noise
ratio, and each of the relevant power spectral densities pertaining to the chosen in-
put autocorrelation function have been coded into the Fortran 77 computer language
and can be found in Section B.1 of this thesis. This code applies to the 2 = 10,000

case only. Only minor modifications are necessary to increase R.

A synopsis of the subroutines which have been used to produce the results

given later in this thesis appears in Table 2.

4.1.8  The Gaussian Input Results Once the required subroutines were coded,
they were used to generate the normalized noise powers and signal-to-quantization
noise ratios for the quantization process ranging from 1 to 8 bits. In order to obtain
the normalized noise powers, a unit input standard deviation was assumed. However,

the calculated signal-to-quantization noise ratios are valid regardless of the input
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Table 2. Subroutines Used for the Gaussian Input Case

| Subroutine | Purpose Called By ]

nopoga Calculates the normalized noise power | User. This suk ‘outine must be pro-
and the signal-to-quantization noise | vided the quantization step size, the
ratio. standard deviation of the Gaussian in-

put, and the number of bits used for
quantization.

pospga Determines the power spectral densities | User. This subroutine must be pro-
of the quantization error, the quantizer | vided the quantization step size, the
output, and the quantizer input for the | standard deviation of the Gaussian in-
chosen input autocorrelation function | put, and the number of bits used for
and places them in files named gauerr, | quantization.
gauout, and gauin, respectively.

dtakga Determines all values of af, and @}, for | nopoga or pospga.
k = 0 through £ = R. TFor the case
provided in Section B.1, R = 10, 000.

clakgl Calculates the value of a) for £ = 0 | dtakga.
through & = 16.

geth2k Determines the configuration of Hay(z) | clakgl.
and Hap_j(z) if given Hax_s(z) and
Hop_s(z) orif k = 0.

evevpl Evaluates a polynomial possessing | clakgl.
nonzero coefficients for only the even
powers of the polynomial argument.

facto Provides the factorial of an integer. clakgl.

clakg2 Calculates the value of @) for k = 17 | dtakga.
through & = R. For the case provided
in Section B.1, 2 = 10, 000.
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Table 3. Calculated Noise Related Figures of Merit for a Gaussian Input

Number Step Normalized Signal-to-
of Size Noise Power Quantization
Bits R | (units) | (units squared) | Noise Ratio (dB)

1 10% 1 1.60 3.61-10"1 4.42

2 10* 1 1.00 1.17-107! 9.32

3 10°% | 0.590 3.71-107? 14.3

4 10° | 0.339 1.13-.1072 19.5

5 10% | 0.191 3.46-10-3 24.6

6 106 | 0.106 1.02-1073 29.9

7 106 | 0.0586 2.95 .10~ 35.3

8 106 | 0.0313 | 8.14-107° 40.9

standard deviation. The optimal quantization step size was determined to three
significant digits by repeated program execution over a simple iterative process. The

data obtained, along with the value of R used to obtain the data, appears in Table 3.

The necessary subroutines were also used to determine the input, the output,
and the error power spectral densities for the quantization process ranging from the
use of 1 to 5 bits. The input power spectral densily for the chosen input autocorre-

lation function appears in Figure 3.

Figure 4 illustrates the trend of the output power spectral density as the num-
ber of bits employed increases from 1 to 5. Likewise, Figure 5 illustrates the trend
of the error power spectral density as the number of bits used increases in a like

manner.

4.2 The Negative-Lzponential Case

4.2.1 Approaching the Negative-Exponential Input Equations As was the case
with anticipating a Gaussian input, the problem of attacking the negative-exponential

input problem begins with approaching the intermodulation coefficients. The cqua-
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Figure 3. The Power Spectral Density of the Gaussian Input Signal
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Figure 4. The Power Spectral Density of the Quantizer Output for a Gaussian
Input
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Figure 5. The Power Spectral Density of the Quantization Noise for a Gaussian
Input

tion for determining these coeflicients appears as Equation 80 and is repeated here

o=t {Smer (1) (@) -5 (0]} am

Studying this expression draws particular attention to the subtraction operation

as

between the two Laguerre polynomials. Both of these terms become difficult to eval-
uate as k increases without bound. Therefore, this expression must be approached

carefully.

Szegd developed an approximation for the Laguerre polynomial (16:192) which

is as follows:

Ln(z) & 7% exp (3'2—) (nz)™¥ cos [Z(nm)% - %] (168)

— C , : .
Tbis approximation becvines iticreasingly accurate as n becomes large, but the accu-
racy occurs somewhat more slowly than the approximation for the Ilermite polyno-

mial given as Equation 152 (16:192). However, the approximation, which possesses
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an error term on the order of n=%*, is sufliciently accurate for values of n such that
n 2 50. Therelore, for values of & larger than 50, the following approximation can

be used:

o

y &

- (El D ) ()
()4
e () (10
(23]}

Ao oo (5

= S[ (( )w) "§J}> (169)

For values of £ such that & < 50, the exact exp-ession of ay , given as Equa-

3
qza

On|..

tion 167, can be used. Generating the Laguerre polynomial difference terims necessary
to usc the exacl equation can be accomplished if the following identity, as provided

by Szegé (16:97), is applicd:

(170)




()t B k-1 (=)
= +
ERRP P BRI
k b—1 —2)
B ; r—1 ( "') -

Now, if a; and & are determined using the appropriate equations, the expres-
sion used to calculate the normalized noise power can be derived from Equation 89

as

50 R
Ny &~ > ap+ >
k=0

k=51
N ng
+2 ['cg - 2¢° Z nexp (——)]
n=1 To
50 R
IS Z ax + Z ar -+ 21).’1:(2) (172)
k=0 k=51

where b is as defined in Equation 94. The upper limit, R, can be determined by
repeatedly increasing its value by a factor of 10 until further increases have no
substantial effect on the result. For the purposes of providing data for this thesis,
the values R = 10, R = 10°, and R = 10° were used. Computer memory limitations
placed a constraint on the R = 10® value, although, for each case, this was sufficient
for providing a reasonable approximation. Particular attention was paid to the order
of the summation. The intermodulation coeflicients were summed in the order of
decreasing values of k in an attempt to swm smaller values of ¢y first and reduce the

effects of computer roundoff.

Recall that before this expression for N, can be valid, the value g(z = 0)
must be chosen to satisfly the condition given as Equation 103. Therefore, before
Equation 172 can be applied, g(z = 0) must be determined by applying Equation 103
or by letting g(z = 0) = 0 as appropriate. For further details, please refer to hc

text accompanying Equation 103.
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Once N, is determined, the signal-to-quantization noise ratio is easily obtained

by dividing the value N, into the input signal power, S = 2z2.

In the process of calculating NN, it became necessary to determine an appropri-
ate g(z = 0), each ay, each &, and the value b. These values can be used to provide
the power spectral densities of the quantization error and of the quantizer output.
For the chosen input autocorrelation function, Equations 97, 99, and 98 reveal the

following one-sided power spectral densities:

_wy (f 4 1

Gx(f) = '&96<E>+'&' m (173)
AT S

Gy(f) ~ aé(a>+a §k2+(27r£)2 (174)

on) = (2258)5(2)

R kay, bzl

k=1 k2 + (271"‘5)2 ¥ 14+ (27r£)2

4

— 175
+3 (175)
In order to reduce redundancy, each of the above power spectral densities are one-
sided and apply only to f > 0. Also note that as for the case of a Gaussian input,
these power spectral densities can be plotted in increments of % versus a horizontal
axis of {; Therefore, at this point, @ does not require further specification. R takes

on the same value as that used to determine the final G, for earlier consideration.

4.2.2 Programming for Negative-Ezponential Input Results The computer
program subroutines which compute the normalized noise power, signal-to-quan-
tization noise ratio, and each of the relevant power spectral densities pertaining to
the chosen input autocorrelation function have been coded into the Fortran 77 com-
puter language and can be found in Section B.2 of this thesis. This code applies to

the R = 10,000 case only. Only minor modifications are necessary to increase R.
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A synopsis of the subroutines which have been used to produce the results

given later in this thesis appears in Table 4.

4.2.8 The Negative-Exponential Input Results Once the required subroutines
were coded, they were used to generate the normalized noise powers and signal-
to-quantization noise ratios for the quantization process ranging from 1 to 8 bits.
In order to obtain the normalized noise powers, a unit input mean was assumed.
However, the calculated signal-to-quantization noise ratios are valid regardless of the
input mean. The optimal quantization step size was determined to three significant
digits by repeated program execution over a simple iterative process. Furthermore,
the optimal value for the quantizer output corresponding to the first quantization
level was determined as well. The data obtained, along with the value of R used to

obtain the data, appears in Table 5.

The necessary subroutines were also used to determine the input, the output,
and the error power spectral densities for the quantization process ranging from the
use of 1 to 5 bits. The input power spectral density for the chosen input autocorre-

lation function appears in Figure 6.

Figures 7 through 11 illustrate the tren:' of the output power spectral density

as the number of bits employed increases from 1 to 5. Note that the delta function

N . x2 1
appearing at {; = 0 increases and approaches the value =2, or =, as the number

of bits used for quantization increases. Figure 12 illustrates the trend of the error

power spectral density as the number of bits used increases in a like manner.
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Table 4. Subroutines Used for the Negative-Exponential Input Case

[ Subroutine | Purpose | Called By ]
nopone Calculates the normalized noise power | User. This subroutine must be pro-
and the signal-to-quantization noise | vided the quantization step size, the
ratio. mean of the negative-exponential in-
put, and the number of bits used for
quantization.
pospne Determines the power spectral densities | User. This subroutine must be pro-
of the quantization error, the quantizer | vided the quantization step size, the
output, and the quantizer input for the | mean of the negative-exponential in-
chosen input autocorrelation function | put, and the number of bits used for
and places them in files named nexerr, | quantization.
nexout, and nexin, respectively,
dtakne Determines all values of ap and @ for | nopone or pospne.
k = 0 through k¥ = R. Tor the case
provided in Section B.2, R = 10, 000.
getgl Determines the appropriate g(z = 0) | dtakne.
in order to minimize error while satis-
fying the necessary conditions for valid
computations.
claknl Calculates the value of aj for & = 0 | dtakne.
through £ = 50.
elpdt Evaluates the Laguerre polynomial dif- | claknl.
ference term for a particular argument.
This term is the evaluation of Lx(z) —
Ly—1(2) for the given argument.
comb Evaluates the combination function of | elpdt.
“m choose n”. In other words, it deter-
mines the number of ways that n items
can be selected from m total items.
dfacto Finds the factorial of its first argument | elpdt.
and returns the factorial as its second
argument. The second is in double pre-
cision format in order to allow larger
values.
clakn2 Calculates the value of @ for & = 51 | dtakne.
through & = R. For the case provided
in Section B.2, R = 10, 000.
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Table 5. Calculated Noise Related Figures of Merit for a Negative-Exponential

Input
Number First Quantization | Step Normalized Signal-to-
of Level Output Size Noise Power Quantization
Bits R Value (units) (units) | (units squared) | Noise Ratio (dB)
1 104 0.001 1.91 3.77-107! 7.24
2 104 0.244 1.08 1.37-1071 11.7
3 10° 0.221 0.660 4,96 - 1072 16.1
4 10° 0.161 0.400 1.70 - 102 20.7
5 108 0.104 0.235 5.75- 1073 25.4
6 10° 0.065 0.139 1.86-1073 30.3
7 10° 0.038 0.0784 5.81-10~1 35.4
8 10¢ 0.023 0.0465 1.81-1071 40.4
4
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Figue 6. The Power Spectial Density of the Negative-Exponeniial Input Signal
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4.8 The Sinusoidal Case with Random Phase

4.8.1 Approaching the Random Sinusoidal Input Equations For the case of
this class of inputs, computations become more direct and straightforward than for
the prior two cases. As before, the problem begins with approaching the inter-
modulation coefficients. The equation for determining these coefficients appears as

Equation 128, and is repeated here as

2
2q 1

BT R Rk e [Z Uzt (A)

Applying the property given as Equation 122 to Equation 176 reveals that

(176)

2
2 1 iq
%= T Rk 1) [U2A+1 +2§U2L+1 (z)] (177)
where
Uak1(z) = sin[(2k + 1) arccos(z)) (178)

Now, using Equation 177, the expression used to calculate the normalized noise

power can be derived from Equation 137 as

e

L'
N, =~ Zak+é———q[ +Z( —m2q2)}
m=1
A Zak-}-b (179)
k=0

where b is as defined in Equation 142. The upper limit, R, can be determined
by repeatedly increasing its value by a factor of 10 until further increases have no
substantial effect on the result. For the purpose of providing data for this thesis, the
values R = 10? and R = 10° were used. Particular attention was paid to the order
of the summation. The intermodulation coefficients were summed in the order of

decreasing values of £ in an attempt to sum smaller values of ay first and reduce the
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effects of computer roundofr.

Recall that before this expression for N, can be valid, the ratio of ¢ to A nust
meet certain criteria as defined by the conditions given as Equation 149 and 150.
Therefore, before Equation 179 can be applied, the ratio of ¢ to A must be tested
for applicability.

Once N, is determined, the signal-to-quantization noise ratio is casily obtained

by dividing the value of N, into the input signal power, S = 423

In the process of calculating NNy, it becomes necessary to determine each ay. and
the value b. These same values can be used to provide the power spectral densities
of the quantization error and of the quantizer output. Equations 135, 143, and 141

reveal the following one-sided power spectral densities:

Gx(f) = o7 o (180)
T
Gor) ~ Ladlf - 2+ D (181)
Galf) ~ Sadlf - (@k+ 1)
k=1
+ (a0 + D)3/ = fo) (182)

In order to reduce redundancy, each of the above power spectral densities are one-
sided and apply only to f > 0. Also note that for a random sinusoidal input, these
power spectral densities can be plotted versus a horizontal axis in increments of fo.
Therefore, at this point, fo does not require further specification. Finally, the value
T can be limited in order to produce an uncrowded input. The limited value of T
will produce a spectrum for 0 < f < (27 + 1) fo. The value of T' must be chosen to
be smaller than that of R.

4.8.2  Programming for Random Sinusoidal Input Results The compuler pro-

gram subroutines which compute the normalized noise power, signal-to-quantization
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Table 6. Subroutines Used for the Random Sinusoidal Input Case j
[ Subroutine [ Purpose Called By ] ;}
noposi Calculates the normalized noise power | User. This subroutine must be pro- i
and the signal-to-quantization noise | vided the quantization step size, the :
ratio. amplitude of the random sinusoidal in- i
put, and the number of bits used for !
quantization. | 1
pospsi Determines the power spectral densities | User. This subroutine must be pro-
of the quantization error, the quantizer | vided the quantization step size, the
output, and the quantizer input for the | amplitude of the random sinusoidal in- !
chosen input autocorrelation function | put, and the number of bits used for
and places them in files named sinerr, | quantization, i
sinout, and sinin, respectively.
testra Tests the given ratio of the quantiza- | noposi or pospsi. ‘
tion step size to the amplitude of the :
random sinusoidal input. If the ratio
given does not allow valid results, an
appropriate message is printed and sub- ;
sequent calculations are forgone.
dtaksi Determines all values of ax for & = 0 | noposi or pospsi. ;
through & = R. For thc case provided
in Section B.3, R = 10,000.
claksi Calculates the value of a; for & = 0 | dtaksi.
through & = R. Tor the case provided
in Section B.3, R = 10, 000. :
evuk Evaluates the Tchebycheff polynomial | claksi. E
of the second kind, Ur(z).

noise ratio, and each of the relevant power spectral densities have been coded into
the IFortran 77 computer language and can be found in Section B.3 of this thesis. ,

This code applies to the R = 10,000 and T" = 20 case only. Only minor modifications

are necessary to increase R or change T

A synopsis of the subroutines which have been used to produce the results

given later in this thesis appears in Table 6.

4.3.3 The Random Sinusoidal Results Once the required subroutines were
coded, they were used to generate the normalized noisc »~wrers and signal-to-quanti-

zation ncise ratios for the quantization process rang: « 8 bits. In order to
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Table 7. Calculated Noise Related Iigures of Merit for a Randem Sinuscidal Input

Number Step Normalized Signal-to-
of Size Noise Power Quantization
Bits R | (units) | (units squared) | Noise Ratio (dB)

1 10" | 1.58 1.18 .10 6.26

2 10% | 0.607 2.24-1072 13.5

3 101 | 0.274 5.12.10°3 19.9

4 10 | 0.131 1.25.1073 26.0

) 10* | 0.0639 3.10- 101 32.1

6 10% | 0.0316 7.81.10°° 38.1

7 10° | 0.0158 2.12-10°° 43.7

8 105 | 0.00784 | 5.01-107° 50.0

obtain the normalized noise powers, a unit amplitude was assumed for the random
sinusoidal input. However, the calculated signal-to-quantization noise ratios are
valid regardless of the input amplitude. The optimal quantization step size was
determined to three significant digits by repeated program execution over a simple
iterative process. The data obtained, along with the value of R used to obtain the

data, appears in Table 7.

The necessary subroutines were also nsed to determine the input, the output,
and the error power spectral densities for the quantization process ranging from the
use of 1 to 5 bits. The input power spectral density for a unit input amplitude

appears in Figure 13.

Figures 14 through 18 illustrate the trend of the resulting output power spectral
density as the number of bits employed increases from 1 to 5. Figures 19 through
23 illustrate the trend of the error power spectral density as the number of bits used

increases in a like manner.
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Figure 14. The Power Spect.al Density of a 1-Bit Quantizer Output for a Random
Sinusoidal Input




10; T T T T T T T T3

1k ]

0.1k ]

0.01 ]
Gy(f)

0.001 i ¥
0.0001 | 1 .
le — 06 i ] ! ! ' ] ]

0 5 10 15 20 25 30 35 40

Jo

Figure 15. The Power Spectral Density of a 2-Bit Quantizer Output for a Random
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Figure 19. The Power Spectral Density of the 1-Bit Quantization Noise for a Ran-
dom Sinusoidal Input
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Figure 20. The Power Spectral Density of the 2-Bit Quantization Noise for a Ran-
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Figure 21.  The Power Spectral Density of the 3-Bit Quantization Noise for a Ran-
dom Sinusoidal Input

k]

nd

1 E i 1 1 I ] i I i 3
0.1k .
0.01 k 3
0.001 :
0.0001 | .
Gg,(f)
le — 05 r y:
le— 06 | 1
le — 07 r 'y
le — 08 r -n
16 — 09 i I 1 | f 1 i 3

0 5 10 15 20, 25 30 35 40

fo

Figure 22. The Power Spectral Density of the 4-Bit Quantization Noise for a Ran-
dom Sinusoidal Input
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V. Conclusions and Recommendations

5.1 Conclusions

For three classes of input signals, this thesis has developed a relationship be-
tween the number of quantization levels and the resulting noise characteristics. For
each case, this relationship was characterized by expressions for the normalized noise
power, the signal-to-quantization noise ratio, the quantization error power spectral
density and the quantizer output power spectral density. These expressions were in
turn used to obtain the results given in Tables 3, 5 and 7. Furthermore, by assuming
the input power spectral densities shown in Figures 3, 6 and 13, the quantization
error power spectral densities were determined to appear as shown in Figures 5,
12 and 19 through 23 as applicable to the corresponding input signal classification.
Similarly, the quantizer output power spectral densities were determined to appear

as shown in Figures 4, 7 through 11 and 14 through 18.

In actuality, this thesis effort resulted in no unexpected results. However, there
was a discovery that certain requirements regarding quantization parameters were
to be met before the derived theoretical expressions became valid. This discovery

was not anticipated. These requirements are summarized in Table 8.

By comparing the signal-to-quantization noise ratios of the three classes of in-

puts, it is evident that the Gaussian and negative-exponential input cases result in

Table 8. Quantization Parameter Requirements for Valid Expressions

Input Signal Parameter Condition
Distribution Affected Required
Gaussian None N/A
Negative-Exponential || g(z =0) | See Fiqnation 103
Random Sinusoidal L See Equations 149 and 150
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similar ratios, particularly as the number of bits used in the quantization process
increases. In contrast, the random sinusoidal input case fares much better. The
rcason for this better performance is that the random sinusoidal case has no possi-
bility of providing an input larger than A. The other two cases must account for
the probability of inputs approaching infinity. Therefore, as the number of bits used
increases, the optimal quantization step size leads to a higher saturation level. This
trend is not necessary for the case of the random sinusoidal input. Consequently,
the optimal step sizes are much smaller and lead to a more accurate representation

of the input.

5.2 Recommendations

It is recommended that further studies be directed toward incorporating the
effects of sampling into the results obtained by this thesis. Recall that this thesis

was limited in scope to a continuous-time quantizer.

It is also recommended that further work be done to extend the results of this
thesis effort to include non-uniform quantization. It is well known that non-uniform
quantization, although more difficult to theoretically analyze, provides better noise

performance than uniform quantization.

Finally, further efforts regarding the consideration of additional classes of input,
signals are also recommended. The three input signal classifications studied by this

thesis are only a subset of the signals relevant to today’s applications.




Appendix A. Key Derivations

A.l1 The Determination of a Simple Relationship between Rx(7) and pu(r) for a

Negative-Ezponential Input

The integral under consideration for determining the subject relationship was

expressed as Equation 85 and is restated here as

Re(r) = [ [ "”1""2()]]0{2\/51?'2 p(7) ]

0 w3l — p2(r zo 1 - p3(7)

Zy + T2
| 222V s da 3
e exp ( 2ol = ,uz('r)]) dzy dzg (183)

By rearranging the double integral and by letting

_
zo[l — p?(7)]

o=

(184)

and

g = Y& (1)
zo 1 — p2(7)

= ay/Fau(r) (185)

Equation 183 cap be written as

Rxlry= f(;/o {xgexp(—cv:zg)/o [z1 exp(—az1)1o(28+/71) d2:] dmz} (186)

Applying an integral identity given by Gradshteyn and Ryzhik (7:720) results in

Ri(r) = = [ arexp( —mz)[ Lo (£ \

lu.{ .4

« M_s, (ﬁf)] do, (187)
27\ @
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where M) 4(2) is the Whittaker function (7:1059) defined by

2

r

Myu(2) = 25 exp (—-z-) P (/,L - A -12-,2;L +1; z) (188)

The degenerate hypergeometric function (7:1058), ®(¢,; z), is defined by

£z E(E+1) 7
vl y(y+1) 2!
E+)(E+D) 2 |
(v +1)(7 +2) 3!

(é,7;2) = 1+

(189)

Applying the identities given as Equations 188 and 189 to Equation 187 and
letting z = %2 yields

1 e 322 428
Rx(’f') = &Tu ) To exp(-—amg) [1 -+ 2z + -é-l- -+ ?- + . :I d.’l)g
00 e n
= -&%0 | a2 exp(—axs) [Tg (n -{;zll)z ] dzo
1 oo d [& !
= o To exp(—amg){-CE [7;) = }} dz,
1 e d 2, 2"
= &?0 A T exp(—azs) {-(; [zg -—-I-]} dz,
= " epex (—aw2) d (ze*)] ,dz
- a:z;o 0 W2 p w2 dZ y G2
1 o .
= ok & exp(—axz)(1 + z)e” dz, (190)

Recalling Equation 185 and recalling that z = %2 reveals that

Bx(r) = — [ {apex L4 ap(r)e
x(7) = A {:Lgexp(—arcg)[l-{-au (7)22)

. exp[a,u2(7')rc2]} dz,

= L [t e espl=olt - w27} do

= L [/ooo zoexp{—afl — p*(7)]z2} day

[a 2014
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* ﬂz% /ooo a3 exp{—afl ~ p*(r)}z} da,
’(r) 2
B aio [02[1 —lltz(T)P] ¥ ﬂwo [a"[l - ,lLQ('r)]a] (19)

Finally, recalling Equation 184 reveals that
Rx(r) = ag[l + p*(7)] (192)

A.2  The Determination of a Simple Relationship between Rx(r) and cos(muwor)

fe - a Sinusoidal Input with Random Phase

The expression under consideration for determining the subject relationship

was expressed as Equation 134 and is restated here as

Ry(t) =), C—"; cos(mwor)I2 (193)

m=0

where

N
I

A N
/ __‘7“___1Tm <£) da
~4 (A? — g2)? A

oy cos[maneces ()
= ———— cos |[marccos | — || da (194)
/ )2 A

-A (A2—'£L'2

Applying the trigonometric substitution & = A cos @ to Equation 194 yields

I, = A /0 " cos 0 cos(mf) df

Am =1
= { z (195)

0 elsewhere

Applying this result to Equation 193 provides i!.. following simple expression:

Rx(r) = %Z-cos(wor) (196)




Appendix B. Computer Programming Source Code

B.1  Source Code Used for the Gaussian Input Results

etk ok oo sk ok o o Sk e ok sk e oK ok ok e bk ok ok s skt sk s s sk sk e sk ksl s o sk ok ok sk ok ok ok sk ok ok ok ok o ok ook ok ok ok ok ok sk ok ok

*  SUBROUTINE NOPOGA *
Aok Rk ko ok Rk kR k ok ok kR dokokakokokok kR dokskok kol ok ook ol ok skt skl sk ko ok ok ok
* This subroutine determines the normalized noise power and the *
* signal-to-quantization noise ratio (in dBs) when given the *
* quantization step size, the standard deviation of the Gaussian *
* input, and the number of bits used in the quantization process. *
Kok ok ok kool okkokak ok oktok ok ok ok okl ok ok ek ok ko ok sk ok ok sk ok kR okl ok bk
* Variables: *
* q : The quantization step size *
* sig : The standard deviation of the Gaussian input *
* noofbt : The number of bits used in the quantization *
* process *
* akpa ¢ The array which ultimately contains all of the *
* desired a sub k primes *
* b : An additional quantity later required to pro- *
* vide the power spectral density of the *
* quantization noise *
* nopo : The calculated normalized noise power *
* sinora : The signal-to-quantization noise ratio in its *
* dimensionless state *
* sinodb : The signal-to-quantization noise ratio in dBs *
* lev : The number of quantization levels *
* k : The parameter which indicates the desired *
* a sub k prime *

ok koK Rk R ok Aok bk ok ko ok ok okl ok ok koo ok skoko ko e ok sk ok ok Stkok sk ook
subroutine nopoga(q,sig,noofbt)
real q, sig, akpa(0:10000), b, nopo, sinora, sinodb
integer noofbt, lev, k
call dtakga(q,sig,noofbt,akpa,b)
lev = 2%*(noofbt)
nopo = 0.
do 20 k = 10000, 0, -1
nopo = nopo + akpa(k)

20 cosntinue
nopo = nopo + (sig**2 * b)
write(6,30) ’The normalized noise power for ’, lev,

+ ’ levels with a step size of ’, q, ’ units’
write{6,40) > and & Guussian input with a standaxrd ’,
+ ’deviation of ’, s8ig, ’ units ’
write(6,50) ? is ’, nopo, ’ units squared.’

sinora = (sig#¥2)/nopo
sinodb = 10. * logiQ(sinora)
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30
40
50
60

write(6,60) ’'The resulting signal-to-quantizationr noise 7,
'ratio is ', sinodb, ’ dB.’

write(6,¥) ? ?

format (ix, a31, i3, a28, 7.4, a6)

format (ix, a40, a13, £5.2, a7)

format (ix, a6, gi0.3, aib)

format (1x, a43, a9, £5.2, as)

end

Sk ko sk o ok Rk koo ok ok ok ok sk sk sk ok o sk skl sk sk sk sk ok ok ok s ok skt ok sk sk ko ok ok

*  SUBROUTINE POSPGA *
Folokkkok ARk R ROk Rk Rk ok ko sk Aokokatoh ok ook ok ok ok kok s okkok s skokok skl skkok ook ok

*OX ¥ H ¥ ¥

This subroutine outputs the data necessary to plot the power *
spectral density of the quantization noise for a Gaussian input *
with a specified autocorrelation. This data allows the plotting *

of the power spectral density in increments of 1/alpha versus *
the horizontal axis of freq/alpha, where alpha is a damping *
factor pertaining to the specified autocorrelation function. *

kR ok o ok s s o o ok Rk ok ok skolok o ok sk ok stk ok ok ok sk ok sk otk ook ok ok sk kok s ok ok ook ok ok sk ok

Fok K E X X R F R K K K K K R KKK X ¥ K

Variables: *
q : The quantization step size *
sig : The standaxd deviation of the Gaussian input *
noofbt : The number of bits used in the quantization *

process *
pi : The standard constant *
aka : The array which stores the previosly calculated
a sub k’s *
b ¢ A quanli>.y calculated earlier which is necessary *
te p~. ride the power spectral density of the *
quani.ization ncise *
falph rfhe freqiency divided by the parameter alpha *
psdo : The output power spectral density in increments *
of 1/alpha for a particular falph *
psde ¢ The error power spectral density in increments  *
of 1/alpha for a particular falph *
psdi :  The input power spectral density in increments  *
of 1/alpha for a particular falph *
indf : An index used to iterate through falph’s *
k :  The parameter which indicates the desired *
a sub k prime *
dukpli : The value 2k + 1 *

Sk ok e ok sk o o Skokok Sk b sk ok Kok AOK Ak okokok Y ook b ok ko ok ok ok sk ok ok ok sk ok sk ok ok sk ok ok o s ke s ok ok ok ok o o ok ok ok o ok ok ok

subroutine pospga(q,sig,nocibt)
real q, sig, pi, aka(0:10000), b, falph, psdo, psde, psdi
integer noofbt, indf, k, dukpli

pi = 3.1416
g = q/sig
sig = 1.

call dtakga(q,sig,noofbt,aka,b)
open (unit=10,file=’gauerr’)
open (unit=11,file=’gancut’)
open (unit=12,file=’gauin?®)
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do 20 indf = 0, 236
falph = indf/589.
psdo = 0.
do 10 k = 10000, 0, -1
dukpli =2 * k + 1
psdo = psdo + (dukpll * aka(k))/

+ (dukpli**2 + (2. * pi % falph)**2)
10 continue
psde = 4, * (psdo +
+ (b/(1. + {2. & pi * falph)*x2)))

psdo = psdo * 4.
psdi = 4./(1. + (2. * pi * falph)*¥2)
write(10,30) falph, psde
write(11,30) falph, psdo
write(12,30) falph, psdi
20 continue
30 format (1x, 8.6, 5x, e12.5)
close (unit=10)
close (unit=11)
close (unit=12)

end
ks ok ARk kR oR ok ok stk ok ok sk okl ok Rokokaok ki ok Kokokiokor ok ok sk ok ok Kok sk kokok ok
*  SUBROUTINE DTAKGA *
Fok ok okkok kb kokok ok kb ok okl kKoK YRRk Rk ok oRoK KR o ok Aok ok ok sk kK ok o
* This subroutine determines all values of a sub k prime for k = 0 *
* through k = 10,000. It also produces the constant b, which, *
* along with the a sub k primes, is necessary to determine the *
* quantization noise spectrum. *
Hoh ARk ARk Rk Aok ok okok o oksk sk Kok sk ok 3 O ek sk o R KSR ok KRRk sk o ok ok ok ko
* Variables: *
* q : The quantization step size *
* sig ¢  The standa ( deviation of the Gaussian input *
* noofbt :  The number of bits used in the quantization *
* process *
* akpa : The array which ultimately contains all of the *
* desired a sub k primes *
* b :  An additional quantity later required to pro- *
* vide the power specty i3 density of the *
* quantization noise *
* pi :  The usual constant *
* gsigra : The ratio of the step size to the standard *
* deviation of the Gaussian input *
* sumex : The sum of the iterated exponential terms *
* exarg : The iterated argument of the exponential term *
* necessary to determine b *
* h2kmni :  The polynomial array representation of the *
* Hermite polynomial of degree 2k - & +
* h2k :  The polynomial array representation of the *
* Hermite polynomial of degree 2k *
* m ¢  The number transitions between quantization *
* levels in the positive (or negative) non- *
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k : The

* ¥ F #

zero range

ind ¢ An index used in the process

parameter which indicates the desired
a sub k prime

* ¥ X K

ok ks ok sk ks K R ok Ak ok ok stk skt ko ok ek ksl kokok ok ook ke sk ko sk sk ok ok sk Kok ko ok
subroutine dtakga(q,sig,noofbt,akpa,b)
real g, sig, akpa(0:10000), b, pi, asigra, sumex, exarg
double precision h2kmn1(0:31), h2k(0:32)

integer noofbt,
pi = 3.1416

m, ind, k

m = 2%k(noofbt - 1) - 1

gsigra = q/sig

do 10 ind = 0, 3%

h2kmni(ind)

h2k(ind) = 0

10 continue
h2k(32)
do 20 k

0.
0, 16

= 0.

call clakgi(akpa(k),h2kmni,h2k,gsigra,q,m,k)

20 continue

do 30 k = 17, 10000
call clakg2(akpa(k),qsigra,q,m,k)

30 continue
sumex = 0,

exarg = (-(qgsigra**2))/2.
do 40 ind =1, m
sumex = sumex + exp((ind**2) * exarg)

40 continue

b =1, = sqrt(2.

end

/pi) * gsigra * (1 + 2. * sumex)

o ok ok ok ok 3 e ke ok s ok ok sk ok sk ok ok sk ok b e ke s sk e sk sk sk ook ok sk e e ok ok ok dke ok sk s ok o e ok sk ok e ok ok ke ok ok ok ok e ok ok o o ok ok ok o ok ok ok

*  SUBROUTINE CLAKG1

*

etk ook ok ok sk ok s ok ofe ok sk ok s sk e sk ool ok e o o e e Sk e e sk sk ok ok e ok sk sk sk sk ok ol ok sk sk ok skl sk sk sk sk sk ke sk ok ok sk sk ok sk sk ok ok ok ok ok

* ¥ ¥ ¥

quite sufficient.

This subroutine calculates the exact value of a sub k prime and
is to be used on values of k such that 0 <= k <= 16. Larger
values of k will result in overflow during calculations.

*
*
Also, *
for larger values of k, the approximation subroutine CLAKP2 is %

*

ek ok ok sk ok ok s e s ok o ok o sk sk ke e ok sl o o s s sk e ek s ok sk sk ok sk sk s s ok ok sk ok sk ok ok sk sk o sk ok sk ok ok sk sk ok o ok sk ok ok ok sk ok sk

* Variables:

* akp :  The
* h2kmni The
*

* h2k : The
*

* asigra : The
*

¥ q : The
* m : The
*

*

desired value a sub k prime

polynomial array representation of the
Hermite polynomial of degree 2k - 1
polynomial array representation of the
Hermite polynomial of degree 2k

ratio of the step size to the standard
deviation of the Gaussian input
quantization step size

number transitions between quantization
levels in the positive (or negative) non-
Zero range
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* k : The parameter which indicates the desired *
* a sub k prime *
* pi : The standaxd constant *
* msum : The total evaluation of the summation term *
* polarg : The iterated argument of the Hermite polynomial =*
* in the summation term of the appropriate *
* a sub k prime equation *
* polqty : The iterated evaluation of the Hexrmite poly- A
* nomial in the summation term of the approp- *
* riate a sub k prime equation *
* sumadd :  An intermediate value used to obtain msum *
* squqty : The squared quantity which includes all terms *
* involving Hermite polynomial evaluations *
* facqty : The factorial of 2k + 1 *
* oxd :  The degree of the Hermite polynomials to be *
* evaluated *
* i : An index used in the process *
* dukpli : The value corresponding to 2k + 1 *

stokokk ookl kbt ok ok skoksk ok ko skl ok Rk Aok e kok Aok skok kA kR kR ko ok sk ok ok ok
subroutine clakgi(akp,h2kmni, h2k,qsigra,q,m,k)
real akp, gsigra, q, pi, msum, polarg, polqty, sumadd, squqty,
+ facqty 7

double precision h2kmni(0:31), h2k{(0:32)

integer m, k, ord, i, dukplt

pi = 3.1416

oxrd = 2 % k

call geth2k(h2kmni, h2k,k)

mcum = 0.

do10i=1, m
polarg = i * gsigra ;
call evevpl(h2k,ord,polarg,polqty) 3
sumadd = polqty * exp((-(polarg+*2))/2.) )
msum = msum + sumadd

10 continue

polarg = 0,

call evevpl(h2k,ord,polarg,polqty)

squqty = (polqty + 2. * msum)#**2

dukpli = oxd + %

call facto(dukpli,facqty)

akp = (squqty/facqty) * (q*x2/(2. * pi))

end

Rk sk ok ok ok sk dok ook ok ook dokokokskokokskokok ok ok ok ok ok sk kok sk sk ko sok ko ok skok sk ok ok ok Kok ok
*  SUBROUTINE GETH2K *
ok ok skokok ook ok dokkokosk ok dokok ok dokskokok ko skook ok ko sk Rk ok sk ok ok ks Kok ok o ok o ok skok o koK ok K
This subroutine determines the configuration of the Hermite *
polynomials of degree 2k and of degree 2k - 1. In order to do
so, it must be fed the Hermite polynomials of degree 2k - 2
and of degree 2k - 3 (the previously determined Hermite poly-
nomials).

sofelokskokok ook ookokok ko ko sk sk ok skokok Aok Rk sk ko ok ok oK K o K K Kok KoK oK ok ok Kk K Ko

* K ¥ ¥ ¥
* ¥ X ®

* Variables: *




* h2kmni : The polynomial array representation of the *
* Hermite polynomial of degree 2k — 3 (when *
* called) and then of degree 2k - 1 (when *
* returned) *
* h2k ¢ The polynomial array representation of the *
* Hermite polynomial of degree 2k - 2 (when *
* called) and then of degree 2k (when *
* returned) *
* k ¢ The parameter which indicates the desired degree *
* n : The degree of the desired h2kmni *
* npli : The degree of the desired h2k *
* coind : An index used in the process *

Sokok R ARk Rk R ok Aok sk Aok sk kot ook kbt ok ko ok ook ook ko ok ok sk ok koo sk ke sk ok okokskok
subroutine geth2k(h2kmni,h2k,k)
double precision h2kmn1(0:31), h2k(0:32)
integer k, n, npli, coind
if (k .eq. 0) then

h2k(0) = 1.
return

else
n=2x*xk-1
npll = 2 % k

do 10 coind = 1, n, 2
h2kmni(coind) = h2k(coind -~ 1) - (dble(n - 1.)
+ * h2kmni(coind))
10 continue
do 20 coind = 2, npli, 2
h2k(coind) = h2kmni(coind - 1)

+ - (dble(n) * h2k(coind))
20 continue
h2k(0) = (-n) * h2k(0)
end if
end
ook tokokdokkok skokok ook bk ok kb ok ok ok kol sk ok ieok ok e sk ok sk okskok ook sk koK s ks o ko sk ok s ook sk ok ok o
*  SUBROUTINE EVEVPL *
Aok skokokok kokakokokokatatok ookl ok sk stk ok ok ksl aksk ok ks sk sk sl ok s e ke skok s kol ok 3ok sk ok ok o ok Aok koK ok
* This subroutine evaluates a polynomial possessing nonzero *
* coefficients for even powers of the polynomial argument only. *
* The maximum degree of the polynomial which can be handled- by *
* this subroutine is degree 32. *
sokoke ook ook ok ook ok ok ok sk s ok sk skokokoksk ok stokok ok skt ks skl o sk skok sk e koo ok s skok o sk ok sk ke ok okok o
* Variables: *
* polarr : The polynomial array represertation -- *
* polarr(n) is the coefficient *
> of the n-th power of the polynomial *
* argument *
* ord : The degree of the polynomial to be evaluated *
* polarg : The argument of the polynomial *
* polans : The evaluation of the polynomial for the *
* argument *
* poladp : Iterations of polans in double precision form *

36




Y

* indexp :  An index used in the process *
Fokskkokokokdok okl kol folololokkokolok ook kol ok ko sk ok ok sk sk ks ok sk sk sk Kok koK sk ok Aok sk ko kK o
subroutine evevpl(polarr,ord,polarg,polans)

real polarg, polans

double precision polarr(0:32), poladp

integer oxd, indexp

poladp = polarr(0)

do 10 indexp = 2, ord, 2

poladp = poladp + polarr(indexp) * polargi*indexp

10 continue
polans = poladp
end
Aok ok skokak ok ok sk dokokokokkokakokoklokokokskkodok sk okakkok sk ok doksk Kk sk ok Aok R KRR K KK ok
*  SUBROUTINE FACTO *
Fkokok ko kok ko ok ok kdokskok otk skkokatokokdokokok ok - kokokok ok kb ok kokok o oKk Rk sk KoKk K koK
* This subroutine finds the factorzal of its first argument and *
* returns the factorial as its secoud argument. *
Fokokokok ok kool ok sk okl sk ok okok sokokok ok tokolokskokok ok —okkokakob bkl asaokk sk ok KRRk Ko KRk ok
* Variables: *
* facarg : The int r whose factori 1 is to be found *
* facans : The calculated factorial oi facarg *
* facind : An index used in the process *

ok ok sk ook ok ook ook ek sk ok sk sk sk ok sk akok sk ok ok ok ook ks ok sk ok ok sk sk ks sk Rk s ko ok sk Rk
subroutine facto(facarg,facans)
real facans
integer facarg, facind
facans = 1.
if (facarg .le. 1) return
do 10 facind = 2, facarg
facans = facans * facind
10 continue
end
Aokskokokokok ok ook okl okolok ok stk kb skok ok skok sk ok sok ok kkok ok kol ok sk Rk R Rk ok ok ok sk ok
*  SUBROUTINE CLAKG2 *
ok ok okl dolkodokdokokdok skl ookl ok ook ook sk okl k SRk ok ok ok Aok kol kR ok sk ok ok
This subroutine calculates the approximate value of a sub k
prime and is to be used on values of k such that
17 <= k <= 10,000. Smaller values of k should be referred to
CLAKP1 for an exact calculation. Larger values of k will be
insignificant.
Hokskokok ok skokk ok ok bk sokokskodokokok sk skokksk sk sk ok ok koo sk koK ok ok ok sk sk sk Kok Kok Ko ok
Variables:
akp :  The desired value a sub k prime
gsigra : The ratio of the step size to the standard
deviation of the Gaussian input
q :  The quantization step size
m : The number transitions between quantization
levels in the positive (or negative) non-
zero range
k : The parameter which indicates the desired
a sub k prime

* ¥ ¥ K ¥
* ¥ ¥ ¥ ¥

¥ ¥ X K K X K OF ¥ K
¥R ¥ K K X K F ¥ ¥
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* pi : The standard constant *
* cosarg The square of 2k + 1/2 - used to increment the  *
* argument of the cosine and sine terms *
¥ msum : The total evaluation of the summation term *
* maty : An intermediate value used to obtain msum *
* sinfac : The factor applied to the incremented sine term *
* squqty : The squared quantity which includes the *
* summation of the cosine and sine terms *
* i :  An index used in the process *
* dukpll : The value 2k + 1 *

kot dok ok ok R okokooklokok ook okt ol ok ik ok otk ok kolokakok skl ook s okadeskakokkok ok st kol ok
subroutine clakg2(akp,qsigra,q,m,k)
real akp, gqsigra, q, pi, cosarg, msum, mqty, sinfac, squqty
integer m, k, i, dukpll
pi = 3.1416
cosarg = sqrt(2. * k + 0.5)
msum = 0.
do10i=1, m
mqty = cos(cosarg * i * qsigra)
sinfac = ((i * gsigra)**3)/(24. * cosarg)
mqty = mqty + sinfac * sin(cosarg * i * qsigra)
msum = msum + mqty * exp((-((i * gsigra)**2))/4.)
10 continue
squgty = (1. + 2. * msum)*#*2
dukpli = (2 * k) + 1
akp = ((g**2)/(2. * pi * dukpll * sqrt(pi * k))) * squgty
end

B.2  Source Code Used for the Negative-Exponential Input Results

sk koo ok sk ok ok sk ok ok ook ok ko sk ki skl ook ok sk sk s ok sk sk ok o sk ko ok ok ks ok ook o ok ol sk ok sk e o o ks o

*  SUBROUTINE NOPONE *
sokskok kR okok ok sk kb ok ok sk ook ok ok ok stk ok okt sk ko sk kol ok skokok ok sk ok sk ko ok A okeok
* This subroutine determines the normalized noise power and the *
* signal-to-quantization noise ratio (in dBs) when given the *
* quantization step size, the mean of the negative-exponential *
* input, and the number of bits used in the quantization process. *
ok kR sk ok ok kKR AR ks ksl sk sk sk sk ko sk stk skskokskk sk koo ok ok sk s sk ok Kok ok sk ko
* Variables: *
* q :  The quantization step size *
* x0 ¢ The mean of the negative-exponential input *
* noofbt :  The number of bits used in the gquartization %
* process *
* aka :  The array which ultimately contains all of the *
* desired a sub k’s *
* b ¢ An additional quantity later required to pro- *
* vide the power spectral density of the *
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¥ O K K K K X F K X K

quantization noise

g0 : The desired value for the quantizer output
corresponding to the first level divided by
the step size

nopo : The calculated normalized noise power

sirora : The signal-to-quantization noise ratio in its
dimensionless state

sinodb : The signal-to-quantization noise ratio in dBs

lev The number of quantization levels

se e

k The parameter which indicates the desired

a sub k

¥ O N K K K N K K N ¥

ok ok K Rk ok ok ok ook ik skl ootk kool ek ook sk sk ok ek ok skt kol s koo sk ko ks kok
subroutine nopone(q,x0,noofbt)

+

20

30
40
50
60
70
end

double precision q, x0, aka(10000), b, g0, nopo, sinora,
sinodb
integer noofbt, lev, k
call dtakne(q,x0,noofbt,aka,b,g0)
lev = 2%*(noofbt)
nopo = 0.
do 20 k = 10000, O, -1
nopo = nopo + aka(k)
continue
nopo = nopo + (2. * (x0**2) * b)
write(6,30) ’The normalized noise power for ’, lev,
? levels with a step size of ’, q,
? units?
write(6,40) ° and a negative-exponential input with a 7,
‘mean of ’, x0, ’ units is ?
write(6,50) ’, nopo, ’ units squared.’
sinora = (2. * x0%%2)/nopo
sinodb = 10. * logi0(sinora)
write(6,60) ’The resulting signal-to-quantization noise ’,
‘ratio is ’, sinodb, * dB.’
write(6,70) ’The quantizer output for an input of 0 units’,
’ is ’, g0 * ¢q, ’ units.’
write(6,*) ? ?
format (1x, a3i, i3, a28, £7.4, a6)
format (1x, a43, a8, £5.2, al0)
format (1x, a3, g10.3, aib)
format (1x, a43, a9, £5.2, a4)
format (1x, a44, a4, £5.3, a7)

kKRR ARk RO ok ok kb ook sk skok sk ok o ok ke ko o ok sok sk sk ek ko sk sk ok ok o o ok o ok ok o o K ook ok
*  SUBROUTINE POSPNE
okkkok ok ok KoKk ROk Fk R KRR KRR ko Kok skok skok ko ok sk sk skok sk ok sk skl s ok ko ok o o sk ok ok

*

* ¥ K K X

This subroutine outputs the data necessary to plot the power
spectral density of the quantization noise for a Negative-Expo-
nential input with a specified autocorrelation. This data
allows the plotting of the power spectral density in increments
of 1/alpha vérsus the horizontal axis of freq/alpha, where alpha
is a damping factor pertaining a function of the specified
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* autocorrelation function. * . :
akkokkkok ok kol ko bbbk ok ok koo ook kkokoksk R R KR KKK koK kKoK oK

* Variables: *
* q : The quantization step size * j
* x0 : The mean of the negative-exponential input * :
* noofbt : The number of bits used in the quantization * :
* process * 3
* pi :  The standard constant * :
* aka ¢ The array which stores the previosly calculated * :
* a sub k’s *
* b t A guantity calculated earlier which is necessary *
* to provide the power spectral density of the *
* quantization noise *
* go : The desired value for the quantizer output *
* corresponding to the first level divided by *
* the step size *
* falph : The frequency divided by the parameter alpha *
* psdo : The output power spectral density in increments *
* of 1/alpha for a particular falph *
* psde : The error power spectral density in increments  *
* of 1/alpha for a particular falph *
* psdi : The input power spectral density in increments %
* of 1/alpha for a particular falph *
* psdde : The level of the delta function which *
* accompanies the error power spectral density *
* psddo : The level of the delta function which *
* accompanies the output power spectral *
* density *
* psddi : The level of the delta function which *
* accompanies the input power spectral *
* density *
* indf i An index used to iterate through falph’s *
¥ k : The parameter which indicates the desired *
* a sub k prime *

sk KKK AR K oK KRR R KR KRR RO KRR Ak ok o o
subroutine pospne(q,x0,noofbt)
double precision q, x0, pi, aka(0:10000), b, g0, falph, psdo,

+ psde, psdi, psdde, psddo, psddi
integer noofbt, indf, k
pi = 3.1416

call dtakne(q,x0,noofbt,aka,b,g0)
open (unit=13,file=’nexerx’)
open (unit=14,file=’nexout’)
open (unit=15,file=’nexin’)
do 20 indf = 0, 236
: falph = indf/59.
: psdo = 0.
' do 10 k = 10000, 1, -1
psdo = psdo + (k * aka(k))/
(k**2 + (2, * pi * falph)**2)

continue
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psde = 4. * ( psdo +
+ (b * x0*x2)/(1. + (2. * pi * falph)*+2))
psdo = psdo * 4.
psdi = 4. * (x0%%2)/(1. + (2. * pi * falph)+*2)
if (indf .eq. O) then
psdde = aka(0) + (b * x0%*x2)
psddo = aka(0)
psddi = x0**2
write(13,30) falph, psde, psdde
write(14,30) falph, psdo, psddo
write(15,30) falph, psdi, psddi
else if (indf .eq. 1) then

n

u

psdde = 0,
psddo = 0.
psddi = 0.

write(13,30) falph, psde, psdde

write(14,30) falph, psdo, psddo

write(15,30) falph, psdi, psddi
else

write(13,40) falph, psde

write(14,40) falph, pado

BRI

close (unit=13)
close (unit=14)
c¢lose (unit=15)

write(15,40) falph, psdi j

end if i

20 continue g
30 format (1x, 8.6, 5x, e12.5, Bx, e12.5) 3
40 format (1x, £8.6, 5x, 12.5)
i

end
stttk ok skotok ok sk dokoksk skl skt sktokokkooskok o o ek okok e kaiok sk ok sk sk stk ok ok sk sk kb ok ok ko ok K
*  SUBROUTINE DTAKNE *
stk kol ook ok ook ok kok kb ok ok ok skokskdkiokok ok okl sk ok ok ok sk ok sk o A ok 3k sk ok sk ok sk ook
¥ This subroutine-determines all values of a sub k for k = 0 *
* through k = 10,000. *
sk ok ok ok skokskobok ok ok ook ook ok ok skkok ok ook sk ok o koK K Kok koK ek ok sk ko ok Ko ok
* Variables: *
* aka ¢ The array which ultimately contains a1l of the *
* desired a sub k’s * :
* qx0ra : The ratio of the step size to the mean of the * ¢
* negative-exponential input * %
* x0 {  The mean of the negative-exponential input * i
* n : The number of transitions between quantization  * :
* levels * ;
* k : The parameter which indicates the desired * é
* a sub k * :
* ind :  An index used in the process * 5
* g0 :  The desired value for the quantize~ output * é
* corresponding to the first level divided by * E
* the step size * :
* q : The quantization step size * :
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* b : An additional quantity later required tc pro- *
* vide the power spectral density of the *
* quantization noise *
okt skl ok Aok ksl skok ook kol sk koo ok ok ok ok skl kol sk sk sok ok ok ok sk ok ok ok ko ok Rk ok
subroutine dtakne(q,x0,noofbt,aka,b,g0)
double precision q, x0, aka(0:10000), b, g0, gxOra
integer noofbt, n, k
gx0ra = q/x0
= 2%x(noofbt) - 1
call getg0(gd,q,x0,qx0ra,n,b)
do 20 k = 0, 50
call clakni(aka(k),qxOra,q,n,k,g0)
20 continue
do 30 k = 51, 10000
call clakn2(aka(k),qx0ra,q,n,k,x0,g0)

30 continue
end
¥ okokot dokokkrokob sokskok sk ok skl ok kiR kot kool ok ok ok ok kol ko ook ok skt skakok sk ook ook skok
*  SUBROUTINE GETGO *
ok kK ook ok sk Aok Rk ok ks ok Aokok ok ok ok ok ok ok skok ok sk sk ok ko sk kbt sk ko okoskakok ok ok sk ookok
* This subroutine determines what the quantizer output coxre- *
* sponding to the first level should be in order to negate or *
* minimize the dc or average value of the quantization error. In *
* other words, it determines the appropriate g(x = 0). *
* It also produces the constant b, which, along with the a sub k’s,*
* is necessary to determine the quantization noise- spectrum. *
stk ko ok kokatok ok okl ok ookl ok ok ok ok sk ook ok ok ok ko sk doRook ook ko
* Variables: *
* go : The desired value for the quantizer output *
* corresponding to the first level divided by *
* the step size q *
* q : The quantization step size *
* x0 : The mean of the negative-exponential input *
* qx0ra : The ratio of the step size to the mean of the *
* negative-exponential input *
* n : The number transitions between quantization *
* levels *
x b :  An additional quantity later required to pro- *
* vide the power spectral density of the *
* quantization noise *
* sumex : The sum of the iterated exponential terms *
* exarg : The iterated argument of the exponential term *
* necessary to determine b *
* stbx0 : An intermediate value used to determine g0 *
* exind : An index used in the process *

sk okokokok e ko ok ok ok ok o ook ok s ok ok o o ek ok ok ko ok ok sk ek ok s sk sk ok sk sk ok sk sk s o o ks o s o ks sk o ks sk ok ok oo ek ok
subroutine getgd(go,q,x0,qx0ra,n,b)
double pre: ision g0, q, x0, qxOra, b, sumex, exarg, sxbx0
integer n, exind
go =
sumex = 0.
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* K X K X

*********************

exarg = -qx0Ora
do 10 exind = 1, n

sumex = sumex + exind * exp(exind * exarg)
10 continune '
b= 1. - 2, % (gxCra**2) * sumex

if (b .1t. 0.) then

20

end
end

sumex

0.

do 20 exind = 1, n
sumex =

continue

srbx0 = (x0 * sqrt(-b))/q

if (sumex .lt. srbx0) g0 = srbx0 - sumex

if

sumex + exp(exind * exarg)

33k e o ok ok ok ok ok s ok e e sk sk ok ok sk sk sk ek sk ok ok sk e 2 ok ok ok sk sk sk ok ok sk ok ok ok ok Sk ok ki e ok ok e e sk e sk ok sk ok ke s ok sk sk ki ok ok ok skok ok

*  SUBROUTINE CLAKN1

%k

ok sk sk ok ok o ok e s ok ol sk e ok ok ok s e ke sk ook ok skl ok sk ok ke ok sk ok Sk ok sk s sk sk o sk sk sk s sk ok sk ok sk ok sk ke kol sk sk okok dkok sk sk ok okok sk

This subroutine calculates the exact value of a sub k and

is to be used on values of k such that 0 <= k <= 50. Larger
values of k will result in overflow during calculations. Also,
for larger values of k, the approxiration subroutine CLAKN2 is
quite sufficient.

* ¥ * ¥ X

e ke ke e ok ok o ok sk ke ke 3k sk ok ok 3k sk ok sk ok ke ok ok sk sk sk ke ok o ok sk ok s e s ke ok ok sk sk sk sk e o sk ek sk sk ok sk ke ke ke ok sk e o e ek ok ok ok o ok ok ok ok ok sk

Variable
ak
qx0x

q
n

k

g0

nsum
pola

ind

nsun

s

a

.
.

rg

polgt :

sumadd

= 0.

The
The

The
The

The

The

The
The

The

desired value a sub k

ratio of the step size to the mean of the
negative-exponential input

quantization step size

number of transitions between quantization
levels in the positive (or negative) non-
Zero range

parameter which indicates the desired

a sub k

desired value for the quantizer output
corresponding to the first level divided by
the step size

total evaluation of the summation term
iterated argument of the Laguerre poly-
nomials in the summation term of the
appropriate a sub k prime equation

iterated evaluation of the difference of the

two relevant Laguerre polynomials

An intermediate value used to obtain nsum
An index used in the process

okokokok otk ook ko ki ok ok kot ok sk ok sk skokok sk ok Rk kR KoK o Rk sk koK KK ok K Kok K

subroutine clakni(ak,qxOra,q,n,k,g0)

double precision ak, gxOra, q, g0, nsum, polaxg, polqt, sumadd

integer n, k, ind

do 10 ind = 0, n
polarg = ind * qxOra
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call elpdt(k,polarg,polqt)
sumadd = exp(-polarg) * polqt
if (ind .eq. 0) sumadd = g0 * sumadd
nsum = nsum + sumadd
10 continue
ak = (q * nsum)**2

erd
okokskok ok skok sk ke dook ook ok skolokok ook ok Aok sk ok sk ok sk sk ok ok sk ok s sk sk okok ok skok skokskok sk ook skoskok ok skokok sksk ok ko ok
*  SUBROUTINE ELPDT *

Feokeob sk skeoke ok sk ook ok ok ok sk ok sk sk e e kb ok sk ok ok s sk ok st sk sk okt skl ok ok ok sk b s sk ok sk ok ok sk ok ok ke sk sk skeokok sk sk ok ok kol ok

* This subroutine evaluates the Laguerre polynomial difference *
* term for a particular argument. This term is the evaluation *
* of the Laguerre polynomial of degree k minus the evaluation *
* of the Laguerre polynomial of degree k - 1 for the given argu- *
* ment. *
Hoksok kKRR kR ok ok kb ok ok okok sk kR ROk Rk Rk kKRR kKK Kk kK ok
* Variables: *
* k : The parameter which indicates the desired degree *
* polarg : The iterated argument of the Laguerre poly- *
* nonmials in the summation term of the *
* appropriate a sub k prime equation *
* polgt : The iterated evaluation of the difference of the *
* two relevant Laguerre polynomials *
* x ! .An index through the appropriate summation term *
* kmni ¢ The value of X minus 1 *
* xrmni : The value of r minus 1 *
* cterm : The evaluation of the combination term *
* xfact : The evaluation of ¥ factorial *

skokok sk Aokk ok ok ok ok kol dokak ok stk sk ok ok toR S ksk ok ok sk Kok st ok ook ok ok Kok Kok ko skoK o
subroutine elpdt(k,polarg,polqt)
integer k, r, kmni, rmni
double precision polarg, polqt, cterm, rfact
if (k .eq. 0) then

polqt = 1.
return

else
kmni = k - 1
polqt = 0.
do 16 r =1, k

rmni = r - 4

call comb(kmni,rmni,cterm)

call dfacto(r,rfact)

polqt = polqt + ((cterm/rfact) * ({(-polarg)*#r))

10 continue
end if
end
e i A R g L LI T PE TP L PP AT P TN IS S I TP IV S T P AU E TN YA
*  SUBROUTINE COMB *
FHAC kK KA A Aok kAo ok Yok ok ok sk sk fokok ok ok ok ek sk o ok 3ok ok ok ok ok ook 3 3K o ok ko e ok
* fhis subroutine evdluates the combination function of *
* "m choose n”. In other words, it determines the number of ways *
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* that n items can be seleated from m total items. *
ok dsk sk ok ok kb sk ok ok ok sk skooskskokoksk stk ki kokok ok sk skl ook kol ok sk sk ks ok ko ok ok sk ok sk sk ok
* Variables: *
* m ¢ The number oi items selected from *
* n :  The number of items selected *
* cterm :  The result of the operation *
* mmnn ¢ The value of m minus n *
* lo ¢ The smallest valite betw2en n and mmnn *
* hi :  The largest value betwe:r n + 1 and mmnn + 1 *
* ind :  An index used in the process *

seokokokakokskokokok ok ok Kok Kok oKk sk ok 3ok 3 ok sk sokokok o ko stk skok ko ok ok ok kol ok ok sk skokok o koo
subroutine comb(m,n,cterm)
integer m, n, mmnn, lo, hi, ind
double pre.ision cterm
mman = m - n
if (mmnn .gt. n) then

lo=n

hi = mmnn + 1
else

lo = mmnn

hi =n + 1
end if
cterm = 1§,

do 10 ind = m, hi, -1
if (Lo .gt. 1) then
cterm = cterm * (dble(ind)/lo)

lo=1lo -1t
else
<tarm = cterm * ind
end if
10 continue
end
ok Rk ko ok ok ko tokkok ok sk okkk sk ok skokskok ok ok ok ¥ sk ok sk okakok ook ks ok ok o ko K koK o
*  SUBROUTINE DFACTO *
Fkk RN AR Rk ko kkok kbbb okkok ok okl ook kokoksk ko ok kool Kok Aok ok ook
* This subroutine finds the factorial of its first argument and *
* returns the factorial as its second argument. The second *
* is in double precision format in order to allow larger values. *
sookokokdok kR kdok ook kR ok ok ook ook skt dokokok ok kckok ok otk ookt ook ok ok ok sk ook ok o
* Variables: *
* k ¢ The integer whose factorial is to be found *
* kfact : The calculated factorial of facarg *
* kind : An index used in the process *

ekt ook ok siok ok ok Xkl ok ok Kok koK oo K K s R oK skok sk o sk sk ok o sk ok ok sk sk sk ok o ko s o o ok o sk ok sk o ok ok ok
subroutine dfacto(k,kfact)
integer k, kind
double precision kfact
kfact = 1.
if (k .le. 1) return
do 10 kind = 2, k
kfact = kfact * kind
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10 continue
end
ook kdokokokok ok kool ok kR ok kol ok ko skokkok sk sk ok sk ok kK sk o ok okl ok ok oK ok
*  SUBROUTINE CLAKN2 *
Fokkokkokkokodok ok ok dokok ok okokodokok ok okl sk kokok ok ok skokok ok s skok sk ko sok s ksl Ak ok okl okl ksl ook
This subroutine calculates the approximate value of a sub k
and is to be used on values of k such that
51 <= k <= 10,000. Smaller values of k should be referred to
CLAKN1 for an exact calculation. Larger values of k will be
insignificant.
ook ok Rk kR sk ok bk okskokook ok ok skokok deokok kol ok skt ok dokokok sk skok ok kokskk ok skok ok sk ok Kok ok
Variables:
ak ¢ The desired value a sub k
qx0ra : The ratio of the step size to the mean of the
negative—-exponential input
q : The quantization step size
x0 ¢ The mean of the negative-exponential input
go : The desired value for the quantizer output
corresponding to the first level divided by
the step size
pi : The standard constant
piové : The standard constant, pi, divided by 4
cosarl : The the term used to increment the argument
of the first cosine term
cosar2 : The the term used to increment the argument
of the second cosine term
nsum : The total evaluation of the summation term
ngty : An intermediate value used to obtain msum
n The number transitions between quantization
levels
k ¢ The parameter which indicates the desired
a sub k prime
ind : An index used in the process
sk ok ok ok ok ok dokokok otk sk stk skok sk kool ok ook o skl s ook sk sk ok ok ok skok ok oK ok ok ok o
subroutine clakn2(ak,qura,q,n,k,xO,gO)
double precision ak, gqxOra, q, x0, g0, pi, piov4, cosari,
+ cosar2, nsum, ngty
integer n, k, ind
pi = 3.1416
piov4 = pi/4.
cosarl = 2. * sqrt(k * qxOra)
cosar2 = 2. * sqrt{(k -~ 1.) * qxOra)
nsum = 0,
do 10 ind = 1, n
nqty = (x0/((ind * k)**(0.25)))

L R B .
* ¥ X ¥ ¥
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HOH X F ¥ OF K R OF K K H X O K X K K A X KR
¥R K ¥ O X K O X K R K ¥ X F K ¥ ¥ X ¥ ¥ X

+ * cos((sqrt(ind * 1.) * cosari) - piov4)
ngty = nqty - ((1./((ind * (k - 1))*%(0.25)))
+ * cos((sqrt(ind * 1.) * cosar2) - piov4))
nsum- = nsum + (nqty * exp(-({ind * qx0ra)/2.)))
10 continue

ak = (q**(1.5)) * sqrt(x0) * (1./pi) * nsum**2

96




end

B.83 Source Code Used for the Random Sinusoidal Input Results

sokokokokkokatoksk ok ook dokok otk ok ko ook ook sk skl koK koK ok ok ko sk Rk KR HOK Ko Kk ok oK
*  SUBROUTINE NOPOSI
okl stk kol dokk ook skatok ok ok ke okok ok skakokok ook sk kR kR ak ok sk ok ARk ok Rk ko sk K
This cubroutine determines the normalized noise power and the
signal-to-quantization noise ratio (in dBs) when given the

a sub k’s as determined by DTAKSI, the quantization step size,
the amplitude of the sinusoidal input, and the numbexr of bits

* X ¥ X *

*

* X X ¥ *

used in the quantization process.
sookok ok dokskok ook stk ok kokok ok ook sk sk ok ok sk ok ok ok skok sk ok ok ok sk ok ok ok Aok sk ok ek ok ok SOk sk o
Variables:

q The quantization step size

a ¢ The ampltitude of the sinusoidal input

noofbt : The number of bits used in the quantization
process

aka :  The array which ultimately contains all of the
desired a sub k’s

b :  An additional quantity later required to pro-
vide the power spectral density of the
quantization noise

nopo The calculated normalized noise power

sinora : The signal-to-quantization noise ratio in its
dimensionless state

sinodb : The signal-to-quantization noisé ratio in dBs

k The parameter which indicates the desired
a sub k prime

lev The number of quantization levels

valid : A logical indication of whether the gara is a

¥ W R ¥ W O F K K K X X K X X X K K

valid ratio

HOXK K K K X K K OH K K K K KK K X X *

kR skoR s Rk sk R sk ook ok ok ok ok ok okokaokskotokok sk ket o sk ok sk s skt sk ok ke ok ok ok sk ok
subroutine noposi(q,a,noofbt)
real q, a, aka(0:10000), b, nopo, sinora, sinodb
integer noofbt, k, lev
logical valid
call testra(q,a,noofbt,valid)
if (valid) then

20

call dtaksi(q,a,noofbt,aka,b)
lev = 2*¢*(noofbt)
nopo = 0,
do 20 k = 10000, 0, -1
nopo = nopo + aka(k)
continue
nopo = nopo + b
write(6,30) ’The normalized noise power for ’, lev,
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+ ' levels with a step size of ’, q, ’ units '’
write(6,40) ’ and a random sinusoidal input with an ’,
+ ’amplitude of ’, a, ’ units ’
write(6,50) * is ’, nopo, ’ units squared.’
sinora = ((a**2)/2)/nopo

sinodb = 10. * loglO(sinora)
write(6,60) ’'The resulting signal-to-quantization noise ’,
+ 'ratio is ’, sinodb, ’ dB.’
write(6,*) ? ?
end if
30 format (ix, a31, i3, a28, £7.4, a7)
40 format (1ix, a41, a13, £5.2, a7)
50 format (ix, a6, gi0.3, aib)
60 format (1x, a43, a9, £5.2, ad)
end
okttt ok sk skokoltokk ok Aokl kol ok ok kol okl ok okt ko ok ok sk ok sk ok kol ok ok ok ok ok o
* SURRQUTINE POSPSI *

hokaokk ¥ kokkokokiokkaobk ok ok kR ok kokkokkokokokok iRk kskok kbl kool o kkok ok ok o
Thas subroutine outputs the data necessary to plot the power *
spectral density of the quantization noise for a random *
sinusoidal input with a specified autocorrelation. This data *
allows the plotting of the power spectral density versus the *
horizontal axis of frequency in increments of the frequency of *
3 the random sinusoidal input. *
sokskokok ok ok ok sk ok sk ks sk ko skt stk ook ook kot sk sk ok kol s skok skokok sk ok ok sk sk ook ok skok ok kol ok

* ¥ K ¥ ¥ *

* Variables: *
* q ¢ The quantization step size *
* a : The ampltitude of the sinusoidal input *
* noofbt :  The number of bits used in the quantization *
* process *
* aka :  The array which stores the previosly calculated *
* a sub k’s *
* b : A quantity calculated earlier which is necessary *
* to provide the power spectral density of the *
* quantization noise *
* psde : The error power spectral density *
* psdo : The output power spectral density *
* psdi : The input power spectral density *
* psdoO : A value set to zero which aids in the plotting *
* of the delta functions *
* indf ¢ An index used to iterate through freq’s *
* freq : The frequency in increments of the input *
* frequency *
* valid : A logical indication of whether the gqara is a *
* valid ratio *

skokokok ok oK ok ok ok ok sk ok Kok ok sk ok stk ok SOk Sk ok ok ok sk ok o sk ok sk ok sk ko ok sk ok ok ok skl ok o ok sk
subroutine pospsi(q,a,noofbt)
real g, a, aka(0:10000), b, psde, psdo, psdi, psd0
integer noofbt, indf, freq
logiral valid
call testra(q,a,noofbt,valid)
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if (valid) then
open (unit=16,file=’sinerr?’)
open (unit=17,file=’sinout’)
open (unit=18,file=’sinin’)
call dtaksi(q,a,noofbt,aka,b)
psde = aka(0) + b
psdo = aka(0)
psdi = (a*%2)/2.
psd0 = 0,
freq = 1
write(16,20) freq, psdo
write(16,20) freq, psde
write(16,20) freq, psdo
write(17,20) freq, psdo
write(17,20) freq, psdo
write(17,20) freq, psdo
write(18,20) freq, psdo
write(18,20) freq, psdi
write(18,20) freq, psd0
do 10 indf = 1, 20
freq = 2 * indf + 1
psde = aka(indf)
psdo = aka(indf)
write(16,20) freq, psdo
write(16,20) freq, psde
write(16,20) freq, psdo
write(17,20) freq, psdo
write(17,20) freq, psdo
write(17,20) freq, psdo
10 continue
close (unit=16)
close (anit=17)
close (unit=18)

end if
20 format (1x, i3, 5x, e12.5)
-end
ok ok kbbb ok okok kb ok sk ookl e ok skotokokoksokok okl ook o ok skokskakok s okotok ok ko skok bk kok ok
*  SUBROUTINE TESTRA *
Sk ok kR Rk ) ok sk okob bRk ok ok ok ok o kR ok
* This subroutine tests the given ratio of the quantization step *
* size to the amplitude of the random sinusoidal input in order *
* to determine if subsequent calculations are valid. *
koo kkokdeok sk kb ok ok ok sk ok ok okt ok ok Aotk ik koo ok ook ook kol ok ok kK ko
* Variables: *
* q : The quantization step size *
* a :  The ampltitude of the sinunscidal input ¥
* noofbt : The number of bits used in the quantization *
* process *
* valid : A logical indication of whether the gara is a *
* valid ratio *
* qara : The ratio of the step size to the amplitude of *
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* the sinusoidal input *
* nmrec :  The reciprocal of m *
* pi ¢ The usual constant *
* piov2 : The value of pi divided by 2 *
* ssum : The iterated sum of square roots used as a *
* test quantity *
* coqty : The qunatity derived from ssum which is compared *
* to piov2 *
* n ¢ The number transitions between quantization *
* levels in the positive (or negative) non- *
* zero range *
* ind ¢ An index used in the process *

kbR kR Rk ok kR ok Kok ok ok koo stk ok ok ok okl ok ok bkl sk ok sk ok sk ko ko ok
subroutine testra(q,a,noofbt,valid)

real q, a, qara, mrec, pi, piov2, ssum, coqty

integer noofbt, m, ind

logical valid

valid = .true.

gara = q/a

m = 2%x(noofbt - 1) - 1

mrec = 999999

if (m .ne. 0) mrec = 1./m

if (qara .gt. mrec) then
write(6,*) *The q to A ratio is too large!’
valid = .false.

else
pi = 3.1416
piov2 = pi/2.
ssum = 0.

do 10 ind = 1, m
ssum = ssum + sqrt(i. - (ind * qara)**2)
10 continue
cogty = gara * (1 + 2. * ssum)
if (coqty .1lt. piov2) then
write(6,*) ’The q to A ratio is not appropriate!’
valid = .false.

end if
end if
end
s Aok ook ok koo s ok sk st s koo o ks o ok ok sk sk sk skok ok sk 3ok ok ok KoK ok o ks ok ok sk ok o ke ks o ok sk ok ok ok ek ok ok
*  SUBROUTINE DTAKSI *
seokok koo okl ok ok sk sk ke ok kok ook ok ok ok 3ok sk ok ok Aok A Sk sk ok ok sk Kok sk ok ok ok ok sk ok sk ok ok ok e skok
* This subroutine determines all values of a sub k for k = 0 ¥
* through k = 10,000. It also produces the constant b, which, *
* along with the a sub k’s, is necessary to determine the *
* quantization noise spectrum. *
ok sok ok ok ook sk skl ok Kok ek sk ok s ks kK ko ok ko R A sk ok KoK ok ok o ok skl ok s ok ko ok ke ok ko ok ke ko ok o ke ok
* Variables: *
* aka : The array which ultimately contains all of the *
* desired a sub k’s *
* qara : The ratio of the step size to the amplitude of  *
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the random sinuseidal input
The quantization step size
m ¢  The number transitions between quantization
levels in the positive (or negative) non-
Zzero range
The parameter which indicates the desired
a sub k prime
valid : A logical indication of whether the gara is a
valid ratio
seokekok ok ok sk ok otk ko sk ookl sk ok sk ok sk sk ok ke sk ko ko ks oh sk ok ok sk ok ok Kok kAR oK A o S K sk ok ok
subroutine dtaksi(q,a,noofbt,aka,b)
real q, a, aka(0:10000), b, pi, gqara, sumex
integer noofbt, m, k, ind
pi = 3.1416
gara = g/a
m = 2%¥(noofbt - 1) ~ 1
do 10 k = 0, 10000 J

[fe

k

e

* ¥ X F ¥ ¥ K K *
¥ X H X ¥ ¥ X ¥ X
”)

R R D P N

call claksi(aka(k),qara,m,k,q) :

10 continue 1

sumex = 0, i

do 20 ind =1, m ;

sumex = sumex + sqrt(a**2 -~ (ind * q)**2) 3

20 continue E

b = (a**2)/2. - 4. *-q * (sumex + a/2.)/pi ¢

end

sokkok ok ok ookokok ok ok ok ok kool ok sk ko sk okskok ok sk ok ksl okl sk Kk ok ook ok ok ook ook o sk o ok kK ok
*  SUBROUTINE CLAKSI *
okskokok ok ok ok okl okskok sk ok ok ok okokok ok ok sl ko ok okl ok kol sk ok sk k ok sk kol sk sk sk ok Rk ko
* This subroutine calculates the exact value of a sub k for k *
* such that 0 <= k <= 10000. Larger values of k will result in *
* negligible values. *
Fokkok ok ko odokokokskokok kol ok koo ok ook ok sk okok ok ok kol ook sk sk ok sk ks ok ok sk ok sk ok sk Kok
* Variables: *
* ak : The desired value a sub k *
* qara ¢  The ratio of the step size to the amplitude of *
* the random sinusoidal input *
* m ¢ The number transitions between quantization *
* levels in the positive (or negative) non- *
* zero range *
* k : The parameter which indicates the -desired *

* a sub k * i

* q The quantization step size * é

* pi : The standard constant * E
* msum : The total evaluation of the summation term *
* polarg : The iterated argument of the Tchebycheff *
* polynomial in the summation term of the *

* appropriate a sub k equation * p

* polqty : The iterated evaluation of the Tchebycheff * :

* polynomial in the summation term of the * !
* appropriate a sub k equation *
* squqty : The squared quantity which includes all terms *
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* involving Tchebycheff polynomial evaluations #*
* dukpli : The value corresponding to 2k + 1 *
* i : An index used in the process *
ok ok okokokok ok ok kokokokskoksk ok sk ok koo stk ok ok ok ook ok okl sk ik ok ok ok sk o sk ok e ok ok sk ok otk
subroutine claksi(ak,qara,m,k,q)
real ak, qara, q, pi, msum, polarg, polqty, squqty
integer m, k, dukplit, i
pi = 3.1416
dukpli = 2 * k + 1
msum = 0. i
do10i=14, m
polarg = i * qara
call evuk(dukpli,polarg,polqty)
msum = msum + polqgty
10 continue
polarg = 0.
call evuk(dukpli,polarg,polqty)
squqty = (polqty + 2. * msum)#*%*2
ak = 2, * ((q/(pi * dukpll))#+2) * squqty

e 0 i ralih KB Y e MNENE e

B
3

end
sokskokskookkokokokok ook ok stok sk kb okl sk sokokookokskokok ok ook ok sk ko sk sk ok ko ok ok ok Aok sk s oKk oK ok KoK K ok
*  SUBROUTINE EVUK *
ook ok ok kb ok kb ok ok sokokokakolok ko slokokok e tolok s ok okl ool sk skl ok ok skok ok otk ook ok ook
* This subroutine evaluated the Tchebycheff polynomial of the * :
* second kind, U sub k of the argument, given the argument and * :
* the degree, k, of the polynomial. * i
sokkok ok kskokkokok kb ok ok kb sk sk ok sk ok kot o okl stk sk ok ol ok skok s ks ok ok okt okok ok
* Variables: *
* k ¢ The parameter which indicates the desired * :
* a sub k * §
* polarg : The argument of the polynomial * é
* polqty : The evaluation of the polynomial for the * §
* argument * .

ek ko ok sk ok ok ok ok ok sk ok ke ko o ot oo o ok sk s ks sk s sk ook s sk ko sk ok sk ok ok sk ok ok ok ok ok sk ook sk o ok Kok ok

subroutine evuk(k,polarg,polqty)
real polarg, polqty
integer k
polgty = sin(k * acos(polarg))
end
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