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Abstract

One of the characteristics of real-time systems is concurrency. Designers of real-

time systems have traditioi-, Ily determined system concurrency at implementation

time using the facilities of a cyclic executive. With the tdvent of programming

language constructs for specifying concurrency, determining cuncurrency at design

time has become a possibility.

Several design methods, all of which are extensions of either Structured Design

or Jackson System Development, provide heuristics to help the designer make con-

currency decisions. The object-oriented approach, however, has no corresponding

heuristics to aid designers of real.time sytem .

The purpose of this thesis was to develop heuristics to help designers make

concurrency decisions in developing object-oriented designs of real-time systems.

This was accomplished by examining existing heuristics from other design methods

and applying them to the object-oriented paradigm.

Four heuristics were developed, the first of which exploits the potential in

object-oriented design to model the problem-space. The other three heuristics deal

with concuirency which is not necessarily reflected in the problem-space, but must

be implemented for practical reasons.

The heuristics were validated by applying them to a sample problem, then

having the heuristics and the design of the sample problem evaluated by a group of

software engineering experts. (

x



DETERMINING CONCURRENCY IN OBJECT-ORIENTED

DESIGN

OF REAL-TIME EMBEDDED SYSTEMS

USING ADA

I. Introduction

The design of embedded, real-time systems is considered one of the most com-

plex software related activities[Levi and Agrawala 1987:3]. Journal articles and text-

books dealing with real-time software design have increased in number and frequency

as researchers attempt to reduce complexity and help designers in their task. This

thesis discusses the application of object-oriented design techniques to real-time sys-

tems.

1.1 Background

An embedded computer systems is one in which the computer is a critical part

of a larger system[Scannell, et al. 1986:3]. These systems are usually large, complex,

and subject to strict reliability and timing requirements[Booch 1987b:15].

A real-time software system is one which must respond ,.o events or conditions

in the external environment within a specified time period[IEEE 1983]. As this

aspect of embedded systems leads directly to a consideration of concurrency in the

system, this thesis focuses on real-time software design.

One of the primary characteristics of real-time systems is concurrency[Gomaa

1989b], which occurs when the execution of two or more processes is overlapped in

time, i.e., at least one process begins execution prior to the termination of some
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other process. These processes may be distributed on multiple processors or share a

single processor.

Traditionally, concurrency in real-time systems has been handled via a cyclic

executive, which is essentially a real-time extension to the operating system, provid-

ing facilities for creation, execution, and termination of concurrent processes[Sha and

Goodenough:1]. Under a cyclic executive, each process is allotted a certain amount

of execution time, at the end of which the process is suspended and another process

scheduled. Handling concurrency then becomes strictly an implementation issue,

since software modules that cannot execute within their time frame must then be

decomposed into smaller components, not on the basis of design considerations, but

on the basis of execution time.

The Ada programming language, introduced in the 1980's, provides language

constructs for specifying concurrent processes without forcing the programmer to

explicitly use a real-time executive. This enables the designer to make concurrency

decisions at design time based on sound design principles, rather than at implemen-

tation time based on timing considerations.

The designer of real-time systems, therefore, must identify which processes in

the software design are concurrent and which are not. Until recently, there has been

little guidance for identifying concurrency, but several researchers have developed

heuristics for determining when a process should be implemented as a concurrent

process[Gomaa 1984, Nielsen and Shumate 1988, Sanden 1989]. These heuristics are

presented in the context of Structured Design[Ward and Mellor 1985] or Jackson

System Development[Jackson 1983]. One method that does not have comparable

heuristics is object-oriented design[Kelly 1987:245].

Object-oriented design models the software as objects corresponding to cntitics

in the real world[Booch 1987b:47]. Associated with each object is a set of operations

which acts on the object. The software system is implemented by speciiying the

interaction of the objects via their operations.
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The object-oriented method followed in this thesis is that described by Booch[Booch

1991], which is an iterative process of identifying objects and operations, determining

the visibility and interfaces between objects, and then implementing the objects. As

new objects are encountered during the design, the process is repeated. This con-

tinues until all objects are implemented. Chapter three contains a fuller discussion

of object-oriented design and Booch's method.

1.2 Problem

At present, designers of object-oriented real-time systems have little guidance

in determining concurrency in their designs[Kelly 1987]. The objective of this thesis

is to develop heuristics for identifying concurrency in an object-oriented, real-time

design.

Specifically, the objectives are as follows:

9 Determine what heuristics exist for determining concurrency using other design

methods.

* Define heuristics for determining concurrency using object-oriented design.

* Validate the heuristics by applying them to a sample problem and then having

a panel of experts pass judgement on the validity of the heuristics.

1.3 Scope

This thesis concentrates on real-time systems implemented on single-processors.

Concurrency in distributed, multi-processor systems depends on factors external to

the design, such as the processor interconnection network, the communication mech-

anism, and the number of processors available. Assuming a single-processor environ-

ment allows the designer to focus on the design itself, independent of implementation

platform. Even in a distributed environment there may be several processes execut-

ing on the same processor, so the single-processor heuristics apply in any case.
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1.4 Assumptions

The design principles developed in this thesis are independent of implemen-

tation language. However, the language used to verify the principles is Ada. Ac-

cordingly, the benefits and constraints of the Ada tasking model have affected the

resulting design.

1.5 Approach

The research to achieve the goals of this thesis was accomplished in the follow-

ing stages:

1. Literature Survey. Over the past 25 years a vast amount of research concerning

software system design has been done. A survey of this research was conducted,

focusing on current developments in the design of real-time systems, and in de-

termining concurrency in these designs. Specifically, three design paradigms

were investigated: real-time extensions to Structured Analysis/Structured De-

sign (SA/SD)[Ward and Mellor 1985], Jackson System Development[Jackson

1983], and object-oriented design[Booch 1991]. The results of this survey are

in chapter two of this thesis.

2. Develop Design Heuristics. Based on the principles and heuristics examined in

the literature survey, a set of heuristics specifically addressing concurrency in

object-oriented real-time- systems were developed. The heuristics are described

in chapter threc.

3. Validation of Heuristics. The validation of the concurrency heuristics took

place in two stages. First, the heuristics were applied to a sample problem. An

air traffic control simulation (ATC) was selected because it exhibited sufficient

concurrency to demonstrate the heuristics, while being small enough to manage

in an academic environment. The discussion of the ATC design is in chapter
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four, and the object-oriented requirements analysis and the Ada specifications

for the architectural design can be found :in appendix A.

For the second stage of validation, the heuristics were distributed to

several experts in software engineering whose opinions on various aspects of

the heuristics were tabulated. Chapter five contains a detailed discussion of

this effort and appendix B contains the validation package.

1.6 Thesis Organization

The thesis is organized to follow the stages of research outlined in the Approach

section. Chapter two presents a review of current literature concerning concurrency

in the design of real-time software systems. Chapter three outlines a set of heuristics

which designers can apply to object-oriented design of real-time systems to determine

concurrency in the system. Chapter four contains the results of applying these

heuristics to a sample problem, an Air Traffic Control (ATC) simulation. Chapter

five records-the validation method and results for the heuristics. The thesis concludes

with a chapter in which conclusions are drawn and recommendations for further work

are given.
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II. Literature Survey

2.1 Introduction

Real-time systems normally exhibit a high degree of concurrency[Gomaa 1989b].

Consequently, a real-time design method should provide guidance for designers to

help identify and implement concurrency. This survey examines how current real-

time design methods assist designers in making concurrency decisions. Five exten-

sions to Yourdon's Structured Analysis are considered first: Structured Development

for Real-time Systems, Design Approach for Real-time Systems (DARTS), Layered

Virtual Machine/Object-Oriented Design (LVM/OOD), Ada-based Design Approach

for Real-time systems (ADARTS), and Process Abstraction Method for Embedded

Large Applications (PAMELA). Jackson System Development (JSD) is then exam-

ined, along with a related method, Entity-Life Modeling. The chapter concludes

with a brief discussion of Object-Oriented Design.

2.2 Structured Development for Real-time Systems

Structured Design[Yourdon and Constantine 1979], a method of classical de-

sign in which the system under consideration is-structured into transforms and data

flows, has been popular with business data processing systems for a number of years.

The design approach, though, addresses data manipulation mainly, and only periph-

erally touches on control and concurrency features characteristic of real-time and

embedded systems[Ward and Mellor 1985]. Ward and Mellor introduced "... control

considerations, through the use of state transition diagrams. A control transforma-

tion represents the execution of a state transition diagram" [Gomaa 1989b:9]. Thus, a

state transition diagram may be associated with each control transform to represent

the dynamic behavior of the system[Ward 1986:201].

The control and data transformations are graphically represented by a Data

Flow Diagram (DFD). After the DFD is developed, the transforms are allocated to
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processors and the transforms on each processor are allocated to concurrent tasks.

Structured Design is then iteratively applied to design the tasks[Gomaa 1989b:10].

Structured Design provides a method by which individual tasks can be designed, but

little help is given in structuring the system into concurrent tasks. Gomaa notes that

"... Structured Design is a program design method leading primarily to functional

modules and does not address the issues of structuring a system into concurrent

tasks"[Gomaa 1989b:11].

2.3 Design Approach for Real-time Systems (DARTS)

The DARTS method provides an approach for structuring a real-time sys-

tem into concurrent tasks[Gomaa 1984]. Using a DFD, which is developed using

Structured Design techniques, concurrency -is identified by considering the nature

of the transforms and grouping them according to the following task structuring

criteria[Gomaa 1984:940].

9 Dependency on Input/Output. A transform associated with an I/O device

should be a separate task.

* Time-critical Functions. A transform which executes under tight time con-

straints needs to run at a high priority and should be a separate task.

* Computational Requirements. A transform which requires extensive calcula-

tion needs to run at a low priority (perhaps in background) and should be a

separate task.

* Functional Cohesion. Two or more transforms that perform similar functions

can be grouped into a single task.

* Temporal Cohesion. Two or more transforms that perform functions during

the same time period can be grouped into a single task.

* Periodic Execution. Transforms that execute at regular intervals can be grouped

into a single task.
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Once the tasks are identified, the task interfaces are designed avd the tasks

are themselves designed, again using Structured Design techniques.

2.4 Layered Virtual Machine/Object-Oriented Design (LVM/OOD)

LVM/OOD is a data-flow based design method developed by Nielsen and Shu-

mate[Nielsen and Shumate 1988].

"The concept of LVM is used to create a top hyer as a set of communicat-
ing sequential processes. Each process is a virtual machine that executes
in parallel with the other processes (virtual machines). We combine
the concepts of LVM and OOD (LVM/OOD) to decompose each pro-
cess into a hierarchy of virtual machines (Ada subprograms) and objects
(Ada packages, types, and operations on objects of the type)" [Nielsen
and Shumate:33].

The method consists of ten steps[Nielsen and Shumate:211f]. The first three

steps are concerned with producing a Structured Design, i.e., the data flow diagram,

data dictionary, etc. In the fourth step, the step in which concurrency is determined,

process selection rules are applied to the DFD to combine transforms into ccncur-

rent processes[Nielsen and Shumate:212. The first six process selection rules are

identical to Gomaa's task structuring criteria[Comaa 1984:9401, listed above[Nielsen

and Shumate:90-91]. Two rules have been added:

* Storage Limitations. If processes are too large, they will need to be split into

smaller processes.

* Data Base Functions. Transforms needing access to shared data can be grouped

in a single process to provide for mutual exclusion [Nielsen and Shumate:90-91].
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2.5 Ada-based Design Approach for Real-time Systems (ADARTS)

In a recent article, Gomaa modified the original DARTS method to specifi-

cally address designing real-time systems using Ada, which he calls ADARTS[Gomaa

1989a].

In ADARTS, the task structuring criteria are expanded and reorganized as

follows:

1. Event Dependency Criteria. These criteria are concerned with how and when

a task is activated. Included in this category are the following:

(a) Asynchronous Device I/O Dependency. This is the same as the DARTS

Dependency on 1/0.

(b) Periodic Event. This is the same as the DARTS Periodic Execution,

(c) Periodic I/O. The task activation is periodic, but is related to some I/O

device.

(d) Contr - Function. This is a function which may be represented by a state

transition diagram.

(e) Entity Modeling. This is a task whidh models concurrency in the problem

environment.

(f) User Interface Dependency. Sequential operations performed by the user

can be grouped into a single task.

2. Task Cohesion Criteria. These criteria provide a basis for determining which

functions can be combined into tasks.

(a) Sequential Cohesion. Fucnctions that must be carried out sequentially

can be grouped into a single task.

(b) Temporal Cohesion. This is the same as the DARTS Temporal Cohesion.
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(c) Functional Cohesion. This is the same as the DARTS Functional Cohe-

sion.

3. Task Priority Criteria. The criteria are based on the priorities of the functions.

(a) Time Critical. This is the same as the DARTS Time Critical Functions.

(b) Computationally Intensive. This is the same as the DARTS Computa-

tional Requirements.

2.6 Process Abstraction Method for Embedded Large Applications (PAMELA)

PAMELA is an Ada-based design method developed by George Cherry[Cherry

1986]. Since most information on PAMELA is proprietary, the material in this

section is taken from two articles comparing PAMELA with other methods[Kelly

1987][Boyd 1987].

PAMELA is a process-oriented method, i.e., the dynamic properties of the

system under consideration are given priority over the static structure. These two

views of the system are represented by process modules and procedure modules,

respectively. Processes have "... one or more independent threads of control(run time

stack)... "[Boyd 1987:4-69] and conserve local state. Procedure modules ... have

no independent thread of control, and cannot conserve local state information" [Boyd

1987:4-69].

PAMELA is actually an extension of Structured Design. The top level of ab-

straction in a PAMELA design "... is essentially a data flow diagram of processes

"[Kelly 1987:241]. Boyd states, "In effect, PAMELA supports a functional (pro-

cedural) decomposition . . "[Boyd 1987:4-69].

The heuristic PAMELA provides for determining these independent threads of

control is to identify asynchronous processing in the system. According to Boyd[Boyd

1987:4-69],
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A guiding principle ;s to isolate (as much as possible) those interactions
.vhich reouire asynchronous hancding in the highest regions of a system
design; this leads to processes at the higher levels of the system. Sequen-
tial processing of information takes place at lower levels of the hierarchy,
effectively isolated within the decomposition of asynchronous processes.

2.7 Jackson Systen Developnent(JSD)

Jackson System Development (JSD) incorporates a design method in which the

real world is modeled"in terms of entities, actions they perform or suffer, and the

orderings of those actions." [Jackson 1983:23] Thus the focus is not on a step-by-step

progression of functions acting upon data.

A complete description of JSD can be found in [Jackson 1983). The following

discussion is drawn from [Cameron 1986] as it provides a concise overview of the

method and discusses the relevant concurrency issues.

A JSD specification consists of a network of sequential processes communi-

cating via message passing and access to the process's local, read-only data. This

specification is produced by completing three phases:

1. Modeling plhase[Cameron 1986:222]. This phase is concerned primarily with

identifying the events or actions occurring in that portion of the real world

which is to be modeled. Each action will be associated with one or more

entities or objects. These action-entity associations are then grouped and

ordered, producing a set of sequential processes. Each of these processes is

then referred to as a process model.

2. Network phase[Cameron 1986:228]. The network phase determines the inter-

connections of the process models. Processes can communicate by two means,

data streams and state vectors. A data strea it; badicdIy a first in, first-out

(FIFO) message queue. The state vector consists of a process's local data

which is available for inspection by other processes on a read-only basis.
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3. Implementation phase[Cameron 1986:233f]. In this phase each of the process

models is implemented. in some programming language. This is the step in

which concurrency decisions are made. Theoretically, every process model can

be implemented as a concurrent process. This may not be desirable, especially

in a single-processor system, as significant inefficiency may result. One way

to alleviate this is to convert the processes to subroutines and combine the

whole program into one process. Of course, these are the two extremes; the

designer decides which processes are actually implemented concurrently and

which are converted into subroutines. How the designer makes these decisions

is not addressed.

2.8 Entity-Life Modeling

Entity-life Modeling is a JSD-based method developed by Sanden[Sanden 1989].

While JSD identifies many concurrent processes when applied to real-time problems,

the goal of Entity-life Modeling (also called Object-life Modeling[Sanden 1989]) is to

implement in software only those concurrent processes which model- concurrency in

the problem environment. "The aim is to pattern the software structure on struc-

tures found in the problem ,vironment and minimizing the amount of extra material

introduced ior the administration of the software itself"[Sanden 1990:16].

The designer accomplishes this by identifying complex behavior patterns in

the problem environment. "When using the approach, the analyst/designer starts

by looking for complex, yet purely sequential, behavior patterns in the problem envi-

ronment. The objective is to capture as much- of the problem complexity as possible

in as few behavior patterns as possible, and, generally, the more complexity that can

be captured in a single sequential behavior pattern, the better"[Sanden 1989:1459].

This complcx behavior is dfined as "the timing aid uideii ig uf upei.tions on various

objects" [Sanden 1990:17].

Each of these behavior patterns is implemented as a concurrent task. Ideally,

2-7



this is the minimum necessary concurrency, but practical considerations may require

additional concurrency in the solution. For example, a task may be introduced to

provide for mutual exclusion in a shared data store[Sanden 1990:298].

2.9 Object-Oriented Design

According to Booch, "Object-oriented design is a method of design encom-

passing the process of object-oriented decomposition and a notation for depicting

both logical and physical as well as static and dynamic models of the system under

design"[Booch 1991:37]. In object-oriented decomposition, the problem environment

is viewed as a set of objects and the operations suffered by thoso objects. Design

consists of identifying the objects and operations and specifying the interaction of

the objects.

Concurrency in Object-Oriented Design is determined when the operations are

identified, as this is when the dynamic behavior of the object is specified[Booch

1987b:337]. An object which exhibits significant dynamic behavior is said to repre-

sent an independent thread of control, and is-called active[Booch 1991:66]. Thus, the

world can be viewed "... as consisting of a set of cc perative objects, some of which

are active and thus serve as centers of independent activity" [Booch 1991:66]. Chap-

ter three of this thesis expands further on Object-Oriented-Design and concurrency-

related issues.

2.10 Conclusion

The Object-Oriented Design paradigm provides general guidance for determin-

ing which objects are concurrent, i.e., identifying active objects. The designer does

not have specific criteria to aid in this determination, nor is the possibility of multiple

concurrent operations on tihe same object addressed.

On the other hand, a designer applying Structured Design has specific criteria

to apply to a DFD to determine concurrency, through DARTS, LVM/OOD, and
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ADARTS. Entity-life Modeling also provides heuristics for identifying concurrency.

Kelly claims that PAMELA's support of concurrency is very strong[Kelly 1987:245].

Chapter Three of this thesis provides heuristics which can be applied to an

object-oriented design to determine concurrency. The heuristics are based on the

work of Gomaa (DARTS, ADARTS), Nielsen and Shumate (LVM/OOD), and Sanden

(Entity-life Modeling).
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III. Heuristics for Determining Concurrency in Object-Oriented

Design

This chapter details the heuristics a designer may use to determine concurrency

in an object-oriented design. A discussion of object-oriented design is presented

first, followed by a description of Booch's Object-Oriented Design method. The

concurrency heuristics, which are based on the work surveyed in chapter two, are

then given.

3.1 Object-Oriented Design

Object-oriented design is a design approach in which the problem environment

is modeled as a collection of interacting objects and classes. The object interactions

are referred to as messages or operations[Booch 1991:80].

The object-oriented paradigm is based on the concepts of abstraction and in-

formation hiding[Booch 1991:381. Pressman states

The unique nature of object-oriented design lies in its ability to build
upon three important software design concepts: abstraction, information
hiding, and modularity. All design methods strive for software that ex-
hibits these fundamental characteristics, but only OOD provides a mech-
anism that enables the designer to achieve all three without complexity
or compromise[Pressman 1987:334].

Application of these concepts produces a hierarchical object structure, where

hierarchy is defined as "... a ranking or ordering of abstractions"[Booch 1991:54].
Booch defines two sets of hicrarchics, thc "kind of"/"part of" hieitarcli, and ,he

using/containing hierarchies[Booch 1991:54,88]. The "kind of"/"part of" hierarchies

deal with objects which are instantiations of a class of objects and objects which are
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component parts of another object. These concepts apply directly to object-oriented

programming languages and techniques, but are not crucial at design time.

Using/containing hierarchies, however, are important for object-oriented de-

sign. The using hierarchy demonstrates the relationships among objects which re-

quire services of other objects and objects which provide services to other objects.

Booch calls the former "actor" objects and the latter "server" objects; objects which

both require and provide services are called "agents" [Booch 1991:89].

The containing hierarchy demonstrates the relationships between objects which
"enclose" other objects and the objects "within" the enclosing objects. In other

words, some objects are completely hidden within another object.

Seidewitz calls the using and containing hierarchies the seniority and composi-

tion hierarchy, respectively. He states that the "... composition hierarchy deals with

the composition of larger objects from smaller component objects. The seniority

hierarchy deals with the organization of a set of objects into "layers". Each layer

defines a virtual machine that provides services to senior layers" [Seidewitz 1989:97].

Consider, for example, the air traffic control simulation whose design is pre-

sented in chapter four. An example of the composition hierarchy would be the

Console object and its related sub-objects, Display and Keyboard. Console con-

tains those two objects (Figure 3.1). The ATC object however, does not contain

the Console object, i.e., it is not composed of Console; ATC does, however, use the

services provided by the Console object (Figure 3.2). Note that although the ATC

and Console objects are at the same level of abstraction, the ATC is a higher level

virtual machine layer than Console, since ATC requires operations of Console, but

Console requires no operations of ATC.

When an object is just one of several instantiations of the same type of object,

the object type is referred to as a class of objects, which is ".... a set of objects that

share a common structure and a common behavior"fBooch 1991:93.
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CONSOLE

KEYBOARD

Figure 3.1. Composition Hierarchy for Console

In object-oriented programming languages, such- as Smalltalk and C++, the

class concept is related to the concept of inheritance. Inheritance is a relationship

among objects where one object or class shares the structure of one or more objects

or classes, i.e., an object or class "inherits" the structure or behavior of another

object or class. Ada does not directly support inheritance, so the class concept is

not as important as in other languages. Consequently, this thesis does not consider

inheritance in the design of systems.

The class concept is still useful in determining concurrency since a single con-

current object produces a different design and implementation from a concurrent

class, which may have multiple concurrent instantiations. Also, identifying classes

of objects is important from a reusability standpoint. If an object is a member of a

previously implemented class, then that object need not be reimplemented.

3.2 Booch 's Method

The object-oriented design method used in this thesis is Booch's Object-Oriented

Design as presented in [Booch 1991:187-196]. The steps of the method are:

* Identify the classes and objects at a given level of abstraction.
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ATO

LEVEL 0 /17

LEVEL 1

CO AND C SOLE

Figure 3.2. Seniority Hierarchy for ATC

* Identify the semantics of the classes and objects.

* Identify the relationships among the classes and objects.

* Implement the classes and objects.

The application of this method is not just a matter of mechanically performing

the steps in sequence. Booch notes: "this is an incremental -process: the identification

of new classes and objects usually causes us to refine and improve upon the semantics

of and relationships among existing classes and objects. It-is also an iterative process:

implementing classes and objects often leads us to the discovery or invention of new

classes and objects whose presence simplifies and generalizes our designs"[Booch

1991:190].

Normally, software design is preceded by an analysis step in which the problem

statement is analyzed and a requirements specification is produced[Fairley 1985:38].

Booch's method does not preclude this approach; object-oriented analysis is consid-

ered an "... ideal front end to object-oriented design"[Booch 1991:141]. However,

when applying object-oriented analysis, the distinction between analysis and de-
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sign is somewhat artificial and difficult to maintain[Sanden 1990:32]. Therefore, no

attempt is made in this thesis to separate the two.

The analysis/design in this thesis will be accomplished using an Object-Class

Specification, which is a combination of graphical and textual representation of and

object or class. It shows an object's or class's components, operations, static and dy-

namic relationships, and other information pertinent to design and implementation.

An example can be found in Figure 3.3.

3.2.1 Identify the classes and objects at a given level of abstraction. This step

consists of A... two activities: the discovery of the key abstractions in the problem

space (the significant classes and objects) and the invention of the important mech-

,r'sms that provide the behavior required of objects that work together to achieve

kne -function" [Booch 1991:191]. Generally, the -key abstractions are the-classes and

objects which correspond to the vocabulary of the-problem domain[Booch 1991:123].

The -mechanisms are structures through which the objects interact with one another

to provide the required behavior[Booch 1991:123].

3.2.2 Identify the semantics of these classes-and objects. This step-"... involves

one basic activity, that of establishing the meanings of the classes and objects iden-

tified from the previous step"[Booch 1991:192]. This entails determining what can

be done to an object, and what things-the object can do to other objects. According

to Booch, "One- useful technique to guide these activities involves writing a script

for each object, which defines its life cycle from creation to destruction, including its

characteristic behaviors" [Booch 1991:192].

3.2.3 Identify the relationships among these classes and objects. This step

cstablishcs thc interaction of things within the system. This is accomplished by

performing two-related activities: "First we must discover patterns: patterns among

classes, which causes us to reorganize-and simplify the system's class structure, and
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CLASS SPECIFICATION
Class Name: Command

Description: Provides the command abstraction for the ATO simulation.

Static Relationships Dynamic Relationships

hu.attnbutel

Command AKO

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: GetiD Slectors:

Is.Status

Is-.Termination

Is-COMMAND

Constructors: Create-.Command astructors:

Name Raised byExetosQ

Invalid-.Cmd Command
Initial:

!nvalid-Aircraft Command

Figure 3.3. Example Object-Class Specification
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patterns among cooperative collections of objects which lead us to generalize the

mechanisms already embodied in the design. ... Second, we must make visibility de-

cisions: how do classes see one another, how do objects see one another, and, equally

important, what classes and objects should not see one another"[Booch 1991:193].

3.2.4 Implement these classes and objects This step requires the designer to

make ".... design decisions concerning the representation of the classes and objects

we have invented, and allocating classes and objects to modules, and programs to

processors" [Booch 1991:195]. The result of this step is a complete system design.

However, new abstractions and mechanisms are frequently discovered during this

step. These abstractions usually belong to a lower level of abstraction, and they

are designed by repeating the object-oriented design process. When no lower level

abstractions or mechanisms remain to be designed, the design at higher levels can

be completed, at which time the design is complete[Booch 1991:195].

3.3 Heuristics for determining concurrency.

As noted in chapter two, Booch's Object-Oriented Design method is weak in

the area of determining concurrency. Kelly states that the designer is given "very

little guidance on concurrent design ..."[Kelly 1987:245]. The purpose of this thesis

is to provide this guidance.

Following are four heuristics which designers may use in determining con-

currency in object-oriented designs. They are based on the heuristics used in the

DARTS, LVM/OOD, ADARTS, and Entity-life Modeling methods. These methods

and their heuristics are summarized in chapter two.

3.3.1 Problem-space concurrency. An object which models concurrency

in the problem environment should be implemented as a task.

According to Fairley, "the software engineer creates models of physical sit-

uations in software" [Fairley 1985:3]. One of the strengths of the object-oriented
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paradigm is in allowing a designer to create these models of physical situations, i.e.,

to directly model the problem-space, thus minimizing the "intellectual distance"

between the model and the system being modeled[Fairley 1985:3]. Accordingly, if

concurrency exists in the problem-domain, it should be modeled in the design.

Concurrency in the problem-domain can be determined by identifying behavior

patterns, or sequences of events, in which the objects participate. These sequences of

events are related to the timing and ordering of the operations on the problem-space

objects. Sanden states, "while an object does not control the timing and ordering

of the operations it suffers, the timing and ordering of operations on various objects

can be described as behavior patterns in the reality" [Sanden 1990:17].

An object may exhibit a single pattern of behavior, multiple sequential pat-

terns, or none at all. Note these patterns of behavior specify the timing and ordering

of operations required of the object, i.e., the behavior pattern expresses-how an ob-

ject uses other objects. Thus, objects with no suffered operations (an actor object

in Booch's terminology[Booch 1987a:613]), or one that has suffered operations, but

requires operations of othe objects (an agent object in Booch's terminology[Booch

1987a:613]) are good candidates for problem-space concurrency. On the other hand,

an object with no required operations (a server object in Booch's terminology[Booch

1987a:615]) will likely not exhibit problem-space concurrency, although it may or may

not exhibit concurrency as determined by the remaining heuristics.

In general, no priority exists among the heuristics, i.e., which heuristic is used

to determine concurrency is not important as long as the necessary concurrency

is identified. In a sense, however, problem-space concurrency is the most impor-

tant of the heuristics, as it is really an extension of the object-oriented philosophy;

problem-space concurrency goes to the heart of the modeling process. By examin-

ing the behavior of the objects specifically to identify concurrency, the designer not

only determines problem-space concurrency, but gains a better understanding of the

design overall.
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An example of the application of this heuristic is in the air traffic control simu-

lation (ATC) described in chapter four. The object representing the.ATC simulation

exhibits multiple behavior patterns, i.e., more than one sequence of events. The ob-

ject needs to update the position of the aircraft in the control space at periodic

intervals, while concurrently polling the keyboard for asynchronously entered com-

mands. The keyboard task cannot be placed within the update control space without

forcing the keyboard task to be periodic. Thus the two sequential behavior patterns

require two tasks to maintain the asynchronous nature of the polling routine.

A special case of problem space concurrency is when an actual hardware device

is modeled as an object. In general, real-time systems interface to one or more

hardware devices; these devices will likely be modeled as objects, with the operations

corresponding to the input/output of the device.

Devices whose primary function is I/O, e.g., printers and keyboards, have

varying speeds and will generally have to be implemented as separate tasks to ac-

commodate the differences in speed. In particular, if the I/O device must iterface

with another task, the only way to decouple the two is to make them separate tasks.

Those devices which perform other functions, such as sensors or control devices,

may or may not be implemented as tasks, depending on how they interface with -the

rest of the system. If the device provides information to which the system must

respond, but provides the information asynchronously, then a task should monitor

the device rather than having the system poll the device.

To illustrate this point, consider a system that contains a temperature sensor.

When the temperature exceeds some limit, the system must take action to reduce

the temperature. If the system polls the sensor, system resources must be used to

monitor a condition which may have a low probability of occurring, plus the polling

interval may be too long for the system to provide adequate response. A better

solution might be to have a task interface with the sensor, c-ontinuously monitoring

the temperature. When the task detects an out-of-tolerance condition, it alerts the
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system. In this way, the system need not dedicate resources to a polling scheme, and

the time in which the system is alerted will not be tied to a polling interval.

3.3.2 Time constraints. An object whose behavior or operations are

constrained by time requirements should be a task.

One of the characteristics of real-time systems is the requirement for the system

to meet time constraints. These time constraints can be periodic, e.g., a certain

operation needs to be performed at periodic intervals, or responsive, as when the

system must respond to an event within a certain amount of time.

In an object-oriented design, an object's behavior may be constrained by time

requirements, or one or more of its operations may be so constrained. When the

designer encounters such objects or operations, the objects or operations should

probably be implemented as tasks.

An example of a periodic constraint could be a temperature monitor which

must sample a temperature sensor at regular intervals; this would most likely need

to be a separate task. An example of a response constraint is an interrupt handler

which must service an interrupt within a certain time. For example, in an elevator

control system, an interrupt may be generated when an elevator arrives at a floor,

and the system may have a short period in which to decide to-stop the-elevator at

the floor or let it continue.

3.3.3 Computational requirements. An object whose behavior or oper-

ations require substantial computational resources should be a task.

Computational requirements may dictate that some operations or objects be

implemented concurrently, probably as low priority, background tasks. Occasionally,

an operation requires siibstantial computational resources. For example, in a satellite

communication system, the satellite object may have an operation called Calculate

Satellite Coordinates. To do this in real time requires the integration of a ninth-

3-10



order polynomial. Depending on the resources available, this could be quite time

consuming and processor intensive. This operation should be a separate task.

3.3.4 Solution-space objects. An object introduced in the software so-

lution to protect a shared data store, decouple two interacting tasks, or

synchronize the behavior of two or more objects should be a task.

Some solution-space objects may need to be implemented concurrently. This

is a general heuristic which considers concurrency in software mechanibms belonging
to the solution space.

One such ii-c-ianism is a shared data store modeled by an object. The only

way to guarantee mutual exclusion in Ada is to use a task with a selective wait. In

this case, the concurrency is forced by the language conventions.

An,)tler mechanism is the use of intermediary tasks to control the coupling

between two other task... In a simple Ada rendezvous the tasks are tightly coupled;

neither task can continu. until the rendezvous is complete. Oftentimes, especially

when time constraints prevent a task-from waiting, another task can be introduced-to

allow the other two to proceed. In [Nielsen and Shumate 1989:16" L..], several types

of intermediaries are described, combinations of which allow the designer to achieve

a range of coupling, from very loose coupling to very tight coupling. As a caveat,

however, the looser the coupling, the greater the number of intermediaries needed;

this could generate significant taskiig uierhead, particularly in a single-processor

environment.

A third mechanism might be the synchronization of two objects or their oper-

ations. In this case, the synchronizing objects or operations need to be tasks, with

a simple rendezvous accomplishing the synchronization.
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3.4 Conclusion

The designer of object-oriented, real-time software systems has little more than

general guidance for determining which objects and operations to make concurrent.

This chapter provided four heuristics which designers can use to make concurrency

decisions.

The next chapter provides al example of an object-oriented, real-time system

design, an air traffic control simulation. The concurrency heuristics are applied to

the design to determine the concurrency in the system.
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IV. Application of Concurrency Heuristics

In this chapter, the heuristics for determining concurrency presented in the

previous chapter are demonstrated by applying them to a sample problem.

4.1 Design Problem Description

The concurrency heuristics will be applied to the design of an air traffic control

simulation, whose description appeared in Creative Computing, c.1980. For brevity,

the system will be referred to as ATC. Following is a condensed statement of the

problem:

Air Traffic Control is a simulation which allows the user to play the part
of an air traffic controller in charge of a 15x25 mile area from ground
level to 9000 feet. In the area are 10 entry/exit fixes, 2 airports , and 2
navaids. During the simulation, 26 aircraft will become active, and it is
the responsibility of the controller to safely direct these aircraft through
his airspace.

The controller communicates to the aircraft via the scope, issuing com-
mands and status requests, receiving replies and reports, and noting the
position of the aircraft on the map of the control space. The controller
issues commands to change heading or altitude, to hold at a navaid, or
clear for approach or landing. Each aircraft has a certain- amount of fuel
left, so the controller must see to it that the aircraft is dispositioned prior
to fuel exhaustion. Also, the minimum separation rules must be followed,
which state that no two aircraft may pass within- three miles of each other
at 1000 feet or less separation. The aircraft must enter and/or exit via
one of the ten fixes. If an aircraft attempts to exit through a non-exit
fix, a boundary error is generated. The controller may request a status
report on each aircraft, which will display all information on the aircraft,
including, fuel level, which is measured in minutes.

The aircraft can be one of two types, a jet or a prop. The jets travel at
4 miles per minute, while the props travel at 2 miles per minute. This
means the screen must updated every 15 seconds for a jet's course to be
followed accross the screen.
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The controller dispositions aircraft by giving commands which enable the
aircraft to take off, land, hold at a navaid, assume a landing approach,
turn, or change altitude. Take off is accomplished by ordering the aircraft
to assume a certain altitude; there is no 'take off' command as such. Each
of the airports has restrictions on heading for takeoff; these restrictions
must be observed. Turns and altitude changes are effectively instanta-
neous, i.e., they are accomplished at the next mile marker. To land,
the aircraft must be cleared for landing through the navigational beacon
(navaid) assigned to the airport. Since "'re are two airports, there are
two navaids. To land, the controller pl.. -- the aircraft on a heading for
a navaid and issues a clearance for approach command. Once the air-
craft reaches the beacon, it automatically assumes the correct heading
for the airport. The controller then issues a clearance to land command,
and when the aircraft reaches the airport it lands (disappears from the
screen). If the controller issues a hold command, the aircraft remains at
the navaid until released.

The player initially specifies the length of the simulation, which may be
between 16 and 99 minutes. The same number of aircraft will appear
for each run, so the shorter the simulation, the more challenging. In any
session, the last 15 minutes will be free of new aircraft. The simulation
terminates when all aircraft have been successfully dispositioned, the
timer runs out, the player requests termination, or one of three error
conditions occurs:

0 conflict error - separation rules were violated

* fuel exhaustion

• boundary error - the aircraft attempt to leave the control-space via
an unauthcrized point.

Figure 4.1 contains the screen layout for the ATC simulation. The * symbol

represents a navigational aid, the % and # are airports, and the numerals are enty-

exit fixes. The aircraft are represented by an upper case letter followed by a number.

The letter is the aircraft identifier and the number is the altitude of the aircraft in

thousands of feet; e.g., 'A4' indicates aircraft 'A' is at 4000 feet.

ATC commands consist of either three character directives or one character

status requests. To request a status on a particular aircraft, a single character

reprsenting the aircraft ID is entered. Table 4.1 contains a summary of the directive

commands.
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A L R
0 clear to land hold at navaid continue straight ahead
1 ascend/descend to 1000' turn left 45 turn right 45
2 ascend/descend to 2000' turn left 90 turn right 90
3 ascend/descend to 3000' turn left 135 turn right 135
4 ascend/descend to 4000' turn left 180 turn right 180
5 ascend/descend to 5000' clear for # approach clear for % approach

Table 4.1. ATC Commands

. . . ... ... . . . . . . ... 3. ... ....

. . . . . . . . . . . . . . . . . . . . . . . .

0 .... . ...... # . ........ .* ..... 9

... .. ..... 5 ...... ... 6 ........ 7

>60<

Figure 4.1. Airspace Display

4.2 Top Level of Abstraction

A cursory reading of the problem statement suggests several key abstractions:

aircraft, airspace, display, commands, messages, etc. The initial focus of the design

is determining which of these key abstractions belong at the top level of abstraction.

This is admittedly a matter of designer judgement, but, in general, the top level

should contain a minimal sct of objects and classes, while bill enpassing the

entire system.

In some cases, the top level of abstraction may consist of a single object, such as
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ATC

CO AND SOLE

Figure 4.2. Initial Top Level Object Diagram

in Booch's example of a home heating system[Booch 1991:222-280]. In this instance,

the top level of abstraction is the object theHomeHeatingSystem. It could be argued

that the ATC system is similar, so the top level would contain only an ATC object.

However, this is not a very useful structure, since it doesn't really say much about

the ATC system or provide much guidance on what the next step may be. So for

this design, the top level will contain more than one object.

4.2.1 Identify the classes and objects. As Figure 4.2 illustrates, the top level

of abstraction consists of an ATC object, a console object, and a command class.

This particular breakdown was chosen because the problem statement indicated two

major activities of the system: periodic updating of the display screen to represent

aircraft movement in the airspace, and responding to commands entered by the

controller.

Figure 4.2 captures the essence of this activity: the ATC object does some-

thing with commands and does something with the operator's console. The lines

connecting objects are at this time undirected; the arrows will be added when the
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relationships are established.

Notice that since there is a single instance of both the ATC abstraction and

the console abstraction, they are specified as objects. There could, and most likely

will, be many instances of the command abstraction, so it is specified as a class.

This distinction is not reflected in the figures.

4.2.2 Identify the semantics of the classes and objects. This step involves

specifying the behavior of the objects and classes at the current level of abstraction.

4.2.2.1 The command class. The command class is rather straightfor-

ward. It exports objects of type Command (whose representation is as yet unspecified)

and two kinds of operations. The Create-Command operation accepts a character

string and returns the command corresponding to the string. The other kind of

operation, a set of selectors, accepts commands as input and then returns true if the

command corresponds to that selector, and false otherwise. For example, if a turn

command is passed to Is-Turn, then true will be returned, but if change altitude

is passed to the same operation, false will be returned. Thus, the command class

exhibits no dynamic behavior and can be implemented as a set of rather simple func-

tions. The object-class specification for the Command class is shown in Figure 4.3.

4.2.2.2 The console object. Since the console is an object and not a

class of objects, it does not export a type; it does, however, export operations on

the console object.

As with the command class, the console object does not exhibit significant

dynamic behavior over time. This does not mean, however, that there is no concur-

rency withing the console object. At this level, the console displays messages and

retrieves input from the user. Lower levels of abstraction may reveal concurrency

which is not visible from the higher levels.
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CLASS SPECIFICATION
Class Name: Command

Description: P.rovides the command abstraction for the ATC simulation.

Static Relationships Dynamic Relationships

huarbute

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: GetJD lectols:

Is.Status

Is-Termination

Is.COMMAND

Constructors: Create.Command Constructors:

Name Raised by Exceptions QA

lnvalid.Cmd Command
Initial:

Invalid.Aircraft Command

Figure 4.3. Command Class Object-Class Specification
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The following types of input/output from the console can be identified from

the problem statement:

" Output the time remaining

* Output a map

" Output a preview message

• Output the string "Roger"

" Output the input string

" Input a string

Whether these operations can be combined into a smaller set or not cannot

be determined at this time. The object-class specification for the console object is

contained in Figure 4.4.

4.2.2.3 The ATC object. As with the console object, the ATC object

exports no type, but neither does ATC export any operations. Since it is the very top

level of the system, no object can call it, unless the user entering a "run" command

via the operating system is considered an operation[Seidewitz 1989:991.

Since the ATC exports neither type nor operation, it must require operations

from other objects (else it would not be much of an object). Thus to determine

the behavior of the object entails identifying the time ordering and frequency of the

required operations, and the threads of control. Even at this high level, the concur-

rency heuristics outlined in chapter three can be applied; however, any concurrency

discovered here should be considered "candidate" concurrency, as further refinement

could feasibly push the concurrency further down the hierarchy.

To elaborate the behavior of ATC, the life of the object will be modeled,

as recommended by Booch[Booch 1991:192]. Since the user selects how long the

simulation is to run, this information will have to be retrieved. In addition, the map

will have to be initially drawn. These two items make up the initialization of the

4-7



CLASS SPECIFICATION
Class Name: Console

Description: This object provides the I/O abstraction for the ATC simulation.

Static Relationships Dynamic Relationships

[ Console

Suffered Operations Required Operations
Descriptive Name Name Applied to

Constructors: Disp.Prev.Msg Constructors: Disp.Ptev.Msg Display

Disp.Map-Item Disp..MapItem Display

Disp.Time Dinp.Time Display

DispJnput Disp.input Display

Disp.Roger Disp.Roger Display

'GetInput Getlnput Keyboard

Exceptions QA
Name Raised by

Initial: "

JFigure 4.4. Console Object-Class Specification

system; once the initialization is complete, at least two independent threads of control

are suggested by the problem statement. One thread handles the input of commands

from the user and the execution of these commands; this is an asynchronous thread

since the user can enter commands at any time. Another thread is a periodic update

of the aircraft position in the air'space and the subsequent display of the updated

map on the console. When either of these threads terminates, the simulation ends.

No special clean-up operations are required other than displaying an appropriate

termination message. The script of the ATC object is shown in Figure 2.5.

Applying the concurrency heuristics to these threads of control yields two tasks.

The periodic update of the display fits the time constraint heuristic and thus should
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Get Simulation Length
Draw Initial Map

loop loop

Get bser Input Delay 15 Seconds

If Termination Request Then Get Airspace Updates

Terminate Simulation Display Airspace Updates

End If end loop

Create Command

Process Command

end loop

Clean Up

Figure 4.5. Script for the ATC Object

be a separate task. The processing of commands is an asynchronous behavior pat-

tern, indicating it should be contained in a concurrent task. The command process-

ing function cannot be embedded within the periodic update task without forcing

the command processing task to be periodic as well. Therefore, the command pro-

cessing function should be a separate task under the problem-space heuristic. The

object-class specification for the ATC object is in Figure 2.6

4.2.3 Identify the relationships among the classes and objects. This step iden-

tifies patterns of object interaction and visibility between objects and classes. The

behavior specification from the previous step is used to determine the relationships.

Examining the command class and the console object reveals no interaction, at least

a 'this level of abstraction, with each other or with the ATC object. Tius, these

two objects need see no other objects.

The ATC object, on the other hand, needs to have both command and console
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CLASS SPECIFICATION
Class Name: ATC

Description: This is the main object of the simulation. It controls the interaction of the other objects.

Static Relationships Dynamic Relationships

ATo

=1.Vn Airspace

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Selectors: GetJD Command

Is.Status Command

Is.Termination Command

Is.COMMAND Command

Constructors: Constructors: Disp.Pre..Mge Console

Disp-MapJtem Console

DispTrime Console

Disp.lnput Console

Disp.Roger Console

Get-Input Console

Create.Cmd Command

Name Raised by Exceptions

Time.Expired ATC

Invalid.Cmd Command

Invalid.Acft Command
nitial:

Fuel.Exhaus.d Airspace

Conflict.Error Airspace

Bdary.Error Airspace

Figure 4.6. ATC Object-Class Specification
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ATC

/7

CO AND CO SOLE

IRCRAFT

C 'SETRIBUTES

Figure 4.7. Final Top-level Object Diagram

visible. This is apparent from the script of the ATC behavior in Figure 4.5. Both

console operations (get input string) and command operations (convert string to

a command) are used. Other operationc on objects not yet elaborated are also

referenced, but they belong to lower levels o abstraction. The final top-level object

diagram, with visibility indicated by directed line-, is in Figure 4.7. The update

airspace task is indicated by the parallelogram within the ATC object.

4.2.4 Implement the classes and objects. It is at this time that representation

decisions are made and the operations on each object are implemented. However, the
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implementation cannot be completed until all lower level abstractions are likewise

implemented. This is a result of the iterative nature of object-oriented design: the

same process is applied many times at different abstraction levels.

In implementing the ATC, console, and command objects, unspecified abstrac-

tions are encountered, necessitating suspension of the implementation while these

new abstractions are designed. Once implemented, the suspended implemenations

may resume.

Subsequent sections in this chapter detail this refinement for the ATC and

console objects, but an example, which allows the command class to be completed,

is given here for clarity.

The problem statement and ATC script both refer to input from the user

which commands the aircraft or request status. As yet, there is not an input string

object, and this needs to be specified before the command class can be completed.

The input str:ng class is deemed to be a component object of the console object, so

this class appears beneath the console in the composition hierarchy. However, the

command class and the ATC object need visibility into the input string object. Thus

in the object diagram, shown in Figure 4.7, directed lines are drawn from ATC and

command to input string. The command class may now be completed.

4.3 Refinement of the console object.

In the remainder of this chapter the discussion will be more informal than

previous sections. The focus will be on concurrency in the ATC; the steps in the

Object-Oriented Design method will be followed, but the design will not be docu-

mented to the level of detail of the previous section.

As stated previously, the console object has five output operations and one

input operation. These operations could be implemented at this time, given a suit-

able display interface package, excepting that the problem statement places some
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restrictions cn the format of the display. In effect, the display is divided into five

distinct areas:

* Time area

e Preview area

* Map area

e Input area

* Response area

These areas can be treated as component objects of the console. They will

consist of a location on the console and two operations: display message and clear

area.

Since the output has been divided into five separate objects, the input opera-

tion will become an object to maintain separation of concerns. In light of this, it is

appropriate to form two ,.omponent objects of console: display and keyboard. The

display areas mentioned earlier have now become component objects of the display

object. This arrangement is shown in Figure 4.8.

At this level the concurrency Leuristics can be applied to determine the key-

board object to be concurrent. It is a hardware device being modeled in software,

and so should be implemented concurrently.

The implementation of the display areas must now be considered and a problem

immediately poses itself. Should each area object write directly to the display or

should each call a screen object which alone accesses the physical device? In the

interests of encapsulation, the screen object option is chosen, although the resulting

object diagram looks rather odd with the display being split into five component

objects and then all five running back into one screen object.

The next concern is with concurrency. Since the screen is a hardware device

being modeled in software, the screen object is concurrent.
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DISPLA KEYBOARD

Figure 4.8. Console Object Refinement
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The final console object diagram appears in Figure 4.9.

4.4 Refinement of the ATC object.

The top level design has considered mainly the user interface, i.e., handling

of input, display of output, and processing of commands. The Command class has

been designed and the Console has been refined; this leaves the ATC object which

is the heart of the simulation.

Examining the script from the ATC object in Figure 4.5 reveals references to

the Airspace object. Thus, initially, the ATC object includes the Airspace object,

as shown in Figure 4.10. The airspace is basically a 3-dimensional area through

which aircraft fly and containing certain landmarks (navigational beacons, airports,

entry/exit fixes). The operations on the Airspace object include setting and getting

the position of landmarks, getting the position of a particular aircraft, and iterating

through all the aircraft in the airspace to get their positions. It is possible to cast

this last operation, iterating through all aircraft, as a task; however, by the first

heuristic, the Airspace object has no discernible behavior pattern in the problem-

space. It is rather a passive entity through which aircraft fly. So the decision at this

point is to not make the Airspace or any of its operations concurrent.

One practical matter that arises is the communication between the ATC object

and the Airspace object. The script of the ATC object indicates ATC "retrieves

airspace updates" and then displays them. This implies the need for a 'solution-

space' object, a list of aircraft updates which the Airspace returns to the ATC

object. As this object is written only by Airspace and read only by ATC, it need not

be a protected data store, and consequently should not be implemented as a task.

This object, the Update.Record.List is shown in Figure 4.11.

The next step in refining the ATC object is to examine the component objects

of the Airspace. The landmark objects are static, i.e., they are initialized at the
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Figure 4.9. Final Console Object Refinement
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ATC

AISPACE

Figure 4.10. Initial ATC Object Refinement

ATC

Al RSPACE

L PDA D

Figure 4.11. ATC with UpdateRecord.List
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start of the simulation and never change location, so these objects are considered

non-concurrent (Figure 4.12).

This leaves the Aircraft class. This class has a definable behavior pattern which

changes over time. An aircraft is created, takes off or enters the airspace through

a fix, makes changes to its altitude or course, and either lands or exits through a

fix. " ,s the Aircraft class, according to the first heuristic, exhibits problem-space

concurrency and should be concurrent in the design.

An objection that may be raised at this point is that with twenty-six aircraft,

this leads to massive concurrency which may not be feasible on a single processur

system. This is a valid objection, but is really an implementation issue. The imple-

menter may decide to limit the number of tasks in any way he or she chooses; the

main concern for the designer is in modeling the problem-space andi hence identifying

concurrency.

The Aircraft class has a number of component classes and objects, but these

are considered attributes of the aircraft and are thus not concurrent (Figure 4.13).

4.5 Summar'y

This chapter has applied the concurrency heuristics to an Air Traffic Control

Simulation. Five concurrent tasks were identified: two in the ATC object, a keyboard

task, a display task, and the Aircraft task.
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Figure 4.12. Final ATC Object Refinement
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Figure 4.13. Aircraft and Attributes
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V. Validation of Concurrency Heuristics

This chapter presents a plan for determining the validity of the concurrency

heuristics developed in the first four chapters. A brief discussion of validation meth-

ods is given first, followed by a detailed description of the method used to validate

the concurrency heuristics given in this thesis, concluding with the results of the

validation.

5.1 Validation Methods

Research results may be validated by three methods: analytical, empirical,

and expert opinion. Analytical validation seeks to establish the research results by

proving the results follow from established principles or concepts, much the same as

a mathematician proves a theorem using axioms, postulates, and previously proven

theroems. While this method is the most rigorous of the three, it is also the most

difficult to apply in the software engineering arena. The reason for this is that

there are few, if any, widely accepted principles from which to prove further results.

Those principles that do seem to be established, such as high cohesion, low coupling,

information hiding, etc., have not themselves been proven analytically or empirically,

but are rather accepted, or so it seems, based on expert opinion (the third method).

Empirical validation is based either on observation of naturally occurring phe-

nomena, or on a controlled experiment designed to demonstrate the truth or false-

hhod of a concept. Again, software engineering principles do not easily yield to

empirical validation, mainly because the phenomena to be observed are usually in-

tangible. For example, the superiority of a data compression algorithm may be

demonstratcd by implcmenting it and comparing itb pcifuin.,tw1e dgainsi, other data

compression algorithms. However, a theory of software modularization cannot be

demonstrated simply by applying the theory in implementing a system, as the pro-

cess of applying the theory is subjective-each designer will apply it a little differently
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in all but the most trivial cases. Consequently, implementing the ATC simulation

described in chapter four using the concurrency heuristics says nothing about the

validity of the heuristics.

The final validation method is expert opinion, in which experts in the field

evaluate the research results and provide their considered opinion on the validity

of the results. This is admittedly a subjective process, but it does provide some

condidence in the research and is certainly better than no validation at all.

5.2 Validation Approach for Concurrency Heuristics

The validation method chosen for this thesis is expert opinion. The concur-

rency heuristics, a summary of the design of the ATC simulation, and a questionaire

were distributed to fourteen experts. The experts were chosen based on their expe-

rience with object-oriented design. Of the fourteen, 11 responded. The validation

packagc and the experts' responses appear in Appendix B.

5.3 Validation Results

For convenience the concurrency heuristics questionaire is shown in Figure 5.1,

with the results summarized in Table 5.1. Each question in the questionaire will be

discussed in turn.

Question Mean Std Dev Ideal
1 4.1 .7 5.0
2 4.4 .8 5.0
3 1.5 .5 1.0
4 2.1 .8 1.0
5 1.2 .4 1.0

Table 5.1. Questionaire Results

Question one was necessary to ensure the experts understood what was being

presented. Most of the experts felt the heuristics were understandable (average 4.1

out a possible 5.0), although some commented that heuristic one was rather vague.
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1. Are the heuristics.understandable?

1 2 3 4 5
NO FAIRLY YES

2. Do the heuristics help the designer in making concurrency decisions?
1 2 3 4 5

NO SOME YES

3. Are there concurrency situations not covered by the heuristics? Which?

1 2 3 4 5
NONE SOME MANY

4. Is there overlap among the heuristics? Which?

1 2 3 4 5
NONE SOME MANY

5. Do the heuristics violate established principles of software engineering
(coupling, cohesion, encapsulation, information hiding, etc.)? Which?

1 2 3 4 5

NONE SOME MANY

Figure 5.1. Expert Opinion Questionaire
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The first heuristic deals with building a model of real-world objects, which is a rather

vague concept in itself, at least in application. The other heuristics seem to be more

concrete, corresponding to concepts that are, for the most part, more familiar to

designers.

Question two was probably the most important, at least to the author. The

purpose of the thesis was to provide guidance to designers; this question gives an

indication whether or not this purpose was realized. The average response of 4.4 out

of 5.0 indicates the experts felt the heuristics were helpful to designers. However,

several comments provided insight into the usefulness of the heuristics.

One comment concerned the amount of detail in the explanation of the heuris-

tics, i.e., more detail was needed to make the heuristic really useful. The validation

package contained only a skeleton explanation of the heuristics (see Appendix B);

more detail is contained in chapter three.

Another person noted that use of the wrong heuristic could lead to massive

concurrency in the solution; for example, in the ATC problem, twenty- six tasks

would be produced by applying heuristic one to the Aircraft object, whereas one

aircraft manager task could be derived from heuristic three or four. In a single-

processor system the massive concurrency could lead to excessive tasking overhead,

in which case the second option, that of a single task managing the concurrency

in all the aircraft, might be preferable. However, this is done at the sacrifice of

the integrity of the model, since adhering to heuristic one more closely models the

problem space than do the other heuristics. These sorts of tradeoffs are normal in

software design; the heuristics allow the designer to identify the concurrency, and,

consequently, the areas where these tradeoffs exist.

Questions three was a completeness question. To be usefule, a set of heuristics

must be complete, i.e., it must identify all possible concurrency situations. While

none of the experts were willing to subscribe to such a strong statement, none came

up with any situations not covered by the heuristics.
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Question four addressed the issue of redundency in the heuristics, whether

more than one heuristic could apply to the same situation. All agreed there is some

overlap among the heuristics, but not a g cat deal (average response of 2.1 with an

ideal of 1.0). Som2 commented that redundency is not a real problem; the important

matter is that the concurrency be identified. This is probably true in general, but

returning to the discussion on question three, there may be situations where the

overlap is actually desirable. In determining concurrency in the Aircraft object, two

heuristics were applied and resulted in different designs, the choice of which had

significant impact on the conceptual integrity of the design as well as potentially

affecting the performance of the implementation. In this case the overlap among the

heuristic gave the designer more flexibility to make design tradeoffs.

Question five is important from an overall software engineering standpoint,

since any heuristics which violate accepted practice will likely not be accepted. On

this question the experts averaged a 1.2 with 1.0 being the ideal.

5.4 Conclusion

The results of the questionaire were very encouraging. The prevailing opinion

among the experts was that the heuristics are helpful to designers, understandable,

and complete. From this we may conclude that the heuristics appear to be sound.
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VI. Conclusions and Recommendations

6.1 Summary

The purpose of this thesis was to develop heuristics for determining concur-

rency in object-oriented designs of real-time systems. This was accomplished by

first investigating heuristics available to real-time designers using other paradigms

(Structured Analysis, Jackson System Development) and then examining the object-

oriented approach to see where these existing heuristics may apply. The survey of

existing heuristics is contained in chapter two, and the heuristics for object-oriented

design are in chapter three.

In real-time design using Structured Design techniques, the heuristics for deter-

mining concurrency are based on the functional decomposition of the system[Gomaa

1984). Consequently, the heuristics consider such things as functional cohesion, tem-

poral cohesion, process abstraction, etc., which are not compatible with object-

oriented design. However, some of the heuristics, in particular the ones dealing

with periodic execution and response to events within time constraints, do apply to

object-oriented design.

Jackson System Development (JSD) takes a modeling perspective in designing

software systems, which is similar to the object-oriented approach[Cameron 1986].

JSD does not specifically address determining concurrency in real-time systems, but

a derivative method, Entity-Life Modeling[Sanden 1989], does provide principles for

determining concurrency. In Entity-Life Modeling the system is characterized as a

set of sequential behavior patterns in which the entities or objects comprising the

system participate. Each separate behavior pattern is then considered a concurrent

task in the design.

Object-oriented design models the system under consideration as a set of ob-

jects and the operations on those objects. The system is implemented by specifying
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the interaction of the objects, i.e., the timing and ordering of the operations. The

method, as presented by Booh[Booch 1991], does not provide heuristics for deter-

mining concurrency. Booch's method is summarized in chapter three.

The heuristics of Gomaa[Gomaa 1984] and the Entity-Life Modeling princi-

ple[Sanden 1989] were applied to the object-oriented approach to produce a set of

heuristics to guide designers in determining concurrency in the design of real-time

systems. The four heuristics are:

1. Problem-space concurrency. An object which models concurrency in the

problem environment should be implemented as a task. Concurrency in the

problem-domain can be determined by identifying behavior patterns, or se-

quences of events, in which the objects participate. These sequences of events

are related to the timing and ordering of the operations on the problem-space

objects.

This concept is closely related to the Entity-Life Modeling principle, the dis-

tinction being that object-oriented design focuses on individual objects and

their operations, whereas Entity-Life Modeling concentrates on identifying be-

havior patterns in which any number of objects may participate. Thus, Entity-

Life Modeling partitions the concurrency based on the behavior patterns, which

may include any number of objects. The object-oriented approach partitions

the concurrency according to the objects which contain the behavior patterns.

2. Time constraints. An object whose behavior or operations are constrained

by time requirements should be a task. This heuristic combines the timing

related heuristics of Gomaa[Gomaa 1984] and Nielsen and Shumate[Nielsen

and Shumate 1989]. Thus an operation that is invoked at regular intervals is

considered a separate task (in structured design these are periodic functions).

Also, an operation which must respond to an event within a certain time period

is a task, for example, an operation invoked in response to an interrupt.
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3. Computational requirements. An object whose behavior or operations

require substantial computational resources should be a task. These tasks

would most likely run in background at a low priority.

4. Solution-space objects. An object introduced in the software solution to

protect a shared data store, decouple two interacting tasks, or synchronize the

behavior of two or more objects should be a task. Booch calls these 'mecha-

nisms', i.e., objects with no counterpart in the problem-space, but which are

necessary to implement the system on a real machine. A n example would be

a shared data store implemented in Ada; a task must be used to guarantee

mutual exclusion.

6.2 Conclusions

The concurrency heuristics are powerful tools for determining concurrency in

object-oriented design of real-time systems. The set of heuristics is small enough to

be easily remembered, yet general enough to determine concurrency in most cases.

The heuristics are easy to understand and apply, and, in some cases, they allow the

designer to determine concurrency from different perspectives, allowing the designer

a range of choices in the implementation.

While the heuristics are referred to as 'design' heuristics, they actually can be

useful during a broader portion of the development life-cycle than just the design

phase. In object-oriented design, the analysis, design, and implementation stages are

not rigidly delineated; rather, they are actually a continuum in which the software

model progresses from a more abstract representation (analysis) to a more concrete

representation (implementation). The heuristics may be applied at any point on

the continuum. For example, in the ATC problem, concurrency was determined

in the ATC object very early in the analysis; in fact it can be determined from

the requirements definition. The concuirency in the console object, however, was

determined after the object had been almost completely designed. The problem-
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space heuristic, by its very nature, does not determine concurrency until late in the

process, perhaps not until detailed design.

Using object-oriented design, a designer seeks to build a model of the problem-

space, i.e., the structure of the solution should reflect the structure of the problem.

This is a central concept in the object-oriented approach; consequently, the first

heuristic is the most important from a pure modeling perspective and should be the

first consideration in determining concurrency in a particular system. The remaining

heuristics are important from a practical standpoint, since considerations unrelated

to producing a model of the problem-space may force the designer to implement

concurrency; for example, a periodic task, or a computationally intensive task, or

a shared data store may not have corresponding objects in the problem-space, yet

they require concurrency implementation nonetheless. To ensure the primacy of the

model, however, the first heuristic should be considered first.

6.3 Recommendations

In this thesis the concurrency heuristics were applied to the ATC simulation,

for which concurrency was rather easily determined. The ATC problem was a self-

contained system which had a rather simple user interface and no external objects

other than the keyboard and display. Also the ATC was not a 'hard' real-time system,

i.e., missing a timing constraint (display update) did not constitute a system failure.

Another characteristic of the ATC problem as implemented in this thesis was that

a single-processor system was assumed.

One possible area for further exploration is to see if the heuristics apply as

well to other kinds of real-time systems. Do they work as well for more complex

problems, ones with hard real-time requirements, or that require external files to be

maintained in real-time? Systems which require a large number of interrupt handling

routines would also be a good candidate.

Another area for further research is in applying the heuristics to distributed
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real-time systems. One of the assumptions of this thesis was that, even in a dis-

tributed system, there may be more than one process executing on a processor, so

the heuristics apply at the processor or node level; the network or system level was

not considered. At the network level, issues external to the system being designed

must be .:cnsidered, such as the processor interconnection network, the interproces-

sor message passing mechanism, and load balancing among the processors. It should

be determined how the concurrency heuristics may be applied to these issues, or

what heuristics must be added to the set to cover distributed systems.
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Appendix A. Air Traffic Control Simulation Object-Class

Specifications and Ada Specifications

This appendix contains the object-class specifications for the Air Traffic Con-

trol simulation intrcduced in chapter four, followed by the Ada package specifications

for the major system objects.

A.1 Object-Class Specifications
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CLASS SPECIFICATION
Clam Namne: ATC

Description: This is the main object of the simulation. It controls the interaction of the other objects.

Static Relationships Dynamic Relationships

ATC

=1 Airspace

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Selectors: GetID Command

IS.Status Command

Is.Termination Command

Is.COMMAND Command

Constructors: structors: Disp.Pre.Mge Console

Disp.Mapltem Console

Disp.Time Console

Displnput Console

Disp.Roger Console

Get-Input Console

Create.Cmd Command

Name Raised by Exceptions QA

Time.Expired ATC

Invalid.Cmd Command

[nvalid.Acft Command Initial:

Fuel.Exhausted Airspace

Conflict.Error Airspace

Bdaty.Error Airspace

Figure A.1. ATC Object-Class Specification
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CLASS SPECIFICATION
Class Name: Airspace

Description: Represents the airspace abstraction.

Static Relationships Dynamic Relationships

S Airspace

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Is-Done Selectors: GetiD Command

Get.LandmatkLocation Is.Status Command

Is.Termination Command

Is.COMMAND Command

Get.Location Landmark

GetiD Aircraft

Get.Souice Aircraft

Get.Destination Aircraft

GetETA Aircraft

Get.Class Aircraft

Get..Heading Aircraft

Get-Fuel Aircraft

Get.Poeition Aircraft

Get.Altitude Aircraft

Constructors: Constructors: Set.Location Landmark

Set.Landmark Landmark

SetJD Aircraft

Figure A.2. Airspace Object-Class Specification
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CLASS SPECIFICATION
Clam Name: Airspace (Continued)

Description: Represents the airspace abstraction.

Suffered Operations Required Operations
Descriptive Name N ame Applied to

Constructors: Constructors: Set-FlightPlan Aircraft

Set.Class Aircraft

Set.leading Aircraft

Set.Altitude Aircraft

Set.Fuel Aircraft

Set.Position Aircraft

Take-Off Aircraft

Hold.at.Navaid Aircraft

Clr.for.Apprch Aircraft

Clr.for.Ldg Aircraft

Continue.Straight Aircraft

Update.Position Aircraft

Iterators: Update..Airspace terators:

Name Raised by Exceptions

Fuel.Exhausted Aircraft

Conflict-Error Airspace Initial:

Bdary.Error Airspace

Figurz A.3. Airspace Object-Class Specification(continued)
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CLASS SPECIFICATION
Class Name: Landmark

Description: This class represents a landmark and its position within the airspace. A landmark can be one of three
types: a navaid, an airport, or an entry/exit fix. Each of these has two or more possible values: 2 navaids, 2 airports,
10 entry/exit fixes.

Static Relationships Dynamic Relationships

hu-attribute

ue'can'. 4

Landmark AIO

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Get.Location Selectors:

Constructors: Set-Location Coatr'jctors:

Set-Landmark

Name Raised by Exceptions A

Initial:

Figure A.4. Landmark Object-Class Specification
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CLASS SPECIFICATION
Class Name: Fix

Description: This class represents an entry/exit fix which is a kind of landmark.

Static Relationships Dynamic Relationships

wue.cinie3

Fix AKO L

Suffered Operations Required Operations
Descriptive Name --- ame Applied to

Selectors: Get-Location Selectors:

Constructors: Set-Location Constructors:

Set-Landmark

Name Raised by Exceptions QA

Initial:

Figure A.5. Fix Object-Class Specification
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CLASS SPECIFICATION
Class Name: Navaid

Description: This class represents a navigational beacon which is a kind of landmark.

Static Relationships Dynamic Relationships

wut.canbei

Navaid AKO Lanmr

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Get-.Location Slectors:

Constructors: Set..Location Cnstructors:

Set-Landmark

Name Raised by Ecptin QA

~Initial:

Figure A.6. Navaid Object-Class Specification

A-7



CLASS SPECIFICATION
Class Name: Airport

Description: This class represents an airport which is a kind of landmark.

Static Relationships Dynamic Relationships

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Get..Location Selectors:

Constructors: Set-.Location Cnstructors:

Set-Landmazk

Name Raised by Exceptions Qiiia.A

Figure A.7. Airport Object-Class Specification
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CLASS SPECIFICATION
Class Name: Airspace.Location

Description: Represents the location of an object in the airspace.

Static Relationships Dynamic Relationships

Airace-Lcation xo rcd

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Selectors:

Constructors: Cnstructors:

Iterators: terators:

Name Raised byExetosQ
jInitial:

Figure A.8. Airspace-Location Object-Class Specification
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CLASS SPECIFICATION
Class Name: Aircraft

Description: Represents the aircraft abstraction,

Static Relationships Dynamic Relationships

ha~A~bvt~ Clams

Aiteraft~Postion

Aircraft

Suffered Operations Required Operations
Descriptive Name N ame Applied to

Selectors: GetJD electors: Get.Location Aircraft.Position

Get.Source Get.Altitude Aircraft.Position

Get.Destination Get.leading Aircraft.Pcition

Get.ETA Get-Source Flight.Plan

Get.Class Get.Destination Flight..Plan

Getileading Get.Eta Flight.Plan

Get.Fuel

Get-Position

Get.Altitude

Constructors: Set.JD Constructors:

Set.Flight.Plan

Set.Class

Figure A.9. Aircraft Object-Class Specification
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CLASS SPECIFICATION
Class Name: Aircraft (Continued)

Description: Represents the aircraft abstraction.

Suffered Operations Required Operations
Descriptive Name Name Applied to

Constructors: Set-Reading Constructors: Set.Location Aircraft.Position

Set.Altitude Set-ileading AircraftPosition

Set.Fuel Set-Altitude Aircraft-Position

Set.Position Set.Flight-Plan Flight.Plan

Take-Off

Hold.at.Navaid

Clear.for.Approach

Clear.for.Landing

Continue.Straight

Update.Position

Name Raised by Exceptions QA

FueI.Exhausted Aircraft Initial:

Figure A.10. Aircraft Object-Class Specification(continued)
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.... CLASS SPECIFICATION

Class Name: Aircraft-Position

Description: J Represents the position of an aircraft within the airspace.

Static Relationships Dynamic Relationships

hamattribute Airspace.Position

aI~attr butt ilcading

ua.attnbute Altitude I/

I Arcrat.Position

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Get.Location Selectors:

Get.Altitude

Get-Heading

Constructors: Set.Location nstructors:

Set-Heading

Set.Altitude

Exceptions QA
Name Raised by

enitial:

Figure A.11. Aircraft-Position Object-Class Specification
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CLASS SPECIFICATION
Class Name: Flight-.Plan __________________________

Description: Represents the flight plan of a particular aircraft.

Static Relationships Dynamic Relationships

Flight-.Plan

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Get-Source lectors:

Get-.Destination

Get-.Eta

Constructors: Set-Flight..Plan ristructors:

Name Raised by Ecptin QiiiiA

Figure A.12. Flight-Plan Object-Class Specification
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CLASS SPECIFICATION
Class Name, Fel

Description: Represents the fuel remaining in an aircraft.

Static Relationships Dynamic Relationships

Fuel -- int

Suffered Operations Required Operations
Descriptive Name Name Applied to

Stlectors: lectors:

Constructors: Constructors:

Iterators: tezators:

Exceptions QA
Name Raised by

Initial:

Figure A.13. Fuel Object-Class Specification
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CLASS SPECIFICATION
Glass Name: Altitude

Description: Represents the attitude of an aircraft.

Static Relationbhips Dynamic Relationships

Altide "0 itge

Suffered Operations Required Operations
Descriptix-- Same Name Applied to

Selectors: Slectors:

Constructors: Cnstructors:

Iterators: terators:

Name Raised by Exceptions QA

- ~Initial:

Figure A.M1. Altitude Object-Class Specification
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CLASS SPECIFICATION
Class Name: Heading

Description: Represents the heading of an aircraft.

Static Relationships Dynamic Relationships

Heading AO enumeration type

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: lectors:

Constructors: Cnstructors:

Iterators: Iterators:

Name Raised by Exceptions QA

Initial:

Figure A.15. Heading Object-Class Specification
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CLASS SPECIFICATION
Class Name: ETA

Description: Repiesents the estimated time which an aircraft will appear on the display.

Static Relationships Dynamic Relationships

EAAKO intee

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Selectors:

Constructors: Constructors:

Iterators: terators:

Exceptions QA
Name Raised by

Initial:

Figure A.16. ETA Object-Class Specification
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CLASS SPECIFICATION
Class Name: Source

Description: Represents the source of an aircrafts flight plan.

Static Relationships Dynamic Relationships

Sore AKO enumeaintp

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Selectors:

Constructors: Constructo:s:

Iterators: Iterators:

Name Raised by Exceptions QA

Initial:

Figure A.17. Source Object-Class Specification
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CLASS SPECIFICATION
Class Name: Destination

Description: Represents the destination of an aircrafts flight plan.

Static Relationships Dynamic Relationships

Destination AKO eration type

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: lectors:

Constructors: Constructors:

Iterators: Iterators:

Name Raised by Exceptions QA

Initial:

Figure A.18. Destination Object-Class Specification
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CLASS SPECIFICATION
Class Name: Aircraft.JD

Description: Represents the tail number on an aircraft.

Static Relationships Dynamic Relationships

[ rrftDA aracter

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: electors:

Constructors: Constructors:

Iterators: tezators:

Name Raised by Exceptions QA

Initial:

Figure A.19. AircraftiD Object-Class Specification
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CLASS SPECIFICATION
Class Name: Command

Description: Provides the command abstraction for the ATO simulation.

Static Relationships Dynamic Relationships

hu&.attnbute

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Get.JD Slectors:

Is-Status

Is..Terminmation

Is-.COMMAND

Constructors: Create-Cornmand Ustructors:

Name Raised by Exceptions Q

lnvalid.Cmd Command
Initial:

Invalid-Aircraft Command

Figure A.20. Command Object-Class Specification
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CLASS SPECIFICATION
Class Name: Console

Description: This object provides the 1/O abstraction for the ATC simulation.

Static Relationships Dynamic Relationships

Suffered Operations equired Operations
Descriptive Name Name Applied to

Constructors: Disp-Prev-Nisg Constructors: Disp-Prev2%(sg Display

Disp..Map-Itemn Disp-Mapitem Display

Disp-Time Disp-Time Display

Dispinput Dispinput Display

Disp..Roger Disp..Roger Display

Get-Input Get-Input Keyboard

Name Raised byEcetosA
~Initial:

Figure A.21. Console Object-Class Specification
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CLASS SPECIFICATION
Class Name: Keyboard

Description: Provides the interface to the physical keyboard.

Static Relationships Dynamic Relationships

hu.attnrbute

Keyboard A1

Suffered Operations Required Operations
Descriptive Name Name Applied to

Constructors: Get-Input Constructors:

Exceptions QA
Name Raised by Iepoa

Initial:

Figuxe A.22. Keyboard Object-Class Specification

A-23



CLASS SPECIFICATION
Class Name: Display

Dcsctiption: Provides the output for the simulation.

Static Relationships Dynamic Relationships

Display

Suffered Operations Required Operations
Descriptive Name Name Applied to

Constructors: Disp-Prevg Constructors: DispPrev.Ms& Preview-Are

Disp.Mapitem DuspMap.Jtem Map-Area

Disp..Time DispTrTime Tire-A

DispInput Dispnput InputArea

Disp-Roger Disp.Roger Responw.Ares

Name Raised by Exceptions QA

Initial:

Figure A.23. Display Object-Class Specification
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CLASS SPECIFICATION
Class Name: Preview.Area

Description: Represents the area of the display where the preview messages are shown.

Static Relationships Dynamic Relationships

L P re v iew - A rea

L .- Pam Screen

Suffered Operations Required Operations
Descriptive Name Name Applied to

Constructors: Dsp.Prev.Msg Constructors: Disp.Prev.Msg Screen

Name Raised by Exceptions QA

Initial:

Figure A.24. Preview-Area Object-Class Specification
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CLASS SPECIFICATION
Class Name: Map.Area

Description: Rapresents the area of the display where the map of the control space is displayed.

Static Relationships Dynamic Relationships

Map.Area I

= 1Screen

Suffered Operations Required Operations
Descriptive Name Name Applied to

Constructors: Disp.Map-Item Constructors: Disp-Napitem Screen

Name Raised by Exceptions QA

Initial:

Figure A.25. Map-Area Object-Class Specification

/
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CLASS SPECIFICATION
Clams Name: Time-.Area

Description: Represents the area of the display where the time remaining is displayed.

Static Relationships Dynamic Relationships

Time-.Area

Suffered Operations Required Operations
Descriptive Name Name Applied to

Constructors: Disp.Time Cnstructors: Disp-Time Screen

Name Raised by ic tosQ

Initial:

Figure A.26. Tirne..Area, Object-Class Specification
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CLASS SPECIFICATION
Class Name: Input.Area

Description: Represents the area of the display where the input is echoed.

Static Relationships Dynamic Relationships

I nput.Area

Suffered Operations Required Operations
Descriptive Name Name Applied to

Constructors: Displnput Constructors: Dispinput Screen

Exceptions QA
Name Raised by

Initial:

Figure A.27. Input-Area Object-Class Specification
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CLASS SPECIFICATION
Class Name: Response..Area

Description: Represents the area of the display where the system response is displayed.

Static Relationships Dynamic Relationships

Response-Area.

Suffered Operations Required Operations
Descriptive Name Name Applied to

Constructors: Disp.Roger Constructors: DispRsponse Screen

Exceptions QA
Name Raised by

Initial:

Figure A.28. Response-Area Object-Class Specification
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CLASS SPECIFICATION

Class Name: Screen-

Description: Provides the interface to the physical screen.

Static Relationships Dynamic Relationships

Screen

= 1' t. Screen

Suffered Operations Required Operations
Descriptive Name Name Appliee to

Constructors: Disp.PrevMsg Constructors:

Disp-Map-item

Disp.Time

DispInput

Disp.Response

NExceptions QAName Rase by

Initial:

Figure A.29. Screen Object-Class Specification
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CLASS SPECIFICATION
Class Name: Simulation-Time

Description: Represents the time remaining in the simulation.

Static Relationships Dynamic Relationships

Simulation-Ti me AKo iger

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: electors:

Constructors: Constructors:

Iterators: Iterators:

Exceptions QA
Name- Raised by

Initial:

Figure A.30. Simulation-Time Object-Class Specification
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GLASS SPECIFICATION
Class Name: Mapitem

Description: Represents an item to be placed in the map display.

Static Relationships Dynamic Relationships

Mapitem AO eCord

Suffered Operati )ns Required Operations
Descriptivebamne Name Applied to

Selectors: Selectors:

Constructors: Cnstructors:

Ittrators: terators:

Name Raised by Exceptions QA

[nitial:

Figure A.31. Map-Item Object-Class Specification
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CLASS SPECIFICATION
Class Name: Preview-.Message.Count-

Description: Represents the number of the current preview message.

Static Relationships Dynamic Relationships

Preview..Message-Count AKO ge

Suffered Operations Required Operations
Descriptive- Name Name Applied to

Selectors: Slectors:

Constructors: Cnstructors:

Iterators: Iterators:

Name Raised byEcetosA
Initial:

Figure A.32. Preview2AMessage-Count Object-Class Specification
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CLASS SPECIFICATION
Class Name: Preview.Message

Description: Represents the string into which the preview message is placed.

Static Relationships Dynamic Relationships

Preview-Message AKO srn

Suffered Operations Required Operations
Descriptive Name Name Applied to

Selectors: Selectors:

Constructors: Constructors:

Iterators: Iterators:

Name Raised by Exceptions QA

Initial:

Figure A.33. Preview-Message Object-Class Specification
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CLASS SPECIFICATION _______I

Class Name: Input-String i

Description: Represents the string into which the user input is placed.

Static Relationships- Dynamic- Relationships

Input-String str

Suffered operations- Required Operations
Descriptive- Name Name Applied to-

Selectors: Slectors:

Constructors: Cnstruictors:

[terators: Itevators:

Name Raised byExetosA
Initial:

Figure A.34. Input-String Object-Class Specification
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A.2 Ada Specifications

Following are the Ada package and subprogram specifications for the ATC

problem. Only the-major objects are included.

A.2.0.1 ATC Object

with Calendar;

with TextjIO;

use Text.IO;

with Command.PKG;

use CommandPKG;

with Console.PKG;

with ClassesjPKG;

use ClassesPKG;

,tt airspace.PAG;

with Aircraft.AttributesPXG;

procjdure ATC is

-- CLASS: ATC

-- REPRESENTATION: none

-- USED BY: none

-- USES: Command, Classes, Airspace, Console,

-- Aircraft-Attributes, Calenda , Text.IO

-- OPERATIONS: none

-- PURPOSE: This object represents the the entire-air traffic contol

-- simulation.

Simulation.Length: ClassesPKG.Simulation-Time;

This-Command: Command.KO.Command;

ControllerInput: -Classes.PXG.InputString;

Time.Expired:exception;

package TimeO is~new int ge..io(Classes_PKG.Simulation.Time);

task-Update.Airspaco is

entry S aL(Siiuiutiontcaggh: in Classes.PK. S9imulationTime);

entry Stop;

ond-Update.Airspacs;

ue Calendar;
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task body-Update..Airspace is

Timoe.Left :Classs-PKG .Simunlation..Time;

Minute-.Counter: integer:=1;

Tiise.Expired: exception;

Next..Update :Calendar.Time;

Update-.Interval :durat ion :15 .0;

begin

accept Start(Simulation.Length: in Classes-.PKG.Simulation-.Time) do

Tijse.Left.:Simulation-Length;

end Start;

Console-.PKG .Display.Taime(Time-.Left);

Next..tpdate :=Calendar. clock;

loop

Next-.Update :Next-.Update +-Update..Interval;

,delay Next-.Update - Calendur.clock;

-retrieve airspace updates

-- display airspace updates

if Minute-.Counter=4 then

Time-.Left :=Tiise.Left-I-;

Console-PKG.Display-.Time (Time..Left);

it Time..Left=O then

raise Time-.Expired;

end if;

Minute..Counter:=1;

else

Minut ..Counter:=Minuto_.Counter+x.

end if;

select

accept Stop;

exit;

else

null;

end select;

end loop;

end Update-Airspace;

begin

put("Enter the simulation length: )

Time..IO .get(Simulation..Length);

-- Dras..Initial-Map;

Update..Airspace .Start (Siisulation..Length);

delay 1.0;

loop
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Controller.Input :Console-.PKG .get..input;

Cons ole.PKG .Display.Input (Controller..Input);

If Command..PKG .Is..Terminat ion..Request (Controller..nput) then

Console-PXG .Display..Input ("Terminating simulation.");

-- Terminato.-Simulation;

Update-Airspace .Stop;

exit;

end if;

begin

This.Command:= Coand.PG.CreateCond(Controller..Input);

exception

when Invalid.Command =>

Console-PXG .Display..Input ("Invalid command.");

when Invalid-Aircraft =>

Console..PXG.Display..Input ("Invalid aircraft.");

when others =

Consolej'-KG.Display..input("'Somothing else went =wrong.");

end;

if not ComandPIG.Is-.Status(ThisCommand) then

-- Exlecute Commpad ogr

elsExctComn

els ettts Get Satus
-- Display- Status

null;

end if;

delay 1.0;

end loop;

exception

when Time.Epired>

pnt-.line("You ran out of timeH!!!");

when others-=>

put-.line (Something bad went -wrong.')

end ATC;

with AircraftPKG;

with Aircraft.Attributes..PRG;

with Command;

with Landmark..PXG;

with (lasses-j'XG;

package Airspace..PXG is

-- CLASS: Airspace
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-- REPRESENTATION: none

-- USED BY: ATC

-- USES: Command, Landmark, Classes, Aircraft Attributes

-- OPERATIONS: Initializejirspace - sets the location of all

landmark.c in the airspace and

passes it back to ATC for

display

-- Update.Airspace - gets the position updates

of the aircraft, checks for

errors,- and passes the updates

back to ATC

-- Execute-Command - performs the specified command

on the specified aircraft

-- Is.Done - returns true if 26 aircraft ) .ve

been dispositioned

-- GetLandmark.Location - returns the location of the

specified landmark.

based on the heading, speed, etc.

-- PURPOSE: This clans represents the airspace.

package Update.Record.List is new ???????(UpdateRecordPKG.Update.Record);

procedure Ini'ctalizeAirspace (UpdateList- out UpdareRecord.List);

procedure Update.Airspace (Update.List: out Update.Record.List);

procedure ExecuteCommand (ThisCo,,and: in Ccssnand.PKG.Command;

This-Aircraft:Aircraft.Attributes.PKG.Aircraft.ID);

function Is-Done return Boolean;

function GetLandmark.Location(This_Landmark: in Landmar)M.PKULandmark)

return Classes.PKO.Airspace.Position;

end Airspace.KG;

with AircraftPosition.PEG;

with Flight.Plan.PKG;

with AircraftAttributesPKG;

package Aircraft-PKG is
-****************************4 *************************************

-- CLASS: Aircraft

-- REPRESENTATION: record

-- USED BY: Airspace

-- USES: Aircraft.Attriltjs, Flight.Plan, AircraftPosition

-- OP :RATIONS: Get.ID - returns the-ID of the aircraft

-- Ge ..Source - returns tho source of the
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aircraft

-- GetDestination - returns the destination of the

aircraft

-- Get.ETA - returns the ETA-of the aircraft,

the time the aircraft will appear

on the display.

-- Get.Class - returns tlh class of aircraft,

whether it is a jet - prop.

-- Get.Hoading - returns the heading of the aircraft

-- Get-Fuel - returns the fuel level of the

aircraft

-- Get.Position - returns the 3 dimensional position

of the aircraft

-- Get.Altitude returns the altitude of the aircraft

-- Set.ID assigns an ID to the aircraft

-- Sot.FlghtPlan - assigns a flight plt to the

aircraft

-- Set-Class - assigns a class--to the aircraft

-- Set-Heading - assigns a heading-to the aircraft

-- Set-Altitude - assigns an altitude to the aircraft

-- Set.Fuel - assigns a fuel level to the aircraft

-- Set.Position - assigns a position to the aircraft

Take.O~f - sots the Take.Off flag to true

-- Hold.at.Navaid- sets the Hold.atNavaid flag to true

-- Clear-forApproach - sets the Clear-forApproach flag

to true

Clear.forLanding - sets the Clear.forLanding flag

to true

-- Continue-Straight - does nothing

-- Update.Position - sets the nesposition of the aircraft

based on the-heading, speed, etc.

-- PURPOSE: This-class represents an aircraft in the airspace

type Aircraft is private;

function GetID (This-Plan: in Aircraft)

return Aircraft.Attributes.PKG.Aircraft.ID;

tfuction Get-Source (This.Plan: in-Aircraft)

return Aircraft.Attributes.PKG.Source;

function Get-Destination (This-Plan: in Aircraft)

return AircraftAttributesPKG.Destination;
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function Get-ETA (This-.Plan: in Aircraft)

return Aircraftlttributes-PKG.ETA..Type;

function Get-~Class (This-.Plan: in Aircraft)

return Aircraft.AttributesYPKG.Class;

function Get-.Heading (This-.Plan: in Aircraft)

return Aircraft-AttributesPG .Heading-Type;

function Get-.Fuel (This-.Plan: in-Aircraft)

return Aircraft-Attributes-PIG.Fuel;

frnction Get..Position-(This..Plan: in Aircraft)

return Aircraft..Position-PKG .Aircraft-.Position;

function Get-.Altitude (This-.Plan: in Aircraft)

return Aircraft.Attributes.PKG .Altitude-Type;

procedure Set..ID (This-.ID: in Aircraft-.Attributes-.PKG.Aircraft.ID;

This-.Plane: out Aircraft);

procedure Set-.Flight-Plan-(This-Src: in Aircraft..Attributes..PKG.Source;

ThisDST: in Aircraft-.Attributes..PKG .Destination;

This-.ETA: in Aircraft-.Attributes-.PKG .ETA..Type;

This-.Plane : out-Aircraft);

procedure-Set..Class (This-.Class: in Aircraft.Attributes-.PXG .Class;

This-Plane : out Aircraft);

pro cedure -Set -Heading -(This-H.eading: in Aircraft-Attributes-.PKG.Heading-.Type;

This--Plane out Aircraft);

procedure zSet..Altitudo (This-.Altitude: in Aircraft-Attributes..PKG.Altitude.Type;

This-.Plane :out Aircraft);

procedure-Set-.Fuel (This-.Fuel: in-AircraltAttributes-.PIG.Fuol;

This-.Plane out Aircraft);

procedure-SetPosition- (This..Position: in Aircraft-PositionPKG .Aircraft..Position;

ThisPlane :out- Aircraft);

procedure -Take-.Off (This-Position: out Aircraft);

procedure-Hold-at.Navaid (This-.Position: out-Aircraft);

procedure-Clear-.for-Approach (This-Position: -out Aircraft);

procedurezClear-for-Landing (This-.Position: out Aircraft);

procedure-Continue-.Straight (This..Position: out Aircraft);

procedure-Update-Position (This-Position: out -Aircraft);

-private

type Aircraft is

record

ID: AircraftAttributs.PKG.Aircraft-.ID;

Activb: -Boolean;=false;

Flight.-Plan: Flight.Plan.PKG-;Flight-.Plan;

Class: Aircraft-.Attributes..PKG .Class;

Fuel-Level: Aircraft-Attributes.PKG. Fuel;

Position: Aircraft-Position-PXG .Aircraft..Position;
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Approach: Boolean :false;

Landing :Boolean:=false;

Hold Boolean:=false;

end record;

end Aircraft-.PKG;
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A.2.O.2 Console Object

-- OBJECT: Console

-- RFORESENTATION: Subobjects - display, keyboard

-- USED BY: ATC

-- USES: DisplayPKG KeyboardPKG, ClassesPKG

-- OPERATIONS: Display.Previe.Message - displays a preview

-- message in the preview area

-- DisplayMap.Item - displays a single map item

in the map area

-- Display.Time - displays the time remaining in

the simulation in the time area

-- Display-Input - echos the input to the screen

-- Get.Input - gets input from the keyboard

-- Display.Roger - displays a "ROGER" message in

-- the response area

-- Clean-Up - kills all tasks at the termination

-- of the simulation

-- PURPOSE: Provides the I/O to the ATC simulation.

with Classes.PKG;

package Console.PKG is

procedure DisplayPreviewMessage

(Next-Message: in Classes.PKG.PrevieMessage;

MsgNum: in Classes.PKG.PreviewMessage.Count);

procedure DisplayMapItem(This.Item: in ClassesPKG.Map.Item);

procedure DisplayTime(New._Time: in Classes.PKG.SimulationTime);

procedure DisplayInput(ThisInput: in String);

function Get.Input return String;

procedure Display-Roger;

procedure Clean.Up;

end Console.PKG;

-- OBJECT: Keyboard

-- REPFESEiTATIOi: Subobjects - none

-- USED BY: Console

-- USES: ?

-- OPERATIONS: Get.Input - gets a string from the use

-- Clean-Up- kills the task at the termination
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of the simulation

-- PURPOSE: Provides the input from the physical keyboard.

package -KeyboardPKG is

function Get.Input return String;

procedure Clean.Up;

end Keyboard.PKG;

with Classes.PKG;

package- DisplayPKG is

-- OBJECT: Display

-- REPRESENTATION: Subobjects - areas: preview, map, response,

input, time

-- USED BY: -Console

-- USES: Preview.Area.-PXG,- Response.AreaPKG,

-- Map.AreaPEG, TimeArea.PKG, InputAreaPKG,

-- ClassesPKG, Screen.PKG

-- -OPERATIONS: Display.Preview-Message - displays a preview-

-- message in the preview area

-- -Display.Map.Item - displays a single map item-

-- in the map area

-- -Display.Time -- displays the-time remaining-in

-the simulation-in the time area

-- Display.Input - echos the input-to the screen-

-- -GetInput - gets input from-the-keyboard

-- Display.Roger - displays a "ROGER" message in

-- the responte area

-- Clean.Up - cleans up the screen. NOTICE: This

-- operation directly-manipulates the

-- screen object, which is not a

-- component object of-the display, but

-- is-a-component of display's component

-- objects. This is done to prevent the

-- the invention of a-component object

-- of display called )CleanUp.PKG' or

-- something like that.

-- of the simulation

-- PURPOSE: Provides the output for the-ATC simulation.
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Msg..Nwa: in Classos-P10.Preview-Messago-Count);

procedure Display..Nap.Item(This-Item: in Classes.PKG.Map.Item);

procedure Display-.Time(New.Tie: in Classes.PKG.Simulation.Tiae);

procedure Display..Input(This..Input: in String);

procedurq Display-Roger;

procedure Clean-.Up;

end Display-.PXG;

with Classes-.PRG;

package-Preview.Area-.PXG is

-- OBJECT: Preview-Area

-- REPRESENTATION: Sub-objects - screen

-- USED BY: Display

-- USES: Screen

-- OPERATIONS: Display-.Preview..Mossage -displays-a preview

-- message-in the preview-area

-- PURPOSE: Displays a preview-message in-the praview area.

procedure Display-Preview..Message

(Next-.Message: in Classes-.PKG .Preview-jfessage;

Nsg..Num: in Classes.PRO .Preview-M.Xssage-Count);

end Preview-.Area..PKG;

with Screen-.PRG;

package body Preview-.Area-'XG is

Area-.x:constant integer:=1;

Area..y : onstant integer :65;

procedure Display-.Preview-M.essage

(Next-Message: in Classes-PKG .Preview-Message;

Msg-jum: in Classes-PKG.Preview-essage.Count) is

x,y:integer;

begin

-The message number determines which line the preview message

-is printed on. This prevents messages from being over-

-written by now messages.

S:=integer(MsgNum);

y:Area-y;

Screen-.PKG .Display-Preview-Message(x,y ,Next-.Message);
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end Display.PrevieM.essage;

end PrevieArea.PKG;

package 'Screen.PKG is

-- OBJECT: Screen

-- REPRESENTATION: Subobjects - none

-- USED BY: Display, Preview-Area, Map-Area, Time-Area,

-- Input.Area, Response.Area

-- USES: ?

-- OPERATIONS: DisplayPreview.-essage - displays a preview

-- message in the preview area

-- DisplayHapItem - displays a single map item

-- in the map area

-- Display-Time - displays the time remaining in

the simulation in the time area

-- Display-Input - echos the input to the screen

-- Display.Response - displays a message in

-- the response area

Clean.Up - Kills the task upon termination

-- of the simulation

-- PURPOSE: Provides the interface to the physical screen.

procedure DisplayProviewMessage(x,y-:in integer;

Next-Message: in String);

procedure Display.Map.Item(x,y:in integer;

Item: in character);

procedure DisplayTime(x,y,NewTime: in integer);

procedure Display.Input(x,y: in integer;

This.Input: in String);

procedure DisplayResponse(x,y: in integer;

This.Response:in String);

procedure Clean.Up;

end ScreenPKG;
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A.2.0.3 Command Object

with Aircraft-Attributes.PIG;

with ClassesPKG;

package Command.PKG is

-- CLASS: Command

-- REPRESENTATION: Record

-- USED BY: ATC

-- -USES: NONE

-- OPERATIONS: Create-Command - builds a command from an

input string

-- GetID - returns-the ID of the aircraft

specified in the passed- command.

-- Is.Status - returns true if the passed

command is a status request,

false-otherwise.

-- Is.Termination - returns true if the passed

command- is a termination

request, false otherwise.

-- Is_<command> - returns true if the passed

command = <command>, false

otherwise. There will be

one of these for each

different command.

-- EXCEPTIONS: Invalid..Command- this exception is raised

when the-Direction or

Amount -parts of the command

are illegal values. The

exception is propagated-to

the ATC object.

-- Invalid.Aircraft-this exception is raised-

when- an invalid AircraftID

is detected. The exception

is propagated to the ATC

object.

-- -PURPOSE: Reprosents the commands-used in the ATC

-- simulation.

type Command is private;

function Create.Comnand (This-String: in string)

return Command;
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function Get.ID (This.Command: in Command)-

return Aircraft.Attributos.PKO.Aircraft.ID;

function Is.Status (This.Command: in Comand)-roturn boolean;

function -IsTermination.Request (This.String: in Clases.PKGInput.String)

return boolean;

function IsClear-toLand- (This.Command: in-Command)

rearn boolean;

function IsTurn.Left.45 (This.Command: in-Command)

return boolean;

Invalid-Command exception;

Invalid.Aircraft : exception;

private

-- Command is a record-containing the-following:

-- 1. aircraft.ID of the aircraft being commanded

-- 2. the direction character which determines which

-- direction the-aircraft should-go.

-- L - left

-- R- right

-- A - ascend/descend

-- 3. the amount character which specifies how far the-

-- the aircraft should turn/ascend/descend

-- 0 - clear to-land,-hold at navaid, continue

-- 1 - 1000)/45 degrees

-- 2 - 2000)/90-degrees

-- 3 - 3000)/135-degrees

-- 4 - 40001/180 degrees

-- 5 - 5000/clear-for approach

-- 4. -a boolean which-flags the copand-as a status request or
-- a-directive command-

type- Command

is record

Aircraft.ID Aircraft.Attributes.PKG.AircraftID;

Direction : character;

Amount character;

Is-a.Command : boolean:=true;

end record;

end CommandPKG;

package body Command.PKG is

-- This function converts a string into a- command

function-CreateCommand--(ThisString: in string)

return Command is
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subtype Upper_-Case is character range )V..)Z);

Temp.Command: Command;

Ch character;

-- Function to convert lower case characters to upper case.

function upper (Ch: -in character)return character iE

subtype Lower-Case is character-range )a)..)z);

begin

if Ch in Lower-Case then

return character~val(character~pos(Ch)-character~pos(o ));

end if;

return Ch;

end upper;

begin

-- Check to make sure the aircraft id is valid

Ch:=upper(ThisString(1));

if not (Ch in Upper-Case) then

raise Invalid.Aircraft;

end if;

-- Check-for-status riessage

if This.String)length = I then

Temp.Command.Is.aCommand:=false;

TempComnmand.Aircraft.ID := Ch;

-- Must be-acommand

elsif This.String'length = 3 then

TempCommand.Is.aCormand. crue;

Temp.Command.Aircraft.ID := -Ch;

-- Check-for valid direction character

-- If valid4 assign it

Ch:=upper(ThisString(2));

if (Ch=I') or (Ch=L') or (Ch='R') then

Temp-Command.Direction:=Ch;

else

raise InvalidCommand;

end if;

-- Check-for valid amount character

-- If valid, assign it

Ch:=ThisString(3);

if Ch-in '0'..'5) then

TempCommand. Amount :=Ch;

else

raise InvalidCommand;

end if;

end if;
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wetun Temp.Command;

end Crcate.Commzand;

-- This function returns the ID of the aircraft specified in the command

fundtionGet:_I- (This.Conmmand: in Command)

return Aircraft-.AttrbutesPKG. Aircraft_ID is

begiu

-returA-Thi..Cci mnd. Aircrafl .. ID;

end OtvID;

-- This functon return, true it the command is a status request,

- alse -otherwise

:N¢ction-IsStatus (ThisCommand: in Command) return boolean is

begin

if not This.Command.IsIa.Command then

roturn true;

else

return false;

end if;

end Is-Status;

-- This-function returns--true if the comand is a Clear.to.Land

-- command, false otherwise

function IsClearto.Land- (This.Command: in Command)

return-boolean is

begin

if (This.Command.Direction' A) and (This.Command.Amount='Q) then

return true;

else

return- false;

end if;

end In.Clear.toLand;

-- This function returns -rue if the command is a turn -left 45

-- degreos-command, false-otherwise

function IsTurn.Left.45 (This_Command: in Command)

return boolean is

begin

if (ThisCommand.Direction-'L) and- (ThisCommand.Amount-)-) then

return true;

else

return false;

end- if;
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end IsTurn_-Let-4S;

-- This function returns true it the string input at the keyboard is

-- a termination request, i.lse othervise

function Is-TerminationReouest (Th s.String, in ClassesPKG.Input-String)

return boolean is

begin

if This-String "TER" then

return true;

else

return false;

end if;

end IsTermination.Request;

end Comrand.PKG;
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Appendix B. Validation Package

This chapter contains the validation package used to validate the research

presented in the thesis. Also included are the list of experts consulted and the

individual responses of the experts.

B.1 The Package

The validation package consists of a discussion of the concurrency heuristics

and a questionaire. The questionaire is reproduced in Figure 5.1. The remainder of

this section contains -the textual portion of the package.

B.1.1 Heuristics for determining concurrency. Following are-four heuristics

which designers may use in determining concurre.xcy in object-oriented designs. They

are based on the heuristics used in the DARTS[Gomaa 1984], LVM/OOD[Nielsen

and Shumate 1989], ADARTS[Gomaa 1989a), and Entity-life Modeling[Sanden 1989]

methods.

B.1.1,1 Problem-space conc7 -rency. An object which models con-

currency in the problem environment should be implemented as a task.

Concurreucy in the problem-domain can be determined by identifying behav-

ior patterns, or sequences of events, in which the objects -participate. The objects

themselves-may represent physical entities to-which the system interfaces, or logical

entities, such as an air traffic control system.

B.1.1.2 Time constraints. An object whose behavior' or opera-

tions are constrained by time requirements should probably be a task.

These may be periodic constraints, such as an operation which must be per-

formed at set intervals, or responsive constraints, such as responding to an -interrupt.
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B.1.1.50 Computational requirements. An object whose behavior or

operations require substantial computational resources should probably

be a task.

For example, in a satellite comr- ,nication system, the satellite object may have

an operation called Calculate Satellite Coordinates. To do this in real time requires

the integration of a ninth-order polynomial. Depending on the resources available,

this could be quite time consuming and processor intensive. This operation should

be a separate task.

B.1.1.4 Solution-space objects. An object introduced in the soft-

ware solution to protect a shared data store, decouple two interacting

tasks, or synchronize the behavior of two or -more objects should be a

task.
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B.1.2 Application of the Heuristics to the ATC Problem The heuristics were

applied to an Air Traffic Control (ATC) simulation-. This section contains a: de-

scription of the problem followed by a discussion of the concurrency identified via

-the heuristics and concludes with a discussion of the overall design of the system.

For reference the Booch diagrams and Ada package specifications are also-included.

B.1.2.1 ATC Description

Air Traffic Control is a simulation which allows the user to play the part
of an air traffic controller in charge of a 15x25 mile area from ground
level to 9000 feet. In the area are 10 entry/exit fixes, 2 airports , and 2
navaids. During the simulation, 26 aircraft will become active, and it is
the responsibility of the controller to safely-direct these aircraft through
the airspace.

The controller communicates to the aircraft via the scope, issuing com-
mands -and status requests, receiving replies and reports, and- noting the
position -of the aircraft on- -the map of the control space. The -controller
issues commands to change heading or altitude, to hold at-a -navaid, or
clear for approach or landing. Each aircraft has a certain amount of
fuel left, so the controller must see to it that the aircraft is dispositioned

prior to fuel exhaustion. Also, the minimum separation rules must be
followed, which state that no-two aircraft may pass within three miles of
each other at 1000' or less separation. The aircraft must enter and/or
exit via one of the ten fixes. If an aircraft attempts to exit -through a
non-exit fix, a boundary error is generated. The controller may request
a status report on each aircraft, which will-display all information on the
aircraft, including fuel level, which is measured in minutes.

The aircraft can be one of two types, a jet or a prop. The jets travel at
4 miles per minute, while the props travel -at 2 miles per minute. This

means the-screen must updated every 15 seconds for a jet's course to be
followed accross the screen.

The controller dispositions aircraft by giving commands which enable the
aircraft to -take off, land, hold at a navaid, assume a landing approach,
turn, or change altitude. Take off is accomplished by orderin)g the aircraft
to assume-a certain altitude; there is no 'take off' command as such. Each
of the airports has restrictions on heading for takeoff; these restrictions
must be observed. Turns and altitude changes are effectively instanta-
neous, i.e., they are accomplished at the next mile marker. To land,
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the aircraft must be cleared for landing through the navigational beacon
(navaid) assigned to the airport. Since there are two airports, there are
two navaids. To land, the controller places the aircraft on a heading for
a navaid and issues a clearance for approach command. Once the air-
craft reaches the beacon, it automatically assumes the correct heading
for the airport. The controller then issues a clearance to land command,
and when the aircraft reaches the airport it -lands (disappears from the
screen). If the controller issues a hold command, the aircraft remains at
the navaid until released.

The player initially specifies the length of the game, which may be be-
tween 16 and 99 minutes. The same number of aircraft will appear for
each game, so the shorter the simulation, the more challenging. In any
session, the last 15 minutes will be free of -new aircraft. The simula-
tion terminates when all aircraft have been successfully dispositioned,
the timer runs out, the player requests termination, or one of three error
conditions-occurs:

- conflict error - separation rules-were violated

* fuel exhaustion

* boundary error - the aircraft attempt to leave the control--space via
an unauthorized point.

B.1.2.2 ATC Design This section contains a summary of the ATC de-

sign in general. The main objects are discussed briefly, the Ada package specifica-

tions for-the main objecs:are listed, and the-Booch- diagrams-for the-design are given.

sectionConcurrency in ATC

In the ATC simulation, three objects contain concurrency: -the ATC object,

the Console object, and -the Aircraft class.

ATC. The-first and second heuristics were used to identify concurrency in the

ATC object. Examining the ATC problem- description reveals two separate

patterns of behavior. The first is the periodic updating of the ATC display.

This is a task under the second heuristic, an object -behavior constrained by

time. The-second pattern of behavior is the -asynchronous processing of user-

entered commands. The pattern is a follows: the user enters a command,
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the system responds with a message, and the command is executed. The

asynchronous nature of this pattern precludes it being embedded within the

periodic update of the display.

9 Console. The first heuristic identified two behavior patterns within the console

object, one corresponding to input (Keyboard), the other corresponding to

output (Screen). These objects happen to model physical devices.

* Aircraft. The first heuristic was used to identify the Aircraft class as con-

current. Although the actual physical airplane need not be modeled (flaps,

engines, etc.), the behavior of the aircraft flying throught the airspace is an

identifiable behavior pattern, which should be modeled as a task.

Two heuristics were not used. No computationally intensive objects or opera-

tions were identified; nor were any concurrent solution-space objects encountered.

B.1.2.3 ATC-Design This section contains a summary of the ATC de-

sign-in general. The main objects are discussed briefly, the Ada package specifications

for the main objects are listed, and the Booch diagrams for the design are given.

Main Objects The main objects in the ATC system are ATC, Con-

sole, Command, Airspace, and Aircraft.

* ATC. The ATC object is the primary object of the system. It controls the

interaction of other objects. As previously mentioned, it has two threads of

control, command processing and display update.

* Console. The Console object handles the system I/O.

* Command. The Command class defines the representation of a command.

and provides operations to create a command, determine whether a command

is a status request or a directive, and identifies which particular command a

command- variable contains.
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* Airspace. The Airspace object represents the airspace, which contains land-

marks (navigational beacons, airports, and entry/exit fixes) and aircraft. It

tracks the location of the aircraft, determines when proximity errors occur, and

supervises- the execution of commands.

* Aircraft. The Aircraft class represents aircraft as they pass through the airspace,

and contains operations which query the status of the aircraft-and change the

state of the aircraft.

B.1.2.4 Ada Code

ATC Object

with Calendar;

with TextIO0;

use TextIO0;
with Command'PKG;

use Command*PKG;

with Console'PKG;

with Classes'PKG;

use Classes'PKG;

with Aircraft'Attributes*PXG;

procedure ATC is

Simulation'Length; ClassesP KG.Si mulatio nTi me;

This'Comrnand: Command'PKG.Commnand;

Controller'lnput, ClassesPKG.lnput*String;

Time'Expired:exception;

package Time'1O is new integer'io(Classei*PG.Simulation'Time);

task Update*Airspace is

entry Start(Sitnulation'Length: in Classes'PlG.Simulation'Time);

entry Stop;

end Update'Airspace;

use Calendar;

task body Update"Airspace is

Time'Left:ClassesTPKG.Sinsulation'Time;

Minute'Counter. integer:=];

Time*SExpired:exception;

Next'Updat;Calendar.Timne;

Update'lntervaldsration:=15.0;

begin

accept Staet(Simulation'Lenglti: in Classes'MG.Sirnulation'Tinie) do

TimreLeft:= Simulation'Len gth;

end Start;

Console*PKG.DisplayTime(Time'Left);

Ncxt'lipdate:=Calcndar.clock;
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loop

Ncxt'Updatc:=Next'Updite + UpdatelIntervah;

delay Next'Update - Calendar.clock;

- retrieve airspace updates

- display airspace updates

if hiinute*Counter=4 then

Time'Left:=Time*Left.1;

Con soleP XG. Displ ay*Time(Time'Left);

if Tirne'Left=0 then

raise Time'Epired;

end if;

Minute'Counter.:=l;

else

Minute*Counter:=MinutceCounter+1;

end if;

select

accept Stop;

exit;

else

null;

end select;

end loop;

end Update'Airspace;

begin

put("Enter the-simulation length: )

TimeiO0.get(Simulation'Length);

Drawlnitial'Map;

Update'Airspace.Start(Simulation'Length);

delay 1.0;

loop

Controller'lnput:=Console'PKG.getlinput;

ConsoleT P G. Displ aylIn pu t( Cont roll er In pu t)

If Com man d"P G. 1s'1'rmi nation'Requ est(Cont roll er'lnpu t) then

Console*PKG. Display'In put("'Ter minati ng-si mulation.");

-Terminate'Simulation;

UpdatceAirspace.Stop;

exit;

end if;

begin

This'Command:= CommandTPKG.Create'Comrnand(Controllerilnpst);

exception

when Invalid'Command =L

Console*PKG.Displayilnput("lnvalid command.");

when InvalidAircraft =1

Console'PKGDisplay'lnput("linvalid aircraft.");

when others =

Console'PKG.Displayilnput("'Sometliing else went wrong.");

end;

if not Command PKG. Is'Stat us(Th is'Commrand) then

Console&PKG.Display'Roger;

- xecute Command

else

- Get Status

- Display Status

null;

end if;

delay 1.0;
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end loop;

exception
when Time'Fxpired~l

put'line("You ran out of timel!!");

-when others =L

put'line("'Something bad went wrong.");

end-ATC;

Console Object

- REPRESENTATION: Subobjects.- display, keyboard

- USED BY: ATC
- USES: Display'PG, Keyboard'PKG, Classes'PKG

- OPERATIONS: Display'Preview'Mcssage - displays a preview

- message in the preview area

- DisplayMap'ltemn - displays a single-map item

in the map-area

- ~Display'Time.- displays the time remaining in

the simulation in the time-area

DisplaylInput - echos the input to-the screen

- Get~lnput . gets input from the keyboard
- ~Displayftoger - displays a 'ROGER" message in

- the response area

- ~Clean'Up.- kills all-tasks at the termination
- of the simulation

- PURPOSE: Provides the 1/0 to the ATC simulation.

with Classes'PlG;

package Console'PKG is

procedure Display'Prcview'Message

(Next'hessage: in-Classes'PKG.Preview'Message;

Msg'Num: in Classes*PIG.Preview&Mcssage*Count);

procedure DisplayMapItcm(This'ltem: in Classes'PKG.Mapiltem);

procedure Display'Time(New'Time: in Classes'Pl(G.Simulation'Time);

procedure DisplaylInput(Thisin put; in String);

function Get'Input-return String;

procedure DisplayRoger;

procedure Clean'Up;

end Console'PlC;

Command Class

- CLASS: Command

- REPRESENTATION: Record
- USED BY: ATC

- USES: NONE

- OPERATIONS. Cteate'Command - builds a-command from an
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input string

Get'ID . returns the ID of the aircraft
specified in the passed command.

Is'Status - returns true if the passed

command is a status request,

false otherwise.

Is'Termination returns true if the passed

command is a termination

request, false otherwise.

Is'icommandL . returns true if the passed
command = icommandl, false

otherwise. There will be

one of these for each
different command.

- EXCEPTIONS: Invalid'Command. this exception is raised

when the Direction or

Amount parts of the command
are illegal values. The

exception is-propagated to
the ATC object.

Invalid'Aircraft.this exception is raised
when an invalid Aircraft'ID

is detected. The exception

is propagated to the ATC
object.

- PURPOSE: Represents the commands used in the ATC

simulation.

with Aircraft'Attributes*PKG;
with- Classes'PKG;

package Command'PKG-is

type Command is private;
function Create'Command (This'String: in string)

return Command;
function Get'ID (This'Command: in Command)

return Aircraft'Attributes'PKG.Aircraft'ID;

function Is'Status (This'Command: in Command) return boolean;

function Is'Termination*Request (This'String: in Classes'PKG.input'String)

return boolean;
function Is'Clear'to'Land (This'Command: in Command)

retura boolean;
function Is'Turn'Left'45(This'Command: in-Command)

return boolean;

Invalid'Command : exception;
Invalid'Aircraft , exception;

private
- Command is a record containing the following:

- I. aircraft'ID of the aircraft being commanded
- 2. the direction character which determines which

direction the airfthuldgo.

- b - left

- t.right
- A -ascend/descend
- 3. the amount character which specifies how far the

- the aircraft should turn/ascend/descend
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- 0 - clear to land, hold at navaid, continue
- I1 1000'/45 degrees

- 2 - 2000'/90 degrees

- 3 - 3000',/135 degrees

- 4 . 4000'/180 degrees

- 5 .- 5000'jclear for approach

- 4. a boolean which flags the command as a status request or
- a, directive command

type Command

is record

Aircraft'ID :Aircraft'Attributes'PKG;.AircraftloD;

Direction character;

Amount : character;

ls'aCommand boolean:=true;

end record;

end Command*PKG;

Airspace Object

with Aircraft'Attributes*Pl(G;

with Command;

wth LandmarkWPKG;

with Classes*PKG;

package- Ai rspace*PlG is

- CLASS. Airspace

- REPRESENTATION: none-
- USED BY: ATC

- USHS: Command,-Landmark, Classes, Airczaft Attibutes
- OPERATIONS: Initialiie'Airspace.- sets the location of all

- landmarks in the airspace and
- passes it back to ATC for

- display
- ~Update'Airspace . gets the position updates

- ~of-the aircraft, checks-for

- errors, and passes-the updates
- back to ATO

- Execute'Cornmand - performs the-specified command
- on the specified aircraft

-la'Done -returns true-if-26-aircraft have

been dispositioned
Get 'and mark'Location.- return& the location of the

specified landmark.

-based on the heading, speed, etc.

-PURPOSE: This class represents the airspace.

package Update'RecordtList is-new ???????(UpdateRecord'PlG.Update'Record);

procedure Initialize'Airspace (UpdateList: out UpdateRecordiList);

procedure Update'Airspace (Update*List: out Update'Record'List);

procedure Fxecute'Command (This'Command: in-Comrnand'PIG.Command;

This*Aircraft:Aircraft'Attributes'PKG.Aircraft'lD);
function -sDone return Boolean;

fu nction-GetI Lansdmark'Lo cation(This'Land mark: in Land mai kCPKG. Landmark)

ret urn -Cl asses PKG.Ai rspace'Posi tion;

B-10



end Air$Pace'PlG;

Aircraft Class

with Aircraft'PositionWPKG;

with Plight'Plan'PKG;

with Ai rcraft'At tributes'P KG;
package Aircraft'PKG is

M CASS: Aircraft

-REPRESENTATION: record

- USED BY: Airspace

- USES: Airciaft'Attributes, l'light'Plan, Aircraft'Position

- OPERATIONS:, Get'lD returns the ID of the aircraft

Get'Source -returns the source of the

aircraft

Get'Destination -returns the destination of the

aircraft

Get ETA returns the ETA of the-aircraft,

the time the aircraft will-appear

on the display.

Get'Class -returns the class of aircraft,

whether it is a jet or prop.

- Getileading -returns the heading-of the aircraft
-Gct*Fuel returns the fuel level of-the

- aircraft
- Get'Position -returns the 3 dimensional position

- of the aircraft

- ~Get"Altitude - returns the altitude of the aircraft

Set'lD assigns an ID to the aircraft
- ~ Set'Plight'Plan . assigns a flight plan-to-the

- aircraft

- Set'Class .assigns a class to the aircraft

- Set'Heading -assigns a heading to the aircraft
- Set'Altitude assigns an altitude to the aircraft
-Set'Fuel assigns a fuel level to-the aircraft

- Set'Position assigns a position to the aircraft

Take'Off sets the Take'Off flag to true
- ~llold'at'Navaid. sets the liol dat'Navid- flag to true
- Clear'for'Approach.- sets the Clearfor'Approach flag

- to true

Clear'forLanding -sets the Clear'for'Landing flag
- to true

- Continue'Straight -does nothing

- Update'Position -sets the new position of w~e .ircraft
- based on the heading, speed, etc,

-PURPOSE- This class represents an aircraft in the airspace

type Aircraft is private;

function Get'ID (This'Plan: in Aircraft)

return Aircraft'Attributes'PKG.Aircraft'ID;

function Get'Source (This'lan: in Aircraft)

return Aircrait'Attributes'PCGSource;
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function Get*Destination (This*Plan: in Aircraft)

return Aircraft'AttributesTPKG.Destination;

functi n GetETA (This'Plan: in Aircraft)

return Aircraft*AttributesTI(O.ETAKType;

function Get'Class (This'Plan; in-Aircraft)
return Aircraft'Attributes'PK(G.Ctass;

function Get'lleading (ThIsPlan- in Aircraft)

return -Aircraft'Atttibtcs'PKG.Ileading'Type;

function Get'Fuel (This'Plan: in Aircraft)

return Aircraft'Attributes*PKG.Fuel;

function Get'Position (This'Plan: in Aircraft)

return Aircraft'PositionTPKG.Aircraft'Positlon,

function Get'Altitude (This'Plan- in Aircraft)

return Aircraft'AttributesTPKG.Altitude'Type;

procedure SetIDl (This'Il): in Aircraft'Attributes'PKG.AircraftlID;

This'Plane: out Aircraft);

procedure Set'Fligrt'Plan (This*Src: in Aircraft'Attributes'PKG.Source;

This'DST: in-Aircraft'Attributcs'PK.Destination;

This'ETA: in Aircraft'AttributesT!(O.ETA'Type;

This'Plane out Aircraft);

procedure Set*Class (This'Class: in Aircraft'Attributes'PKG.Claus;

This'Plane :out Aircraft);

procedure Setlleading (Thisllcading: in Aircraft'Attributes'PKG.lleading'Type;

This'Plane : out Aircraft);

procedure Set'Altitude (This'Altitude: in Aircraft'Attributes'PKG.A'litude*Type;

TIhis*Plane_ out Aircraft);

procedure Set'Fuel (Thisl'uel in-Aircraft'AttributesPKG.Fuel;
'rhis'Plane .out Aircraft);

procedure Set'Position (This'Positiont in Aircraft'Pouition'PKG.Aircraft'Position;

This'Plane - out Aircraft);

procedure Take*Off (This'Position- out Aircraft);

procedure lold'at'Navaid (This'Position: out Aircraft);

procedure Clearfor'Approach (Thi'Position: out Aircraft);

procedure Clear'for'Landing (This'Positlion: out Aircraft);

procedure Continue'Straight-(This'Position: out Aircraft);

procedure Update'Position (This'Position: out Aircraft);

private

type Aircraft is

record

ID: Aircraft'Attributes*PKG.Aircraft'ID;

Active: Doolean-.false;

Flight'Plan: Flight'Plan'Pl(G.1'light'Plan;

Class: Aircraft'Attributes'PK.Class;

Fuel'ievel: Aircraft'AttributesPKG.X'uel;

Position: Ai rcraft'Posi tion'PIG.A irc raft* 'osi ti on;

Approachz Boolean:=false;

Landing : Boolean:=false;

Hold : oolean:=false;

end record;

end Aircraft PKG;

B.1.2.5 Booch Diagrams Following are the Booch diagr.-ms for the

higher levels of the design. The lower level- objects and- classes are included only
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when relevant for concurrency.
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B.2 The Experts

The following table lists the software engineering experts who participated in

evaluating the research contained in this thesis:

NAME ORGANIZATION

Karyl Adams Contractor

Capt Paul Hardy Air Force Institute of Technolnvy (AFIT)

Dr James Howatt AFIT

Capt Terry Kitchen AFIT

Dr Patricia Lawlis AFIT

Capt James Marr AFIT

Capt Gene Place AFIT

Dr Bo Sanden George Mason University

Capt Kelly Spicer AFIT

Dr Marty Stytz AFIT

Capt Jay Tevis AFIT

B.3 The Responses

The following pages contain copies of the experts' responses to the questionaire.
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-. Are the heuristics understandable?

1 2 3*
NO FAIRLY YES

2. Do the heuristics help the designeri aking concurrencf decis .

NO SOME iS

/,. 71 /d 1-4i1.4

, .LAre there oncurrency situations-not covered by the heuristics? Which?
LS 1 2 3 4 5

NONE SOME MANY

S/

4. Is there overlap a -the heuristics? Which?

1 2 4 5
*NONE SOME MANY

I.S 'tW rj~ (L lull-

5. Do the heuristics violate established principles of software engineering

,,coupling, cohesion, encapsulation, information hiding, etc.)? Which?
Q1N34 5
ESOME MANY

lip k n , t .... If'
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1.-Are the heuristics understandable?
1 2 3 4

No FAIRLY

2. Do the heuristics help the designer in making concurrency decisions?

1 2 3 5
NO SOME YES

3. Are there concurrency situations not covered-by the heuristics? Which?
Q E 2 3 4 5

SOME MANY

4. Is there overlap among the heuristics? Which?

1 . 2 3 4 5

NONE SOME VANY

5. Do the heuristics violate established principles of software engineering

oupling, cohesion, encapsulation, information hiding, etc.)? Which?
2 3 4 5

NONE SOME MANY
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FROM: Paul R. Hardy, Capt 6 September 1990

SUBJECT: RE: Evaluation of Design Heuristics, 4 Sep 90, Ltr

TO: Capt Ken Baum

Below are comments requested in the subject letter:

Question I: No additional comment.

Questions 2 and 3: The comments I'm providing stradle issues raised in
questions 2 and 3. First, not evident in the write up for evaluation
was a mapping from traditional object oriented analysis and
design tools (concept map, class specification, etc) to
identification of possible tasks. This may be part of a more
extensive presentation. This proposed mapping would be useful to the
designer in applying the heuristics. Second, since it appears that
the dynamic characteristics of an object are the predominant factors
in deciding concurrency is there a classification of objects based
upon this dynamic behavior which could facilitate identification of
a task-oriented object? For instance, an actor object could be a
candidate for a Task. (This is just an example.) Have you found it
to be true that objects which essential are similar to abstract data
types, -that is, have operations which change state values (boolean,
numerical, etc) and inspector operations for state values, do-not
need to be tasks? As opposed to objects that change the state of the
system, physical or logical, which map into task?

Question 4: It is probaby important to include "Time Constraints' as a
characteristic of a candidate cask object. This attribute can-be
overlooked. I would tend to believe, though, that time restrictions
are an attribute of a physical or logical entity, for example, ATC
must update the airspace every few clock cycles. If not an attribute
of the object, most likely, computationally complex processing is
the driving determiner. In either case, time constraints may-be
implicitly embedded within the other heuristics. (I say may be
because these are just comments and I don't have to support any
issues I raise!)

Question 5: No ccmment.

Questions on application of heuristics:

In application of the heuristic: to the ATC, it appeared that the
Airspace Object decouples the Aircraft and- ATC objects. Was I
correct in this observation? If so, was there an explicit design
decision made to not follo, r %olution-space" heuristic? Are
there heuristics for making this sign decision?

Capt SAF I Atch
AFIT/ENC/GCS.90D VQuestionaire
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1. Ar the heuristics understandable? 4(.
1 2 3 IA\ 5 'J M eu
NO FAIRLY YES

2. Do the heuristics help the designer in making concurrency decisions?

1 2 3 4 J

NO SOME YES

3. Are there concurrency situations not covered by the heuristics? Which?

Gi. 2 3 4 5
NONE SOME MANY

4. Is there overlap among the heuristics? Which?

3 4 5

YONE SOME MANY

5. Do the heuristics violate established principles of software engineering

(coupling, cohesion, encapsulation, information hiding, etc.)? Which'

2 3 4 5
E SOME MANY
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1 Heuristics for determining concurrency.

Following are five heuristics which designers may use in determining concurrency in object-
oriented designs. The are based on the-heuristics used in the DARTS(Ij, LVM/OOD[3]
ADARTS(2I, and Entity-life Modeling(4J methods.

1.1 Problem-space concurrency.
An object which Aiel concurrency in the problem environment should be
implemented as a task.

Concurrency in the problem-domain can be determined-by identifying behavior patterns,
or sequences of events, in which the objects participate. The objects themselves may repre-
sent physical entities to which the system interfaces, or logical entities, such as an air traffic
conrol system.

1.2 Time constraints.

An object whose behavior or operations are constrained by time requirements
should probably be a task.

These may be periodic constraints, such as an operation which must be performed at set
intervals, or responsive constraints, such as responding to-an interrupt.

1.3 Computational requirements.
An object whose behavior or operations require substantial computatio nalrq-
sources should probably be a task. 4 MOAu l-te4 .

For example, in a satellite communication system, _ei eite object may ave an oper-
ation called Calculate Satellite Coordinates. To do this-in real time requires the integration
of a ninth-order polynomial. Depending on the resources available, this could be quite time
consuming and processor intensive. This operation should be a separate task.

1.4 Solution-space objects.

An object introduced in the software -solution to protect a shared data store, de-
couple two interacting tasks, or synchronize the behavior of two or more objects
should be a task.

B-22



.41~ ~ Jc A e~ y~ 41e~y .N

4L LL, .4- A .,y ,-, , - ,,

1. Are the heuristics understandable?

1 2 3

NO FAIRLY YES

L3 V- C

2. Do the heuristics help the designer in making concurrency decisions?
1 2 3 4

NO SOME YES

3. Are there concurrency situations not covered by the heuristics? Which?

1 ,,,"2 3 4 5
NONE SOME MANY

-174- rAy of 1r r)6. . *

4. Is there overlap among the heuristics? Which?
1 2 _ ) 3 4 5

NONE SOME -MANY

/.rt. 6a¥, ~4 c.-J ~.-~~' ~ *

S. Do the heuristics violate established principles of software engineering

(coupling, cohesion, encapsulation, information hiding, etc.)? Which?

1 3 "4 5
NONE SOME MANY
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1. Are the heuristics understandable?
1 2 3 4 0
NO FAIRLY YES

2. Do the heuristics help the designer in making concurrency decisions?
1 2 3 X.\ 5
NO SOME QV YES
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3. Are there concurrency situations not covered by the heuristics? -Which?
13 4 -5

NONE k SOME MANY

Cp-w-6 INtt-J0.O =r/O bVC4'. : SL4"POVC Trj1T M,,b4T -rlL

4. Is there overlap among-the heuristics? Which? w
1 2 G4 5

NONE SOME MANY

Co-lrm 1,JPAi'.7%VT Does' )TAW"V rys/z

~ L~& ~ ~ V rEL4 VS \0E.'JT1FY -7 T-pSSA.

5. Do the heuristics violate established principles of software engineering

(coupling, cohesion, encaDsulation, inf ormat ion hiding, etc.)? Which?

R2 3 4 5
NESOME MANY
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1. Are the heuristics understandable?
1 2 3 5
NO FAIRLY YES

2. Do the heuristics h p the designer in making concurrency decisions?
1 2 (.Y 4 5
NO SOME YES

flQ-~LA'0 Lt r C i yLbpcXac ac. q&

wt m ~n o\\/One- 4c 6t. uakct ct rvc mitw. Wao-. Qp-. iin 14 0e d~qu-tvd.
S - ~ 3. Are there concurrency situations not covered by the heuristics? Which?

2 3 4 5
NONE SOME MANY

4. Is there overlap ang the heuristics? Which?

1 2 n3 4 5
NONE SOME MANY

5. Do the heuristics violate established principles of software engineering
L-oupling, cohesion, encapsulation, information hiding, etc.)? Which?

2 3 4 5
NONE SOME MANY
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1. Are the heuristics Aderstandable?
1 2 (3* 4 5
NO M Y YES

2. Do the heuristics help the d ner in making concurrency decisions?
1 2 hel S~e n cnurnydcsos
NO SOME YES

3. Are there currency situations not covered by the heuristics? Which?
I 2 3 4 5

NONE SOME MANY

4. Is there oe lap anong the heuri*stics? Which?
I 2) 3 4 5

NONE SOME MANY

5. Do the heuristics violate established principles of softvare engiteering
oupling, cohesion, encapsulation, information hiding, etc.)? 1ihich?

1 3 4 5
SOME MANY
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1 . Are the heuristics understandable?
1 2 35

NO FAIRLY YES

2. Do the heuristics help the designer in making concurrency decisions?
1 2 3 4 0
NO SOME YES

3. Are there concurrency situations not covered by the heuristics? Which?
I3 4 5

NONE SOME MANY

Z Me' e1- /e, Y~et, c rr

Is~4 there ovr2pamong the heuristics? Which?
1 D 3 -4 5

NiONE SOME MANY

5. Do the heuristics violate established principles of software engineering
(coupl-ing, cohesion, encapsulation, information hiding, etc.)? Which?

2 3 4 5
NONE SOME MANY
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1 Heuristics for determining concurrency.

Following are five heuristics which designers may use in determining concurrency in object.
oriented designs. The are based on the heuristics used in the DARTSjIi. L\'.\l/OOD[3J
ADARTSj2l. and Entity-life lodeling[41 methods.

1.1 Problem-space concurrency.

An object which models concurrency in the problem environment should be
i'emented as a task.

Concurrencyv in the probtemn-domain can be determined by identifying behavior patterns.

or sequences of events, in which the objects participate. The objects themselves may repre-
sent physical entities to which the system interfaces, or logical entities, such as an air traffic
conrol system.

1.2 Time constraints.

An object whose behavior or operations are constrained by time requirements
should probably be a task.

These may be periodic constraints, such as an operation which must be performed at set
intervals, or responsive constraints, such as responding to an interrupt.

1.3 Computational requirements.

An object whose behavior or operations require substantial computational re-
sources should probably be a task.

For example, in a satellite communication system, the satellite object may have an oper.
ation called Calculate Satellite Coordinates. To do this in real time requires the integration
of a.nint6.order polynomial. Depending on the resources available, this could be quite time
consuming and processor intensive. This operation should be a separate task.

1.4 Solution-space objects.

An object introduced in the software solution to protect a shared data store, de-
couple two interacting tasks, or synchronize the behavior of two or more objects
should be a task. ,

B .:3 .. , .
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1. Are the heuristics understandable?
1 2 0 4 5 1
NO FAIRLY YES

2. Do the heuristics help the designer in making concurrency decisions?

1 2 3 4 c59
NO SOME YES

3. Are there concurrency situations not covered by the heuristics? Which?
6Y 2 3 4 5

NONE SOME MANY

4. Is there overlap among the h'uristics? Which?

(1 2 3 4 5
NONE SOME MANY

5. Do the heuristics violate established principles of software engineering
(coupling, cohesion, encapsulation, information hiding, etc.)? Which?

1 3 4 5
NONE SOME MANY
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1. Are the heuristics understandable?
1 2 3 (4) S

NO FAIRLY YES

2. Do the heuristics help the designer in making concurrency decisions?

1 2 3 4 '
NO SOME YES

- 'w.., ;.5 ;j i,.1 "I/eJ b~~ ie'A~i A-;

3. Are there concurrency situations not covered by the heuristics? Which?

4D 2 3 4 5
NONE SOME MANY

-~;4 d'',v7 c5Wrp' 5fle '

4. I1 there overlap among the heuristics? Which,

2 3 4 5

NONE SOME MANY

S. Do the heuristics violate established principles of software engineering

/couplinE. cohesion, encapsulation, information hiding, etc.)? Which?
i, 2 3 4 5

NONE SOME MANY
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1 H. L'cistics for determining coficurrency.

Following are five heuristics which designers may use in determining concurrency in object-
oriented designs. The'are based on the heuristics used in the DARTS(1}, LVM/00D[31
ADARTS(2], and Entity-life Modeling[4] methods. ' .I. " - . I -; e

1.1 Problemtspa concurrency.

An object which models concurrency in the problem environment.£hould be
implemented as a task. ..-

Concurrency in the problem-domain can be determined by identifying behavior patterns,
or sequences of events, in which the objects participate. The objects themselves may repre-
s N'sical entities to which the system interfaces, or logical entities, such as an air traffic

nrl c. -ystera.

__T 1. 2  Time constraints.

(,.e An object whose behavior or operations are constrained by time requirements
should probably be a task.

These may be periodic constraints, such as an operation which must be performed at set

intervals, or responsive constraints, such as responding to an interrupt.

(1.3 Computational requirements.
An object whose behavior or operations require substantial computational re-

8Cr I sources should probably be a task.
For example, in a satellite communication system, the satellite object may have an oper-

ation called Calculate Satellite Coordinates. To do this in real time requires the integration
of a ninth-order polynomial. Depending on the resources available, this could be quite time

I consuming and processor intensive. This operation should be a separate task.

7h ;' r.rse 1Y
1.4 Solution-space objects.&, ' s4*J /; 9,, ,' -1he ?,Oqr 5yef Cv"/,

"An object introduced in the software solution to protect a shared data store, de-
-. / couple two interacting tasks, or synchronize the behavior of two or more objects

should be a task.
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