
RADC-TR-90-349
Final Technical Report
December 19904

AD -A23 0 62

KBSA FRAMEWORK

Honeywell, Inc.

Aaron Larson, John Kimball, Jeff Clark,Bob Schrag

APPROVED9 FOR P111/C RELEASE? O/S FR/BUT/ON 1/AlL/A/TED

Rome Air Development Center
Air Force Systems Command

Griff iss Air Force Base, NY 13441 -5700

~.ji)r~j31

This report has been revie,-'ed by the .AL4C Public Af'airs Division (PA)
and is releasable to the National Technical lnfor-ation Serv;ices (NTIS) At
NTIS it will be releasable to the general publi- including foreign nations.

RADC-TR-90-349 has been reviewed and is approved for publication.

APPROVED:

DOUGLAS A. WHITE
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR. 4
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

BILLY G. OAKS
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COES) Griffiss AFB NY 1341-5700.
This will assist us in malntaining a current mailing list.

Co not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE FOMB Nop0ov,1
Ptjft atr ud fa d- rinfm amI towvia" IJ hm Pff. Q romg " C"u for MrW3~g ram.mR indwq am4g cus UXias~'go u ~swo i u = a ng u " ~ CW d ~ 'gr@*rq d110~,1- S"wa -9w .2g;p~ T? 9C@ gI3W@0f"Cuy W in8S= U

d ftvr . r. q . u to redq tu b.derttoW Wagnu Hxsta Samvm D1ecue~ for a1TVUo Opwur and Roms 121 5.jefersor
Own HiOW. S4A@ 1214. Art VA M-4302 " to t- Oflce d Mw.mwt ' BiL. Paqewak Rsinn Promp (0704.1 UM Waw~cn OC 205M

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1990 Final Mar 88 to Apr 90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

KBSA FRAMEWORK C - F30602-86-C-0074
PE - 62702F

6. AUTHOR(S) PR - 5581

Aaron Larson, Jeff Clark, John Kimball, Bob Schrag TA - 27

IJU - 14

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATION
Honeywell, Inc. REPORT NUMBER
Systems & Research Center
3660 Technology Drive
Minneapolis MN 55418

9. SPONSORINGUMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Rome Air Development Center (COES) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700 RADC-TR-90-349

11. SUPPLEMENTARY NOTES
RADC Project Engineer: Douglas A. White/COES/(315)330-3564

12a. DISTRIBUTIONAVAILABILTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, distribution unlimited

13. ABSTRACT C(mnx 2W wo

This report describes research performed while developing specifications for a
support environment (framework) suitable for serving as the common basis for integra-
tion and continued development of the many lifecycle facets of the Knowledge-Based
Software Assistant (KBSA). The KBSA will be a system which provides significant
automation in the development and lifetime support of large software systems. A
history of the effort including a background for many of the design decisions and
the lessons learned throughout the project are included.

14. SUBJECT TERMS 15 NUMBER OF PAGES
Software development, Artificial intelligence, Knowledge-Based 134
systems ,& PRICE CODE

17. SECURITf CLASSIFICATION 18, SECURITY CLASSIFICATION 1g. SECURITY CLASSIFICATION 20. UMITAT1ON OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
N S N 7540 .01 -280- M00 S t wa a F o r 2 98 fP , 2 8 1

Pmabod by ANSI Sta Z3!. a
2gs-102

Aooesslon For

NTIS GRA&I
DTIC TAB
Unannounced El
Justificatio

By
Distribution/

Availnbility Codes
IAva~i eI nd/or

Contents Dist Sp:f0131

JJ 17Li

I Project Overview and Lessons Learned 1

1 Project Overview and History 3

2 Lessons Learned 6

2.1 Persistent Object Store 6

2.2 Configuration Management 8

2.3 Access Control 9

2.4 User Interfaces 10

2.5 Hardware/Software Issues 11

2.6 Facet Integration 12

2.7 Prototyping Language Choice 13

2.8 Object Oriented Systems 13

3 Vision of the Framework 16

II Change and Configuration Management Model 19

4 Introduction to CCM 21

4.1 Dimensions of the CCM Problem 23

4.2 KBSA Framework CCM Model 25

4.3 Initial Experience Using the Model for Avionics CAD 27

• imm
m m m

I m • m mn m

5 Dimensions of the CCM Problem 29

5.1 Interdependency and Change 29

5.1.1 Interdependency 29

5.1.2 Change 30

5.2 Configurations 33

5.2.1 Consistency 33

5.2.1.1 Class-specific consistency 35

5.2.1.2 Application-specific consistency 36

5.2.2 Composing Configurations 36

5.2.3 Modularization and Interfaces 38

5.3 Design Transactions 39

5.3.1 Design Transactions vs Conventional Transactions 41

5.3.2 Validation at Commit Time 42

5.4 Equivalence and Search 43

5.4.1 Versions, Equivalence, and Compatibility 44

5.4.2 Representations, Equivalence, and Consistency 46

5.4.3 Search 46

5.5 Dynamic Version Binding 47

5.6 Change Propagation and Change Notification 50

5.7 Objects with Multiple Representations 52

6 KBSA Framework CCM Model 56

6.1 Configurations as Contexts for State 56

6.1.1 Configurations as Deltas 60

6.1.2 Compatibility Attributes 61

6.1.3 Structure and Operations of Configurations 62

6.2 Transactions as Contexts for State 64

6.2.1 Successor Transactions and Subtransactions 65

6.2.2 State Clashes 65

ii

6.2.3 Operations on Transaction Handles 68

6.3 Configuration Schema 72

6.3.1 Change Propagation and Change Notification 74

6.4 Cross-configuration and Dynamic References 78

6.5 Initial Experience using the Model for Avionics CAD 80

6.5.1 Representing Change 81

6.5.2 Dynamic References and Change Notification 83

6.6 Related Issues and Open Iss;!es 85

III KBSA User Interface Environment (KUIE) 89

7 Introduction to KUIE 91

7.1 Design Goals 93

7.2 Concepts 94

7.2.1 KUIE Levels 94

7.2.2 KUIE Graphics 97

7.3 Constructing User Interfaces With KUIE 98

7.3.1 Application Programming 99

7.3.2 Graphic Programming 99

8 Level 1 - Building Blocks 100

8.1 Ciasses 100

8.2 Primitive Classes 103

8.3 Composite Classes 104

8.4 Mix-In Classes 105

9 Level 2 - Automated Layout 107

9.1 Motivation, Comparison to Other Work, and Goals 108

9.2 Capabilities and Architecture 109

±ii

9.2.1 The Specifier. 109

9.2.2 The Assimilator. 1l

9.2.3 The Allocator. 112

9.2.4 The BMS - Bounds Maintenance System. 113

9.3 Example 113

9.4 Status and Completion Plans. 116

iv

List of Figures

4.1 A document and its components 22

5.1 Check-password-quality program 30

5.2 Design objects and systems of design objects are evolutionary..... .. 31

5.3 First version of Check-Password-Quality configuration 34

5.4 A expects B:1.9:, but can accept B:2.0: 44

5.5 Satisfaction DAGs indicate compatibility 45

5.6 Multiple representations for the same design object 52

6.1 Changing a dependent object 57

6.2 Reusing a dependent object 59

6.3 Configurations :C1.0.1: and :C1.0.2: as deltas from :C1.0.1: 60

6.4 Primitive structure and operations for configurations 63

6.5 A successor transaction and a subtransaction 66

6.6 A state clash between U's A and V's A 67

6.7 Second version of Check-Password-Quality configuration 75

6.8 Password-Changer configuration, descended from Check-Password-
Quality 76

6.9 Configuration Management Operations in Avionics Application. . .. 82

7.1 Structure of KUIE, CLX, CLUE and CLIO 95

8.1 KUIE Class Hierarchy 102

v

9.1 KUIE Level 2 Example........................... 17

Vi

Part I

Project Overview and Lessons
Learned

1

Chapter 1

Project Overview and History

The 1983 KBSA report ([1]) described the requirements for a next generation software
development system. The report presupposed a collection of cooperating knowledge
based experts or "facets" living in and under a common environment or "framework".
It placed specific requirements on the framework, focusing on activities coordination,
standard abstract data structure representations, and noted that "such standards are
difficult undertakings." The activities coordinator was to be responsible for managing
the interactions of individuals during the evolution of the software product, providing
guidance and decision making support to the members of the software team. The
"standard abstract data representations" were to provide a communication channel
between the cooperating facets. The report went on to mention several other aspects
of the framework, particularly version management (which was to be part of the
activities coordinator), access control mechanisms, user interface support, integration
technology, and data base support.

The overall KBSA project plan called for "each lifecycle phase to be incrementally
formalized" as part of the activities coordinator which was to force "consistency
among these activities and impose standards." This was to be accomplished by
creating "suitable KBSA frameworks" and by the "periodic integration of the evolving
individual KBSA facets into a succession of more comprehensive KBSAs."

When Honeywell started the framework contract, we believed the approach outlined in
the KBSA report to be rersonable and planned to follow it. We also believed that an
object oriented view of the central data model with some logical expressive capability
would be a good desLtiption mechanism, and would likely be a good implementation
vehicle as well. WAe further realized that whatever system we were to describe would
have to take account of the fact that the system would be multi-user and that the
data base would be, at least in some sense, distributed. We initially intended to

3

(BSA Framework Overview and Lessions Learned

-elect from among the existing KBSA facet languages as the basis for the framework
anguage, but data rights issues precluded this. Given this situation we prototyped
i distributed object management system with an integrated logic engine ([2]). The
prototype was intended to give us an understanding of the restrictions likely to exist
in commercial object data base systems (that were then under development) as they
would relate to the KBSA environment (e.g., how could we integrate them with a
logic engine, how would they fit into LISP, etc.), and to provide a platform for doing
integration testing.

In 1987 we integrated the Project Management Assistant (PMA) into the prototype
framework. The purpose of the integration was to see what level of support the
facet needed from the framework and to get a sufficient understanding of the facet
to determine the information model that the facet used. At about this time, we
held a developer's meeting to discuss integration issues. The general consensus of
the meeting was that a loose integration of the facets should be possible. Initially it
was our intention to use a commercial Object Oriented Data Base System (OODBS)
as the foundation of the framework for integrating the facets; however, anticipated
commercial products were not forthcoming - with the net effect that we were forced
to continue maintaining our prototype system.

The integration of the PMA into the framework went reasonably smoothly, but it
soon became apparent that we would not obtain the implied information model from
the source code. Primarily, this was because the source code embodied only a small
portion of the developer's knowledge of the problem. At one of the subsequent KBSA
developers meetings, we proposed a cooperative development of the information model
for the KBSA; however, contracting issues and immaturity of the project, made the
other contractors reluctant to undertake such an endeavor.

The next facet addressed was the Requirements Assistant. As with the PMA, data
rights issues delayed the delivery of the facet source code. Once the source was
received, we tightly integrated a portion of it into the framework. Although this time
the source was much more substantial, it was once again clear that reverse engineering
the information model from the source was not feasible, primarily because much of
the meaning was hidden in the frames representation (which had little discernible
structure). Once again, we attempted to start a joint information modeling task
with the other developers. We proposed that Honeywell develop an initial version of
the information model and submit it to the other developers for review. It became
clear that the developers were reluctant to commit their resources and that the model
would be fairly shallow in any event, and as a result this effort was not pursued.

Throughout the contract, we worked with the developers trying to standardize on
items that would either be part of the long term development of the KBSA, or which

4

Overview and Lessions Learned KBSA Framework

would promote interchange of software prototypes. We believed that the facets should
be built on Common Lisp, and on the Common Lisp Object System (CLOS). The
developers agreed that the prototypes should be based on Common Lisp, with win-
dowing support from X windows. There was partial agreement that CLOS should be
used as the base object system. It was, however, agreed that the X windows interface
was too low-level to be practical, and Honeywell agreed to build a toolkit based on
X (KUIE).

Throughout this time we were closely following the ANSI Common Lisp standard-
ization process, with particular attention to the CLOS and Common Lisp windowing
systems. The object level of CLOS has been adopted into the draft ANSI Common
Lisp standard, with adoption of the Meta Object Protocol (MOP) delayed pending
further experimentation by Common Lisp users and implementors. Although re-
cently there have been a number of Common Lisp windowing systems released, no
clear windowing standard has yet emerged.

In addition to using our framework prototype for integration experiments, we used
it to prototype several Access Control systems and did numerous experiments with
version and configuration management approaches. The developed LISP environment
with configuration management support was heavily used during the KUIE project
development.

5

Chapter 2

Lessons Learned

The following sections summarize the lessons that we learned during the course of
the framework contract that have not been described in our other reports, and make
suggestions for future directions.

2.1 Persistent Object Store

At the outset of the KBSA framework project, there were several commercial vendors
of Object Oriented Data Base Systems (OODBS) expecting to have product releases
"within a year". After approximately that time period, they were out of business, un-
able to deliver a marketable system. Recently there has been a resurgence of OODBS
vendors, and we believe that market pressures will result in the development of usable
OODBS within a time frame acceptable to the KBSA program (1-2 years). What
is less certain is whether or not the OODBS will support the capabilities needed by
the KBSA contractors. Honeywell, at the iequest of the KBSA Technology Trans-
fer consortium, did a survey of the KBSA developers asking what capabilities they
needed/expected in an OODB. We only received one response (from USC/ISI), but
based on it, our own understanding of the problem, and what we believe the other
developers expect, there is likely to be some mismatch in the expectations of the
developers and the capabilities of commercial OODBS. The primary issue is that of
consistency constraints. The developers expect a fairly powerful, probably first order
logic, constraint mechanism. Existing OODBS provide a much simpler constraint
mechanism, usually a fixed set of predicates over the "slots" of stored objects. Op-

6

Overview and Lessions Learned KBSA Framework

timizing very general constraints is quite difficult1 and it is unlikely that commercial
vendors are going to address this issue in the near future.

Another deficiency of existing OODBS is the general lack of a capability to store and
use "methods" (i.e., code or behaviors) in the data base. Without this capability,
the constraint mechanism is limited to only refer to the "slots", or representation,
of the stored objects, rather than the method based abstractions on the slots. This
is a clear violation of encapsulation, one of the primary benefits of object oriented
programming. Furthermore, if methods are not part of the OODB, then maintaining
consistency between the stored data and the programs that manipulate it becomes
a configuration management problem. On the other hand, making the OODB store
and run methods makes the OODB vendor create an execution environment suffi-
ciently general to model the control primitives the users expect (e.g., should it have
multi methods? multiple inheritance?, etc.). Furthermore, optimization of method
invocation has proven to be difficult when dynamic user specialization is permitted.
Additionally, transactions and configuration management issues are likely to make it
even more difficult. Making all this work in a distributed multi user environment will
require significant additional time and effort.

These questions of course raise the issue of how tightly should the OODB be inte-
grated with the languages and tools that will be manipulating it? If a tight integration
is chosen, the resulting system will be a huge monolithic environment; if loose inte-
gration is chosen, then maintaining data base consistency will be very difficult.

Further experimentation with OODBS supporting software development environ-
ments will undoubtedly sort out some of these issues. In the mean time, the approach
taken by the various KBSA developers (i.e., using a single user virtual memory scheme
with wholesale load and store capability) is likely to be acceptable for experimentation
of single user programming environments. The issues involved in coordinating multi-
user projects as they evolve is partially described in the configuration management
section of this report, but more work is necessary.

A centralized OODB with remote client access should be sufficient for near term
research and experimentation with configuration management and individual facets.
For full scale product development, a truly distributed OODB will almost certainly
be necessary.

11t is hard to determine the domain of the characteristic function for the set of objects which could
change the validity of a constraint. At least one system we have seen ([3]) dynamically computes
the dependents of a constraint based on reaching definitions, but this has a fairly high overhead.

7

KBSA Framework Overview and Lessions Learned

2.2 Configuration Management

Configuration Management is the management over time of systems as they evolve.

The Configuration Management (CM) section of this report details our current be-
lief of the requirements and approach that should be taken to support configuration
management in the KBSA. We believe that CM will play an important part in the
eventual KBSA, having impact on a large number of issues; relationships to OODBS,
activities coordination, module interconnection, and reuse. The following paragraphs
highlight the experiences we had related to CM during the development of the frame-
work prototype.

During the development of the framework prototype, we went through many revisions
of not only our software but of other prototype software. We believe this to be indica-
tive of prototype development in general, since during prototyping you are normally
assembling existing systems, usually experimental themselves, to get some particular
effect. One of the reasons experimental components are used is because they typi-
cally embody the latest (best) understanding of the systems you are assembling. The
framework prototype, at one point or another during its lifetime, ran on three dif-
ferent operating system/LISP implementations (VAXLISP on VMS, Symbolics, and
Allegro CL on Unix) each through several major upgrades. The framework uses as
components the LogLisp Programming System [4], and PCL (a portable CLOS im-
plementation), various miscellaneous tools (browsers, communication packages, etc.).
In addition, KUIE is based on the Common Lisp interface to X windows (CLX),
and Texas Instruments' Common Lisp User-interface Environment (CLUE). Each of
these components went through numerous versions (we didn't keep track of the exact
number, but a good estimate would be 6 each), and since most of the systems were
themselves under development, many of the versions were incompatible. 2

A typical statement made during development would go something like "We've just
found a serious bug in version A of package X, if we could upgrade to version B of X,
then the problem would be solved, except version B of X requires that we have version
E of package Y, which we can't use because..." Unfortunately most existing version
management systems are incapable of describing the sort of compatibility information
necessary to manage collections of software in such an environment. It is our belief
that a successful KBSA must incorporate such information in a way that can be

2As an interesting aside, it should be noted that during this time we were also modifying our
configuration management software, which brings up the question of how to do version management
of your configuration management system, or equivalently "How do you change the way you change?"
This sort of meta level question is typical of object oriented systems, and hints that the problem
has another level of interpretation. We did not address this issue.

8

Overview and Lessions Learned KBSA Framework

reasoned about to aid in the assembly of large software systems. We have made a
start at describing such a system, but further work is required. The Configuration
Management section of this report explains this problem in more detail and lists
several other open issues. It is clear that getting real world data to validate a CM
system is going to be expensive since it means selecting a software system, changing
its configuration management policy, then watching it as it changes.

In an attempt to address some of these issues, we developed a configuration manage-
ment system for our LISP development. The resulting system does manage to capture
some of the intermodule dependencies, particularly as they relate to compilation. Our
approach makes heavy use of the UNIX file system, and the fact that we are deal-
ing with a fairly course granularity. The prototype (we call it the cle: def system)
has been used internally on many projects and several other researchers (outside of
Honeywell) have acquired it. The people here doing Ada development have adopted
several of the principles and are currently using it for Ada software development.

2.3 Access Control

We prototyped an access control system based on a Common Apse Interface Set-like
role/capability model, (which would be considered discretionary access control by 15]),
which was described in [2]. Our belief was that each newly created object would get
associated with it a list of "roles" which defined the access that various users would
have to the object. We believed that this capability would be useful in Configuration
Management (e.g., freezing a version), activities coordination (i.e., enforcing policy),
and discretionary access has proven useful to prevent unanticipated catastrophe (e.g.,
issuing the "delete all files" command when you aren't where you thought you were).

The access control policy that we described has a number of faults. First, it is usually
unclear what the roles for a newly created object should be, normally depending
not ornly on the user, but the task the user was doing when the object was created
and what kind of an object it was. This implies that a more general mechanism,
perhaps based on some underlying more general constraint mechanism, is needed.
Similarly access to an object is necessary, but not sufficient, to describe activities
coordination policy. This leads us to believe that an object's relationships to other
domain objects is a more appropriate vehicle for describing access and policy than are
the object's relationships to some artificial "roles" or capabilities. As for the needs of
the configuration management system, our current belief is that a simple "read only"
mode is all that is necessary, probably with "copy on write" as the default behavior
for "access violations". Since this does not depend on any other state of the system,
a one bit flag associated with each object is all that is necessary.

9

KBSA Framework Overview and Lessions Learned

2.4 User Interfaces

Current folk wisdom is that about a third of the cost of a system is in user interface
development, and it tends to be the part of the system which is least portable. With
the advent of the X windowing system ([61), the portability issues are somewhat al-
leviated, but building user interfaces still remains an expensive and time consuming
task. The situation is improving due to the development of various window system
toolkit implementations of "widgets" (graphical objects, usually windows with a par-
ticular behavior, e.g., a scroll bar), and some tools for constructing user interface
layouts (usually some sort of draw-like program).

Typically, a "widget" with some particular behavior or appearance is associated with
a specific application object. Since the widget is represented explicitly as an object
(as opposed to implicitly by a call to a draw function), both application programs
and widget management systems can define behaviors for it. For example, the widget
manager can automatically maintain its screen appearance and reason about its re-
lationships to other widgets (things like stacking order, position, and visibility). The
widget can also manage protocol interactions between the user and the application
object (e.g., "when the user presses the mouse, call the following function with the
following arguments..."). This sort of widget capability is available in several of the
X toolkits and some of the Common Lisp based window systems ([7, 8, 91).

Although the widget capability described above does reduce some of the burden of
user interface developers, it still requires a substantial amount of programming to
correctly interpret a multi-event sequence caused by a user manipulating a widget
(e.g., moving a widget by having it follow the mouse may involve handling a half
a dozen different kind of events). Even after the mechanics of the operation have
been programmed, application programs must then interpret the intended user action
based on the resulting spatial relationships of the widgets (e.g., Did the user release
the mouse button when the dragged widget was over the garbage can? Was it to
the right or left of the XYZ widget?, etc.). Notice once again that the information
involved is implicitly represented in the control flow of the program.

The goal of KUIE is to provide a toolkit for LISP programmers which permits them
to declaratively (explicitly) state as much of their intentions for the appearance and
behavior of the user interface as is practical. KUIE is structured in three layers,
levels 1-3. KUIE level 1 provides a collection of graphic widgets (e.g., boxes, circles,
lines, polygons, connections, etc.) and composites (widgets which hold other wid-
gets). KUIE level 1 explicitly represents the appearance of an object (border color,
size, shape, etc.), its parent/child relationships to other graphics, its 'stacking order"
(i.e., "behind", or "in front of"), and its position. Changes to any of the defined

10

Overview and Lessions Learned KBSA Framework

attributes are automatically realized in the disr'ay. The primary goal of the second
layer of KUIE is to permit the programmer to declaratively state the spatial relation-
ships between objects so that KUIE can manipulate and reason about them (and do
automatic placement). For example, stating explicitly that the "X" widget should
be "to the right" of the "Y" widget permits KUIE to reason about the situation
where the user attempts to move the "X" widget "to the lefe' of the "Y" widget.
By introducing graphical widgets, a substantial productivity gain has been realized
because the runtime system can automatically deal with issues that previously had
to be handled by application programmers (e.g., maintaining the screen appearance).
We believe that by making the spatial relationships explicit, we will be able to realize
a similar productivity increase since the runtime system will be able to recognize
changes to higher level spatial relationships, thus freeing the application programmer
from having to do so.

Chapter 3 of the KUIE Reference Manual ([7]) describes the automated layout por-
tion of KUIE which manages the satisfaction and manipulation of spatial constraints
for graphics. We believe that when this system is complete, creating interactive user
interfaces will require substantially less detailed specification than is currently nec-
essary, resulting in a substantial amount of time and money savings for interface
construction.

On a somewhat unrelated note, we have joined the body of researchers which have
found that developing a visually pleasing interface requires the aid of a graphic de-
signer. When we received some color workstations, we put together a color selection
program and proceeded to make color selections for our window applications. The
results were less than satisfactory.

2.5 Hardware/Software Issues

Early in the framework contract, we realized that a system which was based on
proprietary hardware and software (e.g., Symbolics Lisp machines) would not be
acceptable to the general computing industry, and it was apparent even then that
vendors of special purpose hardware were going to have a hard time keeping up with
the big chip manufacturers With this in mind, we decided to divorce our prototype
from the LISP machine environment, and encourage the other developers to either
switch themselves, or at least to realize that the eventual delivery platform was likely
to be a UNIX derivative and to plan accordingly. Throughout the development of
the framework prototype we used freely available software, or software which was
available from multiple vendors, thus making the resulting system more accessible to
other researchers.

11

KBSA Framework Overview and Lessions Learned

We still strongly believe that the eventual KBSA system will have to be freely available
in prototype form so that distribution to other researchers will be possible. If the
prototype is successful, commercial versions will then become available from vendors
(perhaps initially based on the prototype). It is also fairly clear that a UNIX derivative
should be the target delivery platform. What is not as clear is when the KBSA
developer prototyping should be moved to a more traditional delivery platform (away
from LISP machines). Too early a move will result in higher prototyping costs,
while too late a switch will result in rejection/inaccessibility by/to the rest of the
software developing community (both research and commercial). Several of the LISP
vendors (LUCID and Franz, at least) are working on a LISP delivery platform having
higher performance and requiring less system resources than current implementations,
so switching from Common Lisp may not be critical, but moving away from the
proprietary hardware will be necessary.

A model currently being used successfully in the UNIX marketplace is to have a
working "prototype" publicly available so that prospective customers can experiment
with the system for a minimal cost (usually free), and then have a commercial version
available once the customer is "hooked". This approach could work well for moving
the KBSA from research to industry.

2.6 Facet Integration

Although it was believed at the outset of the framework contract the facets could be
integrated in a "loose" manner, it eventually became clear that this was not likely
to be successful. The model of development currently held is that the development
of a system using the KBSA will be iterative, requiring the simultaneous refinement
of sevel &l pai Ls of the system at multiple levels (requirements, specification, code) as
more knowledge of the system becomes available. This, coupled with the fact that
most software systems (the KBSA prototypes included) never have a clear, rigorous
specification of their own data, makes loose integration nearly impossible. Integra-
tion of one prototype facet with another will have to be viewed, essentially, as a
new development. A problem that exacerbates this is that the current KBSA fault
expectations of the other facets have not been communicated very well. As stated
in Chapter 3, "Vision of the Framework" below, we believe that development of a
central information model is necessary for a successful KBSA system. We believe
that development of this model should start as soon as possible.

12

Overview and Lessions Learned KBSA Framework

2.7 Prototyping Language Choice

The current implementation language of choice among the KBSA developers is Com-
mon Lisp. We believe this is appropriate. It provides a platform for fast program
development with the typical benefits of LISP (automatic memory management, good
introspective capabilities, extensible etc.) while still providing reasonable perfor-
mance. With the advent of Common Lisp, many commercial vendors now have good
CL implementations, and there are even some free ones, permitting fairly good distri-
bution of results. The adoption of CLOS and exception handling into ANSI Common
Lisp should help to make programs even more portable. The lack of a standard win-
dowing system may be somewhat minimized by the use of CLX as an interface to X
windows, but since it is so low level, windowing system support will continue to be
a problem for the developers. The adoption of KUIE, CLUE, and CLIO would help,
but with the recent move by the major vendors to support CLIM, the correct choice
is not clear. CLIM is heavily based on the Symbolics Dynamic window system, and
is primarily intended to support display and input of "objects". KUIE, CLUE, and
CLIO emphasize interactive graphic and text manipulation capabilities. The systems
are somewhat complementary, but it remains to be seen how much interoperability
there will be in practice.

With more and more toolkits being written in C and C language derivatives, it is clear
that being able to make use of them in the KBSA prototyping efforts is desirable.
This requires a significantly better LISP "foreign function" capability than is currently
available.

2.8 Object Oriented Systems

During the course of the KBSA framework, we gained a significant amount of expe-
rience in using and writing object oriented systems, in particular CLOS. We started
using CLOS when it was still thought that a simple extension to defstruct would
be sufficient to handle object oriented programming in Common Lisp. We learned,
along with the rest of the Common Lisp community, that building object oriented sys-
tems truly does offer many of the advantages typically associated with them, namely
good reuseability, extensibility (flexibility in the face of change), good structure, and
abstraction. There are, however, some very sticky issues (some of which are fairly
subtle) that must be understood before the benefits of object oriented programming
can be realized.

One of the last things we learned and probably the most important, is that writing

13

KBSA Framework Overview and Lessions Learned

specifications for object oriented systems is incredibly difficult. The primary cause of
this is that object oriented systems do something that few other kinds of program-
ming systems do - they "call back out". In other words, when a call is made to a
"generic function" 3 it is very likely that it will call some other generic function which
the caller may have specialized (modified the behavior of). The problem is that if the
circumstances under which the second generic function might be called are not very
well specified, it is nearly impossible to specialize it correctly. The problem is further
exacerbated if the protocol must incorporate some flexibility concerning the circum-
stances in which the method will be called (e.g., for optimization purposes, when it
is frequently desirable to avoiding calling the specialized generic function under some
circumstances). This is primarily caused by the fact that specifying when a particular
generic function will be called exposes part of the underlying algorithm. Determining
how much of the underlying algorithmic process to expose and what parts to hide is
a difficult problem; essentially it is equivalent to predicting in advance the ways in
which the system will be extended in the future. Specifying this requires a flexibil-
ity/optimizability tradeoff during the design of the system, something which has not
typically been done rigorously in the past.

The last object oriented system for which we have written a specification is the KUIE
user interface toolkit. The textual description of KUIE is between 3 and 4 times
the size of the source code and a (subjective) estimate is that only about 60% of
the "ideal" specification has been captured. This fact alone makes one wonder if
English is an appropriate mechanism for specifying object oriented systems. Perhaps
a better way would be to have the source code stand for itself either with some
stylized commenting or perhaps by annotating the source to describe what part is
the (hidden) implementation and what part is the visible specification. This issue is
almost certainly going to arise in future stages of the KBSA program (documentation
facet?). The question to consider now is how much stylized notation is permissible
in a "specification" document? Too much notation makes it difficult to get a good
overall understanding of the problem; too little notation makes the specification too
imprecise as a specification document.

On an implementation level we have found that some "simple" problems cause a
substantial amount of difficulty in real systems. Two examples; first, we've found
that selecting the right name for a generic function is surprisingly difficult since the
name, in a small but practically meaningful way, describes your expectationa of how
the function will be generalized. For KUIE, we essentially resorted to sticking a prefix
in front of all function names ("contact-") and then using the most generic name for

31n CLOS, a function whose behavior is described by a collection of methods is called a generic
function.

14

Overview and Lessions Learned KBSA Framework

the operation that seemed reasonable 4 . The second example is the use of slots (via
slot-value) in the methods that specialize on a class. We have found that the use
of slot-value is usually a needless breakdown of the rules of encapsulation, even in
a specialized method, and results in more fragile code (more subject to bugs). These
are just two examples of the many stylistic rules which need to be developed by the
practitioners of object oriented programming before it can be successfully used by
the general software development community.

'Other approaches include placing the class name in front of the generic function which first
defines it, or using only the operation name. In practice it is difficult to read programs that use the
first approach since it leads to many special cases and the second approach results in many name
collisions in the Common Lisp package system.

15

Chapter 3

Vision of the Framework

The eventual KBSA framework will undoubtedly be based on a distributed persistent
object oriented data base. For the foreseeable future it will have to be accessible by
programs written in several different programming languages, otherwise the current
huge mass of existing software will be inaccessible. We believe that one of the ma-
jor obstacles to software development for the KBSA is determining an appropriate
representation for information regarding the evolution of a system. Another is co-
ordinating the activities of a development team. The unifying theme for these two
problems is the ability to represent and reason about the change between acceptable
states of a software system (i.e., changes between releases). Managing and reasoning
about change will be a very large piece of the input to the policy engine of the KBSA
activities coordinator.

If the KBSA program is to be successful, the various facet developers must begin
developing a shared vision of the KBSA system. One plausible way that this could
be brought about would be to start developing the information model for the KBSA.
Initially, this could be nothing more than a description of the data and operations
available for each of the facets. This would quickly highlight what assumptions each
facet had about the information expected from each of the other facets, and would
hopefully begin to increase the bandwidth of communication between the facet devel-
opers. Its primary benefit initially would be to force discussion and provide a common
description of the information model. A longer term benefit would be that it would
evolve into the specification for the KBSA, capturing the intermediate decisions made
by each of the facets. Historically this has been difficult. It has been argued that
each of the facet developers has enough problems to contend with, and that work on
a central information model would take away time and energy from the development
of the facets. This is true, however if work on a central information model is not

16

Overview and Lessions Learned KBSA Framework

begun, there is little to ensure that the facet developers will not diverge to such an
extent that a unification of the facets would become a practical impossibility.

The current standardization successes (namely the use of Common Lisp, CLOS, and
X windows) does very little to unify the facets. It does permit them to (perhaps)
peacefully coexist in a single system, it does not in any significant way make them
interoperate.

17

Part II

Change and Configuration
Management Model

19

Chapter 4

Introduction to CCM

Design objects - hardware designs, software modules, document sections - are
typically highly interdependent. A document, for example, is often produced as
multiple files of text and diagrams, including reused boilerplate. Similarly, a software
system consists of multiple modules, reuses routines from various libraries, and relies
on the services of the operating system, various daemons, etc. Figure 4.1 shows a
hypothetical document, consisting of sev,, ooects - four text files (*.tex) and three
graphics files (*.ps). Cm.tex h.- t'aree components on which it depends, intro.tex
has one component, and moael.tex has two. (The document has other dependencies,
not ;hown in this diag-am - dependencies on a typesetting program which accepts
input of a particular format, etc.) Des:g- objects are seldom monolithic, existing
in isolation; rather, they exist as components of other objects, or as utilities used by
other objects.

Design objects are also subject to repeated change over their lifetimes - to correct
errors, to cope with changing requirements, or to add new features. We call the
various states in the evolution of an object the versions of that object; each state
(except the first) is a descendent of some other state(s), and may be an ancestor of
still others.

For any given use of a particular design object (or system of design objects), some
versions of that object (or system) will satisfy the need, and other versions will not.
Text file "exper.tex" needs to be updated with new information; behavioral model
"ALUC9" has a particular bug which the current application exercises; network server
"dump-daemon" uses a protocol different from the one required. The phrase "version
N is required" - as in "Xl release 4 i. required" - is ubiquitous.

These characteristics of design objects - their interdependency and tendency to
change - are the motivation to find techniques and tools to manage change effec-

21

KBSA Framework CCM Model

O object

references

Figure 4.1: A document and its components.

22

CCM Model KBSA Framework

tively. When object A depends on object 1, and B changes, then A (and the objects

that depend on A) may have problems. When an object depends on a web of other
objects, and many of these objects change over time, then determining and main-
taining consistency, compatibility, and equivalence becomes a problem. Whenever
such a system must be changed in any way, its massive complexity is a dangerous
occasion for confusion and error. The introduction and management of change, and
the integrity of configurations when change has occurred, is a constant concern.

Change and configuration management (CCM) is a set of abstractions, techniques,
and tools which assist in managing the evolution of systems of interdependent design
objects. Over time, change occurs repeatedly as the systems of objects are modified by
multiple agents. The systems of objects have class- and application-specific definitions
of consistency.

We have developed a CCM model for the KBSA framework, which encapsulates our
current understanding of the requirements and approach which should be taken to
support CCM in the KBSA. This paper describes that model. It also describes the
experiences of an in-house project which is implementing part of the model to solve
CCM problems in an avionics design capture system.

4.1 Dimensions of the CCM Problem

There are a variety of projects in both academia and industry working on CCM Lsues.
Some concepts and terminology are relatively well agreed-upon, but many others are
uncommon, or are used by different groups to mean different things. Chapter 5 thus
describes the dimensions of the CCM problem.

We can summarize the dimensions of the CCM problem as:

Interdependency, change, and history-bearing objects. Design objects are
highly interdependent, and change over time. Multiple states of design objects
must be maintained, to support recoverability and parallel evolution.

Configurations. A configuration is a system of design objects which work together
to serve a purpose; the system of objects must be "sufficiently consistent" to
satisfy that purpose. Because configurations evolve over time, a configuration
may be regarded as a snapshot of one consistent state of a system of design
objects. The evolution of configurations creates version history DAGs (directed
acyclic graphs) of configurations, related by ancestor/descendent relationships.

Composing Configurations. Multiple donor configurations (e.g., predeces-

23

KBSA Framework CCM Model

sor configurations, libraries of reusable modules) are typically composed
in the process of creating or evolving a configuration. The entire donating
configuration (all its objects) might be loaded into the recipient configura-
tion; or, selected objects might be loaded into the recipient configuration;
or, the donating configuration may be treated as a black box - certain of
its external objects are referenced, but its other objects are hidden from
the recipient configuration.

Modularization and Interfaces. Questions of modularization and interfaces
- which are more typical in the programming language and software -

must be considered in the design of a CCM model and system. Reusing
configurations is greatly simplified if configurations have clearly-defined in-
terfaces, and support a distinction between external and internal objects,
so that configurations can be used as black boxes. When abstractly spec-
ifying a configuration, it will be important to specify what objects the
configuration needs, and what objects it provides.

Design Transactions. The specification and construction of configurations is a
complex and difficult task which requires the effective cooperation of multi-
ple agents. This task can be modeled by the notion of a design transaction
- a long-duration sequence of operations, performed by multiple agents on a
shared system of objects, which starts with one configuration ("check-out") and
yields another consistent configuration ("check-in", or commit). Committing
the transaction involves verifying the consistency of the resulting configuration;
it adds a new node - a new configuration - to the history DAG.

Equivalence and Search. A recurring theme in the CCM problem is the issue of
equivalence and compatibility. Certain objects are equivalent to one another
with respect to particular operations in particular circumstances; a central task
of CCM is to know - to track or to determine - which objects are equivalent,
with respect to particular operations (e.g., link, compile) in particular environ-
ments (e.g., "SunOS 4.0.3c using the DNS-based C runtime library", "Allego
LISP with PCL 12/88 loaded"). CCM can be thus cast as a search problem:
locate an appropriate object (or system of objects) to satisfy the current need
in the current context.

Dynamic Version Binding. When specifying a configuration, we typically want
Lo refer to versioned objects. We may refer to a versioned object by a static
reference which denotes a single definite version, fixed at specification time; or
we may refer to a versioned object with a dynamm reference - a reference which
will be resolved to a particular concrete version later, typically at configura-
tion-construction time. Underpowered dynamic references point to a "default"

24

CCM Model KBSA Framework

version of an object, where the default changes as the object evolves. Fully
general dynamic references function as search rules for locating an appropriate
object, based on the current operation and environment.

Change Notification and Change Propagation. When a design object changes,
objects which depend on that object may need to react to that change, to re-
establish consistency; dependent objects might update themselves, update other
objects, or notify a human. When an object changes, dependent objects must
be notified, and consistency re-established, but the percolation of change must
be controlled - every object which needs notification should be notified, but
we must avoid notifying every object in the object-base at every change.

Objects with multiple representations. Design objects are frequently multi-rep-
resentational. The same conceptual object is depicted by several different rep-
resentations, often at different levels of abstraction. For example, an ALU
hardware design may be represented by a layout object and a netlist object;
a program may be represented by a spec object, a source code object, and an
object-file object. Representations are related to each other by transformations.
A primary representation is produced with human input. A derived representa-
tion is generated from another representation by application of a transformation
(e.g., the compile transformation, which derives relocatable-object from source-
code); if the transformation is purely mechanical, the derived representation is
a secondary representation. Multiple representations and the transformations
between them must be managed in order to track and maintain consistency.

4.2 KBSA Framework CCM Model

Here we summarize the CCM model for the KBSA framework; Chapter 6 of this
report explains the model in detail.

Our model addresses the dimensions of the CCM problem using these key ideas:

Configurations as Contexts for State. CCM is a global issue; it cannot be dealt
with locally, on an object-by-object basis. In particular, it does not make
sense to create a new version of an object by copying the object, because it
is frequently impossible to halt copy-propagation before a large fraction of the
object-base is duplicated. If objects may have multiple states, data access by
(object, slot) no longer makes sense; all references to the state of an object must
be made in the context of some configuration. Every data access must specify
not just the object and slot, but also the configuration in which the access is to

25

KBSA Framework CCM Model

be performed: (object, slot, configuration). Thus, in our model, a configuration is
a repository of state - it holds the state of the objects occurring in it, mapping
object x slot --+ value.

Configurations as Deltas. A configuration need only record the changes in
state which were made during one design transaction - a successor con-
figuration is a delta from its predecessor. This leads to a space-efficient
representation of a tree of configurations; with appropriate design, the
representation can also be time-efficient (a la RCS (10]).

Compatibility Attributes. Besides objects' state, configurations also include
compatibility attributes, which annotate the history DAGs with satisfaction
DA Cs; this information is used when de-referencing version cursors.

Transactions as Contexts of State. The initiation of a design transaction creates
a transaction handle or proto-configuration. The transaction handle is a work
context; it is a writable configuration - a repository for the state of a set of ob-
jects under CCM. Transaction handles are long-duration, sharable, and atomic;
they may be nested to provide a hierarchy of workspaces. When the trans-
action is successfully committed, the state of the transaction handle becomes
read-only: the transaction handle becomes a configuration, guaranteed to be a
consistent system of objects, based on class. and application-specific definitions
of consistency.

Configuration Schema. It is useful to be able to specify a configuration abstractly,
including component references which are not resolved until configuration-
construction time. A configuration schema specifies how to build (or recognize)
a consistent configuration, and how to correctly propagate change notifications.
A configuration schema specifies: the structure of the configuration (including
rules for identifying objects to be fetched from other configurations); how to ver-
ify the consistency of the configuration; how to construct the configuration; and
how to control the propagation of change within and between configurations.

Change Notification and Change Propagation. The change propagation
problem is simplified by considering configurations and transaction handles
as state repositories linked by cross-configuration references. One simpli-
fication is the ability to distinguish between cross-configuration change
propagation and intra-configuration change propagation; these two typi-
cally require different strategies.

Cross-Configuration References and Dynamic References. A configuration
schema may include references to objects which will be fetched from other con-
figurations - cross-configuration references, or version cursors. The references

26

CCM Model KBSA Framework

may be dynamic - ie, the particular source configuration may not be chosen

until configuration-construction time. A dynamic version cursor includes (a) the

object signature and (b) a rule for selecting an appropriate version of that ob-

ject (ie, an appropriate source configuration). Dynamic version cursors provide

for flexibility in evolving configurations, and allow references to hypothetical
objects which will be constructed in other transactions.

4.3 Initial Experience Using the Model for
Avionics CAD

An in-house project is implementing part of the KBSA framework CCM model to solve
CCM problems in a prototype avionics design capture system. Here we summarize
their experience; more detail is provided at the end of Chapter 6.

In this avionics CAD domain, multiple teams of designers are evolving large and
complex subsystem designs which must be periodically integrated to yield a design of
the complete system. A key requirement is to have an on-line model of the system's
baseline configuration, as well as options which may be instantiated to construct
particular concrete configurations; it must be possible to determine the consequences
of the choices which were made in constructing a particular concrete configuration.

It was necessary to retain the revision history of these avionics parts objects. Saving
the entire database - a snapshot of the world - each time it was necessary to retain
a configuration would require approximately 300 gigabytes per class of aircraft; this
was deemed undesirable.

The first-cut solution was to maintain a revision history on an object-by-object basis;
an object was checked-in by marking it "immutable"; any future changes would need
to be made to a new version of that object - ie, to a mutable copy of the object,
created by a check-out operation. But when checking-in or checking-out an object
A, the objects which A references and which reference A must also be dealt with (see

Section 6.1). The difficult question was how the objects which reference an object
should respond to a new version of that object. Copy propagation problems arise;
the objects which reference the old version of the object may need to themselves be
duplicated, since a new version of the object referenced is a change to a feature of the
objects which reference it. Thus it was necessary to produce not only a new version
(copy) of the object to be checked-out, but also potentially of all the objects which
referenced it - in the worst case, copying the entire database again.

Criteria which could be used to limit the recursive copy propagation without sacri-

27

KBSA Framework CCM Model

ficing correctness and consistency were not readily apparent; we contend that this
will be true of most domains. The KBSA CCM model, which is conceptually clean
and leads to a space-efficient representation of a tree of configurations, was therefore
chosen.

An additional requirement for this avionics domain was to facilitate the work of multi-
ple :ooperating teams. The use of dynamic version cursors satisfies this need, allowing
the multiple subdomains to be decoupled into multiple trees of configurations. If an
object in subdomain X must reference an object in subdomain Y, the object's def-
inition is not referenced directly; instead of a static reference, a dynamic reference
is used - a query statement (dynamic version cursor) which may be "satisfied" by
zero or more objects in the Y subdomain. A list of unsatisfied queries is maintained,
and the list must be cleared before a consistent release can be captured; this is the
"system integration" (consistency establishment) process.

This dynamic version cursor capability also supports a change notification facility
which notifies a user of an object if the object has been changed such that it no
longer satisfies the version cursor's selection rule.

The prototype avionics design capture system has been implemented in Common
LISP, and tested with small test problems; it is now being exercised with real data
(9000 objects, about 10 megabytes of avionics design data).

28

Chapter 5

Dimensions of the CCM Problem

There are a variety of projects in both academia and industry working on CCM issues.
Some concepts and terminology are relatively well agreed-upon, but many others are
uncommon, or are used by different groups to mean different things. Chapter 5 thus
describes the dimensions of the CCM problem.

5.1 Interdependency and Change

Design objects are highly interdependent, and change over time. Multiple
states of design objects must be maintained, to support recoverability and
parallel evolution.

Change and configuration management (CCM) is a set of abstractions, techniques,
and tools which assist in managing the evolution of systems of interdependent design
objects. Over time, change occurs repeatedly as the systems of objects are modified by
multiple agents. The systems of objects have class- and application-specific definitions
of consistency.

The CCM problem arises because design objects - hardware designs, software mod-
ules, document fragments - are interdependent and subject to change.

5.1.1 Interdependency

Design objects are composite and interdependent - composite because they have
components, which are themselves design objects; interdependent because they utilize

29

KBSA Framework CCM Model

ckuinock lox chars ck dict

Figure 5.1: Check-password-quality program.

the services of other objects. Design objects tend to be internally complex and highly
interdependent.

Design objects do not exist in isolation, but rather as components of other objects,
or as utilities used by other objects. Figure 5.1 shows the components of an example
system of design objects, a password quality-checking program, ck.pw. 1 The program
references three components; one of those components, ck-dict, itself has a component,
db.

5.1.2 Change

Design objects are evolutionary. They change over time. They are subject to revision,
and the updates made to them are iterative and tentative - iterative because the
objects are changed repeatedly, and tentative because it is sometimes necessary to
undo a change, backtracking to a previous state.

The evolution of design objects is often nonlinear, but rather it branches and joins:
a given state may have multiple descendents, and even multiple ancestors. Small
corrections and improvements during development will produce linear (successive)
evolution. But the need to provide alternate implementations or divergent function-
ality leads to branching. It is often necessary to maintain multiple parallel threads, all

'The structure and evolution of the password-checking and password-changing program examples
is based very loosely on Clyde Hoover's npasawd program.

30

CCM Model KBSA Framework

Linear Branching

...................i i ! +y

Figure 5.2: Design objects and systems of design objects are evolutionary.

evolving concurrently. For instance, a Unix-hosted tool may be at some time ported
to VMS, and both threads thereafter evolve in parallel (with or without occasional
joins). It is also common to find that while a designer is adding new features to an
existing object for future release, other engineers are integration- and system-testing
configurations containing previous versions of that object, and still other engineers
are supporting various fielded releases which contain even earlier versions of the same
object. We'll term the ends of these threads evolving in parallel "alternates".

Figure 5.2 shows a linear history of configurations, and a branching history of config-
urations which includes both a branch and a join (ie, a merge of two configurations
into one). Typically, a vanilla check-in operation yields a new sequential version; a
branch - the creation of an alternate - is caused by designer fiat.

Because of the needs to backtrack and to evolve multiple states in parallel, it is
insufficient to record oniy the current state of the world: design objects must be
hsisorij-bearrng. When an object does not maintain history, updates to the object
overwrite the current data; when an object is history-bearing, an update has the
side effect of causing the the previous state to be saved (in some recoverable form)

31

..................... i.m|..l~ mm m mm i

KBSA Framework CCM Model

as historical. (In many traditional systems, an update to a history-bearing object
actually causes a new object "of the same name" to come into existence.)

These characteristics of design objects - their interdependency and tendency to
change - are the motivation to find techniques and tools to manage change effec-
tively. When object A depends on object B, and B changes, then A (and the objects
that depend on A) may have problems. When an object depends on a web of other
objects, and many of these objects change over time, then determining and main-
taining consistency, compatibility, and equivalence becomes a problem. Whenever
such a system must be changed in any way, its massive complexity is a dangerous
occasion for confusion and error. The introduction and management of change, and
the integrity of configurations when change has occurred, is a constant concern.

To address this need, CCM techniques and tools have been created, and continue to
be developed and enhanced.

Further, as object-bases become more prevalent as the foundation for design efforts,
it is becoming obvious that CCM capabilities need to be part of the core services
offered by those object-bases.

32

CCM Model KBSA Framework

5.2 Configurations

A configuration is a system of design objects which work together to serve a
purpose; the system of objects must be "sufficiently consistent" to satisfy
that purpose. Because configurations evolve over time, a configuration
may be regarded as a snapshot of one consistent state of a system of design
objects. The evolution of configurations creates version history DA Gs
(directed acyclic graphs) of configurations, related by ancestor/descendent
relationships.

Design objects typically exist as components of other objects, or as utilities used by
other objects. A consistent system of design objects which work together to meet a
need is a configuration.

De3ign objects, and systems of design objects, must be history-bearing. The typical
practice is to maintain history in the form of snapshots; rather than journalling every
change to our set of design objects, we periodically take a snapshot of its state. As
designers work on a system, the system of design objects is evolved until it reaches a
state worth saving; the state of the system is then saved as a configuration (and used
as a baseline for further evolution). A configuration is thus a snapshot of a consistent
state of a set of design objects, after 1 or more semantically-meaningful changes.

Figure 5.3 shows an example configuration, a password quality-checking program. It
contains two programs, ck-pw and mk-db. As before, ck-pw has three components;
mk.db has one. Both the ck-pw component ck-dict and mkdb use the component db,
which is imported from another configuration, :dbmJib:.

5.2.1 Consistency

A key characteristic of a configuration is that its objects are sufficiently consistent
to serve the configuration's purpose; the states of the objects in it are internally
consistent, and are consistent with each other. 2 "Consistent" must be defined in
class- and application-specific terms.

2We are addressing consistency of the product - the objects developed and modified. We do
not here address consistency of the process which yielded the product - e.g., constraints specifying
when a given transformation is legal, specifying the legal orders of transformations, specifying when
a transformation should be applied automatically, etc. That important topic lies at the boundary
between CCM and activities coordination / methodology support.

33

KBSA Framework COM Model

ckpv

Qk~pw mkdcb

Qkufo ck lax chars ak dI at

[II] configuration

(Z) version cursor

Figure 5.3: First version of Check- Password- Quality configuration.

34

CCM Model KBSA Framework

5.2.1.1 Class-specific consistency

Most classes of design objects have their own unique definitions of consistency. For

source-code objects, the programming language defines whether or not a given source-
code object is a legal program. We may also choose to apply more stringent class-
specific checks to a source---.-e object: a C program may be required to pass lint,
an Ada program may be required to yield certain values when checked with metrics
collectors, etc.

It is worth noting that a design object can be consistent according to its class-specific
definition, but be erroneous. Various advances in the representation of design objects
(e.g, strong typing) have attempted to expand the degree to which consistency can
be automatically checked; this additional formal structure, amenable to automatic
checking, reduces the frequency of design objects which are formally consistent but
erroneous in practice. In object-bases supporting user-defined constraints, constraints
defined on classes are another form of class-specific consistency; careful definition of
such class-specific constraints can be valuable in ensuring consistency.

An important type of class-specific consistency is structural consistency. Structural
consistency considers the interaction of the interfaces of objects which are composed
together. It is the consistency of the system's composition, and it is thus meaningful
only in the context of a system of objects (ie, a configuration).

The degree of structural consistency-checking possible depends on how detailed we
are able to specify the interfaces of objects. Consider relocatable-object files in a
traditional operating system. The interfaces are "subprogram entry name" and "call
name". It is possible to check for dangling calls, or uncalled entries, but it is impossible
to check for type-mismatches in parameters or in return values, or for mismatches
in the number of parameters. In a language like CLOS, VHDL, or Ada, the syntax
of a module's interfaces - ie, the module's protocol - can be specified; a module's
protocol typically includes .Le module's class, and the parameters, parameter types,
and riturn value type of its operations. When such modules are composed, full
syntactic consistency can be automatically verified. In experimental systems where
the behavior of modules is formally specified, as well as their interfaces, then a degree
of semantic consistency is subject to formal automatic checking. (See [11].)

Another important type of class-specific consistency, related to structural consistency,
is representation consistency. For example, a derived representation (e.g., relocatable-
object file) should have a modification date greater than that of the primary repre-
sentations from which it was derived (e.g., the source file(s)). See Section 5.7.

35

KBSA Framework CCM Model

5.2.1.2 Application-specific consistency

For an y gi, en configuration, the application domain determines additional consistency
cons raints which the configuration must satisfy in order to be sufficiently consistent
to fulfill its purpose. Traditionally, these application-specific consistency requirements
have been checked by the build-and-test cycle. For examp.-, a password-changing
program (Figure 6.8) should be tested to make sure that it rejects attempts to change
a password without proper authorization, to make sure that it rejects attempts to
mangle the password database via erroneous input, etc.

In systems supporting user-defined constraints on objects, such constraints can be
very useful for automating part of the maintenance of application-specific consistency.

5.2.2 Composing Configurations

Multiple donor configurations (e.g., predecessor configurations, libraries
of reusable modules) are typically composed in the process of creating
or evolving a configuration. The entire donating configuration (all its
objects) might be loaded into the recipient configuration; or, selected ob-
jects might be loaded into the recipient configuration; or, the donating
configuration may be treated as a black box - certain of its external ob-
jects are referenced, but its oth-r objects are hidden from the recipient
configuration.

A configuration is typically built in part from other configurations; objects from other
configurations are referenced, or are borrowed and modified. Typically there is one
or more distinguished predecessor configurations, which are the immediate ancestors
of this configuration. This configuration is a successor configuration, evolved from its
predecessor(s); frequently it is considered to serve the same purpose(s) as its prede-
cessor(s) - it is, in some sense, a "new version" of its predecessor(s). For an initial
configuration, the predecessor configuration is the null (empty) configuration. This
evolution of configurations creates version history DAGs (directed acyclic graphs) of
configurations, related by ancestor/descendent relationships (see Figure 5.2).

Besides predecessor configurations, there will also typically be "donor configurations"
from which objects will be referenced or borrowed - e.g., libraries of reusable parts,
pre-existing programs. In Figure 5.3, :dbmJib: is a donor configuration.

Conceptually, there are several possible ways to access objects from a donor configu-
ration:

36

CCM Model KBSA Framework

direct reference The objects could be copied into the current configuration; in the
current configuration, references to the imported objects are direct references
to normal objects.

static cross-configuration reference In the current configuration, we could refer
to the objects as they exist in the donor configuration, via static references.
These static references might be direct references to normal objects, if the con-
figurations share the same object space; more likely, they will be some sort of
indirect reference ("object foo from configuration :C3.7:").

dynamic cross-configuration reference In the current configuration, we could
refer to the objects via dynamic references which point to some version of the
donor configuration, where the version is selected by some rule. Examples might
include ("object foo from the most recent version of configuration :C: for Unix
on Sun4"; "object foo from a version of :C: which is compatible with the version
9 IPC specification", "the highest-versioned object foo from my local workspace,
if present there, else the highest version baselined").

Facilitating the composition of configurations and the reuse of pre-existing objects is
important, but it leads to several complications:

Modularization and Interfaces Questions of modularization and interfaces -
which are more typical in the programming language and software design con-
texts - must be considered in the design of a CCM model and system. See
Section 5.2.3.

State clashes State clashes occur when a new configuration to be folded in contains
objects which already exist in the current context, but the versions of the ob-
jects in the configuration to be folded in differ from the versions in the current
context. For instance, a given application may depend on a particular version
of an interprocess communication library; if it is advantageous to include a new
module in the application, which depends on a different version of that library,
the application and the new module may not be able to use the same library.
See Section 6.2.2.

Dynamic references. A configuration in which all references to objects from other
configurations must be static references is fairly inflexible; it has difficulty ben-
efitting from improvements made to the configurations it references. Dynamic
references allow the version to be selected according to some rule. See Sec-
tion 6.4.

37

KBSA Framework CCM Model

5.2.3 Modularization and Interfaces

Questions of modularization and interfaces - which are more typical in
the programming language and software - must be considered in the
design of a CCM model and system. Reusing configurations is greatly
simplified if configurations have clearly-defined interfaces, and support a
distinction between external and internal objects, so that configurations
can be used as black boxes. When abstractly specifying a configuration,
it will be important to specify what objects the configuration needs, and
what objects it provides.

The ability to define modules and define interfaces for those modules is traditionally
regarded as the province of programming language design, but it strongly interacts
with CCM. Configurations are composed in terms of how their interfaces interact. To
adequately compose configurations, we must be able to represent, construct, and ma-
nipulate configurations in terms of the interactions of the interfaces of the components
and utilities referenced.

CCM is thus helped greatly if the design objects' interfaces can be specified with
considerable sophistication, so that objects can be referenced not just by name, but
by class and/or protocol.

It is also useful to be able to specify the interface of a configuration. The specification
of a configuration (see Section 6.3) should include the specification of:

* The objects which the configuration provides (exports) - its external objects.

* The objects which the configuration needs (imports) - its cross-configuration
references (version cursors).

38

CCM Model KBSA Framework

5.3 Design Transactions

The specification and construction of configurations is a complex and dif-
ficult task which requires the effective cooperation of multiple agents.
This task can be modeled by the notion of a design transaction - a long-
duration sequence of operations, performed by multiple agents on a shared
system of objects, which starts with one configuration ("check-out") and
yields another consistent configuration ("check-in", or commit). Com-
mitting the transaction involves verifying the consistency of the resulting
configuration; it adds a new node - a new configuration - to the history

DAG.

A design transaction is a "semantically meaningful" change, which results in a state
worth saving. It takes the set of design objects from one consistent state (ie, config-
uration) to another. (See [12].)

A transaction is a sequence of operations that appears to be one atomic operation,
and which leaves the data it operates on in a consistent state. It is a sequence
of changes which is one logical change. During the transaction, inconsistent states
are allowed; a set of constraints are enforced at the beginning of the transaction,
and at its end, but not during its lifetime. The transaction's internal inconsistent
states must not be revealed - it must be a black box to agents not participating
in the transaction. A transaction must be atomic in the face of concurrency and of
failure. If two concurrent processes operate on shared data without protection, then
the intermediate states of the data in one process may be observed by the other;
transactions must prevent inadvertent concurrent access. Likewise, if a process halts
abnormally because of a failure, the data on which it was operating may be left in an
inconsistent state; committing a transaction must be all-or-nothing.

A design transaction frequently has an associated requirement, change request, or
change notification (see Section 5.6) which it is meant to satisfy. The transaction
functions as one logical change ("delta set"), encapsulating a complex series of smaller
changes necessary to implement the logical change.

Multiple agents can participate in a design transaction. Because it is protected from
outside access yet shared by a team of designers, a design transaction provides a
sandbox (actually, a hierarchy of sandboxes) for cooperative work. Typically a large
change to be performed to a system of objects is decomposed into smaller changes, and
parceled out to multiple agents; nested transactions model such task decomposition.
Nested transactions also support multiple levels of versioning and releases at various
levels - to self, to group, to project, for unit testing, for integration testing, for

39

KBSA Framework CCM Model

distribution.

A design transaction goes through a cycle of initiation (check-out), work, validate, and
publicize (commit, check-in). In a typical design transaction, a designer (or design
team) initiates the transaction by checking-out a system of design objects from a
central repository; typically a subset of some larger system of objects is checked out.
Over a period of minutes, hours, or days, the designer(s) interact wv th the design
objects via editors, transformers, analyzers, and validifiers. When the designer (or
team) is satisfied with a system of design objects, the system of objects is checked-in
again, for use by other designers.

But before any check-ins occur, the system of objects must pass a set of tests and
checks for self-consistency. This validation process is typically complex and time-
consuming, and is specific to the objects' classes and to the application. Both primary
and secondary representations (see Section 5.7) are checked to the extent possible; the
committing designer(s) are vouching that the primary representations are consistent
with each other. The design assistance system should verify that the system of objects
has passed the proper tests and consistency checks, before permitting the commit to
succeed.

This process frequently occurs in a hierarchical fashion; a team checks-out a system
of design objects, and then subsystems are checked-out of it by subteams. Normally
subsystems are checked-out and checked-in (committed into the next higher level
repository) repeatedly, as unit testing, subsystem integration, and subsystem testing
occur; eventually the entire system will be checked-in (committed).

For example, consider the Check-Password-Quality configuration in Figure 5.3. Sup-
pose that some improvements are required. Team A checks-out ck.pw and its direct
components from a system repository, and places them in a team repository. After
design decisions are made by the team, team member Al takes responsibility for
ck-ujinfo and ck.dict, and team member A2 takes responsibility for ckJex.chars. They
check-out those respective components from the team repository and into their per-
sonal repositories. Over a period of days they create new versions of these components
with editors and compilers, checkpointing the states worth saving (via subtransac-
tions) in their personal repositories. Various class-specific (e.g., lint for C objects)
and application-specific (e.g., test suites) methods are used to verify the sufficient
consistency of these versions. At some point it must be verified that ck.u.info and
ckJex-chars will cooperate, so Al and A2 check them into the team repository, and
perform consistency checks on the whole configuration. Eventually, all the objects in
the team members' repositories have been checked into the team repository, and the
team's configuration has been determined to be consistent; at that point, it can be
checked into the system repository.

40

CCM Model KBSA Framework

5.3.1 Design Transactions vs Conventional Transactions

Design transactions therefore differ in several ways from traditional database-oriented
transactions.

volume, duration, complexity, scope Traditional transaction processing is char-
acterized by high-volume, short-duration, and simple transactions which access
only a few records. Design transactions are relatively low volume, long-duration,
highly complex, accessing large data structures, and are typically distributed
over a network.

consistency Traditional transactions define correctness in terms of serial consis-
tency. But for design transactions, the data itself, rather than the order in
which it is accessed, actually determines consistency. Design data must be self-
consistent, and sufficient consistency is defined by the objects' classes, and by
the particular application.

permanence The completed results of traditional transactions must survive a sys-
tem crash. The individual operations within a design transactions should do
the same - designers require that as much of their work as possible be saved
if a crash occurs. It is therefore desirable to bring the object-base back to it
latest possible state, which need not be configuration-consistent (in the mid-
dle of a transaction), but which should be filesystem-consistent. But where
long-running conventional transactions are usually aborted on system restart,
long-duration design transactions are not; only the lower-level operations within
the design transaction are subject to abort on system crash. Further, an addi-
tional permanence requirement is placed on the results of the design transaction
itself: the results of a design transaction should by default persist, and not be
overwritten by newly-committed consistent data. The data operated on by a
design transaction must be history-bearing.

atomicity Design transactions should be concurrency-atomic (providing isolation)
and failure-atomic (providing recovery). However, unlike traditional transac-
tions, in design transactions there are often several agents participating in a
transaction; the transaction's internal states must be visible to these agents,
but not to any others. (The agents typically further partition the transaction
via subtransactions, but they must have access to the super-transaction to com-
mit their subtransactions into it, at integration time.) Also, as noted above,
long-running conventional transactions are typically aborted on system failure,
but long-running design transactions must survive a system failure (though in-
dividual operations within them may be aborted, their effects erased).

41

KBSA Framework CCM Model

5.3.2 Validation at Commit Time

When the attempt to commit a design transaction is made, the design system should
verify that the configuration is consistent, according to class- and application-specific
definitions of consistency (see Section 5.2.1). The painful traditional way to do this
is "build and regression-test". In systems where the interfaces of modules can be
specified with some sophistication (e.g., CLOS, VHDL, Ada), syntactic consistency
- the consistency of how the interfaces of the objects are composed with each other
- can be automatically checked. Similarly, if behavioral specifications of the modules
are available, some formal semantic consistency-checking can be performed. Where
V&V checking tools are available - e.g., in many CAD environments - those tools
should be integrated into the validation-at-commit process. Similarly, user-defined
constraints on objects and classes should be re-checked. Representation consistency
should also be checked.

42

CCM Model KBSA Framework

5.4 Equivalence and Search

A recurring theme in the CCM problem is the issue of equivalence and
compatibility. Certain objects are equivalent to one another with respect
to particular operations in particular circumstances; a central task of CCM
is to know - to track or to determine - which objects are equivalent,
with respect to particular operations (e.g., link, compile) in particular
environments (e.g., "SunOS 4.0.3c using the DNS-based C runtime li-
brary", "Allegro LISP with PCL 12/88 loaded"). CCM can be thus cast
as a search problem: locate an appropriate object (or system of objects)
to satisfy the current need in the current context.

CCM must deal with multiple states for the same object (X:1.1, X:1.2:, X:2.0), and
multiple representations for the same conceptual object (uiv.spec, uiv.Iisp, uiv.exe).
Thus, CCM rapidly leads to issues of object identity.

Versions, equivalence, and compatibility Consider X:1.1:, X:1.2:, and X:2.0:.
Stating that they are all versions of X is to state a historical fact (they all
derive from each other, or from a common ancestor). It also implies that they
are useful for the same purpose, to some unspecified extent. We want to dis-
tinguish among these three states of X - we must be able to speak of them
individually, and other objects must be able to refer to them individually - to
particular versions of X. We also want to consider them to be, in some sense,
"the same object". They are different versions of "the same thing", and we
sometimes must be able to refer to X, independent of version, in our speech and
in our object-base. (X is in a sense a handle for the entire version set of X:1.1:,
X:1.2:, and X:2.0:; X may be considered a version-generic reference.)

Representations, equivalence, and consistency When we have multiple repre-
sentations for the same conceptual object, problems of identifying and maintain-
ing equivalence between iepresentations arise: we need to identify which objects
are actually representations for "the same thing", and we need to maintain this
relationship in the face of change. If the specification for uiv, uiv.spec, changes,
then uiv.Iisp and uiv.exe are probably no longer consistent with it - they no
longer represent the same conceptual object. If someone modifies uiv.Iisp, mak-
ing uiv.exe consistent with it is a fairly straightforward matter of compilation.
But making uiv.spec consistent with it is more difficult to do and to verify.

43

KBSA Framework CCM Model

AB:1. 9:

B: 2. 0:

Figure 5.4: A expects B:1.9:, but can accept B:2.0:.

5.4.1 Versions, Equivalence, and Compatibility

Objects X:1.1:, X:1.2:, and X:2.0: share a common identity, X. We may call this
the signature of X. The signature is minimally a name; more usefully, the signature

includes a protocol (ie, the object's class, specifying a set of applicable operation
interfaces, including typed parameters and return types). Some experimental systems
(e.g., [11]) include a behavior specification of the operations; we can thus formally
determine if the objects behave the same in a given context. But properly producing
such specifications so that they are complete and consistent is difficult; differences in

the behavior of two versions are frequently discovered by testing and experience, and
can be modeled as compatibility differences.

Two states of an object (or system of objects) are version equivalent if they are inter-

changeable without surprises. Version compatibility is a weaker form of equivalence;
we speak of upward compatibility, strict compatibility, etc.

Version equivalence and compatibility are meaningful only the the context of a par-
ticular desired operation in a particular environment. For example, we may state
that "X:1.1:, X:1.2:, and X:2.0: are binary-compatible in the SunOS 4.0 environment"
- that is, they are compatible with respect to the linking operation in that environ-
ment. They may not be compatible with respect to the compilation operation (ie,
source-compatible).

Compatibility is frequently directional. For instance - assume that the context is
some operation op in some environment env. A common situation is that if A expects
B:1.9:, then it can accept B:2.0: (Figure 5.4); but if it expected B:2.0:, it cannot
accept B:1.9:. The satisfaction set of 8:2.0: with respect to [op, env] is a superset of
the satisfaction set of B:1.9:; 8:2.0: satisfies the same requests (under [op, env]) as

44

CCM Model KBSA Framework

i..

Figure 5.5: Satisfaction DAGs indicate compatibility.

B:1.9:, and optionally more requests. If the two satisfaction sets are identical, then
the two objects are version-equivalent (with respect to [op, env]).

Version equivalence and compatibility can be seen as defining a set of overlapping
satisfaction DAGs (Figure 5.5). Each satisfaction DAG identifies versions which are
compatible with respect to a particular operation in a particular environment. The
nodes of a satisfaction DAG are nodes from a version history DAG; a satisfaction-
DAG arc from node B:1.9: to node B:2.0: indicates that if B:1.9: is desired, B:2.0:
can be substituted for it. That is, an arc from B:1.9: to B:2.0: means that B:1.9:'s
satisfaction set is a subset of the satisfaction set of B:2.0:. A bidirectional arc thus
implies equivalence.

One peculiar operation under which versions can be compatible is "cohabitation";
this is really an indication of the degree to which the two objects are incompatible.
Incompatible versions are sometimes cohabitative - that is, they can be referenced
in the same configuration; but sometimes incompatible versions are not cohabitative
- they are antagonistic. Consider an application which depends on a particular
version of an interprocess communication library; if it is advantageous to include a

45

KBSA Framework CCM Model

new module in the application, which depends on a different version of that library,
it may be that neither version of the library will satisfy both the existing application
and the module to be reused (an unresolvable state clash). If the two versions of
the library are cohabitative in that environment, then the new module can continue
to use its own version of the library, referencing it indirectly via a version cursor.
But if the two libraries contend for the same device antagonistically, then the same
configuration cannot make use of both.

5.4.2 Representations, Equivalence, and Consistency

k'or purely mechanical transformations (Section 5.7), representation eouivalence can
be deduced from the transformation history, since we assume that purely mechan-
ical transformations yield equivalent representations. But if we have two primary
representations, or two representations which are related by a transformation which
requires human input, then consistency must be checked by some verification proce-
dure.

5.4.3 Search

The use of dynamic references leads to issues of search - we must locate an object
definition which satisfies the reference. The search may be trivial or significant, de-
pending on the generality of the version-selection rules. When the rules are sufficiently
general, backtracking becomes a necessary capability, in order to find a consistent set
of versions. For example, assume object A references pci with a version-selection rule
which would be satisfied by pcl:7: or pcl:8:; object B does likewise, but can only accept
pcl:8:; and the two versions of pcl cannot coexist. If we dereference A's pointer to pcl
with pcl:7:, we'll need to back that dereference out when we attempt to dereference
B's pointer to pci.

46

CCM Model KBSA Framework

5.5 Dynamic Version Binding

When specifying a configuration, we typically want to refer to versioned
objects. We may refer to a versioned object by a static reference which
denotes a single definite version, fixed at specification time; or we may
refer to a versioned object with a dynamic reference - a reference which
will be resolved to a particular concrete version later, typically at con-
figuration-construction time. Underpowered dynamic references point to
a "default" version of an object, where the default changes as the ob-
ject evolves. Fully general dynamic references function as search rules
for locating an appropriate object, based on the current operation and
environment.

When we refer to a versioned object (an object which may have multiple versions),
we may refer to it statically or dynamically ([13]).

A configuration in which all references to versioned objects must be static references is
fairly inflexible; it has difficulty benefitting from improvements made to the objects
it references. For instance, assume configuration :Tcheck: uses version 10.1 of X-
windows; suppose all references to objects from X-windows are static references to
objects from 10.1. If a new version of X-windows - say, X-windows:11.4: - becomes
available, then Tcheck, because of its static references, still uses the objects from
X-windows:10.1:. Upgrading Tcheck to use X-windows:11.4: may be tedious and time-
consuming. But if Tcheck had referenced objects from X-windows:defa ult-configu ration:
or X-windows:" binary compatible with Tcheck's graphics calls":, then the upgrade might
occur semi-automatically.

Underpowered dynamic references point to a "default" version of an object, where
the default changes as the object evolves. For instance, on VMS, aardvark.exe;5 refers
to a specific concrete version; aardvark.exe without a version number is a dynamic
reference, denoting the highest numbered version; aardvark.exe;-1 is another dynamic
reference, denoting the version before the highest-numbered one; etc. This notion
of a "default version" or "current version" associated with a version set is a weak
idea - the presence of multiple alternates means that multiple "default versions"
are current; which of the alternates is actually "default" depends on the current
environment and the operation desired. Fully general dynamic references function
as search rules for locating "the right" object, based on the current operation and
environment. Examples might include X-windows:"binary compatible with Tcheck's
graphics calls":; foo:"the highest-versioned from my local workspace, if present there, else
the highest-versioned baseline":.

47

KBSA Framework CCM Model

Dynamic references serve several purposes:

* They facilitate object reuse.

* As mentioned above, they facilitate automatic upgrades - wi-n a newly-
created version will satisfy a dynamic version cursor pre.'2uusiy satisfied by
a different version, the user of that cursor can be automatically notified (see
Section 6.3.1).

@ They make it possible to conditionalize construction and consistency-
establishing operations on the environment and on the desired operation. For
example, in Figure 6.8, npasswd references one of two possible be's; bej.
(filesystem-based back end) or bert (daemon-based back end) . Selection of
the appropriate be can depend on the environment for which npasswd is being
built.

e They allow references to be made to objects which are not currently available
"hypothetical objects" which are being created or will be created in a foreign

configuration. In such a circumstance a version cursor is a specification for an
object whose existence is requested - "put here some A which meets these
constraints". Version cursors thus enable a sort of "lazy integration", where
components and utilities are found and chosen as they are needed.

A version cursor is a request for an object. Unresolved version cursors in a config-
uration are analogous to unresolved external references in a relocatable-object file.
The version cursors are references; the definitions must be found elsewhere, in other
configurations. Resolution must occur when the configuration is constructed (made
consistent), analogous to linking the relocatable-object files.

Version cursors are typically resolved when configuration construction occurs (e.g.,
when derived representations are generated, when a request is made to produce a
concrete configuration).

Version cursors must specify the object in such a fashion that it can be located. Since
a version cursor must resolve to a particular version of an object, it must specify:

The object's signature. This may be a name, an interface or protocol specification,
or something more complex.

A version-selection rule. This may be "version :1.5:" (for a static cross-configu-
ration reference), or a more-or-less complex dynamic reference. The form of
version-selection rules depend heavily on the form of compatibility attributes
(see Section 6.1.2).

48

CCM Model KBSA Framework

Note that with a dynamic version cursor, the version which is referenced at can change
in two ways:

1. The version cursor's selection rule may be manually changed - e.g., to capture
an improved understanding of the requirements the object must satisfy ("A
must satisfy the version 9 IPC spec, and it should have responded to change
request 1197").

2. The version referenced may change as a side-effect of changes in the object base
e.g., a new version has been checked in which satisfies the selection rule.

49

KBSA Framework CCM viodel

5.6 Change Propagation and Change Notifica-
tion

When a design object changes, objects which depend on that object may
need to react to that change, to re-establish consistency; dependent ob-
jects might update themselves, update other objects, or notify a human.
When an object changes, dependent objects must be notified, and con-
sistency re-established, but the percolation of change must be controlled
- every object which needs notification should be notified, but we must
avoid notifying every object in the object-base at every change.

When X changes, objects which depend on X - e.g., Y - may need to react, to re-
e:tablish consistency. It may be necessary to propagate change along many types of
relationships. When a component changes, it may be advantageous to generate a new
version of the assembly; when a utility changes, its users may need to change; when
one representation changes, it may be advantageous to generate other representations
from it; when a predecessor version changes, it may even be advantageous to fold the
change into a descendent version.

A CCM system should provide some automated means for detecting that the depen-
dency between X and Y has an change which has not been responded to. We may
choose to use a passive, or flag-based, strategy for handling this: the problem is no-
ticed when Y is next accessed. This is the strategy used by Make - if the source-file
object has changed, there is no automatic action regarding the executable object; but
the situation is detected at the next build, and the executable is regenerated. Alter-
nately, we may choose an active, or message-based, strategy - messages ("change
notifications") are sent to the dependent objects, which choose how to react to the
message.

Change propagation should be integrated with the standard mechanisms by which
change - both human-instigated and automatic - is managed by the object-base.
For instance, change notifications can be considered a subclass of change requests
- they are change requests produced by other objects rather than by humans. It
is worth noting that, while subtransactions are useful to model top-down change,
change notifications often serve the purpose of modeling bottom-up change.

A key problem is limiting the propagation of change while still notifying every ob-
ject which requires notification. It is sometimes reasonable to prune the propagation
manually - ie, by requesting that the user interactively limit the area affected. Al-
ternately, it has been proposed in [14] that by placing attributes on relationships (ie,
slots), we can correctly restrict the propagation of operations, or of change ([15], [16]).

50

CCM Model KBSA Framework

But marking a relationship as being always insensitive to change is a major assertion.
Determining whether to propagate a change depends not just on the characteristics
of the slot, but also on the purpose of the change. The change-sensitivity markers
would need to be fairly sophisticated expressions, conditionalized on several factors,
including the operation and the environment. The change-sensitivity markers would
often need to be specialized on an object-by-object, rather than just a class-by-class,
basis.

51

KBSA Framework CCM Model

od. spec

[John]

od.c

[cc, SunOS] [cc, VMS]

od.o 0 od-ob

[Id, SunOS]

O od*

Figure 5.6: Multiple representations for the same design object.

5.7 Objects with Multiple Representations

Design objects are frequently multi-representational. The same concep-
tual object is depicted by several different representations, often at differ-
ent levels of abstraction. For example, an ALU hardware design may be
represented by a layout object and a netlist object; a program may be rep-
resented by a spec object, a source code object, and an object-file object.
Representations are related to each other by transformations. A primary
representation is produced with human input. A derived representation is
generated from another representation by application of a transformation
k e.g., the compile transformation, which derives relocatable-object from
source-code); if the transformation is purely mechanical, the derived rep-
resentation is a secondary representation. Multiple representations and
the transformations between them must be managed in order to track
and maintain consistency.

Design objects are frequently multi-representational. The representations are typi-
cally rich highly-structured objects, which may include text and graphics. Consider a
specification for a program, od.spec (Figure 5.6). From the spec, a programmer might

52

CCM Model KBSA Framework

derive C source od.c (or Lisp source, od.Iisp). From either of these, a compiler might
derive an object file - od.o from a Unix compiler (for a Unix environment), or od.obj
from a VMC compiler (for a VMS environment). We'd like to consider all of these
od's as representations of "the same conceptual object". We may therefore talk about
a representation set: a set of objects which we know are multiple representations for
the same conceptual entity.

When we have multiple representations for the same conceptual object, problems of
identifying and maintaining equivalence between representations arise: we need to
identify which objects are actually representations for "the same thing", and we need
to maintain this relationship in the face of change.

Representations are related to each other by transformations. The transformation
may be versioned (e.g., ada.exe:6.0:), and its actions may be dependent on the en-
vironment. The relationship between two representations is thus defined by a [oper-
ator.version, environment] pair. The representations in the representation set form a
representation DAG, where the arcs are these transformation relationships.

A transformation may involve human input; in the [operator.version, environment]
pair, the operator may be mechanical, human, or both. For example, traditional
compilation is mechanical; the derivation of source-code from program-specification
is typically human; and a human-assisted optimizer would be a human/mechanical
mix. Purely mechanical transformations yield secondary representations; the others
yield primary derived representations.

A representation whose creation or modification involves human input is a primary
representation. Primary representations must be checked for correctness, and for
consistency with other primary representations. Secondary representations are gener-
ated from other representations (primary or secondary) by the application of a purely
mechanical transformation.

A derived representation is any --presentation which is derived from another repre-
sentation by the application of a transformation. A derived representation may be a
secondary representation (if the transformation is purely mechanical), or it may be a
primary representation (if the transformation involves human input).

* An underived primary representation is created purely by humans, not derived
from other existing representations.

* A derived primary representation is a representation which is derived from some
other representation by a human or human/mechanical transformation.

* A derived secondary representation is one which was derived via a purely me-
chanical transformation; underived secondary representations cannot exist.

53

KBSA Framework CCM Model

Frequently there is no clear answer as to whether a particular representation must be
treated as a primary representation or as a secondary representation. For instance,
suppose we decide to allow patching of relocatable-object objects. We may choose
to make relocatable-object a primary representation; modifying a relocatable-object
would cause a change notification (active or passive) to be posted on the correspond-
ing source-code object. Or, we may define a new transformation, patch-object, which
takes as input a relocatable-object and a patch script (which is a new primary repre-
sentation).

In all purely mechanical cases, we assume that the operator guarantees correctness
of the secondary representation which the operator derives. We also assume that a
purely mechanical operator guarantees consistency between source and derived rep-
resentations - if the same [operator.version, environment] is applied to a particular
representation, an identical result representation will be produced. Transformations
which are not purely mechanical yield derived primary representations which must
be checked for correctness, and for consistency with the source representation; this
is particularly hard when the target representation is at a higher level of abstraction
than the source.

Primary representations should be history-bearing objects; a change to a primary
representation may cause change propagation effects (e.g., the notification of objects
which have version cursors referencing that primary representation.) Secondary rep-
resentations, since they can always be re-generated from their corresponding primary
representations, need not be history-bearing; the creation of a new secondary repre-
sentation need not cause change propagation effects (though it is often useful for it
to do so).

The traditional approach for maintaining consistency among multiple representations
is to assume that change only occurs in one particular primary representation; all
other representations are (transitively) derived from that one in a purely mechanical
fashion - ie, they are all secondary representations. Consistency can then be estab-
lished by simply re-deriving all the secondary representations. For instance, we may
allow changes to source-code objects, but editing the relocatable-object or executable
is considered bad practice; they must be re-generated from the source-code. This
becomes complicated when there are multiple primary representations (e.g., program
spec and program source-code), when there are significant derived primary represen-
tations, and when a primary representation is at a lower level of abstraction than a
derived representation (since going in that direction - e.g., generating source-code
from relocatable-object - is difficult).

Automated change notification (see Section 5.6) can help. In general, we may choose
to track changes, automatically regenerating secondary representations when appro-

54

CCM Model KBSA Framework

priate, and providing interactive tools to inform the designer of changes which must
be made - e.g., to regenerate derived primary representations.

55

Chapter 6

KBSA Framework CCM Model

This chapter summaries the CCM model for the KBSA framework. It also describes
the experiences of a project which is using the model in an avionics CAD domain.

6.1 Configurations as Contexts for State

CCM is a global issue; it cannot be dealt with locally, on an object-by-
o0'-ject basis. In particular, it does not make sense to create a new version
of an object by copying the object, because it is frequently impossible to
halt copy-propagation before a large fraction of the object-base is dupli-
cated. If objects may have multiple states, data access by (object, slot) no
longer makes sense; all references to the state of an object must be made
in the contezt of some configuration. Every data access must specify not
just the object and slot, but also the configuration in which the access
is to be performed: (object, slot, configuration). Thus, in our model, a
configuration is a repository of state - it holds the state of the objects
occurring in it, mapping object x slot --+ value.

For CCM, we must determine how to represent change, given that

9 The objects which are changing are interdependent.

* We must support both forward and backward changes (recoverability).

Many models and systems represent change by copying. When a version of an object
is checked-in, that copy of the object becomes read-only. When there is a need to

56

CCM Model KBSA Framework

Al AL2 A3

Figure 6.1: Changing a dependent object.

modify the object (culminating in a new version), a writable copy "of the same name"
is created (check-out). This strategy works reasonably well in the domain of files and
filesystems; but in highly interconnected and interdependent object-bases it quickly
becomes unmanageable, due to issues of object identity.

1. Consider the object being copied. When we copy an object, we do not necessar-
ily want to simply duplicate the object references within that object (shallow
copy); we may need to duplicate the objects referred to by that object, and have
our new object refer to those duplicates instead (deep copy).

Suppose cm.tex (Figure 4.1) was previously checked-in, and we now want to
modify it - ie, we need a new version. If we represent change by copying,
then we do not want just a copy of cm.tex - we want its components, too. For
instance, if we should decide that we must modify cm.tex's component exper.tex,
we don't want to modify the same exper.tex referenced by the checked-in version
- we would be modifying the checked-in version simultaneously, as a side effect.
Thus, when we request a new version of a hierarchical assembly of parts, we want
not only a copy of the root, but of all its components, recursively; alternately,
we wish those component references to be marked copy-on-write.

Because the *.ps objects are transitive components of cm.tex, we will want
copies of them, too. But suppose that the *.ps objects included a slot which
identified the drawing program which produced them. We do not (normally!)

57

KBSA Framework CCM Model

want to cause new copies of the drawing program to come into existence when
the *.ps objects are copied; we want the new *.ps objects to refer to the same
drawing program as the old copies. Thus, we want some slots to obey deep-copy
semantics, but some to obey shallow-copy semantics.

2. More problematically, consider not the object being copied, but the objects
which refer to it. The slots which previously pointed to the older copy may
need to be readjusted to point to the writable copy, and the objects where
those references occurred may themselves need to be copied (since they are
being implicitly changed via changing objects which are in their slots). This is
the change propagation problem (see also Section 5.6).

In Figure 6.1, Al, A2, and A3 reference B. B references C1, C2, and C3. Assume
that B has been checked-in. We decide to change B - for instance, by changing
its reference to C1 to be a reference to C4. We must make a new copy of B
in which to make the change, so that we maintain history (the state of B had
been checked-in). But B is a feature of Al, A2, and A3, and we've changed that
feature; they have therefore changed, so perhaps we should make a new copy
(a new version) of them, too, pointing at the new B. Likewise, we may need to
copy the parents of Al, A2, and A3, and their parents, transitively.

It has been proposed that by placing attributes on relationships (ie, slots), we can
correctly restrict the propagation of operations such as copy (see Section 5.6). But
determining whether we need to copy the objects which refer to an object which
has changed cannot be determined solely from slot attributes; it depends not only
on the characteristics of the slot, but on the purpose of the operation. Frequently,
criteria which can be used to limit the recursive copy propagation without sacrificing
correctness and consistency are not readily apparent.

Consider figure 6.2. In configuration :Cl:, we have (SlotA A) and (SlotB B) pointing
to X, and (SlotX X) pointing to Y. Configuration :C2: has elected to reuse X (and
thus Y). Suppose that, in :Cl:, (SlotX (SlotA A)) is changed, to point at Y'. The X
referred to by A has changed. Should B refer to the new X or the old X - what, if
anything, should happen to (SlotB B)? Further, to which X should D refer - what
should happen to (SlotD D)? The right choice depends on what the owners of B and
D intended when they referenced X.

Because of these problems, our model does not represent change by copying. We
contend that if an object is to exist in more than one configuration - ie, have more
than one version - then all references to the state of an -'niect must be made in
the context of some configuration. If objects may have mu..ple states, data access
by (object, slot) no longer makes sense. Data access must also in all cages specify

58

CCM Model KBSA Framework

C1 C2

A B D

otA SlotB lotD

.loeX lotX

Figure 6.2: Reusing a dependent object.

the configuration in which the access is to be performed: (object, slot, configuration).
This specification of a configuration can be implicit, but it must occur.

Therefore, in our model, we consider a configuration to be primarily a context for
determining the state of objects; it is a repository of state. A configuration records
the state of the objects which are mentioned in it, not the objects themselves; it maps
maps object x slot --* value. It can be considered to be a table of (objectid, slotid,
value) tuples.

We are thus versioning sets of objects - configurations - rather than individual
objects. If object A exists (is mentioned) in configuration :C:, then the state of A in
:C: is called a version of A; object A in a different configuration is a different version
of A. Versions of objects exist only in configurations; objects under CCM have no
state outside of a configuration. This gives us the same semantics as deep copy, but
with a space-efficient representation, and a conceptual simplicity.

In some ways, a configuration is thus analogous to a scope in a block-structured
language or a package in an information-hiding language. A successor configuration
imports state from its predecessor configuration; the effect is similar to importing ob-
jects from a package, except that the imported objects obey copy-on-write semantics.
A subtransaction (see Section 6.2.1) is similar to a nested scope - objects in the

59

KBSA Framework CCM Model

Configuration :C1.O:
predecessor: null
(A, SlotA, X)
(B, SlotB, X)
(X, SlotX, Y)

Configuration :C1.0.1: Configuration :C.0.2:
predecessor: :C1.0: predecessor: :C1.0:
(B, SlotB, Y) (X, SlotX, A)

Figure 6.3: Configurations :C1.0.1: and :C1.0.2: as deltas from :C1.0.1:.

super-transaction are visible, but may be hidden by local redefinitions (changes).

6.1.1 Configurations as Deltas

A configuration need only record the changes in state which were made
during one design transaction - a successor configuration is a delta from
its predecessor. This leads to a space-efficient representation of a tree of
configurations; with appropriate design, the representation can also be
time-efficient (a la RCS [10]).

A history DAG is a directed acyclic graph of configurations which share a derivation
history; the configurations are related by ancestor/descendent links. In our model, we
restrict the history DAG to be a tree - ie, we disallow multiple predecessors (parents);
we model multiple predecessors as one predecessor plus other donor configurations
"loaded in". Because of this, a configuration need only record changes in state - a
successor configuration is a delta from its (single) predecessor.

In Figure 6.3, we see configuration :C1.O: (which is :C1: from Figure 6.2), and its
child configurations, :C1.0.1: and C:1.0.2:. We assume that :C1.0.1: was produced by

1. Checking-out :C1.0:, and

2. Making one change: (setf (slotB B) Y).

and that :C1.0.2: was produced by

1. Checking-out :C1.O:, and

60

CCM Model KBSA Framework

2. Making one change: (setf (slotX X) A).

Only the changes need to be recorded in the child configuration. When it is necessary
to read the state of unchanged objects, we traverse the predecessor link (recursively,
if necessary). So, for instance, in :C1.0.1:, the value of (SotB B) is Y, and the value
of (SlotA A) is X (retrieved from :C1.0:); in :C.0.2:, the value of (SlotX X) is A, and
the value of (SlotB B) is X. This gives the same semantics as deep copy, but with a
space-efficient representation.

This example uses "forward diffs" - the predecessor is treated as the original, and
the successor as the revision. For a representation which is not only space-efficient but
also time-efficient on average, "backward diffs" can be used as in RCS: the successor
stores the complete state of the system of objects, and the predecessor's table indicates
the changes which must be made to the successor to restore the predecessor.'

In version-control systems like RCS, the version history of a file is recorded in a single
file; from that version-history file, any version of the file under revision control can be
extracted. Versioning is thus done on a file-by-file basis, analogous to modeling change
by copying. Our configurations would be similar to version history files maintained on
systems of files, rather than on individual files; they would be, in effect, a combination
of "patch" dles - which describe deltas on an entire system of files - and RCS ",v"
version-history files.

6.1.2 Compatibility Attributes

Besides objects' state, configurations also include compatibility attributes,
which annotate the history DAGs with satisfaction DAGs; this informa-
tion is used when de-referencing version cursors.

Determining equivalence and compatibility of versioned objects is a central CCM task
(Section 5.4). Version equivalence and compatibility must be considered in the con-
text of a given operation in a given environment - pcl-v7 and pcl-v8 may be source-
compatible (compatible with respect to compilation), but not binary-compatible
(compatible with respect to linking). A degree of equivalence and compatibility infor-
mation can be determined formally, from the structure of objects; for instance, two
objects with radically different protocols are not likely to be equivalent. But in gen-
eral, testing and experience must be used to make such determinations. The inability

2A production CCM system would also have to address compaction and garbage collection issues.
It would be useful to have the capability of occasionally identifying configurations in the history DAG
which are no longer worth saving; these could be compacted out of the DAG, by migrating their
changes into preceding or succeeding configurations.

61

KBSA Framework CCM Model

to retain and use such information (including automated use) is a major limitation
of existing systems. Compatibility attributes can be set on configurations to record
the knowledge gleaned from such testing and experience. In our model, compatibility
attributes are part of the data making up a configuration.

Compatibility attributes define the set of satisfaction DAGs (see Section 5.4). A
compatibility attribute can be considered to be at least a labeled directed arc between
two configurations. The label specifies the operation and environment under which
the two are compatible, and the direction specifies the subset relationship between
the two configurations' satisfaction sets.

Dynamic version cursors make significant use of compatibility attributes in specifying
and resolving version-selection rules; see SectioL 6.4.

Compatibility depends on the environment and the desired operation. Compatibility
information must include history information about the state of the configuration
when a (versioned) transformation was performed. We believe that the properties
and transformations should be structured via inheritance (e.g., gcc:1.35: is a kind of
gnu C-compiler, which is a kind of C-compiler). The exact format of the compatibility
information, the model of incompatibility, and the format of version-selection rules
which use such information needs to be further determined.

6.1.3 Structure and Operations of Configurations

Figure 6.4 shows the basic structure of a configuration, and three of the basic oper-
ations, make-instance, read-slot and write-slot. We assume that classes are defined
elsewhere. We also assume that objects are defined locally in a configuration, though
they need not be.

62

CCM Model KBSA Framework

Configuration < State-table, Compatibility-attributes, Symbol-table >
A configuration is a state table, compatibility attributes, and
a symbol table.

State-table { State-tuple* }
State-tuple < object-id. Slot-id, Value >
Value atomic-value I object-id

--- The state table contains state-tuples.

Compatibility-attribute ::= <operation-id, environment-descriptor, configuration-id>
A compatibility attributes indicate another configuration which
is compatible with this one.

Symbol-table .= { Object-descriptor* }
Object-descriptor ::= <objectid, class-id>

--- The symbol table indicates the class of an object.

(make-instance Class Configuration)
;; makes an object by entering it into the symbol table of
;;; Configuration as an object of a particular class.

(read-slot Object Slot Config)
if there-exists state-tuple ST in Config such that

(object-id ST) = Object &nd (slot-id ST) = Slot then
(value ST)

else if (predecessor Config) = NULL then
<no such object>

else
(read-slot Object Slot (predecessor Config))

(write-slot Object Slot Config Value)
if there-exists state-tuple ST in Config such that

(object-id ST) = Object and (slot-id ST) = Slot then
(setf (value ST) Value)

else
(insert-into (State-table Config)

(make-state-tuple Object Slot Value))

Figure 6.4: Primitive structure and operations for configurations

63

KBSA Framework CCM Model

6.2 Transactions as Contexts for State

The initiation of a design transaction creates a transaction handle or
proto-configuration. The transaction handle is a work context; it is a
writable configuration - a repository for the state of a set of objects under
CCM. Transaction handles are long-duration, sharable, and atomic; they
may be nested to provide a hierarchy of workspaces. When the transac-
tion is successfully committed, the state of the transaction handle becomes
read-only: the transaction handle becomes a configuration, guaranteed to
be a consistent system of objects, based on class- and application-specific
definitions of consistency

A design transaction is an atomic, long-duration sequence of operations, performed
by multiple agents on a shared system of objects, which starts with one configuration
("check-out") and yields another consistent configuration ("check-in"). Basic design
transactions are discussed in Section 5.3. In the KBS., framework CCM model, the
operations making up a design transaction are performed on a transaction handle -
a writable proto-configuration. The transaction handle is a first-class object, which
can be passed around and shared. The handle is shared by the agents performing
the transaction; users who have its handle, and write-permission to the handle, can
perform operations within the transaction. When the transaction is committed, the
transaction handle is checked for consistency; if it passes the consistency-checks, the
transaction handle becomes a configuration - its state table becomes read-only.

Committing a transaction causes the proto-configuration's dynamic references to be-
come fixed; all dynamic references within the configuration's state table become static
references. All components and subcomponents become fixed, so that the configura-
tion could be described by a linear list of particular versions of objects (by specifying
subcomponents, we have constrained the components not to change). However, the
configuration schema contains the unfixed version cursors, allowing the abstract spec-
ification of the configuration to be reused in a descendent configuration; see 6.3.

Though the state-tuples in its state table are frozen, certain modifications can be
made to a configuration after commit.

* Compatibility attributes can be added, modified, and deleted, to record the
results of testing and experience. Similarly, change-request annotations can be
added, describing bugs, deficiencies, and wish-lists.

* It may be possible to add new secondary representations, depending on the
purpose of the configuration. If the configuration is only for change manage-
ment, then new secondary representations can be allowed. If the configuration

64

CCM Model KBSA Framework

is intended to be a release for a particular platform, the presence or absence
of secondary representations is significant, and the addition of new secondary
representations will probably be disallowed.

6.2.1 Successor Transactions and Subtransactions

The DAG of configurations grows as design transactions are applied to existing config-
urations (Figure 5.2). A design transactions which starts with an existing configura-
tion and yields a successor configuration (see Section 5.2.2) can be called a successor
transaction. When such a transaction is initiated, its transaction starts with the
same state recorded in the predecessor configuration - ie, the transaction handle's
state table is empty. During the transaction, operations are performed, causing ob-
ject modifications, object creations, object deletions, and/or the import of objects
from other configurations; as operations are performed, the state table records the
modifications performed to the state inherited from the predecessor configuration.

If a transaction starts with the null configuration, and yields an initial configuration,
it can be called an initial transaction. A design transaction can also start inside
another ongoing transaction, in which case it is a subtransaction.

A subtransaction imports objects (actually, their state) from its super-transaction.
Often, a subset of the super-transaction's state is imported, since the subtransaction
is frequently used to model task decomposition (see Section 5.3). Committing the
subtransaction typically updates the state of the super-transaction with the changes
made in the subtransaction.

Figure 6.5 shows a successor transaction which has one ongoing subtransaction. The
subtransaction is operating on a subset of the super-transaction's state.

6.2.2 State Clashes

State clashes occur when a new configuration to be folded in contains objects which
already exist in the current transaction handle, but the versions of the objects to be
folded in differ from the versions in the transaction handle. That is, we are attempting
to import two different states for the same object. For instance, a given application
may depend on a particular version of an interprocess communication library; if it
is advantageous to include a new module in the application, which depends on a
different version of that library, the two u. -interfere. In Figure 6.6, object A exists
in two configurations; the state of A in one differs from its state in the other. An
attempt is made to produce a new configuration which uses both U and V, which

65

KBSA Framework CCM Model

ancestor/descendent

/\ aubtrans action

Figure 6.5: A successor transaction and a subtransaction.

66

CCM Model KBSA Framework

U V

A A

J

UV

Figure 6.6: A state clash between U's A and V's A.

depend on different states of A.

In general, there are three options in such a situation:

override The incoming state overwrites the current state.

Thus, if U already exists in the current transaction, then when V is imported
":override", then both U and V will reference the state of A which is being
imported with V - the state of A which references B.

submit The incoming state is discarded; the current state is maintained. Objects in
the incoming state which reference objects with clashing state now refer to the
objects as they already exist in the current transaction handle, rather than as
they existed in the configuration being imported.

Thus, if U already exists in the current transaction, then when V is imported
":submit", then both U and V will reference the state of A which had been

previously imported with U - the state of A which references C.

separate The incoming state occupies a private namespace, as if the incoming ob-
jects were duplicated and renamed. This is the effect which occurs when cross-
configuration references (version-cursors) are used.

67

KBSA Framework CCM Model

Again, assume U already exists in the current transaction. J's reference to V will
be not be a direct reference to a local object, but rather an indirect reference
to the V in the imported configuration.

6.2.3 Operations on Transaction Handles

The following are some candidate user-visible operations which might be defined for
transaction handles:

(make-transaction
[:successor-to <configuration> I

:subtransaction-of <transaction>
C :mutable-super I :immutabie-super)]

E :exporting <object>+ I
[:satisfying <change-request>+ I

* Creates and returns a transaction handle object (the holder of a transaction
handle object can view and modify objects under change control).

9 The new transaction may be a :successor to a configuration (ie, to a com-
mitted transaction), or it may be it may be a :subtransaction of another
transaction.

e One can specify which objects will be :exported by this configuration as its
primary externally-visible objects.

e One can specify one or more change requests (which might be change notifica-
tions) which this configuration is ii ended to satisfy.

i Make-transaction will warn if the predec--ssor or parent transaction already has
an ongoing successor transaction or subtransaction.

e For a subtransaction, one can specify whether the state of the super-transaction
should be seen as :mutable or :immutable. If the super-transaction is muta-
ble, any changes made to it during the subtransaction are visible within the
subtransaction.

(commit transaction :change-descrip <some-class>
[:exporting <object>+ I

[:compatibility-at',:ibiates <some-class> I
[:no-update-super I

)

68

CCM Model KBSA Framework

* Commits a transaction, making it read-only and globally visible - ie, making
the transaction handle a configuration. One must own the transaction handle
to do this.

e Committing a transaction asserts that the objects and state therein are in-
ternally consistent and are consistent with each other. The human doing the
commit is asserting that the primary representations of each object are consis-
tent with each other; the commit operation runs class- and application-specific
verification methods, if any, particularly on the secondary representations.

* One should specify a change description which documents the transaction.

* One can specify which objects will be :exported by this configuration as ex-
ternal objects.

e One can specify compatibility attributes which identifies other configurations
with which this configuration is compatible.

* By default, Committing a subtransaction causes its objects to be written into
the super-transaction (ie, a

(load-configuration <this-subtransaction>
:clash-resolution 'override)

occurs). The :no-update-super keyword suppresses this behavior.

* Configurations and transactions who have version cursors referencing the pre-
decessor configuration may receive change notifications, if their configuration
schema so indicate.

* Commit will warn if there are uncommitted subtransactions.

,abort transaction [:discard I)

e Terminates transaction without attaching the transaction handle to the config-
uration history DAG as a successor transaction.

* Discards the state of this transaction if :discard is present.

e One must be owner of transaction to do abort.

(in-transaction T)

69

KBSA Framework CCM Model

" Makes the transaction of handle T the current transaction for this session, giv-
ing access to the objects and state defined in T. If another transaction was
previously current, the state defined in the previous transaction becomes inac-
cessible.

" One must have read/write access to the transaction handle to do in-transaction.

(load-configuration
<configuration>
C :clash-resolution iuteractive.overridelsubmitfseparate])

* Loads the objects and state from the named configuration into the current
transaction's proto-configuration.

* If an object being loaded already exists in the current transaction, then the
states of the two versions of the objects are checked. If the states are not
identical, then a user-specified conflict-resolution strategy is employed:

interactive Query the user per clashing object.

override The objects being read in override the current state.

submit The objects being read in are overridden by the current state.

separate Tne objects are not copied in; rather, references to those ob-
jects are version cursors, cross-configuration references to the objects in
<configuration>. They continue to occupy a separate state-space, as if
they were duplicated and renamed.

(select-objects E <configuration>l<transaction-handle> I <object>+)

" Returns a proto-configuration object containing only the objects listed, and the
objects referenced by those objects transitively.

" Typically used with make-transaction or load-configuration, where some or all
of the objects (and state) in the predecessor / super- / to-be-loaded transaction
are "copied" into the current transaction.

* With select-objects, one can select which objects should actually be "copied"
from the predecessor or super-transaction (objects referenced by the selected
objects are also "copied").

(find-configuration C :exporting <object>+ I
C :selection-rule <some-class>+ I)

70

CCM Model KBSA Framework

" Returns a configuration object.

" One again has the option of specifying one or more objects which the configu-
ration must export.

" One can specify one or more selections rules (based on the compatibility at-
tributes recorded with the configurations.)

" Typically used as the argument of a load-configuration.

There are a variety of other operations which might be useful, including:

* Backing out a commit.

* Re-parenting a subtransaction.

71

KBSA Framework CCM Model

6.3 Configuration Schema

It is useful to be able to specify a configuration abstractly, including com-
ponent references which are not resolved until configuration-construction
time. A configuration schema specifies how to build (or recognize) a consis-
tent configuration, and how to correctly propagate change notifications. A
configuration schema specifies: the structure of the configuration (includ-
ing rules for identifying objects to be fetched from other configurations);
how to verify the consistency of the configuration; how to construct the
configuration; and how to control the propagation of change within and
between configurations.

A configuration schema is an abstract specification of a configuration, the schema for
a consistent system of objects; a configuration is instantiated from a configuration
schema. The configuration schema is a set of rules specifying how to build - or how
to recognize - the right set of objects, constructed from the right components and
utilities.

The configuration schema is part of the configuration - different versions of it may
exist in different versions of the configuration. But it is intended that the configura-
tion schema will change more slowly than the configuration itself; it should be more
abstract, describing more than one version of the configuration. Further, when the
design transaction is committed, all references in its state table become fixed refer-
ences; however, the configuration schema remains an abstract specification, including
the version cursors.

We have elected to consider the abstract structure of a configuration as a separate
specification from the objects making up the configuration. In many systems, dynamic
references are embedded in the configuration itself - placed directly into objects'
slots, and thus sprinkled throughout the system of objects. We choose to abstract out
the dynamic parts of the configuration - dynamic references, verification description,
build description, etc.- and specify them separately, in a configuration schema.

Typically, a configuration schema will be developed and elaborated over a period of
several transactions. It summarizes experience regarding how to properly construct,
and properly verify, versions of this configuration. It thus abstracts the activity of a
sequence of transactions; it is an abstraction of the "transaction audit trail", replay
information. Therefore, the configuration schema specifies not only the st-ucture of
the configuration, but also the process to be followed in producing or verifying it.

A configuration schema includes:

72

CCM Model KBSA Framework

Structure description The abstract description of the structure of the configura-
tion identifies the components and utilities required, and how their interfaces
are composed. Objects may be specified by cross-configuration references, in-
cluding dynamic references; resolution of a dynamic reference may depend on
the current environment and the desired operation. For example, in Figure 6.8,
npasswd references one of two possible be's; bejo (filesystem-based back end) or
bert (daemon-based back end) . Selection of the appropriate be can depend on
the environment for which npasswd is being built. The structure description
should specify non-explicit dependencies; structure which is inherent in the ob-
jects and their references, and which does not involve dynamic references, need
not be specified.

Interface description The description of the configuration's interface identifies the
objects which the configuration needs from other configurations (ie, the version
cursors); it also identifies the objects which the configuration provides to other
configurations (ie, the objects which it is believed should be the external objects,
that other configurations may choose to reference).

Verification description The description of how to evaluate the consistency of the
configuration may include several things:

* The dependencies between objects, including the dependencies of derived
representations (e.g., A.exe depends on A.Iisp).

" Regression tests, including the use of V&V tools.

" User-specified constraints on the attributes of objects.

Process description The description of how to construct the configuration (ie, to
establish consistency) tells how to generate or update dependent objects (in-
cluding derived representations), and in general how to construct and compose
objects which must be constructed or composed. These "actions lines" may
be conditionalized on the current environment and the desired operation. For
erx~~.iple, in the VMS environment oms.ada would be compiled with a VMS
compiler (and a particular system.ada), but if the configuration is being build
in the Unix environment, a different compiler and a different system.a would be
used. What part of the process description is actually executed at consistency-
establishment depends on the areas of inconsistency identified via the verifica-
tion description.

Change propagation The description of how to propagate change into this config-
uration from foreign configurations may simply be the interface description's
dynamic references. For example, if one of the dynamic version cursors had

73

KBSA Framework CCM Model

previously resolved to C:1.9:, but the newly-created C:2.0: would also satisfy it,
then by default a change notification message should be sent to this configu-
ration's owner. More generally, it should be possible to specify what action, if
any, should be taken in response to a dynamic reference becoming unsatisfied
or resatisfied (see Section 6.3.1).

A "Makefile" can be considered a weak configuration schema. In its structure de-
scription, the only relevant property of the objects are their relative timestamps. No
interface description is provided. The action lines of the build rules form the pro-
cess description; the operations specified there cannot be conditionalized. The only
inherent verification description is the build rules, which define consistency based on
relative timestamps. Cross-configuration change propagation is not defined, though
intra-configuration change propagation is handled by the build rules.

Our understanding of the requirements which must be satisfied by a notation for
configuration schemas (and for version cursors) is fairly detailed; we have not chosen
a particular notation so far. Further work must be done hypothesizing and testing
notations.

6.3.1 Change Propagation and Change Notification

There are several benefits which arise from our model of configurations and transac-
tions.

Change propagation and deep copy. Because we do not model change by copy-
ing individual objects, we avoid the need to do change propagation for check-out
operations (Section 6.1).

Disambiguating the propagation path. When dependencies among objects form
a DAG rather than simply a tree, then there are multiple possible paths by which
change can propagate through a system. If all paths are followed, a prolifer-
ation of uninteresting or unintended versions occurs. A mechanism for group
check-in/check-out allows the dependencies to be disambiguated ([15]). Our
transaction serves as such a delta set (one logical change subsuming multiple
physical changes). Thus, other configurations and transactions need only to re-
act to the entire transaction, not to the various intermediate operations within
it.

Cross-configuration vs Intra-configuration propagation. We can distinguish
between cross-configuration change propagation and inter-configuration change
propagation, and specify different strategies for each.

74

CCM Model KBSA Framework

ak ul Ak-db

Ck U-o ck_1.x chare ck dLct

Figure 6.7: Second version of Check- Password- Quality configuration.

75

KBSA Framework CCM Model

kdb

Figure 6.8: Password- Changer configuration, descended from Check-Password-
Quality

76

CCM Model KBSA Framework

Configuration schema may be used to control cross-configuration change propagation.
For example, if one of the dynamic version cursors had previously resolved to C:1.9:,
but the new C:2.0: would also satisfy it, then by default a change notifiation message
should be sent to this configuration's owner. More generally, it should be possible
to specify what action, if any, should be taken in response to a dynamic reference
becoming unsatisfied or resatisfied. It should be possible to specify the types of
changes which should cause a dynamic reference to send a change notification, the
types of changes which should be ignored, and the types of changes which should
cause action to be taken automatically (e.g., a rebuild).

Intra-configuration change can typically be handled by a passive (flag-based) strategy,
augmented with user-defined constraints. For many changes, we can postpone resolv-
ing the inconsistencies arising from such changes until consistency-establishment or
configuration-construction occurs. For some changes, we will want dependent objects
to react immediately; user-defined constraints allow such needs to be specified.

77

KBSA Framework CCM Model

6.4 Cross-configuration and Dynamic References

A configuration schema may include references to objects which will be
fetched from other configurations - cross-configuration references, or ver-
sion cursors. The references may be dynamic - ie, the particular source
configuration may not be chosen until configuration-construction time. A
dynamic version cursor includes (a) the object signature and (b) a rule for
selecting an appropriate version of that object (ie, an appropriate source
configuration). Dynamic version cursors provide for flexibility in evolving
configurations, and allow references to hypothetical bjects which will be
constructed in other transactions.

In the configuration schema, when describing a component, we may specify that it
should be imported from a foreign configuration (ie, it is not or may not yet be in
the current transaction). A reference to a component in a foreign configuration - a
cross-configuration reference - is a version cursor. The version cursor may be static
or dynamic. Since it must resolve to a particular version of an object, it must specify:

The object's signature. This may be a name, an inte-iface or protocol specification,
or something more complex.

A version-selection rule. This may be "version :1.5:" (for a static cross-config-
uration reference), or a more-or-less complex dynamic reference - e.g., ":bi-
nary compatible with currently loaded windowing system:" The form of version-
selection rules depend heavily on the form of compatibility attributes (see Sec-
tion 6.1.2).

In many systems, cross-configuration references are sprinkled throughout the system
of objects. We choose to place version cursors in the configuration schema; in the
system of objects, dynamic references show up as hypothetical objects, which are
created when a dynamically-specified configuration is loaded. We believe that this
centralization of dynamic references will reduce the frequency of the situation where
difrerent parts of a configuration reference antagonistic versions of the same foreign
configuration.

There are a variety of chlaracteristics which could be included in a version cursor's
version-selection rule:

A static configuration identifier The selection rule identifies a concrete configu-
ration ("C:2.1:") when the version cursor is a static reference.

78

CCM Model KBSA Framework

Compatibility requirement We may specify that we want a version which is com-
patible with some other configuration. The other configuration may be a known
concrete configuration, or it m y itself be a dynamically-chosen configuration.
In the latter case, backtracking may be necessary to discover a consistent (or
the "best" consistent) system of configurations.

Change request responses We may specify that we want e. version which has re-
sponded to particular change requests (ie, which has fixed certain deficiencies).

Environment and operation dependencies We may conditionalize the request
on the environment or desired operation, particularly for configurations which
are intended to be constructed for multiple environments or to sati!cfy multiple
purposes.

Dynamic version cursors make significant use of compatibility attributes in specifying
and resolving version-selection rules. We have described compatibility attributes as
being at least labeled directed arcs (Section 6.1.2), which specify that one configura-
tion can satisfy a request asking for another configuration, in the context of a partic-
ular environment and a particular operation. We are assuming the version-selectiol
rules are first-order logic expressions. The selection rules and the version-search pro-
cess must be adequately powerful; but if the expressions become too general, then
the computational complexity of producing a configuration may become inordinately
high, and understanding how partial resolution of a configuration schema affects the
rules may be difficult. We currently believe that limiting the expressions to Horn
clauses which depend on compatibility and transformation information is acceptable,
but this needs to be validated.

79

KBSA Framework CCM Model

6.5 Initial Experience using the Model for Avion-
ics CAD

An in-house project is implementing part of the KBSA framework COM model to
solve CCM problems in a prototype avionics design capture system.

In their avionics CAD domain, multiple teams of designers, responsible for different
subdomains, are evolving large and complex subsystem designs which must be peri-
odically integrated to yield a design of the complete system. A key requirement is to
have an on-line model of the system's baseline configuration, and of any options which
may be instantiated to construct particular concrete configurations; it must be pos-
sible to determine the consequences of the choices which were made in constructing
a particular concrete configuration.

A typically development process, in the abstract, wou!d look like this.

" The system administrator creates the database and defines the aircraft class
which the database describes.

" The system integrators for the various subdomains define the subsystems from
which data is required. Working with the system administrator, they also define
user rights for the various subsystems.

" The designers within the various domains create and elaborate the design ob-
jects making up their subsystems, including intra- and inter-subdomain inter-
faces.

" The system integrators make sure that the data entered is consistent, complete,
and on schedule for system integration releases. The system integrators also
assist in any coordination among teams that may be required.

* For many design objects, some features of the object will never change in future
revisions, but other features will be subject to frequent change. Depending on
the subdomain, revision management is the responsibility either of the subsys-
tem designer or the subdomain's system integrator.

" A distinguished system integrator is responsible for aircraft configuration man-
agement (ie, for configuration management of the complete system).

80

CCM Model KBSA Framework

6.5.1 Representing Change

It was necessary to retain the revision history of these avionics parts objects - for
example, the descriptions of fielded revisions must be available as long as the revisions
are in service. Saving the entire database - a snapshot of the world - each time a
configuration needed to be retained would require approximately 300 gigabytes per
class of aircraft (approximately 100 subsystems each requiring about 30 snapshots);
this was deemed undesirable.

The first-cut solution was to maintain a revision history on an object-by-object basis;
an object was checked-in by marking it "immutable", and a configuration was simply
a list of pointers to frozen (checked-in) objects. Any future changes to a frozen object
would need to be made to a new version of that object - ie, to a mutable copy of the
object, created by a check-out operation. But the database is highly interconnected; a
change to one part of the database has effects beyond the strictly local modifications.
When checking-in or checking-out an object, the objects which it references and which
reference it must also be dealt with (see Section 6.1). When checking-in an object, it
is necessary to also check-in the objects which are components of that object, since
they are part of its definition; when checking-out an object, its components must be
checked-out also. The more difficult question was how the objects which reference an
object should respond to a new version of that object. Copy propagation problems
arise; the objects which reference the old version of the object may need to themselves
be duplicated, since a new version of the object referenced is a change to a feature
of the objects which reference it. Thus it was necessary to produce not only a new
version (copy) of the object to be checked -out, but also potentially of all the objects
which referenced it - in the worst case, copying the entire database again.

Criteria which could be used to limit the recursive copy propagation without sacri-
ficing correctness and consistency were not readily apparent; we contend that this
will be true of most domains. The KBSA CCM model, which is conceptually clean
and leads to a space-efficient representation of a tree of configurations, was therefore
chosen.

A requirement for this avionics domain was to facilitate the work of multiple coop-
erating teams via decoupling the subdomains during development, while facilitating
system integration. The multiple subdornains were decoupled into multiple trees of
configurations. Each subdomain maintains their configurations as a tree of state ta-
bles, where each state table records the modifications made to the database since
the previous state table (see Figure 6.9). Configurations from the subdomains are
periodically composed to form one global system configuration, a node in the system
configuration tree; the system configurations cache the complete state of the system.

81

KBSA Framework CCM Model

Read-Release (release-name) ; read from file
RETURJ: release

Write-Release (release-instance) ; write to file

DefDomainRelease (domain new-release-name predecessor-name)
RETURN: release

DefGlobalRelease (new-release-name predecessor-name)
RETURN: release

Create-object (release class-name krest slot-value-pairs)
RETURN: hash-id
SIDE-EFFECT: Check that release isn't frozen.

Check slots for completeness, consistency.
Create instance of object and insert it into release.

Access-slot-value (release hash-id slot-name)
RETURN: slot-value
SIDE-EFFECT: Traverses parent links of releases until slot value is

found.
Check that object has not been deleted.

Replace-slot-value (release hash-id slot-name slot-value)
RETURN: slot-value
SIDE-EFFECT: Check that release is not frozen.

Check that slot is consistent, user-setable.
Unless an instance of object is already present in release,

Create an instance of object and insert into
release, copying slot-values from parent releases.

Change existing value of the slot to slot-value in release.

Query (release &rest slot-value-pairs)
RETURN: (hash-id*)
SIDE-EFFECT: Calls Access-Slot-Value to find objects in database

that match the slot-value-pairs description.

Figure 6.9: Configuration Management Operations in Avionics Application.

82

CCM Model KBSA Framework

6.5.2 Dynamic References and Change Notification

As mentioned, a requirement for this avionics domain was to facilitate the work
of multiple cooperating teams via decoupling the subdomains during development,
while facilitating system integration. The multiple The use of dynamic version cursors
supports controlled inter-domain references during development, facilitating system
integration. If an object in subdomain X must reference an object in subdomain
Y, the object's definition is not referenced directly; instead of a static reference, a
dynamic reference is used - a query statement (dynamic version cursor) which may
be "satisfied" by zero or more objects in the Y subdomain.

list of unsatisfied queries is maintained, and the list must be cleared before a consistent
release can be captured; this is the "system integration" (consistency establishment)
process. The distinguished system integrator is responsible for deciding the cause of
unsatisfied queries; that individual may direct the submitting design group to remove
the query, direct the submitting group to restate the query, or direct the target design
group to satisfy the query.

An interdomain communication protocol for queries was defined; database ac-
tions/transactions observe the protocol to ensure database consistency. Creation
of a version cursor initiates the query protocol, which is used to inform one domain
(the donor domain, which receives the query) that an object in another domain (the
recipient domain, which sends the query) wants to depend on or "point to" an object
in the donor domain. The query protocol guarantees that the interdomain links and
back-links between objects are set only upon explicit agreement from both domains.

A slight complexity is introduced when the target of a previously satisfied query is
changed, resulting in a now-unsatisfied query. The dynamic version cursor capability
also supports a change notification facility which notifies a user of an object if the
object has been changed such that it no longer satisfies the version cursor's selection
rule.

Another interdomain communication protocol was defined, for change notifications;
change notifications inform one domain (the recipient, which receives the notification)
that an object in another domain (the donor, which sends the notification) has been
modified so significantly that the links and back-links between objects in the recipient
domain and the modified object in the donor domain should be reevaluated.

The protocols for query satisfaction and change notification are computer assisted,
requiring the okay of system integrators from both domains.

The prototype avionics design capture system has been implemented in Common
LISP, and tested with small test problems, it is now being exercised with real data

83

KBSA Framework CCM Model

(9000 objects, about 10 megabytes of avionics design data).

84

CCM Model KBSA Framework

6.6 Related Issues and Open Issues

There are a variety of issues tangentially related to CCM which the KBSA framework
CCM : -iodel does not yet address; the model also requires exercising and improvement.

9 Exercising the Model. The CCM model has a solid conceptual base, but some
key areas require further elaboration, including:

- How should environments be described?

- What operations on design transactions should a working system provide?

- Can multiple representations for the same conceptual object be tightly
associated with each other, such that they can be referenced and managed
in a conceptually clean fashion?

- How should "back-transformations" - transformation which modify the
source representation as well as the target representation - be managed?

- What are good notations for compatibility attributes, version-selection
rules, and configuration schema?

- What form should compatibility attributes take? What are the precedence
relations? Is it possible to determine default compatibility attributes?

- How should version-selection rules and the version search process be struc-
tured to provide sufficient power without inordinate computational com-
plexity and without sacrificing comprehensibility?

- How should CCM be performed on a distributed object-base? Timestamp-
based distributed transaction management bears striking resemblance to
CCM; can that similarity be leveraged?

- How can the process record summarized in the configuration schema, and
the experience record summarized in the compatibility attributes, be lever-
aged in an integral design documentation / history mechanism?

- How should the configuration schema interact with subtransactions? Can
it serve to define the contracts which the subtransactions should satisfy?

- Can more assistance be provided for coping with concurrent and overlap-
ping changes performed to the same configuration or system of configura-
tions by different teams?

- How can the change propagation control specified in version cursors and
configuration schema be used to do automated impact analysis for hypoth-
esized changes?

85

KBSA Framework CCM Model

- How can the history and status of successor transactions and subtransac-
tions be summarized to display the status of an ongoing change, and to
estimate time-to-complete?

The model is currently analogous to a set of axioms and some core theorems
- it needs to be prototyped and exercised, to expand the number of theorems
and to evaluate a-,- improve the model.

9 CCM and Activities Coordination. It is clear the CCM and the activities coor-
dinator will be closely related. Both are concerned with managing the changes
which occur to project state, and with facilitating (or automatically performing)
some operations on project state while prohibiting others.

The activities coordinator will undoubtedly place further restrictions on the
legality of operations (based on the role of the person involved) in addition
to access control restrictions; it will play the major role in enforcing process
consistency, to better lead to the product consistency which is the major concern
of CCM. In addition, much of the compatibility information will be usable by
the activities coordinator to determine legality of a particular operation. We
believe that the determining factor for what capabilities go under the auspices
of CCM and which go under the activities coordinator should be based on the
notion of consistency; CCM is trying to deal with the consistency of the product,
whereas the activities coordinator is trying to deal with the consistency of the
process.

The activities coordinator will be a key resource in automating the CCM pro-
cess, to reduce its intrusiveness as much as possible, and to extend its benefits
to the full scope of both informal and formal changes. The activities coordina-
tor will also play a key role in proving configurable CCM policy; an integrated
CCM facility should provide the mechanism necessary to implement the policy
chosen by the project.

* Knowledge-Based applications of CCM. It would be possible to use CCM to
model "possible worlds" from knowledge-based tools or bindings from a unifi-
cation (logic-based) system. Although we did not pursue the issue in depth, we
identified two issues that interacted with our CCM model, namely granularity
and truth maintenance. How finely grained should the changes be which are
supported in a CCM model - and, correspondingly, how many transactions
per unit time will be involved? We believe CCM will typically manage signifi-
cantly coarser-grained objects than would be needed to model knowledge-based
or unification-based systems The purpose of most TMSs (Truth Maintenance
System) is to recoid decision dependencies and to reason about changes in them;

86

CCM Model KBSA Framework

in CCM, we do not know how to record (and use) information about why de-
velopment on a particular alternative configuration was halted, or why a user
decided not to use a particular configuration.

e Reuse. Combined with better interface specifications, the KBSA CCM model
has the ability to record compatibility information in a machine manipulable
fashion. Just as early software developers advanced from having textual de-
scriptions of how to assemble systems, to "scripts", to "Makefiles" that have a
specific language to reason about the construction of systems, we believe that
making compatibility information explicit will make it possible to determine if
some existing piece of software will work in one's environment. This is a critical
part of the software reuse problem - namely, having confidence that expending
the effort to use the software will be successful. While CCM modeling will be
able to determine the compatibility of a software module and make integration
of the component easier, the problem of identifying what components may be
applicable is outside of the scope the CCM model; the CCM model deals with
issues of compatibility and recoverability, but only marginally with issues of
module classification and library search.

87

Part III

KBSA User Interface
Environment (KUIE)

89

Chapter 7

Introduction to KUIE

As part of the Knowledge Based Software Assistant (KBSA) Framework [1] project,
Honeywell has developed the KBSA User Interface Environment (KUIE). KUIE ap-
plies Object-oriented design, specification, and prototyping tools, techniques and
methodologies to the task of constructing graphical, direct manipulation, interac-
tive user interfaces. The environment is highly Object-oriented and is based on the
Common Lisp Object System (CLOS) [17, 181.

The overall design goal of the KUIE development effort was to provide a specification
driven, window based, interactive, user interface construction toolkit which removes
much or all of the burden of interface construction from the application programmer.

Several of the characteristics of the KUIE design were drawn principally from Texas
Instrument's Common Lisp User Environment (CLUE) [8]. The design also was
influenced by the Knowledge Based Requirements Assistant (KBRA) presentation
mechanism [19] and other object oriented user interface systems. KUIE expands these
systems by utilizing the extensive leverage provided by the advanced object oriented
facilities provided in CLOS. This has simplified KUIE's interface and increased its
flexibility.

In addition to maiutaining a strong object oriented flavor in KUIE and compatibil-
ity with CLOS, we avoided dependence on any single hardware or product platform
by embracing the X Window System [6] (hcreinafter referred to as X) as the imple-
mentation base. X (and its Common Lisp interface, CLX [20]) is powerful, widely
available, and rapidly becoming the de facto standard for windowing systems in the
workstation, minicomputer, mainframe, and supercomputer markets.

Building the user interface portion of contemporary interactive systems is a complex
and demanding job. A frequently stated rule of thumb is that user interface design

91

KBSA Framework KUIE

and implementation typically consumes one-third of the total system development
effort for large systems. Even more disturbing is the fact that little, if any, of the
user interface subsystem design or code developed by one project is ever re-used in
another: the vast majority of user interface subsystems are built from scratch.

This sorry state of affairs stems from the vast numbers of minute details which must
be mastered when designing modern user interfaces and the impact they have on the
rest of the system's design and implementation choices. Although modern software
engineering "best practices" dictate that the user-interface subsystem be carefully
separated from the remainder of the system to be constructed, this often is difficult
to achieve with acceptable results.

Recently, tremendous progress has been made in the development of low-level user
interface construction building blocks; chief among these is X, originally developed by
MIT and now supported by the X Consortium.' X provides a low-level system upon
which sophisticated user interfaces can be built for modern execution/presentation
environments, i.e., a large, high resolution, bitmapped display, keyboard, pointing
device (e.g., mouse), and plenty of raw processing power (e.g., 3-20 MIPS) and
memory (e.g., 16+ MB).

Even though the support provided by X is at a relatively low level, it effectively iso-
lates applications from dependencies upon the input/output devices. X also provides
the unique capability to isolate application programs from intervening networks. Its
client-server mode of operation allows the application program to execute on one
machine (e.g., a supercomputer at a central site), with the application "window" ap-
pearing on the display of another (e.g., the user's workstation display down the hall
or across the country), all transparently to the application program.

The basic facilities provided by X are too primitive for direct use in all but the
simplest applications. Thus, most existing applications make use of one of the var-
ious X Toolkits. These toolkits provide support for the now familiar features of
bitmapped graphics interfaces: pop-up/pull-down menus, scrollbars, sliders, control
panels, push/radio buttons, title bars, eic. These facilities greatly simplify the con-
struction of user interfaces and improve their quality, but they do not relieve the
application programmer of all (or even most) of the many details involved in con-
structing the application interface. An example of this type of toolkit is TI's CLIO
[21], which is built upon, and intended to be a companion of, CLUE.

Looking at this from a slightly different perspective, present applications built upon
X are relieved from the responsibility of managing the details of the periphery of

'X Consortium, Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, Massachusetti.

92

KUIE KBSA Framework

the application (i.e., what happens around the application window), but they are
still totally responsible for what happens within it. There are no support facilities
available which help the application programmer handle redisplay, pointer tracking,
"rubberbanding", highlighting, moving, resizing, or placing displayed objects. The
application programmer must be intimately aware of the details of X 'vent handling
and is totally responsible for managing the appearance of the application's "windows".

KUIE can be described as an attempt to provide a different kind of X Toolkit: KUIE
automatically manages the appearance of the application's windows, based upon
declarative (as opposed to procedural) guidance provided by the application program-
mer, and provides the application programmer with the means to accomplish easily
many commonly used interface paradigms (e.g., rubberbanding, highlighting, mouse
sensitivity) without becoming involved in the intricate details of event handling and
the complex programming this normally entails.

Because KUIE is based on CLOS and provides a (primarily) declarative interface to
the application programmer, it is possible to cons -act sophisticated user interfaces
with relative ease (compared to the complex programming task previously required).
Additionally, since a "KUIE interface" will be primarily a list of CLOS declarations,
as opposed to thousands of lines of complex functions, reuse of user interfaces (or
portions of interfaces) across multiple applications will be more easily achieved.

7.1 Design Goals

The following five principle goals guided the design of KUIE:

Object Oriented Abstractions The benefits of object oriented abstractions for
user interfaces have been demonstrated in several operational systems [22, 23].
The approaches taken proved to be both capable of managing the complexity
inherent in user interfaces constructed for applications, and yet be highly flexible
for constructing novice user interface features [24].

CLOS Compatibility The ratification of CLOS as part of the Common Lisp lan-
guage [18] has provided an industry-wide base for object oriented programming.
Close association with the CLOS standard will aid KUIE's use and acceptance
by a larger community.

Portability Applications should be easily portable to any hardware/software envi-
ronment which supports CLOS and the X Window System.

93

KBSA Framework KUIE

Modularity KUIE should comprise a well-defined and self-sufficient laver of the user
interface programming system. Using KUIE, an application prols , .mmer should
be able to implement most types of user interfaces without accessing underlying
software layers and without knowledge of the implementation internals of KUIE
objects.

Extensibility The KUIE interface should provide the ability to define new types of
user interface objects which refine and extend the behavior of the basic object
types. KUIE provides this ability through the CLOS features of class special-
ization, method mixing, and inheritance.

Basing KUIE on the emerging Common Lisp/CLOS and X standards has enabled us
to meet these design goals with minimum difficulty.

7.2 Concepts

7.2.1 KUIE Levels

KUIE is logically and physically divided into three separate levels of increasingly
powerful functionality. Level 1 has been implemented and reasonably well-tested. At
the time of this writing, it is being used by three different projects at Honeywell's
Systems and Research Center. Level 2 has been designed and a prototype implemen-
tation has been constructed. Level 3 is simply a figment of our imaginations. Each of
these levels provides new, powerful user interface construction capabilities not found
in systems commonly available today.

The overall structure of KUIE and its relationship to CLX, CLUE and CLIO are
shown in figure 7.1.2 As can be seen from this figure, all three levels of KUIE, as
well as CLUE and CLIO, are visible to the application program. The application
program's use of CLUE however, must be tailored to fit within the KUIE framework.
Application programs will rarely, if ever, call CLX directly.

The three levels of KUIE aie:

Level 1 - Building Blocks. This is the lowest level of KUIE. It provides X
Toolkitlike facilities for constructing the basic pieces of a window-based, in-
teractive user interface, while hiding as much of the low-level details of the
interactions between the application and the X Server as possible.

2KUIE Level 3 does not yet exist; the figure shows its planned place in the overall structure.

94

KUIE KBSA Framework

KUIE LEVEL 3 :APPLICATION PROGRAM

KUIE LEVEL 2

-------------------IL----------

KUXE LEVEL I

CLIO

CLUE

CLX

Figure 7.1: Structure of KUIE, CLX, CLUE and CLIO

95

KBSA Framework KUIE

This level of KUIE is an extension of TI's CLUE, which is itself an extension of
CLX, the Common Lisp interface to X. This level of KUIE, together with the
conventional toolkit facilities provided by CLIO and the basic windowing facil-
ities provided by CLUE/CLX, provides application programmers with a very
powerful, object oriented paradigm for constructing interactive user interfaces.

Level 2 - Automated Layout. Below this level, the application programmer is
completely responsible for the layout of the objects displayed within the appli-
cation's window(s). For some applications (primarily text-based), this is not
a major concern. However, for more graphics-oriented applications (e.g., the
KBRA [19]), the intelligent placement of displayed objects has a major impact
upon the understandability of the information presented to the user.

This level of KUIE provides semi- or totally automated layout of the com-
ponents of a user interface - without the need for tedious and error-prone
placement algorithms supplied by the application programmer - based on a
simple constraint language/maintenance system which operates upon values of
and relationships between the displayed objects.

Level 3 - Gesture Recognition. Below this level, the application programmer
has been freed of many of the onerous details of user-interface programming.
However, he is still totally responsible for interpreting the meaning of the various
actions the user applies to the displayed objects.

The purpose of this level of KUIE is to simplify the application programmer's
input processing task by translating the user's manipulations of the graphical in-
terface into direct calls upon the relevant action routines within the application
program. The application programmer will specify the mapping between user
actions and the application routines to be invoked. The complex, detailed and
error-prone task of recognizing the "gestures" made by the user and invoking
the intended "semantic" routines will be performed by KUIE.

Although the higher levels are built upon the lower ones, the facilities of the lower
levels may be used to construct sophisticated user interfaces without relying upon the
services of the higher levels if they are not needed.

Thus, the three levels of KUIE each provide progressively more sophisticated capa-
bilities to the application programmer. Each of these capabilities supports and/or
automates a different aspect of graphical user interface programming; aspects which
must be explicitly handled - often in laborious detail - by the application program-
mer using window systems and related toolkits commonly available today.

96

KUIE KBSA Framework

7.2.2 KUIE Graphics

An interactive application program can be considered to consist of a collection of
functions, some of which perform the processing that is essential to the application's
purpose (e.g., text editing, knowledge base management, etc.). Other functions exist
solely for the purpose of communicating with the application's human user. In KUIE,
such human interface functions are represented by specializations of the KUIE-defined
graphic object class. The graphic class defines a primitive graphical object that is
capable of being positioned and displayed on the workstation display. Graphics are
responsible for presenting application information to the user on the display, and for
informing the application program of input sent by the user via interactive input
devices (such as the keyboard and the display pointer). A graphic generally embodies
a component of the user interface that knows how to:

* display its contents,

o process input events that are directed to it, and

e report its results (if any) back to the application.

A KUIE graphic provides a relatively high-level abstraction for user interface program-
ming. KUIE relies upon the services of a lower-level subsystem typically referred to
as a window sylstem. The window system provides interfaces for controlling interac-
tive I/O hardware such as the display, the keyboard, and the display pointer. KUIE
manages the interface to the underlying window system, relieving the application
programmer of this burden. The application programmer deals in terms of objects
physically placed on the user's screen which are subclasses of the KUIE graphic class.
The purpose of such an abstraction is twofold:

* To simplify and raise the level of the dialog between the application and 4 he
user. A graphic insulates the application programmer from detailed behavior
of a user interface component (such as displaying its contents and acquvring its
input). As an "agent" of the application, a graphic can directly cor.municate
with the user in terms closer to the application's domain.

* To define a uniform framework within which many different types of user in-
terface objects can be combined. The graphic class raises to a higher level the
commonality between a great variety of interface objects -- menus, forms, dials,
scroll bars, buttons, dialog boxes, text entry, DAGS, trees, charts, tables, etc.

97

KBSA Framework KUIE

A graphic is intended to be similar to a window in the underlying X Window System.
Graphics have many of the same properties and abilities as X Windows. Graphics, how-
ever, are not windows: the X Server has no knowledge of them and cannot manipulate
them: KUIE is completely responsible for mapping application program requests di-
rected to KUIE graphics into the appropriate window system calls to achieve the
desired effects.

Since graphics are intended to be so qimilar to windows, why not implement them
as such? The answer is very simple: most window systems (including X) restrict
windows to strictly rectangular shapes; KUIE graphics are more general: they can
be rectangles, ellipses, regular polygons, lines, arrows, pixmaps, and hierarchically
structured objects such as DAGS, trees, tables, charts, etc.

Nevertheless, graphics exhibit many of the char _ teristics of X Windows: they may
have backgrounds which are transparent or opaque; they may have borders; both
backgrounds and borders may be solid or tiled, and may be derived either from a single
color or from a pixmap; they may be moved and resized; they may be hierarchically
organized in a stacking order relative to their siblings; at any given time, they may be
completely visible (presented), partially visible (occluded), or invisible (withdrawn);
etc.

The subclassing and inheritance properties of CLOS are important to the use of
graphics. A graphic subclass implements a specific interface technique for input and
output. Thus, a graphic subclass can represent either an extension of a technique, or it
can provide a variation in style. This protocol is expected to lead to the development
of graphic "libraries", providing a rich repertoire of interface techniques and a choice
of several functionally interchangeable styles.

7.3 Constructing User Interfaces With KUIE

KUIE distinguishes '.;-o different aspects of programming a user interface:

* using existing graphics, and

* defining a new graphic subclass.

Thus, there are two categories of user interface builders: the application programmer
and the graphic programmer. This distinction contributes to the separation of appli-
cation programming from user interface programming - which is a primary goal of
user interface management systems.

98

KUIE KBSA Framework

7.3.1 Application Programming

The application programmer has knowledge of the application that is being con-
structed and defines how the screen should appear to the user of the application.
He/she will use and combine the existing KUIE graphics to achieve the desired user
interface. The application programmer, who instantiates and uses a graphic object,
does not need to know how the class and methods of the graphic were implemented
by the graphic programmer. In particular, the window system interfaces used by the
graphic programmer need not be visible to the KUIE application programmer.

Complete documentation for application programmers for KUIE Level 1 is provided
in the KUIE Reference Manual [7]. The application programmer interface to KUIE
Level 2 is not yet documented.

7.3.2 Graphic Programming

The graphic programmer constructs new graphics and specializations of existing graph-
ics that may be used in new applications. The needs of the graphic programmer are
different than those of the application programmer in that he must be aware of the
specific KUIE- and/or CLUE-defined protocols that must be maintained for graphics
and how to use the inheritance hierarchy to achieve the desired results. New graphics
that require complex screen management operations may require the graphic pro-
grammer to use underlying X Window System calls. This difference in perspective
between graphic programmers and application programmers separates knowledge of
the application from knowledge of the user interface.

The KUIE graphic programmer interface is not yet documented.

99

Chapter 8

Level 1 - Building Blocks

KUIE Level 1 consists of a set of predefined object classes, methods, and protocols
that may be used to construct interactive application user interfaces for modern com-
puting environments (i.e., high-performance workstations with bitmapped display,
pointing device, keyboard). The KUIE classes define objects which represent graphi-
cal images on the workstation display; the methods define the mechanisms by which
the graphical images may be manipulated by the application program; and, the pro-
tocols define the conventions which must be adhered to in order to extend the set of
graphical object classes.

The following subsections describe some of the major features of Level 1. For a
complete description, see the KUIE Refe.ence Manual ([71).

8.1 Classes

The KUIE object classes can be divided (roughly) into three groups: graphics, graphic-
composites, and miscellaneous classes. The graphic class (and its subclass specializa-
tions) define common graphical images: arcs1 , polygons, regular-polygons, lines (which
may be multi-segmented and may have arrows), graphic-pixmaps (bitmap images),
ellipses, circles, text-boxes, etc. All these subclasses of graphic are collectively referred
to as "primitive" graphics, to distinguish them from the graphic-composites.

There is also one rather special subclass of graphic: rectangle. Contrary to intuition,
KUIE rectangles are not a subclass of polygon. Rectangles are a concession to the
restrictions of the X Window System. For example, X cannot display text or pixmaps

1Arcs are not implemented yet.

100

KUIE KBSA Framework

which are rotated with respect to the X Window System coordinate plane. Thus, both
text-boxes and graphic-pixmaps are subclasses of rectangle.

The KUIE graphic-com posite class defines a class which allows the hierarchical compo-
sition of graphics. Although graphic-composites are graphics, it is occasionally conve-
nient to talk about them separately from the primitive graphics. Graphic-composites
are a subclass of rectangle and also of graphic-container, which is described in sec-
tion 8.3.

The miscellaneous classes include various supporting classes which may be used inter-
nally to define externally-visible KUIE classes, mix-in classes, and the canvas class.
The canvas class defines a specialized X Window object upon which graphics (both
primitive and composite) may be presented (i.e., drawn). It is important to note
that graphics may not be displayed upon arbitrary X windows; only KUIE canvases
supply the required support for presenting KUIE graphics; thus, every KUIE-based
application will use at least one canvas object.

The KUIE class hierarchy is shown in figure 8.1.2 The classes basic-contact, contact,
and coin posite are defined by CLUE. KUIE application programmers will be concerned
primarily with the graphic class and its subclasses, although they must be aware of
canvas objects. In addition to these classes, KUIE graphic programmers also will deal
with the graphic-container class, which encapsulates the functionality required for an
object to properly manage subsidiary objects which are graphics.

The KUIE graphic objects created by an application automatically perform many of
the low-level interactions necessary to support interactive windowing interfaces:

* they are able to display themselves on the user's screen;

" they are aware of their relationship to other objects being displayed - for
example, they understand the concept of "stacking order" and thus, know when
they must redisplay themselves in response to changes in the stacking order
and/or the geometry or position of other graphics objects;

" they are able to detect when the display pointer is positioned over them and
when it is not;

* they are able to detect when keyboard input is directed at them and when it is
not;

3

* they know when they are visible on the display (presented) and when they are
not (withdrawn).

2Object classes shown with dashed boxes are planned, but not yet implemented.
3Detecting the keyboard focus is not yet implemented.

101

KBSA Framework KUJE

Basic

Contact

Contt

Graphic Compoite .

Ar Fi1olyline ii s

Polygon CiceGraphic container j
tx

Regular Polygon I

.JsIyn Text Box a~ hcPxa

I Graphic Composite

DAG * 'Chart * Table'

'Form, 'Grid.

Tre ,Bar Charts [~ie Chart' o"M

Figure 8.1: KUIE Class Hierarchy

102

KUIE KBSA Framework

KUIE graphics know how to organize themselves for presentation. They know how to
present themselves, and how to unpresent themselves. A primitive graphic organizes
itself by centering its graphical representation in a region, the dimensions of which are
such that it is the smallest rectangular region that can fully encompass the graphical
element (i.e., its bounding box). Graphic-composites organize themselves by first calling
down to all of their constituent parts to organize themselves. Each orgarAzation of
a component part results in that component's bounding-box region (relative to its
parent) being returned to the parent. The composite object then organizes these
subregions into a new region. When an object is presented, it displays its graphical
elements in the region defined by the object of which it is a part by calling down its
list of its parts to present themselves.

The overall effect of these abilities is that the application programmer does not need
to concern him/herself with drawing graphical images upon the display. In fact, ap-
plications must not draw on a canvas as this will destroy the state of the window as
known to KUIE. Instead he/she simply manipulates objects - using the standard
CLOS Object-oriented programming paradigms - to achieve the desired visual ef-
fects and user interactions. KUIE performs all the necessary interactions with the
windowing system software to insure that the appearance of the display matches the
state of the defined graphic objects and that graphic objects inform the application
program of user input in an appropriate manner, when necessary.

The power of expression and versatility of CLOS makes this approach a powerful
design and development tool for the construction of complex user interfaces.

8.2 Primitive Classe

The so-called "primitive" KUIE classes are those which may not have component
parts; they thus form the most basic graphic elements of an application. The most
basic KUIE class is the graphic class.

KUIE graphics are a subclass of the CLUE-defined class basic-contact. KUIE graph-
ics are two-dimensional pictorial representations which are displayed on the user's
screen. All communication between the user and the application is intended to be
handled via graphics. The graphic class is not intended to be instantiated directly, as
vanilla graphics have no defined pictorial representation. Instead, objects should be
instantiated as one of the subclasses of graphic.

The graphic class defines the most primitive graphical object. All graphics have an
associated region which describes the smallest rectangular region which completely
encloses it (known as its bounding boz), a canvas upon which it is drawn, a state

103

KBSA Framework KUIE

(which is one of :withdrawn, :managed, or :mapped), and other attributes which

describe its window-like characteristics (e.g., background color and style, etc.).

8.3 Composite Classes

The an instance of one of the KUIE primitive classes represents a single (relatively)
simple graphical object. KUIE provides for the aggregation of multiple graphic objects
into a composite ent'ty via the graphic-composite and canvas classes. These two classes

are very similar but they have one important difference: graphic-composites are a

subclass of KUIE graphics; canvases are a subclass of CLUE contacts. Thus, canvases
are true X Windows; graphic-composites are not.

Nevertheless, both graphic-composites and canvases may have subsidiary objects

("children") which are subclasses of the KUIE graphic class. There are a consid-
erable number of protocols which must be adhered to in ord .r to properly manage
graphic children. This functionality is encapsulated within the KUIE-defined graphic-

container class, of which both graphic-composites and canvases are subclasses.

The graphic-container class is a mix-in class not meant to be instantiated or specialized
by KUIE application programmers; KUIE graphic programmers must be aware of
protocols it defines/implements, but normally will not need to deal with this class
directly. For most new composite graphics, it is expected that the graphic-composite
and/or canvas classes will provide a sufficient basis for complex composite graphic
specializations such as tables, trees, DAGS, etc.

It is our intention that graphic-containers should also be capable of managing chil-
dren which are CLUE contacts (which includes KUIE canvases). At the time of this
writing, this capability is not fully implemented. There is nothing preventing the

implementation of such a capability, however, other than a lack of time.

Graphic-composites are a subclass of rectangle and also of graphic-container - from
which they inherit the ability to manage gt .phic children. (At some future time,
graphic-composite may be promoted to be a subclass of regular-polygon, or possibly
of graphic.) Although they are graphics, it is occasionally convenient to talk about
them separately from the "primitive" graphic classes.

Graphic-composites define a class of graphics which provide for the hierarchical compo-
sition of graphic objects into arbitrarily complex visual arrangements. Structurally,
the hierarchical composition is restricted to a strict tree (i.e., any one graphic has
exactly one "parent").

Unlike KUIE graphics, canvases are specialized X Windows: they are true X Windows

104

KUIE KBSA Framework

of which the X Server is aware. Canvases are not graphics, although they conform to
many of the protocols defined for KUIE graphics. Cavases are a subclass of the KUIE
mix-in class graphic-container and are therefore capable of of managing children which
are KUIE graphics.

Since all X Window System calls must be directed to an X Window, all manipulations
of KUIE graphics must eventually resolve to operations on the graphic's associated
canvas. Remember that the parent of a graphic can be either another graphic (i.e., a
graphic-composite) or a canvas. From any graphic object, it must be possible to reach
a canvas by following the chain of parents.

When defining a new composite subclass, the KUIE graphic programmer must decide
whether it should become a subclass of graphic-composite or canvas. Normally, graphic-
composite is the proper choice, but there are several situations in which canvas may
be more appropriate, for example:

* if the new composite will have children which are subclasses of the CLUE con-
tact class (which includes the KUIE canvases) or must handle capabilities of
X Windows which are presently unimplemented (e.g., keyboard focus), then it
must be a canvas; 4

* in some rare circumstances it may be necessary to use canvases to achieve the
desired level of performance, but this is not likely to be a consideration for most
users.

Since every graphic must have a canvas in its chain of ancestors, it follows that every
KUIE application will use at least one canvas. For very simple applications, it may be
sufficient to instantiate an object of the class canvas directly; however most applica-
tions will create one or more canvases which have a parent that is an instance of one
of the CLUE shell classes. The CLUE shell subclasses provide the necessary mecha-
nisms for dealing with window managers, etc., according to the X Window System
protocols.

8.4 Mix-In Classes

This section describes the KUIE mix-in classes visible to an application programmer.
These classes provide optional capabilities which may be mixed into application-
defined subclasses of graphic as desired.

4As mentioned previously, these are current implementation restrictions of KUIE that eventually
will be removed.

105

KBSA Framework KUIE

The KUIE classes connectable and connector implement a limited constraint main-
tenance system that permits a graphic to be notified when the geometry of another
graphic changes. A common usage of connectors is in the situation where you have a
line between two boxes, and you want the end-points of the line to move when either
of the boxes moves (in which case you would use a subclass of connector: polyline-
connector).

We anticipate that connectors and connectables will be supplanted by a more general
capability when KUIE Level 2 becomes fast and robust enough. In the interim, they
encapsulate a common user interface notion, namely that of "linking" a set of objects
together and providing notification when any one changes its position or size.

A connector "links" instances of class connectable together. Whenever a change to the
geometry of one of the connectables is made, the connector that connects them and
the other connectable are notified (via connectable-moved). Instances of connector
implement a limited constraint mechanism. We anticipate that in a future release
the connectable and connector mechanism will be changed/extended to handle more
general constraints as described in chapter 9.

Linking two connectables together is accomplished by creating an instance of connec-
tor, and specifying the connectables as the source and destination of the connector.

Note that instances of connector do not have a graphical representation, and can be
used to "link" together connectables which do not share a common contact-parent.
However, if both connector and a subclass of clue:basic-contact are used as superclasses
of an application defined class, instances of that application defined class must have
the same contact-parent as the connector-destination and connector-source.

A connectable provides the capability for instances of subclasses of clue:basic-contact
to be "linked" together, that is to be notified when the geometry of another con-
nectable changes. Typically connectable is used as a superclass of an application-
defined graphic (or clue:contact) class so that instances of that application-defined
class may be "linked" together via a connector.

Polyline-connector is a connector that has a graphical representation of a polyline.
The first point in the polyline-points is continually updated to be the same as the
connection-point of the connector-source, and similarly for the last point and the
connector-destination. If either or both the connector-source or connector-
destinati-n is nil, then the corresponding (first or last) point is not modified.

For example, polyline-connector is a convenient mechanism for representing the arcs
in a graph or tree. Whenever the nodes in the graph are moved, the links are auto-
matically updated to point to the new location of the nodes.

106

Chapter 9

Level 2 - Automated Layout

At the present time, KUIE Level 2 is still experimental. This section describes the
purpose and operation of the KUIE automated layout system, but there is neither a
reference manual or a programmer's guide available at this time.

The KUIE Layout system is a programmatic ("software" as opposed to "user") in-
terface to KUIE geometrical object layout definition. The scope of the addressed
layout problem includes object size, positioning, and relative placement. KUIE Level
2 - Layout - is a numerical interval-based constraint specification and satisfaction
system that allows upper and lower quantitative bounds to be placed on well-defined
object and inter-object geometric properties, e.g., the width of this rectangle should
be between 20 and 60 pixels ("[20 60)").1

Using an interval-based constraint system gives KUIE greater expressive power than
a more conventional "fiat" quantitative constraint for user interface design. To our
knowledge, no other current graphical interface design environment employs an in-
terval system. This seems to be because of its greater computational complexity (it
is polynomial). However, we believe there is a body of user interface applications
of significant size that will benefit from the flexibility of this technology, using the
current generation of hardware workstation technology and a "bounds maintenance
system" (BMS) to support fast incremental change.

lInterval-based constraint propagation is discussed in [25].

107

KBSA Framework KUIE

9.1 Motivation, Comparison to Other Work, and
Goals

KUIE has been designed with the intention of relieving the programmer from the
low-level "bookkeeping" work that has been common to user interface programming.
KUIE Level 1 - Building Blocks - attempts to keep all but the most salient details
from the programmer's purview. In Layout, our goal has been to continue in this
paradigm of shifting the user interface detail-management burden from the program-
mer to the system.

Constraint-based graphical layout systems have been explored for almost 30 years [261
and there are presently other working constraint-based graphical user interface toolk-
its, including ThingLab II [27], Coral [28], Constraint Window System [29], Graph-
ical Object Workbench [30], and Constrained Rectangular Tiled Layout [31]. Some
of these toolkits also contain provision for "non-layout" (non-geometric) graphical
object constraints, such active values relating graphics and other application objects
or procedures.

2

With respect to actual "layout" (geometric) constraints, all of these systems are either
relatively limited in the scope of their capabilities, dealing only with a specific subset
of the total layout problem (such as window tiling), or requiring that the numeric
constraints specified must be exact. In KUIE, we decided that this restriction of
exact numeric values may put too much of a burden on an application programmer,
and we wanted to design a more flexible facility.

Thus, for example, we wanted the programmer to be able to say, "rectangle-1 is above
rectangle-2," without necessarily having to say "how far" above, and have the system
do something "reasonable." The interval-based constraint satisfaction approach af-
fords the programmer the ability to leave such constraint specifications "loose." The
programmer may also have notions about the minima and maxima for specific geo-
metric quantities; the interval approach also accommodates these specifications, and
uses constraint propagation to deduce their widest possible bounds across a complete,
specified geometrical layout. The propagation process thus takes the place of poten-
tially tedious and time-consuming iterative manual placement experimentation.3

Our overall architecture plan is broad enough to encompass the maintenance of con-

2These 'non-geometric" constraints can be employed in KUIE applications by appropriate use
of the Level 1 "connections' facilities.

3Presently we are working only with a programmatic specification interface. Conceivably, this
could be extended into an interactive constraint specification interface; then the developer's visual
sense could be more advantageously exploited, and an even better set of initial constraints for
satisfaction obtained. We would like to explore this in the future.

108

KUIE KBSA Framework

straints during user interaction. The performance of the constraint bounds mainte-
nance system remains in question. We believe that if we can approximate acceptable
performance in this regard - even to within one or two orders of magnitude - we will
have made a valuable contribution to user interface development technology. Even
if it is still too early to anticipate further accelerated-performance workstations that
utilize the constraint system interactively, the contributions of KUIE Layout in the
programmatic regard are nonetheless unique, and powerful.

Layout is integrated with the rest of KUIE through mix-in classes for use with KUIE
graphics and through hooks to the CLUE geometry manager (upon realization). A
programmer may choose to use or not use the facilities of Level 2 Layout for various
parts of the application user interface. (That is, exact numeric bounds may still be
used for any geometric quantities, and no objects need necessarily be constrained.)

9.2 Capabilities and Architecture

Layout consists of three main existing parts, and one planned part:

1. the Specifier, including graphical object and constraint definitions;

2. the Assimilator, an arithmetic propagation engine that refines all known
bounds to their least justified quantitative span and detects any bounds or
constraint inconsistencies, producing a consistent, completely propagated as-
similation;

3. the Allocator, which performs freespace allocation decisions that fix under-
constrained (still greater-than-zero-length-interval) bounds to an exact numeric
value from the allowed set which lead to harmonious object relative placement
within total (previously uncommitted) freespace; and,

4. the (planned) BMS ("bounds maintenance system"), a special purpose, stream-
lined reason maintenance system to support enhanced interactive operation.

These parts are invoked under program control.

9.2.1 The Specifier

For the sake of generality, Layout deals specifically with object rectangle (i.e.,
bounding-box) definitions; since all KUIE graphic objects have an associated bounding-

109

KBSA Framework KUIE

box, Layout treats all graphics as if they were rectangles. A KUIE rectangle specifica-
tion has the following form:

(setf rl (make-instance 'rectangle
:height [20 30) :width (40 50] :top [0 100)
:bottom [0 400) :left [20 600) :right [80 8001))

Any initialization field left unspecified is "unconstrained;" that is, it takes an interval
value of [0 :infinity].

Some examples of higher-level Layout specifications are shown below:

(place ri :left-of r2 :offset [100 200])
(place rl :left-of r2 :overlapping [0 25])
(align (top ri) :to (top r3))
(align (y (center r7)) :to (y (center ri)))
(scale (width r7) :to (width rl) :by 2)
(equate (aspect-ratio r3) :vith 1)
(scale (area r3) :to (area r2) :by [3/2 5/2])

Specifically omitted from Layout "placement" specifications are notions of negation
and disjunction, i.e., "rl is not above r2," or "r2 is left-of or right-of rl." Including
these would, in general, make the layout problem intractable. This is a compromise:
our constraint satisfaction mach:nery is already polynomial-complexity; adding dis-
junction would make it exponential. For example, one commonly desired specification
capability would be that "rl is near-to r2 without overlapping." In our system this
would have to map into the four-way disjunction: "rl is either left-of r2 or right-of r2
or above r2 or below r2," with appropriate offset distance specifications in each direc-
tion. We have considered the possibility of including such "conditional constraints,"
and we would like to experiment with structured ways of using them. A utility to
help a user understand the computational size of his problem and the origin of its
complexity would also be useful.

Other planned layout specification capabilities include proportioned rows/columns
(i.e., tiling), nested composite rectangle coverage, and row or column wrapping of
child objects into an arrayed representation.

In addition to the "standard" types of constraint specifications represented above, we
also allow the specification of "arbitrary" arithmetic constraints over geometric quan-
tities, using the operations of addition, subtraction, multiplication, division, square,
and square-root. Indiscriminate use of arbitrary constraint relations, may, however,
lead to trouble - see below.

110

KUIE KBSA Framework

9.2.2 The Assimilator

The Assimilator is a simple Waltz-style propagator, as described in [251. Geometric
quantities, such as height, area, x-coordinate, or a scale factor, are represented as
nodes with interval bounds. Constraints relate these nodes arithmetically. When
constraints are initially asserted or whenever a node which is a member of a constraint
is "changed," the constraint is queued for refinement processing. In refinement, each
constraint node is evaluated arithmetically with respect to the other nodes, and if the
evaluation result is "tighter" - with either a higher lower-bound or a lower upper-
bound than the node under refinement, then that node is changed to reflect the tighter
bounds warranted by the current state of the system. The algorithm terminates when
the entire network represented by such constraints becomes quiescent.

Arithmetic interval constraint propagation systems have some cantankerous proper-
ties, most of which we have been able to avoid in this relatively restricted problem
domain. Under some "pathological" initial conditions, they may not terminate. So
far, the "sensible" constraint specifications that we have developed are oriented to
intuitive and apparently well-behaved properties of Euclidean geometry, and have
not been pathological. Under poor constraint selection ordering, execution time may
become exponential. We employ a "stratified" system of separate queues based on dif-
ferent arithmetic constraint types, in order to maintain some control over constraint
refinement order. Complexity analysis for interval propagation systems is difficult
and depends on the kinds of arithmetic constraint operations employed. So far, we
have not done a formal complexity analysis, but our initial experiments show that, at
lea-t for some problems, execution time grows at less than the square of the problem
size in number of nodes.

The input of assimilation is a set of "unrefined" nodes; its output is a set of nodes
with intervals that are consistent with all of the constraints of the system. The
Assimilator has some limitations on computational power that also demand extra
care when writing constraint expressions.

In particular, the Assimilator can perform no equality substitution (or "term-re-
writing"), either across constraint arithmetic expressions or within single constraints
- even though there clearly are computational situations where term, or "node,"
substitutions are necessary to solve for the best bounds on nodes. We made this
decision since general term-rewriting mechanisms are intractable for propagation.
The danger in this is that a value picked for a node whose assimilated bounds are
not the best logically warranted bounds might not actually be logically consistent
with the rest of the system. This would become a problem in allocation. A way
out of this computational impoverishment is to assert additional constraints that
solve equality relationships for you, in effect, performing the required substitutions

111

KBSA Framework KUIE

in them, "by hand." So far, this has been satisfactory: the problem has come up
only in constraints employing square and square-root operations, and we have coded
it into our "primitives" for rectangle area and point-to-point straight-line distance.
A section of the (eventual) Layout users manual will flag this problem potential, and,
at any rate, it only applies to "custom-generated" arbitrary constraints.

9.2.3 The Allocator

One remaining challenge to using the interval-based approach has been to selecting
particular values for each node in the system. The Assimilator only refines interval
bounds to the set of what is mutually consistent among all constraints. This, as
Davis points out ([251), in effect only defines the "Cartesian product" of the solution
space over all nodes; while it is true (given a set of constraints with adequate hand-
substituted "rewrites" to make it logically complete) that for any one node a value
can be chosen that when taken with the rest of the system is consistent, there is no
guarantee that you can do this for two different nodes at the same time. Extracting
a particular solution from a fully assimilated network still requires additional work.
This is what the Allocator is for.

A very general allocator - one that was always guaranteed to work - would simply
loop through all system nodes, choosing an exact value (allocation) for each one,
and then reassimilating. Such a process would not necessarily be the most efficient
possible, or even generate a very pretty picture. Our Allocator uses information
about parent-rectangle edge-to-edge child-rectangle paths and path-lengths, in the
x- and y-dimensions, to determine an intuitively "centering" allocation that is also
relatively efficient, in that it allocates all of the nodes on a path in one step, between
assimilations.

Our approach is to work first on the path with minimum "freespace" - the difference
between parent edge-to-edge length and the sum of node interval lower bounds along
the path. By choosing the path with the minimum freespace, we tend to fix its
length nodes in a "centered" position, before going on to other, shorter-bounded
paths. Choosing these shorter paths (with less freespace) first leads to allocations in
which later-allocated rectangles (rectangles whose lengths are allocated later) end up
bunched up at one end of the picture. Our Allocator includes a minimum-freespace
path search algorithm that also caches best paths between assimilations.

These de:isions in our Allocator are relatively arbitrary, but they are also straight-
forward. Any alternative must somehow prioritize nodes for allocation order and also
provide formulas, or "allocation directives" that pin down values from intervals.

112

KUIE KBSA Framework

9.2.4 The BMS - Bounds Maintenance System

The BMS is a (planned) special-purpose, streamlined reason maintenance system to
support fast incremental change and enhanced interactive operation. Interval bounds
systems respond well to addition of new constraints but include no provision for
their deletion or retraction without complete network reassimilation. We expect the
BMS to support incremental deletion in assimilation and incremental deletion and
addition in allocation. It will work by recording constraint-and-node dependencies
for all node refinements and allocation decisions. The BMS concept is also essential
in the (possible) implementation of conditional constraints, since it will supply the
machinery for "backtracking" through propagation, and also as the basis for more
robust constraint violation exception handling, for the same reason.

Our initial experiments with the BMS concept show that it may be a feasible ap-
proach. While we have not yet implemented even a prototype BMS system, our rea-
soning is as follows. It is, typically, much less expensive to add a new constraint to an
already assimilated system and then reassimilate than it is to reassimilate the whole
system over again from scratch. By analogy, the "rollback" of a deleted constraint
should also be, typically, of a much smaller order than the reassimilation process
too. Taken together (in sequence), these two processes - deletion/rollback plus in-
cremental reassimilation - should still be significantly less expensive than wholesale
reassimilation. We expect to have the prospect of BMS feasibility confirmed, through
implementation, one way or the other in the near future.

While the performance of the BMS remains in question, we believe that if we can
approximate acceptable performance in this regard - even to within one or two or-
ders of magnitude - we will have made a valuable contribution to user interface
development technology. Even if it is still too early to anticipate further accelerated-
performance workstations that utilize the constraint system interactively, the contri-
butions of KUIE Layout in the programmatic regard are unique, and powerful.

9.3 Example

Here is an example KUIE Layout specification:

(let ((d (40 50])
(ht [20 30])
(parent (make-rectangle :Width 800 :height 600)))

(make-rectangle 'rl :width wd :height ht :parent parent)
(make-rectangle 'r2 :width ud :height ht :parent parent)

113

KBSA Framework KUIE

(make-rectangle 'r3 :width wd :height hit :parent parent)
(make-rectangle 'r4 :height ht :parent parent)
(make-rectangle 'r5 :parent parent)
(make-rectangle 'r6 :parent parent)
(make-rectangle 'r7 :parent parent)
(place ri :above r2) (align (x (center ri)) :to Ux (center r2)))
(place r3 :left-of ri :overlapping t)
(place r4 :above ri) (align (center r4) :to (left ri))
(scale (width r4) :to wd :by 3)
(place r5 :right-of ri) (align (y (center r5)) :to (y (center ri)))
(scale (width r5) :to (width ri) :by [1 2)
(scale (height r5) :to (height ri) :by [2 3)
(place r6 :right-of r5) (align (y (center r6)) :to (y (center r5)))
(equate (aspect-ratio r6) :with [1 2])
(scale (area r6) :to (area r5) :by [2 3])
(scale (left r7) :to (left r5) :by [3 51))

It creates seven child rectangles. The first three share common width nodes and the
first four share common height nodes, from the lexical variables wd and ht. Three
heights, four widths, and all coordinates are unconstrained. Most of the specifications
are straightforward; in the second scaling constraint, (width r5) is scaled to (be, in
this case, bigger than) (width ri) by a factor of from [i 2). The "equating" spec-
ification identifies r6's aspect ratio with an interval. Immediately after specification,
the seven rectangles have nodes with the following bounds-

(("Ri"' :WIDTH [40 50) :LEFT CO :INFINITY] :RIGHT CO :INFINITY]
:HEIGHT [20 30) :TOP [0 :INFINITY] :BOTTOM [0 :INFINITY]
:HANDLES ((CENTER :X [0 :INFINITY] :Y CO :INFINITY)

('R2"1 :WIDTH [40 50) :LEFT [O :INFINITY] :RIGHT CO :INFINITY]
:HEIGHT £20 30] :TOP [0 :INFINITY] :BOTTOM [0 :INFINITY]
:HANDLES ((CENTER :X CO :INFINITY] :Y CO :INFINITYM)

("R311 :WIDTH [40 50) :LEFT CO :INFINITY] :RIGHT CO :INFINITY]
:HEIGHT [20 30] :TOP CO :INFINITY] :BOTTOM CO :INFINITY))

("R411 :WIDTH [I :INFINITY] :LEFT CO :INFINITY] :RIGHT CO :INFINITY]
:HEIGHT [20 30] :TOP CO :INFINITY] :BOTTOM [0 :INFINITY]
:HANDLES ((CENTER :X CO :INFINITY] :Y CO :INFINITYM)

C"R5"1 :WIDTH Di :INFINITY] :LEFT CO :INFINITY] :RIGHT CO :INFINITY]
:HEIGHT Di :INFINITY] :TOP CO :INFINITY] :BOTTOM C0 :INFINITY)
:HANDLES ((ENTER :X [O :INFINITY) :Y CO :INFINITY)
:PARAMETERS ((ASPECT-RATIO [:-INFINITY :INFINITY])

114

KUIE KBSA Framework

(AREA [:-INFINITY :INFINITYD))
(11R611 :WIDTH (1 :INFINITY] :LEFT EQ :INFINITY] :RIGHT [0 :INFINITY]

:HEIGHT E1 :INFINITY] :TOP [0 :INFINITY] :BOTTOM [0 :INFINITY]
:HANDLES ((CENTER :X C0 :INFINITY] :Y EQ :INFINITY)
:PARAMETERS ((AREA E:-INFINITY :INFINITY))

(ASPECT-RATIO E:-INFINITY :INFINITY)
(11R711 :WIDTH [1 :INFINITY] :LEFT C0 :INFINITY] :RIGHT [0 :INFINITY]

:HEIGHT E1 :INFINITY] :TOP EQ :INFINITY] :BOTTOM [0 :INFINITY]))

Except for the width and height nodes we set explicitly, all nodes are unconstrained,
except for system-defined limits. After assimilation, the rectangles' nodes have the
following bounds:

(("Ri"1 :WIDTH E40 50) :LEFT E60 226] :RIGHT [100 266]
:HEIGHT E20 30] :TOP E20 560] :BOTTOM E40 580]
:HANDLES ((CENTER :X [80 246) :Y E30 570])))

("R211 :WIDTH [40 50] :LEFT E55 226) :RIGHT E100 271]
:HEIGHT E20 30] :TOP E40 580] :BOTTOM E60 600]
:HANDLES ((CENTER :X E80 246] :Y E50 5901)))

("R3"1 :WIDTH [40 50) :LEFT [10 226) :RIGHT E60 266)
:HEIGHT [20 30) :TOP EQ 580) :BOTTOM (20 600])

("1R411 :WIDTH E120 150) :LEFT E0 166] :RIGHT E120 301]
:HEIGHT [20 30] :TOP E0 540] :BOTTOM E20 560]
:HANDLES ((CENTER :X E60 226) :Y E10 5501)))

C11R511 :WIDTH E40 100) :LEFT E100 266] :RIGHT E140 366)
:HEIGHT E40 90) :TOP [0 550) :BOTTOM E50 600)
:HANDLES ((CENTER :X E120 316] :Y E30 5701))
:PARAMETERS ((ASPECT-RATIO [0 2)) (AREA E1600 90001)))

C11R611 :WIDTH [40 329) :LEFT E140 760) :RIGHT [180 800)
:HEIGHT E40 164) :TOP EQ 550) :BOTTOM [50 600)
:HANDLES ((CENTER :X E160 780) :Y [30 5701))
:PARAMETERS ((AREA [3200 27000)) (ASPECT-RATIO El 2])))

(11R711 :WIDTH [1 500) :LEFT [300 799) :RIGHT [301 800)
:HEIGHT El 600) :TOP EQ 599) :BOTTOM [1 6001))

These are the widest bounds that are consistent with all of the input specifications.
Note that all of the child rectangles' coordinates fit within the dimensions of the
parent rectangle. Now the bounds must be allocated. This is the only way to get
a firm, meaningful picture to display. After allocation, the nodes have the following
values:

115

KBSA Framework KUIE

(("R1":WIDTH 44 :LEFT 144 :RIGHT 189 :HEIGHT 28 :TOP 285 :BOTTOM 314
:HANDLES ((CENTER :X 167 :Y 300)))

("R2" :WIDTH 44 :LEFT 144 :RIGHT 189 :HEIGHT 28 :TOP 442 :BOTTOM 471
:HANDLES (CENTER :X 167 :Y 457)))

("R3"1 :WIDTH 44 :LEFT 121 :RIGHT 166 :HEIGHT 28 :TOP 285 :BOTTOM 314)

("R4" :WIDTH 134 :LEFT 77 :RIGHT 211
:HEIGHT 28 :TOP 128 :BOTTOM 157
:HANDLES ((CENTER :X 144 :Y 143)))

("R5" :WIDTH 79 :LEFT 215 :RIGHT 295 :HEIGHT 82 :TOP 258 :BOTTOM 341
:HANDLES ((CENTER :X 255 :Y 300))
:PARAMETERS ((ASPECT-RATIO 1) (AREA 6528)))

("R611 :WIDTH 181 :LEFT 470 :RIGHT 652 :HEIGHT 104 :TOP 247 :BOTTOM 352
:HANDLES ((CENTER :X 562 :Y 300))

:PARAMETERS ((AREA 18953) (ASPECT-RATIO 2)))

("R7" :WIDTH 61 :LEFT 677 :RIGHT 739 :HEIGHT 200 :TOP 199 :BOTTOM 400))

The allocated configuration is shown in figure 9.1. This example makes rather liberal
use of interval-valued and unconstrained nodes) with only one scale factor pinned
down to an exact value before assimilating. In general, the more allocated values
there are in a system specification, the faster it will go; this efficiency differential also
applies to dependency management and incremental change.

9.4 Status and Completion Plans

The specifier, assimilator, and allocator, are all existing and working in initial im-
plementations. We can get nice pretty pictures on the screen. Execution times for
the sum of the three operations appear to be on the order of 1 second per object, for
fairly large (50-rectangle) constraint systems, running on the SUN4 Sparcstation.

Our planned development activities for Layout include the following:

Extension to composite objects. (The first pass was for a single parent system.)
Our plan is to provide a unitary (multi-)parent-child constraint satisfaction
system.

Incremental object/constraint deletion support. Currently, because we are
running with an interval bounds system, there is no support for deletion without
completely reassimilating; we are looking into the design of a special-purpose,
streamlined constraint bounds TMS (truth maintenance system) to support in-
cremental deletion and enhanced interactive operation. Working with interval

116

KUIE KBSA Framework

R4

RS 16 RT

Figure 9.1: KUTE Level 2 Example

117

KBSA Framework KUIE

bounds, however, gives us much more freedom and power than constraint-based
user interface design systems requiring fully-constrained specification.

Tiling and wrapping operations. As described above.

Investigation of KUIE Levels 2 and 3 interactions and integration. This is
a low priority, design-only item.

Layout documentation. Something like a user's manual would be nice.

118

Bibliography

[1] Green, C., Luckharn, D., Balzer, R., Cheatham, I. and Rich, C., "Report on
a Knowledge-Based Software Assistant, " prepared for Rome Air Development
Center, Griffiss AFB, New York 13441, June 15, 1983.

12] KBSA Framework Final Technical Report Phase 1, Honeywell Systems and Re-
search Center, Minneapolis MN, October, 1988.

[3] "The Wisdom Systems Concept Modeler Reference Manual", McDermott Inter-
national, 1989.

[4] Carciofini, J., Colburn, .T, Hadden, G., Larson, A., "LogLisp Programming
System Users Manual", Honeywell Systems and Research Center, July 23, 1987.

[5] "Department of Defense Trusted Computer System Evaluation Criteria" CSC-
STD-001-83, Department of Defense, Computer Security Center, Fort George G.
Meade, Maryland, August, 1983.

[6] Scheifier, R., and Newman, R., "X Window System Protocol, Version 11,"
Massachusetts Institute of Technology, Cambridge, Massachusetts and Digitial
Equipment Corporatior Maynard, Massachusetts, 1987.

[7] Clark, J., Larson, A., and Schrag, B., KBSA User Interface Environment (KUIE)
Reference Manual, Honeywell Systems and Research Center, Minneapolis MN,
June 1990.

[8] Kimbrough, K. and Oren, L., "Common Lisp User Interface Environment
(CLUE)," Texas Instruments, July 1989.

[9] Myers, B.A., et al., "The Garnet Toolkit Reference Manuals: Support for Highly-
Interactive, Graphical User Interfaces in Lisp", Carnegie Mellon Univerity, Com-
puter Sciences Department, CMU-CS-90-117, March 1990.

119

KBSA Framework Bibliography

[10] Tichy, W., "RCS - A System for Version Control," Software-Practice and Expe-
rience, Vol. 15(7), July 1985.

(11] Perry, D., "Version Control in the Inscape Environment," 9th International Con-
ference on Software Engineering, IEEE, March 30, April 2, 1987.

[12] Katz, R., Information Management for Engineering Design, Springer-Verlag,
1985.

[13] EIS Specification Volume I: Organization and Concepts, (CDRL 13,16,17 under
WRDC contract F33615-87-C-1401), October 1989.

[14] Rumbaugh, J., "Controlling Propagation of Operations using Attributes on Re-
lations," OOPSLA '88 Proceedings, September 25-30, 1988.

I[15] Katz, R., "Towards a Unified Framework for Version Modeling," University of
California, Berkeley.

[16] Vines, P., Vines, D., King, T., "Configuration and Change Control in Gaia,"
Honeywell Systems and Research Center, Minneapolis MN.

[17] Steel, G.L., Common Lisp - The Language, Digital Press, 1984.

[18] Bobrow, D.G., et al, "Common Lisp Object System Specification," Draft sub-
mitted to ANSI XSJ13, June 1988, 88-002R.

[19] "Knowledge Based Requirements Assistant," Interim Technical Report, Sanders
Associates, March 17, 1986.

[20] "Common LISP X Interface (CLX)," Texas Instruments, 1989.

[21] Kimbrough, K., et al, "Common Lisp Interactive Objects (CLIO)," Texas In-
struments, September 1989.

[22] "Programming The User Interface", Symbolics Lisp Machine Documentation set,
Chapter 7.

[23] Krasner, G. and Pope, S., "A Cookbook for using the Model-view-Controller
User Interface Paradigm in Smalltalk-80," ParcPlace Systems, 1988.

[24] London, R. and Duisberg, R., "Animating Programs Using Smalltalk," IEEE
Computer, August 1985.

[25) Davis, E., "Constraint Propagation through Interval Labels," Artificial Intelli-
gence 32:3, July 1987, 281-331.

120

Bibliography KBSA Framework

[261 Sutherland, I., "Sketrhpad: A Man-machine Graphical Communication System,"
Proceedings of the Spring Joint Computer Conference (IFIPS), 1963, 329-345.

[27) Maloney, J.H., Borning, A., and Freeman-Benson, B.N., "Constraint Technology
for User-Interface Construction in ThingLab II," Proceedings of the ACM Con-
ference on Object-oriented Programming Systems, Languages, and Applications
(OOPSLA), 1989, 381-388.

[28] Szekely, P.A. and Myers, B.A., "A User Interface Toolkit Based on Graphical Ob-
jects and Constraints," Proceedings of the ACM Conference on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA), 1988, 36-45.

[291 Epstein, D. and LeLonde, W.R., "A Smalltalk Window System Based on Con-
stralnts," Proceedings of the ACM Conference on Object-oriented Programming
Systems, Languages, and Applications (OOPSLA), 1988, 83-94.

[30) Barth, P.S., "An Object-oriented Approach to Graphical Interfaces," ACM
Transaction on Graphics, 5:2, April 1986, 142-172.

[31] Cohen, E.S., Smith, E.T., and Iverson, L.A., "Constraint-based Tiled Windows,"
IEEE Computer Graphics and Applications, May 1986, 35-45.

121

MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C3I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C31 systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

