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Abstract

fhe objective of this thesis was to investigate the effect of riblets
on the pressure recovery in a straight-walled diffuser. Previous work
has shown that riblets were effective in reducing the viscous drag over
surfaces subjected to a turbulent boundary layer. More recently,
riblets were shown to delay the flow separation within a subsonic,
straight-walled diffuser by as much as 2¢¢;§ercent. The purpose of
this investigation was to determine the effect on the pressure distribu-
tion within a diffuser that has had the flow separation point favorably
altered by the application of riblets. _ : A4 ;o

Results-from-this-investigation revealed that riblets not only
delayed flow separation in a diffuser, but also altered the pressure dis-

tribution in a manner that allowed for improved pressure recovery.

This improvement was realized by an increase in the pressure coefficient

4
P

of between, 3@ ;hd 38 f:ercent, the larger increases occurring for those
diffuser geometries most likely leading to stall (high aspect ratio).

Additionally, it was discovered that the introduction of static ports into
the riblet surface did not significantly alter the flowfield over that of a

7/

geometrically similar riblet surface. 4« =~ . e
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EFFECT OF RIBLETS ON PRESSURE RECOVERY IN A STRAIGHT-WALLED

DIFFUSER

I. Introduction

The primary purpose of this thesis was to experimentally investi-
gate the effect of riblets on the pressure recovery in a straight-
walled, subsonic diffuser. Riblets are small flow-aligned grooves that
were originally introduced in 1979 as a passive means for reducing
viscous drag over a body subjected to turbulent flow (20:168). Later
experiments showed that flow separation was delayed in a straight-
walled diffuser by as much as 200 percent (17:58). However, no work has
been done to determine the effect of riblets on the pressure distribution
within diffusers. Specifically, what happens to the pressure recovery in
a diffuser with riblets that has been experimentally shown to delay flow
separation? This thesis employed a geometrically similar diffuser shape
to the one used previously by Martens (17:22) in his investigation of
flow separation due to riblets. The research effort attempted to first
duplicate the results obtained by Martens and then obtain surface pres-
sure distributions for both a smooth and riblet diffuser surface to

determine the effect on diffuser pressure recovery.
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Background

Riblets were originally introduced in 1979 as a means of reducing
the viscous drag over hydrodynamic surfaces subjected to turbulent
boundary layers. Their application to aerodynamic surfaces (i.e., cylin-
ders, airfoils and diffusers) for the same purpose has been investigated
with vigor over the years, especially at the Air Force Institute of
Technology (AFIT). Results of these investigations have shown that
riblets delay the occurrence of flow separation in subsonic diffusers as
well as cylinders and airfoils, with the most dramatic change occurring
in the diffuser.

In the work done by Wieck' (22:55,56), a change in the surface
pressure distribution was evident with the application of riblets to both
the cylinder and airfoil shapes. No work was done to quantify this
change in surface pressure but a recommendation was made to do so
with the diffuser model used in experiments by Martens in 1988. The
reason for this was due to the fact that significant delays in flow sepa-
ration were obtained for the diffuser whereas only minor, but noticeable,
delays were noticed for the airfoil and cylinder and any small changes
in the pressure distribution would be more visible with the diffuser.

Given this impetus, it was decided to investigate the effect of
riblets on the surface pressure distribution using an identical model to
that used in the Martens work. This allowed a comparison of separation
data to that obtained previously, thus lending more credence to the data
collection techniques. The surface pressure distributions were obtained
using static ports built into the diffuser ramp. Because of the low

subsonic speeds involved, hot-wire anemometry and a Pitot tube were
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utilized to verify these pressure measurements. Comparisons of the
pressure distributions before and after riblet application provided the

necessary insight from which to draw conclusions.

Obijective

The primary objective of this research was to investigate the effect
of riblets on the pressure recovery in a straight-walled subsonic dif-
fuser. The scope of the work involved determining changes in the flow
separation points by the addition of riblets for varying diffuser

geometries and throat velocities and comparing these changes to changes

in the surface pressure distribution.
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I1. Theory

Riblets

Since their introduction more than ten years ago, riblets have been
used primarily as a quick, convenient method of reducing viscous drag
on aerodynamic and hydrodynamic bodies. Extensive experimental work
has shown that the viscous drag associated with these shapes was
reduced by as much as eight percent (21:1,4). This reduction in drag
was primarily attributed to the ability of riblets to control and damp
turbulence, thereby reducing turbulent shear. The caveat to these
experiments was of course, the existence of a turbulent boundary layer
and a short discussion on this seems appropriate.

Every known fluid offers a resistance to the relative sliding motion
of any two adjacent layers. This property, viscosity, is noticeable only
when the fluid is in motion (7:9,18). For fluids of relatively small
viscosity, the effects are concentrated in a thin layer surrounding the
body called a boundary layer (11:40; 16:299). Within this layer, the flow
can be classified as laminar, turbulent or in a state of transition
between the two states (3:1760). Figure 1 shows the relative location of
these three flow regimes along a flat plate.

Laminar flow occurs at low Reynolds number and is characterized
by a relatively thin layer with limited momentum transfer and eddy
motion. The turbulent boundary layer on the other hand, is consider-
ably thicker than a laminar layer and is characterized by the presence
of a relatively large number of eddies. These eddies serve as a type of

momentum transfer vehicle between the fast moving flow at the outer




edge of the boundary layer and the slow moving fluid closer to the
surface. This results in a higher velocity gradient near the surface
and a proportionately higher value of skin friction.

The turbulent boundary layer is usually treated as a composite
layer consisting of inner and outer regions. The inner region is only
10-20 percent of the entire boundary layer thickness and is further
divided in the viscous (or laminar) sublayer, the transitional region
(buffer layer), and the fully turbulent region (5:94). Figure 2 shows
the relationship between these three regions for the case of no pressure
gradient.

The viscous drag reduction capability of riblets appears to be
related to their ability to control and damp the "hairpin-like" vortices
associated with the turbulent eddies. The interaction of riblets with the
counter-rotating streamwise turbulent vortices results in the generation
of a secondary vortex which begins at the riblet peak and extends down
into the riblet valley as shown in Figure 3 (2:1384). As these second-
ary vortices are generated, the primary streamwise vortices are weak-
ened, and the mechanism by which momentum is transferred within the
boundary layer is made less effective. This tends to retard the
development of the turbulent boundary layer on the riblet surface.
Anders describes this as the generation of, ". . .a relatively quiescent
flow in the riblet valley that pushes skin-friction producing turbulence
up and away from the surface" (1:26).

The most important parameter in the ability of riblets to reduce
viscous drag is their size. Extensive testing has shown that in order
for riblets to be effective, they must extend through the viscous sub-

layer and into the transitional region of the boundary layer. The two




nondimensional parameters affecting riblet performance are the
peak-to-valley height (h*) and the peak-to-peak wiath (s*) defined as

follows (19:1):

h™=hU_ /v (1)

s =sU /v (2)

A number of studies have shown that the maximum drag reduction
for V-grooved shaped riblets applied to a flat plate occurred for h*
values between 8 and 15. Furthermore, riblets continued to show the
ability to reduce drag for values of h* up tp 30. (20:168). From Eq (1),
the optimal riblet size for use in the diffuser can be determined using

the following relationship:

y=y ' v/U, (3)

The optimal riblet size corresponds to setting y* to a value between 19
and 30 (the transitional region) in Egq (3). Since the kinematic viscosity
is basically a constant for air over a fairly wide range of temperatures,
the only parameter that needs to be estimated is U, the friction veloc-

ity. This is defined as:

U,=U,(C,72)°*° (4)

Ct can be estimated by the following empirical relationship for turbulent

flow over a flat plate (16:401):




C,=0.0592(Re, )" (5)

and U, is defined as the boundary layer edge velocity. The range of
velocities used in the wind tunnel ranged from static conditions to
approximately 65 ft/sec. Using the above equations, an estimate of the
optimal riblet height for use in the diffuser section can be made. In
the previous experiment, the ideal riblet height for the flow velocities

investigated was found to be 9.035 in.

oW Se ion

Because viscosity is present in real world flows, there is a natural
tendency for adjacent layers of the flow to retard one another. The
velocity of the fluid at the surface must be zero and steadily increase
throughout the boundary layer until it approaches the freestream value.
All of the losses associated with viscosity are contained within this
boundary layer. The flow around any aerodynamic body will always
generate a boundary layer. The extent to which the flow separates is
dependant on the rate of growth of the boundary layer. In fact, the
rate of growth, ". . .may be so rapid that the fluid is unable to flow
along the surface, and breaks away instead of following the body out-
line" (3:187). The particular point where the flow breaks away is
defined as the separation point.

Separation can occur only in an adverse pressure gradient. An
adverse pressure gradient is defined as one for which the pressure is
increasing in the direction of flow. Given that an incoming flow has a

certain amount of energy, as the flow continues around an aerodynamic




surface, a boundary layer is formed. Due to the viscous forces present
in the boundary layer, a portion of the energy in the boundary layer
profile is converted from directed kinetic energy into heat energy of
some other form. This results in a deviation to the velocity profile as
seen in Figure 4 (8:68). At the point on the surface where the slope of
the velocity profile, (dlU/dy) goes to zero, there is no flow present and
separation has occurred. In fact, ". . .separation of the boundary
results from the presence of the adverse pressure gradient" (16:315).
Figure 4 suggests that there is a recirculating region beyond the sepa-
ration point. In practice, this is a highly unstable region and the flow
may or may not exist there in a recirculating mode (8:68).

Therefore, two necessary and sufficient conditions for flow separa-
tion are viscosity (which is always present) and the existence of an
adverse pressure gradient. Due to the highly diffusive nature of
turbulent boundary layers, they are able to resist flow separation much
better than a laminar layer. In applications, it is sometimes preferable
to have turbulent flow rather than laminar. One must always consider
however, the tradeoff with the increase in viscous drag associated with
turbulent layers.

Numerical methods exist and provide good estimates for predicting
flow separation in turbulent boundary layers. The method employed for
this thesis was Stratford's criteria. The same method was used in the
1988 study by Martens and results from that experiment showed good
correlation between the predicted and actual separation points. This
author found no need to change a procedure that had been shown to

woerk.




The Stratford method consists of using the following equation as a

predictor in flow separation (5:204):

F(x)‘Cp(dep/dx)°'5(lo(-b)R:)(—-l) (6)

Eq (6) '". . . assumes an adverse pressure gradient starting from the
leading edge, as well as fully turbulent flow everywhere" (5:204). In
the case of the diffuser, the equation assumes the adverse pressure
gradient forms at the beginning of the diverging ramp. This equation
was modified in a similar manner to the Martens work and the result
presented as Eq (7) below. The derivation of Eq (7) may be found at

Appendix A:

F(x)=(AX(BY(C) (7)

where: A = [1-H2/(H+xsin®)2]

B = [2xH2sin6/(H+xsine)3]e:s
C = (Rexl@-$)-2
and: H = diffuser throat height (ft)

© = ramp divergence angle (deg)

Eq (7) was used to predict the flow separation in the diffuser over the
range of geometries and velocities. '"For a typical turbulent boundary

layer with an adverse pressure gradient, it is found that F(x) increases
as separation is approached and decreases after separation." Stratford

used a specific range on F(x) to determine the separation point. By

9




comparison with experiment he noted that, ". . .if the maximum value of
F(x) is (a) greater than 0.40, separation is predicted when F(x) = 0.40;
(b) between ©.35 and .40, separation occurs at the maximum value; (c)
less than 0.35, separation does not occur" (5:205). This same criteria

was used in this investigation.

Diffuser

A diffuser is a device used in engineering applications to deceler-
ate fluid flow. Perhaps the most well-known use of diffusers is in
aircraft engines. For example, in a typical turbojet or turbofan, a
diffuser is used to decelerate the incoming flow to an acceptable veloc-
ity for the compressor. Additional uses are found at the exit of the
compressor and turbines in order to slow the flow prior to combustion
in the main burner and augmentor (18:395).

Physically, a subsonic diffuser is nothing more than a device with
diverging walls. It may be rectangular, square, circular or conical. Its
primary function is to convert kinetic energy into pressure energy.
Diffuser performance is a measure of how well it performs its primary
function. There are a number of ways to measure a diffuser's perform-
ance. The method used in this investigation dealt with diffuser effi-
ciency defined as (18:306):

Na=Cr/Crigear (8)

where: C, = pressure coefficient
C pigea: = ideal pressure coefficient

10




The actual pressure coefficient is defined as the ratio of the
difference in static pressures between stations 1 and 2 in a diffuser to

the dynamic pressure at station 1:

C,=(P,-P,)/{0.5pU?%) (9)

Using continuity, the ideal pressure coefficient at station 2 can be
shown to be:

c 1-(A,/A,) (10)

-
Pdeal

where A refers to the cross-sectional area of the diffuser at any loca-

tion. If station 1 is taken as the throat condition, then the pressure

coefficient at the throat will equal zero and all subsequent coefficients
will increase. The amount of increase in the pressure coefficient from
the throat value of zero is termed the pressure recovery.

Two primary parameters used in describing the flow behavior in
diffusers are the aspect ratio, (L/W) and the divergence angle, (26).
When the design of these two parameters is optimized, the flow is well-
behaved with minimum losses. However, deviations from the optimum
conditions result in a dramatic increase in losses due to separation
(15:327). Figure 5 shows a plot of diffuser geometry and separation
regimes for straight-walled diffusers. This data was generated from
extensive testing done in the late 195@0's by Kline (14:307), and provides
a guide for the optimum design of diffusers. The line on Figure 5 that
separates the area of no stall from that of appreciable stall is of partic-

ular interest. Design in the area of appreciable stall is to be avoided

11




since the static pressure recovery decreases, mixing losses increase and
areas of severe flow asymmetry and unsteadiness result--all of which
are detrimental to the efficient operation of a diffuser. (8:194)

Since the flow is decelerating as it passes through the diffuser,
the adverse pressure gradient can cause the flow to separate. Bower
(4:3,4) describes the impact of an adverse pressure gradient on diffuser
flow as follows:

At the entrance plane of the duct, the boundary layer, which is
generally turbulent, is relatively thin, and the velocity profile
is typical of the 1/7 power law variation. As the airstream
moves against the adverse pressure gradient, which is nearly
constant across any section of the boundary layer, it is
retarded by the force of the pressure gradient and by friction
at the bounding wall. When the momentum of the boundary
layer is no longer able to overcome these forces and the fluid
near the wall is brought to rest, the boundary layer separates.
At the point of separation, the wall shear stress vanishes, and
the inflection point appears in the boundary layer velocity pro-
file. As the flow continues to oppose the adverse pressure
gradient, the fluid near the wall begins to flow in the opposite
direction to the mainstream.

Tests conducted on two-dimensional diffusers were done throughout
the 1900's for a variety of divergence angles and values of (L/W). The
results were compiled by Kline and are presented in Figure 6 (15:394).
This figure shows the relationship between divergence angle and pres-
sure recovery for different values of diffuser aspect ratio. Also plotted
on this figure are curves of ideal pressure recovery in order to provide
a graphical representation of diffuser efficiency and performance.

For this investigation, the ramp divergence angle was 1@ degrees.
In order to use Figure 6, the angle between divergent sides is twice
that angle, or 20 degrees. Knowing the aspect ratio of the diffuser, one
could predict the expected Cp, value. Of immediate notice is the fact

that at 20 degrees, the Cp values are well below the ideal values. This

12




means that there are significant losses occurring in this particular dif-
fuser design and that efficiencies will be relatively low. This should be
expected when the pressure data is reduced.

Because separation in a diffuser is associated with significant
losses, a diffuser in which separation has been delayed should experi-
ence an associated decrease in losses. This should manifest itself in a
less severe adverse pressure gradient and a higher value of pressure
coefficient. It is hypothesized that the addition of riblets to a subsonic,
straight-walled diffuser should not only delay flow separation but also

increase and improve the pressure recovery.
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III. Experimencal Apparatus

Wi Tunnel

The experimental research for this thesis was conducted in the
AFIT Nine-Inch Wind Tunnel Facility located in Building 19, Area B, of
Wright Patterson AFB. The facility consists of a low speed, open circuit,
draw-down tunnel and its 24-volt supporting power supply. The wind
tunnel test section had a 9 inch by 9 inch square cross section and was
37 inches long. The floor and ceiling of the test section were con-
structed of wood and the side panels were made of plexiglass. Both
side panels were hinged at the top and swung upward for easy model
access. Fourteen circular instrumentation access ports, spaced 2.5
inches apart, were located along the centerline of the test section ceil-
ing. Seven circular access ports, spaced 5 inches apart, were located
along the section floor. The ceiling and floor ports had diameters of 1.5
and 0.25 inches, respectively.

Tunnel static pressure, Ps, was measured using an inclined water
manometer. The manometer was attached to three manifold pressure
ports located at the midpoint of each side tunnel wall and the bottom
wall, 10.0 inches from the beginning of the test section. The area at
this location was the same as the test section. A static tube was used
to confirm that this sidewall pressure, Psw, Was uniform across the tun-

nel width. The relation

Po,=-P, (11)

14




was used to determine the tunnel static pressure. A Pitot tube was
inserted at this location to measure the total pressure. Flow velocities
in the tunnel (previously measured) ranged from an idle speed of
approximately 20 ft/sec to a maximum of almost 70 ft/sec. Because of
the relatively slow velocities involved, Bernoulli's equation for incom-

pressible flow, neglecting the gravity terms

Pr=Ps+0.5pU? (12)
where: Pr = tunnel total pressure
p = air density
U = freestream velocity
was quite acceptable. Solving Eq (12) for velocity resulted in:

U={2(P;-P,)/p)}""? (13)

which was the equation used to determine the tunnel freestream veloci-

ties. The density was calculated using the ideal gas law relationship:

p=Ps/RT (14)

where R = gas constant

T = tunnel temperature

Tunnel temperature was measured using a digital thermometer placed in

the aft end of the test section. Adiabatic flow was assumed throughout

15




the tunnel flow area. Measurement readings were accurate to one tenth
of a degree, Fahrenheit. The atmospheric pressure, Pam, Was recorded
in inches of mercury, from a wall-mounted barometer located in the
vicinity of the wind tunnel. The maximum velocity recorded during

experimentation was 65 ft/sec.

Anemometry/Pitot Tube System

A hot film anemometry/Pitot tube system was critical to the suc-
cessful completion of this work. Specifically, hot film anemometry was
used to determine the characteristics of the freestream flow (i.e., laminar
vs. turbulent) and additionally, as a check on the accuracy of the pres-
sure readings taken from the ramp static ports for both the smooth and
riblet ramp surfaces.

The anemometry system consisted of an IFA 100/200 System Intelli-
gent Flow Analyzer, Model 1218-20 Hot Film Boundary Layer Probes, and
an 18-inch single sensor anemometer probe holder with associated
traversing mechanism. All equipment was manufactured by Thermo-
Systems Inc., (TSI). The IFA 100/200 system provided both probe cali-
bration and data acquisition and reduction software programs that
related output bridge voltages to flow velocities. The Model 1218-20
probe was a hot-film type sensor with a platinum filament measuring
@.002 inches in diameter. This particular probe was constructed with a
small metal rod extending from its base to protect the hot-film filament
from contacting the body surface. The distance from the end of the rod
to the platinum filament measured 9.605 in. An 18-in. probe holder was

used to connect the hot-film probe to the IFA 100/200 system. The
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probe holder was part of a manual traversing mechanism which was
inserted into any of the 14 access ports on the top of the test section.
Design of the traversing mechanism allowed the probe to be inserted
normal to ramp at any access port location. The mechanism employed a
vernier scale to allow highly accurate measurement and control of the
probe-to-surface distance to within @.8¢1 in.

The Pitot tube was custom designed to provide extremely accurate
total pressure measurements with minimal flow disturbance. The inside
diameter of the probe measured 0.021 in. while the outside diameter mea-
sured 0.040 in. The probe was designed to utilize the same traversing
mechanism as the anemometry system and therefore, provide "same
location"” total pressure information. The Pitot tube was connected to a
2-inch inclined water manometer with the other end open to atmospheric

pressure.

Tunnel Model

One tunnel model was employed in this thesis with four basic
modifications. The adjustable diffuser section actually represented one-
half of a diffuser with the tunnel ceiling representing the flow center-
line. Therefore, the relevant diffuser throat height parameter used
throughout this text was H, where W=2H.

The basic model was constructed of wood. It was 36.9 in. long, 8.9
in. wide, and had a varying thickness. From the leading edge to an
axial distance of 7.0 in., the diffuser section thickness had an elliptical
shape varying from @ to 3.75 in. At an axial distance between 7.0 in.

and 15.0 in., the model had a constant 3.75 in. thickness. This was
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defined as the diffuser throat section. At an axial distance of 15.0 in. a
removable, diverging ramp began, providing a constant 6 of 10 deg.

The ramp extended from 15.8 in. to the length of the diffuser section--
36.0 in. A side view of the diffuser model is shown in Figure 7.

In the experiment conducted by Martens in 1988, it was discovered
that a pair of vertical vanes was needed on the diffuser model in order
to generate separation. These vanes served to shield the model test
section from, "highly vortical wall boundary layers as well as reinitializ-
ing the boundary layer on the vane surface"” (17:28). Instead of the
cardboard vanes used in the 1988 work, several pairs of 8.125 in. thick
plexiglass vanes were constructed and bolted to the model, one inch
from each wall. Each pair of vanes covered the length of the diffuser
ramp, projected 5.5 in. into the throat section, and extended from the
model surface to the tunnel ceiling. One pair was constructed for each
throat height, H, investigated. Plexiglass was chosen for two reasons.
First, it provided much more rigidity and stability during high speed
runs. Second, it provided clear, unobstructed viewing into the test
section during data runs. This proved invaluable during the anemome-
try/Pitot tube data acquisition runs where both the hot-film and Pitot
tube came in close contact with the model surface.

Wood blocks were used beneath the model to adjust its height
within the tunnel (corresponding to a change in H). Each of these
blocks was 36.9 in. long and 8.9 in. wide. A rectangular section approx-
imately 30.0 in. by 6.0 in. was removed from each block to accommodate
the model instrumentation. The thicknesses of the blocks were @.125,
@.250, 0.500, 1.00 and 1.5¢ in. The model was bolted to these support

blocks during test runs to prevent movement during data acquisition.
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The four modifications to the model involved the removable diffuser
ramp. As stated previously, the ramp extended from an axial distance of
15.0 in. to the diffuser exit. The first ramp was constructed of alumi-
num and measured 21.1¢ in. long, 8.9 in. wide, and 0.125 in. thick. It
was held in place with 12 machine screws. Prior to any data run, the
screw holes were filled in with modeling clay and scraped flush. Fourty-
one static ports were drilled along the ramp centerline, beginning one-
half inch from the diffuser throat position and continuing every
one-half inch. Each static port had a ©.821 in. diameter opening. The
second ramp was merely a modification to the first. A thin strip of 3M
Brand Fine Line Automotive Tape was used to cover the static ports.
This was done in order to isolate the influence of any irregularities in
the construction of the static ports on the flow behavior. These two
ramps were referred to as smooth diffuser surfaces.

The third modification was a new ramp, measuring 21.1¢ in. long,
8.9 in. wide and 0.125 in. thick that had riblets machined into the sur-
face. The riblets measured 0.835 in. from peak-to-peak and from peak-
to-valley and extended along the entire width and length of the ramp.
This dimension was shown previously to be ideal for this investigation.
In order for the riblets to be effective, the peak-to-valley dimension
(8.035 in.), needed to extend into the viscous sublayer. In other words,
the riblet height needed to be superimposed on top of the smooth sur-
face ramp. Since the thickness of both the smooth and riblet ramps
were the same (0.125 in.), the riblet ramp needed to be raised slightly.
Thin pieces of @.835 in. thick aluminum were placed beneath the riblet
ramp to provide this slight modification. Due to some warping encoun-

tered during the machining process, two additional machine screws were
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added to this ramp (total=14) in order to keep it securely fastened to
the main model. Similar to the smooth surface, modeling clay was used to
fill in the screw holes and scraped to match the riblet contours.

The last modification involved the drilling of static ports into the
riblet surface, identical to those of the smooth ramp in dimension and
location. This put the static port in the middle of a valley in the riblet
design. Figure 8 portrays the position of the static port in relation to
the riblet surface. Drilling of these ports was accomplished only after
all of the data for the riblet ramp was obtained. These last two modifi-
cations were referred to as the riblet diffuser surfaces. To sum, two
physical ramps were used for this study, a smooth and riblet surface.
Each one had two variations, one without static ports and one with
ports.

Several other pieces of equipment were used in the completion of
this thesis. A Tektronix Model SC5@04 Oscilloscope was used to monitor
and tune the frequency response of the hot-film apparatus. A Zenith
Z-248 computer system was used in the data acquisition and reduction
portion of the experiment. Finally, three Dwyer Instrument 2-inch
inclined water manometers were used to record model pressures and

control tunnel speed.

Computer Software

Three computer software programs were utilized during the course
of this investigation. The TSI IFA 108/200 software programs automated
all of the hot-film probe calibrations and data acquisition. Data files

generated by this software were consolidated and plotted using a plot
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package called "GRAPHER," which was written by Golden Software. All
of the figures in this report were generated using this package. Draft
and final copies of this report were prepared on a Vendex Headstart III
personal computer using "Manuscript" by Lotus. All copies were printed

using a Panasonic KX-P1124 24-pin letter quality printer.
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IV. Experimental Procedure

The experiments performed in this thesis were divided into three
distinct groups. The first involved calibration of both the wind tunnel
and hot-film anemometry equipment. This was important in verifying
turbulent flow at the diffuser throat and also in preparation for the
extensive hot-film work that was to come. A complete discussion of this
procedure is found in Appencix B. The second group of experiments
was performed with the smooth surface diffuser. Flow separation loca-
tions and surface pressure distributions, both with and without static
ports, were obtained. The final group of experiments was performed
with the riblet surface diffuser. RAgain, flow separation locations and
surface pressure distributions were obtained with and without static
ports. Because of the similarities involved with the last two groups of

experiments, the details are presented below.

Data Collection Reference Parameters

Recall, from the Theory Section, that the prescribed height of the
riblets was determined to be approximately 0.235 in. Martens (17:27),
verified this value experimentally. Diffuser throat velocities used in
that set of experiments ranged from 19.8 ft/sec to 51.0 ft/sec. This
provided non-dimensional riblet heights, h*, between 14.5 and 38.1
(17:32). The upper velocity was limited so as not to dislodge the
installed cardboard vanes (discussed previously). Since the vanes in
this experiment were of sturdier construction, the upper limit on veloc-

ity was extended to 61 ft/sec in order to determine the effectiveness of
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riblets well outside the accepted h* range of 8 to 30. The lower limit of
19.0 ft/sec was not used in this test due to the inability to achieve
stable flow at the diffuser throat. It was decided to use the remaining
velocities from the Martens experiment to provide a basis for compari-
son. Table 1 shows the four chosen velocities and approximate h* val-

ues.

Table 1. Uw and h* Values Used for Data Acquisition

Uw (ft/sec) h*
29 21.9
39 29.5
51 38.1
61 47.5

The only other data collection reference parameter was the diffuser
throat height, H. Martens used values of H ranging from 1.75 in. to 4.25
in. At values less than 1.75 in. inconsistent flow separation locations
were noticed and confirmed in this work. At 4.25 in., the flow remain
attached for all values of throat velocity. Because of this, H values of
1.75, 2.25, 2.75 and 3.25 in. were selected. These corresponded to those
geometries investigated by Martens and provided excellent comparative

data for this investigation.
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Smooth Diffuser Tests

Prior to taking any data, turbulent flow needed to be established
at the entrance to the diverging ramp. Initial boundary layer surveys
using hot-film anemometry showed that laminar flow existed across the
width of the channel. This was the same problem encountered by Mar-
tens. To alleviate this, a 0.75 in. wide strip of Number 120 grit sandpa-
per was attached to the diffuser throat, 7.0 in. upstream from the ramp
divergence point. This served to artificially trip the boundary layer
and cause transition to turbulent flow. Subsequent boundary layer sur-
veys at the divergence point showed completely turbulent flow as seen
in Figure 9. The 1/7 Power Law solution for turbulent flow over a flat
plate is presented along with the Blasius laminar boundary layer solu-
tion. It was quite evident from the figure that turbulent flow did exist
at the entrance to the expanding channel. Similar profiles were
generated for the other geometries and throat velocities investigated.

In all cases, turbulent flow was verified prior to any data acquisition.

The first series of tests conducted with the plain surface diffuser
involved determining the flow separation point. This was accomplished
using two different methods, Dow Corning 200 Fluid oil drops and tufts
of string. For a given throat height and velocity, oil drops were
applied to the diffuser throat area and also the diverging ramp section.
The throat velocity was set and the resulting oil drop flow pattern
allowed to develop for approximately two minutes. The throat speed was
then brought to rest and the separation location noted and recorded.
The ramp was then cleaned with a mild solution of alcohol and water and

the test repeated two more times. The average of the three data runs
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was determined and recorded. This sequence was repeated over the
range of velocities and throat heights described earlier. Accuracy of
this method was valid to within @.1 in.

As a check on the oil drop method, similar tests were run using
tufts of string. Numerous tests were conducted with various configura-
tions and lengths. It was determined that thin tufts, approximately one
inch in length, facing rearward, worked best. Only one row of tufts
was used in order to minimize the disturbance to the flow. The tufts
were attached to the ramp surface parallel to the flow direction using a
@.25 in. wide piece of Scotch tape. The last quarter inch of the string
was frayed--this provided the most dramatic indication of flow visualiza-
tion. The row of tufts was moved up and back in the vicinity of the
separation point determined from the oil drop analysis until separation
was observed. Separation was indicated when the frayed portion began
to flutter violently from side to side. Again, three runs at each velocity
and throat height were obtained and averaged. Accuracy with this
method was again valid to within 0.1 in. This series of tests was run for
the smooth diffuser surface, first for the ramp with static ports and
second, for the ramp without ports (i.e., static ports covered with tape)
to determine if the addition of the ports had any effect on the separa-
tion location. Boundary layer surveys both upstream and downstream of
the observed separation location were performed for several data points
in order to verify the existence of separated flow.

The second series of tests involved collection of ramp surface
pressures. These tests were conducted two separate ways. First, with
the static ports uncovered, the relevant throat heights and velocities

were adjusted and the corresponding throat and ramp surface pressures
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recorded. Pressures were measured using a 2-inch inclined water
manometer, with one end open to atmospheric pressure, the other end
successively connected to each ramp pressure port. The manometer was
allowed to stabilize for one minute at each pressure port prior to the
data being recorded. Each throat height/velocity combination was accom-
plished three times and a simple average obtained. Accuracy of manom-
eter readings was valid to within 0.805 in. H20.

In order to determine whether or not the presence of the pressure
ports affected the flow, the ports were then covered with fine line tape
and the test reaccomplished. This time, the pressures were obtained
using a hot-film and Pitot tube. The access ports along the top of the
test section allowed the pressure to be obtained along the ramp center-
line location in order to provide a comparison to the static port-derived
pressures. This complete procedure may be found in detail in Appendix
C. The hot-film probe was cleaned with methanol after each series of
runs and allowed to air dry. Again, each data run was accomplished

three times and an average derived.

et ace

The riblet surface tests were done similar to the smooth surface
tests. The surface without static ports was investigated first with the
following exception: cil drops could not be used on the riblet surface as
a means of determining flow separation. The riblet material caused a
capillary-like effect and began to streak the oil drops prior to any air-
flow. This was expected based on the work by Martens and Wieck

(17:36; 22:27). Since excellent results were obtained using the one inch
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tufts for the plain surface, they were used for the riblet surface. Only
one row of tufts was used and each was applied to the peak of the
riblet surface with Scotch tape. Figure 10 shows how the string tufts
were applied to the riblet surface. Since no analytical prediction tech-
nigque existed for determining flow separation over a riblet surface, this
single row of tufts was moved upstream from the rear of the diffuser
ramp until separation was observed. The vigorous flutter noticed for
the plain diffuser case was also evident for the riblets and was used as
the determining factor in estimating the separation point.

Riblet surface pressure data was obtained similar to the smooth
surface diffuser. The hot-film/Pitot tube combination was used to col-
lect data at each throat geometry/velocity combination.

With the riblet surface data in hand, static ports were machined
into the ramp, taking care not to create any anomalies or burrs that
would alter the flow above and beyond that caused by the riblets them-
selves. The plate was reattached to the model and separation and pres-

sure data obtained as in the smooth diffuser tests.
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V. Results and Discussion

These experiments were designed to determine the effect of riblets
on the pressure recovery in a straight-walled diffuser. Previous tests
showed significant delays in flow separation due to riblets and this
seemed a logical starting point from which to launch an investigation

into the changes in diffuser surface pressure distributions.

Diffuser Separation Data

Once turbulent flow at the diffuser throat was verified, data collec-
tion involved recording the throat height, H, the throat velocity, U,
and the location of flow separation, Xsep. Uth was set using the hot-film
and adjusting the tunnel speed so that an appropriate probe output
voltage was achieved that corresponded to the desired throat velocity.
Xsep was measured from the ramp divergence point along the ramp sur-
face. Table 2 shows the diffuser ramp separation points for the smooth
surface diffuser as a function of throat height and velocity. Throat
velocities are given in (ft/sec), and throat heights and separation loca-
tions are in inches. Accuracy of separation location measurements was
valid to within @.1 in. The separaticn points are given for the cases of
no static ports (clean) and static ports (ports), and were calculated as

follows:

Xsep (aVg) = [Xeep (avg)(oil) + Xsep (avg)(tufts)]/2 (15)
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where: Xsep (avg)(oil) average of three runs using oil drops

Xaep (avgl(tufts) = average of three runs using tufts

and

Xoep (avg)(smooth) = [Xsep (avg)(clean) + Xsep (avg)(ports)]/2 (16)

Also provided is the value of separation location determined from the
Stratford criteria. The difference between the average separa.’-... loca-
tion and the Stratford-derived location is presented as a percent

change. The percent change is determined using:

% change = [Xsep (avg)(smooth)-Stratford]/sStratford (17)

Two trends are quite evident from the data in Table 2. First, the
introduction of the static ports had a negligible effect on the separation
location. Obviously, the mechanism driving separation in this diffuser
design was not siynificantly influenced by the addition of these ports.
Since the flowfield was not altered to any great extent, it was believed
that the pressure recorded directly from these ports would accurately
reflect the true surface pressure distribution.

The second trend is the excellent agreement with the predicted
separation location using Stratford's criteria. In all cases, separation
was predicted earlier than the visualization method indicated. This is a

trend that was also seen in data presented by Cebeci and Smith
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(5:378-384) and Martens (17:34-36). The larger percent errors occurred
for the smaller throat heights and velocities (approximately 3 percent),

decreasing to approximately 1.25 percent for the largest throat height.

Table 2. Diffuser Flow Separation Locations-Smooth Surface

Uw H Xoap AVG | Xsep avg | Xaep avg | Stratford| Percent
clean ports smooth Change
29 1.75 5.48 5.47 5.48 5.32 3.01
39 5.91 5.90 5.91 5.74 2.96
51 6.41 6.43 6.42 6.22 3.22
61 6.84 6.85 6.84 6.64 3.01
29 2.25 7.45 7.44 7.45 7.25 2.76
39 8.18 8.20 8.18 7.96 2.76
51 9.03 9.02 9.03 8.78 2.85
61 9.81 9.80 9.81 9.54 2.83
29 2.75 9.79 9.69 9.70 9.42 2.97
39 10.73 10.74 10.73 10.42 2,98
51 12.04 12.04 12.04 11.80 2.03
61 13.75 13.76 13.75 13.48 2.00
29 3.25 11.92 11.91 11.92 11.74 1.53
39 13.39 13.40 13.38 13.18 1.52
51 15.98 15.98 15.98 15.75 1.46
61 18.50 18.49 18.50 18.28 1.20

Table 3 shows the diffuser ramp separation points for the riblet
surface as a function of throat height and velocity. Average values for
Xsep are calculated using three runs for the tuft case only, since ocil
drops could not be used on this surface. An Xsp entry of 21.80 indi-
cates no flow separation. The average riblet surface separation distance

was defined as follows:
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Xsep (avg)(riblet) = [Xaep (avg)(clean) + Xeep (avg)(ports)]/2 (18)

It is interesting and important to note that the addition of the
static ports had no effect on the separation point. This was similar to
the result obtained for the smooth surface ramp. The mechanism driv-
ing separation in the riblet surface ramp appears unaffected by the
addition of these particular size static ports. If the flowfield is not
significantly altered, then an accurate surface pressure distribution was

believed possible by direct readings from the static ports.

Table 3. Diffuser Flow Separation Locations-Riblet Surface

Uth H Xoep aVg | Xoep avg | Xeep avg
clean ports riblet
29 1.75 18.23 18.22 18.22
39 19.45 19.48 19.47
51 19.65 19.67 19.66
61 20.00 20.03 20.01
29 2.25 18.33 18.30 18.32
39 19.50 19.54 19.52
51 19.71 19.74 19.73
61 9.81 9.79 20.33
29 2,75 18.66 18.64 18.65
39 19.54 19.56 19.55
51 19.75 19.76 19.75
61 13.75 13.76 20.55
29 3.25 18.71 18.70 18.7¢
39 19.61 19.62 19.62
51 19.82 19.83 19.83
61 21.09 21.00 21.00
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The data in Tables 2 and 3 are combined in Figure 11 which shows
the diffuser ramp separation locations as a function of diffuser aspect
ratio for both the smooth and riblet surface cases. The separation loca-
tions plotted are the averages of all runs (column 5 for Tables 2 and 3).
This figure correlates very well to the results presented by King (12:5).
It is obvious that separation occurs farther downstream for the riblet
surface ramp compared to the smooth surface for any aspect ratio and
velocity. Also, as the velocity increases, the separation location moves
farther downstream for both the riblet and smooth surface ramps,
although this change is more pronounced for the smooth surface. Inter-
estingly, the separation location for the riblet surface appears to be
relatively geometry independent--a result noticed by King and verified
here.

A plot of AX,.,,/X,.,as a function of aspect ratio and velocity is

found at Figure 12. It can be seen that for high aspect ratios (less
stable flows) the percent change in separation location is higher than
for the smaller aspect ratios (more stable flows). As King puts it,

". . .viewed ancother way, a diffuser which is more likely to stall will be

helped proportionately more by riblets. . ." (12:5).

Diffuser Pressure Data

At each throat height and velocity, the ramp surface pressure was
obtained two ways. The first involved use of the hot-film/Pitot tube
combination discussed earlier. The second method involved reading the
static pressure (referenced against atmospheric pressure) from a manom-

eter connected directly to static ports of the ramp itself. Figure 13
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shows typical results from data runs at two different geometries and
velocities. Similar graphs were generated for each geometry and veloc-
ity for both the smooth and riblet surfaces. It was evident that valid
pressure data was attainable for both types of surfaces using either
method. The riblet data appeared to substantiate the earlier result that
the addition of static ports to the riblet ramp had no effect on the
separation location. Because the separation location did not change, no
change in the surface pressure distribution was expected. Since each
method yielded similar pressure distributions, only the manometer-
derived pressures, averaged over three runs, is presented in this thesis

in Appendix E.

Data Analysis

For comparison purposes, the raw data, given as (Pstatic = Patm),

were converted to a pressure coefficient, Cp, using

Cp - (Puat(c - Puamwﬂu)/chrnt (19)

where

qQ throat = O'SPwm(Uw«u)z (20)

The effect of Eq (19) was to reference all the data to conditions at the
diffuser throat where the pressure coefficient would reduce to a gzero

value.
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The pressure coefficients for each geometry and velocity investi-
gated were plotted against a non-dimensional ramp distance, determined
by dividing the ramp pressure location, measured along the ramp from
the minimum pressure point, by the ramp length. The results are
plotted in Figures 14 through 17. Also plotted on each figure is the
line of ideal pressure recovery, discussed previously.

Immediately apparent from each figure is the fact that for any
aspect ratio or velocity, riblets improved the overall pressure recovery
over that of the smooth surface ramp. Because the separation location
was moved rearward in each instance, the associated increase in pres-
sure recovery was expected.

The second trend from these figures was the distinctive flat region
in the smooth surface curves. Beyond the minimum pressure point, the
Cp values rose sharply to a maximum and then remained constant at that
maximum value. The value to which the curves rose was slightly depen-
dent on velocity. The ramp location at which the curve went flat was
close to that observed with the visualization techniques. Upon close
inspection of the riblet pressure data, a similar trend was observed.
Although the shape of the Cp; curve for riblets was noticeably different
than for the smooth surface, the C, values increased to a maximum (dif-
ferent than the smooth surface maximum) and then remained constant.
Because separation on the riblet surface was occurring towards the end
of the ramp for all geometries and velocities, it was difficult to establish
whether the Cp curve would remain flat. Therefore, for the riblet case,
no definite criteria could be established as to the point of separation.

However, for the smooth surface, the separation Cp and its location were
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determined at the point where the curve remained flat. This point was
clearly evident and easily discernible and compared favorably to that
location determined using visual means.

The fact that the C; curves remained flat after flow separation
implied that the flow on the ramp surface, in the vicinity of the static
ports, did not reverse direction or reattach. Apparently, as the flow
separated, it remained separated and well-behaved. Any reattachment or
reverse flow would have shown up as a change in the "flat region" C,
where none was noted. Additionally, during the oil drop experiments,
the circular oil drops streaked in the direction of flow up until the
separation point, after which they remained circular. Any flow on the
surface would have streaked the oil drops and again, no streaking was
noticed downstream of the separation point. Therefore, this trend in
the Cp; data was quite reasonable.

Also apparent is the fact that all the velocity curves, for both the
smooth and riblet surfaces, lie fairly close to one another. Due to the
scaling of the figures, it is difficult to note any difference. However,
close inspection of the reduced Cp data reveals a slight increase in the
separation Cp value for increasing velocity. This trend was equally
noticeable for the smooth surface and riblet curves. However, in both
cases, the difference in Cp between the lowest and highest velocities
never varied more than approximately 3 percent.

A final trend in the figures involved the slopes of the Cp curves
immediately after the ramp divergence point. As the aspect ratio of the
diffuser increased, the slope of the smooth and riblet surface Cp curves
increased. This was easily explained by the fact that as the aspect ratio

went up, the rate of area increase went up also and the diffuser became
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more susceptible to stall (higher L/W). This implied a higher adverse
pressure gradient and was seen as a larger slope on the Cp curves.
Additionally, for a given aspect ratio, there was a significant difference
between the smooth and riblet surface C, curves which became more
pronounced at the higher aspect ratios. This was due to the fact that
at the higher aspect ratios, the diffuser was subjected to a much more
severe adverse pressure gradient. Since riblets delayed the onset of
separation, the pressure gradient was made less severe and therefore
the slope of the riblet Cp; curve lower. Since the separation point for
the riblet surface was not varying over the range of geometries and
velocities investigated, the shape of the Cp riblet curve remained fairly
constant. However, for the smooth surface ramp, the separation location
moved farther downstream as the aspect ratio was decreased. This
implied a less severe pressure gradient (not favorable however) and a
lower slope. This shows up in the figures as a noticeable difference
between the smooth and riblet surfaces for the higher aspect ratios and
a less pronounced deviation at the lower ones.

As stated previously, for all geometries and velocities investigated,
the addition of riblets to the smooth surface diffuser improved the
pressure recovery at the diffuser exit. These pressure coefficients
were converted to an efficiency factor using Eq (8). As stated pre-
viously, it defines diffuser performance as the percentage of the pres-
sure recovery obtained as compared to that of an ideal diffuser
experiencing no total pressure or skin friction losses. Figure 18
displays diffuser efficiency as a function of aspect ratio. Interestingly,
the efficiency appears to relatively independent of both geometry and

velocity for both the smooth and riblet surfaces.
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An estimate of the diffuser efficiency, for comparison purposes, can
be made by referring to Figure 6. The aspect ratios of the diffuser
used in this experiment ranged from 3.83 to 5.63. The total included
angle 20, was 20 degrees. Using the Reid 5.5 aspect ratio data, a rea-
sonable estimate of the expected pressure coefficient for this diffuser
was made. Unfortunately, Reid's data is only plotted for divergence
angles between 7 and 17 degrees. However, by extrapolating the data to
20 degrees, the pressure coefficient was estimated to be approximately
#.5. This compared favorably to the measured pressure coefficient for
the highest aspect ratio diffuser (5.63) used in this experiment. The
efficiency calculated from Figure 6 data was 56 percent and this com-
pared well with the experimental efficiency of approximately 52 percent.

Unfortunately, no data for aspect ratios smaller than 5.5 were
available. However, close examination of the trends in Figure 6 show
that smaller aspect ratio diffusers will have lower pressure coefficients.
Examining the measured pressure coefficients, this trend was verified.
The lower aspect ratios have proportionately lower ideal pressure coeffi-
cients and so the overall efficiency of the diffuser remained fairly con-
stant at 52 percent.

The riblet results seem to follow the same trend, providing an
approximate 35 percent increase in diffuser efficiency. The most
improvement seems to occur for the high aspect ratio geometry (most
severe stall) and the least for the lower aspect ratio. This appears to
match the earlier separation result noted by King and Martens that
riblets appear to be most effective in those conditions most likely lead-
ing to stall. An important point to be made here is that not only are

riblets effective in delaying flow separation in turbulent, adverse
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pressure gradients, but they also appear to alter the pressure distribu-
tion in a favorable manner that provides improved pressure recovery at
the same time.

Because Figure 18 shows very little dependence on velocity, a new
graph was made that plotted diffuser efficiency as a function of throat

Reynolds number, determined as follows

Rey=(UnD))/v (21)

where: Dn = 4(throat area)/(throat perimeter)

The hydraulic diameter, Dn, is a parameter commonly used in calcu-
lations to eliminate the dependence of geometry in engineering problems.
It is also used to normalize the viscous effects of a boundary layer
growing on the interior of a duct of arbitrary shape to that of one
growing on the interior of a circular duct. The throat area and perime-
ter were well-defined values that varied with aspect ratio. Reynolds
numbers based on this criteria ranged from 40,000 to approximately
140,000.

Figure 19 shows the relationship of diffuser efficiency to the
throat Reynolds number. It is evident from this figure that the effect
of throat Reynolds number on diffuser efficiency appears to be rela-
tively minor in the range investigated. This was expected from the

smooth surface and appears to be true for the riblet surface as well.
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VI. Conclusions and Recommendations

Conclusions

As a result of this investigation into the effect of riblets on the
pressure recovery in a straight-walled diffuser, the following conclu-
sions were made:

1. Riblets, in addition to significantly delaying flow separation in a
diffuser, also altered the pressure distribution in a manner that allowed
for improved pressure recovery. The amount of this improvement was
an increase in the pressure coefficient between 30 and 38 percent over
what was expected from a diffuser of the design used in these experi-
ments. This result appeared valid for any combination of geometry or
velocity with the most improvement occurring for the condition most
likely leading to stall.

2. Inherent in an improvement in the efficiency of the diffuser
with riblets is a reduction in the aerodynamic and skin friction losses.
Although the skin friction losses were not measured, it may be inferred
that an improvement in diffuser efficiency should result in a reduction
of these loss mechanisms. Riblets were shown to significantly delay flow
separation and this delay in separation resulted in a noticeable increase
in the diffuser efficiency as compared to the smooth surface diffuser.

3. The effect of riblets on the surface pressure distribution
appeared to be insensitive to the range of geometries and velocities
investigated in this experiment. Because of the relatively small range of

aspect ratios investigated, the change in efficiency due to changes in
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geometry for the smooth surface diffuser was not expected to be signifi-
cant. It appeared that the same result held for the riblet surface dif-
fuser.

4. The introduction of static ports into the riblet surface did not
appear to influence the effect of the riblets on flow separation or sur-
face pressure distribution. The flow separation points and pressure
distributions obtained for the riblet surface with and without static
ports were similar along the ramp centerline. This indicated that what-
ever mechanism inherent in the riblet shape was influencing the diffuser

flow, was not disturbed appreciably by the presence of the static ports.

Recommendations

This thesis revealed an obvious benefit in using riblets in a
subsonic straight-walled diffuser to delay flow separation and increase
pressure recovery. The following additional areas are recommended for
follow-on study:

1. Most data on diffusers is presented for varying divergence
angles. This model allowed only one angle, namely 20 degrees. An
investigation into the effect of riblets on flow separation and pressure
recovery enhancenent should be conducted over a range of divergence
angles.

2. Measured boundary layer thicknesses were on the order of 8.2
to 0.3 in. At the larger aspect ratios, this was almost 20 percent of the
throat height and prevented any separation data from being obtained at
throat values less than 1.75 in. A smaller throat height would have

allowed a greater range of aspect ratios to be investigated. a - iable
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geometry ramp, or several different geometry ramps, would allow an
investigation into changes in ramp divergence angle, along with aspect
ratio, on diffuser performance.

3. Although the riblets improved the overall performance of the
diffuser for any combination of geometry or velocity, the smooth surface
diffusers appeared to give equal or better performance out to their sep-
aration points. More work into this phenomenon needs to be accom-
plished in order to fully understand the effect riblets have on pressure
recovery.

4. In these experiments, the entire length of the ramp was
machined with riblets. An investigation into the effect of a ramp that is
partially machined with riblets might provide insight into the mechanism
that allows riblets to delay flow separation and improve pressure recov-
ery.

5. The diffuser used in this work was designed to give poor
pressure recovery (i.e., on the order of 5¢ percent) in order to deter-
mine the effectiveness of riblets in delaying flow separation and enhanc-
ing pressure recovery. An investigation into the effect of riblets on
the flow separation and pressure recovery in a well-designed diffuser
might prove useful.

6. The static ports used in this investigation were machined to
provide the minimum disturbance to the flow. Any altering of the sur-
face has the potential to disturb the oncoming flow and hence disrupt
and possibly cause separation. An investigation into the effect of static
port size and its effect on riblet performance would provide important

insight.
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Appendix A Equation Derivation

This appendix contains the detailed derivation of Eq (6) used to
determine flow separation within the diffuser section as described in the

Theory section. Stratford's relationship is written as

F(x)=C,(xdC,/dx)*5(10°9R )"

where:

Cp pressure coefficient, Cp = 1 - (Uqs/Us)2

flow location measured along ramp

»
"

dCp/dx = pressure distribution

Rex = Reynolds number, Re, = xU,.,/v

Ue = boundary layer edge velocity (ft/sec)

Uo = velocity at beginning of adverse pressure gradient
F(x) = Stratford's separation criteria parameter

Stratford's relationship was simplified using the continuity equation for
steady, one-dimensional incompressible flow and the geometry of the dif-

fuser. The continuity equation is written as

AoUo = AsUe (22)

where Ao = diffuser throat area (ft)

Uo = velocity at Ao location (ft/sec)
Ae = diffuser area at boundary layer location (ft)
Ue = boundary layer edge velocity at Ae location
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Rearranging Equation 22 resulted in the following relationships:

&

(AcUo)/Use (23)
(AoUo)/Re (24)

Ue

A side view of the model is shown in Figure 20. From the figure the

following geometric relationships were derived

Be = H + %X sin 6 (25)
Ao = H (26)
dB./dx = sin © (27)

where H = diffuser throat height

= ramp divergence angle

To derive an expression for Cp in terms of x, the ideal pressure coeffi-

cient, C, 4. Was used. The ratio (RAo/As) is easily shown to be:

A, /A, = H/(H + xsin®) (28)

This provides a relationship between Cp and X, which can be differen-

tiated to obtain an expression for dC,/dx:

dC,/dx =(2H?sin8)/(H + xsin8)? (29)

Finally, substituting all into the original Stratford expression yields:

F(x)={1-H/(H+xsin8)?){(2xH?sin0/(H + xsin0)°)** (R, 10" )" (30)
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Appendix B: Equipment Calibration Procedure

The first group of experiments conducted during this investigation
involved the calibration of the wind tunnel and hot-film anemometry
equipment. The purpose of this appendix is to explain the details of

each calibration process.

ind T ] Calibrati

The wind tunnel calibration was a relatively simple process that
involved the use of two water manometers, a digital thermometer and a
barometer. The manometers were used to measure the total and static
pressures in the tunnel, the digital thermometer to measure the temper-
ature in the tunnel test section and the barometer to measure the atmo-
spheric pressure.

It was previously shown that the tunnel sidewall pressure was
equal to *he tunnel static pressure. The sidewall pressure was an eas-
ily measured quantity and varied directly with increases and decreases
in the tunnel speed. This quantity was ti _.efcre chosen as the control
parameter in setting the tunnel speed. With the static and total pres-
sures measured, a relationship between the static pressure and the tun-
nel g was possible. This relationship is plotted in Figure 21 for two
different temperatures and pressures. It is evident from this figure
that the tunnel q (defined as the difference between the measured total
and static pressures), was independent of both temperature and pres-

sure.
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With this relationship established, it was a simple matter to derive
the actual velocities on any given day by measuring the atmospheric

pressure and temperature and using the following equation:

U=(2g/p)° (31)

All calibrations were of course performed with no obstructions in

the tunnel.

Hot-Film Probe Setup

With the tunnel velocity determined, calibration of the hot-film
could proceed. It was determined early in the experiment to calibrate
the hot-film in the tunnel. This was done in order to calibrate the
boundary layer probes in an environment duplicating the actual exper-
imental conditions. This was felt necessary in order to reduce any pos-
sible error introduced by calibrating in an external flow.

Prior to any calibration, the instrumentation needed to be
assembled. Detailed instructions for assembly of the equipment was con-
tained in the IFA 100/200 System Instruction Manual (1¢:1-1 to 3-5).

The system was constructed by connecting the probe holder to the IFA
100/200 setup. The IFA 100/200 combination was connected to a Zenith
Z-248 computer system to aid in data acquisition and probe calibration.
The hot-film probe was then inserted into the holder, thus completing

the circuit. The probe holder was clamped to the traversing mechanism
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and inserted into the wind turnel at the calibration location, 1@ inches
upstream of the test section. The traversing mechanism was adjusted to
position the boundary layer probe in the center of the tunnel.

Once the probe was in place, the 100/200 system operating parame-
ters needed to be set. These parameters included the transducer, fre-
quency response and signal conditioner. The formulation and input of
these parameters is discussed in detail in the operating instructions.
The transducer parameters consisted of the cable resistance and the
probe operating resistance. The cable resistance was measured first
and input to the IFA 10@¢. Its value was then automatically subtracted
from all future readings. The probe resistance was measured next and
compared to the factory specifications on the shipping container to
determine the probe's validity. If a probe proved worthy, its operating
resistance was manually input using the IFA 10¢ and the calibration
procedure continued.

The frequency response of the circuit was then adjusted by set-
ting the system to RUN, applying a square wave test signal and observ-
ing the output on an oscilloscope. This procedure was done with the
tunnel adjusted to its highest operating speed. The frequency response
was adjusted via bridge and cable compensation controls to produce the
proper square wave test signal (10: Appendix 1), resulting in the optimi-
gation of the system.

The final set of parameters consisted of the offset, gain and filter
controls. These parameters adjust the IFA 100/200¢ output signal to the
specific needs and conditions under which the experiment was being
conducted, and were set either manually or through the IFA 200 soft-

ware.
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Hot-Fil librati

The procedure of calibrating the probe began with the insertion of
the probe into the tunnel at the calibration station (10 inches upstream
of the test section). Software provided with the IFA 200 System pro-
vided both probe calibration and data acquisition computer programs
that were easy to use and quite helpful. This software was brought on
line and appropriate information such as temperature, pressure and
probe serial number were input. Once the software was ready to accept
data, the tunnel was started and a velocity set via the sidewall static
pressure. The tunnel was allowed to stabilize for one minute prior to
any data being taken. The data was recorded as a bridge output from
the hot-film probe and was fed directly to the Zenith computer system.
Once the data was taken, the tunnel velocity was manually adjusted to
the next velocity and the process repeated for the desired number of
data points.

Once the raw data was collected, it was processed and reduced
using the IFA 200 software. The probe calibration program plotted the
output bridge voltage against the tunnel velocity and fit a fourth order

curve fit to the data of the form:

Ep = A + B(U) + C(U)2 + D(U)? + E(U)* (32)
where: Ebr = probe output voltage (volts)
U = tunnel velocity (ft/sec)
A-E = anemometer constants
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The anemometer constants were sensitive to changes in tempera-
ture. Due to the poor air conditioning in Building 19 and the relatively
large fluctuations in the ambient temperature, calibration data was
collected for a range of temperatures over which the experiment was
conducted. This range was from between 69% F to 8¢® F. Calibration
curves for this range were constructed and are plotted in Figure 22.
The fourth order curve fit to the data was within less than one percent
error at each point. The usefulness of the IFA 200 system was that
once the calibration was performed, the constants and all pertinent data
were stored in memory and it was a simple matter to recall the probe
serial number during the data acquisition program and acquire data.
The software would then reduce the output voltage and determine the

flow velocity.




Appendix C Hot-Film/Pitot Tube Methodology

The purpose of this appendix is to describe the procedures used
during the hot-film and Pitot tube data acquisition portion of the
experiment. Specifically, the details involved with acgquiring boundary
layer surveys and the techniques used in determining the static pres-
sure are discussed.

One of the basic assumptions in boundary layer theory is that the
static pressure of the freestream airflow is transmitted through the

boundary layer to the surface (16:299). In other words,

(dp/dy)=0 (33)

where y is measured normal to the surface over which the air is flow-
ing. With this simple, but important assumption, the surface pressure
distribution was obtained first by performing a boundary layer survey
to determine the boundary layer thickness, 6§ and edge velocity, Us, and
then inserting a Pitot tube at that location and measuring the total
pressure. These values were used to calculate the static pressure using

Eq (12).

Deter minati ¢ Bound l Thic)

As a precursor to measuring the total pressure, the bour .ary layer

thickness needed to be determined. Most classical texts on boundary

layer theory define the thickness of the boundary layer to be at that

51




point where the velocity in the boundary layer reaches 99 percent of

the measured freestream value (16:306,311). Although this is conceptu-

ally satisfying, it is experimentally difficult to ascertain.

The boundary layer thickness was calculated in this thesis by
applying Cole's wake function to each boundary layer survey. This

expression was written as

u =o,y + {I(x)/x)w(y/6) (34)

where:

u+ = dimensionless velocity parameter, u+ = U/U,

U = flow velocity in the boundary layer at y (ft/sec)
o, (y") = turbulent boundary layer law of the wall function
M(x) = Cole's profile parameter

x = von Karman's mixing length constant

w(y/6) = Cole's wake function

If this equation is evaluated at y = 6, [I(x) can be eliminated resulting
in

UrU =1/ )In(yU/VvY+ e+ {U U~ (L /) In(ylU /v)-c)}sin?{ny/(26)) (35)

where:
y = local vertical height (ft)
¢ = Cole's integration constant with a value between 4.9 and 5.5
6 = boundary layer thickness (ft)
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There are two unknowns in this equation, U, and & Solving for U, can

be done by minimizing the root-mean-square of the all the data errors.
All terms in Eq (35) were moved to the right hand side of the expres-
sion and set equal to an error parameter, € A value of § was then
guessed, and a range of U/, was used with the boundary layer data to
produce a corresponding range of € values. Taking the square root of
the sum of the squares of € produced a value proportional to the root-
mean-square error (e¢.,,) for the chosen 6. This procedure was per-
formed for a number of different boundary layer thicknesses, a graph
generated of U, vs. €¢,,,, and the minimum value of each ¢,,, - U, curve
connected. The minimum value on this new curve represented the 6
corresponding to the smallest ¢,,.

With 6 determined, the Pitot tube was inserted into the flow at that
location and the total pressure measured. With the velocity measured
via the hot-film, and the total pressure measured with the Pitot tube,

the static pressure was calculated using Eg (12).
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Appendix D Figures
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Figure 7. Side View of Diffuser Model with Vanes
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