
~DTIC r:LE COPY
Cop

EAVE-West: A Testbed For Plan Execution

0
(V) Jayson T. Durham, Paul Heckman, Dale Bryan, and Ron Reich 1 r
N Undersea Artificial Intelligence and Robotics Branch

Ocean Engineering Division1 < Naval Ocean Systems Center -_
San Diego, CA 92152-5000 Lo

19 87
Abstract

The Experimental Autonomous Vehicle - West (EAVE-West)
submersible testbed has been configured for demonstrating a
distributable software architecture for Autonomous Undersea
Vehicle (AUV) plan execution. Instead of using a machine planner
aboard the AUV, plans are represented and then downloaded to the
vehicle. This technique obviates the problems associated with
planning and, as a result, the real-time response of the AUV can
potentially be improved. A review of the architecture is given
and the EAVE-West demonstration system is discussed. r.cL0

L-~ ~ ~ / /A
IntroduAtion

To potentially reduce costs, reduce personnel risks, and
increase overall system performance, undersea vehicle tasks are
being automated. Remotely Operated Vehicles (ROVs) have already
exploited a certain limited aucomation capability through the use
of embeddable microprocessors, real-time software, and Artificial
Intelligence techniques [Doeling and Harding 87]. In particular,
supervisory controlled or "telerobotic" ROVs have progressively
automated vehicle control tasks which previously required the
attention of a human operator. By developing structured
methodologies that will accelerate and advance the degree of ROV
task automation, more flexible autonomous capability can be made
possible for future vehicle systems.

Underwater ROVs developed from the need to perform such
generic missions as undersea search, recovery, and inspection
operations. Originally, such unmanned undersea vehicles were
basically teleoperators or controlled via a master-slave
configuration, and therefore, none of the vehicle tasks were
automated. Dr. Tom Sheridan developed a system architecture he
called supervisory control, whereafter NOSC demonstrated this
supervisory control architecture on an undersea manipulator
[Yoerger and Sheridan 831. This means of control was adopted fordeveloping advanced untethered submersibles, as well. Using this
system architecture, tasks previously performed manually, couldbe automated. Because a microprocessor could be embedded into avehicle, a vehicle could be configured to perform well defined

91 1 30 080
33

Approved for public release;
distribution unlimited.

tasks on command. An operator can issue high level commands, and
thereafter supervise the execution of those commands. Due to the
development of supervisory control, advanced undersea vehicles
have became a reality.

Concurrent with the development of supervisory control,
there has been speculation on the possibility of fully automated
ROV systems. This speculation has led to the concept of
Autonomous Undersea Vehicles (AUVs). Historically, machine
intelligence and problem solving have been emphasized at the cost
of specific mission capability. In contrast to this historical
trend, an autonomous vehicle is herein considered to be an
advanced supervisory controlled vehicle which has been extended
with mission level command capability. It is not necessarily
"intelligent." Figure 1 illustrates this continuum of ROV
capabilities. Autonomy is defined here as meaning that the
vehicle can be commanded to automatically perform complete
mission tasks. This approach incorporates the successes of
previous vehicle developments, such as supervisory control, and
addresses autonomoy as a more realistically attainable advanced
automation problem than a problem of "Artificial Intelligence"
(AI). This conceptually offers an approach which can provide
deterministic solutions and known actions against unpredictable
environmental conditions and hardware failure.

Computer technology is the basis of current automation
trends. With the development of general purpose computers and
resultant computer programming languages, large software systems
have automated relatively sophisticated processes. Because
software development is a new endeavor, new problems have
emerged. Large software projects typically cost much more than
expected, usually take much longer to complete, and the final
systems are often unreliable.

To control these software problems, software engineering
methods have been defined for constructing automated systems.
Some of these methods should be applied and adapted to the
automation of ROV missions. For this approach, there are two
basic challenges. Building mission level commands is an effort
for which there are currently no formalized methods. Secondly,
mechanisms for executing mission level commands are yet to be
developed. This effort has approached these two challenges by
developing a methodology for creating and executing mission level
tasks, making possible the autonomous execution of ROV missions.

Decision and planning aids can assist with mission planning.
These aids are "tools" which are useful for determining mission
feasibility and for determining how to achieve a mission
objective given the available resources. These software tools
assist in the creation of detailed mission plans. Once a
detailed mission plan is created, it can be configured into a
mission level command.

Declarative programming languages allow a programmer to
declare what needs to be done and then the computer is left to es

34

determine how to actually perform the desired operation.
Declarative languages allow the programmer to focus his attention
on what needs to be implemented. The computer is left to
determine how the desired operation is to oe executed. A similar
objective is desired here, and therefore, a similar approach is
adopted. The idea of a plan execution system is to define plan
execution primitives such that if a mission plan is represented
using those primitives, the computer will already have a
mechanism for determining how to execute that mission plan. The
vehicle will be able to automatically execute a desired plan.

Designing and demonstrating a plan execution system is the
primary objective of this approach toward automated mission
execution. An object-oriented software architecture [Booch 83,
Booch 86] for mission plan execution has been designed for real-
time vehicle control. Mission plans are rqpresented by using two
types of abstracted objects: tasks and events. A vehicle plan is
represented as an ordered grouping of these task and event
objects. Because the system is a distributable software
architecture, the vehicle can potentially maintain real-time
response independent of the size of the mission pl. i. Thus,
vehicle response becomes directly dependent on the number of
processors allocated for the given mission.

Mission Planning Aid

Development and demonstration was attempted for a plan
execution system only. Initial tests showed that such an
approach was essentially impossible. In order to execute plans,
they had to be represented. A represented plan implied that a
plan had been created. Creating realistic plans is a problem
which was intentionally being avoided. Initial tests showed that
the "mission planning" problem had to be addressed.

The development of a Mission Planning Aid (MPA) was
consequently initiated for concept demonstration purposes. Given
a displayed map, an operator is able to plot a vehicle
trajectory. The waypoints of this trajectory are determined by
time, depth, and/or heading conditions. The vehicle dead reckons
from one point to another. The MPA demonstrated the capability
to graphically input and interactively create vehicle trajectory
tasks.

At the end of a vehicle trajectory planning session, the MPA
creates a file which represents the trajectory plan. This file
is transmitted to the plan execution system embedded in the EAVE-
West vehicle. The vehicle is then commanded to execute the
desired plan. The plan execution system executes the plan.

Mission Plan Execuiion

Project History

A hierarchical control scheme with conditional execution of
tasks was designed for the Ground Surveillance Robot land vehicle

35

[Harmon and Solorzano 83: Aviles et al 85] and the EAVE-West
submersible [Harmon 81, Durham and Shirley 82]. For the NOSC
projects, sets of tasks with conditioned initiation and
termination were employed for plan execution. Like a production
system, conditioned task execution provided a structure which
could produce pre-planned, goal-directed behavior. The
significant difference between typical production systems and the
conditioned task execution was that productions have difficulty
representing durations of time and task activities while
conditioned tasks are defined in terms of such durations.

The goal of this effort was to define two recursive
structures for composing conditioned tasks. Using these
structures, an entire mission plan could be represented and then
executed without any global control or memory store, such as is
provided by a blackboard. Due to this decentralized
architecture, a plan execution system built from these structures
would be truly extens2ile. An execution system, which services
only these two types cf structures, would remain a constant size
while plans may be arbitrarily large. Also, if these primitives
are configured as augmented trees, the "tree" data structures are
well suited for distril'uted! romputing machines [Uhr 84]. Using
these software structures uit'i distributed computing hardware, a
general purpose plan executic> system becomes a possibility.

Plan Representation

The Plan Execution System (PES) is defined in terms of Task,
Event, and Device objects which are abstractly layered according
to their remoteness from the vehicle hardware. Tasks are 'I

considered the most abstract objects because they are the most
remote from the hardware and they only control the execution of
Event objects. Devices are the least abstract, since they
interface directly with hardware. Events are a "layer" of
objects between Tasks and Devices. Figure 2 shows the layering
of these three types of objects.

Task objects provide a procedure abstraction mechanism for
creating control hierarchies. Primitive task objects are
designed such that "task trees" can be configured in a top-down
fashion. A task tree defines a control hierarchy (Figure 3). A
set of task trees defines a mission plan. Each tree specifies a
task execution interval which is independent of the other task
trees within the system. Nodes of a task tree are called control
controllers, since they control the interval of execution for
sets of subtasks (Figure 4). Subtasks inherit the initiation and
termination conditions of their parent tasks. If a task is a
leaf within a tree of tasks, its function is to direct the flow
of data from the value of an input event to the value of an
output event. A leaf task is called a vehicle controller, since
its function is to cont-rol the vehicle by coupling the value of
an input event to the value of an output event (Figure 5).

Tasks are designed to be event couplers. They control the
system and do not perform any numerical operations. Tasks are

36

designed to administer vehicle control by coupling input events
to ou'put events, given that a start event has occurred and a
stop event has not occurred for the given task.

Events provide a data abstraction mechanism for creating
hierarchical "polish prefix" expressions. These expressions are
binary trees of primitive processes, i.e. objects, which fuse
sensor data as well as propagate control values to the vehicle
effectors.

A primitive event object has an actual value, which is its
current value and it has a desired interval of values. The
interval is defined by a minimum desired value and a maximum
desired value. A primitive object is said to have a state, as
well. An event is initially in the not-occurred state, and
remains in the not-occurred state until the actual value is
within the desired interval of minimum and maximum values. When
the actual value is within the interval of desired values, the
event is said to have occurred, and it changes to the occurred
state. The event stays in the occurred state until it is reset
by its parent object. A node event is simply called a composed
event, since it is a binary operation composed of two subevents
(Figure 6). A leaf event is called a device event since it is a
function of a logical device (Figure 7). A device event can
access other event values, event states, or task states.
Formally, event values, event states, and task states are
considered to be internal device values.

All events have a parent object. The most abstract (i.e.,
highest level) events are the roots to trees of primitive event
objects. These root events are "attached" to parent tasks. They
either trigger the start/stop of a task object or they provide
input/output for a task object. Events reduce data to control
signals which either control the execution of tasks or control
the vehicle effectors, e.g. thrusters.

Using the above representation, a mission task is composed
of an array of subtasks each with its own start/stop events. A
subtask may be a control controller and control the interval of
execution of its own array of subtasks, or else a subtask may be
a vehicle controller and control the vehicle by coupling an input
event to an output event. The vehicle controllers are the only
tasks which directly control the vehicle and they do this by
directing (i.e., coupling) the flow of data from an input event
to an output event. Each controller has its associated event
hierarchies. The event hierarchies are binary trees with the
nodes being composed events and the leaves being device events.
Using this architecture, a mission plan is represented by
building trees of task and event Objects. As the simple task and
event objects perform their functions, the vehicle will
physically execute the mission plan.

System Prototype

The NOSC prototype was a demonstration system for evaluating

37
prototpe wa

I

I

a distributable software architecture for p'in execution, and not
for developing a distributed operating system and interconnection
network. For this reason, a single CPU multi-tasking system was
implemented.

The approach was to first implement the software in the lab
and execute plans under simulation. A personal computer was used
for software development. After the system was lab tested, the
EAVE-West vehicle console was modified to interface with the plan
execution system. The plan execution system was then tested at a
test pool.

The next step was to embed the plan execution system in the
testbed. An additional computer was installed aboard the
vehicle, and the vehicle hardware was modified to incorporate
plan execution commands and communication with the new computer.
At this point, the embedded system was tested in the lab under
simulated conditions. The vehicle was then taken to a NOSC pier
and tested in San Diego Bay.

Results

The prototype plan execution system has been implemented on
the EAVE-West submersible and demonstrated. Simple maneuvers
were performed off of a NOSC pier using a "Mission Planning
Assistant" for vehicle trajectory input. This first in-bay
exercise demonstrated the concept of using the proposed software
architecture for general-purpose, stand-alone plan execution.
Mission scenarios are now being developed.

Once installed, the plan execution system extended the
capability of the testbed by providing the ability to specify and
execute operator defined plans, thus demonstrating that vehicle
development can progress along a continuum of capability. By
increasing onboard processing, supervisory controlled vehicles
can be made autonomous. Further extension along this continuum
of capability is ensured, since the software is a distributed
structure designed for multicomputing hardware.

Recommendations

Based on the successful experience with this project, the
system should be implemented on a multicomputer. An accompanying
high-level plan representation language should be developed to
effectively use the system for more sophisticated scenarios.
Finally, an "off-line" machine planner should be designed and
implemented using that high-level language for the development of
a responsive, knowledge-based, autonomous undersea vehicle
system.

Acknowledgement

The Technical Director, Naval Ocean Systems Center, made
this project possible by providing continued support via the
Independent Exploratory Development Program (FY85, FY86, FY87).

38

References

[Doeling and Harding 87] Undersea Teleoperators and Intelligent
Autonomous Vehicles, E. T. Harding and N. Doelling eds, MIT Sea
Grant College Program, MITSG 87-1 (1987).

[Yoerger and Sheridan 83] "Supervisory Control Improves
Performance for Underwater Telemanipulators", D. Yoerger and T.
Sheridan, Marine Technology Society Meeting on Remotely Operated
Vehicles, San Diego, CA, March 1983.

[Booch 83] Software Engineering With Ada, G. Booch,
Benjamin/Cummings Publishing (1983).

[Booch 86] "Object-Oriented Development", G. Booch, IEEE
Transactions on Software.Engineering, Vol. SE-12, No. 2, February
1986.

[Harmon and Solorzano 83] "Information Processing Architecture
for an Autonomous Robot System", S. Y. Harmon and M. R.
Solorzano, Proc. of the Oakland Conference on Artificial
Intelligence, Rochchester, MI, 26-27 April 1983.

[Aviles et al 85] "An Architecture for the Coordination and
Control of Complex Robotic Subsystems", W. A. Aviles, S. Y.
Harmon, D. W. Gage, G. L. Bianchini, 1985 Conf. on intelligent
Systems and Machines, Rochester, MI, April 1985.

[Harmon 81] "Autonomous Free Swimming Submersible: A
Demonstration of Autonomous Robotics Technology", S. Y. Harmon,
October 1981, (unpublished).

[Durham and Shirley 1982] "A Multi-Tasking Real Time Executive
for the NOSC AFSS: An Introduction to Command Usage", J. T.
Durham and R. W. Shirley, NOSC Memo 943/81-86, August 1982.

[Uhr 84] Algorithm-Structured Computer Arrays and Networks, L.
Uhr, Academic Press (1984).

39

Autonomous

Supervisory Controlled
0)
0L..

Teleoperated
o
.0
-
C
0

Telepresent

Communication Bandwidth
F;nIJre 1. Continuum of ROV capability

TASK

- - - - - - - - - - -- I
EVENT

I I
CURRENT VALUE FUNCTION OF STATE = OCCURED

LEIT E:VLNT AND IF
R G T E E TTHE M AXIM UM DESIRED|iRIGHT EVent V

CURRENT VALUE= FUNCTION OF THE CURRENT DESIRED
TASK STATE OR AND
EVENT STATE OR THE MINIMUM DESIRED
EVENT VALUE OR VALUE IS LESS THAN ,
DEVICE VALUE THE CURRENT VALUEI _ ____ _ _ I

* DEVICE

CURRENT VALUE FUNCTION OF PHYSICAL DEVICE

Figure 2 Layered plan execution primitives

40

SUSK1 SUBTASK 2.. SUBTASK n

SUBTASK fl SUBTASK n2

Figure 3 A control hierarchy

EVENT I IEVENT
ISTART I STOP

TASK

S1BTS 2BAS 000 S rUBTASK nJ

Figure 4 Control controller

41

I plo

I EVENT IIEVNI

I START I I STOP I

TASK O)TA COUPLING

IEVENT IVENT
I INPUT I OUTPUT I

Figure 5 Vehicle controller

II *
IEVENT - - - - - - - - -- - -

ICURRENT VALUE- STATE OCCURRED

f (LEFT EVENT, IF I
RIGHT EVENT) (MIN < VALUE < MAX) I

I , I

IEVENT I IEVENT I
I I 1 RIGHT CHILD I

LEFT CHILD I _ I

Figure 6 Composed event

42

ICURRENT VALUE STATE OCCURREDI

f (TASK STATE OR I

EVENT STATE OR (MIN <VALUE <MAX)
EVENT VALUE ORI DEVICE VALUE)

DEVICE

Figure 7 Device event

43

