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1. Introduction Even for a simple 10 x 10 binary image
4 where L = 2 and n = 10, N = 210, so calculating
The basic problem of image recovery and p(f I g) for each possible f is computationally

pattern recognition is to determine the original infeasible, even in simple cases. A problem
pattern, f, given its corrupted version, g. The whose computational difficulty grows expo-
unknown pattern f is an element of the set S = nentially with some characteristic problem size
f,; f2, f,.., and the task is to deduce which measure is called NP (nonpolynomial) com-
pattern in S gave rise to the image data, g. S is plete [2]. Most NP complete problems can only
called the solution candidate space and could be solved by selectively sampling elements of
be, for example, the set of alphabetical symbols. the solution candidate space.

If it is known that certain elements of S have
a higher probability of occurring than others
(such as alphabetical symbols in text), thisa priori 2. Bayesian Analysis
information can be incorporated into the proce- The probability of "event" f, given that g
dure for finding f according to the techniques of has occurred, p(f I g), is called a conditionalBayesian analysis [11].

In the general image recovery problem, S i probability. The probability of f alone, p(f), and
nthe s e ral sible ter ro, n n pil that of g alone, p(g), may overlap in "probabil-

the set of al r possible patterns on an n n pixel ity space" as illustrated in figure 1. Obviously,
image, and the relationship between the origi- I g) and p(g are given by
nal image, f, and the image data, g, can be
modeled by P p(f p( g) p(gf)P(,g) (3)

g=f+w , (1 ()f)

where w is random noise. Sets of pixel bright- where p(f^g) is the probability of both f and g.

nesses at lattice position (i, j) are described by f Eliminating p(f^g) from (3) yields

= {fI, g = (g, and w= {wi. Since w is a random p(gf) P(f) (4)
varable, f cannot be deterfrined from g using dp' g) (4_
equation (1). The best w~ecnd sfn hequ can do is find the Equation (4) expresses Bayes' theorem.
pattern f* E S such that p(f I g) is a maximum,
where p(f I g) is the probability that, given the The probability p(f) expresses our a priori
image data g&f was the original image. We (independent of the image data, g) knowledgecannot, even in principle, be sure that f* = f or is
even "close" to it. Ifpe, ber f is known "in of f, whereas p(f I g) represents our a posterioi i
evn"cle" tosit. Ifnowevert ias k n "e (given the image data) information about f.
advance" (using known test images that have Thus f* E S which maximizes p(f I g) is the best
been corrupted by noise), the "goodness" of f* fit to both the a priori and the a posteriori knowl-

cane eove. This iwatten heo on edge about f. Bayes' theorem allows us to incor-l4mage recovery and pattern recognition

problems are thus combinatorial optimization
problems, in which a solution candidate space,
S, must be searched. The larger S is, the more
difficult the search. The number, N, of images C
possible on an n x n pixel array where each pixel P(f) P(f^g) p(g)

has L possible grey levels is given by

2 (2)
S() Figure 1. Probability space for Bayes' Theorem.
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porate the "experimental data," g, with our
prior knowledge of f. This approach to the
image restoration and pattern recognition prob-
lem is often called the maximum a posteriori
(MAP) technique.

C

3. Combinatorial Optimiza-
tion Problem
We are now ready to obtain an analytic ex-

pression for p(f I g) using equation (4). - - _r ie
From equation (1), p(g I f) = p(w), the proba- Figure 2. Markov random field model of animage. Brightness of center pixel, C, is related

bility of having noise w. p(gI f) can beree- u
sented in the form repre- probabilistically to brightness levels of its

nearest neighbors. Usually, 3 x 3 neighborhoods

p(g if) = ,e-HN(f,g) are used. In the example shown above, C is
N lighter than its surrounding neighbors, so it is

probably "really" darker.
where HN(fg) is the noise energy and N a nor-
malization term. If, for example, the noise is cal analogy, the probability of an image f is
Gaussian, HN(fg) = I If-gi 1/(2 2), where II f determined according to the Boltzmann distri-
- g I I is a distance measure between f and g bution by
(e.g., the number of pixels in which they differ), p e-(f (6)
and (72 is the variance. ZO

Since the probability of obtaining g alone, where Z0 is a normalization term. The pixel-
p(g), is independent of f, it can be regarded as a pixel interaction energy thus represents our
constant with respect to f. We are thus left with a priori knowledge of f. Finding H0(f), given f,
the problem of determining p(f). logically and consistently is a difficult subject

Images tend to consist of large regions of that will not be addressed in this paper, but it is
constant or slowly varying brightness, sepa- not difficult to construct something "reason-
rated by edges. Within a region, a pixel's bright- able."
ness is expected to be similar to its nearest Equations (5) and (6) can now be inserted
neighbors, so a pixel whose brightness differs into equation (4) to yield
greatly from its neighbors has "probably" been -Hfg)

affected by noise (fig. 2). An image can thus be p(f g) = e (7)
modeled as a set of pixels whose brightnesses Z
depend on their nearest neighbors' brightness where H(fg) = H0(f) + HN(fg) and terms that are
probabilisti._ally. Such a system of interrelated constant with respect to f have been absorbed
probabilities is called a Markov random field into Z. The ratio H01HN indicates the impor-
[3]. tance of the a priori information about f relative

It can be shown that a Markov random field to the data.
is formally equivalent to an Ising [4,51 system of The problem of minimizing p(f I g) has thus
interacting spins on a lattice. Analogous to the been transformed into that of minimizing li(f,g)
Ising spin-spin interaction, a pixel-pixel inter- over the space of all possible f E S. Since S is
action energy can be defined. The sum of the very large we cannot possibly examine H(fg)
pixel-pixel interaction energies is the image for all f. Instead we use a stochastic approach
energy, H0(f). Following the statistical mechani- called simulated annealing.
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4. Simulated Annealing system. At high temperatures, AE > 0 transitions
have a nonvanishing probability, allowing

In the physical annealing process, a system "jumps" over energy barriers between local
is heated to a high temperature and then slowly minima and the global one (fig. 3). As T --+ 0,
cooled, allowing the system's atoms or spins to however, p(AE,T) -* 0, for AE > 0, so that only
collectively "search" the set of all possible AE<0 transitions occurand simulated annealing
configurations for the one with the lowest en- becomes a gradient descent algorithm.
ergy consistent with the appropriate constraints. If cooling is too rapid (quenching) the sys-
Physical annealing thus "performs" combina- tem may "freeze" in a local instead of a global
torial optimization over a huge solution candi- energy minimum. It has been shown that f', the
date space. simulated annealing solution at the nh itera-

Simulated annealing mimics the essentials tion, converges to the global optimum, f*, as n
of the annealing process to solve the combina- --c for a logarithmic cooling schedule in which
torial optimization problems. Restating the the temperature, T at the nh iteration is given
problem, we seek f* r S for which H(fg) is a by T = T0/log(1 + nl, where To is a constant. The
minimum. The essential steps of the simulated closer To is to zero, the "better" the solution.
annealing procedure are the following: Unfortunately the temperature drops very

1. Select a starting "temperature," T (the slowly (fig. 4), and there is no general error
meaning of temperature will become clear as bound on the simulated annealing solution after

we proceed). a given finite number of iterations. There have
2. Randomly select from S a solution been attempts to speed up the algorithm by

candidate, fl; f, is the current solution candi- using acceptance probabilities other than the

date. Boltzmann distribution [6].
3. Calculate E, = H(f1). Simulated annealing can be speeded up by
4. Choose a second solution candidate, f2, parallel execution on connection machines or

"nearby" the current solution candidate (e.g., specialized neural networks called Boltzmann

change one pixel of the image) and calculate E2  machines. Further details can be found in refer-
= H(f)2. ences [7]. Alternative optimization procedures,

5. If E2 < El, accept f 2 as the current solution such as mean field annealing [81, have also been

candidate. If E2 > El, accept f2 as the current proposed.
solution candidate with probability p(AE,T),
where AE = E2 - El. Return to step 3, with the
current solution candidate in place of f. H ,

6. After a "large" number of cycles through H(V
steps 3 to 5, decrease the temperature, and
repeat steps 3 to 5 with T replaced by the new
temperature. %

7. At "sufficiently" low temperature stop "
the program. The current candidate solution f' f.
is the output of the process. f,___

The acceptance probability, p(AE,T), isusually taken to be Figure 3. Goal is to determine global minimum
f*. Gradient descent algorithms "stick" in local

p(AE, T) - (8) minima such as f., so the transition f,-- fb cannot
'M occur. Simulated annealing is a stochastic

procedure that sometimes allows transitions to

where Z(T) is a normalization term. Tempera- higher energies ( such as f.-* b. After many
ture measures the stochastic noise that is present iterations the simulated annealing solution is
in the algorithm, much as it does in a physical close to the global optimum.
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1.0

Tn(n)

0

0 n 1000

Figure 4. Normalized temperature, Tn(n), after n simulated annealing iterations under
logarithmic cooling schedule. Tn(n) = T(n)T(1), where T(n) is the temperature at the nth
iteration. Tn(1000) = 0.1, so temperature decreases by only a factor of 10 after 1000 cycles.

5. Image Restoration Table 1. Energy change (AE) of central pixel (see
fig. 1) flipped as a function of number of similar

We used 41 x 41 binary test images drawn (same brightness) neighbor pixels (Ne)
from a set of character fonts supplied with the
Turbo C programming language. The charac-
ters, together with a rectangular background, N

were converted into arrays of O's and l's. We 8,7,6 +2
chose the characters "A," "B," "E," "G," and 5 +1
"&" because they contain a variety of horizon- 4 0
tal, vertical, diagonal, and curved line segments. 3 -1

Noise was added by sequentially examin- 2,1,0 -2

ing each pixel and "flipping" it (changing 1 to 0
or vice versa) with probability p, 0 < p < 1. The
decision whether or not to flip was made by We performed simulated annealing by se-
drawing a random number, x, from the con- quentially examining each pixel and deciding
tinuous range 0 < x < 1 for each pixel and whether or not to flip it according to step 5 in
flipping if x < p. We quote the number p as the section 4. ForAE > 0, this step was implemented
noise level in our results. Only for large images by choosing a random number, x, in the range
does it represent the fraction of pixels actually 0 < x < 1. The pixel flip was accepted in the case
flipped. p(AE,T) < x. It might have been closer to the

The energy change, AE = H(f',g) - H(f,g), "spirit" of simulatedannealingtoexaminepixels
where f and f' differ by a single pixel was randomly, but since we added noise anew each
defined according to the number of nearest time we ran the simulated annealing algorithm
neighbors with the same brightness in a 3 x 3 on the same image, not much was lost.
neighborhood on a square grid (table 1). Edge Instead of a logarithmic cooling schedule,
pixels were regarded as neighbors of pixels on we derived one (table 2) by inspecting the
the opposite side of the image. We took the behavior of p(AE,T) with temperature (fig. 5). If
normalization, Z(T) in equation (8) to be the starting temperature is too high the simu-

lated annealing procedure may add more noise
Z(T) -- -  (9) than it removes, whereas if it is too low we are

left with a simple gradient descent algorithm.
where the sum is over all possible values of AE. We used a total of only 10 annealing cycles.
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Table 2. Simulated No. of runs on each character. An example of an origi-
annealing tempera- Temperature cycles nal image corrupted with noise and then recov-
ture schedule ered is shown in figure 7.

For noise levels less than about 10 percent,

20.0 1 our simulated annealing procedure does not
5.0 1 improve image quality, and in fact may actu-
1.2 5 ally degrade it. This is not surprising because
0.6 1 annealing is a stochastic process. Ideally the
0.3 1 temperature schedule should be tailored to the

noise level in each original image, but we used
0.1 one schedule for all images. Many more effi-

cient techniques exist for extracting patterns
out of low noise backgrounds, so simulated
annealing would be of little use in this regime

p(A E, T) anyway.
As the data show, our simulated annealing

procedure did yield significant improvements

0.0 _in 
image quality in the 20- to 30-percent noise

0.0 T 1.0 range. While the behavior of the algorithm
differed from character to character, the differ-

Figure 5. Behavior of transition acceptance prob- ences were not large.
ability, p(AE,T), with temperature for different These results are quite promising in view of
values of AE. As T --+ 0, p(AET) - 0; thus at low the fact that we used only 11 annealing cycles
temperature, simulated annealing becomes a with an ad hoc temperature schedule. For future
gradient descent, studies we plan to implement a logarithmic

cooling schedule and run more cycles. We also
Restoration quality was studied by running plan to examine the effect of different accep-

the program repeatedly on the sets of noisy tance probability distributions, p(AE,T), such
images with "fresh" noise inserted each time. as the one proposed by Szu and Hartley [6].
Restoration quality was defined as the fraction
of pixels that were different between the re- Table 3. Avera,e restoration quality and stan-
stored and the original image. Our procedure dard deviation for 100 simulated annealing
was the following: (1) choose a character and trials per character (procedure of sect. 3.3)
corrupt it with noise level p, (2) apply the simu- Initial 0% 10% 20% 30%
lated annealing algorithm, and (3) measure the distortion
quality of the restoration. The procedure was
run 100 times for each character and statistics Character
were compiled. A 9±1% 9±1% 10±1% 14±2%

B 10±1% 10±1% 11±1% 15±2%

6. Results and Discussion G 10±1% 10±1% 11±1% 15±2%

Our results are summarized in table 3, and E 10±1% 10±1% 11 ±1% 14±2%
in figure 6, where we quote the mean and stan- & 11 ±1% 11 ±1% 12 ±1% 16±2%
dard deviation of the restoration quality for 100

9
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