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\ _ Abstract

N

\) One of the characteristics of real-time systems is concurrency. Designers of real-
time systems have traditior.ally determined system concurrency at implementation
time using the facilities of a cyclic executive. With the advent of programming
language constructs for specifying concurrency, determining concurrency at design

time hus become a possibility.

Several design methods, ali of which are extensions of either Structured Design
or Jackson System Development, provide heuristics to help the designer make con-
currency decisions. The object-oriented approach, however, has no corresponding

heuristics to aid designers of real-time sytems.

The purpose of this thesis was to develop heuristics to help designers make
concurrency decisions in developing object-oriented designs of real-time systemis.
This was accomplished by examining existing heuristics from other design methods

and applying them to the object-orienied paradigm.

Four heuristics were developed, the first of which exploits the potential in
object-oriented design to model the problem-space. The other three heuristics deal
with concurrency which is not necessarily reflected in the problem-space, but must

be implemented for practical reasons.

The heuristics were validated by applying them to a sample problem, then

having the heuristics and the design of the sample problem evaiuated by a group of

4
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soitware engineering experts.
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DETERMINING CONCURRENCY IN OBJECT-ORIENTED
DESIGN
OF REAL-TIME EMBEDDED SYSTEMS
USING ADA

I. Introduction

The design of embedded, real-time systems is considered one of the most com-
plex software related activities[Levi and Agrawala 1987:3]. Journal articles and text-
books dealing with real-time software design have increased in number and frequency
as researchers attempt to reduce complexity and help designers in their task. This

thesis discusses the application of object-oriented design techniques to real-time sys-

tems.

1.1  Background

An embedded computer systems is one in which the computer is a critical part
of a larger system[Scannell, et al. 1986:3]. These systems are usually large, complex,

and subject to strict reliability and timing requirements{Booch 1987b:15].

A real-time software system is one which must respond .0 events or conditious
in the external environment within a specified time period[IEEE 1983]. As this
aspect of embedded systems leads directly to a consideration of concurrency in the

system, this thesis focuses on real-time software design.

One of the primary characteristics of real-time systems is concurrency[Gomaa
1989b], which occurs when the execution of two or more processes is overlapped in

time, i.e., at least one process begins execution prior to the termination of some

11




other process. These processes may be distributed on multiple processors or share a

single processor.

Traditiorally, concurrency in real-time systems has been handled via a cyclic
executive, which is essentially a real-time extension to the operating system, provid-
ing facilities for creation, execution, and termination of concurrent processes[Sha and
Goodenough:1]. Under a cyclic executive, each process is allotted a certain amount
of execution time, at the end of which the process is suspended and another process
scheduled. Handling concurrency then becomes strictly an implementation issue,
since software modules that cannot execute within their time frame must then be
decomposed into smaller components, not on the basis of design considerations, but

on the basis of execution time.

The Ada programming language, introduced in the 1980’s, provides language
constructs for specifying concurrent processes without forcing the programmer to
explicitly use a real-time executive. This enables the designer to make concurrency
decisions at design time based on sound design principles, rather than at implemen-

tation time based on timing considerations.

The designer of real-time systems, therefore, must identify which processes in
the software design are concurrent and which are not. Until recently, there has been
little guidance for identifying concurrency, but several researchers have developed
heuristics for determining when a process should be implemented as a concurrent
process{Gomaa 1984, Nielsen and Shumate 1988, Sanden 1989]. These heuristics are
presented in the context of Structured Design[Ward and Mellor 1985] or Jackson
System Development|[Jackson 1983). One method that does not have comparable

heuristics is object-oriented design[Kelly 1987:245].

Object-oriented design models the software as objects corresponding to entitics
in the real world[Booch 1987b:47]. Associated with each object is a set of operations
which acts on the object. The software system is implemented by speci.ying the

interaction of the objects via their operations.

1-2




The object-oriented method followed in this thesis is that described by Booch[Bo&:h
1991}, which is an iterative process of identifying objects and operations, determining
the visibility and interfaces between objects, and then implementing the objects. As
new objects are encountered during the design, the process is repeated. This con-
tinues until all objects are implemented. Chapter three contains a fuller discussion

of object-oriented design and Booch’s method.

1.2  Problem

At present, designers of object-oriented real-time systems have little guidance
in determining concurrency in their designs[Kelly 1987]. The objective of this thesis
is to develop heuristics for identifying concurrency in an object-oriented, real-time

design.

Specifically, the objectives are as follows:

¢ Determine what heuristics exist for determining concurrency using other design

methods.
o Define heuristics for determining concurrency using object-oriented design.

o Validate the heuristics by applying them to a sample problem and then having

a panel of experts pass judgement on the validity of the heuristics.

1.8 Scope

This thesis concentrates on real-time systems implemented on single-processors.
Concurrency in distributed, multi-processor systems depends on factors external to
the design, such as the processor interconnection network, the communication mech-
anism, and the number of processors available. Assuming a single-processor environ-
ment allows the designer to focus on the design itself, independent of implementation
platform. Iven in a distributed environment there may be several processes execut-

ing on the same processor, so the single-processor heuristics apply in any case.
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1.4 Assumptions

The design principles developed in this thesis are independent of implemen-
tation language. However, the language used to verify the principles is Ada. Ac-
cordingly, the benefits and constraints of the Ada tasking model have affected the

resulting design.

1.5 Approach

The research to achieve the goals of this thesis was accomplished in the follow-

ing stages:

1. Literature Survey. Over the past 25 years a vast amount of research concerning
sofiware system design has been done. A survey of this research was conducted,
focusing on current developments in the design of real-time systems, and in de-
termining concurrency in these designs. Specifically, three design paradigms
were investigated: real-time extensions to Structured Analysis/Structured De-
sign (SA/SD)[Ward and Mellor 1985], Jackson System Development[Jackson
1983), and object-oriented design[Booch 1991]. The results of this survey are

in chapter two of this thesis.

2. Develop Design Heuristics. Based on the principles and heuristics examined in
the literature survey, a set of heuristics specifically addressing concurrency in
object-oriented real-time-systems were developed. The heuristics are described

in chapter threc.

3. Validation of Heuristics. The validation of the concurrency heuristics took
place in two stages. First, the heuristics were applied to a sample problem. An
air traffic control simulation (ATC) was selected because it exhibited sufficient
concurrency to demonstrate the heuristics, while being small enough to manage

in an academic environment. The discussion of the ATC design is in chapter




four, and the object-oriented requirements analysis and the Ada specifications

for the architectural design can be found in appendix A.

For the second stage of validation, the heuristics were distributed to
several experts in software engineering whose opinions on various aspects of
the heuristics were tabulated. Chapter five contains a detailed discussion of

this effort and appendix B contains the validation package.

1.6 Thesis Organization

The thesis is organized to follow the stages of research outlined in the Approach
section. Chapter two presents a review of current literature concerning concurrency
in the design of real-time software systems. Chapter three outlines a set of heuristics
which designers can apply to object-oriented design of real-time systems to deternine
concurrency in the system. Chapter four contains the results of applying these
heuristics to a sample problem, an Air Traffic Control (ATC) simulation. Chapter
five records-the validation method and results for the heuristics. The thesis concludes
with a chapter in which conclusions are drawn and recommendations for further work

are given.

1-5
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II. Literature Survey

2.1 Introduction

Real-time systems normally exhibit a high degree of concurrency[Gomaa 1989b).
Consequently, a real-time design method should provide guidance for designers to
help identify and implement concurrency. This survey examines how current real-
time design methods assist designers in making concurrency decisions. Five exten-
sions to Yourdon’s Structured Analysis are considered first: Structured Development
for Real-time Systems, Design Approach for Real-time Systems (DARTS), Layered
Virtual Machine/Object-Oriented Design (LVM/OOD), Ada-based Design Approach
for Real-time systems (ADARTS), and Process Abstraction Method for Embedded
Large Applications (PAMELA). Jackson System Development (JSD) is then exam-
ined, along with a related method, Entity-Life Modeling. The chapter concludes

with a brief discussion of Object-Oriented Design.

2.2 Structured Development for Real-time Systems

Structured Design[Yourdon and Constantine 1979], a method of classical de-
sign in which the system under consideration is structured into transforms and data
flows, has been popular with business data processing systems for a number of years.
The design approach, though, addresses data manipulation mainly, and only periph-
erally touches on control and concurrency features characteristic of real-time and
embedded systems[Ward and Mellor 1985]. Ward and Mellor introduced ... control
considerations, through the use of state transition diagrams. A control transforma-
tion represents the execution of a state transition diagram”[Gomaa 1989b:9). Thus, a
state transition diagram may be associated with each control transform to represent

the dynamic behavior of the system[Ward 1986:201).

The control and data transformations are graphically represented by a Data

Flow Diagram (DFD). After the DFD is developed, the transforms are allocated to

2-1




processors and the transforms on each processor are allocated to concurrent tasks.
Structured Design is then iteratively applied to design the tasks[Gomaa 1989b:10].
Structured Design provides a method by which individual tasks can be designed, but
little help is given in structuring the system into concurrent tasks. Gomaa notes that
“,..Structured Design is a program design method leading primarily to functional

modules and does not address the issues of structuring a system into concurrent

tasks”[Gomaa 1989b:11].

2.8 Design Approach for Real-time Systems (DARTS)

The DARTS method provides an approach for structuring a real-time sys-
tem into concurrent tasks|Gomaa 1984]. Using a DFD, which is developed using
Structured Design techniques, concurrency is identified by considering the nature
of the transforms and grouping them according to the following task structuring

criteriaGomaa 1984:940).

e Dependency on Input/Output. A transform associated with an I/O device

should be a separate task.

o Time-critical Functions. A transformm which executes under tight time con-

straints needs to run at a high priority and should be a separate task.

e Computational Requirements. A transform which requires extensive calcula-
tion needs to run at a low priority (perhaps in background) and should be a

separate task.

o T'unctional Cohesion. Two or more transforms that perform similar functions

can be grouped into a single task.

e Temporal Cohesion. Two or more transforms that perform functions during

the same time period can be grouped into a single task.

o Periodic Execution. Transforms that execute at regular intervals can be grouped

into a single task.




Once the tasks are identified, the task interfaces are designed anrd the tasks

are themselves designed, again using Structured Design techniques.

2.4 Layered Virtual Machine/Object-Oriented Design (LVM/OOD)

LVM/OOD is a data-flow based design method developed by Nielsen and Shu-
mate[Nielsen and Shumate 1988].

“The concept of LVM is used to create a top layer as a set of communicat-
ing sequential processes. Each process is a virtual machine that executes
in parallel with the other processes (virtual machines). We combine
the concepts of LVM and OOD (LVM/QOD) to decompose each pro-
cess into a hierarchy of virtual machines (Ada subprograms) and objects
(Ada packages, types, and operations on objects of the type)”[Nielsen
and Shumate:33].

The method consists of ten steps[Nielsen and Shumate:211f]. The first three
steps are concerned with producing a Structured Design, i.e., the data flow diagram,
data dictionary, etc. In the fourth step, the step in which concurrency is determined,
process selection rules are applied to the DFD to combine transforms into ccncur-
rent processes[Nielsen and Shumate:212}. The first six process selection rules are
identical to Gomaa’s task structuring criteria{Comaa 1984:940], listed above[Nielsen

and Shumate:90-91]. Two rules have been added:

o Storage Limitations. If processes are too large, they will meed to be split into-

smaller processes.

e Data Base Functions. Transforms needing access to shared data can be grouped

in a single process to provide for mutual exclusion|Nielsen and Shumate:90-91).




2.5 Ada-based Design Approach for Real-time Systems (ADAKTS)

In a recent article, Gomaa modified the original DARTS method to specifi-
cally address designing real-time systems using Ada, which he calls ADARTS[Gomaa
1989a).

In ADARTS, the task structuring criteria are expanded and reorganized as

follows:

1. Event Dependency Criteria. These criteria are concerned with how and when

a task is activated. Included in this category are the following:

(a) Asynchronous Device I/O Dependency. This is the same as the DARTS
Dependency on I/0.

(b) Periodic Event. This is the same as the DARTS Periodic Ezecution.

(c) Periodic 1/O. The task activation is periodic, but is related to some I/O

device.

(d) Contr . Function. This is a function which may be represented by a state

transition diagram.

{e) Entity Modeling. This is a task which models concurrency in the problem

environment.
(f) User Interface Dependency. Sequential operations performed by the user

can be grouped into a single task.

2. Task Cohesion Criteria. These criteria provide a basis for deterinining which

functions can be combined into tasks.

(a) Sequential Cohesion. Fucnctions that must be carried out sequentially

can be grouped into a single task.

(b) Temporal Cohesion. This is the same as the DARTS Temporal Cohesion.
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(c) Tunctional Cohesion. This is the same as the DARTS Functional Cohe-

sion.
3. Task Priority Criteria. The criteria are based on the priorities of the functions.

(a) Time Critical. This is the same as the DARTS Time Critical Functions.

(b) Computationally Intensive. This is the same as the DARTS Computa-

tional Requirements.

2.6 Process Abstraction Method for Embedded Large Applications (PAMELA)

PAMELA is an Ada-based design method developed by George Cherry[Cherry
1986]. Since most information on PAMELA is proprietary, the material in this

section is taken from two articles comparing PAMELA with other methods[Kelly
1987)[Boyd 1987].

PAMELA is a process-oriented method, i.e., the dynamic properties of the
system under consideration are given priority over the static structure. These two
views of the system are represented by process modules and procedure modules,
respectively. Processes have “...one or more independent threads of control(run time
stack)...”[Boyd 1987:4-69] and conserve local state. Procedure modules “...have
no independent thread of control, and cannot conserve local state information”{Boyd
1987:4-69).

PAMELA is actually an extension of Structured Design, The top level of ab-
straction in a PAMELA design “...is essentially a data flow diagram of processes

... "[Kelly 1987:241]. Boyd states, “In effect, PAMELA supports a functional (pro-
cedural) decomposition ...”[Boyd 1987:4-69].

The heuristic PAMELA provides for determining these independent threads of
control is to identify asynchronous processing in the system. According to Boyd|[Boyd

1987:4-69),
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A guiding principle s o isolave {as much as possible) those interactions
which require asynchronons hanaling in the highest vegions of a system
design; this leads to processes ab the higher levels of the system. Sequen-
tial processing of information takes place at lower levels of the hizrarchy,
effectively isolated within the decomposition of asynchronous processes.

2.7 Jackson Systesn Development(JSD)

Jackson System Development (JSD) incorporales a design method in which the
real world is modeled“in terms of entities, actions they perform or suffer, and the
orderings of thosc actions.”[Jackson 1983:23] Thus the focus is not on a step-by-step

progression of functions acting upon data.

A complete description of JSD can be found in [Jackson 1983]. The following
discussion is drawn from [Cameron 1986] as il provides a concise overview of the

method and discusses the relevant concurrency issues.

A JSD specification consists of a network of sequential processes communi-
cating via message passing and access to the process’s local, read-only data. This

specification is produced by completing three phases:

1. Modeling phase[Cameron 1986:222). This phase is concerned primarily with
identilying the events or actions occurring in that portion of the real world
which is to be modeled. Each action will be associated with one or more
entities or objects. These action-entity associations are then grouped and
ordered, producing a set of sequential processes. Iach of these processes is

then referred to as a process model.

2. Network phase[Cameron 1986:228]. The network phase determines the inter-
connections of the process models. Processes can communicate by two means,
Intn clvevovee 1 phobe cenabesn AlLf 4 fe Voratleall .f‘.,L' ".,L_ {
(oL SuICaims ana svave VECuOrs. aava Svrcalir 1s basically & lirst 111, Hrsi-ou
(FIFO) message queue. The state vector consists of a process’s local data

which is available for inspection by other processes on a read-only basis.
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3. Implementation phése[Cameron 1986:233f]. In this phase each of the process
models is implemented. in some programming language. This is the step in
which concurrency decisions are made. Theoretically, every process model can
be implemented as a concurrent process. This may not be desirable, especially
in a single-processor system, as significant inefliciency may result. One way
to alleviate this is to convert the processes to subroutines and combine the
whole program into one process. Of course, these are the two extremes; the
designer decides which processes are actually implemented concurrently and
which are converted into subroutines. How the designer makes these decisions

is not addressed.

2.8 Entity-Life Modeling

Entity-life Modeling is a JSD-based method developed by Sanden{Sanden 1989).
While JSD identifies many concurrent processes when applied to real-time problems,
the goal of Entity-life Modeling (also called Object-life Modeling[Sanden 1989])-is to
implement in software only those concurrent processes which model concurrency in
the problem environment. “The aim is to pattern the software structure on struc-
tures found in the problem avironment and minimizing the amount of extra inaterial

introduced for the administration of the software itself”[Sanden 1990:16).

The designer accomplishes this by identifying complex behavior patterns in
the problem environment. “When using the approach, the analyst/designer starts
by looking for complex, yet purely sequential, behavior patterns in the problem envi-
ronment. The objective is to capture as much- of the problem complexity as possible
in as few behavior patieruns as possible, and, generally, the more complexity that can
be captured in a single sequential behavior pattern, the better”[Sanden 1989:1459).
This complex behavior is defined as ¢

objects”{Sanden 1990:17).

the timing and urdering of operations on various

Each of these behavior patterns is implemented as a concurrent task. Ideally,
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this is the minimum necessary concurrency, but practical considerations may require
additional concurrency in the solution. For example, a task may be introduced to

provide for mutual exclusion in a shared data store[Sanden 1990:298].

2.9 Object-Oriented Design

According to Booch, “Object-oriented design is a method of design encom-
passing the process of object-oriented decomposition and a notation for depicting
both logical and physical as well as static and dynamic models of the system under
design”[Booch 1991:37]. In object-oriented decomposition, the problem environment
is viewed as a set of objects and the operations suffered by thosr objects. Design
consists of identifying the objects and operations and specifying the interaction of

the objects.

Concurrency in Object-Oriented Design is determined when the operations are
identified, as this is when the dynamic behavior of the object is specified[Booch
1987b:337). An object which exhibits significant dynamic behavior is said to repre-
sent an independent thread of control, and is called active[Booch 1991:65]. Thus, the
world can be viewed “... as consisting of a set of cc perative objects, some of which
are active and thus serve as centers of independent activity” [Booch 1991:66]). Chap-
ter three of this thesis expands further on Object-Oriented Design and concurrency-

related issues.

2,10 Conclusion

The Object-Oriented Design paradigm provides general guidance for determin-
ing which objects are concurrent, i.c., identifying active objects. The designer does
not have specific criteria to aid in this determination, nor is the possibility of multiple

concurrent operations on the same object addressed.

On the other hand, a designer applying Structured Design has specific criteria

to apply to a DFD to determine concurrency, through DARTS, LVM/OOD, and
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ADARTS. Entity-life Modeling also provides heuristics for identifying concurrency.
Kelly claims that PAMELA’s support of concurrency is very strong[Kelly 1987:245).

Chapter Three of this thesis provides heurisiics which can be applied to an
object-oriented design to determine concurrency. The heuristics are based on the
work of Gomaa (DARTS, ADARTS), Nielsen and Shumate (LVM/QOD), and Sanden
(Entity-life Modeling).
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IIT. Heuristics for Determining Concurrency in Object-Oriented

Design

This chapter details the heuristics a designer may use to determine concurrency
in an object-oriented design. A discussion of object-oriented design is presented
first, followed by a description of Booch’s Object-Oriented Design method. The
concurrency heuristics, which are based on the work surveyed in chapter two, are

then given.

3.1 Object-Oriented Design

Object-oriented design is a design approach in which the problem environment
is modeled as a collection of interacting objects and classes. The object interactions

are referred to as messages or operations[Booch 1991:80].

The object-oriented paradigm is based on-the concepts of abstraction and in-

formation hiding[Booch 1991:38]. Pressman states

The unique nature of object-oriented design lies in its ability to build
upon three important software design concepts: abstraction, information
hiding, and modularity. All design methods strive for software that ex-
hibits these fundamental characteristics, but only OOD provides a mech-
anism that enables the designer to achieve all three without complexity
or compromise[Pressman 1987:334].

Application of these concepts produces a hierarchical object structure, where

hierarchy is defined as “

...a ranking or ordering of abstractions”[Booch 1991:54].
Booch defines two sets of hicrarchics, the “kind of”/“part of” hierarchies, and the
using/containing hierarchies{Booch 1991:54,88]. The “kind of”/“part of” hierarchies

deal with objects which are instantiations of a class of objects and objects which are
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component parts of another object. These concepts apply directly to object-oriented

programming languages and techniques, but are not crucial at design time.

Using/containing hierarchies, however, are important for object-oriented de-
sign. The using hierarchy demonstrates the relationships among objects which re-
quire services of other objects and objects which provide services to other objects.
Booch calls the former “actor” objects and the latter “server” objects; objects which

both require and provide services are called “agents”[Booch 1991:89).

The containing hierarchy demonstrates the relationships between objects which
“enclose” other objects and the objects “within” the enclosing objects. In other

words, some objects are completely hidden within another object.

Seidewitz calls the using and containing hierarchies the seniority and composi-
tion hierarchy, respectively. He states that the “...composition hierarchy deals with
the composition of larger objects from smaller component objects. The seniority
hierarchy deals with the organization of a set of objects into “layers”. Each layer

defines a virtual machine that provides services to senior layers” [Seidewitz 1989:97].

Consider, for example, the air traffic control simulation whose design is pre-
sented in chapter four. An example of the composition hierarchy would be the
Console object and its related sub-objects, Display and Keyboard. Console con-
tains those two objects (Figure 3.1). The ATC object however, does not contain
the Console object, i.e., it is not composed of Console; ATC does, however, use the
services provided by the Console object (Figure 3.2). Note that although the ATC
and Console objects are at the same level of abstraction, the ATC is a higher level
virtual machine layer than Console, since ATC requires operations of Console, but

Console requires no operations of ATC.

When an object is just one of several instantiations of the same type of object,
the object type is referred to as a class of objects, which is ”... a set of objecis that

share a common structure and a common behavior”[Booch 1991:93].
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CONSOLE

DISPLAY KEYBOARD

=
=

Figure 3.1. Composition Hierarchy for Console

In object-oriented programming languages, such as Smalltalk and C++, the
class concept is related to the concept of inheritance. Inheritance is a relationship
among objects where one object or class shares the structure of one or more objects
or classes, i.e., an object or class “inherits” the structure or behavif)r of another
object or class. Ada does not directly support inheritance, so the class concept is
not as important as in other languages. Consequently, this thesis does not consider

inheritance in the design of systems.

The class concept is still useful in determining concurrency since a single con-
current object produces a different design and implementation from a concurrent
class, which may have multiple concurrent instantiations. Also, identifying classes
of objects is important from a reusability standpoint. If an object is a member of a

previously implemented class, then that object need not be reimplemented.

3.2 Booch’s Method

The object-oriented design method used in this thesis is Booch’s Object-Oriented
Design as presented in [Booch 1991:187-196]. The steps of the method are:

e Identify the classes and objects at a given level of abstraction.
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Figure 3.2. Seniority Hierarchy for ATC

¢ Identify the semantics of the classes and objects.
o Identify the relationships among the classes and objects.

¢ Implement the classes and objects.

The application of this method is not just a matter of mechanically performing
the steps in sequence. Booch notes: “this is an incremental process: the identification
of new classes and objects usually causes us to refine and improve upon the semantics
of and relationships among existing classes and objects. It is also an iterative process:
implementing classes and objects often leads us to the discovery or invention of new

classes and objects whose presence simplifies and generalizes our designs”[Booch

1991:190].

Normally, software design is preceded by an analysis step in which the problem
statement is analyzed and a requirements specification is produced[Fairley 1985:38].
Booch’s method does not preclude this approach; object-oriented analysis is consid-
ered an “... ideal front end to object-oriented design”[Booch 1991:141). However,

when applying object-oriented analysis, the distinction between analysis and de-
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sign is somewhat artificial and difficult to maintain[Sanden 1990:32]. Therefore, no

attempt is made in this thesis to separate the two.

The analysis/design in this thesis will be accomplished using an Object-Class
Specification, which is a combination of graphical and textual representation of and
object or class. It shows an object’s or class’s components, operations, static and dy-
namic relationships, and other information pertinent to design and implementation.

An example can be found in Figure 3.3.

3.2.1 Identify the classes and objects at a given level of abstraction. This step
consists of “...two activities: the discovery of the key abstractions in the problem
space (the significant classes and objects) and the invention of the important mech-
i 'sms that provide the behavior required of objects that work together to achieve
swine function” [Booch 1991:191). Generally, the key abstractions are the classes and.
objects which correspond to the vocabulary of the problem domain[Booch 1991:123).
The mechanisms are structures through which the objects interact with one another

to provide the required behavior[Booch 1991:123].

3.2.2 Identify the semantics of these classes-and objects. This step “...involves
one basic activity, that of establishing the meanings of the classes and objects iden-
tified from the previous step”[Booch 1991:192). This entails determining what can
be done to an object, and what things-the object can do to other objects. According
to Booch, “One-useful technique to guide these activities involves writing a script
for each object, which defines its life cycle from creation to destruction, including its

characteristic behaviors”[Booch 1991:192].

3.2.8 Identify the relationships among these classes and objects. This step
cstablishes the interaction of things within the system. This is accomplished by
performing two-related activities: “First we must discover patterns: patterns among

classes, which causes us to-reorganize and simplify the system’s class structure, and:




CLASS SPECIFICATION

Class Name: Command

Description: Provides the command abstraction for the ATC simulation.

2

Static Relationships Dynamic Relationships

[ Command AKO ‘ J

e Bl |
et M ]

Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: GetID Selectors:
Is.Status

Is.Termination

Is.COMMAND

Constructors: Create.Command KConstructors:

Exceptions A
Name Raised by P @
[nvalid.Cmd  Command
Initial:
[avalid.Aircraft Command

Figure 3.3. Example Object-Class Specification
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patterns among cooperative collections of objects which lead us to generalize the
mechanisms already embodied in the design. ... Second, we must make visibility de-
cisions: how do classes see one another, how do objects see one another, and, equally

important, what classes and objects should not see one another”[Boock 1991:193].

8.2.4 Implement these classes and objects This step requires the designer to
make “...design decisions concerning the representation of the classes and objects
we have invented, and allocating classes and objects to modules, and programs to
processors” [Booch 1991:195]. The result of this step is a complete system design.
However, new abstractions and mechanisms are frequently discovered during this
step. These abstractions usually belong to a lower level of abstraction, and they
are designed by repeating the object-oriented design process. When no lower level
abstractions or mechanisms remain to be designed, the design at higher levels can

be completed, at which time the design is complete[Booch 1991:195].

3.3 Heuristics for determining concurrency.

As noted in chapter two, Booch’s Object-Oriented Design method is weak in
the area of determining concurrency. Kelly states that the designer is given “very
little guidance on concurrent design ...”[Kelly 1987:245]. The purpose of this thesis

is to provide this guidance.

Following are four heuristics which designers may use in determining con-
currency in object-oriented designs. They are based on the heuristics used in the
DARTS, LVM/OOD, ADARTS, and Entity-life Modeling methods. These methods

and their heuristics are summarized in chapter two.

3.3.1 Problem-space concurrency. An object which models concurrency

in the problem environment should be implemented as a task.

According to Fairley, “the software engineer creates models of physical sit-

uations in software”[Fairley 1985:3]. One of the strengths of the object-oriented
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paradigm is in allowing a designer to create these models of physical situations, i.e.,
to directly model the problem-space, thus minimizing the “intellectual distance”
between the model and the system being modeled|[Fairley 1985:3]. Accordingly, if

concurrency exists in the problem-domain, it should be modeled in the design.

Concurrency in the problem-domain can be determined by identifying behavior
patterns, or sequences of events, in which the objects participate. These sequences of
events are related to the timing and ordering of the operations on the problem-space
objects. Sanden states, “while an object does not control the timing and ordering
of the operations it suffers, the timing and ordering of operations on various objects

can be described as behavior patterns in the reality”{Sanden 1990:17].

An object may exhibit a single pattern of behavior, multiple sequential pat-
terns, or none at all. Note these patterns of behavior specify the timing and ordering
of operations required of the object, ¢.e., the behavior pattern expresses-how an ob-
ject uses other objects. Thus, objects with no suffered operations (an actor object
in Booch’s terminology[Booch 1987a:613]), or one that has suffered operations, but
requires operations of other objects (an agent object in Booch’s terminology[Booch
1987a:613]) are good candidates for problem-space concurrency. On the other hand,
an object with no required operations (a server object in Booch’s terminology[Booch
1987a:615)) will likely not exhibit problem-space concurrency, although it may or may

not exhibit concurrency as determined by the remaining heuristics.

In general, no priority exists among the heuristics, i.e., which heuristic is used
to determine concurrency is not important as long as the necessary concurrency
is identified. In a sense, however, problem-space concurrency is the most impor-
tant of the heuristics, as it is really an extension of the object-oriented philosophy;
problem-space concurrency goes to the heart of the modeling process. By examin-
ing the behzvior of the objects specifically to identify concurrency, the designer not
only determines problem-space concurrency, but gains a better understanding of the

design overall.
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An example of the application of this heuristic is in the mr traffic control simu-
lation (ATC) described in chapter four. The object representing the. AT'C simulation
exhibits multiple behavior patterns, ¢.e., more than one sequence of events. The ob-
ject needs to update the position of the aircraft in the control space at periodic
intervals, while concurrently polling the keyboard for asynchronously entered com-
mands. The keyboard task cannot be placed within the update conrol space without
forcing the keyboard task to be periodic. Thus the two sequential behavior patterns

require two tasks to maintain the asynchronous nature of the polling routine.

A special case of problem space concurrency is when an actual hardware device
is modeled as an object. In general, real-time systems interface to one or more
hardware devices; these devices will likely be modeled as objects, with the operations

corresponding to the input/output of the device.

Devices whose primary function is I/O, e.g., printers and keyboards, have
varying speeds and will generally have to be implemented as separate tasks to ac-
commodate the differences in speed. In particular, if the I/O device must irterface

with another task, the only way to decouple the two is to make them separate tasks.

Those devices which perforni other functions, such as sensors or control devices,
may or may not be implemented as tasks, depending on how they interface with the
rest of the system. If the device provides information to which the system must
respond, but provides the information asynchronously, then a task should monitor

the device rather than having the system poll the device.

To illustrate this point, consider a system that contains a temperature sensor.
When the temperature exceeds some limit, the system must take action to reduce
the temperature. If the system polls the sensor, system resources must be used to
monitor a condition which may have a low probability of occurring, plus the polling
interval may be too long for the system to provide adequate response. A better
solution might be to have a task interface with the sensor, centinuously monitoring

the temperature. When the task detects an out-of-tolerance condition, it alerts the
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system. In this way, the system need not dedicate resources to a polling scheme, and

the time in which the system is alerted will not be tied to a polling interval.

3.8.2 Time constraints. An object whose behavior or operations are

constrained by time requirements should be a task.

One of the characteristics of real-time systems is the requirement for the system
to meet time constraints. These time constraints can be periodic, e.g., a certain
operation needs to be performed at periodic intervals, or responsive, as when the

system must respond to an event within a certain amount of time.

In an object-oriented design, an object’s behavior may be constrained by time
requirements, or one or more of its operations may be so constrained. When the
designer encounters such objects or operations, the objects or operations should

probably be implemented as tasks.

An example of a periodic constraint could be a temperature monitor which
must sample a temperature sensor at regular intervals; this would most likely need
to be a separate task. An example of a response constraint is an interrupt handler
which must service an interrupt within o certain time. For example, in an elevator
control system, an interrupt may be generated when an elevator arrives at a floor,
and the system may have a short period in which to decide to-stop the-elevator at

the floor or let it continue.

3.8.8 Computational requirements. An object whose behavior or oper-

ations require substantial computational resources should be a task.

Computational requirements may dictate that some operations or objects be
implemented concurrently, probably as low priority, background tasks. Occasionally,
an operation requires substantial computational resources. For example, in a satellite
communication system, the satellite object may have an operation called Calculate

Satellite Coordinates. To do this in real time requires the integration of a ninth-
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order polynomial. Depending on the resources available, this could be quite time

consuming and processor intensive. This operation should be a separate task.

8.8.4 Solution-space objects. An object introduced in the software so-
lution to protect a shared data store, decouple two interacting tasks, or

synchronize the behavior of two or more objects should be a task.

Some solution-space objects may need to be implemented concurrently. This
is a general heuristic which considers concurrency in software mechanisms belonging

to the solution space.

One such n:c hanism is a shared data store modeled by an object. The only
way to guarantee mutual exclusion in Ada is to use a task with a selective wait. In

this case, the concurrency is forced by the language conventions.

Another mechanism is the use of intermediary tasks to control the coupling
between two other task.. In a simple Ada rendezvous the tasks are tightly coupled;
neither task can continue until the rendezvous is complete. Oftentimes, especially
when time constraints prevent a task from waiting, another task can be introduced to
allow the other two to proceed. In [Nielsen and Shumate 1989:161 ..}, several types
of intermediaries are described, combinations of which allow the designer to achieve
a range of coupling, from very loose coupling to very tight coupling. As a caveat,
however, the looser the coupling, the greater the number of intermediaries needed,;
this could generate significant tasking ovverhead, particularly in a single-processor

environment.

A third mechanism might be the synchronization of two objects or their oper-
ations. In this case, the synchronizing objects or operations need to be tasks, with

a simple rendezvous accomplishing the synchronization.
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3.4 Conclusion

The designer of object-oriented, real-time software systems has little more than
general guidance for determining which objects and operations to make concurrent.
This chapter provided four heuristics which designers can use to make concurrency

decisions.

The next chapter provides an example of an object-oriented, real-time system
design, an air traffic control simulation. The concurrency heuristics are applied to

the design to determine the concurrency in the system.
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IV. Application of Concurrency Heuristics

In this chapter, the heuristics for determining concurrency presented in the

previous chapter are demonstrated by applying them to a sample problem.

4.1 Design Problem Description

The concurrency heuristics will be applied to the design of an air traffic control
simulation, whose description appeared in Creative Computing, ¢.1980. For brevity,
the system will be referred to as ATC. Following is a condensed statement of the

problem:

Air Traffic Control is a simulation which allows the user to play the part
of an air traffic controller in charge of a 15x25 mile area from ground
level to 9000 feet. In the area are 10 entry/exit fixes, 2 airports , and 2
navaids. During the simulation, 26 aircraft will become active, and it is
the responsibility of the controller to safely direct these aircraft through
his airspace.

The controller communicates to the aircraft via the scope, issuing com-
mands and status requests, receiving replies and reports, and noting the
position of the aircraft on the map of the control space. The controller
issues commands to change heading or altitude, to hold at a navaid, or
clear for approach or landing. Each aircraft has a certain amount of fuel
left, so the controller must see to it that the aircraft is dispositioned prior
to fuel exhaustion. Also, the minimum separation rules must be followed,
which state that no two aircraft may pass within three miles of each other
at 1000 feet or less separation. The aircraft must enter and/or exit via
one of the ten fixes. If an aircraft attempts to exit through a non-exit
fix, a boundary error is generated. The controller may request a status
report on each aircraft, which will display all information on the aircraft,
including, fuel level, which is measured in minutes.

The aircraft can be one of two types, a jet or a prop. The jets travel at
4 miles per minute, while the props travel at 2 miles per minute. This
means the screen must updated every 15 seconds for a jet’s course 3o be
followed accross the screen.
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The controller dispositions aircraft by giving commands which enable the
aircraft to take off, land, hold at a navaid, assume a landing approach,
turn, or change altitude. Take off is accomplished by ordering the aircraft
to assume a certain altitude; there is no ‘take off’ command as such. Fach :
of the airports has restrictions on heading for takeoff; these restrictions
must be observed. Turns and altitude changes are effectively instanta-
neous, i.e., they are accomplished at the next mile marker. To land,
the aircraft must be cleared for landing through the navigational beacon :
(navaid) assigned to the airport. Since (-ere are two airports, there are ;
two navaids. To land, the controller pl-.. ~ the aircraft on a heading for
a navaid and issues a clearance for approach command. Once the air-
craft reaches the beacon, it automatically assumes the correct heading
for the airport. The controller then issues a clearance to land command,
and when the aircraft reaches the airport it lands (disappears from the
screen). If the controller issues a hold command, the aircraft remains at
thie navaid until released.

The player initially specifies the length of the simulation, which-may be
between 16 and 99 minutes. The same number of aircraft will appear
for each run, so the shorter the simulation, the more challenging. In any
session, the last 15 minutes will be frec of new aircraft. The simulation
terminates when all aircraft have been successfully dispositioned, the
timer runs out, the player requests termination, or one of three error
conditions occurs:

o conilict error - separation rules were violated
e fuel exhaustion

o boundary error - the aircraft attempt to leave the control-space via
an unauthcrized point.

Figure 4.1 contains the screen layout for the ATC simulation. The * symbol

:

i
3
E
:
#1
B

represents a navigational aid, the % and # are airports, and the numerals are ent.y-
exit fixes. The aircraft are represented by an upper case letter followed by a number.

The letter is the aircraft identifier and the number is the altitude of the aircraft in

B

thousands of feet; e.g., ‘A4’ indicates aircraft ‘A’ is at 4000 feet.

ATC commands consist of either three character directives or one character
status requests. To request a status on a particular aircraft, a single character
reprsenting the aircraft ID is entered. Table 4.1 contains a summary of the directive

commands.
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0 | clear to land hold at navaid continue straight ahead
1 | ascend/descend to 1000’ | turn left 45 turn right 45
2 | ascend/descend to 2000’ | turn left 90 turn right 90
3 | ascend/descend to 3000’ | turn left 135 turn right 135
4 | ascend/descend to 4000’ | turn left 180 turn right 180
5 | ascend/descend to 5000’ | clear for # approach | clear for % approach

Table 4.1. ATC Commands
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Figure 4.1. Airspace Display
4.2 Top Level of Abstraction

A cursory reading of the problem statement suggests several key abstractions:
aircraft, airspace, display, commands, messages, etc. The initial focus of the design
is determining which of these key abstractions belong at the top level of abstraction.
This is admittedly a matter of designer judgement, but, in general, the top level
should contain 2 minimal sct of objccts and classes, while still encompassing the

entire system.

In some cases, the top level of abstraction may consist of a single object, such as
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Figure 4.2. Initial Top Level Object Diagram

in Booch’s example of a home heating system[Booch 1991:222-280]. In this instance,
the top level of abstraction is the object theHomeHeatingSystem. It could be argued
that the ATC system is similar, so the top level would contain only an ATC object.
However, this is not a very useful structure, since it doesn’t really say much about
the ATC system or provide much guidance on what the next step may be. So for

this design, the top level will contain more than one object.

4.2.1 Identify the classes and objects. As Figure 4.2 illustrates, the top level
of abstraction consists of an ATC object, a console object, and a command class.
This particular breakdown was chosen because the problem statement indicated two
major activities of the system: periodic updating of the display screen to represent
aircraft movement in the airspace, and responding to commands entered by the

controller.

Figure 4.2 captures the essence of this activity: the ATC object does some-
thing with commands and does something with the operator’s console. The lines

connecting objects are at this time undirected; the arrows will be added when the
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relationships are established.

Notice that since there is a single instance of both the ATC abstraction and
the console abstraction, they are specified as objects. There could, and most likely
will, be many instances of the command abstraction, so it is specified as a class.

This distinction is not reflected in the figures.

4.2.2 Identify the semantics of the classes and objects. This step involves

specifying the behavior of the objects and classes at the current level of abstraction.

4.2.2.1 The command class. The command class is rather straightfor-
ward. It exports objects of type Command (whose representation is as yet unspecified)
and two kinds of operations. The Create.Command operation accepts a character
string and returns the command corresponding to the string. The other kind of
operation, a set of selectors, accepts commands as input and then returns true if the
command corresponds to that selector, and false otherwise. For example, if a turn
command is passed to Is_Turn, then true will be returned, but if change altitude
is passed to the same operation, false will be returned. Thus, the command class
exhibits no dynamic behavior and can be implemented as a set of rather simple func-

tions. The object-class specification for the Command class is shown in Figure 4.3.

4.2.2.2 The console object. Since the console is an object and not a
class of objects, it does not export a type; it does, however, export operations on

the console object.

As with the command class, the console object does not exhibit significant
dynamic bchavior over time. This does not mean, however, that there is no concur-
rency withing the console object. At this level, the console displays messages and
retrieves input from the user. Lower levels of abstraction may reveal concurrency

which is not visible from the higher levels.
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CLASS SPECIFICATION

Class Name: Command

Description: Provides the command abstraction for the ATC simulation.

Static Relationships

Dynamic Relationships

f Command AKO

o] |
e M |

Suffered Operations

Required Operations

Invalid.Aircraft Command

Descriptive Name Name Applied to
Selectors: Get ID Selectors:
Is.Status
Is. Termination
Is. COMMAND
Constructors: Create.Command Constructors:
Exceptions QA
Name Raised by
Invalid.Cmd Command
Initial:

Figure 4.3. Command Class Object-Class Specification
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The following types of input/output from the console can be identified from

the problem statement:

Output the time remaining

Output a map

Output a preview message

Output the string “Roger”

Output the input string

Input a string

Whether these operations can be combined into a smaller set or not cannot
be determined at this time. The object-class specification for the console object is

contained in Figure 4.4.

4.2.2.8 The ATC object. As with the console object, the ATC object
exports no type, but neither does ATC export any operations. Since it is the very top
level of the system, no object can call it, unless the user entering a “run” command

via the operating system is considered an operation[Seidewitz 1989:99].

Since the ATC exports neither type nor operation, it must require operations
from other objects (else it would not be much of an object). Thus to determine
the behavior of the object entails identifying the time ordering and frequency of the
required operations, and the threads of control. Even at this high level, the concur-
rency heuristics outlined in chapter three can be applied; however, any concurrency
discovered here should be considered “candidate” concurrency, as further refinement

could feasibly push the concurrency further down the hierarchy.

To elaborate the behavior of ATC, the life of the object will be modeled,
as recommended by Booch[Booch 1991:192]. Since the user selects how long the
simulation is to run, this information will have to be retrieved. In addition, the map

will have to be initially drawn. These two items make up the initialization of the
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CLASS SPECIFICATION

Class Name: Console

\

Description: This object provides the I/O abstraction for the ATC simulation.

Static Relationships Dynamic Relationships

I Console I

S
hussu o]

Suffered Operations Required Operations
Deseniptive Name Name Applied to
Constructors: Disp Prev.Msg IConstructors: Disp.Prev.Msg  Display
Disp.Mapltem Disp.MapJtem Display
Disp.Time Disp.Time Display
Disp.Input DispInput Display
Disp_Roger Disp_Roger Display
‘Getlnput GetInput Keyboard
. Exceptions A QA
Name Raised by

[nitial:

Figure 4.4. Console Object-Class Specification

system; once the initialization is complete, at least two independent threads of control
are suggested by the problem statement. One thread handles the input of commands
from the user and the execution of these commands; this is an asynchronous thread
since the user can enter commands at any time. Another thread is a periodic update
of the aircraft position in the airspace and the subsequent display of the updated
map on the console. When either of these threads terminates, the simulation ends.
No special clean-up operations are required other than displaying an appropriate

termination message. The script of the ATC object is shown in Figure 2.5.

Applying the concurrency heuristics to these threads of control yields two tasks.

The periodic update of the display fits the time constraint heuristic and thus should
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Get Simulation Length
Draw Initial Map

loop loop
Get User Input Delay 15 Seconds
If Termination Request Then Get Airspace Updates
Terminate Simulation Display Airspace Updates
End If end loop

Create Command
Process Command
end loop

Clean Up

Figure 4.5. Script for the ATC Object

be a separate task. The processing of commands is an asynchronous behavior pat-
tern, indicating it should be contained in a concurrent task. The command process-
ing function cannot be embedded within the periodic update task without forcing
the command processing task to be periodic as well. Therefore, the command pro-
cessing function should be a separate task under the problem-space heuristic. The

object-class specification for the ATC object is in Figure 2.6

4.2.3  Identify the relationships among the classes and objects. This step iden-
tifies patterns of object interaction and visibility between objects and classes. The
behavior specification from the previous step is used to determine the relationships.
Examining the command class and the console object reveals no interaction, at least
at this level of abstraction, with cach other or with the ATC object. Thus, these

two objects need see no other objects.

The ATC object, on the other hand, needs to have both command and console
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CLASS SPECIFICATION

Class Name: ATC

Description: This is the main object of the simulation. It controls the interaction of the other objects.

Static Relationships Dynamiz Relatiouships

>

[ arc !
o ]

Suffered Operations uired Operations
Descriptive Name ame Applied to
Selectors: Selectors: GetID Command
Is.Status Command

Is.Termination Command

Is.COMMAND Command

Constructors: Constructors: Disp.Pre.Mge  Console
Disp.MapItem Console
Disp.Time Console
Disp.Input Console
Disp-Roger Console
GetInput Console

Create.Cmd Command

Excepti A
Name Raised by ceptions Q
Time_Expited ATC
Invalid.Cmd Command
[nvalid Acft  Command
Initial;
Fuel_Exhaus‘cd Airspace
Conflict Error  Airspace

Bdary.Etror  Airspace

Figure 4.6. ATC Object-Class Specification
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ATC

/A

COMMAND CONSOLE

IRCRAFT

CLlA ‘S}‘V AYTRIBUTES

—_

Figure 4.7. Final Top-level Object Diagram

visible. This is apparent from the script of the ATC behavior in Figure 4.5. Both
console operations (get input string) and command operations (convert string to
a command) are used. Other operationc on objects not yet elaborated are also
referenced, but they belong to lower levels of abstraction. The final top-level object
diagram, with visibility indicated by directed lines, is in Figure 4.7. The update

airspace task is indicated by the parallelogram within the AT'C object.

4.2.4 Implement the classes and objects. It is at this time that representation

decisions are made and the operations on each object are implemented. However, the
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implementation cannot be completed until all lower level abstractions are likewise
implemented. This is a result of the iterative nature of object-oriented design: the

same process is applied many times at different abstraction levels.

In implementing the ATC, console, and command objects, unspecified abstrac-
tions are encountered, necessitating suspension of the implementation while these
new abstractions are designed. Once implemented, the suspended implemenations

may resume.

Subsequent sections in this chapter detail this refinement for the ATC and
console objects, but an example, which allows the command class to be completed,

is given here for clarity.

The problem statement and ATC script both refer to input from the user
which commands the aircraft or request status. As yet, there is not an input string
object, and this needs to be specified before the command class can be completed.
The input string class is deemed to be a component object of the console object, so
this class appears beneath tbe console in the composition hierarchy. However, the
command class and the ATC object need visibility into the input string object. Thus
in the object diagram, shown in Figure 4.7, directed lines are drawn from ATC and

command to input string. The command class may now be completed.

4.8 Refinement of the console object.

In the remainder of this chapter the discussion will be more informal than
previous sections. The focus will be on concurrency in the ATC; the steps in the
Object-Oriented Design method will be followed, but the design will not be docu-

mented to the level of detail of the previous section.

As stated previously, the console object has five output operations and onc
input operation. These operations could be implemented at this time, given a suit-

able display interface package, excepting that the problem statement places some
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restrictions cn the format of the display. In effect, the display is divided into five

distinct areas:

e Time area
e Preview area
e Map area
¢ Input area

e Response area

These areas can be treated as component objects of the console. They will
consist of a location on the console and two operations: display message and clear

area.

Since the output has been divided into five separate objects, the input opera-
tion will become an object to maintain separation of concerns. In light of this, it is
appropriate to form two .omponent objects of console: display and keyboard. The
display areas mentioned earlier have now become component objects of the display

object. This arrangement is shown in Figure 4.8.

At this level the concurrency ..euristics can be applied to determine the key-
board object to be concurrent. It is a hardware device being modeled in software,

and so should be implemented concurrently.

The implementation of the display areas must now be considered and a problem
immediately poses itself. Should each area object write directly to the display or
should each call a screen object which alone accesses the physical device? In the
interests of encapsulation, the screen object option is chosen, although the resulting
object diagram looks rather odd with the display being split into five component

objects and then all five running back into one screen object.

The next concern is with concurrency. Since the screen is a hardware device

being modeled in software, the screen object is concurrent.
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The final console object diagram appears in Figure 4.9.

4.4 Refinement of the ATC object.

The top level design has considered mainly the user interface, i.e., handling
of input, display of vutput, and processing of commands. The Command class has
been designed and the Console has been refined; this leaves the ATC object which

is the heart of the simulation.

Examining the script from the ATC object in Figure 4.5 reveals references to
the Airspace object. Thus, initially, the ATC object includes the Airspace object,
as shown in Figure 4.10. The airspace is basically a 3-dimensional area through
which aircraft fly and containing certain landmarks (navigational beacons, airports,
entry/exit fixes). The operations on the Airspace object include setting and getting
the position of landmarks, getting the position of a particular aircraft, and iterating
through all the aircraft in the airspace to get their positions. It is possible to cast
this last operation, iterating through all aircraft, as a task; however, by the first
heuristic, the Airspace object has no discernible behavior pattern in the problem-
space. It is rather a passive entity through which aircraft fly. So the decision at this

point is to not make the Airspace or any of its operations concurrent.

One practical matter that arises is the communication between the ATC object
and the Airspace object. The script of the ATC object indicates ATC “retrieves
airspace updates” and then displays them. This implies the need for a ‘solution-
space’ object, a list of aircraft updates which the Airspace returns to the ATC
object. As this object is written only by Airspace and read only by ATC, it need not
be a protected data store, and consequently should not be implemented as a task.

This object, the Update Record List is shown in Figure 4.11.

The next step in refining the ATC object is to examine the component objects

of the Airspace. The landmark objects are static, i.e., they are initialized at the
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Figure 4.9. Final Console Object Refinement
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Figure 4.11. ATC with Update_Record List
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start of the simulation and never change location, so these objects are considered

non-concurrent (Figure 4.12).

This leaves the Aircraft class. This class has a definable behavior pattern which
changes over time. An aircraft is crealed, takes off or enters the airspace through
a fix, makes changes to its allitude or course, and cither lands or exits through a
fix. ™ .s the Aircraft class, according to the first heuristic, exhibits problem-space

concurrency and should be concurrent in the design.

An objection that may be raised at this point is that with twenty-six aircraft,
this leads to massive concurrency which may not be feasible on a single processor
system. This is a valid objection, but is really an implementation issue. The imple-
menter may decide to limit the number of tasks in any way he or she chooses; the
main concern for the designer is in modeling the problem-space and hence identifying

concurrency.

The Aircraft class has a number of component classes and objects, but these

are considered atiributes of the airerall and are thus not concurrent (Figure 4.13).

4.5 Summary

This chapter has applied the concurrency heuristics to an Air Traflic Control
Simulation. Tive concurrent tasks were identified: two in the ATC object, a keyboard

task, a display task, and the Aircraft task.
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V. Validation of Concurrency Heuristics

This chapter presents a plan for determining the validity of the concurrency
heuristics developed in the first four chapters. A brief discussion of validation meth-
ods is given first, followed by a detailed description of the method used to validate
the concurrency heuristics given in this thesis, concluding with the results of the

validation.

5.1 Validation Methods

Research results may be validated by three methods: analytical, empirical,
and expert opinion. Analytical validation seeks to establish the research results by
proving the results follow from established principles or concepts, much the same as
a mathematician proves a theorem using axioms, postulates, and previously proven
theroems. While this method is the most rigorous of the three, it is also the most
difficult to apply in the software engineering arena. The reason for this is that
there are few, if any, widely accepted principles from which to prove further results.
Those principles that do seem to be established, such as high cohesion, low coupling,
information hiding, etc., have not themselves been proven analytically or empirically,

but are rather accepted, or so it seems, based on expert opinion (the third method).

Empirical validation is based either on observation of naturally occurring phe-
nomena, or on a controlled experiment designed to demonstrate the truth or false-
hhod of a concept. Again, software engineering principles do not easily yield to
empirical validation, mainly because the phenomena to be observed are usually in-
tangible. For example, the superiority of a data compression algorithm may be
demonstrated by implementing it and comparing its petfoiance against other data
compression algorithms. However, a theory of software modularization cannot be
demonstrated simply by applying the theory in implementing a system, as the pro-

cess of applying the theory is subjective-each designer will apply it a little differently
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in all but the most trivial cases. Consequently, implementing the ATC simulation
described in chapter four using thie concurrency heuristics says nothing about the

validity of the heuristics.

The final validation method is expert opinion, in which experts in the field
evaluate the research results and provide their considered opinion on the validity
of the results. This is admittedly a subjective process, but it does provide some

condidence in the research and is certainly better than no validation at all.

5.2 Validation Approach for Concurrency Heuristics

The validation method chosen for this thesis is expert opinion. The concur-
rency heuristics, a summary of the design of the ATC simulation, and a questionaire
were distributed to fourteen experts. The experts were chosen based on their expe-
rience with object-oriented design. Of the fourteen, 11 responded. The validation

package and the experts’ responses appear in Appendix B.

5.8 Validation Results

For convenience the concurrency heuristics questionaire is shown in Figure 5.1,
with the results summarized in Table 5.1. Each question in the questionaire will be

discussed in turn.

Question | Mean | Std Dev | Ideal
1 4.1 T 5.0
2 4.4 .8 5.0
3 1.5 .9 1.0
4 2.1 8 1.0
5 1.2 4 1.0

Table 5.1. Questionaire Results

Question one was necessary to ensure the experts understood what was being
presented. Most of the experts felt the heuristics were understandable (average 4.1

out a possible 5.0), although some commented that heuristic one was rather vague.




1. Are the heuristics . understandable?
1 2 3 4 5
NO FAIRLY YES

2. Do the heuristics help the designer in making concurrency decisions?
1 2 3 4 5
NO SOME YES

3. Are there concurrency situations not covered by the heuristics? Which?
1 2 3 4 5
NONE SOME MANY

4. Is there overlap among the heuristics? Which?
1 2 3 4 5
NONE SOME MANY

5. Do the heuristics violate established principles of software engineering
(coupling, cohesion, encapsulation, information hiding, etc.)? Which?
1 2 3 4 5
NONE SOME MANY

Figure 5.1. Expert Opinion Questionaire
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The first heuristic deals with building a model of real-world objects, which is a rather
vague concept in itself, at least in application. The other heuristics seem to be more
concrete, corresponding to concepts that are, for the most part, more familiar to

designers.

Question two was probably the most important, at least to the author. The
purpose of the thesis was to provide guidance to designers; this question gives an
indication whether or not this purpose was realized. The average response of 4.4 out
of 5.0 indicates the experts felt the heuristics were helpful to designers. However,

several comments provided insight into the usefulness of the heuristics.

One comment concerned the amount of detail in the explanation of the heuris-
tics, i.e., more detail was needed to make the heuristic really useful. The validation
package contained only a skeleton explanation of the heuristics (see Appendix B);

more detail is contained in chapter three.

Another person noted that use of the wrong heuristic could lead to massive
concurrency in the solution; for example, in the ATC problem, iwenty- six tasks
would be produced by applying heuristic one to the Aircraft object, whereas one
aircraft manager task could be derived from heuristic three or four. In a single-
processor system the massive concurrency could lead to excessive tasking overhead,
in which case the second option, that of a single task managing the concurrency
in all the aircraft, might be preferable. However, this is done at the sacrifice of
the integrity of the model, since adhering to heuristic one more closely models the
problem space than do the other heuristics. These sorts of tradeoffs are normal in
software design; the heuristics allow the designer to identify the concurrency, and,

consequently, the areas where these tradeoffs exist.

Questions three was a completeness question. To be usefule, a set of heuristics
must be complete, i.e., it must identify all possible concurrency situations. While
none of the experts were willing to subscribe to such a strong statement, none came

up with any situations not covered by the heuristics.
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Question four addressed the issue of redundency in the heuristics, whether
more than one heuristic could apply to the same situation. All agreed there is some
overlap among the heuristics, but not a g.cat deal (average response of 2.1 with an
ideal of 1.0). Some commented that redundency is not a real problem; the important
matter is that the concurrency be identified. This is probably true in general, but
returning to the discussion on question three, there may be situations where the
overlap is actually desirable. In determining concurrency in the Aircraft object, two
heuristics were applied and resulted in different designs, the choice of which had
significant impact on the conceptual integrity of the design as well as potentially
affecting the performance of the implementation. In this case the overlap among the

heuristic gave the designer more flexibility to make design tradeoffs.

Question five is important from an overall software engineering standpoint,
since any heuristics which violate accepted practice will likely not be accepted. On

this question the experts averaged a 1.2 with 1.0 being the ideal.

5.4 Conclusion

The results of the questionaire were very encouraging. The prevailing opinion
among the experts was that the heuristics are helpful to designers, understandable,

and complete. From this we may conclude that the heuristics appear to be sound.
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VI. Conclusions and Recommendations

6.1 Summary

The purpose of this thesis was to develop heuristics for determining concur-
rency in object-oriented designs of real-time systems. This was accomplished by
first investigating heuristics available to real-time designers using other paradigms
(Structured Analysis, Jackson System Development) and then examining the object-
oriented approach to see where these existing heuristics may apply. The survey of
existing heuristics is contained in chapter two, and the heuristics for object-oriented

design are in chapter three.

In real-time design using Structured Design techniques, the heuristics for deter-
mining concurrency are based on the functional decomposition of the system[Gomaa
1984]. Consequently, the heuristics consider such things as functional cohesion, tem-
poral cohesion, process abstraction, etc., which are not compatible with object-
oriented design. However, some of the heuristics, in particular the ones dealing
with periodic execution and response to events within time constraints, do apply to

object-oriented design.

Jackson System Development (JSD) takes a modeling perspective in designing
software systems, which is similar to the object-oriented approach[Cameron 1986).
JSD does not specifically address determining concurrency in real-time systems, but
a derivative method, Entity-Life Modeling[Sanden 1989], does provide principles for
determining concurrency. In Entity-Life Modeling the system is characterized as a
set of sequential behavior patterns in which the entities or objects comprising the
system participate. Each separate behavior pattern is then considered a concurrent

task in the design.

Object-oriented design models the system under consideration as a set of ob-

jects and the operations on those objects. The system is implemented by specifying
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the interaction of the objects, i.e., the timing and ordering of the operations. The
method, as presented by Boo.h[Booch 1991], does not provide heuristics for deter-

mining concurrency. Booch’s method is summarized in chapter three.

The heuristics of Gomaa[Gomaa 1984] and the Entity-Life Modeling princi-
ple[Sanden 1989] were applied to the object-oriented approach to produce a set of
heuristics to guide designers in determining concurrency in the design of real-time

systems. The four heuristics are:

1. Problem-space concurrency. An object which models concurrency in the
problem environment should be implemented as a task. Concurrency in the
problem-domain can be determined by identifying behavior patterns, or se-
quences of events, in which the objects participate. These sequences of events
are related to the timing and ordering of the operations on the problem-space

objects.

This concept is closely related to the Entity-Life Modeling principle, the dis-
tinction being that object-oriented design focuses on individual objects and
their operations, whereas Entity-Life Modeling concentrates on identifying be-
havior patterns in which any number of objects may participate. Thus, Entity-
Life Modeling partitions the concurrency based on the behavior patterns, which
may include any number of objects. The object-oriented approach partitions

the concurrency according to the objects which contain the behavior patterns.

2. Time constraints. An object whose behavior or operations are constrained
by time requirements should be a task. This heuristic combines the timing
related heuristics of Gomaa[Gomaa 1984] and Nielsen and Shumate[Nielsen
and Shumate 1989). Thus an operation that is invoked at regular intervals is
considered a separate task (in structured design these are periodic functions).
Also, an operation which must respond to an event within a certain time period

is a task, for example, an operation invoked in response to an interrupt.
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3. Computational requirements. An object whose behavior or operations
require substantial computational resources should be a task. These tasks

would most likely run in background at a low priority.

4. Solution-space objects. An object introduced in the software solution to
protect a shared data store, decouple two interacting tasks, or synchronize the
behavior of two or more objects should be a task. Booch calls these ‘mecha-
nisms’, ¢.e., objects with no counterpart in the problem-space, but which are
necessary to implement the system on a real machine. An example would be
a shared data store implemented in Ada; a task must be used to guarantee

mutual exclusion.

6.2 Conclusions

The concurrency heuristics are powerful tools for determining concurrency in
object-oriented design of real-time systems. The set of heuristics is small enough to
be easily remembered, yet general enough to determine concurrency in most cases.
The heuristics are easy to understand and apply, and, in some cases, they allow the
designer to determine concurrency from different perspectives, allowing the designer

a range of choices in the implementation.

While the heuristics are referred to as ‘design’ heuristics, they actually can be
useful during a broader portion of the development life-cycle than just the design
phase. In object-oriented design, the analysis, design, and implementation stages are
not rigidly delineated; rather, they are actually a continuum in which the software
model progresses from a more abstract representation (analysis) to a more concrete
representation (implementation). The heuristics may be applied at any point on
the continuum. For example, in the ATC problem, concurrency was determined
in the ATC object very early in the analysis; in fact it can be determined from
the requirements definition. The concuirency in the console object, however, was

determined after the object had been almost completely designed. The problem-
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space heuristic, by its very nature, does not determine concurrency until late in the

process, perhaps not until detailed design.

Using object-oriented design, a designer seeks to build a model of the problem-
space, i.e., the structure of the solution should reflect the structure of the problem.
This is a central concept in the object-oriented approach; consequently, the first
heuristic is the most important from a pure modeling perspective and should be the
first consideration in determining concurrency in a particular system. The remaining
heuristics are important from a practical standpoint, since considerations unrelated
to producing a model of the problem-space may force the designer to implement
concurrency; for example, a periodic task, or a computationally intensive task, or
a shared data store may not have corresponding objects in the problem-space, yet
they require concurrency implementation nonetheless. To ensure the primacy of the

model, however, the first heuristic should be considered first.

6.3 Recommendations

In this thesis the concurrency heuristics were applied to the ATC simulation,
for which concurrency was rather easily determined. The ATC problem was a self-
contained system which had a rather simple user interface and no external objects
other than the keyboard and display. Also the ATC was not a ‘hard’ real-time system,
i.e., missing a timing constraint (display update) did not constitute a system failure.
Another characteristic of the ATC problem as implemented in this thesis was that

a single-processor system was assumed.

One possible area for further exploration is to see if the heuristics apply as
well to other kinds of real-time systems. Do they work as well for more complex
problems, ones with hard real-time requirements, or that require external files to be
maintained in real-time? Systems which require a large number of interrupt handling

routines would also be a good candidate.

Another area for further research is in applying the heuristics to distributed
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real-time systems. One of the assumptions of this thesis was that, even in a dis-
tributed system, there may be more than one process executing on a processor, so
the heuristics apply at the processor or node level; the network or system level was
not considered. At the network level, issues external to the system being designed
must be ~cnsidered, such as the processor interconnection network, the interproces-
sor message passing mechanism, and load balancing among the processors. It should
be determined how the concurrency hevuristics may be applied to these issues, or

what heuristics must be added to the set to cover distributed systems.
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Appendix A. Aér Traffic Control Simulation Object-Class
Specifications and Ada Specifications

This appendix contains the object-class specifications for the Air Traffic Con-
trol simulation intrcduced in chapter four, followed by the Ada package specifications

for the major system objects.

A.1  Object-Class Specifications
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CLASS SPECIFICATION

Class Name: ATC

Description: This is the main object of the simulation. It controls the interaction of the other objects.

Static Relationships

| ATC |

hissparts m Airspace

Dynamic Relationships

Fuel _Exhausted Airspace
Conflict Ertor Airspace

Bdary_Error  Airspace

Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Selectors: Get.ID Command
IsStatus Command
Is.Termination Command
1s.COMMAND Command
Constructors: Constructors: Disp.Pre.Mge  Console
Disp.MapJtem Console
Disp_Time Console
Disp.Input Console
Disp_Roger Console
GetInput Console
Create.Cmd Command
Name Raised by Fxceptions QA
[Time_Expited ATC
fovalid.Cmd  Command
Invalid.A¢ft  Command
Initial:

Figure A.1. ATC Object-Class Specification
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CLASS SPECIFICATION

Class Name: Airspace

Description: Represents the airspace abstraction.

Static Relationships Dynamic Relationships

I Aitspace I

h art:
has.pacts .
Aircraft

Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Is.Done Selectors: GetID Command
Get. Landmark_ Location Is.Status Commazad

Is.Termination Command
1s. COMMAND Commaad
Get.Location Landmark
GetID Aircraft
Get.Source Aireraft
Get Destination Aircraft
Get.ETA Aireralt
Get.Class Aireraft
Get_Heading Aireraft
Get.Fuel Aireraft
Get_Position Aircralt

Get Altitude Aireraft
Constructors: [Constructors: Set.Location Landmark

Set.Landmark  Landmark

Set.ID Aircaft

Figure A.2. Airspace Object-Class Specification



CLASS SPECIFICATION

Class Name: Airspace (Continued}
g
Description: Represents the aitspace abstraction.
Sufferle)t Operations Rcﬂuircd Operations
criptive Name ame Applied to

Constructors: [Constructors: Set_FlightPlan  Aircraft
Set.Class Aircraft
Set Heading Aireraft
Set_Altitude Aireraft
Set_Fuel Aircralt
Set_Position Aircraft
Take.Off Aircraflt
Hold.atNavaid  Aircraft
ClrdorAppreh  Aircraft
Clrfor.Ldg Aircraft
ContinueStraight Aircraft
Update_Position Aircraft

Iterators: Update.Airspace [Iterators:

Name Raised by Exceptions QA

Fuel.Exhausted Ajrcraft

Conflict_Error  Airspace Initial:

Bdary Error  Airspace

Figurz A.3. Airspace Object-Class Specification(continued)
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CLASS SPECIFICATION

Class Name: Landmatk

Description: This class represents a landmatk and its position within the airspace. A landmark can be one of three

types: a navaid, an airport, or an entry/exit fix. Each of these has two or more possible values: 2 navaids, 2 airports,
10 entry/exit fixes.

Static Relationships Dynamic Relationships

hu.nttribute' i

l Landmark AKO l

e H |

Suffered Operations Required Operations
N

Descriptive Name ame Applied to
Selectors: Get_Location Selectors:
Constructors: Set.Location Constrctors:
Set_Landmark
. Exceptions QA
Name Raised by

nitial:

Figure A.4. Landmark Object-Class Specification
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CLASS SPECIFICATION
Class Name: Fix
Description: This class represents an entry/exit fix which is a kind of landmark.
Static Relationships Dynamic Relationships
| Fix AKO! " Landmark
Suffered Operations uired Operations
Descriptive Name ame Applied to
Selectors: Get Location Selectors:
Constructors: Set_Location Constructors:
Set_Landmark
Exceptions A
Name Raised by P Q
[Initial:

Figure A.5. Fix Object-Class Specification
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CLASS SPECIFICATION

Class Name: Navaid

Description: This class represents a navigational beacon which is a kind of landmark.

Static Relationships Dynamic Relationships
L Navaid AKO Landmark 1
Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Get. Location Selectors:
Constructors: Set.Location IConstructors:
Set_Landmark
) Exceptions QA
Name Raised by
[nitial:

Figure A.6. Navaid Object-Class Specification




CLASS SPECIFICATION

Class Name: Airport

Description: This class represents an airport which is a kind of landmark.

Static Relationships Dynamic Relationships

L Airport AKO Landmark
Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Get Location Selectors:
Constructors: Set.Location IConstructors:
Set_Landmark

. Exceptions QA

Name Raised by

Initial:

Figure A.7. Airport Object-Class Specification




CLASS SPECIFICATION

Class Name: Airspace.Location

Description: Represents the location of an object in the airspace.

Static Relationships Dynamic Relationships
l Airspace.Location  |AKS record l

Suffered Operations Required Operations ,
Descriptive Name Name Applied to B
Selectors: Selectors: -
Constructors: IConstructors: :
Iterators: Iterators: ‘
Exceptions QA E

Name Raised by
nitial:

Figure A.8. Airspace_Location Object-Class Specification
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CLASS SPECIFICATION

Class Name: Aircraft

Description: Represents the aircraft abstraction,

has.attndute

hasattnbute

:hu.nlnbuu

has.attnbute

Static Relationships

Class

AieeraftID

hasattndute Flight.Plan

Aircraft_Position

Fuel

I Aircraft I

Dynamic Relationships

Selectors:

Constructors:

Sufleted Operations
Descriptive Name
GetID
Get Source
Get Destination
Get.ETA
Get_Class
Get_Heading
Get.Fuel

Get_Position

Get Altitude
Set 1D

Set_Flight _Plan

Set Class

[Selectors:

[Constructors:

uired Operations
ame Applied to

Get_Location Aircral Position

Get Altitude Aircraft_Position
Get_Heading Aircraft Position
Get Source Flight.Plan

Get_Destination Flight Plan

Get Eta Flight Plan

Figure A.9. Aircraft Object-Class Specification
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CLASS SPECIFICATION

Class Name: Aircraft (Continued)

>

Description: Represents the aircraft abstraction,

Suffered Operations Rcﬂuired Operations
Descriptive Name ame Applied to

Constructors: Set_Heading IConstructors: Set.Location Aircraft_Position

Set_Altitude Set_Heading Aircraft_Position

Set Fuel Set Altitude Aircraft_Position

Set_Position Set_Flight Plan Flight_Plan

Take.Off

Hold.at Navaid

Clear_for_Approach

Clearfor.Landing

Continue Straight

Update_Position

Exceptions QA

Name Raised by
Fuel Exhausted Aircraft Hnitial:

Figure A.10. Aircraft Object-Class Specification(continued)
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CLASS SPECIFICATION

Class Name: Aircraft_Position

Description: Represents the position of an aircraft within the airspace.

Static Relationships

‘hu.zmnbute Airspace-pxition
has.attribute Heading
has.attnbute Altitude

[ Aircraft _Position _I

Dynamic Relationships

Suffered Operations
Descriptive Name
Selectors: Get_Location
Get.Altitude

Get_Heading

Constructors: Set.Location
Set_Heading

Set_Altitude

Selectors:

Constructors:

Rzﬂuired Operations
ame Applied to

Name Raised by

Exceptions

QA

Initial:

Figure A.11. Aircraft _Position Object-Class Specification
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CLASS SPECIFICATION

Class Name: Flight_Plan

a

r

Description: Reptesents the flight plan of a particular aircraft.

Static Relationships Dynamic Relationships

| PightPlan |

’3‘_-9_".1'_[=1 I-_{ Source j
L‘M{ =1 & ETA l

Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Get Souzce Selectors:

Get_Destination

Get Eta
Constructors: Set.Flight.Plan KConstructors:
. Exceptions QA
Name Raised by
nitial:

Figure A.12. Flight Plan Object-Class Specification
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CLASS SPECIFICATION

Class Name: Yusl

Description: Represents the fuel remaining in an aircraft.

atmd for b b B Sy etk

Static Relationships Dynamic Relationships

oA il Ll &

Fuel AKO integer 3

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Selectors:

b b L G A

al

Constructors: Constructors:

Iterators: Iterators:

ISR AN

Exceptions QA
Name Raised by :

Initial:

Sk s S et e

N

Figure A.13. Fuel Object-Class Specification
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CLASS SPECIFICATION

Class Name: Altitude

Description: Represents the altitude of an aireraft.

Static Relationships

Altitude LLs integer l

Dynamic Relationships

Suffered Operations

Required Operations

Descriptive Name Name Applied to
Selectors: Selectors:
Constructors: Constructors:
Iterators: Iterators:
Exceptions A
Name Raised by P Q
Tnitial:

Figure A.14. Altitude Object-Class Specification




CLASS SPECIFICATION

Class Name: Heading

Description: Represents the heading of an aircraft.

Static Relationships Dynamic Relationships
[ Heading IAKO enumeration type
Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Selectors:
Constructors: IConstructors:
Iterators: terators:
. Exceptions QA
Name Raised by
Initial:

Figure A.15. Heading Object-Class Specification
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CLASS SPECIFICATION

Class Name: ETA

Description: Repiesents the estimated time which an aircraft will appear on the display.

Static Relationships Dynamic Relationships
I ETA AKO integer
Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Selectors:
Constructors: KConstructors:
Iterators: Iterators:
Exceptions A
Name Raised by 2P Q
Initial:

Figure A.16. ETA Object-Class Specification
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CLASS SPECIFICATION

Class Name: Source

Description: Represents the source of an aircrafts flight plan.

Static Relationships

r Source AKOY enumeration lype

Dynamic Relationships

Suffered Operations

Required Operations

Descriptive Name Name Applied to
Selectors: Selectors:
Constructors: IConstructors:
[terators: iterators:
. Exceptions QA
Name Raised by
Tnitial:

A-18

Figure A.17. Source Object-Class Specification




CLASS SPECIFICATION

Class Name: Destination

Description: Represents the destination of an aircrafts flight plan.

Static Relationships

AKO

Destination enumeration type

Dynamic Relationships

Suffered Operations

Required Operations

Descriptive Name Name Applied to
Selectors: Selectors:
Constructors: IConstructors:
Iterators: iterators:
. Exceptions QA
Name Raised by
Hnitid:

Figure A.18. Destination Object-Class Specification




CLASS SPECIFICATION

Class Name: Aircraft.ID

Description: Represents the tail number on an aircraft.

Static Relationships Dynamic Relationships
l_ Aireraft 1D P-&l character
Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Selectors:
Constructors: IConstructors:
[terators: terators:
. Exceptions QA
Name - Raised by

Tnitial:

Figure A.19. AircraftID Object-Class Specification




CLASS SPECIFICATION

Class Name: Command

Description: Provides the comiand abstraction for the ATC simulation.
2

Static Relationships Dynamic Relationships

I Comrmnand AKO I

et |
kan.bes H I

Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Get 1D [Selectors:
Is Status

Is.Termination

Is.COMMAND
Constructors: Create.Command Constructors:
Exceptions A
Name Raised by P ?

Invalid.Cmd  Command Initial
nitial:
[nvalid_Aircraft Command

Figure A.20. Command Object-Class Specification



CLASS SPECIFICATION

Class Name: Console

Description: This object provides the 1/O abstraction for the ATC simulation.

Static Relationships

I Console J

Dynamic Relationships

has-partal ) Display

hu-pm'l = IH Keyboard

Suffered Operaticns
Descriptive Name

Constructors: Disp_Prev.Msg

Bcﬁuired Operations
ame Applied to

IConstructors: Disp.Prev.Msg  Display

Disp MapItem DispMap.Item Display
Disp_Time Disp.Time Display
DispInput Disp Input Display
Disp.Roger Disp_Roger Display
Get.Input Get.Input Keyboard
. Exceptions QA
Name Raised by
nitial:

Figure A.21.

Console Object-Class Specification
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CLASS SPECIFICATION

Class Name: Keyboard

Description: Provides the interface to the physical keyboard.

Static Relationships Dynamic Relationships

| Keyboard AKQ ]

el ]

Suffered Operations Required Operations
Descriptive Name Name Applied to
Constructors: GetInput IConstructors:
Exceptions QA
Name Raised by
nitial:

Figure A.22. Keykoard Object-Class Specification
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CLASS SPECIFICATION

Class Name: Display

Desctiption: Provides the output for the simulation.

Static Relationships

! Display I

hu.pam|= 1H Preview_Area J

m =1 }—l Map_Area I

h—"—’£‘£{= 1 H Time. Area I

M—'{ElH Input_Area J

Mﬂt—-lH Response.Area I

Dynamic Relationships

Constructors: Disp_Prev.Masg

Suffered Operations
Descriptive Name

Required Operations
Name Applied to

Constructors: Disp.Prev.Msg Preview_Area

Disp.Map.Item Disp Maptem Map.Azea
Disp.Time Disp.Time Time.Area
Disp Input DispInput Izput.Area
Disp.Roger Disp.Roger Response_Area
Name Raised by Exceptions QA
linitial:

Figure A.23. Display Object-Class Specification
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CLASS SPECIFICATION

Class Name: Preview_Arca

Desctiption: Represents the area of the display where the preview messages are shown.

Static Relationships

I Preview_Area I

w =1 H Screen ]

Dynamic Relationships

Suffered Operations

R:Nquircd Operations

Descriptive Name ame Applied to
Coustructors: Disp.Prev.Msg Constructors: Disp.Prev.Msg  Screen
. - Exceptions QA
Name Raised by
Tnitial:

Figure A.24. Preview_Area Object-Class Specification
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CLASS SPECIFICATION

Class Name: Map_Area

Description: Rapresents the area of the display where the map of the control space is displayed.

Static Relationships

[— Map.Area |

h"'mm{ =1 H Screen

Dynamic Relationships

Suffered Operations
Descriptive Name

Constructors: Disp.MapJtem

Required Operations

[Constructors: Disp. Map.Item Screen

Name Applied to

Name Raised by

Exceptions

QA

Initial:

Pigure A.25. Map_Area Object-Class Specification
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CLASS SPECIFICATION

Class Name: Time Area

Description: Represents the arca of the display where the time remaining is displayed.

Static Relationships Dynamic Relationships

[ Time.Area I

m =1 Screen

Suffered Operations Required Operations
Descriptive Name Name Applied to
Constructors: Disp.Time Constructors: Disp.Time Screen
E 1ce stions A
Name Baised by ) ?

nitial: :

Figure A.26. Time.-Area Object-Class Specification




CLASS SPECIFICATION

Class Name: Input_Area

Description: Represents the area of the display where the input is echoed.

Static Relationships

I Input.Area l

Screen

Dynamic Relationships

Suffered Operations
Descriptive Name

Constructors: DispInput

IConstructors: DispInput

Required Operations
Name Applied to

Screen

Name Raised by

Exceptions

QA

Initial:

Figure A.27. Input_Area Object-Class Specification




CLASS SPECIFICATION

Class Name: Response. Area

Description: Represents the area of the display whete the system response is_displayed.

Stztic Relationships Dynamic Relationships

[ Response_Area |

’M:l}—-‘ Screen ]

Suffered Operations - . Required Operations
Descriptive Name Name Applied to
Constructors: Disp_Roger Constructors: Disp-Response  Screen
: ; . "~ Exceptions ) QA
Name Raised by

nitial:

Figure A.28. Response_Area Object-Class Specification
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CLASS SPECIFICATION

Class Name: Screen-

Description: Provides the interface to the physical screen.

Static Relationships Dynamic Relationships

I Screen I

M = lri’H Screen

Suffered Operations ) Required Operations
Descriptive Name Name Applied lo

Constructors: Disp_Prev_.Msg IConstructors:
Disp.MapItem
Disp-Time
DispInput

Disp_Response

- . “-Exceptions B ' QA
Name Raised by
Initial;

Figure A.29: Screen Object-Class Specification
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CLASS SPECIFICATION

Class Name: Simulation.Time

Description: Represents the time remaining in the simulation.

Static Relationships ’ Dynamic Relationships
Simulation_Time J&O—{ integer
Suffered Operations Required Operations
Descriptive Name Name Applied to
Selectors: Selectors:
Constructors: Constructors:
[terators: Tterators:
] " 77 TExceptions T QA
Name- Raised by i
Initial:

Figure A.30. Simulation-Time Object-Class Specification
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CLASS SPECIFICATION

Class Name: Map_Item

Description: Represents an item to be

placed in the map display.

Static Relationships

e

Dynamic Relationships

l Map_Item AKO record
Suffered Operatizns - Required Operations
Dacrip}ive"s?)'ame Natae Applied to
Selectors: Selectors:
Constructors: IConstructors:
[terators: iterators:
. Exceptions S QA
Name Raised by
Tnitial:
Figure A.31. Map_ltem Object-Class Specification
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CLASS SPECIFICATION

Class Name: Preview_Message.Count-

Description: Represents the number of the current preview message.

Static Relationships

Preview_Message_Count AKO

integer

Dynamic Relationships

Suffered Operations

Required Operations

Descriptive Name 1 Name Applied to
Selectors: Selectors:
Constructors: [Constructors:
Iterators: : itqtators:
' Exceptions A
Name Raised by P ] Q
nitial:

Figure A.32. Preview Message_Count Object-Class Specification ,
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CLASS SPECIFICATION

Class Name: Preview.Message

Description: Represents the string into which the preview message is placed.

~ Static Relationships

Preview_Message

AKO string ]

Dynamic Relationships

Suffered Operations

Required Operations

] Descriptive Name Name Applied to
|Selectors: Selectors:
{Constructors: IConstructors:
iterators: Iterators:
. Exceptions QA
Name Raised by
Initial:

Figure A.33. Preview Message Object-Class Specification
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CLASS SPECIFICATION

Class Name: InputString

Description: Represents the string into which the user input is placed.

Static Relationships

AKO

string ]

Input_String

Dynamic-Relationships

Suffered Operations-

Required Operations

Descriptive Name Name Applied to-
Selectors: Kelectors:
Constructors: Constructors:
[terators: [terators:
. ~ Exceptions QA
{Name Raised by .
Initial:

Figure A.34. Input_String Object-Class Specification
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A.2  Ada Specifications

Following are the Ada package and subprogram specifications for the ATC

problem. Only the major objects are included.

A.2.0.1 ATC Object

with Calendar;

with Text_I0;

use Text_IO0;

with Command_PKG;

use Command_PKG;

with Console_PKG;

with Classes_PKG;

use Classes_PKG;

«iti airspace_PXG;

with Aircraft_Attributes_PKG;

proccdure ATC is

bad A R E L2 AR 22 S S 2 e s Rt R P eI LI P I PRSI et S

- CLASS: ATC
-- REPRESENTATION: none
== USED BY: none
- USES: Command, Classes, Airspace, Console,

- Adrcraft_Attributes, Calenda , Text_ I0
- OPERATIORS: none

~-- -PURPGSE: This object represents the the entire-air traffic contol

- simulation.

i LIS R L SRS LIS AL 222222 S PRI S S PR32 214222210

Simulation.Length: Classes_PKG.Simulation_Time;
This_Command: Command_PKG.Command;
Controllexr_Input:-Classes PXG.Input_String;

Time.Expired:exception;

package Time_10 3s.new -intéger_.io(Classes_PKG.Simulation_ Time);

task-Update_Airspace is

entry Start{Simulution.Tenglh: in Classes_PRG.Simulation_Time);

entry Stop;

ond-Update_ltirspaca;

use Calendar:
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task body-Update_Airspace is

Time_Left:Classes_PKG.Simulation_Time;
Minute.Countex: integer:=1;

Time_ Expired:exception;
Next_Update:Calendar.Time;

Update_Interval:duration:=15.0;

begin

accept Start(Simulation_Length: in Classes_PKG.Simulation_Time) do

Time_Left:=Simulation_Length;

end Start;

Console_PKG.Display.Time(Time_Left);
Xext_Update:=Calendar.clock;
loop
Hext_Update:=Next_Update + Update_Interval;
2elay Next_Update - Calendur.clock;
=-= retrieve airspace updates
-- display airspace updates
if Minute_Countex=4 then

Time_Left:=Time_Left-1;

Console_PKG.Display_Time(Time. Left);

if Time_Left=0 then

raise Time_Expired;

end if;

Ninute_Counter:=i1;
else

Minut3_Countexr:=Minute-Counter+i,
end if;
select

uccept Stop;

exit;
else

null;
end select;

end loop;

end Update_Airspace;

put("Enter the simulation length: “);
Time_10.get(Simulation.Length);

-- Dray_Initial_Hap;
Update_Airspace.Staxt(Simulation_Length);
delay 1.0;

loop
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Controller._Input:=Console.PKG.get_input;
Console_PKG.Display_Input(Controller.Input);
If Comnand_PKG.Is_Termina&ion_Request(COntroller_Input) then
Console_PXG.Display_Input{"Terminating simulation.");
-~ Terminate.Simulation;
Update_ Airspace.Stop;
exit;
end if;
begin
This_Command:= Command_PKG.Create_Coumand(Controiler.Input);
exception
shen Invalid_Command =>
Console_PKG.Display_Input(“Invalid command.");
when Invalid_Aircraft =>
Console_PXG.Display.Input(“Invalid aircraft.");
when others =>
Console_PKG.Display Input("Something else went -wrong.");
end;
if not Command_PKG.Is_Status(This_Command) then
Console_PKG.Display_Roger;
~=~ Execute Command
else
-~ Get Status
-- Display-Status
null;
end if;
delay 1.0;
end loop;
exception

wher. Time_Expired=>

when others-=>
put_line("Something bad went-wxong.");
end ATC;

with Aircraft_PKG;

with Aircraft_Attributes_PKG;

with Command;

with Landmark.PXG;

with Classes_PKG;

package Airspace_PKG is
--t‘t“t#ttt##‘!t#t“‘“‘"t“"ll#‘!‘tlt‘tt‘##lt#ttt‘##t'tt"“#t“ltt

- CLASS: Airspace
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“”u“id

~~ REPRESENTATION: none

- USED BY: ATC E
- USES: Cormand, Landmark, Classes, Aircraft Attributes 3
- OPERATIUNS: Initialize_bicspace - sets the leccation of all i
- landmark.: in the airspace and %
-- passes it back to ATC for 1
- display f
- Update_Airspace - gets the position updates E
-- of the aircraft, checks-for

- errors, and passes the updates 4
- back to ATC b
- Execute_Command - performs the specified command ;
- on the specified aircraft

-- Is_Done = returns-true if 26 aircraft ) .ve 5
- been dispositioned ;
- Get_Landmark_Locatior ~ returns the location of the :
- specified landmark. i
-- based-on the heading, -speed, etc. E

-~ PURPOSE: This claus represents the airspace,

-—#t‘##t#‘ittittttttt(“#tttt!t.*.’#t.ﬁ#‘ttt#i&i.'ti#i‘tl‘#&t*ttt.tt‘ 3

package Update_Record_List is new ?722777(Update_Record_PKG.Update_Recoxd);

procedure Initlalize_Airspace (Update_List: out Updave_Record.List); ;

procedure Update_Airspace (Update, list: outrupdate,accord_List);

procedurefExecnte_Command'(This_Command: in-Cemsrand_PKG .Command; K
This_Aircraft:dircraft_Attributes_PKG.Aircraft_ID); :

function Is_Done return Boolean;

function Ge%_Landmark_Location(This_Landmark: in Landmark.PXG.Landmark)

return Classes.PKG.kirspace.Position;

end Airspace.PKG;

with Airxcraft_Position_PEG;
with Flight_Plan_PKG;
with Aircraft_Attributes_PKG; {

package Aircraft_PKG is

--#t!‘t##ttt#t‘tt#‘###‘#‘t‘titl.“‘#ti#‘#t#‘..‘ttt‘tt#llttt*#‘}!!!#.‘ E
-- CLASS: Aircraft é
-~ REPRESENTATION: record 3
) - USED BY: Airspace %
- USES: Aircraft_Attributds,'Flight-Plan, Aircraft_Position ]
-- OP RATIONS:  Get_ID - zeturns the:-ID of the aircraft b
- Get_Source- -~ xeturns-tho source-of -the ;
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type Aircraft is private;

function Get_Destination (This_Plan:

-- aircraft
- Get_Destination = returns the destination of the
- aircraft
-- Get _ETA - returns the ETA-of the aircraft,
- the time the aircraft will appear
- on the display.
bl Got_Class - returns tha class of aircraft,
~- whether it is a jet =z prop.
== Got_Hoading = xeturns the heading of the aircraft
-- Get_Fuel =~ returns the fuel level of the
-- aircraft
- Get_Position = returns the 3 dimensional position
- of the aircraft
bt Get_Altitude - returns the altitude of the aircraft
.- Set_ID -~ assigns an ID to the aircraft
-- Set_Flight_Plan - assigns a flight plan to the
-- aircraft
- Set_Class -~ assigns a class-to the aircraft
.- Set_Heading =~ assigns a heading to the aircraft
-- Set_Altitude =~ assigns an altitude to the aircraft
-- Set_Fuel - assigns a fuel level to the aircraft
- Set.Position - assigns a position to the aircraft
-- Take_0ff =~ gots the Take 0ff flag to true

: -- Hold_at_Navaid- sets the Hold_at_¥avaid flag to true
- Clear_for_Approach - sets the Clear_for_.Approach flag
rem to true
- Clear.for Landing - sets ¢he Clear.for_Landing flag
- to true

- - Continue_Straight ~ does nothing
el Update_Position - sets the new:-position of the aircraft

based on the -heading, speed, otc.

PURPOSE: This .class represents an aircraft in the airspace

bdt P22 2222 T2 ER R IR 22 AR 22 R 222 LR R Rt R 2 T2

function Get_ID (This_Plan: in Aircraft)
return Aircraft_Attributes_PKG.Aircrafr_ID;
function Get_Source (This_Pian: in Aircraft)

return Aircraft_Attributes_PKG.Source;

in Aircraft)

return Aircraft_Attributes_PKG.Destination;
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function Get_ETA (This_Plan: in Aircraft)
return Aircraft_Attributes_PKG.ETA_ Type;
function Get_Class (This_Plan: in Aircraft)
return Aircraft_Attributes_PKG.Class;
function Get_Heading (This_Plan: in Aircraft)
return Aircraft_Attributes_PKG.Heading_Type;
function Get_Fuel (This_Plan: in Aircraft)
return Aircraft_Attributes_PXG.Fuel;
fruction Get Position (This.Plan: in Aircraft)
return Aircraft_Position PKG.Aircraft_Position;
function Get_Altitude (This_Plan: in Aircraft)
return Aircraft_Attributes.PKG.Altitude_Type;
procedure Set ID (This_ID: in Aircraft_Attributes_PKG.Aircraft.ID;
This_Plane: out Aircraft);
procedure Set_Flight_Plan (This_Src: in Aircraft_.Attributes_PKG.Source;
This.DST: in Aixrcraft_Attributes_PKRG.Destination;
This_ETA: in Aircraft_Attributes_PKG.ETA_Type;
This_Plane : out_Aircraft);
procedure-Set_Class (This_Class: in Aircraft Attributes_PXG.Class;
This.Plane : out Aircraft);
procedure-Set_Heading (This_Heading: in Aircraft_Attributes_PKG.Heading_ Type;
This_Plane : out Aircraft);
procedure Set_Altitude (This_Altitude: in Aircraft_Attributes_PKG.Altitude, Type;
This_Plane : out Aircraft);
procedure-Set_Fuel (This_Fuel: in-Aircraft_Attributes_PKG.Fuel;
This_Plane : out Aircraft);
procedure-Set_Position- (This_Position: in Aircraft_Position_PKG.Aircraft._Position;
This_Plane : out Aircraft);
procedure -Take_0ff (This_Position: out Aircraft);
procedure-Hold.at.Navaid (This_Position: out Aircraft);
procedure-Clear_for_Approach (This_Position:-out Aircraft);
procedure-Clear_fox.Landing (This_Position: out Aircraft);
procedure-Continue_Straight (This_Position: out Aircraft);
procedure-Update_Position (This_Position: out -Aircraft);
_private
type Aircraft is
record
ID: Aircraft_Attributes_PRG.Aircraft_ ID;
Active:-Boolean:=false;
Flight_Plan: Flight_Plan_PKG.Flight_Plan;
Class: Aircraft_Attributes_PKG.Class;
Fuel_Level: Aircraft_Attributes_PKG.Fuel;

Position: Aircraft_Position.PKG.Aircraft.Position;
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Approach: Boolean:=false;
Landing : Boolean:=false;
Hold ¢ Boolean:=false;

end record;

end Aircraft_PKG;
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A.2.0.2 Console Object

--*tt##tttttt#tttttilt#‘#t#t!tttttttttt###ttttt#‘##t#;#ttt#ttt##*ti‘#
- OBJECT: Console

==~ RFPRESERTATION: Subobjects - display, keyboard-

- USED BY: ATC

- USES: Display_PKG, Keyboard_PXG, Classes_PKG

- OPERATIONS: Display.Preview.Message - displays a preview
message in the preview area

- Display_Map_Item --displays a single map item
- in the map area

-- Display.Time ~ displays the time remaining in
- the simulation in the time area
- Display_Input - echos the input to the screen
- Get_ Input - gets input from the keyboard

-- Display_Roger - displays a "ROGER" message in

- the response-area

- Clean_Up - kills all tasks at the termination
- of the-simulation

-~ PURPOSE: Provides -the I/0 to the ATC simulation.

--‘#tt##“"*##‘}#.‘t#.l‘tt“tjt*‘#t#t!t##ttttt‘titt#t}jttt#‘#*t‘##“‘
with Classes_PKG;
packgge Console. PKG is
procedure Display_Preview_Message
(Next_Message: in-Classes_PKG.Preview_Message;
Msg_Num: in Classes_PKG.Preview.Message.Count);
procedure Display_Map_Item(This_Item: in Classes_PKG.Map.Item);
procedure Display_Time(New_Time: in Classes.PKG.Simulation_Time);
procedure Display.Input(This_Input: in-String);
function Get.Input return-String;
procedure Display._Roger;
procedure Clean.Up;

end -Console_PKG;

-—ﬁtttt#**t‘lttt!}##.t#“‘#‘#####‘t#t#‘#tt##i###*l‘#‘tt‘*t###tt#t‘#*it#‘

- OBJECT: Keyboaxd

-- REPFESENTATION: Subobjects - none
- USED-BY: Console

-- USES: 7

- OPERATIONS: Get_Input - gets-a-string from-the use

- Clean_Up - kills the task at the-termination
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- of the simulation
- PURPOSE: Provides the input from the physical keyboard.

e T T e L L LT
package-Keyboard_PKG is

function Get_Input return String;

procedure Clean_Up;

end Keyboard_PKG;

with Classes_PKG;

package Display_PKG is

e T T P T T T e
- OBJECT: Display

== REPRESENTATION: Subobjects - areas: preview, map, response,
- input, time

- USED BY: -Console

- USES: Piavieu_Area;PKé,,Response_Area_PKG,

- Map_Area_PKG, Time_Axrea_PKG, Input_Axrea_PKG,
- Classes_PKG, Screen_PKG

- -OPERATIONS : Display.Preview_Message - displays a preview-

- message in the preview area
- -Display_Map_Item - displays a single map item-
- in the-map area

- ‘Display_Time ~-displays the-time remaining-in

- the simulation-in the time area
- Display..Input - echos the input to the screen-
- -Get_Input - gets input from-the keyboard

- Display.Roger - displays a "ROGER" message in.
- the responte area

- Clean_Up = cleans up the screen. NOTICE: This
- operation directly-manipulates the
- screen object, which is not a

-- component object of the display, but
- is-a- component of display’s component
-~ objects. This is done to prevent the
- the invention of a_component object
- of display called ’Clean.Up.PKG’ or
-- something like that.

- of the simulation

- PURPGSE: Provides the output for the. ATC simulation.
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procedure Display.Preview_Message
(Next_Message: in Classes_PKG.Preview_Message;

Msg_¥um: in Classes.PKG.Preview_Message_Count);

ABLE i Ko BRI AL

procedure Display.Map. Item(This.Item: in Classes_PKG:Map_Item);
procedure Display_Time(New_.Tirne: in Classes_.PKG.Simulation.Time);
procedure Display.Input(This.Input: in String);

3
.
¥
2
3
3

procedura Display_Roger;

B procedure Clean_Up;

end Display_PKG;

with Classes_PKG;
package Preview_Area_PKG is

== AR AR RBERRRRE R KRR RN R RN R R KRR R R R R R R RN DR R AR R Rk R R AR

o b T A

- 0OBJECT: Preview_Area E
~=~ REPRESENTATION: Sub~objects - screen é
- USED BY:  Display !

: - USES:  Screen :
- OPERATIONS: Display_Preview_Message - displays-a preview f
- message-in the preview-area :
- PURPOSE: Displays a preview message in-the praview area.

B T L T T T Ty P T T e
procedure Display_Preview_Message
(Next_Message: in Classes_PKG.Preview.Message;
Msg_Num: in Classes_PKG.Preview_Message_Count);

end Preview_Area_PKG;

with Screen_PKG; :
package body Preview_Area_PKG is
Area_x:constant integer:=1;
Area_ y:constant integer:=65;
; procedure Display_Preview_Message
(Next_Message: in Classes._PKG.Preview_Message;
: Msg-Bum: in Classes_PKG.Preview_Message.Count) is

x,y:integer;

-~ The message number determines which line the preview message
== is printed on. This prevents messages from being over-
== written by new messages.

z:=integer (Msg_ Num);

y:=Area_y;

Screen_PKG.Display-Proview_Message(x,y,Next_Message);
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end Display.Preview_Message;

end Proview_Area_PKG;

package Screen_PXG is

B T Y T P P T T T Y
- OBJECT: Screen

-~ REPRESENTATION: Subobjects = none

- USED BY: Display, Preview_Area, Map_Area, Time_Area,
- Input_Area, Response_Area
~-- USES: ?
- OPERATIORS: Display._Preview _Message - displays a preview
. - message in the preview area
- Display_Map_Item ~ displays a single map item
-- in the map area
- Display.Time - displays the time remaining in
- the. simulation in-the time area
- Display_Input - echos the input to-the screen
. =-- Display.Response --displays a message in
- the response area
- Clean_Up -~ Kills-tha task upon termination
- of the simulaticn
) - PURPOSE: Provides the interface to the physical screen.

--##‘#‘*‘#"..tt“t#‘#t‘tttt#.t“‘t“‘f"t"“‘t#“‘#‘t’tttt‘t#tt‘ii*#
procedure Display_Preview_Message(x,y:in integer;
Next._Message: in Stxing);
procedure Display.Map.Item(x,y:in integer;
: Item: in charactex);
procedure Display._Time(x,y,New_Time: in integer);
procedure-Display_Input(x,y: in integer;
This_Input: in-String);
procedure Display_Response(x,y: in integer;
This.Response:in String);.
procedure Clean_Up;

end Screen_PKG;
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A.2.0.3 Command Object

with Aircraft_Attributes_PKG;
with Classes_PKG;

package Command.PKG is

wm kR R RRRRER R R RN AR RN R KRR KRR R RPN Rk kR Rk Rk kR

-- CLASS: Command

-~ REPRESENTATION: Record

- USED BY: ATC

-- “USES: KORE

- OPERATIONS: Create_Command - builds a command from an

-~ input string

- Get_ID - returns-the ID of the aircraft
- specified in the passed command.
- Is_Status - returns true if the passed
- command is a status request,
- false-otherwise.

- Is_Termination ~ returns txue if the passed
- command is a termination

- request, false otherwise.
-— Is.<command> =~ returns true if the passed
- command = <command>, false
- otherwise. There will be

- one of these for each

- different command.

- EXCEPTIONS: Invalid.Command- this exception is raised

-- when the Direction or

- Amount -paxts of the command
= are illegal values. The

- exception is propagated-to
- the ATC object.

- Invalid_Aircraft-this exception is raised-
- when-an invalid Aircraft_ID
- is detected. The exception
- is propagated to the ATC

- object.

- -PURPOSE: Reprcsents the commands-used in the ATC

- simulation.

o AR RO O R ROK OR R R OROR RO RO R R R KRk ok ok Aok Rk R

type Command is private;

function Create.Command (This_String:

in string)

return Command;
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function Get_ID (This_Command: in Command)-
return Aircraft_Attributes-PKG.Aircraft ID;
function Is.Status (This.Command: in Command)-roturn boolean;
function -Is_Termination.Request (This.String: in Classes_ PKG.Input_String)
return boolean;
function Is_Clear_to.Land (This_Command: in-Command)
xrelarn boolean;
function Xs_Turn_Left_45 (This.Command: in-Command)

return boolean;

Invalid_Command : exception;
Invalid_Aircraft : exception;
private
== Command is a record-containing the-following:
== 1. aircraft_ID of the aircraft beiny commanded
== 2. the direction character which determines which
-- direction the-aircraft should-go.
- L - left
-~ -R - right
-=- ‘A = ascend/descend
-- 3. the amount character which specifies how far the:
- the aircraft should turn/ascend/descend
= clear to-land,-hold at navaid, continue
1000%/45 degrees
2000°/90-degrees
30007/135 .degrees
4000°/180 degrees

1
1

o W N = O
]

= 5000°/clear-for approach
-- 4. -a boolean which-flags the cormiand-as a status request or
- a directive command.
typo Commend
is record
Aircraft ID : Aircraft_Attributes_PKG.Aircraft_ID;
Direction : character;
Amount : character;
Is_a.Command : boolean:=true;
end record;

end Command_PKG;

package body Command_PKG is
~- This function converts a string into a command
function.Create_Command-(This_String: in string)

return Command is
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subtype Upper_Case is character range ’A’..’Z?%;
Temp.Command: Command;

Ch : character;

o AR P g L p et Lo e e “J

-- Function to convert lowexr case characters to upper case,
function upper (Ch: in character)-return character is

subtype Lower.Case is charactexr-xange ’a’..’z?;

B

begin
if Ch in Lower_Case then
return character’val(charactex’pos(Ch)-character?pos(? ?));

end if;

S R AR N 2

return Ch;
end uppor;
begin

== Check to make sure the aircraft id is valid

LT AL A

Ch:=upper(This_String(1));
if not (Ch in Upper.Casc) then

raise Invalid_Aircraft;

o,

end if;
== Check for-status message

if This_Striﬁg’length = 1 then

R L il R s T

Temp_Command.Is_a_Command :=false;

Temp_Command.Aircraft. ID := Ch;

[TV TRIRT )

~= Must be-a- command

elsif This.String’length = 3 then
Temp.Command.Is_a_Command. ¢rue;

Temp.Command.Aircraft ID :=-Ch;

== Check for valid direction character

-- If valid, assign it

A
E
Z

- Ch:=uppex(This_Stxing(2));.
- if (Ch=?A?) or (Ch=’L’) or (Ch=’R’) then

Biiak

Temp_Command.Direction:=Ch;

else . -

A AR it

- raise Invalid, _Cormand;

end if;

-- Check-for valid amount character
-- If valid, assign it
Ch:=This_String(3);

if Ch-in ?07,.25’ then

Temp.Command.Amount :=Ch;

RRTEETITTAAW SR ST

else

H raise Invalid_Command;

end if;

end if;
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xetuxn Temp_Cosmand;

ond Create _Command;

~- This functior raturns the ID of the aircraft specified in the command
funétion-Get YD (This_Command: in Command)
return Aircraft_Attributes_PKG.Aircraft_ID is
begin
xaturn This_ Cermtnd. Aixcrafs ID;
end Sot _ID;

=~ This function returns true if tho command is a status request,
-= false-othsryise
Lanction-Is.Status (This_Command: in Command) return boolean is
begin
if not This_Command.Is_a_Command then
return true;
else
return false;
end if;

end Is_Status;

==~ This-function returns-true if the command is a Clear_to_Land
~- command, false otherwise
function Is_Clear_to_Land (This_Command: in Command)
raturn -boolean is
begin
if (This_Command.Direction=’A’) and (This_Conmand.Amount=20’) then
raturn txrue;
else.
raturn falge;
end-if;

end Is, Clear_to Land;

~- This-function returns-frue if the command is a turn-lef: 45
~- degreos-command, false otherwise
function Is_Turn_Left_45 (This_Command; in Command)
return boolean is
begin
if (This_Command.Direction=’L’) and- (This_Command.Amount=’1?) then
return truo;
else R
return false;

end- if;
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end Is_Turn_Lelt_45;

== This function returns true if the string input at the keybourd iz
-~ a termination xequest, 1.lse othoxwise
- function Ia_Termination_Reguest (This_Stxing: in Classes.PKG.Input_String)
retuxn boolean is
begin
if This_String = "TER" then
raturn true;
alse
return false;
end if;

end Xs_Termination.Request;

end Command_PKG;
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Appendix B. Validation Package

This chapter contains the validation package used to validate the research
presented in the thesis. Also included are the list of experts consulted and the

individual responses of the experts.

B.1 The Package

The validation package consists of a discussion of the concurrency heuristics
and a questionaire. The questionaire is reproduced in Figure 5.1. The remainder of

this section contains the textual portion of the package.

B.1.1 Heuristics for determining concurrency. Following are four heuristics

which designers may use in determining concurre:.cy in object-oriented designs. They

are based on the heuristics used in the DARTS[Gomaa 1984], LVM/OOD|Nielsen-
and Shumate 1989], ADARTS[Gomaa 19894, and Entity-life Modeling[Sanden 1989]

methods.

B.1.1,1 Problem-space conct “rency. An object which models con-

currency in the problem environment should be implemented as a task.

Concurreucy in the problem-domain can be determined by identifying behav-

ior patterns, or sequences of events, in which the objects participate. The objects-

themselves may represent physical entities to-which the system interfaces, or logical

entities, such as an air traffic control system.

B.1.1.2 Time constrainlis. An object whose behavior or opera-

tions are constrained by time requirements should probably be a task.

These may be periodic constraints, such as an operation which must be per-

formed:at set intervals, or responsive constraints, such as responding to an interrupt.
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B.1.1.8 Computational requirements. An object whese behavior or
operations require substantial computational resources should probably

be a task.

For example, in a satellite comr nication system, the satellite object may have
an operation called Calculate Satellite Coordinates. To do this in real time requires
the integration of a ninth-order polynomial. Depending on the resources available,
this could be quite time consuming and processor intensive. This operation should

be a separate task.

B.1.1.4 Solution-space objects. An object introduced in the soft-
ware solution to protect a shared data store, decouple two interacting
tasks, or synchronize the behavior of two or more objects should be a

task.

Lo




B.1.2  Application of the Heuristics to the ATC Problem The heuristics were
applied to an Air Traffic Control (ATC) simulation . This section contains a de-
scription of the problem followed by a discussion of the concurrency identified via
‘the heuristics and concludes with a discussion of the overall design of the system.

For reference the Booch diagrams-and Ada package specificalions are also included.

B.1.2.1 ATC Description

Air Traffic Control is a simulation which allows the user to play the part
of an air traffic controller in charge of a 15x25 mile area from ground
level to 9000 feet. In the area are 10 entry/exit fixes, 2 airports , and 2
navaids. During the simulation, 26 aircraft will become active, and it is
the responsibility of the controller to safely direct these aircraft through
the airspace.

The controller communicates to the aircraft via the scope, issuing com-
mands.and status requests, receiving replies-and reports, and noting the
position -of the aircraft on-the map of the control space. The controller
issues commands to change heading or altitude, to hold at a navaid, or
clear for approach or landing. Fach aircraft has a certain amount of
fuel left, so the controller must see to it that the aircraft is dispositioned
prior to fuel exhaustion. Also, the minimum separation rules must be
followed, which state that no two aircraft may pass within three miles of
each other at 1000’ or less separation. The aircraft must enter and/or
exit via one of the ten fixes. If an aircraft attempts to exit through a
non-exit fix, a boundary error is generated. The controller may request
a status report on each aircraft, which will display all information on the
aircraft, including fuel level, which is measured in minutes.

The aircraft can be one of two types, a jet or a prop. The jets travel at
4 miles per minute, while the props travel at 2 miles per minute. This
means the:screen must updated every 15 seconds for a jet’s course to be
followed accross the screen.

The controller dispositions aircraft by giving commands which enable the
aircraft to take off, land, hold at a navaid, assume a landing approach,
turn, or change altitude. Take off is accomplished by ordering the aircraft
to assume-a certain altitude; there is no ’take off’ command as such. Each
of the airports has restrictions on heading for takeoff; these restrictions
must be observed. Turns and altitude changes are effectively instanta-
neous, i.e., they are accomplished at the next mile marker. To land,
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the aircraft must be cleared for landing through the navigational beacon
(navaid) assigned to the airport. Since there are two airports, there are
two navaids. To land, the controller places the aircraft on a heading for
a navaid and issues a clearance for approach command. Once the air-
craft reaches the beacon, it automatically assumes the correct heading
for the airport. The controller then issues a clearance to land command,
and when the aircraft reaches the airport it Jands (disappears from the

screen). If the controller issues a hold command, the aircraft remains at
the navaid until released.

The player initially specifies the length of the game, which may be be-
tween 16 and 99 minutes. The same number of aircraft will appear for
each game, so the shorter the simulation, the more challenging. In any
session, the last 15 minutes will be free of new aircraft. The simula-
tion terminates when all aircraft have been successfully dispositioned,
the timer runs out, the player requests termination, or one of three error
conditions-occurs:

- conflict error - separation rules-were violated
o fuel exhaustion

¢ boundary error - the aircraft attempt to-leave the control-space via
an unauthorized point.

B.1.2.2 ATC Design This section contains a summary-of the ATC de-
sign in general. The main objects are discussed briefly, the Ada package specifica-
tions for the main objecs-are listed, and the:Booch diagrams:for the design are given.

sectionConcurrency in ATC

In the ATC simulation, three objects contain concurrency: the ATC object,

the Console object, and :the Aircraft class.

o ATC. Thefirst and second heuristics were used to identify concurrencyin the
ATC object. Examining the ATC problem description reveals two separate
patterns of behavior. The first is the periodic updating of the ATC display.
This is a task under the second heuristic, an object behavior constrained by

time. The second pattern of behavior is the asynchronous processing of user-

entered commands. The pattern is a follows: the user enters a command,
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the system responds with a message, and the command is executed. The
asynchronous nature of this pattern precludes it being embedded within the

periodic update of the display.

o Console. The first heuristic identified two behavior patterns within:the console
object, one corresponding to input (Keyboard), the other corresponding to

output (Screen). These objects happen to model physical devices.

¢ Aircraft. The first heuristic was used to identify the Aircraft class as con-
current. Although the actual physical airplane need not be modeled (flaps,
engines, etc.), the behavior of the aircraft flying throught the airspace is an

identifiable behavior pattern, which should be modeled as a task.

Two heuristics were not used. No computationally intensive objects or opera-

tions were identified; nor were any concurrent solution-space objects encountered.

B.1.2.8 ATC Design This section contains a surnmary of the ATC de-
sign:in genaral. The main objects are discussed briefly, the Ada package specifications

for the main objects are listed, and the Booch diagrams for the design are given.

Main Objects The main objects in the ATC system are ATC, Con-

sole, Command, Airspace, and Aircraft.

e ATC. The ATC object is the primary object of the system. It controls the
interaction of other objects. As previously mentioned, it has two threads of

control, command processing and-display update.
e Console. The Console object handles the system I1/O.

¢ Command. The Command class defines the representation of a command,
and provides operations to create a command, determine whether & command
is a status request-or a directive, and identifies which particular command a

command:variable contains.




¢ Airspace. The Airspace object represents the airspace, which contains land-
marks (navigational beacons, airports, and entry/exit fixes) and aircraft. It
tracks the location of the aircraft, determines when proximity errors occur, and

supervises the execution of commands.

¢ Aircraft. The Aircraft class represents aircraft as they pass through the airspace,
and contains operations which query the status of the aircraft-and change the

state of the aircraft.

B.1.2.4 Ada Code
ATC Object :

with Calendar;

with Text:10;

use Text’10;

with Command"PKG;

use Command'PKG;

with Console’PKG;

with Classes’PKG;

use Classes’PKG;

with Aircraft’Attributes'PKG;
procedure ATC is

[T

m

Simulation’Length: Classes’PKG.Simulation'Time;
This'Command: Command’PKG.Command;
Controller'Input: Classes’PKG.Input'Siring;

Time'Expired:exception; E
package Time'l0 is new integer'io{Classes’ PKG.Simulation'Time);

task Update'Airspaceis
entry Start(Simulation'Length: in  Classes’PKG.Simulation’Time);
entry Stop;

end Update’Airspace; E

use Calendar;
task body UpdateAirspace is

Time'Left:Classes’ PKG.Simulation Time;

Minute’Counter: integer:=1;

b

Time Expired:exception;
Next'Update:Calendar.Time;

1o

Update’Interval:duration:=15.0;

YT IIE]

begin
accept Start(Simulation'Length: in Classes’PKG.Simulation'Time) do
Time'Left:=Simulation’Length;

end Start; i
Console’ PKG.Display Time(Time Left);
Next'Update:=Calendar.clock;




loop *
Next'Update:=Next'Update 4 Update’Interval; *
delay Next'Update - Calendar.clock; ’
— tetrieve airspace updates z
- display airspace updates
if Minute’Counter=4 then

, Time'Left:=Time Left-1;

Console’PKG.Display’ Time(Time'Left);

if Time'Left=0 then

raise Time Eapired; -

end if;

Minute'Counter:=1;
else

Minute’Counters=Minutc’Counter1;
end if; -
select

accept Stop;

exit;

else

o okadn

null;
end select; :
- end loop;
i end Update Airspace;

begin
put("Enter the simulation length: ”);
;I‘ime'lO.ge!(Simulation'bength); -
~ Draw'Initial’Map;
Update'Airspace.Start(Simulation'Length); 3
delay 1.0;
loop :
Controller'Input:=Console’PKG.get input;
Console’PKG,Display’Input(Controller’Input); -
If Command’PKG.Is"Termination"Request(Controller'Input) then
= Console’PKG.Display’Input(”Terminating simulation.”);
) = Terminate’Simulation;
Updatc'Airspace.Stop;
exit;
end if;
begin
This’Command:= Command'PKG,Create’Comrand(Controller’Input);
exception
when Invalid’Command =
Console'Pi(G.Display'lnput("lnvalid command,”);
Z when Invalid*Aireraft =;
- Console’PKG,DisplayInput(”Invalid aircraft.”);
when others =i
: Console"PKG.Display Input(”Something else went wrong.”);
- end;
- if not Command'PKG.Is'Status(This’Command) then
Console’PKG.Display 'Roger;
= Execute Command
clse
- Get Status
-~ Display Status
null;
end if; _
delay 1.0;
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end loop;
exception
when Time'Expired=;
put’line(” You ran out of timetliti");
-when others =}
put’line(”Something bad went wrong.”);

end-ATC;
Console Object
- OBJECT: Console

~ REPRESENTATION: Subobjects - display, keyboard

- USED BY: ATC

- USES: Display’PKG, Keyboard’PKG, Classes’PKG

- OPERATIONS:  Display'Preview'Message - displays a preview

- message in the preview area

- Display"Map'Item « displays a single-map item
- in the map-area

- Display’Time » displays the time remaining in

the simulation in the time-area
Display’Input - echos the input to-the screen

- GetlInput - gets input from the keyboard

- Display'Roger - displays a "ROGER” message in
- the response area

- Clean’Up - kills all-tasks at the termination

- of the simulation

- PURPOSE: Provides the I/O to the ATC simulation.

- " ALK RN

with Classes’PKG;
package Console’PKG is

procedure Display Preview ' Message
(Next'Message: in-Classes’PKG.Preview Message;
Msg'Num: in Classes’PKG.Preview Message'Count);
procedure Display’Map'Item(This’ Item: in Classes’PKG.Map'Item);
_procedure Display*Time(New Time: in Classes’PKG,Simulation’Time);
procedure Display'Input(This’Input: in String);
function Get'Input-return String;
procedure Display 'Roger;
procedure Clean’Up;

end Console’PKG;

Command Class

RN NN R RO A8 S KR A * RO MR K

- CLASS: Command

- REPRESENTATION: Record

- USED BY: ATC

- USES: NONE

- OPERATIONS: Create’Command - builds a.command from an
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input atring

Get'ID - returna the ID of the aircraft
specified in the passed command.

1s’Status - returns true if the passed
command is a status request,
false otherwise.

Is"Termination - returns true if the passed
command is a termination
request, false otherwise.

Is’jcommand; - returns true if the passed
command = jcommand;, false
otherwise. There will be
one of these for cach
different command.

EXCEPTIONS: Invalid’Command- this exception is raised
when the Disection or
Amount parts of the command
are illegal values, The
exception is-propagated to
the ATC object.

Invalid"Aircraft.this exception is raised
when an invalid Aircraft’'iD
is detected, The exception
is propagated to the ATC
object.

PURPOSE: Represents the commands used in the ATC
simulation.

LT R AR PP T

with Aircraft’Attributes’PKG;
with-Classes’PKG;
package Command’PKG is

type Command is private;
function Create’Command (This'String: in string)

return Command;
function Get'ID (This’Command: in Command)

return Aircraft’Attributes’PKG.Aircraft’ID;

function Is’Status (This'Command: in Command) return boolean;
function Is'Termination*Request (This’String: in Classes’PKG.Input'String)

return boolean;
function 1s'Clear’to’Land (This'Command: in Command)

reture boolean;
function Is'Turn’Left"45 (This’Command: in.Command)

return boolean;
Invalid’Command : exception;
Invalid"Aircraft : exception;

private
~ Command is a record containing the following:
= 1. aircraft’ID of the aircraft being commanded
= 2. the direction character which determines which
direction the aircraft should-go.
= L«left
~ R.right
= A . ascend/descend
~ 3. the amount character which specifies how far the
=~ the aircraft should_turn/ascend/descend
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= 0. clear to land, hold at navaid, continue
= 1.1000'/45 degrees
- 2-2000'/90 degrees
- 3-3000"/135 degrees
= 4 .4000'/180 degrees
- 5.-5000'/clear for approach
= 4, a boolean which flags the command as a status request or
=~ adirective command
type Command
is record
Aireraft’'ID : Alrcraft"Attributes’ PKG Aircraft’ID;
Direction : character;
Amount : character;
Is’a’Command : boolean:=true;
end record;

end Command'PKG;

Atrspace Object

with Aircraft"Attributes’PKG;
with Command;

with Landmark’PKG;

with Classes'PKG;
package-Airspace’PKG is

CTYTIT raaRy AR . PrIYT Y]

CLASS:  Airspace
REPRESENTATION: none-
USED BY: ATC
USES: Command, Landmark, Classes, Aircraft Attributes
OPERATIONS: Initialize’Airspace » sets the Jocation of all
landmarks in the airspace and
passes it back to ATC for
display
Update Airspace - gets the position updates
of-the aircraft, checks-for
errors, and passes the updates
back to ATC
Execute"Command - performs the:specified command
on the specified afrcraft
Is'Done « returns truc-if-26-aircraft have
been dispositioned
Get'Landmark’Location - returne the location of the
specified landmark,
based on the heading, speed, etc.

PURPOSE: This class represents the airspace.

RREL A LR SRR RO ROK R X

package Update Record’List is_new 7722222(Update Record’PKG.Update Record);

procedure Initialize’ Airspace (Update'List: out Update’Record’List);

procedure Update Airspace (Update’List: out Update’Record List);

procedure Execute’Command (This’Command: in Command'PKG.Command;
This Aircraft:Aircraft’Attributes’PKG, Aircraft’ID);

function Js'Done return Boolean;

function-Get’Landmark Location(This'Landmark: in Landmaix"PKG.Landmark)

return-Classes'PKG.Airspace Position;
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: end Airspace’PKG;

L hia

Lt

: Atrcraft Class 1

ki

with Aircraft'Position'PKG; 4
with Flight'Plan"PKG;

with Aircraft’Attributes’PKG;
package Aircraft’PKG is

- CLASS:  Aircraft *
- REPRESENTATION: record

USED BY: Airspace E

- - USES:  Airciaft’Astributes, Flight'Plan, Aircraft’Position b
- OPERATIONS: Get'ID - returns the ID of the aircraft
: - Get'Source - returns the source of the ]
- aircraft
- Get'Destination - returns the destination of the F
B - aircraft :
: - Get’ETA - returns the ETA of the aireraft, i
B - the time the aircraft will-appear
: - on the display. ¥
- Get'Class - returns the class of aircraft,
, - whether it is a jet or prop. 3
. - Get'Heading - returns the heading of the aircraft E
: -~ Get'Fuel = returns the fuel level of the
- - aircraft 2
; - Get'Position « returns the 3 dimensional position j
- of the aircraft
- - Get’Altitude - returns the altitude of the aircraft
B - Set’ID - assigns an ID to the aircraft ;
- - Set'Flight’Plan - assigns a flight plan-to-the 5
p - aircraft
- Set’Class - assigns a class to the aircraft k
- Set’Heading - assigns a heading to the aircraft 3
) - Set’Altitude - assignz an altitude to the aircraft K
: - Set'Fuel - assigns a fuel level to-the aircraft S
B - Set'Position - assigns a position to the aircraft
i v - Take'Off - sects the Take Off flag to true {
- - Hold’at’Navaid- sets the Hold'at'Navaid-flag to true 5
- Clear’for"Approach - seis the Clear'forprprioach flag ]
_ - to true 7 ;
: - Clear’for’'Landing - sets the Clear'for*Landing flag 7
- to true ¥
- - Continue'Straight . does nothing §
: - Update'Position - sets the new position of tae sircraft R
- based on the heading, speed, etc, 3

2
3
K
1
F
3
3

= PURPOSE: This class represents an aircraft in the airspace

- -t T G LR RE OO

type Aircraft is private;
function Get'ID (This'Plan: in Aircraft)
return Aircraft’Attributes’ PKG.Aircraft’'ID;
- function Get'Source (This’Plan: in Aircraft)
return -Aircraft’ Attributes'PKG.Source;
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function Get'Destination (This'Plan: in Aircraft)
return Aircraft’Attributes’PKG.Destination;
funch 1 Get'ETA (This'Plan: in Aircraft)
return Aircraft*Astributes’PKG.ETA Type;
function Get'Class (This'Plan: in-Alrcraft)
return Aireraft’Attributes’PKG.Class;
function Get'Heading (This'Plan: in Aircraft)
return "Aircraft’ Attributes'PKG.Heading Type;
function Get'Fuel (This'Plan: in Aircraft)
return Aircraft'Attributes’PKG.Fuel;
function Get'Position (This'Plan: in Aircraft)
return Aircraft’Position"PKG.Alrcraft'Position;
function Get'Altitude (This'Plan: in Aircraft)
return Aireraft’Attributes’PKG.Altitude Type;
procedure Set’ID (This'ID: in Aircraft"Attributes’PKG.Aircraft’1D;
This'Plane: out Aircraft);
procedure Set'Flight'Plan (This'Sre: in Alreraft’Attributes’PKG.Source;
This’DST; in_Aircraft’Attributes’PKG.Destination;
This’ETA: in Aircraft’Attributes’PKG.ETA Type;
This'Plane ! out Aircraft);
procedure Set’Class (This'Class: in Aircraft’Attributes’PKG.Class;
This’Plane : out Aircraft);
procedure Set'Heading (This'Heading: in Aircraft’Attributes’ PKG.Heading' Type;
This"Plane 5 out Aireraft);
procedure Set’Altitude (This"Altitude: in AircraftiAttributes’PKG.AVitude Type;
This"Plane : out Aircraft);
procedure Set’Fuel (This"Fuel: in- Aircraft’Attributes’ PKG,Fuel;
This’Plane : out Aircraft);
proccdure Set'Position (This'Position: in Aircraft’Position’PKG.Aircraft’Position;
This’Plane : out Aircraft);
procedure Take'Off (This'Position: out Aircraft);
procedure Hold at"Navaid (This'Position: out Aircraft);
procedure Clear'for'Approach’(;l‘hic'!’osition: out -Aircraft);
ptocedure Clear'for'Landing (This’Position: out Aircraft);
procedure Continue’Straight-(This'Position: out Aircraft);
procedure Update'Position (This Position: out Aircraft);

private
type Aircraft is

record
ID: Aircraft”Attributes’PKG.Aircraft'ID;
Activer-Booleani=false;
Flight'Plan; Flight"Plan'PKG.Flight"Plan;
Class: Aircraft’Attributes'PKG.Class;
Fuel'Level: Aircraft’Attributes’PXG.Fuel;
Position: Aircraft’Position’PKG.Aircraft'Position;
Approach: Booleani=false;
Landing : Boolean:=falsc;
Hold : Boolean:=false;

end record;

end Alrcraft’'PKG;

B.1.2.5 Booch Diagrams Following are the Booch diagrams for the

higher levels of the design. The lower level objects and classes are included only
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Figure B.1. Top Level Design
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Figure B.2. Console Object Refinement
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Figure B.3. ATC Object Refinement
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B.2 The Ezperts

The following table lists the software engineering experts who participated in

evaluating the research contained in this thesis:

NAME ORGANIZATION

Karyl Adams 'Contractof

Capt Paul Hardy | Air Force Institute of Technolngy (AFIT)
Dr James Howatt | AFIT

Capt Terry Kitchen | AFIT

Dr Patricia Lawlis | AFIT

Capt James Marr | AFIT

Capt Gene Place AFIT

Dr Bo Sanden George Mason University
Capt Kelly Spicer | AFIT
Dr Marty Stytz AFIT
Capt Jay Tevis 7AFIT

B.8 The Responses

The following pages contain copies of the experts’ responses to the questionaire.
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1.2 Are the heuristics understandable? @
NO FAIRLY 2

g

2. Do the heuristics help the designer in making concurrency decisions?
1 2 3 @) 5 |
NO SOME YES :

il gl

3. Are there concurrency situations not covered by the heuristics? Which?
. 2 3 4 5
NONE SOME MANY

4. Is there overlap among the heuristics? Which?
1 {.5) 2 3 4 5
NONE SOME VANY
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S. Do the heuristics violate established principles of software engineering
oupling, cohesion, encapsulation, information hiding, etc.)? Which?
@ 2 3 4 S
NONE SOME MANY
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FROM: Paul R. Hardy, Capt 6 September 1990
SUBJECT: RE: Evaluation of Design Heuristics, & Sep 90, Ltr
TO: Capt Ken Baum
Below are comments requested in the subject lecter:
Question 1: No additional comment.

Questions 2 and 3: The comments I'm providing stradle issues raised in
questions 2 and 3. First, not evident in the write up for evaluation
was a mapping from traditional object oriented analysis and
design tools (concept map, class specification, etc) to
identification of possible tasks., This may be part of a more
extensive presentation. This proposed mapping would be useful to the
designer in applying the heuristics. Second, since it appears that
the dynamic characteristics of an object are the predominant factors
in deciding concurrency is there a classification of objects based
upon this dynamic behavior which could facilitate identification of
a task-oriented object? For instance, an actor object could be a
candidate for a Task. (This is just an example.) Have you found it
to be true that objects which essential are similar to abstract data
types, -that is, have operations which change state values (boolean,
numerical, etc) and inspector operations for state values, do-not
need to be tasks? As opposed to objects that change the state of the
system, physical or logical, which map into task?

Question 4: It is probaby important to include "Time Constraints” as a
characteristic of a candidate task object. This attribute can-be
overlooked. 1 would tend to believe, though, that time restrictions
are an attribute of a physical or logical entity, for example, ATIC
must update the airspace every few clock cycles. If not an attribute
of the object, most likely, computationally complex processing is
the driving determiner. In either case, time constraints may be
implicitly embedded within the other heuristies. (I say may be
because these are just comments and I don’t have to support any
issues 1 raise!)

Question 5: No ccmment.
Questions on application of heuristics:
In application of the heuristics to the ATC, it appeared that the
Airspace Object decouples the Aircraft and ATC objects. Was 1
correct in this observation? If so, was there an explicit design

decision made to not follow r“e« "solution-space” heuristic? Are
there heuristics for making this sign decision?
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1. Aré the heuristics understandable?

1 2 3 ® 5 See MY commeu‘l's‘

NO FAIRLY YES

2. Do the henristics help the designer in making concurrency decisions?
1 2 3 4
NO SOME YES

3. Are there concurrency situations not covered by the heuristics? Which?
2 3
NONE SOME MANY
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5. Do the heuristics violate established principles of software engineering
(coupling, cohesion, encapsulation, information hiding, etc.)? Which?
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SOME MANY

\r[\,,, lw.u—dlw MMM\H@
F/\M\A»@/QQ/A PMM)\M

PO AT

B-21

T TS




: St

1 Heuristics for determining concurrency.

Following are five heuristics which designers may use in determining concurrency in object-
oriented designs. The are based on the-heuristics used in the DARTS(1}, LVM/OO0D|3]
ADARTS|2}, and Entity-life Modeling[4) methods.

1.1 Problem—space concurrency.

An object which ﬂg\e‘lefs- concurrency in the problem environment should be
implemented as a task.

Concurrency in the problem-domain can be determined by identifying behavior patterns,
or sequences of events, in which the objects participate. The objects themselves may repre-
sent physical entities to which the system interfaces, or logical entities, such as an air traffic
conrol system.

1.2 Time constraints.

An object whose behavior or operations are constrained by time requirements
should probably be a task.

These may be periodic constraints, such as an operation which must be performed at set
intervals, or responsive constraints, such as responding to-an interrupt.

1.3 Computational requirements.

An object whose behavior or operatjons reqmre substantx mputat nf:l rap
ne

sources should probably be a task. Fssuk S ° 1‘:& °“‘ Mug

For example, in a satellite communication system, 3 e sate lite object mayp}xa.ve an oper-
ation called Calculate Satellite Coordinates. To do-this-in real time requires the integration
of a ninth-order polynomial. Depending on the resources available, this could be quite time
consuming and processor intensive. This operation should be a separate task.

1.4 Solution-space objects.

An object introduced in the software-solution to protect a shared data store, de-

couple two interacting tasks, or synchronize the behavior of two or more objects
should be a task.
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* 1. Are the heuristics understandable? t :
1 2 3 “ 4 5 ' :
NO FAIRLY YES

: :
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2. Do the heuristics help the designer in making concurrency decisions?
1 2 3 4 {5)
NO SOME YES

3. Are there concurrency situations not covered by the heuristics? Which?

1 e 3 4 5 :

NONE SOME MANY AN
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nenfios < ome . Is there overlap among the heuristics? Which?

1 2 3 4 5
NONE SOME MANY
/[(I meatlionsd  above,

5. Do the heuristics violate established principles of software engineering
(coupling, cohesion, encapsulation, information hiding, etc.)? Which?

2 3 4 5

NONE SOME MANY :
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\'\ 1 Heuristics for determining concurrency.

R TN LRI, CATS 5 AT A

. Following are five heuristics which designers may use in determining concurrency in object.
. oriented designs. The are based on the heuristics used in the DARTS{1]. LV'\I/OOD3]
N ADARTS{2]. and Entity-life Modeling[4} methods.

o,

Ll 20

1.1 Problem-space concurrency.

i L el

An object which models concurrency in the problem environment should be
imiplemented as a task.

:4\ Councurrency in the probiem-domain can be determined by identifying behavior patterns, }
s Or sequences of evemts. in which the objects participate. The objects themselves may repre- 3

sent physical entities to which the system interfaces. or logical entities, such as an air traffic
conrol system.

1.2 Time constraints.

A et e

An object whose behavior or operations are constrained by time requirements
should probably be a task.

These may be periodic constraints, such as an operation which must be performed at set
intervals. or responsive constraints, such as responding to an interrupt.

‘
“.’/ "'"j/

1.3 Computational requirements.

An object whose behavior or operations require substantial computational re- :
sources should probably be a task. ?

For example, in a satellite communication system, the satellite object may have an oper-
ation called Calculate Satellite Coordinates. To do this in real time requires the integration
of a.ninth-order polyromial. Depending on the resources available, this could be quite time
consuming and processor intensive. This operation should be a separate task.

=
2z
=)
3

ot

1.4 Solution-space objects.

An object introduced in the software solution to protect a shared data store, de-
couple two interacting tasks, or synchronize the behavior of two or more objects
should be a task.
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1. Are the heuristics understandable? .
1 2 4 5 [ <o

NO FATRLY YES M

-
Y R s Ty T 0PI § PR SEPR IO S

2. Do the heuristics help the designer in making concurrency decisions? X
1 2 3 4

NO SOME YES ‘

' {

)

2 3 4 5
NONE SOME MANY -

I amend

3. A;e there concurrency situations not covered by the heuristics? Which?

%
i
h
4
H

4. Is there overlap among the henristics? Which?
1 2 3 4 5
NGNE SOME MANY

5. Do the heuristics violate established principles of software engineering z
(coupling, cohesion, encapsulation, information hiding, etc.)? Which?
1 3 4 5
NONE SOME MANY

e ¢
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1. Are the heuristics understandable?
1 2 3 5
NO FAIRLY YES

(] { ~
~$pe npTes o 'r{?//'?l‘ //Z/)'C

2. Do the heuristics help the designer in making concurrency decisions?
1 2 3 4 @
NO SOME
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3. Are there concurrency situations not covered by the heuristics? Which?
2 3 4 5
NONE SOME MANY
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4, Is\there overlap among the heuristics? Which*
2 3 4 5
NONE SQOME MANY

5. Do the heuristics violate established principles of software engineering
oupling, cohesion, encapsulation, information hiding, etc.)? Which?
1 2 3 4 5
NONE SOME MANY
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1 Hazweistics for determining concurrency.

Following are five heuristics which designers may use in determining concurrency in object-
oriented designs. The-are based on the heuristics used in the DARTS[1), LVM/OOD[3]
ADARTS(2), and Entity-life Modeling[4] methods. PRPIENLIS

e U dwe pler

1.1 Problemispace/concurrency. \-\

An object which models concurrency in the problem( environment_should be
implemented as a task.

e
[~ Concurrency in the problcm@ can be determined by identifying behavior patterns,
or sequences of events, in which the objects participate. The objects themselves may repre-

g:m,plysical entities to which the system interfaces, or logical entities, such as an air traffic
“sqnrol system.

*

,-12 Time constraints.

An object whose behavior or operations are constrained by time requirements
should probably be a task.
These may be periodic constraints, such as an operation which must be performed at set

intervals, or responsive constraints, such as responding to an interrupt.
e’

1.3 CTomputational requirements.

An object whose behavior or operations require substantial computational re-
sources should probably be a task.

For example, in a sateilite communication system, the satellite object may have an oper-
ation called Calculate Satellite Coordinates. To do this in real time requires the integration
of a ninth-order polynomial. Depending on the resources available, this could be quite time
consuming and processor intensive. This operation should be a separate task.

- Tr,' rame rwa})/ g’/rr!/s z /D

Tevs

mz’re‘

1.4 Solution-space objects.Q/~ Lpar whats lisled i the povagrapr Lripes,

“An object introduced in the software solution to protect a shared data store, de-

couple two interacting tasks, or synchronize the behavior of two or more objects
. should be a task.
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