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1. }ntroduction

The basic problem of image recovery and
pattern recognition is to determine the original
pattern, f, given its corrupted version, g. The
unknown pattern f is an element of the set S =
{f, £, f,.}, and the task is to deduce which
patiern in S gave rise to the image data, g. S is
called the solution candidate space and could
be, for example, the set of alphabetical symbols.

If itis known that certain elements of S have
a higher probability of occurring than others
(suchasalphabetical symbols intext), thisa priori
information can be incorporated into the proce-
dure for finding f according to the techniques of
Bayesian analysis {1].

In the general image recovery problem, S is
the set of all possible patterns on an n x n pixel
image, and the relationship between the origi-
nal image, f, and the image data, g, can be
modeled by

g=f+w, )

(™
where w is random noise. Sets of pixel bright-
nesses at lattice position (i, j) are described by f
(f). 8= (g}, and w = {w;]. Since wisarandom
vanable, f cannot be dete ined from g using
equation (1). The best we can do is find the
pattern f* € S such that p(fl g) is a maximum,
where p(f1g) is the probability that, given the
image data gf was the original image. We
cannot, even in principle, be sure that f*=for is
even “close” to it. If, however, f is known “in
advance” (using known test images that have
been corrupted by noise), the “goodness” of £*

can be evaluated. This is what we have done.
“fmage recovery and pattern recognition
problems are thus combinatorial optimization
problems, in which a solution candidate space,
S, must be searched. The larger S is, the more
difficult the search. The number, N, of images
possible onan n xn pixel array where each pixel

has L possible grey levels is given by

"N=L" . )

- atig) -PCE pein-

Even for a simple 10 x 10 binary image
where L =2 and n = 10, N = 2'%, so calculating
p(flg) for each possible f is computationally
infeasible, even in simple cases. A problem
whose computational difficulty grows expo-
nentially with some characteristic problem size
measure is called NP (nonpolynomial) com-
plete [2]. Most NP complete problems can only
be solved by selectively sampling elements of
the solution candidate space.

2. Bayesian Analysis

The probability of “event” f, given that g
has occurred, p(flg), is called a conditional
probability. The probability of f alone, p/f), and
that of g alone, p(g), may overlap in “probabil-
ity space” as illustrated in figure 1. Obviously,
p(f!g) and p(g!f) are given by

p(f's)

)

where p(f*g) is the probability of both f and g.
Eliminating p(f*g) from (3) yields

pieig) =PEIPO) @

, 3

Equation (4) expresses Bayes’ theorem.

The probability p(f) expresses our a priori
(indevendent of the image data, g) knowledge
of f, whereas p(f1g) represents our a posteriori
(given the image data) information about f.
Thus f* € S which maximizes p(f | g) is the best
fit to both the a priori and the a posteriori knowl-
edge about f. Bayes’ theorem allows us to incor-

P p(f*g) p®

Figure 1. Probability space for Bayes’ Theorem.




porate the “experimental data,” g, with our
prior knowledge of f. This approach to the
image restorationand pattern recognition prob-
lem is often called the maximum a posteriori
(MAP) technique.

3. Combinatorial Optimiza-
tion Problem

We are now ready to obtain an analytic ex-
pression for p(f| g) using equation (4).

Fromequation (1), p(g | f) = p(w), the proba-
bility of having noise w. p(g|f) can be repre-
sented in the form

pe!f)=Letnie) o)
where H, (f,g) is the noise energy and N a nor-
malization term. If, for example, the noise is
Gaussian, H,(f,g)= | | f-g112/(26?), where [ | f
- g!! is a distance measure between f and g
(e.g., the number of pixels in which they differ),
and ¢? is the variance.

Since the probability of obtaining g alone,
p(g). is independent of £, it can be regarded as a
constant with respect to f. We are thus left with
the problem of determining p(f).

Images tend to consist of large regions of
constant or slowly varying brightness, sepa-
rated by edges. Withinaregion, a pixel’s bright-
ness is expected to be similar to its nearest
neighbors, so a pixel whose brightness differs
greatly from its neighbors has “probably” been
affected by noise (fig. 2). An image can thus be
modeled as a set of pixels whose brightnesses
depend on their nearest neighbors’ brightness
probabilistically. Such a system of interrelated
probabilities is called a Markov random field
(31

It can be shown thata Markov random field
is formally equivalent to an Ising [4,5] system of
interacting spins on a lattice. Analogous to the
Ising spin-spin interaction, a pixel-pixel inter-
action energy can be defined. The sum of the
pixel-pixel interaction energies is the image
energy, H (f). Following the statistical mechani-

Figure 2. Markov random field model of an
image. Brightness of center pixel, C, is related
probabilistically to brightness levels of its
nearest neighbors. Usually, 3 x 3 neighborhoods
are used. In the example shown above, C is
lighter than its surrounding neighbors, so it is
probably “really” darker.

cal analogy, the probability of an image f is
determined according to the Boltzmann distri-
bution by

p(:)=iz*(’)@ , ©

where Z  is a normalization term. The pixel-
pixel interaction energy thus represents our
a priori knowledge of f. Finding H,(f), given f,
logically and consistently is a difficult subject
that will not be addressed in this paper, but it is
not difficult to construct something “reason-
able.”

Equations (5) and (6) can now be inserted
into equation (4) to yield

p(flg) = e——————HZ(f'g) ,

where H(f,g) = H/(f) + H,(f,g) and terms that are
constant with respect to f have been absorbed
into Z. The ratio H,/H,, indicates the impor-
tance of the a priori information about f relative
to the data.

The problem of minimizing p(f ! g) has thus
been transformed into that of minimizing H(f,g)
over the space of all possible f € S. Since S is
very large we cannot possibly examine H(f,g)
for all f. Instead we use a stochastic approach
called simulated annealing.

@




4. Simulated Annealing

In the physical annealing process, a system
is heated to a high temperature and then slowly
cooled, allowing the system’s atoms or spins to
collectively “search” the set of all possible
configurations for the one with the lowest en-
ergy consistent with theappropriate constraints.
Physical annealing thus “performs” combina-
torial optimization over a huge solution candi-
date space.

Simulated annealing mimics the essentials
of the annealing process to solve the combina-
torial optimization problems. Restating the
problem, we seek f* € S for which H(f,g) is a
minimum. The essential steps of the simulated
annealing procedure are the following:

1. Select a starting “temperature,” T, (the
meaning of temperature will become clear as
we proceed).

2. Randomly select from S a solution
candidate, f; f is the current solution candi-
date.

3. Calculate E, = H(f,).

4. Choose a second solution candidate, f,,
“nearby” the current solution candidate (e.g.,
change one pixel of the image) and calculate E,
= H(f),.

5.1fE, < E,, accept f, as the current solution
candidate. If E, > E_, accept £, as the current
solution candidate with probability p(AE,T)),
where AE = E, - E.. Return to step 3, with the
current solution candidate in place of f,.

6. After a “large” number of cycles through
steps 3 to 5, decrease the temperature, and
repeat steps 3 to 5 with T, replaced by the new
temperature.

7. At “sufriciently” low temperature stop
the program. The current candidate solution f’
is the output of the process.

The acceptance probability, p(AE,T), is
usually taken to be

eAE/T
Z(T)
where Z(T) is a normalization term. Tempera-

ture measures the stochastic noise thatis present
in the algorithm, much as it does in a physical

p(AE,T) = , (8)

]

system. At high temperatures, AE >0 transitions
have a nonvanishing probability, allowing
“jumps” over energy barriers between local
minima and the global one (fig. 3). AsT — 0,
however, p(AE,T) — 0, for AE > 0, so that only
AE <0transitions occurand simulated annealing
becomes a gradient descent algorithm.

If cooling is too rapid (quenching) the sys-
tem may “freeze” in a local instead of a global
energy minimum. It has been shown that f’, the
simulated annealing solution at the n* ijtera-
tion, converges to the global optimum, f*, as n
— << foralogarithmic cooling schedule in which
the temperature, T , at the n** iteration is given
b{ T =T,/log(1+ n")’, where T is a constant. The
closer T is to zero, the “better” the solution:
Unfortunately the temperature drops very
slowly (fig. 4), and there is no general error
bound onthe simulated annealing solutionafter
a given finite number of iterations. There have
been attempts to speed up the algorithm by
using acceptance probabilities other than the
Boltzmann distribution [6].

Simulated annealing can be speeded up by
parallel execution on connection machines or
specialized neural networks called Boltzmann
machines. Further details can be found in refer-
ences [7]. Alternative optimization procedures,
such as mean field annealing [8], have also been
proposed.

A

HE

» f
Figure 3. Goal is to determine global minimum
f*. Gradient descent algorithms “stick” in local
minima such as f_, so the transition f,— £, cannot
occur. Simulated annealing is a stochastic
procedure that sometimes allows transitions to
higher energies ( such as f,— f,). After many
iterations the simulated annealing solution is
close to the global optimum.
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Figure 4. Normalized temperature, Tn(n), after n simulated annealing iterations under
logarithmic cooling schedule. Tn(n) = T(n)/T(1), where T(n) is the temperature at the nth
iteration. Tn(1000) = 0.1, so temperature decreases by only a factor of 10 after 1000 cycles.

5. Image Restoration

We used 41 x 41 binary test images drawn
from a set of character fonts supplied with the
Turbo C programming language. The charac-
ters, together with a rectangular background,
were converted into arrays of 0’s and 1’s. We
chose the characters “A,” “B,” “E,” “G,” and
“&" because they contain a variety of horizon-
tal, vertical, diagonal, and curved line segments.

Noise was added by sequentially examin-
ing each pixel and “flipping” it (changing 1to 0
or vice versa) with probability p, 0 <p < 1. The
decision whether or not to flip was made by
drawing a random number, x, from the con-
tinuous range 0 < x < 1 for each pixel and
flipping if x < p. We quote the number p as the
noise level in our results. Only for large images
does it represent the fraction of pixels actually
flipped.

The energy change, AE = H(f',g) - H(f.g),
where f and f differ by a single pixel was
defined according to the number of nearest
neighbors with the same brightness ina 3 x 3
neighborhood on a square grid (table 1). Edge

pixels were regarded as neighbors of pixels on -

the opposite side of the image. We took the
normalization, Z(T) in equation (8) to be

Z(T)=2, et 9)

where the sum is over all possible values of AE.

Table 1. Energy change (AE) of central pixel (see
fig. 1) flipped as a function of number of similar

(same brightness) neighbor pixels (N,)

N, AE
8,7,6 +2
5 +1
4 0
3 -1
21,0 -2

We performed simulated annealing by se-
quentially examining each pixel and deciding
whether or not to flip it according to step 5 in
section4. For AE > 0, this step wasimplemented
by choosing a random number, x, in the range
0 < x < 1. The pixel flip was accepted in the case
p(AE,T) < x. It might have been closer to the
“spirit” of simulated annealing to examine pixels
randomly, but since we added noise anew each
time we ran the simulated annealing algorithm
on the same image, not much was lost.

Instead of a logarithmic cooling schedule,
we derived one (table 2) by inspecting the
behavior of p(AE,T) with temperature (fig. 5). If
the starting temperature is too high the simu-
lated annealing procedure may add more noise
than it removes, whereas if it is too low we are
left with a simple gradient descent algorithm.
We used a total of only 10 annealing cycles.




Table 2. Simulated No. of
annealing tempera- 1emperature cycles
ture schedule
100.0 1
50.0 1
20.0 1
5.0 1
12 5
0.6 1
03 1
0.1
PAE,T)
0.0 T 1.0

Figure 5. Behavior of transition acceptance prob-
ability, p(AE,T), with temperature for different
values of AE. As T — 0, p(AE,T) - 0; thus at low
temperature, simulated annealing becomes a
gradient descent.

Restoration quality was studied by running
the program repeatedly on the sets of noisy
images with “fresh” noise inserted each time.
Restoration quality was defined as the fraction
of pixels that were different between the re-
stored and the original image. Our procedure
was the following: (1) choose a character and
corrupt it with noise level p, (2) apply the simu-
lated annealing algorithm, and (3) measure the
quality of the restoration. The procedure was
run 100 times for each character and statistics
were compiled.

6. Results and Discussion

Our results are summarized in table 3, and
in figure 6, where we quote the mean and stan-
dard deviation of the restoration quality for 100

runs on each character. An example of an origi-
nal image corrupted with noise and then recov-
ered is shown in figure 7.

For noise levels less than about 10 percent,
our simulated annealing procedure does not
improve image quality, and in fact may actu-
ally degrade it. This is not surprising because
annealing is a stochastic process. Ideally the
temperature schedule should be tailored to the
noise level in each original image, but we used
one schedule for all images. Many more effi-
cient techniques exist for extracting patterns
out of low noise backgrounds, so simulated
annealing would be of little use in this regime
anyway.

As the data show, our simulated annealing
procedure did yield significant improvements
in image quality in the 20- to 30-percent noise
range. While the behavior of the algorithm
differed from character to character, the differ-
ences were not large.

These results are quite promising in view of
the fact that we used only 11 anrealing cycles
withanad hoc temperature schedule. For future
studies we plan to implement a logarithmic
cooling schedule and run more cycles. We also
plan to examine the effect of different accep-
tance probability distributions, p(AE,T), such
as the one proposed by Szu and Hartley [6].

Table 3. Averar,e restoration quality and stan-
dard deviation for 100 simulated annealing
trials per character (procedure of sect. 3.3)

Initial 0%  10% 20%  30%

distortion

Character
A 9t1% 9+1% 10+1% 14%2%
B 10x1% 10x21% 11+x1% 15+2%
G 10t1% 10+1% 11+x1% 15+2%
E 10+1% 10+x1% 11x1% 14+2%
& 11+1% 1111% 12+1% 16+2%




Figure 6. Noise 1625
remaining after
simulated anneal-
ing as a function
of initial noise
level for each
symbol.
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Figure 7. Image cor- - - ]
rupted with noise and  E==ESuiin i P = £ :i o]
recovered: (a) original  ESsmuiiusiasea 28 = B s
image, (b) with 30- =G = == e S
percent noise, and i b ===
(c) after 10 simulated =E=_ o ‘?g
annealing runs 11 R i =
percent of the pixels i i =
differ from the original. =3 ptX = H =]
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